Yokoyama, Osamu; Nakayama, Yoshihisa
2016-01-01
The caudal cingulate motor area (CMAc) and the supplementary motor area (SMA) play important roles in movement execution. The present study examined the neural mechanisms underlying these roles by investigating local field potentials (LFPs) from these areas while monkeys pressed buttons with either their left or right hand. During hand movement, power increases in the high-gamma (80–120 Hz) and theta (3–8 Hz) bands and a power decrease in the beta (12–30 Hz) band were observed in both the CMAc and SMA. High-gamma and beta activity in the SMA predominantly represented contralateral hand movements, whereas activity in the CMAc preferentially represented movement of either hand. Theta activity in both brain regions most frequently reflected movement of either hand, but a contralateral hand bias was more evident in the SMA than in the CMAc. An analysis of the relationships of the laterality representations between the high-gamma and theta bands at each recording site revealed that, irrespective of the hand preference for the theta band, the high-gamma band in the SMA preferentially represented contralateral hand movement, whereas the high-gamma band in the CMAc represented movement of either hand. These findings suggest that the input-output relationships for ipsilateral and contralateral hand movements in the CMAc and SMA differ in terms of their functionality. The CMAc may transform the input signals representing general aspects of movement into commands to perform movements with either hand, whereas the SMA may transform the input signals into commands to perform movement with the contralateral hand. PMID:26792884
Automatic gain control of neural coupling during cooperative hand movements.
Thomas, F A; Dietz, V; Schrafl-Altermatt, M
2018-04-13
Cooperative hand movements (e.g. opening a bottle) are controlled by a task-specific neural coupling, reflected in EMG reflex responses contralateral to the stimulation site. In this study the contralateral reflex responses in forearm extensor muscles to ipsilateral ulnar nerve stimulation was analyzed at various resistance and velocities of cooperative hand movements. The size of contralateral reflex responses was closely related to the level of forearm muscle activation required to accomplish the various cooperative hand movement tasks. This indicates an automatic gain control of neural coupling that allows a rapid matching of corrective forces exerted at both sides of an object with the goal 'two hands one action'.
Pfau, T; Noordwijk, K; Sepulveda Caviedes, M F; Persson-Sjodin, E; Barstow, A; Forbes, B; Rhodin, M
2018-01-01
Horses show compensatory head movement in hindlimb lameness and compensatory pelvis movement in forelimb lameness but little is known about the relationship of withers movement symmetry with head and pelvic asymmetry in horses with naturally occurring gait asymmetries. To document head, withers and pelvic movement asymmetry and timing differences in horses with naturally occurring gait asymmetries. Retrospective analysis of gait data. Head, withers and pelvic movement asymmetry and timing of displacement minima and maxima were quantified from inertial sensors in 163 Thoroughbreds during trot-ups on hard ground. Horses were divided into 4 subgroups using the direction of head and withers movement asymmetry. Scatter plots of head vs. pelvic movement asymmetry illustrated how the head-withers relationship distinguishes between contralateral and ipsilateral head-pelvic movement asymmetry. Independent t test or Mann-Whitney U test (P<0.05) compared pelvic movement asymmetry and timing differences between groups. The relationship between head and withers asymmetry (i.e. same sided or opposite sided asymmetry) predicts the relationship between head and pelvic asymmetry in 69-77% of horses. Pelvic movement symmetry was significantly different between horses with same sign vs. opposite sign of head-withers asymmetry (P<0.0001). Timing of the maximum head height reached after contralateral ('sound') stance was delayed compared to withers (P = 0.02) and pelvis (P = 0.04) in horses with contralateral head-withers asymmetry. The clinical lameness status of the horses was not investigated. In the Thoroughbreds with natural gait asymmetries investigated here, the direction of head vs. withers movement asymmetry identifies the majority of horses with ipsilateral and contralateral head and pelvic movement asymmetries. Withers movement should be further investigated for differentiating between forelimb and hindlimb lame horses. Horses with opposite sided head and withers asymmetry significantly delay the upward movement of the head after 'sound' forelimb stance. © 2017 The Authors. Equine Veterinary Journal published by John Wiley & Sons Ltd on behalf of EVJ Ltd.
Wisneski, Kimberly J; Anderson, Nicholas; Schalk, Gerwin; Smyth, Matt; Moran, Daniel; Leuthardt, Eric C
2008-12-01
Brain computer interfaces (BCIs) offer little direct benefit to patients with hemispheric stroke because current platforms rely on signals derived from the contralateral motor cortex (the same region injured by the stroke). For BCIs to assist hemiparetic patients, the implant must use unaffected cortex ipsilateral to the affected limb. This requires the identification of distinct electrophysiological features from the motor cortex associated with ipsilateral hand movements. In this study we studied 6 patients undergoing temporary placement of intracranial electrode arrays. Electrocorticographic (ECoG) signals were recorded while the subjects engaged in specific ipsilateral or contralateral hand motor tasks. Spectral changes were identified with regards to frequency, location, and timing. Ipsilateral hand movements were associated with electrophysiological changes that occur in lower frequency spectra, at distinct anatomic locations, and earlier than changes associated with contralateral hand movements. In a subset of 3 patients, features specific to ipsilateral and contralateral hand movements were used to control a cursor on a screen in real time. In ipsilateral derived control this was optimal with lower frequency spectra. There are distinctive cortical electrophysiological features associated with ipsilateral movements which can be used for device control. These findings have implications for patients with hemispheric stroke because they offer a potential methodology for which a single hemisphere can be used to enhance the function of a stroke induced hemiparesis.
Soma, Shogo; Saiki, Akiko; Yoshida, Junichi; Ríos, Alain; Kawabata, Masanori; Sakai, Yutaka; Isomura, Yoshikazu
2017-11-08
Two distinct motor areas, the primary and secondary motor cortices (M1 and M2), play crucial roles in voluntary movement in rodents. The aim of this study was to characterize the laterality in motor cortical representations of right and left forelimb movements. To achieve this goal, we developed a novel behavioral task, the Right-Left Pedal task, in which a head-restrained male rat manipulates a right or left pedal with the corresponding forelimb. This task enabled us to monitor independent movements of both forelimbs with high spatiotemporal resolution. We observed phasic movement-related neuronal activity (Go-type) and tonic hold-related activity (Hold-type) in isolated unilateral movements. In both M1 and M2, Go-type neurons exhibited bias toward contralateral preference, whereas Hold-type neurons exhibited no bias. The contralateral bias was weaker in M2 than M1. Moreover, we differentiated between intratelencephalic (IT) and pyramidal tract (PT) neurons using optogenetically evoked spike collision in rats expressing channelrhodopsin-2. Even in identified PT and IT neurons, Hold-type neurons exhibited no lateral bias. Go-type PT neurons exhibited bias toward contralateral preference, whereas IT neurons exhibited no bias. Our findings suggest a different laterality of movement representations of M1 and M2, in each of which IT neurons are involved in cooperation of bilateral movements, whereas PT neurons control contralateral movements. SIGNIFICANCE STATEMENT In rodents, the primary and secondary motor cortices (M1 and M2) are involved in voluntary movements via distinct projection neurons: intratelencephalic (IT) neurons and pyramidal tract (PT) neurons. However, it remains unclear whether the two motor cortices (M1 vs M2) and the two classes of projection neurons (IT vs PT) have different laterality of movement representations. We optogenetically identified these neurons and analyzed their functional activity using a novel behavioral task to monitor movements of the right and left forelimbs separately. We found that contralateral bias was reduced in M2 relative to M1, and in IT relative to PT neurons. Our findings suggest that the motor information processing that controls forelimb movement is coordinated by a distinct cell population. Copyright © 2017 the authors 0270-6474/17/3710904-13$15.00/0.
Takahashi, Mayu; Sugiuchi, Yuriko; Shinoda, Yoshikazu
2014-02-01
The caudal fastigial nucleus (FN) is known to be related to the control of eye movements and projects mainly to the contralateral reticular nuclei where excitatory and inhibitory burst neurons for saccades exist [the caudal portion of the nucleus reticularis pontis caudalis (NRPc), and the rostral portion of the nucleus reticularis gigantocellularis (NRG) respectively]. However, the exact reticular neurons targeted by caudal fastigioreticular cells remain unknown. We tried to determine the target reticular neurons of the caudal FN and superior colliculus (SC) by recording intracellular potentials from neurons in the NRPc and NRG of anesthetized cats. Neurons in the rostral NRG received bilateral, monosynaptic excitation from the caudal FNs, with contralateral predominance. They also received strong monosynaptic excitation from the rostral and caudal contralateral SC, and disynaptic excitation from the rostral ipsilateral SC. These reticular neurons with caudal fastigial monosynaptic excitation were not activated antidromically from the contralateral abducens nucleus, but most of them were reticulospinal neurons (RSNs) that were activated antidromically from the cervical cord. RSNs in the caudal NRPc received very weak monosynaptic excitation from only the contralateral caudal FN, and received either monosynaptic excitation only from the contralateral caudal SC, or monosynaptic and disynaptic excitation from the contralateral caudal and ipsilateral rostral SC, respectively. These results suggest that the caudal FN helps to control also head movements via RSNs targeted by the SC, and these RSNs with SC topographic input play different functional roles in head movements.
Stoeter, P; Rodriguez-Raecke, R; Vilchez, C; Perez-Then, E; Speckter, H; Oviedo, J; Roa-Sanchez, P
2012-11-01
In a variety of dystonias, functional magnetic resonance imaging has shown deviations of cortical and basal ganglia activations within the motor network, which might cause the movement disturbances. Because these investigations have never been performed in secondary dystonia due to Pantothenate-Kinase Associated Neurodegeneration, we report our results in a small group of such patients from the Dominican Republic. Functional magnetic resonance imaging was carried out in 7 patients with a genetically confirmed mutation of the PANK2 gene and a non-affected control group (matched pairs) using an event-related motor activation paradigm (hand movements). Compared to the control group (p ≤ 0.01), patients showed a larger amount of activated voxels starting in the contralateral cerebellum and contralateral premotor cortex 2 s before the actual hand movement. Whereas these "hyperactivations" gradually diminished over time, activations in the contralateral primary motor cortex and the supplementary motor area peaked during the next second and those of the contralateral putamen at the time of the actual hand movement. In a multiple regression analysis, all these areas correlated positively with the degree of dystonia of the contralateral arm as judged by the Burke-Fahn-Marsden-scale (p ≤ 0.001). As in other forms of dystonia, the increased activations of the motor system found in our patients could be related to the origin of the dystonic movements. Because in this condition the primary lesion affects the pallidum, a defect of the feed-back control mechanism between basal ganglia and cortex might be the responsible factor. © 2012 Elsevier Ltd. All rights reserved.
Kelmer, Gal; Keegan, Kevin G; Kramer, Joanne; Wilson, David A; Pai, Frank P; Singh, Prableen
2005-04-01
To characterize compensatory movements of the head and pelvis that resemble lameness in horses. 17 adult horses. Kinematic evaluations were performed while horses trotted on a treadmill before and after shoe-induced lameness. Lameness was quantified and the affected limb determined by algorithms that measured asymmetry in vertical movement of the head and pelvis. Induced primary lameness and compensatory movements resembling lameness were assessed by the Friedman test. Association between induced lameness and compensatory movements was examined by regression analysis. Compensatory movements resembling lameness in the ipsilateral forelimb were seen with induced lameness of a hind limb. There was less downward and less upward head movement during and after the stance phase of the ipsilateral forelimb. Doubling the severity of lameness in the hind limb increased severity of the compensatory movements in the ipsilateral forelimb by 50%. Compensatory movements resembling lameness of the hind limb were seen after induced lameness in a forelimb. There was less upward movement of the pelvis after the stance phase of the contralateral hind limb and, to a lesser extent, less downward movement of the pelvis during the stance phase of the ipsilateral hind limb. Doubling the severity of lameness in the forelimb increased compensatory movements of the contralateral hind limb by 5%. Induced lameness in a hind limb causes prominent compensatory movements resembling lameness in the ipsilateral forelimb. Induced lameness in a forelimb causes slight compensatory movements resembling lameness in the ipsilateral and contralateral hind limbs.
Anticipatory postural adjustments during sitting reach movement in post-stroke subjects.
Pereira, Soraia; Silva, Cláudia C; Ferreira, Sílvia; Silva, Cláudia; Oliveira, Nuno; Santos, Rubim; Vilas-Boas, John P; Correia, Miguel V
2014-02-01
The study assessed the effect of velocity of arm movement on anticipatory postural adjustments (APAs) generation in the contralateral and ipsilateral muscles of individuals with stroke in seating. Ten healthy and eight post-stroke subjects were studied in sitting. The task consisted in reaching an object placed at scapular plane and mid-sternum height at self-selected and fast velocities. Electromyography was recorded from anterior deltoid (AD), upper (UT) and lower trapezius (LT) and latissimus dorsi (LD). While kinematic analysis was used to assess peak velocity and trunk displacement. Differences were found between the timing of APAs on ipsi and contralateral LD and LT in both movement speeds and in ipsilateral UT during movement of the non-affected arm at a self-selected velocity. A delay on the contralateral LD to reach movement with the non-affected arm at fast velocity was also observed. The trunk displacement was greater in post-stroke subjects. Individuals with stroke demonstrated a delay of APAs in the muscles on both sides of the body compared to healthy subjects. The delay was observed during performance of the reaching task with the fast and self-selected velocity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Evaluation of mirrored muscle activity in patients with Complex Regional Pain Syndrome.
Bank, Paulina J M; Peper, C Lieke E; Marinus, Johan; Beek, Peter J; van Hilten, Jacobus J
2014-10-01
Motor dysfunction in Complex Regional Pain Syndrome (CRPS) has been associated with bilateral changes in central motor processing, suggesting abnormal coupling between the affected and unaffected limb. We evaluated the occurrence of involuntary muscle activity in a limb during voluntary movements of the contralateral limb (i.e., mirror activity) in unilaterally affected patients to examine disinhibition of contralateral motor activity in CRPS. Mirror activity was examined during unimanual rhythmic flexion-extension movements of the wrist through in-depth analysis of electromyography recordings from the passive arm in 20 CRPS patients and 40 controls. The number of mirror-epochs was comparable for both arms in both CRPS patients and controls. Mirror-epochs in the affected arm of patients were comparable to those in controls. Mirror-epochs in the unaffected arm were shorter and showed less resemblance (in terms of rhythm and timing) to activity of the homologous muscle in the moving arm compared to mirror-epochs in controls. No evidence for disinhibition of contralateral motor activity was found during unimanual movement. Although motor dysfunction in CRPS has been associated with bilateral changes in cortical motor processing, the present findings argue against disinhibition of interhemispheric projections to homologous muscles in the contralateral limb during unimanual movement. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Hemispheric differences of motor execution: a near-infrared spectroscopy study.
Helmich, Ingo; Rein, Robert; Niermann, Nico; Lausberg, Hedda
2013-01-01
Distal movements of the limbs are predominantly controlled by the contralateral hemisphere. However, functional neuroimaging studies do not unequivocally demonstrate a lateralization of the cerebral activation during hand movements. While some studies show a predominant activation of the contralateral hemisphere, other studies provide evidence for a symmetrically distributed bihemispheric activation. However, the divergent results may also be due to methodological shortcomings. Therefore, the present study using functional near-infrared spectroscopy examines cerebral activation in both hemispheres during motor actions of the right and left hands. Twenty participants performed a flexion/extension task with the right- or left-hand thumb. Cerebral oxygenation changes were recorded from 48 channels over the primary motor, pre-motor, supplementary motor, primary somatosensory cortex, subcentral area, and the supramarginal gyrus of each hemisphere. A consistent increase of cerebral oxygenation was found for oxygenated and for total hemoglobin in the hemisphere contralateral to the moving hand, regardless of the laterality. These findings are in line with previous data from localization [1-3] and brain imaging studies [4-6]. The present data support the proposition that there is no hemispheric specialization for simple distal motor tasks. Both hemispheres are equally activated during movement of the contralateral upper limb.
Chen, Bing; Aruin, Alexander S
2013-11-27
The magnitude of grip force used to lift and transport a hand-held object is decreased if a light finger touch from the contralateral arm is provided to the wrist of the target arm. We investigated whether the type of contralateral arm sensory input that became available with the finger touch to the target arm affects the way grip force is reduced. Nine healthy subjects performed the same task of lifting and transporting an instrumented object with no involvement of the contralateral arm and when an index finger touch of the contralateral arm was provided to the wrist, elbow, and shoulder. Touching the wrist and elbow involved movements of the contralateral arm; no movements were produced while touching the shoulder. Grip force was reduced by approximately the same amount in all conditions with the finger touch compared to the no touch condition. This suggests that information from the muscle and joint receptors of the contralateral arm is used in control of grip force when a finger touch is provided to the wrist and elbow, and cutaneous information is utilized when lifting an object while touching the shoulder. The results of the study provide additional evidence to support the use of a second arm in the performance of activities of daily living and stress the importance of future studies investigating contralateral arm sensory input in grip force control. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Three-dimensional analysis of a ballet dancer with ischial tuberosity apophysitis. A case study.
Pohjola, Hanna; Sayers, Mark; Mellifont, Rebecca; Mellifont, Daniel; Venojärvi, Mika
2014-12-01
The purpose of this case study was to describe the three-dimensional biomechanics of common ballet exercises in a ballet dancer with ischial tuberosity apophysitis. This was achieved by comparing kinematics between the symptomatic (i.e. ischial apophyseal symptoms) and contralateral lower limbs, as well as via reported pain. Results suggest consistent differences in movement patterns in this dancer. These differences included: 1) decreased external rotation of contralateral hip, hence a decreased hip contribution to 'turn out'; 2) increased contralateral knee adduction and internal rotation; 3) an apparent synchronicity in the contralateral lower limb of the decreased hip external rotation and increased knee adduction; and 4) minimal use of ankle plantar/dorsiflexion movement for symptomatic side. Pain related to the left ischial apophysitis was associated with reduced amplitudes especially in fast ballet movements that required large range of motion in flexion and adduction in the left hip joint. These findings suggest that ischial apophysitis may limit dancer's ballet technique and performance. Key PointsThe pain related to the left ischial apophysitis was associated with reduced amplitudes especially in fast ballet movements that require large range of motion. This may affect to the lower limbs kinematics, and limit dancer's technique and performance.Compensatory strategies in the kinetic chain, differences in the joint angles between the lower limbs, traction forces, velocity and amplitude demands should be taken in consideration while training and rehabilitation of the ischial apophyseal injury within classical ballet.
Pain-Related Suppression of Beta Oscillations Facilitates Voluntary Movement
Misra, Gaurav; Ofori, Edward; Chung, Jae Woo; Coombes, Stephen A.
2017-01-01
Abstract Increased beta oscillations over sensorimotor cortex are antikinetic. Motor- and pain-related processes separately suppress beta oscillations over sensorimotor cortex leading to the prediction that ongoing pain should facilitate movement. In the current study, we used a paradigm in which voluntary movements were executed during an ongoing pain-eliciting stimulus to test the hypothesis that a pain-related suppression of beta oscillations would facilitate the initiation of a subsequent voluntary movement. Using kinematic measures, electromyography, and high-density electroencephalography, we demonstrate that ongoing pain leads to shorter reaction times without affecting the kinematics or accuracy of movement. Reaction time was positively correlated with beta power prior to movement in contralateral premotor areas. Our findings corroborate the view that beta-band oscillations are antikinetic and provide new evidence that pain primes the motor system for action. Our observations provide the first evidence that a pain-related suppression of beta oscillations over contralateral premotor areas leads to shorter reaction times for voluntary movement. PMID:26965905
Bates, Nathaniel A.; McPherson, April L.; Nesbitt, Rebecca J.; Shearn, Jason T.; Myer, Gregory D.; Hewett, Timothy E.
2017-01-01
Limb asymmetry is a known factor for increased ACL injury risk. These asymmetries are normally observed during in vivo testing. Prior studies have developed in vitro testing methodologies driven by in vivo kinematics to investigate knee mechanics relative to ACL injury. The objective of this study was to determine if mechanical side-to-side asymmetries persist in contralateral pairs during in vitro simulation testing. In vivo kinematics were recorded for male and female drop vertical jump and sidestep cutting tasks. The recorded kinematics were used to robotically simulate the motions on 7 contralateral pairs of cadaveric lower extremities specimens. ACL and MCL force, torque, and strains were recorded and analyzed for differences between contralateral pairs. There was a general lack of mechanical differences between limb sides. Adduction peak torque for the male sidestep cut movement was significantly different between limb sides (p = 0.04). However, this is consistent with ACL injury mechanics in that movement in the frontal plane (abduction/adduction) increases injury risk and it is possible loading differences in this plane may have resulted from tolerances within the setup process. The findings of this study indicate that contralateral knee joints were representative of each other during biomechanical in vitro tests. In future cadaveric robotic simulations, contralateral limbs can be used interchangeably. In addition, direct comparisons of the structural behaviors of isolated conditions for contralateral knee joints can be performed. PMID:28062120
Maliye, Sylvia; Marshall, John F
2016-10-15
OBJECTIVE To characterize and describe the compensatory load redistribution that results from unilateral hind limb lameness in horses. DESIGN Retrospective case series. ANIMALS 37 client-owned horses. PROCEDURES Medical records were reviewed to identify horses with unilateral hind limb lameness that responded positively (by objective assessment) to diagnostic local anesthesia during lameness evaluation and that were evaluated before and after diagnostic local anesthesia with an inertial sensor-based lameness diagnosis system. Horses were grouped as having hind limb lameness only, hind limb and ipsilateral forelimb lameness, or hind limb and contralateral forelimb lameness. Measures of head and pelvic movement asymmetry before (baseline) and after diagnostic local anesthesia were compared. The effect of group on baseline pelvic movement asymmetry variables was analyzed statistically. RESULTS Maximum pelvic height significantly decreased from the baseline value after diagnostic local anesthesia in each of the 3 lameness groups and in all horses combined. Minimum pelvic height significantly decreased after the procedure in all groups except the hind limb and contralateral forelimb lameness group. Head movement asymmetry was significantly decreased after diagnostic local anesthesia for horses with hind limb and ipsilateral forelimb lameness and for all horses combined, but not for those with hind limb lameness only or those with hind limb and contralateral forelimb lameness. CONCLUSIONS AND CLINICAL RELEVANCE Results supported that hind limb lameness can cause compensatory load redistribution evidenced as ipsilateral forelimb lameness. In this population of horses, contralateral forelimb lameness was not compensatory and likely reflected true lameness. Further studies are needed to investigate the source of the contralateral forelimb lameness in such horses.
Urbano, A; Babiloni, C; Onorati, P; Babiloni, F
1998-06-01
Between-electrode cross-covariances of delta (0-3 Hz)- and theta (4-7 Hz)-filtered high resolution EEG potentials related to preparation, initiation. and execution of human unilateral internally triggered one-digit movements were computed to investigate statistical dynamic coupling between these potentials. Significant (P < 0.05, Bonferroni-corrected) cross-covariances were calculated between electrodes of lateral and median scalp regions. For both delta- and theta-bandpassed potentials, covariance modeling indicated a shifting functional coupling between contralateral and ipsilateral frontal-central-parietal scalp regions and between these two regions and the median frontal-central scalp region from the preparation to the execution of the movement (P < 0.05). A maximum inward functional coupling of the contralateral with the ipsilateral frontal-central-parietal scalp region was modeled during the preparation and initiation of the movement, and a maximum outward functional coupling during the movement execution. Furthermore, for theta-bandpassed potentials, rapidly oscillating inward and outward relationships were modeled between the contralateral frontal-central-parietal scalp region and the median frontal-central scalp region across the preparation, initiation, and execution of the movement. We speculate that these cross-covariance relationships might reflect an oscillating dynamic functional coupling of primary sensorimotor and supplementary motor areas during the planning, starting, and performance of unilateral movement. The involvement of these cortical areas is supported by the observation that averaged spatially enhanced delta- and theta-bandpassed potentials were computed from the scalp regions where task-related electrical activation of primary sensorimotor areas and supplementary motor area was roughly represented.
Subthalamic Nucleus Stimulation Modulates Motor Cortex Oscillatory Activity in Parkinson's Disease
ERIC Educational Resources Information Center
Devos, D.; Labyt, E.; Derambure, P.; Bourriez, J. L.; Cassim, F.; Reyns, N.; Blond, S.; Guieu, J. D.; Destee, A.; Defebvre, L.
2004-01-01
In Parkinson's disease, impaired motor preparation has been related to an increased latency in the appearance of movement-related desynchronization (MRD) throughout the contralateral primary sensorimotor (PSM) cortex. Internal globus pallidus (GPi) stimulation improved movement desynchronization over the PSM cortex during movement execution but…
Pain-Related Suppression of Beta Oscillations Facilitates Voluntary Movement.
Misra, Gaurav; Ofori, Edward; Chung, Jae Woo; Coombes, Stephen A
2017-04-01
Increased beta oscillations over sensorimotor cortex are antikinetic. Motor- and pain-related processes separately suppress beta oscillations over sensorimotor cortex leading to the prediction that ongoing pain should facilitate movement. In the current study, we used a paradigm in which voluntary movements were executed during an ongoing pain-eliciting stimulus to test the hypothesis that a pain-related suppression of beta oscillations would facilitate the initiation of a subsequent voluntary movement. Using kinematic measures, electromyography, and high-density electroencephalography, we demonstrate that ongoing pain leads to shorter reaction times without affecting the kinematics or accuracy of movement. Reaction time was positively correlated with beta power prior to movement in contralateral premotor areas. Our findings corroborate the view that beta-band oscillations are antikinetic and provide new evidence that pain primes the motor system for action. Our observations provide the first evidence that a pain-related suppression of beta oscillations over contralateral premotor areas leads to shorter reaction times for voluntary movement. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Vibrissa motor cortex activity suppresses contralateral whisking behavior.
Ebbesen, Christian Laut; Doron, Guy; Lenschow, Constanze; Brecht, Michael
2017-01-01
Anatomical, stimulation and lesion data implicate vibrissa motor cortex in whisker motor control. Work on motor cortex has focused on movement generation, but correlations between vibrissa motor cortex activity and whisking are weak. The exact role of vibrissa motor cortex remains unknown. We recorded vibrissa motor cortex neurons during various forms of vibrissal touch, which were invariably associated with whisker protraction and movement. Free whisking, object palpation and social touch all resulted in decreased cortical activity. To understand this activity decrease, we performed juxtacellular recordings, nanostimulation and in vivo whole-cell recordings. Social touch resulted in decreased spiking activity, decreased cell excitability and membrane hyperpolarization. Activation of vibrissa motor cortex by intracortical microstimulation elicited whisker retraction, as if to abort vibrissal touch. Various vibrissa motor cortex inactivation protocols resulted in contralateral protraction and increased whisker movements. These data collectively point to movement suppression as a prime function of vibrissa motor cortex activity.
Haack, Timm; Schneider, Matthias; Schwendele, Bernd; Renault, Andrew D
2014-12-15
The Drosophila heart is a linear organ formed by the movement of bilaterally specified progenitor cells to the midline and adherence of contralateral heart cells. This movement occurs through the attachment of heart cells to the overlying ectoderm which is undergoing dorsal closure. Therefore heart cells are thought to move to the midline passively. Through live imaging experiments and analysis of mutants that affect the speed of dorsal closure we show that heart cells in Drosophila are autonomously migratory and part of their movement to the midline is independent of the ectoderm. This means that heart formation in flies is more similar to that in vertebrates than previously thought. We also show that defects in dorsal closure can result in failure of the amnioserosa to properly degenerate, which can physically hinder joining of contralateral heart cells leading to a broken heart phenotype. Copyright © 2014 Elsevier Inc. All rights reserved.
Left hemisphere specialization for the control of voluntary movement rate.
Agnew, John A; Zeffiro, Thomas A; Eden, Guinevere F
2004-05-01
Although persuasive behavioral evidence demonstrates the superior dexterity of the right hand in most people under a variety of conditions, little is known about the neural mechanisms responsible for this phenomenon. As this lateralized superiority is most evident during the performance of repetitive, speeded movement, we used parametric rate variations to compare visually paced movement of the right and left hands. Twelve strongly right-handed subjects participated in a functional magnetic resonance imaging (fMRI) experiment involving variable rate thumb movements. For movements of the right hand, contralateral rate-related activity changes were identified in the precentral gyrus, thalamus, and posterior putamen. For left-hand movements, activity was seen only in the contralateral precentral gyrus, consistent with the existence of a rate-sensitive motor control subsystem involving the left, but not the right, medial premotor corticostriatal loop in right-handed individuals. We hypothesize that the right hemisphere system is less skilled at controlling variable-rate movements and becomes maximally engaged at a lower movement rate without further modulation. These findings demonstrate that right- and left-hand movements engage different neural systems to control movement, even during a relatively simple thumb flexion task. Specialization of the left hemisphere corticostriatal system for dexterity is reflected in asymmetric mechanisms for movement rate control.
Hall, S.D.; Prokic, E.J.; McAllister, C.J.; Ronnqvist, K.C.; Williams, A.C.; Yamawaki, N.; Witton, C.; Woodhall, G.L.; Stanford, I.M.
2014-01-01
In Parkinson’s disease (PD), elevated beta (15–35 Hz) power in subcortical motor networks is widely believed to promote aspects of PD symptomatology, moreover, a reduction in beta power and coherence accompanies symptomatic improvement following effective treatment with l-DOPA. Previous studies have reported symptomatic improvements that correlate with changes in cortical network activity following GABAA receptor modulation. In this study we have used whole-head magnetoencephalography to characterize neuronal network activity, at rest and during visually cued finger abductions, in unilaterally symptomatic PD and age-matched control participants. Recordings were then repeated following administration of sub-sedative doses of the hypnotic drug zolpidem (0.05 mg/kg), which binds to the benzodiazepine site of the GABAA receptor. A beamforming based ‘virtual electrode’ approach was used to reconstruct oscillatory power in the primary motor cortex (M1), contralateral and ipsilateral to symptom presentation in PD patients or dominant hand in control participants. In PD patients, contralateral M1 showed significantly greater beta power than ipsilateral M1. Following zolpidem administration contralateral beta power was significantly reduced while ipsilateral beta power was significantly increased resulting in a hemispheric power ratio that approached parity. Furthermore, there was highly significant correlation between hemispheric beta power ratio and Unified Parkinson’s Disease Rating Scale (UPDRS). The changes in contralateral and ipsilateral beta power were reflected in pre-movement beta desynchronization and the late post-movement beta rebound. However, the absolute level of movement-related beta desynchronization was not altered. These results show that low-dose zolpidem not only reduces contralateral beta but also increases ipsilateral beta, while rebalancing the dynamic range of M1 network oscillations between the two hemispheres. These changes appear to underlie the symptomatic improvements afforded by low-dose zolpidem. PMID:25261686
Hu, Hong-Tao; Ren, Liang; Sun, Xian-Ze; Liu, Feng-Yu; Yu, Jin-He; Gu, Zhen-Fang
2018-04-01
Transforaminal lumbar interbody fusion (TLIF) is an effective treatment for patients with degenerative lumbar disc disorder. Contralateral radiculopathy, as a complication of TLIF, has been recognized in this institution, but is rarely reported in the literature. In this article, we report 2 cases of contralateral radiculopathy after TLIF in our institution and its associated complications. In the 2 cases, the postoperative computed tomography (CT) and magnetic resonance image (MRI) showed obvious upward movement of the superior articular process, leading to contralateral foraminal stenosis. Revision surgery was done at once to partially resect the opposite superior facet and to relieve nerve root compression. After revision surgery, the contralateral radiculopathy disappeared. Contralateral radiculopathy is an avoidable potential complication. It is very important to create careful preoperative plans and to conscientiously plan the use of intraoperative techniques. In case of postoperative contralateral leg pain, the patients should be examined by CT and MRI. If CT and MRI show that the superior articular process significantly migrated upwards, which leads to contralateral foraminal stenosis, revision surgery should be done at once to partially resect the contralateral superior facet so as to relieve nerve root compression and avoid possible long-term impairment.
NASA Astrophysics Data System (ADS)
Kamimura, Hermes; Wang, Shutao; Chen, Hong; Wang, Qi; Aurup, Christian; Fan, Kathtleen; Carneiro, Antonio; Konofagou, Elisa
Ultrasound neurostimulation has been proven capable of eliciting motor responses. However, the studies in sedated rodents presented problems with target specificity due to the use of low ultrasound frequencies (<700 kHz). Here, we show that focused ultrasound (FUS) in mega-Hz range was able to evoke motor responses in mice under deep anesthesia. Contralateral movements of the hind limbs were observed when sonications were carried out at +2 mm of Lambda and ±2 mm lateral of midline in three mice. Moreover, stimulating other regions of the somatosensory and cerebellum induced trunk and ipsilateral limb movements in all six mice.
Kimberley, Teresa J; Pickett, Kristen A
2012-01-01
The pathophysiology of focal hand dystonia (FHD) is not clearly understood. Previous studies have reported increased and decreased cortical activity associated with motor tasks. The aim of this study was to investigate blood oxygen level dependent (BOLD) signal changes in functional magnetic resonance imaging within the hand area of primary motor cortex during cued movement of individual digits. Eight healthy individuals and five individuals with right hand FHD participated. Beta weight contrasts were examined within the hand area of the motor cortex. In both groups, BOLD signal changes in the hemisphere contralateral to the moving hand were greater in the left hemisphere than the right. Between groups, no difference was found during control of the left hand, but a significant difference was seen during right hand movement; specifically, individuals with dystonia showed increased contralateral and decreased ipsilateral cortical response associated with the affected hand as compared to healthy individuals. This suggests a similar, albeit exaggerated pattern of activation in individuals with FHD on the affected side. These results suggest different levels of ipsilateral and contralateral activation between healthy and dystonic individuals but also show a relative difference between symptomatic and asymptomatic control within the patient population.
Muthuraman, Muthuraman; Tamás, Gertrúd; Hellriegel, Helge; Deuschl, Günther; Raethjen, Jan
2012-01-01
We hypothesized that post-movement beta synchronization (PMBS) and cortico-muscular coherence (CMC) during movement termination relate to each other and have similar role in sensorimotor integration. We calculated the parameters and estimated the sources of these phenomena.We measured 64-channel EEG simultaneously with surface EMG of the right first dorsal interosseus muscle in 11 healthy volunteers. In Task1, subjects kept a medium-strength contraction continuously; in Task2, superimposed on this movement, they performed repetitive self-paced short contractions. In Task3 short contractions were executed alone. Time-frequency analysis of the EEG and CMC was performed with respect to the offset of brisk movements and averaged in each subject. Sources of PMBS and CMC were also calculated.High beta power in Task1, PMBS in Task2-3, and CMC in Task1-2 could be observed in the same individual frequency bands. While beta synchronization in Task1 and PMBS in Task2-3 appeared bilateral with contralateral predominance, CMC in Task1-2 was strictly a unilateral phenomenon; their main sources did not differ contralateral to the movement in the primary sensorimotor cortex in 7 of 11 subjects in Task1, and in 6 of 9 subjects in Task2. In Task2, CMC and PMBS had the same latency but their amplitudes did not correlate with each other. In Task2, weaker PMBS source was found bilaterally within the secondary sensory cortex, while the second source of CMC was detected in the premotor cortex, contralateral to the movement. In Task3, weaker sources of PMBS could be estimated in bilateral supplementary motor cortex and in the thalamus. PMBS and CMC appear simultaneously at the end of a phasic movement possibly suggesting similar antikinetic effects, but they may be separate processes with different active functions. Whereas PMBS seems to reset the supraspinal sensorimotor network, cortico-muscular coherence may represent the recalibration of cortico-motoneuronal and spinal systems.
Stegemöller, Elizabeth L; Allen, David P; Simuni, Tanya; MacKinnon, Colum D
2016-01-01
Impaired repetitive movement in persons with Parkinson's disease (PD) is associated with reduced amplitude, paradoxical hastening and hesitations or arrest at higher movement rates. This study examined the effects of movement rate and medication on movement-related cortical oscillations in persons with PD. Nine participants with PD were studied off and on medication and compared to nine control participants. Participants performed index finger movements cued by tones from 1 to 3 Hz. Movement-related oscillations were derived from electroencephalographic recordings over the region of the contralateral sensorimotor cortex (S1/M1) during rest, listening, or synchronized movement. At rest, spectral power recorded over the region of the contralateral S1/M1 was increased in the alpha band and decreased in the beta band in participants with PD relative to controls. During movement, the level of alpha and beta band power relative to baseline was significantly reduced in the PD group, off and on medication, compared to controls. Reduced movement amplitude and hastening at movement rates near 2 Hz was associated with abnormally suppressed and persistent desynchronization of oscillations in alpha and beta bands. Motor cortical oscillations in the alpha and beta bands are abnormally suppressed in PD, particularly during higher rate movements. These findings contribute to the understanding of mechanisms underlying impaired repetitive movement in PD. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
What Determines Limb Selection for Reaching?
ERIC Educational Resources Information Center
Helbig, Casi Rabb; Gabbard, Carl
2004-01-01
While motor dominance appears to drive limb selection for reaching movements at the midline and ipsilateral (dominant) side, this study examined the possible determinants associated with what drives the programming of movements in response to stimuli presented in contralateral space. Experiment 1 distinguished between object proximity and a…
Vidal, Ana C; Banca, Paula; Pascoal, Augusto G; Cordeiro, Gustavo; Sargento-Freitas, João; Gouveia, Ana; Castelo-Branco, Miguel
2018-01-01
Background Understanding of interhemispheric interactions in stroke patients during motor control is an important clinical neuroscience quest that may provide important clues for neurorehabilitation. In stroke patients bilateral overactivation in both hemispheres has been interpreted as a poor prognostic indicator of functional recovery. In contrast, ipsilesional patterns have been linked with better motor outcomes. Aim We investigated the pathophysiology of hemispheric interactions during limb movement without and with contralateral restraint, to mimic the effects of constraint-induced movement therapy. We used neuroimaging to probe brain activity with such a movement-dependent interhemispheric modulation paradigm. Methods We used a functional magnetic resonance imaging block design during which the plegic/paretic upper limb was recruited/mobilized to perform unilateral arm elevation, as a function of presence versus absence of contralateral limb restriction (n = 20, with balanced left/right lesion sites). Results Analysis of 10 right hemispheric stroke participants yielded bilateral sensorimotor cortex activation in all movement phases in contrast with the unilateral dominance seen in the 10 left hemispheric stroke participants. Superimposition of contralateral restriction led to a prominent shift from activation to deactivation response patterns, in particular in cortical and basal ganglia motor areas in right hemispheric stroke. Left hemispheric stroke was, in general, characterized by reduced activation patterns, even in the absence of restriction, which induced additional cortical silencing. Conclusion The observed hemispheric-dependent activation/deactivation shifts is novel and these pathophysiological observations suggest short-term neuroplasticity that may be useful for hemisphere-tailored neurorehabilitation.
Vidal, A Cristina; Banca, Paula; Pascoal, Augusto G; Santo, Gustavo C; Sargento-Freitas, João; Gouveia, Ana; Castelo-Branco, Miguel
2017-01-01
Background Understanding of interhemispheric interactions in stroke patients during motor control is an important clinical neuroscience quest that may provide important clues for neurorehabilitation. In stroke patients, bilateral overactivation in both hemispheres has been interpreted as a poor prognostic indicator of functional recovery. In contrast, ipsilesional patterns have been linked with better motor outcomes. Aim We investigated the pathophysiology of hemispheric interactions during limb movement without and with contralateral restraint, to mimic the effects of constraint-induced movement therapy. We used neuroimaging to probe brain activity with such a movement-dependent interhemispheric modulation paradigm. Methods We used an fMRI block design during which the plegic/paretic upper limb was recruited/mobilized to perform unilateral arm elevation, as a function of presence versus absence of contralateral limb restriction ( n = 20, with balanced left/right lesion sites). Results Analysis of 10 right-hemispheric stroke participants yielded bilateral sensorimotor cortex activation in all movement phases in contrast with the unilateral dominance seen in the 10 left-hemispheric stroke participants. Superimposition of contralateral restriction led to a prominent shift from activation to deactivation response patterns, in particular in cortical and basal ganglia motor areas in right-hemispheric stroke. Left-hemispheric stroke was in general characterized by reduced activation patterns, even in the absence of restriction, which induced additional cortical silencing. Conclusion The observed hemispheric-dependent activation/deactivation shifts are novel and these pathophysiological observations suggest short-term neuroplasticity that may be useful for hemisphere-tailored neurorehabilitation.
Park, Si-Woon; Butler, Andrew J.; Cavalheiro, Vanessa; Alberts, Jay L.; Wolf, Steven L.
2013-01-01
The authors examined serial changes in optical topography in a stroke patient performing a functional task, as well as clinical and physiologic measures while undergoing constraint-induced therapy (CIT). A 73-year-old right hemiparetic patient, who had a subcortical stroke 4 months previously, received 2 weeks of CIT. During the therapy, daily optical topography imaging using near-infrared light was measured serially while the participant performed a functional key-turning task. Clinical outcome measures included the Wolf Motor Function Test (WMFT), Motor Activity Log (MAL), and functional key grip test. Transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) were also used to map cortical areas and hemodynamic brain responses, respectively. Optical topography measurement showed an overall decrease in oxy-hemoglobin concentration in both hemispheres as therapy progressed and the laterality index increased toward the contralateral hemisphere. An increased TMS motor map area was observed in the contralateral cortex following treatment. Posttreatment fMRI showed bilateral primary motor cortex activation, although slightly greater in the contralateral hemisphere, during affected hand movement. Clinical scores revealed marked improvement in functional activities. In one patient who suffered a stroke, 2 weeks of CIT led to improved function and cortical reorganization in the hemisphere contralateral to the affected hand. PMID:15228805
Harston, George W. J.; Kilburn-Toppin, Fleur; Matheson, Thomas; Burrows, Malcolm; Gabbiani, Fabrizio; Krapp, Holger G.
2010-01-01
Desert locusts (Schistocerca gregaria) can transform reversibly between the swarming gregarious phase and a solitarious phase, which avoids other locusts. This transformation entails dramatic changes in morphology, physiology, and behavior. We have used the lobula giant movement detector (LGMD) and its postsynaptic target, the descending contralateral movement detector (DCMD), which are visual interneurons that detect looming objects, to analyze how differences in the visual ecology of the two phases are served by altered neuronal function. Solitarious locusts had larger eyes and a greater degree of binocular overlap than those of gregarious locusts. The receptive field to looming stimuli had a large central region of nearly equal response spanning 120° × 60° in both phases. The DCMDs of gregarious locusts responded more strongly than solitarious locusts and had a small caudolateral focus of even further sensitivity. More peripherally, the response was reduced in both phases, particularly ventrally, with gregarious locusts showing greater proportional decrease. Gregarious locusts showed less habituation to repeated looming stimuli along the eye equator than did solitarious locusts. By contrast, in other parts of the receptive field the degree of habituation was similar in both phases. The receptive field organization to looming stimuli contrasts strongly with the receptive field organization of the same neurons to nonlooming local-motion stimuli, which show much more pronounced regional variation. The DCMDs of both gregarious and solitarious locusts are able to detect approaching objects from across a wide expanse of visual space, but phase-specific changes in the spatiotemporal receptive field are linked to lifestyle changes. PMID:19955292
Rabin, Alon; Portnoy, Sigal; Kozol, Zvi
2016-11-01
Rabin, A, Portnoy, S, and Kozol, Z. The association between visual assessment of quality of movement and three-dimensional analysis of pelvis, hip, and knee kinematics during a lateral step down test. J Strength Cond Res 30(11): 3204-3211, 2016-Altered movement patterns including contralateral pelvic drop, increased hip adduction, knee abduction, and external rotation have been previously implicated in several lower extremity pathologies. Although various methods exist for assessing movement patterns, real-time visual observation is the most readily available method. The purpose of this study was to determine whether differing visual ratings of trunk, pelvis, and knee alignment, as well as overall quality of movement, are associated with differences in 3-dimensional trunk, pelvis, hip, or knee kinematics during a lateral step down test. Trunk, pelvis, and knee alignment of 30 healthy participants performing the lateral step down were visually rated as "good" or "faulty" based on previously established criteria. An additional categorization of overall quality of movement as either good or moderate was performed based on the aggregate score of each individual rating criterion. Three-dimensional motion analysis of trunk, pelvis, hip, and knee kinematics was simultaneously performed. A faulty pelvis alignment displayed a greater peak contralateral pelvic drop (effect size [ES], 1.65; p < 0.01) and a greater peak hip adduction (ES: 1.04, p = 0.01) compared with participants with a good pelvis alignment. Participants with a faulty knee alignment displayed greater peak knee external rotation compared with participants with a good knee alignment (ES, 0.78; p = 0.02). Participants with an overall moderate quality of movement displayed increased peak contralateral pelvic drop (ES, 1.07; p = 0.01) and peak knee external rotation (ES, 0.72; p = 0.04) compared with those with an overall good quality of movement. Visual rating of quality of movement during a lateral step down test, as performed by an experienced physical therapist, is associated with differences in several kinematics previously implicated in various pathologies.
Scaling of movement is related to pallidal γ oscillations in patients with dystonia.
Brücke, Christof; Huebl, Julius; Schönecker, Thomas; Neumann, Wolf-Julian; Yarrow, Kielan; Kupsch, Andreas; Blahak, Christian; Lütjens, Goetz; Brown, Peter; Krauss, Joachim K; Schneider, Gerd-Helge; Kühn, Andrea A
2012-01-18
Neuronal synchronization in the gamma (γ) band is considered important for information processing through functional integration of neuronal assemblies across different brain areas. Movement-related γ synchronization occurs in the human basal ganglia where it is centered at ~70 Hz and more pronounced contralateral to the moved hand. However, its functional significance in motor performance is not yet well understood. Here, we assessed whether event-related γ synchronization (ERS) recorded from the globus pallidus internus in patients undergoing deep brain stimulation for medically intractable primary focal and segmental dystonia might code specific motor parameters. Pallidal local field potentials were recorded in 22 patients during performance of a choice-reaction-time task. Movement amplitude of the forearm pronation-supination movements was parametrically modulated with an angular degree of 30°, 60°, and 90°. Only patients with limbs not affected by dystonia were tested. A broad contralateral γ band (35-105 Hz) ERS occurred at movement onset with a maximum reached at peak velocity of the movement. The pallidal oscillatory γ activity correlated with movement parameters: the larger and faster the movement, the stronger was the synchronization in the γ band. In contrast, the event-related decrease in beta band activity was similar for all movements. Gamma band activity did not change with movement direction and did not occur during passive movements. The stepwise increase of γ activity with movement size and velocity suggests a role of neuronal synchronization in this frequency range in basal ganglia control of the scaling of ongoing movements.
Shacklock, Michael; Yee, Brian; Van Hoof, Tom; Foley, Russ; Boddie, Keith; Lacey, Erin; Poley, J Bryan; Rade, Marinko; Kankaanpää, Markku; Kröger, Heikki; Airaksinen, Olavi
2016-02-01
Part 1: A randomized, single-blind study on the effect of contralateral knee extension on sensations produced by the slump test (ST) in asymptomatic subjects. Part 2: A cadaver study simulating the nerve root behavior of part 1. Part 1: Test if contralateral knee extension consistently reduces normal stretch sensations with the ST.Part 2: Ascertain in cadavers an explanation for the results. In asymptomatic subjects, contralateral knee extension reduces stretch sensations with the ST. In sciatica patients, contralateral SLR also can temporarily reduce sciatica. We studied this methodically in asymptomatic subjects before considering a clinical population. Part 1: Sixty-one asymptomatic subjects were tested in control (ST), sham, or intervention (contralateral ST) groups and their sensation response intensity compared.Part 2: Caudal tension was applied to the L5 nerve root of 3 cadavers and tension behavior of the contralateral neural tissue recorded visually. Part 1: Reduction of stretch sensations occurred in the intervention group but not in control and sham groups (P ≤ 0.001).Part 2: Tension in the contralateral lumbar nerve roots and dura reduced in a manner consistent with the responses in the intervention (contralateral ST) group. Part 1: In asymptomatic subjects, normal thigh stretch sensations with the ST reduced consistently with the contralateral ST, showing that this is normal and may now be compared with patients with sciatica.Part 2: Contralateral reduction in lumbar neural tension with unilateral application of tension-producing movements also occurred in cadavers, supporting the proposed explanatory hypothesis.
Kakebeeke, Tanja H; Messerli-Bürgy, Nadine; Meyer, Andrea H; Zysset, Annina E; Stülb, Kerstin; Leeger-Aschmann, Claudia S; Schmutz, Einat A; Arhab, Amar; Puder, Jardena J; Kriemler, Susi; Munsch, Simone; Jenni, Oskar G
2017-10-01
Contralateral associated movements (CAMs) frequently occur in complex motor tasks. We investigated whether and to what extent CAMs are associated with inhibitory control among preschool children in the Swiss Preschoolers' Health Study. Participants were 476 healthy, typically developing children (mean age = 3.88 years; 251 boys) evaluated on two consecutive afternoons. The children performed the Zurich Neuromotor Assessment, the statue subtest of the Neuropsychological Assessment for Children (NEPSY), and cognitive tests of the Intelligence and Development Scales-Preschool (IDS-P). CAMs were associated with poor inhibitory control on the statue test and poor selective attention and visual perception on the IDS-P. We attributed these findings to preschoolers' general immaturity of the central nervous system.
Bilateral Activity-Dependent Interactions in the Developing Corticospinal System
Friel, Kathleen M.; Martin, John H.
2009-01-01
Activity-dependent competition between the corticospinal (CS) systems in each hemisphere drives postnatal development of motor skills and stable CS tract connections with contralateral spinal motor circuits. Unilateral restriction of motor cortex (M1) activity during an early postnatal critical period impairs contralateral visually guided movements later in development and in maturity. Silenced M1 develops aberrant connections with the contralateral spinal cord whereas the initially active M1, in the other hemisphere, develops bilateral connections. In this study, we determined whether the aberrant pattern of CS tract terminations and motor impairments produced by early postnatal M1 activity restriction could be abrogated by reducing activity-dependent synaptic competition from the initially active M1 later in development. We first inactivated M1 unilaterally between postnatal weeks 5–7. We next inactivated M1 on the other side from weeks 7–11 (alternate inactivation), to reduce the competitive advantage that this side may have over the initially inactivated side. Alternate inactivation redirected aberrant contralateral CS tract terminations from the initially silenced M1 to their normal spinal territories and reduced the density of aberrant ipsilateral terminations from the initially active side. Normal movement endpoint control during visually guided locomotion was fully restored. This reorganization of CS terminals reveals an unsuspected late plasticity after the critical period for establishing the pattern of CS terminations in the spinal cord. Our findings show that robust bilateral interactions between the developing CS systems on each side are important for achieving balance between contralateral and ipsilateral CS tract connections and visuomotor control. PMID:17928450
Cooperative hand movements in post-stroke subjects: Neural reorganization.
Schrafl-Altermatt, Miriam; Dietz, Volker
2016-01-01
Recent research indicates a task-specific neural coupling controlling cooperative hand movements reflected in bilateral electromyographic reflex responses in arm muscles following unilateral nerve stimulation. Reorganization of this mechanism was explored in post-stroke patients in this study. Electromyographic reflex responses in forearm muscles to unilateral electrical ulnar nerve stimulation were examined during cooperative and non-cooperative hand movements. Stimulation of the unaffected arm during cooperative hand movements led to electromyographic responses in bilateral forearm muscles, similar to those seen in healthy subjects, while stimulation of the affected side was followed only by ipsilateral responses. No contralateral reflex responses could be evoked in severely affected patients. The presence of contralateral responses correlated with the clinical motor impairment as assessed by the Fugl-Meyer test. The observations suggest that after stroke an impaired processing of afferent input from the affected side leads to a defective neural coupling and is associated with a greater involvement of fiber tracts from the unaffected hemisphere during cooperative hand movements. The mechanism of neural coupling underlying cooperative hand movements is shown to be defective in post-stroke patients. The neural re-organizations observed have consequences for the rehabilitation of hand function. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Functional near infrared spectroscopy for awake monkey to accelerate neurorehabilitation study
NASA Astrophysics Data System (ADS)
Kawaguchi, Hiroshi; Higo, Noriyuki; Kato, Junpei; Matsuda, Keiji; Yamada, Toru
2017-02-01
Functional near-infrared spectroscopy (fNIRS) is suitable for measuring brain functions during neurorehabilitation because of its portability and less motion restriction. However, it is not known whether neural reconstruction can be observed through changes in cerebral hemodynamics. In this study, we modified an fNIRS system for measuring the motor function of awake monkeys to study cerebral hemodynamics during neurorehabilitation. Computer simulation was performed to determine the optimal fNIRS source-detector interval for monkey motor cortex. Accurate digital phantoms were constructed based on anatomical magnetic resonance images. Light propagation based on the diffusion equation was numerically calculated using the finite element method. The source-detector pair was placed on the scalp above the primary motor cortex. Four different interval values (10, 15, 20, 25 mm) were examined. The results showed that the detected intensity decreased and the partial optical path length in gray matter increased with an increase in the source-detector interval. We found that 15 mm is the optimal interval for the fNIRS measurement of monkey motor cortex. The preliminary measurement was performed on a healthy female macaque monkey using fNIRS equipment and custom-made optodes and optode holder. The optodes were attached above bilateral primary motor cortices. Under the awaking condition, 10 to 20 trials of alternated single-sided hand movements for several seconds with intervals of 10 to 30 s were performed. Increases and decreases in oxy- and deoxyhemoglobin concentration were observed in a localized area in the hemisphere contralateral to the moved forelimb.
Neural correlates of mirth and laughter: a direct electrical cortical stimulation study.
Yamao, Yukihiro; Matsumoto, Riki; Kunieda, Takeharu; Shibata, Sumiya; Shimotake, Akihiro; Kikuchi, Takayuki; Satow, Takeshi; Mikuni, Nobuhiro; Fukuyama, Hidenao; Ikeda, Akio; Miyamoto, Susumu
2015-05-01
Laughter consists of both motor and emotional aspects. The emotional component, known as mirth, is usually associated with the motor component, namely, bilateral facial movements. Previous electrical cortical stimulation (ES) studies revealed that mirth was associated with the basal temporal cortex, inferior frontal cortex, and medial frontal cortex. Functional neuroimaging implicated a role for the left inferior frontal and bilateral temporal cortices in humor processing. However, the neural origins and pathways linking mirth with facial movements are still unclear. We hereby report two cases with temporal lobe epilepsy undergoing subdural electrode implantation in whom ES of the left basal temporal cortex elicited both mirth and laughter-related facial muscle movements. In one case with normal hippocampus, high-frequency ES consistently caused contralateral facial movement, followed by bilateral facial movements with mirth. In contrast, in another case with hippocampal sclerosis (HS), ES elicited only mirth at low intensity and short duration, and eventually laughter at higher intensity and longer duration. In both cases, the basal temporal language area (BTLA) was located within or adjacent to the cortex where ES produced mirth. In conclusion, the present direct ES study demonstrated that 1) mirth had a close relationship with language function, 2) intact mesial temporal structures were actively engaged in the beginning of facial movements associated with mirth, and 3) these emotion-related facial movements had contralateral dominance. Copyright © 2014 Elsevier Ltd. All rights reserved.
Orthodontic movement of a maxillary incisor through the midpalatal suture: a case report.
Garib, Daniela Gamba; Janson, Guilherme; dos Santos, Patrícia Bittencourt Dutra; de Oliveira Baldo, Taiana; de Oliveira, Gabriela Ulian; Ishikiriama, Sérgio Kiyoshi
2012-03-01
Orthodontic space closure is a treatment alternative when a maxillary central incisor is missing. The objective of this report was to present an unusual treatment in which a right maxillary central incisor was moved through the midpalatal suture to replace the absent contralateral tooth. The biologic aspects and clinical appearance of the recontoured lateral and central incisors were analyzed. The position of the examined teeth and the appearance of the surrounding soft tissues were satisfactory; however, the upper midline frenulum deviated to the left. The incisor was successfully moved with no obvious detrimental effects as observed on the final radiographs. In the radiographic and tomographic examinations, the midline suture seemed to have followed the tooth movement. The patient expressed satisfaction with the results. It was concluded that orthodontic movement of the central incisor to replace a missing contralateral tooth is a valid treatment option, and the achievement of an esthetic result requires an interdisciplinary approach, including restorative dentistry and periodontics.
Hussain, Asif; Budhota, Aamani; Hughes, Charmayne Mary Lee; Dailey, Wayne D; Vishwanath, Deshmukh A; Kuah, Christopher W K; Yam, Lester H L; Loh, Yong J; Xiang, Liming; Chua, Karen S G; Burdet, Etienne; Campolo, Domenico
2016-01-01
Technology aided measures offer a sensitive, accurate and time-efficient approach for the assessment of sensorimotor function after neurological insult compared to standard clinical assessments. This study investigated the sensitivity of robotic measures to capture differences in planar reaching movements as a function of neurological status (stroke, healthy), direction (front, ipsilateral, contralateral), movement segment (outbound, inbound), and time (baseline, post-training, 2-week follow-up) using a planar, two-degrees of freedom, robotic-manipulator (H-Man). Twelve chronic stroke (age: 55 ± 10.0 years, 5 female, 7 male, time since stroke: 11.2 ± 6.0 months) and nine aged-matched healthy participants (age: 53 ± 4.3 years, 5 female, 4 male) participated in this study. Both healthy and stroke participants performed planar reaching movements in contralateral, ipsilateral and front directions with the H-Man, and the robotic measures, spectral arc length (SAL), normalized time to peak velocities ( T peakN ), and root-mean square error (RMSE) were evaluated. Healthy participants went through a one-off session of assessment to investigate the baseline. Stroke participants completed a 2-week intensive robotic training plus standard arm therapy (8 × 90 min sessions). Motor function for stroke participants was evaluated prior to training (baseline, week-0), immediately following training (post-training, week-2), and 2-weeks after training (follow-up, week-4) using robotic assessment and the clinical measures Fugl-Meyer Assessment (FMA), Activity-Research-Arm Test (ARAT), and grip-strength. Robotic assessments were able to capture differences due to neurological status, movement direction, and movement segment. Movements performed by stroke participants were less-smooth, featured longer T peakN , and larger RMSE values, compared to healthy controls. Significant movement direction differences were observed, with improved reaching performance for the front, compared to ipsilateral and contralateral movement directions. There were group differences depending on movement segment. Outbound reaching movements were smoother and featured longer T peakN values than inbound movements for control participants, whereas SAL, T peakN , and RMSE values were similar regardless of movement segment for stroke patients. Significant change in performance was observed between initial and post-assessments using H-Man in stroke participants, compared to conventional scales which showed no significant difference. Results of the study indicate the potential of H-Man as a sensitive tool for tracking changes in performance compared to ordinal scales (i.e., FM, ARAT).
Fotowat, Haleh; Harrison, Reid R; Gabbiani, Fabrizio
2010-01-01
Locusts possess an identified neuron, the descending contralateral movement detector (DCMD), conveying visual information about impending collision from the brain to thoracic motor centers. We built a telemetry system to simultaneously record, in freely behaving animals, the activity of the DCMD and of motoneurons involved in jump execution. Co-contraction of antagonistic leg muscles, a required preparatory phase, was triggered after the DCMD firing rate crossed a threshold. Thereafter, the number of DCMD spikes predicted precisely motoneuron activity and jump occurrence. Additionally, the time of DCMD peak firing rate predicted that of jump. Ablation experiments suggest that the DCMD, together with a nearly identical ipsilateral descending neuron, is responsible for the timely execution of the escape. Thus, three distinct features that are multiplexed in a single neuron’s sensory response to impending collision – firing rate threshold, peak firing time, and spike count – likely control three distinct motor aspects of escape behaviors. PMID:21220105
Compensatory Versus Noncompensatory Shoulder Movements Used for Reaching in Stroke.
Levin, Mindy F; Liebermann, Dario G; Parmet, Yisrael; Berman, Sigal
2016-08-01
Background The extent to which the upper-limb flexor synergy constrains or compensates for arm motor impairment during reaching is controversial. This synergy can be quantified with a minimal marker set describing movements of the arm-plane. Objectives To determine whether and how (a) upper-limb flexor synergy in patients with chronic stroke contributes to reaching movements to different arm workspace locations and (b) reaching deficits can be characterized by arm-plane motion. Methods Sixteen post-stroke and 8 healthy control subjects made unrestrained reaching movements to targets located in ipsilateral, central, and contralateral arm workspaces. Arm-plane, arm, and trunk motion, and their temporal and spatial linkages were analyzed. Results Individuals with moderate/severe stroke used greater arm-plane movement and compensatory trunk movement compared to those with mild stroke and control subjects. Arm-plane and trunk movements were more temporally coupled in stroke compared with controls. Reaching accuracy was related to different segment and joint combinations for each target and group: arm-plane movement in controls and mild stroke subjects, and trunk and elbow movements in moderate/severe stroke subjects. Arm-plane movement increased with time since stroke and when combined with trunk rotation, discriminated between different subject groups for reaching the central and contralateral targets. Trunk movement and arm-plane angle during target reaches predicted the subject group. Conclusions The upper-limb flexor synergy was used adaptively for reaching accuracy by patients with mild, but not moderate/severe stroke. The flexor synergy, as parameterized by the amount of arm-plane motion, can be used by clinicians to identify levels of motor recovery in patients with stroke. © The Author(s) 2015.
Diers, Martin; Kamping, Sandra; Kirsch, Pinar; Rance, Mariela; Bekrater-Bodmann, Robin; Foell, Jens; Trojan, Joerg; Fuchs, Xaver; Bach, Felix; Maaß, Heiko; Cakmak, Hüseyin; Flor, Herta
2015-01-12
Extended viewing of movements of one's intact limb in a mirror as well as motor imagery have been shown to decrease pain in persons with phantom limb pain or complex regional pain syndrome and to increase the movement ability in hemiparesis following stroke. In addition, mirrored movements differentially activate sensorimotor cortex in amputees with and without phantom limb pain. However, using a so-called mirror box has technical limitations, some of which can be overcome by virtual reality applications. We developed a virtual reality mirror box application and evaluated its comparability to a classical mirror box setup. We applied both paradigms to 20 healthy controls and analyzed vividness and authenticity of the illusion as well as brain activation patterns. In both conditions, subjects reported similar intensities for the sensation that movements of the virtual left hand felt as if they were executed by their own left hand. We found activation in the primary sensorimotor cortex contralateral to the actual movement, with stronger activation for the virtual reality 'mirror box' compared to the classical mirror box condition, as well as activation in the primary sensorimotor cortex contralateral to the mirrored/virtual movement. We conclude that a virtual reality application of the mirror box is viable and that it might be useful for future research. Copyright © 2014 Elsevier B.V. All rights reserved.
Human cortical activity related to unilateral movements. A high resolution EEG study.
Urbano, A; Babiloni, C; Onorati, P; Babiloni, F
1996-12-20
In the present study a modern high resolution electroencephalography (EEG) technique was used to investigate the dynamic functional topography of human cortical activity related to simple unilateral internally triggered finger movements. The sensorimotor area (M1-S1) contralateral to the movement as well as the supplementary motor area (SMA) and to a lesser extent the ipsilateral M1-S1 were active during the preparation and execution of these movements. These findings suggest that both hemispheres may cooperate in both planning and production of simple unilateral volitional acts.
Stark, A; Meiner, Z; Lefkovitz, R; Levin, N
2012-04-01
Motor dysfunction and recovery following stroke and rehabilitation are associated with primary motor cortex plasticity. To better track these effects we studied two patients with sub-acute sub-cortical stroke causing hemiparesis, who underwent an effective behavioral treatment termed Constraint Induced Movement Therapy (CIMT). The therapy involves 2 weeks of intensive motor training of the hemiparetic limb coupled with immobilization of the unaffected limb. The study included a longitudinal series of clinical evaluations and fMRI scans, before and after the treatment. The fMRI task included wrist, elbow, or ankle movements. Activity in the M1 upper-limb region of control subjects was stable, strictly contralateral, and similar in amplitude for elbow and wrist movements. These findings reflect the well-known contralateral motor control and support the idea of overlapping representations of adjacent joints in M1. In both patients, pre-CIMT activation patterns in M1 were tested twice and did not change significantly, were contralateral, and included elbow-wrist differences. Following CIMT, the clinical condition of both patients improved and three fMRI-explored prototypes were found: First, cluster position remained constant; Second, ipsilateral activity appeared in the unaffected hemispheres during hemiparetic movements; Third, patient-specific elbow-wrist inter and intra hemispheric differences were modified. All effects were long-lasting. We suggest that overlapping representations of adjacent joints contributed to the cortical plasticity observed following CIMT. Our findings should be confirmed by studying larger groups of homogeneous patients. Nevertheless, this study introduces multi-joint imaging studies and shows that it is both possible and valuable to carry it out in stroke patients.
The effects of a two-step transfer on a visuomotor adaptation task.
Aiken, Christopher A; Pan, Zhujun; Van Gemmert, Arend W A
2017-11-01
The literature has shown robust effects of transfer-of-learning to the contralateral side and more recently transfer-of-learning effects to a new effector type on the ipsilateral side. Few studies have investigated the effects of transfer-of-learning when skills transfer to both a new effector type and the contralateral side (two-step transfer). The purpose of the current study was to investigate the effects of two-step transfer and to examine which aspects of the movement transfer and which aspects do not. Individuals practiced a 30° visual rotation task with either the dominant or non-dominant limb and with either the use of the fingers and wrist or elbow and shoulder. Following practice, participants performed the task with the untrained effector type on the contralateral side. Results showed that initial direction error and trajectory length transferred from the dominant to the non-dominant side and movement time transferred from the elbow and shoulder condition to the wrist and finger conditions irrespective of which limb was used during practice. The results offer a unique perspective on the current theoretical and practical implications for transfer-of-learning and are further discussed in this paper.
Helmich, I; Lausberg, H
2014-10-01
The present study addresses the previously discussed controversy on the contribution of the right and left cerebral hemispheres to the production and conceptualization of spontaneous hand movements and gestures. Although it has been shown that each hemisphere contains the ability to produce hand movements, results of left hemispherically lateralized motor functions challenge the view of a contralateral hand movement production system. To examine hemispheric specialization in hand movement and gesture production, ten right-handed participants were tachistoscopically presented pictures of everyday life actions. The participants were asked to demonstrate with their hands, but without speaking what they had seen on the drawing. Two independent blind raters evaluated the videotaped hand movements and gestures employing the Neuropsychological Gesture Coding System. The results showed that the overall frequency of right- and left-hand movements is equal independent of stimulus lateralization. When hand movements were analyzed considering their Structure, the presentation of the action stimuli to the left hemisphere resulted in more hand movements with a phase structure than the presentation to the right hemisphere. Furthermore, the presentation to the left hemisphere resulted in more right and left-hand movements with a phase structure, whereas the presentation to the right hemisphere only increased contralateral left-hand movements with a phase structure as compared to hand movements without a phase structure. Gestures that depict action were primarily displayed in response to stimuli presented in the right visual field than in the left one. The present study shows that both hemispheres possess the faculty to produce hand movements in response to action stimuli. However, the left hemisphere dominates the production of hand movements with a phase structure and gestures that depict action. We therefore conclude that hand movements with a phase structure and gestures that represent action stem from a left hemispheric system of conceptualization.
Interhemispheric Control of Unilateral Movement
Beaulé, Vincent; Tremblay, Sara; Théoret, Hugo
2012-01-01
To perform strictly unilateral movements, the brain relies on a large cortical and subcortical network. This network enables healthy adults to perform complex unimanual motor tasks without the activation of contralateral muscles. However, mirror movements (involuntary movements in ipsilateral muscles that can accompany intended movement) can be seen in healthy individuals if a task is complex or fatiguing, in childhood, and with increasing age. Lateralization of movement depends on complex interhemispheric communication between cortical (i.e., dorsal premotor cortex, supplementary motor area) and subcortical (i.e., basal ganglia) areas, probably coursing through the corpus callosum (CC). Here, we will focus on transcallosal interhemispheric inhibition (IHI), which facilitates complex unilateral movements and appears to play an important role in handedness, pathological conditions such as Parkinson's disease, and stroke recovery. PMID:23304559
Hsu, Ya-Fang; Liao, Kwong-Kum; Lee, Po-Lei; Tsai, Yun-An; Yeh, Chia-Lung; Lai, Kuan-Lin; Huang, Ying-Zu; Lin, Yung-Yang; Lee, I-Hui
2011-11-01
The objective of this study is to investigate how transcranial magnetic intermittent theta burst stimulation (iTBS) with a prolonged protocol affects human cortical excitability and movement-related oscillations. Using motor-evoked potentials (MEPs) and movement-related magnetoencephalography (MEG), we assessed the changes of corticospinal excitability and cortical oscillations after iTBS with double the conventional stimulation time (1200 pulses, iTBS1200) over the primary motor cortex (M1) in 10 healthy subjects. Continuous TBS (cTBS1200) and sham stimulation served as controls. iTBS1200 facilitated MEPs evoked from the conditioned M1, while inhibiting MEPs from the contralateral M1 for 30 min. By contrast, cTBS1200 inhibited MEPs from the conditioned M1. Importantly, empirical mode decomposition-based MEG analysis showed that the amplitude of post-movement beta synchronisation (16-26 Hz) was significantly increased by iTBS1200 at the conditioned M1, but was suppressed at the nonconditioned M1. Alpha (8-13 Hz) and low gamma-ranged (35-45 Hz) rhythms were not notably affected. Movement kinetics remained consistent throughout. TBS1200 modulated corticospinal excitability in parallel with the direction of conventional paradigms with modestly prolonged efficacy. Moreover, iTBS1200 increased post-movement beta synchronisation of the stimulated M1, and decreased that of the contralateral M1, probably through interhemispheric interaction. Our results provide insight into the underlying mechanism of TBS and reinforce the connection between movement-related beta synchronisation and corticospinal output. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Yuan, Yin; Xu, Xiu-yue; Lao, Jie; Zhao, Xin
2018-01-01
Nerve transfer is the most common treatment for total brachial plexus avulsion injury. After nerve transfer, the movement of the injured limb may be activated by certain movements of the healthy limb at the early stage of recovery, i.e., trans-hemispheric reorganization. Previous studies have focused on functional magnetic resonance imaging and changes in brain-derived neurotrophic factor and growth associated protein 43, but there have been no proteomics studies. In this study, we designed a rat model of total brachial plexus avulsion injury involving contralateral C7 nerve transfer. Isobaric tags for relative and absolute quantitation and western blot assay were then used to screen differentially expressed proteins in bilateral motor cortices. We found that most differentially expressed proteins in both cortices of upper limb were associated with nervous system development and function (including neuron differentiation and development, axonogenesis, and guidance), microtubule and cytoskeleton organization, synapse plasticity, and transmission of nerve impulses. Two key differentially expressed proteins, neurofilament light (NFL) and Thy-1, were identified. In contralateral cortex, the NFL level was upregulated 2 weeks after transfer and downregulated at 1 and 5 months. The Thy-1 level was upregulated from 1 to 5 months. In the affected cortex, the NFL level increased gradually from 1 to 5 months. Western blot results of key differentially expressed proteins were consistent with the proteomic findings. These results indicate that NFL and Thy-1 play an important role in trans-hemispheric organization following total brachial plexus root avulsion and contralateral C7 nerve transfer. PMID:29557385
Tazoe, Toshiki; Nakajima, Tsuyoshi; Futatsubashi, Genki; Ohtsuka, Hiroyuki; Suzuki, Shinya; Zehr, E. Paul; Komiyama, Tomoyoshi
2016-01-01
Neural interactions between regulatory systems for rhythmic arm and leg movements are an intriguing issue in locomotor neuroscience. Amplitudes of early latency cutaneous reflexes (ELCRs) in stationary arm muscles are modulated during rhythmic leg or arm cycling but not during limb positioning or voluntary contraction. This suggests that interneurons mediating ELCRs to arm muscles integrate outputs from neural systems controlling rhythmic limb movements. Alternatively, outputs could be integrated at the motoneuron and/or supraspinal levels. We examined whether a separate effect on the ELCR pathways and cortico-motoneuronal excitability during arm and leg cycling is integrated by neural elements common to the lumbo-sacral and cervical spinal cord. The subjects performed bilateral leg cycling (LEG), contralateral arm cycling (ARM), and simultaneous contralateral arm and bilateral leg cycling (A&L), while ELCRs in the wrist flexor and shoulder flexor muscles were evoked by superficial radial (SR) nerve stimulation. ELCR amplitudes were facilitated by cycling tasks and were larger during A&L than during ARM and LEG. A low stimulus intensity during ARM or LEG generated a larger ELCR during A&L than the sum of ELCRs during ARM and LEG. We confirmed this nonlinear increase in single motor unit firing probability following SR nerve stimulation during A&L. Furthermore, motor-evoked potentials following transcranial magnetic and electrical stimulation did not show nonlinear potentiation during A&L. These findings suggest the existence of a common neural element of the ELCR reflex pathway that is active only during rhythmic arm and leg movement and receives convergent input from contralateral arms and legs. PMID:26961103
Redundant information encoding in primary motor cortex during natural and prosthetic motor control.
So, Kelvin; Ganguly, Karunesh; Jimenez, Jessica; Gastpar, Michael C; Carmena, Jose M
2012-06-01
Redundant encoding of information facilitates reliable distributed information processing. To explore this hypothesis in the motor system, we applied concepts from information theory to quantify the redundancy of movement-related information encoded in the macaque primary motor cortex (M1) during natural and neuroprosthetic control. Two macaque monkeys were trained to perform a delay center-out reaching task controlling a computer cursor under natural arm movement (manual control, 'MC'), and using a brain-machine interface (BMI) via volitional control of neural ensemble activity (brain control, 'BC'). During MC, we found neurons in contralateral M1 to contain higher and more redundant information about target direction than ipsilateral M1 neurons, consistent with the laterality of movement control. During BC, we found that the M1 neurons directly incorporated into the BMI ('direct' neurons) contained the highest and most redundant target information compared to neurons that were not incorporated into the BMI ('indirect' neurons). This effect was even more significant when comparing to M1 neurons of the opposite hemisphere. Interestingly, when we retrained the BMI to use ipsilateral M1 activity, we found that these neurons were more redundant and contained higher information than contralateral M1 neurons, even though ensembles from this hemisphere were previously less redundant during natural arm movement. These results indicate that ensembles most associated to movement contain highest redundancy and information encoding, which suggests a role for redundancy in proficient natural and prosthetic motor control.
Vu, Anthony T; Sparkman, Darlene M; van Belle, Christopher J; Yakuboff, Kevin P; Schwentker, Ann R
2018-05-01
Brachial plexus birth injuries with multiple nerve root avulsions present a particularly difficult reconstructive challenge because of the limited availability of donor nerves. The contralateral C7 has been described for brachial plexus reconstruction in adults but has not been well-studied in the pediatric population. We present our technique and results for retropharyngeal contralateral C7 nerve transfer to the lower trunk for brachial plexus birth injury. We performed a retrospective review. Any child aged less than 2 years was included. Charts were analyzed for patient demographic data, operative variables, functional outcomes, complications, and length of follow-up. We had a total of 5 patients. Average nerve graft length was 3 cm. All patients had return of hand sensation to the ulnar nerve distribution as evidenced by a pinch test, unprompted use of the recipient limb without mirror movement, and an Active Movement Scale (AMS) of at least 2/7 for finger and thumb flexion; one patient had an AMS of 7/7 for finger and thumb flexion. Only one patient had return of ulnar intrinsic hand function with an AMS of 3/7. Two patients had temporary triceps weakness in the donor limb and one had clinically insignificant temporary phrenic nerve paresis. No complications were related to the retropharyngeal nerve dissection in any patient. Average follow-up was 3.3 years. The retropharyngeal contralateral C7 nerve transfer is a safe way to supply extra axons to the severely injured arm in brachial plexus birth injuries with no permanent donor limb deficits. Early functional recovery in these patients, with regard to hand function and sensation, is promising. Therapeutic V. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Continuous involuntary hand movements and schizencephaly: epilepsia partialis continua or dystonia?
Marinelli, Lucio; Bonzano, Laura; Saitta, Laura; Trompetto, Carlo; Abbruzzese, Giovanni
2012-04-01
Schizencephaly is regarded as a malformation of cortical development (due to abnormal neuronal organization) and may be associated with continuous involuntary hand movements. The mechanisms underlying these movements are not clear and both dystonia and epilepsia partialis continua have been considered in previously reported cases. We describe a young patient affected by schizencephaly and continuous involuntary movements of the contralateral hand. Functional MRI showed bilateral cerebral activation, while the subject performed tapping movements with the affected hand and no significant difference in the activation pattern after diazepam infusion. Standard and back-averaged EEG showed no alterations. The results obtained from these investigations and the clinical features of the involuntary movements are not in favor of an epileptic genesis, while support the diagnosis of secondary dystonia.
Brun, Yohann; Karachi, Carine; Fernandez-Vidal, Sara; Jodoin, Nicolas; Grabli, David; Bardinet, Eric; Mallet, Luc; Agid, Yves; Yelnik, Jerome; Welter, Marie-Laure
2012-09-01
In humans, the control of voluntary movement, in which the corticobasal ganglia (BG) circuitry participates, is mainly lateralized. However, several studies have suggested that both the contralateral and ipsilateral BG systems are implicated during unilateral movement. Bilateral improvement of motor signs in patients with Parkinson's disease (PD) has been reported with unilateral lesion or high-frequency stimulation (HFS) of the internal part of the globus pallidus or the subthalamic nucleus (STN-HFS). To decipher the mechanisms of production of ipsilateral movements induced by the modulation of unilateral BG circuitry activity, we recorded left STN neuronal activity during right STN-HFS in PD patients operated for bilateral deep brain stimulation. Left STN single cells were recorded in the operating room during right STN-HFS while patients experienced, or did not experience, right stimulation-induced dyskinesias. Most of the left-side STN neurons (64%) associated with the presence of right dyskinesias were inhibited, with a significant decrease in burst and intraburst frequencies. In contrast, left STN neurons not associated with right dyskinesias were mainly activated (48%), with a predominant increase 4-5 ms after the stimulation pulse and a decrease in oscillatory activity. This suggests that unilateral neuronal STN modulation is associated with changes in the activity of the contralateral STN. The fact that one side of the BG system can influence the functioning of the other could explain the occurrence of bilateral dyskinesias and motor improvement observed in PD patients during unilateral STN-HFS, as a result of a bilateral disruption of the pathological activity in the corticosubcortical circuitry.
Sasada, Syusaku; Tazoe, Toshiki; Nakajima, Tsuyoshi; Futatsubashi, Genki; Ohtsuka, Hiroyuki; Suzuki, Shinya; Zehr, E Paul; Komiyama, Tomoyoshi
2016-04-01
Neural interactions between regulatory systems for rhythmic arm and leg movements are an intriguing issue in locomotor neuroscience. Amplitudes of early latency cutaneous reflexes (ELCRs) in stationary arm muscles are modulated during rhythmic leg or arm cycling but not during limb positioning or voluntary contraction. This suggests that interneurons mediating ELCRs to arm muscles integrate outputs from neural systems controlling rhythmic limb movements. Alternatively, outputs could be integrated at the motoneuron and/or supraspinal levels. We examined whether a separate effect on the ELCR pathways and cortico-motoneuronal excitability during arm and leg cycling is integrated by neural elements common to the lumbo-sacral and cervical spinal cord. The subjects performed bilateral leg cycling (LEG), contralateral arm cycling (ARM), and simultaneous contralateral arm and bilateral leg cycling (A&L), while ELCRs in the wrist flexor and shoulder flexor muscles were evoked by superficial radial (SR) nerve stimulation. ELCR amplitudes were facilitated by cycling tasks and were larger during A&L than during ARM and LEG. A low stimulus intensity during ARM or LEG generated a larger ELCR during A&L than the sum of ELCRs during ARM and LEG. We confirmed this nonlinear increase in single motor unit firing probability following SR nerve stimulation during A&L. Furthermore, motor-evoked potentials following transcranial magnetic and electrical stimulation did not show nonlinear potentiation during A&L. These findings suggest the existence of a common neural element of the ELCR reflex pathway that is active only during rhythmic arm and leg movement and receives convergent input from contralateral arms and legs. Copyright © 2016 the American Physiological Society.
Grabowska, Anna; Gut, Malgorzata; Binder, Marek; Forsberg, Lars; Rymarczyk, Krystyna; Urbanik, Andrzej
2012-01-01
The purpose of this study was to investigate the differences in the brain organization of motor control in left- and right-handers and to study whether early left-to-right handwriting switch changes the cortical representation of finger movements in the left and right hemispheres. Echo-planar MR imaging was performed in 52 subjects: consistent right-handers (RH), consistent left-handers (LH), and subjects who had been forced at an early age to switch their left-hand preferences toward the right side. The scanning was performed during simple (flexion/extension of the index finger) and complex (successive finger-thumb opposition) tasks. Subjects performed the tasks using both the preferred and non-preferred hand. In right-handers, there was a general predominance of left-hemisphere activation relative to right hemisphere activation. In lefthanders this pattern was reversed. The switched subjects showed no such volumetric asymmetry. Increasing levels of complexity of motor activity resulted in an increase in the volume of consistently activated areas and the involvement of the ipsilateral in addition to contralateral activations. In both right- and left-handers, movements of the preferred hand activated mainly the contralateral hemisphere, whereas movements of the non-preferred hand resulted in a more balanced pattern of activation in the two hemispheres, indicating greater involvement of the ipsilateral activations. Overall, this study shows that in both left- and right-handed subjects, the preferred hand is controlled mainly by the hemisphere contralateral to that hand, whereas the non-preferred hand is controlled by both hemispheres. The switched individuals share features of both lefthanders and right-handers regarding their motor control architectures.
Effects of unilateral molar distalization with a modified pendulum appliance.
Schütze, Stefan F; Gedrange, Tomas; Zellmann, Markus R; Harzer, Winfried
2007-05-01
The purpose of this study was to evaluate skeletal and dentoalveolar changes due to unilateral distalization and to determine side effects. Cephalograms and dental casts before and after distal movement of the maxillary molars with pendulum appliances in 15 consecutively treated patients (5 girls and 10 boys, 12.06 +/- 1.32 years), were included in this study. The duration of distalization was 8.46 +/- 2.23 months. Cephalometric analysis showed no remarkable growth between the 2 measurement times. The mean value for distalization of the first molars was 3.83 +/- 1.09 mm, with distal tipping of 6.45 degrees . The maxillary second molars were also moved distally 2.83 +/- 1.32 mm and tipped distally 14.7 degrees . No significant changes in the position of the third molars were measured. The mean reciprocal mesial movement of the premolars was 1.18 +/- 1.31 mm, with distal tipping of 1.94 degrees . The incisors moved 0.84 +/- 0.79 mm mesially, with mesial tipping of 0.02 degrees and extrusion of 1.21 mm. There was also a significant influence on the contralateral anchorage unit. However, unilateral distalization reduced incisor proclination and induced moderate distal movement of the contralateral anchorage unit based on rotation around a virtual axis perpendicular to the Nance button. Effective distal molar movement and less anchorage loss at the front teeth are advantages of unilateral distalization.
Seismic intrusion detector system
Hawk, Hervey L.; Hawley, James G.; Portlock, John M.; Scheibner, James E.
1976-01-01
A system for monitoring man-associated seismic movements within a control area including a geophone for generating an electrical signal in response to seismic movement, a bandpass amplifier and threshold detector for eliminating unwanted signals, pulse counting system for counting and storing the number of seismic movements within the area, and a monitoring system operable on command having a variable frequency oscillator generating an audio frequency signal proportional to the number of said seismic movements.
Gaetz, W; Macdonald, M; Cheyne, D; Snead, O C
2010-06-01
We measured visually-cued motor responses in two developmentally separate groups of children and compared these responses to a group of adults. We hypothesized that if post-movement beta rebound (PMBR) depends on developmentally sensitive processes, PMBR will be greatest in adults and progressively decrease in children performing a basic motor task as a function of age. Twenty children (10 young children 4-6 years; 10 adolescent children 11-13 years) and 10 adults all had MEG recorded during separate recordings of right and left index finger movements. Beta band (15-30 Hz) event-related desynchronization (ERD) of bi-lateral sensorimotor areas was observed to increase significantly from both contralateral and ipsilateral MI with age. Movement-related gamma synchrony (60-90 Hz) was also observed from contralateral MI for each age group. However, PMBR was significantly reduced in the 4-6 year group and, while more prominent, remained significantly diminished in the adolescent (11-13 year) age group as compared to adults. PMBR measures were weak or absent in the youngest children tested and appear maximally from bilateral MI in adults. Thus PMBR may reflect an age-dependent inhibitory process of the primary motor cortex which comes on-line with normal development. Previous studies have shown PMBR may be observed from MI following a variety of movement-related tasks in adult participants - however, the origin and purpose of the PMBR is unclear. The current study shows that the expected PMBR from MI observed from adults is increasingly diminished in adolescent and young children respectively. A reduction in PMBR from children may reflect reduced motor cortical inhibition. Relatively less motor inhibition may facilitate neuronal plasticity and promote motor learning in children. Copyright 2010 Elsevier Inc. All rights reserved.
Shen, Guohua; Zhang, Jing; Wang, Mengxing; Lei, Du; Yang, Guang; Zhang, Shanmin; Du, Xiaoxia
2014-06-01
Multivariate pattern classification analysis (MVPA) has been applied to functional magnetic resonance imaging (fMRI) data to decode brain states from spatially distributed activation patterns. Decoding upper limb movements from non-invasively recorded human brain activation is crucial for implementing a brain-machine interface that directly harnesses an individual's thoughts to control external devices or computers. The aim of this study was to decode the individual finger movements from fMRI single-trial data. Thirteen healthy human subjects participated in a visually cued delayed finger movement task, and only one slight button press was performed in each trial. Using MVPA, the decoding accuracy (DA) was computed separately for the different motor-related regions of interest. For the construction of feature vectors, the feature vectors from two successive volumes in the image series for a trial were concatenated. With these spatial-temporal feature vectors, we obtained a 63.1% average DA (84.7% for the best subject) for the contralateral primary somatosensory cortex and a 46.0% average DA (71.0% for the best subject) for the contralateral primary motor cortex; both of these values were significantly above the chance level (20%). In addition, we implemented searchlight MVPA to search for informative regions in an unbiased manner across the whole brain. Furthermore, by applying searchlight MVPA to each volume of a trial, we visually demonstrated the information for decoding, both spatially and temporally. The results suggest that the non-invasive fMRI technique may provide informative features for decoding individual finger movements and the potential of developing an fMRI-based brain-machine interface for finger movement. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Franklyn-Miller, A; Richter, C; King, E; Gore, S; Moran, K; Strike, S; Falvey, E C
2017-01-01
Background Athletic groin pain (AGP) is prevalent in sports involving repeated accelerations, decelerations, kicking and change-of-direction movements. Clinical and radiological examinations lack the ability to assess pathomechanics of AGP, but three-dimensional biomechanical movement analysis may be an important innovation. Aim The primary aim was to describe and analyse movements used by patients with AGP during a maximum effort change-of-direction task. The secondary aim was to determine if specific anatomical diagnoses were related to a distinct movement strategy. Methods 322 athletes with a current symptom of chronic AGP participated. Structured and standardised clinical assessments and radiological examinations were performed on all participants. Additionally, each participant performed multiple repetitions of a planned maximum effort change-of-direction task during which whole body kinematics were recorded. Kinematic and kinetic data were examined using continuous waveform analysis techniques in combination with a subgroup design that used gap statistic and hierarchical clustering. Results Three subgroups (clusters) were identified. Kinematic and kinetic measures of the clusters differed strongly in patterns observed in thorax, pelvis, hip, knee and ankle. Cluster 1 (40%) was characterised by increased ankle eversion, external rotation and knee internal rotation and greater knee work. Cluster 2 (15%) was characterised by increased hip flexion, pelvis contralateral drop, thorax tilt and increased hip work. Cluster 3 (45%) was characterised by high ankle dorsiflexion, thorax contralateral drop, ankle work and prolonged ground contact time. No correlation was observed between movement clusters and clinically palpated location of the participant's pain. Conclusions We identified three distinct movement strategies among athletes with long-standing groin pain during a maximum effort change-of-direction task These movement strategies were not related to clinical assessment findings but highlighted targets for rehabilitation in response to possible propagative mechanisms. Trial registration number NCT02437942, pre results. PMID:28209597
Gallivan, Jason P; McLean, D Adam; Flanagan, J Randall; Culham, Jody C
2013-01-30
Planning object-directed hand actions requires successful integration of the movement goal with the acting limb. Exactly where and how this sensorimotor integration occurs in the brain has been studied extensively with neurophysiological recordings in nonhuman primates, yet to date, because of limitations of non-invasive methodologies, the ability to examine the same types of planning-related signals in humans has been challenging. Here we show, using a multivoxel pattern analysis of functional MRI (fMRI) data, that the preparatory activity patterns in several frontoparietal brain regions can be used to predict both the limb used and hand action performed in an upcoming movement. Participants performed an event-related delayed movement task whereby they planned and executed grasp or reach actions with either their left or right hand toward a single target object. We found that, although the majority of frontoparietal areas represented hand actions (grasping vs reaching) for the contralateral limb, several areas additionally coded hand actions for the ipsilateral limb. Notable among these were subregions within the posterior parietal cortex (PPC), dorsal premotor cortex (PMd), ventral premotor cortex, dorsolateral prefrontal cortex, presupplementary motor area, and motor cortex, a region more traditionally implicated in contralateral movement generation. Additional analyses suggest that hand actions are represented independently of the intended limb in PPC and PMd. In addition to providing a unique mapping of limb-specific and action-dependent intention-related signals across the human cortical motor system, these findings uncover a much stronger representation of the ipsilateral limb than expected from previous fMRI findings.
Neuronal Basis of Crossed Actions from the Reticular Formation on Feline Hindlimb Motoneurons
Jankowska, Elzbieta; Hammar, Ingela; Slawinska, Urszula; Maleszak, Katarzyna; Edgley, Stephen A.
2007-01-01
Pathways through which reticulospinal neurons can influence contralateral limb movements were investigated by recording from mo-toneurons innervating hindlimb muscles. Reticulospinal tract fibers were stimulated within the brainstem or in the lateral funiculus of the thoracic spinal cord contralateral to the motoneurons. Effects evoked by ipsilaterally descending reticulospinal tract fibers were eliminated by a spinal hemisection at an upper lumbar level. Stimuli applied in the brainstem evoked EPSPs, IPSPs, or both at latencies of 1.42 ± 0.03 and 1.53 ± 0.04 msec, respectively, from the first components of the descending volleys and with properties indicating a disynaptic linkage, in most contralateral motoneurons: EPSPs in 76% and IPSPs in 26%. EPSPs with characteristics of monosynaptically evoked responses, attributable to direct actions of crossed axon collaterals of reticulospinal fibers, were found in a small proportion of the motoneurons, whether evoked from the brainstem (9%) or from the thoracic cord (12.5%). Commissural neurons, which might mediate the crossed disynaptic actions (i.e., were antidromically activated from contralateral motor nuclei and monosynaptically excited from the ipsilateral reticular formation), were found in Rexed’s lamina VIII in the midlumbar segments (L3–L5). The results reveal that although direct actions of reticulospinal fibers are much more potent on ipsilateral motoneurons, interneuronally mediated actions are as potent contralaterally as ipsilaterally, and midlumbar commissural neurons are likely to contribute to them. They indicate a close coupling between the spinal interneuronal systems used by the reticulospinal neurons to coordinate muscle contractions ipsilaterally and contralaterally. PMID:12629191
Lv, Yudan; Ma, Dihui; Meng, Hongmei; Zan, Wang; Li, Cui
2013-10-01
Schizencephaly is a congenital malformation of the cerebral hemispheres, with communication between the lateral ventricle and the subarachnoid space. Marinelli reported that schizencephaly may be associated with continuous involuntary hand movements, such as dystonia or epilepsia partialis continua (EPC). We describe a young Chinese patient with continuous involuntary movements of the contralateral hand affected by schizencephaly. He has a normal scalp electroencephalogram (EEG) but abnormal intracranial EEG, with synchronized periodic lateralized epileptiform discharges. The results obtained from these EEG investigations and the clinical features of the involuntary movements are in favor of a diagnosis of secondary EPC.
Hasegawa, Keita; Kasuga, Shoko; Takasaki, Kenichi; Mizuno, Katsuhiro; Liu, Meigen; Ushiba, Junichi
2017-08-25
Motor planning, imagery or execution is associated with event-related desynchronization (ERD) of mu rhythm oscillations (8-13 Hz) recordable over sensorimotor areas using electroencephalography (EEG). It was shown that motor imagery involving distal muscles, e.g. finger movements, results in contralateral ERD correlating with increased excitability of the contralateral corticospinal tract (c-CST). Following the rationale that purposefully increasing c-CST excitability might facilitate motor recovery after stroke, ERD recently became an attractive target for brain-computer interface (BCI)-based neurorehabilitation training. It was unclear, however, whether ERD would also reflect excitability of the ipsilateral corticospinal tract (i-CST) that mainly innervates proximal muscles involved in e.g. shoulder movements. Such knowledge would be important to optimize and extend ERD-based BCI neurorehabilitation protocols, e.g. to restore shoulder movements after stroke. Here we used single-pulse transcranial magnetic stimulation (TMS) targeting the ipsilateral primary motor cortex to elicit motor evoked potentials (MEPs) of the trapezius muscle. To assess whether ERD reflects excitability of the i-CST, a correlation analysis between between MEP amplitudes and ipsilateral ERD was performed. Experiment 1 consisted of a motor execution task during which 10 healthy volunteers performed elevations of the shoulder girdle or finger pinching while a 128-channel EEG was recorded. Experiment 2 consisted of a motor imagery task during which 16 healthy volunteers imagined shoulder girdle elevations or finger pinching while an EEG was recorded; the participants simultaneously received randomly timed, single-pulse TMS to the ipsilateral primary motor cortex. The spatial pattern and amplitude of ERD and the amplitude of the agonist muscle's TMS-induced MEPs were analyzed. ERDs occurred bilaterally during both execution and imagery of shoulder girdle elevations, but were lateralized to the contralateral hemisphere during finger pinching. We found that trapezius MEPs increased during motor imagery of shoulder elevations and correlated with ipsilateral ERD amplitudes. Ipsilateral ERD during execution and imagery of shoulder girdle elevations appears to reflect the excitability of uncrossed pathways projecting to the shoulder muscles. As such, ipsilateral ERD could be used for neurofeedback training of shoulder movement, aiming at reanimation of the i-CST.
Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Heute, U; Deuschl, G; Raethjen, J; Muthuraman, Muthuraman
2016-09-01
Recently, interest has been growing to understand the underlying dynamic directional relationship between simultaneously activated regions of the brain during motor task performance. Such directionality analysis (or effective connectivity analysis), based on non-invasive electrophysiological (electroencephalography-EEG) and hemodynamic (functional near infrared spectroscopy-fNIRS; and functional magnetic resonance imaging-fMRI) neuroimaging modalities can provide an estimate of the motor task-related information flow from one brain region to another. Since EEG, fNIRS and fMRI modalities achieve different spatial and temporal resolutions of motor-task related activation in the brain, the aim of this study was to determine the effective connectivity of cortico-cortical sensorimotor networks during finger movement tasks measured by each neuroimaging modality. Nine healthy subjects performed right hand finger movement tasks of different complexity (simple finger tapping-FT, simple finger sequence-SFS, and complex finger sequence-CFS). We focused our observations on three cortical regions of interest (ROIs), namely the contralateral sensorimotor cortex (SMC), the contralateral premotor cortex (PMC) and the contralateral dorsolateral prefrontal cortex (DLPFC). We estimated the effective connectivity between these ROIs using conditional Granger causality (GC) analysis determined from the time series signals measured by fMRI (blood oxygenation level-dependent-BOLD), fNIRS (oxygenated-O2Hb and deoxygenated-HHb hemoglobin), and EEG (scalp and source level analysis) neuroimaging modalities. The effective connectivity analysis showed significant bi-directional information flow between the SMC, PMC, and DLPFC as determined by the EEG (scalp and source), fMRI (BOLD) and fNIRS (O2Hb and HHb) modalities for all three motor tasks. However the source level EEG GC values were significantly greater than the other modalities. In addition, only the source level EEG showed a significantly greater forward than backward information flow between the ROIs. This simultaneous fMRI, fNIRS and EEG study has shown through independent GC analysis of the respective time series that a bi-directional effective connectivity occurs within a cortico-cortical sensorimotor network (SMC, PMC and DLPFC) during finger movement tasks.
Deecke, L
1987-01-01
Topographical studies in humans of the Bereitschaftspotential (BP, or readiness potential, as averaged from the electroencephalogram) and the Bereitschaftsmagnetfeld (BM, or readiness magnetic field, as averaged from the magnetoencephalogram) revealed a widespread distribution of motor preparation over both hemispheres even before unilateral movement. This indicates the existence of several generators responsible for the BP, including generators in the ipsilateral hemisphere, which is in agreement with measurements of regional cerebral blood flow or regional cerebral energy metabolism. Nevertheless, two principal generators seem to prevail: (1) An early generator, starting its activity 1s or more before the motor act, with its maximum at the vertex. For this and other reasons, early BP generation probably stems from cortical tissue representing or including the supplementary motor area (SMA). (2) A later generator, starting its activity about 0.5s before the onset of movement and biased towards the contralateral hemisphere (contralateral preponderance of negativity, CPN). For unilateral finger movements the CPN succeeds the BP's initial bilateral symmetry in the later preparation period. Thus, this lateralized BP component probably stems from the primary motor area, MI (area 4, hand representation). While regional cerebral blood flow or regional cerebral energy metabolism show that the SMA is active in conjunction with motor acts, these data do not permit the conclusion that SMA activity precedes motor acts. This can only be shown by the Bereitschaftspotential, which proves that SMA activity occurs before the onset of movement and, what is more, before the onset of MI activity. This important order of events (first SMA, then MI activation) has been elucidated by our BP studies. It gives the SMA an important functional role: the initiation of voluntary movement. The recording of movement-related potentials associated with manual hand-tracking and motor learning points to the SMA and frontal cortex having an important role in these functions.
Impairments in prehension produced by early postnatal sensory motor cortex activity blockade.
Martin, J H; Donarummo, L; Hacking, A
2000-02-01
This study examined the effects of blocking neural activity in sensory motor cortex during early postnatal development on prehension. We infused muscimol, either unilaterally or bilaterally, into the sensory motor cortex of cats to block activity continuously between postnatal weeks 3-7. After stopping infusion, we trained animals to reach and grasp a cube of meat and tested behavior thereafter. Animals that had not received muscimol infusion (unilateral saline infusion; age-matched) reached for the meat accurately with small end-point errors. They grasped the meat using coordinated digit flexion followed by forearm supination on 82.7% of trials. Performance using either limb did not differ significantly. In animals receiving unilateral muscimol infusion, reaching and grasping using the limb ipsilateral to the infusion were similar to controls. The limb contralateral to infusion showed significant increases in systematic and variable reaching end-point errors, often requiring subsequent corrective movements to contact the meat. Grasping occurred on only 14.8% of trials, replaced on most trials by raking without distal movements. Compensatory adjustments in reach length and angle, to maintain end-point accuracy as movements were started from a more lateral position, were less effective using the contralateral limb than ipsilateral limb. With bilateral inactivations, the form of reaching and grasping impairments was identical to that produced by unilateral inactivation, but the magnitude of the reaching impairments was less. We discuss these results in terms of the differential effects of unilateral and bilateral inactivation on corticospinal tract development. We also investigated the degree to which these prehension impairments after unilateral blockade reflect control by each hemisphere. In animals that had received unilateral blockade between postnatal weeks (PWs) 3 and 7, we silenced on-going activity (after PW 11) during task performance using continuous muscimol infusion. We inactivated the right (previously active) and then the left (previously silenced) sensory motor cortex. Inactivation of the ipsilateral (right) sensory motor cortex produced a further increase in systematic error and less frequent normal grasping. Reinactivation of the contralateral (left) cortex produced larger increases in reaching and grasping impairments than those produced by ipsilateral inactivation. This suggests that the impaired limb receives bilateral sensory motor cortex control but that control by the contralateral (initially silenced) cortex predominates. Our data are consistent with the hypothesis that the normal development of skilled motor behavior requires activity in sensory motor cortex during early postnatal life.
Koch, Giacomo; Ruge, Diane; Cheeran, Binith; Fernandez Del Olmo, Miguel; Pecchioli, Cristiano; Marconi, Barbara; Versace, Viviana; Lo Gerfo, Emanuele; Torriero, Sara; Oliveri, Massimiliano; Caltagirone, Carlo; Rothwell, John C
2009-01-01
Using a twin coil transcranial magnetic stimulation (tc-TMS) approach we have previously demonstrated that facilitation may be detected in the primary motor cortex (M1) following stimulation over the ipsilateral caudal intraparietal sulcus (cIPS). Here we tested the interhemispheric interactions between the IPS and the contralateral motor cortex (M1). We found that conditioning the right cIPS facilitated contralateral M1 when the conditioning stimulus had an intensity of 90% resting motor threshold (RMT) but not at 70% or 110% RMT. Facilitation was maximal when the interstimulus interval (ISI) between cIPS and M1 was 6 or 12 ms. These facilitatory effects were mediated by interactions with specific groups of interneurons in the contralateral M1. In fact, short intracortical inhibition (SICI) was reduced following cIPS stimulation. Moreover, additional comparison of facilitation of responses evoked by anterior–posterior versus posterior–anterior stimulation of M1 suggested that facilitation was more effective on early I1/I2 circuits than on I3 circuits. In contrast to these effects, stimulation of anterior IPS (aIPS) at 90% RMT induced inhibition, instead of facilitation, of contralateral M1 at ISIs of 10–12 ms. Finally, we found similar facilitation between left cIPS and right M1 although the conditioning stimuli had to have a higher intensity compared with stimulation of right cIPS (110% instead of 90% RMT). These findings demonstrate that different subregions of the posterior parietal cortex (PPC) in humans exert both facilitatory and inhibitory effects towards the contralateral primary motor cortex. These corticocortical projections could contribute to a variety of motor tasks such as bilateral manual coordination, movement planning in space and grasping. PMID:19622612
Bae, Sung Jin; Jang, Sung Ho; Seo, Jeong Pyo; Chang, Pyung Hun
2017-07-01
The optimal conditions inducing proper brain activation during performance of rehabilitation robots should be examined to enhance the efficiency of robot rehabilitation based on the concept of brain plasticity. In this study, we attempted to investigate differences in cortical activation according to the speeds of passive wrist movements performed by a rehabilitation robot for stroke patients. 9 stroke patients with right hemiparesis participated in this study. Passive movements of the affected wrist were performed by the rehabilitation robot at three different speeds: 0.25 Hz; slow, 0.5Hz; moderate and 0.75 Hz; fast. We used functional near-infrared spectroscopy to measure the brain activity during the passive movements performed by a robot. Group-average activation map and the relative changes in oxy-hemoglobin (ΔOxyHb) in two regions of interest: the primary sensory-motor cortex (SM1); premotor area (PMA) and region of all channels were measured. In the result of group-averaged activation map, the contralateral SM1, PMA and somatosensory association cortex (SAC) showed the greatest significant activation according to the movements at 0.75 Hz, while there is no significantly activated area at 0.5 Hz. Regarding ΔOxyHb, no significant diiference was observed among three speeds regardless of region. In conclusion, the contralateral SM1, PMA and SAC showed the greatest activation by a fast speed (0.75 Hz) rather than slow (0.25 Hz) and moderate (0. 5 Hz) speed. Our results suggest an optimal speed for execution of the wrist rehabilitation robot. Therefore, we believe that our findings might point to several promising applications for future research regarding useful and empirically-based robot rehabilitation therapy.
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Chang, Man-Ling; Shih, Ching-Tien
2010-01-01
This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using limb swing with a gyration air mouse and a newly developed limb movement detection program (LMDP, i.e., a new software program that turns a gyration air mouse into a precise limb movement detector). The study was performed…
Compensatory plasticity at an identified synapse tunes a visuomotor pathway.
Rogers, Stephen M; Krapp, Holger G; Burrows, Malcolm; Matheson, Thomas
2007-04-25
We characterized homeostatic plasticity at an identified sensory-motor synapse in an insect, which maintains constant levels of motor drive as locusts transform from their solitarious phase to their gregarious swarming phase. The same mechanism produces behaviorally relevant changes in response timing that can be understood in the context of an animal's altered behavioral state. For individual animals of either phase, different looming objects elicited different spiking responses in a visual looming detector interneuron, descending contralateral movement detector (DCMD), yet its synaptic drive to a leg motoneuron, fast extensor tibiae (FETi), always had the same maximum amplitude. Gregarious locust DCMDs produced more action potentials and had higher firing frequencies, but individual postsynaptic potentials (PSPs) elicited in FETi were half the amplitude of those in solitarious locusts. A model suggested that this alone could not explain the similarity in overall amplitude, and we show that facilitation increased the maximum compound PSP amplitude in gregarious animals. There was the same linear relationship between times of peak DCMD firing before collision and the size/velocity of looming objects in both phases. The DCMD-FETi synapse transformed this relationship nonlinearly, such that peak amplitudes of compound PSPs occurred disproportionately earlier for smaller/faster objects. Furthermore, the peak PSP amplitude occurred earlier in gregarious than in solitarious locusts, indicating a differential tuning. Homeostatic modulation of the amplitude, together with a nonlinear synaptic transformation of timing, acted together to tune the DCMD-FETi system so that swarming gregarious locusts respond earlier to small moving objects, such as conspecifics, than solitarious locusts.
Parallel pathways from motor and somatosensory cortex for controlling whisker movements in mice
Sreenivasan, Varun; Karmakar, Kajari; Rijli, Filippo M; Petersen, Carl C H
2015-01-01
Mice can gather tactile sensory information by actively moving their whiskers to palpate objects in their immediate surroundings. Whisker sensory perception therefore requires integration of sensory and motor information, which occurs prominently in the neocortex. The signalling pathways from the neocortex for controlling whisker movements are currently poorly understood in mice. Here, we delineate two pathways, one originating from primary whisker somatosensory cortex (wS1) and the other from whisker motor cortex (wM1), that control qualitatively distinct movements of contralateral whiskers. Optogenetic stimulation of wS1 drove retraction of contralateral whiskers while stimulation of wM1 drove rhythmic whisker protraction. To map brainstem pathways connecting these cortical areas to whisker motor neurons, we used a combination of anterograde tracing using adenoassociated virus injected into neocortex and retrograde tracing using monosynaptic rabies virus injected into whisker muscles. Our data are consistent with wS1 driving whisker retraction by exciting glutamatergic premotor neurons in the rostral spinal trigeminal interpolaris nucleus, which in turn activate the motor neurons innervating the extrinsic retractor muscle nasolabialis. The rhythmic whisker protraction evoked by wM1 stimulation might be driven by excitation of excitatory and inhibitory premotor neurons in the brainstem reticular formation innervating both intrinsic and extrinsic muscles. Our data therefore begin to unravel the neuronal circuits linking the neocortex to whisker motor neurons. PMID:25476605
The neural correlates of learned motor acuity
Yang, Juemin; Caffo, Brian; Mazzoni, Pietro; Krakauer, John W.
2014-01-01
We recently defined a component of motor skill learning as “motor acuity,” quantified as a shift in the speed-accuracy trade-off function for a task. These shifts are primarily driven by reductions in movement variability. To determine the neural correlates of improvement in motor acuity, we devised a motor task compatible with magnetic resonance brain imaging that required subjects to make finely controlled wrist movements under visual guidance. Subjects were imaged on day 1 and day 5 while they performed this task and were trained outside the scanner on intervening days 2, 3, and 4. The potential confound of performance changes between days 1 and 5 was avoided by constraining movement time to a fixed duration. After training, subjects showed a marked increase in success rate and a reduction in trial-by-trial variability for the trained task but not for an untrained control task, without changes in mean trajectory. The decrease in variability for the trained task was associated with increased activation in contralateral primary motor and premotor cortical areas and in ipsilateral cerebellum. A global nonlocalizing multivariate analysis confirmed that learning was associated with increased overall brain activation. We suggest that motor acuity is acquired through increases in the number of neurons recruited in contralateral motor cortical areas and in ipsilateral cerebellum, which could reflect increased signal-to-noise ratio in motor output and improved state estimation for feedback corrections, respectively. PMID:24848466
Agarwal, Priya; Kaul, Bhavna; Shukla, Garima; Srivastava, Achal; Singh, Mamta Bhushan; Goyal, Vinay; Behari, Madhuri; Suri, Ashish; Gupta, Aditya; Garg, Ajay; Gaikwad, Shailesh; Bal, C S
2015-12-01
Ictal motor phenomena play a crucial role in the localization of seizure focus in the management of refractory focal epilepsy. While the importance of unilateral automatisms is well established, little attention is paid to the contralateral relatively immobile limb. In cases where automatisms mimic clonic or dystonic movements and in the absence of previously well-established signs, unilateral relative ictal immobility (RII) is potentially useful as a lateralizing sign. This study was carried out to examine the lateralizing value of this sign and to define its characteristics among patients of refractory focal epilepsy. VEEGs of 69 consecutive patients of refractory focal epilepsy who had undergone epilepsy surgery at our center over last four years were reviewed and analyzed for the presence of RII. Unilateral RII was defined as a paucity of movement in one limb lasting for at least 10s while the contralateral limb showed purposive or semi-purposive movements (in the absence of tonic or dystonic posturing or clonic movements in the involved limb). The findings were seen in the light of VEEG, radiological and nuclear imaging data, and with post-surgical outcome. Unilateral RII as a lateralizing sign was found in 24 of 69 patients (34.78%), consisting of both temporal and extra temporal epilepsy, with 100% concordance with VEEG and MRI data. All patients demonstrating this sign had a good post-surgical outcome. RII, when well characterized is a frequent and reliable lateralizing sign in patients of refractory focal epilepsy. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Cervical spondylosis: a rare and curable cause of vertebrobasilar insufficiency.
Denis, Daniel J; Shedid, Daniel; Shehadeh, Mohammad; Weil, Alexander G; Lanthier, Sylvain
2014-05-01
Spondylotic vertebral artery (VA) compression is a rare cause of vertebrobasilar insufficiency and stroke. A 53-year-old man experienced multiple brief vertebrobasilar transient ischemic attacks (TIAs) and strokes, not apparently triggered by neck movements. Brain magnetic resonance imaging (MRI) documented consecutive infarcts, first in the left then right medial posterior inferior cerebellar artery (PICA) territories. Angiography showed two extracranial right vertebral artery (VA) stenoses, left VA hypoplasia, absence of left PICA and a dominant right PICA. Computed tomography angiography revealed right VA compression by osteophytes at C5-C6 and C6-C7 levels. No further vertebrobasilar insufficiency symptoms occurred in the 65 months following VA surgical decompression. Our literature review found 49 published surgical cases with vertebrobasilar symptoms caused by cervical spondylosis. Forty cases had one or more brief TIAs frequently triggered by neck movements. Three cases presented with stroke without prior TIA, with symptoms suggesting a top of the basilar artery embolic infarcts (one combined with a PICA infarct). Six cases had both TIAs and minor stroke. VA compression by uncovertebral osteophytes at the C5-C6 level was common. Dynamic angiography done in 38 cases systematically revealed worsening of VA stenosis or complete occlusion with either neck extension or rotation (ipsilateral when specified). Contralateral VA incompetence was found in 14 patients. Spondylotic VA stenosis can cause hemodynamic TIAs and watershed strokes, especially when contralateral VA insufficiency is combined to specific neck movements. Low-amplitude neck movement may suffice in severe cases. Embolic vertebrobasilar events are less frequent. VA decompression from spondylosis may prevent recurrent ischemic episodes.
System for inspecting large size structural components
Birks, Albert S.; Skorpik, James R.
1990-01-01
The present invention relates to a system for inspecting large scale structural components such as concrete walls or the like. The system includes a mobile gamma radiation source and a mobile gamma radiation detector. The source and detector are constructed and arranged for simultaneous movement along parallel paths in alignment with one another on opposite sides of a structural component being inspected. A control system provides signals which coordinate the movements of the source and detector and receives and records the radiation level data developed by the detector as a function of source and detector positions. The radiation level data is then analyzed to identify areas containing defects corresponding to unexpected variations in the radiation levels detected.
Santer, Roger D.; Rind, F. Claire; Simmons, Peter J.
2012-01-01
Many arthropods possess escape-triggering neural mechanisms that help them evade predators. These mechanisms are important neuroethological models, but they are rarely investigated using predator-like stimuli because there is often insufficient information on real predator attacks. Locusts possess uniquely identifiable visual neurons (the descending contralateral movement detectors, DCMDs) that are well-studied looming motion detectors. The DCMDs trigger ‘glides’ in flying locusts, which are hypothesised to be appropriate last-ditch responses to the looms of avian predators. To date it has not been possible to study glides in response to stimuli simulating bird attacks because such attacks have not been characterised. We analyse video of wild black kites attacking flying locusts, and estimate kite attack speeds of 10.8±1.4 m/s. We estimate that the loom of a kite’s thorax towards a locust at these speeds should be characterised by a relatively low ratio of half size to speed (l/|v|) in the range 4–17 ms. Peak DCMD spike rate and gliding response occurrence are known to increase as l/|v| decreases for simple looming shapes. Using simulated looming discs, we investigate these trends and show that both DCMD and behavioural responses are strong to stimuli with kite-like l/|v| ratios. Adding wings to looming discs to produce a more realistic stimulus shape did not disrupt the overall relationships of DCMD and gliding occurrence to stimulus l/|v|. However, adding wings to looming discs did slightly reduce high frequency DCMD spike rates in the final stages of object approach, and slightly delay glide initiation. Looming discs with or without wings triggered glides closer to the time of collision as l/|v| declined, and relatively infrequently before collision at very low l/|v|. However, the performance of this system is in line with expectations for a last-ditch escape response. PMID:23209660
Fu, Yue; Zhang, Quan; Zhang, Jing; Zhang, Yun Ting
2015-01-01
To compare the effects of active and passive movements on brain activation in patients with cerebral infarction using fMRI. Twenty-four hemiplegic patients with cerebral infarction were evaluated using fMRI. All patients performed active and passive finger opposition movements. Patients were instructed to perform the finger opposition movement for the active movement task. For the passive movement task, the subject's fingers were moved by the examiner to perform the finger opposition movement. Statistical parametric mapping software was used for statistical analyses and to process all data. In the affected hemisphere, sensorimotor cortex (SMC) activation intensity and range were significantly stronger during the passive movement of the affected fingers compared to the active movement of the affected fingers (p < 0.05). However, there were no significant differences between active and passive movements of unaffected fingers in SMC activation intensity and range in the unaffected hemisphere (p > 0.05). In addition, the passive movement activated many other regions of the brain. The brain regions activated by passive movements of the affected fingers tended to center toward the contralateral SMC. Our findings suggest that passive movements induce cortical reorganization in patients with cerebral infarction. Therefore, passive movement is likely beneficial for motor function recovery in patients with cerebral infarction.
NASA Astrophysics Data System (ADS)
Ibáñez, J.; Serrano, J. I.; del Castillo, M. D.; Monge-Pereira, E.; Molina-Rueda, F.; Alguacil-Diego, I.; Pons, J. L.
2014-10-01
Objective. Characterizing the intention to move by means of electroencephalographic activity can be used in rehabilitation protocols with patients’ cortical activity taking an active role during the intervention. In such applications, the reliability of the intention estimation is critical both in terms of specificity ‘number of misclassifications’ and temporal accuracy. Here, a detector of the onset of voluntary upper-limb reaching movements based on the cortical rhythms and the slow cortical potentials is proposed. The improvement in detections due to the combination of these two cortical patterns is also studied. Approach. Upper-limb movements and cortical activity were recorded in healthy subjects and stroke patients performing self-paced reaching movements. A logistic regression combined the output of two classifiers: (i) a naïve Bayes classifier trained to detect the event-related desynchronization preceding the movement onset and (ii) a matched filter detecting the bereitschaftspotential. The proposed detector was compared with the detectors by using each one of these cortical patterns separately. In addition, differences between the patients and healthy subjects were analysed. Main results. On average, 74.5 ± 13.8% and 82.2 ± 10.4% of the movements were detected with 1.32 ± 0.87 and 1.50 ± 1.09 false detections generated per minute in the healthy subjects and the patients, respectively. A significantly better performance was achieved by the combined detector (as compared to the detectors of the two cortical patterns separately) in terms of true detections (p = 0.099) and false positives (p = 0.0083). Significance. A rationale is provided for combining information from cortical rhythms and slow cortical potentials to detect the onsets of voluntary upper-limb movements. It is demonstrated that the two cortical processes supply complementary information that can be summed up to boost the performance of the detector. Successful results have been also obtained with stroke patients, which supports the use of the proposed system in brain-computer interface applications with this group of patients.
Effects of Mental and Physical Practice on a Finger Opposition Task among Children
ERIC Educational Resources Information Center
de Paula Asa, Sabrina Kyoko; Santos Melo, Mara Cristina; Piemonte, Maria Elisa Pimentel
2014-01-01
Purpose: We sought to compare the effects of physical practice (PP) and mental practice (MP) on the immediate and long-term learning of the finger-to-thumb opposition sequence task (FOS) in children; in addition, we investigated the transfer of this learning to an untrained sequence of movements and to the contralateral untrained hand. Method:…
Osu, Rieko; Otaka, Yohei; Ushiba, Junichi; Sakata, Sachiko; Yamaguchi, Tomofumi; Fujiwara, Toshiyuki; Kondo, Kunitsugu; Liu, Meigen
2012-01-01
For the recovery of hemiparetic hand function, a therapy was developed called contralateral homonymous muscle activity stimulated electrical stimulation (CHASE), which combines electrical stimulation and bilateral movements, and its feasibility was studied in three chronic stroke patients with severe hand hemiparesis. Patients with a subcortical lesion were asked to extend their wrist and fingers bilaterally while an electromyogram (EMG) was recorded from the extensor carpi radialis (ECR) muscle in the unaffected hand. Electric stimulation was applied to the homonymous wrist and finger extensors of the affected side. The intensity of the electrical stimulation was computed based on the EMG and scaled so that the movements of the paretic hand looked similar to those of the unaffected side. The patients received 30-minutes of therapy per day for 2 weeks. Improvement in the active range of motion of wrist extension was observed for all patients. There was a decrease in the scores of modified Ashworth scale in the flexors. Fugl-Meyer assessment scores of motor function of the upper extremities improved in two of the patients. The results suggest a positive outcome can be obtained using the CHASE system for upper extremity rehabilitation of patients with severe hemiplegia.
Viaro, Riccardo; Budri, Mirco; Parmiani, Pierantonio; Franchi, Gianfranco
2014-05-15
Experimental and clinical studies have attempted to evaluate the changes in cortical activity seen after immobilization-induced longterm sensorimotor restriction, although results remain controversial. We used intracortical microstimulation (ICMS), which provides topographic movement representations of the motor areas in both hemispheres with optimal spatial characterization, combined with behavioural testing to unravel the effects of limb immobilization on movement representations in the rat primary motor cortex (M1). Unilateral forelimb immobilization in rats was achieved by casting the entire limb and leaving the cast in place for 15 or 30 days. Changes in M1 were bilateral and specific for the forelimb area, but were stronger in the contralateral-to-cast hemisphere. The threshold current required to evoke forelimb movement increased progressively over the period in cast, whereas the forelimb area size decreased and the non-excitable area size increased. Casting resulted in a redistribution of proximal/distal movement representations: proximal forelimb representation increased, whereas distal representation decreased in size. ICMS after cast removal showed a reversal of changes, which remained partial at 15 days. Local application of the GABAA-antagonist bicuculline revealed the impairment of cortical synaptic connectivity in the forelimb area during the period of cast and for up to 15 days after cast removal. Six days of rehabilitation using a rotarod performance protocol after cast removal did not advance map size normalization in the contralateral-to-cast M1 and enabled the cortical output towards the distal forelimb only in sites that had maintained their excitability. These results are relevant to our understanding of adult M1 plasticity during and after sensorimotor deprivation, and to new approaches to conditions that require longterm limb immobilization. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Kager, Simone; Budhota, Aamani; Deshmukh, Vishwanath A.; Kuah, Christopher W. K.; Yam, Lester H. L.; Xiang, Liming; Chua, Karen S. G.; Masia, Lorenzo; Campolo, Domenico
2017-01-01
Proprioception is a critical component for motor functions and directly affects motor learning after neurological injuries. Conventional methods for its assessment are generally ordinal in nature and hence lack sensitivity. Robotic devices designed to promote sensorimotor learning can potentially provide quantitative precise, accurate, and reliable assessments of sensory impairments. In this paper, we investigate the clinical applicability and validity of using a planar 2 degrees of freedom robot to quantitatively assess proprioceptive deficits in post-stroke participants. Nine stroke survivors and nine healthy subjects participated in the study. Participants’ hand was passively moved to the target position guided by the H-Man robot (Criterion movement) and were asked to indicate during a second passive movement towards the same target (Matching movement) when they felt that they matched the target position. The assessment was carried out on a planar surface for movements in the forward and oblique directions in the contralateral and ipsilateral sides of the tested arm. The matching performance was evaluated in terms of error magnitude (absolute and signed) and its variability. Stroke patients showed higher variability in the estimation of the target position compared to the healthy participants. Further, an effect of target was found, with lower absolute errors in the contralateral side. Pairwise comparison between individual stroke participant and control participants showed significant proprioceptive deficits in two patients. The proposed assessment of passive joint position sense was inherently simple and all participants, regardless of motor impairment level, could complete it in less than 10 minutes. Therefore, the method can potentially be carried out to detect changes in proprioceptive deficits in clinical settings. PMID:29161264
Ko, Seung-Nam
2017-01-01
Posterior cruciate ligament (PCL) reconstruction for patients with PCL insufficiency has been associated with postoperative improvements in proprioceptive function due to mechanoreceptor regeneration. However, it is unclear whether reconstructed PCL or contralateral normal knees have better proprioceptive function outcomes. This meta-analysis was designed to compare the proprioceptive function of reconstructed PCL or contralateral normal knees in patients with PCL insufficiency. All studies that compared proprioceptive function, as assessed with threshold to detect passive movement (TTDPM) or joint position sense (JPS) in PCL reconstructed or contralateral normal knees were included. JPS was calculated by reproducing passive positioning (RPP). Five studies met the inclusion/exclusion criteria for the meta-analysis. The proprioceptive function, defined as TTDPM (95% CI: 0.25 to 0.51°; P<0.00001) and RPP (95% CI: 0.19 to 0.45°; P<0.00001), was significantly different between the reconstructed PCL and contralateral normal knees. The mean difference in angle of error between the reconstructed PCL and contralateral normal knees was 0.06° greater in TTDPM than by RPP. In addition, results from subgroup analyses, based on the starting angles and the moving directions of the knee, that evaluated TTDPM at 15° flexion to 45° extension, TTDPM at 45° flexion to 110° flexion, RPP in flexion, and RPP in extension demonstrated that mean angles of error were significantly greater, by 0.38° (P = 0.0001), 0.36° (P = 0.02), 0.36° (P<0.00001), and 0.23° (P = 0.04), respectively, in reconstructed PCL than in contralateral normal knees. The proprioceptive function of PCL reconstructed knees was decreased, compared with contralateral normal knees, as determined by both TTDPM and RPP. In addition, the amount of loss of proprioception was greater in TTDPM than in RPP, even with minute differences. Results from subgroup analysis, that evaluated the mean angles of error in moving directions through RPP, suggested that the moving direction of flexion has a significantly greater mean for angles of error than the moving direction of extension. Although the level of differences between various parameters were statistically significant, further studies are needed to determine whether the small differences (>1°) of the loss of proprioception are clinically relevant. PMID:28922423
Wren, Tishya A L; Mueske, Nicole M; Brophy, Christopher H; Pace, J Lee; Katzel, Mia J; Edison, Bianca R; VandenBerg, Curtis D; Zaslow, Tracy L
2018-03-30
Study Design Retrospective cohort. Background Return to sport (RTS) protocols after anterior cruciate ligament reconstruction (ACLR) often include assessment of hop distance symmetry. However, it is unclear if movement deficits are present regardless of hop symmetry. Objectives To assess biomechanics and symmetry of adolescent athletes following ACLR during a single leg hop for distance. Methods Forty-six patients with ACLR (5-12 months post-surgery; 27 female; age 15.6, SD 1.7 years) were classified as asymmetric (operative limb hop distance <90% of non-operative limb; n=17) or symmetric (n=29). Lower extremity biomechanics were compared among operative and contralateral limbs and 24 symmetric controls (12 female; age 14.7, SD 1.5 years) using ANOVA. Results Compared to controls, asymmetric patients hopped a shorter distance on their operative limb (P<0.001), while symmetric patients hopped an intermediate distance on both sides (P≥0.12). During landing, operative limbs, regardless of hop distance, exhibited lower knee flexion moments compared to controls and the contralateral side (P≤0.04) with lower knee energy absorption than the contralateral side (P≤0.006). During take-off, both symmetric and asymmetric patients had less hip extension and smaller ankle range of motion on the operative side compared with controls (P≤0.05). Asymmetric patients also had lower hip range of motion on the operative, compared with the contralateral, side (P=0.001). Conclusion Both symmetric and asymmetric patients offloaded the operative knee; symmetric patients achieved symmetry in part by hopping a shorter distance on the contralateral side. Therefore, hop distance symmetry may not be an adequate test of single limb function and RTS readiness. Level of Evidence 2b. J Orthop Sports Phys Ther, Epub 30 Mar 2018. doi:10.2519/jospt.2018.7817.
Friel, KM; Chakrabarty, S; H-C, Kuo; Martin, JH
2012-01-01
This study investigated requirements for restoring motor function after corticospinal (CS) system damage during early postnatal development. Activity-dependent competition between the CS tracts (CST) of the two hemispheres is imperative for normal development. Blocking primary motor cortex (M1) activity unilaterally during a critical period (postnatal weeks-PW-5–7) produces permanent contralateral motor skill impairments, loss of M1 motor map, aberrant CS terminations, and decreases in CST presynaptic sites and spinal cholinergic interneuron numbers. To repair these motor systems impairments and restore function, we manipulated motor experience in three groups of cats after this CST injury produced by inactivation. One group wore a jacket restraining the limb ipsilateral to inactivation, forcing use of the contralateral, impaired, limb, for the month following M1 inactivation (PW8–13; “Restraint Alone”). A second group wore the restraint during PW8–13, and was also trained for 1 h/day in a reaching task with the contralateral forelimb (“Early Training”). To test the efficacy of intervention during adolescence, a third group wore the restraint and received reach training during PW20–24 (“Delayed Training”). Early training restored CST connections and the M1 motor map; increased cholinergic spinal interneurons numbers on the contralateral, relative to ipsilateral, side; and abrogated limb control impairments. Delayed training restored CST connectivity and the M1 motor map, but not contralateral spinal cholinergic cell counts or motor performance. Restraint alone only restored CST connectivity. Our findings stress the need to reestablish the integrated functions of the CS system at multiple hierarchical levels in restoring skilled motor function after developmental injury. PMID:22764234
Parkinson, Rachel H; Little, Jacelyn M; Gray, John R
2017-04-20
Neonicotinoids are known to affect insect navigation and vision, however the mechanisms of these effects are not fully understood. A visual motion sensitive neuron in the locust, the Descending Contralateral Movement Detector (DCMD), integrates visual information and is involved in eliciting escape behaviours. The DCMD receives coded input from the compound eyes and monosynaptically excites motorneurons involved in flight and jumping. We show that imidacloprid (IMD) impairs neural responses to visual stimuli at sublethal concentrations, and these effects are sustained two and twenty-four hours after treatment. Most significantly, IMD disrupted bursting, a coding property important for motion detection. Specifically, IMD reduced the DCMD peak firing rate within bursts at ecologically relevant doses of 10 ng/g (ng IMD per g locust body weight). Effects on DCMD firing translate to deficits in collision avoidance behaviours: exposure to 10 ng/g IMD attenuates escape manoeuvers while 100 ng/g IMD prevents the ability to fly and walk. We show that, at ecologically-relevant doses, IMD causes significant and lasting impairment of an important pathway involved with visual sensory coding and escape behaviours. These results show, for the first time, that a neonicotinoid pesticide directly impairs an important, taxonomically conserved, motion-sensitive visual network.
Connolly, P.J.; Jezorek, I.G.; Prentice, E.F.
2005-01-01
We have developed detector systems for fish implanted with Passive Integrated Transponder (PIT) tags to assess their movement behavior and habitat use within fast flowing streams. Fish tested have primarily been wild anadromous and resident forms of rainbow trout Oncorhynchus mykiss and cutthroat trout O. clarki. Longitudinal arrangements of two- and six-antennas allow determination of direction of movement and efficiency of detection. Our first detector system became operational in August 2001, with subsequent improvements over time. In tests with a two-antenna system, detection efficiency of tagged, downstreammoving fish was high (96%) during low flows, but less (69%) during high flows. With an increase in the number of antennas to six, arranged in a 2x3 array, the detection efficiency of downstream-moving fish was increased to 95-100% at all flows. Detection efficiency of upstream-moving fish was high (95-100%) in both the two-and six-antenna system during all flows. Antennas were anchored to the substrate and largely spanned the bank-full width. Modifications to the methods used to anchor antennas have increased the likelihood of the system remaining intact and running at full detection capability during challenging flow and debris conditions, largely achieving our goal to have continuous monitoring of fish movement throughout an annual cycle. In August 2004, we placed a similar detector system in another watershed. Success has much relied on the quality of transceivers and electrical power. Detection of tagged fish passing our static PIT-tag detectors has produced valuable information on how selected fish species use the network of streams in a watershed. Integrating information from our detectors in tributary streams with that from detectors downstream at dams in the Columbia River has promise to be a powerful tool for monitoring movement patterns of anadromous fish species and to understanding full lifecycle fish behavior and habitat use.
Difference of motor overflow depending on the impaired or unimpaired hand in stroke patients.
Kim, Yushin; Kim, Woo-Sub; Shim, Jae Kun; Suh, Dong Won; Kim, TaeYeong; Yoon, BumChul
2015-02-01
The aim of this study was to investigate the patterns of contralateral motor overflow (i.e. mirror movement) between the homologous body parts on the right and left side, in stroke patients during single-finger and multi-finger maximum force production tasks. Forty subjects, including stroke (n=20) and normal subjects (n=20), participated in this study. The stroke subjects maximally pressed force sensors with their fingers in a flexed position using a single (index, middle, ring, or little) or all fingers (all 4 fingers) using the impaired (IH) or unimpaired (UIH) hand, while the non-patient subjects used their right hands for the same tasks. The maximal voluntary forces in the ipsilateral and unintended pressing forces of each contralateral finger were recorded during the tasks. The magnitude of motor overflow to the contralateral side was calculated using the index of contralateral independence (CI). During the single finger tasks, the finger CI was significantly decreased in the UIH (91%) compared with that in the IH (99%) or normal hands (99%). Likewise, the multiple finger tasks showed that the CI was significantly lower in the UIH (84%) compared with that in the IH (96%) or normal hands (99%). However, the maximal forces were significantly lower in the IH relative to those in the UIH and normal hands. These data demonstrate that stroke patients have greater motor overflow from the UIH to the IH. Copyright © 2014 Elsevier B.V. All rights reserved.
Llamas-Carreras, J M; Amarilla, A; Solano, E; Velasco-Ortega, E; Rodríguez-Varo, L; Segura-Egea, J J
2010-08-01
To determine whether root filled teeth and those with vital pulps exhibit a similar degree of external root resorption (ERR) as a consequence of orthodontic treatment. The study sample consisted of 77 patients, with a mean age of 32.7 +/- 10.7 years, who had one root filled tooth before completion of multiband/bracket orthodontic therapy for at least 1 year. For each patient, digital panoramic radiographs taken before and after orthodontic treatment were used to determine the proportion of external root resorption (PRR), defined as the ratio between the root resorption in the root filled tooth and that in its contralateral tooth with a vital pulp. The student's t-test, anova and logistic regression analysis were used to determine statistical significance. The mean PRR was 1.00 +/- 0.13, indicating that, in the total sample, there were no significant differences in root resorption in the root filled teeth and their contralateral teeth with vital pulps. Multivariate logistic regression analysis suggested that PRR was significantly greater in incisors (P = 0.0014; odds ratio = 6.2885, C.I. 95% = 2.0-19.4), compared to other teeth, and in women (P = 0.0255; odds ratio = 4.2, C.I. 95% = 1.2-14.6), compared to men. There was no significant difference in the amount or severity of external root resorption during orthodontic movement between root filled teeth and their contralateral teeth with vital pulps.
Wang, Jing; Fritzsch, Claire; Bernarding, Johannes; Krause, Thomas; Mauritz, Karl-Heinz; Brunetti, Maddalena; Dohle, Christian
2013-01-01
Mirror therapy (MT) was found to improve motor function after stroke, but its neural mechanisms remain unclear, especially in single stroke patients. The following imaging study was designed to compare brain activation patterns evoked by the mirror illusion in single stroke patients with normal subjects. Fifteen normal volunteers and five stroke patients with severe arm paresis were recruited. Cerebral activations during movement mirroring by means of a video chain were recorded with functional magnetic resonance imaging (fMRI). Single-subject analysis was performed using SPM 8. For normal subjects, ten and thirteen subjects displayed lateralized cerebral activations evoked by the mirror illusion while moving their right and left hand respectively. The magnitude of this effect in the precuneus contralateral to the seen hand was not dependent on movement speed or subjective experience. Negative correlation of activation strength with age was found for the right hand only. The activation pattern in stroke patients is comparable to that of normal subjects and present in four out of five patients. In summary, the mirror illusion can elicit cerebral activation contralateral to the perceived hand in the majority of single normal subjects, but not in all of them. This is similar even in stroke patients with severe hemiparesis.
Desmedt, J E; Ozaki, I
1991-01-01
A method using a DC servo motor is described to produce brisk angular movements at finger interphalangeal joints in humans. Small passive flexions of 2 degrees elicited sizable somatosensory evoked potentials (SEPs) starting with a contralateral positive P34 parietal response thought to reflect activation of a radial equivalent dipole generator in area 2 which receives joint inputs. By contrast, electric stimulation of tactile (non-joint) inputs from the distal phalanx evoked the usual contralateral negative N20 reflecting a tangential equivalent dipole generator in area 3b. Finger joint inputs also evoked a precentral positivity equivalent to the P22 of motor area 4, and a large frontal negativity equivalent to N30. It is suggested that natural stimulation allows human SEP components to be differentiated in conjunction with distinct cortical somatotopic projections.
Brain activity during bilateral rapid alternate finger tapping measured with magnetoencephalography
NASA Astrophysics Data System (ADS)
Fukuda, Hiroshi; Odagaki, Masato; Hiwaki, Osamu; Kodabashi, Atsushi; Fujimoto, Toshiro
2009-04-01
Using magnetoencephalography (MEG), brain regions involved in an alternate bimanual tapping task by index fingers triggered with spontaneous timing were investigated. The tapping mode in which both index fingers moved simultaneously was interlaced during the task. The groups of the alternate tapping (AL mode) and the simultaneous tapping (SI mode) were extracted from the successive alternating taps with a histogram of intervals between the right and left index fingers. MEG signals in each mode were averaged separately before and after the tapping initiation of the dominant index finger. The activities of the contralateral sensorimotor cortex before and after the tapping initiation in the AL mode were larger than that in the SI mode. The result indicates that the activity of the contralateral sensorimotor cortex depends on the degree of achievement in the difficult motor task such as the voluntary alternate tapping movements.
Transverse section radionuclide scanning system
Kuhl, David E.; Edwards, Roy Q.
1976-01-01
This invention provides a transverse section radionuclide scanning system for high-sensitivity quantification of brain radioactivity in cross-section picture format in order to permit accurate assessment of regional brain function localized in three-dimensions. High sensitivity crucially depends on overcoming the heretofore known raster type scanning, which requires back and forth detector movement involving dead-time or partial enclosure of the scan field. Accordingly, this invention provides a detector array having no back and forth movement by interlaced detectors that enclose the scan field and rotate as an integral unit around one axis of rotation in a slip ring that continuously transmits the detector data by means of laser emitting diodes, with the advantages that increased amounts of data can be continuously collected, processed and displayed with increased sensitivity according to a suitable computer program.
Neuronal activity related to spontaneous and capsaicin-induced rhythmical jaw movements in the rat.
Ohta, M; Sasamoto, K; Kobayashi, J
1998-02-01
Intraoral capsaicin induced rhythmical jaw movements (RJM) in anesthetized rats. Neurons in the trigeminal spinal nucleus caudalis or the cortico-peduncular (CP) axons were extracellularly recorded. Capsaicin excited dose-dependently most caudalis neurons, which were activated by stimulation of the oral cavity and/or the tooth pulp and activated during spontaneous or induced RJM. Ten of 55 CP axons were antidromically activated by stimulation of the contralateral trigeminal motor nucleus. All antidromic and 29 other CP axons discharged prior to the spontaneous RJM, but most of them did not during capsaicin-induced RJM. These neuronal activities possibly initiate spontaneous RJM although the activities of caudalis neurons are necessary for capsicin-induced RJM.
Spatial updating in human parietal cortex
NASA Technical Reports Server (NTRS)
Merriam, Elisha P.; Genovese, Christopher R.; Colby, Carol L.
2003-01-01
Single neurons in monkey parietal cortex update visual information in conjunction with eye movements. This remapping of stimulus representations is thought to contribute to spatial constancy. We hypothesized that a similar process occurs in human parietal cortex and that we could visualize it with functional MRI. We scanned subjects during a task that involved remapping of visual signals across hemifields. We observed an initial response in the hemisphere contralateral to the visual stimulus, followed by a remapped response in the hemisphere ipsilateral to the stimulus. We ruled out the possibility that this remapped response resulted from either eye movements or visual stimuli alone. Our results demonstrate that updating of visual information occurs in human parietal cortex.
Rapid cortical oscillations and early motor activity in premature human neonate.
Milh, Mathieu; Kaminska, Anna; Huon, Catherine; Lapillonne, Alexandre; Ben-Ari, Yehezkel; Khazipov, Rustem
2007-07-01
Delta-brush is the dominant pattern of rapid oscillatory activity (8-25 Hz) in the human cortex during the third trimester of gestation. Here, we studied the relationship between delta-brushes in the somatosensory cortex and spontaneous movements of premature human neonates of 29-31 weeks postconceptional age using a combination of scalp electroencephalography and monitoring of motor activity. We found that sporadic hand and foot movements heralded the appearance of delta-brushes in the corresponding areas of the cortex (lateral and medial regions of the contralateral central cortex, respectively). Direct hand and foot stimulation also reliably evoked delta-brushes in the same areas. These results suggest that sensory feedback from spontaneous fetal movements triggers delta-brush oscillations in the central cortex in a somatotopic manner. We propose that in the human fetus in utero, before the brain starts to receive elaborated sensory input from the external world, spontaneous fetal movements provide sensory stimulation and drive delta-brush oscillations in the developing somatosensory cortex contributing to the formation of cortical body maps.
Contralateral Breast Dose After Whole-Breast Irradiation: An Analysis by Treatment Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Terence M.; Moran, Jean M., E-mail: jmmoran@med.umich.edu; Hsu, Shu-Hui
2012-04-01
Purpose: To investigate the contralateral breast dose (CBD) across a continuum of breast-conservation therapy techniques. Methods and Materials: An anthropomorphic phantom was CT-simulated, and six treatment plans were generated: open tangents, tangents with an external wedge on the lateral beam, tangents with lateral and medial external wedges, a simple segment plan (three segments per tangent), a complex segmental intensity-modulated radiotherapy (IMRT) plan (five segments per tangent), and a beamlet IMRT plan (>100 segments). For all techniques, the breast on the phantom was irradiated to 5000 cGy. Contralateral breast dose was measured at a uniform depth at the center and eachmore » quadrant using thermoluminescent detectors. Results: Contralateral breast dose varied with position and was 50 {+-} 7.3 cGy in the inner half, 24 {+-} 4.1 cGy at the center, and 16 {+-} 2.2 cGy in the outer half for the open tangential plan. Compared with an average dose of 31 cGy across all points for the open field, the average doses were simple segment 32 cGy (range, 99-105% compared with open technique), complex segment 34 cGy (range, 103-117% compared with open technique), beamlet IMRT 34 cGy (range, 103-124% compared with open technique), lateral wedge only 46 cGy (range, 133-175% compared with open technique), and medial and lateral wedge 96 cGy (range, 282-370% compared with open technique). Conclusions: Single or dual wedge techniques resulted in the highest CBD increases compared with open tangents. To obtain the desired homogeneity to the treated breast while minimizing CBD, segmental and IMRT techniques should be encouraged over external physical compensators.« less
Speed-Dependent Contribution of Callosal Pathways to Ipsilateral Movements
Tazoe, Toshiki
2013-01-01
Transcallosal inhibitory interactions between primary motor cortices are important to suppress unintended movements in a resting limb during voluntary activation of the contralateral limb. The functional contribution of transcallosal inhibition targeting the voluntary active limb remains unknown. Using transcranial magnetic stimulation, we examined transcallosal inhibition [by measuring interhemispheric inhibition (IHI) and the ipsilateral silent period (iSP)] in the preparatory and execution phases of isotonic slower self-paced and ballistic movements performed by the ipsilateral index finger into abduction and the elbow into flexion in intact humans. We demonstrate decreased IHI in the preparatory phase of self-paced and ballistic index finger and elbow movements compared to rest; the decrease in IHI was larger during ballistic than self-paced movements. In contrast, in the execution phase, IHI and the iSP increased during ballistic compared to self-paced movements. Transcallosal inhibition was negatively correlated with reaction times in the preparatory phase and positively correlated with movement amplitude in the execution phase. Together, our results demonstrate a widespread contribution of transcallosal inhibition to ipsilateral movements of different speeds with a functional role during rapid movements; at faster speeds, decreased transcallosal inhibition in the preparatory phase may contribute to start movements rapidly, while the increase in the execution phase may contribute to stop the movement. We argue that transcallosal pathways enable signaling of the time of discrete behavioral events during ipsilateral movements, which is amplified by the speed of a movement. PMID:24107950
Area 18 of the cat: the first step in processing visual movement information.
Orban, G A
1977-01-01
In cats, responses of area 18 neurons to different moving patterns were measured. The influence of three movement parameters--direction, angular velocity, and amplitude of movement--were tested. The results indicate that in area 18 no ideal movement detector exists, but that simple and complex cells each perform complementary operations of primary visual areas, i.e. analysis and detection of movement.
The Mirror Illusion Increases Motor Cortex Excitability in Children With and Without Hemiparesis.
Grunt, Sebastian; Newman, Christopher J; Saxer, Stefanie; Steinlin, Maja; Weisstanner, Christian; Kaelin-Lang, Alain
2017-03-01
Mirror therapy provides a visual illusion of a normal moving limb by using the mirror reflection of the unaffected arm instead of viewing the paretic limb and is used in rehabilitation to improve hand function. Little is known about the mechanism underlying its effect in children with hemiparesis. To investigate the effect of the mirror illusion (MI) on the excitability of the primary motor cortex (M1) in children and adolescents. Twelve patients with hemiparesis (10-20 years) and 8 typically developing subjects (8-17 years) participated. Corticospinal reorganization was classified as contralateral (projection from contralateral hemisphere to affected hand) or ipsilateral (projection from ipsilateral hemisphere to affected hand). M1 excitability of the hemisphere projecting to the affected (nondominant in typically developing subjects) hand was obtained during 2 different conditions using single-pulse transcranial magnetic stimulation (TMS). Each condition (without/with mirror) consisted of a unimanual and a bimanual task. Motor-evoked potentials (MEPs) were recorded from the abductor pollicis brevis and flexor digitorum superficialis muscles. MEP amplitudes were significantly increased during the mirror condition ( P = .005) in typically developing subjects and in patients with contralateral reorganization. No significant effect of MI was found in subjects with ipsilateral reorganization. MI increased M1 excitability during active movements only. This increase was not correlated to hand function. MI increases the excitability of M1 in hemiparetic patients with contralateral corticospinal organization and in typically developing subjects. This finding provides neurophysiological evidence supporting the application of mirror therapy in selected children and adolescents with hemiparesis.
Broniec, A
2016-12-01
Flicker-noise spectroscopy (FNS) is a general phenomenological approach to analyzing dynamics of complex nonlinear systems by extracting information contained in chaotic signals. The main idea of FNS is to describe an information hidden in correlation links, which are present in the chaotic component of the signal, by a set of parameters. In the paper, FNS is used for the analysis of electroencephalography signal related to the hand movement imagination. The signal has been parametrized in accordance with the FNS method, and significant changes in the FNS parameters have been observed, at the time when the subject imagines the movement. For the right-hand movement imagination, abrupt changes (visible as a peak) of the parameters, calculated for the data recorded from the left hemisphere, appear at the time corresponding to the initial moment of the imagination. In contrary, for the left-hand movement imagination, the meaningful changes in the parameters are observed for the data recorded from the right hemisphere. As the motor cortex is activated mainly contralaterally to the hand, the analysis of the FNS parameters allows to distinguish between the imagination of the right- and left-hand movement. This opens its potential application in the brain-computer interface.
Cortical sources of ERP in prosaccade and antisaccade eye movements using realistic source models
Richards, John E.
2013-01-01
The cortical sources of event-related-potentials (ERP) using realistic source models were examined in a prosaccade and antisaccade procedure. College-age participants were presented with a preparatory interval and a target that indicated the direction of the eye movement that was to be made. In some blocks a cue was given in the peripheral location where the target was to be presented and in other blocks no cue was given. In Experiment 1 the prosaccade and antisaccade trials were presented randomly within a block; in Experiment 2 procedures were compared in which either prosaccade and antisaccade trials were mixed in the same block, or trials were presented in separate blocks with only one type of eye movement. There was a central negative slow wave occurring prior to the target, a slow positive wave over the parietal scalp prior to the saccade, and a parietal spike potential immediately prior to saccade onset. Cortical source analysis of these ERP components showed a common set of sources in the ventral anterior cingulate and orbital frontal gyrus for the presaccadic positive slow wave and the spike potential. In Experiment 2 the same cued- and non-cued blocks were used, but prosaccade and antisaccade trials were presented in separate blocks. This resulted in a smaller difference in reaction time between prosaccade and antisaccade trials. Unlike the first experiment, the central negative slow wave was larger on antisaccade than on prosaccade trials, and this effect on the ERP component had its cortical source primarily in the parietal and mid-central cortical areas contralateral to the direction of the eye movement. These results suggest that blocked prosaccade and antisaccade trials results in preparatory or set effects that decreases reaction time, eliminates some cueing effects, and is based on contralateral parietal-central brain areas. PMID:23847476
Messamore, William G.; Van Acker, Gustaf M.; Hudson, Heather M.; Zhang, Hongyu Y.; Kovac, Anthony; Nazzaro, Jules; Cheney, Paul D.
2016-01-01
While a large body of evidence supports the view that ipsilateral motor cortex may make an important contribution to normal movements and to recovery of function following cortical injury (Chollet et al. 1991; Fisher 1992; Caramia et al. 2000; Feydy et al. 2002), relatively little is known about the properties of output from motor cortex to ipsilateral muscles. Our aim in this study was to characterize the organization of output effects on hindlimb muscles from ipsilateral motor cortex using stimulus-triggered averaging of EMG activity. Stimulus-triggered averages of EMG activity were computed from microstimuli applied at 60–120 μA to sites in both contralateral and ipsilateral M1 of macaque monkeys during the performance of a hindlimb push–pull task. Although the poststimulus effects (PStEs) from ipsilateral M1 were fewer in number and substantially weaker, clear and consistent effects were obtained at an intensity of 120 μA. The mean onset latency of ipsilateral poststimulus facilitation was longer than contralateral effects by an average of 0.7 ms. However, the shortest latency effects in ipsilateral muscles were as short as the shortest latency effects in the corresponding contralateral muscles suggesting a minimal synaptic linkage that is equally direct in both cases. PMID:26088970
Ohtsuka, K; Noda, H
1995-11-01
1. We previously described discharge properties of cerebellar output cells in the fastigial nucleus during ipsilateral and contralateral saccades. Fastigial cells exhibited unique responses depending on the direction of saccades and were involved in execution of accurate targeting saccades. Purkinje cells in the oculomotor vermis (lobules VIc and VII) are thought to modulate these discharges of fastigial cells. In this study we reexamine discharge properties of Purkinje cells on the basis of this hypothesis. 2. Initially we physiologically identified the right and left sides of the oculomotor vermis. Saccade-related discharges of 79 Purkinje cells were recorded from both sides of the vermis during visually guided saccades toward the sides ipsilateral and contralateral to the recording side in two trained macaque monkeys. To clarify the correlation of Purkinje cell discharge with burst activities in the fastigial nucleus during saccadic eye movements, we analyzed our data by employing methods used in the study of fastigial neurons. 3. Among the 79 cells, 56 (71%) showed burst discharges during saccades (saccadic burst cells). Of the 56 cells, 29 exhibited a peak of burst discharges in both the contralateral and ipsilateral directions (bidirectional cells). The remaining 27 saccadic burst cells showed a peak of burst discharges during either contralateral or ipsilateral saccades (unidirectional cells). Among the 79 cells, 14 (18%) exhibited a pause of discharges during contralateral saccades (pause cells). Among the 79 cells, 9 (11%) showed burst discharge during contralateral saccades followed by tonic discharge that was correlated with eye position (burst tonic cells). 4. The timing of bursts in bidirectional cells with respect to saccade onset was dependent on the direction of saccade. During ipsilateral saccades, Purkinje cells exhibited a long lead burst that built up gradually, peaked near the onset of the saccade, and terminated sharply near midsaccade. The mean lead time relative to saccade onset was 29.3 +/- 24.5 (SD) ms. During contralateral saccades, Purkinje cells exhibited a short lead/late burst that built up sharply, peaked near midsaccade, and terminated gradually after the end of the saccade. The mean lead time relative to saccade onset was 10.7 +/- 20.8 ms. The burst onset time during contralateral saccades and the burst offset time during ipsilateral saccades preceded the saccade offset time by about the same interval regardless of the saccade amplitude. 5. In pause cells the pause preceded saccade onset by 17.5 +/- 10.6 ms. The duration of the pause was not correlated with the duration of saccades. There was little trial-to-trial variability in the onset time of the pause with respect to the onset of saccades, whereas there was large trial-to-trial variability in the offset time of the pause with respect to the offset of saccades. In addition, the mean onset time of the pause for each cell had a relatively narrow distribution. 6. The burst lead time of burst tonic cells relative to saccade onset was 9.5 +/- 3.9 ms. The tonic discharge rate of burst tonic cells was a nonlinear function of eye position. The regression of each cell was fit to two lines. The regression coefficient ranged from 0.95 to 0.99 (mean = 0.97). 7. Axons of Purkinje cells in the oculomotor vermis are thought to project exclusively to saccadic burst cells in the fastigial oculomotor region (FOR), which is located in the caudal portion of the fastigial nucleus. Our previous studies indicated that FOR cells provide temporal signals for controlling targeting saccades. The present results suggest that Purkinje cells in the oculomotor vermis modify the temporal signals of FOR cells for saccades in different directions and amplitudes. The modification of FOR cell activity by Purkinje cells is thought to be essential for the function of the cerebellum in the control of saccadic eye movements.
NASA Astrophysics Data System (ADS)
Civitani, Marta
2009-08-01
Focusing X-ray telescopes with imaging capabilities, like SIMBOL-X, HEXISAT and IXO, are characterized by very long focal lengths, greater than 10m. The constraints posed by the launchers on the maximum dimensions of a payload, make necessary using alternatives to monolithic telescopes. One possibility is that the mirror and the detectors are carried by two separate spacecrafts that fly in formation. Another is placing the detector module on a bench that will be extended once in final orbit. In both the case the system will be subjected to deformation due the relative movement of the mirrors with respect to detectors. In one case the deformation will be due to the correction on the position and attitude of the detector spacecraft to maintain the formation with the mirror spacecraft, while in the other to oscillations of the detectors on the top of the bench. The aim of this work is to compare the behavior of the system in the two different configurations and to evaluate the performances of the on board metrology systems needed not to degrade the telescope angular resolution.
Representation of virtual arm movements in precuneus.
Dohle, Christian; Stephan, Klaus Martin; Valvoda, Jakob T; Hosseiny, Omid; Tellmann, Lutz; Kuhlen, Torsten; Seitz, Rüdiger J; Freund, Hans-Joachim
2011-02-01
Arm movements can easily be adapted to different biomechanical constraints. However, the cortical representation of the processing of visual input and its transformation into motor commands remains poorly understood. In a visuo-motor dissociation paradigm, subjects were presented with a 3-D computer-graphical representation of a human arm, presenting movements of the subjects' right arm either as right or left arm. In order to isolate possible effects of coordinate transformations, coordinate mirroring at the body midline was implemented independently. In each of the resulting four conditions, 10 normal, right-handed subjects performed three runs of circular movements, while being scanned with O(15)-Butanol-PET. Kinematic analysis included orientation and accuracy of a fitted ellipsoid trajectory. Imaging analysis was performed with SPM 99 with activations threshold at P < 0.0001 (not corrected). The shape of the trajectory was dependent on the laterality of the arm, irrespective of movement mirroring, and accompanied by a robust activation difference in the contralateral precuneus. Movement mirroring decreased movement accuracy, which was related to increased activation in the left insula. Those two movement conditions that cannot be observed in reality were related to an activation focus at the left middle temporal gyrus, but showed no influence on movement kinematics. These findings demonstrate the prominent role of the precuneus for mediating visuo-motor transformations and have implications for the use of mirror therapy and virtual reality techniques, especially avatars, such as Nintendo Wii in neurorehabilitation.
Zielinski, Mark R.; Karpova, Svetlana A.; Yang, Xiaomei; Gerashchenko, Dmitry
2014-01-01
The neuropeptide substance P is an excitatory neurotransmitter produced by various cells including neurons and microglia that is involved in regulating inflammation and cerebral blood flow—functions that affect sleep and slow-wave activity (SWA). Substance P is the major ligand for the neurokinin-1 receptor (NK-1R), which is found throughout the brain including the cortex. The NK-1R is found on sleep-active cortical neurons expressing neuronal nitric oxide synthase whose activity is associated with SWA. We determined the effects of local cortical administration of a NK-1R agonist (substance P-fragment 1, 7) and a NK-1R antagonist (CP96345) on sleep and SWA in mice. The NK-1R agonist significantly enhanced SWA for several hours when applied locally to the cortex of the ipsilateral hemisphere as the electroencephalogram (EEG) electrode but not after application to the contralateral hemisphere when compared to saline vehicle control injections. In addition, a significant compensatory reduction in SWA was found after the NK-1R agonist-induced enhancements in SWA. Conversely, injections of the NK-1R antagonist into the cortex of the ipsilateral hemisphere of the EEG electrode attenuated SWA compared to vehicle injections but this effect was not found after injections of the NK-1R antagonist into contralateral hemisphere as the EEG electrode. Non-rapid eye movement sleep and rapid eye movement sleep duration responses after NK-1R agonist and antagonist injections were not significantly different from the responses to the vehicle. Our findings indicate that the substance P and the NK-1R are involved in regulating SWA locally. PMID:25301750
Zucchelli, Lucia; Perrey, Stephane; Contini, Davide; Caffini, Matteo; Spinelli, Lorenzo; Kerr, Graham; Quaresima, Valentina; Ferrari, Marco; Torricelli, Alessandro
2015-01-01
Neuroimaging studies have shown neuromuscular electrical stimulation (NMES)-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), and secondary somatosensory area (S2), as well as regions of the prefrontal cortex (PFC) known to be involved in pain processing. The aim of this study, on nine healthy subjects, was to compare the cortical network activation profile and pain ratings during NMES of the right forearm wrist extensor muscles at increasing current intensities up to and slightly over the individual maximal tolerated intensity (MTI), and with reference to voluntary (VOL) wrist extension movements. By exploiting the capability of the multi-channel time domain functional near-infrared spectroscopy technique to relate depth information to the photon time-of-flight, the cortical and superficial oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentrations were estimated. The O2Hb and HHb maps obtained using the General Linear Model (NIRS-SPM) analysis method, showed that the VOL and NMES-evoked movements significantly increased activation (i.e., increase in O2Hb and corresponding decrease in HHb) in the cortical layer of the contralateral sensorimotor network (SMC, PMC/SMA, and S2). However, the level and area of contralateral sensorimotor network (including PFC) activation was significantly greater for NMES than VOL. Furthermore, there was greater bilateral sensorimotor network activation with the high NMES current intensities which corresponded with increased pain ratings. In conclusion, our findings suggest that greater bilateral sensorimotor network activation profile with high NMES current intensities could be in part attributable to increased attentional/pain processing and to increased bilateral sensorimotor integration in these cortical regions. PMID:26158464
Muthalib, Makii; Re, Rebecca; Zucchelli, Lucia; Perrey, Stephane; Contini, Davide; Caffini, Matteo; Spinelli, Lorenzo; Kerr, Graham; Quaresima, Valentina; Ferrari, Marco; Torricelli, Alessandro
2015-01-01
Neuroimaging studies have shown neuromuscular electrical stimulation (NMES)-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), and secondary somatosensory area (S2), as well as regions of the prefrontal cortex (PFC) known to be involved in pain processing. The aim of this study, on nine healthy subjects, was to compare the cortical network activation profile and pain ratings during NMES of the right forearm wrist extensor muscles at increasing current intensities up to and slightly over the individual maximal tolerated intensity (MTI), and with reference to voluntary (VOL) wrist extension movements. By exploiting the capability of the multi-channel time domain functional near-infrared spectroscopy technique to relate depth information to the photon time-of-flight, the cortical and superficial oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentrations were estimated. The O2Hb and HHb maps obtained using the General Linear Model (NIRS-SPM) analysis method, showed that the VOL and NMES-evoked movements significantly increased activation (i.e., increase in O2Hb and corresponding decrease in HHb) in the cortical layer of the contralateral sensorimotor network (SMC, PMC/SMA, and S2). However, the level and area of contralateral sensorimotor network (including PFC) activation was significantly greater for NMES than VOL. Furthermore, there was greater bilateral sensorimotor network activation with the high NMES current intensities which corresponded with increased pain ratings. In conclusion, our findings suggest that greater bilateral sensorimotor network activation profile with high NMES current intensities could be in part attributable to increased attentional/pain processing and to increased bilateral sensorimotor integration in these cortical regions.
The Effect of Passive Movement for Paretic Ankle-Foot and Brain Activity in Post-Stroke Patients.
Vér, Csilla; Emri, Miklós; Spisák, Tamás; Berényi, Ervin; Kovács, Kázmér; Katona, Péter; Balkay, László; Menyhárt, László; Kardos, László; Csiba, László
2016-01-01
This study aims at investigating the short-term efficacy of the continuous passive motion (CPM) device developed for the therapy of ankle-foot paresis and to investigate by fMRI the blood oxygen level-dependent responses (BOLD) during ankle passive movement (PM). Sixty-four stroke patients were investigated. Patients were assigned into 2 groups: 49 patients received both 15 min manual and 30 min device therapy (M + D), while the other group (n = 15) received only 15 min manual therapy (M). A third group of stroke patients (n = 12) was investigated by fMRI before and immediately after 30 min CPM device therapy. There was no direct relation between the fMRI group and the other 2 groups. All subjects were assessed using the Modified Ashworth Scale (MAS) and a goniometer. Mean MAS decreased, the ankle's mean plantar flexion and dorsiflexion passive range of motion (PROM) increased and the equinovalgus improved significantly in the M + D group. In the fMRI group, the PM of the paretic ankle increased BOLD responses; this was observed in the contralateral pre- and postcentral gyrus, superior temporal gyrus, central opercular cortex, and in the ipsilateral postcentral gyrus, frontal operculum cortex and cerebellum. Manual therapy with CPM device therapy improved the ankle PROM, equinovalgus and severity of spasticity. The ankle PM increased ipsi- and contralateral cortical activation. © 2016 S. Karger AG, Basel.
Brain oscillatory signatures of motor tasks
Birbaumer, Niels
2015-01-01
Noninvasive brain-computer-interfaces (BCI) coupled with prosthetic devices were recently introduced in the rehabilitation of chronic stroke and other disorders of the motor system. These BCI systems and motor rehabilitation in general involve several motor tasks for training. This study investigates the neurophysiological bases of an EEG-oscillation-driven BCI combined with a neuroprosthetic device to define the specific oscillatory signature of the BCI task. Controlling movements of a hand robotic orthosis with motor imagery of the same movement generates sensorimotor rhythm oscillation changes and involves three elements of tasks also used in stroke motor rehabilitation: passive and active movement, motor imagery, and motor intention. We recorded EEG while nine healthy participants performed five different motor tasks consisting of closing and opening of the hand as follows: 1) motor imagery without any external feedback and without overt hand movement, 2) motor imagery that moves the orthosis proportional to the produced brain oscillation change with online proprioceptive and visual feedback of the hand moving through a neuroprosthetic device (BCI condition), 3) passive and 4) active movement of the hand with feedback (seeing and feeling the hand moving), and 5) rest. During the BCI condition, participants received contingent online feedback of the decrease of power of the sensorimotor rhythm, which induced orthosis movement and therefore proprioceptive and visual information from the moving hand. We analyzed brain activity during the five conditions using time-frequency domain bootstrap-based statistical comparisons and Morlet transforms. Activity during rest was used as a reference. Significant contralateral and ipsilateral event-related desynchronization of sensorimotor rhythm was present during all motor tasks, largest in contralateral-postcentral, medio-central, and ipsilateral-precentral areas identifying the ipsilateral precentral cortex as an integral part of motor regulation. Changes in task-specific frequency power compared with rest were similar between motor tasks, and only significant differences in the time course and some narrow specific frequency bands were observed between motor tasks. We identified EEG features representing active and passive proprioception (with and without muscle contraction) and active intention and passive involvement (with and without voluntary effort) differentiating brain oscillations during motor tasks that could substantially support the design of novel motor BCI-based rehabilitation therapies. The BCI task induced significantly different brain activity compared with the other motor tasks, indicating neural processes unique to the use of body actuators control in a BCI context. PMID:25810484
Insights from the supplementary motor area syndrome in balancing movement initiation and inhibition
Potgieser, A. R. E.; de Jong, B. M.; Wagemakers, M.; Hoving, E. W.; Groen, R. J. M.
2014-01-01
The supplementary motor area (SMA) syndrome is a characteristic neurosurgical syndrome that can occur after unilateral resection of the SMA. Clinical symptoms may vary from none to a global akinesia, predominantly on the contralateral side, with preserved muscle strength and mutism. A remarkable feature is that these symptoms completely resolve within weeks to months, leaving only a disturbance in alternating bimanual movements. In this review we give an overview of the old and new insights from the SMA syndrome and extrapolate these findings to seemingly unrelated diseases and symptoms such as Parkinson’s disease (PD) and tics. Furthermore, we integrate findings from lesion, stimulation and functional imaging studies to provide insight in the motor function of the SMA. PMID:25506324
Kuo, Hsing-Ching; Friel, Kathleen M; Gordon, Andrew M
2018-02-01
Children with unilateral spastic cerebral palsy (CP) often have mirror movements, i.e. involuntary imitations of unilateral voluntary movements of the contralateral upper extremity. The pathophysiology of mirror movements has been investigated in small and heterogeneous cohorts in the literature. Specific pathophysiology of mirror movements and their impact on upper extremity function require systematic investigation in larger and homogeneous cohorts of children with unilateral spastic CP. Here we review two possible neurophysiological mechanisms underlying mirror movements in children with CP and those with typical development: (1) an ipsilateral corticospinal tract projecting from the contralesional motor cortex (M1) to both upper extremities; (2) insufficient interhemispheric inhibition between the two M1s. We also discuss clinical implications of mirror movements in children with unilateral CP and suggest that a thorough examination of the relationship between the pathophysiology and clinical manifestations of mirror movements is warranted. We suggest two premises: (1) the presence of mirror movements is indicative of an ipsilateral corticospinal tract reorganization; and (2) the corticospinal tract organization may affect patients' responses to certain treatment. If these premises are supported through future research, mirror movements should be clinically evaluated for patient selection to maximize benefits of therapy, hence promoting individualized medicine in this population. Mirror movements may be indicative of the underlying corticospinal tract reorganization in children with unilateral spastic cerebral palsy (CP). Future research will benefit from systematic investigations of the relationship between mirror movements and its pathophysiology. Mirror movements may be a potential biomarker for individualized medicine in children with unilateral spastic CP. © 2017 Mac Keith Press.
Changes in movement symmetry over the stages of the shoeing process in military working horses.
Pfau, T; Daly, K; Davison, J; Bould, A; Housby, N; Weller, R
2016-08-20
Military working horses perform a high proportion of work on road surfaces and are shod frequently to deal with high attrition rates. The authors investigate the influence of shoeing on movement symmetry as an indirect indicator of mechanical differences affecting force production between contralateral limbs. In this quantitative observational study, inertial sensor gait analysis was performed in 23 Irish sport type horses (4-21 years, 1.58-1.85 m) in full ceremonial work at the King's Troop, Royal Horse Artillery. Changes in two movement symmetry measures (SI: symmetry index; MinDiff: difference between displacement minima) for head and pelvic movement were assessed at four stages of routine shoeing: 'old shoes', 'shoes removed', 'trimmed', 'reshod'. Horses were assessed applying shoes to the front limbs (N=10), to the hindlimbs (N=10) or both (N=3). Changes in head movement symmetry between conditions were small and inconsistent. Changes in pelvic movement symmetry were small and showed significant differences between shoeing stages (SI: P=0.013, MinDiff: P=0.04) with most symmetrical pelvic movement after trimming. In military working horses with high frequency shoeing small changes in movement symmetry were measured. All significant changes involved trimming, which indicates that future studies should in particular assess changes before/after trimming and investigate longer shoeing intervals. British Veterinary Association.
Movement patterns of limb coordination in infant rolling.
Kobayashi, Yoshio; Watanabe, Hama; Taga, Gentaro
2016-12-01
Infants must perform dynamic whole-body movements to initiate rolling, a key motor skill. However, little is known regarding limb coordination and postural control in infant rolling. To address this lack of knowledge, we examined movement patterns and limb coordination during rolling in younger infants (aged 5-7 months) that had just begun to roll and in older infants (aged 8-10 months) with greater rolling experience. Due to anticipated difficulty in obtaining measurements over the second half of the rolling sequence, we limited our analysis to the first half. Ipsilateral and contralateral limbs were identified on the basis of rolling direction and were classified as either a stationary limb used for postural stability or a moving limb used for controlled movement. We classified the observed movement patterns by identifying the number of stationary limbs and the serial order of combinational limb movement patterns. Notably, older infants performed more movement patterns that involved a lower number of stationary limbs than younger infants. Despite the wide range of possible movement patterns, a small group of basic patterns dominated in both age groups. Our results suggest that the fundamental structure of limb coordination during rolling in the early acquisition stages remains unchanged until at least 8-10 months of age. However, compared to younger infants, older infants exhibited a greater ability to select an effective rotational movement by positioning themselves with fewer stationary limbs and performing faster limb movements.
Using wheel temperature detector technology to monitor railcar brake system effectiveness.
DOT National Transportation Integrated Search
2013-12-01
Wheel temperature detector technology has been used extensively in the railroad industry for the past several decades. The : technology has traditionally been used to identify wheels with elevated temperatures. There is currently a movement in the : ...
Movement-related neuromagnetic fields in preschool age children.
Cheyne, Douglas; Jobst, Cecilia; Tesan, Graciela; Crain, Stephen; Johnson, Blake
2014-09-01
We examined sensorimotor brain activity associated with voluntary movements in preschool children using a customized pediatric magnetoencephalographic system. A videogame-like task was used to generate self-initiated right or left index finger movements in 17 healthy right-handed subjects (8 females, ages 3.2-4.8 years). We successfully identified spatiotemporal patterns of movement-related brain activity in 15/17 children using beamformer source analysis and surrogate MRI spatial normalization. Readiness fields in the contralateral sensorimotor cortex began ∼0.5 s prior to movement onset (motor field, MF), followed by transient movement-evoked fields (MEFs), similar to that observed during self-paced movements in adults, but slightly delayed and with inverted source polarities. We also observed modulation of mu (8-12 Hz) and beta (15-30 Hz) oscillations in sensorimotor cortex with movement, but with different timing and a stronger frequency band coupling compared to that observed in adults. Adult-like high-frequency (70-80 Hz) gamma bursts were detected at movement onset. All children showed activation of the right superior temporal gyrus that was independent of the side of movement, a response that has not been reported in adults. These results provide new insights into the development of movement-related brain function, for an age group in which no previous data exist. The results show that children under 5 years of age have markedly different patterns of movement-related brain activity in comparison to older children and adults, and indicate that significant maturational changes occur in the sensorimotor system between the preschool years and later childhood. Copyright © 2014 Wiley Periodicals, Inc.
Molina Rueda, F; Rivas Montero, F M; Pérez de Heredia Torres, M; Alguacil Diego, I M; Molero Sánchez, A; Miangolarra Page, J C
2012-01-01
As a result of neurophysiological injury, stroke patients have mobility limitations, mainly on the side of the body contralateral to the lesioned hemisphere. The purpose of this study is to quantify motor compensation strategies in stroke patients during the activity of drinking water from a glass. Four male patient with cerebrovascular disease and four right-handed, healthy male control subjects. The motion analysis was conducted using the Vicon Motion System(®) and surface electromyography equipment ZeroWire Aurion(®). We analysed elbow, shoulder and trunk joint movements and performed a qualitative analysis of the sequence of muscle activation. Trunk, shoulder and elbow movements measured in the stroke patient along the sagittal plane decreased during the drinking from a glass activity, while the movements in the shoulder in the coronal plane and trunk increased. As for the sequence of muscle activation, anterior, middle and posterior deltoid all contracted in the patient group during the task, while the upper trapezius activation remained throughout the activity. Quantitative analysis of movement provides quantitative information on compensation strategies used by stroke patients, and is therefore, clinically relevant. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.
Fischer, Petra; Pogosyan, Alek; Herz, Damian M; Cheeran, Binith; Green, Alexander L; Fitzgerald, James; Aziz, Tipu Z; Hyam, Jonathan; Little, Simon; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Brown, Peter; Tan, Huiling
2017-01-01
Gamma activity in the subthalamic nucleus (STN) is widely viewed as a pro-kinetic rhythm. Here we test the hypothesis that rather than being specifically linked to movement execution, gamma activity reflects dynamic processing in this nucleus. We investigated the role of gamma during fast stopping and recorded scalp electroencephalogram and local field potentials from deep brain stimulation electrodes in 9 Parkinson’s disease patients. Patients interrupted finger tapping (paced by a metronome) in response to a stop-signal sound, which was timed such that successful stopping would occur only in ~50% of all trials. STN gamma (60–90 Hz) increased most strongly when the tap was successfully stopped, whereas phase-based connectivity between the contralateral STN and motor cortex decreased. Beta or theta power seemed less directly related to stopping. In summary, STN gamma activity may support flexible motor control as it did not only increase during movement execution but also during rapid action-stopping. DOI: http://dx.doi.org/10.7554/eLife.23947.001 PMID:28742498
Whishaw, I Q
2000-03-03
Damage to the motor cortex of the rat (Rattus norvegicus) impairs skilled movements used in reaching for food with the contralateral forepaw. Nevertheless, there is substantial recovery in success over a two-week postsurgical period. The profile of behavioral recovery is believed to reflect the eventual normalization of behavior, but this idea has not been explicitly examined. The present experiments examined postsurgical reaching success and reaching movements as a function of (1) lesion type, (2) lesion size, (3) lesion location, (4) depletion of forebrain noradrenaline, and (4) presurgical and postsurgical experience. The results show that at least two separate processes contribute to recovery in postsurgical performance. The early postsurgical period was characterized by extreme difficulties in making reaching movements. The experiments suggest that this initial impairment was due to the loss of the innate cortical engram that supports the action patterns used for skilled movements. Subsequent recovery in reaching success was not due to the reacquisition of normal movements, but was due rather to the use of compensatory movements. The results are discussed in relation to the idea that true recovery from motor cortex injury will require that damaged neurons and their connections be rescued or replaced.
Functional anatomy of motor urgency.
Thobois, Stéphane; Ballanger, Bénédicte; Baraduc, Pierre; Le Bars, Didier; Lavenne, Franck; Broussolle, Emmanuel; Desmurget, Michel
2007-08-01
This PET H(2)(15)O study uses a reaching task to determine the neural basis of the unconscious motor speed up observed in the context of urgency in healthy subjects. Three conditions were considered: self-initiated (produce the fastest possible movement toward a large plate, when ready), externally-cued (same as self-initiated but in response to an acoustic cue) and temporally-pressing (same as externally-cued with the plate controlling an electromagnet that prevented a rolling ball from falling at the bottom of a tilted ramp). Results show that: (1) Urgent responses (Temporally-pressing versus Externally-cued) engage the left parasagittal and lateral cerebellar hemisphere and the sensorimotor cortex (SMC) bilaterally; (2) Externally-driven responses (Externally-cued versus Self-initiated) recruit executive areas within the contralateral SMC; (3) Volitional responses (Self-initiated versus Externally-cued) involve prefrontal cortical areas. These observations are discussed with respect to the idea that neuromuscular energy is set to a submaximal threshold in self-determined situations. In more challenging tasks, this threshold is raised and the first answer of the nervous system is to optimize the response of the lateral (i.e. crossed) corticospinal tract (contralateral SMC) and ipsilateral cerebellum. In a second step, the anterior (i.e. uncrossed) corticospinal tract (ipsilateral SMC) and the contralateral cerebellum are recruited. This recruitment is akin to the strategy observed during recovery in patients with brain lesions.
Deficient "sensory" beta synchronization in Parkinson's disease.
Degardin, A; Houdayer, E; Bourriez, J-L; Destée, A; Defebvre, L; Derambure, P; Devos, D
2009-03-01
Beta rhythm movement-related synchronization (beta synchronization) reflects motor cortex deactivation and sensory afference processing. In Parkinson's disease (PD), decreased beta synchronization after active movement reflects abnormal motor cortex idling and may be involved in the pathophysiology of akinesia. The objectives of the present study were to (i) compare event-related synchronization after active and passive movement and electrical nerve stimulation in PD patients and healthy, age-matched volunteers and (ii) evaluate the effect of levodopa. Using a 128-electrode EEG system, we studied beta synchronization after active and passive index finger movement and electrical median nerve stimulation in 13 patients and 12 control subjects. Patients were recorded before and after 150% of their usual morning dose of levodopa. The peak beta synchronization magnitude in the contralateral primary sensorimotor (PSM) cortex was significantly lower in PD patients after active movement, passive movement and electrical median nerve stimulation, compared with controls. Levodopa partially reversed the drop in beta synchronization after active movement but not after passive movement or electrical median nerve stimulation. If one considers that beta synchronization reflects sensory processing, our results suggest that integration of somaesthetic afferences in the PSM cortex is abnormal in PD during active and passive movement execution and after simple electrical median nerve stimulation. Better understanding of the mechanisms involved in the deficient beta synchronization observed here could prompt the development of new therapeutic approaches aimed at strengthening defective processes. The lack of full beta synchronization restoration by levodopa might be related to the involvement of non-dopaminergic pathways.
Neuromagnetic Cerebellar Activity Entrains to the Kinematics of Executed Finger Movements.
Marty, Brice; Wens, V; Bourguignon, M; Naeije, G; Goldman, S; Jousmäki, V; De Tiège, X
2018-05-03
This magnetoencephalography (MEG) study aims at characterizing the coupling between cerebellar activity and the kinematics of repetitive self-paced finger movements. Neuromagnetic signals were recorded in 11 right-handed healthy adults while they performed repetitive flexion-extensions of right-hand fingers at three different movement rates: slow (~ 1 Hz), medium (~ 2 Hz), and fast (~ 3 Hz). Right index finger acceleration was monitored with an accelerometer. Coherence analysis was used to index the coupling between right index finger acceleration and neuromagnetic signals. Dynamic imaging of coherent sources was used to locate coherent sources. Coupling directionality between primary sensorimotor (SM1), cerebellar, and accelerometer signals was assessed with renormalized partial directed coherence. Permutation-based statistics coupled with maximum statistic over the entire brain volume or restricted to the cerebellum were used. At all movement rates, maximum coherence peaked at SM1 cortex contralateral to finger movements at movement frequency (F0) and its first harmonic (F1). Significant (statistics restricted to the cerebellum) coherence consistently peaked at the right posterior lobe of the cerebellum at F0 with no influence of movement rate. Coupling between Acc and cerebellar signals was significantly stronger in the afferent than in the efferent direction with no effective contribution of cortico-cerebellar or cerebello-cortical pathways. This study demonstrates the existence of significant coupling between finger movement kinematics and neuromagnetic activity at the posterior cerebellar lobe ipsilateral to finger movement at F0. This coupling is mainly driven by spinocerebellar, presumably proprioceptive, afferences.
Heart-rate pulse-shift detector
NASA Technical Reports Server (NTRS)
Anderson, M.
1974-01-01
Detector circuit accurately separates and counts phase-shift pulses over wide range of basic pulse-rate frequency, and also provides reasonable representation of full repetitive EKG waveform. Single telemeter implanted in small animal monitors not only body temperature but also animal movement and heart rate.
Jochumsen, Mads; Rovsing, Cecilie; Rovsing, Helene; Niazi, Imran Khan; Dremstrup, Kim; Kamavuako, Ernest Nlandu
2017-01-01
Detection of single-trial movement intentions from EEG is paramount for brain-computer interfacing in neurorehabilitation. These movement intentions contain task-related information and if this is decoded, the neurorehabilitation could potentially be optimized. The aim of this study was to classify single-trial movement intentions associated with two levels of force and speed and three different grasp types using EEG rhythms and components of the movement-related cortical potential (MRCP) as features. The feature importance was used to estimate encoding of discriminative information. Two data sets were used. 29 healthy subjects executed and imagined different hand movements, while EEG was recorded over the contralateral sensorimotor cortex. The following features were extracted: delta, theta, mu/alpha, beta, and gamma rhythms, readiness potential, negative slope, and motor potential of the MRCP. Sequential forward selection was performed, and classification was performed using linear discriminant analysis and support vector machines. Limited classification accuracies were obtained from the EEG rhythms and MRCP-components: 0.48 ± 0.05 (grasp types), 0.41 ± 0.07 (kinetic profiles, motor execution), and 0.39 ± 0.08 (kinetic profiles, motor imagination). Delta activity contributed the most but all features provided discriminative information. These findings suggest that information from the entire EEG spectrum is needed to discriminate between task-related parameters from single-trial movement intentions.
López-Tarjuelo, Juan; Bouché-Babiloni, Ana; Morillo-Macías, Virginia; Santos-Serra, Agustín; Ferrer-Albiach, Carlos
2017-01-01
To estimate angular response deviation of MOSFETs in the realm of intraoperative electron radiotherapy (IOERT), review their energy dependence, and propose unambiguous names for detector rotations. MOSFETs have been used in IOERT. Movement of the detector, namely rotations, can spoil results. We propose yaw, pitch, and roll to name the three possible rotations in space, as these unequivocally name aircraft rotations. Reinforced mobile MOSFETs (model TN-502RDM-H) and an Elekta Precise linear accelerator were used. Two detectors were placed in air for the angular response study and the whole set of five detectors was calibrated as usual to evaluate energy dependence. The maximum readout was obtained with a roll of 90° and 4 MeV. With regard to pitch movement, a substantial drop in readout was achieved at 90°. Significant overresponse was measured at 315° with 4 MeV and at 45° with 15 MeV. Energy response is not different for the following groups of energies: 4, 6, and 9 MeV; and 12 MeV, 15 MeV, and 18 MeV. Our proposal to name MOSFET rotations solves the problem of defining sensor orientations. Angular response could explain lower than expected results when the tip of the detector is lifted due to inadvertent movements. MOSFETs energy response is independent of several energies and differs by a maximum of 3.4% when dependent. This can limit dosimetry errors and makes it possible to calibrate the detectors only once for each group of energies, which saves time and optimizes lifespan of MOSFETs.
Comparison of effects of humans versus wildlife-detector dogs
Heaton, Jill S.; Cablk, Mary E.; Nussear, Kenneth E.; Esque, Todd C.; Medica, Philip A.; Sagebiel, John C.; Francis, S. Steve
2008-01-01
The use of dogs (Canis lupus familiaris) trained to locate wildlife under natural conditions may increase the risk of attracting potential predators or alter behavior of target species. These potentially negative effects become even more problematic when dealing with threatened or endangered species, such as the Mojave Desert tortoise (Gopherus agassizii). We addressed three concerns regarding use of dogs trained to locate desert tortoises in the wild. First, we looked at the potential for dogs to attract native and non-native predators to sites at a greater rate than with human visitation alone by comparing presence of predator sign before and after visitation by dogs and by humans. We found no significant difference in predator sign based upon type of surveyor. Second, we looked at the difference in risk of predation to desert tortoises that were located in the wild by humans versus humans with wildlife-detector dogs. Over a 5-week period, during which tortoises were extensively monitored and a subsequent period of 1 year during which tortoises were monitored monthly, there was no predation on, nor sign of predator-inflicted trauma to tortoises initially encountered either by humans or wildlife-detector dogs. Third, we looked at movement patterns of tortoises after encounter by either humans or wildlife-detector dogs. Movement of desert tortoises was not significantly different after being found by a human versus being found by a wildlife-detector dog. Based upon these initial results we conclude that use of trained wildlife-detector dogs to survey for desert tortoises in the wild does not appear to increase attraction of predators, increase risk of predation, or alter movement patterns of desert tortoises more than surveys conducted by humans alone.
Planer orientation of the bilateral semicircular canals in dizzy patients.
Aoki, Sachiko; Takei, Yasuhiko; Suzuki, Kazufumi; Masukawa, Ai; Arai, Yasuko
2012-10-01
Recent development of 3-dimensional analysis of eye movement enabled to detect the eye rotation axis, which is used to determine the responsible semicircular canal(s) in dizzy patients. Therefore, the knowledge of anatomical orientation of bilateral semicircular canals is essential, as all 6 canals influence the eye movements. Employing the new head coordinate system suitable for MR imaging, we calculated the angles of semicircular canal planes of both ears in 11 dizzy patients who had normal caloric response in both ears. The angles between adjacent canal pairs were nearly perpendicular in both ears. The angle between the posterior canal planes and head sagittal plane was 51° and significantly larger the angle between the anterior canal planes and head sagittal plane, which was 35°. The angle between the horizontal canal plane and head sagittal plane was almost orthogonal. Pairs of contralateral synergistic canal planes were not parallel, forming 10° between right and left horizontal canal planes, 17° between right anterior and left posterior canal planes and 19° between the right posterior and left anterior canal planes. Our measurement of the angles of adjacent canal pairs and the angle between each semicircular canal and head sagittal plane coincided with those of previous reports obtained from CT images and skull specimens. However, the angles between contralateral synergistic canal planes were more parallel than those of previous reports. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Motor demand-dependent activation of ipsilateral motor cortex.
Buetefisch, Cathrin M; Revill, Kate Pirog; Shuster, Linda; Hines, Benjamin; Parsons, Michael
2014-08-15
The role of ipsilateral primary motor cortex (M1) in hand motor control during complex task performance remains controversial. Bilateral M1 activation is inconsistently observed in functional (f)MRI studies of unilateral hand performance. Two factors limit the interpretation of these data. As the motor tasks differ qualitatively in these studies, it is conceivable that M1 contributions differ with the demand on skillfulness. Second, most studies lack the verification of a strictly unilateral execution of the motor task during the acquisition of imaging data. Here, we use fMRI to determine whether ipsilateral M1 activity depends on the demand for precision in a pointing task where precision varied quantitatively while movement trajectories remained equal. Thirteen healthy participants used an MRI-compatible joystick to point to targets of four different sizes in a block design. A clustered acquisition technique allowed simultaneous fMRI/EMG data collection and confirmed that movements were strictly unilateral. Accuracy of performance increased with target size. Overall, the pointing task revealed activation in contralateral and ipsilateral M1, extending into contralateral somatosensory and parietal areas. Target size-dependent activation differences were found in ipsilateral M1 extending into the temporal/parietal junction, where activation increased with increasing demand on accuracy. The results suggest that ipsilateral M1 is active during the execution of a unilateral motor task and that its activity is modulated by the demand on precision. Copyright © 2014 the American Physiological Society.
Hajizadeh, Maryam; Hashemi Oskouei, Alireza; Ghalichi, Farzan; Sole, Gisela
2016-06-01
Biomechanical changes have been reported for patients with anterior cruciate ligament deficiency (ACLD) and anterior cruciate ligament (ACL reconstruction) (ACLR), likely due to loss of stability and changes in proprioception and neuromotor control. This review evaluated kinematics and kinetics of ACLD and ACLR knees, compared with those on the contralateral uninjured sides, as well as and those in asymptomatic controls during stair navigation. This is a systematic review and meta-analysis. Electronic database searches were conducted from their original available dates to January 2015. Studies that included participants with ACLD or ACLR and reported knee joint angles or moments during stair ascent or descent were included. Nine studies met the inclusion criteria, and the methodological quality of these was assessed with a modified Downs and Black checklist. Effect sizes for differences between injured leg and uninjured contralateral leg or controls were calculated, and meta-analyses were performed if two or more studies considered the same variable. Quality assessment showed an average (± standard deviation) of 70.3% ± 7.2%. Meta-analysis showed less knee flexion at initial contact for ACLR knees compared with that in contralateral knees during stair ascent, with a moderate effect size and minimal heterogeneity. Knees with ACLD showed less peak knee flexion compared with that on contralateral sides during stair ascent, with minimal heterogeneity. External knee flexion moments were lower for ACLR compared with those in controls and contralateral sides during ascent and descent, whereas these moments were decreased for the ACLD compared with controls only during ascent. Meta-analysis results exhibited moderate/high heterogeneity or small/trivial effect sizes. Differences for kinematics and kinetics for the ACL-injured knees indicate long-term compensatory and asymmetric movement patterns while ascending and descending stairs. Due to the heterogeneity as well as the small numbers of available studies, the consequences of these differences in terms of long-term function or posttraumatic osteoarthritis need further exploration. Copyright © 2016. Published by Elsevier Inc.
Waters, Sheena; Wiestler, Tobias; Diedrichsen, Jörn
2017-08-02
What is the role of ipsilateral motor and premotor areas in motor learning? One view is that ipsilateral activity suppresses contralateral motor cortex and, accordingly, that inhibiting ipsilateral regions can improve motor learning. Alternatively, the ipsilateral motor cortex may play an active role in the control and/or learning of unilateral hand movements. We approached this question by applying double-blind bihemispheric transcranial direct current stimulation (tDCS) over both contralateral and ipsilateral motor cortex in a between-group design during 4 d of unimanual explicit sequence training in human participants. Independently of whether the anode was placed over contralateral or ipsilateral motor cortex, bihemispheric stimulation yielded substantial performance gains relative to unihemispheric or sham stimulation. This performance advantage appeared to be supported by plastic changes in both hemispheres. First, we found that behavioral advantages generalized strongly to the untrained hand, suggesting that tDCS strengthened effector-independent representations. Second, functional imaging during speed-matched execution of trained sequences conducted 48 h after training revealed sustained, polarity-independent increases in activity in both motor cortices relative to the sham group. These results suggest a cooperative rather than competitive interaction of the two motor cortices during skill learning and suggest that bihemispheric brain stimulation during unimanual skill learning may be beneficial because it harnesses plasticity in the ipsilateral hemisphere. SIGNIFICANCE STATEMENT Many neurorehabilitation approaches are based on the idea that is beneficial to boost excitability in the contralateral hemisphere while attenuating that of the ipsilateral cortex to reduce interhemispheric inhibition. We observed that bihemispheric transcranial direct current stimulation (tDCS) with the excitatory anode either over contralateral or ipsilateral motor cortex facilitated motor learning nearly twice as strongly as unihemispheric tDCS. These increases in motor learning were accompanied by increases in fMRI activation in both motor cortices that outlasted the stimulation period, as well as increased generalization to the untrained hand. Collectively, our findings suggest a cooperative rather than a competitive role of the hemispheres and imply that it is most beneficial to harness plasticity in both hemispheres in neurorehabilitation of motor deficits. Copyright © 2017 Waters et al.
Brain activation associated with eccentric movement: A narrative review of the literature.
Perrey, Stéphane
2018-02-01
The movement occurring when a muscle exerts tension while lengthening is known as eccentric muscle action. Literature contains limited evidence on how our brain controls eccentric movement. However, how the cortical regions in the motor network are activated during eccentric muscle actions may be critical for understanding the underlying control mechanism of eccentric movements encountered in daily tasks. This is a novel topic that has only recently begun to be investigated through advancements in neuroimaging methods (electroencephalography, EEG; functional magnetic resonance imaging, fMRI). This review summarizes a selection of seven studies indicating mainly: longer time and higher cortical signal amplitude (EEG) for eccentric movement preparation and execution, greater magnitude of cortical signals with wider activated brain area (EEG, fMRI), and weaker brain functional connectivity (fMRI) between primary motor cortex (M1) and other cortical areas involved in the motor network during eccentric muscle actions. Only some differences among studies due to the forms of movement with overload were observed in the contralateral (to the active hand) M1 activity during eccentric movement. Altogether, the findings indicate an important challenge to the brain for controlling the eccentric movement. However, our understanding remains limited regarding the acute effects of eccentric exercise on cortical regions and their cooperation as functional networks that support motor functions. Further analysis and standardized protocols will provide deeper insights into how different cortical regions of the underlying motor network interplay with each other in increasingly demanding muscle exertions in eccentric mode.
Stimulation of the substantia nigra influences the specification of memory-guided saccades
Mahamed, Safraaz; Garrison, Tiffany J.; Shires, Joel
2013-01-01
In the absence of sensory information, we rely on past experience or memories to guide our actions. Because previous experimental and clinical reports implicate basal ganglia nuclei in the generation of movement in the absence of sensory stimuli, we ask here whether one output nucleus of the basal ganglia, the substantia nigra pars reticulata (nigra), influences the specification of an eye movement in the absence of sensory information to guide the movement. We manipulated the level of activity of neurons in the nigra by introducing electrical stimulation to the nigra at different time intervals while monkeys made saccades to different locations in two conditions: one in which the target location remained visible and a second in which the target location appeared only briefly, requiring information stored in memory to specify the movement. Electrical manipulation of the nigra occurring during the delay period of the task, when information about the target was maintained in memory, altered the direction and the occurrence of subsequent saccades. Stimulation during other intervals of the memory task or during the delay period of the visually guided saccade task had less effect on eye movements. On stimulated trials, and only when the visual stimulus was absent, monkeys occasionally (∼20% of the time) failed to make saccades. When monkeys made saccades in the absence of a visual stimulus, stimulation of the nigra resulted in a rotation of the endpoints ipsilaterally (∼2°) and increased the reaction time of contralaterally directed saccades. When the visual stimulus was present, stimulation of the nigra resulted in no significant rotation and decreased the reaction time of contralaterally directed saccades slightly. Based on these measurements, stimulation during the delay period of the memory-guided saccade task influenced the metrics of saccades much more than did stimulation during the same period of the visually guided saccade task. Because these effects occurred with manipulation of nigral activity well before the initiation of saccades and in trials in which the visual stimulus was absent, we conclude that information from the basal ganglia influences the specification of an action as it is evolving primarily during performance of memory-guided saccades. When visual information is available to guide the specification of the saccade, as occurs during visually guided saccades, basal ganglia information is less influential. PMID:24259551
NASA Astrophysics Data System (ADS)
Bardoux, Alain; Gimenez, Thierry; Jamin, Nicolas; Seve, Frederic
2017-11-01
MTF (Modulation Transfer Frequency) of a detector is a key parameter for imagers. When image is not moving on the detector, MTF can be measured by some methods (knife edge, slanted slit,…). But with LEO satellites, image is moving on the surface of the detector, and MTF has to be measured in the same way: that is what we call "dynamic MTF". CNES (French Space Agency) has built a specific bench in order to measure dynamic MTF of detectors (CCD and CMOS), especially with component working in TDI (Time delay and integration) mode. The method is based on a moving edge, synchronized with the movement of charges inside the TDI detector. The moving part is a rotating cube, allowing a very stable movement of the image on the surface of the detector The main difficulties were: - stability of the rotating speed - synchronization between cube speed and charge transfer inside the detectors - synchronization between cube position and data acquisition. Different methods have been tested for the displacement of the knife edge: - geometrical displacement - electrical shift of the charge transfer clocks. Static MTF has been performed before dynamic measurements, in order to fix a reference measurement, Then dynamic MTF bench has been set up. The results, for a TDI CCD show a very good precision. So this bench is validated, and the dynamic MTF value of the TDI CCD is confirmed.
Micro Cantilever Movement Detection with an Amorphous Silicon Array of Position Sensitive Detectors
Contreras, Javier; Costa, Daniel; Pereira, Sonia; Fortunato, Elvira; Martins, Rodrigo; Wierzbicki, Rafal; Heerlein, Holger; Ferreira, Isabel
2010-01-01
The movement of a micro cantilever was detected via a self constructed portable data acquisition prototype system which integrates a linear array of 32 1D amorphous silicon position sensitive detectors (PSD). The system was mounted on a microscope using a metal structure platform and the movement of the 30 μm wide by 400 μm long cantilever was tracked by analyzing the signals acquired by the 32 sensor array electronic readout system and the relevant data algorithm. The obtained results show a linear behavior of the photocurrent relating X and Y movement, with a non-linearity of about 3%, a spatial resolution of less than 2 μm along the lateral dimension of the sensor as well as of less than 3 μm along the perpendicular dimension of the sensor, when detecting just the micro-cantilever, and a spatial resolution of less than 1 μm when detecting the holding structure. PMID:22163648
Knaut, Luiz A; Subramanian, Sandeep K; McFadyen, Bradford J; Bourbonnais, Daniel; Levin, Mindy F
2009-05-01
To compare kinematics of 3-dimensional pointing movements performed in a virtual environment (VE) displayed through a head-mounted display with those made in a physical environment. Observational study of movement in poststroke and healthy subjects. Motion analysis laboratory. Adults (n=15; 4 women; 59+/-15.4y) with chronic poststroke hemiparesis were recruited. Participants had moderate upper-limb impairment with Chedoke-McMaster Arm Scores ranging from 3 to 6 out of 7. Twelve healthy subjects (6 women; 53.3+/-17.1y) were recruited from the community. Not applicable. Arm and trunk kinematics were recorded in similar virtual and physical environments with an Optotrak System (6 markers; 100Hz; 5s). Subjects pointed as quickly and as accurately as possible to 6 targets (12 trials/target in a randomized sequence) placed in arm workspace areas requiring different arm movement patterns and levels of difficulty. Movements were analyzed in terms of performance outcome measures (endpoint precision, trajectory, peak velocity) and arm and trunk movement patterns (elbow and shoulder ranges of motion, elbow/shoulder coordination, trunk displacement, rotation). For healthy subjects, precision and trajectory straightness were higher in VE when pointing to contralateral targets, and movements were slower for all targets in VE. Stroke participants made less accurate and more curved movements in VE and used less trunk displacement. Elbow/shoulder coordination differed when pointing to the lower ipsilateral target. There were no group-by-environment interactions. Movements in both environments were sufficiently similar to consider VE a valid environment for clinical interventions and motor control studies.
Frantsevich, Leonid I; Cruse, Holk
2005-10-01
The turning movement of a bug, Mesocerus marginatus, is observed when it walks upside-down below a horizontal beam and, at the end of the beam, performs a sharp turn by 180 degrees . The turn at the end of the beam is accomplished in three to five steps, without strong temporal coordination among legs. During the stance, leg endpoints (tarsi) run through rounded trajectories, rotating to the same side in all legs. During certain phases of the turn, a leg is strongly depressed and the tarsus crosses the midline. Swing movements rotate to the same side as do leg endpoints in stance, in strong contrast to the typical swing movements found in turns or straight walk on a flat surface. Terminal location is found after the search through a trajectory that first moves away from the body and then loops back to find substrate. When a leg during stance has crossed the midline, in the following swing movement the leg may move even stronger on the contralateral side, i.e. is stronger depressed, in contrast to swing movements in normal walking, where the leg is elevated. These results suggest that the animals apply a different control strategy compared to walking and turning on a flat surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polulyakh, Valeriy; Poutivski, Iouri
Laser Doppler Vibrometer and Range Meter (3D-MRV) is designed for middle range distances [1–100 meters]. 3D-MRV combines more than one laser in one device for a simultaneous real time measuring the distance and movement of the targets. The first laser has a short pulse (t∼30psec) and low energy (E∼200nJ) for distance measurement and the second one is a CW (continuous wave) single frequency laser for the velocity measurement with output power (P∼30mW). Both lasers perform on the eye-safe wavelength 1.5 μm. 3D-MRV uses the same mono-static optical transmitting and receiving channel for both lasers including an output telescope and amore » scanning angular system. 3D-MRV has an optical polarization switch to combine linear polarized laser beams from two lasers into one optical channel. The laser beams from both lasers by turns illuminate the target and the scattered laser radiation is collected by the telescope on a photo detector. The electrical signal from photo detector is used for measuring the distance to the target and its movement. For distance measurement the time of flight method is employed. For targets movement the optical heterodyne method is employed. The received CW laser radiation is mixed on a photo detector with the frequency-shifted laser radiation that is taken from CW laser and passed through an acousto-optic cell. The electrical signal from a photo detector on the difference frequency and phase has information about movement of the scattered targets. 3D-MVR may be used for the real time picturing of vibration of the extensive targets like bridges or aircrafts.« less
Cantilevered probe detector with piezoelectric element
Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C
2014-04-29
A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.
Cantilevered probe detector with piezoelectric element
Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C
2013-04-30
A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.
Cantilevered probe detector with piezoelectric element
Adams, Jesse D [Reno, NV; Sulchek, Todd A [Oakland, CA; Feigin, Stuart C [Reno, NV
2012-07-10
A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.
Cantilevered probe detector with piezoelectric element
Adams, Jesse D.; Sulchek, Todd A.; Feigin, Stuart C.
2010-04-06
A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.
Llamas-Carreras, José María; Amarilla, Almudena; Espinar-Escalona, Eduardo; Castellanos-Cosano, Lizett; Martín-González, Jenifer; Sánchez-Domínguez, Benito; López-Frías, Francisco Javier
2012-05-01
The purpose of this study was to compare, in a split mouth design, the external apical root resorption (EARR) associated with orthodontic treatment in root-filled maxillary incisors and their contralateral teeth with vital pulps. The study sample consisted of 38 patients (14 males and 24 females), who had one root-filled incisor before completion of multiband/bracket orthodontic therapy for at least 1 year. For each patient, digital panoramic radiographs taken before and after orthodontic treatment were used to determine the root resortion and the proportion of external root resorption (PRR), defined as the ratio between the root resorption in the endodontically treated incisor and that in its contralateral incisor with a vital pulp. The student's t-test, chi-square test and logistic regression analysis were used to determine statistical significance. There was no statistically significant difference (p > 0.05) between EARR in vital teeth (1.1 ± 1.0 mm) and endodontically treated incisors (1.1 ± 0.8 mm). Twenty-six patients (68.4%) showed greater resorption of the endodontically treated incisor than its homolog vital tooth (p > 0.05). The mean and standard deviation of PPR were 1.0 ± 0.2. Multivariate logistic regression suggested that PRR does not correlate with any of the variables analyzed. There was no significant difference in the amount or severity of external root resorption during orthodontic movement between root-filled incisors and their contralateral teeth with vital pulps.
An fMRI compatible wrist robotic interface to study brain development in neonates.
Allievi, A G; Melendez-Calderon, A; Arichi, T; Edwards, A D; Burdet, E
2013-06-01
A comprehensive understanding of the mechanisms that underlie brain development in premature infants and newborns is crucial for the identification of interventional therapies and rehabilitative strategies. fMRI has the potential to identify such mechanisms, but standard techniques used in adults cannot be implemented in infant studies in a straightforward manner. We have developed an MR safe wrist stimulating robot to systematically investigate the functional brain activity related to both spontaneous and induced wrist movements in premature babies using fMRI. We present the technical aspects of this development and the results of validation experiments. Using the device, the cortical activity associated with both active and passive finger movements were reliably identified in a healthy adult subject. In two preterm infants, passive wrist movements induced a well localized positive BOLD response in the contralateral somatosensory cortex. Furthermore, in a single preterm infant, spontaneous wrist movements were found to be associated with an adjacent cluster of activity, at the level of the infant's primary motor cortex. The described device will allow detailed and objective fMRI studies of somatosensory and motor system development during early human life and following neonatal brain injury.
Alfaqeeh, Sarah A; Anil, Sukumaran
2011-01-01
Objectives: This study aims at analyzing the changes in gingival crevicular fluid (GCF) lactate dehydrogenase (LDH) activity during orthodontic movement. Methods: Twenty patients all requiring first premolar extractions were selected and treated with conventional straight wire mechanotherapy. Canine retraction was done using 125 g Nitinol closed coil springs. The maxillary canine on one side served as the experimental site while the contralateral canine served as the control. GCF was collected from the canines before initiation of retraction, then 1 hour after initiating canine retraction, followed by 1 day, 7 days, 14 days and 21 days. GCF LDH levels were estimated and compared with the control site. Results The results revealed significantly higher LDH levels on the 7th, 14th and 21st day at the sites where orthodontic force had been applied. The levels also showed a significant increase from 0 hour to the 21st day. Peak levels were seen on 14th and 21st day following initiation of retraction. Conclusions: The study showed that LDH could be successfully estimated in the GCF and its increased levels could indicate active tooth movement, which could aid the clinician in monitoring active orthodontic tooth movement. PMID:21760863
Simultaneous multi-headed imager geometry calibration method
Tran, Vi-Hoa [Newport News, VA; Meikle, Steven Richard [Penshurst, AU; Smith, Mark Frederick [Yorktown, VA
2008-02-19
A method for calibrating multi-headed high sensitivity and high spatial resolution dynamic imaging systems, especially those useful in the acquisition of tomographic images of small animals. The method of the present invention comprises: simultaneously calibrating two or more detectors to the same coordinate system; and functionally correcting for unwanted detector movement due to gantry flexing.
Correlation of Fos expression and circling asymmetry during gerbil vestibular compensation
NASA Technical Reports Server (NTRS)
Kaufman, G. D.; Shinder, M. E.; Perachio, A. A.
1999-01-01
Vestibular compensation is a central nervous system process resulting in recovery of functional movement and control following a unilateral vestibular lesion. Small pressure injections of phosphorothioate 20mer oligonucleotides were used to probe the role of the Fos transcription protein during vestibular compensation in the gerbil brainstem. During isoflurane gas anesthesia, antisense probes against the c-fos mRNA sequence were injected into the medial vestibular and prepositus nuclei unilaterally prior to a unilateral surgical labyrinthectomy. Anionic dyes, which did not interact with the oligonucleotides, were used to mark the injection site and help determine the extent of diffusion. The antiFos oligonucleotide injections reduced Fos expression at the injection site in neurons which normally express Fos after the lesion, and also affected circling behavior induced by hemilabyrinthectomy. With both ipsilateral and contralateral medial vestibular and prepositus nuclei injections, less ipsilateral and more contralateral circling was noted in animals injected with antiFos injections as compared to non-injected controls. The degree of change in these behaviors was dependent upon the side of the injection. Histologically, antiFos injections reduced the number of Fos immunolabeled neurons around the injection site, and increased Fos expression contralaterally. The correlation of the number of neurons with Fos expression to turning behavior was stronger for contralateral versus ipsilateral turns, and for neurons in the caudal and ipsilateral sub-regions of the medial vestibular and prepositus nuclei. The results are discussed in terms of neuronal firing activity versus translational activity based on the asymmetrical expression of the Fos inducible transcription factor in the medial vestibular and prepositus nuclei. Although ubiquitous in the brain, transcription factors like Fos can serve localized and specific roles in sensory-specific adaptive stimuli. Antisense injections can be an effective procedure for localized intervention into complex physiological functions, e.g. vestibular compensation. Copyright 1999 Elsevier Science B.V.
In vivo validation of patellofemoral kinematics during overground gait and stair ascent.
Pitcairn, Samuel; Lesniak, Bryson; Anderst, William
2018-06-18
The patellofemoral (PF) joint is a common site for non-specific anterior knee pain. The pathophysiology of patellofemoral pain may be related to abnormal motion of the patella relative to the femur, leading to increased stress at the patellofemoral joint. Patellofemoral motion cannot be accurately measured using conventional motion capture. The aim of this study was to determine the accuracy of a biplane radiography system for measuring in vivo PF motion during walking and stair ascent. Four subjects had three 1.0 mm diameter tantalum beads implanted into the patella. Participants performed three trials each of over ground walking and stair ascent while biplane radiographs were collected at 100 Hz. Patella motion was tracked using radiostereophotogrammetric analysis (RSA) as a "gold standard", and compared to a volumetric CT model-based tracking algorithm that matched digitally reconstructed radiographs to the original biplane radiographs. The average RMS difference between the RSA and model-based tracking was 0.41 mm and 1.97° when there was no obstruction from the contralateral leg. These differences increased by 34% and 40%, respectively, when the patella was at least partially obstructed by the contralateral leg. The average RMS difference in patellofemoral joint space between tracking methods was 0.9 mm or less. Previous validations of biplane radiographic systems have estimated tracking accuracy by moving cadaveric knees through simulated motions. These validations were unable to replicate in vivo kinematics, including patella motion due to muscle activation, and failed to assess the imaging and tracking challenges related to contralateral limb obstruction. By replicating the muscle contraction, movement velocity, joint range of motion, and obstruction of the patella by the contralateral limb, the present study provides a realistic estimate of patellofemoral tracking accuracy for future in vivo studies. Copyright © 2018 Elsevier B.V. All rights reserved.
Kakita, Akiyoshi; Zerlin, Marielba; Takahashi, Hitoshi; Goldman, James E
2003-04-14
The great majority of glial cells of the mammalian forebrain are generated in the perinatal period from progenitors in the subventricular zone (SVZ). We investigated the migration of progenitors from the neonatal (postnatal day 0, P0) rat forebrain SVZ by labeling them in vivo with a green fluorescence protein (GFP) retrovirus and monitoring their movements by time-lapse video microscopy in P3 slices. We identified a small number of progenitors that migrated tangentially within the corpus callosum (CC) and crossed the midline. These cells retained a relatively uniform morphology: the leading process was extended toward the contralateral side but showed no process branching or turning away from the migratory direction. Net migration requires the elongation of the leading process and nuclear translocation, and the migrating cells in the CC showed both modes. We confirmed the presence of unmyelinated axon bundles within the P3 CC, but failed to detect any radially directed glial processes (vimentin- or GLAST-immunolabeled fibers) spanning through the CC. Confocal images showed a close proximity between neurofilament-immunolabeled axons and the leading process of the GFP-expressing progenitors in the CC. The destination of the callosal fibers was examined by applying DiI to the right cingulum; the labeled fibers ran throughout the CC and reached the left cingulate and motor areas. The distribution and final fates of the retrovirus-labeled cells were examined in P28 brains. A small proportion of the labeled cells were found in the contralateral hemisphere, where, as oligodendrocytes and astrocytes, they colonized predominantly the cortex and the underlying white matter of the cingulate and secondary motor areas. The distribution pattern appears to coincide well with the projection direction of the callosal fibers. Thus, glial progenitors migrate across the CC, presumably in conjunction with unmyelinated axons, to colonize the contralateral hemisphere. Copyright 2003 Wiley-Liss, Inc.
Cebolla, Ana M.; Petieau, Mathieu; Cevallos, Carlos; Leroy, Axelle; Dan, Bernard; Cheron, Guy
2015-01-01
In order to characterize the neural signature of a motor imagery (MI) task, the present study investigates for the first time the oscillation characteristics including both of the time-frequency measurements, event related spectral perturbation and intertrial coherence (ITC) underlying the variations in the temporal measurements (event related potentials, ERP) directly related to a MI task. We hypothesize that significant variations in both of the time-frequency measurements underlie the specific changes in the ERP directly related to MI. For the MI task, we chose a simple everyday task (throwing a tennis ball), that does not require any particular motor expertise, set within the controlled virtual reality scenario of a tennis court. When compared to the rest condition a consistent, long-lasting negative fronto-central ERP wave was accompanied by significant changes in both time frequency measurements suggesting long-lasting cortical activity reorganization. The ERP wave was characterized by two peaks at about 300 ms (N300) and 1000 ms (N1000). The N300 component was centrally localized on the scalp and was accompanied by significant phase consistency in the delta brain rhythms in the contralateral central scalp areas. The N1000 component spread wider centrally and was accompanied by a significant power decrease (or event related desynchronization) in low beta brain rhythms localized in fronto-precentral and parieto-occipital scalp areas and also by a significant power increase (or event related synchronization) in theta brain rhythms spreading fronto-centrally. During the transition from N300 to N1000, a contralateral alpha (mu) as well as post-central and parieto-theta rhythms occurred. The visual representation of movement formed in the minds of participants might underlie a top-down process from the fronto-central areas which is reflected by the amplitude changes observed in the fronto-central ERPs and by the significant phase synchrony in contralateral fronto-central delta and contralateral central mu to parietal theta presented here. PMID:26648903
Chiarelli, Antonio M; Libertino, Sebania; Zappasodi, Filippo; Mazzillo, Massimo; Pompeo, Francesco Di; Merla, Arcangelo; Lombardo, Salvatore; Fallica, Giorgio
2017-07-01
We report development, testing, and in vivo characterization of a multichannel optical probe for continuous wave (CW) functional near-infrared spectroscopy (fNIRS) that relies on silicon photomultipliers (SiPMs) detectors. SiPMs are cheap, low voltage, and robust semiconductor light detectors with performances analogous to photomultiplier tubes (PMTs). In contrast with PMTs, SiPMs allow direct contact with the head and transfer of the analog signals through thin cables greatly increasing the system flexibility avoiding optical fibers. The coupling of SiPMs and light-emitting diodes (LEDs) made the optical probe lightweight and robust against motion artifacts. After characterization of SiPM performances, which was proven to provide a noise equivalent power below 3 fW, the apparatus was compared through an in vivo experiment to a commercial system relying on laser diodes, PMTs, and optical fibers for light probing and detection. The optical probes were located over the primary sensorimotor cortex and the similarities between the hemodynamic responses to the contralateral motor task were assessed. When compared to other state-of-the-art wearable fNIRS systems, where photodiode detectors are employed, the single photon sensitivity and dynamic range of SiPMs can fully exploit the long and variable interoptode distances needed for correct estimation of brain hemodynamics using CW-fNIRS.
Park, Jong-Tae; Lee, Jae-Gi; Won, Sung-Yoon; Lee, Sang-Hee; Cha, Jung-Yul; Kim, Hee-Jin
2013-07-01
Masticatory muscles are closely involved in mastication, pronunciation, and swallowing, and it is therefore important to study the specific functions and dynamics of the mandibular and masticatory muscles. However, the shortness of muscle fibers and the diversity of movement directions make it difficult to study and simplify the dynamics of mastication. The purpose of this study was to use 3-dimensional (3D) simulation to observe the functions and movements of each of the masticatory muscles and the mandible while chewing. To simulate the masticatory movement, computed tomographic images were taken from a single Korean volunteer (30-year-old man), and skull image data were reconstructed in 3D (Mimics; Materialise, Leuven, Belgium). The 3D-reconstructed masticatory muscles were then attached to the 3D skull model. The masticatory movements were animated using Maya (Autodesk, San Rafael, CA) based on the mandibular motion path. During unilateral chewing, the mandible was found to move laterally toward the functional side by contracting the contralateral lateral pterygoid and ipsilateral temporalis muscles. During the initial mouth opening, only hinge movement was observed at the temporomandibular joint. During this period, the entire mandible rotated approximately 13 degrees toward the bicondylar horizontal plane. Continued movement of the mandible to full mouth opening occurred simultaneously with sliding and hinge movements, and the mandible rotated approximately 17 degrees toward the center of the mandibular ramus. The described approach can yield data for use in face animation and other simulation systems and for elucidating the functional components related to contraction and relaxation of muscles during mastication.
Salimi, I; Friel, KM; Martin, JH
2008-01-01
Motor development depends on forming specific connections between the corticospinal tract (CST) and the spinal cord. Blocking CST activity in kittens during the critical period for establishing connections with spinal motor circuits results in permanent impairments in connectivity and function. The changes in connections are consistent with the hypothesis that the inactive tract is less competitive in developing spinal connections than the active tract. In this study we tested the competition hypothesis by determining if activating CST axons, after prior silencing during the critical period, abrogated development of aberrant corticospinal connections and motor impairments. In kittens, we inactivated motor cortex by muscimol infusion between postnatal weeks 5-7. We next electrically stimulated CST axons in the medullary pyramid 2.5 hours daily, between weeks 7-10. In controls (n=3), CST terminations were densest within the contralateral deeper, premotor, spinal layers. After prior inactivation (n=3), CST terminations were densest within the dorsal, somatic sensory, layers. There were more ipsilateral terminations from the active tract. During visually guided locomotion, there was a movement endpoint impairment. Stimulation after inactivation (n=6) resulted in significantly fewer terminations in the sensory layers and more in the premotor layers, and fewer ipsilateral connections from active cortex. Chronic stimulation reduced the current threshold for evoking contralateral movements by pyramidal stimulation, suggesting strengthening of connections. Importantly, stimulation significantly improved stepping accuracy. These findings show the importance of activity-dependent processes in specifying CST connections. They also provide a strategy for harnessing activity to rescue CST axons at risk of developing aberrant connections after CNS injury. PMID:18632946
An intact action-perception coupling depends on the integrity of the cerebellum.
Christensen, Andrea; Giese, Martin A; Sultan, Fahad; Mueller, Oliver M; Goericke, Sophia L; Ilg, Winfried; Timmann, Dagmar
2014-05-07
It is widely accepted that action and perception in humans functionally interact on multiple levels. Moreover, areas originally suggested to be predominantly motor-related, as the cerebellum, are also involved in action observation. However, as yet, few studies provided unequivocal evidence that the cerebellum is involved in the action perception coupling (APC), specifically in the integration of motor and multisensory information for perception. We addressed this question studying patients with focal cerebellar lesions in a virtual-reality paradigm measuring the effect of action execution on action perception presenting self-generated movements as point lights. We measured the visual sensitivity to the point light stimuli based on signal detection theory. Compared with healthy controls cerebellar patients showed no beneficial influence of action execution on perception indicating deficits in APC. Applying lesion symptom mapping, we identified distinct areas in the dentate nucleus and the lateral cerebellum of both hemispheres that are causally involved in APC. Lesions of the right ventral dentate, the ipsilateral motor representations (lobules V/VI), and most interestingly the contralateral posterior cerebellum (lobule VII) impede the benefits of motor execution on perception. We conclude that the cerebellum establishes time-dependent multisensory representations on different levels, relevant for motor control as well as supporting action perception. Ipsilateral cerebellar motor representations are thought to support the somatosensory state estimate of ongoing movements, whereas the ventral dentate and the contralateral posterior cerebellum likely support sensorimotor integration in the cerebellar-parietal loops. Both the correct somatosensory as well as the multisensory state representations are vital for an intact APC.
The ground support equipment for the LAUE project
NASA Astrophysics Data System (ADS)
Caroli, E.; Auricchio, N.; Basili, A.; Carassiti, V.; Cassese, F.; Del Sordo, S.; Frontera, F.; Pecora, M.; Recanatesi, L.; Schiavone, F.; Silvestri, S.; Squerzanti, S.; Stephen, J. B.; Virgilli, E.
2013-09-01
The development of wide band Laue lens imaging technology is challenging, but has important potential applications in hard X- and γ-ray space instrumentation for the coming decades. The Italian Space Agency has funded a project dedicated to the development of a reliable technology to assemble a wide band Laue lens for use in space. The ground support equipment (GSE) for this project was fundamental to its eventual success... The GSE was implemented in a hard X-ray beam line built at the University of Ferrara and had the main purpose of controlling the assembly of crystals onto the Laue lens petal and to verify its final performance. The GSE incorporates the management and control of all the movements of the beam line mechanical subsystems and of the precision positioner (based on a Hexapod tool) of crystals on the petal, as well as the acquisition, storing and analysis of data obtained from the focal plane detectors (an HPGe spectrometer and an X-ray flat panel imager). The GSE is based on two PC's connected through a local network: one, placed inside the beam line, to which all the movement subsystems and the detector I/O interface and on which all the management and acquisition S/W runs, the other in the control room allows the remote control and implements the offline analysis S/W of the data obtained from the detectors. Herein we report on the GSE structure with its interface with the beam line mechanical system, with the fine crystal positioner and with the focal plane detector. Furthermore we describe the SW developed for the handling of the mechanical movement subsystems and for the analysis of the detector data with the procedure adopted for the correct orientation of the crystals before their bonding on the lens petal support.
NASA Astrophysics Data System (ADS)
Peterson, Hannah M.; Hoang, Bang H.; Geller, David; Yang, Rui; Gorlick, Richard; Berger, Jeremy; Tingling, Janet; Roth, Michael; Gill, Jonathon; Roblyer, Darren
2017-12-01
Diffuse optical spectroscopic imaging (DOSI) is an emerging near-infrared imaging technique that noninvasively measures quantitative functional information in thick tissue. This study aimed to assess the feasibility of using DOSI to measure optical contrast from bone sarcomas. These tumors are rare and pose technical and practical challenges for DOSI measurements due to the varied anatomic locations and tissue depths of presentation. Six subjects were enrolled in the study. One subject was unable to be measured due to tissue contact sensitivity. For the five remaining subjects, the signal-to-noise ratio, imaging depth, optical properties, and quantitative tissue concentrations of oxyhemoglobin, deoxyhemoglobin, water, and lipids from tumor and contralateral normal tissues were assessed. Statistical differences between tumor and contralateral normal tissue were found in chromophore concentrations and optical properties for four subjects. Low signal-to-noise was encountered during several subject's measurements, suggesting increased detector sensitivity will help to optimize DOSI for this patient population going forward. This study demonstrates that DOSI is capable of measuring optical properties and obtaining functional information in bone sarcomas. In the future, DOSI may provide a means to stratify treatment groups and monitor chemotherapy response for this disease.
Detection of Interaural Time Differences in the Alligator
Carr, Catherine E.; Soares, Daphne; Smolders, Jean; Simon, Jonathan Z.
2011-01-01
The auditory systems of birds and mammals use timing information from each ear to detect interaural time difference (ITD). To determine whether the Jeffress-type algorithms that underlie sensitivity to ITD in birds are an evolutionarily stable strategy, we recorded from the auditory nuclei of crocodilians, who are the sister group to the birds. In alligators, precisely timed spikes in the first-order nucleus magnocellularis (NM) encode the timing of sounds, and NM neurons project to neurons in the nucleus laminaris (NL) that detect interaural time differences. In vivo recordings from NL neurons show that the arrival time of phase-locked spikes differs between the ipsilateral and contralateral inputs. When this disparity is nullified by their best ITD, the neurons respond maximally. Thus NL neurons act as coincidence detectors. A biologically detailed model of NL with alligator parameters discriminated ITDs up to 1 kHz. The range of best ITDs represented in NL was much larger than in birds, however, and extended from 0 to 1000 μs contralateral, with a median ITD of 450 μs. Thus, crocodilians and birds employ similar algorithms for ITD detection, although crocodilians have larger heads. PMID:19553438
Processing of Cryo-EM Movie Data.
Ripstein, Z A; Rubinstein, J L
2016-01-01
Direct detector device (DDD) cameras dramatically enhance the capabilities of electron cryomicroscopy (cryo-EM) due to their improved detective quantum efficiency (DQE) relative to other detectors. DDDs use semiconductor technology that allows micrographs to be recorded as movies rather than integrated individual exposures. Movies from DDDs improve cryo-EM in another, more surprising, way. DDD movies revealed beam-induced specimen movement as a major source of image degradation and provide a way to partially correct the problem by aligning frames or regions of frames to account for this specimen movement. In this chapter, we use a self-consistent mathematical notation to explain, compare, and contrast several of the most popular existing algorithms for computationally correcting specimen movement in DDD movies. We conclude by discussing future developments in algorithms for processing DDD movies that would extend the capabilities of cryo-EM even further. © 2016 Elsevier Inc. All rights reserved.
Quessy, Stephan; Freedman, Edward G
2004-06-01
The nucleus reticularis gigantocellularis (NRG) receives monosynaptic input from the superior colliculus (SC) and projects directly to neck motor neuron pools. Neurons in NRG are well situated to play a critical role in transforming SC signals into head movement commands. A previous study of movements evoked by NRG stimulation in the primate reported a variety of ipsilateral and contralateral head movements with horizontal, vertical and torsional components. In addition to head movements, it was reported that NRG stimulation could evoke movements of the pinnae, face, upper torso, and co-contraction of neck muscles. In this report, the role of the rhesus monkey NRG in head movement control was investigated using electrical stimulation of the rostral portion of the NRG. The goal was to characterize head movements evoked by NRG stimulation, describe the effects of altering stimulation parameters, and assess the relative movements of the eyes and head. Results indicate that electrical stimulation in the rostral portion of the NRG of the primate can consistently evoke ipsilateral head rotations in the horizontal plane. Head movement amplitude and peak velocity depend upon stimulation parameters (primarily frequency and duration of stimulation trains). During stimulation-induced head movements the eyes counter-rotate (presumably a result of the vestibulo-ocular reflex: VOR). At 46 stimulation sites from two subjects the average gain of this counter-rotation was -0.38 (+/-0.18). After the end of the stimulation train the head generally continued to move. During this epoch, after electrical stimulation ceased, VOR gain remained at this reduced level. In addition, VOR gain was similarly low when electrical stimulation was carried out during active fixation of a visual target. These data extend existing descriptions of head movements evoked by electrical stimulation of the NRG, and add to the understanding of the role of this structure in producing head movements.
Schiemann, Julia; Puggioni, Paolo; Dacre, Joshua; Pelko, Miha; Domanski, Aleksander; van Rossum, Mark C W; Duguid, Ian
2015-05-26
Neuronal activity in primary motor cortex (M1) correlates with behavioral state, but the cellular mechanisms underpinning behavioral state-dependent modulation of M1 output remain largely unresolved. Here, we performed in vivo patch-clamp recordings from layer 5B (L5B) pyramidal neurons in awake mice during quiet wakefulness and self-paced, voluntary movement. We show that L5B output neurons display bidirectional (i.e., enhanced or suppressed) firing rate changes during movement, mediated via two opposing subthreshold mechanisms: (1) a global decrease in membrane potential variability that reduced L5B firing rates (L5Bsuppressed neurons), and (2) a coincident noradrenaline-mediated increase in excitatory drive to a subpopulation of L5B neurons (L5Benhanced neurons) that elevated firing rates. Blocking noradrenergic receptors in forelimb M1 abolished the bidirectional modulation of M1 output during movement and selectively impaired contralateral forelimb motor coordination. Together, our results provide a mechanism for how noradrenergic neuromodulation and network-driven input changes bidirectionally modulate M1 output during motor behavior. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Hand effects on mentally simulated reaching.
Gabbard, Carl; Ammar, Diala; Rodrigues, Luis
2005-08-01
Within the area of simulated (imagined) versus actual movement research, investigators have discovered that mentally simulated movements, like real actions, are controlled primarily by the hemispheres contralateral to the simulated limb. Furthermore, evidence points to a left-brain advantage for accuracy of simulated movements. With this information it could be suggested that, compared to left-handers, most right-handers would have an advantage. To test this hypothesis, strong right- and left-handers were compared on judgments of perceived reachability to visual targets lasting 150 ms in multiple locations of midline, right- and left-visual field (RVF/LVF). In reference to within group responses, we found no hemispheric or hand use advantage for right-handers. Although left-handers revealed no hemispheric advantage, there was a significant hand effect, favoring the non-dominant limb, most notably in LVF. This finding is explained in regard to a possible interference effect for left-handers, not shown for right-handers. Overall, left-handers displayed significantly more errors across hemispace. Therefore, it appears that when comparing hand groups, a left-hemisphere advantage favoring right-handers is plausible.
Motor cortex hand area and speech: implications for the development of language.
Meister, Ingo Gerrit; Boroojerdi, Babak; Foltys, Henrik; Sparing, Roland; Huber, Walter; Töpper, Rudolf
2003-01-01
Recently a growing body of evidence has suggested that a functional link exists between the hand motor area of the language dominant hemisphere and the regions subserving language processing. We examined the excitability of the hand motor area and the leg motor area during reading aloud and during non-verbal oral movements using transcranial magnetic stimulation (TMS). During reading aloud, but not before or afterwards, excitability was increased in the hand motor area of the dominant hemisphere. This reading effect was found to be independent of the duration of speech. No such effect could be found in the contralateral hemisphere. The excitability of the leg area of the motor cortex remained unchanged during reading aloud. The excitability during non-verbal oral movements was slightly increased in both hemispheres. Our results are consistent with previous findings and may indicate a specific functional connection between the hand motor area and the cortical language network.
Mid-Infrared Tunable Resonant Cavity Enhanced Detectors
Quack, Niels; Blunier, Stefan; Dual, Jurg; Felder, Ferdinand; Arnold, Martin; Zogg, Hans
2008-01-01
Mid-infrared detectors that are sensitive only in a tunable narrow spectral band are presented. They are based on the Resonant Cavity Enhanced Detector (RCED) principle and employing a thin active region using IV-VI narrow gap semiconductor layers. A Fabry-Pérot cavity is formed by two mirrors. The active layer is grown onto one mirror, while the second mirror can be displaced. This changes the cavity length thus shifting the resonances where the detector is sensitive. Using electrostatically actuated MEMS micromirrors, a very compact tunable detector system has been fabricated. Mirror movements of more than 3 μm at 30V are obtained. With these mirrors, detectors with a wavelength tuning range of about 0.7 μm have been realized. Single detectors can be used in mid-infrared micro spectrometers, while a detector arrangement in an array makes it possible to realize Adaptive Focal Plane Arrays (AFPA). PMID:27873824
Márquez-Ruiz, Javier; Escudero, Miguel
2010-11-01
the aim of this work was to characterize eye movements and abducens (ABD) motoneuron behavior after cholinergic activation of the nucleus reticularis pontis caudalis (NRPC). six female adult cats were prepared for chronic recording of eye movements (using the scleral search-coil technique), electroencephalography, electromyography, ponto-geniculo-occipital (PGO) waves in the lateral geniculate nucleus, and ABD motoneuron activities after microinjections of the cholinergic agonist carbachol into the NRPC. unilateral microinjections of carbachol in the NRPC induced tonic and phasic phenomena in the oculomotor system. Tonic effects consisted of ipsiversive rotation to the injected side, convergence, and downward rotation of the eyes. Phasic effects consisted of bursts of rhythmic rapid eye movements directed contralaterally to the injected side along with PGO-like waves in the lateral geniculate and ABD nuclei. Although tonic effects were dependent on the level of drowsiness, phasic effects were always present and appeared along with normal saccades when the animal was vigilant. ABD motoneurons showed phasic activities associated with ABD PGO-like waves during bursts of rapid eye movements, and tonic and phasic activities related to eye position and velocity during alertness. the cholinergic activation of the NRPC induces oculomotor phenomena that are somewhat similar to those described during REM sleep. A precise comparison of the dynamics and timing of the eye movements further suggests that a temporal organization of both NRPCs is needed to reproduce the complexity of the oculomotor behavior during REM sleep.
Soteropoulos, Demetris S; Williams, Elizabeth R; Baker, Stuart N
2012-01-01
Recent work has shown that the primate reticulospinal tract can influence spinal interneurons and motoneurons involved in control of the hand. However, demonstrating connectivity does not reveal whether reticular outputs are modulated during the control of different types of hand movement. Here, we investigated how single unit discharge in the pontomedullary reticular formation (PMRF) modulated during performance of a slow finger movement task in macaque monkeys. Two animals performed an index finger flexion–extension task to track a target presented on a computer screen; single units were recorded both from ipsilateral PMRF (115 cells) and contralateral primary motor cortex (M1, 210 cells). Cells in both areas modulated their activity with the task (M1: 87%, PMRF: 86%). Some cells (18/115 in PMRF; 96/210 in M1) received sensory input from the hand, showing a short-latency modulation in their discharge following a rapid passive extension movement of the index finger. Effects in ipsilateral electromyogram to trains of stimuli were recorded at 45 sites in the PMRF. These responses involved muscles controlling the digits in 13/45 sites (including intrinsic hand muscles, 5/45 sites). We conclude that PMRF may contribute to the control of fine finger movements, in addition to its established role in control of more proximal limb and trunk movements. This finding may be especially important in understanding functional recovery after brain lesions such as stroke. PMID:22641776
Reflex muscle contraction in anterior shoulder instability.
Wallace, D A; Beard, D J; Gill, R H; Eng, B; Carr, A J
1997-01-01
Reduced proprioception may contribute to recurrent anterior shoulder instability. Twelve patients with unilateral shoulder instability were investigated for evidence of deficient proprioception with an activated pneumatic cylinder and surface electromyography electrodes; the contralateral normal shoulder was used as a control. The latency between onset of movement and the detection of muscle contraction was used as an index of proprioception. No significant difference in muscle contraction latency was detected between the stable and unstable shoulders, suggesting that there was no significant defect in muscular reflex activity. This study does not support the use proprioception-enhancing physiotherapy in the treatment of posttraumatic anterior shoulder instability.
Lee, Yun-Ju; Aruin, Alexander S
2014-04-01
To investigate effects of symmetric and asymmetric stance and pushing movement on anticipatory and compensatory postural adjustments (APAs and CPAs). Ten healthy volunteers stood symmetrically (feet parallel) or asymmetrically (one foot forward and the other backward) and pushed a handle with both hands or right or left hand. Bilateral EMG activity of the trunk and leg muscles and center of pressure (COP) displacements in the anterior-posterior (AP) and medial-lateral (ML) directions were recorded and analyzed during the APAs and CPAs. Isolated asymmetry of stance was associated with larger muscle activity of the backward leg while isolated asymmetry of pushing movement induced larger trunk muscle activity on the contralateral side. A combined asymmetry of stance and pushing movement resulted in the increase or decrease of the thigh muscle activity and ML COP displacement depending on whether both asymmetries were induced on the same side of the body or on opposite sides. Both isolated and combined asymmetries affect APAs and CPAs in pushing. Using combined asymmetry of stance and arm movement might be beneficial in performing pushing activity. The outcome of the study provides a basis for studying postural control in individuals with unilateral impairment while performing daily tasks involving pushing. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Rhodin, M; Persson-Sjodin, E; Egenvall, A; Serra Bragança, F M; Pfau, T; Roepstorff, L; Weishaupt, M A; Thomsen, M H; van Weeren, P R; Hernlund, E
2018-04-15
The main criteria for lameness assessment in horses are head movement for forelimb lameness and pelvic movement for hindlimb lameness. However, compensatory head nod in horses with primary hindlimb lameness is a well-known phenomenon. This compensatory head nod movement can be easily misinterpreted as a sign of primary ipsilateral forelimb lameness. Therefore, discriminating compensatory asymmetries from primary directly pain-related movement asymmetries is a prerequisite for successful lameness assessment. To investigate the association between head, withers and pelvis movement asymmetry in horses with induced forelimb and hindlimb lameness. Experimental study. In 10 clinically sound Warmblood riding horses, forelimb and hindlimb lameness were induced using a sole pressure model. The horses were then trotted on a treadmill. Three-dimensional optical motion capture was used to collect kinematic data from reflective markers attached to the poll, withers and tubera sacrale. The magnitude and side (left or right) of the following symmetry parameters, vertical difference in minimum position, maximum position and range-up were calculated for head, withers, and pelvis. Mixed models were used to analyse data from induced forelimb and hindlimb lameness. For each mm increase in pelvic asymmetry in response to hindlimb lameness induction, withers movement asymmetry increased by 0.35-0.55 mm, but towards the contralateral side. In induced forelimb lameness, for each mm increase in head movement asymmetry, withers movement asymmetry increased by 0.05-0.10 mm, in agreement with the head movement asymmetry direction, both indicating lameness in the induced forelimb. Results must be confirmed in clinically lame horses trotting overground. The vertical asymmetry pattern of the withers discriminated a head nod associated with true forelimb lameness from the compensatory head movement asymmetry caused by primary hindlimb lameness. Measuring movement symmetry of the withers may, thus, aid in determining primary lameness location. © 2018 The Authors. Equine Veterinary Journal published by John Wiley & Sons Ltd on behalf of EVJ Ltd.
van den Berg, Femke E; Swinnen, Stephan P; Wenderoth, Nicole
2011-11-01
Unimanual motor tasks, specifically movements that are complex or require high forces, activate not only the contralateral primary motor cortex (M1) but evoke also ipsilateral M1 activity. This involvement of ipsilateral M1 is asymmetric, such that the left M1 is more involved in motor control with the left hand than the right M1 in movements with the right hand. This suggests that the left hemisphere is specialized for movement control of either hand, although previous experiments tested mostly right-handed participants. In contrast, research on hemispheric asymmetries of ipsilateral M1 involvement in left-handed participants is relatively scarce. In the present study, left- and right-handed participants performed complex unimanual movements, whereas TMS was used to disrupt the activity of ipsilateral M1 in accordance with a "virtual lesion" approach. For right-handed participants, more disruptions were induced when TMS was applied over the dominant (left) M1. For left-handed participants, two subgroups could be distinguished, such that one group showed more disruptions when TMS was applied over the nondominant (left) M1, whereas the other subgroup showed more disruptions when the dominant (right) M1 was stimulated. This indicates that functional asymmetries of M1 involvement during ipsilateral movements are influenced by both hand dominance as well as left hemisphere specialization. We propose that the functional asymmetries in ipsilateral M1 involvement during unimanual movements are primarily attributable to asymmetries in the higher-order areas, although the contribution of transcallosal pathways and ipsilateral projections cannot be completely ruled out.
Amarilla, Almudena; Espinar-Escalona, Eduardo; Castellanos-Cosano, Lizett; Martín-González, Jenifer; Sánchez-Domínguez, Benito; López-Frías, Francisco J.
2012-01-01
Introduction: The purpose of this study was to compare, in a split mouth design, the external apical root resorption (EARR) associated with orthodontic treatment in root-filled maxillary incisors and their contralateral teeth with vital pulps. Methodology: The study sample consisted of 38 patients (14 males and 24 females), who had one root-filled incisor before completion of multiband/bracket orthodontic therapy for at least 1 year. For each patient, digital panoramic radiographs taken before and after orthodontic treatment were used to determine the root resortion and the proportion of external root resorption (PRR), defined as the ratio between the root resorption in the endodontically treated incisor and that in its contralateral incisor with a vital pulp. The student’s t-test, chi-square test and logistic regression analysis were used to determine statistical significance. Results: There was no statistically significant difference (p > 0.05) between EARR in vital teeth (1.1 ± 1.0 mm) and endodontically treated incisors (1.1 ± 0.8 mm). Twenty-six patients (68.4%) showed greater resorption of the endodontically treated incisor than its homolog vital tooth (p > 0.05). The mean and standard deviation of PPR were 1.0 ± 0.2. Multivariate logistic regression suggested that PRR does not correlate with any of the variables analyzed. Conclusions: There was no significant difference in the amount or severity of external root resorption during orthodontic movement between root-filled incisors and their contralateral teeth with vital pulps. Key words:Endodontics, orthodontics, root canal treatment, root resorption. PMID:22143731
Oyama, Sakiko; Waldhelm, Andrew G; Sosa, Araceli R; Patel, Ravina R; Kalinowski, Derick L
2017-09-01
Pitching technique is one of many factors that affect injury risk. Exhibiting excessive contralateral trunk tilt (CLT) during pitching has been linked to higher ball speed but also to increased joint loading. Deficit in trunk muscle strength has been suggested as an underlying cause of this movement pattern. The purpose of the study was to compare trunk muscle strength between youth baseball pitchers with varying degree of CLT during pitching. Cross-sectional study. Baseball practice fields. Twenty-eight youth baseball pitchers. Pitching technique was captured using a video camera. Based on the 2-dimensional trunk contralateral flexion angle, pitchers were categorized into low (<15 degrees), moderate (15-30 degrees), or high (>30 degrees) CLT groups. Maximum isometric strength tests for trunk flexion, extension, and bilateral rotation, measured using a dynamometer. The pitchers with high CLT (n = 10) had longer pitching experience (P = 0.014), produced higher ball speed (P = 0.003) compared with the pitchers with moderate (n = 10) and low (n = 8) CLT, but demonstrated greater asymmetry in trunk rotation strength (relative weakness in rotation strength toward dominant side) compared with the pitchers with low CLT (P = 0.015). Excessive CLT may be a strategy that young pitchers learn to achieve higher ball velocity but also may be associated with imbalance between the oblique muscles on dominant and nondominant side, which may be acquired from repetitive pitching. Strengthening and emphasizing the use of dominant side oblique muscles may keep pitchers from leaning excessively during pitching and thus decrease joint loading.
Marino, Marc; Huang, Polly; Malkmus, Shelle; Robertshaw, Erin; Mac, Elaine A.; Shatterman, Yuri; Yaksh, Tony L.
2012-01-01
Pruritus, the sensation of itch, which evokes reflex scratching behavior, has a diverse etiology. Because of its clinical significance, mechanisms of pruriception are an important topic. In the present work we describe and validate a paw motion detector (PMD) system. The system employs a small removable metal band placed on one hind paw that provides a signal indicative of paw movement through perturbation of an electromagnetic (EM) field. C57Bl/6 mice were fitted with a unilateral hind paw band and adapted to testing cylinders equipped with EM signal emission and detection. The following observations were made: 1) in mice, unilateral SQ injection of 48/80 into the dorsolateral aspect of the neck evoked periodic high frequency bursts of scratching at the injected site with the ipsilateral (banded) but not the contralateral (not banded) hind paw. 2) Cross correlation between PMD and human observer counts after SQ 48/80 using the specified computational algorithm revealed a highly significant correlation. 3) SQ histamine and 48/80 over a 1 hour interval produced dose dependent scratching, which diphenhydramine dose dependently reversed. Chloroquine scratching displayed an inverse u-shaped dose response curve, which was insensitive to diphenhydramine. 4) SQ 48/80 at intervals over 28 days showed no change in the scratching response within the same cohort of mice. 5) Power analysis showed 40% changes in scratching activity could be detected at the p<0.05 level with groups of 4 mice. These observations indicate that the system described can efficiently define the actions and pharmacology of pruritogenic agents. PMID:22971351
NASA Astrophysics Data System (ADS)
Bundy, David T.; Wronkiewicz, Mark; Sharma, Mohit; Moran, Daniel W.; Corbetta, Maurizio; Leuthardt, Eric C.
2012-06-01
Brain-computer interface (BCI) systems have emerged as a method to restore function and enhance communication in motor impaired patients. To date, this has been applied primarily to patients who have a compromised motor outflow due to spinal cord dysfunction, but an intact and functioning cerebral cortex. The cortical physiology associated with movement of the contralateral limb has typically been the signal substrate that has been used as a control signal. While this is an ideal control platform in patients with an intact motor cortex, these signals are lost after a hemispheric stroke. Thus, a different control signal is needed that could provide control capability for a patient with a hemiparetic limb. Previous studies have shown that there is a distinct cortical physiology associated with ipsilateral, or same-sided, limb movements. Thus far, it was unknown whether stroke survivors could intentionally and effectively modulate this ipsilateral motor activity from their unaffected hemisphere. Therefore, this study seeks to evaluate whether stroke survivors could effectively utilize ipsilateral motor activity from their unaffected hemisphere to achieve this BCI control. To investigate this possibility, electroencephalographic (EEG) signals were recorded from four chronic hemispheric stroke patients as they performed (or attempted to perform) real and imagined hand tasks using either their affected or unaffected hand. Following performance of the screening task, the ability of patients to utilize a BCI system was investigated during on-line control of a one-dimensional control task. Significant ipsilateral motor signals (associated with movement intentions of the affected hand) in the unaffected hemisphere, which were found to be distinct from rest and contralateral signals, were identified and subsequently used for a simple online BCI control task. We demonstrate here for the first time that EEG signals from the unaffected hemisphere, associated with overt and imagined movements of the affected hand, can enable stroke survivors to control a one-dimensional computer cursor rapidly and accurately. This ipsilateral motor activity enabled users to achieve final target accuracies between 68% and 91% within 15 min. These findings suggest that ipsilateral motor activity from the unaffected hemisphere in stroke survivors could provide a physiological substrate for BCI operation that can be further developed as a long-term assistive device or potentially provide a novel tool for rehabilitation.
Chuang, Connie; Ramaker, Megan A.; Kaur, Sirjaut; Csomos, Rebecca A.; Kroner, Kevin T.; Bleedorn, Jason A.; Schaefer, Susan L.; Muir, Peter
2014-01-01
Background Complete cranial cruciate ligament rupture (CR) is a common cause of pelvic limb lameness in dogs. Dogs with unilateral CR often develop contralateral CR over time. Although radiographic signs of contralateral stifle joint osteoarthritis (OA) influence risk of subsequent contralateral CR, this risk has not been studied in detail. Methodology/Principal Findings We conducted a retrospective longitudinal cohort study of client-owned dogs with unilateral CR to determine how severity of radiographic stifle synovial effusion and osteophytosis influence risk of contralateral CR over time. Detailed survival analysis was performed for a cohort of 85 dogs after case filtering of an initial sample population of 513 dogs. This population was stratified based on radiographic severity of synovial effusion (graded on a scale of 0, 1, and 2) and severity of osteophytosis (graded on a scale of 0, 1, 2, and 3) of both index and contralateral stifle joints using a reproducible scoring method. Severity of osteophytosis in the index and contralateral stifles was significantly correlated. Rupture of the contralateral cranial cruciate ligament was significantly influenced by radiographic OA in both the index and contralateral stifles at diagnosis. Odds ratio for development of contralateral CR in dogs with severe contralateral radiographic stifle effusion was 13.4 at one year after diagnosis and 11.4 at two years. Odds ratio for development of contralateral CR in dogs with severe contralateral osteophytosis was 9.9 at one year after diagnosis. These odds ratios were associated with decreased time to contralateral CR. Breed, age, body weight, gender, and tibial plateau angle did not significantly influence time to contralateral CR. Conclusion Subsequent contralateral CR is significantly influenced by severity of radiographic stifle effusion and osteophytosis in the contralateral stifle, suggesting that synovitis and arthritic joint degeneration are significant factors in the disease mechanism underlying the arthropathy. PMID:25254499
Movement-related phase locking in the delta-theta frequency band.
Popovych, S; Rosjat, N; Toth, T I; Wang, B A; Liu, L; Abdollahi, R O; Viswanathan, S; Grefkes, C; Fink, G R; Daun, S
2016-10-01
Movements result from a complex interplay of multiple brain regions. These regions are assembled into distinct functional networks depending on the specific properties of the action. However, the nature and details of the dynamics of this complex assembly process are unknown. In this study, we sought to identify key markers of the neural processes underlying the preparation and execution of motor actions that always occur irrespective of differences in movement initiation, hence the specific neural processes and functional networks involved. To this end, EEG activity was continuously recorded from 18 right-handed healthy participants while they performed a simple motor task consisting of button presses with the left or right index finger. The movement was performed either in response to a visual cue or at a self-chosen, i.e., non-cued point in time. Despite these substantial differences in movement initiation, dynamic properties of the EEG signals common to both conditions could be identified using time-frequency and phase locking analysis of the EEG data. In both conditions, a significant phase locking effect was observed that started prior to the movement onset in the δ-θ frequency band (2-7Hz), and that was strongest at the electrodes nearest to the contralateral motor region (M1). This phase locking effect did not have a counterpart in the corresponding power spectra (i.e., amplitudes), or in the event-related potentials. Our finding suggests that phase locking in the δ-θ frequency band is a ubiquitous movement-related signal independent of how the actual movement has been initiated. We therefore suggest that phase-locked neural oscillations in the motor cortex are a prerequisite for the preparation and execution of motor actions. Copyright © 2016 Elsevier Inc. All rights reserved.
Effect of lungeing on head and pelvic movement asymmetry in horses with induced lameness.
Rhodin, M; Pfau, T; Roepstorff, L; Egenvall, A
2013-12-01
Lungeing is an important part of lameness examinations, since the circular path enforced during lungeing is thought to accentuate low grade lameness. However, during lungeing the movement of sound horses becomes naturally asymmetric, which may mimic lameness. Also, compensatory movements in the opposite half of the body may mimic lameness. The aim of this study was to objectively study the presence of circle-dependent and compensatory movement asymmetries in horses with induced lameness. Ten horses were trotted in a straight line and lunged in both directions on a hard surface. Lameness was induced (reversible hoof pressure) in each limb, one at a time, in random order. Vertical head and pelvic movements were measured with body-mounted, uni-axial accelerometers. Differences between maximum and minimum height observed during/after left and right stance phases for the head (HDmax, HDmin) and pelvis (PDmax, PDmin) were measured. Mixed models were constructed to study the effect of lungeing direction and induction, and to quantify secondary compensatory asymmetry mechanisms in the forelimbs and hind limbs. Head and pelvic movement symmetries were affected by lungeing. Minimum pelvic height difference (PDmin) changed markedly, increasing significantly during lungeing, giving the impression of inner hind limb lameness. Primary hind limb lameness induced compensatory head movement, which mimicked an ipsilateral forelimb lameness of almost equal magnitude to the primary hind limb lameness. This could contribute to difficulty in correctly detecting hind limb lameness. Induced forelimb lameness caused both a compensatory contralateral (change in PDmax) and an ipsilateral (change in PDmin) hind limb asymmetry, potentially mimicking hind limb lameness, but of smaller magnitude. Both circle-dependent and compensatory movement mechanisms must be taken into account when evaluating lameness. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rojo, Nuria; Amengual, Julian; Juncadella, Montserrat; Rubio, Francisco; Camara, Estela; Marco-Pallares, Josep; Schneider, Sabine; Veciana, Misericordia; Montero, Jordi; Mohammadi, Bahram; Altenmüller, Eckart; Grau, Carles; Münte, Thomas F; Rodriguez-Fornells, Antoni
2011-01-01
Music-Supported Therapy (MST) has been developed recently in order to improve the use of the affected upper extremity after stroke. This study investigated the neuroplastic mechanisms underlying effectiveness in a patient with chronic stroke. MST uses musical instruments, a midi piano and an electronic drum set emitting piano sounds, to retrain fine and gross movements of the paretic upper extremity. Data are presented from a patient with a chronic stroke (20 months post-stroke) with residual right-sided hemiparesis who took part in 20 MST sessions over the course of 4 weeks. Post-therapy, a marked improvement of movement quality, assessed by 3D movement analysis, was observed. Moreover, functional magnetic resonance imaging (fMRI) of a sequential hand movement revealed distinct therapy-related changes in the form of a reduction of excess contralateral and ipsilateral activations. This was accompanied by changes in cortical excitability evidenced by transcranial magnetic stimulation (TMS). Functional MRI in a music listening task suggests that one of the effects of MST is the task-dependent coupling of auditory and motor cortical areas. The MST appears to be a useful neurorehabilitation tool in patients with chronic stroke and leads to neural reorganization in the sensorimotor cortex.
Mantziaris, Charalampos; Bockemühl, Till; Holmes, Philip; Borgmann, Anke; Daun, Silvia; Büschges, Ansgar
2017-10-01
To efficiently move around, animals need to coordinate their limbs. Proper, context-dependent coupling among the neural networks underlying leg movement is necessary for generating intersegmental coordination. In the slow-walking stick insect, local sensory information is very important for shaping coordination. However, central coupling mechanisms among segmental central pattern generators (CPGs) may also contribute to this. Here, we analyzed the interactions between contralateral networks that drive the depressor trochanteris muscle of the legs in both isolated and interconnected deafferented thoracic ganglia of the stick insect on application of pilocarpine, a muscarinic acetylcholine receptor agonist. Our results show that depressor CPG activity is only weakly coupled between all segments. Intrasegmental phase relationships differ between the three isolated ganglia, and they are modified and stabilized when ganglia are interconnected. However, the coordination patterns that emerge do not resemble those observed during walking. Our findings are in line with recent studies and highlight the influence of sensory input on coordination in slowly walking insects. Finally, as a direct interaction between depressor CPG networks and contralateral motoneurons could not be observed, we hypothesize that coupling is based on interactions at the level of CPG interneurons. NEW & NOTEWORTHY Maintaining functional interleg coordination is vitally important as animals locomote through changing environments. The relative importance of central mechanisms vs. sensory feedback in this process is not well understood. We analyzed coordination among the neural networks generating leg movements in stick insect preparations lacking phasic sensory feedback. Under these conditions, the networks governing different legs were only weakly coupled. In stick insect, central connections alone are thus insufficient to produce the leg coordination observed behaviorally. Copyright © 2017 the American Physiological Society.
Boehler, C. Nicolas; Zhang, Helen H.; Schoenfeld, Mircea A.; Woldorff, Marty G.
2012-01-01
Being able to effectively explore the visual world is of fundamental importance, and it has been suggested that the straight-ahead gaze position within the egocentric reference frame (“primary position”) might play a special role in this context. In the present study we employed human electroencephalography (EEG) to examine neural activity related to the spatial guidance of saccadic eye movements. Moreover, we sought to investigate whether such activity would be modulated by the spatial relation of saccade direction to the primary gaze position (recentering saccades). Participants executed endogenously cued saccades between five equidistant locations along the horizontal meridian. This design allowed for the comparison of isoamplitude saccades from the same starting position that were oriented either toward the primary position (centripetal) or further away from it (centrifugal). By back-averaging time-locked to the saccade onset on each trial, we identified a parietally distributed, negative-polarity EEG deflection contralateral to the direction of the upcoming saccade. Importantly, this contralateral presaccadic negativity, which appeared to reflect the location-specific attentional guidance of the eye movement, was attenuated for recentering saccades relative to isoamplitude centrifugal saccades. This differential electrophysiological signature was paralleled by faster saccadic reaction times and was substantially more apparent when time-locking the data to the onset of the saccade rather than to the onset of the cue, suggesting a tight temporal association with saccade initiation. The diminished level of this presaccadic component for recentering saccades may reflect the preferential coding of the straight-ahead gaze position, in which both the eye-centered and head-centered reference frames are perfectly aligned and from which the visual world can be effectively explored. PMID:22157127
Chen, Wenli; Woo, Peak; Murry, Thomas
2017-09-01
High-speed videoendoscopy captures the cycle-to-cycle vibratory motion of each individual vocal fold in normal and severely disordered phonation. Therefore, it provides a direct method to examine the specific vibratory changes following vocal fold surgery. The purpose of this study was to examine the vocal fold vibratory pattern changes in the surgically treated pathologic vocal fold and the contralateral vocal fold in three vocal pathologies: vocal polyp (n = 3), paresis or paralysis (n = 3), and scar (n = 3). Digital kymography was used to extract high-speed kymographic vocal fold images at the mid-membranous region of the vocal fold. Spectral analysis was subsequently applied to the digital kymography to quantify the cycle-to-cycle movements of each vocal fold, expressed as a spectrum. Surgical modification resulted in significantly improved spectral power of the treated pathologic vocal fold. Furthermore, the contralateral vocal fold also presented with improved spectral power irrespective of vocal pathology. In comparison with normal vocal fold spectrum, postsurgical vocal fold vibrations continued to demonstrate decreased vibratory amplitude in both vocal folds. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Stair ascent with an innovative microprocessor-controlled exoprosthetic knee joint.
Bellmann, Malte; Schmalz, Thomas; Ludwigs, Eva; Blumentritt, Siegmar
2012-12-01
Climbing stairs can pose a major challenge for above-knee amputees as a result of compromised motor performance and limitations to prosthetic design. A new, innovative microprocessor-controlled prosthetic knee joint, the Genium, incorporates a function that allows an above-knee amputee to climb stairs step over step. To execute this function, a number of different sensors and complex switching algorithms were integrated into the prosthetic knee joint. The function is intuitive for the user. A biomechanical study was conducted to assess objective gait measurements and calculate joint kinematics and kinetics as subjects ascended stairs. Results demonstrated that climbing stairs step over step is more biomechanically efficient for an amputee using the Genium prosthetic knee than the previously possible conventional method where the extended prosthesis is trailed as the amputee executes one or two steps at a time. There is a natural amount of stress on the residual musculoskeletal system, and it has been shown that the healthy contralateral side supports the movements of the amputated side. The mechanical power that the healthy contralateral knee joint needs to generate during the extension phase is also reduced. Similarly, there is near normal loading of the hip joint on the amputated side.
Surface electromyographic mapping of the orbicularis oculi muscle for real-time blink detection.
Frigerio, Alice; Cavallari, Paolo; Frigeni, Marta; Pedrocchi, Alessandra; Sarasola, Andrea; Ferrante, Simona
2014-01-01
Facial paralysis is a life-altering condition that significantly impairs function, appearance, and communication. Facial rehabilitation via closed-loop pacing represents a potential but as yet theoretical approach to reanimation. A first critical step toward closed-loop facial pacing in cases of unilateral paralysis is the detection of healthy movements to use as a trigger to prosthetically elicit automatic artificial movements on the contralateral side of the face. To test and to maximize the performance of an electromyography (EMG)-based blink detection system for applications in closed-loop facial pacing. Blinking was detected across the periocular region by means of multichannel surface EMG at an academic neuroengineering and medical robotics laboratory among 15 healthy volunteers. Real-time blink detection was accomplished by mapping the surface of the orbicularis oculi muscle on one side of the face with a multichannel surface EMG. The biosignal from each channel was independently processed; custom software registered a blink when an amplitude-based or slope-based suprathreshold activity was detected. The experiments were performed when participants were relaxed and during the production of particular orofacial movements. An F1 score metric was used to analyze software performance in detecting blinks. The maximal software performance was achieved when a blink was recorded from the superomedial orbit quadrant. At this recording location, the median F1 scores were 0.89 during spontaneous blinking, 0.82 when chewing gum, 0.80 when raising the eyebrows, and 0.70 when smiling. The overall performance of blink detection was significantly better at the superomedial quadrant (F1 score, 0.75) than at the traditionally used inferolateral quadrant (F1 score, 0.40) (P < .05). Electromyographic recording represents an accurate tool to detect spontaneous blinks as part of closed-loop facial pacing systems. The early detection of blink activity may allow real-time pacing via rapid triggering of contralateral muscles. Moreover, an EMG detection system can be integrated in external devices and in implanted neuroprostheses. A potential downside to this approach involves cross talk from adjacent muscles, which can be notably reduced by recording from the superomedial quadrant of the orbicularis oculi muscle and by applying proper signal processing. NA.
Zoledronic acid and alendronate sodium and the implications in orthodontic movement.
Franzoni, J S; Soares, F M P; Zaniboni, E; Vedovello Filho, M; Santamaria, M P; Dos Santos, G M T; Esquisatto, M A M; Felonato, M; Mendonca, F A S; Franzini, C M; Santamaria, M
2017-08-01
To evaluate orthodontic tooth movement (OTM) in rats treated with two types of bisphosphonates (BPs), alendronate sodium (A) and zoledronic acid (Z). In all, 15 male Wistar rats were randomly divided into three groups. Group OTM+A: orthodontic tooth movement and subcutaneous administration of alendronate sodium (2.5 mg/kg); Group OTM+Z: orthodontic tooth movement and subcutaneous administration of zoledronic acid (0.02 mg/kg), and Group OTM: orthodontic tooth movement and subcutaneous injection of saline. The BPs were administered once a day during 25 days before OTM started and during 10 days of OTM. The left upper first molar was moved with a stainless-steel closed coil spring which delivered an initial force of 0.4N. OTM was measured with a digital caliper comparing the moved and the contralateral side. The histomorphometric analysis counted the number of osteoclasts, inflammatory cells, blood vessels and fibroblasts (n/10 4 m 2 ) in periodontal ligament (PDL) of the distobuccal root. A reduction of 58.3% of OTM was found in Group OTM+A and 99.6% in Group OTM+Z, when compared with Group OTM. There was a significant decrease of osteoclasts and inflammatory cells in BP-treated groups. Blood vessels and fibroblastic cells decreased mainly in Group OTM+Z. Alendronate sodium and zoledronic acid have similar effects on the periodontal tissue during orthodontic treatment in rats. Especially, zoledronic acid can affect orthodontic tooth movement. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Koyama, Soichiro; Tanaka, Satoshi; Tanabe, Shigeo; Sadato, Norihiro
2015-02-19
Transcranial direct current stimulation (tDCS) is a noninvasive technique that modulates motor performance and learning. Previous studies have shown that tDCS over the primary motor cortex (M1) can facilitate consolidation of various motor skills. However, the effect of tDCS on consolidation of newly learned ballistic movements remains unknown. The present study tested the hypothesis that tDCS over M1 enhances consolidation of ballistic thumb movements in healthy adults. Twenty-eight healthy subjects participated in an experiment with a single-blind, sham-controlled, between-group design. Fourteen subjects practiced a ballistic movement with their left thumb during dual-hemisphere tDCS. Subjects received 1mA anodal tDCS over the contralateral M1 and 1mA cathodal tDCS over the ipsilateral M1 for 25min during the training session. The remaining 14 subjects underwent identical training sessions, except that dual-hemisphere tDCS was applied for only the first 15s (sham group). All subjects performed the task again at 1h and 24h later. Primary measurements examined improvement in peak acceleration of the ballistic thumb movement at 1h and 24h after stimulation. Improved peak acceleration was significantly greater in the tDCS group (144.2±15.1%) than in the sham group (98.7±9.1%) (P<0.05) at 24h, but not 1h, after stimulation. Thus, dual-hemisphere tDCS over M1 enhanced consolidation of ballistic thumb movement in healthy adults. Dual-hemisphere tDCS over M1 may be useful to improve elemental motor behaviors, such as ballistic movements, in patients with subcortical strokes. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Advantages of EEG phase patterns for the detection of gait intention in healthy and stroke subjects
NASA Astrophysics Data System (ADS)
Ioana Sburlea, Andreea; Montesano, Luis; Minguez, Javier
2017-06-01
Objective. One use of EEG-based brain-computer interfaces (BCIs) in rehabilitation is the detection of movement intention. In this paper we investigate for the first time the instantaneous phase of movement related cortical potential (MRCP) and its application to the detection of gait intention. Approach. We demonstrate the utility of MRCP phase in two independent datasets, in which 10 healthy subjects and 9 chronic stroke patients executed a self-initiated gait task in three sessions. Phase features were compared to more conventional amplitude and power features. Main results. The neurophysiology analysis showed that phase features have higher signal-to-noise ratio than the other features. Also, BCI detectors of gait intention based on phase, amplitude, and their combination were evaluated under three conditions: session-specific calibration, intersession transfer, and intersubject transfer. Results show that the phase based detector is the most accurate for session-specific calibration (movement intention was correctly detected in 66.5% of trials in healthy subjects, and in 63.3% in stroke patients). However, in intersession and intersubject transfer, the detector that combines amplitude and phase features is the most accurate one and the only that retains its accuracy (62.5% in healthy subjects and 59% in stroke patients) w.r.t. session-specific calibration. Significance. MRCP phase features improve the detection of gait intention and could be used in practice to remove time-consuming BCI recalibration.
Optogenetic stimulation of cortex to map evoked whisker movements in awake head-restrained mice.
Auffret, Matthieu; Ravano, Veronica L; Rossi, Giulia M C; Hankov, Nicolas; Petersen, Merissa F A; Petersen, Carl C H
2018-01-01
Whisker movements are used by rodents to touch objects in order to extract spatial and textural tactile information about their immediate surroundings. To understand the mechanisms of such active sensorimotor processing it is important to investigate whisker motor control. The activity of neurons in the neocortex affects whisker movements, but many aspects of the organization of cortical whisker motor control remain unknown. Here, we filmed whisker movements evoked by sequential optogenetic stimulation of different locations across the left dorsal sensorimotor cortex of awake head-restrained mice. Whisker movements were evoked by optogenetic stimulation of many regions in the dorsal sensorimotor cortex. Optogenetic stimulation of whisker sensory barrel cortex evoked retraction of the contralateral whisker after a short latency, and a delayed rhythmic protraction of the ipsilateral whisker. Optogenetic stimulation of frontal cortex evoked rhythmic bilateral whisker protraction with a longer latency compared to stimulation of sensory cortex. Compared to frontal cortex stimulation, larger amplitude bilateral rhythmic whisking in a less protracted position was evoked at a similar latency by stimulating a cortical region posterior to Bregma and close to the midline. These data suggest that whisker motor control might be broadly distributed across the dorsal mouse sensorimotor cortex. Future experiments must investigate the complex neuronal circuits connecting specific cell-types in various cortical regions with the whisker motor neurons located in the facial nucleus. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Multi-scale recordings for neuroprosthetic control of finger movements.
Baker, Justin; Bishop, William; Kellis, Spencer; Levy, Todd; House, Paul; Greger, Bradley
2009-01-01
We trained a rhesus monkey to perform individuated and combined finger flexions and extensions of the thumb, index, and middle finger. A Utah Electrode Array (UEA) was implanted into the hand region of the motor cortex contralateral to the monkey's trained hand. We also implanted a microwire electrocorticography grid (microECoG) epidurally so that it covered the UEA. The microECoG grid spanned the arm and hand regions of both the primary motor and somatosensory cortices. Previously this monkey had Implantable MyoElectric Sensors (IMES) surgically implanted into the finger muscles of the monkey's forearm. Action potentials (APs), local field potentials (LFPs), and microECoG signals were recorded from wired head-stage connectors for the UEA and microECoG grids, while EMG was recorded wirelessly. The monkey performed a finger flexion/extension task while neural and EMG data were acquired. We wrote an algorithm that uses the spike data from the UEA to perform a real-time decode of the monkey's finger movements. Also, analyses of the LFP and microECoG data indicate that these data show trial-averaged differences between different finger movements, indicating the data are potentially decodeable.
Peeters, Laura H C; de Groot, Imelda J M; Geurts, Alexander C H
2018-05-01
Trunk control is essential during seated activities. The trunk interacts with the upper extremities (UE) and head by being part of a kinematic chain and by providing a stable basis. When trunk control becomes impaired, it may have consequences for the execution of UE tasks. To review trunk involvement in body movement and stability when performing seated activities and its relation with UE and head movements in neurological patients with a flaccid trunk, with a focus on childhood and development with age. A search using PubMed was conducted and 32 out of 188 potentially eligible articles were included. Patients with a flaccid trunk (e.g. with spinal cord injury or cerebral palsy) tend to involve the trunk earlier while reaching than healthy persons. Different balance strategies are observed in different types of patients, like using the contralateral arm as counterweight, eliminating degrees of freedom, or reducing movement speed. The key role of the trunk in performing activities should be kept in mind when developing interventions to improve seated task performance in neurological patients with a flaccid trunk. Copyright © 2018 Elsevier B.V. All rights reserved.
Inexpensive portable drug detector
NASA Technical Reports Server (NTRS)
Dimeff, J.; Heimbuch, A. H.; Parker, J. A.
1977-01-01
Inexpensive, easy-to-use, self-scanning, self-calibrating, portable unit automatically graphs fluorescence spectrum of drug sample. Device also measures rate of movement through chromatographic column for forensic and medical testing.
Zimmer, B; Guitard, Y
2001-09-01
A method is presented that allows unilateral space closure in patients with aplastic lower second premolars. Based on a straight-wire appliance, space closure was achieved with a combination of "push mechanics" using the second molar as an anchorage unit and Class II "pull mechanics", thus avoiding the application of any distalizing force on the lower incisors. The results from 13 consecutively treated subjects (five boys, eight girls, mean age 12 years and 6 months) were analyzed. Complete bodily space closure was achieved in all 13 cases within a mean treatment time of 2 years and 7 months. The desired Angle Class III molar relationship of one premolar width (+/- 1/4 premolar width) on the aplastic side was successful in eleven patients, an additional 4.7 mm of space being created for the third molar on the aplastic side compared with the contralateral side (p < or = 0.01). However, adverse effects could be kept to a minimum, with no method-dependent side effects being recorded with regard to canine and molar relationships on the contralateral side, or to overbite, overjet, or upper and lower incisor inclination. The mean lower midline shift of 0.8 mm was in accordance with the mean distal canine relationship of 1/3 premolar width on the aplastic side. These results confirm that orthodontic space closure in cases of unilateral aplastic lower second premolars can be performed successfully with the presented treatment method without the need for additional premolar extractions, prosthodontic treatment or implants. Furthermore, the prognosis for the lower wisdom tooth on the aplastic side is improved.
ERIC Educational Resources Information Center
Shih, Ching-Hsiang
2011-01-01
The latest researches have adopted software technology turning the gyration air mouse into a high performance limb movement detector, and have assessed whether two persons with multiple disabilities would be able to control an environmental stimulation using limb movement. This study extends gyration air mouse functionality by actively reducing…
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Shih, Ching-Tien
2009-01-01
This study assessed whether two persons with profound multiple disabilities would be able to control environmental stimulation using hand swing and a standard mouse with a newly developed mouse driver (i.e. a new mouse driver replaces standard mouse driver, and turns a mouse into a precise two-dimensional motion detector). The study was performed…
Kaneda, H; Furuya, T; Sugito, K; Goto, S; Kawashima, H; Inoue, M; Hosoda, T; Masuko, T; Ohashi, K; Ikeda, T; Koshinaga, T; Hoshino, M; Goto, H
2015-08-01
The current study aimed to verify the usefulness of preoperative ultrasonographic evaluation of contralateral patent processus vaginalis (PPV) at the level of the internal inguinal ring. This was a prospective study of patients undergoing unilateral inguinal hernia repair at two institutions during 2010-2011. The sex, age at initial operation, birth weight, initial operation side, and the preoperative diameter of the contralateral PPV as determined using ultrasonography (US) were recorded. We analyzed the incidence of contralateral inguinal hernia, risk factors, and the usefulness of the preoperative major diameter of the contralateral PPV. The follow-up period was 36 months. All 105 patients who underwent unilateral hernia repair completed 36 months of follow-up, during which 11 patients (10.5 %) developed a contralateral hernia. The following covariates were not associated with contralateral hernia development: sex (p = 0.350), age (p = 0.185), birth weight (p = 0.939), and initial operation side (p = 0.350). The preoperative major diameter of the contralateral PPV determined using US was significantly wider among patients with a contralateral hernia than those without a contralateral hernia (p = 0.001). When the 105 patients were divided into two groups according to cut-off values of the preoperative major diameter of the contralateral PPV (wide group, >2.0 mm; narrow group, ≤2.0 mm), a significant association was observed between the preoperative major diameter of the contralateral PPV and patient outcomes (p = 0.001). We used US and confirmed the usefulness of a preoperative evaluation of the major diameter of the contralateral PPV at the level of the internal inguinal ring in pediatric patients with unilateral inguinal hernias.
Lapenta, Olivia M; Minati, Ludovico; Fregni, Felipe; Boggio, Paulo S
2013-01-01
Motor system neural networks are activated during movement imagery, observation and execution, with a neural signature characterized by suppression of the Mu rhythm. In order to investigate the origin of this neurophysiological marker, we tested whether transcranial direct current stimulation (tDCS) modifies Mu rhythm oscillations during tasks involving observation and imagery of biological and non-biological movements. We applied tDCS (anodal, cathodal, and sham) in 21 male participants (mean age 23.8 ± 3.06), over the left M1 with a current of 2 mA for 20 min. Following this, we recorded the EEG at C3, C4, and Cz and surrounding C3 and C4 electrodes. Analyses of C3 and C4 showed significant effects for biological vs. non-biological movement (p = 0.005), and differential hemisphere effects according to the type of stimulation (p = 0.04) and type of movement (p = 0.02). Analyses of surrounding electrodes revealed significant interaction effects considering type of stimulation and imagery or observation of biological or non-biological movement (p = 0.03). The main findings of this study were (1) Mu desynchronization during biological movement of the hand region in the contralateral hemisphere after sham tDCS; (2) polarity-dependent modulation effects of tDCS on the Mu rhythm, i.e., anodal tDCS led to Mu synchronization while cathodal tDCS led to Mu desynchronization during movement observation and imagery (3) specific focal and opposite inter-hemispheric effects, i.e., contrary effects for the surrounding electrodes during imagery condition and also for inter-hemispheric electrodes (C3 vs. C4). These findings provide insights into the cortical oscillations during movement observation and imagery. Furthermore, it shows that tDCS can be highly focal when guided by a behavioral task.
Seeber, Martin; Scherer, Reinhold; Müller-Putz, Gernot R
2016-11-16
Sequencing and timing of body movements are essential to perform motoric tasks. In this study, we investigate the temporal relation between cortical oscillations and human motor behavior (i.e., rhythmic finger movements). High-density EEG recordings were used for source imaging based on individual anatomy. We separated sustained and movement phase-related EEG source amplitudes based on the actual finger movements recorded by a data glove. Sustained amplitude modulations in the contralateral hand area show decrease for α (10-12 Hz) and β (18-24 Hz), but increase for high γ (60-80 Hz) frequencies during the entire movement period. Additionally, we found movement phase-related amplitudes, which resembled the flexion and extension sequence of the fingers. Especially for faster movement cadences, movement phase-related amplitudes included high β (24-30 Hz) frequencies in prefrontal areas. Interestingly, the spectral profiles and source patterns of movement phase-related amplitudes differed from sustained activities, suggesting that they represent different frequency-specific large-scale networks. First, networks were signified by the sustained element, which statically modulate their synchrony levels during continuous movements. These networks may upregulate neuronal excitability in brain regions specific to the limb, in this study the right hand area. Second, movement phase-related networks, which modulate their synchrony in relation to the movement sequence. We suggest that these frequency-specific networks are associated with distinct functions, including top-down control, sensorimotor prediction, and integration. The separation of different large-scale networks, we applied in this work, improves the interpretation of EEG sources in relation to human motor behavior. EEG recordings provide high temporal resolution suitable to relate cortical oscillations to actual movements. Investigating EEG sources during rhythmic finger movements, we distinguish sustained from movement phase-related amplitude modulations. We separate these two EEG source elements motivated by our previous findings in gait. Here, we found two types of large-scale networks, representing the right fingers in distinction from the time sequence of the movements. These findings suggest that EEG source amplitudes reconstructed in a cortical patch are the superposition of these simultaneously present network activities. Separating these frequency-specific networks is relevant for studying function and possible dysfunction of the cortical sensorimotor system in humans as well as to provide more advanced features for brain-computer interfaces. Copyright © 2016 the authors 0270-6474/16/3611671-11$15.00/0.
Liu, Xuguang; Yianni, John; Wang, Shouyan; Bain, Peter G; Stein, John F; Aziz, Tipu Z
2006-03-01
Despite that deep brain stimulation (DBS) of the globus pallidus internus (GPi) is emerging as the favored intervention for patients with medically intractable dystonia, the pathophysiological mechanisms of dystonia are largely unclear. In eight patients with primary dystonia who were treated with bilateral chronic pallidal stimulation, we correlated symptom-related electromyogram (EMG) activity of the most affected muscles with the local field potentials (LFPs) recorded from the globus pallidus electrodes. In 5 dystonic patients with mobile involuntary movements, rhythmic EMG bursts in the contralateral muscles were coherent with the oscillations in the pallidal LFPs at the burst frequency. In contrast, no significant coherence was seen between EMG and LFPs either for the sustained activity separated out from the compound EMGs in those 5 cases, or in the EMGs in 3 other cases without mobile involuntary movements and rhythmic EMG bursts. In comparison with the resting condition, in both active and passive movements, significant modulation in the GPi LFPs was seen in the range of 8-16 Hz. The finding of significant coherence between GPi oscillations and rhythmic EMG bursts but not sustained tonic EMG activity suggests that the synchronized pallidal activity may be directly related to the rhythmic involuntary movements. In contrast, the sustained hypertonic muscle activity may be represented by less synchronized activity in the pallidum. Thus, the pallidum may play different roles in generating different components of the dystonic symptom complex.
Biases in rhythmic sensorimotor coordination: effects of modality and intentionality.
Debats, Nienke B; Ridderikhoff, Arne; de Boer, Betteco J; Peper, C Lieke E
2013-08-01
Sensorimotor biases were examined for intentional (tracking task) and unintentional (distractor task) rhythmic coordination. The tracking task involved unimanual tracking of either an oscillating visual signal or the passive movements of the contralateral hand (proprioceptive signal). In both conditions the required coordination patterns (isodirectional and mirror-symmetric) were defined relative to the body midline and the hands were not visible. For proprioceptive tracking the two patterns did not differ in stability, whereas for visual tracking the isodirectional pattern was performed more stably than the mirror-symmetric pattern. However, when visual feedback about the unimanual hand movements was provided during visual tracking, the isodirectional pattern ceased to be dominant. Together these results indicated that the stability of the coordination patterns did not depend on the modality of the target signal per se, but on the combination of sensory signals that needed to be processed (unimodal vs. cross-modal). The distractor task entailed rhythmic unimanual movements during which a rhythmic visual or proprioceptive distractor signal had to be ignored. The observed biases were similar as for intentional coordination, suggesting that intentionality did not affect the underlying sensorimotor processes qualitatively. Intentional tracking was characterized by active sensory pursuit, through muscle activity in the passively moved arm (proprioceptive tracking task) and rhythmic eye movements (visual tracking task). Presumably this pursuit afforded predictive information serving the coordination process. Copyright © 2013 Elsevier B.V. All rights reserved.
Cross, Kevin P; Britton, Samantha; Mangulins, Rebecca; Money, Tomas G A; Robertson, R Meldrum
2017-04-01
We compared how different metabolic stressors, anoxic coma and food deprivation, affected signaling in neural tissue. We used the locust's Descending Contralateral Movement Detector (DCMD) interneuron because its large axon, high firing frequencies, and rapid conduction velocity make it energetically expensive. We exposed locusts to a 30min anoxic coma or 1day of food deprivation and found contrasting effects on signaling within the axon. After a prior anoxic coma, the DCMD fired fewer high-frequency (>200Hz) action potentials (APs) (Control: 12.4±1.6; Coma: 6.3±0.9) with a reduction in axonal conduction velocity (CV) at all frequencies (∼4-8%) when presented with a standard looming visual stimulus. Prior anoxic coma was also associated with a loss of supernormal conduction by reducing both the number of supernormal APs and the firing frequency with the highest CV. Initially, food deprivation caused a significant increase in the number of low- and high-frequency APs with no differences observed in CV. After controlling for isolation, food deprivation resulted in an increase in high-frequency APs (>200Hz: Control: 17.1±1.7; Food-deprived: 19.9±1.3) and an increase in relative conduction velocity for frequencies >150Hz (∼2%). Action potentials of food-deprived animals had a smaller half-width (Control: 0.45±0.02ms; Food-deprived: 0.40±0.01ms) and decay time (Control: 0.62±0.03ms; Food-deprived: 0.54±0.02ms). Our data indicate that the effects of metabolic stress on neural signaling can be stressor-dependent. Copyright © 2017 Elsevier Ltd. All rights reserved.
Goker, Berna; Block, Joel A
2006-01-01
The risk of developing bilateral disease progressing to total hip arthroplasty (THA) among patients who undergo unilateral THA for non-traumatic avascular necrosis (AVN) remains poorly understood. An analysis of the time-course to contralateral THA, as well as the effects of underlying AVN risk factors, is presented. Forty-seven consecutive patients who underwent THA for AVN were evaluated. Peri-operative and annual post-operative antero-posterior pelvis radiographs were examined for evidence of contralateral involvement. Patient age, weight, height, underlying AVN risk factor(s), date of onset of contralateral hip pain if occurred, and date of contralateral THA if performed, were recorded. Bone scan, computerized tomography and magnetic resonance imaging data were utilized when available. Twenty-one patients (46.6%) underwent contralateral THA for AVN within a median of 9 months after the initial THA (range 0-93, interquartile range 28.5 months). The median follow-up for patients without contralateral THA was 75 months (range 3-109, interquartile range 69 months). Thirty-four patients had radiographic findings of contralateral AVN at study entry; 25 were symptomatic bilaterally at entry and 7 developed contralateral symptoms within a mean time of 12 months (median 10 months, interquartile range 12 months). None of the 13 patients who were free of radiographic evidence of contralateral AVN at study entry developed evidence of AVN during the follow-up. AVN associated with glucocorticoid use was more likely to manifest as bilateral disease than either idiopathic AVN or ethanol-associated AVN (P=0.02 and P=0.03 respectively). Radiographically-evident AVN in the contralateral hip at THA is unlikely to remain asymptomatic for a prolonged period of time. Conversely, asymptomatic contralateral hips without radiographic evidence of AVN are unlikely to develop clinically significant AVN.
Adaptive functional change of the contralateral kidney after partial nephrectomy.
Choi, Se Young; Yoo, Sangjun; You, Dalsan; Jeong, In Gab; Song, Cheryn; Hong, Bumsik; Hong, Jun Hyuk; Ahn, Hanjong; Kim, Choung-Soo
2017-08-01
Partial nephrectomy aims to maintain renal function by nephron sparing; however, functional changes in the contralateral kidney remain unknown. We evaluate the functional change in the contralateral kidney using a diethylene triamine penta-acetic acid (DTPA) renal scan and determine factors predicting contralateral kidney function after partial nephrectomy. A total of 699 patients underwent partial nephrectomy, with a DTPA scan before and after surgery to assess the separate function of each kidney. Patients were divided into three groups according to initial contralateral glomerular filtration rate (GFR; group 1 : <30 ml·min -1 ·1.73 m -2 , group 2 : 30-45 ml·min -1 ·1.73 m -2 , and group 3 : ≥45 ml·min -1 ·1.73 m -2 ). Multiple-regression analysis was used to identify the factors associated with increased GFR of the contralateral kidney over a 4-yr postoperative period. Patients in group 1 had a higher mean age and hypertension history, worse American Society of Anesthesiologists score, and larger tumor size than in the other two groups. The ipsilateral GFR changes at 4 yr after partial nephrectomy were -18.9, -3.6, and 3.9% in groups 1 , 2 , and 3 , respectively, whereas the contralateral GFR changes were 10.8, 25.7, and 38.8%. Age [β: -0.105, 95% confidence interval (CI): -0.213; -0.011, P < 0.05] and preoperative contralateral GFR (β: -0.256, 95% CI: -0.332; -0.050, P < 0.01) were significant predictive factors for increased GFR of the contralateral kidney after 4 yr. The contralateral kidney compensated for the functional loss of the ipsilateral kidney. The increase of GFR in contralateral kidney is more prominent in younger patients with decreased contralateral renal function. Copyright © 2017 the American Physiological Society.
Evaluation of Eye Metrics as a Detector of Fatigue
2010-03-01
eyeglass frames . The cameras are angled upward toward the eyes and extract real-time pupil diameter, eye-lid movement, and eye-ball movement. The...because the cameras were mounted on eyeglass -like frames , the system was able to continuously monitor the eye throughout all sessions. Overall, the...of “ fitness for duty” testing and “real-time monitoring” of operator performance has been slow (Institute of Medicine, 2004). Oculometric-based
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolotnikov,A.
2009-06-02
The project goals are: (1) Develop CMT radiation detectors - Demonstrate feasibility (Phase 1 is complete) and Improve material properties and device performance; (2) This project will lead to novel radiation detectors - high detection efficiency, high energy-resolution, ambient-temperature operation, and low production cost; and (3) Such detectors are needed in areas of nonproliferation and national security for detection of SNM. Research highlights are: (1) We achieved our Phase-I goal - Demonstration of CMT detector performance approaching that of CZT detectors; (2) Demonstrated that In-doped CMT is much closer to its anticipated performance as radiation detectors than other alternative materials,more » TlBr and HgI{sub 2} - Large crystal volumes, 10{sup 10}{Omega}{center_dot}cm, 3 x 10{sup -3}cm{sup 2}/V, and stable response; and (3) Conducted material and device characterization experiments - Detectors: I-V, {mu}{sub e}, ({mu}{tau}){sub e}, internal E fields, energy spectra, and high-resolution x-ray response mapping data and Materials - DLTS, TCT, PL, EPDs, XRD, PCD and IR transmission.« less
Muir, Peter; Schwartz, Zeev; Malek, Sarah; Kreines, Abigail; Cabrera, Sady Y.; Buote, Nicole J.; Bleedorn, Jason A.; Schaefer, Susan L.; Holzman, Gerianne; Hao, Zhengling
2011-01-01
Background Non-contact cranial cruciate ligament rupture (CrCLR) is an important cause of lameness in client-owned dogs and typically occurs without obvious injury. There is a high incidence of bilateral rupture at presentation or subsequent contralateral rupture in affected dogs. Although stifle synovitis increases risk of contralateral CrCLR, relatively little is known about risk factors for subsequent contralateral rupture, or whether therapeutic intervention may modify this risk. Methodology/Principal Findings We conducted a longitudinal study examining survival of the contralateral CrCL in client-owned dogs with unilateral CrCLR in a large baseline control population (n = 380), and a group of dogs that received disease-modifying therapy with arthroscopic lavage, intra-articular hyaluronic acid and oral doxycycline (n = 16), and were followed for one year. Follow-up in treated dogs included analysis of mobility, radiographic evaluation of stifle effusion and arthritis, and quantification of biomarkers of synovial inflammation. We found that median survival of the contralateral CrCL was 947 days. Increasing tibial plateau angle decreased contralateral ligament survival, whereas increasing age at diagnosis increased survival. Contralateral ligament survival was reduced in neutered dogs. Our disease-modifying therapy did not significantly influence contralateral ligament survival. Correlative analysis of clinical and biomarker variables with development of subsequent contralateral rupture revealed few significant results. However, increased expression of T lymphocyte-associated genes in the index unstable stifle at diagnosis was significantly related to development of subsequent non-contact contralateral CrCLR. Conclusion Subsequent contralateral CrCLR is common in client-owned dogs, with a median ligament survival time of 947 days. In this naturally occurring model of non-contact cruciate ligament rupture, cranial tibial translation is preceded by development of synovial inflammation. However, treatment with arthroscopic lavage, intra-articular hyaluronic acid and oral doxycycline does not significantly influence contralateral CrCL survival. PMID:21998650
Aronoff, Justin M.; Padilla, Monica; Fu, Qian-Jie; Landsberger, David M.
2015-01-01
Contralateral masking is the phenomenon where a masker presented to one ear affects the ability to detect a signal in the opposite ear. For normal hearing listeners, contralateral masking results in masking patterns that are both sharper and dramatically smaller in magnitude than ipsilateral masking. The goal of this study was to investigate whether medial olivocochlear (MOC) efferents are needed for the sharpness and relatively small magnitude of the contralateral masking function. To do this, bilateral cochlear implant patients were tested because, by directly stimulating the auditory nerve, cochlear implants circumvent the effects of the MOC efferents. The results indicated that, as with normal hearing listeners, the contralateral masking function was sharper than the ipsilateral masking function. However, although there was a reduction in the magnitude of the contralateral masking function compared to the ipsilateral masking function, it was relatively modest. This is in sharp contrast to the results of normal hearing listeners where the magnitude of the contralateral masking function is greatly reduced. These results suggest that MOC function may not play a large role in the sharpness of the contralateral masking function but may play a considerable role in the magnitude of the contralateral masking function. PMID:25798581
Márquez, Gonzalo; Keller, Martin; Lundbye-Jensen, Jesper; Taube, Wolfgang
2018-03-01
Research has indicated that at the onset of a finger movement, unwanted contractions of adjacent muscles are prevented by inhibiting the cortical areas representing these muscles. This so-called surround inhibition (SI) seems relevant for the performance of selective finger movements but may not be necessary for tasks involving functional coupling between different finger muscles. Therefore, the present study compared SI between isolated finger movement and complex selective finger movements while playing a three-finger sequence on the piano in nine non-professional musicians and 10 untrained control participants. Transcranial magnetic stimulation (TMS) was applied to the contralateral motor cortex to assess SI in the first dorsal interosseous (FDI), abductor pollicis brevis (APB) and abductor digiti minimi (ADM) during the movement preparation and the late phasic phases. The results reveal stronger SI during the preparation phase than during the phasic phase (30.6% vs. 10.7%; P < 0.05) in the isolated-finger condition in both musicians and controls. Results also show higher SI in musicians during the preparation phase of the isolated finger condition compared to the preparation phase of the three-finger sequence (40% vs. 15%; P < 0.05). However, the control group did not show this task-specific modulation of SI (isolated: 25% vs. sequence: 25%; P > 0.05). Thus, musicians were able to modulate SI between conditions whereas control participants revealed constant levels of SI. Therefore, it may be assumed that long-term training as observed in skilled musicians is accompanied by task-specific effects on SI modulation potentially relating to the ability to perform selective and complex finger movements. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Huang, Cheng-Ya; Zhao, Chen-Guang; Hwang, Ing-Shiou
2014-11-01
Dual-task performance is strongly affected by the direction of attentional focus. This study investigated neural control of a postural-suprapostural procedure when postural focus strategy varied. Twelve adults concurrently conducted force-matching and maintained stabilometer stance with visual feedback on ankle movement (visual internal focus, VIF) and on stabilometer movement (visual external focus, VEF). Force-matching error, dynamics of ankle and stabilometer movements, and event-related potentials (ERPs) were registered. Postural control with VEF caused superior force-matching performance, more complex ankle movement, and stronger kinematic coupling between the ankle and stabilometer movements than postural control with VIF. The postural focus strategy also altered ERP temporal-spatial patterns. Postural control with VEF resulted in later N1 with less negativity around the bilateral fronto-central and contralateral sensorimotor areas, earlier P2 deflection with more positivity around the bilateral fronto-central and ipsilateral temporal areas, and late movement-related potential commencing in the left frontal-central area, as compared with postural control with VIF. The time-frequency distribution of the ERP principal component revealed phase-locked neural oscillations in the delta (1-4Hz), theta (4-7Hz), and beta (13-35Hz) rhythms. The delta and theta rhythms were more pronounced prior to the timing of P2 positive deflection, and beta rebound was greater after the completion of force-matching in VEF condition than VIF condition. This study is the first to reveal the neural correlation of postural focusing effect on a postural-suprapostural task. Postural control with VEF takes advantage of efficient task-switching to facilitate autonomous postural response, in agreement with the "constrained-action" hypothesis. Copyright © 2014 Elsevier B.V. All rights reserved.
The effects of systemic stress on orthodontic tooth movement.
Gameiro, Gustavo Hauber; Nouer, Darcy Flávio; Pereira-Neto, Joáo Sarmento; Urtado, Marília Bertoldo; Novaes, Pedro Duarte; de Castro, Margaret; Veiga, Maria Cecília Ferraz Arruda
2008-11-01
To determine if systemic stress affects the biological reactions occurring during orthodontic tooth movement. Four groups of male 10 week-old Wistar rats were used. Group A animals (N=10) were restrained for one hour per day for 40 days; Group B animals (N=10) were restrained for one hour per day for three days; Group C (N=10) and Group D (N=8) animals were unrestrained. The upper left first molars in the rats in Groups A (long-term stress), B (short-term stress) and C (control) were moved mesially during the last 14 days of the experiment. The animals in Group D (N=8) were used for body weight and hormonal dosage comparisons only. They were not subjected to any stress and did not have appliances fitted. All animals were killed at 18 weeks of age and blood collected for measurement of plasma corticosterone. Tooth movement was measured with an electronic caliper. The right and left hemi-maxillae of five rats from each group were removed and the number of tartrate-resistant acid phosphatase (TRAP) positive cells, defined as osteoclasts, adjacent to the mesial roots of the upper first molars counted. The contralateral side in each animal served as the control (split-mouth design). Corticosterone levels were significantly higher in the stressed groups (Groups A and B) than in the control group (Group C). Tooth movement was significantly greater in Group A (long-term stress) compared with Group B (short-term stress) and Group C (control), which did not differ from each other. There were significantly more osteoclasts in the long-term stress group than in the short-term stress and control groups. Persistent systemic stress increases bone resorption during orthodontic tooth movement. Systemic stress may affect the rate of tooth movement during orthodontic treatment.
Litvak, Vladimir; Eusebio, Alexandre; Jha, Ashwani; Oostenveld, Robert; Barnes, Gareth; Foltynie, Tom; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan I.; Friston, Karl; Brown, Peter
2012-01-01
Functional neurosurgery has afforded the opportunity to assess interactions between populations of neurons in the human cerebral cortex and basal ganglia in patients with Parkinson’s disease (PD). Interactions occur over a wide range of frequencies, and the functional significance of those above 30 Hz is particularly unclear. Do they improve movement and, if so, in what way? We acquired simultaneously magnetoencephalography (MEG) and direct recordings from the subthalamic nucleus (STN) in 17 PD patients. We examined the effect of synchronous and sequential finger movements and of the dopamine prodrug levodopa on induced power in the contralateral primary motor cortex (M1) and STN and on the coherence between the two structures. We observed discrete peaks in M1 and STN power over 60-90 Hz and 300-400 Hz. All these power peaks increased with movement and levodopa treatment. Only STN activity over 60-90 Hz was coherent with activity in M1. Directionality analysis showed that STN gamma activity at 60-90 Hz tended to drive gamma activity in M1. The effects of levodopa on both local and distant synchronisation over 60-90 Hz correlated with the degree of improvement in bradykinesia-rigidity, as did local STN activity at 300-400 Hz. Despite this, there were no effects of movement type, nor interactions between movement type and levodopa in the STN, nor in the coherence between STN and M1. We conclude that synchronisation over 60-90 Hz in the basal ganglia cortical network is prokinetic, but likely through a modulatory effect rather than any involvement in explicit motor processing. PMID:22855804
Litvak, Vladimir; Eusebio, Alexandre; Jha, Ashwani; Oostenveld, Robert; Barnes, Gareth; Foltynie, Tom; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan I; Friston, Karl; Brown, Peter
2012-08-01
Functional neurosurgery has afforded the opportunity to assess interactions between populations of neurons in the human cerebral cortex and basal ganglia in patients with Parkinson's disease (PD). Interactions occur over a wide range of frequencies, and the functional significance of those >30 Hz is particularly unclear. Do they improve movement, and, if so, in what way? We acquired simultaneously magnetoencephalography and direct recordings from the subthalamic nucleus (STN) in 17 PD patients. We examined the effect of synchronous and sequential finger movements and of the dopamine prodrug levodopa on induced power in the contralateral primary motor cortex (M1) and STN and on the coherence between the two structures. We observed discrete peaks in M1 and STN power at 60-90 Hz and at 300-400 Hz. All these power peaks increased with movement and levodopa treatment. Only STN activity at 60-90 Hz was coherent with activity in M1. Directionality analysis showed that STN gamma activity at 60-90 Hz tended to drive gamma activity in M1. The effects of levodopa on both local and distant synchronization at 60-90 Hz correlated with the degree of improvement in bradykinesia-rigidity as did local STN activity at 300-400 Hz. Despite this, there were no effects of movement type, nor interactions between movement type and levodopa in the STN, nor in the coherence between STN and M1. We conclude that synchronization at 60-90 Hz in the basal ganglia cortical network is prokinetic but likely through a modulatory effect rather than any involvement in explicit motor processing.
How should initial fit inform soft contact lens prescribing.
Boychev, Nikolay; Laughton, Deborah S; Bharwani, Gulshan; Ghuman, Hafsa; Wolffsohn, James S
2016-06-01
To investigate how initial HEMA and silicone-hydrogel (SiHy) contact lens fit on insertion, which informs prescribing decisions, reflect end of day fit. Thirty participants (aged 22.9±4.9 years) were fitted contralaterally with HEMA and SiHy contact lenses. Corneal topography and tear break-up time were assessed pre-lens wear. Centration, lag, post-blink movement during up-gaze and push-up recovery speed were recorded after 5,10,20min and 8h of contact lens wear by a digital slit-lamp biomicroscope camera, along with reported comfort. Lens fit metrics were analysed using bespoke software. Comfort and centration were similar with the HEMA and SiHy lenses (p>0.05), but comfort decreased with time (p<0.01) whereas centration remained stable (F=0.036, p=0.991). Movement-on-blink and lag were greater with the HEMA than the SiHy lens (p<0.01), but movement-on-blink decreased with time after insertion (F=22.423, p<0.001) whereas lag remained stable (F=1.967, p=0.129). Push-up recovery speed was similar with the HEMA and the SiHy lens 5-20min after insertion (p>0.05), but was slower with SiHy after 8h wear (p=0.016). Lens movement on blink and push-up recovery speed was predictive of the movement after 8h of wear after 10-20min SiHy wear, but after 5 to 20min of HEMA lens wear. A HEMA or SiHy contact lens with poor movement on blink/push-up after at least 10min after insertion should be rejected. Copyright © 2015 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Muthalib, Makii; Ferrari, Marco; Quaresima, Valentina; Kerr, Graham; Perrey, Stephane
2017-11-07
This study used non-invasive functional near-infrared spectroscopy (fNIRS) neuroimaging to monitor bilateral sensorimotor region activation during unilateral voluntary (VOL) and neuromuscular electrical stimulation (NMES)-evoked movements. In eight healthy male volunteers, fNIRS was used to measure relative changes in oxyhaemoglobin (O 2 Hb) and deoxyhaemoglobin (HHb) concentrations from a cortical sensorimotor region of interest in the left (LH) and right (RH) hemispheres during NMES-evoked and VOL wrist extension movements of the right arm. NMES-evoked movements induced significantly greater activation (increase in O 2 Hb and concomitant decrease in HHb) in the contralateral LH than in the ipsilateral RH (O 2 Hb: 0·44 ± 0·16 μM and 0·25 ± 0·22 μM, P = 0·017; HHb: -0·19 ± 0·10 μM and -0·12 ± 0·09 μM, P = 0·036, respectively) as did VOL movements (0·51 ± 0·24 μΜ and 0·34 ± 0·21 μM, P = 0·031; HHb: -0·18 ± 0·07 μΜ and -0·12 ± 0·04 μΜ, P = 0·05, respectively). There was no significant difference between conditions for O 2 Hb (P = 0·144) and HHb (P = 0·958). fNIRS neuroimaging enables quantification of bilateral sensorimotor regional activation profiles during voluntary and NMES-evoked wrist extension movements. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Cuppone, Anna Vera; Squeri, Valentina; Semprini, Marianna; Masia, Lorenzo; Konczak, Jürgen
2016-01-01
This study examined the trainability of the proprioceptive sense and explored the relationship between proprioception and motor learning. With vision blocked, human learners had to perform goal-directed wrist movements relying solely on proprioceptive/haptic cues to reach several haptically specified targets. One group received additional somatosensory movement error feedback in form of vibro-tactile cues applied to the skin of the forearm. We used a haptic robotic device for the wrist and implemented a 3-day training regimen that required learners to make spatially precise goal-directed wrist reaching movements without vision. We assessed whether training improved the acuity of the wrist joint position sense. In addition, we checked if sensory learning generalized to the motor domain and improved spatial precision of wrist tracking movements that were not trained. The main findings of the study are: First, proprioceptive acuity of the wrist joint position sense improved after training for the group that received the combined proprioceptive/haptic and vibro-tactile feedback (VTF). Second, training had no impact on the spatial accuracy of the untrained tracking task. However, learners who had received VTF significantly reduced their reliance on haptic guidance feedback when performing the untrained motor task. That is, concurrent VTF was highly salient movement feedback and obviated the need for haptic feedback. Third, VTF can be also provided by the limb not involved in the task. Learners who received VTF to the contralateral limb equally benefitted. In conclusion, somatosensory training can significantly enhance proprioceptive acuity within days when learning is coupled with vibro-tactile sensory cues that provide feedback about movement errors. The observable sensory improvements in proprioception facilitates motor learning and such learning may generalize to the sensorimotor control of the untrained motor tasks. The implications of these findings for neurorehabilitation are discussed.
Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke
2012-01-01
This study, conducted in a group of nine chronic patients with right-side hemiparesis after stroke, investigated the effects of a robotic-assisted rehabilitation training with an upper limb robotic exoskeleton for the restoration of motor function in spatial reaching movements. The robotic assisted rehabilitation training was administered for a period of 6 weeks including reaching and spatial antigravity movements. To assess the carry-over of the observed improvements in movement during training into improved function, a kinesiologic assessment of the effects of the training was performed by means of motion and dynamic electromyographic analysis of reaching movements performed before and after training. The same kinesiologic measurements were performed in a healthy control group of seven volunteers, to determine a benchmark for the experimental observations in the patients’ group. Moreover degree of functional impairment at the enrolment and discharge was measured by clinical evaluation with upper limb Fugl-Meyer Assessment scale (FMA, 0–66 points), Modified Ashworth scale (MA, 0–60 pts) and active ranges of motion. The robot aided training induced, independently by time of stroke, statistical significant improvements of kinesiologic (movement time, smoothness of motion) and clinical (4.6 ± 4.2 increase in FMA, 3.2 ± 2.1 decrease in MA) parameters, as a result of the increased active ranges of motion and improved co-contraction index for shoulder extension/flexion. Kinesiologic parameters correlated significantly with clinical assessment values, and their changes after the training were affected by the direction of motion (inward vs. outward movement) and position of target to be reached (ipsilateral, central and contralateral peripersonal space). These changes can be explained as a result of the motor recovery induced by the robotic training, in terms of regained ability to execute single joint movements and of improved interjoint coordination of elbow and shoulder joints. PMID:22681653
Davare, Marco; Zénon, Alexandre; Desmurget, Michel; Olivier, Etienne
2015-01-01
To reach for an object, we must convert its spatial location into an appropriate motor command, merging movement direction and amplitude. In humans, it has been suggested that this visuo-motor transformation occurs in a dorsomedial parieto-frontal pathway, although the causal contribution of the areas constituting the “reaching circuit” remains unknown. Here we used transcranial magnetic stimulation (TMS) in healthy volunteers to disrupt the function of either the medial intraparietal area (mIPS) or dorsal premotor cortex (PMd), in each hemisphere. The task consisted in performing step-tracking movements with the right wrist towards targets located in different directions and eccentricities; targets were either visible for the whole trial (Target-ON) or flashed for 200 ms (Target-OFF). Left and right mIPS disruption led to errors in the initial direction of movements performed towards contralateral targets. These errors were corrected online in the Target-ON condition but when the target was flashed for 200 ms, mIPS TMS manifested as a larger endpoint spreading. In contrast, left PMd virtual lesions led to higher acceleration and velocity peaks—two parameters typically used to probe the planned movement amplitude—irrespective of the target position, hemifield and presentation condition; in the Target-OFF condition, left PMd TMS induced overshooting and increased the endpoint dispersion along the axis of the target direction. These results indicate that left PMd intervenes in coding amplitude during movement preparation. The critical TMS timings leading to errors in direction and amplitude were different, namely 160–100 ms before movement onset for mIPS and 100–40 ms for left PMd. TMS applied over right PMd had no significant effect. These results demonstrate that, during motor preparation, direction and amplitude of goal-directed movements are processed by different cortical areas, at distinct timings, and according to a specific hemispheric organization. PMID:25999837
Neuroplasticity Changes on Human Motor Cortex Induced by Acupuncture Therapy: A Preliminary Study.
Yang, Yi; Eisner, Ines; Chen, Siqi; Wang, Shaosong; Zhang, Fan; Wang, Linpeng
2017-01-01
While neuroplasticity changes measured by transcranial magnetic stimulation have been proved to be highly correlated to motor recovery and have been tested in various forms of interventions, it has not been applied to investigate the neurophysiologic mechanism of acupuncture therapy. The aim of this study is to investigate neuroplasticity changes induced by a single session of acupuncture therapy in healthy adults, regarding the excitability change on bilateral primary motor cortex and interhemispheric inhibition. Ten subjects took a 30-minute acupuncture therapy and the same length relaxing phase in separate days. Transcranial magnetic stimulation measures, including resting motor threshold, amplitudes of motor-evoked potential, and interhemispheric inhibition, were assessed before and 10 minutes after intervention. Acupuncture treatment showed significant changes on potential amplitude from both ipsilateral and contralateral hemispheres to acupuncture compared to baseline. Also, interhemispheric inhibition from the contralateral motor cortex to the opposite showed a significant decline. The results indicated that corticomotoneuronal excitability and interhemispheric competition could be modulated by acupuncture therapy on healthy subjects. The following question about whether these changes will be observed in the same way on stroke patients and whether they correlate with the therapeutic effect on movement need to be answered by following studies. This trial is registered with ISRCTN13074245.
Neuroplasticity Changes on Human Motor Cortex Induced by Acupuncture Therapy: A Preliminary Study
Eisner, Ines; Chen, Siqi; Wang, Shaosong; Zhang, Fan
2017-01-01
While neuroplasticity changes measured by transcranial magnetic stimulation have been proved to be highly correlated to motor recovery and have been tested in various forms of interventions, it has not been applied to investigate the neurophysiologic mechanism of acupuncture therapy. The aim of this study is to investigate neuroplasticity changes induced by a single session of acupuncture therapy in healthy adults, regarding the excitability change on bilateral primary motor cortex and interhemispheric inhibition. Ten subjects took a 30-minute acupuncture therapy and the same length relaxing phase in separate days. Transcranial magnetic stimulation measures, including resting motor threshold, amplitudes of motor-evoked potential, and interhemispheric inhibition, were assessed before and 10 minutes after intervention. Acupuncture treatment showed significant changes on potential amplitude from both ipsilateral and contralateral hemispheres to acupuncture compared to baseline. Also, interhemispheric inhibition from the contralateral motor cortex to the opposite showed a significant decline. The results indicated that corticomotoneuronal excitability and interhemispheric competition could be modulated by acupuncture therapy on healthy subjects. The following question about whether these changes will be observed in the same way on stroke patients and whether they correlate with the therapeutic effect on movement need to be answered by following studies. This trial is registered with ISRCTN13074245. PMID:28293438
Proximity charge sensing for semiconductor detectors
Luke, Paul N; Tindall, Craig S; Amman, Mark
2013-10-08
A non-contact charge sensor includes a semiconductor detector having a first surface and an opposing second surface. The detector includes a high resistivity electrode layer on the first surface and a low resistivity electrode on the high resistivity electrode layer. A portion of the low resistivity first surface electrode is deleted to expose the high resistivity electrode layer in a portion of the area. A low resistivity electrode layer is disposed on the second surface of the semiconductor detector. A voltage applied between the first surface low resistivity electrode and the second surface low resistivity electrode causes a free charge to drift toward the first or second surface according to a polarity of the free charge and the voltage. A charge sensitive preamplifier coupled to a non-contact electrode disposed at a distance from the exposed high resistivity electrode layer outputs a signal in response to movement of free charge within the detector.
Massé-Alarie, Hugo; Beaulieu, Louis-David; Preuss, Richard; Schneider, Cyril
2015-02-01
Cross-sectional study of lumbopelvic muscle activation during rapid limb movements in chronic low back pain (CLBP) patients and healthy controls. Controversy exists over whether bilateral anticipatory activation of the deep abdominal muscles represents a normal motor control strategy prior to all rapid limb movements, or if this is simply a task-specific strategy appropriate for only certain movement conditions. To assess the onset timing of the transversus abdominis/internal oblique muscles (TrA/IO) during two rapid limb movement tasks with different postural demands - bilateral shoulder flexion in standing, unilateral hip extension in prone lying - as well as differences between CLBP and controls. Twelve CLBP and 13 controls performed the two tasks in response to an auditory cue. Surface EMG was acquired bilaterally from five muscles, including TrA/IO. In both groups, 50% of bilateral shoulder flexion trials showed bilateral anticipatory TrA/IO activation. This was rare, however, in unilateral hip extension for which only the TrA/IO contralateral to the moving leg showed anticipatory activation. The only significant difference in lumbo-pelvic muscle onset timing between CLBP and controls was a delay in semitendinosus activation during bilateral shoulder flexion in standing. Our data suggest that bilateral anticipatory TrA/IO activation is a task-specific motor control strategy, appropriate for only certain rapid limb movement conditions. Furthermore, the presence of altered semitendinosus onset timing in the CLBP group during bilateral shoulder flexion may be reflective of other possible lumbo-pelvic motor control alterations among this population. Copyright © 2014 Elsevier B.V. All rights reserved.
Dynamic Neural Correlates of Motor Error Monitoring and Adaptation during Trial-to-Trial Learning
Tan, Huiling; Jenkinson, Ned
2014-01-01
A basic EEG feature upon voluntary movements in healthy human subjects is a β (13–30 Hz) band desynchronization followed by a postmovement event-related synchronization (ERS) over contralateral sensorimotor cortex. The functional implications of these changes remain unclear. We hypothesized that, because β ERS follows movement, it may reflect the degree of error in that movement, and the salience of that error to the task at hand. As such, the signal might underpin trial-to-trial modifications of the internal model that informs future movements. To test this hypothesis, EEG was recorded in healthy subjects while they moved a joystick-controlled cursor to visual targets on a computer screen, with different rotational perturbations applied between the joystick and cursor. We observed consistently lower β ERS in trials with large error, even when other possible motor confounds, such as reaction time, movement duration, and path length, were controlled, regardless of whether the perturbation was random or constant. There was a negative trial-to-trial correlation between the size of the absolute initial angular error and the amplitude of the β ERS, and this negative correlation was enhanced when other contextual information about the behavioral salience of the angular error, namely, the bias and variance of errors in previous trials, was additionally considered. These same features also had an impact on the behavioral performance. The findings suggest that the β ERS reflects neural processes that evaluate motor error and do so in the context of the prior history of errors. PMID:24741058
Scheidt, Robert A.; Lillis, Kyle P.; Emerson, Scott J.
2010-01-01
We examined how proprioceptive contributions to perception of hand path straightness are influenced by visual, motor and attentional sources of performance variability during horizontal planar reaching. Subjects held the handle of a robot that constrained goal-directed movements of the hand to paths of controlled curvature. Subjects attempted to detect the presence of hand path curvature during both active (subject-driven) and passive (robot-driven) movements that either required active muscle force production or not. Subjects were less able to discriminate curved from straight paths when actively reaching for a target vs. when the robot moved their hand through the same curved paths. This effect was especially evident during robot-driven movements requiring concurrent activation of lengthening but not shortening muscles. Subjects were less likely to report curvature and were more variable in reporting when movements appeared straight in a novel “visual channel” condition previously shown to block adaptive updating of motor commands in response to deviations from a straight-line hand path. Similarly compromised performance was obtained when subjects simultaneously performed a distracting secondary task (key pressing with the contralateral hand). The effects compounded when these last two treatments were combined. It is concluded that environmental, intrinsic and attentional factors all impact the ability to detect deviations from a rectilinear hand path during goal-directed movement by decreasing proprioceptive contributions to limb state estimation. In contrast, response variability increased only in experimental conditions thought to impose additional attentional demands on the observer. Implications of these results for perception and other sensorimotor behaviors are discussed. PMID:20532489
Mechanisms for Adjusting Interaural Time Differences to Achieve Binaural Coincidence Detection
Seidl, Armin H.; Rubel, Edwin W; Harris, David M.
2010-01-01
Understanding binaural perception requires detailed analyses of the neural circuitry responsible for the computation of interaural time differences (ITDs). In the avian brainstem, this circuit consists of internal axonal delay lines innervating an array of coincidence detector neurons that encode external ITDs. Nucleus magnocellularis (NM) neurons project to the dorsal dendritic field of the ipsilateral nucleus laminaris (NL) and to the ventral field of the contralateral NL. Contralateral-projecting axons form a delay line system along a band of NL neurons. Binaural acoustic signals in the form of phase-locked action potentials from NM cells arrive at NL and establish a topographic map of sound source location along the azimuth. These pathways are assumed to represent a circuit similar to the Jeffress model of sound localization, establishing a place code along an isofrequency contour of NL. Three-dimensional measurements of axon lengths reveal major discrepancies with the current model; the temporal offset based on conduction length alone makes encoding of physiological ITDs impossible. However, axon diameter and distances between Nodes of Ranvier also influence signal propagation times along an axon. Our measurements of these parameters reveal that diameter and internode distance can compensate for the temporal offset inferred from axon lengths alone. Together with other recent studies these unexpected results should inspire new thinking on the cellular biology, evolution and plasticity of the circuitry underlying low frequency sound localization in both birds and mammals. PMID:20053889
Adaptive remodeling at the pedicle due to pars fracture: a finite element analysis study.
İnceoğlu, Serkan; Mageswaran, Prasath; Modic, Michael T; Benzel, Edward C
2014-09-01
Spondylolysis is a common condition among the general population and a major cause of back pain in young athletes. This condition can be difficult to detect with plain radiography and has been reported to lead to contralateral pars fracture or pedicle fracture in the terminal stages. Interestingly, some patients with late-stage spondylolysis are observed to have radiographic or CT evidence of a sclerotic pedicle on the side contralateral to the spondylolysis. Although computational studies have shown stress elevation in the contralateral pedicle after a pars fracture, it is not known if these changes would cause sclerotic changes in the contralateral pedicle. The objective of this study was to investigate the adaptive remodeling process at the pedicle due to a contralateral spondylolysis using finite element analysis. A multiscale finite element model of a vertebra was obtained by combining a continuum model of the posterior elements with a voxel-based pedicle section. Extension loading conditions were applied with or without a fracture at the contralateral pars to analyze the stresses in the contralateral pedicle. A remodeling algorithm was used to simulate and assess density changes in the contralateral pedicle. The remodeling algorithm demonstrated an increase in bone formation around the perimeter of the contralateral pedicle with some localized loss of mass in the region of cancellous bone. The authors' results indicated that a pars fracture results in sclerotic changes in the contralateral pedicle. Such a remodeling process could increase overall bone mass. However, focal bone loss in the region of the cancellous bone of the pedicle might predispose the pedicle to microfractures. This phenomenon explains, at least in part, the origin of pedicle stress fractures in the sclerotic contralateral pedicles of patients with unilateral spondylolysis.
Joo, Y-H; Yoo, I-R; Cho, K-J; Park, J-O; Nam, I-C; Kim, C-S; Kim, S-Y; Kim, M-S
2014-12-01
The purpose of this study was to determine whether preoperative (18) F-FDG PET/CT is useful in assessing contralateral lymph node metastasis in the neck. A retrospective review of medical records was performed. Patients treated at a single institute. One hundred and fifty-seven patients whose pathology results were positive for unilateral node metastasis (N1-3) involvement and underwent preoperative (18) F-FDG PET/CT for head and neck squamous cell carcinoma (HNSCC) were reviewed. Prognostic factors and nodal SUVmax were studied to identify the risk of contralateral disease. Thirty-six (22.9%) patients had contralateral cervical lymph node metastases. The (18) F-FDG PET/CT had a sensitivity of 80% and a specificity of 96% in identifying the contralateral cervical lymph node metastases on a level-by-level basis. The median SUVmax values of the ipsilateral and contralateral lymph nodes were 3.99 ± 3.36 (range, 0-20.4) and 2.94 ± 2.04 (range, 0-8.7), respectively (P = 0.001). There was a significant difference in the median SUVmax of contralateral nodes between the benign and malignant cervical lymph nodes (2.31 ± 0.62 versus 3.28 ± 2.43, P = 0.014). The cut-off value of contralateral median SUVmax in the context of contralateral cervical metastasis was 2.5 with the sensitivity of 75% and the specificity of 94%. A median contralateral lymph node SUVmax ≥ 2.5 was associated with 5-year disease-specific survival (P = 0.038). (18) F-FDG PET/CT median SUVmax cut-off values of contralateral lymph nodes ≥2.5 were associated with contralateral cervical lymph node metastases and 5-year disease-specific survival in HNSCC patients with unilateral metastases. © 2014 John Wiley & Sons Ltd.
Comparison of bilateral whisker movement in freely exploring and head-fixed adult rats.
Sellien, Heike; Eshenroder, Donna S; Ebner, Ford F
2005-09-01
Rats move their whiskers actively during tactile exploration of their environment. The whiskers emanate from densely innervated whisker follicles that are moved individually by intrinsic facial muscles and as a group by extrinsic muscles. Several descriptions of whisker movements in normal adult rats during unrestrained exploration indicate that rats move their whiskers in the 6-9 Hz range when exploring a new environment. The rate can be elevated to nearly 20 Hz for brief episodes just prior to making a behavioural decision. The present studies were undertaken to compare whisker dynamics in head-restrained and freely moving rats with symmetrical or asymmetrical numbers of whiskers on the two sides of their face and to provide a description of differences in whisker use in exploring rats after trimming all but two whiskers on one side of the face, a condition that has been shown to induce robust cortical plasticity. Head-fixed rats were trained to protract their whiskers against a contact detector with sufficient force to trigger a chocolate milk reward. Whisker movements were analyzed, and the results from head-fixed animals were compared with free-running animals using trials taken during their initial exploration of novel objects that blocked the rat's progress down an elevated runway. The results show that symmetrical whisker movements are modulated both by the nature of the task and the number of whiskers available for exploration. Rats can change their whisker movements when the sensitivity (threshold) of a contact detector is raised or lowered, or when the nature of the task requires bilateral input from the whiskers. We show that trimming some, but not all whiskers on one side of the face modifies the synchrony of whisker movement compared to untrimmed or symmetrically trimmed whiskers.
Heaton, James T.; Knox, Christopher; Malo, Juan; Kobler, James B.; Hadlock, Tessa A.
2013-01-01
Functional recovery is typically poor after facial nerve transection and surgical repair. In rats, whisking amplitude remains greatly diminished after facial nerve regeneration, but can recover more completely if the whiskers are periodically mechanically stimulated during recovery. Here we present a robotic “whisk assist” system for mechanically driving whisker movement after facial nerve injury. Movement patterns were either pre-programmed to reflect natural amplitudes and frequencies, or movements of the contralateral (healthy) side of the face were detected and used to control real-time mirror-like motion on the denervated side. In a pilot study, twenty rats were divided into nine groups and administered one of eight different whisk assist driving patterns (or control) for 5–20 minutes, five days per week, across eight weeks of recovery after unilateral facial nerve cut and suture repair. All rats tolerated the mechanical stimulation well. Seven of the eight treatment groups recovered average whisking amplitudes that exceeded controls, although small group sizes precluded statistical confirmation of group differences. The potential to substantially improve facial nerve recovery through mechanical stimulation has important clinical implications, and we have developed a system to control the pattern and dose of stimulation in the rat facial nerve model. PMID:23475376
Object representations in visual working memory change according to the task context.
Balaban, Halely; Luria, Roy
2016-08-01
This study investigated whether an item's representation in visual working memory (VWM) can be updated according to changes in the global task context. We used a modified change detection paradigm, in which the items moved before the retention interval. In all of the experiments, we presented identical color-color conjunction items that were arranged to provide a common fate Gestalt grouping cue during their movement. Task context was manipulated by adding a condition highlighting either the integrated interpretation of the conjunction items or their individuated interpretation. We monitored the contralateral delay activity (CDA) as an online marker of VWM. Experiment 1 employed only a minimal global context; the conjunction items were integrated during their movement, but then were partially individuated, at a late stage of the retention interval. The same conjunction items were perfectly integrated in an integration context (Experiment 2). An individuation context successfully produced strong individuation, already during the movement, overriding Gestalt grouping cues (Experiment 3). In Experiment 4, a short priming of the individuation context managed to individuate the conjunction items immediately after the Gestalt cue was no longer available. Thus, the representations of identical items changed according to the task context, suggesting that VWM interprets incoming input according to global factors which can override perceptual cues. Copyright © 2016 Elsevier Ltd. All rights reserved.
Instrument for measurement of vacuum in sealed thin wall packets
Kollie, T.G.; Thacker, L.H.; Fine, H.A.
1995-04-18
An instrument is disclosed for the measurement of vacuum within sealed packets, the packets having a wall that it can be deformed by the application of an external dynamic vacuum to an area thereof. The instrument has a detector head for placement against the deformable wall of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall with this deformation or lift monitored by the application of light as via a bifurcated light pipe. Retro-reflected light through the light pipe is monitored with a photo detector. A change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the dynamic vacuum applied through the head be to achieve this initiation of movement is equal to the vacuum within the packet. In a preferred embodiment a vacuum plate is placed beneath the packet to ensure that no deformation occurs on the reverse surface of the packet. A vacuum can be applied to a recess in this vacuum plate, the value of which can be used to calibrate the vacuum transducer in the detector head. 4 figs.
Instrument for measurement of vacuum in sealed thin wall packets
Kollie, Thomas G.; Thacker, Louis H.; Fine, H. Alan
1995-01-01
An instrument for the measurement of vacuum within sealed packets 12, the packets 12 having a wall 14 that it can be deformed by the application of an external dynamic vacuum to an area thereof. The instrument has a detector head 18 for placement against the deformable wall 14 of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall 14, with this deformation or lift monitored by the application of light as via a bifurcated light pipe 20. Retro-reflected light through the light pipe is monitored with a photo detector 26. A change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the dynamic vacuum applied through the head be to achieve this initiation of movement is equal to the vacuum within the packet 12. In a preferred embodiment a vacuum plate 44 is placed beneath the packet 12 to ensure that no deformation occurs on the reverse surface 16 of the packet. A vacuum can be applied to a recess in this vacuum plate, the value of which can be used to calibrate the vacuum transducer in the detector head.
Yılmaz, Taner; Süslü, Nilda; Atay, Gamze; Günaydın, Rıza Önder; Bajin, Münir Demir; Özer, Serdar
2015-05-01
The degree of midline crossing of lateral supraglottic cancer does not significantly change its rate of contralateral cervical metastasis. The rate of occult metastasis is too high to take the risk of contralateral regional recurrence. We support routine bilateral neck dissection even in lateral supraglottic cancers with no or minimal midline crossing. Data on the rate of contralateral cervical metastasis of laterally located supraglottic cancer, the effect of its degree of midline crossing on contralateral cervical metastasis, and its treatment are still controversial. This was a retrospective cohort, chart review involving 305 surgically treated patients with T1-3 squamous cell carcinoma of the supraglottic larynx. In all, 184 patients had bilateral neck dissection; 86 N0 contralateral necks were followed up. Thirty-five patients who needed postoperative radiation therapy because of the primary tumor or ipsilateral neck dissection specimen also received radiation therapy to the contralateral neck. The degree of midline crossing at the epiglottis was measured on a laryngectomy specimen with a ruler and expressed as 'no,' '<5 mm' or '≥5 mm.' The rates of occult and overall contralateral metastasis in our series were 16% and 28%, respectively. There was no statistically significant difference between contralateral neck metastasis and recurrence rates in the neck dissection, follow-up, and irradiation groups according to the degree of midline crossing.
Agostini, Valentina; Knaflitz, Marco
2012-01-01
In many applications requiring the study of the surface myoelectric signal (SMES) acquired in dynamic conditions, it is essential to have a quantitative evaluation of the quality of the collected signals. When the activation pattern of a muscle has to be obtained by means of single- or double-threshold statistical detectors, the background noise level e (noise) of the signal is a necessary input parameter. Moreover, the detection strategy of double-threshold detectors may be properly tuned when the SNR and the duty cycle (DC) of the signal are known. The aim of this paper is to present an algorithm for the estimation of e (noise), SNR, and DC of an SMES collected during cyclic movements. The algorithm is validated on synthetic signals with statistical properties similar to those of SMES, as well as on more than 100 real signals. © 2011 IEEE
Nas, Omer Fatih; Hacikurt, Kadir; Kaya, Ahmet; Dogan, Nurullah; Sanal, Bekir; Ozkaya, Guven; Dundar, Halit Ziya; Erdogan, Cuneyt
2017-06-01
To evaluate long-term clinical follow-up results of implanting subcutaneous port catheters (SPCs) on ipsilateral or contralateral with mastectomy side in patients with axillary lymph node dissection. A total of 73 patients composed of ipsilateral (34 catheters) and contralateral (39 catheters) groups, with SPCs were included. All patients had lumpectomy or modified radical mastectomy for breast cancer. Ipsilateral and contralateral groups had similar patient characteristics. Five late complications were seen in the ipsilateral group and 2 late complications in the contralateral group. No statistical significant difference was seen between two groups in regard to late complications. Four complications of the ipsilateral group were classified as major group C and 1 as major group D, while 1 complication of the contralateral group was classified as minor group B and 1 as major group C according to Society of Interventional Radiology (SIR) classification. No statistical significant difference was seen between complication rates of two groups in regard to SIR classification. SPC related complications do not differ in regard to ipsilateral or contralateral side selection on mastectomized patients with breast cancer and lymph node dissection. SPCs can be implanted on ipsilateral or contralateral sides of the operation in these patients.
Li, Hongjie; Wu, Xiaoyan; Bai, Yanrui; Huang, Yan; He, Wenting; Dong, Zhifang
2012-05-01
It is well documented that bilateral hippocampal lesions or unilateral hippocampal lesion at birth causes impairment of contralateral LTP and long-term memory. However, effects of unilateral hippocampal lesion in adults on contralateral in vivo LTP and memory are not clear. We here examined the influence of unilateral electrolytic dorsal hippocampal lesion in adult rats on contralateral LTP in vivo and spatial memory during different postoperative phases. We found that acute unilateral hippocampal lesion had no effect on contralateral LTP. However, contralateral LTP was impaired at 1 week after lesion, and was restored to the control level at postoperative week 4. Similarly, spatial memory was also impaired at postoperative week 1, and was restored at postoperative week 4. In addition, the rats at postoperative week 1 showed stronger spatial exploratory behavior in a novel open-field environment. The sham operation had no effects on contralateral LTP, spatial memory and exploration at either postoperative week 1 or week 4. These results suggest that unilateral dorsal hippocampal lesion in adult rats causes transient contralateral LTP impairment and spatial memory deficit. Copyright © 2012 Elsevier B.V. All rights reserved.
Nozaradan, Sylvie; Zerouali, Younes; Peretz, Isabelle; Mouraux, André
2015-03-01
Synchronizing movements with rhythmic inputs requires tight coupling of sensory and motor neural processes. Here, using a novel approach based on the recording of steady-state-evoked potentials (SS-EPs), we examine how distant brain areas supporting these processes coordinate their dynamics. The electroencephalogram was recorded while subjects listened to a 2.4-Hz auditory beat and tapped their hand on every second beat. When subjects tapped to the beat, the EEG was characterized by a 2.4-Hz SS-EP compatible with beat-related entrainment and a 1.2-Hz SS-EP compatible with movement-related entrainment, based on the results of source analysis. Most importantly, when compared with passive listening of the beat, we found evidence suggesting an interaction between sensory- and motor-related activities when subjects tapped to the beat, in the form of (1) additional SS-EP appearing at 3.6 Hz, compatible with a nonlinear product of sensorimotor integration; (2) phase coupling of beat- and movement-related activities; and (3) selective enhancement of beat-related activities over the hemisphere contralateral to the tapping, suggesting a top-down effect of movement-related activities on auditory beat processing. Taken together, our results are compatible with the view that rhythmic sensorimotor synchronization is supported by a dynamic coupling of sensory and motor related activities. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
The functional anatomy of suggested limb paralysis.
Deeley, Quinton; Oakley, David A; Toone, Brian; Bell, Vaughan; Walsh, Eamonn; Marquand, Andre F; Giampietro, Vincent; Brammer, Michael J; Williams, Steven C R; Mehta, Mitul A; Halligan, Peter W
2013-02-01
Suggestions of limb paralysis in highly hypnotically suggestible subjects have been employed to successfully model conversion disorders, revealing similar patterns of brain activation associated with attempted movement of the affected limb. However, previous studies differ with regard to the executive regions involved during involuntary inhibition of the affected limb. This difference may have arisen as previous studies did not control for differences in hypnosis depth between conditions and/or include subjective measures to explore the experience of suggested paralysis. In the current study we employed functional magnetic resonance imaging (fMRI) to examine the functional anatomy of left and right upper limb movements in eight healthy subjects selected for high hypnotic suggestibility during (i) hypnosis (NORMAL) and (ii) attempted movement following additional left upper limb paralysis suggestions (PARALYSIS). Contrast of left upper limb motor function during NORMAL relative to PARALYSIS conditions revealed greater activation of contralateral M1/S1 and ipsilateral cerebellum, consistent with the engagement of these regions in the completion of movements. By contrast, two significant observations were noted in PARALYSIS relative to NORMAL conditions. In conjunction with reports of attempts to move the paralysed limb, greater supplementary motor area (SMA) activation was observed, a finding consistent with the role of SMA in motor intention and planning. The anterior cingulate cortex (ACC, BA 24) was also significantly more active in PARALYSIS relative to NORMAL conditions - suggesting that ACC (BA 24) may be implicated in involuntary, as well as voluntary inhibition of prepotent motor responses. Copyright © 2012 Elsevier Ltd. All rights reserved.
Khodaparast, Navid; Hays, Seth A.; Sloan, Andrew M.; Fayyaz, Tabbassum; Hulsey, Daniel R.; Rennaker, Robert L.; Kilgard, Michael P.
2014-01-01
Neural plasticity is widely believed to support functional recovery following brain damage. Vagus nerve stimulation paired with different forelimb movements causes long-lasting map plasticity in rat primary motor cortex that is specific to the paired movement. We tested the hypothesis that repeatedly pairing vagus nerve stimulation with upper forelimb movements would improve recovery of motor function in a rat model of stroke. Rats were separated into three groups: vagus nerve stimulation during rehab, vagus nerve stimulation after rehab, and rehab alone. Animals underwent 4 training stages: shaping (motor skill learning), pre-lesion training, post-lesion training, and therapeutic training. Rats were given a unilateral ischemic lesion within motor cortex and implanted with a left vagus nerve cuff. Animals were allowed one week of recovery before post-lesion baseline training. During the therapeutic training stage, rats received vagus nerve stimulation paired with each successful trial. All seventeen trained rats demonstrated significant contralateral forelimb impairment when performing a bradykinesia assessment task. Forelimb function was recovered completely to pre-lesion levels when vagus nerve stimulation was delivered during rehab training. Alternatively, intensive rehab training alone (without stimulation) failed to restore function to pre-lesion levels. Delivering the same amount of stimulation after rehab training did not yield improvements compared to rehab alone. These results demonstrate that vagus nerve stimulation repeatedly paired with successful forelimb movements can improve recovery after motor cortex ischemia and may be a viable option for stroke rehabilitation. PMID:24553102
Sittivarakul, Wantanee; Benjhawaleemas, Thanyapat; Aui-Aree, Nipat; Jirarattanasopa, Pichai; Liabsuetrakul, Tippawan
2016-10-01
To calculate the incidence of, and to identify the risk factors for developing contralateral eye involvement among patients with AIDS and unilateral cytomegalovirus retinitis (CMV retinitis), who were treated, in the era of highly-active antiretroviral therapy (HAART), with repetitive intravitreal ganciclovir injections. The clinical records of 119 patients were included. The main outcome measurement was the occurrence of contralateral eye involvement. Over a mean follow-up period of 1.6 years, the overall incidence rate of contralateral involvement was 0.17/person-year. The cumulative incidence of contralateral involvement at 6 months and 1 year was 23.8% and 28.4%, respectively. Receiving HAART at the visit before the event was associated with a decreased risk of developing contralateral retinitis (hazard ratio [HR] = 0.26, P = 0.002). The use of HAART, associated with subsequent immune recovery, significantly reduced the incidence of contralateral eye involvement by approximately 75% among patients in our setting.
Slater, Lindsay V; Hart, Joseph M; Kelly, Adam R; Kuenze, Christopher M
2017-09-01
Anterior cruciate ligament (ACL) injury and ACL reconstruction (ACLR) result in persistent alterations in lower extremity movement patterns. The progression of lower extremity biomechanics from the time of injury has not been described. To compare the 3-dimensional (3D) lower extremity kinematics and kinetics of walking among individuals with ACL deficiency (ACLD), individuals with ACLR, and healthy control participants from 3 to 64 months after ACLR. We searched PubMed and Web of Science from 1970 through 2013. We selected only articles that provided peak kinematic and kinetic values during walking in individuals with ACLD or ACLR and comparison with a healthy control group or the contralateral uninjured limb. A total of 27 of 511 identified studies were included. Weighted means, pooled standard deviations, and 95% confidence intervals were calculated for the healthy control, ACLD, and ACLR groups at each reported time since surgery. The magnitude of between-groups (ACLR versus ACLD, control, or contralateral limb) differences at each time point was evaluated using Cohen d effect sizes and associated 95% confidence intervals. Peak knee-flexion angle (Cohen d = -0.41) and external knee-extensor moment (Cohen d = -0.68) were smaller in the ACLD than in the healthy control group. Peak knee-flexion angle (Cohen d range = -0.78 to -1.23) and external knee-extensor moment (Cohen d range = -1.39 to -2.16) were smaller in the ACLR group from 10 to 40 months after ACLR. Reductions in external knee-adduction moment (Cohen d range = -0.50 to -1.23) were present from 9 to 42 months after ACLR. Reductions in peak knee-flexion angle, external knee-flexion moment, and external knee-adduction moment were present in the ACLD and ACLR groups. This movement profile during the loading phase of gait has been linked to knee-cartilage degeneration and may contribute to the development of osteoarthritis after ACLR.
Does motor imagery share neural networks with executed movement: a multivariate fMRI analysis
Sharma, Nikhil; Baron, Jean-Claude
2013-01-01
Introduction: Motor imagery (MI) is the mental rehearsal of a motor first person action-representation. There is interest in using MI to access the motor network after stroke. Conventional fMRI modeling has shown that MI and executed movement (EM) activate similar cortical areas but it remains unknown whether they share cortical networks. Proving this is central to using MI to access the motor network and as a form of motor training. Here we use multivariate analysis (tensor independent component analysis-TICA) to map the array of neural networks involved during MI and EM. Methods: Fifteen right-handed healthy volunteers (mean-age 28.4 years) were recruited and screened for their ability to carry out MI (Chaotic MI Assessment). fMRI consisted of an auditory-paced (1 Hz) right hand finger-thumb opposition sequence (2,3,4,5; 2…) with two separate runs acquired (MI & rest and EM & rest: block design). No distinction was made between MI and EM until the final stage of processing. This allowed TICA to identify independent-components (IC) that are common or distinct to both tasks with no prior assumptions. Results: TICA defined 52 ICs. Non-significant ICs and those representing artifact were excluded. Components in which the subject scores were significantly different to zero (for either EM or MI) were included. Seven IC remained. There were IC's shared between EM and MI involving the contralateral BA4, PMd, parietal areas and SMA. IC's exclusive to EM involved the contralateral BA4, S1 and ipsilateral cerebellum whereas the IC related exclusively to MI involved ipsilateral BA4 and PMd. Conclusion: In addition to networks specific to each task indicating a degree of independence, we formally demonstrate here for the first time that MI and EM share cortical networks. This significantly strengthens the rationale for using MI to access the motor networks, but the results also highlight important differences. PMID:24062666
Tramer, Joseph S; Deneweth, Jessica M; Whiteside, David; Ross, James R; Bedi, Asheesh; Goulet, Grant C
2015-01-01
Femoroacetabular impingement (FAI) is a major cause of performance inhibition in elite-level athletes. The condition is characterized by pain, osseous abnormalities such as an increased alpha angle, and decreased range of motion at the affected hip joint. Arthroscopic surgical decompression is useful in reshaping the joint to alleviate symptoms. Functional kinematic outcomes of sport-specific movements after surgery, however, are presently unknown. The ability of an ice hockey goaltender to execute sport-specific movements would improve after arthroscopic surgery. Clinical research. Level 5. An ice hockey goaltender was evaluated after arthroscopic correction of FAI on the symptomatic hip. Passive range of motion and radiographic parameters were assessed from a computed tomography-derived 3-dimensional model. An on-ice motion capture system was also used to determine peak femoral shock and concurrent hip joint postures during the butterfly and braking movements. Maximum alpha angles were 47° in the surgical and 61° in the nonsurgical hip. Internal rotation range of motion was, on average, 23° greater in the surgically corrected hip compared with contralateral. Peak shock was lower in the surgical hip by 1.39 g and 0.86 g during butterfly and braking, respectively. At peak shock, the surgical hip demonstrated increased flexion, adduction, and internal rotation for both tasks (butterfly, 6.1°, 12.3°, and 30.8°; braking, 14.8°, 19.2°, and 41.4°). On-ice motion capture revealed performance differences between hips after arthroscopic surgery in a hockey goaltender. Range of motion and the patient's subjective assessment of hip function were improved in the surgical hip. While presenting as asymptomatic, it was discovered that the contralateral hip displayed measurements consistent with FAI. Therefore, consideration of preemptive treatment in a presently painless hip may be deemed beneficial for young athletes seeking a long career in sport, and future work is needed to determine the costs and benefits of such an approach. Surgical treatment of symptomatic FAI can achieve pain relief and improved kinematics of the hip joint with athletic activities. Additional studies are necessary to determine whether improved kinematics enhance the longevity of the native hip and alter the progression of osteoarthritic changes in those with asymptomatic FAI deformity. © 2015 The Author(s).
INFRARED- BASED BLINK DETECTING GLASSES FOR FACIAL PACING: TOWARDS A BIONIC BLINK
Frigerio, Alice; Hadlock, Tessa A; Murray, Elizabeth H; Heaton, James T
2015-01-01
IMPORTANCE Facial paralysis remains one of the most challenging conditions to effectively manage, often causing life-altering deficits in both function and appearance. Facial rehabilitation via pacing and robotic technology has great yet unmet potential. A critical first step towards reanimating symmetrical facial movement in cases of unilateral paralysis is the detection of healthy movement to use as a trigger for stimulated movement. OBJECTIVE To test a blink detection system that can be attached to standard eyeglasses and used as part of a closed-loop facial pacing system. DESIGN Standard safety glasses were equipped with an infrared (IR) emitter/detector pair oriented horizontally across the palpebral fissure, creating a monitored IR beam that became interrupted when the eyelids closed. SETTING Tertiary care Facial Nerve Center. PARTICIPANTS 24 healthy volunteers. MAIN OUTCOME MEASURE Video-quantified blinking was compared with both IR sensor signal magnitude and rate of change in healthy participants with their gaze in repose, while they shifted gaze from central to far peripheral positions, and during the production of particular facial expressions. RESULTS Blink detection based on signal magnitude achieved 100% sensitivity in forward gaze, but generated false-detections on downward gaze. Calculations of peak rate of signal change (first derivative) typically distinguished blinks from gaze-related lid movements. During forward gaze, 87% of detected blink events were true positives, 11% were false positives, and 2% false negatives. Of the 11% false positives, 6% were associated with partial eyelid closures. During gaze changes, false blink detection occurred 6.3% of the time during lateral eye movements, 10.4% during upward movements, 46.5% during downward movements, and 5.6% for movements from an upward or downward gaze back to the primary gaze. Facial expressions disrupted sensor output if they caused substantial squinting or shifted the glasses. CONCLUSION AND RELEVANCE Our blink detection system provides a reliable, non-invasive indication of eyelid closure using an invisible light beam passing in front of the eye. Future versions will aim to mitigate detection errors by using multiple IR emitter/detector pairs mounted on the glasses, and alternative frame designs may reduce shifting of the sensors relative to the eye during facial movements. PMID:24699708
Pre-movement gating of somatosensory evoked potentials in Segawa disease.
Kimura, Kazue; Nagao, Yuri; Hachimori, Kei; Hayashi, Masaharu; Nomura, Yoshiko; Segawa, Masaya
2016-01-01
Segawa disease (SD), an autosomal dominant dopa-responsive dystonia with marked diurnal fluctuation, can be clinically classified into the postural dystonia type (SD-P) and action dystonia type (SD-A). Compared to SD-A, SD-P has an earlier onset and is characterized by postural dystonia. In SD-A, along with postural dystonia, dystonic movements appear in late childhood. To evaluate the differences between these two types of SD, we studied the gating of SEPs, which is useful to investigate sensory-motor integration and might be one of the methods to detect the thalamo-cortical involvement. Fourteen patients with SD (11-63 years) and 18 age-matched normal subjects (11-51 years) were studied. Among the 14 patients with SD, 8 patients had SD-P and 6 had SD-A. Using median nerve stimulation at the wrist, the amplitude of the frontal N30 (FrN30) was compared between pre-movement and rest conditions. We found that the amplitude of the contralateral FrN30 was attenuated before movement in normal controls and in the majority of both SD types. On the other hand, the pre-movement-rest amplitude ratio in patients with SD-A was significantly larger than in patients with SD-P (P=0.0025). No significant differences were observed in the pre-movement-rest ratio between SD-P and normal subjects. The preservation or impairment of pre-movement gating shown here suggests a physiological difference between the two types of SD. More specifically, sensorimotor integration of the basal ganglia-thalamo-cortical circuits may be intact in SD-P, but are affected in SD-A. We discuss the different pathophysiology seen in the different phenotype of SD based on the different developmental involvement in the basal ganglia. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Snaebjörnsson, Thorkell; Hamrin Senorski, Eric; Sundemo, David; Svantesson, Eleonor; Westin, Olof; Musahl, Volker; Alentorn-Geli, Eduard; Samuelsson, Kristian
2017-12-01
The impact of different surgical techniques in index ACL reconstruction for patients undergoing contralateral ACL reconstruction was investigated. The study was based on data from the Swedish National Knee Ligament Register. Patients undergoing index ACL reconstruction and subsequent contralateral ACL reconstruction using hamstring graft under the study period were included. The following variables were evaluated: age at index surgery, gender, concomitant meniscal or cartilage injury registered at index injury, transportal femoral bone tunnel drilling and transtibial femoral bone tunnel drilling. The end-point of primary contralateral ACL surgery was analysed as well as the time-to-event outcomes using survivorship methods including Kaplan-Meier estimation and Cox proportional hazards regression models. A total of 17,682 patients [n = 10,013 males (56.6%) and 7669 females (43.4%)] undergoing primary ACL reconstruction from 1 January 2005 through 31 December 2014 were included in the study. A total of 526 (3.0%) patients [n = 260 males (49.4%) and 266 females (50.6%)] underwent primary contralateral ACL reconstruction after index ACL reconstruction during the study period. Females had a 33.7% greater risk of contralateral ACL surgery [HR 1.337 (95% CI 1.127-1.586); (P = 0 0.001)]. The youngest age group (13-15 years) showed an increased risk of contralateral ACL surgery compared with the reference (36-49) age group [HR 2.771 (95% CI 1.456-5.272); (P = 0.002)]. Decreased risk of contralateral ACL surgery was seen amongst patients with concomitant cartilage injury at index surgery [HR 0.765 (95% CI 0.623-0.939); (P = 0.010)]. No differences in terms of the risk of contralateral ACL surgery were found between anatomic and non-anatomic techniques of primary single-bundle ACL reconstruction, comparing transportal anatomic technique to transtibial non-anatomic, anatomic and partial-anatomic. Age and gender were identified as risk factors for contralateral ACL reconstruction; hence young individuals and females were more prone to undergo contralateral ACL reconstruction. Patients with concomitant cartilage injury at index ACL reconstruction had lower risk for contralateral ACL reconstruction. No significant differences between various ACL reconstruction techniques could be related to increased risk of contralateral ACL reconstruction. Retrospective Cohort Study, Level III.
Are the yips a task-specific dystonia or "golfer's cramp"?
Adler, Charles H; Crews, Debra; Kahol, Kanav; Santello, Marco; Noble, Brie; Hentz, Joseph G; Caviness, John N
2011-09-01
This study compared golfers with and without the yips using joint movement and surface electromyographic detectors. Fifty golfers (25 with and 25 without complaints of the yips) were studied while putting. All putts were videotaped. Surface electromyography assessed arm cocontraction. A CyberGlove II (Immersion Technologies, Palo Alto, CA) assessed right-arm angular movements. Primary analysis was done by subjective complaint of the yips, whereas secondary analysis was done by video evidence of an involuntary movement. When grouped by subjective complaints, there were no differences in any movement parameter. When grouped by video evidence of an involuntary movement, yips cases had more (P < 0.001) angular movement in wrist pronation/supination and a trend (P = 0.08) for wrist flexor/extensor cocontraction (yips: 7 of 17, 41.2%; no yips: 6 of 33, 18.2%). Golfers with video evidence of an involuntary movement while putting have excessive rotation of the right wrist in a pronation/supination motion and, as previously reported, a trend for wrist flexor/extensor cocontraction. Copyright © 2011 Movement Disorder Society.
Suzuki, D A; Yamada, T; Hoedema, R; Yee, R D
1999-09-01
Anatomic and neuronal recordings suggest that the nucleus reticularis tegmenti pontis (NRTP) of macaques may be a major pontine component of a cortico-ponto-cerebellar pathway that subserves the control of smooth-pursuit eye movements. The existence of such a pathway was implicated by the lack of permanent pursuit impairment after bilateral lesions in the dorsolateral pontine nucleus. To provide more direct evidence that NRTP is involved with regulating smooth-pursuit eye movements, chemical lesions were made in macaque NRTP by injecting either lidocaine or ibotenic acid. Injection sites first were identified by the recording of smooth-pursuit-related modulations in neuronal activity. The resulting lesions caused significant deficits in both the maintenance and the initiation of smooth-pursuit eye movements. After lesion formation, the gain of constant-velocity, maintained smooth-pursuit eye movements decreased, on the average, by 44%. Recovery of the ability to maintain smooth-pursuit eye movements occurred over approximately 3 days when maintained pursuit gains attained normal values. The step-ramp, "Rashbass" task was used to investigate the effects of the lesions on the initiation of smooth-pursuit eye movements. Eye accelerations averaged over the initial 80 ms of pursuit initiation were determined and found to be decremented, on the average, by 48% after the administration of ibotenic acid. Impairments in the initiation and maintenance of smooth-pursuit eye movements were directional in nature. Upward pursuit seemed to be the most vulnerable and was impaired in all cases independent of lesioning agent and type of pursuit investigated. Downward smooth pursuit seemed more resistant to the effects of chemical lesions in NRTP. Impairments in horizontal tracking were observed with examples of deficits in ipsilaterally and contralaterally directed pursuit. The results provide behavioral support for the physiologically and anatomic-based conclusion that NRTP is a component of a cortico-ponto-cerebellar circuit that presumably involves the pursuit area of the frontal eye field (FEF) and projects to ocular motor-related areas of the cerebellum. This FEF-NRTP-cerebellum path would parallel a middle and medial superior temporal cerebral cortical area-dorsolateral pontine nucleus-cerebellum pathway also known to be involved with regulating smooth-pursuit eye movements.
McCluskey, Meaghan K; Cullen, Kathleen E
2007-04-01
Coordinated movements of the eye, head, and body are used to redirect the axis of gaze between objects of interest. However, previous studies of eye-head gaze shifts in head-unrestrained primates generally assumed the contribution of body movement to be negligible. Here we characterized eye-head-body coordination during horizontal gaze shifts made by trained rhesus monkeys to visual targets while they sat upright in a standard primate chair and assumed a more natural sitting posture in a custom-designed chair. In both postures, gaze shifts were characterized by the sequential onset of eye, head, and body movements, which could be described by predictable relationships. Body motion made a small but significant contribution to gaze shifts that were > or =40 degrees in amplitude. Furthermore, as gaze shift amplitude increased (40-120 degrees ), body contribution and velocity increased systematically. In contrast, peak eye and head velocities plateaued at velocities of approximately 250-300 degrees /s, and the rotation of the eye-in-orbit and head-on-body remained well within the physical limits of ocular and neck motility during large gaze shifts, saturating at approximately 35 and 60 degrees , respectively. Gaze shifts initiated with the eye more contralateral in the orbit were accompanied by smaller body as well as head movement amplitudes and velocities were greater when monkeys were seated in the more natural body posture. Taken together, our findings show that body movement makes a predictable contribution to gaze shifts that is systematically influenced by factors such as orbital position and posture. We conclude that body movements are part of a coordinated series of motor events that are used to voluntarily reorient gaze and that these movements can be significant even in a typical laboratory setting. Our results emphasize the need for caution in the interpretation of data from neurophysiological studies of the control of saccadic eye movements and/or eye-head gaze shifts because single neurons can code motor commands to move the body as well as the head and eyes.
Nava, Maurizio B; Rocco, Nicola; Catanuto, Giuseppe; Falco, Giuseppe; Capalbo, Emanuela; Marano, Luigi; Bordoni, Daniele; Spano, Andrea; Scaperrotta, Gianfranco
2015-08-01
The ultimate goal of breast reconstruction is to achieve symmetry with the contra-lateral breast. Contra-lateral procedures with wide parenchymal rearrangements are suspected to impair mammographic surveillance. This study aims to evaluate the impact on mammographic detection of mastopexies and breast reductions for contralateral adjustment in breast reconstruction. We retrospectively evaluated 105 women affected by uni-lateral breast cancer who underwent mastectomy and immediate two-stage reconstruction between 2002 and 2007. We considered three groups according to the contra-lateral reshaping technique: mastopexy or breast reduction with inferior dermoglandular flap (group 1); mastopexy or breast reduction without inferior dermoglandular flap (group 2); no contra-lateral reshaping (group 3). We assessed qualitative mammographic variations and breast density in the three groups. Statistically significant differences have been found when comparing reshaped groups with non reshaped groups regarding parenchymal distortions, skin thickening and stromal edema, but these differences did not affect cancer surveillance. The surveillance mammography diagnostic accuracy in contra-lateral cancer detection was not significantly different between the three groups (p = 0.56), such as the need for MRI for equivocal findings at mammographic contra-lateral breast (p = 0.77) and the need for core-biopsies to confirm mammographic suspect of contra-lateral breast cancer (p = 0.90). This study confirms previous reports regarding the safety of mastopexies and breast reductions when performed in the setting of contra-lateral breast reshaping after breast reconstruction. Mammographic accuracy, sensitivity and specificity are not affected by the glandular re-arrangement. These results provide a further validation of the safety of current reconstructive paradigms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rodriguez-Lorenzo, Andres; Audolfsson, Thorir; Wong, Corrine; Cheng, Angela; Arbique, Gary; Nowinski, Daniel; Rozen, Shai
2015-10-01
The aim of this study was to evaluate the contribution of a single unilateral facial vein in the venous outflow of total-face allograft using three-dimensional computed tomographic imaging techniques to further elucidate the mechanisms of venous complications following total-face transplant. Full-face soft-tissue flaps were harvested from fresh adult human cadavers. A single facial vein was identified and injected distally to the submandibular gland with a radiopaque contrast (barium sulfate/gelatin mixture) in every specimen. Following vascular injections, three-dimensional computed tomographic venographies of the faces were performed. Images were viewed using TeraRecon Software (Teracon, Inc., San Mateo, CA, USA) allowing analysis of the venous anatomy and perfusion in different facial subunits by observing radiopaque filling venous patterns. Three-dimensional computed tomographic venographies demonstrated a venous network with different degrees of perfusion in subunits of the face in relation to the facial vein injection side: 100% of ipsilateral and contralateral forehead units, 100% of ipsilateral and 75% of contralateral periorbital units, 100% of ipsilateral and 25% of contralateral cheek units, 100% of ipsilateral and 75% of contralateral nose units, 100% of ipsilateral and 75% of contralateral upper lip units, 100% of ipsilateral and 25% of contralateral lower lip units, and 50% of ipsilateral and 25% of contralateral chin units. Venographies of the full-face grafts revealed better perfusion in the ipsilateral hemifaces from the facial vein in comparison with the contralateral hemifaces. Reduced perfusion was observed mostly in the contralateral cheek unit and contralateral lower face including the lower lip and chin units. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Jepsen, H; Gaehtgens, P
1993-09-01
Laser-Doppler (LD) fluxmetry was performed in the palmar finger skin of healthy subjects to study the mechanisms contributing to the postural vascular response. Local transmural pressure in the skin blood vessels of the region studied was altered for 1 min in two experimental series either by passive movement of the arm to different vertical hand positions relative to heart level or by application of external pressure (-120-180 mmHg) to the finger. Heart and respiratory rate, arterial blood pressure, and LD flux in the contralateral finger (kept at heart level) were measured. The measurements suggest a compound reaction of local (myogenic) and systemic (neurogenic) mechanisms: the local regulatory component appears as a graded active vascular response elicited by passive vessel distension or compression. A systemic component, associated with a single deep inspiration, is frequently observed during the actual movement of the arm. In addition, prolonged holding of the test hand in a given vertical position also elicits a delayed vascular response in the control hand at heart level, which may be generated by volume receptors in the intrathoracic low-pressure system.
Kubota, M; Sakakihara, Y; Uchiyama, Y; Nara, A; Nagata, T; Nitta, H; Ishimoto, K; Oka, A; Horio, K; Yanagisawa, M
2000-01-01
A non-contact communication system was developed for a ventilator-assisted patient with Werdnig-Hoffmann disease who had lost all voluntary movements except for those of the eye. The system detects the extraocular movements and converts them to either a 'yes' signal (produced by one lateral eyeball movement) or a 'no' signal (produced by two successive lateral eyeball movements) using a video camera placed outside the patient's visual field. The patient is thus able to concentrate on performing a task without any intrusion from the detection system. Once the setting conditions of the device have been selected, there is no need for any resetting, as the patient is unable to move his body. In addition to playing television games, the child can use the device to select television channels, compose music, and learn written Japanese and Chinese characters. This seems to broaden the patient's daily world and promote mental development.
Systems and methods for retaining and removing irradiation targets in a nuclear reactor
Runkle, Gary A.; Matsumoto, Jack T.; Dayal, Yogeshwar; Heinold, Mark R.
2015-12-08
A retainer is placed on a conduit to control movement of objects within the conduit in access-restricted areas. Retainers can prevent or allow movement in the conduit in a discriminatory fashion. A fork with variable-spacing between prongs can be a retainer and be extended or collapsed with respect to the conduit to change the size of the conduit. Different objects of different sizes may thus react to the fork differently, some passing and some being blocked. Retainers can be installed in inaccessible areas and allow selective movement in remote portions of conduit where users cannot directly interface, including below nuclear reactors. Position detectors can monitor the movement of objects through the conduit remotely as well, permitting engagement of a desired level of restriction and object movement. Retainers are useable in a variety of nuclear power plants and with irradiation target delivery, harvesting, driving, and other remote handling or robotic systems.
Contralateral pulmonary metastases in lung cancer
Onuigbo, Wilson I. B.
1974-01-01
Onuigbo, W. I. B. (1974).Thorax, 29, 132-133. Contralateral pulmonary metastases in lung cancer. It has long been known that lung cancer may attack many organs and yet spare the opposite lung. In 100 cases of this tumour studied at necropsy, only 22 showed contralateral pulmonary spread. Contralateral deposits are generally small and may be related to damaged tissues. Although tissue unsuitability is supposed to underlie the limitation of metastases in recipient organs, this does not apply to the contralateral lung. Since lung tissue is readily accessible to bloodborne cancer cells, research should be directed towards explaining the paradoxical paucity of the metastases. PMID:4825544
Angular Alignment Testing of Laser Mirror Mounts Under Temperature Cycling
NASA Technical Reports Server (NTRS)
Bullock, K. T.; DeYoung, R. J.; Sandford, S. P.
1997-01-01
A number of commercial and custom-built laser mirror mounts were tested for angular alignment sensitivity during temperature cycling from room temperature (20 C) to 40 C. A Nd:YAG laser beam was reflected off a mirror that was held by the mount under test and was directed to a position-sensitive detector. Horizontal and vertical movement of the reflected beam was recorded, and the angular movement, as a function of temperature (coefficient of thermal tilt (CTT)) was calculated from these data. In addition, the amount of hysteresis in the movement after cycling from room temperature to 40 C and back was determined. All commercial mounts showed greater angular movement than the simpler National Aeronautics and Space Administration Lidar Atmospheric Sensing Experiment (NASA LASE) custom mirror mounts.
Combined analysis of cortical (EEG) and nerve stump signals improves robotic hand control.
Tombini, Mario; Rigosa, Jacopo; Zappasodi, Filippo; Porcaro, Camillo; Citi, Luca; Carpaneto, Jacopo; Rossini, Paolo Maria; Micera, Silvestro
2012-01-01
Interfacing an amputee's upper-extremity stump nerves to control a robotic hand requires training of the individual and algorithms to process interactions between cortical and peripheral signals. To evaluate for the first time whether EEG-driven analysis of peripheral neural signals as an amputee practices could improve the classification of motor commands. Four thin-film longitudinal intrafascicular electrodes (tf-LIFEs-4) were implanted in the median and ulnar nerves of the stump in the distal upper arm for 4 weeks. Artificial intelligence classifiers were implemented to analyze LIFE signals recorded while the participant tried to perform 3 different hand and finger movements as pictures representing these tasks were randomly presented on a screen. In the final week, the participant was trained to perform the same movements with a robotic hand prosthesis through modulation of tf-LIFE-4 signals. To improve the classification performance, an event-related desynchronization/synchronization (ERD/ERS) procedure was applied to EEG data to identify the exact timing of each motor command. Real-time control of neural (motor) output was achieved by the participant. By focusing electroneurographic (ENG) signal analysis in an EEG-driven time window, movement classification performance improved. After training, the participant regained normal modulation of background rhythms for movement preparation (α/β band desynchronization) in the sensorimotor area contralateral to the missing limb. Moreover, coherence analysis found a restored α band synchronization of Rolandic area with frontal and parietal ipsilateral regions, similar to that observed in the opposite hemisphere for movement of the intact hand. Of note, phantom limb pain (PLP) resolved for several months. Combining information from both cortical (EEG) and stump nerve (ENG) signals improved the classification performance compared with tf-LIFE signals processing alone; training led to cortical reorganization and mitigation of PLP.
Acid and Alkaline Phosphatase Levels in GCF during Orthodontic Tooth Movement
Farahani, Mohammad; Safavi, Seyed Mohammadreza; Dianat, Omid; Khoramian Tusi, Somayeh; Younessian, Farnaz
2015-01-01
Statement of the Problem The present constituents of gingival crevicular fluid (GCF) can reflect the changes occurring in underlying tissues. Considering variety of biologic bone markers, alkaline phosphatase and acid phosphatase have been examined as bone turn over markers in orthodontic tooth movement. Purpose The current study designed in a longitudinal pattern to determine the changes of acid and alkaline phosphatase (ACP & ALP) in GCF during orthodontic tooth movement. Materials and Method An upper canines from twelve patients (mean age: 14±2 years) undergoing extraction orthodontic treatment for distal movement served as the test tooth (DC), and its contralateral (CC) and antagonist (AC) canines were used as controls. The CC was included in orthodontic appliance without orthodontic force; the AC was free from any orthodontic appliance. The GCF around the experimental teeth was harvested from mesial and distal tooth sites immediately before appliance placement (T0), and 14 (T2) and 28 days (T3) after it and ALP and ACP concentration were determined spectrophotometrically. Results ALP concentration was elevated significantly in DC and CC groups at days 14 and 28 compared with the AC. In DC group, the ALP was significantly greater in mesial sites than distal site, while no significant changes were found between both sites of CC. The peak level of ALP was observed in mesial sites of DC at T2. Regarding ACP, significant elevation of this enzyme was seen in DC group both in mesial and distal sites at T2 and T3. The peak level of this enzyme was seen at T2. Conclusion Monitoring simultaneous changes of ALP and ACP levels in GCF can reflect the tissue responses occur in periodontium during bone formation and bone resorption during orthodontic tooth movement, respectively. PMID:26535403
Patel, Jigna; Qiu, Qinyin; Yarossi, Mathew; Merians, Alma; Massood, Supriya; Tunik, Eugene; Adamovich, Sergei; Fluet, Gerard
2016-01-01
Purpose Explore the potential benefits of using priming methods prior to an active hand task in the acute phase post-stroke in persons with severe upper extremity hemiparesis. Methods Five individuals were trained using priming techniques including virtual reality (VR) based visual mirror feedback and contralaterally controlled passive movement strategies prior to training with an active pinch force modulation task. Clinical, kinetic, and neurophysiological measurements were taken pre and post the training period. Clinical measures were taken at six months post training. Results The two priming simulations and active training were well tolerated early after stroke. Priming effects were suggested by increased maximal pinch force immediately after visual and movement based priming. Despite having no clinically observable movement distally, the subjects were able to volitionally coordinate isometric force and muscle activity (EMG) in a pinch tracing task. The Root Mean Square Error (RMSE) of force during the pinch trace task gradually decreased over the training period suggesting learning may have occurred. Changes in motor cortical neurophysiology were seen in the unaffected hemisphere using Transcranial Magnetic Stimulation (TMS) mapping. Significant improvements in motor recovery as measured by the Action Research Arm Test (ARAT) and the Upper Extremity Fugl Meyer Assessment (UEFMA) were demonstrated at six months post training by three of the five subjects. Conclusion This study suggests that an early hand-based intervention using visual and movement based priming activities and a scaled motor task allows participation by persons without the motor control required for traditionally presented rehabilitation and testing. PMID:27636200
Modeling the Effects of Mirror Misalignment in a Ring Imaging Cherenkov Detector
NASA Astrophysics Data System (ADS)
Hitchcock, Tawanda; Harton, Austin; Garcia, Edmundo
2012-03-01
The Very High Momentum Particle Identification Detector (VHMPID) has been proposed for the ALICE experiment at the Large Hadron Collider (LHC). This detector upgrade is considered necessary to study jet-matter interaction at high energies. The VHMPID identifies charged hadrons in the 5 GeV/c to 25 GeV/c momentum range. The Cherenkov photons emitted in the VHMPID radiator are collected by spherical mirrors and focused onto a photo-detector plane forming a ring image. The radius of this ring is related to the Cherenkov angle, this information coupled with the particle momentum allows the particle identification. A major issue in the RICH detector is that environmental conditions can cause movements in mirror position. In addition, chromatic dispersion causes the refractive index to shift, altering the Cherenkov angle. We are modeling a twelve mirror RICH detector taking into account the effects of mirror misalignment and chromatic dispersion using a commercial optical software package. This will include quantifying the effects of both rotational and translational mirror misalignment for the initial assembly of the module and later on particle identification.
Devoize, Laurent; Doméjean, Sophie; Melin, Céline; Raboisson, Patrick; Artola, Alain; Dallel, Radhouane
2010-07-09
The organization of efferent projections from the spinal trigeminal nucleus oralis (Sp5O) to the spinal cord in the rat was studied using the anterograde tracer Phaseolus vulgaris leucoagglutinin. Sp5O projections to the spinal cord are restricted to the cervical cord. No labeled terminal can be detected in the thoracic and lumbar cord. The organization of these projections happens to critically depend on the dorso-ventral location of the injection site. On the one hand, the dorsal part of the Sp5O projects to the medial part of the dorsal horn (laminae III-V) at the C1 level, on the ipsilateral side, and to the ventral horn, on both sides but mainly on the ipsilateral one. Ipsilateral labeled terminals are distributed throughout laminae VII to IX but tend to cluster around the dorso-medial motor nuclei, especially at C3-C5 levels. Within the contralateral ventral horn, label terminals are found particularly in the region of the ventro-medial motor nucleus. This projection extends as far caudally as C3 or C4 level. On the other hand, the ventral part of the Sp5O projects to the lateral part of the dorsal horn (laminae III-V) at the C1 level, on the ipsilateral side, and to the ventral horn, on both sides but mainly on the contralateral one. Contralateral labeled terminals are distributed within the region of the dorso- and ventro-medial motor nuclei at C1-C4 levels whereas they are restricted to the dorso-medial motor nucleus at C5-C8 levels. These findings suggest that Sp5O is involved in the coordination of neck movements and in the modulation of incoming sensory information at the cervical spinal cord. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Exploring conflict- and target-related movement of visual attention.
Wendt, Mike; Garling, Marco; Luna-Rodriguez, Aquiles; Jacobsen, Thomas
2014-01-01
Intermixing trials of a visual search task with trials of a modified flanker task, the authors investigated whether the presentation of conflicting distractors at only one side (left or right) of a target stimulus triggers shifts of visual attention towards the contralateral side. Search time patterns provided evidence for lateral attention shifts only when participants performed the flanker task under an instruction assumed to widen the focus of attention, demonstrating that instruction-based control settings of an otherwise identical task can impact performance in an unrelated task. Contrasting conditions with response-related and response-unrelated distractors showed that shifting attention does not depend on response conflict and may be explained as stimulus-conflict-related withdrawal or target-related deployment of attention.
Improved dual-loop detection system for collecting real-time truck data
DOT National Transportation Integrated Search
2005-02-01
The WSDOTs dual-loop detectors capability of measuring vehicle lengths makes the dual-loop detection system a potential real-time truck data source for freight movement study. However, a previous study found the WSDOT dual-loop detection system...
Status of the contralateral rotator cuff in patients undergoing rotator cuff repair.
Ro, Kyung-Han; Park, Jong-Hoon; Lee, Soon-Hyuck; Song, Dong-Ik; Jeong, Ha-Joon; Jeong, Woong-Kyo
2015-05-01
Although the prevalence of rotator cuff tear (RCT) in the general population has been analyzed, little information is available on the status of the opposite-side rotator cuff in patients who have undergone arthroscopic rotator cuff repair. To identify the characteristics of the contralateral shoulder and to identify factors associated with RCT of the contralateral shoulder in patients who underwent surgery for symptomatic RCT. The hypothesis was that the prevalence of RCT in the contralateral shoulder would be higher in patients with increasingly larger cuff tears requiring surgical intervention. Case series; Level of evidence, 4. The study cohort consisted of 140 patients with RCT who underwent arthroscopic rotator cuff repair. Opposite-shoulder rotator cuff tendons of all patients were evaluated by ultrasonography. Demographic information and factors related to contralateral RCT were investigated, and risk factors associated with contralateral RCT were assessed. Of the 140 patients who underwent arthroscopic rotator cuff repair, 54 (38.6%) had an RCT of the contralateral shoulder. Of 51 patients with partial-thickness and small-sized full-thickness tears of the operated shoulder, 35 (68.6%) had no tears; 14 (27.5%) had partial-thickness tears; and 2 (3.9%) had small-sized full-thickness tears of the contralateral shoulder. Of 75 patients with medium-sized full-thickness tears, 43 (57.3%) had no tears; 12 (16%) had partial-thickness tears; and 20 (26.7%) had full-thickness tears of the contralateral shoulder. Of 14 patients with large to massive full-thickness tears, 8 (57.1%) had no tears; 1 (7.1%) had a partial-thickness tear; and 5 (35.7%) had full-thickness tears of the contralateral shoulder. The prevalence of RCT of the contralateral shoulder differed significantly among groups classified by tear size (P=.007). The mean American Shoulder and Elbow Surgeons score was significantly lower in the RCT than in the nontear group (55.8±16.9 vs 61.6±13.3; P=.03). Of 29 subjects with symptomatic tears involving the nondominant arm, 17 (58.6%) had contralateral asymptomatic RCT, compared with 37 of 111 (33.3%) subjects with symptomatic tears involving the dominant arm (P=.007). The prevalence of RCT of the contralateral asymptomatic shoulder tends to be higher in patients with more symptomatic RCT on one side, in patients with medium-sized or larger RCT in the operated shoulder, and in patients with symptomatic RCT in the nondominant arm. © 2015 The Author(s).
Le, Trong Binh; Lee, Taeg Ki; Park, Keun-Myoung; Jeon, Yong Sun; Hong, Kee Chun; Cho, Soon Gu
2018-04-25
To investigate the incidence and potential causes of contralateral deep vein thrombosis (DVT) after common iliac vein (CIV) stent placement in patients with May-Thurner syndrome (MTS). Data of 111 patients (women: 73%) who had CIV stent implantation for symptomatic MTS at a single center were retrospectively analyzed. Mean patient age was 63.1 ± 15.2 years. Median follow-up was 36 months (range, 1-142 months). Stent location was determined by venogram and classified as extended to the inferior vena cava (IVC), covered the confluence, or confined to the iliac vein. Potential causes of contralateral DVT were presumed based on venographic findings. The relationship between stent location and contralateral DVT was analyzed. Ten patients (9%, men/women: 4/6) exhibited contralateral DVT at a median timing of 40 months (range, 6-98 months). Median age was 69 years (range, 42-85 years). Median follow-up was 73.5 months (range, 20-134 months). Potential causes were venous intimal hyperplasia (VIH) (n = 7), "jailing" (n = 2), and indeterminate (n = 1). All patients with VIH had previous CIV stents overextended to the IVC. Overextension of CIV stent was associated with contralateral DVT (P < .001). The primary patency rate of the contralateral CIV stent was 70% at 20 months. Contralateral DVT after CIV stent implantation has a relatively high incidence and often occurs late during follow-up. Overextension of the CIV stent to the IVC is associated with development of contralateral DVT, and VIH should be considered a potential cause. Copyright © 2018 SIR. Published by Elsevier Inc. All rights reserved.
Yang, Yang; Liu, Zhong-Yu; Zhang, Liang-Ming; Dong, Jian-Wen; Xie, Pei-Gen; Chen, Rui-Qiang; Yang, Bu; Liu, Chang; Liu, Bin; Rong, Li-Min
2017-12-08
Microendoscopy-assisted minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) is an advantageous method for treating lumbar degenerative disease; however, some patients show contralateral radiculopathy postoperatively. This study aims to investigate its risk factor. A total of 130 cases who underwent microendoscopy-assisted MIS-TLIF at L4-5 level were divided into symptomatic and asymptomatic groups according to the presence of postoperative contralateral radiculopathy. Both preoperative and postoperative radiographic parameters, as well as their changes were compared between the two groups, including lumbar lordosis (LL), surgical segmental angle (SSA), disc height (DH), contralateral foramen area (CFA) and contralateral canal area (CCA). Screw breach on contralateral L4 pedicle and decompression method (ipsilateral or bilateral canal decompression through unilateral route) were also analyzed as potential risk factors. Receiver operating characteristic (ROC) curve was drawn for the risk factor to determine the optimal threshold for predicting postoperative contralateral radiculopathy. Besides, clinical outcome assessment, involving Visual Analog Score (VAS) for back and leg, Japanese Orthopaedics Association Score (JOA) and Oswestry Disability Index (ODI), was also compared between the two groups before surgery and at final follow-up (at least 3 months after the surgery for asymptomatic patients or final treatments of contralateral radiculopathy for symptomatic cases). Postoperative contralateral radiculopathy occurred in 11 (8.5%) of the 130 patients. Both preoperative and postoperative CFA as well as its change were significantly decreased in symptomatic group compared with asymptomatic group (all P < 0.05). For the remaining four parameters (LL, SSA, DH, CCA), their preoperative, postoperative and change values showed no statistical difference between the two groups (all P > 0.05). Neither screw breach nor decompression method revealed statistical association with this complication (both P > 0.05). Based on ROC curve, the optimal threshold of preoperative CFA was 0.76 cm 2 . At final follow-up, significant improvement in VAS (back and leg), JOA and ODI was observed in both groups compared with preoperative baseline (all P < 0.05), while no difference was found between the two groups (all P > 0.05). Preoperative contralateral foramen stenosis is the risk factor of contralateral radiculopathy following microendoscopy-assisted MIS-TLIF. If preoperative CFA at L4-5 level is not larger than 0.76 cm 2 , prophylactic measures, including both indirect and direct decompression of contralateral foramen, are recommended.
Strichartz, Gary R; Khodorova, Alla; Wang, Jeffrey Chi-Fei; Chen, Yu-Wen; Huang, Chuan-Chin
2015-10-01
Contralateral hyperalgesia, occurring after unilateral injury, is usually explained by central sensitization in spinal cord and brain. We previously reported that injection of endothelin-1 (ET-1) into one rat hindpaw induces prolonged mechanical and chemical sensitization of the contralateral hindpaw. Here, we examined the role of contralateral efferent activity in this process. ET-1 (2 nmol, 10 μL) was injected subcutaneously into the plantar surface of right (ipsilateral) hindpaw (ILP), and the thermal response latency and mechanical threshold for nocifensive withdrawal were determined by the use of, respectively, plantar radiant heating and von Frey filaments, for both ILP and contralateral hindpaws (CLP). Either paw was anesthetized for 60 minutes by direct injection of bupivacaine (0.25%, 40 μL), 30 minutes before ET-1. Alternatively, the contralateral sciatic nerve was blocked for 6 to 12 hours by percutaneous injection of bupivacaine-releasing microspheres 30 minutes before injection of ET-1. Systemic actions of these bupivacaine formulations were simulated by subcutaneous injection at the nuchal midline. After the injection of ET-1, the mechanical threshold of both ILP and CLP decreased by 2 hours, appeared to be lowest around 24 hours, and recovered through 48 hours to preinjection baseline at 72 hours. These hypersensitive responses were suppressed by bupivacaine injected into the ipsilateral paw before ET-1. Injection of the CLP by bupivacaine also suppressed the hypersensitivity of the CLP at all test times, and that of the ILP, except at 2 hours when it increased the sensitivity. This same pattern of change occurred when the contralateral sciatic nerve was blocked by bupivacaine-releasing microspheres. The systemic actions of these bupivacaine formulations were much smaller and only reached significance at 24 hours post-ET-1. Thermal hypersensitivity after ET-1 injection also occurred in both ILP and CLP and showed the same pattern in response to the 2 contralateral anesthetic procedures. These results show that efferent transmission through the contralateral innervation into the paw is necessary for contralateral sensitization by ET-1, suggesting that the release of substances by distal nerve endings is involved. The release of substances in the periphery is essential for contralateral sensitization by ET-1 and may also contribute to secondary hyperalgesia, occurring at loci distant from the primary injury, that occurs after surgery or nerve damage.
Amplitude and timing of somatosensory cortex activity in Task Specific Focal Hand Dystonia
Dolberg, Rebecca; Hinkley, Leighton B. N.; Honma, Susanne; Zhu, Zhao; Findlay, Anne M.; Byl, Nancy N.; Nagarjan, Srikantan S.
2011-01-01
Objective Task-specific focal hand dystonia (tspFHD) is a movement disorder diagnosed in individuals performing repetitive hand behaviors. The extent to which processing anomalies in primary sensory cortex extend to other regions or across the two hemispheres is presently unclear. Methods In response to low/high rate and novel tactile stimuli on the affected and unaffected hands, magnetoencephalography (MEG) was used to elaborate activity timing and amplitude in the primary somatosensory (S1) and secondary somatosensory/parietal ventral (S2/PV) cortices. MEG and clinical performance measures were collected from thirteen patients and matched controls. Results Compared to controls, subjects with tspFHD had increased response amplitude in S2/PV bilaterally in response to high rate and novel stimuli. Subjects with tspFHD also showed increased response latency (low rate, novel) of the affected digits in contralateral S1. For high rate, subjects with tspFHD showed increased response latency in ipsilateral S1 and S2/PV bilaterally. Activation differences correlated with functional sensory deficits (predicting a latency shift in S1), motor speed and muscle strength. Conclusions There are objective differences in the amplitude and timing of activity for both hands across contralateral and ipsilateral somatosensory cortex in patients with tspFHD. Significance Knowledge of cortical processing abnormalities across S1 and S2/PV in dystonia should be applied towards the development of learning based sensorimotor interventions. PMID:21802357
Apparatus and method for high dose rate brachytherapy radiation treatment
Macey, Daniel J.; Majewski, Stanislaw; Weisenberger, Andrew G.; Smith, Mark Frederick; Kross, Brian James
2005-01-25
A method and apparatus for the in vivo location and tracking of a radioactive seed source during and after brachytherapy treatment. The method comprises obtaining multiple views of the seed source in a living organism using: 1) a single PSPMT detector that is exposed through a multiplicity of pinholes thereby obtaining a plurality of images from a single angle; 2) a single PSPMT detector that may obtain an image through a single pinhole or a plurality of pinholes from a plurality of angles through movement of the detector; or 3) a plurality of PSPMT detectors that obtain a plurality of views from different angles simultaneously or virtually simultaneously. The plurality of images obtained from these various techniques, through angular displacement of the various acquired images, provide the information required to generate the three dimensional images needed to define the location of the radioactive seed source within the body of the living organism.
A Review of Accelerometry-Based Wearable Motion Detectors for Physical Activity Monitoring
Yang, Che-Chang; Hsu, Yeh-Liang
2010-01-01
Characteristics of physical activity are indicative of one’s mobility level, latent chronic diseases and aging process. Accelerometers have been widely accepted as useful and practical sensors for wearable devices to measure and assess physical activity. This paper reviews the development of wearable accelerometry-based motion detectors. The principle of accelerometry measurement, sensor properties and sensor placements are first introduced. Various research using accelerometry-based wearable motion detectors for physical activity monitoring and assessment, including posture and movement classification, estimation of energy expenditure, fall detection and balance control evaluation, are also reviewed. Finally this paper reviews and compares existing commercial products to provide a comprehensive outlook of current development status and possible emerging technologies. PMID:22163626
Water-level sensor and temperature-profile detector
Not Available
1981-01-29
A temperature profile detector is described which comprises a surrounding length of metal tubing and an interior electrical conductor both constructed of high temperature high electrical resistance materials. A plurality of gas-filled expandable bellows made of electrically conductive material are positioned at spaced locations along a length of the conductors. The bellows are sealed and contain a predetermined volume of a gas designed to effect movement of the bellows from an open circuit condition to a closed circuit condition in response to monitored temperature changes sensed by each bellows.
Water level sensor and temperature profile detector
Tokarz, Richard D.
1983-01-01
A temperature profile detector comprising a surrounding length of metal tubing and an interior electrical conductor both constructed of high temperature high electrical resistance materials. A plurality of gas-filled expandable bellows made of electrically conductive material is electrically connected to the interior electrical conductor and positioned within the length of metal tubing. The bellows are sealed and contain a predetermined volume of a gas designed to effect movement of the bellows from an open circuit condition to a closed circuit condition in response to monitored temperature changes sensed by each bellows.
Novel method for evaluation of eye movements in patients with narcolepsy.
Christensen, Julie A E; Kempfner, Lykke; Leonthin, Helle L; Hvidtfelt, Mathias; Nikolic, Miki; Kornum, Birgitte Rahbek; Jennum, Poul
2017-05-01
Narcolepsy causes abnormalities in the control of wake-sleep, non-rapid-eye-movement (non-REM) sleep and REM sleep, which includes specific eye movements (EMs). In this study, we aim to evaluate EM characteristics in narcolepsy as compared to controls using an automated detector. We developed a data-driven method to detect EMs during sleep based on two EOG signals recorded as part of a polysomnography (PSG). The method was optimized using the manually scored hypnograms from 36 control subjects. The detector was applied on a clinical sample with subjects suspected for central hypersomnias. Based on PSG, multiple sleep latency test and cerebrospinal fluid hypocretin-1 measures, they were divided into clinical controls (N = 20), narcolepsy type 2 (NT2, N = 19), and narcolepsy type 1 (NT1, N = 28). We investigated the distribution of EMs across sleep stages and cycles. NT1 patients had significantly less EMs during wake, N1, and N2 sleep and more EMs during REM sleep compared to clinical controls, and significantly less EMs during wake and N1 sleep compared to NT2 patients. Furthermore, NT1 patients showed less EMs during NREM sleep in the first sleep cycle and more EMs during NREM sleep in the second sleep cycle compared to clinical controls and NT2 patients. NT1 patients show an altered distribution of EMs across sleep stages and cycles compared to NT2 patients and clinical controls, suggesting that EMs are directly or indirectly controlled by the hypocretinergic system. A data-driven EM detector may contribute to the evaluation of narcolepsy and other disorders involving the control of EMs. Copyright © 2016 Elsevier B.V. All rights reserved.
Scheduling observational and physical practice: influence on the coding of simple motor sequences.
Ellenbuerger, Thomas; Boutin, Arnaud; Blandin, Yannick; Shea, Charles H; Panzer, Stefan
2012-01-01
The main purpose of the present experiment was to determine the coordinate system used in the development of movement codes when observational and physical practice are scheduled across practice sessions. The task was to reproduce a 1,300-ms spatial-temporal pattern of elbow flexions and extensions. An intermanual transfer paradigm with a retention test and two effector (contralateral limb) transfer tests was used. The mirror effector transfer test required the same pattern of homologous muscle activation and sequence of limb joint angles as that performed or observed during practice, and the non-mirror effector transfer test required the same spatial pattern movements as that performed or observed. The test results following the first acquisition session replicated the findings of Gruetzmacher, Panzer, Blandin, and Shea (2011) . The results following the second acquisition session indicated a strong advantage for participants who received physical practice in both practice sessions or received observational practice followed by physical practice. This advantage was found on both the retention and the mirror transfer tests compared to the non-mirror transfer test. These results demonstrate that codes based in motor coordinates can be developed relatively quickly and effectively for a simple spatial-temporal movement sequence when participants are provided with physical practice or observation followed by physical practice, but physical practice followed by observational practice or observational practice alone limits the development of codes based in motor coordinates.
Shiozawa, Shinichiro; Hirata, Rogerio Pessoto; Graven-Nielsen, Thomas
2015-01-01
Postural control during rapid movements may be impaired due to musculoskeletal pain. The purpose of this study was to investigate the effect of experimental knee-related muscle pain on the center of pressure (CoP) displacement in a reaction time task condition. Nine healthy males performed two reaction time tasks (dominant side shoulder flexion and bilateral heel lift) before, during, and after experimental pain induced in the dominant side vastus medialis or the tibialis anterior muscles by hypertonic saline injections. The CoP displacement was extracted from the ipsilateral and contralateral side by two force plates and the net CoP displacement was calculated. Compared with non-painful sessions, tibialis anterior muscle pain during the peak and peak-to-peak displacement for the CoP during anticipatory postural adjustments (APAs) of the shoulder task reduced the peak-to-peak displacement of the net CoP in the medial-lateral direction (P<0.05). Tibialis anterior and vastus medialis muscle pain during shoulder flexion task reduced the anterior-posterior peak-to-peak displacement in the ipsilateral side (P<0.05). The central nervous system in healthy individuals was sufficiently robust in maintaining the APA characteristics during pain, although the displacement of net and ipsilateral CoP in the medial-lateral and anterior-posterior directions during unilateral fast shoulder movement was altered.
Cementocyte cell death occurs in rat cellular cementum during orthodontic tooth movement.
Matsuzawa, Humihiro; Toriya, Naoko; Nakao, Yuya; Konno-Nagasaka, Moe; Arakawa, Toshiya; Okayama, Miki; Mizoguchi, Itaru
2017-05-01
To clarify the mechanism of root resorption during orthodontic treatment, we examined cementocyte cell death and root resorption in the cellular cementum on the pressure side during experimental tooth movement. Using 8-week-old male Wistar rats, the right first molar was pushed mesiobuccally with a force of 40 g by a Ni-Ti alloy wire while the contralateral first molar was used as a control. Localization and number of cleaved caspase-3-positive and single-stranded DNA (ssDNA) - positive cells were evaluated using dual-label immunohistochemistry with anticleaved caspase-3 and anti-ssDNA antibodies. In addition, tartrate-resistant acid phosphatase (TRAP)-positive cells in the cellular cementum were evaluated using TRAP histochemical staining. Caspase-3- and ssDNA-positive cells appeared at 12 hours, but were restricted to the compressed periodontal ligament (PDL) and not the cellular cementum. Cleaved caspase-3-positive cementocytes were observed in the cellular cementum adjacent to the compressed PDL on day 1. From days 2 to 4, the number of caspase-3- and ssDNA-positive cementocytes increased. TRAP-positive cells appeared on the cellular cementum at the periphery of the hyalinized tissue on day 7, and resorption progressed into the broad surface of the cementum by day 14. Cementocytes adjacent to the hyalinized tissue underwent apoptotic cell death during orthodontic tooth movement, which might have been associated with subsequent root resorption.
Automatic prediction of tongue muscle activations using a finite element model.
Stavness, Ian; Lloyd, John E; Fels, Sidney
2012-11-15
Computational modeling has improved our understanding of how muscle forces are coordinated to generate movement in musculoskeletal systems. Muscular-hydrostat systems, such as the human tongue, involve very different biomechanics than musculoskeletal systems, and modeling efforts to date have been limited by the high computational complexity of representing continuum-mechanics. In this study, we developed a computationally efficient tracking-based algorithm for prediction of muscle activations during dynamic 3D finite element simulations. The formulation uses a local quadratic-programming problem at each simulation time-step to find a set of muscle activations that generated target deformations and movements in finite element muscular-hydrostat models. We applied the technique to a 3D finite element tongue model for protrusive and bending movements. Predicted muscle activations were consistent with experimental recordings of tongue strain and electromyography. Upward tongue bending was achieved by recruitment of the superior longitudinal sheath muscle, which is consistent with muscular-hydrostat theory. Lateral tongue bending, however, required recruitment of contralateral transverse and vertical muscles in addition to the ipsilateral margins of the superior longitudinal muscle, which is a new proposition for tongue muscle coordination. Our simulation framework provides a new computational tool for systematic analysis of muscle forces in continuum-mechanics models that is complementary to experimental data and shows promise for eliciting a deeper understanding of human tongue function. Copyright © 2012 Elsevier Ltd. All rights reserved.
Parietal stimulation destabilizes spatial updating across saccadic eye movements.
Morris, Adam P; Chambers, Christopher D; Mattingley, Jason B
2007-05-22
Saccadic eye movements cause sudden and global shifts in the retinal image. Rather than causing confusion, however, eye movements expand our sense of space and detail. In macaques, a stable representation of space is embodied by neural populations in intraparietal cortex that redistribute activity with each saccade to compensate for eye displacement, but little is known about equivalent updating mechanisms in humans. We combined noninvasive cortical stimulation with a double-step saccade task to examine the contribution of two human intraparietal areas to transsaccadic spatial updating. Right hemisphere stimulation over the posterior termination of the intraparietal sulcus (IPSp) broadened and shifted the distribution of second-saccade endpoints, but only when the first-saccade was directed into the contralateral hemifield. By interleaving trials with and without cortical stimulation, we show that the shift in endpoints was caused by an enduring effect of stimulation on neural functioning (e.g., modulation of neuronal gain). By varying the onset time of stimulation, we show that the representation of space in IPSp is updated immediately after the first-saccade. In contrast, stimulation of an adjacent IPS site had no such effects on second-saccades. These experiments suggest that stimulation of IPSp distorts an eye position or displacement signal that updates the representation of space at the completion of a saccade. Such sensory-motor integration in IPSp is crucial for the ongoing control of action, and may contribute to visual stability across saccades.
Lateralized Motor Control Processes Determine Asymmetry of Interlimb Transfer
Sainburg, Robert L.; Schaefer, Sydney Y.; Yadav, Vivek
2016-01-01
This experiment tested the hypothesis that interlimb transfer of motor performance depends on recruitment of motor control processes that are specialized to the hemisphere contralateral to the arm that is initially trained. Right-handed participants performed a single-joint task, in which reaches were targeted to 4 different distances. While the speed and accuracy was similar for both hands, the underlying control mechanisms used to vary movement speed with distance were systematically different between the arms: The amplitude of the initial acceleration profiles scaled greater with movement speed for the right-dominant arm, while the duration of the initial acceleration profile scaled greater with movement speed for the left-non-dominant arm. These two processes were previously shown to be differentially disrupted by left and right hemisphere damage, respectively. We now hypothesize that task practice with the right arm might reinforce left-hemisphere mechanisms that vary acceleration amplitude with distance, while practice with the left arm might reinforce right-hemisphere mechanisms that vary acceleration duration with distance. We thus predict that following right arm practice, the left arm should show increased contributions of acceleration amplitude to peak velocities, and following left arm practice, the right arm should show increased contributions of acceleration duration to peak velocities. Our findings support these predictions, indicating that asymmetry in interlimb transfer of motor performance, at least in the task used here, depends on recruitment of lateralized motor control processes. PMID:27491479
Jungmann, P M; Nevitt, M C; Baum, T; Liebl, H; Nardo, L; Liu, F; Lane, N E; McCulloch, C E; Link, T M
2015-07-01
To evaluate the association of prevalent unilateral total hip arthroplasty (THA) with worsening of degenerative knee abnormalities and clinical outcomes in the ipsilateral and contralateral knee. Both knees of 30 individuals in the Osteoarthritis Initiative (OAI) with unilateral THA (n = 14 left, n = 16 right) at baseline were assessed at baseline and at 4-year follow-up for Whole-organ MR Imaging Scores (WORMS), cartilage T2 relaxation times (only available for right knees), Western Ontario and McMasters Universities Arthritis Index (WOMAC) scores and upper leg isometric strength. Right knees of 30 individuals without THA were analyzed as controls. Contralateral knees were compared to ipsilateral knees with paired t-tests and to control knees with multivariate regression analysis adjusting for covariates. In paired analyses, compared to ipsilateral knees, contralateral knees had higher WORMS total (P = 0.008) and cartilage scores (P = 0.007) at baseline. Over 4 years contralateral knees worsened more on WORMS total score (P = 0.008). Cartilage T2 values were higher in knees contralateral to the THA (baseline, P = 0.02; follow-up, P < 0.001). Contralateral knees had greater declines in knee extension strength (P = 0.04) and had a trend for greater worsening in WOMAC pain, stiffness, function and total scores (P = 0.04-0.09). Similar results were found comparing contralateral knees with control knees in multivariate regression models. Prevalent unilateral THA is associated with an greater progression of degenerative findings for the knee contralateral to THA. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Nishino, Atsuo; Okamura, Yasushi; Piscopo, Stefania; Brown, Euan R
2010-01-19
Rhythmic motor patterns for locomotion in vertebrates are generated in spinal cord neural networks known as spinal Central Pattern Generators (CPGs). A key element in pattern generation is the role of glycinergic synaptic transmission by interneurons that cross the cord midline and inhibit contralaterally-located excitatory neurons. The glycinergic inhibitory drive permits alternating and precisely timed motor output during locomotion such as walking or swimming. To understand better the evolution of this system we examined the physiology of the neural network controlling swimming in an invertebrate chordate relative of vertebrates, the ascidian larva Ciona intestinalis. A reduced preparation of the larva consisting of nerve cord and motor ganglion generates alternating swimming movements. Pharmacological and genetic manipulation of glycine receptors shows that they are implicated in the control of these locomotory movements. Morphological molecular techniques and heterologous expression experiments revealed that glycine receptors are inhibitory and are present on both motoneurones and locomotory muscle while putative glycinergic interneurons were identified in the nerve cord by labeling with an anti-glycine antibody. In Ciona intestinalis, glycine receptors, glycinergic transmission and putative glycinergic interneurons, have a key role in coordinating swimming movements through a simple CPG that is present in the motor ganglion and nerve cord. Thus, the strong association between glycine receptors and vertebrate locomotory networks may now be extended to include the phylum chordata. The results suggest that the basic network for 'spinal-like' locomotion is likely to have existed in the common ancestor of extant chordates some 650 M years ago.
Tian, Yu-Lou; Xie, Jiang-Chun; Zhao, Zhen-Jin; Zhang, Yang
2006-06-01
To investigate the dynamic changes of interlukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) in gingival crevicular fluid (GCF) during orthodontic tooth movement, and to discuss the biological significance. Fifteen patients were chosen as subjects. For each patient, upper and lower canines at one side having one treatment for distal movement by elastic chain served as the experimental teeth, whereas the contralateral ones were used as controls. The GCF were taken before activation and at 1, 24, 48, 72, 168 hours respectively after initiation of the experiment. The levels of IL-1beta and TNF-alpha in GCF were determined by radioimmunoassay. The levels of IL-1beta and TNF-alpha in experimental group began to increase at 24 hours and reached to its peak value at 72 hours after initiation of the experiment, but their levels returned to baseline at 168 hours. Both of them, however, remained at the baseline level in control group. The changes of the two cytokines level were found statistically significant at 48 and 72 hours (P<0.05) between experimental and control group. No statistically significant were observed before activation and at 1, 168 hours after application of orthodontic forces (P>0.05) between experimental and control group. The levels of IL-1beta and TNF-alpha in gingival crevicular fluid experience dynamic changes during the early phase of orthodontic treatment, indicate that they might play an important role in the process of alveolar regeneration and tooth movement.
A glycine receptor is involved in the organization of swimming movements in an invertebrate chordate
2010-01-01
Background Rhythmic motor patterns for locomotion in vertebrates are generated in spinal cord neural networks known as spinal Central Pattern Generators (CPGs). A key element in pattern generation is the role of glycinergic synaptic transmission by interneurons that cross the cord midline and inhibit contralaterally-located excitatory neurons. The glycinergic inhibitory drive permits alternating and precisely timed motor output during locomotion such as walking or swimming. To understand better the evolution of this system we examined the physiology of the neural network controlling swimming in an invertebrate chordate relative of vertebrates, the ascidian larva Ciona intestinalis. Results A reduced preparation of the larva consisting of nerve cord and motor ganglion generates alternating swimming movements. Pharmacological and genetic manipulation of glycine receptors shows that they are implicated in the control of these locomotory movements. Morphological molecular techniques and heterologous expression experiments revealed that glycine receptors are inhibitory and are present on both motoneurones and locomotory muscle while putative glycinergic interneurons were identified in the nerve cord by labeling with an anti-glycine antibody. Conclusions In Ciona intestinalis, glycine receptors, glycinergic transmission and putative glycinergic interneurons, have a key role in coordinating swimming movements through a simple CPG that is present in the motor ganglion and nerve cord. Thus, the strong association between glycine receptors and vertebrate locomotory networks may now be extended to include the phylum chordata. The results suggest that the basic network for 'spinal-like' locomotion is likely to have existed in the common ancestor of extant chordates some 650 M years ago. PMID:20085645
Contralateral limb during total contact casting. A dynamic pressure and thermometric analysis.
Armstrong, D G; Liswood, P J; Todd, W F
1995-12-01
The authors draw attention to the importance of evaluation of the contralateral limb when treating unilateral sequelae secondary to distal symmetrical polyneuropathy. Plantar pressure measurements of the contralateral limb during total contact casting are reviewed. The results of thermometric evaluation before and after initiation of repetitive stress were reviewed. The results suggest that the patient walking in a total contact cast may experience a reduced focal pressure on the contralateral limb when compared with uncasted walking and three-point walking with crutches. Dermal thermometry may be a highly sensitive tool in evaluating even mild increases in repetitive stress. To explain this decrease in contralateral stress, the authors examine the features inherent to the total contact cast and propose the concept of proprioceptive stability.
Chung, Jae W; Ofori, Edward; Misra, Gaurav; Hess, Christopher W; Vaillancourt, David E
2017-01-01
Accurate motor performance may depend on the scaling of distinct oscillatory activity within the motor cortex and effective neural communication between the motor cortex and other brain areas. Oscillatory activity within the beta-band (13-30Hz) has been suggested to provide distinct functional roles for attention and sensorimotor control, yet it remains unclear how beta-band and other oscillatory activity within and between cortical regions is coordinated to enhance motor performance. We explore this open issue by simultaneously measuring high-density cortical activity and elbow flexor and extensor neuromuscular activity during ballistic movements, and manipulating error using high and low visual gain across three target distances. Compared with low visual gain, high visual gain decreased movement errors at each distance. Group analyses in 3D source-space revealed increased theta-, alpha-, and beta-band desynchronization of the contralateral motor cortex and medial parietal cortex in high visual gain conditions and this corresponded to reduced movement error. Dynamic causal modeling was used to compute connectivity between motor cortex and parietal cortex. Analyses revealed that gain affected the directionally-specific connectivity across broadband frequencies from parietal to sensorimotor cortex but not from sensorimotor cortex to parietal cortex. These new findings provide support for the interpretation that broad-band oscillations in theta, alpha, and beta frequency bands within sensorimotor and parietal cortex coordinate to facilitate accurate upper limb movement. Our findings establish a link between sensorimotor oscillations in the context of online motor performance in common source space across subjects. Specifically, the extent and distinct role of medial parietal cortex to sensorimotor beta connectivity and local domain broadband activity combine in a time and frequency manner to assist ballistic movements. These findings can serve as a model to examine whether similar source space EEG dynamics exhibit different time-frequency changes in individuals with neurological disorders that cause movement errors. Copyright © 2016 Elsevier Inc. All rights reserved.
Closed-Loop Control of a Neuroprosthetic Hand by Magnetoencephalographic Signals.
Fukuma, Ryohei; Yanagisawa, Takufumi; Yorifuji, Shiro; Kato, Ryu; Yokoi, Hiroshi; Hirata, Masayuki; Saitoh, Youichi; Kishima, Haruhiko; Kamitani, Yukiyasu; Yoshimine, Toshiki
2015-01-01
A neuroprosthesis using a brain-machine interface (BMI) is a promising therapeutic option for severely paralyzed patients, but the ability to control it may vary among individual patients and needs to be evaluated before any invasive procedure is undertaken. We have developed a neuroprosthetic hand that can be controlled by magnetoencephalographic (MEG) signals to noninvasively evaluate subjects' ability to control a neuroprosthesis. Six nonparalyzed subjects performed grasping or opening movements of their right hand while the slow components of the MEG signals (SMFs) were recorded in an open-loop condition. The SMFs were used to train two decoders to infer the timing and types of movement by support vector machine and Gaussian process regression. The SMFs were also used to calculate estimated slow cortical potentials (eSCPs) to identify the origin of motor information. Finally, using the trained decoders, the subjects controlled a neuroprosthetic hand in a closed-loop condition. The SMFs in the open-loop condition revealed movement-related cortical field characteristics and successfully inferred the movement type with an accuracy of 75.0 ± 12.9% (mean ± SD). In particular, the eSCPs in the sensorimotor cortex contralateral to the moved hand varied significantly enough among the movement types to be decoded with an accuracy of 76.5 ± 10.6%, which was significantly higher than the accuracy associated with eSCPs in the ipsilateral sensorimotor cortex (58.1 ± 13.7%; p = 0.0072, paired two-tailed Student's t-test). Moreover, another decoder using SMFs successfully inferred when the accuracy was the greatest. Combining these two decoders allowed the neuroprosthetic hand to be controlled in a closed-loop condition. Use of real-time MEG signals was shown to successfully control the neuroprosthetic hand. The developed system may be useful for evaluating movement-related slow cortical potentials of severely paralyzed patients to predict the efficacy of invasive BMI.
Closed-Loop Control of a Neuroprosthetic Hand by Magnetoencephalographic Signals
Fukuma, Ryohei; Yanagisawa, Takufumi; Yorifuji, Shiro; Kato, Ryu; Yokoi, Hiroshi; Hirata, Masayuki; Saitoh, Youichi; Kishima, Haruhiko; Kamitani, Yukiyasu; Yoshimine, Toshiki
2015-01-01
Objective A neuroprosthesis using a brain–machine interface (BMI) is a promising therapeutic option for severely paralyzed patients, but the ability to control it may vary among individual patients and needs to be evaluated before any invasive procedure is undertaken. We have developed a neuroprosthetic hand that can be controlled by magnetoencephalographic (MEG) signals to noninvasively evaluate subjects’ ability to control a neuroprosthesis. Method Six nonparalyzed subjects performed grasping or opening movements of their right hand while the slow components of the MEG signals (SMFs) were recorded in an open-loop condition. The SMFs were used to train two decoders to infer the timing and types of movement by support vector machine and Gaussian process regression. The SMFs were also used to calculate estimated slow cortical potentials (eSCPs) to identify the origin of motor information. Finally, using the trained decoders, the subjects controlled a neuroprosthetic hand in a closed-loop condition. Results The SMFs in the open-loop condition revealed movement-related cortical field characteristics and successfully inferred the movement type with an accuracy of 75.0 ± 12.9% (mean ± SD). In particular, the eSCPs in the sensorimotor cortex contralateral to the moved hand varied significantly enough among the movement types to be decoded with an accuracy of 76.5 ± 10.6%, which was significantly higher than the accuracy associated with eSCPs in the ipsilateral sensorimotor cortex (58.1 ± 13.7%; p = 0.0072, paired two-tailed Student’s t-test). Moreover, another decoder using SMFs successfully inferred when the accuracy was the greatest. Combining these two decoders allowed the neuroprosthetic hand to be controlled in a closed-loop condition. Conclusions Use of real-time MEG signals was shown to successfully control the neuroprosthetic hand. The developed system may be useful for evaluating movement-related slow cortical potentials of severely paralyzed patients to predict the efficacy of invasive BMI. PMID:26134845
Independent Causal Contributions of Alpha- and Beta-Band Oscillations during Movement Selection.
Brinkman, Loek; Stolk, Arjen; Marshall, Tom R; Esterer, Sophie; Sharp, Poppy; Dijkerman, H Chris; de Lange, Floris P; Toni, Ivan
2016-08-17
To select a movement, specific neuronal populations controlling particular features of that movement need to be activated, whereas other populations are downregulated. The selective (dis)inhibition of cortical sensorimotor populations is governed by rhythmic neural activity in the alpha (8-12 Hz) and beta (15-25 Hz) frequency range. However, it is unclear whether and how these rhythms contribute independently to motor behavior. Building on a recent dissociation of the sensorimotor alpha- and beta-band rhythms, we test the hypothesis that the beta-band rhythm governs the disinhibition of task-relevant neuronal populations, whereas the alpha-band rhythm suppresses neurons that may interfere with task performance. Cortical alpha- and beta-band rhythms were manipulated with transcranial alternating current stimulation (tACS) while human participants selected how to grasp an object. Stimulation was applied at either 10 or 20 Hz and was imposed on the sensorimotor cortex contralaterally or ipsilaterally to the grasping hand. In line with task-induced changes in endogenous spectral power, the effect of the tACS intervention depended on the frequency and site of stimulation. Whereas tACS stimulation generally increased movement selection times, 10 Hz stimulation led to relatively faster selection times when applied to the hemisphere ipsilateral to the grasping hand, compared with other stimulation conditions. These effects occurred selectively when multiple movements were considered. These observations functionally differentiate the causal contribution of alpha- and beta-band oscillations to movement selection. The findings suggest that sensorimotor beta-band rhythms disinhibit task-relevant populations, whereas alpha-band rhythms inhibit neuronal populations that could interfere with movement selection. This study shows dissociable effects of 10 Hz and 20 Hz tACS on the duration of movement selection. These observations have two elements of general relevance. First, the finding that alpha- and beta-band oscillations contribute independently to movement selection provides insight in how oscillations orchestrate motor behavior, which is key to understand movement selection deficits in neurodegenerative disorders. Second, the findings highlight the potential of 10 Hz stimulation as a neurophysiologically grounded intervention to enhance human performance. In particular, this intervention can potentially be exploited to boost rehabilitation after neural damage by targeting the unaffected hemisphere. Copyright © 2016 Brinkman et al.
Gimenes, Lilian R.; Gomes, Mayara S.; do Vale, Bruno N.; Cardoso, Cristina R. B.; de Oliveira, Ana M.; Moreira, Josimar D.
2017-01-01
Temporal consequences of neurocompensation to balloon injury on endothelinergic functionality in rat contralateral carotid were evaluated. Rats underwent balloon injury in left carotid and were treated with CP-96345 (NK1 antagonist). Concentration-response curves for endothelin-1 were obtained in contralateral (right) carotid at 2, 8, 16, 30, or 45 days after surgery in the absence or presence of BQ-123 (ETA antagonist), BQ-788 (ETB antagonist), or Tempol (superoxide-dismutase mimic). Endothelin-1-induced calcium mobilization was evaluated in functional assays carried out with BQ-123, BQ-788, or Tempol. Endothelin-1-induced NADPH oxidase-driven superoxide generation was measured by lucigenin chemiluminescence assays performed with BQ-123 or BQ-788. Endothelin-1-induced contraction was increased in contralateral carotid from the sixteenth day after surgery. This response was restored in CP-96345-treated rats. Endothelium removal or BQ-123 did not change endothelin-1-induced contraction in contralateral carotid. This response was restored by BQ-788 or Tempol. Contralateral carotid exhibited an increased endothelin-1-induced calcium mobilization, which was restored by BQ-788 or Tempol. Contralateral carotid exhibited an increased endothelin-1-induced lucigenin chemiluminescence, which was restored by BQ-788. We conclude that the NK1-mediated neurocompensatory response to balloon injury elicits a contractile hyperreactivity to endothelin-1 in rat contralateral carotid by enhancing the muscular ETB-mediated NADPH oxidase-driven generation of superoxide, which activates calcium channels. PMID:29062837
Mullaji, Arun B; Shah, Siddharth; Shetty, Gautam M
2017-01-01
Background and purpose — Medial unicompartmental knee arthroplasty (UKA) is undertaken in patients with a passively correctable varus deformity. We investigated whether restoration of natural soft tissue tension would result in a lower limb alignment similar to that of the contralateral unaffected lower limb after mobile-bearing medial UKA. Patients and methods — In this retrospective study, hip-knee-ankle (HKA) angle, position of the weight-bearing axis (WBA), and knee joint line obliquity (KJLO) after mobile-bearing medial UKA was compared with that of the unaffected (clinically and radiologically) contralateral lower limb in 123 patients. Results — Postoperatively, HKA angle was restored to within ±3° of the contralateral lower limb in 87% of the patients and the WBA passed within ±1 Kennedy and White’s tibial zone of the unaffected contralateral lower limb in 95% of the patients. The mean KJLO in the operated limbs was not significantly different from that in the unaffected lower limbs (p = 0.07) and the KJLO in the operated limb was restored to within ±3° of that in the contralateral lower limb in 96% of the patients. Interpretation — Lower limb alignment and knee joint line obliquity after mobile-bearing medial UKA were comparable to that of the unaffected contralateral limb in most patients. Comparison with the contralateral unaffected lower limb is a reliable method for evaluation and validation of limb mechanical alignment after mobile-bearing medial UKA. PMID:27794622
Zhao, Di; Ku, Yixuan
2018-05-01
Neural activity in the dorsolateral prefrontal cortex (DLPFC) has been suggested to integrate information from distinct sensory areas. However, how the DLPFC interacts with the bilateral primary somatosensory cortices (SIs) in tactile-visual cross-modal working memory has not yet been established. In the present study, we applied single-pulse transcranial magnetic stimulation (sp-TMS) over the contralateral DLPFC and bilateral SIs of human participants at various time points, while they performed a tactile-visual delayed matching-to-sample task with a 2-second delay. sp-TMS over the contralateral DLPFC or the contralateral SI at either an sensory encoding stage [i.e. 100 ms after the onset of a vibrotactile sample stimulus (200-ms duration)] or an early maintenance stage (i.e. 300 ms after the onset), significantly impaired the accuracy of task performance; sp-TMS over the contralateral DLPFC or the ipsilateral SI at a late maintenance stage (1600 ms and 1900 ms) also significantly disrupted the performance. Furthermore, at 300 ms after the onset of the vibrotactile sample stimulus, there was a significant correlation between the deteriorating effects of sp-TMS over the contralateral SI and the contralateral DLPFC. These results imply that the DLPFC and the bilateral SIs play causal roles at distinctive stages during cross-modal working memory, while the contralateral DLPFC communicates with the contralateral SI in the early delay, and cooperates with the ipsilateral SI in the late delay. Copyright © 2018 Elsevier B.V. All rights reserved.
Coucha, Maha; Li, Weiguo; Hafez, Sherif; Abdelsaid, Mohammed; Johnson, Maribeth H.; Fagan, Susan C.
2014-01-01
Admission hyperglycemia (HG) amplifies vascular injury and neurological deficits in acute ischemic stroke, but the mechanisms remain controversial. We recently reported that ischemia-reperfusion (I/R) injury impairs the myogenic response in both hemispheres via increased nitration. However, whether HG amplifies contralateral myogenic dysfunction and whether loss of tone in the contralateral hemisphere contributes to stroke outcomes remain to be determined. Our hypothesis was that contralateral myogenic dysfunction worsens stroke outcomes after acute hyperglycemic stroke in an oxidative stress-dependent manner. Male wild-type or SOD1 transgenic rats were injected with saline or 40% glucose solution 10 min before surgery and then subjected to 30 min of ischemia/45 min or 24 h of reperfusion. In another set of animals (n = 5), SOD1 was overexpressed only in the contralateral hemisphere by stereotaxic adenovirus injection 2–3 wk before I/R. Myogenic tone and neurovascular outcomes were determined. HG exacerbated myogenic dysfunction in contralateral side only, which was associated with infarct size expansion, increased edema, and more pronounced neurological deficit. Global and selective SOD1 overexpression restored myogenic reactivity in ipsilateral and contralateral sides, respectively, and enhanced neurovascular outcomes. In conclusion, our results show that SOD1 overexpression nullified the detrimental effects of HG on myogenic tone and stroke outcomes and that the contralateral hemisphere may be a novel target for the management of acute hyperglycemic stroke. PMID:25552308
Wang, Jian; Wang, Weici; Jin, Bi; Zhang, Yanrong; Xu, Ping; Xiang, Feixiang; Zheng, Yi; Chen, Juan; Sheng, Shi; Ouyang, Chenxi; Li, Yiqing
2016-01-01
Purpose. To investigate the alternation in cerebral and ocular blood flow velocity (BFV) in patients of carotid stenosis (CS) with or without contralateral carotid occlusion (CO) early after carotid endarterectomy (CEA). Patients and Methods. Nineteen patients underwent CEA for ≥50% CS. Fourteen patients had the unilateral CS, and five patients had the ipsilateral CS and the contralateral CO. Transcranial Doppler (TCD) and Color Doppler Imaging (CDI) were performed before and early after CEA. Results. In patients with unilateral CS, significant improvements in BFV were observed in anterior cerebral artery (ACA) and middle cerebral artery (MCA) on the ipsilateral side after CEA. In patients of ipsilateral CS and contralateral CO, significant improvements in BFV were observed in the ACA and MCA not only on the ipsilateral side but also on the contralateral side postoperatively. The ipsilateral ophthalmic artery (OA) retrograde flows in two patients were recovered to anterograde direction following CEA. The BFV in short posterior ciliary artery (SPCA) of the ipsilateral side significantly increased postoperatively irrespective of the presence of contralateral CO. Conclusions. CEA improved cerebral anterior circulation hemodynamics especially in patients of unilateral CS and contralateral CO, normalized the OA reverse flow, and increased the blood perfusion of SPCA.
Granger causal time-dependent source connectivity in the somatosensory network
NASA Astrophysics Data System (ADS)
Gao, Lin; Sommerlade, Linda; Coffman, Brian; Zhang, Tongsheng; Stephen, Julia M.; Li, Dichen; Wang, Jue; Grebogi, Celso; Schelter, Bjoern
2015-05-01
Exploration of transient Granger causal interactions in neural sources of electrophysiological activities provides deeper insights into brain information processing mechanisms. However, the underlying neural patterns are confounded by time-dependent dynamics, non-stationarity and observational noise contamination. Here we investigate transient Granger causal interactions using source time-series of somatosensory evoked magnetoencephalographic (MEG) elicited by air puff stimulation of right index finger and recorded using 306-channel MEG from 21 healthy subjects. A new time-varying connectivity approach, combining renormalised partial directed coherence with state space modelling, is employed to estimate fast changing information flow among the sources. Source analysis confirmed that somatosensory evoked MEG was mainly generated from the contralateral primary somatosensory cortex (SI) and bilateral secondary somatosensory cortices (SII). Transient Granger causality shows a serial processing of somatosensory information, 1) from contralateral SI to contralateral SII, 2) from contralateral SI to ipsilateral SII, 3) from contralateral SII to contralateral SI, and 4) from contralateral SII to ipsilateral SII. These results are consistent with established anatomical connectivity between somatosensory regions and previous source modeling results, thereby providing empirical validation of the time-varying connectivity analysis. We argue that the suggested approach provides novel information regarding transient cortical dynamic connectivity, which previous approaches could not assess.
NASA Astrophysics Data System (ADS)
Morren, Geert; Wolf, Martin; Lemmerling, Philippe; Wolf, Ursula; Choi, Jee H.; Gratton, Enrico; De Lathauwer, Lieven; Van Huffel, Sabine
2002-06-01
Fast changes in the range of milliseconds in the optical properties of cerebral tissue, which are associated with brain activity, can be detected using non-invasive near-infrared spectroscopy (NIRS). These changes in light scattering are due to an alteration in the refractive index at neuronal membranes. The aim of this study was to develop highly sensitive data analysis algorithms to detect this fast signal, which is small compared to other physiological signals. A frequency-domain tissue oximeter, whose laser diodes were modulated at 110MHz was used. The amplitude, mean intensity and phase of the modulated optical signal was measured at 96Hz sample rate. The probe consisting of 4 crossed source detector pairs was placed above the motor cortex, contralateral to the hand performing a tapping exercise consisting of alternating rest- and tapping periods of 20s each. The tapping frequency, which was set to 3.55Hz or 2.5 times the heart rate of the subject to avoid the influence of harmonics on the signal, could not be observed in any of the individual signals measured by the detectors. An adaptive filter was used to remove the arterial pulsatility from the optical signals. Independent Component Analysis allowed to separate signal components in which the tapping frequency was clearly visible.
Micromachined Artificial Haircell
NASA Technical Reports Server (NTRS)
Liu, Chang (Inventor); Engel, Jonathan (Inventor); Chen, Nannan (Inventor); Chen, Jack (Inventor)
2010-01-01
A micromachined artificial sensor comprises a support coupled to and movable with respect to a substrate. A polymer, high-aspect ratio cilia-like structure is disposed on and extends out-of-plane from the support. A strain detector is disposed with respect to the support to detect movement of the support.
Cope, Alex J; Sabo, Chelsea; Gurney, Kevin; Vasilaki, Eleni; Marshall, James A R
2016-05-01
We present a novel neurally based model for estimating angular velocity (AV) in the bee brain, capable of quantitatively reproducing experimental observations of visual odometry and corridor-centering in free-flying honeybees, including previously unaccounted for manipulations of behaviour. The model is fitted using electrophysiological data, and tested using behavioural data. Based on our model we suggest that the AV response can be considered as an evolutionary extension to the optomotor response. The detector is tested behaviourally in silico with the corridor-centering paradigm, where bees navigate down a corridor with gratings (square wave or sinusoidal) on the walls. When combined with an existing flight control algorithm the detector reproduces the invariance of the average flight path to the spatial frequency and contrast of the gratings, including deviations from perfect centering behaviour as found in the real bee's behaviour. In addition, the summed response of the detector to a unit distance movement along the corridor is constant for a large range of grating spatial frequencies, demonstrating that the detector can be used as a visual odometer.
Sabo, Chelsea; Gurney, Kevin; Vasilaki, Eleni; Marshall, James A. R.
2016-01-01
We present a novel neurally based model for estimating angular velocity (AV) in the bee brain, capable of quantitatively reproducing experimental observations of visual odometry and corridor-centering in free-flying honeybees, including previously unaccounted for manipulations of behaviour. The model is fitted using electrophysiological data, and tested using behavioural data. Based on our model we suggest that the AV response can be considered as an evolutionary extension to the optomotor response. The detector is tested behaviourally in silico with the corridor-centering paradigm, where bees navigate down a corridor with gratings (square wave or sinusoidal) on the walls. When combined with an existing flight control algorithm the detector reproduces the invariance of the average flight path to the spatial frequency and contrast of the gratings, including deviations from perfect centering behaviour as found in the real bee’s behaviour. In addition, the summed response of the detector to a unit distance movement along the corridor is constant for a large range of grating spatial frequencies, demonstrating that the detector can be used as a visual odometer. PMID:27148968
Gestrich, Julia; Giese, Maria; Shen, Wen; Zhang, Yi; Voss, Alexandra; Popov, Cyril; Stengl, Monika; Wei, HongYing
2018-02-01
Transplantation studies have pinpointed the circadian clock of the Madeira cockroach to the accessory medulla (AME) of the brain's optic lobes. The AME is innervated by approximately 240 adjacent neuropeptidergic neurons, including 12 pigment-dispersing factor (PDF)-expressing neurons anterior to the AME (aPDFMEs). Four of the aPDFMEs project contralaterally, controlling locomotor activity rhythms of the night-active cockroach. The present in vitro Ca 2+ imaging analysis focuses on contralaterally projecting AME neurons and their responses to PDF, GABA, and acetylcholine (ACh). First, rhodamine-dextran backfills from the contralateral optic stalk identified contralaterally projecting AME neurons, which were then dispersed in primary cell cultures. After characterization of PDF, GABA, and ACh responses, PDF immunocytochemistry identified ipsilaterally and contralaterally projecting PDFMEs. All PDF-sensitive clock neurons, PDF-immunoreactive clock neurons, and the majority of ipsilaterally and contralaterally projecting cells were excited by ACh. GABA inhibited all PDF-expressing clock neurons, and about half of other ipsilaterally projecting and most contralaterally projecting clock neurons. For the first time, we identified PDF autoreceptors in PDF-secreting cockroach circadian pacemakers. The medium-sized aPDFMEs and all other contralaterally projecting PDF-sensitive clock cells were inhibited by PDF. The ipsilaterally remaining small PDF-sensitive clock cells were activated by PDF. Only the largest aPDFME did not express PDF autoreceptors. We hypothesize that opposing PDF signaling generates 2 different ensembles of clock cells with antiphasic activity, regulating and maintaining a constant phase relationship between rest and activity cycles of the night-active cockroach.
Lifetime Costs of Prophylactic Mastectomies and Reconstruction versus Surveillance.
Mattos, David; Gfrerer, Lisa; Reish, Richard G; Hughes, Kevin S; Cetrulo, Curtis; Colwell, Amy S; Winograd, Jonathan M; Yaremchuk, Michael J; Austen, William G; Liao, Eric C
2015-12-01
The past decade has seen an increasing prevalence of prophylactic mastectomy with decreasing ages of patients treated for breast cancer. Data are limited on the fiscal impacts of contralateral prophylactic mastectomy trends, and no study has compared bilateral prophylactic mastectomy with reconstruction to surveillance in high-risk patients. Lifetime third-party payer costs over 30 years were estimated with 2013 Medicare reimbursement rates. Costs were estimated for patients choosing contralateral or bilateral prophylactic mastectomy versus surveillance, with immediate reconstructions using a single-stage implant, tissue expander, or perforator-based free flap approach. Published cancer incidence rates predicted the percentage of surveillance patients that would require mastectomies. Sensitivity analyses were conducted that varied cost growth, discount rate, cancer incidence rate, and other variables. Lifetime costs and present values (3 percent discount rate) were estimated. Lifetime prophylactic mastectomy costs were lower than surveillance costs, $1292 to $1993 lower for contralateral prophylactic mastectomy and $15,668 to $21,342 lower for bilateral prophylactic mastectomy, depending on the reconstruction. Present value estimates were slightly higher for contralateral prophylactic mastectomy over contralateral surveillance but still cost saving for bilateral prophylactic mastectomy compared with bilateral surveillance. Present value estimates are also cost saving for contralateral prophylactic mastectomy when the modeled contralateral breast cancer incidence rate is increased to at least 0.6 percent per year. These findings are consistent with contralateral and bilateral prophylactic mastectomy being cost saving in many scenarios, regardless of the reconstructive option chosen. They suggest that physicians and patients should continue to receive flexibility in deciding how best to proceed clinically in each case.
Kambiz, S; Brakkee, E M; Duraku, L S; Hovius, S E R; Ruigrok, T J H; Walbeehm, E T
2015-05-01
Mirror-image pain is a phenomenon in which unprovoked pain is detected on the uninjured contralateral side after unilateral nerve injury. Although it has been implicated that enhanced production of nerve growth factor (NGF) in the contralateral dorsal root ganglion is important in the development of mirror-image pain, it is not known if this is related to enhanced expression of nociceptive fibers in the contralateral skin. Mechanical and thermal sensitivity in the contralateral hind paw was measured at four different time points (5, 10, 20 and 30weeks) after transection and immediate end-to-end reconstruction of the sciatic nerve in rats. These findings were compared to the density of epidermal (peptidergic and non-peptidergic) nerve fibers on the contralateral hind paw. Mechanical hypersensitivity of the contralateral hind paw was observed at 10weeks PO, a time point in which both subgroups of epidermal nerve fibers reached control values. Thermal hypersensitivity was observed with simultaneous increase in the density of epidermal peptidergic nerve fibers of the contralateral hind paw at 20weeks PO. Both thermal sensitivity and the density of epidermal nerve fibers returned to control values 30weeks PO. We conclude that changes in skin innervation and sensitivity are present on the uninjured corresponding side in a transient pain model. Therefore, the contralateral side cannot serve as control. Moreover, the current study confirms the involvement of the peripheral nervous system in the development of mirror-image pain. Copyright © 2015 Elsevier Inc. All rights reserved.
Tinnitus Intensity Dependent Gamma Oscillations of the Contralateral Auditory Cortex
van der Loo, Elsa; Gais, Steffen; Congedo, Marco; Vanneste, Sven; Plazier, Mark; Menovsky, Tomas; Van de Heyning, Paul; De Ridder, Dirk
2009-01-01
Background Non-pulsatile tinnitus is considered a subjective auditory phantom phenomenon present in 10 to 15% of the population. Tinnitus as a phantom phenomenon is related to hyperactivity and reorganization of the auditory cortex. Magnetoencephalography studies demonstrate a correlation between gamma band activity in the contralateral auditory cortex and the presence of tinnitus. The present study aims to investigate the relation between objective gamma-band activity in the contralateral auditory cortex and subjective tinnitus loudness scores. Methods and Findings In unilateral tinnitus patients (N = 15; 10 right, 5 left) source analysis of resting state electroencephalographic gamma band oscillations shows a strong positive correlation with Visual Analogue Scale loudness scores in the contralateral auditory cortex (max r = 0.73, p<0.05). Conclusion Auditory phantom percepts thus show similar sound level dependent activation of the contralateral auditory cortex as observed in normal audition. In view of recent consciousness models and tinnitus network models these results suggest tinnitus loudness is coded by gamma band activity in the contralateral auditory cortex but might not, by itself, be responsible for tinnitus perception. PMID:19816597
Webster, Kate E; Feller, Julian A; Leigh, Warren B; Richmond, Anneka K
2014-03-01
Graft rupture of the same knee or injury to the anterior cruciate ligament (ACL) in the contralateral knee is a devastating outcome after ACL reconstruction surgery. While a number of factors have been identified as potentially increasing the risk of subsequent ACL injury, the literature is far from definitive. To determine the rates of graft rupture and contralateral ACL injury in a large cohort and to investigate patient characteristics that may be associated with these. Case-control study; Level of evidence, 3. A consecutive cohort of 750 patients who had undergone primary ACL reconstruction surgery with a minimum 3-year follow-up were questioned about the incidence of ACL graft rupture, contralateral ACL injury, family history of ACL injury, and current activity level. Patient databases provided details for age, sex, original injury mechanism, meniscus or articular surface injury, and graft diameter. Responses were received from 561 patients (75%) at a mean ± SD follow-up time of 4.8 ± 1.1 years. Anterior cruciate ligament graft ruptures occurred in 25 patients (4.5%), and contralateral ACL injuries occurred in 42 patients (7.5%). The highest incidence of further ACL injury occurred in patients younger than 20 years at the time of surgery. In this group, 29% sustained a subsequent ACL injury to either knee. The odds for sustaining an ACL graft rupture or contralateral injury increased 6- and 3-fold, respectively, for patients younger than 20 years. Returning to cutting/pivoting sports increased the odds of graft rupture by a factor of 3.9 and contralateral rupture by a factor of 5. A positive family history doubled the odds for both graft rupture and contralateral ACL injury. Patients younger than 20 years who undergo ACL reconstruction are at significantly increased risk for both graft rupture and contralateral ACL injury. Whether age per se is a risk factor or age represents a proxy for other factors remains to be determined.
Transdural doppler ultrasonography monitors cerebral blood flow changes in relation to motor tasks.
Hatanaka, Nobuhiko; Tokuno, Hironobu; Nambu, Atsushi; Takada, Masahiko
2009-04-01
Monitoring changes in cerebral blood flow in association with neuronal activity has widely been used to evaluate various brain functions. However, current techniques do not directly measure blood flow changes in specified blood vessels. The present study identified arterioles within the cerebral cortex by echoencephalography and color Doppler imaging, and then measured blood flow velocity (BFV) changes in pulsed-wave Doppler mode. We applied this "transdural Doppler ultrasonography (TDD)" to examine BFV changes in the cortical motor-related areas of monkeys during the performance of unimanual (right or left) and bimanual key-press tasks. BFV in the primary motor cortex (MI) was increased in response to contralateral movement. In each of the unimanual and bimanual tasks, bimodal BFV increases related to both the instruction signal and the movement were observed in the supplementary motor area (SMA). Such BFV changes in the SMA were prominent during the early stage of task training and gradually decreased with improvements in task performance, leaving those in the MI unchanged. Moreover, BFV changes in the SMA depended on task difficulty. The present results indicate that TDD is useful for evaluating regional brain functions.
Mirror movements in parkinsonism: evaluation of a new clinical sign
Espay, A; Li, J; Johnston, L; Chen, R; Lang, A
2005-01-01
Background: Mirror movements (MM) are not widely appreciated in parkinsonism and no report has evaluated this clinical sign in detail. Objectives: To define the parkinsonian clinical features associated with MM in patients with early, asymmetric parkinsonism. Methods: Twenty seven patients with early Parkinson's disease were evaluated using a standardised videotaping protocol. MM were scored from blinded video assessment using a clinical scale that rates the amplitude, distribution, and proportion of mirroring in the less affected limb. Parkinsonian features were combined into axial and lateralised scores using related items of the Unified Parkinson's Disease Rating Scale. Results: MM were present in 24 of 27 patients. There was a significant linear correlation between the degree of asymmetry of motor deficits and MM on the less affected side. The effect of asymmetry was greater when the proportional rather than the absolute motor difference between sides was largest. Asymmetry in leg rigidity was the most important examination feature in the prediction of contralateral foot mirroring. Conclusions: MM are a clinical feature of the unaffected or less affected side in mild asymmetric parkinsonism. Their presence may be a useful clinical finding in early parkinsonism. PMID:16170075
Alkaline phosphatase activity in gingival crevicular fluid during canine retraction.
Batra, P; Kharbanda, Op; Duggal, R; Singh, N; Parkash, H
2006-02-01
The aim of the study was to investigate alkaline phosphatase activity in the gingival crevicular fluid (GCF) during orthodontic tooth movement in humans. Postgraduate orthodontic clinic. Ten female patients requiring all first premolar extractions were selected and treated with standard edgewise mechanotherapy. Canine retraction was done using 100 g sentalloy springs. Maxillary canine on one side acted as experimental site while the contralateral canine acted as control. Gingival crevicular fluid was collected from mesial and distal of canines before initiation of canine retraction (baseline), immediately after initiation of retraction, and on 1st, 7th, 14th and 21st day and the alkaline phosphatase activity was estimated. The results show significant (p < 0.05) changes in alkaline phosphatase activity on the 7th, 14th and 21st day on both mesial and distal aspects of the compared experimental and control sides. The peak in enzyme activity occurred on the 14th day of initiation of retraction followed by a significant fall in activity especially on the mesial aspect. The study showed that alkaline phosphatase activity could be successfully estimated in the GCF using calorimetric estimation assay kits. The enzyme activity showed variation according to the amount of tooth movement.
Maintenance of lateral stability during standing and walking in the cat.
Karayannidou, A; Zelenin, P V; Orlovsky, G N; Sirota, M G; Beloozerova, I N; Deliagina, T G
2009-01-01
During free behaviors animals often experience lateral forces, such as collisions with obstacles or interactions with other animals. We studied postural reactions to lateral pulses of force (pushes) in the cat during standing and walking. During standing, a push applied to the hip region caused a lateral deviation of the caudal trunk, followed by a return to the initial position. The corrective hindlimb electromyographic (EMG) pattern included an initial wave of excitation in most extensors of the hindlimb contralateral to push and inhibition of those in the ipsilateral limb. In cats walking on a treadmill with only hindlimbs, application of force also caused lateral deviation of the caudal trunk, with subsequent return to the initial position. The type of corrective movement depended on the pulse timing relative to the step cycle. If the force was applied at the end of the stance phase of one of the limbs or during its swing phase, a lateral component appeared in the swing trajectory of this limb. The corrective step was directed either inward (when the corrective limb was ipsilateral to force application) or outward (when it was contralateral). The EMG pattern in the corrective limb was characterized by considerable modification of the hip abductor and adductor activity in the perturbed step. Thus the basic mechanisms for balance control in these two forms of behavior are different. They perform a redistribution of muscle activity between symmetrical limbs (in standing) and a reconfiguration of the base of support during a corrective lateral step (in walking).
Hosp, J A; Mann, S; Wegenast-Braun, B M; Calhoun, M E; Luft, A R
2013-10-10
Motor learning requires protein synthesis within the primary motor cortex (M1). Here, we show that the immediate early gene Arc/Arg3.1 is specifically induced in M1 by learning a motor skill. Arc mRNA was quantified using a fluorescent in situ hybridization assay in adult Long-Evans rats learning a skilled reaching task (SRT), in rats performing reaching-like forelimb movement without learning (ACT) and in rats that were trained in the operant but not the motor elements of the task (controls). Apart from M1, Arc expression was assessed within the rostral motor area (RMA), primary somatosensory cortex (S1), striatum (ST) and cerebellum. In SRT animals, Arc mRNA levels in M1 contralateral to the trained limb were 31% higher than ipsilateral (p<0.001), 31% higher than in the contralateral M1 of ACT animals (p<0.001) and 48% higher than in controls (p<0.001). Arc mRNA expression in SRT was positively correlated with learning success between two sessions (r=0.52; p=0.026). For RMA, S1, ST or cerebellum no significant differences in Arc mRNA expression were found between hemispheres or across behaviors. As Arc expression has been related to different forms of cellular plasticity, these findings suggest a link between M1 Arc expression and motor skill learning in rats. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Amplitude and timing of somatosensory cortex activity in task-specific focal hand dystonia.
Dolberg, Rebecca; Hinkley, Leighton B N; Honma, Susanne; Zhu, Zhao; Findlay, Anne M; Byl, Nancy N; Nagarajan, Srikantan S
2011-12-01
Task-specific focal hand dystonia (tspFHD) is a movement disorder diagnosed in individuals performing repetitive hand behaviors. The extent to which processing anomalies in primary sensory cortex extend to other regions or across the two hemispheres is presently unclear. In response to low/high rate and novel tactile stimuli on the affected and unaffected hands, magnetoencephalography (MEG) was used to elaborate activity timing and amplitude in the primary somatosensory (S1) and secondary somatosensory/parietal ventral (S2/PV) cortices. MEG and clinical performance measures were collected from 13 patients and matched controls. Compared to controls, subjects with tspFHD had increased response amplitude in S2/PV bilaterally in response to high rate and novel stimuli. Subjects with tspFHD also showed increased response latency (low rate, novel) of the affected digits in contralateral S1. For high rate, subjects with tspFHD showed increased response latency in ipsilateral S1 and S2/PV bilaterally. Activation differences correlated with functional sensory deficits (predicting a latency shift in S1), motor speed and muscle strength. There are objective differences in the amplitude and timing of activity for both hands across contralateral and ipsilateral somatosensory cortex in patients with tspFHD. Knowledge of cortical processing abnormalities across S1 and S2/PV in dystonia should be applied towards the development of learning-based sensorimotor interventions. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Tao, Zhongping; Zhang, Mu
2014-01-01
Abstract Functional imaging studies have indicated hemispheric asymmetry of activation in bilateral supplementary motor area (SMA) during unimanual motor tasks. However, the hemispherically special roles of bilateral SMAs on primary motor cortex (M1) in the effective connectivity networks (ECN) during lateralized tasks remain unclear. Aiming to study the differential contribution of bilateral SMAs during the motor execution and motor imagery tasks, and the hemispherically asymmetric patterns of ECN among regions involved, the present study used dynamic causal modeling to analyze the functional magnetic resonance imaging data of the unimanual motor execution/imagery tasks in 12 right-handed subjects. Our results demonstrated that distributions of network parameters underlying motor execution and motor imagery were significantly different. The variation was mainly induced by task condition modulations of intrinsic coupling. Particularly, regardless of the performing hand, the task input modulations of intrinsic coupling from the contralateral SMA to contralateral M1 were positive during motor execution, while varied to be negative during motor imagery. The results suggested that the inhibitive modulation suppressed the overt movement during motor imagery. In addition, the left SMA also helped accomplishing left hand tasks through task input modulation of left SMA→right SMA connection, implying that hemispheric recruitment occurred when performing nondominant hand tasks. The results specified differential and altered contributions of bilateral SMAs to the ECN during unimanual motor execution and motor imagery, and highlighted the contributions induced by the task input of motor execution/imagery. PMID:24606178
Kokorowski, Paul J; Wang, Hsin-Hsiao Scott; Routh, Jonathan C; Hubert, Katherine C; Nelson, Caleb P
2013-01-01
Purpose The management of the contralateral inguinal canal in children with clinical unilateral inguinal hernia is controversial. Our objective was to systematically review the literature regarding management of the contralateral inguinal canal. Methods We searched MEDLINE, EMBASE, and Cochrane databases (1940–2011) using ‘hernia’ and ‘inguinal’ and either ‘pediatric,’ ‘infant,’ or ‘child,’ to identify studies of pediatric (age≤21 yrs) patients with inguinal hernia. Among clinical unilateral hernia patients, we assessed the number of cases with contralateral patent processus (CPP) and incidence of subsequent clinical metachronous contralateral hernia (MCH). We evaluated three strategies for contralateral management: expectant management, laparoscopic evaluation or pre-operative ultrasound. Pooled estimates of MCH or CPP were generated with random effects by study when heterogeneity was found (I2>50%, or Cochrane’s Q p≥0.10). Results We identified 2,477 non-duplicated studies, 129 of which met our inclusion criteria and had sufficient information for quantitative analysis. The pooled incidence of MCH after open unilateral repair was 7.3% (95% CI 6.5%–8.1%). Laparoscopic examination identified CPP in 30% (95% CI 26%–34%). Lower age was associated with higher incidence of CPP (p<0.01). The incidence of MCH after a negative laparoscopic evaluation was 0.9% (95% CI 0.5%–1.3%). Significant heterogeneity was found in studies and pooled estimates should be interpreted with caution. Conclusions The literature suggests that laparoscopically identified CPP is a poor indicator of future contralateral hernia. Almost a third of patients will have a CPP, while less than one in 10 will develop MCH when managed expectantly. Performing contralateral hernia repair in patients with CPP results in overtreatment in roughly 2 out of 3 patients. PMID:23963735
Wan, Han-Feng; Zhang, Bin; Yan, Dan-Gui; Xu, Zhen-Gang
2015-01-01
The phenomenon of occult carcinoma maybe observed in patients with clinically unilateral papillary thyroid microcarcinoma (PTMC). Although many studies have reported that the BRAFT1799A mutation is associated with aggressive PTMC, the relationship between BRAFT1799A mutation and occult carcinoma is unclear. The aim of this study was to investigate the risk factors, including BRAFT1799A mutation, for occult contralateral carcinoma in clinically unilateral PTMC accompanied by benign nodules in the contralateral lobe. From January 2011 to December 2013,we prospectively enrolled 89 consecutive PTMC patients with clinically unilateral carcinoma accompanied by benign nodules in the contralateral lobe who received a total thyroidectomy and cervical lymph node dissection. BRAFT1799A mutation was tested by pyrosequencing on postoperative paraffin specimens. The frequency and predictive factors for occult contralateral carcinoma were analyzed with respect to the following variables: age, gender, family history, tumor size, presence of Hashimoto thyroiditis, extrathyroidal extension, central lymph node metastasis, multifocality of primary tumor, or BRAFT1799A mutation. A total of 36 patients (40.4%) had occult PTMC in the contralateral lobe. The median diameter of the occult tumors was 0.33±0.21 cm. The BRAFT1799A mutation was found in 38 cases (42.7%). According to the univariate analysis, there were no significant differences between the presence of occult contralateral carcinoma and age, gender, family history, tumor size, presence of Hashimoto thyroiditis, extrathyroidal extension, central lymph node metastasis, multifocality of primary tumor, or BRAFT1799A mutation. Using current methods, it is difficult to preoperatively identify patients with PTMC, and further research is needed to determine predictive factors for the presence of occult contralateral carcinoma in patients with unilateral PTMC.
Nevens, Daan; Nuyts, Sandra
2017-12-01
The purpose of this study is to see whether sparing the superficial contralateral parotid lobe can help limiting xerostomia following radiotherapy for head and neck cancer. 88 patients that were included in two prospective randomized studies were analysed in the current study. Using the dosimetry of both the parotid glands, we divided our patients in four groups. Group 1 includes patients where we were able to reduce the radiation dose below the threshold in order to spare both the ipsilateral and contralateral parotid glands, Group 2 consists of patients where only the contralateral parotid gland could be spared. Group 3 consists of patients where only the contralateral superficial parotid lobe could be spared, while in Group 4 not even the contralateral superficial lobe could be spared. When we compared Group 1 and Group 2, we did not observe a significant difference between both groups in terms of xerostomia scores at 6 or 12 months. When we compared these groups with Group 3, we observed significant differences with more xerostomia in Group 3 where only the contralateral superficial lobe was spared. A significant difference was also observed between Group 3 and Group 4 with more xerostomia in Group 4. Sparing of just one superficial parotid lobe results in less xerostomia when compared to not sparing any lobe of both parotid glands. Advances in knowledge: When sparing of the whole contralateral parotid gland is not possible, delineating both the superficial parotid glands and trying to spare at least one of them can mean a way forward in limiting xerostomia in head and neck cancer patients treated with radiotherapy.
Spencer, Christopher R.; Gay, Hiram A.; Haughey, Bruce H.; Nussenbaum, Brian; Adkins, Douglas R.; Wildes, Tanya M.; DeWees, Todd A.; Lewis, James S.; Thorstad, Wade L.
2014-01-01
Background Radiation treatment volumes in head and neck squamous cell carcinoma (HNSCC) are controversial. Here we report the outcomes, failures, and quality of life (QOL) of patients treated using intensity modulated radiation therapy (IMRT) that eliminated treatment of contralateral retropharyngeal lymph nodes (RPLN) in the clinically uninvolved neck. Methods A prospective institutional database identified patients with primary oral cavity, oropharynx, hypopharynx, larynx and unknown primary HNSCC treated using IMRT. There were three temporal groups (G1-3). G1 received comprehensive neck IMRT with parotid sparing, G2 eliminated the contralateral high level II (HLII) lymph nodes, and G3 further eliminated the contralateral RPLN in the clinically uninvolved neck. Patterns of failure and survival analyses were completed and QOL data measured by the MD Anderson Dysphagia Inventory (MDADI) was compared in a subset of patients from G1 and G3. Results There were 748 patients identified. Of the 488 patients treated in G2 or G3, 406 had a clinically uninvolved contralateral neck. There were no failures in the spared RPLNs (95% CI; 0-1.3%) or high contralateral neck (95% CI; 0-0.7%). QOL data was compared between 44 patients in G1 and 51 patients in G3. QOL improved both globally and in all domains assessed for G3 in which reduced radiotherapy volumes were used (p < 0.007). Conclusions For patients with locally advanced HNSCC, eliminating coverage to the contralateral HLII and contralateral RPLN in the clinically uninvolved side of the neck is associated with minimal risk of failure in these regions and significantly improved patient-reported QOL. PMID:25143048
Searching for Survivors through Random Human-Body Movement Outdoors by Continuous-Wave Radar Array
Liu, Miao; Li, Zhao; Liang, Fulai; Jing, Xijing; Lu, Guohua; Wang, Jianqi
2016-01-01
It is a major challenge to search for survivors after chemical or nuclear leakage or explosions. At present, biological radar can be used to achieve this goal by detecting the survivor’s respiration signal. However, owing to the random posture of an injured person at a rescue site, the radar wave may directly irradiate the person’s head or feet, in which it is difficult to detect the respiration signal. This paper describes a multichannel-based antenna array technology, which forms an omnidirectional detection system via 24-GHz Doppler biological radar, to address the random positioning relative to the antenna of an object to be detected. Furthermore, since the survivors often have random body movement such as struggling and twitching, the slight movements of the body caused by breathing are obscured by these movements. Therefore, a method is proposed to identify random human-body movement by utilizing multichannel information to calculate the background variance of the environment in combination with a constant-false-alarm-rate detector. The conducted outdoor experiments indicate that the system can realize the omnidirectional detection of random human-body movement and distinguish body movement from environmental interference such as movement of leaves and grass. The methods proposed in this paper will be a promising way to search for survivors outdoors. PMID:27073860
Searching for Survivors through Random Human-Body Movement Outdoors by Continuous-Wave Radar Array.
Li, Chuantao; Chen, Fuming; Qi, Fugui; Liu, Miao; Li, Zhao; Liang, Fulai; Jing, Xijing; Lu, Guohua; Wang, Jianqi
2016-01-01
It is a major challenge to search for survivors after chemical or nuclear leakage or explosions. At present, biological radar can be used to achieve this goal by detecting the survivor's respiration signal. However, owing to the random posture of an injured person at a rescue site, the radar wave may directly irradiate the person's head or feet, in which it is difficult to detect the respiration signal. This paper describes a multichannel-based antenna array technology, which forms an omnidirectional detection system via 24-GHz Doppler biological radar, to address the random positioning relative to the antenna of an object to be detected. Furthermore, since the survivors often have random body movement such as struggling and twitching, the slight movements of the body caused by breathing are obscured by these movements. Therefore, a method is proposed to identify random human-body movement by utilizing multichannel information to calculate the background variance of the environment in combination with a constant-false-alarm-rate detector. The conducted outdoor experiments indicate that the system can realize the omnidirectional detection of random human-body movement and distinguish body movement from environmental interference such as movement of leaves and grass. The methods proposed in this paper will be a promising way to search for survivors outdoors.
Computer simulations of neural mechanisms explaining upper and lower limb excitatory neural coupling
2010-01-01
Background When humans perform rhythmic upper and lower limb locomotor-like movements, there is an excitatory effect of upper limb exertion on lower limb muscle recruitment. To investigate potential neural mechanisms for this behavioral observation, we developed computer simulations modeling interlimb neural pathways among central pattern generators. We hypothesized that enhancement of muscle recruitment from interlimb spinal mechanisms was not sufficient to explain muscle enhancement levels observed in experimental data. Methods We used Matsuoka oscillators for the central pattern generators (CPG) and determined parameters that enhanced amplitudes of rhythmic steady state bursts. Potential mechanisms for output enhancement were excitatory and inhibitory sensory feedback gains, excitatory and inhibitory interlimb coupling gains, and coupling geometry. We first simulated the simplest case, a single CPG, and then expanded the model to have two CPGs and lastly four CPGs. In the two and four CPG models, the lower limb CPGs did not receive supraspinal input such that the only mechanisms available for enhancing output were interlimb coupling gains and sensory feedback gains. Results In a two-CPG model with inhibitory sensory feedback gains, only excitatory gains of ipsilateral flexor-extensor/extensor-flexor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 26%. In a two-CPG model with excitatory sensory feedback gains, excitatory gains of contralateral flexor-flexor/extensor-extensor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 100%. However, within a given excitatory sensory feedback gain, enhancement due to excitatory interlimb gains could only reach levels up to 20%. Interconnecting four CPGs to have ipsilateral flexor-extensor/extensor-flexor coupling, contralateral flexor-flexor/extensor-extensor coupling, and bilateral flexor-extensor/extensor-flexor coupling could enhance motor output up to 32%. Enhancement observed in experimental data exceeded 32%. Enhancement within this symmetrical four-CPG neural architecture was more sensitive to relatively small interlimb coupling gains. Excitatory sensory feedback gains could produce greater output amplitudes, but larger gains were required for entrainment compared to inhibitory sensory feedback gains. Conclusions Based on these simulations, symmetrical interlimb coupling can account for much, but not all of the excitatory neural coupling between upper and lower limbs during rhythmic locomotor-like movements. PMID:21143960
Antar, Veysel; Turk, Okan
2018-03-01
Craniovertebral junctional anomalies constitute a technical challenge. Surgical opening of atlantoaxial joint region is a complex procedure especially in patients with nuchal deformity like basilar invagination. This region has actually very complicated anatomical and functional characteristics, including multiple joints providing extension, flexion, and wide rotation. In fact, it is also a bottleneck region where bones, neural structures, and blood vessels are located. Stabilization surgery regarding this region should consider the fact that the area exposes excessive and life-long stress due to complex movements and human posture. Therefore, all options should be considered for surgical stabilization, and they could be interchanged during the surgery, if required. A 53-year-old male patient applied to outpatients' clinic with complaints of head and neck pain persisting for a long time. Physical examination was normal except increased deep tendon reflexes. The patient was on long-term corticosteroid due to an allergic disease. Magnetic resonance imaging and computed tomography findings indicated basilar invagination and atlantoaxial dislocation. The patient underwent C0-C3-C4 (lateral mass) and additional C0-C2 (translaminar) stabilization surgery. In routine practice, the sites where rods are bound to occipital plates were placed as paramedian. Instead, we inserted lateral mass screw to the sites where occipital screws were inserted on the occipital plate, thereby creating a site where extra rod could be bound. When C2 translaminar screw is inserted, screw caps remain on the median plane, which makes them difficult to bind to contralateral system. These bind directly to occipital plate without any connection from this region to the contralateral system. Advantages of this technique include easy insertion of C2 translaminar screws, presence of increased screw sizes, and exclusion of pullout forces onto the screw from neck movements. Another advantage of the technique is the median placement of the rod; i.e., thick part of the occipital bone is in alignment with axial loading. We believe that this technique, which could be easily performed as adjuvant to classical stabilization surgery with no need for special screw and rod, may improve distraction force in patients with low bone density.
Kahn, Timothy L; Soheili, Aydin C; Schwarzkopf, Ran
2014-08-01
While total knee arthroplasty (TKA) has been shown to have excellent outcomes, a significant proportion of patients experience relatively poor post-operative function. In this study, we test the hypothesis that the level of osteoarthritic symptoms in the contralateral knee at the time of TKA is associated with poorer post-operative outcomes in the operated knee. Using longitudinal cohort data from the Osteoarthritis Initiative (OAI), we included 171 patients who received a unilateral TKA. We compared pre-operative Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores in the contralateral knee to post-operative WOMAC scores in the index knee. Pre-operative contralateral knee WOMAC scores were associated with post-operative index knee WOMAC Total scores, indicating that the health of the pre-operative contralateral knee is a significant factor in TKA outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.
The evolution of contralateral control of the body by the brain: is it a protective mechanism?
Whitehead, Lorne; Banihani, Saleh
2014-01-01
Contralateral control, the arrangement whereby most of the human motor and sensory fibres cross the midline in order to provide control for contralateral portions of the body, presents a puzzle from an evolutionary perspective. What caused such a counterintuitive and complex arrangement to become dominant? In this paper we offer a new perspective on this question by showing that in a complex interactive control system there could be a significant net survival advantage with contralateral control, associated with the effect of injuries of intermediate severity. In such cases an advantage could arise from a combination of non-linear system response combined with correlations between injuries on the same side of the head and body. We show that a simple mathematical model of these ideas emulates such an advantage. Based on this model, we conclude that effects of this kind are a plausible driving force for the evolution of contralateral control.
NASA Astrophysics Data System (ADS)
Parikh, Hirak; Marzullo, Timothy C.; Kipke, Daryl R.
2009-04-01
Improving cortical prostheses requires the development of recording neural interfaces that are efficient in terms of providing maximal control information with minimal interface complexity. While the typical approaches have targeted neurons in the motor cortex with multiple penetrating shanks, an alternative approach is to determine an efficient distribution of electrode sites within the layers of the cortex with fewer penetrating shanks. The objective of this study was to compare unit activity in the upper and lower layers of the cortex with respect to movement and direction in order to inform the design of penetrating microelectrodes. Four rats were implanted bilaterally with multi-site single-shank silicon microelectrode arrays in the neck/shoulder region of the motor cortex. We simultaneously recorded unit activity across all layers of the motor cortex while the animal was engaged in a movement direction task. Localization of the electrode array within the different layers of the cortex was determined by histology. We denoted units from layers 2 and 3 and units as upper layer units, and units from layers 5 and 6 as lower layer units. Analysis of unit spiking activity demonstrated that both the upper and lower layers encode movement and direction information. Unit responses in either cortical layer of the cortex were not preferentially associated with contralateral or ipsilateral movement. Aggregate analysis (633 neurons) and best session analysis (75 neurons) indicated that units in the lower layers (layers 5, 6) are more likely to encode direction information when compared to units in the upper layers (layers 2, 3) (p< 0.05). These results suggest that electrode sites clustered in the lower layers provide access to more salient control information for cortical neuroprostheses.
Global cortical activity predicts shape of hand during grasping
Agashe, Harshavardhan A.; Paek, Andrew Y.; Zhang, Yuhang; Contreras-Vidal, José L.
2015-01-01
Recent studies show that the amplitude of cortical field potentials is modulated in the time domain by grasping kinematics. However, it is unknown if these low frequency modulations persist and contain enough information to decode grasp kinematics in macro-scale activity measured at the scalp via electroencephalography (EEG). Further, it is unclear as to whether joint angle velocities or movement synergies are the optimal kinematics spaces to decode. In this offline decoding study, we infer from human EEG, hand joint angular velocities as well as synergistic trajectories as subjects perform natural reach-to-grasp movements. Decoding accuracy, measured as the correlation coefficient (r) between the predicted and actual movement kinematics, was r = 0.49 ± 0.02 across 15 hand joints. Across the first three kinematic synergies, decoding accuracies were r = 0.59 ± 0.04, 0.47 ± 0.06, and 0.32 ± 0.05. The spatial-temporal pattern of EEG channel recruitment showed early involvement of contralateral frontal-central scalp areas followed by later activation of central electrodes over primary sensorimotor cortical areas. Information content in EEG about the grasp type peaked at 250 ms after movement onset. The high decoding accuracies in this study are significant not only as evidence for time-domain modulation in macro-scale brain activity, but for the field of brain-machine interfaces as well. Our decoding strategy, which harnesses the neural “symphony” as opposed to local members of the neural ensemble (as in intracranial approaches), may provide a means of extracting information about motor intent for grasping without the need for penetrating electrodes and suggests that it may be soon possible to develop non-invasive neural interfaces for the control of prosthetic limbs. PMID:25914616
Bénita, M; Condé, H; Dormont, J F; Schmied, A
1979-02-15
Five cats were trained to perform a forelimb ballistic flexion on a reaction time paradigm including an upper limit of about 400 ms for reinforcement (food pellets). They were implanted with a cyrogenic probe thermically insulated, except at the tip, by a vacuum jacket (outer diameter, 1.1 mm). Four cats had the probe inserted into the ventrolateral thalamic nucleus (VL), contralateral to the moving limb. During cooling they showed increased reaction times, which remained constant throughout daily sessions performed during many weeks, independent of the foreperiod but varying from 25 to 100 ms according to the subject. The temperatures used to upset the reaction times varied from +10 decrees C to -8 degrees C, depending on the localisation of the probe and on the insulation of the silver tip used to prevent nervous tissue reaction, but for each subject the reaction times always increased when the temperature was lowered. The fifth cat, with a probe inserted between VL and the Centre Median, showed a decrease of reaction times on cooling to 0 degrees C and an increase of the reaction times for a cooling at -10 degrees C. For one of the four cats with a probe properly inserted into the VL, strain-gauges were stuck on the lever to measure the latency of the decrease of the pressure exerted by the subject when the subject initiated the forelimb flexion in response to the CS. Reaction times and latencies of pressure changes were closely correlated with the movement onset, and they were equally delayed during cooling. This result demonstrates that it is not by slowing down movement velocity that reaction times are upset during VL cooling but by delaying the movement onset.
Microwave life detector for buried victims using neutrodyning loop based system
NASA Astrophysics Data System (ADS)
Tahar J., Bel Hadj
2009-07-01
This paper describes a new design of an electromagnetic life detector for the detection of buried victims. The principle of the microwave life sensor is based on the detection of the modulated part of a scattered wave which is generated by the breathing activity of the victim. Those movements generate a spectral component located in the low frequency range, which for most of the cases, is located in a spectrum extending from 0.18 Hz to 0.34 Hz. The detection process requires high sensitivity with respect to breathing movements and, simultaneously, a relative insensitivity for other non-modulated or modulated parasitic signals. Developed microwave system, generating a frequency adjustable between 500 MHz and 1 GHz, is based on a neutrodyning loop required to cancel any non-modulated background and reflected signals in order to get better receiver sensitivity without introducing supplementary distortions on the received signal. Life signal is considered practically periodic that facilitates the extraction of this spectral component using several processing techniques, such as adaptive filtering and correlation permitting to ameliorate the detection range to be more than 15 m in low-loss medium. Detection range is a fundamental parameter for a microwave life detector. A range around 1 m doesn't have a large interest for this application. To attain a range more than 15 m, while guaranteeing professional performances, the technology has to optimize the system parameters as well as the involved signal processing for the purpose of overcoming the presence of obstacles, attenuation, and noise perturbation. This constitutes the main contribution of the present work. Experimental measurements have confirmed the potentiality of this microwave technique for life detector with best space covering detection.
Neural mechanisms of single corrective steps evoked in the standing rabbit
Hsu, L.-J.; Zelenin, P. V.; Lyalka, V. F.; Vemula, M. G.; Orlovsky, G. N.; Deliagina, T. G.
2017-01-01
Single steps in different directions are often used for postural corrections. However, our knowledge about the neural mechanisms underlying their generation is scarce. This study was aimed to characterize the corrective steps generated in response to disturbances of the basic body configuration caused by forward, backward or outward displacement of the hindlimb, as well as to reveal location in the CNS of the corrective step generating mechanisms. Video recording of the motor response to translation of the supporting surface under the hindlimb along with contact forces and activity of back and limb muscles was performed in freely standing intact and in fixed postmammillary rabbits. In intact rabbits, displacement of the hindlimb in any direction caused a lateral trunk movement towards the contralateral hindlimb, and then a corrective step in the direction opposite to the initial displacement. The time difference between onsets of these two events varied considerably. The EMG pattern in the supporting hindlimb was similar for all directions of corrective steps. It caused the increase in the limb stiffness. EMG pattern in the stepping limb differed in steps with different directions. In postmammillary rabbits the corrective stepping movements, as well as EMG patterns in both stepping and standing hindlimbs were similar to those observed in intact rabbits. This study demonstrates that the corrective trunk and limb movements are generated by separate mechanisms activated by sensory signals from the deviated limb. The neuronal networks generating postural corrective steps reside in the brainstem, cerebellum, and spinal cord. PMID:28215990
Eccentric knee flexor torque following anterior cruciate ligament surgery.
Osternig, L R; James, C R; Bercades, D T
1996-10-01
The purposes of this study were to compare eccentric knee flexor torque and muscle activation in the limbs of normal (NOR) subjects and in subjects who had undergone unilateral ACI, autograft surgical reconstruction (INJ) and to assess the effect of movement speed on EMG/ torque ratios and eccentric-concentric actions. Fourteen subjects (7 NOR and 7 INJ) were tested for knee eccentric flexor torque and EMG activity at four isokinetic speeds (15 degrees, 30 degrees, 45 degrees and 60 degrees.s-1). Results revealed that post-surgical limbs (ACL) produced significantly less (P < 0.05) eccentric torque and flexor EMG activity at 60 degrees.s-1 than uninjured (UNI) contralateral limbs. Eccentric torque rose significantly as speed increased from 45 degrees to 60 degrees.s-1 for surgical group uninjured limbs and NOR group left and right limbs. Eccentric flexor torque increased with speed for both groups and approximated equality with concentric extensor torque at 60 degrees.s-1 for INJ group ACL and UNI limbs. Concentric flexor muscle EMG/torque ratios were 30-191% greater than eccentric muscle actions across groups and speeds. The results suggest that ACL dysfunction may result in reduced eccentric flexor torque at rapid movement speeds, that eccentric flexor torque increases with movement speed and may have the capacity to counter forceful extensor concentric torque, and that eccentric muscle actions produce less muscle activation per unit force than concentric actions which may reflect reduced energy cost.
Aridan, Nadav; Mukamel, Roy
2016-11-01
Observing someone else perform a movement facilitates motor planning, execution, and motor memory formation. Rate, an important feature in the execution of repeated movements, has been shown to vary following movement observation although the underlying neural mechanisms are unclear. In the current study, we examined how the rate of self-paced index finger pressing is implicitly modified following passive observation of a similar action performed at a different rate. Fifty subjects performed a finger pressing sequence with their right hand at their own pace before and after passive observation of either a 1-min video depicting the task performed at 3 Hz by someone else or a black screen. An additional set of 15 subjects performed the task in an MRI scanner. Across all 50 subjects, the spontaneous execution rate prior to video observation had a bimodal distribution with modes around 2 and 4 Hz. Following video observation, the slower subjects performed the task at an increased rate. In the 15 subjects who performed the task in the MRI scanner, we found positive correlation between fMRI signal in the left primary motor strip during passive video observation and subsequent behavioral changes in task performance rate. We conclude that observing someone else perform an action at a higher rate implicitly increases the spontaneous rate of execution, and that this implicit induction is mediated by activity in the contralateral primary motor cortex.
Development of kinesthetic-motor and auditory-motor representations in school-aged children.
Kagerer, Florian A; Clark, Jane E
2015-07-01
In two experiments using a center-out task, we investigated kinesthetic-motor and auditory-motor integrations in 5- to 12-year-old children and young adults. In experiment 1, participants moved a pen on a digitizing tablet from a starting position to one of three targets (visuo-motor condition), and then to one of four targets without visual feedback of the movement. In both conditions, we found that with increasing age, the children moved faster and straighter, and became less variable in their feedforward control. Higher control demands for movements toward the contralateral side were reflected in longer movement times and decreased spatial accuracy across all age groups. When feedforward control relies predominantly on kinesthesia, 7- to 10-year-old children were more variable, indicating difficulties in switching between feedforward and feedback control efficiently during that age. An inverse age progression was found for directional endpoint error; larger errors increasing with age likely reflect stronger functional lateralization for the dominant hand. In experiment 2, the same visuo-motor condition was followed by an auditory-motor condition in which participants had to move to acoustic targets (either white band or one-third octave noise). Since in the latter directional cues come exclusively from transcallosally mediated interaural time differences, we hypothesized that auditory-motor representations would show age effects. The results did not show a clear age effect, suggesting that corpus callosum functionality is sufficient in children to allow them to form accurate auditory-motor maps already at a young age.
Development of kinesthetic-motor and auditory-motor representations in school-aged children
Clark, Jane E.
2015-01-01
In two experiments using a center-out task, we investigated kinesthetic-motor and auditory-motor integrations in 5- to 12-year-old children and young adults. In experiment 1, participants moved a pen on a digitizing tablet from a starting position to one of three targets (visuo-motor condition), and then to one of four targets without visual feedback of the movement. In both conditions, we found that with increasing age, the children moved faster and straighter, and became less variable in their feedforward control. Higher control demands for movements toward the contralateral side were reflected in longer movement times and decreased spatial accuracy across all age groups. When feedforward control relies predominantly on kinesthesia, 7- to 10-year-old children were more variable, indicating difficulties in switching between feedforward and feedback control efficiently during that age. An inverse age progression was found for directional endpoint error; larger errors increasing with age likely reflect stronger functional lateralization for the dominant hand. In experiment 2, the same visuo-motor condition was followed by an auditory-motor condition in which participants had to move to acoustic targets (either white band or one-third octave noise). Since in the latter directional cues come exclusively from transcallosally mediated interaural time differences, we hypothesized that auditory-motor representations would show age effects. The results did not show a clear age effect, suggesting that corpus callosum functionality is sufficient in children to allow them to form accurate auditory-motor maps already at a young age. PMID:25912609
Contribution of Jules Froment to the study of parkinsonian rigidity.
Broussolle, Emmanuel; Krack, Paul; Thobois, Stéphane; Xie-Brustolin, Jing; Pollak, Pierre; Goetz, Christopher G
2007-05-15
Rigidity is commonly defined as a resistance to passive movement. In Parkinson's disease (PD), two types of rigidity are classically recognized which may coexist, "leadpipe " and "cogwheel". Charcot was the first to investigate parkinsonian rigidity during the second half of the nineteenth century, whereas Negro and Moyer described cogwheel rigidity at the beginning of the twentieth century. Jules Froment, a French neurologist from Lyon, contributed to the study of parkinsonian rigidity during the 1920s. He investigated rigidity of the wrist at rest in a sitting position as well as in stable and unstable standing postures, both clinically and with physiological recordings using a myograph. With Gardère, Froment described enhanced resistance to passive movements of a limb about a joint that can be detected specifically when there is a voluntary action of another contralateral body part. This has been designated in the literature as the "Froment's maneuver " and the activation or facilitation test. In addition, Froment showed that parkinsonian rigidity diminishes, vanishes, or enhances depending on the static posture of the body. He proposed that in PD "maintenance stabilization " of the body is impaired and that "reactive stabilization " becomes the operative mode of muscular tone control. He considered "rigidification " as compensatory against the forces of gravity. Froment also demonstrated that parkinsonian rigidity increases during the Romberg test, gaze deviation, and oriented attention. In their number, breadth, and originality, Froment's contributions to the study of parkinsonian rigidity remain currently relevant to clinical and neurophysiological issues of PD. (c) 2007 Movement Disorder Society.
NASA Technical Reports Server (NTRS)
Wall, C.; Assad, A.; Aharon, G.; Dimitri, P. S.; Harris, L. R.
2001-01-01
In order to investigate interactions in the visual and vestibular systems' oculomotor response to linear movement, we developed a two-frequency stimulation technique. Thirteen subjects lay on their backs and were oscillated sinusoidally along their z-axes at between 0.31 and 0.81 Hz. During the oscillation subjects viewed a large, high-contrast, visual pattern oscillating in the same direction as the physical motion but at a different, non-harmonically related frequency. The evoked eye movements were measured by video-oculography and spectrally analysed. We found significant signal level at the sum and difference frequencies as well as at other frequencies not present in either stimulus. The emergence of new frequencies indicates non-linear processing consistent with an agreement-detector system that have previously proposed.
Peripapillary Pachychoroid in Nonarteritic Anterior Ischemic Optic Neuropathy
Nagia, Lina; Huisingh, Carrie; Johnstone, John; Kline, Lanning B.; Clark, Mark; Girard, Michael J. A.; Mari, Jean Martial; Girkin, Christopher A.
2016-01-01
Purpose This study examined the peripapillary choroidal thickness (PCT) in nonarteritic ischemic optic neuropathy (NAION) in comparison to contralateral eyes and normal eyes. Methods We used enhanced depth imaging spectral-domain optical coherence tomography to image the optic nerve head of 20 NAION, 10 contralateral eyes, and 102 normal eyes. Following compensation, the scans were manually delineated to identify relevant surfaces including Bruch's membrane opening (BMO), Bruch's membrane, and anterior sclera. The PCT was defined as the measurement between Bruch's membrane and the anterior sclera and was measured at increasing distance from BMO. Models adjusted for age, BMO area, and axial length were used to compare the mean PCT between NAION and normal eyes, and contralateral eyes and normal eyes. Paired t-tests were used to compare the PCT between NAION and contralateral eyes. Results The mean PCT was thicker in NAION and contralateral eyes when compared with normal eyes at all distances from BMO (P < 0.001). The PCT was not significantly thicker in contralateral eyes when compared with affected NAION eyes. Choroidal thickness was thinnest in the inferior quadrant in all eyes regardless of the group. Conclusions Increased peripapillary choroidal thickness was noted in both NAION and contralateral eyes. The thicker choroid may be an associated feature or a result of the disorder. Although further longitudinal study is required to determine causation, these findings may suggest that a thickened peripapillary choroid may be a component of the disk-at-risk clinical phenotype. PMID:27583829
Yang, L M; Li, Q; Zhao, B W; Lyu, J G; Xu, H S; Xu, L L; Li, S Y; Gao, L; Zhu, J
2017-04-07
Objective: To investigate the occurrence of occult carcinoma in contralateral lobes based on the ultrasonic features of unilateral papillary thyroid carcinoma. Methods: The study included 202 consecutives cases of unilateral papillary thyroid carcinoma with benign nodules in the contralateral lobe identified by preoperative ultrasound or fine-needle aspiration from June 2014 to December 2015. All patients received total thyroidectomies, and with postoperative pathological examination they were divided into two groups, one including 60 cases with positive occult cancer and another one consisting of 142 cases with negative occult cancer. Univariate and multivariate analyses were performed to analyze the sonographic features of unilateral papillary thyroid carcinoma relevant to the occurrence of occult carcinoma in the contralateral nodules. Results: Univariate analysis indicated occult carcinoma in the contralateral lobes was associated with Hashimoto's thyroiditis(χ(2)=3.955, P =0.047), unclear border (χ(2)=4.375, P =0.036)and multifocality in the ipsilateral(χ(2)=7.375, P =0.007), but not with tumors maximum size, location, A/T, shape, internal structure, internal echo, acoustic halo, calcification, capsular invasion and blood flow signal in the lobe with carcinoma on another side. Multivariate analysis showed unclear border ( OR =2.727, P =0.010) and multifocality in the ipsilateral( OR =2.807, P =0.005)of carcinoma were independent predictive factor for contralateral occult PTC. Conclusions: Unclear border and multifocality of PTC in the ipsilateral were closely relevant to the occurrence of occult carcinoma in the contralateral nodules.
Auditory enhancement of increments in spectral amplitude stems from more than one source.
Carcagno, Samuele; Semal, Catherine; Demany, Laurent
2012-10-01
A component of a test sound consisting of simultaneous pure tones perceptually "pops out" if the test sound is preceded by a copy of itself with that component attenuated. Although this "enhancement" effect was initially thought to be purely monaural, it is also observable when the test sound and the precursor sound are presented contralaterally (i.e., to opposite ears). In experiment 1, we assessed the magnitude of ipsilateral and contralateral enhancement as a function of the time interval between the precursor and test sounds (10, 100, or 600 ms). The test sound, randomly transposed in frequency from trial to trial, was followed by a probe tone, either matched or mismatched in frequency to the test sound component which was the target of enhancement. Listeners' ability to discriminate matched probes from mismatched probes was taken as an index of enhancement magnitude. The results showed that enhancement decays more rapidly for ipsilateral than for contralateral precursors, suggesting that ipsilateral enhancement and contralateral enhancement stem from at least partly different sources. It could be hypothesized that, in experiment 1, contralateral precursors were effective only because they provided attentional cues about the target tone frequency. In experiment 2, this hypothesis was tested by presenting the probe tone before the precursor sound rather than after the test sound. Although the probe tone was then serving as a frequency cue, contralateral precursors were again found to produce enhancement. This indicates that contralateral enhancement cannot be explained by cuing alone and is a genuine sensory phenomenon.
Ipsilateral hemiparesis in ischemic stroke patients.
Inatomi, Y; Nakajima, M; Yonehara, T; Ando, Y
2017-07-01
To investigate clinical characteristics of ipsilateral hemiparesis in ischemic stroke patients. Patients with acute ischemic stroke were prospectively examined. Ipsilateral hemiparesis was defined as hemiparesis ipsilateral to recent stroke lesions. Patients with ipsilateral hemiparesis were examined with functional neuroimaging studies including transcranial magnetic stimulation (TMS) and functional MRI. Of 8360 patients, ipsilateral hemiparesis was detected in 14 patients (0.17%, mean age 71±6 years, eight men). Lesions responsible for the recent strokes were located in the frontal cortex in three patients, corona radiata in seven, internal capsule in one, and pons in three. These lesions were located along the typical route of the corticospinal tract in all but one patient. Thirteen patients also had a past history of stroke contralateral to the recent lesions; 12 of these had motor deficits contralateral to past stroke lesions. During TMS, ipsilateral magnetic evoked potentials were evoked in two of seven patients and contralateral potentials were evoked in all seven. Functional MRI activated cerebral hemispheres ipsilaterally in eight of nine patients and contralaterally in all nine. Most patients with ipsilateral hemiparesis had a past history of stroke contralateral to the recent one, resulting in motor deficits contralateral to the earlier lesions. Moreover, functional neuroimaging findings indicated an active crossed corticospinal tract in all of the examined patients. Both findings suggest the contribution of the uncrossed corticospinal tract contralateral to stroke lesions as a post-stroke compensatory motor system. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Simple shielding reduces dose to the contralateral breast during prone breast cancer radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goyal, Uma, E-mail: uma.goyal@gmail.com; Locke, Angela; Smith-Raymond, Lexie
Our goal was to design a prone breast shield for the contralateral breast and study its efficacy in decreasing scatter radiation to the contralateral breast in a prone breast phantom setup receiving radiation therapy designed for breast cancer. We constructed a prone breast phantom setup consisting of (1) A thermoplastic mask with a left-sided depression created by a water balloon for a breast shape; (2) 2 plastic bags to hold water in the thermoplastic mask depression; (3) 2000 mL of water to fill the thermoplastic mask depression to create a water-based false breast; (4) 1-cm thick bolus placed in themore » contralateral breast holder; (5) 2 lead (Pb) sheets, each 0.1-cm thick for blocking scatter radiation in the contralateral bolus-based false breast; (6) a prone breast board to hold the thermoplastic mask, water, bolus, and lead; (7) 9 cm solid water on top of the breast board to simulate body; (8) a diode was used to verify dose for each treatment field of the treated water-based breast; (9) metal–oxide–semiconductor-field effect transistor (MOSFET) dosimeters to measure dose to the contralateral bolus-based breast. The phantom prone breast setup was CT simulated and treatment was designed with 95% isodose line covering the treated breast. The maximum dose was 107.1%. Megavoltage (MV) port images ensured accurate setup. Measurements were done using diodes on the treated water-based breast and MOSFET dosimeters at the medial and lateral sides of the contralateral bolus-based breast without and with the Pb shield. Five treatments were done for each of the 3 data sets and recorded individually for statistical purposes. All treatments were completed with 6 MV photons at 200 cGy per treatment. The dose contributions from each of the 3 data sets including 15 treatments total without and with the prone lead shield to the medial and lateral portions of contralateral bolus-based breast were averaged individually. Unshielded dose means were 37.11 and 2.94 cGy, and shielded dose means were 12.68 and 1.54 cGy, respectively. When comparing medial and lateral portions of the contralateral bolus-based doses without and with Pb, the shield significantly reduced dose to both sides of the contralateral breast (medial p = 2.64 × 10{sup −14}, lateral p = 4.91 × 10{sup −6}). The prone 0.2-cm Pb shield significantly reduced scatter dose to the contralateral breast on the order of 2 to 3 times. Reductions may be clinically relevant for women younger than 45 years by decreasing the risk of contralateral radiation-induced breast cancer in patients receiving radiation therapy for breast cancer. This shield is simple as it would be a part of the prone breast board during treatments, but future studies are warranted for safety and efficacy clinically.« less
Kaur, Mandeep; Ribeiro, Daniel Cury; Theis, Jean-Claude; Webster, Kate E; Sole, Gisela
2016-12-01
Altered gait patterns follow ing anterior cruciate ligament reconstruction (ACLR) may be associated with long-term impairments and post-traumatic osteoarthritis. This systematic review and meta-analysis compared lower limb kinematics and kinetics of the ACL reconstructed knee with (1) the contralateral limb and (2) healthy age-matched participants during walking, stair climbing, and running. The secondary aim was to describe the differences over time following ACLR for these biomechanical variables. Database searches were conducted from inception to July 2014 and updated in August 2015 for studies exploring peak knee angles and moments following ACLR during walking, stair negotiation, and running. Risk of bias was assessed with a modified Downs and Black quality index for all included studies, and meta-analyses were performed. Forest plots were explored qualitatively for recovery of gait variables over time after surgery. A total of 40 studies were included in the review; 26 of these were rated as low risk and 14 as high risk of bias. The meta-analysis included 27 studies. Strong to moderate evidence indicated no significant difference in peak flexion angles between ACLR and control groups during walking and stair ascent. Strong evidence was found for lower peak flexion moments in participants with ACLR compared with control groups and contralateral limb during walking and stair activities. Strong to moderate evidence was found for lower peak adduction moment in ACLR participants for the injured compared with the contralateral limbs during walking and stair descent. The qualitative assessment for recovery over time indicated a pattern towards restoration of peak knee flexion angle with increasing time from post-surgery. Peak knee adduction moments were lower within the first year following surgery and higher than controls during later phases (5 years). Joint kinematics are restored, on average, 6 years following reconstruction, while knee external flexion moments remain lower than controls. Knee adduction moments are lower during early phases following reconstruction, but are higher than controls, on average, 5 years post-surgery. Findings indicate that knee function is not fully restored following reconstruction, and long-term maintenance programs may be needed.
Unilateral Plantar Flexors Static-Stretching Effects on Ipsilateral and Contralateral Jump Measures
da Silva, Josinaldo Jarbas; Behm, David George; Gomes, Willy Andrade; Silva, Fernando Henrique Domingues de Oliveira; Soares, Enrico Gori; Serpa, Érica Paes; Vilela Junior, Guanis de Barros; Lopes, Charles Ricardo; Marchetti, Paulo Henrique
2015-01-01
The aim of this study was to evaluate the acute effects of unilateral ankle plantar flexors static-stretching (SS) on the passive range of movement (ROM) of the stretched limb, surface electromyography (sEMG) and single-leg bounce drop jump (SBDJ) performance measures of the ipsilateral stretched and contralateral non-stretched lower limbs. Seventeen young men (24 ± 5 years) performed SBDJ before and after (stretched limb: immediately post-stretch, 10 and 20 minutes and non-stretched limb: immediately post-stretch) unilateral ankle plantar flexor SS (6 sets of 45s/15s, 70-90% point of discomfort). SBDJ performance measures included jump height, impulse, time to reach peak force, contact time as well as the sEMG integral (IEMG) and pre-activation (IEMGpre-activation) of the gastrocnemius lateralis. Ankle dorsiflexion passive ROM increased in the stretched limb after the SS (pre-test: 21 ± 4° and post-test: 26.5 ± 5°, p < 0.001). Post-stretching decreases were observed with peak force (p = 0.029), IEMG (P<0.001), and IEMGpre-activation (p = 0.015) in the stretched limb; as well as impulse (p = 0.03), and jump height (p = 0.032) in the non-stretched limb. In conclusion, SS effectively increased passive ankle ROM of the stretched limb, and transiently (less than 10 minutes) decreased muscle peak force and pre-activation. The decrease of jump height and impulse for the non-stretched limb suggests a SS-induced central nervous system inhibitory effect. Key points When considering whether or not to SS prior to athletic activities, one must consider the potential positive effects of increased ankle dorsiflexion motion with the potential deleterious effects of power and muscle activity during a simple jumping task or as part of the rehabilitation process. Since decreased jump performance measures can persist for 10 minutes in the stretched leg, the timing of SS prior to performance must be taken into consideration. Athletes, fitness enthusiasts and therapists should also keep in mind that SS one limb has generalized effects upon contralateral limbs as well. PMID:25983580
Viewing medium affects arm motor performance in 3D virtual environments.
Subramanian, Sandeep K; Levin, Mindy F
2011-06-30
2D and 3D virtual reality platforms are used for designing individualized training environments for post-stroke rehabilitation. Virtual environments (VEs) are viewed using media like head mounted displays (HMDs) and large screen projection systems (SPS) which can influence the quality of perception of the environment. We estimated if there were differences in arm pointing kinematics when subjects with and without stroke viewed a 3D VE through two different media: HMD and SPS. Two groups of subjects participated (healthy control, n=10, aged 53.6 ± 17.2 yrs; stroke, n=20, 66.2 ± 11.3 yrs). Arm motor impairment and spasticity were assessed in the stroke group which was divided into mild (n=10) and moderate-to-severe (n=10) sub-groups based on Fugl-Meyer Scores. Subjects pointed (8 times each) to 6 randomly presented targets located at two heights in the ipsilateral, middle and contralateral arm workspaces. Movements were repeated in the same VE viewed using HMD (Kaiser XL50) and SPS. Movement kinematics were recorded using an Optotrak system (Certus, 6 markers, 100 Hz). Upper limb motor performance (precision, velocity, trajectory straightness) and movement pattern (elbow, shoulder ranges and trunk displacement) outcomes were analyzed using repeated measures ANOVAs. For all groups, there were no differences in endpoint trajectory straightness, shoulder flexion and shoulder horizontal adduction ranges and sagittal trunk displacement between the two media. All subjects, however, made larger errors in the vertical direction using HMD compared to SPS. Healthy subjects also made larger errors in the sagittal direction, slower movements overall and used less range of elbow extension for the lower central target using HMD compared to SPS. The mild and moderate-to-severe sub-groups made larger RMS errors with HMD. The only advantage of using the HMD was that movements were 22% faster in the moderate-to-severe stroke sub-group compared to the SPS. Despite the similarity in majority of the movement kinematics, differences in movement speed and larger errors were observed for movements using the HMD. Use of the SPS may be a more comfortable and effective option to view VEs for upper limb rehabilitation post-stroke. This has implications for the use of VR applications to enhance upper limb recovery. © 2011 Subramanian and Levin; licensee BioMed Central Ltd.
Viewing medium affects arm motor performance in 3D virtual environments
2011-01-01
Background 2D and 3D virtual reality platforms are used for designing individualized training environments for post-stroke rehabilitation. Virtual environments (VEs) are viewed using media like head mounted displays (HMDs) and large screen projection systems (SPS) which can influence the quality of perception of the environment. We estimated if there were differences in arm pointing kinematics when subjects with and without stroke viewed a 3D VE through two different media: HMD and SPS. Methods Two groups of subjects participated (healthy control, n = 10, aged 53.6 ± 17.2 yrs; stroke, n = 20, 66.2 ± 11.3 yrs). Arm motor impairment and spasticity were assessed in the stroke group which was divided into mild (n = 10) and moderate-to-severe (n = 10) sub-groups based on Fugl-Meyer Scores. Subjects pointed (8 times each) to 6 randomly presented targets located at two heights in the ipsilateral, middle and contralateral arm workspaces. Movements were repeated in the same VE viewed using HMD (Kaiser XL50) and SPS. Movement kinematics were recorded using an Optotrak system (Certus, 6 markers, 100 Hz). Upper limb motor performance (precision, velocity, trajectory straightness) and movement pattern (elbow, shoulder ranges and trunk displacement) outcomes were analyzed using repeated measures ANOVAs. Results For all groups, there were no differences in endpoint trajectory straightness, shoulder flexion and shoulder horizontal adduction ranges and sagittal trunk displacement between the two media. All subjects, however, made larger errors in the vertical direction using HMD compared to SPS. Healthy subjects also made larger errors in the sagittal direction, slower movements overall and used less range of elbow extension for the lower central target using HMD compared to SPS. The mild and moderate-to-severe sub-groups made larger RMS errors with HMD. The only advantage of using the HMD was that movements were 22% faster in the moderate-to-severe stroke sub-group compared to the SPS. Conclusions Despite the similarity in majority of the movement kinematics, differences in movement speed and larger errors were observed for movements using the HMD. Use of the SPS may be a more comfortable and effective option to view VEs for upper limb rehabilitation post-stroke. This has implications for the use of VR applications to enhance upper limb recovery. PMID:21718542
Navy Technical Disclosure Bulletin. Volume 9, Number 4, June 1984.
1984-06-01
5ELF-SHORING EPOXY ADHESIVE FOR R. DICK 37 RUBB-R-METAL SONDING, E. HOBAICA 67666 (PMTC) TRANSFORMER CORE MOVEMENT M. VINCENT 41 DETECTOR S 67604 (PMTC... Hobaica General Dynamics, Electric Boat Division, Groton, CT Abstract A self-shoring epoxy adhesive which is used to bond rubber to steel in a marine
NASA Technical Reports Server (NTRS)
Lee, R. D. (Inventor)
1973-01-01
An intruder detection system is described. The system contains a transmitter which sends a frequency modulated and amplitude modulated signal to a remote receiver in response to a geophone detector which responds to seismic impulses created by the intruder. The signal makes it possible for an operator to determine the number of intruders and the manner of movement.
An automated two-dimensional optical force clamp for single molecule studies.
Lang, Matthew J; Asbury, Charles L; Shaevitz, Joshua W; Block, Steven M
2002-01-01
We constructed a next-generation optical trapping instrument to study the motility of single motor proteins, such as kinesin moving along a microtubule. The instrument can be operated as a two-dimensional force clamp, applying loads of fixed magnitude and direction to motor-coated microscopic beads moving in vitro. Flexibility and automation in experimental design are achieved by computer control of both the trap position, via acousto-optic deflectors, and the sample position, using a three-dimensional piezo stage. Each measurement is preceded by an initialization sequence, which includes adjustment of bead height relative to the coverslip using a variant of optical force microscopy (to +/-4 nm), a two-dimensional raster scan to calibrate position detector response, and adjustment of bead lateral position relative to the microtubule substrate (to +/-3 nm). During motor-driven movement, both the trap and stage are moved dynamically to apply constant force while keeping the trapped bead within the calibrated range of the detector. We present details of force clamp operation and preliminary data showing kinesin motor movement subject to diagonal and forward loads. PMID:12080136
Instrument for measurement of vacuum in sealed thin wall packets
Kollie, T.G.; Thacker, L.H.; Fine, H.A.
1993-10-05
An instrument is described for the measurement of vacuum within sealed packets, the packets having a wall sufficiently thin that it can be deformed by the application of an external vacuum to small area thereof. The instrument has a detector head for placement against the deformable wall of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall, with this deformation or lift monitored by the application of light as via a bifurcated light pipe. Retro-reflected light through the light pipe is monitored with a photo detector. An abrupt change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the vacuum applied through the head to achieve this initiation of movement is equal to the vacuum within the packet. In a preferred embodiment a vacuum reference plate is placed beneath the packet to ensure that no deformation occurs on the reverse surface of the packet. A packet production line model is also described. 3 figures.
A new scanning device in CT with dose reduction potential
NASA Astrophysics Data System (ADS)
Tischenko, Oleg; Xu, Yuan; Hoeschen, Christoph
2006-03-01
The amount of x-ray radiation currently applied in CT practice is not utilized optimally. A portion of radiation traversing the patient is either not detected at all or is used ineffectively. The reason lies partly in the reconstruction algorithms and partly in the geometry of the CT scanners designed specifically for these algorithms. In fact, the reconstruction methods widely used in CT are intended to invert the data that correspond to ideal straight lines. However, the collection of such data is often not accurate due to likely movement of the source/detector system of the scanner in the time interval during which all the detectors are read. In this paper, a new design of the scanner geometry is proposed that is immune to the movement of the CT system and will collect all radiation traversing the patient. The proposed scanning design has a potential to reduce the patient dose by a factor of two. Furthermore, it can be used with the existing reconstruction algorithm and it is particularly suitable for OPED, a new robust reconstruction algorithm.
Instrument for measurement of vacuum in sealed thin wall packets
Kollie, Thomas G.; Thacker, Louis H.; Fine, H. Alan
1993-01-01
An instrument for the measurement of vacuum within sealed packets 12, the packets 12 having a wall 14 sufficiently thin that it can be deformed by the application of an external vacuum to small area thereof. The instrument has a detector head 18 for placement against the deformable wall 14 of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall 14, with this deformation or lift monitored by the application of light as via a bifurcated light pipe 20. Retro-reflected light through the light pipe is monitored with a photo detector 26. An abrupt change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the vacuum applied through the head 18 to achieve this initiation of movement is equal to the vacuum Within the packet 12. In a preferred embodiment a vacuum reference plate 44 is placed beneath the packet 12 to ensure that no deformation occurs on the reverse surface 16 of the packet. A packet production line model is also described.
Gao, Kai-Ming; Lao, Jie; Guan, Wen-Jie; Hu, Jing-Jing
2018-01-01
If a partial contralateral C 7 nerve is transferred to a recipient injured nerve, results are not satisfactory. However, if an entire contralateral C 7 nerve is used to repair two nerves, both recipient nerves show good recovery. These findings seem contradictory, as the above two methods use the same donor nerve, only the cutting method of the contralateral C 7 nerve is different. To verify whether this can actually result in different repair effects, we divided rats with right total brachial plexus injury into three groups. In the entire root group, the entire contralateral C 7 root was transected and transferred to the median nerve of the affected limb. In the posterior division group, only the posterior division of the contralateral C 7 root was transected and transferred to the median nerve. In the entire root + posterior division group, the entire contralateral C 7 root was transected but only the posterior division was transferred to the median nerve. After neurectomy, the median nerve was repaired on the affected side in the three groups. At 8, 12, and 16 weeks postoperatively, electrophysiological examination showed that maximum amplitude, latency, muscle tetanic contraction force, and muscle fiber cross-sectional area of the flexor digitorum superficialis muscle were significantly better in the entire root and entire root + posterior division groups than in the posterior division group. No significant difference was found between the entire root and entire root + posterior division groups. Counts of myelinated axons in the median nerve were greater in the entire root group than in the entire root + posterior division group, which were greater than the posterior division group. We conclude that for the same recipient nerve, harvesting of the entire contralateral C 7 root achieved significantly better recovery than partial harvesting, even if only part of the entire root was used for transfer. This result indicates that the entire root should be used as a donor when transferring contralateral C 7 nerve.
Gao, Kai-ming; Lao, Jie; Guan, Wen-jie; Hu, Jing-jing
2018-01-01
If a partial contralateral C7 nerve is transferred to a recipient injured nerve, results are not satisfactory. However, if an entire contralateral C7 nerve is used to repair two nerves, both recipient nerves show good recovery. These findings seem contradictory, as the above two methods use the same donor nerve, only the cutting method of the contralateral C7 nerve is different. To verify whether this can actually result in different repair effects, we divided rats with right total brachial plexus injury into three groups. In the entire root group, the entire contralateral C7 root was transected and transferred to the median nerve of the affected limb. In the posterior division group, only the posterior division of the contralateral C7 root was transected and transferred to the median nerve. In the entire root + posterior division group, the entire contralateral C7 root was transected but only the posterior division was transferred to the median nerve. After neurectomy, the median nerve was repaired on the affected side in the three groups. At 8, 12, and 16 weeks postoperatively, electrophysiological examination showed that maximum amplitude, latency, muscle tetanic contraction force, and muscle fiber cross-sectional area of the flexor digitorum superficialis muscle were significantly better in the entire root and entire root + posterior division groups than in the posterior division group. No significant difference was found between the entire root and entire root + posterior division groups. Counts of myelinated axons in the median nerve were greater in the entire root group than in the entire root + posterior division group, which were greater than the posterior division group. We conclude that for the same recipient nerve, harvesting of the entire contralateral C7 root achieved significantly better recovery than partial harvesting, even if only part of the entire root was used for transfer. This result indicates that the entire root should be used as a donor when transferring contralateral C7 nerve. PMID:29451212
Pindrik, Jonathan; Hoang, Nguyen; Tubbs, R Shane; Rocque, Brandon J; Rozzelle, Curtis J
2017-08-01
Phase II monitoring with intracranial electroencephalography (ICEEG) occasionally requires bilateral placement of subdural (SD) strips, grids, and/or depth electrodes. While phase I monitoring often demonstrates a preponderance of unilateral findings, individual studies (video EEG, single photon emission computed tomography [SPECT], and positron emission tomography [PET]) can suggest or fail to exclude a contralateral epileptogenic onset zone. This study describes previously unreported techniques of trans-falcine and sub-frontal insertion of contralateral SD grids and depth electrodes for phase II monitoring in pediatric epilepsy surgery patients when concern about bilateral abnormalities has been elicited during phase I monitoring. Pediatric patients with medically refractory epilepsy undergoing stage I surgery for phase II monitoring involving sub-frontal and/or trans-falcine insertion of SD grids and/or depth electrodes at the senior author's institution were retrospectively reviewed. Intra-operative technical details of sub-frontal and trans-falcine approaches were studied, while intra-operative complications or events were noted. Operative techniques included gentle subfrontal retraction and elevation of the olfactory tracts (while preserving the relationship between the olfactory bulb and cribriform plate) to insert SD grids across the midline for coverage of the contralateral orbito-frontal regions. Trans-falcine approaches involved accessing the inter-hemispheric space, bipolar cauterization of the anterior falx cerebri below the superior sagittal sinus, and sharp dissection using a blunt elevator and small blade scalpel. The falcine window allowed contralateral SD strip, grid, and depth electrodes to be inserted for coverage of the contralateral frontal regions. The study cohort included seven patients undergoing sub-frontal and/or trans-falcine insertion of contralateral SD strip, grid, and/or depth electrodes from February 2012 through June 2015. Five patients (71%) experienced no intra-operative events related to contralateral ICEEG electrode insertion. Intra-operative events of frontal territory venous engorgement (1/7, 14%) due to sacrifice of anterior bridging veins draining into the SSS and avulsion of a contralateral bridging vein (1/7, 14%), probably due to prior anterior corpus callosotomy, each occurred in one patient. There were no intra-operative or peri-operative complications in any of the patients studied. Two patients required additional surgery for supplemental SD strip and/or depth electrodes via burr hole craniectomy to enhance phase II monitoring. All patients proceeded to stage II surgery for resection of ipsilateral epileptogenic onset zones without adverse events. Trans-falcine and sub-frontal insertion of contralateral SD strip, grid, and depth electrodes are previously unreported techniques for achieving bilateral frontal coverage in phase II monitoring in pediatric epilepsy surgery. This technique obviates the need for contralateral craniotomy and parenchymal exposure with limited, remediable risks. Larger case series using the method described herein are now necessary.
Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore
2003-11-18
The apparatus and method provide a technique for significantly reducing capacitance effects in detector electrodes arising due to movement of the instrument relative to the item/location being monitored in ion detection based techniques. The capacitance variations are rendered less significant by placing an electrically conducting element between the detector electrodes and the monitored location/item. Improved sensitivity and reduced noise signals arise as a result. The technique also provides apparatus and method suitable for monitoring elongate items which are unsuited to complete enclosure in one go within a chamber. The items are monitored part by part as the pass through the instrument, so increasing the range of items or locations which can be successfully monitored.
Time-frequency analysis of functional optical mammographic images
NASA Astrophysics Data System (ADS)
Barbour, Randall L.; Graber, Harry L.; Schmitz, Christoph H.; Tarantini, Frank; Khoury, Georges; Naar, David J.; Panetta, Thomas F.; Lewis, Theophilus; Pei, Yaling
2003-07-01
We have introduced working technology that provides for time-series imaging of the hemoglobin signal in large tissue structures. In this study we have explored our ability to detect aberrant time-frequency responses of breast vasculature for subjects with Stage II breast cancer at rest and in response to simple provocations. The hypothesis being explored is that time-series imaging will be sensitive to the known structural and functional malformations of the tumor vasculature. Mammographic studies were conducted using an adjustable hemisheric measuring head containing 21 source and 21 detector locations (441 source-detector pairs). Simultaneous dual-wavelength studies were performed at 760 and 830 nm at a framing rate of ~2.7 Hz. Optical measures were performed on women lying prone with the breast hanging in a pendant position. Two class of measures were performed: (1) 20- minute baseline measure wherein the subject was at rest; (2) provocation studies wherein the subject was asked to perform some simple breathing maneuvers. Collected data were analyzed to identify the time-frequency structure and central tendencies of the detector responses and those of the image time series. Imaging data were generated using the Normalized Difference Method (Pei et al., Appl. Opt. 40, 5755-5769, 2001). Results obtained clearly document three classes of anomalies when compared to the normal contralateral breast. 1) Breast tumors exhibit altered oxygen supply/demand imbalance in response to an oxidative challenge (breath hold). 2) The vasomotor response of the tumor vasculature is mainly depressed and exhibits an altered modulation. 3) The affected area of the breast wherein the altered vasomotor signature is seen extends well beyond the limits of the tumor itself.
A case of loss of consciousness with contralateral acute subdural haematoma during awake craniotomy
Kamata, Kotoe; Maruyama, Takashi; Nitta, Masayuki; Ozaki, Makoto; Muragaki, Yoshihiro; Okada, Yoshikazu
2014-01-01
We are reporting the case of a 56-year-old woman who developed loss of consciousness during awake craniotomy. A thin subdural haematoma in the contralateral side of the craniotomy was identified with intraoperative magnetic resonance imaging and subsequently removed. Our case indicates that contralateral acute subdural haematoma could be a cause of deterioration of the conscious level during awake craniotomy. PMID:25301378
Contralateral ear occlusion for improving the reliability of otoacoustic emission screening tests.
Papsin, Emily; Harrison, Adrienne L; Carraro, Mattia; Harrison, Robert V
2014-01-01
Newborn hearing screening is an established healthcare standard in many countries and testing is feasible using otoacoustic emission (OAE) recording. It is well documented that OAEs can be suppressed by acoustic stimulation of the ear contralateral to the test ear. In clinical otoacoustic emission testing carried out in a sound attenuating booth, ambient noise levels are low such that the efferent system is not activated. However in newborn hearing screening, OAEs are often recorded in hospital or clinic environments, where ambient noise levels can be 60-70 dB SPL. Thus, results in the test ear can be influenced by ambient noise stimulating the opposite ear. Surprisingly, in hearing screening protocols there are no recommendations for avoiding contralateral suppression, that is, protecting the opposite ear from noise by blocking the ear canal. In the present study we have compared transient evoked and distortion product OAEs measured with and without contralateral ear plugging, in environmental settings with ambient noise levels <25 dB SPL, 45 dB SPL, and 55 dB SPL. We found out that without contralateral ear occlusion, ambient noise levels above 55 dB SPL can significantly attenuate OAE signals. We strongly suggest contralateral ear occlusion in OAE based hearing screening in noisy environments.
Raskin, Daniel; Khaitovich, Boris; Balan, Shmuel; Silverberg, Daniel; Halak, Moshe; Rimon, Uri
2018-01-01
To assess the technical success of the Outback reentry device in contralateral versus ipsilateral approaches for femoropopliteal arterial occlusion. A retrospective review of patients treated for critical limb ischemia (CLI) using the Outback between January 2013 and July 2016 was performed. Age, gender, length and site of the occlusion, approach site, aortic bifurcation angle, and reentry site were recorded. Calcification score was assigned at both aortic bifurcation and reentry site. Technical success was assessed. During the study period, a total of 1300 endovascular procedures were performed on 489 patients for CLI. The Outback was applied on 50 femoropopliteal chronic total occlusions. Thirty-nine contralateral and 11 ipsilateral antegrade femoral were accessed. The device was used successfully in 41 patients (82%). There were nine failures, all in the contralateral approach group. Six due to inability to deliver the device due to acute aortic bifurcation angle and three due to failure to achieve luminal reentry. Procedural success was significantly affected by the aortic bifurcation angle (p = 0.013). The Outback has high technical success rates in treatment of femoropopliteal occlusion, when applied from either an ipsi- or contralateral approach. When applied in contralateral access, acute aortic bifurcation angle predicts procedural failure.
Liu, Fubing; Jiang, Chun
2016-01-01
The aim of this study was to evaluate the risk factors between ipsilateral and contralateral reherniation and to compare the effectiveness of miniopen transforaminal lumbar interbody fusion (TLIF) with unilateral fixation for each group. From November 2007 to December 2014, clinical and radiographic data of each group (ipsilateral or contralateral reherniation) were collected and compared. Functional assessment (Visual Analog Scale (VAS) score and Japanese Orthopaedic Association (JOA)) and radiographic evaluation (fusion status, disc height, lumbar lordosis (LL), and functional spine unit (FSU) angle) were applied to compare surgical effect for each group preoperatively and at final followup. MacNab questionnaire was applied to further evaluate the satisfactory rate after the discectomy and fusion. No difference except pain-free interval was found between ipsilateral and contralateral groups. There was a significant difference in operative time between two groups. No differences were found in clinical and radiographic data for assessment of surgical effect between two groups. The satisfactory rate was decreasing in both groups with time passing after discectomy. Difference in pain-free interval may be a distinction for ipsilateral and contralateral reherniation. Miniopen TLIF with unilateral pedicle screw fixation can be a recommendable way for single level reherniation regardless of ipsilateral or contralateral reherniation. PMID:27885358
Mitchell, Daniel J; Cusack, Rhodri
2011-01-01
An electroencephalographic (EEG) marker of the limited contents of human visual short-term memory (VSTM) has previously been described. Termed contralateral delay activity, this consists of a sustained, posterior, negative potential that correlates with memory load and is greatest contralateral to the remembered hemifield. The current investigation replicates this finding and uses magnetoencephalography (MEG) to characterize its magnetic counterparts and their neural generators as they evolve throughout the memory delay. A parametric manipulation of memory load, within and beyond capacity limits, allows separation of signals that asymptote with behavioral VSTM performance from additional responses that contribute to a linear increase with set-size. Both EEG and MEG yielded bilateral signals that track the number of objects held in memory, and contralateral signals that are independent of memory load. In MEG, unlike EEG, the contralateral interaction between hemisphere and item load is much weaker, suggesting that bilateral and contralateral markers of memory load reflect distinct sources to which EEG and MEG are differentially sensitive. Nonetheless, source estimation allowed both the bilateral and the weaker contralateral capacity-limited responses to be localized, along with a load-independent contralateral signal. Sources of global and hemisphere-specific signals all localized to the posterior intraparietal sulcus during the early delay. However the bilateral load response peaked earlier and its generators shifted later in the delay. Therefore the hemifield-specific response may be more closely tied to memory maintenance while the global load response may be involved in initial processing of a limited number of attended objects, such as their individuation or consolidation into memory.
Tollin, Daniel J.; Yin, Tom C. T.
2006-01-01
The lateral superior olive (LSO) is believed to encode differences in sound level at the two ears, a cue for azimuthal sound location. Most high-frequency-sensitive LSO neurons are binaural, receiving inputs from both ears. An inhibitory input from the contralateral ear, via the medial nucleus of the trapezoid body (MNTB), and excitatory input from the ipsilateral ear enable level differences to be encoded. However, the classical descriptions of low-frequency-sensitive neurons report primarily monaural cells with no contralateral inhibition. Anatomical and physiological evidence, however, shows that low-frequency LSO neurons receive low-frequency inhibitory input from ipsilateral MNTB, which in turn receives excitatory input from the contralateral cochlear nucleus and low-frequency excitatory input from the ipsilateral cochlear nucleus. Therefore, these neurons would be expected to be binaural with contralateral inhibition. Here, we re-examined binaural interaction in low-frequency (less than ~3 kHz) LSO neurons and phase locking in the MNTB. Phase locking to low-frequency tones in MNTB and ipsilaterally driven LSO neurons with frequency sensitivities < 1.2 kHz was enhanced relative to the auditory nerve. Moreover, most low-frequency LSO neurons exhibited contralateral inhibition: ipsilaterally driven responses were suppressed by raising the level of the contralateral stimulus; most neurons were sensitive to interaural time delays in pure tone and noise stimuli such that inhibition was nearly maximal when the stimuli were presented to the ears in-phase. The data demonstrate that low-frequency LSO neurons of cat are not monaural and can exhibit contralateral inhibition like their high-frequency counterparts. PMID:16291937
Morales-Botello, M. L.; Aguilar, J.; Foffani, G.
2012-01-01
We employed voltage-sensitive dye (VSD) imaging to investigate the spatio-temporal dynamics of the responses of the supragranular somatosensory cortex to stimulation of the four paws in urethane-anesthetized rats. We obtained the following main results. (1) Stimulation of the contralateral forepaw evoked VSD responses with greater amplitude and smaller latency than stimulation of the contralateral hindpaw, and ipsilateral VSD responses had a lower amplitude and greater latency than contralateral responses. (2) While the contralateral stimulation initially activated only one focus, the ipsilateral stimulation initially activated two foci: one focus was typically medial to the focus activated by contralateral stimulation and was stereotaxically localized in the motor cortex; the other focus was typically posterior to the focus activated by contralateral stimulation and was stereotaxically localized in the somatosensory cortex. (3) Forepaw and hindpaw somatosensory stimuli activated large areas of the sensorimotor cortex, well beyond the forepaw and hindpaw somatosensory areas of classical somatotopic maps, and forepaw stimuli activated larger cortical areas with greater activation velocity than hindpaw stimuli. (4) Stimulation of the forepaw and hindpaw evoked different cortical activation dynamics: forepaw responses displayed a clear medial directionality, whereas hindpaw responses were much more uniform in all directions. In conclusion, this work offers a complete spatio-temporal map of the supragranular VSD cortical activation in response to stimulation of the paws, showing important somatotopic differences between contralateral and ipsilateral maps as well as differences in the spatio-temporal activation dynamics in response to forepaw and hindpaw stimuli. PMID:22829873
O'Shea, Jacinta; Jensen, Ole; Bergmann, Til O.
2015-01-01
Covertly directing visuospatial attention produces a frequency-specific modulation of neuronal oscillations in occipital and parietal cortices: anticipatory alpha (8–12 Hz) power decreases contralateral and increases ipsilateral to attention, whereas stimulus-induced gamma (>40 Hz) power is boosted contralaterally and attenuated ipsilaterally. These modulations must be under top-down control; however, the control mechanisms are not yet fully understood. Here we investigated the causal contribution of the human frontal eye field (FEF) by combining repetitive transcranial magnetic stimulation (TMS) with subsequent magnetoencephalography. Following inhibitory theta burst stimulation to the left FEF, right FEF, or vertex, participants performed a visual discrimination task requiring covert attention to either visual hemifield. Both left and right FEF TMS caused marked attenuation of alpha modulation in the occipitoparietal cortex. Notably, alpha modulation was consistently reduced in the hemisphere contralateral to stimulation, leaving the ipsilateral hemisphere relatively unaffected. Additionally, right FEF TMS enhanced gamma modulation in left visual cortex. Behaviorally, TMS caused a relative slowing of response times to targets contralateral to stimulation during the early task period. Our results suggest that left and right FEF are causally involved in the attentional top-down control of anticipatory alpha power in the contralateral visual system, whereas a right-hemispheric dominance seems to exist for control of stimulus-induced gamma power. These findings contrast the assumption of primarily intrahemispheric connectivity between FEF and parietal cortex, emphasizing the relevance of interhemispheric interactions. The contralaterality of effects may result from a transient functional reorganization of the dorsal attention network after inhibition of either FEF. PMID:25632139
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batumalai, Vikneswary, E-mail: vikneswary.batumalai@sswahs.nsw.gov.au; South Western Clinical School, University of New South Wales, Sydney, New South Wales; Quinn, Alexandra
Correct target positioning is crucial for accurate dose delivery in breast radiotherapy resulting in utilisation of daily imaging. However, the radiation dose from daily imaging is associated with increased probability of secondary induced cancer. The aim of this study was to quantify doses associated with three imaging modalities and investigate the correlation of dose and varying breast size in breast radiotherapy. Planning computed tomography (CT) data sets of 30 breast cancer patients were utilised to simulate the dose received by various organs from a megavoltage computed tomography (MV-CT), megavoltage electronic portal image (MV-EPI) and megavoltage cone-beam computed tomography (MV-CBCT). Themore » mean dose to organs adjacent to the target volume (contralateral breast, lungs, spinal cord and heart) were analysed. Pearson correlation analysis was performed to determine the relationship between imaging dose and primary breast volume and the lifetime attributable risk (LAR) of induced secondary cancer was calculated for the contralateral breast. The highest contralateral breast mean dose was from the MV-CBCT (1.79 Gy), followed by MV-EPI (0.22 Gy) and MV-CT (0.11 Gy). A similar trend was found for all organs at risk (OAR) analysed. The primary breast volume inversely correlated with the contralateral breast dose for all three imaging modalities. As the primary breast volume increases, the likelihood of a patient developing a radiation-induced secondary cancer to the contralateral breast decreases. MV-CBCT showed a stronger relationship between breast size and LAR of developing a radiation-induced contralateral breast cancer in comparison with the MV-CT and MV-EPI. For breast patients, imaging dose to OAR depends on imaging modality and treated breast size. When considering the use of imaging during breast radiotherapy, the patient's breast size and contralateral breast dose should be taken into account.« less
Park, Bong Hee; Cho, Kang Jun; Kim, Jung Im; Bae, Sang Rak; Lee, Yong Seok; Kang, Sung Hak; Kim, Joon Chul; Han, Chang Hee
2018-02-01
To investigate the usefulness of the ellipsoid formula for assessing compensatory hypertrophy of the contralateral kidney on pre-operative and post-operative CT in renal cell carcinoma (RCC) patients. We retrospectively identified 389 patients who had radical nephrectomy for RCC between 2011 and 2015. Contrast-enhanced CT was performed within 3 months pre-operative and at 1 year post-operative. The kidney volumes were calculated from CT using the ellipsoid formula. We subdivided patients into three groups based on tumour size (I: ≤4 cm, II: 4-7 cm, III: >7 cm). Volumetric renal parameters were compared and multivariate analyses were performed to determine predictors associated with pre-operative and post-operative compensatory hypertrophy. Kidney volume calculation using the ellipsoid method took a median of 51 s. Group III had a significantly larger median pre-operative contralateral renal volume than Groups I and II (I: 140.4, II: 141.6, III: 166.7 ml, p < 0.05). However, the median ratio of post-operative contralateral renal volume change was significantly higher in Groups I and II than Group III (I: 0.36, II: 0.23, III: 0.12, p < 0.001). On multivariate analysis, tumour size revealed the strongest positive association with pre-operative contralateral kidney volume (partial regression coefficient: β = 30.8, >7 cm) and ratio of post-operative contralateral kidney volume change (β = 0.214, I vs III; β = 0.168, II vs III). Kidney volume calculation for assessing pre- and post-operative compensatory hypertrophy of the contralateral kidney in RCC patients can be easily and rapidly performed from CT images using the ellipsoid formula. Advances in knowledge: The ellipsoid formula allows reliable method for assessing pre-operative and post-operative compensatory hypertrophy of the contralateral kidney in RCC.
Aedo, Cristian; Tapia, Eduardo; Pavez, Elizabeth; Elgueda, Diego; Delano, Paul H; Robles, Luis
2015-01-01
There are two types of sensory cells in the mammalian cochlea, inner hair cells, which make synaptic contact with auditory-nerve afferent fibers, and outer hair cells that are innervated by crossed and uncrossed medial olivocochlear (MOC) efferent fibers. Contralateral acoustic stimulation activates the uncrossed efferent MOC fibers reducing cochlear neural responses, thus modifying the input to the central auditory system. The chinchilla, among all studied mammals, displays the lowest percentage of uncrossed MOC fibers raising questions about the strength and frequency distribution of the contralateral-sound effect in this species. On the other hand, MOC effects on cochlear sensitivity have been mainly studied in anesthetized animals and since the MOC-neuron activity depends on the level of anesthesia, it is important to assess the influence of anesthesia in the strength of efferent effects. Seven adult chinchillas (Chinchilla laniger) were chronically implanted with round-window electrodes in both cochleae. We compared the effect of contralateral sound in awake and anesthetized condition. Compound action potentials (CAP) and cochlear microphonics (CM) were measured in the ipsilateral cochlea in response to tones in absence and presence of contralateral sound. Control measurements performed after middle-ear muscles section in one animal discarded any possible middle-ear reflex activation. Contralateral sound produced CAP amplitude reductions in all chinchillas, with suppression effects greater by about 1-3 dB in awake than in anesthetized animals. In contrast, CM amplitude increases of up to 1.9 dB were found in only three awake chinchillas. In both conditions the strongest efferent effects were produced by contralateral tones at frequencies equal or close to those of ipsilateral tones. Contralateral CAP suppressions for 1-6 kHz ipsilateral tones corresponded to a span of uncrossed MOC fiber innervation reaching at least the central third of the chinchilla cochlea.
Endosseous titanium implants as anchors for mesiodistal tooth movement in the beagle dog.
Saito, S; Sugimoto, N; Morohashi, T; Ozeki, M; Kurabayashi, H; Shimizu, H; Yamasaki, K; Shiba, A; Yamada, S; Shibasaki, Y
2000-12-01
The purpose of this study was to determine the anchorage potential of titanium implants (Branemark; 3.75 x 7 mm) with the use of a sectional arch wire technique for orthodontic mesiodistal tooth movement, as assessed by the osseointegration of implants and tooth movement. Two implants were surgically placed in healed mandibular extraction sites of the second and third premolars on each side in 4 adult male beagle dogs. The implants were surgically uncovered 18 weeks later, and second-stage abutments with soldered edgewise tubes were attached. Segmented edgewise rectangular archwires (0.017 x 0. 025 inch) with a T-loop or an L-loop were placed between the implants and the fourth premolars on both sides as the anchorage unit. One segment in each dog served as a loaded side, and the archwire was calibrated to produce 200 g of lateral force on the fourth premolar. The contralateral segment served as an unloaded side and was not subjected to orthodontic force. Sectional wires were activated biweekly 24, 28, 28, and 32 weeks, respectively, depending on the magnitude and the appearance of mesial tipping movement of the fourth premolar. After mandibular impressions were taken to measure the distance between the first molar and the fourth premolar, the animals were euthanized and dissected mandibles were prepared. The specimens were then embedded in polyester resin and cut to take backscattered electron images. On the basis of these images, the percentage of peri-implant bone volume was calculated and defined as an index of osseointegration. The differences between the initial and final fourth premolar to first molar distances varied (7.40, 8.85, 10.50, and 3.30 mm) on the loaded side, whereas the unloaded side showed no movement. Not only was there no statistical difference in the percent of peri-implant bone volume between the loaded and unloaded sides, but there was also no statistical difference between the compression and tension sides in both loaded and unloaded implants, which suggests that the implants maintained rigid osseointegration. In conclusion, the present study demonstrated that endosseous titanium implants can function as anchors for long-term orthodontic mesiodistal movement.
Patel, Jigna; Qiu, Qinyin; Yarossi, Mathew; Merians, Alma; Massood, Supriya; Tunik, Eugene; Adamovich, Sergei; Fluet, Gerard
2017-07-01
Explore the potential benefits of using priming methods prior to an active hand task in the acute phase post-stroke in persons with severe upper extremity hemiparesis. Five individuals were trained using priming techniques including virtual reality (VR) based visual mirror feedback and contralaterally controlled passive movement strategies prior to training with an active pinch force modulation task. Clinical, kinetic, and neurophysiological measurements were taken pre and post the training period. Clinical measures were taken at six months post training. The two priming simulations and active training were well tolerated early after stroke. Priming effects were suggested by increased maximal pinch force immediately after visual and movement based priming. Despite having no clinically observable movement distally, the subjects were able to volitionally coordinate isometric force and muscle activity (EMG) in a pinch tracing task. The Root Mean Square Error (RMSE) of force during the pinch trace task gradually decreased over the training period suggesting learning may have occurred. Changes in motor cortical neurophysiology were seen in the unaffected hemisphere using Transcranial Magnetic Stimulation (TMS) mapping. Significant improvements in motor recovery as measured by the Action Research Arm Test (ARAT) and the Upper Extremity Fugl Meyer Assessment (UEFMA) were demonstrated at six months post training by three of the five subjects. This study suggests that an early hand-based intervention using visual and movement based priming activities and a scaled motor task allows participation by persons without the motor control required for traditionally presented rehabilitation and testing. Implications for Rehabilitation Rehabilitation of individuals with severely paretic upper extremities after stroke is challenging due to limited movement capacity and few options for therapeutic training. Long-term functional recovery of the arm after stroke depends on early return of active hand control, establishing a need for acute training methods focused distally. This study demonstrates the feasibility of an early hand-based intervention using virtual reality based priming and scaled motor activities which can allow for participation by persons without the motor control required for traditionally presented rehabilitation and testing.
Improving breast cancer diagnosis by reducing chest wall effect in diffuse optical tomography
NASA Astrophysics Data System (ADS)
Zhou, Feifei; Mostafa, Atahar; Zhu, Quing
2017-03-01
We have developed the ultrasound (US)-guided diffuse optical tomography technique to assist US diagnosis of breast cancer and to predict neoadjuvant chemotherapy response of patients with breast cancer. The technique was implemented using a hand-held hybrid probe consisting of a coregistered US transducer and optical source and detector fibers which couple the light illumination from laser diodes and photon detection to the photomultiplier tube detectors. With the US guidance, diffused light measurements were made at the breast lesion site and the normal contralateral reference site which was used to estimate the background tissue optical properties for imaging reconstruction. However, background optical properties were affected by the chest wall underneath the breast tissue. We have analyzed data from 297 female patients, and results have shown statistically significant correlation between the fitted optical properties (μa and μs‧) and the chest wall depth. After subtracting the background μa at each wavelength, the difference of computed total hemoglobin (tHb) between malignant and benign lesion groups has improved. For early stage malignant lesions, the area-under-the-receiver operator characteristic curve (AUC) has improved from 88.5% to 91.5%. For all malignant lesions, the AUC has improved from 85.3% to 88.1%. Statistical test has revealed the significant difference of the AUC improvements after subtracting background tHb values.
Micro-controller based fall detector to assist recovering patients or senior citizens
NASA Astrophysics Data System (ADS)
Páez, Francisco; Asplund, Lars
2010-09-01
Senior citizens and patients recovering from surgery or using strong medications with severe side effects tend to fall unexpectedly. The consequences of such an uncontrolled fall could be worse than the original malady, especially when there is no communication with the care-takers. We describe a fall-detector device capable of distinguishing falls from normal daily activities. Based on three-axis accelerometer and advanced data processing, the microcontroller emits an alarm requesting help in the case of a physical fall. We design and construct the fall-detector prototype for either inside or outside use. In order to determine the device performance, fifty instances of each fall event have been evaluated; all of them detected as fall event. In the case of daily activities, the only movement that produces an alarm is the transition from standing up to lying in 5% of the occurrences.
Endodontic management of contralateral mandibular first molars with six root canals
Bhargav, Kambhampati; Sirisha, Kantheti; Jyothi, Mandava; Boddeda, Mohan Rao
2017-01-01
The knowledge of variations in root canal morphology is essential for a successful endodontic outcome. Contralateral mandibular molar with six root canals is a rare entity. Root canal treatment of mandibular molars with aberrant canal configuration can be diagnostically and technically challenging. While dealing with variant mandibular molars, mishaps may happen. This case report describes variations in contralateral mandibular molars and also an endodontic mishap while managing them. PMID:29259369
Gis-Based Route Finding Using ANT Colony Optimization and Urban Traffic Data from Different Sources
NASA Astrophysics Data System (ADS)
Davoodi, M.; Mesgari, M. S.
2015-12-01
Nowadays traffic data is obtained from multiple sources including GPS, Video Vehicle Detectors (VVD), Automatic Number Plate Recognition (ANPR), Floating Car Data (FCD), VANETs, etc. All such data can be used for route finding. This paper proposes a model for finding the optimum route based on the integration of traffic data from different sources. Ant Colony Optimization is applied in this paper because the concept of this method (movement of ants in a network) is similar to urban road network and movements of cars. The results indicate that this model is capable of incorporating data from different sources, which may even be inconsistent.
Subsequent Total Joint Arthroplasty After Primary Total Knee or Hip Arthroplasty
Sanders, Thomas L.; Maradit Kremers, Hilal; Schleck, Cathy D.; Larson, Dirk R.; Berry, Daniel J.
2017-01-01
Background: Despite the large increase in total hip arthroplasties and total knee arthroplasties, the incidence and prevalence of additional contralateral or ipsilateral joint arthroplasty are poorly understood. The purpose of this study was to determine the rate of additional joint arthroplasty after a primary total hip arthroplasty or total knee arthroplasty. Methods: This historical cohort study identified population-based cohorts of patients who underwent primary total hip arthroplasty (n = 1,933) or total knee arthroplasty (n = 2,139) between 1969 and 2008. Patients underwent passive follow-up through their medical records beginning with the primary total hip arthroplasty or total knee arthroplasty. We assessed the likelihood of undergoing a subsequent total joint arthroplasty, including simultaneous and staged bilateral procedures. Age, sex, and calendar year were evaluated as potential predictors of subsequent arthroplasty. Results: During a mean follow-up of 12 years after an initial total hip arthroplasty, we observed 422 contralateral total hip arthroplasties (29% at 20 years), 76 contralateral total knee arthroplasties (6% at 10 years), and 32 ipsilateral total knee arthroplasties (2% at 20 years). Younger age was a significant predictor of contralateral total hip arthroplasty (p < 0.0001), but not a predictor of the subsequent risk of total knee arthroplasty. During a mean follow-up of 11 years after an initial total knee arthroplasty, we observed 809 contralateral total knee arthroplasties (45% at 20 years), 31 contralateral total hip arthroplasties (3% at 20 years), and 29 ipsilateral total hip arthroplasties (2% at 20 years). Older age was a significant predictor of ipsilateral or contralateral total hip arthroplasty (p < 0.001). Conclusions: Patients undergoing total hip arthroplasty or total knee arthroplasty can be informed of a 30% to 45% chance of a surgical procedure in a contralateral cognate joint and about a 5% chance of a surgical procedure in noncognate joints within 20 years of initial arthroplasty. Increased risk of contralateral total knee arthroplasty following an initial total hip arthroplasty may be due to gait changes prior to and/or following total hip arthroplasty. The higher prevalence of bilateral total hip arthroplasty in younger patients may result from bilateral disease processes that selectively affect the young hip, such as osteonecrosis, or structural hip problems, such as acetabular dysplasia or femoroacetabular impingement. Level of Evidence: Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence. PMID:28244910
Maxwell, Jessica; Niu, Jingbo; Singh, Jasvinder A.; Nevitt, Michael C.; Law, Laura Frey; Felson, David
2013-01-01
Background: Some of the poor functional outcomes of knee arthroplasty may be due to pain in the contralateral, unreplaced knee. We investigated the relationship between the preoperative pain status of the contralateral knee and the risk of a poor postoperative functional outcome in patients who underwent knee arthroplasty. Methods: We analyzed data on 271 patients in the Multicenter Osteoarthritis Study who had undergone knee arthroplasty since the time of enrollment. Eighty-six percent of these patients were white, 72% were female, and the mean age was sixty-seven years. The severity of pain in the knee contralateral to the one that was replaced was measured before the knee arthroplasty with use of the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain scale, with the scores being grouped into four categories (0, 1 to 4, 5 to 9, and 10 to 20). Poor post-arthroplasty function six months or more after surgery was determined with use of the Patient Acceptable Symptom State (PASS) outcome tool and a clinical performance measure of walking speed. We evaluated the relationship between contralateral pain severity and the functional outcomes with use of Poisson regression. Results: Seventy-two (27%) of 264 patients demonstrated poor post-arthroplasty function by failing to attain the threshold PASS score, and seventy-six (30%) of 250 subjects had a slow walking speed. As the pre-arthroplasty pain in the contralateral knee increased, there was a steady increase in the proportion with poor post-arthroplasty function (p < 0.0001 for PASS and p = 0.04 for slow walking speed). Compared with patients who had no pre-arthroplasty pain in the contralateral knee, those in the highest category of contralateral pain severity had 4.1 times the risk (95% confidence interval, 1.5 to 11.5) of having poor self-reported post-arthroplasty function. Patients in whom both knees had been replaced at the time of outcome collection were less likely to have poor self-reported function than those in whom only one knee had been replaced. Conclusions: Preoperative pain in the contralateral knee is strongly associated with self-reported post-arthroplasty functional outcome and may therefore be a useful indicator of prognosis or a potential target of perioperative intervention. Level of Evidence: Prognostic Level II. See Instructions for Authors for a complete description of levels of evidence. PMID:23780536
Does the Dumbbell-Carrying Position Change the Muscle Activity in Split Squats and Walking Lunges?
Stastny, Petr; Lehnert, Michal; Zaatar, Amr M Z; Svoboda, Zdenek; Xaverova, Zuzana
2015-11-01
The forward walking lunge (WL) and split squat (SSq) are similar exercises that have differences in the eccentric phase, and both can be performed in the ipsilateral or contralateral carrying conditions. This study aimed to determine the effects of dumbbell-carrying position on the kinematics and electromyographic (EMG) amplitudes of the gluteus medius (Gmed), vastus medialis (VM), vastus lateralis (VL), and biceps femoris during WLs and SSqs. The resistance-trained (RT) and the non-resistance-trained (NT) groups (both n = 14) performed ipsilateral WLs, contralateral WLs, ipsilateral SSqs, and contralateral SSqs in a randomized order in a simulated training session. The EMG amplitude, expressed as a percentage of the maximal voluntary isometric contraction (%MVIC), and the kinematics, expressed as the range of motion (ROM) of the hip and knee, were measured during 5 repetition maximum for both legs. The repeated measure analyses of variance showed significant differences between the RT and NT groups. The NT group showed a smaller knee flexion ROM (p < 0.001, η = 0.36) during both types of WLs, whereas the RT group showed a higher eccentric Gmed amplitude (p < 0.001, η = 0.46) during all exercises and a higher eccentric VL amplitude (p < 0.001, η = 0.63) during contralateral WLs. Further differences were found between contralateral and ipsilateral WLs in both the RT (p < 0.001, η = 0.69) and NT groups (p < 0.001, η = 0.80), and contralateral WLs resulted in higher eccentric Gmed amplitudes. Contralateral WLs highly activated the Gmed (90% MVIC); therefore, this exercise can increase the Gmed maximal strength. The ipsilateral loading condition did not increase the Gmed or VM activity in the RT or NT group.
Mazzuca, Steven A; Brandt, Kenneth D; Lane, Kathleen A; Chakr, Rafael
2011-11-01
To explore whether the risk of incident tibiofemoral (TF) osteoarthritis (OA) in the radiographically normal contralateral knee of overweight/obese women with unilateral knee OA is mediated by malalignment and/or preceded by increased turnover of subchondral bone. We used data of post hoc analyses from a randomized controlled trial. Cross-sectional analyses evaluated the baseline association between frontal plane alignment and bone turnover in the medial TF compartment in 78 radiographically normal contralateral knees. Longitudinal analyses ascertained whether incident radiographic OA (TF osteophyte formation within 30 months) was associated with malalignment and/or increased bone turnover at baseline. Alignment subcategories (varus/neutral/valgus) were based on the anatomic axis angle. (99m)Tc-methylene diphosphonate uptake in a late-phase bone scan was quantified in regions of interest in the medial tibia (MT) and medial femur (MF) and adjusted for uptake in a reference segment of the ipsilateral tibial shaft (TS). MF and MT uptake in varus contralateral knees was 50-55% greater than in the TS. Adjusted MT uptake in varus contralateral knees was significantly greater than that in neutral and valgus contralateral knees (mean 1.55 versus 1.38 and 1.43, respectively; P < 0.05). Among 69 contralateral knees followed longitudinally, 22 (32%) developed TF OA. Varus angulation was associated with a marginally significant increase in the odds of incident OA (adjusted odds ratio 3.98, P = 0.067). While the small sample size limited our ability to detect statistically significant risk factors, these data suggest that the risk of developing bilateral TF OA in overweight/obese women may be mediated by varus malalignment. Copyright © 2011 by the American College of Rheumatology.
Choi, Hoon-Seong; Roh, Dae-Hyun; Yoon, Seo-Yeon; Choi, Sheu-Ran; Kwon, Soon-Gu; Kang, Suk-Yun; Moon, Ji-Young; Han, Ho-Jae; Beitz, Alvin J; Lee, Jang-Hern
2018-02-01
Although we have recently demonstrated that spinal astrocyte gap junctions mediate the development of mirror-image pain (MIP), it is still unclear which astrocyte-derived factor is responsible for the development of MIP and how its production is controlled. In the present study, we focused on the role of ipsilateral versus contralateral D-serine in the development of MIP and investigated the possible involvement of σ1 receptors and gap junctions in astrocyte D-serine production. Following carrageenan injection, mechanical allodynia was tested at various time points to examine the effect of individual drugs. Immunohistochemistry and Western blot analyses were performed to clarify the expression levels of spinal D-serine, serine racemase, σ1 receptors and connexin 43. The expression of ipsilateral D-serine was up-regulated during the early phase of inflammation, while contralateral D-serine increased during the later phase of inflammation. The pharmacological inhibition of D-serine during the early phase blocked the development of both ipsilateral and contralateral mechanical allodynia. However, the inhibition of D-serine during the later phase of inflammation blocked contralateral, but not ipsilateral mechanical allodynia. Furthermore, the inhibition of σ1 receptors during the earlier phase of inflammation inhibited the increase in ipsilateral D-serine. Conversely, the blockade of astrocyte gap junctions suppressed the up-regulation of contralateral D-serine during the later phase of inflammation. Spinal astrocyte D-serine plays an important role in the development of mirror-image pain. Furthermore, σ1 receptors and astrocyte gap junction signalling mediate ipsilateral and contralateral D-serine production respectively. © 2017 The British Pharmacological Society.
Marshall, Tom R; O'Shea, Jacinta; Jensen, Ole; Bergmann, Til O
2015-01-28
Covertly directing visuospatial attention produces a frequency-specific modulation of neuronal oscillations in occipital and parietal cortices: anticipatory alpha (8-12 Hz) power decreases contralateral and increases ipsilateral to attention, whereas stimulus-induced gamma (>40 Hz) power is boosted contralaterally and attenuated ipsilaterally. These modulations must be under top-down control; however, the control mechanisms are not yet fully understood. Here we investigated the causal contribution of the human frontal eye field (FEF) by combining repetitive transcranial magnetic stimulation (TMS) with subsequent magnetoencephalography. Following inhibitory theta burst stimulation to the left FEF, right FEF, or vertex, participants performed a visual discrimination task requiring covert attention to either visual hemifield. Both left and right FEF TMS caused marked attenuation of alpha modulation in the occipitoparietal cortex. Notably, alpha modulation was consistently reduced in the hemisphere contralateral to stimulation, leaving the ipsilateral hemisphere relatively unaffected. Additionally, right FEF TMS enhanced gamma modulation in left visual cortex. Behaviorally, TMS caused a relative slowing of response times to targets contralateral to stimulation during the early task period. Our results suggest that left and right FEF are causally involved in the attentional top-down control of anticipatory alpha power in the contralateral visual system, whereas a right-hemispheric dominance seems to exist for control of stimulus-induced gamma power. These findings contrast the assumption of primarily intrahemispheric connectivity between FEF and parietal cortex, emphasizing the relevance of interhemispheric interactions. The contralaterality of effects may result from a transient functional reorganization of the dorsal attention network after inhibition of either FEF. Copyright © 2015 the authors 0270-6474/15/351638-10$15.00/0.
Properties of vestibular neurones projecting to neck segments of the cat spinal cord*
Rapoport, S.; Susswein, A.; Uchino, Y.; Wilson, V. J.
1977-01-01
1. Vestibular neurones projecting to the upper cervical grey matter (vestibulocollic neurones) were identified by localized microstimulation in the C3 segment of the cat spinal cord. 2. The neurones were found in the lateral (Deiters'), medial and descending nuclei bilaterally and projected to the spinal cord in the lateral and medial vestibulospinal tracts (LVST and MVST). Ipsilateral axons of Deiters' neurones were mostly in the LVST, axons of medial and descending neurones in the MVST; a few Deiters' neurones had axons in the MVST; some descending neurones had axons in the LVST. Most axons of contralateral neurones were in the MVST. 3. The axons of 62% of ipsilateral vestibulocollic Deiters' neurones not only gave off a collateral to C3, but also extended as far as the cervical enlargement (`branching'); some of these neurones projected as far as the upper thoracic cord, almost none to the lumbar cord. Ipsilateral descending nucleus neurones branch in the same fashion, but there is no branching in the relatively small medial nucleus population. 4. A large majority of vestibulocollic neurones receive monosynaptic excitation from the ipsilateral labyrinth and a number are inhibited by stimulation of the contralateral labyrinth (commissural inhibition). It is possible that commissural inhibition acts on a broad population of vestibular neurones involved in the control of eye, head and trunk movement. 5. Vestibulocollic neurones do not make up a homogeneous population acting only on the neck. Instead it is likely that subpopulations, for example branching and non-branching neurones, have different functions. PMID:874918
Cheatham, Scott W; Kolber, Morey J
2018-03-01
Foam rolling is a popular intervention used by allied health professionals and the general population. Current research suggests that foam rolling may have an effect on the ipsilateral antagonist muscle group and produce a cross-over effect in the muscles of the contralateral limb. The purpose of this study was to examine the acute effects of foam rolling to the left quadriceps on ipsilateral antagonist hamstrings and contralateral quadriceps muscle group pressure pain threshold (PPT). Through this research, we sought to gather data to further develop the methodology for future studies of this intervention. A pretest-posttest exploratory study. University kinesiology laboratory. 21 healthy adults (age = 27.52 ± 8.9 y). Video-guided foam roll intervention on the left quadriceps musculature. Ipsilateral hamstring (antagonist) and contralateral quadriceps muscle PPT. A significant difference was found between pretest to posttest measures for the ipsilateral hamstrings (t[20] = -6.2, P < 0.001) and contralateral quadriceps (t[20] = -9.1, P < 0.001) suggesting an increase in PPT. These findings suggest that foam rolling of the quadriceps musculature may have an acute effect on the PPT of the ipsilateral hamstrings and contralateral quadriceps muscles. Clinicians should consider these results to be exploratory and future investigations examining this intervention on PPT is warranted.
Pluto, Charles P; Chiaia, Nicolas L; Rhoades, Robert W; Lane, Richard D
2005-09-01
In adult rats that sustained forelimb amputation on the day of birth, >30% of multiunit recording sites in the forelimb-stump representation of primary somatosensory cortex (SI) also respond to cutaneous hindlimb stimulation when cortical GABA(A+B) receptors are blocked (GRB). This study examined whether hindlimb receptive fields could also be revealed in forelimb-stump sites by reducing one known source of excitatory input to SI GABAergic neurons, the contralateral SI cortex. Corpus callosum projection neurons connect homotopic SI regions, making excitatory contacts onto pyramidal cells and interneurons. Thus in addition to providing monosynaptic excitation in SI, callosal fibers can produce disynaptic inhibition through excitatory synapses with inhibitory interneurons. Based on the latter of these connections, we hypothesized that inactivating the contralateral (intact) SI forelimb region would "unmask" normally suppressed hindlimb responses by reducing the activity of SI GABAergic neurons. The SI forelimb-stump representation was first mapped under normal conditions and then during GRB to identify stump/hindlimb responsive sites. After GRB had dissipated, the contralateral (intact) SI forelimb region was mapped and reversibly inactivated with injections of 4% lidocaine, and selected forelimb-stump sites were retested. Contralateral SI inactivation revealed hindlimb responses in approximately 60% of sites that were stump/hindlimb responsive during GRB. These findings indicate that activity in the contralateral SI contributes to the suppression of reorganized hindlimb receptive fields in neonatally amputated rats.
Influence of contralateral acoustic hearing on adult bimodal outcomes after cochlear implantation.
Plant, Kerrie; van Hoesel, Richard; McDermott, Hugh; Dawson, Pamela; Cowan, Robert
2016-08-01
To examine post-implantation benefit and time taken to acclimate to the cochlear implant for adult candidates with more hearing in the contralateral non-implanted ear than has been previously considered within local candidacy guidelines. Prospective, within-subject experimental design. Forty postlingual hearing-impaired adult subjects with a contralateral ear word score in quiet ranging from 27% to 100% (median 67%). Post-implantation improvement of 2.4 dB and 4.0 dB was observed on a sentence in coincident babble test at presentation levels of 65 and 55 dB SPL respectively, and a 2.1 dB benefit in spatial release from masking (SRM) advantage observed when the noise location favoured the implanted side. Significant post-operative group mean change of between 2.1 and 3.0 was observed on the sub-scales of the speech, spatial, and qualities (SSQ) questionnaire. Degree of post-implantation speech reception threshold (SRT) benefit on the coincident babble test and on perception of soft speech and sounds in the environment was greater for subjects with less contralateral hearing. The degree of contralateral acoustic hearing did not affect time taken to acclimate to the device. The findings from this study support cochlear implantation for candidates with substantial acoustic hearing in the contralateral ear, and provide guidance regarding post-implantation expectations.
Yildizhan, Ahmet; Atar, Elmas K.; Yaycioglu, Soner; Gocmen-Mas, Nuket; Yazici, Canan
2010-01-01
Introduction The purpose of this study was to determine whether ligamentum flavum hypertrophy among disc herniated patients causes contralateral pain symptoms. For this reason we measured the thickness of the ligament in disc herniated patients with ipsilateral or contralateral symptoms. Material and methods Two hundred disc herniated patients with ipsilateral symptoms as group I were compared with five disc herniated patients with only contralateral symptoms as group II. Ligamenta flava thicknesses and spinal canal diameters of both groups were measured on magnetic resonance imaging (MRI) with a micro-caliper. Results Both groups underwent surgery only on the disc herniated side. The total thicknesses of the ligamenta flava in group II was thicker than in group I. There was no spinal stenosis in either group and no significance difference between the groups. Statistically significant differences were found for both ipsilateral and contralateral thickness of the ligament flava in both groups. We also compared thickness of the ligamenta flava for each level of disc herniation in group I; ligamenta flava hypertrophy was more common at L3-L4 and L4-L5 levels of vertebrae in females. Conclusions Aetiology of contralateral sciatica among disc herniated patients may be related to hypertrophy of the ligamenta flava, especially on the opposite side. Surgical approaches of the disc herniated side alone may be sufficient for a good outcome. PMID:22371809
Task-Relevant Information Modulates Primary Motor Cortex Activity Before Movement Onset.
Calderon, Cristian B; Van Opstal, Filip; Peigneux, Philippe; Verguts, Tom; Gevers, Wim
2018-01-01
Monkey neurophysiology research supports the affordance competition hypothesis (ACH) proposing that cognitive information useful for action selection is integrated in sensorimotor areas. In this view, action selection would emerge from the simultaneous representation of competing action plans, in parallel biased by relevant task factors. This biased competition would take place up to primary motor cortex (M1). Although ACH is plausible in environments affording choices between actions, its relevance for human decision making is less clear. To address this issue, we designed an functional magnetic resonance imaging (fMRI) experiment modeled after monkey neurophysiology studies in which human participants processed cues conveying predictive information about upcoming button presses. Our results demonstrate that, as predicted by the ACH, predictive information (i.e., the relevant task factor) biases activity of primary motor regions. Specifically, first, activity before movement onset in contralateral M1 increases as the competition is biased in favor of a specific button press relative to activity in ipsilateral M1. Second, motor regions were more tightly coupled with fronto-parietal regions when competition between potential actions was high, again suggesting that motor regions are also part of the biased competition network. Our findings support the idea that action planning dynamics as proposed in the ACH are valid both in human and non-human primates.
Lev-Ari, Tidhar; Lustig, Avichai; Ketter-Katz, Hadas; Baydach, Yossi; Katzir, Gadi
2016-08-01
A chameleon (Chamaeleo chamaeleon) on a perch responds to a nearby threat by moving to the side of the perch opposite the threat, while bilaterally compressing its abdomen, thus minimizing its exposure to the threat. If the threat moves, the chameleon pivots around the perch to maintain its hidden position. How precise is the body rotation and what are the patterns of eye movement during avoidance? Just-hatched chameleons, placed on a vertical perch, on the side roughly opposite to a visual threat, adjusted their position to precisely opposite the threat. If the threat were moved on a horizontal arc at angular velocities of up to 85°/s, the chameleons co-rotated smoothly so that (1) the angle of the sagittal plane of the head relative to the threat and (2) the direction of monocular gaze, were positively and significantly correlated with threat angular position. Eye movements were role-dependent: the eye toward which the threat moved maintained a stable gaze on it, while the contralateral eye scanned the surroundings. This is the first description, to our knowledge, of such a response in a non-flying terrestrial vertebrate, and it is discussed in terms of possible underlying control systems.
Ho, S M
1997-01-01
1. The forelimb motor behaviour of developing wallaby was studied. A clock-like alternating movement was reactivated whenever the animal was removed from the pouch. 2. Forelimb stepping frequency increased during the first 3 weeks of development, while the phase relationship remained constant. Forelimb activity could be affected by altering the afferent feedback from the contralateral limb, or an increase in ambient temperature. 3. In vitro experiments were performed using an isolated brainstem-spinal cord preparation from animals up to 6 weeks postnatal. Fictive locomotor activity could be evoked by electrical stimulation or bath-applied NMDA (< 10 microM). 4. Bath-applied strychnine (10-25 microM) and bicuculline (10-50 microM) disrupted the phase relationship between motor pools, while rhythmic motor discharge remained in the absence of these inhibitory pathways. 5. The present findings indicate that the pattern generator that underlies the robust forelimb movement during the first journey to the pouch is retained for different motor functions during in-pouch development. The neural network that underlies such behaviour can be divided into two major components, a rhythm generator within each hemicord, and a pattern co-ordinating pathway which involve both glycinergic and GABAergic interneurones. PMID:9218221
The Neural Correlates of Long-Term Carryover following Functional Electrical Stimulation for Stroke.
Gandolla, Marta; Ward, Nick S; Molteni, Franco; Guanziroli, Eleonora; Ferrigno, Giancarlo; Pedrocchi, Alessandra
2016-01-01
Neurorehabilitation effective delivery for stroke is likely to be improved by establishing a mechanistic understanding of how to enhance adaptive plasticity. Functional electrical stimulation is effective at reducing poststroke foot drop; in some patients, the effect persists after therapy has finished with an unknown mechanism. We used fMRI to examine neural correlates of functional electrical stimulation key elements, volitional intent to move and concurrent stimulation, in a group of chronic stroke patients receiving functional electrical stimulation for foot-drop correction. Patients exhibited task-related activation in a complex network, sharing bilateral sensorimotor and supplementary motor activation with age-matched controls. We observed consistent separation of patients with and without carryover effect on the basis of brain responses. Patients who experienced the carryover effect had responses in supplementary motor area that correspond to healthy controls; the interaction between experimental factors in contralateral angular gyrus was seen only in those without carryover. We suggest that the functional electrical stimulation carryover mechanism of action is based on movement prediction and sense of agency/body ownership-the ability of a patient to plan the movement and to perceive the stimulation as a part of his/her own control loop is important for carryover effect to take place.
L-Dopa in Parkinsonism and the Influence of Previous Thalamotomy
Hughes, R. C.; Polgar, J. G.; Weightman, D.; Walton, John N.
1971-01-01
A double-blind cross-over trial over 24 weeks (10 weeks on the active remedy, 4 weeks off treatment, and 10 weeks on placebo) of the effect of L-dopa on idiopathic Parkinsonism (paralysis agitans) has shown no difference in the response obtained in patients who had undergone previous stereotaxic ventrolateral thalamotomy and in those who had not. Of the 34 patients (18 men and 16 women) in the trial 18 had been operated on (nine unilateral, nine bilateral operations) and 16 had not. All patients entering the trial were taking anticholinergic drugs in stable dosage and these were continued throughout. The only factor which seemed to limit the response to treatment was pre-existing hypertension. Of 31 patients who completed the 10-week treatment period, 12 showed marked improvement, 15 moderate improvement, and 4 and mild or negligible change. It seems that previous ventrolateral thalamotomy affords some protection against the development of L-dopa-induced involuntary limb movements on the side contralateral to the operation. As found by others, maximum benefit was seen in bradykinesia and rigidity and related features but a significant reduction in tremor was also noted during treatment. Side effects (nausea, hypotension, and involuntary movements) were common but rarely limited the therapeutic response. PMID:4923653
Effects of dominant and non-dominant passive arm manoeuvres on the neurovascular coupling response.
Llwyd, Osian; Panerai, Ronney B; Robinson, Thompson G
2017-11-01
Models designed to study neurovascular coupling (NVC) describe a possible cerebral hemisphere dominance dependent on task completed and preference in handedness. We investigated whether passive arm manoeuvre performed with dominant (Dom-Arm) or non-dominant arm (ND-Arm) stimulated haemodynamic differences in either contralateral (Cont-H) or ipsilateral (Ipsil-H) cerebral hemisphere. Healthy individuals lying in supine position, had measurements of beat-to-beat blood pressure (BP, mmHg), electrocardiogram (HR, bpm), end-tidal CO 2 (etCO 2 , mmHg), and bilateral insonation of the middle cerebral arteries (MCA, cm s -1 ). Arm movement was performed for 60 s with passive flexion and extension of the elbow (1 Hz), before manoeuvre was repeated on other arm. Data were normalised and effect of treatment was analysed for differences between manoeuvres and within each time period. Seventeen (eight males) healthy volunteers, aged 56 ± 7 years, were studied. Dom-Arm and ND-Arm manoeuvres stimulated a comparable temporal response in peripheral and cerebral haemodynamic parameters between Cont-H and Ipsil-H. Both manoeuvres can be used to evoke similar bilateral MCA responses in assessing NVC. This finding should lead to more efficient protocols when using passive arm movement for NVC studies in healthy subjects.
Mykland, Martin Syvertsen; Bjørk, Marte Helene; Stjern, Marit; Sand, Trond
2018-04-01
Background The migraine brain is believed to have altered cortical excitability compared to controls and between migraine cycle phases. Our aim was to evaluate post-activation excitability through post-movement beta event related synchronization (PMBS) in sensorimotor cortices with and without sensory discrimination. Subjects and methods We recorded EEG of 41 migraine patients and 31 healthy controls on three different days with classification of days in relation to migraine phases. During each recording, subjects performed one motor and one sensorimotor task with the right wrist. Controls and migraine patients in the interictal phase were compared with repeated measures (R-) ANOVA and two sample Student's t-test. Migraine phases were compared to the interictal phase with R-ANOVA and paired Student's t-test. Results The difference between PMBS at the contralateral and ipsilateral sensorimotor cortex was altered throughout the migraine cycle. Compared to the interictal phase, we found decreased PMBS at the ipsilateral sensorimotor cortex in the ictal phase and increased PMBS in the preictal phase. Lower ictal PMBS was found in bilateral sensorimotor cortices in patients with right side headache predominance. Conclusion The cyclic changes of PMBS in migraine patients may indicate that a dysfunction in deactivation and interhemispheric inhibition of the sensorimotor cortex is involved in the migraine attack cascade.
Cortical correlates of neuromotor development in healthy children.
Garvey, M A; Ziemann, U; Bartko, J J; Denckla, M B; Barker, C A; Wassermann, E M
2003-09-01
To examine the relationship between acquisition of fine motor skills in childhood and development of the motor cortex. We measured finger tapping speed and mirror movements in 43 healthy right-handed subjects (6-26 years of age). While recording surface electromyographic activity from right and left first dorsal interosseus, we delivered focal transcranial magnetic stimulation (TMS) over the hand areas of each motor cortex. We measured motor evoked potential (MEP) threshold, and ipsilateral (iSP) and contralateral (CSP) silent periods. As children got older, finger speeds got faster, MEP threshold decreased, iSP duration increased and latency decreased. Finger tapping speed got faster as motor thresholds and iSP latency decreased, but was unrelated to CSP duration. In all subjects right hemisphere MEP thresholds were higher than those on the left and duration of right hemisphere CSP was longer than that on the left. Children under 10 years of age had higher left hand mirror movement scores, and fewer left hemisphere iSPs which were of longer duration. Maturation of finger tapping skills is closely related to developmental changes in the motor threshold and iSP latency. Studies are warranted to explore the relationship between these measures and other neuromotor skills in children with motor disorders. TMS can provide important insights into certain functional aspects of neurodevelopment in children.
Knutson, Nels C; Schmidt, Matthew C; Belley, Matthew D; Nguyen, Ngoc B; Li, H Harold; Sajo, Erno; Price, Michael J
2017-07-01
Real-time dynamic control of the linear accelerator, couch, and imaging parameters during radiation delivery was investigated as a novel technique for acquiring tissue maximum ratio (TMR) data. TrueBeam Developer Mode (Varian Medical Systems, Palo Alto, CA, USA) was used to control the linear accelerator using the Extensible Markup Language (XML). A single XML file was used to dynamically manipulate the machine, couch, and imaging parameters during radiation delivery. A TG-51 compliant 1D water tank was placed on the treatment couch, and used to position a detector at isocenter at a depth of 24.5 cm. A depth scan was performed towards the water surface. Via XML control, the treatment couch vertical position was simultaneously lowered at the same rate, maintaining the detector position at isocenter, allowing for the collection of TMR data. To ensure the detector remained at isocenter during the delivery, the in-room camera was used to monitor the detector. Continuous kV fluoroscopic images during 10 test runs further confirmed this result. TMR data at multiple Source to Detector Distances (SDD) and scan speeds were acquired to investigate their impact on the TMR data. Percentage depth dose (PDD) scans (for conversion to TMR) along with traditional discrete TMR data were acquired as a standard for comparison. More than 99.8% of the measured points had a gamma value (1%/1 mm) < 1 when compared with discrete or PDD converted TMR data. Fluoroscopic images showed that the concurrent couch and tank movements resulted in SDD errors < 1 mm. TMRs acquired at SDDs of 99, 100, and 101 cm showed differences less than 0.004. TrueBeam Developer Mode was used to collect continuous TMR data with the same accuracy as traditionally collected discrete data, but yielded higher sampled resolution and reduced acquisition time. This novel method does not require the modification of any equipment and does not use a 3D tank or reservoir. © 2017 American Association of Physicists in Medicine.
Ochoa-Escudero, Martin; Juliano, Amy F
2016-10-01
Anomalies of the anterior belly of the digastric muscle (DM) are uncommon. We present a case of hypoplasia of the anterior belly of the left DM with hypertrophy of the anterior belly of the contralateral DM. The importance of recognizing this finding is to differentiate hypoplasia of the anterior belly of the DM from denervation atrophy, and not to confuse contralateral hypertrophy with a submental mass or lymphadenopathy. In denervation atrophy of the anterior belly of the DM, associated atrophy of the ipsilateral mylohyoid muscle is present. Hypertrophy of the anterior belly of the contralateral DM can be differentiated from a submental mass or lymphadenopathy by recognizing its isodensity on computed tomography and isointensity on magnetic resonance imaging to other muscles, without abnormal contrast enhancement.
Oyama, Sakiko; Yu, Bing; Blackburn, J Troy; Padua, Darin A; Li, Li; Myers, Joseph B
2013-10-01
There is a growing number of pitching-related upper extremity injuries among young baseball pitchers; however, there is a lack of data on the identification of injury prevention strategies, particularly the prevention of injuries through the instruction/modification of technique. The identification of technical parameters that are associated with increased joint loading is needed. To investigate the effects of excessive contralateral trunk tilt, a common technique identifiable by video observation, on pitching biomechanics and performance in high school baseball pitchers. The hypothesis was that this strategy is associated with greater joint loading and poor pitching performance. Descriptive laboratory study; Level of evidence, 3. The 3-dimensional pitching biomechanics, ball speed, and frontal view of the pitching technique from 72 high school baseball pitchers were captured on video and analyzed. The videos were reviewed to determine if the pitcher's trunk was excessively contralaterally tilted at the instant of maximal shoulder external rotation by examining whether the side of the pitcher's head ipsilateral to the throwing limb deviated by more than a head width from a vertical line passing through the pitcher's stride foot ankle. Upper extremity kinetics and upper extremity/trunk kinematics between pitchers with and without excessive contralateral trunk tilt were compared using independent t tests. Compared with pitchers who did not demonstrate excessive contralateral trunk tilt, those with excessive contralateral trunk tilt pitched at a higher ball speed (mean, 32.6 ± 2.2 vs 31.1 ± 2.9 m/s, respectively; P = .019) and experienced a greater elbow proximal force (mean, 103.9 ± 12.7 vs 93.2 ± 13.9 %weight, respectively; P = .001), shoulder proximal force (mean, 104.8 ± 14.1 vs 94.3 ± 15.5 %weight, respectively; P = .004), elbow varus moment (mean, 4.29 ± 0.73 vs 3.84 ± 0.8 %height*weight, respectively; P = .017), and shoulder internal rotation moment (mean, 4.21 ± 0.71 vs 3.75 ± 0.78 %height*weight, respectively; P = .011). Pitchers with excessive contralateral trunk tilt demonstrated less upper torso flexion at stride foot contact, less upper torso rotation, and greater upper torso contralateral flexion at maximal shoulder external rotation and ball release (P < .05). Excessive contralateral trunk tilt is a strategy that is associated with higher ball speeds and increased joint loading. Pitching with excessive contralateral trunk tilt, which can be identified through screening of the pitching technique, is associated with a benefit in performance and increased joint loading. Future study is warranted to determine if this strategy should be encouraged or discouraged by baseball coaches.
Ng, Tommy H B; Sowman, Paul F; Brock, Jon; Johnson, Blake W
2013-02-01
During bimanual load lifting, the brain must anticipate the effects of unloading upon the load-bearing arm. Little is currently known about the neural networks that coordinate these anticipatory postural adjustments. We measured neuromagnetic brain activity with whole-head magnetoencephalography while participants performed a bimanual load-lifting task. Anticipatory adjustments were associated with reduction in biceps brachii muscle activity of the load-bearing arm and pre-movement desynchronization of the cortical beta rhythm. Beamforming analyses localized anticipatory brain activity to the precentral gyrus, basal ganglia, supplementary motor area, and thalamus, contralateral to the load-bearing arm. To our knowledge this is the first human neuroimaging study to directly investigate anticipatory postural adjustments and to explicitly partition the anticipatory and volitional aspects of brain activity in bimanual load lifting. These data contribute to our understanding of the neural systems supporting anticipatory postural adjustments in healthy adults. Copyright © 2012 Elsevier Inc. All rights reserved.
A novel, bounding gait in swimming turtles: implications for aquatic locomotor diversity.
Mayerl, Christopher J; Blob, Richard W
2017-10-15
Turtles are an iconic lineage in studies of animal locomotion, typifying the use of slow, alternating footfalls during walking. Alternating movements of contralateral limbs are also typical during swimming gaits for most freshwater turtles. Here, we report a novel gait in turtles, in which the pleurodire Emydura subglobosa swims using a bounding gait that coordinates bilateral protraction of both forelimbs with bilateral retraction of both hindlimbs. Use of this bounding gait is correlated with increased limb excursion and decreased stride frequency, but not increased velocity when compared with standard swimming strokes. Bounding by E. subglobosa provides a second example of a non-mammalian lineage that can use bounding gaits, and may give insight into the evolution of aquatic flapping. Parallels in limb muscle fascicle properties between bounding turtles and crocodylids suggest a possible musculoskeletal mechanism underlying the use of bounding gaits in particular lineages. © 2017. Published by The Company of Biologists Ltd.
Kyriakareli, Artemis; Cousins, Sian; Pettorossi, Vito E; Bronstein, Adolfo M
2013-10-02
Transcranial direct current stimulation (tDCS) was used in 17 normal individuals to modulate vestibulo-ocular reflex (VOR) and self-motion perception rotational thresholds. The electrodes were applied over the temporoparietal junction bilaterally. Both vestibular nystagmic and perceptual thresholds were increased during as well as after tDCS stimulation. Body rotation was labeled as ipsilateral or contralateral to the anode side, but no difference was observed depending on the direction of rotation or hemisphere polarity. Threshold increase during tDCS was greater for VOR than for motion perception. 'Sham' stimulation had no effect on thresholds. We conclude that tDCS produces an immediate and sustained depression of cortical regions controlling VOR and movement perception. Temporoparietal areas appear to be involved in vestibular threshold modulation but the differential effects observed between VOR and perception suggest a partial dissociation between cortical processing of reflexive and perceptual responses.
Nucleus prepositus hypoglossi lesions produce a unique ocular motor syndrome
Kim, Sung-Hee; Zee, David S.; du Lac, Sascha; Kim, Hyo Jung
2016-01-01
Objective: To describe the ocular motor abnormalities in 9 patients with a lesion involving the nucleus prepositus hypoglossi (NPH), a key constituent of a vestibular-cerebellar-brainstem neural network that ensures that the eyes are held steady in all positions of gaze. Methods: We recorded eye movements, including the vestibulo-ocular reflex during head impulses, in patients with vertigo and a lesion involving the NPH. Results: Our patients showed an ipsilesional-beating spontaneous nystagmus, horizontal gaze-evoked nystagmus more intense on looking toward the ipsilesional side, impaired pursuit more to the ipsilesional side, central patterns of head-shaking nystagmus, contralateral eye deviation, and decreased vestibulo-ocular reflex gain during contralesionally directed head impulses. Conclusions: We attribute these findings to an imbalance in the NPH–inferior olive–flocculus–vestibular nucleus loop, and the ocular motor abnormalities provide a new brainstem localization for patients with acute vertigo. PMID:27733568
Mandalà, Marco; Giannuzzi, Annalisa; Astore, Serena; Trabalzini, Franco; Nuti, Daniele
2013-07-01
We evaluated the incidence and characteristics of hyperventilation-induced nystagmus (HVN) in 49 patients with gadolinium-enhanced magnetic resonance imaging evidence of vestibular schwannoma and 53 patients with idiopathic unilateral sensorineural hearing loss and normal radiological findings. The sensitivity and specificity of the hyperventilation test were compared with other audio-vestibular diagnostic tests (bedside examination of eye movements, caloric test, auditory brainstem responses) in the two groups of patients. The hyperventilation test scored the highest diagnostic efficiency (sensitivity 65.3 %; specificity 98.1 %) of the four tests in the differential diagnosis of vestibular schwannoma and idiopathic unilateral sensorineural hearing loss. Small tumors with a normal caloric response or caloric paresis were associated with ipsilateral HVN and larger tumors and severe caloric deficits with contralateral HVN. These results confirm that the hyperventilation test is a useful diagnostic test for predicting vestibular schwannoma in patients with unilateral sensorineural hearing loss.
Loudness enhancement following contralateral stimulation.
NASA Technical Reports Server (NTRS)
Galambos, R.; Bauer, J.; Picton, T.; Squires, K.; Squires , N.
1972-01-01
The apparent loudness of a tone pip can be increased by 15 dB or more if it is preceded by a tone burst to the contralateral ear. The experiment is done by delaying the pip, S1, by a variable time, Delta-T, after the offset of a contralateral tone; the listener assesses the loudness of S1 by adjusting the intensity of a second tone pip, S2, that follows S1 by 1500 msec. Some parametric explorations of the phenomenon are reported here.
Keiter, David A.; Davis, Amy J.; Rhodes, Olin E.; ...
2017-08-25
Knowledge of population density is necessary for effective management and conservation of wildlife, yet rarely are estimators compared in their robustness to effects of ecological and observational processes, which can greatly influence accuracy and precision of density estimates. For this study, we simulate biological and observational processes using empirical data to assess effects of animal scale of movement, true population density, and probability of detection on common density estimators. We also apply common data collection and analytical techniques in the field and evaluate their ability to estimate density of a globally widespread species. We find that animal scale of movementmore » had the greatest impact on accuracy of estimators, although all estimators suffered reduced performance when detection probability was low, and we provide recommendations as to when each field and analytical technique is most appropriately employed. The large influence of scale of movement on estimator accuracy emphasizes the importance of effective post-hoc calculation of area sampled or use of methods that implicitly account for spatial variation. In particular, scale of movement impacted estimators substantially, such that area covered and spacing of detectors (e.g. cameras, traps, etc.) must reflect movement characteristics of the focal species to reduce bias in estimates of movement and thus density.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keiter, David A.; Davis, Amy J.; Rhodes, Olin E.
Knowledge of population density is necessary for effective management and conservation of wildlife, yet rarely are estimators compared in their robustness to effects of ecological and observational processes, which can greatly influence accuracy and precision of density estimates. For this study, we simulate biological and observational processes using empirical data to assess effects of animal scale of movement, true population density, and probability of detection on common density estimators. We also apply common data collection and analytical techniques in the field and evaluate their ability to estimate density of a globally widespread species. We find that animal scale of movementmore » had the greatest impact on accuracy of estimators, although all estimators suffered reduced performance when detection probability was low, and we provide recommendations as to when each field and analytical technique is most appropriately employed. The large influence of scale of movement on estimator accuracy emphasizes the importance of effective post-hoc calculation of area sampled or use of methods that implicitly account for spatial variation. In particular, scale of movement impacted estimators substantially, such that area covered and spacing of detectors (e.g. cameras, traps, etc.) must reflect movement characteristics of the focal species to reduce bias in estimates of movement and thus density.« less
Vlachopoulos, Lazaros; Lüthi, Marcel; Carrillo, Fabio; Gerber, Christian; Székely, Gábor; Fürnstahl, Philipp
2018-04-18
In computer-assisted reconstructive surgeries, the contralateral anatomy is established as the best available reconstruction template. However, existing intra-individual bilateral differences or a pathological, contralateral humerus may limit the applicability of the method. The aim of the study was to evaluate whether a statistical shape model (SSM) has the potential to predict accurately the pretraumatic anatomy of the humerus from the posttraumatic condition. Three-dimensional (3D) triangular surface models were extracted from the computed tomographic data of 100 paired cadaveric humeri without a pathological condition. An SSM was constructed, encoding the characteristic shape variations among the individuals. To predict the patient-specific anatomy of the proximal (or distal) part of the humerus with the SSM, we generated segments of the humerus of predefined length excluding the part to predict. The proximal and distal humeral prediction (p-HP and d-HP) errors, defined as the deviation of the predicted (bone) model from the original (bone) model, were evaluated. For comparison with the state-of-the-art technique, i.e., the contralateral registration method, we used the same segments of the humerus to evaluate whether the SSM or the contralateral anatomy yields a more accurate reconstruction template. The p-HP error (mean and standard deviation, 3.8° ± 1.9°) using 85% of the distal end of the humerus to predict the proximal humeral anatomy was significantly smaller (p = 0.001) compared with the contralateral registration method. The difference between the d-HP error (mean, 5.5° ± 2.9°), using 85% of the proximal part of the humerus to predict the distal humeral anatomy, and the contralateral registration method was not significant (p = 0.61). The restoration of the humeral length was not significantly different between the SSM and the contralateral registration method. SSMs accurately predict the patient-specific anatomy of the proximal and distal aspects of the humerus. The prediction errors of the SSM depend on the size of the healthy part of the humerus. The prediction of the patient-specific anatomy of the humerus is of fundamental importance for computer-assisted reconstructive surgeries.
Zeitoun, Jack H.; Kim, Hyungtae
2017-01-01
Binocular mechanisms for visual processing are thought to enhance spatial acuity by combining matched input from the two eyes. Studies in the primary visual cortex of carnivores and primates have confirmed that eye-specific neuronal response properties are largely matched. In recent years, the mouse has emerged as a prominent model for binocular visual processing, yet little is known about the spatial frequency tuning of binocular responses in mouse visual cortex. Using calcium imaging in awake mice of both sexes, we show that the spatial frequency preference of cortical responses to the contralateral eye is ∼35% higher than responses to the ipsilateral eye. Furthermore, we find that neurons in binocular visual cortex that respond only to the contralateral eye are tuned to higher spatial frequencies. Binocular neurons that are well matched in spatial frequency preference are also matched in orientation preference. In contrast, we observe that binocularly mismatched cells are more mismatched in orientation tuning. Furthermore, we find that contralateral responses are more direction-selective than ipsilateral responses and are strongly biased to the cardinal directions. The contralateral bias of high spatial frequency tuning was found in both awake and anesthetized recordings. The distinct properties of contralateral cortical responses may reflect the functional segregation of direction-selective, high spatial frequency-preferring neurons in earlier stages of the central visual pathway. Moreover, these results suggest that the development of binocularity and visual acuity may engage distinct circuits in the mouse visual system. SIGNIFICANCE STATEMENT Seeing through two eyes is thought to improve visual acuity by enhancing sensitivity to fine edges. Using calcium imaging of cellular responses in awake mice, we find surprising asymmetries in the spatial processing of eye-specific visual input in binocular primary visual cortex. The contralateral visual pathway is tuned to higher spatial frequencies than the ipsilateral pathway. At the highest spatial frequencies, the contralateral pathway strongly prefers to respond to visual stimuli along the cardinal (horizontal and vertical) axes. These results suggest that monocular, and not binocular, mechanisms set the limit of spatial acuity in mice. Furthermore, they suggest that the development of visual acuity and binocularity in mice involves different circuits. PMID:28924011
Quantitative analysis of rib movement based on dynamic chest bone images: preliminary results
NASA Astrophysics Data System (ADS)
Tanaka, R.; Sanada, S.; Oda, M.; Mitsutaka, M.; Suzuki, K.; Sakuta, K.; Kawashima, H.
2014-03-01
Rib movement during respiration is one of the diagnostic criteria in pulmonary impairments. In general, the rib movement is assessed in fluoroscopy. However, the shadows of lung vessels and bronchi overlapping ribs prevent accurate quantitative analysis of rib movement. Recently, an image-processing technique for separating bones from soft tissue in static chest radiographs, called "bone suppression technique", has been developed. Our purpose in this study was to evaluate the usefulness of dynamic bone images created by the bone suppression technique in quantitative analysis of rib movement. Dynamic chest radiographs of 10 patients were obtained using a dynamic flat-panel detector (FPD). Bone suppression technique based on a massive-training artificial neural network (MTANN) was applied to the dynamic chest images to create bone images. Velocity vectors were measured in local areas on the dynamic bone images, which formed a map. The velocity maps obtained with bone and original images for scoliosis and normal cases were compared to assess the advantages of bone images. With dynamic bone images, we were able to quantify and distinguish movements of ribs from those of other lung structures accurately. Limited rib movements of scoliosis patients appeared as reduced rib velocity vectors. Vector maps in all normal cases exhibited left-right symmetric distributions, whereas those in abnormal cases showed nonuniform distributions. In conclusion, dynamic bone images were useful for accurate quantitative analysis of rib movements: Limited rib movements were indicated as a reduction of rib movement and left-right asymmetric distribution on vector maps. Thus, dynamic bone images can be a new diagnostic tool for quantitative analysis of rib movements without additional radiation dose.
On the Possibility to Construct Gravitational Eye
NASA Astrophysics Data System (ADS)
Chen, Ying-Tian
2007-05-01
The possibility of modifying a conventional Cavendish torsion pendulum into a half-armed pendulum oscillator to measure the horizontal gravitational acceleration is discussed. A new kind of gravitational detector, gravieye, as we named, can be made by a proper combination of such oscillators to ``see'' remote objects and to be used, e.g. to detect the movement of huge mass at a long distance.
Melinscak, Filip; Montesano, Luis; Minguez, Javier
2016-02-01
Attention is known to modulate the plasticity of the motor cortex, and plasticity is crucial for recovery in motor rehabilitation. This study addresses the possibility of using an EEG-based brain-computer interface (BCI) to detect kinesthetic attention to movement. A novel experiment emulating physical rehabilitation was designed to study kinesthetic attention. The protocol involved continuous mobilization of lower limbs during which participants reported levels of attention to movement-from focused kinesthetic attention to mind wandering. For this protocol an asynchronous BCI detector of kinesthetic attention and deliberate mind wandering was designed. EEG analysis showed significant differences in theta, alpha, and beta bands, related to the attentional state. These changes were further pinpointed to bands relative to the frequency of the individual alpha peak. The accuracy of the designed BCI ranged between 60.8% and 68.4% (significantly above chance level), depending on the used analysis window length, i.e. acceptable detection delay. This study shows it is possible to use self-reporting to study attention-related changes in EEG during continuous mobilization. Such a protocol is used to develop an asynchronous BCI detector of kinesthetic attention, with potential applications to motor rehabilitation.
Involuntary human hand movements due to FM radio waves in a moving van.
Huttunen, P; Savinainen, A; Hänninen, Osmo; Myllylä, R
2011-06-01
Finland TRACT Involuntary movements of hands in a moving van on a public road were studied to clarify the possible role of frequency modulated radio waves on driving. The signals were measured in a direct 2 km test segment of an international road during repeated drives to both directions. Test subjects (n=4) had an ability to sense radio frequency field intensity variations of the environment. They were sitting in a minivan with arm movement detectors in their hands. A potentiometer was used to register the hand movements to a computer which simultaneously collected data on the amplitude of the RF signal of the local FM tower 30 km distance at a frequency of about 100 MHz. Involuntary hand movements of the test subjects correlated with electromagnetic field, i.e. FM radio wave intensity measured. They reacted also on the place of a geomagnetic anomaly crossing the road, which was found on the basis of these recordings and confirmed by the public geological maps of the area.In conclusion, RF irradiation seems to affect the human hand reflexes of sensitive persons in a moving van along a normal public road which may have significance in traffic safety.
Adams, Jesse D.; Sulchek, Todd A.; Feigin, Stuart C.
2017-07-11
A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.
Percutaneous endoscopic lumbar discectomy via contralateral approach: a technical case report.
Kim, Jin-Sung; Choi, Gun; Lee, Sang-Ho
2011-08-01
Technical case report. The authors report a new percutaneous endoscopic lumbar discectomy (PELD) technique for the treatment of lumbar disc herniation via a contralateral approach. When there are highly down-migrated lumbar disc herniation along just medial to pedicle and narrow ipsilateral intervertebral foramen, the conventional PELD is not easily accessible via ipsilateral transforaminal route. Five patients manifested gluteal and leg pain because of a soft disc herniation at the L4-L5 level. Transforaminal PELD via a contralateral approach was performed to remove the herniated fragment, achieving complete decompression of the nerve root. The symptom was relieved and the patient was discharged the next day. When a conventional transforaminal PELD is difficult because of some anatomical reasons, PELD via a contralateral route could be a good alternative option in selected cases.
Franken, Tom P; Joris, Philip X; Smith, Philip H
2018-06-14
The brainstem's lateral superior olive (LSO) is thought to be crucial for localizing high-frequency sounds by coding interaural sound level differences (ILD). Its neurons weigh contralateral inhibition against ipsilateral excitation, making their firing rate a function of the azimuthal position of a sound source. Since the very first in vivo recordings, LSO principal neurons have been reported to give sustained and temporally integrating 'chopper' responses to sustained sounds. Neurons with transient responses were observed but largely ignored and even considered a sign of pathology. Using the Mongolian gerbil as a model system, we have obtained the first in vivo patch clamp recordings from labeled LSO neurons and find that principal LSO neurons, the most numerous projection neurons of this nucleus, only respond at sound onset and show fast membrane features suggesting an importance for timing. These results provide a new framework to interpret previously puzzling features of this circuit. © 2018, Franken et al.
NASA Astrophysics Data System (ADS)
Harrington, M.; Kujawski, J. T.; Adrian, M. L.; Weatherwax, A. T.
2013-12-01
Electrons are, by definition, a fundamental, chemical and electromagnetic constituent of any plasma. This is especially true within the partially ionized plasmas of Earth's ionosphere where electrons are a critical component of a vast array of plasma processes. Siena College is working on a novel method of processing information from electron spectrometer anodes using delay line techniques and inexpensive COTS electronics to track the movement of high-energy particles. Electron spectrometers use a variety of techniques to determine where an amplified electron cloud falls onto a collecting surface. One traditional method divides the collecting surface into sectors and uses a single detector for each sector. However, as the angular and spatial resolution increases, so does the number of detectors, increasing power consumption, cost, size, and weight of the system. An alternative approach is to connect each sector with a delay line built within the PCB material which is shielded from cross talk by a flooded ground plane. Only one pair of detectors (e.g., one at each end of the chain) are needed with the delay line technique which is different from traditional delay line detectors which use either Application Specific Integrated Circuits (ASICs) or very fast clocks. In this paper, we report on the implementation and testing of a delay line detector using a low-cost Xilinx FPGA and a thirty-two sector delay system. This Delay Line Detector has potential satellite and rocket flight applications due to its low cost, small size and power efficiency
The rf coil as a sensitive motion detector for magnetic resonance imaging.
Buikman, D; Helzel, T; Röschmann, P
1988-01-01
A new sensor principle for detection of patient movement in magnetic resonance imaging has been successfully applied for the reduction of motion artifacts. It uses a device that is already present in every MRI system, namely the rf coil. Patient movement within the coil causes changes in the rf impedance match of the coil, which can be measured as variations in the reflected rf power. The principle used for the detection of respiratory and cardiac motion is described, and experimental results measured with several coil arrangements are given. Images are presented which were acquired with respiratory gating derived from the rf body coil of a 2 Tesla whole body MRI system.
Principles of ipsilateral and contralateral cortico-cortical connectivity in the mouse.
Goulas, Alexandros; Uylings, Harry B M; Hilgetag, Claus C
2017-04-01
Structural connectivity among cortical areas provides the substrate for information exchange in the cerebral cortex and is characterized by systematic patterns of presence or absence of connections. What principles govern this cortical wiring diagram? Here, we investigate the relation of physical distance and cytoarchitecture with the connectional architecture of the mouse cortex. Moreover, we examine the relation between patterns of ipsilateral and contralateral connections. Our analysis reveals a mirrored and attenuated organization of contralateral connections when compared with ipsilateral connections. Both physical distance and cytoarchitectonic similarity of cortical areas are related to the presence or absence of connections. Notably, our analysis demonstrates that the combination of these factors relates better to cortico-cortical connectivity than each factor in isolation and that the two factors relate differently to ipsilateral and contralateral connectivity. Physical distance is more tightly related to the presence or absence of ipsilateral connections, but its relevance greatly diminishes for contralateral connections, while the contribution of cytoarchitectonic similarity remains relatively stable. Our results, together with similar findings in the cat and macaque cortex, suggest that a common set of principles underlies the macroscale wiring of the mammalian cerebral cortex.
Partial lumbosacral transitional vertebra resection for contralateral facetogenic pain.
Brault, J S; Smith, J; Currier, B L
2001-01-15
Case report of surgically treated mechanical low back pain from the facet joint contralateral to a unilateral anomalous lumbosacral articulation (Bertolotti's syndrome). To describe the clinical presentation, diagnostic evaluation, and management of facet-related low back pain in a 17-year-old cheerleader and its successful surgical treatment with resection of a contralateral anomalous articulation. Lumbosacral transitional vertebrae are common in the general population. Bertolotti's syndrome is mechanical low back pain associated with these transitional segments. Little is known about the pathophysiology and mechanics of these vertebral segments and their propensity to be pain generators. Treatment of this syndrome is controversial, and surgical intervention has been infrequently reported. A retrospective chart analysis and radiographic review were performed. Repeated fluoroscopically guided injections implicated a symptomatic L6-S1 facet joint contralateral to an anomalous lumbosacral articulation. Eventually, a successful surgical outcome was achieved with resection of the anomalous articulation. Clinicians should consider the possibility that mechanical low back pain may occur from a facet contralateral to a unilateral anomalous lumbosacral articulation, even in a young patient. Although reports of surgical treatment of Bertolotti's syndrome are infrequent, resection of the anomalous articulation provided excellent results in this patient, presumably because of reduced stresses on the symptomatic facet.
Lin, Muh-Shi; Chen, Tzu-Hsuan; Kung, Woon-Man; Chen, Shuo-Tsung
2015-01-01
Contralateral subdural hygroma caused by decompressive craniectomy tends to combine with external cerebral herniation, causing neurological deficits. Nine patients who underwent one-stage, simultaneous cranioplasty and contralateral subdural-peritoneal shunting were included in this study. Clinical outcome was assessed by Glasgow Outcome Scale as well as Glasgow Coma Scale, muscle power scoring system, and complications. Postoperative computed tomography scans demonstrated completely resolved subdural hygroma and reversed midline shifts, indicating excellent outcome. Among these 9 patients, 4 patients (44%) had improved GOS following the proposed surgery. Four out of 4 patients with lethargy became alert and orientated following surgical intervention. Muscle strength improved significantly 5 months after surgery in 7 out of 7 patients with weakness. Two out of 9 patients presented with drowsiness due to hydrocephalus at an average time of 65 days after surgery. Double gradient shunting is useful to eliminate the respective hydrocephalus and contralateral subdural hygroma. The described surgical technique is effective in treating symptomatic contralateral subdural hygroma following decompressive craniectomy and is associated with an excellent structural and functional outcome. However, subdural-peritoneal shunting plus cranioplasty thoroughly resolves the subdural hygroma collection, which might deteriorate the cerebrospinal fluid circulation, leading to hydrocephalus.
Tesson, Stephanie; Richards, Imogen; Porter, David; Phillips, Kelly-Anne; Rankin, Nicole; Musiello, Toni; Marven, Michelle; Butow, Phyllis
2016-05-01
Most women diagnosed with unilateral breast cancer without BRCA1 or BRCA2 mutations are at low risk of contralateral breast cancer. Contralateral Prophylactic Mastectomy (CPM) decreases the relative risk of contralateral breast cancer, but may not increase life expectancy; yet international uptake is increasing. This study applied protection motivation theory (PMT) to determine factors associated with women's intentions to undergo CPM. Three hundred eighty-eight women previously diagnosed with unilateral breast cancer and of negative or unknown BRCA1 or BRCA2 status were recruited from an advocacy group's research database. Participants completed measures of PMT constructs based on a common hypothetical CPM decision-making scenario. PMT constructs explained 16% of variance in intentions to undergo CPM. Response efficacy (CPM's advantages) and response costs (CPM's disadvantages) were unique individual predictors of intentions. Decision-making appears driven by considerations of the psychological, cosmetic and emotional advantages and disadvantages of CPM. Overestimations of threat to life from contralateral breast cancer and survival benefit from CPM also appear influential factors. Patients require balanced and medically accurate information regarding the pros and cons of CPM, survival rates, and recurrence risks to ensure realistic and informed decision-making.
Joseph, George; Hooda, Amit; Thomson, Viji Samuel
2015-01-01
A 69-year-old man, who had earlier undergone reconstruction of the aortic bifurcation with kissing nitinol stents, presented with occlusion of the left external iliac artery. The occlusion was successfully and safely recanalized using contralateral femoral approach with passage of interventional hardware through the struts of the stents in the aortic bifurcation. Presence of contemporary flexible nitinol stents with open-cell design in the aortic bifurcation is not a contraindication to the use of the contralateral femoral approach. PMID:26702686
Transient osteoporosis of the hip with a contralateral delayed involvement: a case report
Iannò, Bruno; De Gori, Marco; Familiari, Filippo; Pugliese, Teresa; Gasparini, Giorgio
2017-01-01
Summary We describe a case of non-simultaneous bilateral hip pain with bone marrow edema occurring in an adult male, with the contralateral hip being involved 12 years later after the onset of symptoms. On the basis of clinical and imaging findings, together with a complete resolution after conservative management, a post-hoc diagnosis of metachronous bilateral transient osteoporosis of the hip (TOH) was made. Non-simultaneous bilateral presentation of TOH is exceptional, and contralateral involvement with a 12-year delay has never been previously described. PMID:28740530
Diagnosing the occult contralateral inguinal hernia.
Koehler, R H
2002-03-01
The incidence of bilateral inguinal hernias reported for total extra peritoneal (TEP) laparoscopic hernia repair, which reaches 45%, appears to be higher than that seen in studies of transabdominal laparoscopic and open repair. Given the unique ability of diagnostic laparoscopy to diagnose occult contralateral hernias (OCH) accurately, this study looked at how concurrent transabdominal diagnostic laparoscopy (TADL) would influence planned TEP repairs. A prospective study oF 100 consecutive TEP cases was conducted. All patients had diagnostic laparoscopy via a 5-mm 45 degrees scope through an umbilical incision with 15 mmHg of pneumoperitoneum, followed by laparoscopic TEPrepair. A contralateral occult hernia was diagnosed and repaired if a true peritoneal eventration through the inguinal region was observed. Among the 100 patients, preoperative diagnosis suggested 31 bilateral hernias (31%), whereas TADL confirmed 25 bilateral hernias (25%). Of these 25 bilateral hernias, TADL confirmed 16 that had been diagnosed preoperatively (64%), but excluded 15 contralateral hernias that were incorrectly diagnosed (37%). Transabdominal diagnostic laparoscopy found nine OCHs, representing 36% of all bilateral hernias and 13% of the 69 preoperatively determined unilateral hernias. The preoperative physician examination false-negative rate for contralateral hernias was 36%, and the false-positive rate was 37%. In 26 cases (26%), TADL changed the operative approach. In this study, patients believed to have unilateral inguinal hernias had OCHs in 13% of cases when examined by TADL. The actual bilateral hernia incidence was 25%, with a 37% false-positive rate for preoperatively diagnosed bilateral hernias. The high rate of bilateral hernias reported by the TEP approach alone suggests that some OCH findings may be an artifact of the TEP dissection. However, failure to search for an OCH could result in up to 13% of patients subsequently requiring a second repair. Because some surgeons are concerned about unnecessary TEP dissection of the asymptomatic contralateral side, the approach described here may offer a solution to accurate diagnosis of the contralateral inguinal region during planned laparoscopic TEP hernia repair.
Contralateral Effects and Binaural Interactions in Dorsal Cochlear Nucleus
2005-01-01
The dorsal cochlear nucleus (DCN) receives afferent input from the auditory nerve and is thus usually thought of as a monaural nucleus, but it also receives inputs from the contralateral cochlear nucleus as well as descending projections from binaural nuclei. Evidence suggests that some of these commissural and efferent projections are excitatory, whereas others are inhibitory. The goals of this study were to investigate the nature and effects of these inputs in the DCN by measuring DCN principal cell (type IV unit) responses to a variety of contralateral monaural and binaural stimuli. As expected, the results of contralateral stimulation demonstrate a mixture of excitatory and inhibitory influences, although inhibitory effects predominate. Most type IV units are weakly, if at all, inhibited by tones but are strongly inhibited by broadband noise (BBN). The inhibition evoked by BBN is also low threshold and short latency. This inhibition is abolished and excitation is revealed when strychnine, a glycine-receptor antagonist, is applied to the DCN; application of bicuculline, a GABAA-receptor antagonist, has similar effects but does not block the onset of inhibition. Manipulations of discrete fiber bundles suggest that the inhibitory, but not excitatory, inputs to DCN principal cells enter the DCN via its output pathway, and that the short latency inhibition is carried by commissural axons. Consistent with their respective monaural effects, responses to binaural tones as a function of interaural level difference are essentially the same as responses to ipsilateral tones, whereas binaural BBN responses decrease with increasing contralateral level. In comparison to monaural responses, binaural responses to virtual space stimuli show enhanced sensitivity to the elevation of a sound source in ipsilateral space but reduced sensitivity in contralateral space. These results show that the contralateral inputs to the DCN are functionally relevant in natural listening conditions, and that one role of these inputs is to enhance DCN processing of spectral sound localization cues produced by the pinna. PMID:16075189
Does the Dumbbell-Carrying Position Change the Muscle Activity in Split Squats and Walking Lunges?
Lehnert, Michal; Zaatar, Amr M.Z.; Svoboda, Zdenek; Xaverova, Zuzana
2015-01-01
Abstract Stastny, P, Lehnert, M, Zaatar, AMZ, Svoboda, Z, and Xaverova, Z. Does the dumbbell-carrying position change the muscle activity in split squats and walking lunges? J Strength Cond Res 29(11): 3177–3187, 2015—The forward walking lunge (WL) and split squat (SSq) are similar exercises that have differences in the eccentric phase, and both can be performed in the ipsilateral or contralateral carrying conditions. This study aimed to determine the effects of dumbbell-carrying position on the kinematics and electromyographic (EMG) amplitudes of the gluteus medius (Gmed), vastus medialis (VM), vastus lateralis (VL), and biceps femoris during WLs and SSqs. The resistance-trained (RT) and the non–resistance-trained (NT) groups (both n = 14) performed ipsilateral WLs, contralateral WLs, ipsilateral SSqs, and contralateral SSqs in a randomized order in a simulated training session. The EMG amplitude, expressed as a percentage of the maximal voluntary isometric contraction (%MVIC), and the kinematics, expressed as the range of motion (ROM) of the hip and knee, were measured during 5 repetition maximum for both legs. The repeated measure analyses of variance showed significant differences between the RT and NT groups. The NT group showed a smaller knee flexion ROM (p < 0.001, η2 = 0.36) during both types of WLs, whereas the RT group showed a higher eccentric Gmed amplitude (p < 0.001, η2 = 0.46) during all exercises and a higher eccentric VL amplitude (p < 0.001, η2 = 0.63) during contralateral WLs. Further differences were found between contralateral and ipsilateral WLs in both the RT (p < 0.001, η2 = 0.69) and NT groups (p < 0.001, η2 = 0.80), and contralateral WLs resulted in higher eccentric Gmed amplitudes. Contralateral WLs highly activated the Gmed (90% MVIC); therefore, this exercise can increase the Gmed maximal strength. The ipsilateral loading condition did not increase the Gmed or VM activity in the RT or NT group. PMID:25968228
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butson, M; Carroll, S; Whitaker, M
2015-06-15
Purpose: Tangential breast irradiation is a standard treatment technique for breast cancer therapy. One aspect of dose delivery includes dose delivered to the skin caused by electron contamination. This effect is especially important for highly oblique beams used on the medical tangent where the electron contamination deposits dose on the contralateral breast side. This work aims to investigate and predict as well as define a method to reduce this dose during tangential breast radiotherapy. Methods: Analysis and calculation of breast skin and subcutaneous dose is performed using a Varian Eclipse planning system, AAA algorithm for 6MV x-ray treatments. Measurements weremore » made using EBT3 Gafchromic film to verify the accuracy of planning data. Various materials were tested to assess their ability to remove electron contamination on the contralateral breast. Results: Results showed that the Varian Eclipse AAA algorithm could accurately estimate contralateral breast dose in the build-up region at depths of 2mm or deeper. Surface dose was underestimated by the AAA algorithm. Doses up to 12% of applied dose were seen on the contralateral breast surface and up to 9 % at 2mm depth. Due to the nature of this radiation, being mainly low energy electron contamination, a bolus material could be used to reduce this dose to less than 3%. This is accomplished by 10 mm of superflab bolus or by 1 mm of lead. Conclusion: Contralateral breast skin and subcutaneous dose is present for tangential breast treatment and has been measured to be up to 12% of applied dose from the medial tangent beam. This dose is deposited at shallow depths and is accurately calculated by the Eclipse AAA algorithm at depths of 2mm or greater. Bolus material placed over the contralateral can be used to effectively reduce this skin dose.« less
Ten-m3 Is Required for the Development of Topography in the Ipsilateral Retinocollicular Pathway
Dharmaratne, Nuwan; Glendining, Kelly A.; Young, Timothy R.; Tran, Heidi; Sawatari, Atomu; Leamey, Catherine A.
2012-01-01
Background The alignment of ipsilaterally and contralaterally projecting retinal axons that view the same part of visual space is fundamental to binocular vision. While much progress has been made regarding the mechanisms which regulate contralateral topography, very little is known of the mechanisms which regulate the mapping of ipsilateral axons such that they align with their contralateral counterparts. Results Using the advantageous model provided by the mouse retinocollicular pathway, we have performed anterograde tracing experiments which demonstrate that ipsilateral retinal axons begin to form terminal zones (TZs) in the superior colliculus (SC), within the first few postnatal days. These appear mature by postnatal day 11. Importantly, TZs formed by ipsilaterally-projecting retinal axons are spatially offset from those of contralaterally-projecting axons arising from the same retinotopic location from the outset. This pattern is consistent with that required for adult visuotopy. We further demonstrate that a member of the Ten-m/Odz/Teneurin family of homophilic transmembrane glycoproteins, Ten-m3, is an essential regulator of ipsilateral retinocollicular topography. Ten-m3 mRNA is expressed in a high-medial to low-lateral gradient in the developing SC. This corresponds topographically with its high-ventral to low-dorsal retinal gradient. In Ten-m3 knockout mice, contralateral ventrotemporal axons appropriately target rostromedial SC, whereas ipsilateral axons exhibit dramatic targeting errors along both the mediolateral and rostrocaudal axes of the SC, with a caudal shift of the primary TZ, as well as the formation of secondary, caudolaterally displaced TZs. In addition to these dramatic ipsilateral-specific mapping errors, both contralateral and ipsilateral retinocollicular TZs exhibit more subtle changes in morphology. Conclusions We conclude that important aspects of adult visuotopy are established via the differential sensitivity of ipsilateral and contralateral axons to intrinsic guidance cues. Further, we show that Ten-m3 plays a critical role in this process and is particularly important for the mapping of the ipsilateral retinocollicular pathway. PMID:23028443
Cavernous sinus thrombosis caused by contralateral sphenoid sinusitis: a case report
2013-01-01
Objective To report a rare case of unilateral cavernous sinus thrombosis caused by contralateral sphenoid sinusitis. Case report A 33-year-old female visited our hospital for severe, right-sided, temporal headache, chemosis, periorbital edema, and proptosis. These signs were associated with congested erythematous nasal mucosa with purulent discharge from the right superior nasal meatus. Contrast enhanced CT showed dilated left superior ophthalmic vein, suggestive of thrombosis, contrast enhancement of the left cavernous sinuses, and dilation of cavernous sinus, indicating cavernous sinus inflammation. The right maxillary, ethmoid and sphenoid sinuses showed mucosal thickening and retention of purulent material. She was diagnosed with cavernous sinus thrombosis caused by contralateral sphenoid sinusitis. All clinical symptoms and signs improved after endoscopic sphenoidotomy and appropriate medical treatment. Conclusions Sphenoiditis can cause contralateral cavernous sinus thrombosis. Early surgical sphenoidotomy and aggressive medical treatment are the cornerstones of successful management of this life-threatening complication. PMID:23497466
Lumbar disc herniation with contralateral radiculopathy: do we neglect the epidural fat?
Yang, Jun-Song; Zhang, Dong-Jie; Hao, Ding-Jun
2015-01-01
Lumbar disc herniation (LDH) is the most common cause of radiculopathy, whose pathological entity underlying nerve root compression is usually on the same side as the symptoms. However, LDH causing contralateral radiculopathy are sometimes encountered by pain physicians. There have been tremendous developments in the treatment options for LDH; the situation of LDH causing contralateral radiculopathy is indeed a dilemma for some pain physicians. We will report a case of a patient with a L4-5 disc herniation whose left herniated disc caused radiculopathy on the right side. After a percutaneous lumbar endoscopic discectomy via the side ipsilateral to the symptomatic side, this case obtained a significant symptom remission. The migrated epidural fat is discussed as a cause of associated contralateral neurological deficit. Only via a surgical approach ipsilateral to the herniated side, could there be a clinical improvement postoperatively.
Postoperative recovery of hippocampal contralateral diffusivity in medial temporal lobe epilepsy.
Thivard, Lionel; Tanguy, Marie-Laure; Adam, Claude; Clémenceau, Stéphane; Dezamis, Edouard; Lehéricy, Stéphane; Dormont, Didier; Chiras, Jacques; Baulac, Michel; Dupont, Sophie
2007-03-01
To search for a recovery after surgery of mean diffusivity (MD) values in the contralateral nonsclerotic hippocampus of patients with medial temporal lobe epilepsy (MTLE) and hippocampal sclerosis (HS). Twenty-four MTLE patients (12 right-sided and 12 left-sided MTLE) and 36 healthy volunteers were investigated using diffusion tensor imaging. A region-of-interest approach was used to measure pre- and postoperative interictal hippocampal MD values in patients. Diffusion abnormalities in contralateral nonsclerotic hippocampus recovered after surgery (p<0.0001). A subgroup of 14 patients exhibited a clear increase in MD values whereas the remaining 10 patients were stable. No significant difference was found between the two subgroups for each of the electroclinical data studied including early postoperative outcome, all patients being either seizure free or with rare persistent auras. This finding suggests that diffusion abnormalities in contralateral hippocampus may represent a functional mechanism linked to the active epileptic process.
Fan, Song; Tang, Qiong-lan; Lin, Ying-jin; Chen, Wei-liang; Li, Jin-song; Huang, Zhi-quan; Yang, Zhao-hui; Wang, You-yuan; Zhang, Da-ming; Wang, Hui-jing; Dias-Ribeiro, Eduardo; Cai, Qiang; Wang, Lei
2011-01-01
Oral squamous cell carcinoma (OSCC) has a high incidence of cervical micrometastases and sometimes metastasizes contralaterally because of the rich lymphatic intercommunications relative to submucosal plexus of oral cavity that freely communicate across the midline, and it can facilitate the spread of neoplastic cells to any area of the neck consequently. Clinical and histopathologic factors continue to provide predictive information to contralateral neck metastases (CLNM) in OSCC, which determine prophylactic and adjuvant treatments for an individual patient. This review describes the predictive value of clinical-histopathologic factors, which relate to primary tumor and cervical lymph nodes, and surgical dissection and adjuvant treatments. In addition, the indications for elective contralateral neck dissection and adjuvant radiotherapy (aRT) and strategies for follow-up are offered, which is strongly focused by clinicians to prevent later CLNM and poor prognosis subsequently. PMID:22010576
Noninvasive analysis of human neck muscle function
NASA Technical Reports Server (NTRS)
Conley, M. S.; Meyer, R. A.; Bloomberg, J. J.; Feeback, D. L.; Dudley, G. A.
1995-01-01
STUDY DESIGN. Muscle use evoked by exercise was determined by quantifying shifts in signal relaxation times of T2-weighted magnetic resonance images. Images were collected at rest and after exercise at each of two intensities (moderate and intense) for each of four head movements: 1) extension, 2) flexion, 3) rotation, and 4) lateral flexion. OBJECTIVE. This study examined the intensity and pattern of neck muscle use evoked by various movements of the head. The results will help elucidate the pathophysiology, and thus methods for treating disorders of the cervical musculoskeletal system. SUMMARY OF BACKGROUND DATA. Exercise-induced contrast shifts in T2 has been shown to indicate muscle use during the activity. The noninvasive nature of magnetic resonance imaging appears to make it an ideal approach for studying the function of the complex neuromuscular system of the neck. METHODS. The extent of T2 increase was examined to gauge how intensely nine different neck muscles or muscle pairs were used in seven subjects. The absolute and relative cross-sectional area of muscle showing a shift in signal relaxation was assessed to infer the pattern of use among and within individual neck muscles or muscle pairs. RESULTS. Signal relaxation increased with exercise intensity for each head movement. The absolute and relative cross-sectional area of muscle showing a shift in signal relaxation also increased with exercise load. Neck muscles or muscle pairs extensively used to perform each head movement were: extension--semispinalis capitis and cervicis and splenius capitis; flexion--sternocleidomastoid and longus capitis and colli; rotation--splenius capitis, levator scapulae, scalenus, semispinalis capitis ipsilateral to the rotation, and sternocleidomastoid contralateral; and lateral flexion--sternocleidomastoid CONCLUSION. The results of this study, in part, agree with the purported functions of neck muscles derived from anatomic location. This also was true for the few selected muscles that have been examined in human electromyographic studies. Neck muscle function and morphology can be studied at a detailed level using exercise-induced shifts in magnetic resonance images.
Thürer, Benjamin; Stein, Thorsten
2017-01-01
Intermanual transfer (motor memory generalization across arms) and motor memory interference (impairment of retest performance in consecutive motor learning) are well-investigated motor learning phenomena. However, the interplay of these phenomena remains elusive, i.e., whether intermanual interference occurs when two unimanual tasks are consecutively learned using different arms. Here, we examine intermanual interference when subjects consecutively adapt their right and left arm movements to novel dynamics. We considered two force field tasks A and B which were of the same structure but mirrored orientation (B = -A). The first test group (ABA-group) consecutively learned task A using their right arm and task B using their left arm before being retested for task A with their right arm. Another test group (AAA-group) learned only task A in the same right-left-right arm schedule. Control subjects learned task A using their right arm without intermediate left arm learning. All groups were able to adapt their right arm movements to force field A and both test groups showed significant intermanual transfer of this initial learning to the contralateral left arm of 21.9% (ABA-group) and 27.6% (AAA-group). Consecutively, both test groups adapted their left arm movements to force field B (ABA-group) or force field A (AAA-group). For the ABA-group, left arm learning caused significant intermanual interference of the initially learned right arm task (68.3% performance decrease). The performance decrease of the AAA-group (10.2%) did not differ from controls (15.5%). These findings suggest that motor control and learning of right and left arm movements involve partly similar neural networks or underlie a vital interhemispheric connectivity. Moreover, our results suggest a preferred internal task representation in extrinsic Cartesian-based coordinates rather than in intrinsic joint-based coordinates because interference was absent when learning was performed in extrinsically equivalent fashion (AAA-group) but interference occurred when learning was performed in intrinsically equivalent fashion (ABA-group). PMID:28459833
Stockinger, Christian; Thürer, Benjamin; Stein, Thorsten
2017-01-01
Intermanual transfer (motor memory generalization across arms) and motor memory interference (impairment of retest performance in consecutive motor learning) are well-investigated motor learning phenomena. However, the interplay of these phenomena remains elusive, i.e., whether intermanual interference occurs when two unimanual tasks are consecutively learned using different arms. Here, we examine intermanual interference when subjects consecutively adapt their right and left arm movements to novel dynamics. We considered two force field tasks A and B which were of the same structure but mirrored orientation (B = -A). The first test group (ABA-group) consecutively learned task A using their right arm and task B using their left arm before being retested for task A with their right arm. Another test group (AAA-group) learned only task A in the same right-left-right arm schedule. Control subjects learned task A using their right arm without intermediate left arm learning. All groups were able to adapt their right arm movements to force field A and both test groups showed significant intermanual transfer of this initial learning to the contralateral left arm of 21.9% (ABA-group) and 27.6% (AAA-group). Consecutively, both test groups adapted their left arm movements to force field B (ABA-group) or force field A (AAA-group). For the ABA-group, left arm learning caused significant intermanual interference of the initially learned right arm task (68.3% performance decrease). The performance decrease of the AAA-group (10.2%) did not differ from controls (15.5%). These findings suggest that motor control and learning of right and left arm movements involve partly similar neural networks or underlie a vital interhemispheric connectivity. Moreover, our results suggest a preferred internal task representation in extrinsic Cartesian-based coordinates rather than in intrinsic joint-based coordinates because interference was absent when learning was performed in extrinsically equivalent fashion (AAA-group) but interference occurred when learning was performed in intrinsically equivalent fashion (ABA-group).
Bilateral experimental neck pain reorganize axioscapular muscle coordination and pain sensitivity.
Christensen, S W; Hirata, R P; Graven-Nielsen, T
2017-04-01
Neck pain is a large clinical problem where reorganized trunk and axioscapular muscle activities have been hypothesised contributing to pain persistence and pain hypersensitivity. This study investigated the effects of bilateral experimental neck pain on trunk and axioscapular muscle function and pain sensitivity. In 25 healthy volunteers, bilateral experimental neck pain was induced in the splenius capitis muscles by hypertonic saline injections. Isotonic saline was used as control. In sitting, subjects performed slow, fast and slow-resisted unilateral arm movements before, during and after injections. Electromyography (EMG) was recorded from eight shoulder and trunk muscles bilaterally. Pressure pain thresholds (PPTs) were assessed bilaterally at the neck, head and arm. Data were normalized to the before-measures. Compared with control and post measurements, experimental neck pain caused (1) decreased EMG activity of the ipsilateral upper trapezius muscles during all but slow-resisted down movements (p < 0.001), and (2) increased EMG activity in the ipsilateral erector spinae muscle during slow and fast movements (p < 0.02), and in the contralateral erector spinae muscle during all but fast up and slow-resisted down movements (p < 0.007). The PPTs in the painful condition increased at the head and arm compared with post measurements and the control condition (p < 0.001). In the post-pain condition, the neck PPT was decreased compared with the control condition (p < 0.001). Acute bilateral neck pain reorganized axioscapular and trunk muscle activity together with local hyperalgesia and widespread hypoalgesia indicating that acute neck pain immediately affects trunk and axioscapular function which may affect both assessment and treatment. Bilateral clinical neck pain alters axioscapular muscle coordination but only effects of unilateral experimental neck pain has been investigated. Bilateral experimental neck pain causes task-dependent reorganized axioscapular and trunk muscle activity in addition to widespread decrease in pressure pain sensitivity. © 2016 European Pain Federation - EFIC®.
Detection prospects for the Cosmic Neutrino Background using laser interferometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domcke, Valerie; Spinrath, Martin, E-mail: valerie.domcke@apc.univ-paris7.fr, E-mail: martin.spinrath@cts.nthu.edu.tw
The cosmic neutrino background is a key prediction of Big Bang cosmology which has not been observed yet. The movement of the earth through this neutrino bath creates a force on a pendulum, as if it were exposed to a cosmic wind. We revise here estimates for the resulting pendulum acceleration and compare it to the theoretical sensitivity of an experimental setup where the pendulum position is measured using current laser interferometer technology as employed in gravitational wave detectors. We discuss how a significant improvement of this setup can be envisaged in a micro gravity environment. The proposed setup couldmore » also function as a dark matter detector in the sub-MeV range, which currently eludes direct detection constraints.« less
Detection prospects for the Cosmic Neutrino Background using laser interferometers
NASA Astrophysics Data System (ADS)
Domcke, Valerie; Spinrath, Martin
2017-06-01
The cosmic neutrino background is a key prediction of Big Bang cosmology which has not been observed yet. The movement of the earth through this neutrino bath creates a force on a pendulum, as if it were exposed to a cosmic wind. We revise here estimates for the resulting pendulum acceleration and compare it to the theoretical sensitivity of an experimental setup where the pendulum position is measured using current laser interferometer technology as employed in gravitational wave detectors. We discuss how a significant improvement of this setup can be envisaged in a micro gravity environment. The proposed setup could also function as a dark matter detector in the sub-MeV range, which currently eludes direct detection constraints.
Looking at Op Art from a computational viewpoint.
Zanker, Johannes M
2004-01-01
Arts history tells an exciting story about repeated attempts to represent features that are crucial for the understanding of our environment and which, at the same time, go beyond the inherently two-dimensional nature of a flat painting surface: depth and motion. In the twentieth century, Op artists such as Bridget Riley began to experiment with simple black and white patterns that do not represent motion in an artistic way but actually create vivid dynamic illusions in static pictures. The cause of motion illusions in such paintings is still a matter of debate. The role of involuntary eye movements in this phenomenon is studied here with a computational approach. The possible consequences of shifting the retinal image of synthetic wave gratings, dubbed as 'riloids', were analysed by a two-dimensional array of motion detectors (2DMD model), which generates response maps representing the spatial distribution of motion signals generated by such a stimulus. For a two-frame sequence reflecting a saccadic displacement, these motion signal maps contain extended patches in which local directions change only little. These directions, however, do not usually precisely correspond to the direction of pattern displacement that can be expected from the geometry of the curved gratings as an instance of the so-called 'aperture problem'. The patchy structure of the simulated motion detector response to the displacement of riloids resembles the motion illusion, which is not perceived as a coherent shift of the whole pattern but as a wobbling and jazzing of ill-defined regions. Although other explanations are not excluded, this might support the view that the puzzle of Op Art motion illusions could potentially have an almost trivial solution in terms of small involuntary eye movement leading to image shifts that are picked up by well-known motion detectors in the early visual system. This view can have further consequences for our understanding of how the human visual system usually compensates for eye movements, in order to let us perceive a stable world despite continuous image shifts generated by gaze instability.
Improving breast cancer diagnosis by reducing chest wall effect in diffuse optical tomography
NASA Astrophysics Data System (ADS)
Zhou, Feifei; Mostafa, Atahar; Zhu, Quing
2017-02-01
We have developed ultrasound (US)-guided diffuse optical tomography (DOT) technique to assist US diagnosis of breast cancer and to predict neoadjuvant chemotherapy response of breast cancer patients. The technique was implemented using a hand-held hybrid probe consisting co-registered US transducer and optical source and detector fibers which couple the light illumination from laser diodes and photon detection to PMT detectors. With the US guidance, diffused light measurements were made at the breast lesion site and the normal contralateral reference site which was used to estimate the background tissue optical properties for imaging reconstruction. However, background optical properties were affected by the chest wall underneath the breast tissue. In this study, we have analyzed data from 297 female patients and results have shown statistical significant correlation between fitted optical properties (μa and μs') and the chest wall depth detected by a boundary detection algorithm applied to co-registered US images (r < 0.27, p < 1.0 x 10-4). After subtracting the background total hemoglobin (tHb) computed with μa at each wavelength, the difference between malignant and benign lesion groups has improved. The Area-under-the- ROC curve (AUC) has improved from 88.5% to 91.5% (sensitivity improved from 85.0% to 87.5% and specificity from 90.2% to 92.6%). Statistical test has revealed significant difference of the AUC improvements after subtracting background tHb values.
An anatomical analysis of the mini-modified orbitozygomatic and supra-orbital approaches.
Figueiredo, Eberval G; Deshmukh, Puspha; Nakaji, Peter; Shu, Edson Bor Seng; Crawford, Neil; Spetzler, Robert F; Preul, Mark C
2012-11-01
Seven sides of cadaver heads were used to compare the surgical exposures provided by the mini-modified orbitozygomatic (MOz) and supra-orbital (SO) approaches. The Optotrak 3020 computerized tracking system (Northern Digital, Waterloo, ON, Canada) was utilized to evaluate the area of anatomical exposure defined by six points: (1) ipsilateral sphenoid ridge; (2) most distal point of the ipsilateral middle cerebral artery (MCA); (3) most distal point of the ipsilateral posterior cerebral artery (PCA); (4) most distal point of the contralateral PCA; (5) most distal point of the contralateral MCA; and (6) contralateral sphenoid ridge. Additionally, angles of approach for the ipsilateral MCA bifurcation, ipsilateral ICA bifurcation, basilar artery tip, contralateral MCA and ICA bifurcation and anterior communicating artery (AcomA) were evaluated, first for SO and then for MOz. An image guidance system was used to evaluate the limits of surgical exposure. No differences in the area of surgical exposure were noted (p>0.05). Vertical angles were significantly wider for the ipsilateral and contralateral ICA bifurcation, AcomA, contralateral MCA and basilar tip (p<0.05) for MOz. No differences in horizontal angles were observed between the approaches for the six targets (p>0.05). There were no differences in the limits of exposure. MOz affords no additional surgical working space. However, our results demonstrate systematically that vertical exposure is improved. The MOz should be performed while planning an approach to these regions and a wider exposure in the vertical axis is needed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Gradinaru, S; Totir, M; Iancu, R; Leasu, C; Pricopie, S; Yasin, S; Ciuluvica, R; Ungureanu, E
2014-01-01
This study reports our results relating to palpebral eyelid fissure and orbital measurements following evisceration with orbital implantation of hydroxyapatite integrated implant and PMMA implant. This study is a prospective study of 43 patients that underwent evisceration for different ocular affections at University Emergency Hospital Bucharest, Ophthalmology department between January 2009 and September 2010 (Group A comprising of twenty patients had the coralline hydroxyapatite implant -Integrated Ocular Implants, USA and Group B comprising of twenty-three received non-integrated PMMA ocular implants) .The outcomes measured were the degree of exo /enophthalmos, horizontal eyelid fissure and palpebral fissure height at 4 years after surgical intervention related to measurement to the contralateral eye. Horizontal eyelid fissure (HEF) was suffering a shortening of 7.4% in the group B versus the contralateral eye, and only 1.9% in the group A related to the contralateral eye. Eyelid fissure height was greater in the group B with 5.2% regarding the contralateral eye, and 1.2% in group A. The degree of enophthalmia was higher in the group B of 4 mm versus the contralateral eye and lower in group A 1.5 mm regarding the contralateral eye. . Although a hydroxyapatite implant may be not as economic as a PMMA implant, a patient must be warned about the effect on its ocular structures in time and that cosmetic appearance over years will change more dramatically than in the fellow normal eye. Therefore preoperative counseling of the patient is crucial in long term patient satisfaction.
Khedr, E M; Abo-Elfetoh, N; Rothwell, J C; El-Atar, A; Sayed, E; Khalifa, H
2010-07-01
Repetitive transcranial magnetic stimulation (rTMS) applied over left temporoparietal cortex has been reported to have a long-term therapeutic effect on tinnitus. We compare the impact of 1 and 25 Hz rTMS delivered either contralateral or ipsilateral to symptoms in 62 patients with unilateral chronic tinnitus. Patients were randomly assigned to one of four treatment groups: with stimulation at 1 or 25 Hz applied either ipsilateral or contralateral to symptoms. Two thousand pulses per session were given daily for 2 weeks. Changes in tinnitus handicap inventory (THI), self-rating scores of loudness, awareness, and annoyance were measured monthly for 10 months. Duration of residual inhibition (RI) and psychiatric morbidity were evaluated monthly for 3 months. There was a significant main effect of time (P < 0.0001) and a significant time x side interaction (P = 0.032) between groups. This was because of the fact that contralateral stimulation had a greater effect on THI than ipsilateral stimulation; it was also superior to left side stimulation (P = 0.027). Ratings of loudness improved more after contralateral rTMS (P = 0.037). Twenty patients had no remaining tinnitus after 3 months; the remainder had a significant increase in RI. Patients with the shortest history of tinnitus tended to respond better to rTMS. There was a significant correlation between changes in THI score and changes in Hamilton anxiety and depression scores. Ten daily treatments of 1 and 25 Hz rTMS contralateral to the side of tinnitus have a greater beneficial effect on symptoms than either ipsilateral or left side stimulation.
Genaro, Karina; Prado, Wiliam A
2016-11-01
Stimulation-evoked antinociception (SEA) from the anterior pretectal nucleus (APtN) activates mechanisms that descend to the spinal cord through the dorsolateral funiculus, but the encephalic route followed by the descending pathways from the APtN is not completely known. This study evaluated the changes in the SEA from the APtN in the Wistar rat tail-flick test after lidocaine-induced neural block or N-methyl-d-aspartate-induced neurotoxic lesion of the deep mesencephalic nucleus (DpMe), tegmental pedunculopontine nucleus (PPTg), or lateral paragigantocellular nucleus (LPGi). The SEA from the APtN was less intense after neural block of the contralateral DpMe or PPTg or the ipsilateral LPGi, but was not changed by the neural block of the ipsilateral DpMe or PPTg or the contralateral LPGi. Antinociception did not occur when APtN stimulation was carried out 5 minutes after lidocaine or 6 days after N-methyl-d-aspartate injections into the contralateral DpMe and the ipsilateral LPGi, or into the contralateral PPTg and the ipsilateral LPGi. We conclude that the SEA from the APtN activates 2 descending pain inhibitory pathways, one relaying in the ipsilateral LPGi and another relaying sequentially in the contralateral DpMe and PPTg. The antinociceptive effect of the APtN stimulation involves 2 descending pathways: one relaying in the ipsilateral LPGi and another descending contralaterally via relays in the DpMe and PPTg. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.
Zhao, Dandan; Liang, Shengnan; Jin, Zhenlan; Li, Ling
2014-07-09
Previous studies have confirmed that attention can be modulated by the current task set while involuntarily captured by salient items. However, little is known on which factors the modulation of attentional capture is dependent on when the same stimuli with different task sets are presented. In the present study, participants conducted two visual search tasks with the same search arrays by varying target and distractor settings (color singleton as target, onset singleton as distractor, named as color task, and vice versa). Ipsilateral and contralateral color distractors resulted in two different relative saliences in two tasks, respectively. Both reaction times (RTs) and N2-posterior-contralateral (N2pc) results showed that there was no difference between ipsilateral and contralateral color distractors in the onset task. However, both RTs and the latency of N2pc showed a delay to the ipsilateral onset distractor compared with the contralateral onset distractor. Moreover, the N2pc observed under the contralateral distractor condition in the color task was reversed, and its amplitude was attenuated. On the basis of these results, we proposed a parameter called distractor cost (DC), computed by subtracting RTs under the contralateral distractor condition from the ipsilateral condition. The results suggest that an enhanced DC might be related to the modification of N2pc in searching for the color target. Taken together, these findings provide evidence that the effect of task set-modulating attentional capture in visual search is related to the DC.
Clinical Study of 27 Patients with Medial Medullary Infarction.
Akimoto, Takayoshi; Ogawa, Katsuhiko; Morita, Akihiko; Suzuki, Yutaka; Kamei, Satoshi
2017-10-01
Medial medullary infarction (MMI) is a rare ischemic stroke. Frequency of each neurological finding in MMI was different in each study. We retrospectively evaluated the medical records of patients with cerebral infarction who were admitted between March 1998 and October 2015. Patients in our study were diagnosed as having MMI by magnetic resonance image examination. Of 2727 patients with ischemic stroke, 27 patients (20 males and 7 females) had MMI. The MMI was complicated by infarcts located in the pons (n = 6), cerebellum (n = 2), and lateral medulla (n = 1). One patient had bilateral MMI. Large-artery atherosclerosis was the most common etiology. Motor weakness of the extremities was the most common neurological finding. Diminished contralateral superficial sensation was more common than diminished contralateral vibratory sensation, and these 2 types of sensory disturbance were often complicated. The patients with large MMI significantly more often accompanied diminished touch (P = .003), pain (P = .017), and vibratory (P = .019) sensation. Facial weakness was shown more common contralateral to the infarcts than ipsilateral (n = 8 contralateral, n = 1 ipsilateral). Lingual palsy was also more common contralateral to the lesions (n = 3 contralateral, n = 1 ipsilateral). One patient alone fulfilled the classical Dejerine triad. In MMI, motor weakness of extremities was commonly shown, and complication of diminished sensations indicated the large infarcts. As for facial weakness and lingual palsy, the supranuclear type was more prominent than the infranuclear type. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamitani, Takeshi, E-mail: kamitani@radiol.med.kyushu-u.ac.jp; Kawanami, Satoshi, E-mail: kawanami-01@mac.com; Asayama, Yoshiki, E-mail: asayama@radiol.med.kyushu-u.ac.jp
PurposeTo evaluate the frequency and the predictive factor of each feeding artery on intra-arterial infusion chemotherapy (IAIC) in primary tongue cancer.Materials and MethodsWe retrospectively evaluated 20 patients who received IAIC for primary tongue cancer. The main and accompanying feeding arteries were identified on super-selective angiography of the branches of the external carotid artery. Tumor diameter, and extension to the contralateral side, tongue extrinsic muscles (TEMs), and lateral mesopharyngeal wall were determined based on magnetic resonance imaging or computed tomography findings.ResultsThe main feeding artery was the ipsilateral lingual artery (LA) in 15 of the 20 examined tumors and the contralateral LAmore » in the other 5. Ten cancers had only one feeding artery, and multiple feeding arteries were detected in the remaining 10. Tumors >4 cm (n = 9), those with extension to the contralateral side (n = 13), and those with extension to TEMs (n = 15) were supplied by significantly larger numbers of feeding arteries compared to tumors without these features (P = 0.01, 0.049, and 0.02, respectively). The frequency of feeding from the contralateral LA was 64 % (9/14) and 17 % (1/6) in tumors with and without extension to the contralateral side, respectively. Feeding from a facial artery (FA) was not detected in tumors ≤4 cm, while 5 of the 9 (56 %) tumors >4 cm were supplied by a FA (P = 0.01).ConclusionA careful search for feeding arteries is required, especially in large tumors with extension to the contralateral side or to TEMs.« less
Faucett, Scott C; Genuario, James W; Tosteson, Anna N A; Koval, Kenneth J
2010-02-01
: A previous hip fracture more than doubles the risk of a contralateral hip fracture. Pharmacologic and environmental interventions to prevent hip fracture have documented poor compliance. The purpose of this study was to examine the cost-effectiveness of prophylactic fixation of the uninjured hip to prevent contralateral hip fracture. : A Markov state-transition model was used to evaluate the cost and quality-adjusted life-years (QALYs) for unilateral fixation of hip fracture alone (including internal fixation or arthroplasty) compared with unilateral fixation and contralateral prophylactic hip fixation performed at the time of hip fracture or unilateral fixation and bilateral hip pad protection. Prophylactic fixation involved placement of a cephalomedullary nail in the uninjured hip and was initially assumed to have a relative risk of a contralateral fracture of 1%. Health states included good health, surgery-related complications requiring a second operation (infection, osteonecrosis, nonunion, and malunion), fracture of the uninjured hip, and death. The primary outcome measure was the incremental cost-effectiveness ratio estimated as cost per QALY gained in 2006 US dollars with incremental cost-effectiveness ratios below $50,000 per QALY gained considered cost-effective. Sensitivity analyses evaluated the impact of patient age, annual mortality and complication rates, intervention effectiveness, utilities, and costs on the value of prophylactic fixation. : In the baseline analysis, in a 79-year-old woman, prophylactic fixation was not found to be cost-effective (incremental cost-effectiveness ratio = $142,795/QALY). However, prophylactic fixation was found to be a cost-effective method to prevent contralateral hip fracture in: 1) women 71 to 75 years old who had 30% greater relative risk for a contralateral fracture; and 2) women younger than age 70 years. Cost-effectiveness was greater when the additional costs of prophylaxis were less than $6000. However, for most analyses, the success of prophylactic fixation was highly sensitive to the effectiveness and the relative morbidity and mortality of the additional procedure. : Prophylactic fixation with a cephalomedullary nail was not found to be cost-effective for the average older woman who sustained a hip fracture. However, it may be appropriate for select patient populations. The study supports the need for basic science and clinical trials investigating the effectiveness of prophylactic fixation for patient populations at higher lifetime risk for contralateral hip fracture.
Pahor, Artur; Pahor, Dusica
2017-11-01
Background The objective of this prospective pilot study was to evaluate the results of systemic corticosteroid therapy in patient with non-arteritic anterior ischaemic neuropathy of the optical nerve (NAION) for an observation period of one year and to measure the NAION incidence in the initially healthy contralateral eye of these patients. Patients and Methods All patients diagnosed with acute NAION who were admitted to our ward during 2014 and who fulfilled all inclusion criteria for systemic corticosteroid therapy were included in the study. The inclusion criteria were corrected visual acuity of 0.3 or less and duration of illness of less than 2 weeks. All patients were examined by a rheumatologist and given a complete ophthalmological examination, including fluorescein angiography and examination of the visual field. Only 3 of the 23 patients fulfilled our inclusion criteria for corticoid treatment and were then treated. 10 patients served as controls. The treatment plan started with an initial dose of 80 mg prednisolone during the first two weeks. The dose was then tapered over 3 to 4 months. Results The mean best corrected visual acuity on admission was 0.12 and 0.35 after one year. The mean duration of treatment was 3.3 months. Treatment was discontinued after 5 to 6 months or 8 to 9 months after the initial examination. All patients then developed NAION on the contralateral eye. The mean visual acuity on the contralateral eye was 0.73. After 4 month follow-up, the visual acuity in two patients had decreased to 1.0 and in one patient was reduced from 0.8 to 0.4. No steroid treatment was initiated for the contralateral eye. No NAION was found in the contralateral eye in the control group. Conclusion Corticosteroid treatment improved vision in all patients with NAION in comparison with the untreated contralateral eye. In a single patient, visual acuity decreased in the contralateral eye. Our study confirmed that corticosteroid treatment may be a predisposing factor for the development of NAION am in the contralateral eye. Additional studies with more patients are needed to confirm our results. Georg Thieme Verlag KG Stuttgart · New York.
Contralateral Dpoae Suppression in Humans at Very Low Sound Intensities
NASA Astrophysics Data System (ADS)
Janssen, T.; Gehr, D. D.; Kevanishvili, Z.
2003-02-01
Different functions are attributed to the olivo-cochlear bundle system (OCBS) such as protecting the ear from acoustic injury, improving signal detection in noise, and mediating selective attention. OCBS reflex strength can be evaluated, in animals as well as in humans, by measuring the degree of suppression of an ipsilateral DPOAE by a contralateral sound. The purpose of the study was to evaluate OCBS reflex strength depending on ipsilateral stimulus level, especially at threshold, by means of extrapolated DPOAE I/O-functions. Additionally, DPOAE was measured at near-to-threshold contralateral stimulus levels when using low-level ipsilateral stimulation for investigating possible enhancement of outer hair cell motion in the presence of low-level contralateral sound. The recording of the 2f1-f2 DPOAE in the presence or absence of contralateral sound was performed in normally hearing human subjects at f2 = 2 kHz. DPOAE I/O-functions were measured in a primary tone level range from L2 = 20 to L2 = 65 dB SPL (L1 = 0.4L2 + 39, f2/f1=1.2). Broad-band noise (BBN), narrow-band noise from 1720 to 2320 Hz (NBN), and pure tones (PT) at f2, 2f1-f2, geometric mean of f1 and f2, and 0.1oct + f2 were used for contralateral stimulation. The contralateral stimulus level (Ls) was decreased from 70 down to 10 dB SPL in 10 dB steps. DPOAE suppression was highest at the lowest primary tone level and was more pronounced for BBN and NBN than for pure tones, suggesting a more diffuse than a strong tonotopic organisation of the OCBS. The contralateral stimulus level at which significant DPOAE suppression occurred (p < 0.05) was different for the different stimuli being 20, 40, and 70 dB SPL for BBN, NBN, and pure-tone (f2), respectively. Significant DPOAE suppression to BBN and NBN occurred at Ls well below audiological middle-ear reflex threshold. DPOAE time course was different for Ls below and above middle-ear reflex threshold. Thus, middle-ear muscle contraction is suggested not to be involved in DPOAE suppression at low Ls. No enhancement of DPOAE could be found. The findings suggest the OCBS to be functioning in a more protective way than for improving signal detection in noise.
Brewster, Luke P; Beaulieu, Robert; Kasirajan, Karthik; Corriere, Matthew A; Ricotta, Joseph J; Patel, Siddharth; Dodson, Thomas F
2012-11-01
Contralateral carotid artery occlusion by itself carries an increased risk of stroke. Carotid endarterectomy (CEA) in the presence of contralateral carotid artery occlusion has high reported rates of perioperative morbidity and mortality. Our objective was to determine if there is a clinical benefit to patients who receive carotid artery stenting (CAS) compared to CEA in the presence of contralateral carotid artery occlusion. We conducted a retrospective medical chart review over a 4.5-year institutional experience of persons with contralateral carotid artery occlusion and ipsilateral carotid artery stenosis who underwent CAS or CEA. The main outcome measures were 30-day cardiac, stroke, and mortality rate, and midterm mortality. Of a total of 713 patients treated for carotid artery stenosis during this time period, 57 had contralateral occlusion (~8%). Thirty-nine of these patients were treated with CAS, and 18 with CEA. The most common indications for CAS were prior neck surgery (18), contralateral internal carotid occlusion (nine), and prior neck radiation (seven). The average age was 70 ± 8.5 for CEA and 66.7 ± 9.3 for CAS (P = .20). Both groups were predominantly men (CEA 12 of 18; CAS 28 of 39; P = .76), with similar prevalence of symptomatic lesions (CEA 8 of 18, CAS 20 of 39; P = .77). Two patients died within 30 days in the CAS group (5%). No deaths occurred within 30 days in the CEA group (P = .50); the mortality rate for CAS and CEA combined was 3.5%. No perioperative strokes or myocardial infarction occurred in either group. Two transient ischemic attacks occurred after CAS. At mean follow-up of 29.4 ± 16 months (CEA) and 28 ± 14.4 months (CAS; range, 1.5-48.5 months), seven deaths occurred in the CAS group and one in the CEA group (17.9% vs 5.5%; P = .40). There were two reinterventions in the CAS group for in-stent restenosis and there were no reoperations in the CEA group. Although CEA and CAS can both be performed with good perioperative results and acceptable midterm mortality, the observed outcomes do not support use of contralateral carotid artery occlusion as a selection criterion for CAS over CEA in the absence of other indications. Copyright © 2012 Society for Vascular Surgery. All rights reserved.
Kamson, David O.; Juhász, Csaba; Shin, Joseph; Behen, Michael E.; Guy, William C.; Chugani, Harry T.; Jeong, Jeong-Won
2014-01-01
Background Reorganization of the corticospinal tract (CST) after early damage can limit motor deficit. In this study, we explored patterns of structural CST reorganization in children with Sturge-Weber syndrome. Methods Five children (age 1.5-7 years) with motor deficit due to unilateral Sturge-Weber syndrome were studied prospectively and longitudinally (1-2 years follow-up). CST segments belonging to hand and leg movements were separated, and their volume was measured by diffusion tensor imaging (DTI) tractography using a recently validated method. CST segmental volumes were normalized and compared between the SWS children and age-matched healthy controls. Volume changes during follow-up were also compared to clinical motor symptoms. Results In the SWS children, hand-related (but not leg-related) CST volumes were consistently decreased in the affected cerebral hemisphere at baseline. At follow-up, two distinct patterns of hand CST volume changes emerged: (i) Two children with extensive frontal lobe damage showed a CST volume decrease in the lesional hemisphere and a concomitant increase in the non-lesional (contralateral) hemisphere. These children developed good hand grasp but no fine motor skills. (ii) The three other children, with relative sparing of the frontal lobe, showed an interval increase of the normalized hand CST volume in the affected hemisphere; these children showed no gross motor deficit at follow-up. Conclusions DTI tractography can detect differential abnormalities in the hand CST segment both ipsi- and contralateral to the lesion. Interval increase in the CST hand segment suggests structural reorganization, whose pattern may determine clinical motor outcome and could guide strategies for early motor intervention. PMID:24507695
Biocompatibility of antimicrobial melimine lenses: rabbit and human studies.
Dutta, Debarun; Ozkan, Jerome; Willcox, Mark D P
2014-05-01
Covalent immobilization of antimicrobial peptide melimine onto contact lenses can produce broad-spectrum antimicrobial lenses. The purpose of this study was to investigate the performance of melimine-coated contact lenses in an animal model and human clinical trial. Melimine was covalently attached onto the surface of contact lenses via EDC (1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride) coupling. A rabbit model of daily contralateral wear of lenses for 22 days was conducted to assess the lens safety. A prospective, randomized, double-masked, one-day human clinical trial was used to evaluate subjective responses and ocular physiology during contralateral wear of melimine-coated (test) and uncoated (control) lenses. Delayed reactions were monitored during follow-up visits after 1 and 4 weeks. Ex vivo retention of antimicrobial activity of worn lenses was assessed by reduction in numbers of viable Pseudomonas aeruginosa and Staphylococcus aureus. Melimine-coated lenses produced no ocular signs or symptoms that would indicate cytotoxicity during the lens wear of rabbits. No histological changes were found in rabbit corneas. During the human trial, no differences were observed in wettability, surface deposition, lens-fitting centration, movement, tightness, and corneal coverage between test and control lenses (p > 0.05). There were no significant differences in bulbar, limbal, or palpebral redness or conjunctival staining (p > 0.05). Mean corneal (extent, depth, and type) staining was higher for test lenses compared with that for control lenses (p < 0.05). There was no significant difference in subjective responses for lens comfort, dryness, and awareness (p > 0.05). No delayed reactions were associated with the test lenses. Worn test lenses retained more than 1.5 log inhibition against both bacterial types. Melimine-coated contact lenses were worn safely by humans. However, they were associated with higher corneal staining. The melimine-coated lenses retained high antibacterial activity after wear.
Whisker motor cortex reorganization after superior colliculus output suppression in adult rats.
Veronesi, Carlo; Maggiolini, Emma; Franchi, Gianfranco
2013-10-01
The effect of unilateral superior colliculus (SC) output suppression on the ipsilateral whisker motor cortex (WMC) was studied at different time points after tetrodotoxin and quinolinic acid injections, in adult rats. The WMC output was assessed by mapping the movement evoked by intracortical microstimulation (ICMS) and by recording the ICMS-evoked electromyographic (EMG) responses from contralateral whisker muscles. At 1 h after SC injections, the WMC showed: (i) a strong decrease in contralateral whisker sites, (ii) a strong increase in ipsilateral whisker sites and in ineffective sites, and (iii) a strong increase in threshold current values. At 6 h after injections, the WMC size had shrunk to 60% of the control value and forelimb representation had expanded into the lateral part of the normal WMC. Thereafter, the size of the WMC recovered, returning to nearly normal 12 h later (94% of control) and persisted unchanged over time (1-3 weeks). The ICMS-evoked EMG response area decreased at 1 h after SC lesion and had recovered its baseline value 12 h later. Conversely, the latency of ICMS-evoked EMG responses had increased by 1 h and continued to increase for as long as 3 weeks following the lesion. These findings provide physiological evidence that SC output suppression persistently withdrew the direct excitatory drive from whisker motoneurons and induced changes in the WMC. We suggest that the changes in the WMC are a form of reversible short-term reorganization that is induced by SC lesion. The persistent latency increase in the ICMS-evoked EMG response suggested that the recovery of basic WMC excitability did not take place with the recovery of normal explorative behaviour. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Kamson, David O; Juhász, Csaba; Shin, Joseph; Behen, Michael E; Guy, William C; Chugani, Harry T; Jeong, Jeong-Won
2014-04-01
Reorganization of the corticospinal tract after early damage can limit motor deficit. In this study, we explored patterns of structural corticospinal tract reorganization in children with Sturge-Weber syndrome. Five children (age 1.5-7 years) with motor deficit resulting from unilateral Sturge-Weber syndrome were studied prospectively and longitudinally (1-2 years follow-up). Corticospinal tract segments belonging to hand and leg movements were separated and their volume was measured by diffusion tensor imaging tractography using a recently validated method. Corticospinal tract segmental volumes were normalized and compared between the Sturge-Weber syndrome children and age-matched healthy controls. Volume changes during follow-up were also compared with clinical motor symptoms. In the Sturge-Weber syndrome children, hand-related (but not leg-related) corticospinal tract volumes were consistently decreased in the affected cerebral hemisphere at baseline. At follow-up, two distinct patterns of hand corticospinal tract volume changes emerged. (1) Two children with extensive frontal lobe damage showed a corticospinal tract volume decrease in the lesional hemisphere and a concomitant increase in the nonlesional (contralateral) hemisphere. These children developed good hand grasp but no fine motor skills. (2) The three other children, with relative sparing of the frontal lobe, showed an interval increase of the normalized hand corticospinal tract volume in the affected hemisphere; these children showed no gross motor deficit at follow-up. Diffusion tensor imaging tractography can detect differential abnormalities in the hand corticospinal tract segment both ipsi- and contralateral to the lesion. Interval increase in the corticospinal tract hand segment suggests structural reorganization, whose pattern may determine clinical motor outcome and could guide strategies for early motor intervention. Copyright © 2014 Elsevier Inc. All rights reserved.
Chen, Yi-Ching; Lin, Yen-Ting; Chang, Gwo-Ching; Hwang, Ing-Shiou
2017-01-01
The detection of error information is an essential prerequisite of a feedback-based movement. This study investigated the differential behavior and neurophysiological mechanisms of a cyclic force-tracking task using error-reducing and error-enhancing feedback. The discharge patterns of a relatively large number of motor units (MUs) were assessed with custom-designed multi-channel surface electromyography following mathematical decomposition of the experimentally-measured signals. Force characteristics, force-discharge relation, and phase-locking cortical activities in the contralateral motor cortex to individual MUs were contrasted among the low (LSF), normal (NSF), and high scaling factor (HSF) conditions, in which the sizes of online execution errors were displayed with various amplification ratios. Along with a spectral shift of the force output toward a lower band, force output with a more phase-lead became less irregular, and tracking accuracy was worse in the LSF condition than in the HSF condition. The coherent discharge of high phasic (HP) MUs with the target signal was greater, and inter-spike intervals were larger, in the LSF condition than in the HSF condition. Force-tracking in the LSF condition manifested with stronger phase-locked EEG activity in the contralateral motor cortex to discharge of the (HP) MUs (LSF > NSF, HSF). The coherent discharge of the (HP) MUs during the cyclic force-tracking predominated the force-discharge relation, which increased inversely to the error scaling factor. In conclusion, the size of visualized error gates motor unit discharge, force-discharge relation, and the relative influences of the feedback and feedforward processes on force control. A smaller visualized error size favors voluntary force control using a feedforward process, in relation to a selective central modulation that enhance the coherent discharge of (HP) MUs. PMID:28348530
Schmidt, Joseph; MacNamara, Annmarie; Proudfit, Greg Hajcak; Zelinsky, Gregory J.
2014-01-01
The visual-search literature has assumed that the top-down target representation used to guide search resides in visual working memory (VWM). We directly tested this assumption using contralateral delay activity (CDA) to estimate the VWM load imposed by the target representation. In Experiment 1, observers previewed four photorealistic objects and were cued to remember the two objects appearing to the left or right of central fixation; Experiment 2 was identical except that observers previewed two photorealistic objects and were cued to remember one. CDA was measured during a delay following preview offset but before onset of a four-object search array. One of the targets was always present, and observers were asked to make an eye movement to it and press a button. We found lower magnitude CDA on trials when the initial search saccade was directed to the target (strong guidance) compared to when it was not (weak guidance). This difference also tended to be larger shortly before search-display onset and was largely unaffected by VWM item-capacity limits or number of previews. Moreover, the difference between mean strong- and weak-guidance CDA was proportional to the increase in search time between mean strong-and weak-guidance trials (as measured by time-to-target and reaction-time difference scores). Contrary to most search models, our data suggest that trials resulting in the maintenance of more target features results in poor search guidance to a target. We interpret these counterintuitive findings as evidence for strong search guidance using a small set of highly discriminative target features that remain after pruning from a larger set of features, with the load imposed on VWM varying with this feature-consolidation process. PMID:24599946
Roux, F; Boulanouar, K; Ibarrola, D; Tremoulet, M; Chollet, F; Berry, I
2000-01-01
OBJECTIVE—To support the hypothesis about the potential compensatory role of ipsilateral corticofugal pathways when the contralateral pathways are impaired by brain tumours. METHODS—Retrospective analysis was carried out on the results of functional MRI (fMRI) of a selected group of five paretic patients with Rolandic brain tumours who exhibited an abnormally high ipsilateral/contralateral ratio of activation—that is, movements of the paretic hand activated predominately the ipsilateral cortex. Brain activation was achieved with a flexion extension of the fingers. Statistical parametric activation was obtained using a t test and a threshold of p<0.001. These patients, candidates for tumour resection, also underwent cortical intraoperative stimulation that was correlated to the fMRI spatial data using three dimensional reconstructions of the brain. Three patients also had postoperative control fMRI. RESULTS—The absence of fMRI activation of the primary sensorimotor cortex normally innervating the paretic hand for the threshold chosen, was correlated with completely negative cortical responses of the cortical hand area during the operation. The preoperative fMRI activation of these patients predominantly found in the ipsilateral frontal and primary sensorimotor cortices could be related to the residual ipsilateral hand function. Postoperatively, the fMRI activation returned to more classic patterns of activation, reflecting the consequences of therapy. CONCLUSION—In paretic patients with brain tumours, ipsilateral control could be implicated in the residual hand function, when the normal primary pathways are impaired. The possibility that functional tissue still remains in the peritumorous sensorimotor cortex even when the preoperative fMRI and the cortical intraoperative stimulations are negative, should be taken into account when planning the tumour resection and during the operation. PMID:10990503
Visual cortex activation in kinesthetic guidance of reaching.
Darling, W G; Seitz, R J; Peltier, S; Tellmann, L; Butler, A J
2007-06-01
The purpose of this research was to determine the cortical circuit involved in encoding and controlling kinesthetically guided reaching movements. We used (15)O-butanol positron emission tomography in ten blindfolded able-bodied volunteers in a factorial experiment in which arm (left/right) used to encode target location and to reach back to the remembered location and hemispace of target location (left/right side of midsagittal plane) varied systematically. During encoding of a target the experimenter guided the hand to touch the index fingertip to an external target and then returned the hand to the start location. After a short delay the subject voluntarily moved the same hand back to the remembered target location. SPM99 analysis of the PET data contrasting left versus right hand reaching showed increased (P < 0.05, corrected) neural activity in the sensorimotor cortex, premotor cortex and posterior parietal lobule (PPL) contralateral to the moving hand. Additional neural activation was observed in prefrontal cortex and visual association areas of occipital and parietal lobes contralateral and ipsilateral to the reaching hand. There was no statistically significant effect of target location in left versus right hemispace nor was there an interaction of hand and hemispace effects. Structural equation modeling showed that parietal lobe visual association areas contributed to kinesthetic processing by both hands but occipital lobe visual areas contributed only during dominant hand kinesthetic processing. This visual processing may also involve visualization of kinesthetically guided target location and use of the same network employed to guide reaches to visual targets when reaching to kinesthetic targets. The present work clearly demonstrates a network for kinesthetic processing that includes higher visual processing areas in the PPL for both upper limbs and processing in occipital lobe visual areas for the dominant limb.
Schmidt, Joseph; MacNamara, Annmarie; Proudfit, Greg Hajcak; Zelinsky, Gregory J
2014-03-05
The visual-search literature has assumed that the top-down target representation used to guide search resides in visual working memory (VWM). We directly tested this assumption using contralateral delay activity (CDA) to estimate the VWM load imposed by the target representation. In Experiment 1, observers previewed four photorealistic objects and were cued to remember the two objects appearing to the left or right of central fixation; Experiment 2 was identical except that observers previewed two photorealistic objects and were cued to remember one. CDA was measured during a delay following preview offset but before onset of a four-object search array. One of the targets was always present, and observers were asked to make an eye movement to it and press a button. We found lower magnitude CDA on trials when the initial search saccade was directed to the target (strong guidance) compared to when it was not (weak guidance). This difference also tended to be larger shortly before search-display onset and was largely unaffected by VWM item-capacity limits or number of previews. Moreover, the difference between mean strong- and weak-guidance CDA was proportional to the increase in search time between mean strong-and weak-guidance trials (as measured by time-to-target and reaction-time difference scores). Contrary to most search models, our data suggest that trials resulting in the maintenance of more target features results in poor search guidance to a target. We interpret these counterintuitive findings as evidence for strong search guidance using a small set of highly discriminative target features that remain after pruning from a larger set of features, with the load imposed on VWM varying with this feature-consolidation process.
Chen, Yi-Ching; Lin, Yen-Ting; Chang, Gwo-Ching; Hwang, Ing-Shiou
2017-01-01
The detection of error information is an essential prerequisite of a feedback-based movement. This study investigated the differential behavior and neurophysiological mechanisms of a cyclic force-tracking task using error-reducing and error-enhancing feedback. The discharge patterns of a relatively large number of motor units (MUs) were assessed with custom-designed multi-channel surface electromyography following mathematical decomposition of the experimentally-measured signals. Force characteristics, force-discharge relation, and phase-locking cortical activities in the contralateral motor cortex to individual MUs were contrasted among the low (LSF), normal (NSF), and high scaling factor (HSF) conditions, in which the sizes of online execution errors were displayed with various amplification ratios. Along with a spectral shift of the force output toward a lower band, force output with a more phase-lead became less irregular, and tracking accuracy was worse in the LSF condition than in the HSF condition. The coherent discharge of high phasic (HP) MUs with the target signal was greater, and inter-spike intervals were larger, in the LSF condition than in the HSF condition. Force-tracking in the LSF condition manifested with stronger phase-locked EEG activity in the contralateral motor cortex to discharge of the (HP) MUs (LSF > NSF, HSF). The coherent discharge of the (HP) MUs during the cyclic force-tracking predominated the force-discharge relation, which increased inversely to the error scaling factor. In conclusion, the size of visualized error gates motor unit discharge, force-discharge relation, and the relative influences of the feedback and feedforward processes on force control. A smaller visualized error size favors voluntary force control using a feedforward process, in relation to a selective central modulation that enhance the coherent discharge of (HP) MUs.
Evaluating the dose to the contralateral breast when using a dynamic wedge versus a regular wedge.
Weides, C D; Mok, E C; Chang, W C; Findley, D O; Shostak, C A
1995-01-01
The incidence of secondary cancers in the contralateral breast after primary breast irradiation is several times higher than the incidence of first time breast cancer. Studies have shown that the scatter radiation to the contralateral breast may play a large part in the induction of secondary breast cancers. Factors that may contribute to the contralateral breast dose may include the use of blocks, the orientation of the field, and wedges. Reports have shown that the use of regular wedges, particularly for the medial tangential field, gives a significantly higher dose to the contralateral breast compared to an open field. This paper compares the peripheral dose outside the field using a regular wedge, a dynamic wedge, and an open field technique. The data collected consisted of measurements taken with patients, solid water and a Rando phantom using a Varian 2300CD linear accelerator. Ion chambers, thermoluminescent dosimeters (TLD), diodes, and films were the primary means for collecting the data. The measurements show that the peripheral dose outside the field using a dynamic wedge is close to that of open fields, and significantly lower than that of regular wedges. This information indicates that when using a medial wedge, a dynamic wedge should be used.
Reinke, Karen S.; LaMontagne, Pamela J.; Habib, Reza
2011-01-01
Spatial attention has been argued to be adaptive by enhancing the processing of visual stimuli within the ‘spotlight of attention’. We previously reported that crude threat cues (backward masked fearful faces) facilitate spatial attention through a network of brain regions consisting of the amygdala, anterior cingulate and contralateral visual cortex. However, results from previous functional magnetic resonance imaging (fMRI) dot-probe studies have been inconclusive regarding a fearful face-elicited contralateral modulation of visual targets. Here, we tested the hypothesis that the capture of spatial attention by crude threat cues would facilitate processing of subsequently presented visual stimuli within the masked fearful face-elicited ‘spotlight of attention’ in the contralateral visual cortex. Participants performed a backward masked fearful face dot-probe task while brain activity was measured with fMRI. Masked fearful face left visual field trials enhanced activity for spatially congruent targets in the right superior occipital gyrus, fusiform gyrus and lateral occipital complex, while masked fearful face right visual field trials enhanced activity in the left middle occipital gyrus. These data indicate that crude threat elicited spatial attention enhances the processing of subsequent visual stimuli in contralateral occipital cortex, which may occur by lowering neural activation thresholds in this retinotopic location. PMID:20702500
The influence of target-masker similarity on across-ear interference in dichotic listening
NASA Astrophysics Data System (ADS)
Brungart, Douglas; Simpson, Brian
2004-05-01
In most dichotic listening tasks, the comprehension of a target speech signal presented in one ear is unaffected by the presence of irrelevant speech in the opposite ear. However, recent results have shown that contralaterally presented interfering speech signals do influence performance when a second interfering speech signal is present in the same ear as the target speech. In this experiment, we examined the influence of target-masker similarity on this effect by presenting ipsilateral and contralateral masking phrases spoken by the same talker, a different same-sex talker, or a different-sex talker than the one used to generate the target speech. The results show that contralateral target-masker similarity has the greatest influence on performance when an easily segregated different-sex masker is presented in the target ear, and the least influence when a difficult-to-segregate same-talker masker is presented in the target ear. These results indicate that across-ear interference in dichotic listening is not directly related to the difficulty of the segregation task in the target ear, and suggest that contralateral maskers are least likely to interfere with dichotic speech perception when the same general strategy could be used to segregate the target from the masking voices in the ipsilateral and contralateral ears.
Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study
Stoodley, Catherine J.; Valera, Eve M.; Schmahmann, Jeremy D.
2011-01-01
Anatomical, clinical and imaging findings suggest that the cerebellum is engaged in cognitive and affective functions as well as motor control. Evidence from converging modalities also indicates that there is a functional topography in the human cerebellum for overt control of movement vs. higher functions, such that the cerebellum can be divided into zones depending on connectivity with sensorimotor vs. multimodal association cortices. Using functional MRI, we show that regions active during overt movement differ from those involved in higher-level language, spatial processing and working memory tasks. Nine healthy participants each completed five tasks in order to determine the relative activation patterns for the different paradigms. Right-handed finger-tapping activated right cerebellar lobules IV-V and VIII, consistent with descriptions of the cerebellar homunculi. Verb generation engaged right cerebellar lobules VI-Crus I and a second cluster in lobules VIIB-VIIIA. Mental rotation activation peaks were localized to medial left cerebellar lobule VII (Crus II). A 2-back working memory task activated bilateral regions of lobules VI-VII. Viewing arousing vs. neutral images did not reliably activate the cerebellum or cerebral limbic areas in this study. The cerebellar functional topography identified in this study reflects the involvement of different cerebro-cerebellar circuits depending on the demands of the task being performed: overt movement activated sensorimotor cortices along with contralateral cerebellar lobules IV-VI and VIII, whereas more cognitively demanding tasks engaged prefrontal and parietal cortices along with cerebellar lobules VI and VII. These findings provide further support for a cerebellar role in both motor and cognitive tasks, and better establish the existence of functional subregions in the cerebellum. Future studies are needed to determine the exact contribution of the cerebellum – and different cerebro-cerebellar circuits – to task performance. PMID:21907811
O'Reilly, Christian; Plamondon, Réjean; Landou, Mohamed K; Stemmer, Brigitte
2013-01-01
This article presents an exploratory study investigating the possibility of predicting the time occurrence of a motor event related potential (ERP) from a kinematic analysis of human movements. Although the response-locked motor potential may link the ERP components to the recorded response, to our knowledge no previous attempt has been made to predict a priori (i.e. before any contact with the electroencephalographic data) the time occurrence of an ERP component based only on the modeling of an overt response. The proposed analysis relies on the delta-lognormal modeling of velocity, as proposed by the kinematic theory of rapid human movement used in several studies of motor control. Although some methodological aspects of this technique still need to be fine-tuned, the initial results showed that the model-based kinematic analysis allowed the prediction of the time occurrence of a motor command ERP in most participants in the experiment. The average map of the motor command ERPs showed that this signal was stronger in electrodes close to the contra-lateral motor area (Fz, FCz, FC1, and FC3). These results seem to support the claims made by the kinematic theory that a motor command is emitted at time t(0), the time reference parameter of the model. This article proposes a new time marker directly associated with a cerebral event (i.e. the emission of a motor command) that can be used for the development of new data analysis methodologies and for the elaboration of new experimental protocols based on ERP. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Motor tics evoked by striatal disinhibition in the rat
Bronfeld, Maya; Yael, Dorin; Belelovsky, Katya; Bar-Gad, Izhar
2013-01-01
Motor tics are sudden, brief, repetitive movements that constitute the main symptom of Tourette syndrome (TS). Multiple lines of evidence suggest the involvement of the cortico-basal ganglia system, and in particular the basal ganglia input structure—the striatum in tic formation. The striatum receives somatotopically organized cortical projections and contains an internal GABAergic network of interneurons and projection neurons' collaterals. Disruption of local striatal GABAergic connectivity has been associated with TS and was found to induce abnormal movements in model animals. We have previously described the behavioral and neurophysiological characteristics of motor tics induced in monkeys by local striatal microinjections of the GABAA antagonist bicuculline. In the current study we explored the abnormal movements induced by a similar manipulation in freely moving rats. We targeted microinjections to different parts of the dorsal striatum, and examined the effects of this manipulation on the induced tic properties, such as latency, duration, and somatic localization. Tics induced by striatal disinhibition in monkeys and rats shared multiple properties: tics began within several minutes after microinjection, were expressed solely in the contralateral side, and waxed and waned around a mean inter-tic interval of 1–4 s. A clear somatotopic organization was observed only in rats, where injections to the anterior or posterior striatum led to tics in the forelimb or hindlimb areas, respectively. These results suggest that striatal disinhibition in the rat may be used to model motor tics such as observed in TS. Establishing this reliable and accessible animal model could facilitate the study of the neural mechanisms underlying motor tics, and the testing of potential therapies for tic disorders. PMID:24065893
Orthodontic Forces Induce the Cytoprotective Enzyme Heme Oxygenase-1 in Rats.
Suttorp, Christiaan M; Xie, Rui; Lundvig, Ditte M S; Kuijpers-Jagtman, Anne Marie; Uijttenboogaart, Jasper Tom; Van Rheden, René; Maltha, Jaap C; Wagener, Frank A D T G
2016-01-01
Orthodontic forces disturb the microenvironment of the periodontal ligament (PDL), and induce craniofacial bone remodeling which is necessary for tooth movement. Unfortunately, orthodontic tooth movement is often hampered by ischemic injury and cell death within the PDL (hyalinization) and root resorption. Large inter-individual differences in hyalinization and root resorption have been observed, and may be explained by differential protection against hyalinization. Heme oxygenase-1 (HO-1) forms an important protective mechanism by breaking down heme into the strong anti-oxidants biliverdin/bilirubin and the signaling molecule carbon monoxide. These versatile HO-1 products protect against ischemic and inflammatory injury. We postulate that orthodontic forces induce HO-1 expression in the PDL during experimental tooth movement. Twenty-five 6-week-old male Wistar rats were used in this study. The upper three molars at one side were moved mesially using a Nickel-Titanium coil spring, providing a continuous orthodontic force of 10 cN. The contralateral side served as control. After 6, 12, 72, 96, and 120 h groups of rats were killed. On parasagittal sections immunohistochemical staining was performed for analysis of HO-1 expression and quantification of osteoclasts. Orthodontic force induced a significant time-dependent HO-1 expression in mononuclear cells within the PDL at both the apposition- and resorption side. Shortly after placement of the orthodontic appliance HO-1 expression was highly induced in PDL cells but dropped to control levels within 72 h. Some osteoclasts were also HO-1 positive but this induction was shown to be independent of time- and mechanical stress. It is tempting to speculate that differential induction of tissue protecting- and osteoclast activating genes in the PDL determine the level of bone resorption and hyalinization and, subsequently, "fast" and "slow" tooth movers during orthodontic treatment.
Zhou, Long-Jiang; Wang, Wei; Zhao, Yi; Liu, Chun-Feng; Zhang, Xin-Jiang; Liu, Zhen-Sheng; Li, Hua-Dong
2017-11-01
This study aimed to investigate the correlation between the functional magnetic resonance imaging (fMRI) pattern and the motor function recovery of an affected limb during the passive movement of the affected limb at an early stage of the striatocapsular infarction (SCI). A total of 17 patients with an acute stage of SCI and 3 healthy volunteers as controls were included in this study. fMRI scans of passive movement were performed on the affected limbs of stroke patients within 1 week of onset. Follow-ups were carried out for the motor functions of the affected limbs (before fMRI scan, 1 month, and 3 months after the scan). The control group showed that the activation was mainly located in the contralateral sensorimotor cortex (SMC) and the bilateral supplementary motor area (SMA). The fMRI scan region of interest for stroke patients can be divided into 3 types: type I includes mainly the affected side, bilateral SMC, and SMA with activation; type II includes SMC on the affected side and SMA with activation; type III includes only SMC on the affected side or M1 with activation. The recovery of type I patients was better and faster, while the recovery of type II patients was better but slower, but recovery of type III patients was poorer and slower. Multiple cortical activation patterns were noted during the passive movement of the affected limbs at an early stage of SCI, and a correlation was found between the different activation patterns and the clinical prognosis of patients. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Contralesional motor deficits after unilateral stroke reflect hemisphere-specific control mechanisms
Mani, Saandeep; Mutha, Pratik K.; Przybyla, Andrzej; Haaland, Kathleen Y.; Good, David C.
2013-01-01
We have proposed a model of motor lateralization, in which the left and right hemispheres are specialized for different aspects of motor control: the left hemisphere for predicting and accounting for limb dynamics and the right hemisphere for stabilizing limb position through impedance control mechanisms. Our previous studies, demonstrating different motor deficits in the ipsilesional arm of stroke patients with left or right hemisphere damage, provided a critical test of our model. However, motor deficits after stroke are most prominent on the contralesional side. Post-stroke rehabilitation has also, naturally, focused on improving contralesional arm impairment and function. Understanding whether contralesional motor deficits differ depending on the hemisphere of damage is, therefore, of vital importance for assessing the impact of brain damage on function and also for designing rehabilitation interventions specific to laterality of damage. We, therefore, asked whether motor deficits in the contralesional arm of unilateral stroke patients reflect hemisphere-dependent control mechanisms. Because our model of lateralization predicts that contralesional deficits will differ depending on the hemisphere of damage, this study also served as an essential assessment of our model. Stroke patients with mild to moderate hemiparesis in either the left or right arm because of contralateral stroke and healthy control subjects performed targeted multi-joint reaching movements in different directions. As predicted, our results indicated a double dissociation; although left hemisphere damage was associated with greater errors in trajectory curvature and movement direction, errors in movement extent were greatest after right hemisphere damage. Thus, our results provide the first demonstration of hemisphere specific motor control deficits in the contralesional arm of stroke patients. Our results also suggest that it is critical to consider the differential deficits induced by right or left hemisphere lesions to enhance post-stroke rehabilitation interventions. PMID:23358602
Orthodontic Forces Induce the Cytoprotective Enzyme Heme Oxygenase-1 in Rats
Suttorp, Christiaan M.; Xie, Rui; Lundvig, Ditte M. S.; Kuijpers-Jagtman, Anne Marie; Uijttenboogaart, Jasper Tom; Van Rheden, René; Maltha, Jaap C.; Wagener, Frank A. D. T. G.
2016-01-01
Orthodontic forces disturb the microenvironment of the periodontal ligament (PDL), and induce craniofacial bone remodeling which is necessary for tooth movement. Unfortunately, orthodontic tooth movement is often hampered by ischemic injury and cell death within the PDL (hyalinization) and root resorption. Large inter-individual differences in hyalinization and root resorption have been observed, and may be explained by differential protection against hyalinization. Heme oxygenase-1 (HO-1) forms an important protective mechanism by breaking down heme into the strong anti-oxidants biliverdin/bilirubin and the signaling molecule carbon monoxide. These versatile HO-1 products protect against ischemic and inflammatory injury. We postulate that orthodontic forces induce HO-1 expression in the PDL during experimental tooth movement. Twenty-five 6-week-old male Wistar rats were used in this study. The upper three molars at one side were moved mesially using a Nickel-Titanium coil spring, providing a continuous orthodontic force of 10 cN. The contralateral side served as control. After 6, 12, 72, 96, and 120 h groups of rats were killed. On parasagittal sections immunohistochemical staining was performed for analysis of HO-1 expression and quantification of osteoclasts. Orthodontic force induced a significant time-dependent HO-1 expression in mononuclear cells within the PDL at both the apposition- and resorption side. Shortly after placement of the orthodontic appliance HO-1 expression was highly induced in PDL cells but dropped to control levels within 72 h. Some osteoclasts were also HO-1 positive but this induction was shown to be independent of time- and mechanical stress. It is tempting to speculate that differential induction of tissue protecting- and osteoclast activating genes in the PDL determine the level of bone resorption and hyalinization and, subsequently, “fast” and “slow” tooth movers during orthodontic treatment. PMID:27486402
Williams, Preston T. J. A.; Kim, Sangsoo
2014-01-01
The red nucleus (RN) and rubrospinal tract (RST) are important for forelimb motor control. Although the RST is present postnatally in cats, nothing is known about when rubrospinal projections could support motor functions or the relation between the development of the motor functions of the rubrospinal system and the corticospinal system, the other major system for limb control. Our hypothesis is that the RN motor map is present earlier in development than the motor cortex (M1) map, to support early forelimb control. We investigated RN motor map maturation with microstimulation and RST cervical enlargement projections using anterograde tracers between postnatal week 3 (PW3) and PW16. Microstimulation and tracer injection sites were verified histologically to be located within the RN. Microstimulation at PW4 evoked contralateral wrist, elbow, and shoulder movements. The number of sites producing limb movement increased and response thresholds decreased progressively through PW16. From the outset, all forelimb joints were represented. At PW3, RST projections were present within the cervical intermediate zone, with a mature density of putative synapses. In contrast, beginning at PW5 there was delayed and age-dependent development of forelimb motor pool projections and putative rubromotoneuronal synapses. The RN has a more complete forelimb map early in development than previous studies showed for M1, supporting our hypothesis of preferential rubrospinal rather than corticospinal control for early movements. Remarkably, development of the motor pool, not intermediate zone, RST projections paralleled RN motor map development. The RST may be critical for establishing the rudiments of motor skills that subsequently become refined with further CST development. PMID:24647962
Carey, David P; Otto-de Haart, E Grace; Buckingham, Gavin; Dijkerman, H Chris; Hargreaves, Eric L; Goodale, Melvyn A
2015-01-01
Many studies have argued for distinct but complementary contributions from each hemisphere in the control of movements to visual targets. Investigators have attempted to extend observations from patients with unilateral left- and right-hemisphere damage, to those using neurologically-intact participants, by assuming that each hand has privileged access to the contralateral hemisphere. Previous attempts to illustrate right hemispheric contributions to the control of aiming have focussed on increasing the spatial demands of an aiming task, to attenuate the typical right hand advantages, to try to enhance a left hand reaction time advantage in right-handed participants. These early attempts have not been successful. The present study circumnavigates some of the theoretical and methodological difficulties of some of the earlier experiments, by using three different tasks linked directly to specialized functions of the right hemisphere: bisecting, the gap effect, and visuospatial localization. None of these tasks were effective in reducing the magnitude of left hand reaction time advantages in right handers. Results are discussed in terms of alternatives to right hemispheric functional explanations of the effect, the one-dimensional nature of our target arrays, power and precision given the size of the left hand RT effect, and the utility of examining the proportions of participants who show these effects, rather than exclusive reliance on measures of central tendency and their associated null hypothesis significance tests.
Astley, Henry C
2012-06-01
Brittle stars (Ophiuroidea, Echinodermata) are pentaradially symmetrical echinoderms that use five multi-jointed limbs to locomote along the seafloor. Prior qualitative descriptions have claimed coordinated movements of the limbs in a manner similar to tetrapod vertebrates, but this has not been evaluated quantitatively. It is uncertain whether the ring-shaped nervous system, which lacks an anatomically defined anterior, is capable of generating rhythmic coordinated movements of multiple limbs. This study tested whether brittle stars possess distinct locomotor modes with strong inter-limb coordination as seen in limbed animals in other phyla (e.g. tetrapods and arthropods), or instead move each limb independently according to local sensory feedback. Limb tips and the body disk were digitized for 56 cycles from 13 individuals moving across sand. Despite their pentaradial anatomy, all individuals were functionally bilateral, moving along the axis of a central limb via synchronous motions of contralateral limbs (±~13% phase lag). Two locomotor modes were observed, distinguishable mainly by whether the central limb was directed forwards or backwards. Turning was accomplished without rotation of the body disk by defining a different limb as the center limb and shifting other limb identities correspondingly, and then continuing locomotion in the direction of the newly defined anterior. These observations support the hypothesis that, in spite of their radial body plan, brittle stars employ coordinated, bilaterally symmetrical locomotion.
Moore, Emma; Schaefer, Rebecca S; Bastin, Mark E; Roberts, Neil; Overy, Katie
2017-08-01
Auditory cues are frequently used to support movement learning and rehabilitation, but the neural basis of this behavioural effect is not yet clear. We investigated the microstructural neuroplasticity effects of adding musical cues to a motor learning task. We hypothesised that music-cued, left-handed motor training would increase fractional anisotropy (FA) in the contralateral arcuate fasciculus, a fibre tract connecting auditory, pre-motor and motor regions. Thirty right-handed participants were assigned to a motor learning condition either with (Music Group) or without (Control Group) musical cues. Participants completed 20minutes of training three times per week over four weeks. Diffusion tensor MRI and probabilistic neighbourhood tractography identified FA, axial (AD) and radial (RD) diffusivity before and after training. Results revealed that FA increased significantly in the right arcuate fasciculus of the Music group only, as hypothesised, with trends for AD to increase and RD to decrease, a pattern of results consistent with activity-dependent increases in myelination. No significant changes were found in the left ipsilateral arcuate fasciculus of either group. This is the first evidence that adding musical cues to movement learning can induce rapid microstructural change in white matter pathways in adults, with potential implications for therapeutic clinical practice. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Carey, David P.; Otto-de Haart, E. Grace; Buckingham, Gavin; Dijkerman, H. Chris; Hargreaves, Eric L.; Goodale, Melvyn A.
2015-01-01
Many studies have argued for distinct but complementary contributions from each hemisphere in the control of movements to visual targets. Investigators have attempted to extend observations from patients with unilateral left- and right-hemisphere damage, to those using neurologically-intact participants, by assuming that each hand has privileged access to the contralateral hemisphere. Previous attempts to illustrate right hemispheric contributions to the control of aiming have focussed on increasing the spatial demands of an aiming task, to attenuate the typical right hand advantages, to try to enhance a left hand reaction time advantage in right-handed participants. These early attempts have not been successful. The present study circumnavigates some of the theoretical and methodological difficulties of some of the earlier experiments, by using three different tasks linked directly to specialized functions of the right hemisphere: bisecting, the gap effect, and visuospatial localization. None of these tasks were effective in reducing the magnitude of left hand reaction time advantages in right handers. Results are discussed in terms of alternatives to right hemispheric functional explanations of the effect, the one-dimensional nature of our target arrays, power and precision given the size of the left hand RT effect, and the utility of examining the proportions of participants who show these effects, rather than exclusive reliance on measures of central tendency and their associated null hypothesis significance tests. PMID:26379572
Betti, Sonia; Castiello, Umberto; Guerra, Silvia
2017-01-01
Observing moving body parts can automatically activate topographically corresponding motor representations in the primary motor cortex (M1), the so-called direct matching. Novel neurophysiological findings from social contexts are nonetheless proving that this process is not automatic as previously thought. The motor system can flexibly shift from imitative to incongruent motor preparation, when requested by a social gesture. In the present study we aim to bring an increase in the literature by assessing whether and how diverting overt spatial attention might affect motor preparation in contexts requiring interactive responses from the onlooker. Experiment 1 shows that overt attention—although anchored to an observed biological movement—can be captured by a target object as soon as a social request for it becomes evident. Experiment 2 reveals that the appearance of a short-lasting red dot in the contralateral space can divert attention from the target, but not from the biological movement. Nevertheless, transcranial magnetic stimulation (TMS) over M1 combined with electromyography (EMG) recordings (Experiment 3) indicates that attentional interference reduces corticospinal excitability related to the observed movement, but not motor preparation for a complementary action on the target. This work provides evidence that social motor preparation is impermeable to attentional interference and that a double dissociation is present between overt orienting of spatial attention and neurophysiological markers of action observation. PMID:28319191
Schiller, P H; Chou, I
2000-01-01
This study examined the effects of anterior arcuate and dorsomedial frontal cortex lesions on the execution of saccadic eye movements made to paired and multiple targets in rhesus monkeys. Identical paired targets were presented with various temporal asynchronies to determine the temporal offset required to yield equal probability choices to either target. In the intact animal equal probability choices were typically obtained when the targets appeared simultaneously. After unilateral anterior arcuate lesions a major shift arose in the temporal offset required to obtain equal probability choices for paired targets that necessitated presenting the target in the hemifield contralateral to the lesion more than 100 ms prior to the target in the ipsilateral hemifield. This deficit was still pronounced 1 year after the lesion. Dorsomedial frontal cortex lesions produced much smaller but significant shifts in target selection that recovered more rapidly. Paired lesions produced deficits similar to those observed with anterior arcuate lesions alone. Major deficits were also observed on a multiple target temporal discrimination task after anterior arcuate but not after dorsomedial frontal cortex lesions. These results suggest that the frontal eye fields that reside in anterior bank of the arcuate sulcus play an important role in temporal processing and in target selection. Dorsomedial frontal cortex, that contains the medial eye fields, plays a much less important role in the execution of these tasks.
Image reconstruction of dynamic infrared single-pixel imaging system
NASA Astrophysics Data System (ADS)
Tong, Qi; Jiang, Yilin; Wang, Haiyan; Guo, Limin
2018-03-01
Single-pixel imaging technique has recently received much attention. Most of the current single-pixel imaging is aimed at relatively static targets or the imaging system is fixed, which is limited by the number of measurements received through the single detector. In this paper, we proposed a novel dynamic compressive imaging method to solve the imaging problem, where exists imaging system motion behavior, for the infrared (IR) rosette scanning system. The relationship between adjacent target images and scene is analyzed under different system movement scenarios. These relationships are used to build dynamic compressive imaging models. Simulation results demonstrate that the proposed method can improve the reconstruction quality of IR image and enhance the contrast between the target and the background in the presence of system movement.
Lausberg, Hedda; Cruz, Robyn F; Kita, Sotaro; Zaidel, Eran; Ptito, Alain
2003-02-01
Investigations of left hand praxis in imitation and object use in patients with callosal disconnection have yielded divergent results, inducing a debate between two theoretical positions. Whereas Liepmann suggested that the left hemisphere is motor dominant, others maintain that both hemispheres have equal motor competences and propose that left hand apraxia in patients with callosal disconnection is secondary to left hemispheric specialization for language or other task modalities. The present study aims to gain further insight into the motor competence of the right hemisphere by investigating pantomime of object use in split-brain patients. Three patients with complete callosotomy and, as control groups, five patients with partial callosotomy and nine healthy subjects were examined for their ability to pantomime object use to visual object presentation and demonstrate object manipulation. In each condition, 11 objects were presented to the subjects who pantomimed or demonstrated the object use with either hand. In addition, six object pairs were presented to test bimanual coordination. Two independent raters evaluated the videotaped movement demonstrations. While object use demonstrations were perfect in all three groups, the split-brain patients displayed apraxic errors only with their left hands in the pantomime condition. The movement analysis of concept and execution errors included the examination of ipsilateral versus contralateral motor control. As the right hand/left hemisphere performances demonstrated retrieval of the correct movement concepts, concept errors by the left hand were taken as evidence for right hemisphere control. Several types of execution errors reflected a lack of distal motor control indicating the use of ipsilateral pathways. While one split-brain patient controlled his left hand predominantly by ipsilateral pathways in the pantomime condition, the error profile in the other two split-brain patients suggested that the right hemisphere controlled their left hands. In the object use condition, in all three split-brain patients fine-graded distal movements in the left hand indicated right hemispheric control. Our data show left hand apraxia in split-brain patients is not limited to verbal commands, but also occurs in pantomime to visual presentation of objects. As the demonstration with object in hand was unimpaired in either hand, both hemispheres must contain movement concepts for object use. However, the disconnected right hemisphere is impaired in retrieving the movement concept in response to visual object presentation, presumably because of a deficit in associating perceptual object representation with the movement concepts.
Kumar, Prawin; Grover, Vibhu; Publius A, Sam; Sanju, Himanshu Kumar; Sinha, Sachchidanand
2016-12-01
Contralateral suppression of oto acoustic emission (OAE) is referred as activation of efferent system. Previous literature mentioned about the importance of contralateral suppression of OAEs as a tool to assess efferent system in different groups of population. There is dearth of literature to explore the efferent system function in experienced musicians exposed to rock music using TEOAEs and DPOAEs. Two groups of participant (14 rock musicians and 14 non-musicians) in the age range of 18-25 years were involved in the study. Contralateral suppression of TEOAEs and DPOAEs were measured using ILO (Version 6) in both groups. Descriptive statistics showed higher suppression of TEOAEs and DPOAEs in rock-musicians at most of the frequencies in comparison to non-musicians. For DPOAE measures, Mann Whitney U test results revealed significantly greater DPOAE suppression only at 1 kHz and 3 kHz in rock-musicians compared to non-musicians. For within group comparison, Kruskal Wallis test results revealed there were significant difference observed across most of the frequencies i.e. at 1 kHz, 3 kHz and 6 kHz. For TEOAE measures, Mann Whitney U test results revealed that only at 2 kHz, TEOAE suppression in rock-musician was significantly greater compared to non-musicians. Similarly, Kuskal Wallis test results revealed that within group there were no significant differences observed for most of the frequencies except 2 kHz. Based on the above finding, present study concludes that rock musicians are having better efferent system compared to non-musicians. No suppression effect at few frequencies probably indicates more vulnerability at those frequencies. Contralateral suppression of DPOAE shows more significant finding in comparison to contralateral suppression of TEOAEs in present study.
Ayna, Buket; Yılmaz, Berivan D; Izol, Bozan S; Ayna, Emrah; Tacir, İbrahim Halil
2018-06-15
BACKGROUND The purpose of this study was to determine the influence of 2 different esthetic post materials on the final color of direct-composite restorations by using a digital technique under in vivo conditions. MATERIAL AND METHODS We included 22 pulpless incisor teeth treated with conventionally cemented zirconia (n=11) and polyethylene fiber (n=11) posts in the study. Teeth were restored with a hybrid resin. The color of direct-composite restorations and contralateral control teeth was measured using a digital technique. The Commission Internationale de L'Eclairage, or CIE, L*a*b* and RGB color systems were investigated. Descriptive statistical analysis was performed for the CIE L*a*b* values. Color differences (ΔE) for the average L*, a*, and b* color parameters between every pair of groups were calculated (P>.05). RESULTS Significant differences were not found in the color difference luminosity (lum), R, G, B, and L* a* b* values between the zircon-rich glass fiber post (Z) and contralateral control teeth (Cz) (P>.05) and between the polyethylene fiber post (P) and contralateral control teeth (Cp) (P>.05). However, there was a statistically significant difference between the color a* values of the polyethylene fiber post (P) and contralateral control teeth (Cp) (p<0.05). Color differences (ΔE) between the zircon-rich glass fiber post (Z) and contralateral control teeth, and the polyethylene fiber post (P) and contralateral teeth were not statistically significant (P>.05). CONCLUSIONS Definitive restorations were equally affected by the 2 materials. Both materials can be used reliably in clinical practice. However, further research that focuses on the effect of intraoral conditions is needed.
Nuijts, Rudy M M A; Jonker, Soraya M R; Kaufer, Robert A; Lapid-Gortzak, Ruth; Mendicute, Javier; Martinez, Cristina Peris; Schmickler, Stefanie; Kohnen, Thomas
2016-02-01
To assess the clinical visual outcomes of bilateral implantation of Restor +2.5 diopter (D) multifocal intraocular lenses (IOLs) and contralateral implantation of a Restor +2.5 D multifocal IOL in the dominant eye and Restor +3.0 D multifocal IOL in the fellow eye. Multicenter study at 8 investigative sites. Prospective randomized parallel-group patient-masked 2-arm study. This study comprised adults requiring bilateral cataract extraction followed by multifocal IOL implantation. The primary endpoint was corrected intermediate visual acuity (CIVA) at 60 cm, and the secondary endpoint was corrected near visual acuity (CNVA) at 40 cm. Both endpoints were measured 3 months after implantation with a noninferiority margin of Δ = 0.1 logMAR. In total, 103 patients completed the study (53 bilateral, 50 contralateral). At 3 months, the mean CIVA at 60 cm was 0.13 logMAR and 0.10 logMAR in the bilateral group and contralateral group, respectively (difference 0.04 logMAR), achieving noninferiority. Noninferiority was not attained for CNVA at 40 cm; mean values at 3 months for bilateral and contralateral implantation were 0.26 logMAR and 0.11 logMAR, respectively (difference 0.15 logMAR). Binocular defocus curves suggested similar performance in distance vision between the 2 groups. Treatment-emergent ocular adverse events rates were similar between the groups. Bilateral implantation of the +2.5 D multifocal IOL resulted in similar distance as contralateral implantation of the +2.5 D multifocal IOL and +3.0 D multifocal IOL for intermediate vision (60 cm), while noninferiority was not achieved for near distances (40 cm). Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Morecraft, Robert J.; Ge, Jizhi; Stilwell-Morecraft, Kimberly S.; McNeal, David W.; Pizzimenti, Marc A.; Darling, Warren G.
2013-01-01
To further our understanding of the corticospinal projection (CSP) from the hand/arm representation of the primary motor cortex (M1), high-resolution anterograde tracing methodology and stereology were used to investigate the terminal distribution of this connection at spinal levels C5 to T1. The highest number of labeled terminal boutons occurred contralaterally (98%) with few ipsilaterally (2%). Contralaterally, labeled boutons were located within laminae I – X, with the densest distribution found in lamina VII and, to a lesser extent, laminae IX and VI. Fewer terminals were found in other contralateral laminae. Within lamina VII, terminal boutons were most prominent in the dorsomedial, dorsolateral and ventrolateral subsectors. Within lamina IX, the heaviest terminal labeling was distributed dorsally. Ipsilaterally, boutons were found in laminae V – X. The most pronounced distribution occurred in the dorsomedial and ventromedial sectors of lamina VII and fewer labeled boutons were located in other ipsilateral laminae. Segmentally, contralateral lamina VII labeling was highest at levels C5-C7. In contrast, lamina IX labeling was highest at C7-T1 and more widely dispersed amongst the quadrants at C8-T1. Our findings suggest dominant contralateral influence of the M1 hand/arm CSP, a contralateral innervation pattern in lamina VII supporting Kuypers (1982) conceptual framework of a “lateral motor system”, and a projection to lamina IX indicating significant influence on motoneurons innervating flexors acting on the shoulder and elbow rostrally (C5-C7), along with flexors, extensors, abductors and adductors acting on the digits, hand and wrist caudally (C8-T1). PMID:23840034
Marcus, Sonya; Whitlow, Christopher T; Koonce, James; Zapadka, Michael E; Chen, Michael Y; Williams, Daniel W; Lewis, Meagan; Evans, Adele K
2014-02-01
Prior studies have associated gross inner ear abnormalities with pediatric sensorineural hearing loss (SNHL) using computed tomography (CT). No studies to date have specifically investigated morphologic inner ear abnormalities involving the contralateral unaffected ear in patients with unilateral SNHL. The purpose of this study is to evaluate contralateral inner ear structures of subjects with unilateral SNHL but no grossly abnormal findings on CT. IRB-approved retrospective analysis of pediatric temporal bone CT scans. 97 temporal bone CT scans, previously interpreted as "normal" based upon previously accepted guidelines by board certified neuroradiologists, were assessed using 12 measurements of the semicircular canals, cochlea and vestibule. The control-group consisted of 72 "normal" temporal bone CTs with underlying SNHL in the subject excluded. The study-group consisted of 25 normal-hearing contralateral temporal bones in subjects with unilateral SNHL. Multivariate analysis of covariance (MANCOVA) was then conducted to evaluate for differences between the study and control group. Cochlea basal turn lumen width was significantly greater in magnitude and central lucency of the lateral semicircular canal bony island was significantly lower in density for audiometrically normal ears of subjects with unilateral SNHL compared to controls. Abnormalities of the inner ear were present in the contralateral audiometrically normal ears of subjects with unilateral SNHL. These data suggest that patients with unilateral SNHL may have a more pervasive disease process that results in abnormalities of both ears. The findings of a cochlea basal turn lumen width disparity >5% from "normal" and/or a lateral semicircular canal bony island central lucency disparity of >5% from "normal" may indicate inherent risk to the contralateral unaffected ear in pediatric patients with unilateral sensorineural hearing loss. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Stecker, G Christopher; McLaughlin, Susan A; Higgins, Nathan C
2015-10-15
Whole-brain functional magnetic resonance imaging was used to measure blood-oxygenation-level-dependent (BOLD) responses in human auditory cortex (AC) to sounds with intensity varying independently in the left and right ears. Echoplanar images were acquired at 3 Tesla with sparse image acquisition once per 12-second block of sound stimulation. Combinations of binaural intensity and stimulus presentation rate were varied between blocks, and selected to allow measurement of response-intensity functions in three configurations: monaural 55-85 dB SPL, binaural 55-85 dB SPL with intensity equal in both ears, and binaural with average binaural level of 70 dB SPL and interaural level differences (ILD) ranging ±30 dB (i.e., favoring the left or right ear). Comparison of response functions equated for contralateral intensity revealed that BOLD-response magnitudes (1) generally increased with contralateral intensity, consistent with positive drive of the BOLD response by the contralateral ear, (2) were larger for contralateral monaural stimulation than for binaural stimulation, consistent with negative effects (e.g., inhibition) of ipsilateral input, which were strongest in the left hemisphere, and (3) also increased with ipsilateral intensity when contralateral input was weak, consistent with additional, positive, effects of ipsilateral stimulation. Hemispheric asymmetries in the spatial extent and overall magnitude of BOLD responses were generally consistent with previous studies demonstrating greater bilaterality of responses in the right hemisphere and stricter contralaterality in the left hemisphere. Finally, comparison of responses to fast (40/s) and slow (5/s) stimulus presentation rates revealed significant rate-dependent adaptation of the BOLD response that varied across ILD values. Copyright © 2015. Published by Elsevier Inc.
Oz, A Z; Ciger, S
2018-03-01
The aim of the present study was to evaluate the changes of incisor root resorption associated with impacted maxillary canines and health of periodontal tissues around maxillary canines erupted with orthodontic treatment. Twenty patients with a unilateral palatally impacted maxillary canine were included in the study. Cone-beam computed tomography images taken before and after orthodontic treatment were compared with the contralateral canines serving as control teeth. Root resorption was present in 10% of central and 40% of lateral incisors before treatment. After treatment, the incidence of resorption decreased. The thickness of the buccal bone surrounding the impacted canines was similar to that surrounding the contralateral canines, except in the apical area. Periodontal pocket depth and alveolar bone loss were greater for the impacted canine teeth than for the contralateral canines. Incisor root resorption associated with impacted canine teeth showed signs of repair after orthodontic treatment. Slight differences related to periodontal health were found between the previously impacted teeth and contralateral canine teeth.
Automated IMRT planning in Pinnacle : A study in head-and-neck cancer.
Kusters, J M A M; Bzdusek, K; Kumar, P; van Kollenburg, P G M; Kunze-Busch, M C; Wendling, M; Dijkema, T; Kaanders, J H A M
2017-12-01
This study evaluates the performance and planning efficacy of the Auto-Planning (AP) module in the clinical version of Pinnacle 9.10 (Philips Radiation Oncology Systems, Fitchburg, WI, USA). Twenty automated intensity-modulated radiotherapy (IMRT) plans were compared with the original manually planned clinical IMRT plans from patients with oropharyngeal cancer. Auto-Planning with IMRT offers similar coverage of the planning target volume as the original manually planned clinical plans, as well as better sparing of the contralateral parotid gland, contralateral submandibular gland, larynx, mandible, and brainstem. The mean dose of the contralateral parotid gland and contralateral submandibular gland could be reduced by 2.5 Gy and 1.7 Gy on average. The number of monitor units was reduced with an average of 143.9 (18%). Hands-on planning time was reduced from 1.5-3 h to less than 1 h. The Auto-Planning module was able to produce clinically acceptable head and neck IMRT plans with consistent quality.
Cross-hemispheric dopamine projections have functional significance
Fox, Megan E.; Mikhailova, Maria A.; Bass, Caroline E.; Takmakov, Pavel; Gainetdinov, Raul R.; Budygin, Evgeny A.; Wightman, R. Mark
2016-01-01
Dopamine signaling occurs on a subsecond timescale, and its dysregulation is implicated in pathologies ranging from drug addiction to Parkinson’s disease. Anatomic evidence suggests that some dopamine neurons have cross-hemispheric projections, but the significance of these projections is unknown. Here we report unprecedented interhemispheric communication in the midbrain dopamine system of awake and anesthetized rats. In the anesthetized rats, optogenetic and electrical stimulation of dopamine cells elicited physiologically relevant dopamine release in the contralateral striatum. Contralateral release differed between the dorsal and ventral striatum owing to differential regulation by D2-like receptors. In the freely moving animals, simultaneous bilateral measurements revealed that dopamine release synchronizes between hemispheres and intact, contralateral projections can release dopamine in the midbrain of 6-hydroxydopamine–lesioned rats. These experiments are the first, to our knowledge, to show cross-hemispheric synchronicity in dopamine signaling and support a functional role for contralateral projections. In addition, our data reveal that psychostimulants, such as amphetamine, promote the coupling of dopamine transients between hemispheres. PMID:27298371
Reig, Ramon; Silberberg, Gilad
2016-12-01
Individual striatal neurons integrate somatosensory information from both sides of the body, however, the afferent pathways mediating these bilateral responses are unclear. Whereas ipsilateral corticostriatal projections are prevalent throughout the neocortex, contralateral projections provide sparse input from primary sensory cortices, in contrast to the dense innervation from motor and frontal regions. There is, therefore, an apparent discrepancy between the observed anatomical pathways and the recorded striatal responses. We used simultaneous in vivo whole-cell and extracellular recordings combined with focal cortical silencing, to dissect the afferent pathways underlying bilateral sensory integration in the mouse striatum. We show that unlike direct corticostriatal projections mediating responses to contralateral whisker deflection, responses to ipsilateral stimuli are mediated mainly by intracortical projections from the contralateral somatosensory cortex (S1). The dominant pathway is the callosal projection from contralateral to ipsilateral S1. Our results suggest a functional difference between the cortico-basal ganglia pathways underlying bilateral sensory and motor processes. © The Author 2016. Published by Oxford University Press.
Carey, R J
1991-01-01
Sprague-Dawley rats with unilateral 6-OHDA substantia nigra lesions were given combined scopolamine (0.5 mg/kg IP) and apomorphine (0.05 mg/kg SC) treatments. In this animal model, scopolamine, when administered separately, induces ipsilateral rotation and apomorphine, contralateral rotation. When these drugs are co-administered at 0.5 mg/kg and 0.05 mg/kg dose levels, respectively, animals rotate in the contralateral direction, creating the opportunity for the stimulus effect of scopolamine to become associated with the response effect of apomorphine. In tests with scopolamine (0.5 mg/kg), animals that previously had scopolamine and apomorphine co-administered rotated contralaterally in the test chamber, thereby behaving as if they had received apomorphine. Thus, scopolamine exhibited a functionally acquired conditioned stimulus (CS) property by eliciting the apomorphine response of contralateral rotation as a conditioned response. This acquired CS property was extinguished with separate scopolamine trials and reacquired following one scopolamine-apomorphine co-administration trial.
Xiong, Xiaorui R.; Liang, Feixue; Li, Haifu; Mesik, Lukas; Zhang, Ke K.; Polley, Daniel B.; Tao, Huizhong W.; Xiao, Zhongju; Zhang, Li I.
2013-01-01
Binaural integration in the central nucleus of inferior colliculus (ICC) plays a critical role in sound localization. However, its arithmetic nature and underlying synaptic mechanisms remain unclear. Here, we showed in mouse ICC neurons that the contralateral dominance is created by a “push-pull”-like mechanism, with contralaterally dominant excitation and more bilaterally balanced inhibition. Importantly, binaural spiking response is generated apparently from an ipsilaterally-mediated scaling of contralateral response, leaving frequency tuning unchanged. This scaling effect is attributed to a divisive attenuation of contralaterally-evoked synaptic excitation onto ICC neurons with their inhibition largely unaffected. Thus, a gain control mediates the linear transformation from monaural to binaural spike responses. The gain value is modulated by interaural level difference (ILD) primarily through scaling excitation to different levels. The ILD-dependent synaptic scaling and gain adjustment allow ICC neurons to dynamically encode interaural sound localization cues while maintaining an invariant representation of other independent sound attributes. PMID:23972599
Kim, Hyeun Sung; Patel, Ravish; Paudel, Byapak; Jang, Jee-Soo; Jang, Il-Tae; Oh, Seong-Hoon; Park, Jae Eun; Lee, Sol
2017-12-01
Percutaneous endoscopic contralateral interlaminar lumbar foraminotomy (PECILF) for lumbar degenerative spinal stenosis is an established procedure. Better preservation of contralateral facet joint compared with that of the approach side has been shown with uniportal bilateral decompression. The aim of this retrospective case series was to analyze the early clinical and radiologic outcomes of stand-alone contralateral foraminotomy and lateral recess decompression using PECILF. Twenty-six consecutive patients with unilateral lower limb radiculopathy underwent contralateral foraminotomy and lateral recess decompression using PECILF. Their clinical outcomes were evaluated with visual analog scale leg pain score, Oswestry Disability Index, and the MacNab criteria. Completeness of decompression was documented with a postoperative magnetic resonance imaging. Mean age for the study group was 62.9 ± 9.2 years and the male/female ratio was 4:9. A total of 30 levels were decompressed, with 18 patients (60%) undergoing decompression at L4-L5, 9 at L5-S1 (30%), 2 at L3-L4 (6.7%), and 1 at L2-L3 (3.3%). Mean estimated blood loss was 27 ± 15 mL per level. Mean operative duration was 48 ± 12 minutes/level. Visual analog scale leg score improved from 7.7 ± 1 to 1.8 ± 0.8 (P < 0.0001). Oswestry Disability Index improved from 64.4 ± 5.8 to 21 ± 4.5 (P < 0.0001). Mean follow-up of the study was 13.7 ± 2.7 months. According to the MacNab criteria, 10 patients (38.5%) had good results, 14 patients (53.8%) had excellent results, and 2 patients (7.7%) had fair results. One patient required revision surgery. Facet-preserving contralateral foraminotomy and lateral recess decompression with PECILF is effective for treatment of lateral recess and foraminal stenosis. Thorough decompression with acceptable early clinical outcomes and minimal perioperative morbidity can be obtained with the contralateral endoscopic approach. Copyright © 2017 Elsevier Inc. All rights reserved.
Kim, Dae Keun; Jang, Yujin; Lee, Jaeseon; Hong, Helen; Kim, Ki Hong; Shin, Tae Young; Jung, Dae Chul; Choi, Young Deuk; Rha, Koon Ho
2015-12-01
To analyze long-term changes in both kidneys, and to predict renal function and contralateral hypertrophy after robot-assisted partial nephrectomy. A total of 62 patients underwent robot-assisted partial nephrectomy, and renal parenchymal volume was calculated using three-dimensional semi-automatic segmentation technology. Patients were evaluated within 1 month preoperatively, and postoperatively at 6 months, 1 year and continued up to 2-year follow up. Linear regression models were used to identify the factors predicting variables that correlated with estimated glomerular filtration rate changes and contralateral hypertrophy 2 years after robot-assisted partial nephrectomy. The median global estimated glomerular filtration rate changes were -10.4%, -11.9%, and -2.4% at 6 months, 1 and 2 years post-robot-assisted partial nephrectomy, respectively. The ipsilateral kidney median parenchymal volume changes were -24%, -24.4%, and -21% at 6 months, 1 and 2 years post-robot-assisted partial nephrectomy, respectively. The contralateral renal volume changes were 2.3%, 9.6% and 12.9%, respectively. On multivariable linear analysis, preoperative estimated glomerular filtration rate was the best predictive factor for global estimated glomerular filtration rate change on 2 years post-robot-assisted partial nephrectomy (B -0.452; 95% confidence interval -0.84 to -0.14; P = 0.021), whereas the parenchymal volume loss rate (B -0.43; 95% confidence interval -0.89 to -0.15; P = 0.017) and tumor size (B 5.154; 95% confidence interval -0.11 to 9.98; P = 0.041) were the significant predictive factors for the degree of contralateral renal hypertrophy on 2 years post-robot-assisted partial nephrectomy. Preoperative estimated glomerular filtration rate significantly affects post-robot-assisted partial nephrectomy renal function. Renal mass size and renal parenchyma volume loss correlates with compensatory hypertrophy of the contralateral kidney. Contralateral hypertrophy of the renal parenchyma compensates for the functional loss of the ipsilateral kidney. © 2015 The Japanese Urological Association.
The Extended-Image Tracking Technique Based on the Maximum Likelihood Estimation
NASA Technical Reports Server (NTRS)
Tsou, Haiping; Yan, Tsun-Yee
2000-01-01
This paper describes an extended-image tracking technique based on the maximum likelihood estimation. The target image is assume to have a known profile covering more than one element of a focal plane detector array. It is assumed that the relative position between the imager and the target is changing with time and the received target image has each of its pixels disturbed by an independent additive white Gaussian noise. When a rotation-invariant movement between imager and target is considered, the maximum likelihood based image tracking technique described in this paper is a closed-loop structure capable of providing iterative update of the movement estimate by calculating the loop feedback signals from a weighted correlation between the currently received target image and the previously estimated reference image in the transform domain. The movement estimate is then used to direct the imager to closely follow the moving target. This image tracking technique has many potential applications, including free-space optical communications and astronomy where accurate and stabilized optical pointing is essential.
NASA Technical Reports Server (NTRS)
Bukowski, Richard W.
1987-01-01
An overview is given of the basis for an analysis of combustable materials and potential ignition sources in a spacecraft. First, the burning process is discussed in terms of the production of the fire signatures normally associated with detection devices. These include convected and radiated thermal energy, particulates, and gases. Second, the transport processes associated with the movement of these from the fire to the detector, along with the important phenomena which cause the level of these signatures to be reduced, are described. Third, the operating characteristics of the individual types of detectors which influence their response to signals, are presented. Finally, vulnerability analysis using predictive fire modeling techniques is discussed as a means to establish the necessary response of the detection system to provide the level of protection required in the application.
Central masking with bilateral cochlear implants
Lin, Payton; Lu, Thomas; Zeng, Fan-Gang
2013-01-01
Across bilateral cochlear implants, contralateral threshold shift has been investigated as a function of electrode difference between the masking and probe electrodes. For contralateral electric masking, maximum threshold elevations occurred when the position of the masker and probe electrode was approximately place-matched across ears. The amount of masking diminished with increasing masker-probe electrode separation. Place-dependent masking occurred in both sequentially implanted ears, and was not affected by the masker intensity or the time delay from the masker onset. When compared to previous contralateral masking results in normal hearing, the similarities between place-dependent central masking patterns suggest comparable mechanisms of overlapping excitation in the central auditory nervous system. PMID:23363113
Lumbar disc herniation presenting with contralateral symptoms: a case report
Koh, Zhi Sheng Darren; Lin, Shuxun
2017-01-01
Lumbar disc herniation is common and may be symptomatic. The magnetic resonance imaging (MRI) scan is an appropriate tool to confirm the diagnosis and affected level of the spine. While a disc herniation is usually associated with ipsilateral symptoms, a few cases have been reported to present with contralateral symptoms. We report a unique case of left lumbar disc herniation at L5/S1 who presented with contralateral symptoms and was successfully treated with a right L5/S1 foraminal block. However, the patient developed concordant ipsilateral symptoms 6 weeks later and was treated with left L5/S1 microdiscectomy. PMID:28435926
Lumbar disc herniation presenting with contralateral symptoms: a case report.
Koh, Zhi Sheng Darren; Lin, Shuxun; Hey, Hwee Weng Dennis
2017-03-01
Lumbar disc herniation is common and may be symptomatic. The magnetic resonance imaging (MRI) scan is an appropriate tool to confirm the diagnosis and affected level of the spine. While a disc herniation is usually associated with ipsilateral symptoms, a few cases have been reported to present with contralateral symptoms. We report a unique case of left lumbar disc herniation at L5/S1 who presented with contralateral symptoms and was successfully treated with a right L5/S1 foraminal block. However, the patient developed concordant ipsilateral symptoms 6 weeks later and was treated with left L5/S1 microdiscectomy.
Warlick, W B; O'Rear, J H; Earley, L; Moeller, J H; Gaffney, D K; Leavitt, D D
1997-01-01
The dose to the contralateral breast has been associated with an increased risk of developing a second breast malignancy. Varying techniques have been devised and described in the literature to minimize this dose. Metal beam modifiers such as standard wedges are used to improve the dose distribution in the treated breast, but unfortunately introduce an increased scatter dose outside the treatment field, in particular to the contralateral breast. The enhanced dynamic wedge is a means of remote wedging created by independently moving one collimator jaw through the treatment field during dose delivery. This study is an analysis of differing doses to the contralateral breast using two common clinical set-up techniques with the enhanced dynamic wedge versus the standard metal wedge. A tissue equivalent block (solid water), modeled to represent a typical breast outline, was designed as an insert in a Rando phantom to simulate a standard patient being treated for breast conservation. Tissue equivalent material was then used to complete the natural contour of the breast and to reproduce appropriate build-up and internal scatter. Thermoluminescent dosimeter (TLD) rods were placed at predetermined distances from the geometric beam's edge to measure the dose to the contralateral breast. A total of 35 locations were used with five TLDs in each location to verify the accuracy of the measured dose. The radiation techniques used were an isocentric set-up with co-planar, non divergent posterior borders and an isocentric set-up with a half beam block technique utilizing the asymmetric collimator jaw. Each technique used compensating wedges to optimize the dose distribution. A comparison of the dose to the contralateral breast was then made with the enhanced dynamic wedge vs. the standard metal wedge. The measurements revealed a significant reduction in the contralateral breast dose with the enhanced dynamic wedge compared to the standard metal wedge in both set-up techniques. The dose was measured at varying distances from the geometric field edge, ranging from 2 to 8 cm. The average dose with the enhanced dynamic wedge was 2.7-2.8%. The average dose with the standard wedge was 4.0-4.7%. Thermoluminescent dosimeter measurements suggest an increase in both scattered electrons and photons with metal wedges. The enhanced dynamic wedge is a practical clinical advance which improves the dose distribution in patients undergoing breast conservation while at the same time minimizing dose to the contralateral breast, thereby reducing the potential carcinogenic effects.
Johnston, David G.; Denizet, Marie; Mostany, Ricardo
2013-01-01
Most stroke survivors exhibit a partial recovery from their deficits. This presumably occurs because of remapping of lost capabilities to functionally related brain areas. Functional brain imaging studies suggest that remapping in the contralateral uninjured cortex might represent a transient stage of compensatory plasticity. Some postmortem studies have also shown that cortical lesions, including stroke, can trigger dendritic plasticity in the contralateral hemisphere, but the data are controversial. We used longitudinal in vivo two-photon microscopy in the contralateral homotopic cortex to record changes in dendritic spines of layer 5 pyramidal neurons in green fluorescent protein mice. We could not detect de novo growth of dendrites or changes in the density or turnover of spines for up to 4 weeks after stroke. We also used intrinsic optical signal imaging to investigate whether the forepaw (FP) sensory representation is remapped to the spared homotopic cortex after stroke. Stimulation of the contralateral FP reliably produced strong intrinsic signals in the spared hemisphere, but we could never detect a signal with ipsilateral FP stimulation after stroke. This lack of contralateral plasticity at the level of apical dendrites of layer 5 pyramidal neurons and FP sensory maps suggests that the contralesional cortex may not contribute to functional recovery after stroke and that, at least in mice, the peri-infarct cortex plays the dominant role in postischemic plasticity. PMID:22499800
Kawaguchi, Jun; Matsuura, Nobuyuki; Kasahara, Masataka; Ichinohe, Tatsuya
2015-02-01
The purpose of this study was to investigate the latency and amplitude of trigeminal somatosensory evoked potentials to clarify how nerve function on the contralateral side is affected after cervical sympathetic block (CSB). Subjects comprised 16 volunteers. For CSB, the tip of a needle was contacted with the transverse process of the sixth cervical vertebra on the right side, and lidocaine was injected. Trigeminal somatosensory evoked potentials were recorded bilaterally from C5/C6 scalp positions. Pupil diameters were also measured. Electrical stimulations were applied to the left-side lower lip, and trigeminal somatosensory evoked potentials waveforms derived from both sides of the scalp were recorded. Then, electrical stimulations were applied to the right-side of the lower lip, and recording was again performed. Recordings were performed at 5, 15, and 30 minutes after CSB. On the CSB side, pupil diameter decreased at 5 and 15 minutes after CSB. Trigeminal somatosensory evoked potentials at contralateral stimulation showed a prolongation of the latency in both P20 and N25 components on bilateral recording sites 5 and 15 minutes after CSB. Trigeminal somatosensory evoked potentials' amplitude at contralateral stimulation was smaller than at ipsilateral stimulation 5 minutes after CSB. Cervical sympathetic block prolongs the latency and reduces the amplitude of trigeminal somatosensory evoked potentials on the contralateral side.
MMP-2 as an early synovial biomarker for cranial cruciate ligament disease in dogs.
Boland, L; Danger, R; Cabon, Q; Rabillard, M; Brouard, S; Bouvy, B; Gauthier, O
2014-01-01
To measure the activity of matrix metalloproteinases (MMP)-2 and -9 in synovial fluid from the stifle joints of dogs with cranial cruciate ligament (CrCL) rupture and to compare that to values from contralateral stifle joints and dogs with clinically normal stifle joints. Additionally, the C-reactive protein (CRP) levels were also measured. Fourteen large breed dogs with unilateral CrCL rupture and 11 large breed normal dogs were included in this prospective clinical study. Synovial fluid was collected from CrCL-ruptured stifle joints, contralateral clinically normal stifle joints of the same dogs, and stifle joints of normal dogs. Serum was also collected. Synovial fluid activities of MMP-2 and MMP-9 and serum CRP level were measured. The MMP-2 activity in synovial fluid was significantly higher in CrCL-ruptured joints compared to contralateral joints and to stifles from normal dogs. There was no significant difference in activity of MMP-2 in contralateral joints of CrCL-ruptured dogs compared to normal dogs. Both serum CRP level and MMP-9 activity did not differ significantly between the studied conditions. It was confirmed that MMP-2 activity is significantly related to CrCL rupture, but there was a failure to demonstrate any significant increase in the contralateral joints compared to the stifle joints of normal dogs. The MMP-2 involvement in progressing CrCL disease still has to be defined.
Johnston, David G; Denizet, Marie; Mostany, Ricardo; Portera-Cailliau, Carlos
2013-04-01
Most stroke survivors exhibit a partial recovery from their deficits. This presumably occurs because of remapping of lost capabilities to functionally related brain areas. Functional brain imaging studies suggest that remapping in the contralateral uninjured cortex might represent a transient stage of compensatory plasticity. Some postmortem studies have also shown that cortical lesions, including stroke, can trigger dendritic plasticity in the contralateral hemisphere, but the data are controversial. We used longitudinal in vivo two-photon microscopy in the contralateral homotopic cortex to record changes in dendritic spines of layer 5 pyramidal neurons in green fluorescent protein mice. We could not detect de novo growth of dendrites or changes in the density or turnover of spines for up to 4 weeks after stroke. We also used intrinsic optical signal imaging to investigate whether the forepaw (FP) sensory representation is remapped to the spared homotopic cortex after stroke. Stimulation of the contralateral FP reliably produced strong intrinsic signals in the spared hemisphere, but we could never detect a signal with ipsilateral FP stimulation after stroke. This lack of contralateral plasticity at the level of apical dendrites of layer 5 pyramidal neurons and FP sensory maps suggests that the contralesional cortex may not contribute to functional recovery after stroke and that, at least in mice, the peri-infarct cortex plays the dominant role in postischemic plasticity.
Kato, Kouki; Kanosue, Kazuyuki
2016-10-28
We investigated the effects of foot muscle relaxation and contraction on muscle activities in the hand on both ipsilateral and contralateral sides. The subjects sat in an armchair with hands in the pronated position. They were able to freely move their right/left hand and foot. They performed three tasks for both ipsilateral (right hand and right foot) and contralateral limb coordination (left hand and right foot for a total of six tasks). These tasks involved: (1) wrist extension from a flexed (resting) position, (2) wrist extension with simultaneous ankle dorsiflexion from a plantarflexed (resting) position, and (3) wrist extension with simultaneous ankle relaxation from a dorsiflexed position. The subjects performed each task as fast as possible after hearing the start signal. Reaction time for the wrist extensor contraction (i.e. the degree to which it preceded the motor reaction time), as observed in electromyography (EMG), became longer when it was concurrently done with relaxation of the ankle dorsiflexor. Also, the magnitude of EMG activity became smaller, as compared with activity when wrist extensor contraction was done alone or with contraction of the ankle dorsiflexor. These effects were observed not only for the ipsilateral hand, but also for the contralateral hand. Our findings suggest that muscle relaxation in one limb interferes with muscle contraction in both the ipsilateral and contralateral limbs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Tang, Tjun Y; Howarth, Simon P S; Miller, Sam R; Graves, Martin J; U‐King‐Im, Jean‐Marie; Trivedi, Rikin A; Li, Zhi Yong; Walsh, Stewart R; Brown, Andrew P; Kirkpatrick, Peter J; Gaunt, Michael E; Gillard, Jonathan H
2007-01-01
Background Inflammation is a recognised risk factor for the vulnerable atherosclerotic plaque. The aim of this study was to explore whether there is a difference in the degree of magnetic resonance (MR) defined inflammation using ultra small superparamagnetic iron oxide (USPIO) particles within carotid atheroma in completely asymptomatic individuals and the asymptomatic carotid stenosis contralateral to the symptomatic side. Methods 20 symptomatic patients with contralateral disease and 20 completely asymptomatic patients underwent multi‐sequence MR imaging before and 36 h after USPIO infusion. Images were manually segmented into quadrants and signal change in each quadrant was calculated following USPIO administration. Mean signal change was compared across all quadrants in the two groups. Results The mean percentage of quadrants showing signal loss was 53% in the contralateral group compared with 31% in completely asymptomatic individuals (p = 0.025). The mean percentages showing enhancement were 44% and 65%, respectively (p = 0.024). The mean signal difference between the two groups was 8.6% (95% CI 1.6% to 15.6%; p = 0.017). Conclusions Truly asymptomatic plaques seem to demonstrate inflammation but not to the extent of the contralateral asymptomatic stenosis to the symptomatic side. Inflammatory activity may be a significant risk factor in asymptomatic disease. PMID:17578854