Liu, Hong; Tan, Yan; Xie, Lisi; Yang, Lei; Zhao, Jing; Bai, Jingxuan; Huang, Ping; Zhan, Wugen; Wan, Qian; Zou, Chao; Han, Yali; Wang, Zhiyong
2016-09-15
Stem cells hold great promise for treating various diseases. However, one of the main drawbacks of stem cell therapy is the lack of non-invasive image-tracking technologies. Although magnetic resonance imaging (MRI) and near-infrared fluorescence (NIRF) imaging have been employed to analyse cellular and subcellular events via the assistance of contrast agents, the sensitivity and temporal resolution of MRI and the spatial resolution of NIRF are still shortcomings. In this study, superparamagnetic iron oxide nanocrystals and IR-780 dyes were co-encapsulated in stearic acid-modified polyethylenimine to form a dual-modality contrast agent with nano-size and positive charge. These resulting agents efficiently labelled stem cells and did not influence the cellular viability and differentiation. Moreover, the labelled cells showed the advantages of dual-modality imaging in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.
Immediate and delayed reactions to radiocontrast media: is there an allergic mechanism?
Brockow, Knut
2009-08-01
Radiocontrast media can cause immediate (1 hour) and nonimmediate (>1 hour) hypersensitivity reactions that remain unpredictable and a cause of concern for radiologists and cardiologists. Immediate hypersensitivity reactions resemble anaphylaxis, whereas nonimmediate ones clinically are predominated by exanthemas. Increasing evidence indicates that immediate reactions and nonimmediate skin exanthemas may be allergic reactions involving either contrast media-reactive IgE or T cells, respectively. Skin testing is a useful tool for the diagnosis of contrast media allergy. It may have an important role in the selection of a safe product in previous reactors, although validation data are still lacking. In vitro tests to search for contrast media-specific cell activation are currently under investigation.
Occludin confers adhesiveness when expressed in fibroblasts.
Van Itallie, C M; Anderson, J M
1997-05-01
Occludin is an integral membrane protein specifically associated with tight junctions. Previous studies suggest it is likely to function in forming the intercellular seal. In the present study, we expressed occludin under an inducible promotor in occludin-null fibroblasts to determine whether this protein confers intercellular adhesion. When human occludin is stably expressed in NRK and Rat-1 fibroblasts, which lack endogenous occludin and tight junctions but do have well developed ZO-1-containing adherens-like junctions, occludin colocalizes with ZO-1 to points of cell-cell contact. In contrast, L-cell fibroblasts which lack cadherin-based adherens junctions, target neither ZO-1 nor occludin to sites of cell contact. Occludin-induced adhesion was next quantified using a suspended cell assay. In NRK and Rat-1 cells, occludin expression induces adhesion in the absence of calcium, thus independent of cadherin-cadherin contacts. In contrast, L-cells are nonadhesive in this assay and show no increase in adhesion after induction of occludin expression. Binding of an antibody to the first of the putative extracellular loops of occludin confirmed that this sequence was exposed on the cell surface, and synthetic peptides containing the amino acid sequence of this loop inhibit adhesion induced by occludin expression. These results suggest that the extracellular surface of occludin is directly involved in cell-cell adhesion and the ability to confer adhesiveness correlates with the ability to colocalize with its cytoplasmic binding protein, ZO-1.
Kang, Nam Seon; Jeong, Hae Jin; Moestrup, Ojvind; Park, Tae Gyu
2011-01-01
The heterotrophic dinoflagellate Gyrodiniellum shiwhaense n. gen., n. sp. is described from live cells and from cells prepared for light, scanning electron, and transmission electron microscopy. Also, sequences of the small subunit (SSU) and large subunit (LSU) of rDNA have been analyzed. The episome is conical, while the hyposome is ellipsoid. Cells are covered with polygonal amphiesmal vesicles arranged in 16 horizontal rows. Unlike other Gyrodinium-like dinoflagellates, the apical end of the cell shows a loop-shaped row of five elongate amphiesmal vesicles. The cingulum is displaced by 0.3-0.5 × cell length. Cells that were feeding on the dinoflagellate Amphidinium carterae Hulburt were 9.1-21.6 μm long and 6.6-15.7 μm wide. Cells of G. shiwhaense contain nematocysts, trichocysts, a peduncle, and pusule systems, but they lack chloroplasts. The SSU rDNA sequence is >3% different from that of the six most closely related species: Warnowia sp. (FJ947040), Lepidodinium viride Watanabe, Suda, Inouye, Sawaguchi & Chihara, Gymnodinium aureolum (Hulburt) Hansen, Gymnodinium catenatum Graham, Nematodinium sp. (FJ947039), and Gymnodinium sp. MUCC284 (AF022196), while the LSU rDNA is 11-12% different from that of Warnowia sp., G. aureolum, and Nematodinium sp. (FJ947041). The phylogenetic trees show that the species belongs in the Gymnodinium sensu stricto clade. However, in contrast to Gymnodinium spp., cells lack nuclear envelope chambers and a nuclear fibrous connective. Unlike Polykrikos spp., cells of which possess a taeniocyst-nematocyst complex, G. shiwhaense has nematocysts but lacks taeniocysts. It differs from Paragymnodinium shiwhaense Kang, Jeong, Moestrup & Shin by possessing nematocysts with stylets and filaments. Gyrodiniellum shiwhaense n. gen., n. sp. furthermore lacks ocelloids, in contrast to Warnowia spp., Nematodinium spp., and Proterythropsis spp. Based on morphological and molecular data, we suggest that the taxon represents a new species within a new genus. © 2011 The Author(s). Journal of Eukaryotic Microbiology © 2011 International Society of Protistologists.
Analysis of gene expression levels in individual bacterial cells without image segmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwak, In Hae; Son, Minjun; Hagen, Stephen J., E-mail: sjhagen@ufl.edu
2012-05-11
Highlights: Black-Right-Pointing-Pointer We present a method for extracting gene expression data from images of bacterial cells. Black-Right-Pointing-Pointer The method does not employ cell segmentation and does not require high magnification. Black-Right-Pointing-Pointer Fluorescence and phase contrast images of the cells are correlated through the physics of phase contrast. Black-Right-Pointing-Pointer We demonstrate the method by characterizing noisy expression of comX in Streptococcus mutans. -- Abstract: Studies of stochasticity in gene expression typically make use of fluorescent protein reporters, which permit the measurement of expression levels within individual cells by fluorescence microscopy. Analysis of such microscopy images is almost invariably based on amore » segmentation algorithm, where the image of a cell or cluster is analyzed mathematically to delineate individual cell boundaries. However segmentation can be ineffective for studying bacterial cells or clusters, especially at lower magnification, where outlines of individual cells are poorly resolved. Here we demonstrate an alternative method for analyzing such images without segmentation. The method employs a comparison between the pixel brightness in phase contrast vs fluorescence microscopy images. By fitting the correlation between phase contrast and fluorescence intensity to a physical model, we obtain well-defined estimates for the different levels of gene expression that are present in the cell or cluster. The method reveals the boundaries of the individual cells, even if the source images lack the resolution to show these boundaries clearly.« less
CRISPR-assisted receptor deletion reveals distinct roles for ERBB2 and ERBB3 in skin keratinocytes.
Dahlhoff, Maik; Gaborit, Nadège; Bultmann, Sebastian; Leonhardt, Heinrich; Yarden, Yosef; Schneider, Marlon R
2017-10-01
While the epidermal growth factor receptor (EGFR) is an established regulator of skin development and homeostasis, the functions of the related tyrosine kinase receptors ERBB2 and ERBB3 in this tissue have only recently been examined. Previously reported, skin-specific deletion of each of these receptors in mice resulted in similar defects in keratinocyte proliferation and migration, resulting in impaired wound healing and tumorigenesis. Because both ERBB2 and ERBB3 are targets for treating an array of cancer types, it is important to examine the consequences of receptor inhibition in human keratinocytes. Here, we employed the CRISPR/Cas9 technology to generate HaCaT cells (an established human keratinocyte cell line) lacking ERBB2 or ERBB3. HaCaT clones lacking ERBB2 or ERBB3 showed comparable reductions in cell proliferation as assessed by BrdU staining. Apoptosis, in contrast, was reduced in ERBB3-deficient HaCaT cells only. Assessment of cell migration using a wound healing (scratch) assay showed that the closure of the wound gaps was completed by 48 h in mock and in ERBB3 knockout clones. In contrast, this process was considerably delayed in ERBB2 knockout clones, and a complete closure of the gap in the latter cells did not occur before 72 h. In conclusion, both ERBB2 and ERBB3 are essential for normal proliferation of skin keratinocytes, but in contrast to ERBB3, ERBB2 is essential for migration of human keratinocytes. These observations might bear significance to patient adverse effects of therapeutic agents targeting ERBB2 and ERBB3. © 2017 Federation of European Biochemical Societies.
Analysis of gene expression levels in individual bacterial cells without image segmentation.
Kwak, In Hae; Son, Minjun; Hagen, Stephen J
2012-05-11
Studies of stochasticity in gene expression typically make use of fluorescent protein reporters, which permit the measurement of expression levels within individual cells by fluorescence microscopy. Analysis of such microscopy images is almost invariably based on a segmentation algorithm, where the image of a cell or cluster is analyzed mathematically to delineate individual cell boundaries. However segmentation can be ineffective for studying bacterial cells or clusters, especially at lower magnification, where outlines of individual cells are poorly resolved. Here we demonstrate an alternative method for analyzing such images without segmentation. The method employs a comparison between the pixel brightness in phase contrast vs fluorescence microscopy images. By fitting the correlation between phase contrast and fluorescence intensity to a physical model, we obtain well-defined estimates for the different levels of gene expression that are present in the cell or cluster. The method reveals the boundaries of the individual cells, even if the source images lack the resolution to show these boundaries clearly. Copyright © 2012 Elsevier Inc. All rights reserved.
Camara, Johanna E; Breier, Adam M; Brendler, Therese; Austin, Stuart; Cozzarelli, Nicholas R; Crooke, Elliott
2005-08-01
Initiation of DNA replication from the Escherichia coli chromosomal origin is highly regulated, assuring that replication occurs precisely once per cell cycle. Three mechanisms for regulation of replication initiation have been proposed: titration of free DnaA initiator protein by the datA locus, sequestration of newly replicated origins by SeqA protein and regulatory inactivation of DnaA (RIDA), in which active ATP-DnaA is converted to the inactive ADP-bound form. DNA microarray analyses showed that the level of initiation in rapidly growing cells that lack datA was indistinguishable from that in wild-type cells, and that the absence of SeqA protein caused only a modest increase in initiation, in agreement with flow-cytometry data. In contrast, cells lacking Hda overinitiated replication twofold, implicating RIDA as the predominant mechanism preventing extra initiation events in a cell cycle.
Adams, Christopher; Israel, Liron Limor; Ostrovsky, Stella; Taylor, Arthur; Poptani, Harish; Lellouche, Jean-Paul; Chari, Divya
2016-04-06
Genetic modification of cell transplant populations and cell tracking ability are key underpinnings for effective cell therapies. Current strategies to achieve these goals utilize methods which are unsuitable for clinical translation because of related safety issues, and multiple protocol steps adding to cost and complexity. Multifunctional magnetic nanoparticles (MNPs) offering dual mode gene delivery and imaging contrast capacity offer a valuable tool in this context. Despite their key benefits, there is a critical lack of neurocompatible and multifunctional particles described for use with transplant populations for neurological applications. Here, a systematic screen of MNPs (using a core shown to cause contrast in magnetic resonance imaging (MRI)) bearing various surface chemistries (polyethylenimine (PEI) and oxidized PEI and hybrids of oxidized PEI/alginic acid, PEI/chitosan and PEI/polyamidoamine) is performed to test their ability to genetically engineer neural stem cells (NSCs; a cell population of high clinical relevance for central nervous system disorders). It is demonstrated that gene delivery to NSCs can be safely achieved using two of the developed formulations (PEI and oxPEI/alginic acid) when used in conjunction with oscillating magnetofection technology. After transfection, intracellular particles can be detected by histological procedures with labeled cells displaying contrast in MRI (for real time cell tracking). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tumbarello, David A; Temple, Jillian; Brenton, James D
2012-05-28
The extracellular matrix (ECM) has a key role in facilitating the progression of ovarian cancer and we have shown recently that the secreted ECM protein TGFBI modulates the response of ovarian cancer to paclitaxel-induced cell death. We have determined TGFBI signaling from the extracellular environment is preferential for the cell surface αvß3 integrin heterodimer, in contrast to periostin, a TGFBI paralogue, which signals primarily via a ß1 integrin-mediated pathway. We demonstrate that suppression of ß1 integrin expression, in ß3 integrin-expressing ovarian cancer cells, increases adhesion to rTGFBI. In addition, Syndecan-1 and -4 expression is dispensable for adhesion to rTGFBI and loss of Syndecan-1 cooperates with the loss of ß1 integrin to further enhance adhesion to rTGFBI. The RGD motif present in the carboxy-terminus of TGFBI is necessary, but not sufficient, for SKOV3 cell adhesion and is dispensable for adhesion of ovarian cancer cells lacking ß3 integrin expression. In contrast to TGFBI, the carboxy-terminus of periostin, lacking a RGD motif, is unable to support adhesion of ovarian cancer cells. Suppression of ß3 integrin in SKOV3 cells increases resistance to paclitaxel-induced cell death while suppression of ß1 integrin has no effect. Furthermore, suppression of TGFBI expression stimulates a paclitaxel resistant phenotype while suppression of fibronectin expression, which primarily signals through a ß1 integrin-mediated pathway, increases paclitaxel sensitivity. Therefore, different ECM components use distinct signaling mechanisms in ovarian cancer cells and in particular, TGFBI preferentially interacts through a ß3 integrin receptor mediated mechanism to regulate the response of cells to paclitaxel-induced cell death.
Goetz, Georges; Smith, Richard; Lei, Xin; Galambos, Ludwig; Kamins, Theodore; Mathieson, Keith; Sher, Alexander; Palanker, Daniel
2015-01-01
Purpose To evaluate the contrast sensitivity of a degenerate retina stimulated by a photovoltaic subretinal prosthesis, and assess the impact of low contrast sensitivity on transmission of visual information. Methods We measure ex vivo the full-field contrast sensitivity of healthy rat retina stimulated with white light, and the contrast sensitivity of degenerate rat retina stimulated with a subretinal prosthesis at frequencies exceeding flicker fusion (>20 Hz). Effects of eye movements on retinal ganglion cell (RGC) activity are simulated using a linear–nonlinear model of the retina. Results Retinal ganglion cells adapt to high frequency stimulation of constant intensity, and respond transiently to changes in illumination of the implant, exhibiting responses to ON-sets, OFF-sets, and both ON- and OFF-sets of light. The percentage of cells with an OFF response decreases with progression of the degeneration, indicating that OFF responses are likely mediated by photoreceptors. Prosthetic vision exhibits reduced contrast sensitivity and dynamic range, with 65% contrast changes required to elicit responses, as compared to the 3% (OFF) to 7% (ON) changes with visible light. The maximum number of action potentials elicited with prosthetic stimulation is at most half of its natural counterpart for the ON pathway. Our model predicts that for most visual scenes, contrast sensitivity of prosthetic vision is insufficient for triggering RGC activity by fixational eye movements. Conclusions Contrast sensitivity of prosthetic vision is 10 times lower than normal, and dynamic range is two times below natural. Low contrast sensitivity and lack of OFF responses hamper delivery of visual information via a subretinal prosthesis. PMID:26540657
Mahmoudi, Morteza; Tachibana, Atsushi; Goldstone, Andrew B; Woo, Y Joseph; Chakraborty, Papia; Lee, Kayla R; Foote, Chandler S; Piecewicz, Stephanie; Barrozo, Joyce C; Wakeel, Abdul; Rice, Bradley W; Bell Iii, Caleb B; Yang, Phillip C
2016-06-06
Therapeutic delivery of human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) represents a novel clinical approach to regenerate the injured myocardium. However, methods for robust and accurate in vivo monitoring of the iCMs are still lacking. Although superparamagnetic iron oxide nanoparticles (SPIOs) are recognized as a promising tool for in vivo tracking of stem cells using magnetic resonance imaging (MRI), their signal persists in the heart even weeks after the disappearance of the injected cells. This limitation highlights the inability of SPIOs to distinguish stem cell viability. In order to overcome this shortcoming, we demonstrate the use of a living contrast agent, magneto-endosymbionts (MEs) derived from magnetotactic bacteria for the labeling of iCMs. The ME-labeled iCMs were injected into the infarcted area of murine heart and probed by MRI and bioluminescence imaging (BLI). Our findings demonstrate that the MEs are robust and effective biological contrast agents to track iCMs in an in vivo murine model. We show that the MEs clear within one week of cell death whereas the SPIOs remain over 2 weeks after cell death. These findings will accelerate the clinical translation of in vivo MRI monitoring of transplanted stem cell at high spatial resolution and sensitivity.
Fernando, Joan; Malfettone, Andrea; Cepeda, Edgar B; Vilarrasa-Blasi, Roser; Bertran, Esther; Raimondi, Giulia; Fabra, Àngels; Alvarez-Barrientos, Alberto; Fernández-Salguero, Pedro; Fernández-Rodríguez, Conrado M; Giannelli, Gianluigi; Sancho, Patricia; Fabregat, Isabel
2015-02-15
The multikinase inhibitor sorafenib is the only effective drug in advanced cases of hepatocellular carcinoma (HCC). However, response differs among patients and effectiveness only implies a delay. We have recently described that sorafenib sensitizes HCC cells to apoptosis. In this work, we have explored the response to this drug of six different liver tumor cell lines to define a phenotypic signature that may predict lack of response in HCC patients. Results have indicated that liver tumor cells that show a mesenchymal-like phenotype, resistance to the suppressor effects of transforming growth factor beta (TGF-β) and high expression of the stem cell marker CD44 were refractory to sorafenib-induced cell death in in vitro studies, which correlated with lack of response to sorafenib in nude mice xenograft models of human HCC. In contrast, epithelial-like cells expressing the stem-related proteins EpCAM or CD133 were sensitive to sorafenib-induced apoptosis both in vitro and in vivo. A cross-talk between the TGF-β pathway and the acquisition of a mesenchymal-like phenotype with up-regulation of CD44 expression was found in the HCC cell lines. Targeted CD44 knock-down in the mesenchymal-like cells indicated that CD44 plays an active role in protecting HCC cells from sorafenib-induced apoptosis. However, CD44 effect requires a TGF-β-induced mesenchymal background, since the only overexpression of CD44 in epithelial-like HCC cells is not sufficient to impair sorafenib-induced cell death. In conclusion, a mesenchymal profile and expression of CD44, linked to activation of the TGF-β pathway, may predict lack of response to sorafenib in HCC patients. © 2014 UICC.
Wilson, Kate S; Gonzalez, Olivia; Dutcher, Susan K; Bayly, Philip V
2015-09-01
Changes in the flagellar waveform in response to increased viscosity were investigated in uniflagellate mutants of Chlamydomonas reinhardtii. We hypothesized that the waveforms of mutants lacking different dynein arms would change in different ways as viscosity was increased, and that these variations would illuminate the feedback pathways from force to dynein activity. Previous studies have investigated the effects of viscosity on cell body motion, propulsive force, and power in different mutants, but the effect on waveform has not yet been fully characterized. Beat frequency decreases with viscosity in wild-type uniflagellate (uni1) cells, and outer dynein arm deficient (oda2) mutants. In contrast, the inner dynein arm mutant ida1 (lacking I1/f) maintains beat frequency at high viscosity but alters its flagellar waveform more than either wild-type or oda2. The ida1 waveform is narrower than wild-type, primarily due to an abbreviated recovery stroke; this difference is amplified at high viscosity. The oda2 mutant in contrast, maintains a consistent waveform at high and low viscosity with a slightly longer power stroke than wild-type. Analysis of the delays and shear displacements between bends suggest that direct force feedback in the outer dynein arm system may initiate switching of dynein activity. In contrast, I1/f dynein appears to delay switching, most markedly at the initiation of the power stroke, possibly by controlling inter-doublet separation. © 2015 Wiley Periodicals, Inc.
Wilson, Kate S.; Gonzalez, Olivia; Dutcher, Susan K.; Bayly, P.V.
2015-01-01
Changes in the flagellar waveform in response to increased viscosity were investigated in uniflagellate mutants of Chlamydomonas reinhardtii. We hypothesized that the waveforms of mutants lacking different dynein arms would change in different ways as viscosity was increased, and that these variations would illuminate the feedback pathways from force to dynein activity. Previous studies have investigated the effects of viscosity on cell body motion, propulsive force, and power in different mutants, but the effect on waveform has not yet been fully characterized. Beat frequency decreases with viscosity in wild-type uniflagellate (uni1) cells, and outer dynein arm deficient (oda2) mutants. In contrast, the inner dynein arm mutant ida1 (lacking I1/f) maintains beat frequency at high viscosity but alters its flagellar waveform more than either wild-type or oda2. The ida1 waveform is narrower than wild-type, primarily due to an abbreviated recovery stroke; this difference is amplified at high viscosity. The oda2 mutant in contrast, maintains a consistent waveform at high and low viscosity with a slightly longer power stroke than wild-type. Analysis of the delays and shear displacements between bends suggest that direct force feedback in the outer dynein arm system may initiate switching of dynein activity. In contrast, I1/f dynein appears to delay switching, most markedly at the initiation of the power stroke, possibly by controlling inter-doublet separation. PMID:26314933
1993-01-01
Coronin is an actin-binding protein in Dictyostelium discoideum that is enriched at the leading edge of the cells and in projections of the cell surface called crowns. The polypeptide sequence of coronin is distinguished by its similarities to the beta-subunits of trimeric G proteins (E. L. de Hostos, B. Bradtke, F. Lottspeich, R. Guggenheim, and G. Gerisch, 1991. EMBO (Eur. Mol. Biol. Organ.) J. 10:4097-4104). To elucidate the in vivo function of coronin, null mutants have been generated by gene replacement. The mutant cells lacking coronin grow and migrate more slowly than wild-type cells. When these cor- cells grow in liquid medium they become multinucleate, indicating a role of coronin in cytokinesis. To explore this role, coronin has been localized in mitotic wild-type cells by immunofluorescence labeling. During separation of the daughter cells, coronin is strongly accumulated at their distal portions including the leading edges. This contrasts with the localization of myosin II in the cleavage furrow and suggests that coronin functions independently of the conventional myosin in facilitating cytokinesis. PMID:8380174
Thakur, Vijay S; Amin, A.R.M. Ruhul; Paul, Rajib K; Gupta, Kalpana; Hastak, Kedar; Agarwal, Mukesh K; Jackson, Mark W; Wald, David N; Mukhtar, Hasan; Agarwal, Munna L
2010-01-01
The tumor suppressor protein p53 plays a key role in regulation of negative cellular growth in response to EGCG. To further explore the role of p53 signaling and elucidate the molecular mechanism, we employed colon cancer HCT116 cell line and its derivatives in which a specific transcriptional target of p53 is knocked down by homologous recombination. Cells expressing p53 and p21 accumulate in G1 upon treatment with EGCG. In contrast, same cells lacking p21 traverse through the cell cycle and eventually undergo apoptosis as revealed by TUNEL staining. Treatment with EGCG leads to induction of p53, p21 and PUMA in p21 wild-type, and p53 and PUMA in p21−/− cells. Ablation of p53 by RNAi protects p21−/− cells, thus indicating a p53-dependent apoptosis by EGCG. Furthermore, analysis of cells lacking PUMA or Bax with or without p21 but with p53 reveals that all the cells expressing p53 and p21 survived after EGCG treatment. More interestingly, cells lacking both PUMA and p21 survived ECGC treatment whereas those lacking p21 and Bax did not. Taken together, our results present a novel concept wherein p21-dependent growth arrest pre-empts and protects cells from otherwise, in its absence, apoptosis which is mediated by activation of pro-apoptotic protein PUMA. Furthermore, we find that p53-dependent activation of PUMA in response to EGCG directly leads to apoptosis with out requiring Bax as is the case in response to agents that induce DNA damage. p21, thus can be used as a molecular switch for therapeutic intervention of colon cancer. PMID:20444544
Fluorine (19F) MRS and MRI in biomedicine
Ruiz-Cabello, Jesús; Barnett, Brad P.; Bottomley, Paul A.; Bulte, Jeff W.M.
2011-01-01
Shortly after the introduction of 1H MRI, fluorinated molecules were tested as MR-detectable tracers or contrast agents. Many fluorinated compounds, which are nontoxic and chemically inert, are now being used in a broad range of biomedical applications, including anesthetics, chemotherapeutic agents, and molecules with high oxygen solubility for respiration and blood substitution. These compounds can be monitored by fluorine (19F) MRI and/or MRS, providing a noninvasive means to interrogate associated functions in biological systems. As a result of the lack of endogenous fluorine in living organisms, 19F MRI of ‘hotspots’ of targeted fluorinated contrast agents has recently opened up new research avenues in molecular and cellular imaging. This includes the specific targeting and imaging of cellular surface epitopes, as well as MRI cell tracking of endogenous macrophages, injected immune cells and stem cell transplants. PMID:20842758
Berger, Philipp; Sirkowski, Erich E; Scherer, Steven S; Suter, Ueli
2004-11-01
Mutations in the gene encoding N-myc downstream-regulated gene-1 (NDRG1) lead to truncations of the encoded protein and are associated with an autosomal recessive demyelinating neuropathy--hereditary motor and sensory neuropathy-Lom. NDRG1 protein is highly expressed in peripheral nerve and is localized in the cytoplasm of myelinating Schwann cells, including the paranodes and Schmidt-Lanterman incisures. In contrast, sensory and motor neurons as well as their axons lack NDRG1. NDRG1 mRNA levels in developing and injured adult sciatic nerves parallel those of myelin-related genes, indicating that the expression of NDRG1 in myelinating Schwann cells is regulated by axonal interactions. Oligodendrocytes also express NDRG1, and the subtle CNS deficits of affected patients may result from a lack of NDRG1 in these cells. Our data predict that the loss of NDRG1 leads to a Schwann cell autonomous phenotype resulting in demyelination, with secondary axonal loss.
Shirogane, Yuta; Suzuki, Satoshi O.; Ikegame, Satoshi; Koga, Ritsuko
2013-01-01
Subacute sclerosing panencephalitis (SSPE) is a fatal degenerative disease caused by persistent measles virus (MV) infection in the central nervous system (CNS). From the genetic study of MV isolates obtained from SSPE patients, it is thought that defects of the matrix (M) protein play a crucial role in MV pathogenicity in the CNS. In this study, we report several notable mutations in the extracellular domain of the MV fusion (F) protein, including those found in multiple SSPE strains. The F proteins with these mutations induced syncytium formation in cells lacking SLAM and nectin 4 (receptors used by wild-type MV), including human neuronal cell lines, when expressed together with the attachment protein hemagglutinin. Moreover, recombinant viruses with these mutations exhibited neurovirulence in suckling hamsters, unlike the parental wild-type MV, and the mortality correlated with their fusion activity. In contrast, the recombinant MV lacking the M protein did not induce syncytia in cells lacking SLAM and nectin 4, although it formed larger syncytia in cells with either of the receptors. Since human neuronal cells are mainly SLAM and nectin 4 negative, fusion-enhancing mutations in the extracellular domain of the F protein may greatly contribute to MV spread via cell-to-cell fusion in the CNS, regardless of defects of the M protein. PMID:23255801
Guo, X; Ruiz, A; Rando, R R; Bok, D; Gudas, L J
2000-11-01
When exogenous [(3)H]retinol (vitamin A) was added to culture medium, normal human epithelial cells from the oral cavity, skin, lung and breast took up and esterified essentially all of the [(3)H]retinol within a few hours. As shown by [(3)H]retinol pulse-chase experiments, normal epithelial cells then slowly hydrolyzed the [(3)H]retinyl esters to [(3)H]retinol, some of which was then oxidized to [(3)H]retinoic acid (RA) over a period of several days. In contrast, cultured normal human fibroblasts and human umbilical vein endothelial cells (HUVEC) did not esterify significant amounts of [(3)H]retinol; this lack of [(3)H]retinol esterification was correlated with a lack of expression of lecithin:retinol acyltransferase (LRAT) transcripts in normal fibroblast and HUVEC strains. These results indicate that normal, differentiated cell types differ in their ability to esterify retinol. Human carcinoma cells (neoplastically transformed epithelial cells) of the oral cavity, skin and breast did not esterify much [(3)H]retinol and showed greatly reduced LRAT expression. Transcripts of the neutral, bile salt-independent retinyl ester hydrolase and the bile salt-dependent retinyl ester hydrolase were undetectable in all of the normal cell types, including the epithelial cells. These experiments suggest that retinoid-deficiency in the tumor cells could develop because of the lack of retinyl esters, a storage form of retinol.
St Clair, Joshua R; Ramirez, David; Passman, Samantha; Benninger, Richard K P
2018-05-01
In type 1 diabetes (T1D), immune-cell infiltration into the islets of Langerhans (insulitis) and β-cell decline occurs many years before diabetes clinically presents. Non-invasively detecting insulitis and β-cell decline would allow the diagnosis of eventual diabetes, and provide a means to monitor therapeutic intervention. However, there is a lack of validated clinical approaches for specifically and non-invasively imaging disease progression leading to T1D. Islets have a denser microvasculature that reorganizes during diabetes. Here we apply contrast-enhanced ultrasound measurements of pancreatic blood-flow dynamics to non-invasively and predictively assess disease progression in T1D pre-clinical models. STZ-treated mice, NOD mice, and adoptive-transfer mice demonstrate altered islet blood-flow dynamics prior to diabetes onset, consistent with islet microvasculature reorganization. These assessments predict both time to diabetes onset and future responders to antiCD4-mediated disease prevention. Thus contrast-enhanced ultrasound measurements of pancreas blood-flow dynamics may provide a clinically deployable predictive marker for disease progression in pre-symptomatic T1D and therapeutic reversal.
Catalán, Elena; Jaime-Sánchez, Paula; Aguiló, Nacho; Simon, Markus M.; Froelich, Christopher J.; Pardo, Julián
2015-01-01
Cytotoxic T cells (Tc) use perforin and granzyme B (gzmB) to kill virus-infected cells and cancer cells. Recent evidence suggests that human gzmB primarily induces apoptosis via the intrinsic mitochondrial pathway by either cleaving Bid or activating Bim leading to the activation of Bak/Bax and subsequent generation of active caspase-3. In contrast, mouse gzmB is thought to predominantly induce apoptosis by directly processing pro-caspase-3. However, in certain mouse cell types gzmB-mediated apoptosis mainly occurs via the mitochondrial pathway. To investigate whether Bim is involved under the latter conditions, we have now employed ex vivo virus-immune mouse Tc that selectively kill by using perforin and gzmB (gzmB+Tc) as effector cells and wild type as well as Bim- or Bak/Bax-deficient spontaneously (3T9) or virus-(SV40) transformed mouse embryonic fibroblast cells as targets. We show that gzmB+Tc-mediated apoptosis (phosphatidylserine translocation, mitochondrial depolarization, cytochrome c release, and caspase-3 activation) was severely reduced in 3T9 cells lacking either Bim or both Bak and Bax. This outcome was related to the ability of Tc cells to induce the degradation of Mcl-1 and Bcl-XL, the anti-apoptotic counterparts of Bim. In contrast, gzmB+Tc-mediated apoptosis was not affected in SV40-transformed mouse embryonic fibroblast cells lacking Bak/Bax. The data provide evidence that Bim participates in mouse gzmB+Tc-mediated apoptosis of certain targets by activating the mitochondrial pathway and suggest that the mode of cell death depends on the target cell. Our results suggest that the various molecular events leading to transformation and/or immortalization of cells have an impact on their relative resistance to the multiple gzmB+Tc-induced death pathways. PMID:25605735
Fluorine (19F) MRS and MRI in biomedicine.
Ruiz-Cabello, Jesús; Barnett, Brad P; Bottomley, Paul A; Bulte, Jeff W M
2011-02-01
Shortly after the introduction of (1)H MRI, fluorinated molecules were tested as MR-detectable tracers or contrast agents. Many fluorinated compounds, which are nontoxic and chemically inert, are now being used in a broad range of biomedical applications, including anesthetics, chemotherapeutic agents, and molecules with high oxygen solubility for respiration and blood substitution. These compounds can be monitored by fluorine ((19)F) MRI and/or MRS, providing a noninvasive means to interrogate associated functions in biological systems. As a result of the lack of endogenous fluorine in living organisms, (19)F MRI of 'hotspots' of targeted fluorinated contrast agents has recently opened up new research avenues in molecular and cellular imaging. This includes the specific targeting and imaging of cellular surface epitopes, as well as MRI cell tracking of endogenous macrophages, injected immune cells and stem cell transplants. Copyright © 2010 John Wiley & Sons, Ltd.
Governing stem cell therapy in India: regulatory vacuum or jurisdictional ambiguity?
Tiwari, Shashank S.; Raman, Sujatha
2014-01-01
Stem cell treatments are being offered in Indian clinics although preclinical evidence of their efficacy and safety is lacking. This is attributed to a governance vacuum created by the lack of legally binding research guidelines. By contrast, this paper highlights jurisdictional ambiguities arising from trying to regulate stem cell therapy under the auspices of research guidelines when treatments are offered in a private market disconnected from clinical trials. While statutory laws have been strengthened in 2014, prospects for their implementation remain weak, given embedded challenges of putting healthcare laws and professional codes into practice. Finally, attending to the capacities of consumer law and civil society activism to remedy the problem of unregulated treatments, the paper finds that the very definition of a governance vacuum needs to be reframed to clarify whose rights to health care are threatened by the proliferation of commercial treatments and individualized negligence-based remedies for grievances. PMID:25431534
Impaired humoral immunity and tolerance in K14-VEGFR-3-Ig mice that lack dermal lymphatic drainage
Thomas, Susan N.; Rutkowski, Joseph M.; Pasquier, Miriella; Kuan, Emma L.; Alitalo, Kari; Randolph, Gwendalyn J.; Swartz, Melody A.
2012-01-01
Lymphatic vessels transport interstitial fluid, soluble antigen, and immune cells from peripheral tissues to lymph nodes (LNs), yet the contribution of peripheral lymphatic drainage to adaptive immunity remains poorly understood. We examined immune responses to dermal vaccination and contact hypersensitivity (CHS) challenge in K14-VEGFR-3-Ig mice, which lack dermal lymphatic capillaries and experience markedly depressed transport of solutes and dendritic cells from the skin to draining LNs. In response to dermal immunization, K14-VEGFR-3-Ig mice produced lower antibody titers. In contrast, although delayed, T cell responses were robust after 21 days, including high levels of antigen-specific CD8+ T cells and production of IFN-γ, IL-4 and IL-10 upon restimulation. T cell-mediated CHS responses were strong in K14-VEGFR-3-Ig mice, but importantly, their ability to induce CHS tolerance in the skin was impaired. Additionally, one-year-old mice displayed multiple signs of autoimmunity. These data suggest that lymphatic drainage plays more important roles in regulating humoral immunity and peripheral tolerance than in effector T cell immunity. PMID:22844119
Wagner, Charlotte; Jobs, Alexander; Schweda, Frank; Kurtz, Lisa; Kurt, Birguel; Sequeira Lopez, Maria L.; Gomez, R. Ariel; van Veen, Toon A.B.; de Wit, Cor; Kurtz, Armin
2011-01-01
Renin-producing juxtaglomerular cells are connected to each other and to endothelial cells of afferent arterioles by gap junctions containing Connexin 40 (Cx40), abundantly expressed by these two cell types. Here, we generated mice with cell-specific deletion of Cx40 in endothelial and in renin-producing cells, as its global deletion caused local dissociation of renin-producing cells from endothelial cells, renin hypersecretion, and hypertension. In mice lacking endothelial Cx40, the blood pressure, renin-producing cell distribution, and the control of renin secretion were similar to wild-type mice. In contrast, mice deficient for Cx40 in renin-producing cells were hypertensive and these cells were ectopically localized. Although plasma renin activity and kidney renin mRNA levels of these mice were not different from controls, the negative regulation of renin secretion by pressure was inverted to a positive feedback in kidneys lacking Cx40 in renin-producing cells. Thus, our findings show that endothelial Cx40 is not essential for the control of renin expression and/or release. Cx40 in renin-producing cells is required for their correct positioning in the juxtaglomerular area and the control of renin secretion by pressure. PMID:20686449
The endomembrane requirement for cell surface repair
NASA Technical Reports Server (NTRS)
McNeil, Paul L.; Miyake, Katsuya; Vogel, Steven S.
2003-01-01
The capacity to reseal a plasma membrane disruption rapidly is required for cell survival in many physiological environments. Intracellular membrane (endomembrane) is thought to play a central role in the rapid resealing response. We here directly compare the resealing response of a cell that lacks endomembrane, the red blood cell, with that of several nucleated cells possessing an abundant endomembrane compartment. RBC membrane disruptions inflicted by a mode-locked Ti:sapphire laser, even those initially smaller than hemoglobin, failed to reseal rapidly. By contrast, much larger laser-induced disruptions made in sea urchin eggs, fibroblasts, and neurons exhibited rapid, Ca(2+)-dependent resealing. We conclude that rapid resealing is not mediated by simple physiochemical mechanisms; endomembrane is required.
Successful propagation of shrimp yellow head virus in immortal mosquito cells.
Gangnonngiw, Warachin; Kanthong, Nipaporn; Flegel, Timothy W
2010-05-18
Research on crustacean viruses is hampered by the lack of continuous cell lines susceptible to them. To overcome this problem, we previously challenged immortal mosquito and lepidopteran cell lines with shrimp yellow head virus (YHV), followed by serial, split-passage of whole cells, and showed that this produced cells that persistently expressed YHV antigens. To determine whether such insect cultures positive for YHV antigens could be used to infect shrimp Penaeus monodon with YHV, culture supernatants and whole-cell homogenates were used to challenge shrimp by injection. Shrimp injected with culture supernatants could not be infected. However, shrimp injection-challenged with whole-cell homogenates from Passage 5 (early-passage) of such cultures died with histological and clinical signs typical for yellow head disease (YHD), while homogenates of mock-passaged, YHV-challenged cells did not. By contrast, shrimp challenged with cell homogenates of late-passage cultures became infected with YHV, but survived, suggesting that YHV attenuation had occurred during its long-term serial passage in insect cells. Thus, YHV could be propagated successfully in C6/36 mosquito cells and used at low passage numbers as a source of inoculum to initiate lethal infections in shrimp. This partially solves the problem of lack of continuous shrimp cell lines for cultivation of YHV.
Distinct T helper cell dependence of memory B-cell proliferation versus plasma cell differentiation.
Zabel, Franziska; Fettelschoss, Antonia; Vogel, Monique; Johansen, Pål; Kündig, Thomas M; Bachmann, Martin F
2017-03-01
Several memory B-cell subclasses with distinct functions have been described, of which the most effective is the class-switched (CS) memory B-cell population. We have previously shown, using virus-like particles (VLPs), that the proliferative potential of these CS memory B cells is limited and they fail to re-enter germinal centres (GCs). However, VLP-specific memory B cells quickly differentiated into secondary plasma cells (PCs) with the virtue of elevated antibody production compared with primary PCs. Whereas the induction of VLP + memory B cells was strongly dependent on T helper cells, we were wondering whether re-stimulation of VLP + memory B cells and their differentiation into secondary PCs would also require T helper cells. Global absence of T helper cells led to strongly impaired memory B cell proliferation and PC differentiation. In contrast, lack of interleukin-21 receptor-dependent follicular T helper cells or CD40 ligand signalling strongly affected proliferation of memory B cells, but differentiation into mature secondary PCs exhibiting increased antibody production was essentially normal. This contrasts with primary B-cell responses, where a strong dependence on CD40 ligand but limited importance of interleukin-21 receptor was seen. Hence, T helper cell dependence differs between primary and secondary B-cell responses as well as between memory B-cell proliferation and PC differentiation. © 2016 John Wiley & Sons Ltd.
Levesque, Aime A.; Compton, Duane A.
2001-01-01
Chromokinesins have been postulated to provide the polar ejection force needed for chromosome congression during mitosis. We have evaluated that possibility by monitoring chromosome movement in vertebrate-cultured cells using time-lapse differential interference contrast microscopy after microinjection with antibodies specific for the chromokinesin Kid. 17.5% of cells injected with Kid-specific antibodies have one or more chromosomes that remain closely opposed to a spindle pole and fail to enter anaphase. In contrast, 82.5% of injected cells align chromosomes in metaphase, progress to anaphase, and display chromosome velocities not significantly different from control cells. However, injected cells lack chromosome oscillations, and chromosome orientation is atypical because chromosome arms extend toward spindle poles during both congression and metaphase. Furthermore, chromosomes cluster into a mass and fail to oscillate when Kid is perturbed in cells containing monopolar spindles. These data indicate that Kid generates the polar ejection force that pushes chromosome arms away from spindle poles in vertebrate-cultured cells. This force increases the efficiency with which chromosomes make bipolar spindle attachments and regulates kinetochore activities necessary for chromosome oscillation, but is not essential for chromosome congression. PMID:11564754
Patel, Brijeshkumar S; Kugel, Michael J; Baehring, Gina; Ammit, Alaina J
2017-08-01
The xanthine doxofylline has been examined in clinical trials and shown to have efficacy and greater tolerability than theophylline in asthma and chronic obstructive pulmonary disease. The 'novofylline' doxofylline has demonstrated bronchodilatory and anti-inflammatory actions in in vivo and ex vivo experimental models of respiratory disease. However, there are limited studies in vitro. We address this herein and examine whether doxofylline has anti-inflammatory impact on primary cultures of airway smooth muscle (ASM) cells. We conduct a series of investigations comparing and contrasting doxofylline with the archetypal xanthine, theophylline, and the specific phosphodiesterase (PDE) 4 inhibitor, cilomilast. We confirm that the xanthine drugs do not have action as PDE inhibitors in ASM cells. Unlike cilomilast, doxofylline (and theophylline) do not increase cAMP production in ASM cells induced by long-acting β 2 -agonist formoterol. Similar to theophylline, and consistent with the lack of cAMP potentiation, doxofylline does not augment formoterol-induced upregulation of the anti-inflammatory protein mitogen-activated protein kinase phosphatase 1 (MKP-1). However, when we examine the effect of doxofylline on secretion of the interleukin 8 from ASM cells stimulated by tumour necrosis factor (an in vitro surrogate measure of inflammation), there was no repression of inflammation. This is in contrast to the anti-inflammatory impact exerted by theophylline and cilomilast in confirmatory experiments. In summary, our study is the first to examine the effect of doxofylline on ASM cells in vitro and highlights some distinct differences between two key members of xanthine drug family, doxofylline and theophylline. Copyright © 2017 Elsevier Ltd. All rights reserved.
Addison, Elena G; North, Janet; Bakhsh, Ismail; Marden, Chloe; Haq, Sumaira; Al-Sarraj, Samia; Malayeri, Reza; Wickremasinghe, R Gitendra; Davies, Jeffrey K; Lowdell, Mark W
2005-01-01
It has been previously shown that the subset of human natural killer (NK) cells which express CD8 in a homodimeric α/α form are more cytotoxic than their CD8– counterparts but the mechanisms behind this differential cytolytic activity remained unknown. Target cell lysis by CD8– NK cells is associated with high levels of effector cell apoptosis, which is in contrast to the significantly lower levels found in the CD8α+ cells after lysis of the same targets. We report that cross-linking of the CD8α chains on NK cells induces rapid rises in intracellular Ca2+ and increased expression of CD69 at the cell surface by initiating the influx of extracellular Ca2+ ions. We demonstrate that secretion of cytolytic enzymes initiates NK-cell apoptosis from which CD8α+ NK cells are protected by an influx of exogenous calcium following ligation of CD8 on the NK-cell surface. This ligation is through interaction with fellow NK cells in the cell conjugate and can occur when the target cells lack major histocompatibility complex (MHC) Class I expression. Protection from apoptosis is blocked by preincubation of the NK cells with anti-MHC Class I antibody. Thus, in contrast to the CD8– subset, CD8α+ NK cells are capable of sequential lysis of multiple target cells. PMID:16236125
Nadkarni, Aditi; Burns, John A; Gandolfi, Alberto; Chowdhury, Moinuddin A; Cartularo, Laura; Berens, Christian; Geacintov, Nicholas E; Scicchitano, David A
2016-01-08
DNA adducts derived from carcinogenic polycyclic aromatic hydrocarbons like benzo[a]pyrene (B[a]P) and benzo[c]phenanthrene (B[c]Ph) impede replication and transcription, resulting in aberrant cell division and gene expression. Global nucleotide excision repair (NER) and transcription-coupled DNA repair (TCR) are among the DNA repair pathways that evolved to maintain genome integrity by removing DNA damage. The interplay between global NER and TCR in repairing the polycyclic aromatic hydrocarbon-derived DNA adducts (+)-trans-anti-B[a]P-N(6)-dA, which is subject to NER and blocks transcription in vitro, and (+)-trans-anti-B[c]Ph-N(6)-dA, which is a poor substrate for NER but also blocks transcription in vitro, was tested. The results show that both adducts inhibit transcription in human cells that lack both NER and TCR. The (+)-trans-anti-B[a]P-N(6)-dA lesion exhibited no detectable effect on transcription in cells proficient in NER but lacking TCR, indicating that NER can remove the lesion in the absence of TCR, which is consistent with in vitro data. In primary human cells lacking NER, (+)-trans-anti-B[a]P-N(6)-dA exhibited a deleterious effect on transcription that was less severe than in cells lacking both pathways, suggesting that TCR can repair the adduct but not as effectively as global NER. In contrast, (+)-trans-anti-B[c]Ph-N(6)-dA dramatically reduces transcript production in cells proficient in global NER but lacking TCR, indicating that TCR is necessary for the removal of this adduct, which is consistent with in vitro data showing that it is a poor substrate for NER. Hence, both global NER and TCR enhance the recovery of gene expression following DNA damage, and TCR plays an important role in removing DNA damage that is refractory to NER. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Nadkarni, Aditi; Burns, John A.; Gandolfi, Alberto; Chowdhury, Moinuddin A.; Cartularo, Laura; Berens, Christian; Geacintov, Nicholas E.; Scicchitano, David A.
2016-01-01
DNA adducts derived from carcinogenic polycyclic aromatic hydrocarbons like benzo[a]pyrene (B[a]P) and benzo[c]phenanthrene (B[c]Ph) impede replication and transcription, resulting in aberrant cell division and gene expression. Global nucleotide excision repair (NER) and transcription-coupled DNA repair (TCR) are among the DNA repair pathways that evolved to maintain genome integrity by removing DNA damage. The interplay between global NER and TCR in repairing the polycyclic aromatic hydrocarbon-derived DNA adducts (+)-trans-anti-B[a]P-N6-dA, which is subject to NER and blocks transcription in vitro, and (+)-trans-anti-B[c]Ph-N6-dA, which is a poor substrate for NER but also blocks transcription in vitro, was tested. The results show that both adducts inhibit transcription in human cells that lack both NER and TCR. The (+)-trans-anti-B[a]P-N6-dA lesion exhibited no detectable effect on transcription in cells proficient in NER but lacking TCR, indicating that NER can remove the lesion in the absence of TCR, which is consistent with in vitro data. In primary human cells lacking NER, (+)-trans-anti-B[a]P-N6-dA exhibited a deleterious effect on transcription that was less severe than in cells lacking both pathways, suggesting that TCR can repair the adduct but not as effectively as global NER. In contrast, (+)-trans-anti-B[c]Ph-N6-dA dramatically reduces transcript production in cells proficient in global NER but lacking TCR, indicating that TCR is necessary for the removal of this adduct, which is consistent with in vitro data showing that it is a poor substrate for NER. Hence, both global NER and TCR enhance the recovery of gene expression following DNA damage, and TCR plays an important role in removing DNA damage that is refractory to NER. PMID:26559971
John, Susan; Thiebach, Lars; Frie, Christian; Mokkapati, Sharada; Bechtel, Manuela; Nischt, Roswitha; Rosser-Davies, Sally; Paulsson, Mats; Smyth, Neil
2012-01-01
Transglutaminases (TGase), a family of cross-linking enzymes present in most cell types, are important in events as diverse as cell-signaling and matrix stabilization. Transglutaminase 1 is crucial in developing the epidermal barrier, however the skin also contains other family members, in particular TGase 3. This isoform is highly expressed in the cornified layer, where it is believed to stabilize the epidermis and its reduction is implicated in psoriasis. To understand the importance of TGase 3 in vivo we have generated and analyzed mice lacking this protein. Surprisingly, these animals display no obvious defect in skin development, no overt changes in barrier function or ability to heal wounds. In contrast, hair lacking TGase 3 is thinner, has major alterations in the cuticle cells and hair protein cross-linking is markedly decreased. Apparently, while TGase 3 is of unique functional importance in hair, in the epidermis loss of TGase 3 can be compensated for by other family members. PMID:22496784
Ciani, Lorenza; Patel, Anjla; Allen, Nicholas D.; ffrench-Constant, Charles
2003-01-01
While roles in adhesion and morphogenesis have been documented for classical cadherins, the nonclassical cadherins are much less well understood. Here we have examined the functions of the giant protocadherin FAT by generating a transgenic mouse lacking mFAT1. These mice exhibit perinatal lethality, most probably caused by loss of the renal glomerular slit junctions and fusion of glomerular epithelial cell processes (podocytes). In addition, some mFAT1−/− mice show defects in forebrain development (holoprosencephaly) and failure of eye development (anophthalmia). In contrast to Drosophila, where FAT acts as a tumor suppressor gene, we found no evidence for abnormalities of proliferation in two tissues (skin and central nervous system [CNS]) containing stem and precursor cell populations and in which FAT is expressed strongly. Our results confirm a necessary role for FAT1 in the modified adhesion junctions of the renal glomerular epithelial cell and reveal hitherto unsuspected roles for FAT1 in CNS development. PMID:12724416
Hard X-ray submicrometer tomography of human brain tissue at Diamond Light Source
NASA Astrophysics Data System (ADS)
Khimchenko, A.; Bikis, C.; Schulz, G.; Zdora, M.-C.; Zanette, I.; Vila-Comamala, J.; Schweighauser, G.; Hench, J.; Hieber, S. E.; Deyhle, H.; Thalmann, P.; Müller, B.
2017-06-01
There is a lack of the necessary methodology for three-dimensional (3D) investigation of soft tissues with cellular resolution without staining or tissue transformation. Synchrotron radiation based hard X-ray in-line phase contrast tomography using single-distance phase reconstruction (SDPR) provides high spatial resolution and density contrast for the visualization of individual cells using a standard specimen preparation and data reconstruction. In this study, we demonstrate the 3D characterization of a formalin-fixed paraffin-embedded (FFPE) human cerebellum specimen by SDPR at the Diamond-Manchester Imaging Branchline I13-2 (Diamond Light Source, UK) at pixel sizes down to 0.45 μm. The approach enables visualization of cerebellar layers (Stratum moleculare and Stratum granulosum), the 3D characterization of individual cells (Purkinje, stellate and granule cells) and can even resolve some subcellular structures (nucleus and nucleolus of Purkinje cells). The tomographic results are qualitatively compared to hematoxylin and eosin (H&E) stained histological sections. We demonstrate the potential benefits of hard X-ray microtomography for the investigations of biological tissues in comparison to conventional histology.
Fumarate hydratase is a critical metabolic regulator of hematopoietic stem cell functions.
Guitart, Amelie V; Panagopoulou, Theano I; Villacreces, Arnaud; Vukovic, Milica; Sepulveda, Catarina; Allen, Lewis; Carter, Roderick N; van de Lagemaat, Louie N; Morgan, Marcos; Giles, Peter; Sas, Zuzanna; Gonzalez, Marta Vila; Lawson, Hannah; Paris, Jasmin; Edwards-Hicks, Joy; Schaak, Katrin; Subramani, Chithra; Gezer, Deniz; Armesilla-Diaz, Alejandro; Wills, Jimi; Easterbrook, Aaron; Coman, David; So, Chi Wai Eric; O'Carroll, Donal; Vernimmen, Douglas; Rodrigues, Neil P; Pollard, Patrick J; Morton, Nicholas M; Finch, Andrew; Kranc, Kamil R
2017-03-06
Strict regulation of stem cell metabolism is essential for tissue functions and tumor suppression. In this study, we investigated the role of fumarate hydratase (Fh1), a key component of the mitochondrial tricarboxylic acid (TCA) cycle and cytosolic fumarate metabolism, in normal and leukemic hematopoiesis. Hematopoiesis-specific Fh1 deletion (resulting in endogenous fumarate accumulation and a genetic TCA cycle block reflected by decreased maximal mitochondrial respiration) caused lethal fetal liver hematopoietic defects and hematopoietic stem cell (HSC) failure. Reexpression of extramitochondrial Fh1 (which normalized fumarate levels but not maximal mitochondrial respiration) rescued these phenotypes, indicating the causal role of cellular fumarate accumulation. However, HSCs lacking mitochondrial Fh1 (which had normal fumarate levels but defective maximal mitochondrial respiration) failed to self-renew and displayed lymphoid differentiation defects. In contrast, leukemia-initiating cells lacking mitochondrial Fh1 efficiently propagated Meis1 / Hoxa9 -driven leukemia. Thus, we identify novel roles for fumarate metabolism in HSC maintenance and hematopoietic differentiation and reveal a differential requirement for mitochondrial Fh1 in normal hematopoiesis and leukemia propagation. © 2017 Guitart et al.
Gras Navarro, Andrea; Kmiecik, Justyna; Leiss, Lina; Zelkowski, Mateusz; Engelsen, Agnete; Bruserud, Øystein; Zimmer, Jacques; Enger, Per Øyvind
2014-01-01
Glioblastomas (GBMs) are lethal brain cancers that are resistant to current therapies. We investigated the cytotoxicity of human allogeneic NK cells against patient-derived GBM in vitro and in vivo, as well as mechanisms mediating their efficacy. We demonstrate that KIR2DS2 immunogenotype NK cells were more potent killers, notwithstanding the absence of inhibitory killer Ig–like receptor (KIR)-HLA ligand mismatch. FACS-sorted and enriched KIR2DS2+ NK cell subpopulations retained significantly high levels of CD69 and CD16 when in contact with GBM cells at a 1:1 ratio and highly expressed CD107a and secreted more soluble CD137 and granzyme A. In contrast, KIR2DS2− immunogenotype donor NK cells were less cytotoxic against GBM and K562, and, similar to FACS-sorted or gated KIR2DS2− NK cells, significantly diminished CD16, CD107a, granzyme A, and CD69 when in contact with GBM cells. Furthermore, NK cell–mediated GBM killing in vitro depended upon the expression of ligands for the activating receptor NKG2D and was partially abrogated by Ab blockade. Treatment of GBM xenografts in NOD/SCID mice with NK cells from a KIR2DS2+ donor lacking inhibitory KIR-HLA ligand mismatch significantly prolonged the median survival to 163 d compared with vehicle controls (log-rank test, p = 0.0001), in contrast to 117.5 d (log-rank test, p = 0.0005) for NK cells with several inhibitory KIR-HLA ligand mismatches but lacking KIR2DS2 genotype. Significantly more CD56+CD16+ NK cells from a KIR2DS2+ donor survived in nontumor-bearing brains 3 wk after infusion compared with KIR2DS2− NK cells, independent of their proliferative capacity. In conclusion, KIR2DS2 identifies potent alloreactive NK cells against GBM that are mediated by commensurate, but dominant, activating signals. PMID:25381437
In vivo Photoacoustic Imaging of Prostate Cancer Using Targeted Contrast Agent
2016-11-01
has over 15 years of experience investigating signaling in the prostate, and is well versed in both cell culture and animal models for prostate cancer...as Hb generate relatively weak photoacoustic signals (due to a small absorptivity factor or extinction coefficient) and lack cancer specificity...oxyhemoglobin (dHb) and oxyhemoglobin (HbO2) have two limitations: i) their small absorptivity factor ( extinction coefficient) leads to weak PA signals
Wang, Ye; An, Fei-Fei; Chan, Mark; Friedman, Beth; Rodriguez, Erik A; Tsien, Roger Y; Aras, Omer
2017-01-01
An agent for visualizing cells by positron emission tomography is described and used to label red blood cells. The labeled red blood cells are injected systemically so that intracranial hemorrhage can be visualized by positron emission tomography (PET). Red blood cells are labeled with 0.3 µg of a positron-emitting, fluorescent multimodal imaging probe, and used to non-invasively image cryolesion induced intracranial hemorrhage in a murine model (BALB/c, 2.36 × 108 cells, 100 µCi, <4 mm hemorrhage). Intracranial hemorrhage is confirmed by histology, fluorescence, bright-field, and PET ex vivo imaging. The low required activity, minimal mass, and high resolution of this technique make this strategy an attractive alternative for imaging intracranial hemorrhage. PET is one solution to a spectrum of issues that complicate single photon emission computed tomography (SPECT). For this reason, this application serves as a PET alternative to [99mTc]-agents, and SPECT technology that is used in 2 million annual medical procedures. PET contrast is also superior to gadolinium and iodide contrast angiography for its lack of clinical contraindications. PMID:28054494
Da Silva, Diane M; Movius, Carly A; Raff, Adam B; Brand, Heike E; Skeate, Joseph G; Wong, Michael K; Kast, W Martin
2014-03-01
Human papillomavirus (HPV) has evolved mechanisms that allow it to evade the human immune system. Studies have shown HPV-mediated suppression of activation of Langerhans cells (LC) is a key mechanism through which HPV16 evades initial immune surveillance. However, it has not been established whether high- and low-risk mucosal and cutaneous HPV genotypes share a common mechanism of immune suppression. Here, we demonstrate that LC exposed to capsids of HPV types 18, 31, 45, 11, (alpha-papillomaviruses) and HPV5 (beta-papillomavirus) similarly suppress LC activation, including lack of costimulatory molecule expression, lack of cytokine and chemokine secretion, lack of migration, and deregulated cellular signaling. In contrast, HPV1 (mu-papillomavirus) induced costimulatory molecule and cytokine upregulation, but LC migration and cellular signaling was suppressed. These results suggest that alpha and beta HPV genotypes, and partially a mu genotype, share a conserved mechanism of immune escape that enables these viruses to remain undetected in the absence of other inflammatory events. Copyright © 2014 Elsevier Inc. All rights reserved.
Loss of histochemical identity in mast cells lacking carboxypeptidase A.
Feyerabend, Thorsten B; Hausser, Heinz; Tietz, Annette; Blum, Carmen; Hellman, Lars; Straus, Anita H; Takahashi, Hélio K; Morgan, Ellen S; Dvorak, Ann M; Fehling, Hans Jörg; Rodewald, Hans-Reimer
2005-07-01
Mast cell carboxypeptidase A (Mc-cpa) is a highly conserved secretory granule protease. The onset of expression in mast cell progenitors and lineage specificity suggest an important role for Mc-cpa in mast cells. To address the function of Mc-cpa, we generated Mc-cpa-null mice. Mc-cpa-/- mast cells lacked carboxypeptidase activity, revealing that Mc-cpa is a nonredundant enzyme. While Mc-cpa-/- peritoneal mast cells were ultrastructurally normal and synthesized normal amounts of heparin, they displayed striking histochemical and biochemical hallmarks of immature mast cells. Wild-type peritoneal mast cells had a mature phenotype characterized by differential histochemical staining with proteoglycan-reactive dyes (cells do not stain with alcian blue but stain with safranin and with berberine) and a high side scatter to forward scatter ratio by flow cytometry and were detergent resistant. In contrast, Mc-cpa-/- peritoneal mast cells, like immature bone marrow-derived cultured mast cells, stained with alcian blue normally or weakly and either did not stain with safranin and berberine or stained weakly, had a low side scatter to forward scatter ratio, and were detergent sensitive. This phenotype was partially ameliorated with age. Thus, histochemistry and flow cytometry, commonly used to measure mast cell maturation, deviated from morphology in Mc-cpa-/- mice. The Mc-cpa-/- mast cell phenotype was not associated with defects in degranulation in vitro or passive cutaneous anaphylaxis in vivo. Collectively, Mc-cpa plays a crucial role for the generation of phenotypically mature mast cells.
Loss of Histochemical Identity in Mast Cells Lacking Carboxypeptidase A
Feyerabend, Thorsten B.; Hausser, Heinz; Tietz, Annette; Blum, Carmen; Hellman, Lars; Straus, Anita H.; Takahashi, Hélio K.; Morgan, Ellen S.; Dvorak, Ann M.; Fehling, Hans Jörg; Rodewald, Hans-Reimer
2005-01-01
Mast cell carboxypeptidase A (Mc-cpa) is a highly conserved secretory granule protease. The onset of expression in mast cell progenitors and lineage specificity suggest an important role for Mc-cpa in mast cells. To address the function of Mc-cpa, we generated Mc-cpa-null mice. Mc-cpa−/− mast cells lacked carboxypeptidase activity, revealing that Mc-cpa is a nonredundant enzyme. While Mc-cpa−/− peritoneal mast cells were ultrastructurally normal and synthesized normal amounts of heparin, they displayed striking histochemical and biochemical hallmarks of immature mast cells. Wild-type peritoneal mast cells had a mature phenotype characterized by differential histochemical staining with proteoglycan-reactive dyes (cells do not stain with alcian blue but stain with safranin and with berberine) and a high side scatter to forward scatter ratio by flow cytometry and were detergent resistant. In contrast, Mc-cpa−/− peritoneal mast cells, like immature bone marrow-derived cultured mast cells, stained with alcian blue normally or weakly and either did not stain with safranin and berberine or stained weakly, had a low side scatter to forward scatter ratio, and were detergent sensitive. This phenotype was partially ameliorated with age. Thus, histochemistry and flow cytometry, commonly used to measure mast cell maturation, deviated from morphology in Mc-cpa−/− mice. The Mc-cpa−/− mast cell phenotype was not associated with defects in degranulation in vitro or passive cutaneous anaphylaxis in vivo. Collectively, Mc-cpa plays a crucial role for the generation of phenotypically mature mast cells. PMID:15988029
Temporally evolving gain mechanisms of attention in macaque area V4.
Sani, Ilaria; Santandrea, Elisa; Morrone, Maria Concetta; Chelazzi, Leonardo
2017-08-01
Cognitive attention and perceptual saliency jointly govern our interaction with the environment. Yet, we still lack a universally accepted account of the interplay between attention and luminance contrast, a fundamental dimension of saliency. We measured the attentional modulation of V4 neurons' contrast response functions (CRFs) in awake, behaving macaque monkeys and applied a new approach that emphasizes the temporal dynamics of cell responses. We found that attention modulates CRFs via different gain mechanisms during subsequent epochs of visually driven activity: an early contrast-gain, strongly dependent on prestimulus activity changes (baseline shift); a time-limited stimulus-dependent multiplicative modulation, reaching its maximal expression around 150 ms after stimulus onset; and a late resurgence of contrast-gain modulation. Attention produced comparable time-dependent attentional gain changes on cells heterogeneously coding contrast, supporting the notion that the same circuits mediate attention mechanisms in V4 regardless of the form of contrast selectivity expressed by the given neuron. Surprisingly, attention was also sometimes capable of inducing radical transformations in the shape of CRFs. These findings offer important insights into the mechanisms that underlie contrast coding and attention in primate visual cortex and a new perspective on their interplay, one in which time becomes a fundamental factor. NEW & NOTEWORTHY We offer an innovative perspective on the interplay between attention and luminance contrast in macaque area V4, one in which time becomes a fundamental factor. We place emphasis on the temporal dynamics of attentional effects, pioneering the notion that attention modulates contrast response functions of V4 neurons via the sequential engagement of distinct gain mechanisms. These findings advance understanding of attentional influences on visual processing and help reconcile divergent results in the literature. Copyright © 2017 the American Physiological Society.
Abud, Edsel M.; Lakatos, Anita; Karimzadeh, Alborz; Yeung, Stephen T.; Davtyan, Hayk; Fote, Gianna M.; Lau, Lydia; Weinger, Jason G.; Lane, Thomas E.; Inlay, Matthew A.; Poon, Wayne W.; Blurton-Jones, Mathew
2016-01-01
The innate immune system is strongly implicated in the pathogenesis of Alzheimer’s disease (AD). In contrast, the role of adaptive immunity in AD remains largely unknown. However, numerous clinical trials are testing vaccination strategies for AD, suggesting that T and B cells play a pivotal role in this disease. To test the hypothesis that adaptive immunity influences AD pathogenesis, we generated an immune-deficient AD mouse model that lacks T, B, and natural killer (NK) cells. The resulting “Rag-5xfAD” mice exhibit a greater than twofold increase in β-amyloid (Aβ) pathology. Gene expression analysis of the brain implicates altered innate and adaptive immune pathways, including changes in cytokine/chemokine signaling and decreased Ig-mediated processes. Neuroinflammation is also greatly exacerbated in Rag-5xfAD mice as indicated by a shift in microglial phenotype, increased cytokine production, and reduced phagocytic capacity. In contrast, immune-intact 5xfAD mice exhibit elevated levels of nonamyloid reactive IgGs in association with microglia, and treatment of Rag-5xfAD mice or microglial cells with preimmune IgG enhances Aβ clearance. Last, we performed bone marrow transplantation studies in Rag-5xfAD mice, revealing that replacement of these missing adaptive immune populations can dramatically reduce AD pathology. Taken together, these data strongly suggest that adaptive immune cell populations play an important role in restraining AD pathology. In contrast, depletion of B cells and their appropriate activation by T cells leads to a loss of adaptive–innate immunity cross talk and accelerated disease progression. PMID:26884167
Hilgen, Gerrit; Huebner, Antje K.; Tanimoto, Naoyuki; Sothilingam, Vithiyanjali; Seide, Christina; Garrido, Marina Garcia; Schmidt, Karl-Friedrich; Seeliger, Mathias W.; Löwel, Siegrid; Weiler, Reto
2012-01-01
Regulation of ion and pH homeostasis is essential for normal neuronal function. The sodium-driven chloride bicarbonate exchanger NCBE (Slc4a10), a member of the SLC4 family of bicarbonate transporters, uses the transmembrane gradient of sodium to drive cellular net uptake of bicarbonate and to extrude chloride, thereby modulating both intracellular pH (pHi) and chloride concentration ([Cl−]i) in neurons. Here we show that NCBE is strongly expressed in the retina. As GABAA receptors conduct both chloride and bicarbonate, we hypothesized that NCBE may be relevant for GABAergic transmission in the retina. Importantly, we found a differential expression of NCBE in bipolar cells: whereas NCBE was expressed on ON and OFF bipolar cell axon terminals, it only localized to dendrites of OFF bipolar cells. On these compartments, NCBE colocalized with the main neuronal chloride extruder KCC2, which renders GABA hyperpolarizing. NCBE was also expressed in starburst amacrine cells, but was absent from neurons known to depolarize in response to GABA, like horizontal cells. Mice lacking NCBE showed decreased visual acuity and contrast sensitivity in behavioral experiments and smaller b-wave amplitudes and longer latencies in electroretinograms. Ganglion cells from NCBE-deficient mice also showed altered temporal response properties. In summary, our data suggest that NCBE may serve to maintain intracellular chloride and bicarbonate concentration in retinal neurons. Consequently, lack of NCBE in the retina may result in changes in pHi regulation and chloride-dependent inhibition, leading to altered signal transmission and impaired visual function. PMID:23056253
Mechanisms shaping size structure and functional diversity of phytoplankton communities in the ocean
Acevedo-Trejos, Esteban; Brandt, Gunnar; Bruggeman, Jorn; Merico, Agostino
2015-01-01
The factors regulating phytoplankton community composition play a crucial role in structuring aquatic food webs. However, consensus is still lacking about the mechanisms underlying the observed biogeographical differences in cell size composition of phytoplankton communities. Here we use a trait-based model to disentangle these mechanisms in two contrasting regions of the Atlantic Ocean. In our model, the phytoplankton community can self-assemble based on a trade-off emerging from relationships between cell size and (1) nutrient uptake, (2) zooplankton grazing, and (3) phytoplankton sinking. Grazing ‘pushes’ the community towards larger cell sizes, whereas nutrient uptake and sinking ‘pull’ the community towards smaller cell sizes. We find that the stable environmental conditions of the tropics strongly balance these forces leading to persistently small cell sizes and reduced size diversity. In contrast, the seasonality of the temperate region causes the community to regularly reorganize via shifts in species composition and to exhibit, on average, bigger cell sizes and higher size diversity than in the tropics. Our results raise the importance of environmental variability as a key structuring mechanism of plankton communities in the ocean and call for a reassessment of the current understanding of phytoplankton diversity patterns across latitudinal gradients. PMID:25747280
Functional analysis of the sea urchin-derived arylsulfatase (Ars)-element in mammalian cells.
Watanabe, Satoshi; Watanabe, Sachiko; Sakamoto, Naoaki; Sato, Masahiro; Akasaka, Koji
2006-09-01
An insulator is a DNA sequence that has both enhancer-blocking activity, through its ability to modify the influence of neighboring cis-acting elements, and a barrier function that protects a transgene from being silenced by surrounding chromatin. Previously, we isolated and characterized a 582-bp-long element from the sea urchin arylsulfatase gene (Ars). This Ars-element was effective in sea urchin and Drosophila embryos and in plant cells. To investigate Ars-element activity in mammalian cells, we placed the element between the cytomegalovirus enhancer and a luciferase (luc) expression cassette. In contrast to controls lacking the Ars-element, NIH3T3 and 293T cells transfected with the element-containing construct displayed reduced luciferase activities. The Ars-element therefore acts as an enhancer-blocking element in mammalian cells. We assessed the barrier activity of the Ars-element using vectors in which a luc expression cassette was placed between two elements. Transfection experiments demonstrated that luc activity in these vectors was approximately ten-fold higher than in vectors lacking elements. Luc activities were well maintained even after 12 weeks in culture. Our observations demonstrate that the Ars-element has also a barrier activity. These results indicated that the Ars-element act as an insulator in mammalian cells.
Guleria, Ayushi; Thukral, Neha; Chandna, Sudhir
2018-04-15
Sf9 lepidopteran insect cells are 100-200 times more radioresistant than mammalian cells. This distinctive feature thus makes them suitable for studies exploring radioprotective molecular mechanisms. It has been established from previous studies of our group that downstream mitochondrial apoptotic signaling pathways in Sf9 cells are quite similar to mammalian cells, implicating the upstream signaling pathways in their extensive radioresistance. In the present study, intracellular and mitochondrial calcium levels remained unaltered in Sf9 cells in response to radiation, in sharp contrast to human (HEK293T) cells. The isolated mitochondria from Sf9 cells exhibited nearly 1.5 times greater calcium retention capacity than mammalian cells, highlighting their inherent stress resilience. Importantly, UPR/ER stress marker proteins (p-eIF2α, GRP4 and SERCA) remained unaltered by radiation and suggested highly attenuated ER and calcium stress. Lack of SERCA induction further corroborates the lack of radiation-induced calcium mobilization in these cells. The expression of CaMKII, an important effector molecule of calcium signaling, did not alter in response to radiation. Inhibiting CaMKII by KN-93 or suppressing CaM by siRNA failed to alter Sf9 cells response to radiation and suggests CaM-CaMKII independent radiation signaling. Therefore, this study suggests that attenuated calcium signaling/ER stress is an important determinant of lepidopteran cell radioresistance. Copyright © 2018 Elsevier Inc. All rights reserved.
Hadjidaniel, Michael D.; Muthugounder, Sakunthala; Hung, Long T.; Sheard, Michael A.; Shirinbak, Soheila; Chan, Randall Y.; Nakata, Rie; Borriello, Lucia; Malvar, Jemily; Kennedy, Rebekah J.; Iwakura, Hiroshi; Akamizu, Takashi; Sposto, Richard; Shimada, Hiroyuki; DeClerck, Yves A.; Asgharzadeh, Shahab
2017-01-01
Tumor-associated macrophages (TAMs) are strongly associated with poor survival in neuroblastomas that lack MYCN amplification. To study TAM action in neuroblastomas, we used a novel murine model of spontaneous neuroblastoma lacking MYCN amplification, and observed recruitment and polarization of TAMs, which in turn enhanced neuroblastoma proliferation and growth. In both murine and human neuroblastoma cells, we found that TAMs increased STAT3 activation in neuroblastoma cells and transcriptionally up-regulated the MYC oncogene. Analysis of human neuroblastoma tumor specimens revealed that MYC up-regulation correlates with markers of TAM infiltration. In an IL6ko neuroblastoma model, the absence of IL-6 protein had no effect on tumor development and prevented neither STAT3 activation nor MYC up-regulation. In contrast, inhibition of JAK-STAT activation using AZD1480 or the clinically admissible inhibitor ruxolitinib significantly reduced TAM-mediated growth of neuroblastomas implanted subcutaneously in NOD scid gamma mice. Our results point to a unique mechanism in which TAMs promote tumor cells that lack amplification of an oncogene common to the malignancy by up-regulating transcriptional expression of a distinct oncogene from the same gene family, and underscore the role of IL-6-independent activation of STAT3 in this mechanism. Amplification of MYCN or constitutive up-regulation of MYC protein is observed in approximately half of high-risk tumors; our findings indicate a novel role of TAMs as inducers of MYC expression in neuroblastomas lacking independent oncogene activation. PMID:29207662
Analysis of nuclear accumulation of influenza NP antigen in von Magnus virus-infected cells.
Maeno, K; Aoki, H; Hamaguchi, M; Iinuma, M; Nagai, Y; Matsumoto, T; Takeura, S; Shibata, M
1981-01-01
When 1-5C-4 cells were infected with von Magnus virus derived from influenza A/RI/5+ virus by successive undiluted passages in chick embryos, virus-specific proteins were synthesized but production of infectious virus was inhibited. In these cells the synthesis of viral RNA was suppressed and the nucleoprotein (NP) antigen was found predominantly in the nucleus in contrast to standard virus-infected cells in which the antigen was distributed throughout the whole cell. The intracellular location and migration of NP were determined by isotope labeling and sucrose gradient centrifugation of subcellular fractions. In standard virus-infected cell NP polypeptide was present predominantly in the cytoplasm in the form of viral ribonucleoprotein (RNP) and intranuclear RNP was detected in reduced amounts. In contrast, in von Magnus virus-infected cells NP polypeptide was present predominantly in the nucleus in a nonassembled, soluble from and the amount of cytoplasmic RNP was considerably reduced. After short-pulse labeling NP was detected exclusively in the cytoplasm in a soluble form and after a chase a large proportion of such soluble NP was seen in the nucleus. It is suggested that a large proportion of the NP synthesized in von Magnus virus-infected cells in not assembled into cytoplasmic RNP because of the lack of available RNA and the NP migrated into the nucleus and remained there.
Milasta, Sandra; Dillon, Christopher P; Sturm, Oliver E; Verbist, Katherine C; Brewer, Taylor L; Quarato, Giovanni; Brown, Scott A; Frase, Sharon; Janke, Laura J; Perry, S Scott; Thomas, Paul G; Green, Douglas R
2016-01-19
The role of apoptosis inducing factor (AIF) in promoting cell death versus survival remains controversial. We report that the loss of AIF in fibroblasts led to mitochondrial electron transport chain defects and loss of proliferation that could be restored by ectopic expression of the yeast NADH dehydrogenase Ndi1. Aif-deficiency in T cells led to decreased peripheral T cell numbers and defective homeostatic proliferation, but thymic T cell development was unaffected. In contrast, Aif-deficient B cells developed and functioned normally. The difference in the dependency of T cells versus B cells on AIF for function and survival correlated with their metabolic requirements. Ectopic Ndi1 expression rescued homeostatic proliferation of Aif-deficient T cells. Despite its reported roles in cell death, fibroblasts, thymocytes and B cells lacking AIF underwent normal death. These studies suggest that the primary role of AIF relates to complex I function, with differential effects on T and B cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Optimal staining methods for delineation of cortical areas and neuron counts in human brains.
Uylings, H B; Zilles, K; Rajkowska, G
1999-04-01
For cytoarchitectonic delineation of cortical areas in human brain, the Gallyas staining for somata with its sharp contrast between cell bodies and neuropil is preferable to the classical Nissl staining, the more so when an image analysis system is used. This Gallyas staining, however, does not appear to be appropriate for counting neuron numbers in pertinent brain areas, due to the lack of distinct cytological features between small neurons and glial cells. For cell counting Nissl is preferable. In an optimal design for cell counting at least both the Gallyas and the Nissl staining must be applied, the former staining for cytoarchitectural delineaton of cortical areas and the latter for counting the number of neurons in the pertinent cortical areas. Copyright 1999 Academic Press.
Cooper, Andrea M.; Pearl, John E.; Brooks, Jason V.; Ehlers, Stefan; Orme, Ian M.
2000-01-01
The interleukin-12 and gamma interferon (IFN-γ) pathway of macrophage activation plays a pivotal role in controlling tuberculosis. In the murine model, the generation of supplementary nitric oxide by the induction of the nitric oxide synthase 2 (NOS2) gene product is considered the principal antimicrobial mechanism of IFN-γ-activated macrophages. Using a low-dose aerosol-mediated infection model in the mouse, we have investigated the role of nitric oxide in controlling Mycobacterium tuberculosis in the lung. In contrast to the consequences of a systemic infection, a low dose of bacteria introduced directly into the lungs of mice lacking the NOS2 gene is controlled almost as well as in intact animals. This is in contrast to the rapid progression of disease in mice lacking IFN-γ or a key member of the IFN signaling pathway, interferon regulatory factor 1. Thus while IFN-γ is pivotal in early control of bacterial growth in the lung, this control does not completely depend upon the expression of the NOS2 gene. The absence of inducible nitric oxide in the lung does, however, result in increased polymorphonuclear cell involvement and eventual necrosis in the pulmonary granulomas of the infected mice lacking the NOS2 gene. PMID:11083808
Damage-induced ectopic recombination in the yeast Saccharomyces cerevisiae.
Kupiec, M; Steinlauf, R
1997-06-09
Mitotic recombination in the yeast Saccharomyces cerevisiae is induced when cells are irradiated with UV or X-rays, reflecting the efficient repair of damage by recombinational repair mechanisms. We have used multiply marked haploid strains that allow the simultaneous detection of several types of ectopic recombination events. We show that inter-chromosomal ectopic conversion of lys2 heteroalleles and, to a lesser extent, direct repeat recombination (DRR) between non-tandem repeats, are increased by DNA-damaging agents; in contrast, ectopic recombination of the naturally occurring Ty element is not induced. We have tested several hypotheses that could explain the preferential lack of induction of Ty recombination by DNA-damaging agents. We have found that the lack of induction cannot be explained by a cell cycle control or by an effect of the mating-type genes. We also found no role for the flanking long terminal repeats (LTRs) of the Ty in preventing the induction. Ectopic conversion, DRR, and forward mutation of artificial repeats show different kinetics of induction at various positions of the cell cycle, reflecting different mechanisms of recombination. We discuss the mechanistic and evolutionary aspects of these results.
Interaction of herpes simplex virus glycoprotein gC with mammalian cell surface molecules.
Tal-Singer, R; Peng, C; Ponce De Leon, M; Abrams, W R; Banfield, B W; Tufaro, F; Cohen, G H; Eisenberg, R J
1995-01-01
The entry of herpes simplex virus (HSV) into mammalian cells is a multistep process beginning with an attachment step involving glycoproteins gC and gB. A second step requires the interaction of glycoprotein gD with a cell surface molecule. We explored the interaction between gC and the cell surface by using purified proteins in the absence of detergent. Truncated forms of gC and gD, gC1(457t), gC2(426t), and gD1(306t), lacking the transmembrane and carboxyl regions were expressed in the baculovirus system. We studied the ability of these proteins to bind to mammalian cells, to bind to immobilized heparin, to block HSV type 1 (HSV-1) attachment to cells, and to inhibit plaque formation by HSV-1. Each of these gC proteins bound to conformation-dependent monoclonal antibodies and to human complement component C3b, indicating that they maintained the same conformation of gC proteins expressed in mammalian cells. Biotinylated gC1(457t) and gC2(426t) each bind to several cell lines. Binding was inhibited by an excess of unlabeled gC but not by gD, indicating specificity. The attachment of gC to cells involves primarily heparan sulfate proteoglycans, since heparitinase treatment of cells reduced gC binding by 50% but had no effect on gD binding. Moreover, binding of gC to two heparan sulfate-deficient L-cell lines, gro2C and sog9, both of which are mostly resistant to HSV infection, was markedly reduced. Purified gD1 (306t), however, bound equally well to the two mutant cell lines. In contrast, saturating amounts of gC1(457t) interfered with HSV-1 attachment to cells but failed to block plaque formation, suggesting a role for gC in attachment but not penetration. A mutant form of gC lacking residues 33 to 123, gC1(delta 33-123t), expressed in the baculovirus system, bound significantly less well to cells than did gC1(457t) and competed poorly with biotinylated gC1(457t) for binding. These results suggest that residues 33 to 123 are important for gC attachment to cells. In contrast, both the mutant and wild-type forms of gC bound to immobilized heparin, indicating that binding of these proteins to the cell surface involves more than a simple interaction with heparin. To determine that the contribution of the N-terminal region of gC is important for HSV attachment, we compared several properties of a mutant HSV-1 which contains gC lacking amino acids 33 to 123 to those of its parental virus, which contains full-length gC. The mutant bound less well to cells than the parental virus but exhibited normal growth properties.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:7769707
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Byeong-Moo; Department of Medicine, Harvard Medical School, Boston, MA 02115; Choi, Michael Y., E-mail: mchoi@partners.org
2012-09-21
Highlights: Black-Right-Pointing-Pointer Embryonic stem cells (ESCs) lacking non-canonical miRNAs proliferate slower. Black-Right-Pointing-Pointer miR-320 and miR-702 are two non-canonical miRNAs expressed in ESCs. Black-Right-Pointing-Pointer miR-320 and miR-702 promote proliferation of Dgcr8-deficient ESCs. Black-Right-Pointing-Pointer miR-320 targets p57 and helps to release Dgcr8-deficient ESCs from G1 arrest. Black-Right-Pointing-Pointer miR-702 targets p21 and helps to release Dgcr8-deficient ESCs from G1 arrest. -- Abstract: MicroRNAs are known to contribute significantly to stem cell phenotype by post-transcriptionally regulating gene expression. Most of our knowledge of microRNAs comes from the study of canonical microRNAs that require two sequential cleavages by the Drosha/Dgcr8 heterodimer and Dicer to generatemore » mature products. In contrast, non-canonical microRNAs bypass the cleavage by the Drosha/Dgcr8 heterodimer within the nucleus but still require cytoplasmic cleavage by Dicer. The function of non-canonical microRNAs in embryonic stem cells (ESCs) remains obscure. It has been hypothesized that non-canonical microRNAs have important roles in ESCs based upon the phenotypes of ESC lines that lack these specific classes of microRNAs; Dicer-deficient ESCs lacking both canonical and non-canonical microRNAs have much more severe proliferation defect than Dgcr8-deficient ESCs lacking only canonical microRNAs. Using these cell lines, we identified two non-canonical microRNAs, miR-320 and miR-702, that promote proliferation of Dgcr8-deficient ESCs by releasing them from G1 arrest. This is accomplished by targeting the 3 Prime -untranslated regions of the cell cycle inhibitors p57 and p21 and thereby inhibiting their expression. This is the first report of the crucial role of non-canonical microRNAs in ESCs.« less
Carpenter, Andrea C.; Grainger, John R.; Xiong, Yumei; Kanno, Yuka; Chu, H. Hamlet; Wang, Lie; Naik, Shruti; dos Santos, Liliane; Wei, Lai; Jenkins, Marc K.; O’Shea, John J.; Belkaid, Yasmine; Bosselut, Rémy
2014-01-01
Summary T helper (Th) cells are critical for defenses against infection and recognize peptides bound to Class II Major Histocompatibility Complex (MHC-II) molecules. Although transcription factors have been identified that direct helper cells into specific effector fates, whether a ‘master’ regulator controls the developmental program common to all Th cells remains unclear. Here we showed that the two transcription factors Thpok and LRF share this function. Although disruption of both factors did not prevent the generation of MHC II-specific T cells, these cells failed to express Th cell genes or undergo Th cell differentiation in vivo. In contrast, T cells lacking Thpok only displayed LRF-dependent functions and contributed to multiple effector responses, both in vitro and in vivo, with the notable exception of Th2 cell responses that control extra-cellular parasites. These findings identify the Thpok-LRF pair as a core node of Th cell differentiation and function. PMID:23041065
Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells
Akopian, Veronika; Beil, Stephen; Benvenisty, Nissim; Brehm, Jennifer; Christie, Megan; Ford, Angela; Fox, Victoria; Gokhale, Paul J.; Healy, Lyn; Holm, Frida; Hovatta, Outi; Knowles, Barbara B.; Ludwig, Tenneille E.; McKay, Ronald D. G.; Miyazaki, Takamichi; Nakatsuji, Norio; Oh, Steve K. W.; Pera, Martin F.; Rossant, Janet; Stacey, Glyn N.; Suemori, Hirofumi
2010-01-01
There are many reports of defined culture systems for the propagation of human embryonic stem cells in the absence of feeder cell support, but no previous study has undertaken a multi-laboratory comparison of these diverse methodologies. In this study, five separate laboratories, each with experience in human embryonic stem cell culture, used a panel of ten embryonic stem cell lines (including WA09 as an index cell line common to all laboratories) to assess eight cell culture methods, with propagation in the presence of Knockout Serum Replacer, FGF-2, and mouse embryonic fibroblast feeder cell layers serving as a positive control. The cultures were assessed for up to ten passages for attachment, death, and differentiated morphology by phase contrast microscopy, for growth by serial cell counts, and for maintenance of stem cell surface marker expression by flow cytometry. Of the eight culture systems, only the control and those based on two commercial media, mTeSR1 and STEMPRO, supported maintenance of most cell lines for ten passages. Cultures grown in the remaining media failed before this point due to lack of attachment, cell death, or overt cell differentiation. Possible explanations for relative success of the commercial formulations in this study, and the lack of success with other formulations from academic groups compared to previously published results, include: the complex combination of growth factors present in the commercial preparations; improved development, manufacture, and quality control in the commercial products; differences in epigenetic adaptation to culture in vitro between different ES cell lines grown in different laboratories. PMID:20186512
Holland, Linda Z
2005-07-15
In chordates, the ectoderm is divided into the neuroectoderm and the so-called non-neural ectoderm. In spite of its name, however, the non-neural ectoderm contains numerous sensory cells. Therefore, the term "non-neural" ectoderm should be replaced by "general ectoderm." At least in amphioxus and tunicates and possibly in vertebrates as well, both the neuroectoderm and the general ectoderm are patterned anterior/posteriorly by mechanisms involving retinoic acid and Hox genes. In amphioxus and tunicates the ectodermal sensory cells, which have a wide range of ciliary and microvillar configurations, are mostly primary neurons sending axons to the CNS, although a minority lack axons. In contrast, vertebrate mechanosensory cells, called hair cells, are all secondary neurons that lack axons and have a characteristic eccentric cilium adjacent to a group of microvilli of graded lengths. It has been highly controversial whether the ectodermal sensory cells in the oral siphons of adult tunicates are homologous to vertebrate hair cells. In some species of tunicates, these cells appear to be secondary neurons, and microvillar and ciliary configurations of some of these cells approach those of vertebrate hair cells. However, none of the tunicate cells has all the characteristics of a hair cell, and there is a high degree of variation among ectodermal sensory cells within and between different species. Thus, similarities between the ectodermal sensory cells of any one species of tunicate and craniate hair cells may well represent convergent evolution rather than homology. Copyright 2005 Wiley-Liss, Inc.
Bobryshev, Yuri V; Killingsworth, Murray C; Lord, Reginald S A
2008-08-01
The mechanisms of ectopic bone formation in arteries are poorly understood. Osteoblasts might originate either from stem cells that penetrate atherosclerotic plaques from the blood stream or from pluripotent mesenchymal cells that have remained in the arterial wall from embryonic stages of the development. We have examined the frequency of the expression and spatial distribution of osteoblast-specific factor-2/core binding factor-1 (Osf2/Cbfa1) in carotid and coronary arteries. Cbfa1-expressing cells were rarely observed but were found in all tissue specimens in the deep portions of atherosclerotic plaques under the necrotic cores. The deep portions of atherosclerotic plaques under the necrotic cores were characterized by the lack of capillaries of neovascularization. In contrast, plaque shoulders, which were enriched by plexuses of neovascularization, lacked Cbfa1-expressing cells. No bone formation was found in any of the 21 carotid plaques examined and ectopic bone was observed in only two of 12 coronary plaques. We speculate that the sparse invasion of sprouts of neovascularization into areas underlying the necrotic cores, where Cbfa1-expressing cells reside, might explain the rarity of events of ectopic bone formation in the arterial wall. This study has also revealed that Cbfa1-expressing cells contain alpha-smooth muscle actin and myofilaments, indicating their relationship with arterial smooth muscle cells.
T Cell Inactivation by Poxviral B22 Family Proteins Increases Viral Virulence
Alzhanova, Dina; Hammarlund, Erika; Reed, Jason; Meermeier, Erin; Rawlings, Stephanie; Ray, Caroline A.; Edwards, David M.; Bimber, Ben; Legasse, Alfred; Planer, Shannon; Sprague, Jerald; Axthelm, Michael K.; Pickup, David J.; Lewinsohn, David M.; Gold, Marielle C.; Wong, Scott W.; Sacha, Jonah B.; Slifka, Mark K.; Früh, Klaus
2014-01-01
Infections with monkeypox, cowpox and weaponized variola virus remain a threat to the increasingly unvaccinated human population, but little is known about their mechanisms of virulence and immune evasion. We now demonstrate that B22 proteins, encoded by the largest genes of these viruses, render human T cells unresponsive to stimulation of the T cell receptor by MHC-dependent antigen presentation or by MHC-independent stimulation. In contrast, stimuli that bypass TCR-signaling are not inhibited. In a non-human primate model of monkeypox, virus lacking the B22R homologue (MPXVΔ197) caused only mild disease with lower viremia and cutaneous pox lesions compared to wild type MPXV which caused high viremia, morbidity and mortality. Since MPXVΔ197-infected animals displayed accelerated T cell responses and less T cell dysregulation than MPXV US2003, we conclude that B22 family proteins cause viral virulence by suppressing T cell control of viral dissemination. PMID:24832205
T cell inactivation by poxviral B22 family proteins increases viral virulence.
Alzhanova, Dina; Hammarlund, Erika; Reed, Jason; Meermeier, Erin; Rawlings, Stephanie; Ray, Caroline A; Edwards, David M; Bimber, Ben; Legasse, Alfred; Planer, Shannon; Sprague, Jerald; Axthelm, Michael K; Pickup, David J; Lewinsohn, David M; Gold, Marielle C; Wong, Scott W; Sacha, Jonah B; Slifka, Mark K; Früh, Klaus
2014-05-01
Infections with monkeypox, cowpox and weaponized variola virus remain a threat to the increasingly unvaccinated human population, but little is known about their mechanisms of virulence and immune evasion. We now demonstrate that B22 proteins, encoded by the largest genes of these viruses, render human T cells unresponsive to stimulation of the T cell receptor by MHC-dependent antigen presentation or by MHC-independent stimulation. In contrast, stimuli that bypass TCR-signaling are not inhibited. In a non-human primate model of monkeypox, virus lacking the B22R homologue (MPXVΔ197) caused only mild disease with lower viremia and cutaneous pox lesions compared to wild type MPXV which caused high viremia, morbidity and mortality. Since MPXVΔ197-infected animals displayed accelerated T cell responses and less T cell dysregulation than MPXV US2003, we conclude that B22 family proteins cause viral virulence by suppressing T cell control of viral dissemination.
DeBord, Kristin L; Anderson, Deborah M; Marketon, Melanie M; Overheim, Katie A; DePaolo, R William; Ciletti, Nancy A; Jabri, Bana; Schneewind, Olaf
2006-08-01
In contrast to Yersinia pestis LcrV, the recombinant V10 (rV10) variant (lacking residues 271 to 300) does not suppress the release of proinflammatory cytokines by immune cells. Immunization with rV10 generates robust antibody responses that protect mice against bubonic plague and pneumonic plague, suggesting that rV10 may serve as an improved plague vaccine.
Hydra, the everlasting embryo, confronts aging.
Martínez, Daniel E; Bridge, Diane
2012-01-01
Existing data imply that the cnidarian Hydra vulgaris does not undergo senescence. In contrast, the related species Hydra oligactis shows increased mortality and physiological deterioration following sexual reproduction. Hydra thus offers the chance to study a striking difference in lifespan in members of the same genus. Adult Hydra possess three well-characterized stem cell populations, one of which gives rise to both somatic cells and gametes. The lack of senescence in Hydra vulgaris raises the question of how these stem cell populations are maintained over long periods of time. Investigation of the roles in Hydra of proteins involved in cellular stress responses in other organisms should provide insight into this issue. Proteins of particular interest include the Hsp70 family proteins and the transcription factor FoxO.
Lopez-Anton, Melisa; Rudolf, András; Baird, Duncan M; Roger, Laureline; Jones, Rhiannon E; Witowski, Janusz; Fraser, Donald J; Bowen, Timothy
2017-06-01
Mesothelial cell (MC) senescence contributes to malignancy and tissue fibrosis. The role of telomere erosion in MC senescence remains controversial, with evidence for both telomere-dependent and telomere-independent mechanisms reported. Single telomere length analysis revealed considerable telomere length heterogeneity in freshly isolated human peritoneal MCs, reflecting a heterogeneous proliferative history and providing high-resolution evidence for telomere-dependent senescence. By contrast the attenuated replicative lifespan, lack of telomere erosion and induction of p16 expression in in vitro-aged cells was consistent with stress-induced senescence. Given the potential pathophysiological impact of senescence in mesothelial tissues, high-resolution MC telomere length analysis may provide clinically useful information. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Delarasse, Cécile; Daubas, Philippe; Mars, Lennart T.; Vizler, Csaba; Litzenburger, Tobias; Iglesias, Antonio; Bauer, Jan; Della Gaspera, Bruno; Schubart, Anna; Decker, Laurence; Dimitri, Dalia; Roussel, Guy; Dierich, Andrée; Amor, Sandra; Dautigny, André; Liblau, Roland; Pham-Dinh, Danielle
2003-01-01
We studied the immunological basis for the very potent encephalitogenicity of myelin/oligodendrocyte glycoprotein (MOG), a minor component of myelin in the CNS that is widely used to induce experimental autoimmune encephalomyelitis (EAE). For this purpose, we generated a mutant mouse lacking a functional mog gene. This MOG-deficient mouse presents no clinical or histological abnormalities, permitting us to directly assess the role of MOG as a target autoantigen in EAE. In contrast to WT mice, which developed severe EAE following immunization with whole myelin, MOG-deficient mice had a mild phenotype, demonstrating that the anti-MOG response is a major pathogenic component of the autoimmune response directed against myelin. Moreover, while MOG transcripts are expressed in lymphoid organs in minute amounts, both MOG-deficient and WT mice show similar T and B cell responses against the extracellular domain of MOG, including the immunodominant MOG 35–55 T cell epitope. Furthermore, no differences in the fine specificity of the T cell responses to overlapping peptides covering the complete mouse MOG sequence were observed between MOG+/+ and MOG–/– mice. In addition, upon adoptive transfer, MOG-specific T cells from WT mice and those from MOG-deficient mice are equally pathogenic. This total lack of immune tolerance to MOG in WT C57BL/6 mice may be responsible for the high pathogenicity of the anti-MOG immune response as well as the high susceptibility of most animal strains to MOG-induced EAE. PMID:12925695
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yiwei; Gulis, Galina; Buckner, Scott
Research highlights: {yields} Rotenone induces generation of ROS and mitochondrial fragmentation in fission yeast. {yields} The MAPK Pmk1 and PKA are required for rotenone resistance in fission yeast. {yields} Pmk1 and PKA are required for ROS clearance in rotenone treated fission yeast cells. {yields} PKA plays a role in ROS clearance under normal growth conditions in fission yeast. -- Abstract: Rotenone is a widely used pesticide that induces Parkinson's disease-like symptoms in rats and death of dopaminergic neurons in culture. Although rotenone is a potent inhibitor of complex I of the mitochondrial electron transport chain, it can induce death ofmore » dopaminergic neurons independently of complex I inhibition. Here we describe effects of rotenone in the fission yeast, Schizosaccharomyces pombe, which lacks complex I and carries out rotenone-insensitive cellular respiration. We show that rotenone induces generation of reactive oxygen species (ROS) as well as fragmentation of mitochondrial networks in treated S. pombe cells. While rotenone is only modestly inhibitory to growth of wild type S. pombe cells, it is strongly inhibitory to growth of mutants lacking the ERK-type MAP kinase, Pmk1, or protein kinase A (PKA). In contrast, cells lacking the p38 MAP kinase, Spc1, exhibit modest resistance to rotenone. Consistent with these findings, we provide evidence that Pmk1 and PKA, but not Spc1, are required for clearance of ROS in rotenone treated S. pombe cells. Our results demonstrate the usefulness of S. pombe for elucidating complex I-independent molecular targets of rotenone as well as mechanisms conferring resistance to the toxin.« less
Kulkarni, Onkar P.; Susanti, Heni Eka; Migliorini, Adriana; Garlanda, Cecilia; Mantovani, Alberto; Anders, Hans-Joachim
2011-01-01
The long pentraxin PTX3 has multiple roles in innate immunity. For example, PTX3 regulates C1q binding to pathogens and dead cells and regulates their uptake by phagocytes. It also inhibits P-selectin-mediated recruitment of leukocytes. Both of these mechanisms are known to be involved in autoimmunity and autoimmune tissue injury, e.g. in systemic lupus erythematosus, but a contribution of PTX3 is hypothetical. To evaluate a potential immunoregulatory role of PTX3 in autoimmunity we crossed Ptx3-deficient mice with Fas-deficient (lpr) C57BL/6 (B6) mice with mild lupus-like autoimmunity. PTX3 was found to be increasingly expressed in kidneys and lungs of B6lpr along disease progression. Lack of PTX3 impaired the phagocytic uptake of apoptotic T cells into peritoneal macrophages and selectively expanded CD4/CD8 double negative T cells while other immune cell subsets and lupus autoantibody production remained unaffected. Lack of PTX3 also aggravated autoimmune lung disease, i.e. peribronchial and perivascular CD3+ T cell and macrophage infiltrates of B6lpr mice. In contrast, histomorphological and functional parameters of lupus nephritis remained unaffected by the Ptx3 genotype. Together, PTX3 specifically suppresses autoimmune lung disease that is associated with systemic lupus erythematosus. Vice versa, loss-of-function mutations in the Ptx3 gene might represent a genetic risk factor for pulmonary (but not renal) manifestations of systemic lupus or other autoimmune diseases. PMID:21637713
Haabeth, Ole Audun Werner; Tveita, Anders Aune; Fauskanger, Marte; Schjesvold, Fredrik; Lorvik, Kristina Berg; Hofgaard, Peter O.; Omholt, Hilde; Munthe, Ludvig A.; Dembic, Zlatko; Corthay, Alexandre; Bogen, Bjarne
2014-01-01
CD4+ T cells contribute to tumor eradication, even in the absence of CD8+ T cells. Cytotoxic CD4+ T cells can directly kill MHC class II positive tumor cells. More surprisingly, CD4+ T cells can indirectly eliminate tumor cells that lack MHC class II expression. Here, we review the mechanisms of direct and indirect CD4+ T cell-mediated elimination of tumor cells. An emphasis is put on T cell receptor (TCR) transgenic models, where anti-tumor responses of naïve CD4+ T cells of defined specificity can be tracked. Some generalizations can tentatively be made. For both MHCIIPOS and MHCIINEG tumors, presentation of tumor-specific antigen by host antigen-presenting cells (APCs) appears to be required for CD4+ T cell priming. This has been extensively studied in a myeloma model (MOPC315), where host APCs in tumor-draining lymph nodes are primed with secreted tumor antigen. Upon antigen recognition, naïve CD4+ T cells differentiate into Th1 cells and migrate to the tumor. At the tumor site, the mechanisms for elimination of MHCIIPOS and MHCIINEG tumor cells differ. In a TCR-transgenic B16 melanoma model, MHCIIPOS melanoma cells are directly killed by cytotoxic CD4+ T cells in a perforin/granzyme B-dependent manner. By contrast, MHCIINEG myeloma cells are killed by IFN-γ stimulated M1-like macrophages. In summary, while the priming phase of CD4+ T cells appears similar for MHCIIPOS and MHCIINEG tumors, the killing mechanisms are different. Unresolved issues and directions for future research are addressed. PMID:24782871
Cell cycle re-entry sensitizes podocytes to injury induced death.
Hagen, Manuel; Pfister, Eva; Kosel, Andrea; Shankland, Stuart; Pippin, Jeffrey; Amann, Kerstin; Daniel, Christoph
2016-07-17
Podocytes are terminally differentiated renal cells, lacking the ability to regenerate by proliferation. However, during renal injury, podocytes re-enter into the cell cycle but fail to divide. Earlier studies suggested that re-entry into cell cycle results in loss of podocytes, but a direct evidence for this is lacking. Therefore, we established an in vitro model to test the consequences of re-entry into the cell cycle on podocyte survival. A mouse immortalized podocyte cell line was differentiated to non-permissive podocytes and stimulated with e.g. growth factors. Stimulated cells were analyzed for mRNA-expression or stained for cell cycle analysis using flow cytometry and immunocytofluorescence microscopy. After stimulation to re-entry into cell cycle, podocytes were stressed with puromycin aminonucleoside (PAN) and analyzed for survival. During permissive stage more than 40% of immortalized podocytes were in the S-phase. In contrast, S-phase in non-permissive differentiated podocytes was reduced to 5%. Treatment with b-FGF dose dependently induced re-entry into cell cycle increasing the number of podocytes in the S-phase to 10.7% at an optimal bFGF dosage of 10 ng/ml. Forty eight hours after stimulation with bFGF the number of bi-nucleated podocytes significantly increased. A secondary injury stimulus significantly reduced podocyte survival preferentially in bi-nucleated podocytes In conclusion, stimulation of podocytes using bFGF was able to induce re-entry of podocytes into the cell cycle and to sensitize the cells for cell death by secondary injuries. Therefore, this model is appropriate for testing new podocyte protective substances that can be used for therapy.
Biesemeier, Antje; Kokkinou, Despina; Julien, Sylvie; Heiduschka, Peter; Berneburg, Mark; Bartz-Schmidt, Karl Ulrich; Schraermeyer, Ulrich
2008-02-27
To investigate the effects of zinc supplementation on human amelanotic (ARPE-19) and native pigmented retinal pigment epithelial cells (hRPE) under normal light conditions and after ultraviolet A light exposure. hRPE cells, containing both melanin and lipofuscin granules, were prepared from human donor eyes of 60-70 year old patients. Cells of the amelanotic ARPE-19 cell line and pigmented hRPE cells were treated with zinc chloride and subjected to oxidative stress by UV-A irradiation. Intracellular H(2)O(2) formation was measured using a fluorescence oxidation assay. Additionally, apoptosis and viability assays were performed. Control cells were treated identically except for irradiation and zinc supplementation. Under normal light conditions, zinc treated hRPE cells produced less H(2)O(2) than unsupplemented hRPE cells. Viability and apoptosis events did not change. After UV-A irradiation, ARPE and hRPE cells were greatly impaired in all tests performed compared to the non-irradiated controls. No differences were found after zinc supplementation. hRPE cells showed a higher apoptosis and mortality rate than non-pigmented cells when stressed by UV-A light. ARPE cells never showed any zinc related effects. In contrast, without irradiation, zinc supplementation reduced H(2)O(2) production in pigmented hRPE cells slightly. We did not find any zinc effect in irradiated hRPE cells. After UV light exposure, pigmented cells showed a higher apoptosis and mortality than cells lacking any pigmentation. We conclude that cells with pigmentation consisting of melanin and lipofuscin granules have more prooxidative than antioxidative capacity when stressed by UV light exposure compared to cells lacking any pigmentation.
Fiocco, Ugo; Stramare, Roberto; Martini, Veronica; Coran, Alessandro; Caso, Francesco; Costa, Luisa; Felicetti, Mara; Rizzo, Gaia; Tonietto, Matteo; Scanu, Anna; Oliviero, Francesca; Raffeiner, Bernd; Vezzù, Maristella; Lunardi, Francesca; Scarpa, Raffaele; Sacerdoti, David; Rubaltelli, Leopoldo; Punzi, Leonardo; Doria, Andrea; Grisan, Enrico
2017-02-01
To develop quantitative imaging biomarkers of synovial tissue perfusion by pixel-based contrast-enhanced ultrasound (CEUS), we studied the relationship between CEUS synovial vascular perfusion and the frequencies of pathogenic T helper (Th)-17 cells in psoriatic arthritis (PsA) joints. Eight consecutive patients with PsA were enrolled in this study. Gray scale CEUS evaluation was performed on the same joint immediately after joint aspiration, by automatic assessment perfusion data, using a new quantification approach of pixel-based analysis and the gamma-variate model. The set of perfusional parameters considered by the time intensity curve includes the maximum value (peak) of the signal intensity curve, the blood volume index or area under the curve, (BVI, AUC) and the contrast mean transit time (MTT). The direct ex vivo analysis of the frequencies of SF IL17A-F + CD161 + IL23 + CD4 + T cells subsets were quantified by fluorescence-activated cell sorter (FACS). In cross-sectional analyses, when tested for multiple comparison setting, a false discovery rate at 10%, a common pattern of correlations between CEUS Peak, AUC (BVI) and MTT parameters with the IL17A-F + IL23 + - IL17A-F + CD161 + - and IL17A-F + CD161 + IL23 + CD4 + T cells subsets, as well as lack of correlation between both peak and AUC values and both CD4 + T and CD4 + IL23 + T cells, was observed. The pixel-based CEUS assessment is a truly measure synovial inflammation, as a useful tool to develop quantitative imaging biomarker for monitoring target therapeutics in PsA.
Performance of NCAP projection displays
NASA Astrophysics Data System (ADS)
Jones, Philip J.; Tomita, Akira; Wartenberg, Mark
1991-08-01
Prototypes of projection displays based on dispersions of liquid crystal in polymer matrices are beginning to appear. The principle of operation depends on electrically switchable light scattering. They are potentially much brighter than current cathode ray tube (CRT) or twisted nematic liquid crystal (TN LC) cell based displays. Comparisons of efficacy and efficiency show this. The contrast and brightness of such displays depend on a combination of the f- number of the projection system and the scattering characteristics of the light valve. Simplified equations can be derived to show these effects. The degree of scattering of current NCAP formulations is sufficient to produce good contrast projection displays, at convenient voltages, that are around three times brighter than TN LC projectors because of the lack of polarizers in the former.
Roger, V; Fonty, G; Komisarczuk-Bony, S; Gouet, P
1990-10-01
Ruminococcus flavefaciens adhered instantly to cellulose, while Fibrobacter succinogenes had the highest percentage of adherent cells after about 25 min of contact between bacteria and cellulose. Adhesion of R. flavefaciens was unaffected by high concentrations of sugars (5%), temperature, pH, oxygen, metabolic inhibitors, and lack of Na. In contrast, the attachment was affected by the removal of divalent cations (Mg and Ca), the presence of cellulose derivatives (methylcellulose and hydroxyethylcellulose), and cystine. Adhesion of F. succinogenes was sensitive to low and high temperatures, high concentrations of glucose and cellobiose (5%), hydroxyethylcellulose (0.1%), redox potential, pH, lack of monovalent cations, and the presence of an inhibitor of membrane ATPases or lasalocid and monensin. Cells of F. succinogenes heated at 100 degrees C no longer were adherent. On the other hand, adhesion was insensitive to the lack of divalent cations (Mg and Ca), the presence of 2,4-dinitrophenol, tetrachlorosalicylanilide, or inhibitors of the electron transfer chains. Adhesion of F. succinogenes seems to be related to the metabolic functions of the cell. External proteins and/or cellulases themselves might play a part in the attachment process. Several mechanisms are probably involved in the adhesion of R. flavefaciens, the main one being the interaction between the large glycocalyx and the divalent cations Ca and Mg. Hydrophobic bonds and enzymes may also be involved.
Chirullo, Barbara; Ammendola, Serena; Leonardi, Leonardo; Falcini, Roberto; Petrucci, Paola; Pistoia, Claudia; Vendetti, Silvia; Battistoni, Andrea; Pasquali, Paolo
2015-07-10
Salmonella Typhimurium has been shown to be highly effective as antitumor agent. The aim of this study was to investigate the tumor targeting efficacy and the mechanism of action of a specific attenuated mutant strain of Salmonella Typhimurium (STM) devoid of the whole operon coding for the high-affinity zinc transporter ZnuABC, which is required for bacterial growth in environments poor in zinc and for conferring full virulence to different Gram-negative pathogens.We showed that STM is able to penetrate and replicate into tumor cells in in vitro and in vivo models. The subcutaneous administration of STM in mammary adenocarcinoma mouse model led to both reduction of tumor growth and increase in life expectancy of STM treated mice. Moreover, investigating the potential mechanism behind the favorable clinical outcomes, we provide evidence that STM stimulates a potent inflammatory response and a specific immune pattern, recruiting a large number of innate and adaptive immune cells capable to contrast the immunosuppressive environment generated by tumors.
[Characterization of stem cells derived from the neonatal auditory sensory epithelium].
Diensthuber, M; Heller, S
2010-11-01
In contrast to regenerating hair cell-bearing organs of nonmammalian vertebrates the adult mammalian organ of Corti appears to have lost its ability to maintain stem cells. The result is a lack of regenerative ability and irreversible hearing loss following auditory hair cell death. Unexpectedly, the neonatal auditory sensory epithelium has recently been shown to harbor cells with stem cell features. The origin of these cells within the cochlea's sensory epithelium is unknown. We applied a modified neurosphere assay to identify stem cells within distinct subregions of the neonatal mouse auditory sensory epithelium. Sphere cells were characterized by multiple markers and morphologic techniques. Our data reveal that both the greater and the lesser epithelial ridge contribute to the sphere-forming stem cell population derived from the auditory sensory epithelium. These self-renewing sphere cells express a variety of markers for neural and otic progenitor cells and mature inner ear cell types. Stem cells can be isolated from specific regions of the auditory sensory epithelium. The distinct features of these cells imply a potential application in the development of a cell replacement therapy to regenerate the damaged sensory epithelium.
Genetic separation of phototropism and blue light inhibition of stem elongation
NASA Technical Reports Server (NTRS)
Liscum, E.; Young, J. C.; Poff, K. L.; Hangarter, R. P.
1992-01-01
Blue light-induced regulation of cell elongation is a component of the signal response pathway for both phototropic curvature and inhibition of stem elongation in higher plants. To determine if blue light regulates cell elongation in these responses through shared or discrete pathways, phototropism and hypocotyl elongation were investigated in several blue light response mutants in Arabidopsis thaliana. Specifically, the blu mutants that lack blue light-dependent inhibition of hypocotyl elongation were found to exhibit a normal phototropic response. In contrast, a phototropic null mutant (JK218) and a mutant that has a 20- to 30-fold shift in the fluence dependence for first positive phototropism (JK224) showed normal inhibition of hypocotyl elongation in blue light. F1 progeny of crosses between the blu mutants and JK218 showed normal phototropism and inhibition of hypocotyl elongation, and approximately 1 in 16 F2 progeny were double mutants lacking both responses. Thus, blue light-dependent inhibition of hypocotyl elongation and phototropism operate through at least some genetically distinct components.
Bokisch, Viktor A.; Sobel, Alain T.
1974-01-01
This report describes receptors for C4b on human peripheral B lymphocytes. The simultaneous presence of C3b and C4b receptors on the same lymphocytes was demonstrated by the formation of mixed rosettes consisting of the lymphocytes, EAC14 and EAC1423. Furthermore, reduction of the number of EAC1423 rosette-forming lymphocytes in a lymphocyte population by albumin gradient centrifugation concomitantly reduced EAC14 rosette-forming lymphocytes. Binding of EAC14 intermediates to receptors on human lymphocytes and erythrocytes could be inhibited by equal amounts of soluble C3b or C4b, suggesting the presence of a single receptor for both ligands on those cells. In contrast, the results of the rosette assay with Raji cells, cultured human lymphoblastoid cells, EAC14 and EAC1423 suggested that the receptors for C4b and C3b are distinct entities, since Raji cells formed rosettes with EAC1423, but not with EAC14. Moreover, this report demonstrates a cooperation of erythrocyte-bound C4b and C3b in the binding of EAC1423 to B lymphocytes. In contrast to KAF-treated C3b, KAF-treated C4b did not bind to B lymphocytes, indicating that these cells lack a receptor for C4d. PMID:4547573
A Presumptive Developmental Role for a Sea Urchin Cyclin B Splice Variant
Lozano, Jean-Claude; Schatt, Philippe; Marquès, François; Peaucellier, Gérard; Fort, Philippe; Féral, Jean-Pierre; Genevière, Anne-Marie; Picard, André
1998-01-01
We show that a splice variant–derived cyclin B is produced in sea urchin oocytes and embryos. This splice variant protein lacks highly conserved sequences in the COOH terminus of the protein. It is found strikingly abundant in growing oocytes and cells committed to differentiation during embryogenesis. Cyclin B splice variant (CBsv) protein associates weakly in the cell with Xenopus cdc2 and with budding yeast CDC28p. In contrast to classical cyclin B, CBsv very poorly complements a triple CLN deletion in budding yeast, and its microinjection prevents an initial step in MPF activation, leading to an important delay in oocyte meiosis reinitiation. CBsv microinjection in fertilized eggs induces cell cycle delay and abnormal development. We assume that CBsv is produced in growing oocytes to keep them in prophase, and during embryogenesis to slow down cell cycle in cells that will be committed to differentiation. PMID:9442104
Male gametogenesis without centrioles.
Riparbelli, Maria Giovanna; Callaini, Giuliano
2011-01-15
The orientation of the mitotic spindle plays a central role in specifying stem cell-renewal by enabling interaction of the daughter cells with external cues: the daughter cell closest to the hub region is instructed to self-renew, whereas the distal one starts to differentiate. Here, we have analyzed male gametogenesis in DSas-4 Drosophila mutants and we have reported that spindle alignment and asymmetric divisions are properly executed in male germline stem cells that lack centrioles. Spermatogonial divisions also correctly proceed in the absence of centrioles, giving rise to cysts of 16 primary spermatocytes. By contrast, abnormal meiotic spindles assemble in primary spermatocytes. These results point to different requirements for centrioles during male gametogenesis of Drosophila. Spindle formation during germ cell mitosis may be successfully supported by an acentrosomal pathway that is inadequate to warrant the proper execution of meiosis. Copyright © 2010 Elsevier Inc. All rights reserved.
Wang, Chaochen; Lee, Ji-Eun; Cho, Young-Wook; Xiao, Ying; Jin, Qihuang; Liu, Chengyu; Ge, Kai
2012-09-18
To investigate the role of histone H3K27 demethylase UTX in embryonic stem (ES) cell differentiation, we have generated UTX knockout (KO) and enzyme-dead knock-in male ES cells. Deletion of the X-chromosome-encoded UTX gene in male ES cells markedly decreases expression of the paralogous UTY gene encoded by Y chromosome, but has no effect on global H3K27me3 level, Hox gene expression, or ES cell self-renewal. However, UTX KO cells show severe defects in mesoderm differentiation and induction of Brachyury, a transcription factor essential for mesoderm development. Surprisingly, UTX regulates mesoderm differentiation and Brachyury expression independent of its enzymatic activity. UTY, which lacks detectable demethylase activity, compensates for the loss of UTX in regulating Brachyury expression. UTX and UTY bind directly to Brachyury promoter and are required for Wnt/β-catenin signaling-induced Brachyury expression in ES cells. Interestingly, male UTX KO embryos express normal levels of UTY and survive until birth. In contrast, female UTX KO mice, which lack the UTY gene, show embryonic lethality before embryonic day 11.5. Female UTX KO embryos show severe defects in both Brachyury expression and embryonic development of mesoderm-derived posterior notochord, cardiac, and hematopoietic tissues. These results indicate that UTX controls mesoderm differentiation and Brachyury expression independent of H3K27 demethylase activity, and suggest that UTX and UTY are functionally redundant in ES cell differentiation and early embryonic development.
Semmes, O J; Majone, F; Cantemir, C; Turchetto, L; Hjelle, B; Jeang, K T
1996-03-01
Human T-cell leukemia virus (HTLV) types I and II are highly related viruses that differ in disease manifestations. HTLV-I has been linked unmistakably to adult T-cell leukemia-lymphoma. On the other hand, there is little evidence that prior infection with HTLV-II increases risk for lymphoproliferative disorders. Both viruses encode homologous transcriptional-activating proteins (respectively designated as Tax1 and Tax2) which have been suggested to be important mediators of viral pathogenesis. Previously, we reported that Tax1 is a potent inducer of micronuclei formation in cells. Here, we present evidence that Tax2 lacks micronuclei inductive ability. We contrast this phenotypic difference between Tax1 and Tax2 at the cellular level with their similarities at the molecular level in transcriptional activation.
Physical confinement signals regulate the organization of stem cells in three dimensions
Sean, David; Ignacio, Maxime; Godin, Michel; Slater, Gary W.; Pelling, Andrew E.
2016-01-01
During embryogenesis, the spherical inner cell mass (ICM) proliferates in the confined environment of a blastocyst. Embryonic stem cells (ESCs) are derived from the ICM, and mimicking embryogenesis in vitro, mouse ESCs (mESCs) are often cultured in hanging droplets. This promotes the formation of a spheroid as the cells sediment and aggregate owing to increased physical confinement and cell–cell interactions. In contrast, mESCs form two-dimensional monolayers on flat substrates and it remains unclear if the difference in organization is owing to a lack of physical confinement or increased cell–substrate versus cell–cell interactions. Employing microfabricated substrates, we demonstrate that a single geometric degree of physical confinement on a surface can also initiate spherogenesis. Experiment and computation reveal that a balance between cell–cell and cell–substrate interactions finely controls the morphology and organization of mESC aggregates. Physical confinement is thus an important regulatory cue in the three-dimensional organization and morphogenesis of developing cells. PMID:27798278
Mitochondrial Transfer by Photothermal Nanoblade Restores Metabolite Profile in Mammalian Cells.
Wu, Ting-Hsiang; Sagullo, Enrico; Case, Dana; Zheng, Xin; Li, Yanjing; Hong, Jason S; TeSlaa, Tara; Patananan, Alexander N; McCaffery, J Michael; Niazi, Kayvan; Braas, Daniel; Koehler, Carla M; Graeber, Thomas G; Chiou, Pei-Yu; Teitell, Michael A
2016-05-10
mtDNA sequence alterations are challenging to generate but desirable for basic studies and potential correction of mtDNA diseases. Here, we report a new method for transferring isolated mitochondria into somatic mammalian cells using a photothermal nanoblade, which bypasses endocytosis and cell fusion. The nanoblade rescued the pyrimidine auxotroph phenotype and respiration of ρ0 cells that lack mtDNA. Three stable isogenic nanoblade-rescued clones grown in uridine-free medium showed distinct bioenergetics profiles. Rescue lines 1 and 3 reestablished nucleus-encoded anapleurotic and catapleurotic enzyme gene expression patterns and had metabolite profiles similar to the parent cells from which the ρ0 recipient cells were derived. By contrast, rescue line 2 retained a ρ0 cell metabolic phenotype despite growth in uridine-free selection. The known influence of metabolite levels on cellular processes, including epigenome modifications and gene expression, suggests metabolite profiling can help assess the quality and function of mtDNA-modified cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Non-canonical features of the Golgi apparatus in bipolar epithelial neural stem cells
Taverna, Elena; Mora-Bermúdez, Felipe; Strzyz, Paulina J.; Florio, Marta; Icha, Jaroslav; Haffner, Christiane; Norden, Caren; Wilsch-Bräuninger, Michaela; Huttner, Wieland B.
2016-01-01
Apical radial glia (aRG), the stem cells in developing neocortex, are unique bipolar epithelial cells, extending an apical process to the ventricle and a basal process to the basal lamina. Here, we report novel features of the Golgi apparatus, a central organelle for cell polarity, in mouse aRGs. The Golgi was confined to the apical process but not associated with apical centrosome(s). In contrast, in aRG-derived, delaminating basal progenitors that lose apical polarity, the Golgi became pericentrosomal. The aRG Golgi underwent evolutionarily conserved, accordion-like compression and extension concomitant with cell cycle-dependent nuclear migration. Importantly, in line with endoplasmic reticulum but not Golgi being present in the aRG basal process, its plasma membrane contained glycans lacking Golgi processing, consistent with direct ER-to-cell surface membrane traffic. Our study reveals hitherto unknown complexity of neural stem cell polarity, differential Golgi contribution to their specific architecture, and fundamental Golgi re-organization upon cell fate change. PMID:26879757
Molecular Recognition of Endocytic Codes in Receptor Tyrosine Kinases
1999-06-01
and B), substitution of Glu for Thr at residue 508 failed to induce actin aggregation in COS-7 cells (Fig. 9, panels C and D), comparable to lack...of effects of the kinase inactive Kd3-D460N mutant (Fig. 9, panels G and H). In contrast, substitution of 2 Glu residues whose charge may more...studies of Mekl where substitution of an Asp or Glu residue for 1 serine phosphoryl- ation site partially activated the enzyme and substitution of 2
Schipke, Julia; Pohlmann, Anja; Diestel, Randi; Binz, Anne; Rudolph, Kathrin; Nagel, Claus-Henning; Bauerfeind, Rudolf
2012-01-01
The largest tegument protein of herpes simplex virus type 1 (HSV1), pUL36, is a multivalent cross-linker between the viral capsids and the tegument and associated membrane proteins during assembly that upon subsequent cell entry releases the incoming capsids from the outer tegument and viral envelope. Here we show that pUL36 was recruited to cytosolic progeny capsids that later colocalized with membrane proteins of herpes simplex virus type 1 (HSV1) and the trans-Golgi network. During cell entry, pUL36 dissociated from viral membrane proteins but remained associated with cytosolic capsids until arrival at the nucleus. HSV1 UL36 mutants lacking C-terminal portions of increasing size expressed truncated pUL36 but could not form plaques. Cytosolic capsids of mutants lacking the C-terminal 735 of the 3,164 amino acid residues accumulated in the cytosol but did not recruit pUL36 or associate with membranes. In contrast, pUL36 lacking only the 167 C-terminal residues bound to cytosolic capsids and subsequently colocalized with viral and host membrane proteins. Progeny virions fused with neighboring cells, but incoming capsids did not retain pUL36, nor could they target the nucleus or initiate HSV1 gene expression. Our data suggest that residues 2430 to 2893 of HSV1 pUL36, containing one binding site for the capsid protein pUL25, are sufficient to recruit pUL36 onto cytosolic capsids during assembly for secondary envelopment, whereas the 167 residues of the very C terminus with the second pUL25 binding site are crucial to maintain pUL36 on incoming capsids during cell entry. Capsids lacking pUL36 are targeted neither to membranes for virus assembly nor to nuclear pores for genome uncoating. PMID:22258258
Kaneko, Kunihiko
2011-06-01
Here I present and discuss a model that, among other things, appears able to describe the dynamics of cancer cell origin from the perspective of stable and unstable gene expression profiles. In identifying such aberrant gene expression profiles as lying outside the normal stable states attracted through development and normal cell differentiation, the hypothesis explains why cancer cells accumulate mutations, to which they are not robust, and why these mutations create a new stable state far from the normal gene expression profile space. Such cells are in strong contrast with normal cell types that appeared as an attractor state in the gene expression dynamical system under cell-cell interaction and achieved robustness to noise through evolution, which in turn also conferred robustness to mutation. In complex gene regulation networks, other aberrant cellular states lacking such high robustness are expected to remain, which would correspond to cancer cells. Copyright © 2011 WILEY Periodicals, Inc.
Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells.
White, Patricia M; Doetzlhofer, Angelika; Lee, Yun Shain; Groves, Andrew K; Segil, Neil
2006-06-22
Sensory hair cells of the mammalian organ of Corti in the inner ear do not regenerate when lost as a consequence of injury, disease, or age-related deafness. This contrasts with other vertebrates such as birds, where the death of hair cells causes surrounding supporting cells to re-enter the cell cycle and give rise to both new hair cells and supporting cells. It is not clear whether the lack of mammalian hair cell regeneration is due to an intrinsic inability of supporting cells to divide and differentiate or to an absence or blockade of regenerative signals. Here we show that post-mitotic supporting cells purified from the postnatal mouse cochlea retain the ability to divide and trans-differentiate into new hair cells in culture. Furthermore, we show that age-dependent changes in supporting cell proliferative capacity are due in part to changes in the ability to downregulate the cyclin-dependent kinase inhibitor p27(Kip1) (also known as Cdkn1b). These results indicate that postnatal mammalian supporting cells are potential targets for therapeutic manipulation.
El-Sayed, Karim M Fawzy; Paris, Sebastian; Graetz, Christian; Kassem, Neemat; Mekhemar, Mohamed; Ungefroren, Hendrick; Fändrich, Fred; Dörfer, Christof
2015-01-01
Recently, gingival margin-derived stem/progenitor cells isolated via STRO-1/magnetic activated cell sorting (MACS) showed remarkable periodontal regenerative potential in vivo. As a second-stage investigation, the present study's aim was to perform in vitro characterisation and comparison of the stem/progenitor cell characteristics of sorted STRO-1-positive (MACS+) and STRO-1-negative (MACS−) cell populations from the human free gingival margin. Cells were isolated from the free gingiva using a minimally invasive technique and were magnetically sorted using anti-STRO-1 antibodies. Subsequently, the MACS+ and MACS− cell fractions were characterized by flow cytometry for expression of CD14, CD34, CD45, CD73, CD90, CD105, CD146/MUC18 and STRO-1. Colony-forming unit (CFU) and multilineage differentiation potential were assayed for both cell fractions. Mineralisation marker expression was examined using real-time polymerase chain reaction (PCR). MACS+ and MACS− cell fractions showed plastic adherence. MACS+ cells, in contrast to MACS− cells, showed all of the predefined mesenchymal stem/progenitor cell characteristics and a significantly higher number of CFUs (P<0.01). More than 95% of MACS+ cells expressed CD105, CD90 and CD73; lacked the haematopoietic markers CD45, CD34 and CD14, and expressed STRO-1 and CD146/MUC18. MACS− cells showed a different surface marker expression profile, with almost no expression of CD14 or STRO-1, and more than 95% of these cells expressed CD73, CD90 and CD146/MUC18, as well as the haematopoietic markers CD34 and CD45 and CD105. MACS+ cells could be differentiated along osteoblastic, adipocytic and chondroblastic lineages. In contrast, MACS− cells demonstrated slight osteogenic potential. Unstimulated MACS+ cells showed significantly higher expression of collagen I (P<0.05) and collagen III (P<0.01), whereas MACS− cells demonstrated higher expression of osteonectin (P<0.05; Mann–Whitney). The present study is the first to compare gingival MACS+ and MACS− cell populations demonstrating that MACS+ cells, in contrast to MACS− cells, harbour stem/progenitor cell characteristics. This study also validates the effectiveness of the STRO-1/MACS+ technique for the isolation of gingival stem/progenitor cells. Human free gingival margin-derived STRO-1/MACS+ cells are a unique renewable source of multipotent stem/progenitor cells. PMID:25257881
de Sousa, Maria
2011-04-01
Lymphoid cell and tumor cell migration share similarities: 1. migration to specific microenvironments; 2. increased microvasculature with increased growth; 3. cell division. At the same time, contrasting aspects between the two merit attention: 1. failure of tumors to return to microvasculature quiescence; 2. failure of malignant cells to stop dividing; 3. failure of tumor cells to re-enter the circulation after returning to a non-activated phenotype. Analysis of these contrasting aspects leads to the reviewing of unexpected roles of immune cells in the tumor environment, recent work on ferroportin expression with lack of iron export by tumor cells, iron export by M2 macrophages, and deficient dendritic cells (DCs) in the tumor environment. DCs in lymph nodes have recently been found to bring lymph node vasculature to quiescence after antigen stimulation. Contrary to current dogma, the evidence is that some immune system cells in the tumor environment may be favoring regulators instead of diminishing tumor growth. In addition, recent data herein reviewed will make it difficult not to consider iron and iron gene expression as relevant components of the tumor environment. Finally, I conclude with wondering how much longer what I call the 'Hunter Paradigm' will dominate cancer research and immunology and how timely it is to acknowledge in the first decade of a new century, Mina Bissell as a pioneer in the change of that paradigm in Cancer Research. "Suppose he'd listened to the erudite committee; He would have only found where not to look" WH Auden.
Inhibition by sulfonamides of the candidacidal activity of human neutrophils.
Lehrer, R I
1971-12-01
Sulfonamides reduced substantially the ability of normal human neutrophils to kill strains of Candida albicans and Candida tropicalis, and impaired to a lesser extent their activity against Staphylococcus aureus 502A and Serratia marcescens. Sulfonamides also inhibited (a) iodination of Candida cells by normal neutrophils; (b) candidacidal activity in cell-free systems containing purified human myeloperoxidase, hydrogen peroxide, and potassium iodide; and (c) accumulation of molecular iodine in analogously constructed cell-free systems. In contrast to these effects on reactions catalyzed by myeloperoxidase, sulfonamides exerted relatively little effect on the levels of microbicidal activity manifested by human neutrophils that lacked myeloperoxidase. Sulfonamides appear to influence the function of human neutrophils predominantly by interfering with myeloperoxidase-mediated pathways. Certain basic and clinical implications of these data are discussed.
WDR62 Regulates Early Neural and Glial Progenitor Specification of Human Pluripotent Stem Cells
Alshawaf, Abdullah J.; Antonic, Ana; Skafidas, Efstratios
2017-01-01
Mutations in WD40-repeat protein 62 (WDR62) are commonly associated with primary microcephaly and other developmental cortical malformations. We used human pluripotent stem cells (hPSC) to examine WDR62 function during human neural differentiation and model early stages of human corticogenesis. Neurospheres lacking WDR62 expression showed decreased expression of intermediate progenitor marker, TBR2, and also glial marker, S100β. In contrast, inhibition of c-Jun N-terminal kinase (JNK) signalling during hPSC neural differentiation induced upregulation of WDR62 with a corresponding increase in neural and glial progenitor markers, PAX6 and EAAT1, respectively. These findings may signify a role of WDR62 in specifying intermediate neural and glial progenitors during human pluripotent stem cell differentiation. PMID:28690640
Loor, Gabriel; Kondapalli, Jyothisri; Schriewer, Jacqueline M; Chandel, Navdeep S; Vanden Hoek, Terry L; Schumacker, Paul T
2010-12-15
Low levels of reactive oxygen species (ROS) can function as redox-active signaling messengers, whereas high levels of ROS induce cellular damage. Menadione generates ROS through redox cycling, and high concentrations trigger cell death. Previous work suggests that menadione triggers cytochrome c release from mitochondria, whereas other studies implicate the activation of the mitochondrial permeability transition pore as the mediator of cell death. We investigated menadione-induced cell death in genetically modified cells lacking specific death-associated proteins. In cardiomyocytes, oxidant stress was assessed using the redox sensor RoGFP, expressed in the cytosol or the mitochondrial matrix. Menadione elicited rapid oxidation in both compartments, whereas it decreased mitochondrial potential and triggered cytochrome c redistribution to the cytosol. Cell death was attenuated by N-acetylcysteine and exogenous glutathione or by overexpression of cytosolic or mitochondria-targeted catalase. By contrast, no protection was observed in cells overexpressing Cu,Zn-SOD or Mn-SOD. Overexpression of antiapoptotic Bcl-X(L) protected against staurosporine-induced cell death, but it failed to confer protection against menadione. Genetic deletion of Bax and Bak, cytochrome c, cyclophilin D, or caspase-9 conferred no protection against menadione-induced cell death. However, cells lacking PARP-1 showed a significant decrease in menadione-induced cell death. Thus, menadione induces cell death through the generation of oxidant stress in multiple subcellular compartments, yet cytochrome c, Bax/Bak, caspase-9, and cyclophilin D are dispensable for cell death in this model. These studies suggest that multiple redundant cell death pathways are activated by menadione, but that PARP plays an essential role in mediating each of them. Copyright © 2010 Elsevier Inc. All rights reserved.
Loor, Gabriel; Kondapalli, Jyothisri; Schriewer, Jacqueline M.; Chandel, Navdeep S.; Vanden Hoek, Terry L.; Schumacker, Paul T.
2010-01-01
Low levels of reactive oxygen species (ROS) can function as redox-active signaling messengers, whereas high levels of ROS induce cellular damage. Menadione generates ROS through redox cycling, and high concentrations trigger cell death. Previous work suggests that menadione triggers cytochrome c release from mitochondria, while other studies implicate activation of the mitochondrial permeability transition poreas the mediator of cell death. We investigated menadione-induced cell death in genetically modified cells lacking specific death-associated proteins. In cardiomyocytes, oxidant stress was assessed using the redox sensor RoGFP, expressed in the cytosol or the mitochondrial matrix. Menadione elicited rapid oxidation in both compartments, while it decreased mitochondrial potential and triggered cytochrome c redistribution to the cytosol. Cell death was attenuated by N-acetyl cysteine and exogenous glutathione (GSH), or by over-expression of cytosolic or mitochondria-targeted catalase. By contrast, no protection was observed in cells over-expressing Cu, Zn-SOD or MnSOD. Over-expression of antiapoptotic Bcl-XLprotected against staurosporine-induced cell death, but it failed to confer protection against menadione. Genetic deletion of Bax and Bak, cytochrome c, cyclophilin D or caspase-9 conferred no protection against menadione-induced cell death. However, cells lacking PARP-1 showed a significant decrease in menadione-induced cell death. Thus, menadione induces cell death through the generation of oxidant stress in multiple subcellular compartments, yet cytochromec, Bax/Bak, caspase-9 and cyclophilin D are dispensable for cell death in this model. These studies suggest that multiple redundant cell death pathways are activated by menadione, but that PARP plays an essential role in mediating each of them. PMID:20937380
Burchardt, Pawel; Rzezniczak, Janusz; Synowiec, Tomasz; Angerer, Dariusz; Palasz, Anna; Zurawski, Jakub
2016-01-01
To prevent contrast induced renal dysfunction a periprocedural prophylactic hydration is applied. Due to dilution it should cause a drop in serum creatinine concentration (SCR). Surprisingly, no reduction in SCR after contrast admission is found in up to 25% of patients as early as 12-18 hours after coronary angiography/angioplasty. This study aims to find a clinical explanation as well as predict circumstances for this phenomenon. Retrospective clinical and laboratory data was used from 341 patients who underwent elective coronary angiography/angioplasty, received a prophylactic hydration, and had serum creatinine concentration measured prior to, and 12-18 hours after invasive procedure with iodine contrast administration. To exclude an improper hydration due to no creatinine decrease, the number of red blood cells was analysed as well as hemoglobin and hematocrit in blood donations collected during the study time points. The resulting lack of serum creatinine reduction could be explained by dehydration (measured by increase in number of RBC, HGB and HCT) only in 13.5% , 10.8%, and 20% of cases, respectively. Any form of abnormal glucose metabolism combined with either baseline serum creatinine concentration <0.87 mg/dL or creatinine clearance >86.77 mL/min, or GFR by CKD EPI >80.08 mL/min/1.73 m2, or GFR by MDRD >74.48 mL/min/1.73 m2 were the predictors for no creatinine decrease at outcome. Additionally, it was demonstrated that the lack of creatinine decrease was more often observed among those patients whose initial renal function was better than in the subjects with reduction of SCR. This observation requires further prospective investigation on extended group of patients. © 2016 The Author(s) Published by S. Karger AG, Basel.
Zhang, Lin; Reckling, Stacie; Dean, Gregg A
2015-10-01
Numerous studies suggest dendritic cell (DC) dysfunction is central to the dysregulated immune response during HIV infection; however, in vivo studies are lacking. In the present study we used feline immunodeficiency virus (FIV) infection of cats as a model for HIV-1 infection to assess the maturation and function of dendritic cells, in vivo and in vitro. We compared CD1a+ DC migration, surface phenotype, endocytosis, mixed leukocyte reaction (MLR) and regulatory T cell (Treg) phenotype induction by CD1a+ cells isolated from lymph nodes of FIV-infected and control cats. Results showed that resident CD1a+ DC in lymph nodes of chronically FIV-infected cats are phenotypically mature, can stimulate normal primary T cell proliferation, override Treg suppression and do not skew toward Treg induction. In contrast, FIV infection had deleterious effects on antigen presentation and migratory capacity of CD1a+ cells in tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dekker, M; Brouwers, C; Aarts, M; van der Torre, J; de Vries, S; van de Vrugt, H; te Riele, H
2006-04-01
We have previously demonstrated that site-specific insertion, deletion or substitution of one or two nucleotides in mouse embryonic stem cells (ES cells) by single-stranded deoxyribo-oligonucleotides is several hundred-fold suppressed by DNA mismatch repair (MMR) activity. Here, we have investigated whether compound mismatches and larger insertions escape detection by the MMR machinery and can be effectively introduced in MMR-proficient cells. We identified several compound mismatches that escaped detection by the MMR machinery to some extent, but could not define general rules predicting the efficacy of complex base-pair substitutions. In contrast, we found that four-nucleotide insertions were largely subject to suppression by the MSH2/MSH3 branch of MMR and could be effectively introduced in Msh3-deficient cells. As these cells have no overt mutator phenotype and Msh3-deficient mice do not develop cancer, Msh3-deficient ES cells can be used for oligonucleotide-mediated gene disruption. As an example, we present disruption of the Fanconi anemia gene Fancf.
Korzelius, Jerome; The, Inge; Ruijtenberg, Suzan; Portegijs, Vincent; Xu, Huihong; Horvitz, H Robert; van den Heuvel, Sander
2011-02-15
DNA replication and its connection to M phase restraint are studied extensively at the level of single cells but rarely in the context of a developing animal. C. elegans lin-6 mutants lack DNA synthesis in postembryonic somatic cell lineages, while entry into mitosis continues. These mutants grow slowly and either die during larval development or develop into sterile adults. We found that lin-6 corresponds to mcm-4 and encodes an evolutionarily conserved component of the MCM2-7 pre-RC and replicative helicase complex. The MCM-4 protein is expressed in all dividing cells during embryonic and postembryonic development and associates with chromatin in late anaphase. Induction of cell cycle entry and differentiation continues in developing mcm-4 larvae, even in cells that went through abortive division. In contrast to somatic cells in mcm-4 mutants, the gonad continues DNA replication and cell division until late larval development. Expression of MCM-4 in the epidermis (also known as hypodermis) is sufficient to rescue the growth retardation and lethality of mcm-4 mutants. While the somatic gonad and germline show substantial ability to cope with lack of zygotic mcm-4 function, mcm-4 is specifically required in the epidermis for growth and survival of the whole organism. Thus, C. elegans mcm-4 has conserved functions in DNA replication and replication checkpoint control but also shows unexpected tissue-specific requirements. Copyright © 2010 Elsevier Inc. All rights reserved.
Korzelius, Jerome; The, Inge; Ruijtenberg, Suzan; Portegijs, Vincent; Xu, Huihong; Horvitz, H. Robert; van den Heuvel, Sander
2012-01-01
DNA replication and its connection to M phase restraint are studied extensively at the level of single cells but rarely in the context of a developing animal. C. elegans lin-6 mutants lack DNA synthesis in postembryonic somatic cell lineages, while entry into mitosis continues. These mutants grow slowly and either die during larval development or develop into sterile adults. We found that lin-6 corresponds to mcm-4 and encodes an evolutionarily conserved component of the MCM2-7 pre-RC and replicative helicase complex. The MCM-4 protein is expressed in all dividing cells during embryonic and postembryonic development and associates with chromatin in late anaphase. Induction of cell-cycle entry and differentiation continues in developing mcm-4 larvae, even in cells that went through abortive division. In contrast to somatic cells in mcm-4 mutants, the gonad continues DNA replication and cell division until late larval development. Expression of MCM-4 in the epidermis (also known as hypodermis) is sufficient to rescue the growth retardation and lethality of mcm-4 mutants. While the somatic gonad and germline show substantial ability to cope with lack of zygotic mcm-4 function, mcm-4 is specifically required in the epidermis for growth and survival of the whole organism. Thus, C. elegans mcm-4 has conserved functions in DNA replication and replication checkpoint control but also shows unexpected tissue-specific requirements. PMID:21146520
Attardo, Alessio; Calegari, Federico; Haubensak, Wulf; Wilsch-Bräuninger, Michaela; Huttner, Wieland B.
2008-01-01
The neurons of the mammalian brain are generated by progenitors dividing either at the apical surface of the ventricular zone (neuroepithelial and radial glial cells, collectively referred to as apical progenitors) or at its basal side (basal progenitors, also called intermediate progenitors). For apical progenitors, the orientation of the cleavage plane relative to their apical-basal axis is thought to be of critical importance for the fate of the daughter cells. For basal progenitors, the relationship between cell polarity, cleavage plane orientation and the fate of daughter cells is unknown. Here, we have investigated these issues at the very onset of cortical neurogenesis. To directly observe the generation of neurons from apical and basal progenitors, we established a novel transgenic mouse line in which membrane GFP is expressed from the beta-III-tubulin promoter, an early pan-neuronal marker, and crossed this line with a previously described knock-in line in which nuclear GFP is expressed from the Tis21 promoter, a pan-neurogenic progenitor marker. Mitotic Tis21-positive basal progenitors nearly always divided symmetrically, generating two neurons, but, in contrast to symmetrically dividing apical progenitors, lacked apical-basal polarity and showed a nearly randomized cleavage plane orientation. Moreover, the appearance of beta-III-tubulin–driven GFP fluorescence in basal progenitor-derived neurons, in contrast to that in apical progenitor-derived neurons, was so rapid that it suggested the initiation of the neuronal phenotype already in the progenitor. Our observations imply that (i) the loss of apical-basal polarity restricts neuronal progenitors to the symmetric mode of cell division, and that (ii) basal progenitors initiate the expression of neuronal phenotype already before mitosis, in contrast to apical progenitors. PMID:18545663
Lessons Learned about Neurodegeneration from Microglia and Monocyte Depletion Studies
Lund, Harald; Pieber, Melanie; Harris, Robert A.
2017-01-01
While bone marrow-derived Ly6Chi monocytes can infiltrate the central nervous system (CNS) they are developmentally and functionally distinct from resident microglia. Our understanding of the relative importance of these two populations in the distinct processes of pathogenesis and resolution of inflammation during neurodegenerative disorders was limited by a lack of tools to specifically manipulate each cell type. During recent years, the development of experimental cell-specific depletion models has enabled this issue to be addressed. Herein we compare and contrast the different depletion approaches that have been used, focusing on the respective functionalities of microglia and monocyte-derived macrophages in a range of neurodegenerative disease states, and discuss their prospects for immunotherapy. PMID:28804456
Lech, Maciej; Lorenz, Georg; Kulkarni, Onkar P; Grosser, Marian O O; Stigrot, Nora; Darisipudi, Murthy N; Günthner, Roman; Wintergerst, Maximilian W M; Anz, David; Susanti, Heni Eka; Anders, Hans-Joachim
2015-12-01
The NLRP3/ASC inflammasome drives host defence and autoinflammatory disorders by activating caspase-1 to trigger the secretion of mature interleukin (IL)-1β/IL-18, but its potential role in autoimmunity is speculative. We generated and phenotyped Nlrp3-deficient, Asc-deficient, Il-1r-deficient and Il-18-deficient C57BL/6-lpr/lpr mice, the latter being a mild model of spontaneous lupus-like autoimmunity. While lack of IL-1R or IL-18 did not affect the C57BL/6-lpr/lpr phenotype, lack of NLRP3 or ASC triggered massive lymphoproliferation, lung T cell infiltrates and severe proliferative lupus nephritis within 6 months, which were all absent in age-matched C57BL/6-lpr/lpr controls. Lack of NLRP3 or ASC increased dendritic cell and macrophage activation, the expression of numerous proinflammatory mediators, lymphocyte necrosis and the expansion of most T cell and B cell subsets. In contrast, plasma cells and autoantibody production were hardly affected. This unexpected immunosuppressive effect of NLRP3 and ASC may relate to their known role in SMAD2/3 phosphorylation during tumour growth factor (TGF)-β receptor signalling, for example, Nlrp3-deficiency and Asc-deficiency significantly suppressed the expression of numerous TGF-β target genes in C57BL/6-lpr/lpr mice and partially recapitulated the known autoimmune phenotype of Tgf-β1-deficient mice. These data identify a novel non-canonical immunoregulatory function of NLRP3 and ASC in autoimmunity. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
The Physiology of Phagocytosis in the Context of Mitochondrial Origin
Tielens, Aloysius G. M.; Mentel, Marek
2017-01-01
SUMMARY How mitochondria came to reside within the cytosol of their host has been debated for 50 years. Though current data indicate that the last eukaryote common ancestor possessed mitochondria and was a complex cell, whether mitochondria or complexity came first in eukaryotic evolution is still discussed. In autogenous models (complexity first), the origin of phagocytosis poses the limiting step at eukaryote origin, with mitochondria coming late as an undigested growth substrate. In symbiosis-based models (mitochondria first), the host was an archaeon, and the origin of mitochondria was the limiting step at eukaryote origin, with mitochondria providing bacterial genes, ATP synthesis on internalized bioenergetic membranes, and mitochondrion-derived vesicles as the seed of the eukaryote endomembrane system. Metagenomic studies are uncovering new host-related archaeal lineages that are reported as complex or phagocytosing, although images of such cells are lacking. Here we review the physiology and components of phagocytosis in eukaryotes, critically inspecting the concept of a phagotrophic host. From ATP supply and demand, a mitochondrion-lacking phagotrophic archaeal fermenter would have to ingest about 34 times its body weight in prokaryotic prey to obtain enough ATP to support one cell division. It would lack chemiosmotic ATP synthesis at the plasma membrane, because phagocytosis and chemiosmosis in the same membrane are incompatible. It would have lived from amino acid fermentations, because prokaryotes are mainly protein. Its ATP yield would have been impaired relative to typical archaeal amino acid fermentations, which involve chemiosmosis. In contrast, phagocytosis would have had great physiological benefit for a mitochondrion-bearing cell. PMID:28615286
Kido, Masahiro; Watanabe, Norihiko; Okazaki, Taku; Akamatsu, Takuji; Tanaka, Junya; Saga, Kazuyuki; Nishio, Akiyoshi; Honjo, Tasuku; Chiba, Tsutomu
2008-10-01
Because of the lack of animal models developing spontaneous autoimmune hepatitis (AIH), the molecular mechanisms involved in the development of AIH are still unclear. This study aims to examine the regulatory roles of naturally arising CD4(+)CD25(+) regulatory T (Treg) cells and programmed cell death 1 (PD-1)-mediated signaling in the development of AIH. To induce a concurrent loss of Treg cells and PD-1-mediated signaling, neonatal thymectomy (NTx), which severely reduces the number of Treg cells, was performed on PD-1(-/-) mice. After the NTx, we performed histologic examination, assessed autoantibody production and infiltrating cells in the liver, and conducted adoptive transfer experiments. In contrast to NTx mice and PD-1(-/-) mice, NTx-PD-1(-/-) mice produced antinuclear antibodies and developed fatal hepatitis characterized by a CD4(+) and CD8(+) T-cell infiltration invading the parenchyma with massive lobular necrosis. Induction of AIH in NTx-PD-1(-/-) mice was suppressed by transfer of Treg cells, even derived from PD-1(-/-) mice. Transfer of total but not CD4(+) T-cell-depleted splenocytes from NTx-PD-1(-/-) mice into RAG2(-/-) mice induced the development of severe hepatitis. In contrast, the transfer of CD8(+) T-cell-depleted splenocytes triggered only mononuclear infiltrates without massive necrosis of the parenchyma. NTx-PD-1(-/-) mice are the first mouse model of spontaneous fatal AIH. The concurrent loss of Treg cells and PD-1-mediated signaling can induce the development of fatal AIH. Autoreactive CD4(+) T cells are essential for induction of AIH, whereas CD8(+) T cells play an important role in progression to fatal hepatic damage.
Cell cycle re-entry sensitizes podocytes to injury induced death
Hagen, Manuel; Pfister, Eva; Kosel, Andrea; Shankland, Stuart; Pippin, Jeffrey; Amann, Kerstin; Daniel, Christoph
2016-01-01
ABSTRACT Podocytes are terminally differentiated renal cells, lacking the ability to regenerate by proliferation. However, during renal injury, podocytes re-enter into the cell cycle but fail to divide. Earlier studies suggested that re-entry into cell cycle results in loss of podocytes, but a direct evidence for this is lacking. Therefore, we established an in vitro model to test the consequences of re-entry into the cell cycle on podocyte survival. A mouse immortalized podocyte cell line was differentiated to non-permissive podocytes and stimulated with e.g. growth factors. Stimulated cells were analyzed for mRNA-expression or stained for cell cycle analysis using flow cytometry and immunocytofluorescence microscopy. After stimulation to re-entry into cell cycle, podocytes were stressed with puromycin aminonucleoside (PAN) and analyzed for survival. During permissive stage more than 40% of immortalized podocytes were in the S-phase. In contrast, S-phase in non-permissive differentiated podocytes was reduced to 5%. Treatment with b-FGF dose dependently induced re-entry into cell cycle increasing the number of podocytes in the S-phase to 10.7% at an optimal bFGF dosage of 10 ng/ml. Forty eight hours after stimulation with bFGF the number of bi-nucleated podocytes significantly increased. A secondary injury stimulus significantly reduced podocyte survival preferentially in bi-nucleated podocytes In conclusion, stimulation of podocytes using bFGF was able to induce re-entry of podocytes into the cell cycle and to sensitize the cells for cell death by secondary injuries. Therefore, this model is appropriate for testing new podocyte protective substances that can be used for therapy. PMID:27232327
Yokota, M; Tamachi, T; Yokoyama, Y; Maezawa, Y; Takatori, H; Suto, A; Suzuki, K; Hirose, K; Takeda, K; Nakajima, H
2017-07-01
In allergic asthma, environmental allergens including house dust mite (HDM) trigger pattern recognition receptors and activate downstream signaling pathways including NF-κB pathways not only in immune cells but also in airway epithelial cells. Recent studies have shown that NF-κB activation is regulated positively or negatively depending on the cellular context by IκBNS (encoded by the gene Nfkbid), one of atypical IκB proteins, in the nucleus. Therefore, we hypothesized that IκBNS expressed in immune cells or epithelial cells is involved in the regulation of asthmatic responses. To determine the roles of IκBNS in HDM-induced asthmatic responses. Roles of IκBNS in HDM-induced airway inflammation and airway hyper-responsiveness (AHR) were examined by using IκBNS-deficient (Nfkbid -/- ) mice. Roles of IκBNS expressed in hematopoietic cells and nonhematopoietic cells were separately evaluated by bone marrow chimeric mice. Roles of IκBNS expressed in murine tracheal epithelial cells (mTECs) were examined by air-liquid interface culture. House dust mite-induced airway inflammation and AHR were exacerbated in mice lacking IκBNS in hematopoietic cells. In contrast, HDM-induced airway inflammation was exacerbated, but AHR was attenuated in mice lacking IκBNS in nonhematopoietic cells. The induction of Muc5ac, a representative mucin in asthmatic airways, was reduced in Nfkbid -/- mTEC, whereas the induction of Spdef, a master regulator of goblet cell metaplasia, was not impaired in Nfkbid -/- mTEC. Moreover, IκBNS bound to and activated the MUC5AC distal promoter in epithelial cells. IκBNS is involved in inducing Muc5ac expression in lung epithelial cells and causing AHR in HDM-induced asthma models. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Bień, K; Sobańska, Z; Sokołowska, J; Bąska, P; Nowak, Z; Winnicka, A; Krzyzowska, M
2016-04-01
Ectromelia virus (ECTV) is an orthopoxvirus (OPV) that causes mousepox, the murine equivalent of human smallpox. Fas receptor-Fas ligand (FasL) signaling is involved in apoptosis of immune cells and virus-specific cytotoxicity. The Fas/FasL pathway also plays an important role in controlling the local inflammatory response during ECTV infection. Here, the immune response to the ECTV Moscow strain was examined in Fas (-) (lpr), FasL (-) (gld) and C57BL6 wild-type mice. During ECTV-MOS infection, Fas- and FasL mice showed increased viral titers, decreased total numbers of NK cells, CD4(+) and CD8(+) T cells followed by decreased percentages of IFN-γ expressing NK cells, CD4(+) and CD8(+) T cells in spleens and lymph nodes. At day 7 of ECTV-MOS infection, Fas- and FasL-deficient mice had the highest regulatory T cell (Treg) counts in spleen and lymph nodes in contrast to wild-type mice. Furthermore, at days 7 and 10 of the infection, we observed significantly higher numbers of PD-L1-expressing dendritic cells in Fas (-) and FasL (-) mice in comparison to wild-type mice. Experiments in co-cultures of CD4(+) T cells and bone-marrow-derived dendritic cells showed that the lack of bilateral Fas-FasL signalling led to expansion of Tregs. In conclusion, our results demonstrate that during ECTV infection, Fas/FasL can regulate development of tolerogenic DCs and Tregs, leading to an ineffective immune response.
Photoreceptor Cells With Profound Structural Deficits Can Support Useful Vision in Mice
Thompson, Stewart; Blodi, Frederick R.; Lee, Swan; Welder, Chris R.; Mullins, Robert F.; Tucker, Budd A.; Stasheff, Steven F.; Stone, Edwin M.
2014-01-01
Purpose. In animal models of degenerative photoreceptor disease, there has been some success in restoring photoreception by transplanting stem cell–derived photoreceptor cells into the subretinal space. However, only a small proportion of transplanted cells develop extended outer segments, considered critical for photoreceptor cell function. The purpose of this study was to determine whether photoreceptor cells that lack a fully formed outer segment could usefully contribute to vision. Methods. Retinal and visual function was tested in wild-type and Rds mice at 90 days of age (RdsP90). Photoreceptor cells of mice homozygous for the Rds mutation in peripherin 2 never develop a fully formed outer segment. The electroretinogram and multielectrode recording of retinal ganglion cells were used to test retinal responses to light. Three distinct visual behaviors were used to assess visual capabilities: the optokinetic tracking response, the discrimination-based visual water task, and a measure of the effect of vision on wheel running. Results. RdsP90 mice had reduced but measurable electroretinogram responses to light, and exhibited light-evoked responses in multiple types of retinal ganglion cells, the output neurons of the retina. In optokinetic and discrimination-based tests, acuity was measurable but reduced, most notably when contrast was decreased. The wheel running test showed that RdsP90 mice needed 3 log units brighter luminance than wild type to support useful vision (10 cd/m2). Conclusions. Photoreceptors that lack fully formed outer segments can support useful vision. This challenges the idea that normal cellular structure needs to be completely reproduced for transplanted cells to contribute to useful vision. PMID:24569582
Absence of tissue factor is characteristic of lymphoid malignancies of both T- and B-cell origin
Cesarman-Maus, Gabriela; Braggio, Esteban; Lome-Maldonado, Carmen; Morales-Leyte, Ana Lilia; Fonseca, Rafael
2014-01-01
Summary Background Thrombosis is a marker of poor prognosis in individuals with solid tumors. The expression of tissue factor (TF) on the cell surface membrane of malignant cells is a pivotal molecular link between activation of coagulation, angiogenesis, metastasis, aggressive tumor behavior and poor survival. Interestingly, thrombosis is associated with shortened survival in solid, but not in lymphoid neoplasias. Objectives We sought to study whether the lack of impact of thrombosis on survival in lymphoid neoplasias could be due to a lack of tumor-derived TF expression. Methods We analyzed TF gene (F3) expression in lymphoid (N=114), myeloid (N=49) and solid tumor (N=856) cell lines using the publicly available dataset from the Broad-Novartis Cancer Cell Line Encyclopedia (http://www.broadinstitute.org/ccle/home), and in 90 patient-derived lymphoma samples. TF protein expression was studied by immunohistochemistry (IHC). Results In sharp contrast to wide F3 expression in solid tumors (74.2%), F3 was absent in all low and high grade T- and B-cell lymphomas, and in most myeloid tumors, except for select acute myeloid leukemias with monocytic component. IHC confirmed the absence of TF protein in all indolent and high-grade B-cell (0/90) and T-cell (0/20) lymphomas, and acute leukemias (0/11). Conclusions We show that TF in lymphomas does not derive from the malignant cells, since these do not express either F3 or TF protein. Therefore, it is unlikely that thrombosis in patients with lymphoid neoplasms is secondary to tumor-derived tissue factor. PMID:24491425
Raaphorst, Frank M.; Vermeer, Maarten; Fieret, Elly; Blokzijl, Tjasso; Dukers, Danny; Sewalt, Richard G.A.B.; Otte, Arie P.; Willemze, Rein; Meijer, Chris J.L.M.
2004-01-01
Polycomb-group (PcG) genes preserve cell identity by gene silencing, and contribute to regulation of lymphopoiesis and malignant transformation. We show that primary nodal large B-cell lymphomas (LBCLs), and secondary cutaneous deposits from such lymphomas, abnormally express the BMI-1, RING1, and HPH1 PcG genes in cycling neoplastic cells. By contrast, tumor cells in primary cutaneous LBCLs lacked BMI-1 expression, whereas RING1 was variably detected. Lack of BMI-1 expression was characteristic for primary cutaneous LBCLs, because other primary extranodal LBCLs originating from brain, testes, and stomach were BMI-1-positive. Expression of HPH1 was rarely detected in primary cutaneous LBCLs of the head or trunk and abundant in primary cutaneous LBCLs of the legs, which fits well with its earlier recognition as a distinct clinical pathological entity with different clinical behavior. We conclude that clinically defined subclasses of primary LBCLs display site-specific abnormal expression patterns of PcG genes of the HPC-HPH/PRC1 PcG complex. Some of these patterns (such as the expression profile of BMI-1) may be diagnostically relevant. We propose that distinct expression profiles of PcG genes results in abnormal formation of HPC-HPH/PRC1 PcG complexes, and that this contributes to lymphomagenesis and different clinical behavior of clinically defined LBCLs. PMID:14742259
Persson, Andrea; Tykesson, Emil; Westergren-Thorsson, Gunilla; Malmström, Anders; Ellervik, Ulf; Mani, Katrin
2016-07-08
We previously reported that the xyloside 2-(6-hydroxynaphthyl) β-d-xylopyranoside (XylNapOH), in contrast to 2-naphthyl β-d-xylopyranoside (XylNap), specifically reduces tumor growth both in vitro and in vivo Although there are indications that this could be mediated by the xyloside-primed glycosaminoglycans (GAGs) and that these differ in composition depending on xyloside and cell type, detailed knowledge regarding a structure-function relationship is lacking. In this study we isolated XylNapOH- and XylNap-primed GAGs from a breast carcinoma cell line, HCC70, and a breast fibroblast cell line, CCD-1095Sk, and demonstrated that both XylNapOH- and XylNap-primed chondroitin sulfate/dermatan sulfate GAGs derived from HCC70 cells had a cytotoxic effect on HCC70 cells and CCD-1095Sk cells. The cytotoxic effect appeared to be mediated by induction of apoptosis and was inhibited in a concentration-dependent manner by the XylNap-primed heparan sulfate GAGs. In contrast, neither the chondroitin sulfate/dermatan sulfate nor the heparan sulfate derived from CCD-1095Sk cells primed on XylNapOH or XylNap had any effect on the growth of HCC70 cells or CCD-105Sk cells. These observations were related to the disaccharide composition of the XylNapOH- and XylNap-primed GAGs, which differed between the two cell lines but was similar when the GAGs were derived from the same cell line. To our knowledge this is the first report on cytotoxic effects mediated by chondroitin sulfate/dermatan sulfate. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
CD8 T cells protect adult naive mice from JEV-induced morbidity via lytic function
Chawla, Amanpreet Singh; Agrawal, Tanvi; Biswas, Moanaro; Vrati, Sudhanshu; Rath, Satyajit; George, Anna; Medigeshi, Guruprasad R.
2017-01-01
Following Japanese encephalitis virus (JEV) infection neutralizing antibodies are shown to provide protection in a significant proportion of cases, but not all, suggesting additional components of immune system might also contribute to elicit protective immune response. Here we have characterized the role of T cells in offering protection in adult mice infected with JEV. Mice lacking α/β–T cells (TCRβ–null) are highly susceptible and die over 10–18 day period as compared to the wild-type (WT) mice which are resistant. This is associated with high viral load, higher mRNA levels of proinflammatory cytokines and breach in the blood-brain-barrier (BBB). Infected WT mice do not show a breach in BBB; however, in contrast to TCRβ-null, they show the presence of T cells in the brain. Using adoptive transfer of cells with specific genetic deficiencies we see that neither the presence of CD4 T cells nor cytokines such as IL-4, IL-10 or interferon-gamma have any significant role in offering protection from primary infection. In contrast, we show that CD8 T cell deficiency is more critical as absence of CD8 T cells alone increases mortality in mice infected with JEV. Further, transfer of T cells from beige mice with defects in granular lytic function into TCRβ-null mice shows poor protection implicating granule-mediated target cell lysis as an essential component for survival. In addition, for the first time we report that γ/δ-T cells also make significant contribution to confer protection from JEV infection. Our data show that effector CD8 T cells play a protective role during primary infection possibly by preventing the breach in BBB and neuronal damage. PMID:28151989
CD8 T cells protect adult naive mice from JEV-induced morbidity via lytic function.
Jain, Nidhi; Oswal, Neelam; Chawla, Amanpreet Singh; Agrawal, Tanvi; Biswas, Moanaro; Vrati, Sudhanshu; Rath, Satyajit; George, Anna; Bal, Vineeta; Medigeshi, Guruprasad R
2017-02-01
Following Japanese encephalitis virus (JEV) infection neutralizing antibodies are shown to provide protection in a significant proportion of cases, but not all, suggesting additional components of immune system might also contribute to elicit protective immune response. Here we have characterized the role of T cells in offering protection in adult mice infected with JEV. Mice lacking α/β-T cells (TCRβ-null) are highly susceptible and die over 10-18 day period as compared to the wild-type (WT) mice which are resistant. This is associated with high viral load, higher mRNA levels of proinflammatory cytokines and breach in the blood-brain-barrier (BBB). Infected WT mice do not show a breach in BBB; however, in contrast to TCRβ-null, they show the presence of T cells in the brain. Using adoptive transfer of cells with specific genetic deficiencies we see that neither the presence of CD4 T cells nor cytokines such as IL-4, IL-10 or interferon-gamma have any significant role in offering protection from primary infection. In contrast, we show that CD8 T cell deficiency is more critical as absence of CD8 T cells alone increases mortality in mice infected with JEV. Further, transfer of T cells from beige mice with defects in granular lytic function into TCRβ-null mice shows poor protection implicating granule-mediated target cell lysis as an essential component for survival. In addition, for the first time we report that γ/δ-T cells also make significant contribution to confer protection from JEV infection. Our data show that effector CD8 T cells play a protective role during primary infection possibly by preventing the breach in BBB and neuronal damage.
Laser ablation of basal cell carcinomas guided by confocal microscopy
NASA Astrophysics Data System (ADS)
Sierra, Heidy; Cordova, Miguel; Nehal, Kishwer; Rossi, Anthony; Chen, Chih-Shan Jason; Rajadhyaksha, Milind
2016-02-01
Laser ablation offers precise and fast removal of superficial and early nodular types of basal cell carcinomas (BCCs). Nevertheless, the lack of histological confirmation has been a limitation. Reflectance confocal microscopy (RCM) imaging combined with a contrast agent can offer cellular-level histology-like feedback to detect the presence (or absence) of residual BCC directly on the patient. We conducted an ex vivo bench-top study to provide a set of effective ablation parameters (fluence, number of passes) to remove superficial BCCs while also controlling thermal coagulation post-ablation to allow uptake of contrast agent. The results for an Er:YAG laser (2.9 um and pulse duration 250us) show that with 6 passes of 25 J/cm2, thermal coagulation can be effectively controlled, to allow both the uptake of acetic acid (contrast agent) and detection of residual (or absence) BCCs. Confirmation was provided with histological examination. An initial in vivo study on 35 patients shows that the uptake of contrast agent aluminum chloride) and imaging quality is similar to that observed in the ex vivo study. The detection of the presence of residual tumor or complete clearance was confirmed in 10 wounds with (additional) histology and in 25 lesions with follow-up imaging. Our results indicate that resolution is sufficient but further development and use of appropriate contrast agent are necessary to improve sensitivity and specificity. Advances in RCM technology for imaging of lateral and deep margins directly on the patient may provide less invasive, faster and less expensive image-guided approaches for treatment of BCCs.
Kid-mediated chromosome compaction ensures proper nuclear envelope formation.
Ohsugi, Miho; Adachi, Kenjiro; Horai, Reiko; Kakuta, Shigeru; Sudo, Katsuko; Kotaki, Hayato; Tokai-Nishizumi, Noriko; Sagara, Hiroshi; Iwakura, Yoichiro; Yamamoto, Tadashi
2008-03-07
Toward the end of mitosis, neighboring chromosomes gather closely to form a compact cluster. This is important for reassembling the nuclear envelope around the entire chromosome mass but not individual chromosomes. By analyzing mice and cultured cells lacking the expression of chromokinesin Kid/kinesin-10, we show that Kid localizes to the boundaries of anaphase and telophase chromosomes and contributes to the shortening of the anaphase chromosome mass along the spindle axis. Loss of Kid-mediated anaphase chromosome compaction often causes the formation of multinucleated cells, specifically at oocyte meiosis II and the first couple of mitoses leading to embryonic death. In contrast, neither male meiosis nor somatic mitosis after the morula-stage is affected by Kid deficiency. These data suggest that Kid-mediated anaphase/telophase chromosome compaction prevents formation of multinucleated cells. This protection is especially important during the very early stages of development, when the embryonic cells are rich in ooplasm.
The haemagglutination activity of equine herpesvirus type 1 glycoprotein C.
Andoh, Kiyohiko; Hattori, Shiho; Mahmoud, Hassan Y A H; Takasugi, Maaya; Shimoda, Hiroshi; Bannai, Hiroshi; Tsujimura, Koji; Matsumura, Tomio; Kondo, Takashi; Kirisawa, Rikio; Mochizuki, Masami; Maeda, Ken
2015-01-02
Equine herpesvirus type 1 (EHV-1) has haemagglutination (HA) activity toward equine red blood cells (RBCs), but the identity of its haemagglutinin is unknown. To identify the haemagglutinin of EHV-1, the major glycoproteins of EHV-1 were expressed in 293T cells, and the cells or cell lysates were mixed with equine RBCs. The results showed that only EHV-1 glycoprotein C (gC)-producing cells adsorbed equine RBCs, and that the lysate of EHV-1 gC-expressing cells agglutinated equine RBCs. EHV-1 lacking gC did not show HA activity. HA activity was inhibited by monoclonal antibodies (MAbs) specific for gC, but not by antibodies directed against other glycoproteins. In addition, HA activity was not inhibited by the addition of heparin. These results indicate that EHV-1 gC can bind equine RBCs irrespective of heparin, in contrast to other herpesvirus gC proteins. Copyright © 2014 Elsevier B.V. All rights reserved.
Imaging enzyme-triggered self-assembly of small molecules inside live cells
Gao, Yuan; Shi, Junfeng; Yuan, Dan; Xu, Bing
2012-01-01
Self-assembly of small molecules in water to form nanofibers, besides generating sophisticated biomaterials, promises a simple system inside cells for regulating cellular processes. But lack of a convenient approach for studying the self-assembly of small molecules inside cells hinders the development of such systems. Here we report a method to image enzyme-triggered self-assembly of small molecules inside live cells. After linking a fluorophore to a self-assembly motif to make a precursor, we confirmed by 31P NMR and rheology that enzyme-triggered conversion of the precursor to a hydrogelator results in the formation of a hydrogel via self-assembly. The imaging contrast conferred by the nanofibers of the hydrogelators allowed the evaluation of intracellular self-assembly; the dynamics, and the localization of the nanofibers of the hydrogelators in live cells. This approach explores supramolecular chemistry inside cells and may lead to new insights, processes, or materials at the interface of chemistry and biology. PMID:22929790
Heme deficiency in erythroid lineage causes differentiation arrest and cytoplasmic iron overload.
Nakajima, O; Takahashi, S; Harigae, H; Furuyama, K; Hayashi, N; Sassa, S; Yamamoto, M
1999-01-01
Erythroid 5-aminolevulinate synthase (ALAS-E) catalyzes the first step of heme biosynthesis in erythroid cells. Mutation of human ALAS-E causes the disorder X-linked sideroblastic anemia. To examine the roles of heme during hematopoiesis, we disrupted the mouse ALAS-E gene. ALAS-E-null embryos showed no hemoglobinized cells and died by embryonic day 11.5, indicating that ALAS-E is the principal isozyme contributing to erythroid heme biosynthesis. In the ALAS-E-null mutant embryos, erythroid differentiation was arrested, and an abnormal hematopoietic cell fraction emerged that accumulated a large amount of iron diffusely in the cytoplasm. In contrast, we found typical ring sideroblasts that accumulated iron mostly in mitochondria in adult mice chimeric for ALAS-E-null mutant cells, indicating that the mode of iron accumulation caused by the lack of ALAS-E is different in primitive and definitive erythroid cells. These results demonstrate that ALAS-E, and hence heme supply, is necessary for differentiation and iron metabolism of erythroid cells. PMID:10562540
Salas, Eduardo; Roy, Srirupa; Marsh, Timothy; Rubin, Brian; Debnath, Jayanta
2015-01-01
Despite immense interest in employing antimalarials as autophagy inhibitors to treat cancer, it remains unclear if these agents act predominantly via autophagy inhibition or whether other pathways direct their anti-cancer properties. By comparing the treatment effects of the antimalarials chloroquine (CQ) and quinacrine (Q) on KRAS mutant lung cancer cells, we demonstrate that inhibition of the oxidative arm of the pentose phosphate pathway (oxPPP) is required for antimalarial induced apoptosis. Despite inhibiting autophagy, neither CQ treatment nor RNAi against autophagy regulators (ATGs) promote cell death. In contrast, Q triggers high levels of apoptosis, both in vitro and in vivo, and this phenotype requires both autophagy inhibition and p53-dependent inhibition of the oxPPP. Simultaneous genetic targeting of the oxPPP and autophagy is sufficient to trigger apoptosis in lung cancer cells, including cells lacking p53. Thus, in addition to reduced autophagy, oxPPP inhibition serves as an important determinant of antimalarial cytotoxicity in cancer cells. PMID:26434592
Gautam, Dinesh; Han, Sung-Jun; Hamdan, Fadi F; Jeon, Jongrye; Li, Bo; Li, Jian Hua; Cui, Yinghong; Mears, David; Lu, Huiyan; Deng, Chuxia; Heard, Thomas; Wess, Jürgen
2006-06-01
One of the hallmarks of type 2 diabetes is that pancreatic beta cells fail to release sufficient amounts of insulin in the presence of elevated blood glucose levels. Insulin secretion is modulated by many hormones and neurotransmitters including acetylcholine, the major neurotransmitter of the peripheral parasympathetic nervous system. The physiological role of muscarinic acetylcholine receptors expressed by pancreatic beta cells remains unclear at present. Here, we demonstrate that mutant mice selectively lacking the M3 muscarinic acetylcholine receptor subtype in pancreatic beta cells display impaired glucose tolerance and greatly reduced insulin release. In contrast, transgenic mice selectively overexpressing M3 receptors in pancreatic beta cells show a profound increase in glucose tolerance and insulin release. Moreover, these mutant mice are resistant to diet-induced glucose intolerance and hyperglycemia. These findings indicate that beta cell M3 muscarinic receptors play a key role in maintaining proper insulin release and glucose homeostasis.
Prakasam, Gopinath; Singh, Rajnish Kumar; Iqbal, Mohammad Askandar; Saini, Sunil Kumar; Tiku, Ashu Bhan; Bamezai, Rameshwar N K
2017-09-15
Preferential expression of the low-activity (dimeric) M2 isoform of pyruvate kinase (PK) over its constitutively active splice variant M1 isoform is considered critical for aerobic glycolysis in cancer cells. However, our results reported here indicate co-expression of PKM1 and PKM2 and their possible physical interaction in cancer cells. We show that knockdown of either PKM1 or PKM2 differentially affects net PK activity, viability, and cellular ATP levels of the lung carcinoma cell lines H1299 and A549. The stable knockdown of PK isoforms in A549 cells significantly reduced the cellular ATP level, whereas in H1299 cells the level of ATP was unaltered. Interestingly, the PKM1/2 knockdown in H1299 cells activated AMP-activated protein kinase (AMPK) signaling and stimulated mitochondrial biogenesis and autophagy to maintain energy homeostasis. In contrast, knocking down either of the PKM isoforms in A549 cells lacking LKB1, a serine/threonine protein kinase upstream of AMPK, failed to activate AMPK and sustain energy homeostasis and resulted in apoptosis. Moreover, in a similar genetic background of silenced PKM1 or PKM2, the knocking down of AMPKα1/2 catalytic subunit in H1299 cells induced apoptosis. Our findings help explain why previous targeting of PKM2 in cancer cells to control tumor growth has not met with the expected success. We suggest that this lack of success is because of AMPK-mediated energy metabolism rewiring, protecting cancer cell viability. On the basis of our observations, we propose an alternative therapeutic strategy of silencing either of the PKM isoforms along with AMPK in tumors. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Interleukin-4 production by Follicular Helper T cells requires the conserved Il4 enhancer HS V
Vijayanand, Pandurangan; Seumois, Grégory; Simpson, Laura J.; Abdul-Wajid, Sarah; Baumjohann, Dirk; Panduro, Marisella; Huang, Xiaozhu; Interlandi, Jeneen; Djuretic, Ivana M.; Brown, Daniel R.; Sharpe, Arlene H.; Rao, Anjana; Ansel, K. Mark
2012-01-01
SUMMARY Follicular helper T cells (Tfh cells) are the major producers of interleukin-4 (IL-4) in secondary lymphoid organs where humoral immune responses develop. Il4 regulation in Tfh cells appears distinct from the classical T helper 2 (Th2) cell pathway, but the underlying molecular mechanisms remain largely unknown. We found that HS V (also known as CNS2), a 3’ enhancer in the Il4 locus, is essential for IL-4 production by Tfh cells. Mice lacking HS V display marked defects in Th2 humoral immune responses, as evidenced by abrogated IgE and sharply reduced IgG1 production in vivo. In contrast, effector Th2 cells that are involved in tissue responses were far less dependent on HS V. HS V facilitated removal of repressive chromatin marks during Th2 and Tfh cell differentiation, and increased accessibility of the Il4 promoter. Thus Tfh and Th2 cells utilize distinct but overlapping molecular mechanisms to regulate Il4, a finding with important implications for understanding the molecular basis of Th2 mediated allergic diseases. PMID:22326582
Contrast Media Viscosity versus Osmolality in Kidney Injury: Lessons from Animal Studies
Seeliger, Erdmann; Lenhard, Diana C.; Persson, Pontus B.
2014-01-01
Iodinated contrast media (CM) can induce acute kidney injury (AKI). CM share common iodine-related cytotoxic features but differ considerably with regard to osmolality and viscosity. Meta-analyses of clinical trials generally failed to reveal renal safety differences of modern CM with regard to these physicochemical properties. While most trials' reliance on serum creatinine as outcome measure contributes to this lack of clinical evidence, it largely relies on the nature of prospective clinical trials: effective prophylaxis by ample hydration must be employed. In everyday life, patients are often not well hydrated; here we lack clinical data. However, preclinical studies that directly measured glomerular filtration rate, intrarenal perfusion and oxygenation, and various markers of AKI have shown that the viscosity of CM is of vast importance. In the renal tubules, CM become enriched, as water is reabsorbed, but CM are not. In consequence, tubular fluid viscosity increases exponentially. This hinders glomerular filtration and tubular flow and, thereby, prolongs intrarenal retention of cytotoxic CM. Renal cells become injured, which triggers hypoperfusion and hypoxia, finally leading to AKI. Comparisons between modern CM reveal that moderately elevated osmolality has a renoprotective effect, in particular, in the dehydrated state, because it prevents excessive tubular fluid viscosity. PMID:24707482
Biogovernance Beyond the State: The Shaping of Stem Cell Therapy by Patient Organizations in India.
Heitmeyer, Carolyn
2017-04-01
Public engagement through government-sponsored "public consultations" in biomedical innovation, specifically stem cell research and therapy, has been relatively limited in India. However, patient groups are drawing upon collaborations with medical practitioners to gain leverage in promoting biomedical research and the conditions under which patients can access experimental treatments. Based on qualitative fieldwork conducted between 2012 and 2015, I examine the ways in which two patient groups engaged with debates around how experimental stem cell therapy should be regulated, given the current lack of legally binding research guidelines. Such processes of engagement can be seen as an alternative form of biomedical governance which responds to the priorities and exigencies of Indian patients, contrasting with the current measures taken by the Indian state which, instead, are primarily directed at the global scientific and corporate world.
Klapperstück, Thomas; Glanz, Dagobert; Hanitsch, Stefan; Klapperstück, Manuela; Markwardt, Fritz; Wohlrab, Johannes
2013-07-01
Quantitative determinations of the cell membrane potential of lymphocytes (Wilson et al., J Cell Physiol 1985;125:72-81) and thymocytes (Krasznai et al., J Photochem Photobiol B 1995;28:93-99) using the anionic dye DiBAC4 (3) proved that dye depletion in the extracellular medium as a result of cellular uptake can be negligible over a wide range of cell densities. In contrast, most flow cytometric studies have not verified this condition but rather assumed it from the start. Consequently, the initially prepared extracellular dye concentration has usually been used for the calculation of the Nernst potential of the dye. In this study, however, external dye depletion could be observed in both large IGR-1 and small LCL-HO cells under experimental conditions, which have often been applied routinely in spectrofluorimetry and flow cytometry. The maximum cell density at which dye depletion could be virtually avoided was dependent on cell size and membrane potential and definitely needed to be taken into account to ensure reliable results. In addition, accepted calibration procedures based on the partition of sodium and potassium (Goldman-Hodgkin-Katz equation) or potassium alone (Nernst equation) were performed by flow cytometry on cell suspensions with an appropriately low cell density. The observed extensive lack of concordance between the correspondingly calculated membrane potential and the equilibrium potential of DiBAC4 (3) revealed that these methods require the additional measurement of cation parameters (membrane permeability and/or intracellular concentration). In contrast, due to the linear relation between fluorescence and low DiBAC4 (3) concentrations, the Nernst potential of the dye for totally depolarized cells can be reliably used for calibration with an essentially lower effort and expense. Copyright © 2013 International Society for Advancement of Cytometry.
Lin, J; Sun, T; Ji, L; Deng, W; Roth, J; Minna, J; Arlinghaus, R
2007-10-25
In lung cancer, frequent loss of one allele of chromosome 3p is seen in both small cell lung cancer and non-small cell lung cancer (NSCLC), providing evidence of tumor suppressor genes (TSGs) in this chromosomal region. The mechanism of Fus1 tumor suppressor activity is unknown. We have found that a Fus1 peptide inhibits the Abl tyrosine kinase in vitro (IC(50) 35 microM). The inhibitory Fus1 sequence was derived from a region that was deleted in a mutant FUS1 gene (FUS1 (1-80)) detected in some lung cancer cell lines. Importantly, a stearic acid-modified form of this peptide was required for the inhibition, but stearic acid alone was not inhibitory. Two NSCLC cell lines, which lack expression of wild-type Fus1, contain activated c-Abl. Forced expression of an inducible FUS1 cDNA in H1299 NSCLC cells decreased levels of activated c-Abl and inhibited its tyrosine kinase activity. Similarly, treatment of c-Abl immune complexes with the inhibitory Fus1 peptide also reduced the level of c-Abl in these immune complexes. The size and number of colonies of the NSCLC cell line, H1,299, in soft agar was strongly inhibited by the Abl kinase inhibitor imatinib mesylate. Co-expression of FUS1 and c-ABL in COS1 cells blocked activation of c-Abl tyrosine kinase. In contrast, co-expression of mutant FUS1 (1-80) with c-ABL had little inhibitory activity against c-Abl. These findings provide strong evidence that c-Abl is a possible target in NSCLC patients that have reduced expression of Fus1 in their tumor cells.
Central importance of immunoglobulin A in host defense against Giardia spp.
Langford, T Dianne; Housley, Michael P; Boes, Marianne; Chen, Jianzhu; Kagnoff, Martin F; Gillin, Frances D; Eckmann, Lars
2002-01-01
The protozoan pathogen Giardia is an important cause of parasitic diarrheal disease worldwide. It colonizes the lumen of the small intestine, suggesting that effective host defenses must act luminally. Immunoglobulin A (IgA) antibodies are presumed to be important for controlling Giardia infection, but direct evidence for this function is lacking. B-cell-independent effector mechanisms also exist and may be equally important for antigiardial host defense. To determine the importance of the immunoglobulin isotypes that are transported into the intestinal lumen, IgA and IgM, for antigiardial host defense, we infected gene-targeted mice lacking IgA-expressing B-cells, IgM-secreting B-cells, or all B-cells as controls with Giardia muris or Giardia lamblia GS/M-83-H7. We found that IgA-deficient mice could not eradicate either G. muris or G. lamblia infection, demonstrating that IgA is required for their clearance. Furthermore, although neither B-cell-deficient nor IgA-deficient mice could clear G. muris infections, IgA-deficient mice controlled infection significantly better than B-cell-deficient mice, suggesting the existence of B-cell-dependent but IgA-independent antigiardial defenses. In contrast, mice deficient for secreted IgM antibodies cleared G. muris infection normally, indicating that they have no unique functions in antigiardial host defense. These data, together with the finding that B-cell-deficient mice have some, albeit limited, residual capacity to control G. muris infection, show that IgA-dependent host defenses are central for eradicating Giardia spp. Moreover, B-cell-dependent but IgA-independent and B-cell-independent antigiardial host defenses exist but are less important for controlling infection.
Targeted suppression of autoreactive CD8+ T-cell activation using blocking anti-CD8 antibodies.
Clement, Mathew; Pearson, James A; Gras, Stephanie; van den Berg, Hugo A; Lissina, Anya; Llewellyn-Lacey, Sian; Willis, Mark D; Dockree, Tamsin; McLaren, James E; Ekeruche-Makinde, Julia; Gostick, Emma; Robertson, Neil P; Rossjohn, Jamie; Burrows, Scott R; Price, David A; Wong, F Susan; Peakman, Mark; Skowera, Ania; Wooldridge, Linda
2016-10-17
CD8 + T-cells play a role in the pathogenesis of autoimmune diseases such as multiple sclerosis and type 1 diabetes. However, drugs that target the entire CD8 + T-cell population are not desirable because the associated lack of specificity can lead to unwanted consequences, most notably an enhanced susceptibility to infection. Here, we show that autoreactive CD8 + T-cells are highly dependent on CD8 for ligand-induced activation via the T-cell receptor (TCR). In contrast, pathogen-specific CD8 + T-cells are relatively CD8-independent. These generic differences relate to an intrinsic dichotomy that segregates self-derived and exogenous antigen-specific TCRs according to the monomeric interaction affinity with cognate peptide-major histocompatibility complex class I (pMHCI). As a consequence, "blocking" anti-CD8 antibodies can suppress autoreactive CD8 + T-cell activation in a relatively selective manner. These findings provide a rational basis for the development and in vivo assessment of novel therapeutic strategies that preferentially target disease-relevant autoimmune responses within the CD8 + T-cell compartment.
Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria
Mistou, Michel-Yves; Sutcliffe, Iain C.; van Sorge, Nina M.
2016-01-01
The composition of the Gram-positive cell wall is typically described as containing peptidoglycan, proteins and essential secondary cell wall structures called teichoic acids, which comprise approximately half of the cell wall mass. The cell walls of many species within the genera Streptococcus, Enterococcus and Lactococcus contain large amounts of the sugar rhamnose, which is incorporated in cell wall-anchored polysaccharides (CWP) that possibly function as homologues of well-studied wall teichoic acids (WTA). The presence and chemical structure of many rhamnose-containing cell wall polysaccharides (RhaCWP) has sometimes been known for decades. In contrast to WTA, insight into the biosynthesis and functional role of RhaCWP has been lacking. Recent studies in human streptococcal and enterococcal pathogens have highlighted critical roles for these complex polysaccharides in bacterial cell wall architecture and pathogenesis. In this review, we provide an overview of the RhaCWP with regards to their biosynthesis, genetics and biological function in species most relevant to human health. We also briefly discuss how increased knowledge in this field can provide interesting leads for new therapeutic compounds and improve biotechnological applications. PMID:26975195
Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria.
Mistou, Michel-Yves; Sutcliffe, Iain C; van Sorge, Nina M
2016-07-01
The composition of the Gram-positive cell wall is typically described as containing peptidoglycan, proteins and essential secondary cell wall structures called teichoic acids, which comprise approximately half of the cell wall mass. The cell walls of many species within the genera Streptococcus, Enterococcus and Lactococcus contain large amounts of the sugar rhamnose, which is incorporated in cell wall-anchored polysaccharides (CWP) that possibly function as homologues of well-studied wall teichoic acids (WTA). The presence and chemical structure of many rhamnose-containing cell wall polysaccharides (RhaCWP) has sometimes been known for decades. In contrast to WTA, insight into the biosynthesis and functional role of RhaCWP has been lacking. Recent studies in human streptococcal and enterococcal pathogens have highlighted critical roles for these complex polysaccharides in bacterial cell wall architecture and pathogenesis. In this review, we provide an overview of the RhaCWP with regards to their biosynthesis, genetics and biological function in species most relevant to human health. We also briefly discuss how increased knowledge in this field can provide interesting leads for new therapeutic compounds and improve biotechnological applications. © FEMS 2016.
Capowski, E. E.; Martin, P.; Garvin, C.; Strome, S.
1991-01-01
To identify genes that encode maternal components required for development of the germ line in the nematode Caenorhabditis elegans, we have screened for mutations that confer a maternal-effect sterile or ``grandchildless'' phenotype: homozygous mutant hermaphrodites produced by heterozygous mothers are themselves fertile, but produce sterile progeny. Our screens have identified six loci, defined by 21 mutations. This paper presents genetic and phenotypic characterization of four of the loci. The majority of mutations, those in mes-2, mes-3 and mes-4, affect postembryonic germ-line development; the progeny of mutant mothers undergo apparently normal embryogenesis but develop into agametic adults with 10-1000-fold reductions in number of germ cells. In contrast, mutations in mes-1 cause defects in cytoplasmic partitioning during embryogenesis, and the resulting larvae lack germ-line progenitor cells. Mutations in all of the mes loci primarily affect the germ line, and none disrupt the structural integrity of germ granules. This is in contrast to grandchildless mutations in Drosophila melanogaster, all of which disrupt germ granules and affect abdominal as well as germ-line development. PMID:1783292
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asally, Munehiro; Yoneda, Yoshihiro
Nuclear accumulation of {beta}-catenin plays an important role in the Wnt signaling pathway. In the nucleus, {beta}-catenin acts as a transcriptional co-activator for TCF/LEF family of transcription factors. It has been shown that lef-1 contains a typical basic type nuclear localization signal (NLS) and is transported into the nucleus by the conventional import pathway. In this study, we found that a mutant lef-1 lacking the classical NLS accumulated in the nucleus of living cells, when {beta}-catenin was co-expressed. In addition, in a cell-free import assay, lef-1 migrated into the nucleus in the presence of {beta}-catenin alone without any other solublemore » factors. In contrast, another mutant lef-1 lacking the {beta}-catenin binding domain failed to migrate into the nucleus, even in the presence of {beta}-catenin. These findings indicate that {beta}-catenin alone can mediate the nuclear import of lef-1 through the direct binding. Collectively, we propose that there are two distinct pathways for the nuclear import of lef-1: importin {alpha}/{beta}-mediated and {beta}-catenin-mediated one, which provides a novel paradigm for Wnt signaling pathway.« less
[Neuroendocrine differentiation in prostate adenocarcinoma].
Ramírez-Balderrama, Lázaro; López-Briones, Sergio; Daza-Benítez, Leonel; Macías, Maciste H; López-Gaytán, Teresa; Pérez-Vázquez, Victoriano
2013-01-01
The human prostate is a gland composed of many types of cells and extracellular components with specific functions. The stromal compartment includes nerve tissue, fibroblasts, lymphocytes, macrophages, endothelial cells, and smooth muscular cells. The epithelial compartment is composed of luminal epithelial cells, basal cells, and a lesser number of neuroendocrine cells, which are transcendental in growth regulation, differentiation, and secretory function. In prostate cancer, neuroendocrine cells replicate especially in high grade and advanced stage, and hormonally treated tumoral cells adopt characteristics that make them resistant to hormonal deprivation. Androgen receptors have a crucial role in tumorigenesis of prostate adenocarcinoma. Deprivation hormone therapy blocks the expression of androgen receptors in the prostatic epithelial cells. Neuroendocrine cells lack androgen receptors; their growth is hormonally independent and that is why deprivation hormonal therapy does not eliminate the neoplasic neuroendocrine cells. In contrast, these types of cells proliferate after therapy and make a paracrine network, stimulating the proliferation of androgen-independent neoplastic cells, which finally lead to tumoral recurrence. In this work we describe the neuroendocrine function in normal tissue and in prostatic adenocarcinoma, including neoplasic proliferation stimulation, invasion, apoptosis resistance, and angiogenesis, and describe some molecular pathways involved in this neuroendocrine differentiation.
Yaginuma, Hideyuki; Kawai, Shinnosuke; Tabata, Kazuhito V.; Tomiyama, Keisuke; Kakizuka, Akira; Komatsuzaki, Tamiki; Noji, Hiroyuki; Imamura, Hiromi
2014-01-01
Recent advances in quantitative single-cell analysis revealed large diversity in gene expression levels between individual cells, which could affect the physiology and/or fate of each cell. In contrast, for most metabolites, the concentrations were only measureable as ensemble averages of many cells. In living cells, adenosine triphosphate (ATP) is a critically important metabolite that powers many intracellular reactions. Quantitative measurement of the absolute ATP concentration in individual cells has not been achieved because of the lack of reliable methods. In this study, we developed a new genetically-encoded ratiometric fluorescent ATP indicator “QUEEN”, which is composed of a single circularly-permuted fluorescent protein and a bacterial ATP binding protein. Unlike previous FRET-based indicators, QUEEN was apparently insensitive to bacteria growth rate changes. Importantly, intracellular ATP concentrations of numbers of bacterial cells calculated from QUEEN fluorescence were almost equal to those from firefly luciferase assay. Thus, QUEEN is suitable for quantifying the absolute ATP concentration inside bacteria cells. Finally, we found that, even for a genetically-identical Escherichia coli cell population, absolute concentrations of intracellular ATP were significantly diverse between individual cells from the same culture, by imaging QUEEN signals from single cells. PMID:25283467
Sidedness of Carbamazepine Accessibility to Voltage-Gated Sodium Channels
Jo, Sooyeon
2014-01-01
Voltage-gated sodium channels are inhibited by many local anesthetics, antiarrhythmics, and antiepileptic drugs. The local anesthetic lidocaine appears to be able to access its binding site in the sodium channel only from the membrane phase or from the internal face of the channel. In contrast, the antiepileptic drug carbamazepine was found to inhibit voltage-gated sodium channels only with external, but not internal, application, implying a major difference. We investigated this point using both whole-cell and inside-out patch recordings from human Nav1.7 channels in a stable cell line. In the whole-cell configuration, carbamazepine inhibited sodium current within seconds when applied externally, but had little or no effect when applied internally for up to 15 minutes, confirming previous results. However, carbamazepine inhibited sodium channels effectively and rapidly when applied to the internal face of the membrane using inside-out patch recording. We found that lidocaine also has little or no effect when applied intracellularly in whole-cell recording, but blocks effectively and rapidly when applied to the internal surface using inside-out patches. In contrast, the cationic lidocaine derivative QX-314 (N-ethyl-lidocaine) blocks effectively when applied internally with whole-cell dialysis, as well as when applied to inside-out patches. We conclude that carbamazepine and lidocaine access the sodium channel in similar ways and hypothesize that their lack of effect with internal dialysis in whole-cell recording reflects rapid exit through membrane near the pipette recording site. This effect likely limits the ability of any compound with significant membrane permeability to be applied intracellularly by whole-cell dialysis. PMID:24319110
Genome-Nuclear Lamina Interactions Regulate Cardiac Stem Cell Lineage Restriction.
Poleshko, Andrey; Shah, Parisha P; Gupta, Mudit; Babu, Apoorva; Morley, Michael P; Manderfield, Lauren J; Ifkovits, Jamie L; Calderon, Damelys; Aghajanian, Haig; Sierra-Pagán, Javier E; Sun, Zheng; Wang, Qiaohong; Li, Li; Dubois, Nicole C; Morrisey, Edward E; Lazar, Mitchell A; Smith, Cheryl L; Epstein, Jonathan A; Jain, Rajan
2017-10-19
Progenitor cells differentiate into specialized cell types through coordinated expression of lineage-specific genes and modification of complex chromatin configurations. We demonstrate that a histone deacetylase (Hdac3) organizes heterochromatin at the nuclear lamina during cardiac progenitor lineage restriction. Specification of cardiomyocytes is associated with reorganization of peripheral heterochromatin, and independent of deacetylase activity, Hdac3 tethers peripheral heterochromatin containing lineage-relevant genes to the nuclear lamina. Deletion of Hdac3 in cardiac progenitor cells releases genomic regions from the nuclear periphery, leading to precocious cardiac gene expression and differentiation into cardiomyocytes; in contrast, restricting Hdac3 to the nuclear periphery rescues myogenesis in progenitors otherwise lacking Hdac3. Our results suggest that availability of genomic regions for activation by lineage-specific factors is regulated in part through dynamic chromatin-nuclear lamina interactions and that competence of a progenitor cell to respond to differentiation signals may depend upon coordinated movement of responding gene loci away from the nuclear periphery. Copyright © 2017 Elsevier Inc. All rights reserved.
Non-equilibrium forces drive the anomalous diffusion of telomeres in the nucleus of mammalian cells
NASA Astrophysics Data System (ADS)
Stadler, Lorenz; Weiss, Matthias
2017-11-01
Telomeres are vital nucleotide sequences at both ends of each chromosome, and their motion reports on the local dynamics of decondensed chromatin in the nucleus of interphase cells. Here, we show that the previously reported subdiffusive motion of telomeres is driven by non-equilibrium cytoskeletal forces. In particular, breaking down microtubules leads to a significantly reduced generalized diffusion coefficient of telomeres. This translates into a markedly reduced effective temperature in the stochastic forces that govern the telomeres’ random walk. Moreover, telomere motion in cells that lack microtubules is well described by the monomer dynamics of a Rouse polymer that is embeddded in a viscoelastic medium. In contrast, active cytoskeletal forces in untreated cells override the environment’s elastic contributions, resulting in the well-known scaling for conventional Rouse dynamics in viscous media. Our data highlight that even subdiffusive motion in cells in most cases may not be a simple thermal transport process but rather is driven by non-equilibrium events.
Noncanonical autophagy inhibits the auto-inflammatory, lupus-like response to dying cells
Martinez, Jennifer; Cunha, Larissa D.; Park, Sunmin; Yang, Mao; Lu, Qun; Orchard, Robert; Li, Quan-Zhen; Yan, Mei; Janke, Laura; Guy, Cliff; Linkermann, Andreas; Virgin, Herbert W.; Green, Douglas R.
2016-01-01
Defects in dying cell clearance are postulated to underlie the pathogenesis of systemic lupus erythematosus (SLE)1. Mice lacking molecules associated with dying cell clearance develop SLE-like disease2, and phagocytes from SLE patients often display defective clearance and increased inflammatory cytokine production when exposed to dying cells in vitro. Previously, we3–6 and others7 described a form of noncanonical autophagy called “LC3-associated phagocytosis” (LAP), wherein phagosomes containing engulfed particles, including dying cells3,4,7, recruit elements of the autophagy pathway to facilitate phagosome maturation and digestion of cargo. Genome-wide association studies have identified polymorphisms in atg58 and possibly atg79, involved in both canonical autophagy and LAP3–7, as predisposition markers for SLE. Here, we describe the consequences of defective LAP in vivo. Mice lacking any of several components of the LAP pathway display elevated serum inflammatory cytokines, autoantibodies, glomerular immune complex deposition, and evidence of kidney damage. Dying cells, injected into LAP-deficient animals, are engulfed but not efficiently degraded, and trigger acute elevation of pro-inflammatory cytokines but not the anti-inflammatory interleukin (IL)-10. Repeated injection of dying cells into LAP-deficient, but not LAP-sufficient animals accelerated SLE-like disease, including increased serum levels of autoantibodies. In contrast, animals deficient for genes required for canonical autophagy but not LAP do not display defective dead cell clearance, inflammatory cytokine production, or SLE-like disease, and like wild-type animals, produce IL-10 in response to dying cells. Therefore, defects in LAP, rather than canonical autophagy, can cause SLE-like phenomena, and may contribute to the pathogenesis of SLE. PMID:27096368
The Rho regulator Myosin IXb enables nonlymphoid tissue seeding of protective CD8+ T cells.
Moalli, Federica; Ficht, Xenia; Germann, Philipp; Vladymyrov, Mykhailo; Stolp, Bettina; de Vries, Ingrid; Lyck, Ruth; Balmer, Jasmin; Fiocchi, Amleto; Kreutzfeldt, Mario; Merkler, Doron; Iannacone, Matteo; Ariga, Akitaka; Stoffel, Michael H; Sharpe, James; Bähler, Martin; Sixt, Michael; Diz-Muñoz, Alba; Stein, Jens V
2018-06-06
T cells are actively scanning pMHC-presenting cells in lymphoid organs and nonlymphoid tissues (NLTs) with divergent topologies and confinement. How the T cell actomyosin cytoskeleton facilitates this task in distinct environments is incompletely understood. Here, we show that lack of Myosin IXb (Myo9b), a negative regulator of the small GTPase Rho, led to increased Rho-GTP levels and cell surface stiffness in primary T cells. Nonetheless, intravital imaging revealed robust motility of Myo9b -/- CD8 + T cells in lymphoid tissue and similar expansion and differentiation during immune responses. In contrast, accumulation of Myo9b -/- CD8 + T cells in NLTs was strongly impaired. Specifically, Myo9b was required for T cell crossing of basement membranes, such as those which are present between dermis and epidermis. As consequence, Myo9b -/- CD8 + T cells showed impaired control of skin infections. In sum, we show that Myo9b is critical for the CD8 + T cell adaptation from lymphoid to NLT surveillance and the establishment of protective tissue-resident T cell populations. © 2018 Moalli et al.
IL-1β and IL-23 Promote Extrathymic Commitment of CD27+CD122− γδ T Cells to γδT17 Cells
2017-01-01
γδT17 cells are a subset of γδ T cells committed to IL-17 production and are characterized by the expression of IL-23R and CCR6 and lack of CD27 expression. γδT17 cells are believed to arise within a narrow time window during prenatal thymic development. In agreement with this concept, we show in this study that adult Rag1−/− recipient mice of Il23rgfp/+ (IL-23R reporter) bone marrow selectively lack IL-23R+ γδT17 cells. Despite their absence in secondary lymphoid tissues during homeostasis, γδT17 cells emerge in bone marrow chimeric mice upon induction of skin inflammation by topical treatment with imiquimod cream (Aldara). We demonstrate that IL-1β and IL-23 together are able to promote the development of bona fide γδT17 cells from peripheral CD122−IL-23R− γδ T cells, whereas CD122+ γδ T cells fail to convert into γδT17 cells and remain stable IFN-γ producers (γδT1 cells). IL-23 is instrumental in expanding extrathymically generated γδT17 cells. In particular, TCR-Vγ4+ chain–expressing CD122−IL-23R− γδ T cells are induced to express IL-23R and IL-17 outside the thymus during skin inflammation. In contrast, TCR-Vγ1+ γδ T cells largely resist this process because prior TCR engagement in the thymus has initiated their commitment to the γδT1 lineage. In summary, our data reveal that the peripheral pool of γδ T cells retains a considerable degree of plasticity because it harbors “naive” precursors, which can be induced to produce IL-17 and replenish peripheral niches that are usually occupied by thymus-derived γδT17 cells. PMID:28855314
Vidal, Guillaume; Ribas-Carbo, Miquel; Garmier, Marie; Dubertret, Guy; Rasmusson, Allan G; Mathieu, Chantal; Foyer, Christine H; De Paepe, Rosine
2007-02-01
Alternative oxidase (AOX) functions in stress resistance by preventing accumulation of reactive oxygen species (ROS), but little is known about in vivo partitioning of electron flow between AOX and the cytochrome pathway. We investigated the relationships between AOX expression and in vivo activity in Nicotiana sylvestris and the complex I-deficient CMSII mutant in response to a cell death elicitor. While a specific AOX1 isoform in the active reduced state was constitutively overexpressed in CMSII, partitioning through the alternative pathway was similar to the wild type. Lack of correlation between AOX content and activity indicates severe metabolic constraints in nonstressed mutant leaves. The bacterial elicitor harpin N(Ea) induced similar timing and extent of cell death and a twofold respiratory burst in both genotypes with little change in AOX amounts. However, partitioning to AOX was increased twofold in the wild type but remained unchanged in CMSII. Oxidative phosphorylation modeling indicated a twofold ATP increase in both genotypes. By contrast, mitochondrial superoxide dismutase activity and reduced forms of ascorbate and glutathione were higher in CMSII than in the wild type. These results demonstrate genetically programmed flexibility of plant respiratory routes and antioxidants in response to elicitors and suggest that sustained ATP production, rather than AOX activity by itself or mitochondrial ROS, might be important for in planta cell death.
Wound Healing Is Defective in Mice Lacking Tetraspanin CD151
Cowin, Allison J.; Adams, Damian; Geary, Sean M.; Wright, Mark D.; Jones, Jonathan C.R.; Ashman, Leonie K.
2010-01-01
The tetraspanin CD151 forms complexes in epithelial cell membranes with laminin-binding integrins α6 β4, α3 β1, and α6 β1, and modifies integrin-mediated cell migration in vitro. We demonstrate in this study that CD151 expression is upregulated in a distinct temporal and spatial pattern during wound healing, particularly in the migrating epidermal tongue at the wound edge, suggesting a role for CD151 in keratinocyte migration. We show that healing is significantly impaired in CD151-null mice, with wounds gaping wider at 7 days post-injury. The rate of re-epithelialization of the CD151-null wounds is adversely affected, with significantly less wound area being covered by migrating epidermal cells. Our studies reveal that although laminin levels are similar in wild-type and CD151-null wounds, the organization of the laminin in the basement membrane is impaired. Furthermore, upregulation of α6 and β4 integrin expression is adversely affected in CD151-null mice wounds. In contrast, we find no significant effect of CD151 gene knockout on α3 and β1 integrin expression in wound repair. We suggest that mice lacking the CD151 gene are defective in wound healing, primarily owing to impairment of the re-epithelialization process. This may be due to defective basement membrane formation and epithelial cell adhesion and migration. PMID:16410781
Mitochondrial fusion increases the mitochondrial DNA copy number in budding yeast.
Hori, Akiko; Yoshida, Minoru; Ling, Feng
2011-05-01
Mitochondrial fusion plays an important role in mitochondrial DNA (mtDNA) maintenance, although the underlying mechanisms are unclear. In budding yeast, certain levels of reactive oxygen species (ROS) can promote recombination-mediated mtDNA replication, and mtDNA maintenance depends on the homologous DNA pairing protein Mhr1. Here, we show that the fusion of isolated yeast mitochondria, which can be monitored by the bimolecular fluorescence complementation-derived green fluorescent protein (GFP) fluorescence, increases the mtDNA copy number in a manner dependent on Mhr1. The fusion event, accompanied by the degradation of dissociated electron transport chain complex IV and transient reductions in the complex IV subunits by the inner membrane AAA proteases such as Yme1, increases ROS levels. Analysis of the initial stage of mitochondrial fusion in early log-phase cells produced similar results. Moreover, higher ROS levels in mitochondrial fusion-deficient mutant cells increased the amount of newly synthesized mtDNA, resulting in increases in the mtDNA copy number. In contrast, reducing ROS levels in yme1 null mutant cells significantly decreased the mtDNA copy number, leading to an increase in cells lacking mtDNA. Our results indicate that mitochondrial fusion induces mtDNA synthesis by facilitating ROS-triggered, recombination-mediated replication and thereby prevents the generation of mitochondria lacking DNA. © 2011 The Authors. Journal compilation © 2011 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.
Surface receptors on human haematopoietic cell lines.
Huber, C; Sundström, C; Nilsson, K; Wigzell, H
1976-01-01
The expression of complement receptors, of Fc receptors, of SRBC receptors and of S-Ig was investigated on human haematopoietic cell lines of proved malignant derivation. According to their origin and to a panel of phenotypic markers these lines have been classified into lymphoma lines, myeloma lines and leukemia lines. Results were compared with those obtained on non-malignant EBV carrying lymphoblastoid cell lines (LCL). Among the lymphoid cell lines the LCL showed a pattern of B-lymphocyte surface markers, i.e. surface immunoglobulins, C3 receptors but low density of Fc receptors. The non-Burkitt lymphoma lines bore in varying degree these B-lymphocyte markers. The lines U-698 M and DG-75 were exceptional in having only surface immunoglobulin. The Burkitt lymphoma lines had all B-lymphocyte markers. The myeloma lines differed from the lymphoid lines in lacking C3 and Fc receptors and showed only trace amounts of surface immunoglobulins. In contrast to lymphoid and myeloma lines, the leukaemia lines were completely lacking surface immunoglobulins, but showed C3 and Fc receptors in variable densities. On line, the ALL derived line MOLT-3 showed the capacity to spontaneous rosette formation with SRBC. The findings that LCL presented a homogeneous pattern of B-lymphocyte surface markers may be of value in order to discriminate between these lines and lines derived from haematopoietic malignancies other than Burkitt lymphomas. PMID:963908
Resink, T J; Scott-Burden, T; Hahn, A W; Rouge, M; Hosang, M; Powell, J S; Bühler, F R
1990-01-01
Cultured vascular smooth muscle cells (VSMC)1 from spontaneously hypertensive rats (SHR) possess specific cell surface receptors for both homodimeric forms of platelet-derived growth factor (PDGF-AA and PDGF-BB), in contrast to cells from normotensive Wistar Kyoto (WKY) animals, which express receptors only for the B-chain form of PDGF. Stimulation of quiescent VSMC from SHR with PDGF-AA resulted in activation of S6-kinase and induction of phosphoinositide catabolism, as well as cellular proliferation when cultures were maintained for prolonged periods with daily supplementation of the growth factor. WKY-derived VSMC showed no response to PDGF-AA, which was consistent with their lack of specific receptors for this homodimer. The responsiveness of quiescent cells from SHR and WKY to the B-chain homodimer was similar. The enhanced growth responsiveness of SHR-derived cells to fetal calf serum, as compared with cells from their normotensive counterparts, may be accounted for in part by their expression of receptors for the AA homodimer of PDGF. PMID:1965150
Wagle, M; Eiring, A M; Wongchenko, M; Lu, S; Guan, Y; Wang, Y; Lackner, M; Amler, L; Hampton, G; Deininger, M W; O'Hare, T; Yan, Y
2016-01-01
Chronic myeloid leukemia (CML) patients who relapse on imatinib due to acquired ABL1 kinase domain mutations are successfully treated with second-generation ABL1-tyrosine kinase inhibitors (ABL-TKIs) such as dasatinib, nilotinib or ponatinib. However, ~40% of relapsed patients have uncharacterized BCR–ABL1 kinase-independent mechanisms of resistance. To identify these mechanisms of resistance and potential treatment options, we generated ABL-TKI-resistant K562 cells through prolonged sequential exposure to imatinib and dasatinib. Dual-resistant K562 cells lacked BCR–ABL1 kinase domain mutations, but acquired other genomic aberrations that were characterized by next-generation sequencing and copy number analyses. Proteomics showed that dual-resistant cells had elevated levels of FOXO1, phospho-ERK and BCL-2, and that dasatinib no longer inhibited substrates of the PI3K/AKT pathway. In contrast to parental cells, resistant cells were sensitive to growth inhibition and apoptosis induced by the class I PI3K inhibitor, GDC-0941 (pictilisib), which also induced FOXO1 nuclear translocation. FOXO1 was elevated in a subset of primary specimens from relapsed CML patients lacking BCR–ABL1 kinase domain mutations, and these samples were responsive to GDC-0941 treatment ex vivo. We conclude that elevated FOXO1 contributes to BCR–ABL1 kinase-independent resistance experienced by these CML patients and that PI3K inhibition coupled with BCR–ABL1 inhibition may represent a novel therapeutic approach. PMID:27044711
Wagle, M; Eiring, A M; Wongchenko, M; Lu, S; Guan, Y; Wang, Y; Lackner, M; Amler, L; Hampton, G; Deininger, M W; O'Hare, T; Yan, Y
2016-07-01
Chronic myeloid leukemia (CML) patients who relapse on imatinib due to acquired ABL1 kinase domain mutations are successfully treated with second-generation ABL1-tyrosine kinase inhibitors (ABL-TKIs) such as dasatinib, nilotinib or ponatinib. However, ~40% of relapsed patients have uncharacterized BCR-ABL1 kinase-independent mechanisms of resistance. To identify these mechanisms of resistance and potential treatment options, we generated ABL-TKI-resistant K562 cells through prolonged sequential exposure to imatinib and dasatinib. Dual-resistant K562 cells lacked BCR-ABL1 kinase domain mutations, but acquired other genomic aberrations that were characterized by next-generation sequencing and copy number analyses. Proteomics showed that dual-resistant cells had elevated levels of FOXO1, phospho-ERK and BCL-2, and that dasatinib no longer inhibited substrates of the PI3K/AKT pathway. In contrast to parental cells, resistant cells were sensitive to growth inhibition and apoptosis induced by the class I PI3K inhibitor, GDC-0941 (pictilisib), which also induced FOXO1 nuclear translocation. FOXO1 was elevated in a subset of primary specimens from relapsed CML patients lacking BCR-ABL1 kinase domain mutations, and these samples were responsive to GDC-0941 treatment ex vivo. We conclude that elevated FOXO1 contributes to BCR-ABL1 kinase-independent resistance experienced by these CML patients and that PI3K inhibition coupled with BCR-ABL1 inhibition may represent a novel therapeutic approach.
Savage, Natasha Saint; Walker, Tom; Wieckowski, Yana; Schiefelbein, John; Dolan, Liam; Monk, Nicholas A M
2008-09-23
The patterning of the Arabidopsis root epidermis depends on a genetic regulatory network that operates both within and between cells. Genetic studies have identified a number of key components of this network, but a clear picture of the functional logic of the network is lacking. Here, we integrate existing genetic and biochemical data in a mathematical model that allows us to explore both the sufficiency of known network interactions and the extent to which additional assumptions about the model can account for wild-type and mutant data. Our model shows that an existing hypothesis concerning the autoregulation of WEREWOLF does not account fully for the expression patterns of components of the network. We confirm the lack of WEREWOLF autoregulation experimentally in transgenic plants. Rather, our modelling suggests that patterning depends on the movement of the CAPRICE and GLABRA3 transcriptional regulators between epidermal cells. Our combined modelling and experimental studies show that WEREWOLF autoregulation does not contribute to the initial patterning of epidermal cell fates in the Arabidopsis seedling root. In contrast to a patterning mechanism relying on local activation, we propose a mechanism based on lateral inhibition with feedback. The active intercellular movements of proteins that are central to our model underlie a mechanism for pattern formation in planar groups of cells that is centred on the mutual support of two cell fates rather than on local activation and lateral inhibition.
Savage, Natasha Saint; Walker, Tom; Wieckowski, Yana; Schiefelbein, John; Dolan, Liam; Monk, Nicholas A. M
2008-01-01
The patterning of the Arabidopsis root epidermis depends on a genetic regulatory network that operates both within and between cells. Genetic studies have identified a number of key components of this network, but a clear picture of the functional logic of the network is lacking. Here, we integrate existing genetic and biochemical data in a mathematical model that allows us to explore both the sufficiency of known network interactions and the extent to which additional assumptions about the model can account for wild-type and mutant data. Our model shows that an existing hypothesis concerning the autoregulation of WEREWOLF does not account fully for the expression patterns of components of the network. We confirm the lack of WEREWOLF autoregulation experimentally in transgenic plants. Rather, our modelling suggests that patterning depends on the movement of the CAPRICE and GLABRA3 transcriptional regulators between epidermal cells. Our combined modelling and experimental studies show that WEREWOLF autoregulation does not contribute to the initial patterning of epidermal cell fates in the Arabidopsis seedling root. In contrast to a patterning mechanism relying on local activation, we propose a mechanism based on lateral inhibition with feedback. The active intercellular movements of proteins that are central to our model underlie a mechanism for pattern formation in planar groups of cells that is centred on the mutual support of two cell fates rather than on local activation and lateral inhibition. PMID:18816165
Single molecule analysis of B cell receptor motion during signaling activation
NASA Astrophysics Data System (ADS)
Rey Suarez, Ivan; Koo, Peter; Zhou, Shu; Wheatley, Brittany; Song, Wenxia; Mochrie, Simon; Upadhyaya, Arpita
B cells are an essential part of the adaptive immune system. They patrol the body for signs of infection in the form of antigen on the surface of antigen presenting cells. B cell receptor (BCR) binding to antigen induces a signaling cascade that leads to B cell activation and spreading. During activation, BCR form signaling microclusters that later coalesce as the cell contracts. We have studied the dynamics of BCRs on activated murine primary B cells using single particle tracking. The tracks are analyzed using perturbation expectation-maximization (pEM), a systems-level analysis, which allows identification of different short-time diffusive states from single molecule tracks. We identified four dominant diffusive states, two of which correspond to BCRs interacting with signaling molecules. For wild-type cells, the number of BCR in signaling states increases as the cell spreads and then decreases during cell contraction. In contrast, cells lacking the actin regulatory protein, N-WASP, are unable to contract and BCRs remain in the signaling states for longer times. These observations indicate that actin cytoskeleton dynamics modulate BCR diffusion and clustering. Our results provide novel information regarding the timescale of interaction between BCR and signaling molecules.
Rouhani, Sherin J; Eccles, Jacob D; Riccardi, Priscila; Peske, J David; Tewalt, Eric F; Cohen, Jarish N; Liblau, Roland; Mäkinen, Taija; Engelhard, Victor H
2015-04-10
Lymphatic endothelial cells (LECs) directly express peripheral tissue antigens and induce CD8 T-cell deletional tolerance. LECs express MHC-II molecules, suggesting they might also tolerize CD4 T cells. We demonstrate that when β-galactosidase (β-gal) is expressed in LECs, β-gal-specific CD8 T cells undergo deletion via the PD-1/PD-L1 and LAG-3/MHC-II pathways. In contrast, LECs do not present endogenous β-gal in the context of MHC-II molecules to β-gal-specific CD4 T cells. Lack of presentation is independent of antigen localization, as membrane-bound haemagglutinin and I-Eα are also not presented by MHC-II molecules. LECs express invariant chain and cathepsin L, but not H2-M, suggesting that they cannot load endogenous antigenic peptides onto MHC-II molecules. Importantly, LECs transfer β-gal to dendritic cells, which subsequently present it to induce CD4 T-cell anergy. Therefore, LECs serve as an antigen reservoir for CD4 T-cell tolerance, and MHC-II molecules on LECs are used to induce CD8 T-cell tolerance via LAG-3.
Rouhani, Sherin J.; Eccles, Jacob D.; Riccardi, Priscila; Peske, J. David; Tewalt, Eric F.; Cohen, Jarish N.; Liblau, Roland; Mäkinen, Taija; Engelhard, Victor H.
2015-01-01
Lymphatic endothelial cells (LECs) directly express peripheral tissue antigens and induce CD8 T-cell deletional tolerance. LECs express MHC-II molecules, suggesting they might also tolerize CD4 T cells. We demonstrate that when β-galactosidase (β-gal) is expressed in LECs, β-gal-specific CD8 T cells undergo deletion via the PD-1/PD-L1 and LAG-3/MHC-II pathways. In contrast, LECs do not present endogenous β-gal in the context of MHC-II molecules to β-gal-specific CD4 T cells. Lack of presentation is independent of antigen localization, as membrane-bound haemagglutinin and I-Eα are also not presented by MHC-II molecules. LECs express invariant chain and cathepsin L, but not H2-M, suggesting that they cannot load endogenous antigenic peptides onto MHC-II molecules. Importantly, LECs transfer β-gal to dendritic cells, which subsequently present it to induce CD4 T-cell anergy. Therefore, LECs serve as an antigen reservoir for CD4 T-cell tolerance, and MHC-II molecules on LECs are used to induce CD8 T-cell tolerance via LAG-3. PMID:25857745
Saito, Kohta; Warrier, Thulasi; Somersan-Karakaya, Selin; Kaminski, Lina; Mi, Jianjie; Jiang, Xiuju; Park, Suna; Shigyo, Kristi; Gold, Ben; Roberts, Julia; Weber, Elaina; Jacobs, William R; Nathan, Carl F
2017-06-13
Mycobacterium tuberculosis (Mtb) encounters stresses during the pathogenesis and treatment of tuberculosis (TB) that can suppress replication of the bacteria and render them phenotypically tolerant to most available drugs. Where studied, the majority of Mtb in the sputum of most untreated subjects with active TB have been found to be nonreplicating by the criterion that they do not grow as colony-forming units (cfus) when plated on agar. However, these cells are viable because they grow when diluted in liquid media. A method for generating such "differentially detectable" (DD) Mtb in vitro would aid studies of the biology and drug susceptibility of this population, but lack of independent confirmation of reported methods has contributed to skepticism about their existence. Here, we identified confounding artifacts that, when avoided, allowed development of a reliable method of producing cultures of ≥90% DD Mtb in starved cells. We then characterized several drugs according to whether they contribute to the generation of DD Mtb or kill them. Of the agents tested, rifamycins led to DD Mtb generation, an effect lacking in a rifampin-resistant strain with a mutation in rpoB , which encodes the canonical rifampin target, the β subunit of RNA polymerase. In contrast, thioridazine did not generate DD Mtb from starved cells but killed those generated by rifampin.
Cordelières, Fabrice P; Petit, Valérie; Kumasaka, Mayuko; Debeir, Olivier; Letort, Véronique; Gallagher, Stuart J; Larue, Lionel
2013-01-01
Cell migration is a key biological process with a role in both physiological and pathological conditions. Locomotion of cells during embryonic development is essential for their correct positioning in the organism; immune cells have to migrate and circulate in response to injury. Failure of cells to migrate or an inappropriate acquisition of migratory capacities can result in severe defects such as altered pigmentation, skull and limb abnormalities during development, and defective wound repair, immunosuppression or tumor dissemination. The ability to accurately analyze and quantify cell migration is important for our understanding of development, homeostasis and disease. In vitro cell tracking experiments, using primary or established cell cultures, are often used to study migration as cells can quickly and easily be genetically or chemically manipulated. Images of the cells are acquired at regular time intervals over several hours using microscopes equipped with CCD camera. The locations (x,y,t) of each cell on the recorded sequence of frames then need to be tracked. Manual computer-assisted tracking is the traditional method for analyzing the migratory behavior of cells. However, this processing is extremely tedious and time-consuming. Most existing tracking algorithms require experience in programming languages that are unfamiliar to most biologists. We therefore developed an automated cell tracking program, written in Java, which uses a mean-shift algorithm and ImageJ as a library. iTrack4U is a user-friendly software. Compared to manual tracking, it saves considerable amount of time to generate and analyze the variables characterizing cell migration, since they are automatically computed with iTrack4U. Another major interest of iTrack4U is the standardization and the lack of inter-experimenter differences. Finally, iTrack4U is adapted for phase contrast and fluorescent cells.
Hybrid system for in vivo real-time planar fluorescence and volumetric optoacoustic imaging
NASA Astrophysics Data System (ADS)
Chen, Zhenyue; Deán-Ben, Xosé Luís.; Gottschalk, Sven; Razansky, Daniel
2018-02-01
Fluorescence imaging is widely employed in all fields of cell and molecular biology due to its high sensitivity, high contrast and ease of implementation. However, the low spatial resolution and lack of depth information, especially in strongly-scattering samples, restrict its applicability for deep-tissue imaging applications. On the other hand, optoacoustic imaging is known to deliver a unique set of capabilities such as high spatial and temporal resolution in three dimensions, deep penetration and spectrally-enriched imaging contrast. Since fluorescent substances can generate contrast in both modalities, simultaneous fluorescence and optoacoustic readings can provide new capabilities for functional and molecular imaging of living organisms. Optoacoustic images can further serve as valuable anatomical references based on endogenous hemoglobin contrast. Herein, we propose a hybrid system for in vivo real-time planar fluorescence and volumetric optoacoustic tomography, both operating in reflection mode, which synergistically combines the advantages of stand-alone systems. Validation of the spatial resolution and sensitivity of the system were first carried out in tissue mimicking phantoms while in vivo imaging was further demonstrated by tracking perfusion of an optical contrast agent in a mouse brain in the hybrid imaging mode. Experimental results show that the proposed system effectively exploits the contrast mechanisms of both imaging modalities, making it especially useful for accurate monitoring of fluorescence-based signal dynamics in highly scattering samples.
Msanne, Joseph; Chen, Ming; Luttgeharm, Kyle D.; Bradley, Amanda M.; Mays, Elizabeth S.; Paper, Janet M.; Boyle, Daniel L.; Cahoon, Rebecca E.; Schrick, Kathrin; Cahoon, Edgar B.
2015-01-01
Summary Glucosylceramides (GlcCer), glucose-conjugated sphingolipids, are major components of the endomembrane system and plasma membrane in most eukaryote cells. Yet, the quantitative significance and cellular functions of GlcCer are not well characterized in plants and other multi-organ eukaryotes. To address this, we examined Arabidopsis lines lacking or deficient in GlcCer by insertional disruption or by RNAi suppression of the single gene for GlcCer synthase (GCS, At2g19880), the enzyme that catalyzes GlcCer synthesis. Null mutants for GCS (designated “gcs-1”) were viable as seedlings, albeit strongly reduced in size, and failed to develop beyond the seedling stage. Heterozygous plants harboring the insertion allele exhibited reduced transmission through the male gametophyte. Undifferentiated calli generated from gcs-1 seedlings and lacking GlcCer proliferated in a manner similar to calli from wild-type plants. However, gcs-1 calli, in contrast to wild-type calli, were unable to develop organs on differentiation media. Consistent with a role for GlcCer in organ-specific cell differentiation, calli from gcs-1 mutants formed roots and leaves on media supplemented with the glucosylated sphingosine glucopsychosine, which was readily converted to GlcCer independent of GCS. Underlying these phenotypes, gcs-1 cells had altered Golgi morphology and fewer cisternae per Golgi apparatus relative to wild-type cells, indicative of protein trafficking defects. Despite seedling lethality in the null mutant, GCS RNAi suppression lines with ≤2% of wild-type GlcCer levels were viable and fertile. Collectively, these results indicate that GlcCer are essential for cell-type differentiation and organogenesis, and plant cells produce GlcCer amounts in excess of that required for normal development. PMID:26313010
Mariga, Abigail; Mitre, Mariela; Chao, Moses V.
2017-01-01
Growth factor withdrawal has been studied across different species and has been shown to have dramatic consequences on cell survival. In the nervous system, withdrawal of nerve growth factor (NGF) from sympathetic and sensory neurons results in substantial neuronal cell death, signifying a requirement for NGF for the survival of neurons in the peripheral nervous system (PNS). In contrast to the PNS, withdrawal of central nervous system (CNS) enriched brain-derived neurotrophic factor (BDNF) has little effect on cell survival but is indispensible for synaptic plasticity. Given that most early events in neuropsychiatric disorders are marked by a loss of synapses, lack of BDNF may thus be an important part of a cascade of events that leads to neuronal degeneration. Here we review reports on the effects of BDNF withdrawal on CNS neurons and discuss the relevance of the loss in disease. PMID:27015693
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thai,V.; Renesto, P.; Fowler, C.
Although multiple viruses utilize host cell cyclophilins, including severe acute respiratory syndrome (SARS) and human immunodeficiency virus type-1(HIV-1), their role in infection is poorly understood. To help elucidate these roles, we have characterized the first virally encoded cyclophilin (mimicyp) derived from the largest virus discovered to date (the Mimivirus) that is also a causative agent of pneumonia in humans. Mimicyp adopts a typical cyclophilin-fold, yet it also forms trimers unlike any previously characterized homologue. Strikingly, immunofluorescence assays reveal that mimicyp localizes to the surface of the mature virion, as recently proposed for several viruses that recruit host cell cyclophilins suchmore » as SARS and HIV-1. Additionally mimicyp lacks peptidyl-prolyl isomerase activity in contrast to human cyclophilins. Thus, this study suggests that cyclophilins, whether recruited from host cells (ie HIV-1 and SARS) or virally encoded (ie Mimivirus), are localized on viral surfaces for at least a subset of viruses.« less
CED-9 and mitochondrial homeostasis in C. elegans muscle
Tan, Frederick J.; Husain, Michelle; Manlandro, Cara Marie; Koppenol, Marijke; Fire, Andrew Z.; Hill, R. Blake
2009-01-01
Summary Mitochondrial homeostasis reflects a dynamic balance between membrane fission and fusion events thought essential for mitochondrial function. We report here that altered expression of the C. elegans BCL2 homolog CED-9 affects both mitochondrial fission and fusion. Although striated muscle cells lacking CED-9 have no alteration in mitochondrial size or ultrastructure, these cells appear more sensitive to mitochondrial fragmentation. By contrast, increased CED-9 expression in these cells produces highly interconnected mitochondria. This mitochondrial phenotype is partially suppressed by increased expression of the dynamin-related GTPase DRP-1, with suppression dependent on the BH3 binding pocket of CED-9. This suppression suggests that CED-9 directly regulates DRP-1, a model supported by our finding that CED-9 activates the GTPase activity of human DRP1. Thus, CED-9 is capable of regulating the mitochondrial fission-fusion cycle but is not essential for either fission or fusion. PMID:18827010
From brain passage to cell adaptation: the road of human rabies vaccine development.
Wu, Xianfu; Smith, Todd G; Rupprecht, Charles E
2011-11-01
A major challenge for global rabies prevention and control is the lack of sufficient and affordable high quality vaccines. Such candidates should be pure, potent, safe, effective and economical to produce, with broad cross-reactivity against viral variants of public health and veterinary importance. The history of licensed human vaccines reviewed herein demonstrates clearly how the field has evolved to the current state of more passive development and postexposure management. Modern cell culture techniques provide adequate viral substrates for production of representative verified virus seeds. In contrast to outdated nervous tissue-based rabies vaccines, once a suitable substrate is identified, production of high titer virus results in a major qualitative and quantitative difference. Given the current scenario of only inactivated vaccines for humans, highly cell-adapted and stable, attenuated rabies viruses are ideal candidates for consideration to meet the need for seed viruses in the future.
An Examination of Adaptive Reversion in Saccharomyces Cerevisiae
Steele, D. F.; Jinks-Robertson, S.
1992-01-01
Reversion to Lys(+) prototrophy in a haploid yeast strain containing a defined lys2 frameshift mutation has been examined. When cells were plated on synthetic complete medium lacking only lysine, the numbers of Lys(+) revertant colonies accumulated in a time-dependent manner in the absence of any detectable increase in cell number. An examination of the distribution of the numbers of early appearing Lys(+) colonies from independent cultures suggests that the mutations to prototrophy occurred randomly during nonselective growth. In contrast, an examination of the distribution of late appearing Lys(+) colonies indicates that the underlying reversion events occurred after selective plating. No accumulation of Lys(+) revertants occurred when cells were starved for tryptophan, leucine or both lysine and tryptophan prior to plating selectively for Lys(+) revertants. These results indicate that mutations accumulate more frequently when they confer a selective advantage, and are thus consistent with the occurrence of adaptive mutations in yeast. PMID:1398066
Grove, Matthew
2014-01-01
Without Focal Adhesion Kinase (FAK), developing murine Schwann cells (SCs) proliferate poorly, sort axons inefficiently, and cannot myelinate peripheral nerves. Here we show that FAK is required for the development of SCs when their basal lamina (BL) is fragmentary, but not when it is mature in vivo. Mutant SCs fail to spread on fragmentary BL during development in vivo, and this is phenocopied by SCs lacking functional FAK on low laminin (LN) in vitro. Furthermore, SCs without functional FAK initiate differentiation prematurely, both in vivo and in vitro. In contrast to their behavior on high levels of LN, SCs lacking functional FAK grown on low LN display reduced spreading, proliferation, and indicators of contractility (i.e., stress fibers, arcs, and focal adhesions) and are primed to differentiate. Growth of SCs lacking functional FAK on increasing LN concentrations in vitro revealed that differentiation is not regulated by G1 arrest but rather by cell spreading and the level of contractile actomyosin. The importance of FAK as a critical regulator of the specific response of developing SCs to fragmentary BL was supported by the ability of adult FAK mutant SCs to remyelinate demyelinated adult nerves on mature BL in vivo. We conclude that FAK promotes the spreading and actomyosin contractility of immature SCs on fragmentary BL, thus maintaining their proliferation, and preventing differentiation until they reach high density, thereby promoting radial sorting. Hence, FAK has a critical role in the response of SCs to limiting BL by promoting proliferation and preventing premature SC differentiation. PMID:25274820
Chaabane, Wiem; Cieślar-Pobuda, Artur; El-Gazzah, Mohamed; Jain, Mayur V; Rzeszowska-Wolny, Joanna; Rafat, Mehrdad; Stetefeld, Joerg; Ghavami, Saeid; Los, Marek J
2014-09-01
The human gyrovirus derived protein Apoptin (HGV-Apoptin) a homologue of the chicken anemia virus Apoptin (CAV-Apoptin), a protein with high cancer cells selective toxicity, triggers apoptosis selectively in cancer cells. In this paper, we show that HGV-Apoptin acts independently from the death receptor pathway as it induces apoptosis in similar rates in Jurkat cells deficient in either FADD (fas-associated death domain) function or caspase-8 (key players of the extrinsic pathway) and their parental clones. HGV-Apoptin induces apoptosis via the activation of the mitochondrial intrinsic pathway. It induces both mitochondrial inner and outer membrane permebilization, characterized by the loss of the mitochondrial potential and the release into cytoplasm of the pro-apoptotic molecules including apoptosis inducing factor and cytochrome c. HGV-Apoptin acts via the apoptosome, as lack of expression of apoptotic protease-activating factor 1 in murine embryonic fibroblast strongly protected the cells from HGV-Apoptin-induced apoptosis. Moreover, QVD-oph a broad-spectrum caspase inhibitor delayed HGV-Apoptin-induced death. On the other hand, overexpression of the anti-apoptotic BCL-XL confers resistance to HGV-Apoptin-induced cell death. In contrast, cells that lack the expression of the pro-apoptotic BAX and BAK are protected from HGV-Apoptin induced apoptosis. Furthermore, HGV-Apoptin acts independently from p53 signal but triggers the cytoplasmic translocation of Nur77. Taking together these data indicate that HGV-Apoptin acts through the mitochondrial pathway, in a caspase-dependent manner but independently from the death receptor pathway. Copyright © 2014 Neoplasia Press, Inc. Published by Elsevier Inc. All rights reserved.
The cell proliferation antigen Ki-67 organises heterochromatin
Sobecki, Michal; Mrouj, Karim; Camasses, Alain; Parisis, Nikolaos; Nicolas, Emilien; Llères, David; Gerbe, François; Prieto, Susana; Krasinska, Liliana; David, Alexandre; Eguren, Manuel; Birling, Marie-Christine; Urbach, Serge; Hem, Sonia; Déjardin, Jérôme; Malumbres, Marcos; Jay, Philippe; Dulic, Vjekoslav; Lafontaine, Denis LJ; Feil, Robert; Fisher, Daniel
2016-01-01
Antigen Ki-67 is a nuclear protein expressed in proliferating mammalian cells. It is widely used in cancer histopathology but its functions remain unclear. Here, we show that Ki-67 controls heterochromatin organisation. Altering Ki-67 expression levels did not significantly affect cell proliferation in vivo. Ki-67 mutant mice developed normally and cells lacking Ki-67 proliferated efficiently. Conversely, upregulation of Ki-67 expression in differentiated tissues did not prevent cell cycle arrest. Ki-67 interactors included proteins involved in nucleolar processes and chromatin regulators. Ki-67 depletion disrupted nucleologenesis but did not inhibit pre-rRNA processing. In contrast, it altered gene expression. Ki-67 silencing also had wide-ranging effects on chromatin organisation, disrupting heterochromatin compaction and long-range genomic interactions. Trimethylation of histone H3K9 and H4K20 was relocalised within the nucleus. Finally, overexpression of human or Xenopus Ki-67 induced ectopic heterochromatin formation. Altogether, our results suggest that Ki-67 expression in proliferating cells spatially organises heterochromatin, thereby controlling gene expression. DOI: http://dx.doi.org/10.7554/eLife.13722.001 PMID:26949251
Dendritic cells control fibroblastic reticular network tension and lymph node expansion.
Acton, Sophie E; Farrugia, Aaron J; Astarita, Jillian L; Mourão-Sá, Diego; Jenkins, Robert P; Nye, Emma; Hooper, Steven; van Blijswijk, Janneke; Rogers, Neil C; Snelgrove, Kathryn J; Rosewell, Ian; Moita, Luis F; Stamp, Gordon; Turley, Shannon J; Sahai, Erik; Reis e Sousa, Caetano
2014-10-23
After immunogenic challenge, infiltrating and dividing lymphocytes markedly increase lymph node cellularity, leading to organ expansion. Here we report that the physical elasticity of lymph nodes is maintained in part by podoplanin (PDPN) signalling in stromal fibroblastic reticular cells (FRCs) and its modulation by CLEC-2 expressed on dendritic cells. We show in mouse cells that PDPN induces actomyosin contractility in FRCs via activation of RhoA/C and downstream Rho-associated protein kinase (ROCK). Engagement by CLEC-2 causes PDPN clustering and rapidly uncouples PDPN from RhoA/C activation, relaxing the actomyosin cytoskeleton and permitting FRC stretching. Notably, administration of CLEC-2 protein to immunized mice augments lymph node expansion. In contrast, lymph node expansion is significantly constrained in mice selectively lacking CLEC-2 expression in dendritic cells. Thus, the same dendritic cells that initiate immunity by presenting antigens to T lymphocytes also initiate remodelling of lymph nodes by delivering CLEC-2 to FRCs. CLEC-2 modulation of PDPN signalling permits FRC network stretching and allows for the rapid lymph node expansion--driven by lymphocyte influx and proliferation--that is the critical hallmark of adaptive immunity.
Functional analysis of the OCA-B promoter.
Stevens, S; Wang, L; Roeder, R G
2000-06-15
OCA-B was identified as a B cell-specific coactivator that functions with either Oct-1 or Oct-2 to mediate efficient cell type-specific transcription via the octamer site (ATGCAAAT) both in vivo and in vitro. Mice lacking OCA-B exhibit normal Ag-independent B cell maturation. In contrast, Ag-dependent functions, including production of secondary Ig isotypes and germinal center formation, are greatly affected. To better understand OCA-B expression and, ultimately, the defects observed in the OCA-B knockout mice, we have cloned the OCA-B promoter and examined its function in both transformed and primary B cells. We show here that the OCA-B promoter is developmentally regulated, with activity increasing throughout B cell differentiation. Through physical and functional assays, we have found an activating transcription factor/cAMP response element binding protein binding site (or cAMP response element) that is crucial for OCA-B promoter activity. Furthermore, we demonstrate that IL-4 and anti-CD40 induce both the OCA-B promoter and octamer-dependent promoters, thus implicating OCA-B in B cell signaling events in the nucleus.
Diversity in spatial scope of contrast adaptation among mouse retinal ganglion cells.
Khani, Mohammad Hossein; Gollisch, Tim
2017-12-01
Retinal ganglion cells adapt to changes in visual contrast by adjusting their response kinetics and sensitivity. While much work has focused on the time scales of these adaptation processes, less is known about the spatial scale of contrast adaptation. For example, do small, localized contrast changes affect a cell's signal processing across its entire receptive field? Previous investigations have provided conflicting evidence, suggesting that contrast adaptation occurs either locally within subregions of a ganglion cell's receptive field or globally over the receptive field in its entirety. Here, we investigated the spatial extent of contrast adaptation in ganglion cells of the isolated mouse retina through multielectrode-array recordings. We applied visual stimuli so that ganglion cell receptive fields contained regions where the average contrast level changed periodically as well as regions with constant average contrast level. This allowed us to analyze temporal stimulus integration and sensitivity separately for stimulus regions with and without contrast changes. We found that the spatial scope of contrast adaptation depends strongly on cell identity, with some ganglion cells displaying clear local adaptation, whereas others, in particular large transient ganglion cells, adapted globally to contrast changes. Thus, the spatial scope of contrast adaptation in mouse retinal ganglion cells appears to be cell-type specific. This could reflect differences in mechanisms of contrast adaptation and may contribute to the functional diversity of different ganglion cell types. NEW & NOTEWORTHY Understanding whether adaptation of a neuron in a sensory system can occur locally inside the receptive field or whether it always globally affects the entire receptive field is important for understanding how the neuron processes complex sensory stimuli. For mouse retinal ganglion cells, we here show that both local and global contrast adaptation exist and that this diversity in spatial scope can contribute to the functional diversity of retinal ganglion cell types. Copyright © 2017 the American Physiological Society.
Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism
Welty, Nathan E.; Staley, Christopher; Ghilardi, Nico; Sadowsky, Michael J.; Igyártó, Botond Z.
2013-01-01
Dendritic cells (DCs) in the intestinal lamina propria (LP) are composed of two CD103+ subsets that differ in CD11b expression. We report here that Langerin is expressed by human LP DCs and that transgenic human langerin drives expression in CD103+CD11b+ LP DCs in mice. This subset was ablated in huLangerin-DTA mice, resulting in reduced LP Th17 cells without affecting Th1 or T reg cells. Notably, cognate DC–T cell interactions were not required for Th17 development, as this response was intact in huLangerin-Cre I-Aβfl/fl mice. In contrast, responses to intestinal infection or flagellin administration were unaffected by the absence of CD103+CD11b+ DCs. huLangerin-DTA x BatF3−/− mice lacked both CD103+ LP DC subsets, resulting in defective gut homing and fewer LP T reg cells. Despite these defects in LP DCs and resident T cells, we did not observe alterations of intestinal microbial communities. Thus, CD103+ LP DC subsets control T cell homeostasis through both nonredundant and overlapping mechanisms. PMID:24019552
Bossi, E; Kohler, E; Herschkowitz, N
1989-11-01
In dissociated whole brain cell cultures from newborn mice, we have previously shown that during glucose deprivation under normoxia, D-beta-hydroxybutyrate and oleic acid are increasingly used for energy production. We now asked whether this glucose dependency of the utilization of D-beta-hydroxybutyrate and oleic acid as alternate energy fuels is also present after a hypoxic phase. 3-Hydroxy[3-14C]butyrate or [U-14C]oleic acid were added to 7- and 14-d-old cultures and 14CO2-production compared after hypoxia in normal and glucose-deprived conditions. After hypoxia, the ability of the cells 7 d in culture to increase D-beta-hydroxybutyrate consumption in response to glucose deprivation is diminished, 14-d-old cells lose this ability. In contrast, after hypoxia, both 7- and 14-d-old cultures maintain or even improve the ability to increase oleate consumption, when glucose is lacking.
Döpke, C; Fehr, M; Thiele, A; Pohlenz, J; Wohlsein, P
2007-07-01
Mammary tumour samples (11 surgical and five post-mortem) from 16 adult European hedgehogs submitted between 1980 and 2004 were examined. Histologically, the tumours were classified as simple tubulo-papillary carcinomas with local invasive growth. In six cases, tumour cell emboli were present in blood vessels or lymphatic vessels, or both. However, metastasis to regional lymph nodes was found only in one hedgehog. Malignant neoplastic epithelial cells were immunolabelled by antibodies specific for various cytokeratins (CKs), including CK1-8, 10, 13-16, 19 and 20. CK expression did not differ from that in normal mammary gland tissue. CK20 was expressed in the mammary tissue of hedgehogs, in contrast to that of dogs and cats; CK7 immunolabelling, however, which commonly occurs in mammary epithelial cells, was negative. CK20 expression, together with the lack of CK7 as determined by a protein-specific antibody, represented an important difference from the CK profile shown by mammary epithelial cells of other mammalian species, including the dog and cat.
Paessler, Slobodan; Yun, Nadezhda E.; Judy, Barbara M.; Dziuba, Natallia; Zacks, Michele A.; Grund, Anna H.; Frolov, Ilya; Campbell, Gerald A.; Weaver, Scott C.; Estes, D. Mark
2007-01-01
We evaluated the safety and immunogenicity of a chimeric alphavirus vaccine candidate in mice with selective immunodeficiencies. This vaccine candidate was highly attenuated in mice with deficiencies in the B and T cell compartments, as well as in mice with deficient gamma-interferon responsiveness. However, the level of protection varied among the strains tested. Wild type mice were protected against lethal VEEV challenge. In contrast, alpha/beta (αβ) TCR-deficient mice developed lethal encephalitis following VEEV challenge, while mice deficient in gamma/delta ( γδ) T cells were protected. Surprisingly, the vaccine potency was diminished by 50% in animals lacking interferon-gamma receptor alpha chain (R1)-chain and a minority of vaccinated immunoglobulin heavy chain-deficient (μMT) mice survived challenge, which suggests that neutralizing antibody may not be absolutely required for protection. Prolonged replication of encephalitic VEEV in the brain of pre-immunized mice is not lethal and adoptive transfer experiments indicate that CD3+ T cells are required for protection. PMID:17610927
Finite grid instability and spectral fidelity of the electrostatic Particle-In-Cell algorithm
Huang, C. -K.; Zeng, Y.; Wang, Y.; ...
2016-10-01
The origin of the Finite Grid Instability (FGI) is studied by resolving the dynamics in the 1D electrostatic Particle-In-Cell (PIC) model in the spectral domain at the single particle level and at the collective motion level. The spectral fidelity of the PIC model is contrasted with the underlying physical system or the gridless model. The systematic spectral phase and amplitude errors from the charge deposition and field interpolation are quantified for common particle shapes used in the PIC models. Lastly, it is shown through such analysis and in simulations that the lack of spectral fidelity relative to the physical systemmore » due to the existence of aliased spatial modes is the major cause of the FGI in the PIC model.« less
Chronic Lymphocytic Inflammation Specifies the Organ Tropism of Prions
NASA Astrophysics Data System (ADS)
Heikenwalder, Mathias; Zeller, Nicolas; Seeger, Harald; Prinz, Marco; Klöhn, Peter-Christian; Schwarz, Petra; Ruddle, Nancy H.; Weissmann, Charles; Aguzzi, Adriano
2005-02-01
Prions typically accumulate in nervous and lymphoid tissues. Because proinflammatory cytokines and immune cells are required for lymphoid prion replication, we tested whether inflammatory conditions affect prion pathogenesis. We administered prions to mice with five inflammatory diseases of the kidney, pancreas, or liver. In all cases, chronic lymphocytic inflammation enabled prion accumulation in otherwise prion-free organs. Inflammatory foci consistently correlated with lymphotoxin up-regulation and ectopic induction of FDC-M1+ cells expressing the normal cellular prion protein PrPC. By contrast, inflamed organs of mice lacking lymphotoxin-α or its receptor did not accumulate the abnormal isoform PrPSc, nor did they display infectivity upon prion inoculation. By expanding the tissue distribution of prions, chronic inflammatory conditions may act as modifiers of natural and iatrogenic prion transmission.
Finite grid instability and spectral fidelity of the electrostatic Particle-In-Cell algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, C. -K.; Zeng, Y.; Wang, Y.
The origin of the Finite Grid Instability (FGI) is studied by resolving the dynamics in the 1D electrostatic Particle-In-Cell (PIC) model in the spectral domain at the single particle level and at the collective motion level. The spectral fidelity of the PIC model is contrasted with the underlying physical system or the gridless model. The systematic spectral phase and amplitude errors from the charge deposition and field interpolation are quantified for common particle shapes used in the PIC models. Lastly, it is shown through such analysis and in simulations that the lack of spectral fidelity relative to the physical systemmore » due to the existence of aliased spatial modes is the major cause of the FGI in the PIC model.« less
Litts, Katie M.; Wang, Xiaolin; Clark, Mark E.; Owsley, Cynthia; Freund, K. Bailey; Curcio, Christine A.; Zhang, Yuhua
2016-01-01
Purpose To investigate the microscopic structure of outer retinal tubulation (ORT) and optical properties of cone photoreceptors in vivo, we studied ORT appearance by multimodal imaging, including spectral domain optical coherence tomography (SD-OCT) and adaptive optics scanning laser ophthalmoscopy (AOSLO). Methods Four eyes of 4 subjects with advanced AMD underwent color fundus photography, infrared reflectance imaging, SD-OCT, and AOSLO with a high-resolution research instrument. ORT was identified in closely spaced (11 μm) SD-OCT volume scans. Results ORT in cross-sectional and en face SD-OCT was a hyporeflective area representing a lumen surrounded by a hyperreflective border consisting of cone photoreceptor mitochondria and external limiting membrane, per previous histology. In contrast, ORT by AOSLO was a hyporeflective structure of the same shape as in en face SD-OCT but lacking visualizable cone photoreceptors. Conclusion Lack of ORT cone reflectivity by AOSLO indicates that cones have lost their normal directionality and waveguiding property due to loss of outer segments and subsequent retinal remodeling. Reflective ORT cones by SD-OCT, in contrast, may depend partly on mitochondria as light scatterers within inner segments of these degenerating cells, a phenomenon enhanced by coherent imaging. Multimodal imaging of ORT provides insight into cone degeneration and reflectivity sources in OCT. PMID:27584549
Mitochondrial fission proteins regulate programmed cell death in yeast.
Fannjiang, Yihru; Cheng, Wen-Chih; Lee, Sarah J; Qi, Bing; Pevsner, Jonathan; McCaffery, J Michael; Hill, R Blake; Basañez, Gorka; Hardwick, J Marie
2004-11-15
The possibility that single-cell organisms undergo programmed cell death has been questioned in part because they lack several key components of the mammalian cell death machinery. However, yeast encode a homolog of human Drp1, a mitochondrial fission protein that was shown previously to promote mammalian cell death and the excessive mitochondrial fragmentation characteristic of apoptotic mammalian cells. In support of a primordial origin of programmed cell death involving mitochondria, we found that the Saccharomyces cerevisiae homolog of human Drp1, Dnm1, promotes mitochondrial fragmentation/degradation and cell death following treatment with several death stimuli. Two Dnm1-interacting factors also regulate yeast cell death. The WD40 repeat protein Mdv1/Net2 promotes cell death, consistent with its role in mitochondrial fission. In contrast to its fission function in healthy cells, Fis1 unexpectedly inhibits Dnm1-mediated mitochondrial fission and cysteine protease-dependent cell death in yeast. Furthermore, the ability of yeast Fis1 to inhibit mitochondrial fission and cell death can be functionally replaced by human Bcl-2 and Bcl-xL. Together, these findings indicate that yeast and mammalian cells have a conserved programmed death pathway regulated by a common molecular component, Drp1/Dnm1, that is inhibited by a Bcl-2-like function.
Investigation of the Cell Surface Proteome of Human Periodontal Ligament Stem Cells
Xiong, Jimin; Menicanin, Danijela; Marino, Victor
2016-01-01
The present study examined the cell surface proteome of human periodontal ligament stem cells (PDLSC) compared to human fibroblasts. Cell surface proteins were prelabelled with CyDye before processing to extract the membrane lysates, which were separated using 2D electrophoresis. Selected differentially expressed protein “spots” were identified using Mass spectrometry. Four proteins were selected for validation: CD73, CD90, Annexin A2, and sphingosine kinase 1 previously associated with mesenchymal stem cells. Flow cytometric analysis found that CD73 and CD90 were highly expressed by human PDLSC and gingival fibroblasts but not by keratinocytes, indicating that these antigens could be used as potential markers for distinguishing between mesenchymal cells and epithelial cell populations. Annexin A2 was also found to be expressed at low copy number on the cell surface of human PDLSC and gingival fibroblasts, while human keratinocytes lacked any cell surface expression of Annexin A2. In contrast, sphingosine kinase 1 expression was detected in all the cell types examined using immunocytochemical analysis. These proteomic studies form the foundation to further define the cell surface protein expression profile of PDLSC in order to better characterise this cell population and help develop novel strategies for the purification of this stem cell population. PMID:27579043
Investigation of the Cell Surface Proteome of Human Periodontal Ligament Stem Cells.
Xiong, Jimin; Menicanin, Danijela; Zilm, Peter S; Marino, Victor; Bartold, P Mark; Gronthos, Stan
2016-01-01
The present study examined the cell surface proteome of human periodontal ligament stem cells (PDLSC) compared to human fibroblasts. Cell surface proteins were prelabelled with CyDye before processing to extract the membrane lysates, which were separated using 2D electrophoresis. Selected differentially expressed protein "spots" were identified using Mass spectrometry. Four proteins were selected for validation: CD73, CD90, Annexin A2, and sphingosine kinase 1 previously associated with mesenchymal stem cells. Flow cytometric analysis found that CD73 and CD90 were highly expressed by human PDLSC and gingival fibroblasts but not by keratinocytes, indicating that these antigens could be used as potential markers for distinguishing between mesenchymal cells and epithelial cell populations. Annexin A2 was also found to be expressed at low copy number on the cell surface of human PDLSC and gingival fibroblasts, while human keratinocytes lacked any cell surface expression of Annexin A2. In contrast, sphingosine kinase 1 expression was detected in all the cell types examined using immunocytochemical analysis. These proteomic studies form the foundation to further define the cell surface protein expression profile of PDLSC in order to better characterise this cell population and help develop novel strategies for the purification of this stem cell population.
Huang, Shih-Horng; Wu, Jiahn-Chun; Hwang, Ra-Der; Yeo, Hui-Lin; Wang, Seu-Mei
2003-09-01
Cellular junctions play important roles in cell differentiation, signal transduction, and cell function. This study investigated their function in steroid secretion by adrenal cells. Immunofluorescence staining revealed the presence of gap junctions and adherens junctions between adrenal cells. The major gap junction protein, connexin43, was seen as a linear dotted pattern of the typical gap junction plaques, in contrast to alpha-, beta-, and gamma-catenin, which were seen as continuous, linear staining of cell-cell adherens junction. Treatment with 18beta-glycyrrhetinic acid, a gap junction inhibitor, reduced the immunoreactivity of these proteins in a time- and dose-dependent manner, and caused the gap junction and adherens junction to separate longitudinally from the cell-cell contact sites, indicating the structural interdependency of these two junctions. Interestingly, 18beta-glycyrrhetinic acid stimulated a two- to three-fold increase in steroid production in these adrenal cells lacking intact cell junctions. These data raise the question of the necessity for cell communication for the endocrine function of adrenal cells. Pharmacological analyses indicated that the steroidogenic effect of 18beta-glycyrrhetinic acid was partially mediated by extracellular signal-related kinase and calcium/calmodulin-dependent kinase, a pathway distinct from the protein kinase A signaling pathway already known to mediate steroidogenesis in adrenal cells. Copyright 2003 Wiley-Liss, Inc.
Lu, Zhaohui; Korotcova, Ludmila; Murata, Akira; Ishibashi, Nobuyuki; Jonas, Richard A
2014-06-01
Lack of availability of aprotinin has resulted in increased clinical use of the alternative antifibrinolytic agents, ε-aminocaproic acid (EACA) and tranexamic acid (TXA), which are known to be associated with an increased risk of seizures. In contrast, aprotinin has previously been demonstrated to be neuroprotective through suppression of excitotoxicity-mediated neuronal degeneration via the extracellular plasminogen/plasmin system. This study compares the effect of antifibrinolytic agents on neuronal and mixed glial/neuronal cell cultures. Mixed cortical cultures containing neuronal and glial cells were prepared from fetal mice and plated on a layer of confluent astrocytes from postnatal pups. A primary neuronal culture was obtained from the same gestational stage and plated in multiwall vessels. Slowly triggered excitotoxicity was induced by 24-hour exposure to 12.5 mM N-methyl-D-aspartate (NMDA). Apoptotic neuronal cell death was induced by exposure of primary neural cultures to 24 hours of serum deprivation. Compared with NMDA alone, no significant changes in cell death were observed for any dose of TXA or EACA in mixed cultures. Conversely, a clinical dose of aprotinin significantly reduced cell death by -31% on average. Aprotinin reduced apoptotic neuronal cell death from 75% to 37.3%, and to 34.1% at concentrations of 100 and 200 kIU/mL, respectively, and significantly decreased neuronal nuclear damage. These concentrations of aprotinin significantly inhibited caspase 9 and 3/7 activations; 250 kIU/mL aprotinin exerted maximal protection on primary cortical neurons. In contrast to aprotinin, EACA and TXA exert no protective effect against excitotoxic neuronal injury that can occur during cardiac surgery. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Lu, Zhaohui; Korotcova, Ludmila; Murata, Akira; Ishibashi, Nobuyuki; Jonas, Richard A.
2013-01-01
Objective Lack of availability of aprotinin has resulted in increased clinical use of the alternative antifibrinolytic agents epsilon aminocaproic acid (EACA) and tranexamic acid (TXA) which are known to be associated with an increased risk of seizures. In contrast aprotinin has previously been demonstrated to be neuroprotective through suppression of excitotoxicity-mediated neuronal degeneration via the extracellular plasminogen/plasmin system. We compared the impact of antifibrinolytic agents on neuronal and mixed glial/neuronal cell cultures. Methods Mixed cortical cultures containing neuronal and glial cells were prepared from fetal mice and plated on a layer of confluent astrocytes from postnatal pups. Primary neuronal culture was obtained from the same gestational stage and plated in multiwall vessels. Slowly triggered excitotoxicity was induced by 24-hour exposure to 12.5 mM N-methyl-D-aspartate (NMDA). Apoptotic neuronal cell death was induced by exposure of primary neural cultures to 24 hours of serum deprivation. Results Compared to NMDA alone, no significant changes in cell death were observed for any dose of TXA or EACA in mixed cultures. Conversely, a clinical dose of aprotinin significantly reduced cell death by -31% on average. Aprotinin reduced apoptotic neuronal cell death from 75% to 37.3%, and 34.1% at concentrations of 100 and 200 KIU/mL, and significantly decreased neuronal nuclear damage. These concentrations of aprotinin significantly inhibited caspase 9 and 3/7 activations. 250 KIU/ml aprotinin exerted maximal protection on primary cortical neurons. Conclusions In contrast to aprotinin, EACA and TXA exert no protective effect against excitotoxic neuronal injury that can occur during cardiac surgery. PMID:24237885
Takeda, Kazuhisa; Hozumi, Hiroki; Ohba, Koji; Yamamoto, Hiroaki; Shibahara, Shigeki
2016-01-01
Microphthalmia-associated transcription factor (Mitf) is a key regulator for differentiation of melanoblasts, precursors to melanocytes. The mouse homozygous for the black-eyed white (Mitfmi-bw) allele is characterized by the white-coat color and deafness with black eyes due to the lack of melanocytes. The Mitfmi-bw allele carries LINE-1, a retrotransposable element, which results in the Mitf deficiency. Here, we have established the black spotting mouse that was spontaneously arisen from the homozygous Mitfmi-bw mouse lacking melanocytes. The black spotting mouse shows multiple black patches on the white coat, with age-related graying. Importantly, each black patch also contains hair follicles lacking melanocytes, whereas the white-coat area completely lacks melanocytes. RT-PCR analyses of the pigmented patches confirmed that the LINE-1 insertion is retained in the Mitf gene of the black spotting mouse, thereby excluding the possibility of the somatic reversion of the Mitfmi-bw allele. The immunohistochemical analysis revealed that the staining intensity for beta-catenin was noticeably lower in hair follicles lacking melanocytes of the homozygous Mitfmi-bw mouse and the black spotting mouse, compared to the control mouse. In contrast, the staining intensity for beta-catenin and cyclin D1 was higher in keratinocytes of the black spotting mouse, compared to keratinocytes of the control mouse and the Mitfmi-bw mouse. Moreover, the keratinocyte layer appears thicker in the Mitfmi-bw mouse, with the overexpression of Ki-67, a marker for cell proliferation. We also show that the presumptive black spots are formed by embryonic day 15.5. Thus, the black spotting mouse provides the unique model to explore the molecular basis for the survival and death of developing melanoblasts and melanocyte stem cells in the epidermis. These results indicate that follicular melanocytes are responsible for maintaining the epidermal homeostasis; namely, the present study has provided evidence for the link between melanocyte development and the epidermal microenvironment.
Laser speckle contrast imaging of skin blood perfusion responses induced by laser coagulation
NASA Astrophysics Data System (ADS)
Ogami, M.; Kulkarni, R.; Wang, H.; Reif, R.; Wang, R. K.
2014-08-01
We report application of laser speckle contrast imaging (LSCI), i.e., a fast imaging technique utilising backscattered light to distinguish such moving objects as red blood cells from such stationary objects as surrounding tissue, to localise skin injury. This imaging technique provides detailed information about the acute perfusion response after a blood vessel is occluded. In this study, a mouse ear model is used and pulsed laser coagulation serves as the method of occlusion. We have found that the downstream blood vessels lacked blood flow due to occlusion at the target site immediately after injury. Relative flow changes in nearby collaterals and anastomotic vessels have been approximated based on differences in intensity in the nearby collaterals and anastomoses. We have also estimated the density of the affected downstream vessels. Laser speckle contrast imaging is shown to be used for highresolution and fast-speed imaging for the skin microvasculature. It also allows direct visualisation of the blood perfusion response to injury, which may provide novel insights to the field of cutaneous wound healing.
Desensitization and Tolerance of Mu Opioid Receptors on Pontine Kölliker-Fuse Neurons.
Levitt, Erica S; Williams, John T
2018-01-01
Acute desensitization of mu opioid receptors is thought to be an initial step in the development of tolerance to opioids. Given the resistance of the respiratory system to develop tolerance, desensitization of neurons in the Kölliker-Fuse (KF), a key area in the respiratory circuit, was examined. The activation of G protein-coupled inwardly rectifying potassium current was measured using whole-cell voltage-clamp recordings from KF and locus coeruleus (LC) neurons contained in acute rat brain slices. A saturating concentration of the opioid agonist [Met 5 ]-enkephalin (ME) caused significantly less desensitization in KF neurons compared with LC neurons. In contrast to LC, desensitization in KF neurons was not enhanced by activation of protein kinase C or in slices from morphine-treated rats. Cellular tolerance to ME and morphine was also lacking in KF neurons from morphine-treated rats. The lack of cellular tolerance in KF neurons correlates with the relative lack of tolerance to the respiratory depressant effect of opioids. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.
Zhou, Youping; Stuart-Williams, Hilary; Farquhar, Graham D; Hocart, Charles H
2010-06-01
Qualitative and quantitative understanding of the chemical linkages between the three major biochemical components (cellulose, hemicellulose and lignin) of plant cell walls is crucial to the understanding of cell wall structure. Although there is convincing evidence for chemical bonds between hemicellulose and lignin and the absence of chemical bonds between hemicellulose and cellulose, there is no conclusive evidence for the presence of covalent bonds between cellulose and lignin. This is caused by the lack of selectivity of current GC/MS-, NMR- and IR-based methods for lignin characterisation as none of these techniques directly targets the possible ester and ether linkages between lignin and cellulose. We modified the widely-accepted "standard" three-step extraction method for isolating cellulose from plants by changing the order of the steps for hemicellulose and lignin removal (solubilisation with concentrated NaOH and oxidation with acetic acid-containing NaClO(2), respectively) so that cellulose and lignin could be isolated with the possible chemical bonds between them intact. These linkages were then cleaved with NaClO(2) reagent in aqueous media of contrasting (18)O/(16)O ratios. We produced cellulose with higher purity (a lower level of residual hemicellulose and no detectable lignin) than that produced by the "standard" method. Oxidative artefacts may potentially be introduced at the lignin removal stage; but testing showed this to be minimal. Cellulose samples isolated from processing plant-derived cellulose-lignin mixtures in media of contrasting (18)O/(16)O ratios were compared to provide the first quantitative evidence for the presence of oxygen-containing ester and ether bonds between cellulose and lignin in Zea mays leaves. However, no conclusive evidence for the presence or lack of similar bonds in Araucaria cunninghamii wood was obtained. Copyright 2010 Elsevier Ltd. All rights reserved.
Tomlinson, P. B.; Huggett, Brett A.
2011-01-01
Background and Aims Conifers are characterized by the paucity of axillary buds which in dicotyledonous trees usually occur at every node. To compensate, conifers also produce ‘axillary meristems’, which may be stimulated to late development. In juvenile material of Wollemia nobilis (Araucariaceae: Massart's model) first-order (plagiotropic) branches lack both axillary buds and, seemingly, axillary meristems. This contrasts with orthotropic (trunk) axes, which produce branches, either within the terminal bud or as reiterated orthotropic axes originating from axillary meristems. However, plagiotropic axes do produce branches if they are decapitated. This study investigated how this can occur if axillary meristems are not the source. Methods The terminal buds of a series of plagiotropic branches on juvenile trees were decapitated in order to generate axillary shoots. Shoots were culled at about weekly intervals to obtain stages in lateral shoot development. Serial sections were cut with a sliding microtome from the distal end of each sample and scanned sequentially for evidence of axillary meristems and early bud development. Key Results Anatomical search produced no clear evidence of pre-existing axillary meristems but did reveal stages of bud initiation. Buds were initiated in a group of small starch-rich cortical cells. Further development involved de-differentiation of these small cells and the development of contrasting outer and inner regions. The outer part becomes meristematic and organizes the apex of the new branch. The inner part develops a callus-like tissue of vacuolated cells within which vascular cambia are developed. This kind of insertion of a branch on the parent axis seems not to have been described before. Conclusions Axillary meristems in Wollemia characterize the leaf axils of trunk axes so that the origin of reiterated shoots is clear. Plagiotropic axes seemingly lack axillary meristems but still produce axillary branches by distinctive developmental processes. These observations demonstrate limited understanding of branch initiation in trees generally. PMID:21335327
Yan, C; Wang, P; DeMayo, J; DeMayo, F J; Elvin, J A; Carino, C; Prasad, S V; Skinner, S S; Dunbar, B S; Dube, J L; Celeste, A J; Matzuk, M M
2001-06-01
Knockout mouse technology has been used over the last decade to define the essential roles of ovarian-expressed genes and uncover genetic interactions. In particular, we have used this technology to study the function of multiple members of the transforming growth factor-beta superfamily including inhibins, activins, and growth differentiation factor 9 (GDF-9 or Gdf9). Knockout mice lacking GDF-9 are infertile due to a block in folliculogenesis at the primary follicle stage. In addition, recombinant GDF-9 regulates multiple cumulus granulosa cell functions in the periovulatory period including hyaluronic acid synthesis and cumulus expansion. We have also cloned an oocyte-specific homolog of GDF-9 from mice and humans, which is termed bone morphogenetic protein 15 (BMP-15 or Bmp15). To define the function of BMP-15 in mice, we generated embryonic stem cells and knockout mice, which have a null mutation in this X-linked gene. Male chimeric and Bmp15 null mice are normal and fertile. In contrast to Bmp15 null males and Gdf9 knockout females, Bmp15 null females (Bmp15(-/-)) are subfertile and usually have minimal ovarian histopathological defects, but demonstrate decreased ovulation and fertilization rates. To further decipher possible direct or indirect genetic interactions between GDF-9 and BMP-15, we have generated double mutant mice lacking one or both alleles of these related homologs. Double homozygote females (Bmp15(-/-)Gdf9(-/-)) display oocyte loss and cysts and resemble Gdf9(-/-) mutants. In contrast, Bmp15(-/-)Gdf9(+/-) female mice have more severe fertility defects than Bmp15(-/-) females, which appear to be due to abnormalities in ovarian folliculogenesis, cumulus cell physiology, and fertilization. Thus, the dosage of intact Bmp15 and Gdf9 alleles directly influences the destiny of the oocyte during folliculogenesis and in the periovulatory period. These studies have important implications for human fertility control and the maintenance of fertility and normal ovarian physiology.
Vadivelu, Raja K.; Ooi, Chin H.; Yao, Rebecca-Qing; Tello Velasquez, Johana; Pastrana, Erika; Diaz-Nido, Javier; Lim, Filip; Ekberg, Jenny A. K.; Nguyen, Nam-Trung; St John, James A.
2015-01-01
We describe a novel protocol for three-dimensional culturing of olfactory ensheathing cells (OECs), which can be used to understand how OECs interact with other cells in three dimensions. Transplantation of OECs is being trialled for repair of the paralysed spinal cord, with promising but variable results and thus the therapy needs improving. To date, studies of OEC behaviour in a multicellular environment have been hampered by the lack of suitable three-dimensional cell culture models. Here, we exploit the floating liquid marble, a liquid droplet coated with hydrophobic powder and placed on a liquid bath. The presence of the liquid bath increases the humidity and minimises the effect of evaporation. Floating liquid marbles allow the OECs to freely associate and interact to produce OEC spheroids with uniform shapes and sizes. In contrast, a sessile liquid marble on a solid surface suffers from evaporation and the cells aggregate with irregular shapes. We used floating liquid marbles to co-culture OECs with Schwann cells and astrocytes which formed natural structures without the confines of gels or bounding layers. This protocol can be used to determine how OECs and other cell types associate and interact while forming complex cell structures. PMID:26462469
NASA Astrophysics Data System (ADS)
Vadivelu, Raja K.; Ooi, Chin H.; Yao, Rebecca-Qing; Tello Velasquez, Johana; Pastrana, Erika; Diaz-Nido, Javier; Lim, Filip; Ekberg, Jenny A. K.; Nguyen, Nam-Trung; St John, James A.
2015-10-01
We describe a novel protocol for three-dimensional culturing of olfactory ensheathing cells (OECs), which can be used to understand how OECs interact with other cells in three dimensions. Transplantation of OECs is being trialled for repair of the paralysed spinal cord, with promising but variable results and thus the therapy needs improving. To date, studies of OEC behaviour in a multicellular environment have been hampered by the lack of suitable three-dimensional cell culture models. Here, we exploit the floating liquid marble, a liquid droplet coated with hydrophobic powder and placed on a liquid bath. The presence of the liquid bath increases the humidity and minimises the effect of evaporation. Floating liquid marbles allow the OECs to freely associate and interact to produce OEC spheroids with uniform shapes and sizes. In contrast, a sessile liquid marble on a solid surface suffers from evaporation and the cells aggregate with irregular shapes. We used floating liquid marbles to co-culture OECs with Schwann cells and astrocytes which formed natural structures without the confines of gels or bounding layers. This protocol can be used to determine how OECs and other cell types associate and interact while forming complex cell structures.
Diversity in spatial scope of contrast adaptation among mouse retinal ganglion cells
Khani, Mohammad Hossein
2017-01-01
Retinal ganglion cells adapt to changes in visual contrast by adjusting their response kinetics and sensitivity. While much work has focused on the time scales of these adaptation processes, less is known about the spatial scale of contrast adaptation. For example, do small, localized contrast changes affect a cell’s signal processing across its entire receptive field? Previous investigations have provided conflicting evidence, suggesting that contrast adaptation occurs either locally within subregions of a ganglion cell’s receptive field or globally over the receptive field in its entirety. Here, we investigated the spatial extent of contrast adaptation in ganglion cells of the isolated mouse retina through multielectrode-array recordings. We applied visual stimuli so that ganglion cell receptive fields contained regions where the average contrast level changed periodically as well as regions with constant average contrast level. This allowed us to analyze temporal stimulus integration and sensitivity separately for stimulus regions with and without contrast changes. We found that the spatial scope of contrast adaptation depends strongly on cell identity, with some ganglion cells displaying clear local adaptation, whereas others, in particular large transient ganglion cells, adapted globally to contrast changes. Thus, the spatial scope of contrast adaptation in mouse retinal ganglion cells appears to be cell-type specific. This could reflect differences in mechanisms of contrast adaptation and may contribute to the functional diversity of different ganglion cell types. NEW & NOTEWORTHY Understanding whether adaptation of a neuron in a sensory system can occur locally inside the receptive field or whether it always globally affects the entire receptive field is important for understanding how the neuron processes complex sensory stimuli. For mouse retinal ganglion cells, we here show that both local and global contrast adaptation exist and that this diversity in spatial scope can contribute to the functional diversity of retinal ganglion cell types. PMID:28904106
Agrawal, Parul
2016-01-01
In Drosophila, a transcriptional feedback loop that is activated by CLOCK-CYCLE (CLK-CYC) complexes and repressed by PERIOD-TIMELESS (PER-TIM) complexes keeps circadian time. The timing of CLK-CYC activation and PER-TIM repression is regulated post-translationally, in part through rhythmic phosphorylation of CLK, PER, and TIM. Although kinases that control PER, TIM, and CLK levels, activity, and/or subcellular localization have been identified, less is known about phosphatases that control clock protein dephosphorylation. To identify clock-relevant phosphatases, clock-cell-specific RNAi knockdowns of Drosophila phosphatases were screened for altered activity rhythms. One phosphatase that was identified, the receptor protein tyrosine phosphatase leukocyte-antigen-related (LAR), abolished activity rhythms in constant darkness (DD) without disrupting the timekeeping mechanism in brain pacemaker neurons. However, expression of the neuropeptide pigment-dispersing factor (PDF), which mediates pacemaker neuron synchrony and output, is eliminated in the dorsal projections from small ventral lateral (sLNv) pacemaker neurons when Lar expression is knocked down during development, but not in adults. Loss of Lar function eliminates sLNv dorsal projections, but PDF expression persists in sLNv and large ventral lateral neuron cell bodies and their remaining projections. In contrast to the defects in lights-on and lights-off anticipatory activity seen in flies that lack PDF, Lar RNAi knockdown flies anticipate the lights-on and lights-off transition normally. Our results demonstrate that Lar is required for sLNv dorsal projection development and suggest that PDF expression in LNv cell bodies and their remaining projections mediate anticipation of the lights-on and lights-off transitions during a light/dark cycle. SIGNIFICANCE STATEMENT In animals, circadian clocks drive daily rhythms in physiology, metabolism, and behavior via transcriptional feedback loops. Because key circadian transcriptional activators and repressors are regulated by phosphorylation, we screened for phosphatases that alter activity rhythms when their expression was reduced. One such phosphatase, leukocyte-antigen-related (LAR), abolishes activity rhythms, but does not disrupt feedback loop function. Rather, Lar disrupts clock output by eliminating axonal processes from clock neurons that release pigment-dispersing factor (PDF) neuropeptide into the dorsal brain, but PDF expression persists in their cell bodies and remaining projections. In contrast to flies that lack PDF, flies that lack Lar anticipate lights-on and lights-off transitions normally, which suggests that the remaining PDF expression mediates activity during light/dark cycles. PMID:27030770
Sassa, Akira; Kamoshita, Nagisa; Kanemaru, Yuki; Honma, Masamitsu; Yasui, Manabu
2015-01-01
Clustered DNA damage is defined as multiple sites of DNA damage within one or two helical turns of the duplex DNA. This complex damage is often formed by exposure of the genome to ionizing radiation and is difficult to repair. The mutagenic potential and repair mechanisms of clustered DNA damage in human cells remain to be elucidated. In this study, we investigated the involvement of nucleotide excision repair (NER) in clustered oxidative DNA adducts. To identify the in vivo protective roles of NER, we established a human cell line lacking the NER gene xeroderma pigmentosum group A (XPA). XPA knockout (KO) cells were generated from TSCER122 cells derived from the human lymphoblastoid TK6 cell line. To analyze the mutagenic events in DNA adducts in vivo, we previously employed a system of tracing DNA adducts in the targeted mutagenesis (TATAM), in which DNA adducts were site-specifically introduced into intron 4 of thymidine kinase genes. Using the TATAM system, one or two tandem 7,8-dihydro-8-oxoguanine (8-oxoG) adducts were introduced into the genomes of TSCER122 or XPA KO cells. In XPA KO cells, the proportion of mutants induced by a single 8-oxoG (7.6%) was comparable with that in TSCER122 cells (8.1%). In contrast, the lack of XPA significantly enhanced the mutant proportion of tandem 8-oxoG in the transcribed strand (12%) compared with that in TSCER122 cells (7.4%) but not in the non-transcribed strand (12% and 11% in XPA KO and TSCER122 cells, respectively). By sequencing the tandem 8-oxoG-integrated loci in the transcribed strand, we found that the proportion of tandem mutations was markedly increased in XPA KO cells. These results indicate that NER is involved in repairing clustered DNA adducts in the transcribed strand in vivo.
Sassa, Akira; Kamoshita, Nagisa; Kanemaru, Yuki; Honma, Masamitsu; Yasui, Manabu
2015-01-01
Clustered DNA damage is defined as multiple sites of DNA damage within one or two helical turns of the duplex DNA. This complex damage is often formed by exposure of the genome to ionizing radiation and is difficult to repair. The mutagenic potential and repair mechanisms of clustered DNA damage in human cells remain to be elucidated. In this study, we investigated the involvement of nucleotide excision repair (NER) in clustered oxidative DNA adducts. To identify the in vivo protective roles of NER, we established a human cell line lacking the NER gene xeroderma pigmentosum group A (XPA). XPA knockout (KO) cells were generated from TSCER122 cells derived from the human lymphoblastoid TK6 cell line. To analyze the mutagenic events in DNA adducts in vivo, we previously employed a system of tracing DNA adducts in the targeted mutagenesis (TATAM), in which DNA adducts were site-specifically introduced into intron 4 of thymidine kinase genes. Using the TATAM system, one or two tandem 7,8-dihydro-8-oxoguanine (8-oxoG) adducts were introduced into the genomes of TSCER122 or XPA KO cells. In XPA KO cells, the proportion of mutants induced by a single 8-oxoG (7.6%) was comparable with that in TSCER122 cells (8.1%). In contrast, the lack of XPA significantly enhanced the mutant proportion of tandem 8-oxoG in the transcribed strand (12%) compared with that in TSCER122 cells (7.4%) but not in the non-transcribed strand (12% and 11% in XPA KO and TSCER122 cells, respectively). By sequencing the tandem 8-oxoG-integrated loci in the transcribed strand, we found that the proportion of tandem mutations was markedly increased in XPA KO cells. These results indicate that NER is involved in repairing clustered DNA adducts in the transcribed strand in vivo. PMID:26559182
Wang, Jiangxin; Shi, Xu; Johnson, Roger H.; Kelbauskas, Laimonas; Zhang, Weiwen; Meldrum, Deirdre R.
2013-01-01
Cellular heterogeneity plays a pivotal role in a variety of functional processes in vivo including carcinogenesis. However, our knowledge about cell-to-cell diversity and how differences in individual cells manifest in alterations at the population level remains very limited mainly due to the lack of appropriate tools enabling studies at the single-cell level. We present a study on changes in cellular heterogeneity in the context of pre-malignant progression in response to hypoxic stress. Utilizing pre-malignant progression of Barrett’s esophagus (BE) as a disease model system we studied molecular mechanisms underlying the progression from metaplastic to dysplastic (pre-cancerous) stage. We used newly developed methods enabling measurements of cell-to-cell differences in copy numbers of mitochondrial DNA, expression levels of a set of mitochondrial and nuclear genes involved in hypoxia response pathways, and mitochondrial membrane potential. In contrast to bulk cell studies reported earlier, our study shows significant differences between metaplastic and dysplastic BE cells in both average values and single-cell parameter distributions of mtDNA copy numbers, mitochondrial function, and mRNA expression levels of studied genes. Based on single-cell data analysis, we propose that mitochondria may be one of the key factors in pre-malignant progression in BE. PMID:24116039
Gautam, Dipendra
2013-01-01
Adenovirus (Ad) mutants that lack early region 4 (E4) are unable to produce the early regulatory proteins that normally inactivate the Mre11/Rad50/Nbs1 (MRN) sensor complex, which is a critical component for the ability of cells to respond to DNA damage. E4 mutant infection therefore activates a DNA damage response, which in turn interferes with a productive viral infection. MRN complex proteins localize to viral DNA replication centers in E4 mutant-infected cells, and this complex is critical for activating the kinases ataxia-telangiectasia mutated (ATM) and ATM and Rad3-related (ATR), which phosphorylate numerous substrates important for DNA repair, cell cycle checkpoint activation, and apoptosis. E4 mutant growth defects are substantially rescued in cells lacking an intact MRN complex. We have assessed the role of the downstream ATM and ATR kinases in several MRN-dependent E4 mutant phenotypes. We did not identify a role for either ATM or ATR in “repair” of E4 mutant genomes to form concatemers. ATR was also not observed to contribute to E4 mutant defects in late protein production. In contrast, the kinase activity of ATM was important for preventing efficient E4 mutant DNA replication and late gene expression. Our results suggest that the MRN complex interferes with E4 mutant DNA replication at least in part through its ability to activate ATM. PMID:23740981
Tanaka, Tetsuya S; Ikenishi, Kohji
2002-02-01
An acidic, 38 kDa protein that is present in Xenopus wild-type embryos has been previously shown to be lacking in gastrula-arrested mutant embryos. To gain understanding of the role of this protein, its spatio-temporal distribution and involvement in gastrulation was investigated using the monoclonal antibody (9D10) against it. The protein was prominent in the cortical cytoplasm of cells facing the outside in the animal hemisphere of embryos until the gastrula stage, and in ciliated epithelial cells of embryos at stages later than the late neurula. When the 9D10 antibody was injected into fertilized wild-type eggs, they cleaved normally, but most of them had arrested development, always at the early stage of gastrulation, as in the mutant embryos. In contrast, the majority of the control antibody-injected eggs gastrulated normally and developed further. Cytoskeletal F-actin, which was mainly observed in the area beneath the plasma membrane facing the outside of the epithelial layer of not only the dorsal involuting marginal zone but also the dorsal, vegetal cell mass of the control antibody-injected embryos at the early gastrula stage, was scarcely recognized in the corresponding area of the 9D10 antibody-injected embryos. It is likely that the paucity of the F-actin caused by the 9D10 antibody inhibition of the 38 kDa protein might lead to a failure of cell movement in gastrulation, resulting in developmental arrest.
Zinc oxide and silver nanoparticles toxicity in the baker's yeast, Saccharomyces cerevisiae.
Galván Márquez, Imelda; Ghiyasvand, Mergan; Massarsky, Andrey; Babu, Mohan; Samanfar, Bahram; Omidi, Katayoun; Moon, Thomas W; Smith, Myron L; Golshani, Ashkan
2018-01-01
Engineered nanomaterials (ENMs) are increasingly incorporated into a variety of commercial applications and consumer products; however, ENMs may possess cytotoxic properties due to their small size. This study assessed the effects of two commonly used ENMs, zinc oxide nanoparticles (ZnONPs) and silver nanoparticles (AgNPs), in the model eukaryote Saccharomyces cerevisiae. A collection of ≈4600 S. cerevisiae deletion mutant strains was used to deduce the genes, whose absence makes S. cerevisiae more prone to the cytotoxic effects of ZnONPs or AgNPs. We demonstrate that S. cerevisiae strains that lack genes involved in transmembrane and membrane transport, cellular ion homeostasis, and cell wall organization or biogenesis exhibited the highest sensitivity to ZnONPs. In contrast, strains that lack genes involved in transcription and RNA processing, cellular respiration, and endocytosis and vesicular transport exhibited the highest sensitivity to AgNPs. Secondary assays confirmed that ZnONPs affected cell wall function and integrity, whereas AgNPs exposure decreased transcription, reduced endocytosis, and led to a dysfunctional electron transport system. This study supports the use of S. cerevisiae Gene Deletion Array as an effective high-throughput technique to determine cellular targets of ENM toxicity.
Specific activity of class II histone deacetylases in human breast cancer cells
Duong, Vanessa; Bret, Caroline; Altucci, Lucia; Mai, Antonello; Duraffourd, Céline; Loubersac, Julie; Harmand, Pierre-Olivier; Bonnet, Sandrine; Valente, Sergio; Maudelonde, Thierry; Cavailles, Vincent; Boulle, Nathalie
2008-01-01
Although numerous studies have underlined the role of HDACs in breast physiology and tumorigenesis, little is known on the particular contribution of the various classes of HDACs in these processes. Using ERα-positive MCF-7 breast cancer cells, the effects of MC1575 and MC1568, two novel class II specific HDAC inhibitors (HDI), were analyzed on cell proliferation, apoptosis and estrogen signalling. The specificity of these HDIs was validated by measuring histone and α-tubulin acetylation and by the specific in vitro inhibition of recombinant HDAC4 using histone and non histone substrates, contrasting with the lack of inhibition of class I HDACs. In addition, MC1575 did not inhibit class I HDAC gene expression thus confirming the specific targeting of class II enzymes. Similar to TSA, MC1575 displayed a dose-dependent anti-proliferative effect and induced cell cycle arrest although this blockade occurred at a different level than TSA. Moreover, and in contrast to TSA, MC1575 had no effect on MCF-7 cells apoptosis. Interestingly, MC1575 was able to increase p2lwaf1/CIP1 mRNA levels but did not regulate the expression of other genes such as cyclin D1, p27, p14ARF, Bcl2, Baxα, Trail-R1 and -R2. Finally, MC1575 strongly induced ERβ gene expression but did not decrease ERα expression nor did it switch hydroxy-tamoxifen to an agonist activity. Altogether, these data suggest that the class II HDAC sub-family may exert specific roles in breast cancer progression and estrogen-dependence. PMID:19074835
RESPIRATORY METABOLISM OF NORMAL AND DIVISIONLESS STRAINS OF CANDIDA ALBICANS
Ward, John M.; Nickerson, Walter J.
1958-01-01
Respiration of a normal strain of Candida albicans was compared with that of a divisionless mutant which has a biochemical lesion such that metabolically generated hydrogen "spills over," during growth, for non-specific dye reduction. This waste is not at expense of growth, since both strains grow at essentially similar rates, nor at expense of respiration, since the mutant reduces oxygen more rapidly than the normal strain. Respiration in both strains is qualitatively similar, and seemingly unique among highly aerobic organisms in that it is not mediated by cytochrome oxidase. In resting cells of both strains, respiration is not only resistant to, but markedly stimulated by, high concentrations of cyanide, carbon monoxide, and azide. In contrast, growth of these yeasts is inhibited by low concentrations of cyanide and azide. Cytochrome oxidase could not be detected in cell-free preparations; reduced cytochrome c was not oxidized by such preparations. Cytochrome bands could not be observed in thick cell suspensions treated with reducing agents. However, incorporation of superoptimal levels of zinc and iron into the culture medium resulted in growth of cells possessing distinct cytochrome bands; respiration of these cells remained insensitive to cyanide, monoxide, and azide, and the bands were maintained in a reduced form on oxygenation. In the divisionless yeast, tetrazolium dyes compete with oxygen for reduction; this is not the case in the normal strain. The firmness with which hydrogen transfer is channeled in the latter for reduction of disulfide bonds (of importance in the division mechanism) and of oxygen, is contrasted with the lack of such control in the mutant. PMID:13514006
Functional support of glutamate as a vestibular hair cell transmitter in an amniote
NASA Technical Reports Server (NTRS)
Cochran, S. L.; Correia, M. J.
1995-01-01
Although hair cells in the cochlea and in the vestibular endorgans of anamniotes are thought to release glutamate or a similar compound as their transmitter, there is little evidence in amniotes (which, unlike anamniotes, possess both type I and II hair cells) as to the nature of the hair cell transmitters in the vestibular labyrinth. We have recorded extracellularly from single semicircular canal afferents in the turtle labyrinth maintained in vitro and have bath-applied a number of transmitter agonists and antagonists to relate the effects of these substances to the actions of the endogenous transmitter substances. Both glutamate and aspartate strongly excite the afferents while GABA and carbachol have negligible or weak effects. In contrast to its lack of effect on afferent activity in some anamniotes, N-methyl-D-aspartate (NMDA) was also found to excite these afferents. Kynurenic acid reversibly reduced the resting firing rates of the afferents and the increases in firing due to the application of glutamate and aspartate. These findings provide preliminary support for the hypothesis that glutamate (or a related compound) is also a vestibular hair cell transmitter in amniotes.
Kuragano, Masahiro; Murakami, Yota; Takahashi, Masayuki
2018-03-25
Nonmuscle myosin II (NMII) plays an essential role in directional cell migration. In this study, we investigated the roles of NMII isoforms (NMIIA and NMIIB) in the migration of human embryonic lung fibroblasts, which exhibit directionally persistent migration in an intrinsic manner. NMIIA-knockdown (KD) cells migrated unsteadily, but their direction of migration was approximately maintained. By contrast, NMIIB-KD cells occasionally reversed their direction of migration. Lamellipodium-like protrusions formed in the posterior region of NMIIB-KD cells prior to reversal of the migration direction. Moreover, NMIIB KD led to elongation of the posterior region in migrating cells, probably due to the lack of load-bearing stress fibers in this area. These results suggest that NMIIA plays a role in steering migration by maintaining stable protrusions in the anterior region, whereas NMIIB plays a role in maintenance of front-rear polarity by preventing aberrant protrusion formation in the posterior region. These distinct functions of NMIIA and NMIIB might promote intrinsic and directed migration of normal human fibroblasts. Copyright © 2018 Elsevier Inc. All rights reserved.
Holland, Christopher J.; Dolton, Garry; Scurr, Martin; Ladell, Kristin; Schauenburg, Andrea J.; Miners, Kelly; Madura, Florian; Sewell, Andrew K.; Price, David A.
2015-01-01
Fluorochrome-conjugated peptide–MHC (pMHC) class I multimers are staple components of the immunologist’s toolbox, enabling reliable quantification and analysis of Ag-specific CD8+ T cells irrespective of functional outputs. In contrast, widespread use of the equivalent pMHC class II (pMHC-II) reagents has been hindered by intrinsically weaker TCR affinities for pMHC-II, a lack of cooperative binding between the TCR and CD4 coreceptor, and a low frequency of Ag-specific CD4+ T cell populations in the peripheral blood. In this study, we show that peptide flanking regions, extending beyond the central nonamer core of MHC-II–bound peptides, can enhance TCR–pMHC-II binding and T cell activation without loss of specificity. Consistent with these findings, pMHC-II multimers incorporating peptide flanking residue modifications proved superior for the ex vivo detection, characterization, and manipulation of Ag-specific CD4+ T cells, highlighting an unappreciated feature of TCR–pMHC-II interactions. PMID:26553072
Carrasco, V; Canfrán, S; Rodríguez-Franco, F; Benito, A; Sáinz, A; Rodríguez-Bertos, A
2011-01-01
Immunohistochemical staining for cell cycle proteins and heat shock proteins was performed on 17 canine gastric carcinomas. The immunoexpression of p53, p21, p16, Hsp27, and Hsp70 was investigated. A study was conducted to determine the histological type and parameters related to tumor malignancy. Possible associations and trends were assessed between the immunoexpression of each protein and tumor type as well as specific parameters of malignancy. High intratumor frequency of cellular p53 immunostaining was observed (61.96% average), but lower frequencies of p21 and p16 expression were present (34.65% and 10.41%, respectively). The p53 overexpression was associated with tumor infiltration (P = .0258). Expression of p21 was lower in undifferentiated carcinomas, and the loss of expression was associated with histopathological parameters characteristic of a poor prognosis such as lymphatic vessel invasion (P = .0258). The lack of p16 immunoreactivity was related to histopathological characteristics of malignancy such as the presence of evident and multiple nucleoli (P = .0475). In contrast, deep tumor infiltration was observed in those carcinomas with a high p16 index (P = .0475). Hsp70 appeared to be overexpressed in all gastric neoplasms included in this study. This is in contrast to Hsp27, because a group of tumors showed complete lack of Hsp27 immunoexpression, whereas the others displayed extensive Hsp27 immunostaining. The differences in Hsp27 did not correlate with any of the histopathological parameters, but Hsp27 immunoexpression was higher in the undifferentiated carcinoma. No significant differences in the expression of the proteins were found in canine gastric carcinomas according to their histological type. These findings may be useful for establishing a prognosis for canine gastric carcinoma.
Liu, Chang Ching; Ma, Dong Liang; Yan, Ting-Dong; Fan, XiuBo; Poon, Zhiyong; Poon, Lai-Fong; Goh, Su-Ann; Rozen, Steve G; Hwang, William Ying Khee; Tergaonkar, Vinay; Tan, Patrick; Ghosh, Sujoy; Virshup, David M; Goh, Eyleen L K; Li, Shang
2016-10-01
In most human somatic cells, the lack of telomerase activity results in progressive telomere shortening during each cell division. Eventually, DNA damage responses triggered by critically short telomeres induce an irreversible cell cycle arrest termed replicative senescence. However, the cellular responses of human pluripotent stem cells to telomere uncapping remain unknown. We generated telomerase knockout human embryonic stem (ES) cells through gene targeting. Telomerase inactivation in ES cells results in progressive telomere shortening. Telomere DNA damage in ES cells and neural progenitor cells induces rapid apoptosis when telomeres are uncapped, in contrast to fibroblast cells that enter a state of replicative senescence. Significantly, telomerase inactivation limits the proliferation capacity of human ES cells without affecting their pluripotency. By targeting telomerase activity, we can functionally separate the two unique properties of human pluripotent stem cells, namely unlimited self-renewal and pluripotency. We show that the potential of ES cells to form teratomas in vivo is dictated by their telomere length. By controlling telomere length of ES cells through telomerase inactivation, we can inhibit teratoma formation and potentially improve the safety of cell therapies involving terminally differentiated cells as well as specific progenitor cells that do not require sustained cellular proliferation in vivo, and thus sustained telomerase activity. Stem Cells 2016;34:2471-2484. © 2016 AlphaMed Press.
Formation of a cylindrical bridge in cell division
NASA Astrophysics Data System (ADS)
Citron, Daniel; Schmidt, Laura E.; Reichl, Elizabeth; Ren, Yixin; Robinson, Douglas; Zhang, Wendy W.
2007-11-01
In nature, the shape transition associated with the division of a mother cell into two daughter cells proceeds via a variety of routes. In the cylinder-thinning route, which has been observed in Dictyostelium and most animal cells, the mother cell first forms a broad bridge-like region, also known as a furrow, between two daughter cells. The furrow then rapidly evolves into a cylindrical bridge, which thins and eventually severs the mother cell into two. The fundamental mechanism underlying this division route is not understood. Recent experiments on Dictyostelium found that, while the cylinder-thinning route persists even when key actin cross-linking proteins are missing, it is disrupted by the removal of force-generating myosin-II proteins. Other measurements revealed that mutant cells lacking myosin-II have a much more uniform tension over the cell surface than wild-type cells. This suggests that tension variation may be important. Here we use a fluid model, previously shown to reproduce the thinning dynamics [Zhang & Robinson, PNAS 102, 7186 (2005)], to test this idea. Consistent with the experiments, the model shows that the cylinder formation process occurs regardless of the exact viscoelastic properties of the cell. In contrast to the experiments, a tension variation in the model hinders, rather then expedites, the cylinder formation.
van de Ven, Rieneke; Thon, Maria; Gibbs, Susan; de Gruijl, Tanja D.
2017-01-01
Antigen exposure to oral mucosa is generally thought to lead to immune tolerance induction. However, very little is known about the subset composition and function of dendritic cells (DC) migrating from human oral mucosa. Here we show that migratory DC from healthy human gingival explants consist of the same phenotypic subsets in the same frequency distribution as DC migrating from human skin. The gingival CD1a+ Langerhans cell and interstitial DC subsets lacked CXCR4 expression in contrast to their cutaneous counterparts, pointing to different migration mechanisms, consistent with previous observations in constructed skin and gingival equivalents. Remarkably, without any exogenous conditioning, gingival explants released higher levels of inflammatory cytokines than human skin explants, resulting in higher DC migration rates and a superior ability of migrated DC to prime allogeneic T cells and to induce type-1 effector T cell differentiation. From these observations we conclude that rather than an intrinsic ability to induce T cell tolerance, DC migrating from oral mucosa may have a propensity to induce effector T cell immunity and maintain a high state of alert against possible pathogenic intruders in the steady state. These findings may have implications for oral immunization strategies. PMID:28704477
Füller, J; Kellner, T; Gaid, M; Beerhues, L; Müller-Goymann, C C
2018-05-01
Due to the limited chemical stability of the natural hyperforin molecule, a more stable form of hyperforin, i.e., the hyperforin dicyclohexylammonium salt (HYP-DCHA) has been used for ex vivo and in vitro experiments in recent years, but its actual stability under typical cell culture conditions has never been studied before. In this contribution the stability of HYP-DCHA was examined under typical cell culture conditions. Different cell culture media with and without fetal calf serum (FCS) supplementation were studied with regard to further stabilization of HYP-DCHA determined with HPLC analysis. Furthermore, albumin nanoparticles were examined as a stabilizing carrier system for HYP-DCHA. In this context, the interaction between HYP-DCHA and albumin nanoparticles (ANP) was examined with regard to size and loading with HYP . The effects of HYP-DCHA either supplied in cell culture medium or loaded on ANP on viability and cytotoxicity were studied in vitro on HaCaT monolayers (human keratinocyte cell line). HYP-DCHA supplied in FCS-containing medium was recovered completely after 24h of incubation. However, a lack of FCS caused a total loss of HYP-DCHA after less than 24h incubation time. Supplying HYP-DCHA loaded on ANP in an FCS-free medium resulted in a recovery of about 60% after 24h incubation. HYP-DCHA supplied in medium along with FCS showed a slow dose-dependent decrease in viability of HaCaT cells without any cytotoxic effects (antiproliferative effect). Treatment with HYP-DCHA with a lack of FCS resulted in a significantly faster decrease in viability which was mainly due to cytotoxicity. The latter was true for HYP-DHCA-loaded ANP where increased cytotoxicity was observed despite the presence of FCS. The results show that the stability of the widely used HYP-DCHA is rather limited under cell culture conditions. Especially a lack of FCS leads to degradation and/or oxidation of HYP-DCHA probably causing an increased cytotoxicity. In contrast, FCS supplementation fairly stabilizes HYP-DCHA under cell culture conditions while albumin nanoparticles may serve the same stabilization purpose despite increasing cytotoxic effects onto the cells themselves. Copyright © 2017 Elsevier B.V. All rights reserved.
Eppink, Berina; Tafel, Agnieszka A; Hanada, Katsuhiro; van Drunen, Ellen; Hickson, Ian D; Essers, Jeroen; Kanaar, Roland
2011-11-10
Ultraviolet (UV) radiation-induced DNA lesions can be efficiently repaired by nucleotide excision repair (NER). However, NER is less effective during replication of UV-damaged chromosomes. In contrast, translesion DNA synthesis (TLS) and homologous recombination (HR) are capable of dealing with lesions in replicating DNA. The core HR protein in mammalian cells is the strand exchange protein RAD51, which is aided by numerous proteins, including RAD54. We used RAD54 as a cellular marker for HR to study the response of mammalian embryonic stem (ES) cells to UV irradiation. In contrast to yeast, ES cells lacking RAD54 are not UV sensitive. Here we show that the requirement for mammalian RAD54 is masked by active NER. By genetically inactivating NER and HR through disruption of the Xpa and Rad54 genes, respectively, we demonstrate the contribution of HR to chromosomal integrity upon UV irradiation. We demonstrate using chromosome fiber analysis at the individual replication fork level, that HR activity is important for the restart of DNA replication after induction of DNA damage by UV-light in NER-deficient cells. Furthermore, our data reveal RAD54-dependent and -independent contributions of HR to the cellular sensitivity to UV-light, and they uncover that RAD54 can compensate for the loss of TLS polymerase η with regard to UV-light sensitivity. In conclusion, we show that HR is important for the progression of UV-stalled replication forks in ES cells, and that protection of the fork is an interplay between HR and TLS. Copyright © 2011 Elsevier B.V. All rights reserved.
Rupp, Alan C; Allison, Margaret B; Jones, Justin C; Patterson, Christa M; Faber, Chelsea L; Bozadjieva, Nadejda; Heisler, Lora K; Seeley, Randy J; Olson, David P; Myers, Martin G
2018-06-06
To date, early developmental ablation of leptin receptor (LepRb) expression from circumscribed populations of hypothalamic neurons (e.g., arcuate nucleus (ARC) Pomc- or Agrp-expressing cells) has only minimally affected energy balance. In contrast, removal of LepRb from at least two large populations (expressing vGat or Nos1) spanning multiple hypothalamic regions produced profound obesity and metabolic dysfunction. Thus, we tested the notion that the total number of leptin-responsive hypothalamic neurons (rather than specific subsets of cells with a particular molecular or anatomical signature) subjected to early LepRb deletion might determine energy balance. We generated new mouse lines deleted for LepRb in ARC Ghrh Cre neurons or in Htr2c Cre neurons (representing roughly half of all hypothalamic LepRb neurons, distributed across many nuclei). We compared the phenotypes of these mice to previously-reported models lacking LepRb in Pomc, Agrp, vGat or Nos1 cells. The early developmental deletion of LepRb from vGat or Nos1 neurons produced dramatic obesity, but deletion of LepRb from Pomc, Agrp, Ghrh, or Htr2c neurons minimally altered energy balance. Although early developmental deletion of LepRb from known populations of ARC neurons fails to substantially alter body weight, the minimal phenotype of mice lacking LepRb in Htr2c cells suggests that the phenotype that results from early developmental LepRb deficiency depends not simply upon the total number of leptin-responsive hypothalamic LepRb cells. Rather, specific populations of LepRb neurons must play particularly important roles in body energy homeostasis; these as yet unidentified LepRb cells likely reside in the DMH. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.
Herrera, Elizabeth; del Mar Lorenzo, María; Blasco, Rafael; Isaacs, Stuart N.
1998-01-01
Vaccinia virus has two forms of infectious virions: the intracellular mature virus and the extracellular enveloped virus (EEV). EEV is critical for cell-to-cell and long-range spread of the virus. The B5R open reading frame (ORF) encodes a membrane protein that is essential for EEV formation. Deletion of the B5R ORF results in a dramatic reduction of EEV, and as a consequence, the virus produces small plaques in vitro and is highly attenuated in vivo. The extracellular portion of B5R is composed mainly of four domains that are similar to the short consensus repeats (SCRs) present in complement regulatory proteins. To determine the contribution of these putative SCR domains to EEV formation, we constructed recombinant vaccinia viruses that replaced the wild-type B5R gene with a mutated gene encoding a B5R protein lacking the SCRs. The resulting recombinant viruses produced large plaques, indicating efficient cell-to-cell spread in vitro, and gradient centrifugation of supernatants from infected cells confirmed that EEV was formed. In contrast, phalloidin staining of infected cells showed that the virus lacking the SCR domains was deficient in the induction of thick actin bundles. Thus, the highly conserved SCR domains present in the extracellular portion of the B5R protein are dispensable for EEV formation. This indicates that the B5R protein is a key viral protein with multiple functions in the process of virus envelopment and release. In addition, given the similarity of the extracellular domain to complement control proteins, the B5R protein may be involved in viral evasion from host immune responses. PMID:9420227
Brown, J D; Hann, B C; Medzihradszky, K F; Niwa, M; Burlingame, A L; Walter, P
1994-01-01
The signal recognition particle (SRP) is an evolutionarily conserved ribonucleoprotein (RNP) complex that functions in protein targeting to the endoplasmic reticulum (ER) membrane. Only two protein subunits of the SRP, Srp54p and Sec65p, and the RNA subunit, scR1, were previously known in the yeast Saccharomyces cerevisiae. Purification of yeast SRP by immunoaffinity chromatography revealed five additional proteins. Amino acid sequencing and cloning of the genes encoding four of these proteins demonstrated that the yeast SRP contains homologs (termed Srp14p, Srp68p and Srp72p) of the SRP14, SRP68 and SRP72 subunits found in mammalian SRP. The yeast SRP also contains a 21 kDa protein (termed Srp21p) that is not homologous to any protein in mammalian SRP. An additional 7 kDa protein may correspond to the mammalian SRP9. Disruption of any one of the four genes encoding the newly identified SRP proteins results in slow cell growth and inefficient protein translocation across the ER membrane. These phenotypes are indistinguishable from those resulting from the disruption of genes encoding SRP components identified previously. These data indicate that a lack of any of the analyzed SRP components results in loss of SRP function. ScR1 RNA and SRP proteins are at reduced levels in cells lacking any one of the newly identified proteins. In contrast, SRP components are present at near wild type levels and SRP subparticles are present in cells lacking either Srp54p or Sec65p. Thus Srp14p, Srp21p, Srp68p and Srp72p, but not Sec65p or Srp54p, are required for stable expression of the yeast SRP. Images PMID:7925282
Saito, Kohta; Warrier, Thulasi; Somersan-Karakaya, Selin; Kaminski, Lina; Mi, Jianjie; Jiang, Xiuju; Park, Suna; Shigyo, Kristi; Gold, Ben; Roberts, Julia; Weber, Elaina; Jacobs, William R.; Nathan, Carl F.
2017-01-01
Mycobacterium tuberculosis (Mtb) encounters stresses during the pathogenesis and treatment of tuberculosis (TB) that can suppress replication of the bacteria and render them phenotypically tolerant to most available drugs. Where studied, the majority of Mtb in the sputum of most untreated subjects with active TB have been found to be nonreplicating by the criterion that they do not grow as colony-forming units (cfus) when plated on agar. However, these cells are viable because they grow when diluted in liquid media. A method for generating such “differentially detectable” (DD) Mtb in vitro would aid studies of the biology and drug susceptibility of this population, but lack of independent confirmation of reported methods has contributed to skepticism about their existence. Here, we identified confounding artifacts that, when avoided, allowed development of a reliable method of producing cultures of ≥90% DD Mtb in starved cells. We then characterized several drugs according to whether they contribute to the generation of DD Mtb or kill them. Of the agents tested, rifamycins led to DD Mtb generation, an effect lacking in a rifampin-resistant strain with a mutation in rpoB, which encodes the canonical rifampin target, the β subunit of RNA polymerase. In contrast, thioridazine did not generate DD Mtb from starved cells but killed those generated by rifampin. PMID:28559332
NASA Astrophysics Data System (ADS)
Liba, Orly; Sorelle, Elliott D.; Sen, Debasish; de La Zerda, Adam
2016-03-01
Optical Coherence Tomography (OCT) enables real-time imaging of living tissues at cell-scale resolution over millimeters in three dimensions. Despite these advantages, functional biological studies with OCT have been limited by a lack of exogenous contrast agents that can be distinguished from tissue. Here we report an approach to functional OCT imaging that implements custom algorithms to spectrally identify unique contrast agents: large gold nanorods (LGNRs). LGNRs exhibit 110-fold greater spectral signal per particle than conventional GNRs, which enables detection of individual LGNRs in water and concentrations as low as 250 pM in the circulation of living mice. This translates to ~40 particles per imaging voxel in vivo. Unlike previous implementations of OCT spectral detection, the methods described herein adaptively compensate for depth and processing artifacts on a per sample basis. Collectively, these methods enable high-quality noninvasive contrast-enhanced imaging of OCT in living subjects, including detection of tumor microvasculature at twice the depth achievable with conventional OCT. Additionally, multiplexed detection of spectrally-distinct LGNRs was demonstrated to observe discrete patterns of lymphatic drainage and identify individual lymphangions and lymphatic valve functional states. These capabilities provide a powerful platform for molecular imaging and characterization of tissue noninvasively at cellular resolution, called MOZART.
Sulmon, Cécile; Gouesbet, Gwenola; Couée, Ivan; Cabello-Hurtado, Francisco; Cavalier, Annie; Penno, Christophe; Zaka, Raïhana; Bechtold, Nicole; Thomas, Daniel; El Amrani, Abdelhak
2006-11-01
In higher plants, plastid development must be tightly coordinated with cell and organ development. In this paper, a novel T-DNA-mutagenized Arabidopsis line showing chlorotic leaves and minute stature was identified in a genetic screen for altered chloroplast development. The mutation corresponded to a single locus on chromosome IV and was associated with insertion of the T-DNA. This locus was named FARFADET and resulted in pleiotropic effects on chloroplast biogenesis, cell size and differentiation, organ size and number. Thus, in contrast with previously described chlorotic mutants, frd mutants were affected not only in chloroplast development and chlorophyll accumulation, but also in cell and organ development. Alteration of differentiation affected different cell types such as leaf epidermal cells, trichomes, mesophyll cells, and columella cells. A major effect on mesophyll cell differentiation was the lack of palisadic parenchyma and absence of grana stacks. Moreover, meristem size and lateral meristem initiation were affected. Genetic and molecular characterisation showed that the T-DNA insertion generated 41 bp deletion in a potential miRNA precursor. The predicted miRNA target genes were involved in plant development and stress. It is therefore hypothesized that the frd mutation had affected coordination of cell developmental span and the control of the division-differentiation balance.
Detection and analysis of bovine foamy virus infection by an indicator cell line.
Ma, Zhe; Qiao, Wen-tao; Xuan, Cheng-hao; Xie, Jin-hui; Chen, Qi-min; Geng, Yun-qi
2007-07-01
To determine the infectivity and replication strategy of bovine foamy virus (BFV) in different cultured cells using the BFV indicator cell line (BICL) system. BFV infection was induced by the co-culture method or the transient transfection of the infectious BFV plasmid [pCMV (cytomegalovirus) - BFV] clone. The infectivity of BFV was monitored by the percentage of green fluorescent protein-positive cells in the BICL. The effect of reverse transcriptase inhibitor zidovudine (AZT) on BFV replication was also evaluated in the BICL. The titer of BFV in fetal bovine lung cells was 4-5-folds more than that in either 293T or HeLa (Cells from Henrietta lacks) cells using the co-culture method, and in the meantime was significantly higher than that produced by the infectious clone pCMV-BFV in the same cells. AZT had only a minor effect on viral titers when added to cells prior to the virus infection. In contrast, viral titers reduced sharply to the level of the negative control when the virus was produced from cells in the presence of AZT. BICL can be used for the titration of the BFV viral infection in non-cytopathic condition. In addition, we provide important evidence to show that reverse transcription is essential for BFV replication at a late step of viral infection.
Magcwebeba, Tandeka Unathi; Riedel, Sylvia; Swanevelder, Sonja; Swart, Pieter; De Beer, Dalene; Joubert, Elizabeth; Andreas Gelderblom, Wentzel Christoffel
2016-11-01
The relationship between polyphenol constituents, antioxidant properties of aqueous and methanol extracts of green tea (Camellia sinensis), the herbal teas, rooibos (Aspalathus linearis) and honeybush (Cyclopia spp.), against skin cell viability was investigated in vitro. The effect of extracts, characterised in terms of polyphenol content and antioxidant properties, on cell viability of premalignant, normal and malignant skin cells was determined. Phenolic composition, particularly high levels of potent antioxidants, of rooibos and green tea methanol extracts was associated with a strong reduction in cell viability specifically targeting premalignant cells. In contrast, the aqueous extracts of Cyclopia spp. were more effective in reducing cell viability. This correlated with a relatively high flavanol/proanthocyanidin content and ABTS radical cation scavenging capacity. The major green tea flavanol (epigallocatechin gallate) and rooibos dihydrochalcone (aspalathin) exhibited differential effects against cell viability, while the major honeybush xanthone (mangiferin) and flavanone (hesperidin) lacked any effect presumably due to a cytoprotective effect. The underlying mechanisms against skin cell viability are likely to involve mitochondrial dysfunction resulting from polyphenol-iron interactions. The polyphenol constituents and antioxidant parameters of herbal tea extracts are useful tools to predict their activity against skin cell survival in vitro and potential chemopreventive effects in vivo. © 2016 Royal Pharmaceutical Society.
NASA Astrophysics Data System (ADS)
Kemper, Björn; Schmidt, Lisa; Przibilla, Sabine; Rommel, Christina; Vollmer, Angelika; Ketelhut, Steffi; Schnekenburger, Jürgen; von Bally, Gert
2010-04-01
Digital holographic microscopy (DHM) provides label-free quantitative phase contrast with low demands on sample preparation. Nevertheless, for DHM measurements on fixed cells the mounting medium has to be considered while the phase contrast of living cells may be influenced by the used buffer solution. To quantify these effects, the maximum cell caused phase contrast and the visibility of the nucleoli were analyzed. A second aim of the study was to identify subcellular components in DHM phase contrast images. Therefore, comparative investigations using bright field imaging, DHM and fluorescence microscopy with 4',6- Diamidino-2-phenylindol (DAPI) staining were performed. DAPI-staining visualizes cell components containing DNA. The obtained results demonstrate exemplarily for two tumor cell lines that from DHM phase contrast images of fixed cells in phosphate buffer saline (PBS) cell thickness values are obtained which are comparable to living cells. Furthermore, it is shown that in many cases nucleus components can be identified only by DHM phase contrast.
Karim, Ahmad Faisal; Chandra, Pallavi; Chopra, Aanchal; Siddiqui, Zaved; Bhaskar, Ashima; Singh, Amit; Kumar, Dhiraj
2011-11-18
Global gene expression profiling has emerged as a major tool in understanding complex response patterns of biological systems to perturbations. However, a lack of unbiased analytical approaches has restricted the utility of complex microarray data to gain novel system level insights. Here we report a strategy, express path analysis (EPA), that helps to establish various pathways differentially recruited to achieve specific cellular responses under contrasting environmental conditions in an unbiased manner. The analysis superimposes differentially regulated genes between contrasting environments onto the network of functional protein associations followed by a series of iterative enrichments and network analysis. To test the utility of the approach, we infected THP1 macrophage cells with a virulent Mycobacterium tuberculosis strain (H37Rv) or the attenuated non-virulent strain H37Ra as contrasting perturbations and generated the temporal global expression profiles. EPA of the results provided details of response-specific and time-dependent host molecular network perturbations. Further analysis identified tyrosine kinase Src as the major regulatory hub discriminating the responses between wild-type and attenuated Mtb infection. We were then able to verify this novel role of Src experimentally and show that Src executes its role through regulating two vital antimicrobial processes of the host cells (i.e. autophagy and acidification of phagolysosome). These results bear significant potential for developing novel anti-tuberculosis therapy. We propose that EPA could prove extremely useful in understanding complex cellular responses for a variety of perturbations, including pathogenic infections.
Kang, Nam Seon; Jeong, Hae Jin; Moestrup, Øjvind; Shin, Woongghi; Nam, Seung Won; Park, Jae Yeon; De Salas, Miguel F; Kim, Ki Woo; Noh, Jae Hoon
2010-01-01
The mixotrophic dinoflagellate Paragymnodinium shiwhaense n. gen., n. sp. is described from living cells and from cells prepared by light, scanning electron, and transmission electron microscopy. In addition, sequences of the small subunit (SSU) and large subunit (LSU) rDNA and photosynthetic pigments are reported. The episome is conical, while the hyposome is hemispherical. Cells are covered with polygonal amphiesmal vesicles arranged in 16 rows and containing a very thin plate-like component. There is neither an apical groove nor apical line of narrow plates. Instead, there is a sulcal extension-like furrow. The cingulum is as wide as 0.2-0.3 x cell length and displaced by 0.2-0.3 x cell length. Cell length and width of live cells fed Amphidinium carterae were 8.4-19.3 and 6.1-16.0 microm, respectively. Paragymnodinium shiwhaense does not have a nuclear envelope chamber nor a nuclear fibrous connective (NFC). Cells contain chloroplasts, nematocysts, trichocysts, and peduncle, though eyespots, pyrenoids, and pusules are absent. The main accessory pigment is peridinin. The sequence of the SSU rDNA of this dinoflagellate (GenBank AM408889) is 4% different from that of Gymnodinium aureolum, Lepidodinium viride, and Gymnodinium catenatum, the three closest species, while the LSU rDNA was 17-18% different from that of G. catenatum, Lepidodinium chlorophorum, and Gymnodinium nolleri. The phylogenetic trees show that this dinoflagellate belongs within the Gymnodinium sensu stricto clade. However, in contrast to Gymnodinium spp., cells lack nuclear envelope chambers, NFC, and an apical groove. Unlike Polykrikos spp., which have a taeniocyst-nematocyst complex, P. shiwhaense has nematocysts without taeniocysts. In addition, P. shiwhaense does not have ocelloids in contrast to Warnowia spp. and Nematodinium spp. Therefore, based on morphological and molecular analyses, we suggest that this taxon is a new species, also within a new genus.
Bocian-Ostrzycka, Katarzyna M.; Łasica, Anna M.; Dunin-Horkawicz, Stanisław; Grzeszczuk, Magdalena J.; Drabik, Karolina; Dobosz, Aneta M.; Godlewska, Renata; Nowak, Elżbieta; Collet, Jean-Francois; Jagusztyn-Krynicka, Elżbieta K.
2015-01-01
Helicobacter pylori does not encode the classical DsbA/DsbB oxidoreductases that are crucial for oxidative folding of extracytoplasmic proteins. Instead, this microorganism encodes an untypical two proteins playing a role in disulfide bond formation – periplasmic HP0231, which structure resembles that of EcDsbC/DsbG, and its redox partner, a membrane protein HpDsbI (HP0595) with a β-propeller structure. The aim of presented work was to assess relations between HP0231 structure and function. We showed that HP0231 is most closely related evolutionarily to the catalytic domain of DsbG, even though it possesses a catalytic motif typical for canonical DsbA proteins. Similarly, the highly diverged N-terminal dimerization domain is homologous to the dimerization domain of DsbG. To better understand the functioning of this atypical oxidoreductase, we examined its activity using in vivo and in vitro experiments. We found that HP0231 exhibits oxidizing and chaperone activities but no isomerizing activity, even though H. pylori does not contain a classical DsbC. We also show that HP0231 is not involved in the introduction of disulfide bonds into HcpC (Helicobacter cysteine-rich protein C), a protein involved in the modulation of the H. pylori interaction with its host. Additionally, we also constructed a truncated version of HP0231 lacking the dimerization domain, denoted HP0231m, and showed that it acts in Escherichia coli cells in a DsbB-dependent manner. In contrast, HP0231m and classical monomeric EcDsbA (E. coli DsbA protein) were both unable to complement the lack of HP0231 in H. pylori cells, though they exist in oxidized forms. HP0231m is inactive in the insulin reduction assay and possesses high chaperone activity, in contrast to EcDsbA. In conclusion, HP0231 combines oxidative functions characteristic of DsbA proteins and chaperone activity characteristic of DsbC/DsbG, and it lacks isomerization activity. PMID:26500620
Bocian-Ostrzycka, Katarzyna M; Łasica, Anna M; Dunin-Horkawicz, Stanisław; Grzeszczuk, Magdalena J; Drabik, Karolina; Dobosz, Aneta M; Godlewska, Renata; Nowak, Elżbieta; Collet, Jean-Francois; Jagusztyn-Krynicka, Elżbieta K
2015-01-01
Helicobacter pylori does not encode the classical DsbA/DsbB oxidoreductases that are crucial for oxidative folding of extracytoplasmic proteins. Instead, this microorganism encodes an untypical two proteins playing a role in disulfide bond formation - periplasmic HP0231, which structure resembles that of EcDsbC/DsbG, and its redox partner, a membrane protein HpDsbI (HP0595) with a β-propeller structure. The aim of presented work was to assess relations between HP0231 structure and function. We showed that HP0231 is most closely related evolutionarily to the catalytic domain of DsbG, even though it possesses a catalytic motif typical for canonical DsbA proteins. Similarly, the highly diverged N-terminal dimerization domain is homologous to the dimerization domain of DsbG. To better understand the functioning of this atypical oxidoreductase, we examined its activity using in vivo and in vitro experiments. We found that HP0231 exhibits oxidizing and chaperone activities but no isomerizing activity, even though H. pylori does not contain a classical DsbC. We also show that HP0231 is not involved in the introduction of disulfide bonds into HcpC (Helicobacter cysteine-rich protein C), a protein involved in the modulation of the H. pylori interaction with its host. Additionally, we also constructed a truncated version of HP0231 lacking the dimerization domain, denoted HP0231m, and showed that it acts in Escherichia coli cells in a DsbB-dependent manner. In contrast, HP0231m and classical monomeric EcDsbA (E. coli DsbA protein) were both unable to complement the lack of HP0231 in H. pylori cells, though they exist in oxidized forms. HP0231m is inactive in the insulin reduction assay and possesses high chaperone activity, in contrast to EcDsbA. In conclusion, HP0231 combines oxidative functions characteristic of DsbA proteins and chaperone activity characteristic of DsbC/DsbG, and it lacks isomerization activity.
Nakatsuji, N; Johnson, K E
1984-06-01
Using time-lapse cinemicrography and scanning electron microscopy, we have shown that normal Rana embryos and gastrulating hybrid embryos have extracellular fibrils on the inner surface of the ectodermal layer. These fibrils are absent prior to gastrulation and appear in increasing numbers during gastrulation. They can also be deposited in vitro where they condition substrata in such a way that normal presumptive mesodermal cells placed on them show extensive attachment and unoriented cell movement. These fibrils are also present in some arrested hybrid embryos, but in reduced numbers, or are lacking in other arrested hybrid embryos. Explanted ectodermal fragments from arrested hybrid embryos fail both to condition culture substrata by the deposition of fibrils and to promote cell attachment and translocation. In contrast, ectodermal fragments from normal embryos can condition culture substrata so as to promote moderate cell attachment and, for one particular gamete combination, even cell translocation of presumptive mesodermal cells taken from arrested hybrid embryos. These results provide new evidence to support the hypothesis that extracellular fibrils represent a system that promotes mesodermal cell migration in amphibian embryos. Differences in the fibrillar system in urodele and anuran embryos are discussed in relation to fundamental differences in the mode of mesodermal cell migration in these two classes of Amphibia.
Tumor formation initiated by nondividing epidermal cells via an inflammatory infiltrate.
Arwert, Esther N; Lal, Rohit; Quist, Sven; Rosewell, Ian; van Rooijen, Nico; Watt, Fiona M
2010-11-16
In mammalian epidermis, integrin expression is normally confined to the basal proliferative layer that contains stem cells. However, in epidermal hyperproliferative disorders and tumors, integrins are also expressed by suprabasal cells, with concomitant up-regulation of Erk mitogen-activated protein kinase (MAPK) signaling. In transgenic mice, expression of activated MAPK kinase 1 (MEK1) in the suprabasal, nondividing, differentiated cell layers (InvEE transgenics) results in epidermal hyperproliferation and skin inflammation. We now demonstrate that wounding induces benign tumors (papillomas and keratoacanthomas) in InvEE mice. By generating chimeras between InvEE mice and mice that lack the MEK1 transgene, we demonstrate that differentiating, nondividing cells that express MEK1 stimulate adjacent transgene-negative cells to divide and become incorporated into the tumor mass. Dexamethasone treatment inhibits tumor formation, suggesting that inflammation is involved. InvEE skin and tumors express high levels of IL1α; treatment with an IL1 receptor antagonist delays tumor onset and reduces incidence. Depletion of γδ T cells and macrophages also reduces tumor incidence. Because a hallmark of cancer is uncontrolled proliferation, it is widely assumed that tumors arise only from dividing cells. In contrast, our studies show that differentiated epidermal cells can initiate tumor formation without reacquiring the ability to divide and that they do so by triggering an inflammatory infiltrate.
Anoikis evasion in inflammatory breast cancer cells is mediated by Bim-EL sequestration
Buchheit, C L; Angarola, B L; Steiner, A; Weigel, K J; Schafer, Z T
2015-01-01
Inflammatory breast cancer (IBC) is a rare and highly invasive type of breast cancer, and patients diagnosed with IBC often face a very poor prognosis. IBC is characterized by the lack of primary tumor formation and the rapid accumulation of cancerous epithelial cells in the dermal lymphatic vessels. Given that normal epithelial cells require attachment to the extracellular matrix (ECM) for survival, a comprehensive examination of the molecular mechanisms underlying IBC cell survival in the lymphatic vessels is of paramount importance to our understanding of IBC pathogenesis. Here we demonstrate that, in contrast to normal mammary epithelial cells, IBC cells evade ECM-detachment-induced apoptosis (anoikis). ErbB2 and EGFR knockdown in KPL-4 and SUM149 cells, respectively, causes decreased colony growth in soft agar and increased caspase activation following ECM detachment. ERK/MAPK signaling was found to operate downstream of ErbB2 and EGFR to protect cells from anoikis by facilitating the formation of a protein complex containing Bim-EL, LC8, and Beclin-1. This complex forms as a result of Bim-EL phosphorylation on serine 59, and thus Bim-EL cannot localize to the mitochondria and cause anoikis. These results reveal a novel mechanism that could be targeted with innovative therapeutics to induce anoikis in IBC cells. PMID:25526094
Anoikis evasion in inflammatory breast cancer cells is mediated by Bim-EL sequestration.
Buchheit, C L; Angarola, B L; Steiner, A; Weigel, K J; Schafer, Z T
2015-08-01
Inflammatory breast cancer (IBC) is a rare and highly invasive type of breast cancer, and patients diagnosed with IBC often face a very poor prognosis. IBC is characterized by the lack of primary tumor formation and the rapid accumulation of cancerous epithelial cells in the dermal lymphatic vessels. Given that normal epithelial cells require attachment to the extracellular matrix (ECM) for survival, a comprehensive examination of the molecular mechanisms underlying IBC cell survival in the lymphatic vessels is of paramount importance to our understanding of IBC pathogenesis. Here we demonstrate that, in contrast to normal mammary epithelial cells, IBC cells evade ECM-detachment-induced apoptosis (anoikis). ErbB2 and EGFR knockdown in KPL-4 and SUM149 cells, respectively, causes decreased colony growth in soft agar and increased caspase activation following ECM detachment. ERK/MAPK signaling was found to operate downstream of ErbB2 and EGFR to protect cells from anoikis by facilitating the formation of a protein complex containing Bim-EL, LC8, and Beclin-1. This complex forms as a result of Bim-EL phosphorylation on serine 59, and thus Bim-EL cannot localize to the mitochondria and cause anoikis. These results reveal a novel mechanism that could be targeted with innovative therapeutics to induce anoikis in IBC cells.
Regulation of germinal center responses and B-cell memory by the chromatin modifier MOZ.
Good-Jacobson, Kim L; Chen, Yunshun; Voss, Anne K; Smyth, Gordon K; Thomas, Tim; Tarlinton, David
2014-07-01
Memory B cells and long-lived bone marrow-resident plasma cells maintain humoral immunity. Little is known about the intrinsic mechanisms that are essential for forming memory B cells or endowing them with the ability to rapidly differentiate upon reexposure while maintaining the population over time. Histone modifications have been shown to regulate lymphocyte development, but their role in regulating differentiation and maintenance of B-cell subsets during an immune response is unclear. Using stage-specific deletion of monocytic leukemia zinc finger protein (MOZ), a histone acetyltransferase, we demonstrate that mutation of this chromatin modifier alters fate decisions in both primary and secondary responses. In the absence of MOZ, germinal center B cells were significantly impaired in their ability to generate dark zone centroblasts, with a concomitant decrease in both cell-cycle progression and BCL-6 expression. In contrast, there was increased differentiation to IgM and low-affinity IgG1(+) memory B cells. The lack of MOZ affected the functional outcome of humoral immune responses, with an increase in secondary germinal centers and a corresponding decrease in secondary high-affinity antibody-secreting cell formation. Therefore, these data provide strong evidence that manipulating epigenetic modifiers can regulate fate decisions during humoral responses, and thus could be targeted for therapeutic intervention.
Positive contrast of SPIO-labeled cells by off-resonant reconstruction of 3D radial half-echo bSSFP.
Diwoky, Clemens; Liebmann, Daniel; Neumayer, Bernhard; Reinisch, Andreas; Knoll, Florian; Strunk, Dirk; Stollberger, Rudolf
2015-01-01
This article describes a new acquisition and reconstruction concept for positive contrast imaging of cells labeled with superparamagnetic iron oxides (SPIOs). Overcoming the limitations of a negative contrast representation as gained with gradient echo and fully balanced steady state (bSSFP), the proposed method delivers a spatially localized contrast with high cellular sensitivity not accomplished by other positive contrast methods. Employing a 3D radial bSSFP pulse sequence with half-echo sampling, positive cellular contrast is gained by adding artificial global frequency offsets to each half-echo before image reconstruction. The new contrast regime is highlighted with numerical intravoxel simulations including the point-spread function for 3D half-echo acquisitions. Furthermore, the new method is validated on the basis of in vitro cell phantom measurements on a clinical MRI platform, where the measured contrast-to-noise ratio (CNR) of the new approach exceeds even the negative contrast of bSSFP. Finally, an in vivo proof of principle study based on a mouse model with a clear depiction of labeled cells within a subcutaneous cell islet containing a cell density as low as 7 cells/mm(3) is presented. The resultant isotropic images show robustness to motion and a high CNR, in addition to an enhanced specificity due to the positive contrast of SPIO-labeled cells. Copyright © 2014 John Wiley & Sons, Ltd.
Ghita, Adrian; Pascut, Flavius C; Sottile, Virginie; Denning, Chris; Notingher, Ioan
Stem cell therapy is widely acknowledged as a key medical technology of the 21st century which may provide treatments for many currently incurable diseases. These cells have an enormous potential for cell replacement therapies to cure diseases such as Parkinson's disease, diabetes and cardiovascular disorders, as well as in tissue engineering as a reliable cell source for providing grafts to replace and repair diseased tissues. Nevertheless, the progress in this field has been difficult in part because of lack of techniques that can measure non-invasively the molecular properties of cells. Such repeated measurements can be used to evaluate the culture conditions during differentiation, cell quality and phenotype heterogeneity of stem cell progeny. Raman spectroscopy is an optical technique based on inelastic scattering of laser photons by molecular vibrations of cellular molecules and can be used to provide chemical fingerprints of cells or organelles without fixation, lysis or use of labels and other contrast enhancing chemicals. Because differentiated cells are specialized to perform specific functions, these cells produce specific biochemicals that can be detected by Raman micro-spectroscopy. This mini-review paper describes applications of Raman micro-scpectroscopy to measure moleculare properties of stem cells during differentiation in-vitro. The paper focuses on time- and spatially-resolved Raman spectral measurements that allow repeated investigation of live stem cells in-vitro.
Tilgner, Katarzyna; Atkinson, Stuart P; Yung, Sun; Golebiewska, Anna; Stojkovic, Miodrag; Moreno, Ruben; Lako, Majlinda; Armstrong, Lyle
2010-01-01
The isolation of significant numbers of human primordial germ cells at several developmental stages is important for investigations of the mechanisms by which they are able to undergo epigenetic reprogramming. Only small numbers of these cells can be obtained from embryos of appropriate developmental stages, so the differentiation of human embryonic stem cells is essential to obtain sufficient numbers of primordial germ cells to permit epigenetic examination. Despite progress in the enrichment of human primordial germ cells using fluorescence-activated cell sorting (FACS), there is still no definitive marker of the germ cell phenotype. Expression of the widely conserved RNA helicase VASA is restricted to germline cells, but in contrast to species such as Mus musculus in which reporter constructs expressing green fluorescent protein (GFP) under the control of a Vasa promoter have been developed, such reporter systems are lacking in human in vitro models. We report here the generation and characterization of human embryonic stem cell lines stably carrying a VASA-pEGFP-1 reporter construct that expresses GFP in a population of differentiating human embryonic stem cells that show expression of characteristic markers of primordial germ cells. This population shows a different pattern of chromatin modifications to those obtained by FACS enrichment of Stage Specific Antigen one expressing cells in our previous publication.
Functions of TAM RTKs in regulating spermatogenesis and male fertility in mice.
Chen, Yongmei; Wang, Huizhen; Qi, Nan; Wu, Hui; Xiong, Weipeng; Ma, Jing; Lu, Qingxian; Han, Daishu
2009-10-01
Mice lacking TYRO3, AXL and MER (TAM) receptor tyrosine kinases (RTKs) are male sterile. The mechanism of TAM RTKs in regulating male fertility remains unknown. In this study, we analyzed in more detail the testicular phenotype of TAM triple mutant (TAM(-/-)) mice with an effort to understand the mechanism. We demonstrate that the three TAM RTKs cooperatively regulate male fertility, and MER appears to be more important than AXL and TYRO3. TAM(-/-) testes showed a progressive loss of germ cells from elongated spermatids to spermatogonia. Young adult TAM(-/-) mice exhibited oligo-astheno-teratozoospermia and various morphological malformations of sperm cells. As the mice aged, the germ cells were eventually depleted from the seminiferous tubules. Furthermore, we found that TAM(-/-) Sertoli cells have an impaired phagocytic activity and a large number of differentially expressed genes compared to wild-type controls. By contrast, the function of Leydig cells was not apparently affected by the mutation of TAM RTKs. Therefore, we conclude that the suboptimal function of Sertoli cells leads to the impaired spermatogenesis in TAM(-/-) mice. The results provide novel insight into the mechanism of TAM RTKs in regulating male fertility.
Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T-lymphocytes
Caruana, Ignazio; Savoldo, Barbara; Hoyos, Valentina; Weber, Gerrit; Liu, Hao; Kim, Eugene S.; Ittmann, Michael M.; Marchetti, Dario; Dotti, Gianpietro
2015-01-01
Adoptive transfer of chimeric antigen receptor (CAR)-redirected T lymphocytes (CAR-T cells) has had less striking effects in solid tumors1–3 than in lymphoid malignancies4, 5. Although active tumor-mediated immunosuppression may play a role in limiting efficacy6, functional changes in T lymphocytes following their ex vivo manipulation may also account for cultured CAR-T cells’ reduced ability to penetrate stroma-rich solid tumors. We therefore studied the capacity of human in vitro-cultured CAR-T cells to degrade components of the extracellular matrix (ECM). In contrast to freshly isolated T lymphocytes, we found that in vitro-cultured T lymphocytes lack expression of the enzyme heparanase (HPSE) that degrades heparan sulphate proteoglycans, which are main components of ECM. We found that HPSE mRNA is down regulated in in vitro-expanded T cells, which may be a consequence of p53 binding to the HPSE gene promoter. We therefore engineered CAR-T cells to express HPSE and showed improved capacity to degrade ECM, which promoted tumor T-cell infiltration and antitumor activity. Employing this strategy may enhance the activity of CAR-T cells in individuals with stroma-rich solid tumors. PMID:25849134
What makes a cell face-selective: the importance of contrast
Ohayon, Shay; Freiwald, Winrich A; Tsao, Doris Y
2012-01-01
Summary Faces are robustly detected by computer vision algorithms that search for characteristic coarse contrast features. Here, we investigated whether face-selective cells in the primate brain exploit contrast features as well. We recorded from face-selective neurons in macaque inferotemporal cortex, while presenting a face-like collage of regions whose luminances were changed randomly. Modulating contrast combinations between regions induced activity changes ranging from no response to a response greater than that to a real face in 50% of cells. The critical stimulus factor determining response magnitude was contrast polarity, e.g., nose region brighter than left eye. Contrast polarity preferences were consistent across cells, suggesting a common computational strategy across the population, and matched features used by computer vision algorithms for face detection. Furthermore, most cells were tuned both for contrast polarity and for the geometry of facial features, suggesting cells encode information useful both for detection and recognition. PMID:22578507
The AP-1 transcription factor Fra1 inhibits follicular B cell differentiation into plasma cells
Grötsch, Bettina; Brachs, Sebastian; Lang, Christiane; Luther, Julia; Derer, Anja; Schlötzer-Schrehardt, Ursula; Bozec, Aline; Fillatreau, Simon; Berberich, Ingolf; Hobeika, Elias; Reth, Michael; Wagner, Erwin F.; Schett, Georg
2014-01-01
The cornerstone of humoral immunity is the differentiation of B cells into antibody-secreting plasma cells. This process is tightly controlled by a regulatory gene network centered on the transcriptional repressor B lymphocyte–induced maturation protein 1 (Blimp1). Proliferation of activated B cells is required to foster Blimp1 expression but needs to be terminated to avoid overshooting immune reactions. Activator protein 1 (AP-1) transcription factors become quickly up-regulated upon B cell activation. We demonstrate that Fra1, a Fos member of AP-1, enhances activation-induced cell death upon induction in activated B cells. Moreover, mice with B cell–specific deletion of Fra1 show enhanced plasma cell differentiation and exacerbated antibody responses. In contrast, transgenic overexpression of Fra1 blocks plasma cell differentiation and immunoglobulin production, which cannot be rescued by Bcl2. On the molecular level, Fra1 represses Blimp1 expression and interferes with binding of the activating AP-1 member c-Fos to the Blimp1 promoter. Conversely, overexpression of c-Fos in Fra1 transgenic B cells releases Blimp1 repression. As Fra1 lacks transcriptional transactivation domains, we propose that Fra1 inhibits Blimp1 expression and negatively controls plasma cell differentiation through binding to the Blimp1 promoter. In summary, we demonstrate that Fra1 negatively controls plasma cell differentiation by repressing Blimp1 expression. PMID:25288397
Both rejection and tolerance of allografts can occur in the absence of secondary lymphoid tissues
Kant, Cavit D.; Akiyama, Yoshinobu; Tanaka, Katsunori; Shea, Susan; Yamada, Yohei; Connolly, Sarah E; Marino, Jose; Tocco, Georges; Benichou, Gilles
2014-01-01
In this study, we show that aly/aly mice, which are devoid of lymph nodes and Peyer’s patches, rejected acutely fully allogeneic skin and heart grafts. They mounted potent inflammatory direct alloresponses but failed to develop indirect alloreactivity after transplantation. Remarkably, skin allografts were also rejected acutely by splenectomized aly/aly mice (aly/aly-spl−) devoid of all secondary lymphoid organs. In these recipients, the rejection was mediated by alloreactive CD8+ T cells presumably primed in the bone marrow. In contrast, cardiac transplants were not rejected in aly/aly-spl− mice. Actually, aly/aly-spl− mice having spontaneously accepted a heart allotransplant displayed donor-specific tolerance also accepted skin grafts from the same but not a third-party donor via a mechanism involving CD4+ regulatory T cells producing IL-10 cytokine. Therefore, direct priming of alloreactive T cells, as well as rejection and regulatory tolerance of allogeneic transplants, can occur in recipient mice lacking secondary lymphoid organs. PMID:25535285
Zhou, Haiying; Gunsten, Sean P.; Zhegalova, Natalia G.; Bloch, Sharon; Achilefu, Samuel; Holley, J. Christopher; Schweppe, Daniel; Akers, Walter; Brody, Steven L.; Eades, William; Berezin, Mikhail Y.
2016-01-01
In vivo optical imaging with near-infrared (NIR) probes is an established method of diagnostics in preclinical and clinical studies. However, the specificities of these probes are difficult to validate ex vivo due to the lack of NIR flow cytometry. To address this limitation, we modified a flow cytometer to include an additional NIR channel using a 752 nm laser line. The flow cytometry system was tested using NIR microspheres and cell lines labeled with a combination of visible range and NIR fluorescent dyes. The approach was verified in vivo in mice evaluated for immune response in lungs after intratracheal delivery of the NIR contrast agent. Flow cytometry of cells obtained from the lung bronchoalveolar lavage demonstrated that the NIR dye was taken up by pulmonary macrophages as early as four-hours post-injection. This combination of optical imaging with NIR flow cytometry extends the capability of imaging and enables complementation of in vivo imaging with cell-specific studies. PMID:25808737
Lack of broad functional differences in immunity in fully vaccinated vs. unvaccinated children.
Sherrid, Ashley M; Ruck, Candice E; Sutherland, Darren; Cai, Bing; Kollmann, Tobias R
2017-04-01
Concerns have been raised that with an increase in the number of vaccines administered early in life, immune development could be altered, leading to either increased or decreased immune reactivity. We investigated the impact of vaccination on immune status, contrasting the immune response to general, nonantigen-specific stimuli in a cohort of entirely unvaccinated vs. fully vaccinated children at 3-5 y of age. Innate immunity was assessed by quantifying bulk and cell-type-specific cytokine production in response to stimulation with pathogen associated microbial patterns. Adaptive immune status was characterized by assessing lymphocyte proliferation and cytokine production in response to generic T cell stimuli. Our investigations failed to reveal a broadly evident alteration of either innate or adaptive immunity in vaccinated children. Equivalently robust innate and adaptive responses to pathogen associated microbial patterns and generic T cell stimulants were observed in both groups. Although our sample size was small, our data suggest that standard childhood vaccinations do not lead to long-lasting gross alterations of the immune system.
Eom, Dae Seok; Bain, Emily J; Patterson, Larissa B; Grout, Megan E; Parichy, David M
2015-01-01
Changes in gene activity are essential for evolutionary diversification. Yet, elucidating the cellular behaviors that underlie modifications to adult form remains a profound challenge. We use neural crest-derived adult pigmentation of zebrafish and pearl danio to uncover cellular bases for alternative pattern states. We show that stripes in zebrafish require a novel class of thin, fast cellular projection to promote Delta-Notch signaling over long distances from cells of the xanthophore lineage to melanophores. Projections depended on microfilaments and microtubules, exhibited meandering trajectories, and stabilized on target cells to which they delivered membraneous vesicles. By contrast, the uniformly patterned pearl danio lacked such projections, concomitant with Colony stimulating factor 1-dependent changes in xanthophore differentiation that likely curtail signaling available to melanophores. Our study reveals a novel mechanism of cellular communication, roles for differentiation state heterogeneity in pigment cell interactions, and an unanticipated morphogenetic behavior contributing to a striking difference in adult form. DOI: http://dx.doi.org/10.7554/eLife.12401.001 PMID:26701906
Albariño, César G; Wiggleton Guerrero, Lisa; Spengler, Jessica R; Uebelhoer, Luke S; Chakrabarti, Ayan K; Nichol, Stuart T; Towner, Jonathan S
2015-02-01
Previous in vitro studies have demonstrated that Ebola and Marburg virus (EBOV and MARV) VP35 antagonize the host cell immune response. Moreover, specific mutations in the IFN inhibitory domain (IID) of EBOV and MARV VP35 that abrogate their interaction with virus-derived dsRNA, lack the ability to inhibit the host immune response. To investigate the role of MARV VP35 in the context of infectious virus, we used our reverse genetics system to generate two recombinant MARVs carrying specific mutations in the IID region of VP35. Our data show that wild-type and mutant viruses grow to similar titers in interferon deficient cells, but exhibit attenuated growth in interferon-competent cells. Furthermore, in contrast to wild-type virus, both MARV mutants were unable to inhibit expression of various antiviral genes. The MARV VP35 mutants exhibit similar phenotypes to those previously described for EBOV, suggesting the existence of a shared immune-modulatory strategy between filoviruses. Published by Elsevier Inc.
Cell-free measurements of brightness of fluorescently labeled antibodies
Zhou, Haiying; Tourkakis, George; Shi, Dennis; Kim, David M.; Zhang, Hairong; Du, Tommy; Eades, William C.; Berezin, Mikhail Y.
2017-01-01
Validation of imaging contrast agents, such as fluorescently labeled imaging antibodies, has been recognized as a critical challenge in clinical and preclinical studies. As the number of applications for imaging antibodies grows, these materials are increasingly being subjected to careful scrutiny. Antibody fluorescent brightness is one of the key parameters that is of critical importance. Direct measurements of the brightness with common spectroscopy methods are challenging, because the fluorescent properties of the imaging antibodies are highly sensitive to the methods of conjugation, degree of labeling, and contamination with free dyes. Traditional methods rely on cell-based assays that lack reproducibility and accuracy. In this manuscript, we present a novel and general approach for measuring the brightness using antibody-avid polystyrene beads and flow cytometry. As compared to a cell-based method, the described technique is rapid, quantitative, and highly reproducible. The proposed method requires less than ten microgram of sample and is applicable for optimizing synthetic conjugation procedures, testing commercial imaging antibodies, and performing high-throughput validation of conjugation procedures. PMID:28150730
A mitotic SKAP isoform regulates spindle positioning at astral microtubule plus ends
Kern, David M.; Nicholls, Peter K.; Page, David C.
2016-01-01
The Astrin/SKAP complex plays important roles in mitotic chromosome alignment and centrosome integrity, but previous work found conflicting results for SKAP function. Here, we demonstrate that SKAP is expressed as two distinct isoforms in mammals: a longer, testis-specific isoform that was used for the previous studies in mitotic cells and a novel, shorter mitotic isoform. Unlike the long isoform, short SKAP rescues SKAP depletion in mitosis and displays robust microtubule plus-end tracking, including localization to astral microtubules. Eliminating SKAP microtubule binding results in severe chromosome segregation defects. In contrast, SKAP mutants specifically defective for plus-end tracking facilitate proper chromosome segregation but display spindle positioning defects. Cells lacking SKAP plus-end tracking have reduced Clasp1 localization at microtubule plus ends and display increased lateral microtubule contacts with the cell cortex, which we propose results in unbalanced dynein-dependent cortical pulling forces. Our work reveals an unappreciated role for the Astrin/SKAP complex as an astral microtubule mediator of mitotic spindle positioning. PMID:27138257
Differential cross-reactivity of monoclonal antibody OPD4 (anti-CD45RO) in macaques.
Wang, Xiaolei; Pahar, Bapi; Rasmussen, Terri; Alvarez, Xavier; Dufour, Jason; Rasmussen, Kelsi; Lackner, Andrew A; Veazey, Ronald S
2008-01-01
Immunologic research in nonhuman primates is occasionally limited by the availability of reagents that cross-react in nonhuman primates. One major limitation has been the lack of a monoclonal antibody to CD45RO. Although the monoclonal antibody UCHL-1 is used to detect CD45RO isoforms in humans, it does not react with nonhuman primates, mandating the use of alternative strategies to define "memory" T cell responses in nonhuman primates. The current study examined the reactivity and specificity of another antibody against CD45RO, clone OPD4, in macaques. Here we demonstrate that OPD4 specifically labels memory CD4+ T cells in approximately 44% of rhesus macaques (Macaca mulatta) of Indian but not Chinese origin. In contrast, tissues from pigtail macaques (Macaca nemestrina) react with this clone, indicating that OPD4 may be useful for examining memory CD4+ T cells in certain macaques, but its utility may be limited in other species or even among individual macaques.
Differential cross-reactivity of monoclonal antibody OPD4 (anti-CD45RO) in macaques
Wang, Xiaolei; Pahar, Bapi; Rasmussen, Terri; Alvarez, Xavier; Dufour, Jason; Rasmussen, Kelsi; Lackner, Andrew A.; Veazey, Ronald S.
2008-01-01
Immunologic research in nonhuman primates is occasionally limited by the availability of reagents that cross react in nonhuman primates. One major limitation has been the lack of a monoclonal antibody to CD45RO. Although the monoclonal antibody UCHL-1 is used to detect CD45RO isoforms in humans, it does not react with nonhuman primates, mandating the use of alternative strategies to define “memory” T cell responses in nonhuman primates. The current study examined the reactivity and specificity of another antibody against CD45RO, clone OPD4, in macaques. Here we demonstrate that OPD4 specifically labels memory CD4+ T cells in ~44% of rhesus macaques (Macaca mulatta) of Indian, but not Chinese origin. In contrast, tissues from pigtail macaques (Macaca nemestrina) react with this clone, indicating that OPD4 may be useful for examining memory CD4+ T cells in certain macaques, but its utility may be limited in other species or even among individual macaques. PMID:18304631
Miller, Douglas L; Li, Peng; Dou, Chunyan; Gordon, David; Edwards, Chris A; Armstrong, William F
2005-10-01
To detect specific cardiomyocyte injury induced by myocardial contrast material-enhanced echocardiography (ie, myocardial contrast echocardiography) in rats and to ascertain the influences of contrast material dose and ultrasound exposure on this injury. All animal procedures were approved by the university committee for the use and care of animals. Myocardial contrast echocardiography with 1:4 electrocardiographic (ECG) triggering was performed at 1.5 MHz in 61 anesthetized rats. Evans blue (EB) dye was injected as the vital stain for cardiomyocyte injury. At the start of myocardial contrast echocardiography, which lasted 10 minutes, perflutren lipid microsphere-based contrast material was infused through the tail vein for 5 minutes. Premature heartbeats were counted from the ECG record. The numbers of EB-stained cells counted on sections of heart specimens obtained 24 hours after myocardial contrast echocardiography and then either fresh frozen or embedded in paraffin were determined by using fluorescence microscopy. Results were compared statistically by using t tests and Mann-Whitney rank sum tests. EB-stained cells were concentrated in the anterior region of the myocardium. In the paraffin-embedded specimens, EB-stained cells were often accompanied by but largely separate from areas of inflammatory cell infiltration. At end-systolic triggering with a 50 microL/kg dose of microsphere contrast material, the EB-stained cell count increased with increasing peak rarefactional pressure amplitude, with significantly increased cell counts at 1.6 MPa (P < .02) and 2.0 MPa (P < .005) relative to the cell counts at sham myocardial contrast echocardiography. Premature heartbeats had a similar exposure-response relationship; however, number of premature heartbeats and EB-stained cell count did not appear to be directly related (coefficient of determination r2 = 0.03). The EB-stained cell counts at end-diastolic triggering were not significantly different from those at end-systolic triggering (P > .1). EB-stained cell counts increased with increasing contrast material dose, from 10 to 50 microL/kg, at 2.0 MPa. Cardiomyocyte injury was induced by the interaction of ultrasound pulses with contrast agent microbubbles during myocardial contrast echocardiography in rats, and the numbers of injured cells increased with increasing contrast agent dose and ultrasound exposure. RSNA, 2005
The Emergence of Contrast-Invariant Orientation Tuning in Simple Cells of Cat Visual Cortex
Finn, Ian M.; Priebe, Nicholas J.; Ferster, David
2007-01-01
Simple cells in primary visual cortex exhibit contrast-invariant orientation tuning, in seeming contradiction to feed-forward models relying on lateral geniculate nucleus (LGN) input alone. Contrast invariance has therefore been thought to depend on the presence of intracortical lateral inhibition. In vivo intracellular recordings instead suggest that contrast invariance can be explained by three properties of the excitatory pathway. 1) Depolarizations evoked by orthogonal stimuli are determined by the amount of excitation a cell receives from the LGN, relative to the excitation it receives from other cortical cells. 2) Depolarizations evoked by preferred stimuli saturate at lower contrasts than the spike output of LGN relay cells. 3) Visual stimuli evoke contrast-dependent changes in trial-to-trial variability, which lead to contrast-dependent changes in the relationship between membrane potential and spike rate. Thus, high-contrast, orthogonally-oriented stimuli that evoke significant depolarizations evoke few spikes. Together these mechanisms, without lateral inhibition, can account for contrast-invariant stimulus selectivity. PMID:17408583
Autonomous parvovirus LuIII encapsidates equal amounts of plus and minus DNA strands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bates, R.C.; Snyder, C.E.; Banerjee, P.T.
1984-02-01
Autonomous parvoviruses are thought to uniquely encapsidate single-stranded DNA of minus polarity. In contrast, the defective adeno-associated viruses separately encapsidate equal amounts of plus and minus DNA strands. The uniqueness of minus strand encapsidation is reexamined for the autonomous parvoviruses. Although it was found that Kilham rat virus and H-1 virus encapsidate varying but small amounts of complementary-strand DNA, it was unexpected to find that LuIII virus encapsidated equal amounts of plus and minus DNA. The extracted LuIII DNA possessed properties of double-stranded replicative-form DNA, including insensitivity to S1 endonuclease, cleavage by restriction enzymes, and conversion to unit-length, single-stranded DNAmore » when electrophoresed under denaturing conditions. However, the inability of this DNA to form single-stranded DNA circles when denatured and then renatured in the presence of formamide and the lack of double-stranded DNA circle formation after treatment with exonuclease III and reannealing shows a lack of sequence homology of the 3' and 5' termini of LuIII DNA, in contrast to adeno-associated virus DNA. Digestion of LuIII double-stranded DNA with EcoRI and HincII and separation of plus and minus DNA strands on composite agarose-acrylamide gels identified a heterogeneity present only in the plus DNA strand. These results suggest that strand specificity of viral DNA encapsidation is not a useful property for differentiation between the autonomous and defective parvoviruses. Furthermore, encapsidation by LuIII of equal amounts of complementary DNA strands in contrast to encapsidation of minus strands by H-1 virus, when propagated in the same host cell type, suggests that selection of strands for encapsidation is a virus-coded rather than host-controlled event.« less
Bachert, Beth A; Choi, Soo J; LaSala, Paul R; Harper, Tiffany I; McNitt, Dudley H; Boehm, Dylan T; Caswell, Clayton C; Ciborowski, Pawel; Keene, Douglas R; Flores, Anthony R; Musser, James M; Squeglia, Flavia; Marasco, Daniela; Berisio, Rita; Lukomski, Slawomir
2016-01-01
The streptococcal collagen-like proteins 1 and 2 (Scl1 and Scl2) are major surface adhesins that are ubiquitous among group A Streptococcus (GAS). Invasive M3-type strains, however, have evolved two unique conserved features in the scl1 locus: (i) an IS1548 element insertion in the scl1 promoter region and (ii) a nonsense mutation within the scl1 coding sequence. The scl1 transcript is drastically reduced in M3-type GAS, contrasting with a high transcription level of scl1 allele in invasive M1-type GAS. This leads to a lack of Scl1 expression in M3 strains. In contrast, while scl2 transcription and Scl2 production are elevated in M3 strains, M1 GAS lack Scl2 surface expression. M3-type strains were shown to have reduced biofilm formation on inanimate surfaces coated with cellular fibronectin and laminin, and in human skin equivalents. Repair of the nonsense mutation and restoration of Scl1 expression on M3-GAS cells, restores biofilm formation on cellular fibronectin and laminin coatings. Inactivation of scl1 in biofilm-capable M28 and M41 strains results in larger skin lesions in a mouse model, indicating that lack of Scl1 adhesin promotes bacterial spread over localized infection. These studies suggest the uniquely evolved scl1 locus in the M3-type strains, which prevents surface expression of the major Scl1 adhesin, contributed to the emergence of the invasive M3-type strains. Furthermore these studies provide insight into the molecular mechanisms mediating colonization, biofilm formation, and pathogenesis of group A streptococci.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paessler, Slobodan; Yun, Nadezhda E.; Judy, Barbara M.
2007-10-25
We evaluated the safety and immunogenicity of a chimeric alphavirus vaccine candidate in mice with selective immunodeficiencies. This vaccine candidate was highly attenuated in mice with deficiencies in the B and T cell compartments, as well as in mice with deficient gamma-interferon responsiveness. However, the level of protection varied among the strains tested. Wild type mice were protected against lethal VEEV challenge. In contrast, alpha/beta ({alpha}{beta}) TCR-deficient mice developed lethal encephalitis following VEEV challenge, while mice deficient in gamma/delta ({gamma}{delta}) T cells were protected. Surprisingly, the vaccine potency was diminished by 50% in animals lacking interferon-gamma receptor alpha chain (R1)-chainmore » and a minority of vaccinated immunoglobulin heavy chain-deficient ({mu}MT) mice survived challenge, which suggests that neutralizing antibody may not be absolutely required for protection. Prolonged replication of encephalitic VEEV in the brain of pre-immunized mice is not lethal and adoptive transfer experiments indicate that CD3{sup +} T cells are required for protection.« less
Avelumab: combining immune checkpoint inhibition and antibody-dependent cytotoxicity.
Hamilton, Gerhard; Rath, Barbara
2017-04-01
Immune checkpoint inhibition holds great promise for selected tumors. The human monoclonal antibody (mAB) avelumab is directed to programmed death ligand-1 (PD-L1) and is supposed to inhibit the immunosuppressive PD-L1/PD-1 interaction and, furthermore, effect antibody-dependent cytotoxicity (ADCC) lysis of tumor cells. Areas covered: This article presents an overview of the current means to activate the antitumor immune defense by targeting PD-1 or PD-L1 with mABs and their possible role in ADCC-mediated tumor cell elimination. Expert opinion: Avelumab contains a Fc region which can bind cognate receptors on immune effector cells and induce ADCC-mediated tumor cell lysis, in contrast to other mABs directed to PD-1/PD-L1 which lack the ability to trigger ADCC due to belonging to the IgG4 subclass or possessing a mutated Fc region. Preclinical and clinical data indicate that avelumab can be safely administered to cancer patients with a toxicity profile comparable to other mABs and without lysis of PD-L1-positive activated immune cells. This antibody yielded durable responses in a phase II trial in advanced Merkel cell carcinoma patients. Tumor cell lysis by avelumab prevents cells from resorting to alternative checkpoints as shown by targeting PD-1 and the upregulation of TIM-3.
Cell fate regulation in early mammalian development
NASA Astrophysics Data System (ADS)
Oron, Efrat; Ivanova, Natalia
2012-08-01
Preimplantation development in mammals encompasses a period from fertilization to implantation and results in formation of a blastocyst composed of three distinct cell lineages: epiblast, trophectoderm and primitive endoderm. The epiblast gives rise to the organism, while the trophectoderm and the primitive endoderm contribute to extraembryonic tissues that support embryo development after implantation. In many vertebrates, such as frog or fish, maternally supplied lineage determinants are partitioned within the egg. Cell cleavage that follows fertilization results in polarization of these factors between the individual blastomeres, which become restricted in their developmental fate. In contrast, the mouse oocyte and zygote lack clear polarity and, until the eight-cell stage, individual blastomeres retain the potential to form all lineages. How are cell lineages specified in the absence of a maternally supplied blueprint? This is a fundamental question in the field of developmental biology. The answer to this question lies in understanding the cell-cell interactions and gene networks involved in embryonic development prior to implantation and using this knowledge to create testable models of the developmental processes that govern cell fates. We provide an overview of classic and contemporary models of early lineage development in the mouse and discuss the emerging body of work that highlights similarities and differences between blastocyst development in the mouse and other mammalian species.
Influence of MRI contrast media on histamine release from mast cells.
Kun, Tomasz; Jakubowski, Lucjusz
2012-07-01
Mast cells, owing to diversity of secreted mediators, play a crucial role in the regulation of inflammatory response. Together with basophils, mast cells constitute a central pathogenetic element of anaphylactic (IgE-dependent) and anaphylactoid (IgE-independent) reactions. In severe cases, generalized degranulation of mast cells may cause symptoms of anaphylactic shock. The influence of the classical, iodine-based contrast media on mastocyte degranulation has been fully described. Our objective was to determine the influence of the gadolinium-based MRI contrast media on histamine release from mast cells and to compare the activity of ionic and non-ionic preparations of contrast media. To determine the intensity of mast cell degranulation, we used an experimental model based on mastocytes isolated from rat peritoneal fluid. Purified suspensions of mast cells were incubated with various concentrations of Gd-DTPA and Gd-DTPA-BMA, and solutions of PEG 600 which served as a non-toxic osmotic stimulus. The intensity of mast cell activation was presented as mean percentage of histamine released from cells after incubation. The obtained results demonstrate that both ionic and non-ionic preparations of the MRI contrast media are able to induce mast cell degranulation in vitro. It was also proved that the non-ionic MRI contrast media stimulate mast cells markedly more weakly than ionic contrast media at identical concentration. The aforementioned results may suggest a more profitable safety profile of the non-ionic contrast preparations. We may also conclude that triggering of mast cell degranulation after incubation with the solutions of MRI contrast media results from non-specific osmotic stimulation and direct toxicity of free ionic residues.
Sefia, Eseberuo; Pryce, Gareth; Meier, Ute-Christiane; Giovannoni, Gavin; Baker, David
2017-05-01
Multiple sclerosis (MS) is often considered to be a CD4, T cell-mediated disease. This is largely based on the capacity of CD4 T cells to induce relapsing experimental autoimmune encephalomyelitis (EAE) in rodents. However, CD4-depletion using a monoclonal antibody was considered unsuccessful and relapsing MS responds well to B cell depletion via CD20 B cell depleting antibodies. The influence of CD20 B cell depletion in relapsing EAE was assessed. Relapsing EAE was induced in Biozzi ABH mice. These were treated with CD20-specific (18B12) antibody and the influence on CD45RA-B220 B cell depletion and clinical course was analysed. Relapsing EAE in Biozzi ABH failed to respond to the marked B cell depletion induced with a CD20-specific antibody. In contrast to CD20 and CD8-specific antibodies, CD4 T cell depletion inhibited EAE. Spinal cord antigen-induced disease in ABH mice is CD4 T cell-dependent. The lack of influence of CD20 B cell depletion in relapsing EAE, coupled with the relatively marginal and inconsistent results obtained in other mouse studies, suggests that rodents may have limited value in understanding the mechanism occurring following CD20 B cell depletion in humans. Copyright © 2017 Elsevier B.V. All rights reserved.
Peckys, Diana B; Korf, Ulrike; Wiemann, Stefan; de Jonge, Niels
2017-08-09
The development of drug resistance in cancer poses a major clinical problem. An example is human epidermal growth factor receptor 2 (HER2) overexpressing breast cancer often treated with anti-HER2 antibody therapies, such as trastuzumab. Since drug resistance is rooted mainly in tumor cell heterogeneity, we examined the drug effect in different subpopulations of SKBR3 breast cancer cells, and compared the results with a drug resistant cell line, HCC1954. Correlative light microscopy and liquid-phase scanning transmission electron microscopy (STEM) were used to quantitatively analyze HER2 responses upon drug binding, whereby many tens of whole cells were imaged. Trastuzumab was found to selectively cross-link and down regulate HER2 homodimers from the plasma membranes of bulk cancer cells. In contrast, HER2 resided mainly as monomers in rare subpopulations of resting- and cancer stem cells (CSCs), and these monomers were not internalized after drug binding. The HER2 distribution was hardly influenced by trastuzumab for the HCC1954 cells. These findings show that resting cells and CSCs are irresponsive to the drug, and thus point towards a molecular explanation behind the origin of drug resistance. This analytical method is broadly applicable to study membrane protein interactions in the intact plasma membrane, while accounting for cell heterogeneity. © 2017 by The American Society for Cell Biology.
Pötgens, A J G; Kataoka, H; Ferstl, S; Frank, H-G; Kaufmann, P
2003-04-01
We developed a method for isolating highly pure villous cytotrophoblast cells from first trimester and term placenta that excludes extravillous trophoblast and syncytiotrophoblast fragments. The method is based on positive immunoselection using an antibody (mAb C76/18) reacting with hepatocyte growth factor activator inhibitor 1, HAI-1, a membrane antigen on villous cytotrophoblast. As a comparison, we also immunopurified cells using an antibody against CD105, present on syncytiotrophoblast and some extravillous trophoblast cells. The isolates were characterized by flow cytometry. HAI-1-positive cells from first trimester and term placentae were highly pure (>98 per cent cytokeratin 7-positive) mononuclear trophoblast cells. These isolations were contaminated with only very small percentages of vimentin and CD45-positive cells. HAI-1-positive trophoblast cells lacked CD105 and also HLA class I, a marker for extravillous trophoblast. In culture HAI-1-positive cells adhered, displayed an epithelial morphology, and survived for more than three days. In contrast, CD105-positive cell fractions from first trimester placenta were a heterogeneous mixture of mononuclear and multinuclear elements consisting of syncytiotrophoblast fragments, extravillous trophoblast cells, as well as around 5 per cent non-trophoblastic contaminants. In conclusion, the positive immunoselection method using antibody C76/18 yielded highly pure villous cytotrophoblast cells devoid of elements derived from syncytiotrophoblast or extravillous trophoblast.
Xiao, Lifu; Tian, Xiumei; Harihar, Sitaram; Li, Qifei; Li, Li; Welch, Danny R; Zhou, Anhong
2017-06-15
There has been an interest in developing multimodal approaches to combine the advantages of individual imaging modalities, as well as to compensate for respective weaknesses. We previously reported a composite nano-system composed of gadolinium-doped mesoporous silica nanoparticle and gold nanoparticle (Gd-Au NPs) as an efficient MRI contrast agent for in vivo cancer imaging. However, MRI lacks sensitivity and is unsuitable for in vitro cancer detection. Thus, here we performed a study to use the Gd-Au NPs for detection and imaging of a widely recognized human cancer biomarker, epidermal growth factor receptor (EGFR), in individual human cancer cells with surface-enhanced Raman scattering (SERS). The Gd-Au NPs were sequentially conjugated with a monoclonal antibody recognizing EGFR and a Raman reporter molecule, 4-meraptobenzoic acid (MBA), to generate a characteristic SERS signal at 1075cm -1 . By spatially mapping the SERS intensity at 1075cm -1 , cellular distribution of EGFR and its relocalization on the plasma membrane were measured in situ. In addition, the EGFR expression levels in three human cancer cell lines (S18, A431 and A549) were measured using this SERS probe, which were consistent with the comparable measurements using immunoblotting and immunofluorescence. Our SERS results show that functionalized Gd-Au NPs successfully targeted EGFR molecules in three human cancer cell lines and monitored changes in single cell EGFR distribution in situ, demonstrating its potential to study cell activity under physiological conditions. This SERS study, combined with our previous MRI study, suggests the Gd-Au nanocomposite is a promising candidate contrast agent for multimodal cancer imaging. Copyright © 2017 Elsevier B.V. All rights reserved.
Nitrergic signalling via interstitial cells of Cajal regulates motor activity in murine colon.
Lies, Barbara; Beck, Katharina; Keppler, Jonas; Saur, Dieter; Groneberg, Dieter; Friebe, Andreas
2015-10-15
In the enteric nervous systems, NO is released from nitrergic neurons as a major inhibitory neurotransmitter. NO acts via NO-sensitive guanylyl cyclase (NO-GC), which is found in different gastrointestinal (GI) cell types including smooth muscle cells (SMCs) and interstitial cells of Cajal (ICC). The precise mechanism of nitrergic signalling through these two cell types to regulate colonic spontaneous contractions is not fully understood yet. In the present study we investigated the impact of endogenous and exogenous NO on colonic contractile motor activity using mice lacking nitric oxide-sensitive guanylyl cyclase (NO-GC) globally and specifically in SMCs and ICC. Longitudinal smooth muscle of proximal colon from wild-type (WT) and knockout (KO) mouse strains exhibited spontaneous contractile activity ex vivo. WT and smooth muscle-specific guanylyl cyclase knockout (SMC-GCKO) colon showed an arrhythmic contractile activity with varying amplitudes and frequencies. In contrast, colon from global and ICC-specific guanylyl cyclase knockout (ICC-GCKO) animals showed a regular contractile rhythm with constant duration and amplitude of the rhythmic contractions. Nerve blockade (tetrodotoxin) or specific blockade of NO signalling (L-NAME, ODQ) did not significantly affect contractions of GCKO and ICC-GCKO colon whereas the arrhythmic contractile patterns of WT and SMC-GCKO colon were transformed into uniform motor patterns. In contrast, the response to electric field-stimulated neuronal NO release was similar in SMC-GCKO and global GCKO. In conclusion, our results indicate that basal enteric NO release acts via myenteric ICC to influence the generation of spontaneous contractions whereas the effects of elevated endogenous NO are mediated by SMCs in the murine proximal colon. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
NASA Astrophysics Data System (ADS)
Xiao, Lifu; Tian, Xiumei; Harihar, Sitaram; Li, Qifei; Li, Li; Welch, Danny R.; Zhou, Anhong
2017-06-01
There has been an interest in developing multimodal approaches to combine the advantages of individual imaging modalities, as well as to compensate for respective weaknesses. We previously reported a composite nano-system composed of gadolinium-doped mesoporous silica nanoparticle and gold nanoparticle (Gd-Au NPs) as an efficient MRI contrast agent for in vivo cancer imaging. However, MRI lacks sensitivity and is unsuitable for in vitro cancer detection. Thus, here we performed a study to use the Gd-Au NPs for detection and imaging of a widely recognized human cancer biomarker, epidermal growth factor receptor (EGFR), in individual human cancer cells with surface-enhanced Raman scattering (SERS). The Gd-Au NPs were sequentially conjugated with a monoclonal antibody recognizing EGFR and a Raman reporter molecule, 4-meraptobenzoic acid (MBA), to generate a characteristic SERS signal at 1075 cm- 1. By spatially mapping the SERS intensity at 1075 cm- 1, cellular distribution of EGFR and its relocalization on the plasma membrane were measured in situ. In addition, the EGFR expression levels in three human cancer cell lines (S18, A431 and A549) were measured using this SERS probe, which were consistent with the comparable measurements using immunoblotting and immunofluorescence. Our SERS results show that functionalized Gd-Au NPs successfully targeted EGFR molecules in three human cancer cell lines and monitored changes in single cell EGFR distribution in situ, demonstrating its potential to study cell activity under physiological conditions. This SERS study, combined with our previous MRI study, suggests the Gd-Au nanocomposite is a promising candidate contrast agent for multimodal cancer imaging.
Cytoskeletal regulation of CD44 membrane organization and interactions with E-selectin.
Wang, Ying; Yago, Tadayuki; Zhang, Nan; Abdisalaam, Salim; Alexandrakis, George; Rodgers, William; McEver, Rodger P
2014-12-19
Interactions of CD44 on neutrophils with E-selectin on activated endothelial cells mediate rolling under flow, a prerequisite for neutrophil arrest and migration into perivascular tissues. How CD44 functions as a rolling ligand despite its weak affinity for E-selectin is unknown. We examined the nanometer scale organization of CD44 on intact cells. CD44 on leukocytes and transfected K562 cells was cross-linked within a 1.14-nm spacer. Depolymerizing actin with latrunculin B reduced cross-linking. Fluorescence resonance energy transfer (FRET) revealed tight co-clustering between CD44 fused to yellow fluorescent protein (YFP) and CD44 fused to cyan fluorescent protein on K562 cells. Latrunculin B reduced FRET-reported co-clustering. Number and brightness analysis confirmed actin-dependent CD44-YFP clusters on living cells. CD44 lacking binding sites for ankyrin and for ezrin/radixin/moesin (ERM) proteins on its cytoplasmic domain (ΔANKΔERM) did not cluster. Unexpectedly, CD44 lacking only the ankyrin-binding site (ΔANK) formed larger but looser clusters. Fluorescence recovery after photobleaching demonstrated increased CD44 mobility by latrunculin B treatment or by deleting the cytoplasmic domain. ΔANKΔERM mobility increased only modestly, suggesting that the cytoplasmic domain engages the cytoskeleton by an additional mechanism. Ex vivo differentiated CD44-deficient neutrophils expressing exogenous CD44 rolled on E-selectin and activated Src kinases after binding anti-CD44 antibody. In contrast, differentiated neutrophils expressing ΔANK had impaired rolling and kinase activation. These data demonstrate that spectrin and actin networks regulate CD44 clustering and suggest that ankyrin enhances CD44-mediated neutrophil rolling and signaling. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Cytoskeletal Regulation of CD44 Membrane Organization and Interactions with E-selectin*
Wang, Ying; Yago, Tadayuki; Zhang, Nan; Abdisalaam, Salim; Alexandrakis, George; Rodgers, William; McEver, Rodger P.
2014-01-01
Interactions of CD44 on neutrophils with E-selectin on activated endothelial cells mediate rolling under flow, a prerequisite for neutrophil arrest and migration into perivascular tissues. How CD44 functions as a rolling ligand despite its weak affinity for E-selectin is unknown. We examined the nanometer scale organization of CD44 on intact cells. CD44 on leukocytes and transfected K562 cells was cross-linked within a 1.14-nm spacer. Depolymerizing actin with latrunculin B reduced cross-linking. Fluorescence resonance energy transfer (FRET) revealed tight co-clustering between CD44 fused to yellow fluorescent protein (YFP) and CD44 fused to cyan fluorescent protein on K562 cells. Latrunculin B reduced FRET-reported co-clustering. Number and brightness analysis confirmed actin-dependent CD44-YFP clusters on living cells. CD44 lacking binding sites for ankyrin and for ezrin/radixin/moesin (ERM) proteins on its cytoplasmic domain (ΔANKΔERM) did not cluster. Unexpectedly, CD44 lacking only the ankyrin-binding site (ΔANK) formed larger but looser clusters. Fluorescence recovery after photobleaching demonstrated increased CD44 mobility by latrunculin B treatment or by deleting the cytoplasmic domain. ΔANKΔERM mobility increased only modestly, suggesting that the cytoplasmic domain engages the cytoskeleton by an additional mechanism. Ex vivo differentiated CD44-deficient neutrophils expressing exogenous CD44 rolled on E-selectin and activated Src kinases after binding anti-CD44 antibody. In contrast, differentiated neutrophils expressing ΔANK had impaired rolling and kinase activation. These data demonstrate that spectrin and actin networks regulate CD44 clustering and suggest that ankyrin enhances CD44-mediated neutrophil rolling and signaling. PMID:25359776
Marlin, Jerry W; Chang, Yu-Wen E; Ober, Margaret; Handy, Amy; Xu, Wenhao; Jakobi, Rolf
2011-06-01
p21-Activated protein kinase 2 (PAK-2) has both anti- and pro-apoptotic functions depending on its mechanism of activation. Activation of full-length PAK-2 by the monomeric GTPases Cdc42 or Rac stimulates cell survival, whereas caspase activation of PAK-2 to the PAK-2p34 fragment is involved in the apoptotic response. In this study we use functional knockout of PAK-2 and gene replacement with the caspase cleavage-deficient PAK-2D212N mutant to differentiate the biological functions of full-length PAK-2 and caspase-activated PAK-2p34. Knockout of PAK-2 results in embryonic lethality at early stages before organ development, whereas replacement with the caspase cleavage-deficient PAK-2D212N results in viable and healthy mice, indicating that early embryonic lethality is caused by deficiency of full-length PAK-2 rather than lack of caspase activation to the PAK-2p34 fragment. However, deficiency of caspase activation of PAK-2 decreased spontaneous cell death of primary mouse embryonic fibroblasts and increased cell growth at high cell density. In contrast, stress-induced cell death by treatment with the anti-cancer drug cisplatin was not reduced by deficiency of caspase activation of PAK-2, but switched from an apoptotic to a nonapoptotic, caspase-independent mechanism. Homozygous PAK-2D212N primary mouse embryonic fibroblasts that lack the ability to generate the proapoptotic PAK-2p34 show less activation of the effector caspase 3, 6, and 7, indicating that caspase activation of PAK-2 amplifies the apoptotic response through a positive feedback loop resulting in more activation of effector caspases.
Evolution of neural crest and placodes: amphioxus as a model for the ancestral vertebrate?
NASA Technical Reports Server (NTRS)
Holland, L. Z.; Holland, N. D.
2001-01-01
Recent studies of protochordates (ascidian tunicates and amphioxus) have given insights into possible ancestors of 2 of the characteristic features of the vertebrate head: neural crest and placodes. The neural crest probably evolved from cells on either side of the neural plate-epidermis boundary in a protochordate ancestral to the vertebrates. In amphioxus, homologues of several vertebrate neural crest marker genes (BMP2/4, Pax3/7, Msx, Dll and Snail) are expressed at the edges of the neural plate and/or adjacent nonneural ectoderm. Some of these markers are also similarly expressed in tunicates. In protochordates, however, these cells, unlike vertebrate neural crest, neither migrate as individuals through embryonic tissues nor differentiate into a wide spectrum of cell types. Therefore, while the protochordate ancestor of the vertebrates probably had the beginnings of a genetic programme for neural crest formation, this programme was augmented in the earliest vertebrates to attain definitive neural crest. Clear homologues of vertebrate placodes are lacking in protochordates. However, both amphioxus and tunicates have ectodermal sensory cells. In tunicates these are all primary neurons, sending axons to the central nervous system, while in amphioxus, the ectodermal sensory cells include both primary neurons and secondary neurons lacking axons. Comparisons of developmental gene expression suggest that the anterior ectoderm in amphioxus may be homologous to the vertebrate olfactory placode, the only vertebrate placode with primary, not secondary, neurons. Similarly, biochemical, morphological and gene expression data suggest that amphioxus and tunicates also have homologues of the adenohypophysis, one of the few vertebrate structures derived from nonneurogenic placodes. In contrast, the origin of the other vertebrate placodes is very uncertain.
Daffis, Stephane; Samuel, Melanie A; Keller, Brian C; Gale, Michael; Diamond, Michael S
2007-01-01
Interferon regulatory factor (IRF)-3 is a master transcription factor that activates host antiviral defense programs. Although cell culture studies suggest that IRF-3 promotes antiviral control by inducing interferon (IFN)-β, near normal levels of IFN-α and IFN-β were observed in IRF-3−/− mice after infection by several RNA and DNA viruses. Thus, the specific mechanisms by which IRF-3 modulates viral infection remain controversial. Some of this disparity could reflect direct IRF-3-dependent antiviral responses in specific cell types to control infection. To address this and determine how IRF-3 coordinates an antiviral response, we infected IRF-3−/− mice and two primary cells relevant for West Nile virus (WNV) pathogenesis, macrophages and cortical neurons. IRF-3−/− mice were uniformly vulnerable to infection and developed elevated WNV burdens in peripheral and central nervous system tissues, though peripheral IFN responses were largely normal. Whereas wild-type macrophages basally expressed key host defense molecules, including RIG-I, MDA5, ISG54, and ISG56, and restricted WNV infection, IRF-3−/− macrophages lacked basal expression of these host defense genes and supported increased WNV infection and IFN-α and IFN-β production. In contrast, wild-type cortical neurons were highly permissive to WNV and did not basally express RIG-I, MDA5, ISG54, and ISG56. IRF-3−/− neurons lacked induction of host defense genes and had blunted IFN-α and IFN-β production, yet exhibited only modestly increased viral titers. Collectively, our data suggest that cell-specific IRF-3 responses protect against WNV infection through both IFN-dependent and -independent programs. PMID:17676997
Fischer, Patrick; Lehmann, Ute; Sobota, Radoslaw M; Schmitz, Jochen; Niemand, Claudia; Linnemann, Sonja; Haan, Serge; Behrmann, Iris; Yoshimura, Akihiko; Johnston, James A; Müller-Newen, Gerhard; Heinrich, Peter C; Schaper, Fred
2004-01-01
The immediate early response of cells treated with IL-6 (interleukin-6) is the activation of the signal transducer and activator of transcription (STAT)3. The Src homology domain 2 (SH2)-containing protein tyrosine phosphatase SHP2 and the feedback inhibitor SOCS3 (suppressor of cytokine signalling) are potent inhibitors of IL-6 signal transduction. Impaired function of SOCS3 or SHP2 leads to enhanced and prolonged IL-6 signalling. The inhibitory function of both proteins depends on their recruitment to the tyrosine motif 759 within glycoprotein gp130. In contrast to inactivation, desensitization of signal transduction is regarded as impaired responsiveness due to prestimulation. Usually, after activation the sensing receptor becomes inactivated by modifications such as phosphorylation, internalization or degradation. We designed an experimental approach which allows discrimination between desensitization and inactivation of IL-6 signal transduction. We observed that pre-stimulation with IL-6 renders cells less sensitive to further stimulation with IL-6. After several hours, the cells become sensitive again. We show that not only signal transduction through previously activated receptors is affected by desensitization but signalling through receptors which were not targeted by the first stimulation was also attenuated ( trans -desensitization). Interestingly, in contrast to inhibition, desensitization does not depend on the presence of functional SHP2. Furthermore, cells lacking SOCS3 show constitutive STAT3 activation which is not affected by pre-stimulation with IL-6. All these observations suggest that desensitization and inhibition of signalling are mechanistically distinct. PMID:14611646
Discovery of the ergothioneine transporter
Gründemann, Dirk; Harlfinger, Stephanie; Golz, Stefan; Geerts, Andreas; Lazar, Andreas; Berkels, Reinhard; Jung, Norma; Rubbert, Andrea; Schömig, Edgar
2005-01-01
Variants of the SLC22A4 gene are associated with susceptibility to rheumatoid arthritis and Crohn's disease. SLC22A4 codes for an integral membrane protein, OCTN1, that has been presumed to carry organic cations like tetraethylammonium across the plasma membrane. Here, we show that the key substrate of this transporter is in fact ergothioneine (ET). Human OCTN1 was expressed in 293 cells. A substrate lead, stachydrine (alias proline betaine), was identified by liquid chromatography MS difference shading, a new substrate search strategy. Analysis of transport efficiency of stachydrine-related solutes, affinity, and Na+ dependence indicates that the physiological substrate is ET. Efficiency of transport of ET was as high as 195 μl per min per mg of protein. By contrast, the carnitine transporter OCTN2 from rat did not transport ET at all. Because ET is transported >100 times more efficiently than tetraethylammonium and carnitine, we propose the functional name ETT (ET transporter) instead of OCTN1. ET, all of which is absorbed from food, is an intracellular antioxidant with metal ion affinity. Its particular purpose is unresolved. Cells with expression of ETT accumulate ET to high levels and avidly retain it. By contrast, cells lacking ETT do not accumulate ET, because their plasma membrane is virtually impermeable for this compound. The real-time PCR expression profile of human ETT, with strong expression in CD71+ cells, is consistent with a pivotal function of ET in erythrocytes. Moreover, prominent expression of ETT in monocytes and SLC22A4 polymorphism associations suggest a protective role of ET in chronic inflammatory disorders. PMID:15795384
Temporal dynamics of contrast gain in single cells of the cat striate cortex.
Bonds, A B
1991-03-01
The response amplitude of cat striate cortical cells is usually reduced after exposure to high-contrast stimuli. The temporal characteristics and contrast sensitivity of this phenomenon were explored by stimulating cortical cells with drifting gratings in which contrast sequentially incremented and decremented in stepwise fashion over time. All responses showed a clear hysteresis, in which contrast gain dropped on average 0.36 log unit and then returned to baseline values within 60 s. Noticeable gain adjustments were seen in as little as 3 s and with peak contrasts as low as 3%. Contrast adaptation was absent in responses from LGN cells. Adaptation was found to depend on temporal frequency of stimulation, with greater and more rapid adaptation at higher temporal frequencies. Two different tests showed that the mechanism controlling response reduction was influenced primarily by stimulus contrast rather than response amplitude. These results support the existence of a rapid and sensitive cortically based system that normalizes the output of cortical cells as a function of local mean contrast. Control of the adaptation appears to arise at least in part across a population of cells, which is consistent with the idea that the gain control serves to limit the information converging from many cells onto subsequent processing areas.
Head-Directional Tuning and Theta Modulation of Anatomically Identified Neurons in the Presubiculum.
Tukker, John J; Tang, Qiusong; Burgalossi, Andrea; Brecht, Michael
2015-11-18
The presubiculum provides a major input to the medial entorhinal cortex (MEC) and contains cells that encode for the animal's head direction (HD), as well as other cells likely to be important for navigation and memory, including grid cells. To understand the mechanisms underlying HD cell firing and its effects on other parts of the circuit, it is important to determine the anatomical identity of these functionally defined cells. Therefore, we juxtacellularly recorded single cells in the presubiculum in freely moving rats, finding two classes of cells based on firing patterns and juxtacellular labeling (of a subset). Regular-firing cells had the anatomical characteristics of pyramidal cells and included most recorded HD cells. Therefore, HD cells are likely to be excitatory pyramidal cells. For one HD cell, we could follow an axon projecting directly to the MEC. Fast-spiking (FS) cells had the anatomical characteristics of interneurons and displayed weak HD tuning. Furthermore, FS cells displayed a surprising lack of theta-rhythmic firing, in strong contrast to the FS cells that we recorded in the MEC. Overall, we show that HD cells in the presubiculum are pyramidal cells, with FS interneurons only showing weak HD tuning; therefore, MEC may receive an excitatory HD input, as previously assumed by many models. The lack of theta rhythmicity in FS interneurons suggests that different mechanisms may underlie theta in different parts of the hippocampal formation. In freely moving rats, we recorded and labeled single neurons in the presubiculum, an area providing one of the major inputs to the medial entorhinal cortex and part of a network involved in spatial navigation and memory. Post hoc identification of labeled cells showed that (fast-spiking, FS) interneurons and pyramidal cells in the presubiculum can be distinguished based on physiological criteria. We found that both moderately and strongly tuned head-direction (HD) cells are pyramidal cells and therefore likely to provide an excitatory HD input to the entorhinal cortex. FS interneurons were weakly head directional and, surprisingly, showed no theta-rhythmic firing. Therefore, the presubiculum appears to encode HD information via excitatory pyramidal cells, possibly also involving FS interneurons, without using a theta-rhythmic temporal code. Copyright © 2015 the authors 0270-6474/15/3515391-05$15.00/0.
Cabada, Miguel M.; Nichols, Joan; Gomez, Guillermo; White, A. Clinton
2013-01-01
The study of human intestinal pathogens has been limited by the lack of methods for the long-term culture of primary human intestinal epithelial cells (PECs). The development of infection models with PECs would allow a better understanding of host-parasite interactions. The objective of this study was to develop a novel method for prolonged in vitro cultivation of PECs that can be used to study Cryptosporidium infection. We isolated intact crypts from human intestines removed during weight loss surgery. The fragments of intestinal layers were cultivated with culture medium supplemented with growth factors and antiapoptotic molecules. After 7 days, the PECs formed self-regenerating cell clusters, forming villi that resemble intestinal epithelium. The PECs proliferated and remained viable for at least 60 days. The cells expressed markers for intestinal stem cells, epithelial cells, and mature enterocytes. The PECs were infected with Cryptosporidium. In contrast to older models in which parasite numbers decay, the burden of parasites increased for >120 h. In summary, we describe here a novel method for the cultivation of self-regenerating human epithelial cells from small intestinal crypts, which contain both intestinal stem cells and mature villus cells. We present data that suggest these cells support Cryptosporidium better than existing cell lines. PECs should provide an improved tool for studying host-parasite interactions involving Cryptosporidium and other intestinal pathogens. PMID:23509153
Motion vision is independent of color in Drosophila
Yamaguchi, Satoko; Wolf, Reinhard; Desplan, Claude; Heisenberg, Martin
2008-01-01
Whether motion vision uses color contrast is a controversial issue that has been investigated in several species, from insects to humans. We used Drosophila to answer this question, monitoring the optomotor response to moving color stimuli in WT and genetic variants. In the fly eye, a motion channel (outer photoreceptors R1–R6) and a color channel (inner photoreceptors R7 and R8) have been distinguished. With moving bars of alternating colors and high color contrast, a brightness ratio of the two colors can be found, at which the optomotor response is largely missing (point of equiluminance). Under these conditions, mutant flies lacking functional rhodopsin in R1–R6 cells do not respond at all. Furthermore, genetically eliminating the function of photoreceptors R7 and R8 neither alters the strength of the optomotor response nor shifts the point of equiluminance. We conclude that the color channel (R7/R8) does not contribute to motion detection as monitored by the optomotor response. PMID:18353989
Motion vision is independent of color in Drosophila.
Yamaguchi, Satoko; Wolf, Reinhard; Desplan, Claude; Heisenberg, Martin
2008-03-25
Whether motion vision uses color contrast is a controversial issue that has been investigated in several species, from insects to humans. We used Drosophila to answer this question, monitoring the optomotor response to moving color stimuli in WT and genetic variants. In the fly eye, a motion channel (outer photoreceptors R1-R6) and a color channel (inner photoreceptors R7 and R8) have been distinguished. With moving bars of alternating colors and high color contrast, a brightness ratio of the two colors can be found, at which the optomotor response is largely missing (point of equiluminance). Under these conditions, mutant flies lacking functional rhodopsin in R1-R6 cells do not respond at all. Furthermore, genetically eliminating the function of photoreceptors R7 and R8 neither alters the strength of the optomotor response nor shifts the point of equiluminance. We conclude that the color channel (R7/R8) does not contribute to motion detection as monitored by the optomotor response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogami, M; Kulkarni, R; Wang, H
We report application of laser speckle contrast imaging (LSCI), i.e., a fast imaging technique utilising backscattered light to distinguish such moving objects as red blood cells from such stationary objects as surrounding tissue, to localise skin injury. This imaging technique provides detailed information about the acute perfusion response after a blood vessel is occluded. In this study, a mouse ear model is used and pulsed laser coagulation serves as the method of occlusion. We have found that the downstream blood vessels lacked blood flow due to occlusion at the target site immediately after injury. Relative flow changes in nearby collateralsmore » and anastomotic vessels have been approximated based on differences in intensity in the nearby collaterals and anastomoses. We have also estimated the density of the affected downstream vessels. Laser speckle contrast imaging is shown to be used for highresolution and fast-speed imaging for the skin microvasculature. It also allows direct visualisation of the blood perfusion response to injury, which may provide novel insights to the field of cutaneous wound healing. (laser biophotonics)« less
Distinct Hypothalamic Neurons Mediate Estrogenic Effects on Energy Homeostasis and Reproduction
Xu, Yong; Nedungadi, Thekkethil P.; Zhu, Liangru; Sobhani, Nasim; Irani, Boman G.; Davis, Kathryn E.; Zhang, Xiaorui; Zou, Fang; Gent, Lana M.; Hahner, Lisa D.; Khan, Sohaib A.; Elias, Carol F.; Elmquist, Joel K.; Clegg, Deborah J.
2011-01-01
Summary Estrogens regulate body weight and reproduction primarily through actions on estrogen receptor-α (ERα). However, ERα-expressing cells mediating these effects are not identified. We demonstrate that brain-specific deletion of ERα in female mice causes abdominal obesity stemming from both hyperphagia and hypometabolism. Hypometabolism and abdominal obesity, but not hyperphagia, are recapitulated in female mice lacking ERα in hypothalamic steroidogenic factor-1 (SF1) neurons. In contrast, deletion of ERα in hypothalamic pro-opiomelanocortin (POMC) neurons leads to hyperphagia, without directly influencing energy expenditure or fat distribution. Further, simultaneous deletion of ERα from both SF1 and POMC neurons causes hypometabolism, hyperphagia and increased visceral adiposity. Additionally, female mice lacking ERα in SF1 neurons develop anovulation and infertility, while POMC-specific deletion of ERα inhibits negative feedback regulation of estrogens and impairs fertility in females. These results indicate that estrogens act on distinct hypothalamic ERα neurons to regulate different aspects of energy homeostasis and reproduction. PMID:21982706
[The maturation steps of human immunodeficiency virus and the role of proteolysis].
Bukrinskaia, A G; Grigor'ev, V B; Korablina, E V; Gur'ev, E L; Vorkunova, G K
2010-01-01
HIV-1 virions are as immature noninfectious particles lacking a central core. Shortly after budding, virions temporally mature and acquire cores and infectious activity. The cause of maturation remains poorly studied. We have revealed that the virions produced early after infection following 24-36 hours, never mature and remain noninfectious, and only virions produced 48-72 hours after infection mature. The mature virions contain 3 times more genomic viral RNA than "early" virus. The "early" virions contain the same proteolytically cleaved Gag proteins as mature virions in contrast to the accepted version. The virus protease inhibitor Indinavir sulfate (IS) fully blocks infectivity when added early after infection. The early proteolysis of Gag precursor in the infected cells and inclusion into the virions of cellularly cleaved matrix protein (cMA) are shown in the IS-treated cells. cMA is associated with genomic viral RNA.
Melo-Silva, Carolina R; Tscharke, David C; Lobigs, Mario; Koskinen, Aulikki; Müllbacher, Arno; Regner, Matthias
2017-01-15
Mousepox is caused by the orthopoxvirus ectromelia virus (ECTV), and is thought to be transmitted via skin abrasions. We studied the ECTV virulence factor N1 following subcutaneous infection of mousepox-susceptible BALB/c mice. In this model, ECTV lacking N1L gene was attenuated more than 1000-fold compared with wild-type virus and replication was profoundly reduced as early as four days after infection. However, in contrast to data from an intranasal model, N1 protein was not required for virus dissemination. Further, neither T cell nor cytokine responses were enhanced in the absence of N1. Together with the early timing of reduced virus titres, this suggests that in a cutaneous model, N1 exerts its function at the level of infected cells or in the inhibition of the very earliest effectors of innate immunity. Copyright © 2016 Elsevier B.V. All rights reserved.
Hyaluronan-Inorganic Nanohybrid Materials for Biomedical Applications.
Cai, Zhixiang; Zhang, Hongbin; Wei, Yue; Cong, Fengsong
2017-06-12
Nanomaterials, including gold, silver, and magnetic nanoparticles, carbon, and mesoporous materials, possess unique physiochemical and biological properties, thus offering promising applications in biomedicine, such as in drug delivery, biosensing, molecular imaging, and therapy. Recent advances in nanotechnology have improved the features and properties of nanomaterials. However, these nanomaterials are potentially cytotoxic and demonstrate a lack of cell-specific function. Thus, they have been functionalized with various polymers, especially polysaccharides, to reduce toxicity and improve biocompatibility and stability under physiological conditions. In particular, nanomaterials have been widely functionalized with hyaluronan (HA) to enhance their distribution in specific cells and tissues. This review highlights the most recent advances on HA-functionalized nanomaterials for biotechnological and biomedical applications, as nanocarriers in drug delivery, contrast agents in molecular imaging, and diagnostic agents in cancer therapy. A critical evaluation of barriers affecting the use of HA-functionalized nanomaterials is also discussed, and insights into the outlook of the field are explored.
NASA Technical Reports Server (NTRS)
Zhang, Ye; Hada, Megumi; Wu, Honglu
2014-01-01
On a multi-mega base pair scale of the DNA, the arrangement of chromatin is non-random. In M10 epithelial cells, both telomere regions tend to be located towards the exterior of the chromosome domain, whereas the rest p-arm of the chromatin region towards the interior. In contrast, most of the q-arm of the chromatin is found in the peripheral of the domain. In lymphocytes, the p-arm chromatin regions towards the interior in close proximity with each other, whereas two q-arm regions are nearness in space. It indicates that G0 lymphocytes may lack secondary 3D chromatin folding. There chromatin folding patterns are consistent with our previous finding of non-random distribution of intra-chromosomal exchanges. In simulated microgravity conditions, the chromosome conformation may be altered and new regions in close proximity, especially to region 2 are suggested.
LabVIEW-based control software for para-hydrogen induced polarization instrumentation.
Agraz, Jose; Grunfeld, Alexander; Li, Debiao; Cunningham, Karl; Willey, Cindy; Pozos, Robert; Wagner, Shawn
2014-04-01
The elucidation of cell metabolic mechanisms is the modern underpinning of the diagnosis, treatment, and in some cases the prevention of disease. Para-Hydrogen induced polarization (PHIP) enhances magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for the MRI of cell metabolic mechanisms. This signal enhancement is the result of hyperpolarizing endogenous substances used as contrast agents during imaging. PHIP instrumentation hyperpolarizes Carbon-13 ((13)C) based substances using a process requiring control of a number of factors: chemical reaction timing, gas flow, monitoring of a static magnetic field (Bo), radio frequency (RF) irradiation timing, reaction temperature, and gas pressures. Current PHIP instruments manually control the hyperpolarization process resulting in the lack of the precise control of factors listed above, resulting in non-reproducible results. We discuss the design and implementation of a LabVIEW based computer program that automatically and precisely controls the delivery and manipulation of gases and samples, monitoring gas pressures, environmental temperature, and RF sample irradiation. We show that the automated control over the hyperpolarization process results in the hyperpolarization of hydroxyethylpropionate. The implementation of this software provides the fast prototyping of PHIP instrumentation for the evaluation of a myriad of (13)C based endogenous contrast agents used in molecular imaging.
Characterization of Sleep in Zebrafish and Insomnia in Hypocretin Receptor Mutants
Yokogawa, Tohei; Marin, Wilfredo; Faraco, Juliette; Pézeron, Guillaume; Appelbaum, Lior; Zhang, Jian; Rosa, Frédéric; Mourrain, Philippe; Mignot, Emmanuel
2007-01-01
Sleep is a fundamental biological process conserved across the animal kingdom. The study of how sleep regulatory networks are conserved is needed to better understand sleep across evolution. We present a detailed description of a sleep state in adult zebrafish characterized by reversible periods of immobility, increased arousal threshold, and place preference. Rest deprivation using gentle electrical stimulation is followed by a sleep rebound, indicating homeostatic regulation. In contrast to mammals and similarly to birds, light suppresses sleep in zebrafish, with no evidence for a sleep rebound. We also identify a null mutation in the sole receptor for the wake-promoting neuropeptide hypocretin (orexin) in zebrafish. Fish lacking this receptor demonstrate short and fragmented sleep in the dark, in striking contrast to the excessive sleepiness and cataplexy of narcolepsy in mammals. Consistent with this observation, we find that the hypocretin receptor does not colocalize with known major wake-promoting monoaminergic and cholinergic cell groups in the zebrafish. Instead, it colocalizes with large populations of GABAergic neurons, including a subpopulation of Adra2a-positive GABAergic cells in the anterior hypothalamic area, neurons that could assume a sleep modulatory role. Our study validates the use of zebrafish for the study of sleep and indicates molecular diversity in sleep regulatory networks across vertebrates. PMID:17941721
Characterization of the Avian Trojan Gene Family Reveals Contrasting Evolutionary Constraints
Petrov, Petar; Syrjänen, Riikka; Smith, Jacqueline; Gutowska, Maria Weronika; Uchida, Tatsuya; Vainio, Olli; Burt, David W
2015-01-01
“Trojan” is a leukocyte-specific, cell surface protein originally identified in the chicken. Its molecular function has been hypothesized to be related to anti-apoptosis and the proliferation of immune cells. The Trojan gene has been localized onto the Z sex chromosome. The adjacent two genes also show significant homology to Trojan, suggesting the existence of a novel gene/protein family. Here, we characterize this Trojan family, identify homologues in other species and predict evolutionary constraints on these genes. The two Trojan-related proteins in chicken were predicted as a receptor-type tyrosine phosphatase and a transmembrane protein, bearing a cytoplasmic immuno-receptor tyrosine-based activation motif. We identified the Trojan gene family in ten other bird species and found related genes in three reptiles and a fish species. The phylogenetic analysis of the homologues revealed a gradual diversification among the family members. Evolutionary analyzes of the avian genes predicted that the extracellular regions of the proteins have been subjected to positive selection. Such selection was possibly a response to evolving interacting partners or to pathogen challenges. We also observed an almost complete lack of intracellular positively selected sites, suggesting a conserved signaling mechanism of the molecules. Therefore, the contrasting patterns of selection likely correlate with the interaction and signaling potential of the molecules. PMID:25803627
Characterization of the avian Trojan gene family reveals contrasting evolutionary constraints.
Petrov, Petar; Syrjänen, Riikka; Smith, Jacqueline; Gutowska, Maria Weronika; Uchida, Tatsuya; Vainio, Olli; Burt, David W
2015-01-01
"Trojan" is a leukocyte-specific, cell surface protein originally identified in the chicken. Its molecular function has been hypothesized to be related to anti-apoptosis and the proliferation of immune cells. The Trojan gene has been localized onto the Z sex chromosome. The adjacent two genes also show significant homology to Trojan, suggesting the existence of a novel gene/protein family. Here, we characterize this Trojan family, identify homologues in other species and predict evolutionary constraints on these genes. The two Trojan-related proteins in chicken were predicted as a receptor-type tyrosine phosphatase and a transmembrane protein, bearing a cytoplasmic immuno-receptor tyrosine-based activation motif. We identified the Trojan gene family in ten other bird species and found related genes in three reptiles and a fish species. The phylogenetic analysis of the homologues revealed a gradual diversification among the family members. Evolutionary analyzes of the avian genes predicted that the extracellular regions of the proteins have been subjected to positive selection. Such selection was possibly a response to evolving interacting partners or to pathogen challenges. We also observed an almost complete lack of intracellular positively selected sites, suggesting a conserved signaling mechanism of the molecules. Therefore, the contrasting patterns of selection likely correlate with the interaction and signaling potential of the molecules.
LabVIEW-based control software for para-hydrogen induced polarization instrumentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agraz, Jose, E-mail: joseagraz@ucla.edu; Grunfeld, Alexander; Li, Debiao
2014-04-15
The elucidation of cell metabolic mechanisms is the modern underpinning of the diagnosis, treatment, and in some cases the prevention of disease. Para-Hydrogen induced polarization (PHIP) enhances magnetic resonance imaging (MRI) signals over 10 000 fold, allowing for the MRI of cell metabolic mechanisms. This signal enhancement is the result of hyperpolarizing endogenous substances used as contrast agents during imaging. PHIP instrumentation hyperpolarizes Carbon-13 ({sup 13}C) based substances using a process requiring control of a number of factors: chemical reaction timing, gas flow, monitoring of a static magnetic field (B{sub o}), radio frequency (RF) irradiation timing, reaction temperature, and gas pressures.more » Current PHIP instruments manually control the hyperpolarization process resulting in the lack of the precise control of factors listed above, resulting in non-reproducible results. We discuss the design and implementation of a LabVIEW based computer program that automatically and precisely controls the delivery and manipulation of gases and samples, monitoring gas pressures, environmental temperature, and RF sample irradiation. We show that the automated control over the hyperpolarization process results in the hyperpolarization of hydroxyethylpropionate. The implementation of this software provides the fast prototyping of PHIP instrumentation for the evaluation of a myriad of {sup 13}C based endogenous contrast agents used in molecular imaging.« less
Effects of ubiquilin 1 on the unfolded protein response.
Lu, Alice; Hiltunen, Mikko; Romano, Donna M; Soininen, Hilkka; Hyman, Bradley T; Bertram, Lars; Tanzi, Rudolph E
2009-05-01
Previous studies have implicated the unfolded protein response (UPR) in the pathogenesis of Alzheimer's disease (AD). We previously reported that DNA variants in the ubiquilin 1 (UBQLN1) gene increase the risk for AD. Since UBQLN1 has been shown to play a role in the UPR, we assessed the effects of overexpression and downregulation of UBQLN1 splice variants during tunicamycin-induced ER stress. In addition to previously described transcript variants, TV1 and TV2, we identified two novel transcript variants of UBQLN1 in brain: TV3 (lacking exons 2-4) and TV4 (lacking exon 4). Overexpression of TV1-3, but not TV4 significantly decreased the mRNA induction of UPR-inducible genes, C/EBP homologous protein (CHOP), BiP/GRP78, and protein disulfide isomerase (PDI) during the UPR. Stable overexpression of TV1-3, but not TV4, also significantly decreased the induction of CHOP protein and increased cell viability during the UPR. In contrast, downregulation of UBQLN1 did not affect CHOP mRNA induction, but instead increased PDI mRNA levels. These findings suggest that overexpression UBQLN1 transcript variants TV1-3, but not TV4, exert a protective effect during the UPR by attenuating CHOP induction and potentially increasing cell viability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaehs, Philipp; Weidinger, Petra; Probst, Olivia C.
2008-10-01
Cellular repressor of E1A-stimulated genes (CREG) has been reported to be a secretory glycoprotein implicated in cellular growth and differentiation. We now show that CREG is predominantly localized within intracellular compartments. Intracellular CREG was found to lack an N-terminal peptide present in the secreted form of the protein. In contrast to normal cells, CREG is largely secreted by fibroblasts missing both mannose 6-phosphate receptors. This is not observed in cells lacking only one of them. Mass spectrometric analysis of recombinant CREG revealed that the protein contains phosphorylated oligosaccharides at either of its two N-glycosylation sites. Cellular CREG was found tomore » cosediment with lysosomal markers upon subcellular fractionation by density-gradient centrifugation. In fibroblasts expressing a CREG-GFP fusion construct, the heterologous protein was detected in compartments containing lysosomal proteins. Immunolocalization of endogenous CREG confirmed that intracellular CREG is localized in lysosomes. Proteolytic processing of intracellular CREG involves the action of lysosomal cysteine proteinases. These results establish that CREG is a lysosomal protein that undergoes proteolytic maturation in the course of its biosynthesis, carries the mannose 6-phosphate recognition marker and depends on the interaction with mannose 6-phosphate receptors for efficient delivery to lysosomes.« less
DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes[S
Harris, Charles A.; Haas, Joel T.; Streeper, Ryan S.; Stone, Scot J.; Kumari, Manju; Yang, Kui; Han, Xianlin; Brownell, Nicholas; Gross, Richard W.; Zechner, Rudolf; Farese, Robert V.
2011-01-01
The total contribution of the acyl CoA:diacylglycerol acyltransferase (DGAT) enzymes, DGAT1 and DGAT2, to mammalian triacylglycerol (TG) synthesis has not been determined. Similarly, whether DGAT enzymes are required for lipid droplet (LD) formation is unknown. In this study, we examined the requirement for DGAT enzymes in TG synthesis and LDs in differentiated adipocytes with genetic deletions of DGAT1 and DGAT2. Adipocytes with a single deletion of either enzyme were capable of TG synthesis and LD formation. In contrast, adipocytes with deletions of both DGATs were severely lacking in TG and did not have LDs, indicating that DGAT1 and DGAT2 account for nearly all TG synthesis in adipocytes and appear to be required for LD formation during adipogenesis. DGAT enzymes were not absolutely required for LD formation in mammalian cells, however; macrophages deficient in both DGAT enzymes were able to form LDs when incubated with cholesterol-rich lipoproteins. Although adipocytes lacking both DGATs had no TG or LDs, they were fully differentiated by multiple criteria. Our findings show that DGAT1 and DGAT2 account for the vast majority of TG synthesis in mice, and DGAT function is required for LDs in adipocytes, but not in all cell types. PMID:21317108
DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes.
Harris, Charles A; Haas, Joel T; Streeper, Ryan S; Stone, Scot J; Kumari, Manju; Yang, Kui; Han, Xianlin; Brownell, Nicholas; Gross, Richard W; Zechner, Rudolf; Farese, Robert V
2011-04-01
The total contribution of the acyl CoA:diacylglycerol acyltransferase (DGAT) enzymes, DGAT1 and DGAT2, to mammalian triacylglycerol (TG) synthesis has not been determined. Similarly, whether DGAT enzymes are required for lipid droplet (LD) formation is unknown. In this study, we examined the requirement for DGAT enzymes in TG synthesis and LDs in differentiated adipocytes with genetic deletions of DGAT1 and DGAT2. Adipocytes with a single deletion of either enzyme were capable of TG synthesis and LD formation. In contrast, adipocytes with deletions of both DGATs were severely lacking in TG and did not have LDs, indicating that DGAT1 and DGAT2 account for nearly all TG synthesis in adipocytes and appear to be required for LD formation during adipogenesis. DGAT enzymes were not absolutely required for LD formation in mammalian cells, however; macrophages deficient in both DGAT enzymes were able to form LDs when incubated with cholesterol-rich lipoproteins. Although adipocytes lacking both DGATs had no TG or LDs, they were fully differentiated by multiple criteria. Our findings show that DGAT1 and DGAT2 account for the vast majority of TG synthesis in mice, and DGAT function is required for LDs in adipocytes, but not in all cell types.
Impaired hair growth and wound healing in mice lacking thyroid hormone receptors.
Contreras-Jurado, Constanza; García-Serrano, Laura; Martínez-Fernández, Mónica; Ruiz-Llorente, Lidia; Paramio, Jesus M; Aranda, Ana
2014-01-01
Both clinical and experimental observations show that the skin is affected by the thyroidal status. In hypothyroid patients the epidermis is thin and alopecia is common, indicating that thyroidal status might influence not only skin proliferation but also hair growth. We demonstrate here that the thyroid hormone receptors (TRs) mediate these effects of the thyroid hormones on the skin. Mice lacking TRα1 and TRβ (the main thyroid hormone binding isoforms) display impaired hair cycling associated to a decrease in follicular hair cell proliferation. This was also observed in hypothyroid mice, indicating the important role of the hormone-bound receptors in hair growth. In contrast, the individual deletion of either TRα1 or TRβ did not impair hair cycling, revealing an overlapping or compensatory role of the receptors in follicular cell proliferation. In support of the role of the receptors in hair growth, TRα1/TRβ-deficient mice developed alopecia after serial depilation. These mice also presented a wound-healing defect, with retarded re-epithelialization and wound gaping, associated to impaired keratinocyte proliferation. These results reinforce the idea that the thyroid hormone nuclear receptors play an important role on skin homeostasis and suggest that they could be targets for the treatment of cutaneous pathologies.
Chromosome Association of Minichromosome Maintenance Proteins in Drosophila Mitotic Cycles
Su, Tin Tin; O'Farrell, Patrick H.
1997-01-01
Minichromosome maintenance (MCM) proteins are essential DNA replication factors conserved among eukaryotes. MCMs cycle between chromatin bound and dissociated states during each cell cycle. Their absence on chromatin is thought to contribute to the inability of a G2 nucleus to replicate DNA. Passage through mitosis restores the ability of MCMs to bind chromatin and the ability to replicate DNA. In Drosophila early embryonic cell cycles, which lack a G1 phase, MCMs reassociate with condensed chromosomes toward the end of mitosis. To explore the coupling between mitosis and MCM–chromatin interaction, we tested whether this reassociation requires mitotic degradation of cyclins. Arrest of mitosis by induced expression of nondegradable forms of cyclins A and/or B showed that reassociation of MCMs to chromatin requires cyclin A destruction but not cyclin B destruction. In contrast to the earlier mitoses, mitosis 16 (M16) is followed by G1, and MCMs do not reassociate with chromatin at the end of M16. dacapo mutant embryos lack an inhibitor of cyclin E, do not enter G1 quiescence after M16, and show mitotic reassociation of MCM proteins. We propose that cyclin E, inhibited by Dacapo in M16, promotes chromosome binding of MCMs. We suggest that cyclins have both positive and negative roles in controlling MCM–chromatin association. PMID:9314525
Yamamoto, Hiroaki; Shibahara, Shigeki
2016-01-01
Microphthalmia-associated transcription factor (Mitf) is a key regulator for differentiation of melanoblasts, precursors to melanocytes. The mouse homozygous for the black-eyed white (Mitfmi-bw) allele is characterized by the white-coat color and deafness with black eyes due to the lack of melanocytes. The Mitfmi-bw allele carries LINE-1, a retrotransposable element, which results in the Mitf deficiency. Here, we have established the black spotting mouse that was spontaneously arisen from the homozygous Mitfmi-bw mouse lacking melanocytes. The black spotting mouse shows multiple black patches on the white coat, with age-related graying. Importantly, each black patch also contains hair follicles lacking melanocytes, whereas the white-coat area completely lacks melanocytes. RT-PCR analyses of the pigmented patches confirmed that the LINE-1 insertion is retained in the Mitf gene of the black spotting mouse, thereby excluding the possibility of the somatic reversion of the Mitfmi-bw allele. The immunohistochemical analysis revealed that the staining intensity for beta-catenin was noticeably lower in hair follicles lacking melanocytes of the homozygous Mitfmi-bw mouse and the black spotting mouse, compared to the control mouse. In contrast, the staining intensity for beta-catenin and cyclin D1 was higher in keratinocytes of the black spotting mouse, compared to keratinocytes of the control mouse and the Mitfmi-bw mouse. Moreover, the keratinocyte layer appears thicker in the Mitfmi-bw mouse, with the overexpression of Ki-67, a marker for cell proliferation. We also show that the presumptive black spots are formed by embryonic day 15.5. Thus, the black spotting mouse provides the unique model to explore the molecular basis for the survival and death of developing melanoblasts and melanocyte stem cells in the epidermis. These results indicate that follicular melanocytes are responsible for maintaining the epidermal homeostasis; namely, the present study has provided evidence for the link between melanocyte development and the epidermal microenvironment. PMID:26930598
Iron Oxide as an MRI Contrast Agent for Cell Tracking
Korchinski, Daniel J.; Taha, May; Yang, Runze; Nathoo, Nabeela; Dunn, Jeff F.
2015-01-01
Iron oxide contrast agents have been combined with magnetic resonance imaging for cell tracking. In this review, we discuss coating properties and provide an overview of ex vivo and in vivo labeling of different cell types, including stem cells, red blood cells, and monocytes/macrophages. Furthermore, we provide examples of applications of cell tracking with iron contrast agents in stroke, multiple sclerosis, cancer, arteriovenous malformations, and aortic and cerebral aneurysms. Attempts at quantifying iron oxide concentrations and other vascular properties are examined. We advise on designing studies using iron contrast agents including methods for validation. PMID:26483609
Warth, Benedikt; Del Favero, Giorgia; Wiesenberger, Gerlinde; Puntscher, Hannes; Woelflingseder, Lydia; Fruhmann, Philipp; Sarkanj, Bojan; Krska, Rudolf; Schuhmacher, Rainer; Adam, Gerhard; Marko, Doris
2016-01-01
The mycotoxin deoxynivalenol (DON) is an abundant contaminant of cereal based food and a severe issue for global food safety. We report the discovery of DON-3-sulfate as a novel human metabolite and potential new biomarker of DON exposure. The conjugate was detectable in 70% of urine samples obtained from pregnant women in Croatia. For the measurement of urinary metabolites, a highly sensitive and selective LC-MS/MS method was developed and validated. The method was also used to investigate samples from a duplicate diet survey for studying the toxicokinetics of DON-3-sulfate. To get a preliminary insight into the biological relevance of the newly discovered DON-sulfates, in vitroexperiments were performed. In contrast to DON, sulfate conjugates lacked potency to suppress protein translation. However, surprisingly we found that DON-sulfates enhanced proliferation of human HT-29 colon carcinoma cells, primary human colon epithelial cells (HCEC-1CT) and, to some extent, also T24 bladder cancer cells. A proliferative stimulus, especially in tumorigenic cells raises concern on the potential impact of DON-sulfates on consumer health. Thus, a further characterization of their toxicological relevance should be of high priority. PMID:27659167
NASA Astrophysics Data System (ADS)
Warth, Benedikt; Del Favero, Giorgia; Wiesenberger, Gerlinde; Puntscher, Hannes; Woelflingseder, Lydia; Fruhmann, Philipp; Sarkanj, Bojan; Krska, Rudolf; Schuhmacher, Rainer; Adam, Gerhard; Marko, Doris
2016-09-01
The mycotoxin deoxynivalenol (DON) is an abundant contaminant of cereal based food and a severe issue for global food safety. We report the discovery of DON-3-sulfate as a novel human metabolite and potential new biomarker of DON exposure. The conjugate was detectable in 70% of urine samples obtained from pregnant women in Croatia. For the measurement of urinary metabolites, a highly sensitive and selective LC-MS/MS method was developed and validated. The method was also used to investigate samples from a duplicate diet survey for studying the toxicokinetics of DON-3-sulfate. To get a preliminary insight into the biological relevance of the newly discovered DON-sulfates, in vitroexperiments were performed. In contrast to DON, sulfate conjugates lacked potency to suppress protein translation. However, surprisingly we found that DON-sulfates enhanced proliferation of human HT-29 colon carcinoma cells, primary human colon epithelial cells (HCEC-1CT) and, to some extent, also T24 bladder cancer cells. A proliferative stimulus, especially in tumorigenic cells raises concern on the potential impact of DON-sulfates on consumer health. Thus, a further characterization of their toxicological relevance should be of high priority.
Fei, Ji-Feng; Schuez, Maritta; Tazaki, Akira; Taniguchi, Yuka; Roensch, Kathleen; Tanaka, Elly M
2014-09-09
The salamander is the only tetrapod that functionally regenerates all cell types of the limb and spinal cord (SC) and thus represents an important regeneration model, but the lack of gene-knockout technology has limited molecular analysis. We compared transcriptional activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPRs) in the knockout of three loci in the axolotl and find that CRISPRs show highly penetrant knockout with less toxic effects compared to TALENs. Deletion of Sox2 in up to 100% of cells yielded viable F0 larvae with normal SC organization and ependymoglial cell marker expression such as GFAP and ZO-1. However, upon tail amputation, neural stem cell proliferation was inhibited, resulting in spinal-cord-specific regeneration failure. In contrast, the mesodermal blastema formed normally. Sox3 expression during development, but not regeneration, most likely allowed embryonic survival and the regeneration-specific phenotype. This analysis represents the first tissue-specific regeneration phenotype from the genomic deletion of a gene in the axolotl. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Clerc, Pascaline; Polster, Brian M.
2012-01-01
Mitochondrial dysfunction is a component of many neurodegenerative conditions. Measurement of oxygen consumption from intact neurons enables evaluation of mitochondrial bioenergetics under conditions that are more physiologically realistic compared to isolated mitochondria. However, mechanistic analysis of mitochondrial function in cells is complicated by changing energy demands and lack of substrate control. Here we describe a technique for sequentially measuring respiration from intact and saponin-permeabilized cortical neurons on single microplates. This technique allows control of substrates to individual electron transport chain complexes following permeabilization, as well as side-by-side comparisons to intact cells. To illustrate the utility of the technique, we demonstrate that inhibition of respiration by the drug KB-R7943 in intact neurons is relieved by delivery of the complex II substrate succinate, but not by complex I substrates, via acute saponin permeabilization. In contrast, methyl succinate, a putative cell permeable complex II substrate, failed to rescue respiration in intact neurons and was a poor complex II substrate in permeabilized cells. Sequential measurements of intact and permeabilized cell respiration should be particularly useful for evaluating indirect mitochondrial toxicity due to drugs or cellular signaling events which cannot be readily studied using isolated mitochondria. PMID:22496810
Reticulated vitreous carbon: a useful material for cell adhesion and tissue invasion.
Pec, M K; Reyes, R; Sánchez, E; Carballar, D; Delgado, A; Santamaría, J; Arruebo, M; Evora, C
2010-10-06
Diverse carbon materials have been used for tissue engineering and clinical implant applications with varying success. In this study, commercially available reticulated vitreous carbon (RVC) foams were tested in vitro and in vivo for compatibility with primary cell adhesion and tissue repair. Pores sizes were determined as 279 ± 98 μm. No hydroxyapatite deposition was detected after immersion of the foams in simulated body fluid. Nonetheless, RVC provided an excellent support for adhesion of mesenchymal stem cells (MSCs) as well as primary chondrocytes without any surface pre-treatment. Live cell quantification revealed neutral behaviour of the material with plastic adhered chondrocytes but moderate cytotoxicity with MSCs. Yet, rabbit implanted foams exhibited good integration in subcutaneous pockets and most importantly, total defect repair in bone. Probably due to the stiffness of the material, incompatibility with cartilage regeneration was found. Interestingly and in contrast to several other carbon materials, we observed a total lack of foreign body reactions. Our results and its outstanding porous interconnectivity and availability within a wide range of pore sizes convert RVC into an attractive candidate for tissue engineering applications in a variety of bone models and for ex vivo cell expansion for regenerative medical applications.
Morphology and force probing of primary murine liver sinusoidal endothelial cells.
Zapotoczny, B; Owczarczyk, K; Szafranska, K; Kus, E; Chlopicki, S; Szymonski, M
2017-07-01
Liver sinusoidal endothelial cells (LSECs) represent unique type of endothelial cells featured by their characteristic morphology, ie, lack of a basement membrane and presence of fenestrations-transmembrane pores acting as a dynamic filter between the vascular space and the liver parenchyma. Delicate structure of LSECs membrane combined with a submicron size of fenestrations hinders their visualization in live cells. In this work, we apply atomic force microscopy contact mode to characterize fenestrations in LSECs. We reveal the structure of fenestrations in live LSECs. Moreover, we show that the high-resolution imaging of fenestrations is possible for the glutaraldehyde-fixed LSECs. Finally, thorough information about the morphology of LSECs including great contrast in visualization of sieve plates and fenestrations is provided using Force Modulation mode. We show also the ability to precisely localize the cell nuclei in fixed LSECs. It can be helpful for more precise description of nanomechanical properties of cell nuclei using atomic force microscopy. Presented methodology combining high-quality imaging of fixed cells with an additional nanomechanical information of both live and fixed LSECs provides a unique approach to study LSECs morphology and nanomechanics that could foster understanding of the role of LSECs in maintaining liver homeostasis. Copyright © 2017 John Wiley & Sons, Ltd.
Ding, Jiaxi; Jiang, DeChen; Kurczy, Michael; Nalepka, Jennifer; Dudley, Brian; Merkel, Erin I; Porter, Forbes D; Ewing, Andrew G; Winograd, Nicholas; Burgess, James; Molyneaux, Kathleen
2008-01-01
Background Primordial germ cells (PGCs) are the embryonic precursors of the sperm and eggs. Environmental or genetic defects that alter PGC development can impair fertility or cause formation of germ cell tumors. Results We demonstrate a novel role for cholesterol during germ cell migration in mice. Cholesterol was measured in living tissue dissected from mouse embryos and was found to accumulate within the developing gonads as germ cells migrate to colonize these structures. Cholesterol synthesis was blocked in culture by inhibiting the activity of HMG CoA reductase (HMGCR) resulting in germ cell survival and migration defects. These defects were rescued by co-addition of isoprenoids and cholesterol, but neither compound alone was sufficient. In contrast, loss of the last or penultimate enzyme in cholesterol biosynthesis did not alter PGC numbers or position in vivo. However embryos that lack these enzymes do not exhibit cholesterol defects at the stage at which PGCs are migrating. This demonstrates that during gestation, the cholesterol required for PGC migration can be supplied maternally. Conclusion In the mouse, cholesterol is required for PGC survival and motility. It may act cell-autonomously by regulating clustering of growth factor receptors within PGCs or non cell-autonomously by controlling release of growth factors required for PGC guidance and survival. PMID:19117526
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zambon, Alexander C.; Zhang, Lingzhi; Minovitsky, Simon
Although a substantial number of hormones and drugs increase cellular cAMP levels, the global impact of cAMP and its major effector mechanism, protein kinase A (PKA), on gene expression is not known. Here we show that treatment of murine wild-type S49 lymphoma cells for 24 h with 8-(4-chlorophenylthio)-cAMP (8-CPTcAMP), a PKA-selective cAMP analog, alters the expression of approx equal to 4,500 of approx. equal to 13,600 unique genes. By contrast, gene expression was unaltered in Kin- S49 cells (that lack PKA) incubated with 8-CPTcAMP. Changes in mRNA and protein expression of several cell cycle regulators accompanied cAMP-induced G1-phase cell-cycle arrestmore » of wild-type S49 cells. Within 2h, 8-CPT-cAMP altered expression of 152 genes that contain evolutionarily conserved cAMP-response elements within 5 kb of transcriptional start sites, including the circadian clock gene Per1. Thus, cAMP through its activation of PKA produces extensive transcriptional regulation in eukaryotic cells. These transcriptional networks include a primary group of cAMP-response element-containing genes and secondary networks that include the circadian clock.« less
Douglas, Alison M.; Fragkopoulos, Alexandros A.; Gaines, Michelle K.; Lyon, L. Andrew; Fernandez-Nieves, Alberto
2017-01-01
In regenerative medicine, natural protein-based polymers offer enhanced endogenous bioactivity and potential for seamless integration with tissue, yet form weak hydrogels that lack the physical robustness required for surgical manipulation, making them difficult to apply in practice. The use of higher concentrations of protein, exogenous cross-linkers, and blending synthetic polymers has all been applied to form more mechanically robust networks. Each relies on generating a smaller network mesh size, which increases the elastic modulus and robustness, but critically inhibits cell spreading and migration, hampering tissue regeneration. Here we report two unique observations; first, that colloidal suspensions, at sufficiently high volume fraction (ϕ), dynamically assemble into a fully percolated 3D network within high-concentration protein polymers. Second, cells appear capable of leveraging these unique domains for highly efficient cell migration throughout the composite construct. In contrast to porogens, the particles in our system remain embedded within the bulk polymer, creating a network of particle-filled tunnels. Whereas this would normally physically restrict cell motility, when the particulate network is created using ultralow cross-linked microgels, the colloidal suspension displays viscous behavior on the same timescale as cell spreading and migration and thus enables efficient cell infiltration of the construct through the colloidal-filled tunnels. PMID:28100492
NASA Astrophysics Data System (ADS)
Douglas, Alison M.; Fragkopoulos, Alexandros A.; Gaines, Michelle K.; Lyon, L. Andrew; Fernandez-Nieves, Alberto; Barker, Thomas H.
2017-01-01
In regenerative medicine, natural protein-based polymers offer enhanced endogenous bioactivity and potential for seamless integration with tissue, yet form weak hydrogels that lack the physical robustness required for surgical manipulation, making them difficult to apply in practice. The use of higher concentrations of protein, exogenous cross-linkers, and blending synthetic polymers has all been applied to form more mechanically robust networks. Each relies on generating a smaller network mesh size, which increases the elastic modulus and robustness, but critically inhibits cell spreading and migration, hampering tissue regeneration. Here we report two unique observations; first, that colloidal suspensions, at sufficiently high volume fraction (ϕ), dynamically assemble into a fully percolated 3D network within high-concentration protein polymers. Second, cells appear capable of leveraging these unique domains for highly efficient cell migration throughout the composite construct. In contrast to porogens, the particles in our system remain embedded within the bulk polymer, creating a network of particle-filled tunnels. Whereas this would normally physically restrict cell motility, when the particulate network is created using ultralow cross-linked microgels, the colloidal suspension displays viscous behavior on the same timescale as cell spreading and migration and thus enables efficient cell infiltration of the construct through the colloidal-filled tunnels.
Sauer, Stephan; Burkett, Sandra S; Lewandoski, Mark; Klar, Amar J S
2013-05-01
Sister chromatids contain identical DNA sequence but are chiral with respect to both their helical handedness and their replication history. Emerging evidence from various model organisms suggests that certain stem cells segregate sister chromatids nonrandomly to either maintain genome integrity or to bias cellular differentiation in asymmetric cell divisions. Conventional methods for tracing of old vs. newly synthesized DNA strands generally lack resolution for individual chromosomes and employ halogenated thymidine analogs with profound cytotoxic effects on rapidly dividing cells. Here, we present a modified chromosome orientation fluorescence in situ hybridization (CO-FISH) assay, where identification of individual chromosomes and their replication history is achieved in subsequent hybridization steps with chromosome-specific DNA probes and PNA telomere probes. Importantly, we tackle the issue of BrdU cytotoxicity and show that our method is compatible with normal mouse ES cell biology, unlike a recently published related protocol. Results from our CO-FISH assay show that mitotic segregation of mouse chromosome 7 is random in ES cells, which contrasts previously published results from our laboratory and settles a controversy. Our straightforward protocol represents a useful resource for future studies on chromatid segregation patterns of in vitro-cultured cells from distinct model organisms.
Hoogendoorn, M; Wolbers, J Olde; Smit, W M; Schaafsma, M R; Barge, R M Y; Willemze, R; Falkenburg, J H F
2004-07-01
Allogeneic stem cell transplantation following reduced-intensity conditioning is being evaluated in patients with advanced B-cell chronic lymphocytic leukemia (B-CLL). The curative potential of this procedure is mediated by donor-derived alloreactive T cells, resulting in a graft-versus-leukemia effect. However, B-CLL may escape T-cell-mediated immune reactivity since these cells lack expression of costimulatory molecules. We examined the most optimal method to transform B-CLL cells into efficient antigen-presenting cells (APC) using activating cytokines, by triggering toll-like receptors (TLRs) using microbial pathogens and by CD40 stimulation with CD40L-transfected fibroblasts. CD40 activation in the presence of IL-4 induced strongest upregulation of costimulatory and adhesion molecules on B-CLL cells and induced the production of high amounts of IL-12 by the leukemic cells. In contrast to primary B-CLL cells as stimulator cells, these malignant APCs were capable of inducing the generation of B-CLL-reactive CD8(+) CTL lines and clones from HLA class I-matched donors. These CTL lines and clones recognized and killed primary B-CLL as well as patient-derived lymphoblasts, but not donor cells. These results show the feasibility of ex vivo generation of B-CLL-reactive CD8(+) CTLs. This opens new perspectives for adoptive immunotherapy, following allogeneic stem cell transplantation in patients with advanced B-CLL.
Cell sheet-based tissue engineering for fabricating 3-dimensional heart tissues.
Shimizu, Tatsuya
2014-01-01
In addition to stem cell biology, tissue engineering is an essential research field for regenerative medicine. In contrast to cell injection, bioengineered tissue transplantation minimizes cell loss and has the potential to repair tissue defects. A popular approach is scaffold-based tissue engineering, which utilizes a biodegradable polymer scaffold for seeding cells; however, new techniques of cell sheet-based tissue engineering have been developed. Cell sheets are harvested from temperature-responsive culture dishes by simply lowering the temperature. Monolayer or stacked cell sheets are transplantable directly onto damaged tissues and cell sheet transplantation has already been clinically applied. Cardiac cell sheet stacking produces pulsatile heart tissue; however, lack of vasculature limits the viable tissue thickness to 3 layers. Multistep transplantation of triple-layer cardiac cell sheets cocultured with endothelial cells has been used to form thick vascularized cardiac tissue in vivo. Furthermore, in vitro functional blood vessel formation within 3-dimensional (3D) tissues has been realized by successfully imitating in vivo conditions. Triple-layer cardiac cell sheets containing endothelial cells were layered on vascular beds and the constructs were media-perfused using novel bioreactor systems. Interestingly, cocultured endothelial cells migrate into the vascular beds and form perfusable blood vessels. An in vitro multistep procedure has also enabled the fabrication of thick, vascularized heart tissues. Cell sheet-based tissue engineering has revealed great potential to fabricate 3D cardiac tissues and should contribute to future treatment of severe heart diseases and human tissue model production.
The Impact of T Cell Intrinsic Antigen Adaptation on Peripheral Immune Tolerance
Singh, Nevil J; Chen, Chuan; Schwartz, Ronald H
2006-01-01
Overlapping roles have been ascribed for T cell anergy, clonal deletion, and regulation in the maintenance of peripheral immunological tolerance. A measurement of the individual and additive impacts of each of these processes on systemic tolerance is often lacking. In this report we have used adoptive transfer strategies to tease out the unique contribution of T cell intrinsic receptor calibration (adaptation) in the maintenance of tolerance to a systemic self-antigen. Adoptively transferred naïve T cells stably calibrated their responsiveness to a persistent self-antigen in both lymphopenic and T cell–replete hosts. In the former, this state was not accompanied by deletion or suppression, allowing us to examine the unique contribution of adaptation to systemic tolerance. Surprisingly, adapting T cells could chronically help antigen-expressing B cells, leading to polyclonal hypergammaglobulinemia and pathology, in the form of mild arthritis. The helper activity mediated by CD40L and cytokines was evident even if the B cells were introduced after extended adaptation of the T cells. In contrast, in the T cell–replete host, neither arthritis nor autoantibodies were induced. The containment of systemic pathology required host T cell–mediated extrinsic regulatory mechanisms to synergize with the cell intrinsic adaptation process. These extrinsic mechanisms prevented the effector differentiation of the autoreactive T cells and reduced their precursor frequency, in vivo. PMID:17048986
Archambeault, Denise R.; Yao, Humphrey Hung-Chang
2014-01-01
ABSTRACT As the central component of canonical TGFbeta superfamily signaling, SMAD4 is a critical regulator of organ development, patterning, tumorigenesis, and many other biological processes. Because numerous TGFbeta superfamily ligands are expressed in developing testes, there may exist specific requirements for SMAD4 in individual testicular cell types. Previously, we reported that expansion of the fetal testis cords requires expression of SMAD4 by the Sertoli cell lineage. To further uncover the role of Smad4 in murine testes, we produced conditional knockout mice lacking Smad4 in either Leydig cells or in both Sertoli and Leydig cells simultaneously. Loss of Smad4 concomitantly in Sertoli and Leydig cells led to underdevelopment of the testis cords during fetal life and mild testicular dysgenesis in young adulthood (decreased testis size, partially dysgenic seminiferous tubules, and low sperm production). When the Sertoli/Leydig cell Smad4 conditional knockout mice aged (56- to 62-wk old), the testis phenotypes became exacerbated with the appearance of hemorrhagic tumors, Leydig cell adenomas, and a complete loss of spermatogenesis. In contrast, loss of Smad4 in Leydig cells alone did not appreciably alter fetal and adult testis development. Our findings support a cell type-specific requirement of Smad4 in testis development and suppression of testicular tumors. PMID:24501173
Park, Sang-Wook; Stevens, Noah M; Vivanco, Jorge M
2002-12-01
Ribosome-inactivating proteins (RIPs) are enzymes that cleave a specific adenine base from the highly conserved sarcin/ricin (S/R) loop of the large ribosomal RNA, thus arresting protein synthesis at the translocation step. In the present study, we employed three RIPs to dissect the antifungal activity of RIPs as plant defense proteins. We measured the catalytic activity of RAT (the catalytic A-chain of ricin from Ricinus communis L.), saporin-S6 (from Saponaria officinalis L.), and ME (RIP from Mirabilis expansa R&P) against intact ribosomal substrates isolated from various pathogenic fungi. We further determined the enzymatic specificity of these three RIPs against fungal ribosomes, from Rhizoctonia solani Kuhn, Alternaria solani Sorauer, Trichoderma reesei Simmons and Candida albicans Berkhout, and correlated the data with antifungal activity. RAT showed the strongest toxicity against all tested fungal ribosomes, except for the ribosomes isolated from C. albicans, which were most susceptible to saporin. RAT and saporin showed higher enzymatic activity than ME against ribosomes from all of the fungal species assayed, but did not show detectable antifungal activity. In contrast, ME showed substantial inhibitory activity against fungal growth. Using N-hydroxysuccinimide-fluorescein labeling of RIPs and fluorescence microscopy, we determined that ME was targeted to the surface of fungal cells and transferred into the cells. Thus, ME caused ribosome depurination and subsequent fungal mortality. In contrast, saporin did not interact with fungal cells, correlating with its lack of antifungal activity.
Mohapatra, Susovan; Kawahara, Misako; Khan, Imran S; Yannone, Steven M; Povirk, Lawrence F
2011-08-01
Deficiency in Artemis is associated with lack of V(D)J recombination, sensitivity to radiation and radiomimetic drugs, and failure to repair a subset of DNA double-strand breaks (DSBs). Artemis harbors an endonuclease activity that trims both 5'- and 3'-ends of DSBs. To examine whether endonucleolytic trimming of terminally blocked DSBs by Artemis is a biologically relevant function, Artemis-deficient fibroblasts were stably complemented with either wild-type Artemis or an endonuclease-deficient D165N mutant. Wild-type Artemis completely restored resistance to γ-rays, bleomycin and neocarzinostatin, and also restored DSB-repair proficiency in G0/G1 phase as measured by pulsed-field gel electrophoresis and repair focus resolution. In contrast, cells expressing the D165N mutant, even at very high levels, remained as chemo/radiosensitive and repair deficient as the parental cells, as evidenced by persistent γ-H2AX, 53BP1 and Mre11 foci that slowly increased in size and ultimately became juxtaposed with promyelocytic leukemia protein nuclear bodies. In normal fibroblasts, overexpression of wild-type Artemis increased radioresistance, while D165N overexpression conferred partial repair deficiency following high-dose radiation. Restoration of chemo/radioresistance by wild-type, but not D165N Artemis suggests that the lack of endonucleolytic trimming of DNA ends is the principal cause of sensitivity to double-strand cleaving agents in Artemis-deficient cells.
Escherichia coli K1 induces IL-8 expression in human brain microvascular endothelial cells.
Galanakis, Emmanouil; Di Cello, Francescopaolo; Paul-Satyaseela, Maneesh; Kim, Kwang Sik
2006-12-01
Microbial penetration of the blood-brain barrier (BBB) into the central nervous system is essential for the development of meningitis. Considerable progress has been achieved in understanding the pathophysiology of meningitis, however, relatively little is known about the early inflammatory events occurring at the time of bacterial crossing of the BBB. We investigated, using real-time quantitative PCR, the expression of the neutrophil chemoattractants alpha-chemokines CXCL1 (Groalpha) and CXCL8 (IL-8), and of the monocyte chemoattractant beta-chemokine CCL2 (MCP-1) by human brain microvascular endothelial cells (HBMEC) in response to the meningitis-causing E. coli K1 strain RS218 or its isogenic mutants lacking the ability to bind to and invade HBMEC. A nonpathogenic, laboratory E. coli strain HB101 was used as a negative control. CXCL8 was shown to be significantly expressed in HBMEC 4 hours after infection with E. coli K1, while no significant alterations were noted for CXCL1 and CCL2 expression. This upregulation of CXCL8 was induced by E. coli K1 strain RS218 and its derivatives lacking the ability to bind and invade HBMEC, but was not induced by the laboratory strain HB101. In contrast, no upregulation of CXCL8 was observed in human umbilical vein endothelial cells (HUVEC) after stimulation with E. coli RS218. These findings indicate that the CXCL8 expression is the result of the specific response of HBMEC to meningitis-causing E. coli K1.
Inoue, S; Osmond, D G
2001-11-01
Venous sinusoids in bone marrow are the site of a large-scale traffic of cells between the extravascular hemopoietic compartment and the blood stream. The wall of the sinusoids consists solely of a basement membrane interposed between a layer of endothelial cells and an incomplete covering of adventitial cells. To examine its possible structural specialization, the basement membrane of bone marrow sinusoids has now been examined by high resolution electron microscopy of perfusion-fixed mouse bone marrow. The basement membrane layer was discontinuous, consisting of irregular masses of amorphous material within a uniform 60-nm-wide space between apposing endothelial cells and adventitial cell processes. At maximal magnifications, the material was resolved as a random arrangement of components lacking the "cord network" formation seen in basement membranes elsewhere. Individual components exhibited distinctive ultrastructural features whose molecular identity has previously been established. By these morphological criteria, the basement membrane contained unusually abundant chondroitin sulfate proteoglycan (CSPG) revealed by 3-nm-wide "double tracks," and moderate amounts of both laminin as dense irregular coils and type IV collagen as 1-1.5-nm-wide filaments, together with less conspicuous amounts of amyloid P forming pentagonal frames. In contrast, 4.5-5-nm-wide "double tracks" characteristic of heparan sulfate proteoglycan (HSPG) were absent. The findings demonstrate that, in comparison with "typical" basement membranes in other tissues, the bone marrow sinusoidal basement membrane is uniquely specialized in several respects. Its discontinuous nature, lack of network organization, and absence of HSPG, a molecule that normally helps to maintain membrane integrity, may facilitate disassembly and reassembly of basement membrane material in concert with movements of adventitial cell processes as maturing hemopoietic cells pass through the sinusoidal wall: the exceptionally large quantity of CSPG may represent a reservoir of CD44 receptor for use in hemopoiesis. Copyright 2001 Wiley-Liss, Inc.
Francis, Brian R; White, Karen H; Thorsness, Peter E
2007-04-01
ATP1-111, a suppressor of the slow-growth phenotype of yme1Delta lacking mitochondrial DNA is due to the substitution of phenylalanine for valine at position 111 of the alpha-subunit of mitochondrial ATP synthase (Atp1p in yeast). The suppressing activity of ATP1-111 requires intact beta (Atp2p) and gamma (Atp3p) subunits of mitochondrial ATP synthase, but not the stator stalk subunits b (Atp4p) and OSCP (Atp5p). ATP1-111 and other similarly suppressing mutations in ATP1 and ATP3 increase the growth rate of wild-type strains lacking mitochondrial DNA. These suppressing mutations decrease the growth rate of yeast containing an intact mitochondrial chromosome on media requiring oxidative phosphorylation, but not when grown on fermentable media. Measurement of chronological aging of yeast in culture reveals that ATP1 and ATP3 suppressor alleles in strains that contain mitochondrial DNA are longer lived than the isogenic wild-type strain. In contrast, the chronological life span of yeast cells lacking mitochondrial DNA and containing these mutations is shorter than that of the isogenic wild-type strain. Spore viability of strains bearing ATP1-111 is reduced compared to wild type, although ATP1-111 enhances the survival of spores that lacked mitochondrial DNA.
Molecular Basis of Latency in Pathogenic Human Viruses
NASA Astrophysics Data System (ADS)
Garcia-Blanco, Mariano A.; Cullen, Bryan R.
1991-11-01
Several human viruses are able to latently infect specific target cell populations in vivo. Analysis of the replication cycles of herpes simplex virus, Epstein-Barr virus, and human immunodeficiency virus suggests that the latent infections established by these human pathogens primarily result from a lack of host factors critical for the expression of viral early gene products. The subsequent activation of specific cellular transcription factors in response to extracellular stimuli can induce the expression of these viral regulatory proteins and lead to a burst of lytic viral replication. Latency in these eukaryotic viruses therefore contrasts with latency in bacteriophage, which is maintained primarily by the expression of virally encoded repressors of lytic replication.
Onal, M.; St John, H.C.; Danielson, A.L.; Pike, J.W.
2016-01-01
Receptor activator of nuclear factor-κB ligand (RANKL) is a TNF-like cytokine that is necessary for osteoclast formation and survival. Elevated RANKL synthesis is associated with both increased osteoclast number and bone resorption. Earlier studies identified an enhancer 76 kb upstream of the Tnfsf11 transcriptional start site (TSS) termed RL-D5 or the distal control region (DCR) that modulates RANKL expression in response to PTH, 1,25(OH)2D3, and an array of cytokines. Mice lacking RL-D5 exhibit high bone mass associated with decreased RANKL expression in bone, spleen, and thymus. In addition to RL-D5, genome-wide studies have identified 9 additional Tnfsf11 enhancers residing upstream of the gene’s TSS, which provide RANKL cell type-specificity and responsiveness to local and systemic factors. ChIP-chip analysis has revealed inducible VDR and CREB binding at an enhancer termed RL-D2 23 kb upstream of the Tnfsf11 TSS in osteoblastic ST2 cells. Herein, we use ChIP-seq analysis to confirm this finding and delete this enhancer from the mouse genome to determine its physiological role in vivo. RL-D2−/− primary stromal cells showed decreased RANKL-induction by both forskolin and 1,25(OH)2D3 ex vivo. Consistent with this, the PTH induction of RANKL expression was significantly blunted in RL-D2−/− mice in vivo. In contrast, lack of RL-D2 had no effect on 1,25(OH)2D3 induction of RANKL in vivo. Similar to the results seen in RL-D5−/− mice, lack of RL-D2 led to decreased skeletal RANKL expression, resulting in decreased osteoclast numbers and a progressive increase in bone mineral density. Lack of RL-D2 increased cancellous bone mass in femur and spine, but did not alter femoral cortical bone thickness. These results highlight the role of distal enhancers in the regulation of RANKL expression by PTH and perhaps 1,25(OH)2D3, and suggest that the RL-D2 and RL-D5 enhancers contribute in either an additive or synergistic manner to regulate bone remodeling. PMID:26332516
Smothers, C. Thetford; Jin, Chun; Woodward, John J.
2013-01-01
Background Ethanol inhibition of NMDA receptors is poorly understood due in part to the organizational complexity of the receptor that provides ample locations for sites of action. Among these the N-terminal domain of NMDA receptor subunits contains binding sites for a variety of modulatory agents including zinc, protons and GluN2B selective antagonists such as ifenprodil or Ro-25–6981. Ethanol inhibition of neuronal NMDA receptors expressed in some brain areas has been reported to be occluded by the presence of ifenprodil or similar compounds suggesting that the N-terminal domain may be important in regulating the ethanol sensitivity of NMDA receptors. Methods Wild-type GluN1 and GluN2 subunits and those in which the coding sequence for the N-terminal domain was deleted were expressed in HEK293 cells. Whole-cell voltage-clamp recording was used to assess ethanol inhibition of wild-type and mutant receptors lacking the N-terminal domain. Results As compared to wild-type GluN1/GluN2A receptors, ethanol inhibition was slightly greater in cells expressing GluN2A subunits lacking the N-terminal domain. In contrast, GluN2B N-terminal deletion mutants showed normal ethanol inhibition while those lacking the N-terminal domain in both GluN1 and GluN2B subunits had decreased ethanol inhibition as compared to wild-type receptors. N-terminal domain lacking GluN2B receptors were insensitive to ifenprodil but retained normal sensitivity to ethanol. Conclusions These findings indicate that the N-terminal domain modestly influences the ethanol sensitivity of NMDA receptors in a subunit-dependent manner. They also show that ifenprodil’s actions on GluN2B containing receptors can be dissociated from those of ethanol. These results suggest that while the N-terminal domain is not a primary site of action for ethanol on NMDA receptors, it likely affects sensitivity via actions on intrinsic channel properties. PMID:23905549
Ufimtseva, Elena
2016-01-01
The search for factors that account for the reproduction and survival of mycobacteria, including vaccine strains, in host cells is the priority for studies on tuberculosis. A comparison of BCG-mycobacterial loads in granuloma cells obtained from bone marrow and spleens of mice with latent tuberculous infection and cells from mouse bone marrow and peritoneal macrophage cultures infected with the BCG vaccine in vitro has demonstrated that granuloma macrophages each normally contained a single BCG-Mycobacterium, while those acutely infected in vitro had increased mycobacterial loads and death rates. Mouse granuloma cells were observed to produce the IFNγ, IL-1α, GM-CSF, CD1d, CD25, CD31, СD35, and S100 proteins. None of these activation markers were found in mouse cell cultures infected in vitro or in intact macrophages. Lack of colocalization of lipoarabinomannan-labeled BCG-mycobacteria with the lysosomotropic LysoTracker dye in activated granuloma macrophages suggests that these macrophages were unable to destroy BCG-mycobacteria. However, activated mouse granuloma macrophages could control mycobacterial reproduction in cells both in vivo and in ex vivo culture. By contrast, a considerable increase in the number of BCG-mycobacteria was observed in mouse bone marrow and peritoneal macrophages after BCG infection in vitro, when no expression of the activation-related molecules was detected in these cells. PMID:27066505
Lack of FasL-mediated killing leads to in vivo tumor promotion in mouse Lewis lung cancer.
Lee, J-K; Sayers, T J; Back, T C; Wigginton, J M; Wiltrout, R H
2003-03-01
Lewis lung carcinoma (3LL) cells were constitutively resistant to Fas-mediated apoptosis, but overexpression of Fas on 3LL cells allowed Fas-mediated apoptosis after crosslinking with agonist anti-Fas antibody (Jo2) in vitro. Surprisingly, Fas-overexpressing 3LL cells showed enhanced in vivo tumor progression, whereas no promotion of in vivo tumor growth was observed for dominant negative (DN) Fas-overexpressing 3LL transfectants in which the cytoplasmic death domain was deleted. In addition, the promotion of in vivo tumor growth by Fas-overexpression was reduced in gld (FasL-mutation) mice compared to normal mice. These data indicate that intact Fas/FasL cell signaling is required for the promotion of in vivo tumor growth by Fas overexpression in 3LL cells. In contrast to the efficient Fas-mediated killing induced in vitro by crosslinking with anti-Fas antibody, Fas-overexpressing 3LL cells were resistant in vitro to Fas-mediated apoptosis by activated T cells or transient FasL transfection. These data suggest that agonist anti-Fas antibody and natural FasL can transmit qualitatively different signals, and crosslinking of Fas with natural FasL on 3LL cells does not deliver the expected death signal. Thus, our results demonstrate that in some cases overexpression of Fas can result in a survival advantage for tumor cells in vivo.
McClintock, David S.; Santore, Matthew T.; Lee, Vivian Y.; Brunelle, Joslyn; Budinger, G. R. Scott; Zong, Wei-Xing; Thompson, Craig B.; Hay, Nissim; Chandel, Navdeep S.
2002-01-01
The mechanisms underlying cell death during oxygen deprivation are unknown. We report here a model for oxygen deprivation-induced apoptosis. The death observed during oxygen deprivation involves a decrease in the mitochondrial membrane potential, followed by the release of cytochrome c and the activation of caspase-9. Bcl-XL prevented oxygen deprivation-induced cell death by inhibiting the release of cytochrome c and caspase-9 activation. The ability of Bcl-XL to prevent cell death was dependent on allowing the import of glycolytic ATP into the mitochondria to generate an inner mitochondrial membrane potential through the F1F0-ATP synthase. In contrast, although activated Akt has been shown to inhibit apoptosis induced by a variety of apoptotic stimuli, it did not prevent cell death during oxygen deprivation. In addition to Bcl-XL, cells devoid of mitochondrial DNA (ρ° cells) that lack a functional electron transport chain were resistant to oxygen deprivation. Further, murine embryonic fibroblasts from bax−/− bak−/− mice did not die in response to oxygen deprivation. These data suggest that when subjected to oxygen deprivation, cells die as a result of an inability to maintain a mitochondrial membrane potential through the import of glycolytic ATP. Proapoptotic Bcl-2 family members and a functional electron transport chain are required to initiate cell death in response to oxygen deprivation. PMID:11739725
3D visualization of subcellular structures of Schizosaccharomyces pombe by hard X-ray tomography.
Yang, Y; Li, W; Liu, G; Zhang, X; Chen, J; Wu, W; Guan, Y; Xiong, Y; Tian, Y; Wu, Z
2010-10-01
Cellular structures of the fission yeast, Schizosaccharomyces pombe, were examined by using hard X-ray tomography. Since cells are nearly transparent to hard X-rays, Zernike phase contrast and heavy metal staining were introduced to improve image contrast. Through using such methods, images taken at 8 keV displayed sufficient contrast for observing cellular structures. The cell wall, the intracellular organelles and the entire structural organization of the whole cells were visualized in three-dimensional at a resolution better than 100 nm. Comparison between phase contrast and absorption contrast was also made, indicating the obvious advantage of phase contrast for cellular imaging at this energy. Our results demonstrate that hard X-ray tomography with Zernike phase contrast is suitable for cellular imaging. Its unique abilities make it have potential to become a useful tool for revealing structural information from cells, especially thick eukaryotic cells. © 2010 The Authors Journal compilation © 2010 The Royal Microscopical Society.
EQUILUMINANCE CELLS IN VISUAL CORTICAL AREA V4
Bushnell, Brittany N.; Harding, Philip J.; Kosai, Yoshito; Bair, Wyeth; Pasupathy, Anitha
2011-01-01
We report a novel class of V4 neuron in the macaque monkey that responds selectively to equiluminant colored form. These "equiluminance" cells stand apart because they violate the well established trend throughout the visual system that responses are minimal at low luminance contrast and grow and saturate as contrast increases. Equiluminance cells, which compose about 22% of V4, exhibit the opposite behavior: responses are greatest near zero contrast and decrease as contrast increases. While equilumiance cells respond preferentially to equiluminant colored stimuli, strong hue tuning is not their distinguishing feature—some equilumiance cells do exhibit strong unimodal hue tuning but many show little or no tuning for hue. We find that equiluminance cells are color and shape selective to a degree comparable to other classes of V4 cells with more conventional contrast response functions. Those more conventional cells respond equally well to achromatic luminance and equiluminant color stimuli, analogous to color-luminance cells described in V1. The existence of equiluminance cells, which have not been reported in V1 or V2, suggests that chromatically-defined boundaries and shapes are given special status in V4 and raises the possibility that form at equiluminance and form at higher contrasts are processed in separate channels in V4. PMID:21880901
Venter, E; van der Merwe, C F; Buys, A V; Huismans, H; van Staden, V
2014-03-01
African horse sickness virus (AHSV) is an arbovirus capable of successfully replicating in both its mammalian host and insect vector. Where mammalian cells show a severe cytopathic effect (CPE) following AHSV infection, insect cells display no CPE. These differences in cell death could be linked to the method of viral release, i.e. lytic or non-lytic, that predominates in a specific cell type. Active release of AHSV, or any related orbivirus, has, however, not yet been documented from insect cells. We applied an integrated microscopy approach to compare the nanomechanical and morphological response of mammalian and insect cells to AHSV infection. Atomic force microscopy revealed plasma membrane destabilization, integrity loss and structural deformation of the entire surface of infected mammalian cells. Infected insect cells, in contrast, showed no morphological differences from mock-infected cells other than an increased incidence of circular cavities present on the cell surface. Transmission electron microscopy imaging identified a novel large vesicle-like compartment within infected insect cells, not present in mammalian cells, containing viral proteins and virus particles. Extracellular clusters of aggregated virus particles were visualized adjacent to infected insect cells with intact plasma membranes. We propose that foreign material is accumulated within these vesicles and that their subsequent fusion with the cell membrane releases entrapped viruses, thereby facilitating a non-lytic virus release mechanism different from the budding previously observed in mammalian cells. This insect cell-specific defence mechanism contributes to the lack of cell damage observed in AHSV-infected insect cells.
Differential regulation of genomic imprinting by TET proteins in embryonic stem cells.
Liu, Lizhi; Mao, Shi-Qing; Ray, Chelsea; Zhang, Yu; Bell, Fong T; Ng, Sheau-Fang; Xu, Guo-Liang; Li, Xiajun
2015-09-01
TET proteins have been found to play an important role in active demethylation at CpG sites in mammals. There are some reports implicating their functions in removal of DNA methylation imprint at the imprinted regions in the germline. However, it is not well established whether TET proteins can also be involved in demethylation of DNA methylation imprint in embryonic stem (ES) cells. Here we report that loss of TET proteins caused a significant increase in DNA methylation at the Igf2-H19 imprinted region in ES cells. We also observed a variable increase in DNA methylation at the Peg1 imprinted region in the ES clones devoid of TET proteins, in particular in the differentiated ES cells. By contrast, we did not observe a significant increase of DNA methylation imprint at the Peg3, Snrpn and Dlk1-Dio3 imprinted regions in ES cells lacking TET proteins. Interestingly, loss of TET proteins did not result in a significant increase of DNA methylation imprint at the Igf2-H19 and Peg1 imprinted regions in the embryoid bodies (EB). Therefore, TET proteins seem to be differentially involved in maintaining DNA methylation imprint at a subset of imprinted regions in ES cells and EBs. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Yamada, Shigehiro; Ueno, Naoto; Satoh, Nori; Takahashi, Hiroki
2011-01-01
Brachyury plays a pivotal role in the notochord formation in ascidian embryos. Ciona intestinalis Noto4 (Ci-Noto4) was isolated as a gene downstream of Ci-Bra. This gene encodes a 307 amino-acid protein with a C-terminal phosphotyrosine interaction domain (PTB/PID). Expression of Ci-Noto4 commences at the neural plate stage and is specific to notochord cells. Suppression of Ci-Noto4 levels with specific antisense morpholino oligonucleotides resulted in the formation of two rows of notochord cells owing to a lack of midline intercalation between the bilateral populations of progenitor cells. In contrast, overexpression of Ci-Noto4 by injection of a Ci-Bra(promoter):Ci-Noto4-EGFP construct into fertilized eggs disrupted the localization of notochord cells. Ci-Noto4 overexpression did not affect cellular differentiation in the notochord, muscle, mesenchyme, or nervous system. Analysis of Ci-Noto4 regions that are responsible for its function suggested significant roles for the PTB/PID and a central region, an area with no obvious sequence similarity to other known proteins. These results suggested that PTB/PID-containing Ci-Noto4 is essential for midline intercalation of notochord cells in chordate embryos.
Bianchi-Frias, Daniella; Basom, Ryan; Delrow, Jeffrey J; Coleman, Ilsa M; Dakhova, Olga; Qu, Xiaoyu; Fang, Min; Franco, Omar E.; Ericson, Nolan G.; Bielas, Jason H.; Hayward, Simon W.; True, Lawrence; Morrissey, Colm; Brown, Lisha; Bhowmick, Neil A.; Rowley, David; Ittmann, Michael; Nelson, Peter S.
2017-01-01
Prostate cancer-associated stroma (CAS) plays an active role in malignant transformation, tumor progression, and metastasis. Molecular analyses of CAS have demonstrated significant changes in gene expression; however, conflicting evidence exists on whether genomic alterations in benign cells comprising the tumor microenvironment (TME) underlie gene expression changes and oncogenic phenotypes. This study evaluates the nuclear and mitochondrial DNA integrity of prostate carcinoma cells, CAS, matched benign epithelium and benign epithelium-associated stroma by whole genome copy number analyses, targeted sequencing of TP53, and fluorescence in situ hybridization. Comparative genomic hybridization (aCGH) of CAS revealed a copy-neutral diploid genome with only rare and small somatic copy number aberrations (SCNAs). In contrast, several expected recurrent SCNAs were evident in the adjacent prostate carcinoma cells, including gains at 3q, 7p, and 8q, and losses at 8p and 10q. No somatic TP53 mutations were observed in CAS. Mitochondrial DNA (mtDNA) extracted from carcinoma cells and stroma identified 23 somatic mtDNA mutations in neoplastic epithelial cells but only one mutation in stroma. Finally, genomic analyses identified no SCNAs, no loss of heterozygosity (LOH) or copy-neutral LOH in cultured cancer-associated fibroblasts (CAFs), which are known to promote prostate cancer progression in vivo. PMID:26753621
Spierings, Eric; Brickner, Anthony G; Caldwell, Jennifer A; Zegveld, Suzanne; Tatsis, Nia; Blokland, Els; Pool, Jos; Pierce, Richard A; Mollah, Sahana; Shabanowitz, Jeffrey; Eisenlohr, Laurence C; van Veelen, Peter; Ossendorp, Ferry; Hunt, Donald F; Goulmy, Els; Engelhard, Victor H
2003-07-15
Minor histocompatibility (H) antigens crucially affect the outcome of human leukocyte antigen (HLA)-identical allogeneic stem cell transplantation (SCT). To understand the basis of alloimmune responses against minor H antigens, identification of minor H peptides and their antigenicity-determining mechanisms is essential. Here we report the identification of HA-3 and its encoding gene. The HA-3 peptide, VTEPGTAQY (HA-3T), is encoded by the lymphoid blast crisis (Lbc) oncogene. We thus show for the first time that a leukemia-associated oncogene can give rise to immunogenic T-cell epitopes that may have participated in antihost and antileukemic alloimmune responses. Genotypic analysis of HA-3- individuals revealed the allelic counterpart VMEPGTAQY (HA-3M). Despite the lack of T-cell recognition of HA-3- cells, the Thr-->Met substitution had only a modest effect on peptide binding to HLA-A1 and a minimal impact on recognition by T cells when added exogenously to target cells. This substitution did not influence transporter associated with antigen processing (TAP) transport, but, in contrast to the HA-3T peptide, HA-3M is destroyed by proteasome-mediated digestion. Thus, the immunogenicity of minor H antigens can result from proteasome-mediated destruction of the negative allelic peptide.
Role of the M3 muscarinic acetylcholine receptor in beta-cell function and glucose homeostasis.
Gautam, D; Han, S-J; Duttaroy, A; Mears, D; Hamdan, F F; Li, J H; Cui, Y; Jeon, J; Wess, J
2007-11-01
The release of insufficient amounts of insulin in the presence of elevated blood glucose levels is one of the key features of type 2 diabetes. Various lines of evidence indicate that acetylcholine (ACh), the major neurotransmitter of the parasympathetic nervous system, can enhance glucose-stimulated insulin secretion from pancreatic beta-cells. Studies with isolated islets prepared from whole body M(3) muscarinic ACh receptor knockout mice showed that cholinergic amplification of glucose-dependent insulin secretion is exclusively mediated by the M(3) muscarinic receptor subtype. To investigate the physiological relevance of this muscarinic pathway, we used Cre/loxP technology to generate mutant mice that lack M(3) receptors only in pancreatic beta-cells. These mutant mice displayed impaired glucose tolerance and significantly reduced insulin secretion. In contrast, transgenic mice overexpressing M(3) receptors in pancreatic beta-cells showed a pronounced increase in glucose tolerance and insulin secretion and were resistant to diet-induced glucose intolerance and hyperglycaemia. These findings indicate that beta-cell M(3) muscarinic receptors are essential for maintaining proper insulin secretion and glucose homeostasis. Moreover, our data suggest that enhancing signalling through beta-cell M(3) muscarinic receptors may represent a new avenue in the treatment of glucose intolerance and type 2 diabetes.
Henrietta Lacks, HeLa cells, and cell culture contamination.
Lucey, Brendan P; Nelson-Rees, Walter A; Hutchins, Grover M
2009-09-01
Henrietta Lacks died in 1951 of an aggressive adenocarcinoma of the cervix. A tissue biopsy obtained for diagnostic evaluation yielded additional tissue for Dr George O. Gey's tissue culture laboratory at Johns Hopkins (Baltimore, Maryland). The cancer cells, now called HeLa cells, grew rapidly in cell culture and became the first human cell line. HeLa cells were used by researchers around the world. However, 20 years after Henrietta Lacks' death, mounting evidence suggested that HeLa cells contaminated and overgrew other cell lines. Cultures, supposedly of tissues such as breast cancer or mouse, proved to be HeLa cells. We describe the history behind the development of HeLa cells, including the first published description of Ms Lacks' autopsy, and the cell culture contamination that resulted. The debate over cell culture contamination began in the 1970s and was not harmonious. Ultimately, the problem was not resolved and it continues today. Finally, we discuss the philosophical implications of the immortal HeLa cell line.
Amrehn, Evelyn; Heller, Annerose; Spring, Otmar
2014-01-01
Previous studies have shown that capitate glandular trichomes (CGT) of the common sunflower, Helianthus annuus, produce sesquiterpene lactones (STL) and flavonoids, which are sequestered and accumulated between the apical cuticle and the wall of the tip cells. To explore the cellular structures required and putatively involved in the STL biosynthesis and secretion, the present study was focused on the development of CGT and the comparison of the ultrastructure of its different cell types. Gradual maturation of flowers in the capitulum of the sunflower provided the possibility to study the simultaneous differentiation from the primordial to the secretory stage of CGT located by light microscopy (bright field, differential interference contrast and fluorescence) as well as transmission electron microscopy. It was shown that the CGT of sunflower anthers had a biseriate structure with up to 14 cell pairs. In mature trichomes, the apical cells called secretory cells were covered entirely by a large cuticle globe, which enclosed the resinous terpenoids and was specialised in thickness and structure. The secretory cells lacked chloroplasts and contained mainly smooth endoplasmic reticulum (sER). Conspicuous cell wall protuberances and an accumulation of mitochondria nearby occurred in the horizontally oriented cell walls. The cytological differences between stalk cells and secretory cells indicate a different function. The dominance of sER suggests its involvement in STL biosynthesis and cell wall protuberances enlarge the surface of the plasmamembrane of secretory cells and may be involved in the secretion processes of STL into the subcuticular space.
Lavieu, Grégory; Scarlatti, Francesca; Sala, Giusy; Carpentier, Stéphane; Levade, Thierry; Ghidoni, Riccardo; Botti, Joëlle; Codogno, Patrice
2006-03-31
The sphingolipid ceramide induces macroautophagy (here called autophagy) and cell death with autophagic features in cancer cells. Here we show that overexpression of sphingosine kinase 1 (SK1), an enzyme responsible for the production of sphingosine 1-phosphate (S1P), in MCF-7 cells stimulates autophagy by increasing the formation of LC3-positive autophagosomes and the rate of proteolysis sensitive to the autophagy inhibitor 3-methyladenine. Autophagy was blocked in the presence of dimethylsphingosine, an inhibitor of SK activity, and in cells expressing a catalytically inactive form of SK1. In SK1(wt)-overexpressing cells, however, autophagy was not sensitive to fumonisin B1, an inhibitor of ceramide synthase. In contrast to ceramide-induced autophagy, SK1(S1P)-induced autophagy is characterized by (i) the inhibition of mammalian target of rapamycin signaling independently of the Akt/protein kinase B signaling arm and (ii) the lack of robust accumulation of the autophagy protein Beclin 1. In addition, nutrient starvation induced both the stimulation of autophagy and SK activity. Knocking down the expression of the autophagy protein Atg7 or that of SK1 by siRNA abolished starvation-induced autophagy and increased cell death with apoptotic hallmarks. In conclusion, these results show that SK1(S1P)-induced autophagy protects cells from death with apoptotic features during nutrient starvation.
Haraguchi, Norihiro; Kikuchi, Norihiro; Morishima, Yuko; Matsuyama, Masashi; Sakurai, Hirofumi; Shibuya, Akira; Shibuya, Kazuko; Taniguchi, Masaru; Ishii, Yukio
2016-07-01
Invariant NKT (iNKT) cells play an important role in a variety of antimicrobial immune responses due to their ability to produce high levels of immune-modulating cytokines. Here, we investigated the role of iNKT cells in host defense against candidiasis using Jα18-deficient mice (Jα18(-/-) ), which lack iNKT cells. Jα18(-/-) mice were more resistant to the development of lethal candidiasis than wild-type (WT) mice. In contrast, treatment of WT mice with the iNKT cell activating ligand α-galactosylceramide markedly enhanced their mortality after infection with Candida albicans. Serum IL-10 levels were significantly elevated in WT mice in response to infection with C. albicans. Futhermore, IL-10 production increased after in vitro coculture of peritoneal macrophages with iNKT cells and C. albicans. The numbers of peritoneal macrophages, the production of IL-1β and IL-18, and caspase-1 activity were also significantly elevated in Jα18(-/-) mice after infection with C. albicans. The adoptive transfer of iNKT cells or exogenous administration of IL-10 into Jα18(-/-) reversed susceptibility to candidiasis to the level of WT mice. These results suggest that activation of iNKT cells increases the initial severity of C. albicans infection, most likely mediated by IL-10 induced modulation of macrophage antifungal activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pastar, Irena; Tonic, Ivana; Golic, Natasa; Kojic, Milan; van Kranenburg, Richard; Kleerebezem, Michiel; Topisirovic, Ljubisa; Jovanovic, Goran
2003-01-01
A novel proteinase, PrtR, produced by the human vaginal isolate Lactobacillus rhamnosus strain BGT10 was identified and genetically characterized. The prtR gene and flanking regions were cloned and sequenced. The deduced amino acid sequence of PrtR shares characteristics that are common for other cell envelope proteinases (CEPs) characterized to date, but in contrast to the other cell surface subtilisin-like serine proteinases, it has a smaller and somewhat different B domain and lacks the helix domain, and the anchor domain has a rare sorting signal sequence. Furthermore, PrtR lacks the insert domain, which otherwise is situated inside the catalytic serine protease domain of all CEPs, and has a different cell wall spacer (W) domain similar to that of the cell surface antigen I and II polypeptides expressed by oral and vaginal streptococci. Moreover, the PrtR W domain exhibits significant sequence homology to the consensus sequence that has been shown to be the hallmark of human intestinal mucin protein. According to its αS1- and β-casein cleavage efficacy, PrtR is an efficient proteinase at pH 6.5 and is distributed throughout all L. rhamnosus strains tested. Proteinase extracts of the BGT10 strain obtained with Ca2+-free buffer at pH 6.5 were proteolytically active. The prtR promoter-like sequence was determined, and the minimal promoter region was defined by use of prtR-gusA operon fusions. The prtR expression is Casitone dependent, emphasizing that nitrogen depletion elevates its transcription. This is in correlation with the catalytic activity of the PrtR proteinase. PMID:14532028
Walther, Christa G; Whitfield, Robert; James, David C
2016-04-01
The biopharmaceutical production process relies upon mammalian cell technology where single cells proliferate in suspension in a chemically defined synthetic environment. This environment lacks exogenous growth factors, usually contributing to proliferation of fibroblastic cell types such as Chinese hamster ovary (CHO) cells. Use of CHO cells for production hence requires a lengthy 'adaptation' process to select clones capable of proliferation as single cells in suspension. The underlying molecular changes permitting proliferation in suspension are not known. Comparison of the non-suspension-adapted clone CHO-AD and a suspension-adapted propriety cell line CHO-SA by flow cytometric analysis revealed a highly variable bi-modal expression pattern for cell-to-cell contact proteins in contrast to the expression pattern seen for integrins. Those have a uni-modal expression on suspension and adherent cells. Integrins showed a conformation distinguished by regularly distributed clusters forming a sphere on the cell membrane of suspension-adapted cells. Actin cytoskeleton analysis revealed reorganisation from the typical fibrillar morphology found in adherent cells to an enforced spherical subcortical actin sheath in suspension cells. The uni-modal expression and specific clustering of integrins could be confirmed for CHO-S, another suspension cell line. Cytochalasin D treatment resulted in breakdown of the actin sheath and the sphere-like integrin conformation demonstrating the link between integrins and actin in suspension-adapted CHO cells. The data demonstrates the importance of signalling changes, leading to an integrin rearrangement on the cell surface, and the necessity of the reinforcement of the actin cytoskeleton for proliferation in suspension conditions.
Heterogeneity of signal transduction by Na-K-ATPase α-isoforms: role of Src interaction.
Yu, Hui; Cui, Xiaoyu; Zhang, Jue; Xie, Joe X; Banerjee, Moumita; Pierre, Sandrine V; Xie, Zijian
2018-02-01
Of the four Na-K-ATPase α-isoforms, the ubiquitous α1 Na-K-ATPase possesses both ion transport and Src-dependent signaling functions. Mechanistically, we have identified two putative pairs of domain interactions between α1 Na-K-ATPase and Src that are critical for α1 signaling function. Our subsequent report that α2 Na-K-ATPase lacks these putative Src-binding sites and fails to carry on Src-dependent signaling further supported our proposed model of direct interaction between α1 Na-K-ATPase and Src but fell short of providing evidence for a causative role. This hypothesis was specifically tested here by introducing key residues of the two putative Src-interacting domains present on α1 but not α2 sequence into the α2 polypeptide, generating stable cell lines expressing this mutant, and comparing its signaling properties to those of α2-expressing cells. The mutant α2 was fully functional as a Na-K-ATPase. In contrast to wild-type α2, the mutant gained α1-like signaling function, capable of Src interaction and regulation. Consistently, the expression of mutant α2 redistributed Src into caveolin-1-enriched fractions and allowed ouabain to activate Src-mediated signaling cascades, unlike wild-type α2 cells. Finally, mutant α2 cells exhibited a growth phenotype similar to that of the α1 cells and proliferated much faster than wild-type α2 cells. These findings reveal the structural requirements for the Na-K-ATPase to function as a Src-dependent receptor and provide strong evidence of isoform-specific Src interaction involving the identified key amino acids. The sequences surrounding the putative Src-binding sites in α2 are highly conserved across species, suggesting that the lack of Src binding may play a physiologically important and isoform-specific role.
Mismatch repair deficiency associated with overexpression of the MSH3 gene.
Marra, G; Iaccarino, I; Lettieri, T; Roscilli, G; Delmastro, P; Jiricny, J
1998-07-21
We tested the ability of recombinant hMutSalpha (hMSH2/hMSH6) and hMutSbeta (hMSH2/hMSH3) heterodimers to complement the mismatch repair defect of HEC59, a human cancer cell line whose extracts lack all three MutS homologues. Although repair of both base/base mispairs and insertion-deletion loops was restored by hMutSalpha, only the latter substrates were addressed in extracts supplemented with hMutSbeta. hMutSalpha was also able to complement a defect in the repair of base/base mispairs in CHO R and HL60R cell extracts. In these cells, methotrexate-induced amplification of the dihydrofolate reductase (DHFR) locus, which also contains the MSH3 gene, led to an overexpression of MSH3 and thus to a dramatic change in the relative levels of MutSalpha and MutSbeta. As a rule, MSH2 is primarily complexed with MSH6. MutSalpha is thus relatively abundant in mammalian cell extracts, whereas MutSbeta levels are generally low. In contrast, in cells that overexpress MSH3, the available MSH2 protein is sequestered predominantly into MutSbeta. This leads to degradation of the partnerless MSH6 and depletion of MutSalpha. CHO R and HL60R cells therefore lack correction of base/base mispairs, whereas loop repair is maintained by MutSbeta. Consequently, frameshift mutations in CHO R are rare, whereas transitions and transversions are acquired at a rate two orders of magnitude above background. Our data thus support and extend the findings of Drummond et al. [Drummond, J. T., Genschel, J., Wolf, E. & Modrich, P. (1997) Proc. Natl. Acad. Sci. USA 94, 10144-10149] and demonstrate that mismatch repair deficiency can arise not only through mutation or transcriptional silencing of a mismatch repair gene, but also as a result of imbalance in the relative amounts of the MSH3 and MSH6 proteins.
Katz, D; Niederberger, C; Slaughter, G R; Cooney, A J
1997-10-01
Nuclear receptors, such as those for androgens, estrogens, and progesterones, control many reproductive processes. Proteins with structures similar to these receptors, but for which ligands have not yet been identified, have been termed orphan nuclear receptors. One of these orphans, germ cell nuclear factor (GCNF), has been shown to be germ cell specific in the adult and, therefore, may also participate in the regulation of reproductive functions. In this paper, we examine more closely the expression patterns of GCNF in germ cells to begin to define spatio-temporal domains of its activity. In situ hybridization showed that GCNF messenger RNA (mRNA) is lacking in the testis of hypogonadal mutant mice, which lack developed spermatids, but is present in the wild-type testis. Thus, GCNF is, indeed, germ cell specific in the adult male. Quantitation of the specific in situ hybridization signal in wild-type testis reveals that GCNF mRNA is most abundant in stage VII round spermatids. Similarly, Northern analysis and specific in situ hybridization show that GCNF expression first occurs in testis of 20-day-old mice, when round spermatids first emerge. Therefore, in the male, GCNF expression occurs postmeiotically and may participate in the morphological changes of the maturing spermatids. In contrast, female expression of GCNF is shown in growing oocytes that have not completed the first meiotic division. Thus, GCNF in the female is expressed before the completion of meiosis. Finally, the nature of the two different mRNAs that hybridize to the GCNF complementary DNA was studied. Although both messages contain the DNA binding domain, only the larger message is recognized by a probe from the extreme 3' untranslated region. In situ hybridization with these differential probes demonstrates that both messages are present in growing oocytes. In addition, the coding region and portions of the 3' untranslated region of the GCNF complementary DNA are conserved in the rat.
Increased sensitivity of p53-deficient cells to anticancer agents due to loss of Pms2
Fedier, A; Ruefenacht, U B; Schwarz, V A; Haller, U; Fink, D
2002-01-01
A large fraction of human tumours carries mutations in the p53 gene. p53 plays a central role in controlling cell cycle checkpoint regulation, DNA repair, transcription, and apoptosis upon genotoxic stress. Lack of p53 function impairs these cellular processes, and this may be the basis of resistance to chemotherapeutic regimens. By virtue of the involvement of DNA mismatch repair in modulating cytotoxic pathways in response to DNA damaging agents, we investigated the effects of loss of Pms2 on the sensitivity to a panel of widely used anticancer agents in E1A/Ha-Ras-transformed p53-null mouse fibroblasts either proficient or deficient in Pms2. We report that lack of the Pms2 gene is associated with an increased sensitivity, ranging from 2–6-fold, to some types of anticancer agents including the topoisomerase II poisons doxorubicin, etoposide and mitoxantrone, the platinum compounds cisplatin and oxaliplatin, the taxanes docetaxel and paclitaxel, and the antimetabolite gemcitabine. In contrast, no change in sensitivity was found after treatment with 5-fluorouracil. Cell cycle analysis revealed that both, Pms2-deficient and -proficient cells, retain the ability to arrest at the G2/M upon cisplatin treatment. The data indicate that the concomitant loss of Pms2 function chemosensitises p53-deficient cells to some types of anticancer agents, that Pms2 positively modulates cell survival by mechanisms independent of p53, and that increased cytotoxicity is paralleled by increased apoptosis. Tumour-targeted functional inhibition of Pms2 may be a valuable strategy for increasing the efficacy of anticancer agents in the treatment of p53-mutant cancers. British Journal of Cancer (2002) 87, 1027–1033. doi:10.1038/sj.bjc.6600599 www.bjcancer.com © 2002 Cancer Research UK PMID:12434296
Sun, Hao; Swanson, William H.; Arvidson, Brian; Dul, Mitchell W.
2010-01-01
PURPOSE Contrast gain signatures of inferred magnocellular and parvocellular postreceptoral pathways were assessed for patients with glaucoma using a contrast discrimination paradigm developed by Pokorny and Smith. The potential causes for changes in contrast gain signature were investigated using model simulations of ganglion cell contrast responses. METHODS Foveal contrast discrimination thresholds were measured with a pedestal-Δ-pedestal paradigm developed by Pokorny and Smith (1997). Stimuli were 27 msec luminance increments superimposed on 227 msec pulsed Δ-pedestals. Contrast thresholds and contrast gain signatures mediated by the inferred magnocellular (MC) and parvocellular (PC) pathways were assessed using linear fits to contrast discrimination thresholds at either lower or higher Δ-pedestal contrasts, respectively. Twenty-seven patients with glaucoma were tested, as well as 16 age-similar control subjects free of eye disease. RESULTS Contrast sensitivity and contrast gain signature mediated by the inferred MC pathway were lower for the glaucoma group, and reduced contrast gain signature was correlated with reduced contrast sensitivity (r2=45%, p<0.0005). These two parameters mediated by the inferred PC pathway were little affected for the glaucoma group. Model simulations suggest that the reduced contrast sensitivity and contrast gain signature were consistent with the hypothesis that reduced MC ganglion cell dendritic complexity can lead to reduced effective retinal illuminance, and hence increased semi-saturation contrast of the ganglion cell contrast response functions. CONCLUSIONS The contrast sensitivity and contrast gain signature of the inferred MC pathway were reduced in patients with glaucoma. The results were consistent with a model of ganglion cell dysfunction due to reduced synaptic density. PMID:18501947
Burkhardt, Dwight A.; Bartoletti, Theodore M.; Thoreson, Wallace B.
2012-01-01
Receptive field organization of cone-driven bipolar cells was investigated by intracellular recording in the intact light-adapted retina of the tiger salamander (Ambystoma tigrinum). Centered spots and concentric annuli of optimum dimensions were used to selectively stimulate the receptive field center and surround with sinusoidal modulations of contrast at 3 Hz. At low contrasts, responses of both the center and surround of both ON and OFF bipolar cells were linear, showing high gain and thus contrast enhancement relative to cones. The contrast/response curves for the fundamental response, measured by a Fast Fourier Transform, reached half maximum amplitude quickly at 13% contrast followed by saturation at high contrasts. The variation of the normalized amplitude of the center and surround responses was remarkably similar, showing linear regression over the entire response range with very high correlations, r2 = 0.97 for both ON and OFF cells. The contrast/response curves of both center and surround for both ON and OFF cells were well fit (r2 = 0.98) by an equation for single-site binding. In about half the cells studied, the nonlinear waveforms of center and surround could be brought into coincidence by scaling and shifting the surround response in time. This implies that a nonlinearity, common to both center and surround, occurs after polarity inversion at the cone feedback synapse. Evidence from paired whole-cell recordings between single cones and OFF bipolar cells suggests that substantial nonlinearity is not due to transmission at the cone synapse but instead arises from intrinsic bipolar cell and network mechanisms. When sinusoidal contrast modulations were applied to the center and surround simultaneously, clear additivity was observed for small responses in both ON and OFF cells, whereas the interaction was strikingly nonadditive for large responses. The contribution of the surround was then greatly reduced, suggesting attenuation at the cone feedback synapse. PMID:21439110
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Pan; Hongqian, Chu; Qinghe, Meng
Trichloroethylene (TCE) is a ubiquitous environmental contaminant. Occupational TCE exposure has been associated with severe, generalized contact hypersensitivity (CHS) skin disorder. The development of CHS depends on innate and adaptive immune functions. Transforming growth factor-β activated kinase-1 (TAK1) controls the survival of dendritic cells (DCs) that affect the immune system homeostasis. We aimed to investigate the role of TAK1 activity in DC on TCE-induced CHS response. Control mice and DC-specific TAK1 deletion mice were treated with 80% (v/v) TCE using local lymph node assay (LLNA) to establish a TCE-induced CHS model. The draining lymph nodes (DLNs) were excised and themore » lymphocytes were measure for proliferation by BrdU-ELISA, T-cell phenotype analysis by flow cytometry and signaling pathway activation by western blot. The ears were harvested for histopathological analysis. Control mice in the 80% TCE group displayed an inflammatory response in the ears, increased lymphocyte proliferation, elevated regulatory T-cell and activated T-cell percentages, and more IFN-γ producing CD8{sup +} T cells in DLNs. In contrast to control mice, DC-specific TAK1 deletion mice in the 80% TCE group showed an abolished CHS response and this was associated with defective T-cell expansion, activation and IFN-γ production. This effect may occur through Jnk and NF-κB signaling pathways. Overall, this study demonstrates a pivotal role of TAK1 in DCs in controlling TCE-induced CHS response and suggests that targeting TAK1 function in DCs may be a viable approach to preventing and treating TCE-related occupational health hazards. - Highlights: • Lack of TAK1 in DC caused an abolished TCE-induced CHS response. • TAK1 in DCs was essential to maintain the homeostasis of T cells in TCE-induced CHS. • Intact TAK1 in DCs was critical to promote T-cell priming in TCE-induced CHS. • DC-specific TAK1 deficiency abolished the TCE-mediated phosphorylation of Jnk.« less
Widenfalk, J; Lundströmer, K; Jubran, M; Brene, S; Olson, L
2001-05-15
Delivery of neurotrophic factors to the injured spinal cord has been shown to stimulate neuronal survival and regeneration. This indicates that a lack of sufficient trophic support is one factor contributing to the absence of spontaneous regeneration in the mammalian spinal cord. Regulation of the expression of neurotrophic factors and receptors after spinal cord injury has not been studied in detail. We investigated levels of mRNA-encoding neurotrophins, glial cell line-derived neurotrophic factor (GDNF) family members and related receptors, ciliary neurotrophic factor (CNTF), and c-fos in normal and injured spinal cord. Injuries in adult rats included weight-drop, transection, and excitotoxic kainic acid delivery; in newborn rats, partial transection was performed. The regulation of expression patterns in the adult spinal cord was compared with that in the PNS and the neonate spinal cord. After mechanical injury of the adult rat spinal cord, upregulations of NGF and GDNF mRNA occurred in meningeal cells adjacent to the lesion. BDNF and p75 mRNA increased in neurons, GDNF mRNA increased in astrocytes close to the lesion, and GFRalpha-1 and truncated TrkB mRNA increased in astrocytes of degenerating white matter. The relatively limited upregulation of neurotrophic factors in the spinal cord contrasted with the response of affected nerve roots, in which marked increases of NGF and GDNF mRNA levels were observed in Schwann cells. The difference between the ability of the PNS and CNS to provide trophic support correlates with their different abilities to regenerate. Kainic acid delivery led to only weak upregulations of BDNF and CNTF mRNA. Compared with several brain regions, the overall response of the spinal cord tissue to kainic acid was weak. The relative sparseness of upregulations of endogenous neurotrophic factors after injury strengthens the hypothesis that lack of regeneration in the spinal cord is attributable at least partly to lack of trophic support.
Specht, Sandra; Liedgens, Linda; Duarte, Margarida; Stiegler, Alexandra; Wirth, Ulrike; Eberhardt, Maike; Tomás, Ana; Hell, Kai; Deponte, Marcel
2018-05-01
Mia40/CHCHD4 and Erv1/ALR are essential for oxidative protein folding in the mitochondrial intermembrane space of yeast and mammals. In contrast, many protists, including important apicomplexan and kinetoplastid parasites, lack Mia40. Furthermore, the Erv homolog of the model parasite Leishmania tarentolae (LtErv) was shown to be incompatible with Saccharomyces cerevisiae Mia40 (ScMia40). Here we addressed structure-function relationships of ScErv1 and LtErv as well as their compatibility with the oxidative protein folding system in yeast using chimeric, truncated, and mutant Erv constructs. Chimeras between the N-terminal arm of ScErv1 and a variety of truncated LtErv constructs were able to rescue yeast cells that lack ScErv1. Yeast cells were also viable when only a single cysteine residue was replaced in LtErv C17S . Thus, the presence and position of the C-terminal arm and the kinetoplastida-specific second (KISS) domain of LtErv did not interfere with its functionality in the yeast system, whereas a relatively conserved cysteine residue before the flavodomain rendered LtErv incompatible with ScMia40. The question whether parasite Erv homologs might also exert the function of Mia40 was addressed in another set of complementation assays. However, neither the KISS domain nor other truncated or mutant LtErv constructs were able to rescue yeast cells that lack ScMia40. The general relevance of Erv and its candidate substrate small Tim1 was analyzed for the related parasite L. infantum. Repeated unsuccessful knockout attempts suggest that both genes are essential in this human pathogen and underline the potential of mitochondrial protein import pathways for future intervention strategies. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Renal calcinosis and stone formation in mice lacking osteopontin, Tamm-Horsfall protein, or both.
Mo, Lan; Liaw, Lucy; Evan, Andrew P; Sommer, Andre J; Lieske, John C; Wu, Xue-Ru
2007-12-01
Although often supersaturated with mineral salts such as calcium phosphate and calcium oxalate, normal urine possesses an innate ability to keep them from forming harmful crystals. This inhibitory activity has been attributed to the presence of urinary macromolecules, although controversies abound regarding their role, or lack thereof, in preventing renal mineralization. Here, we show that 10% of the mice lacking osteopontin (OPN) and 14.3% of the mice lacking Tamm-Horsfall protein (THP) spontaneously form interstitial deposits of calcium phosphate within the renal papillae, events never seen in wild-type mice. Lack of both proteins causes renal crystallization in 39.3% of the double-null mice. Urinalysis revealed elevated concentrations of urine phosphorus and brushite (calcium phosphate) supersaturation in THP-null and OPN/THP-double null mice, suggesting that impaired phosphorus handling may be linked to interstitial papillary calcinosis in THP- but not in OPN-null mice. In contrast, experimentally induced hyperoxaluria provokes widespread intratubular calcium oxalate crystallization and stone formation in OPN/THP-double null mice, while completely sparing the wild-type controls. Whole urine from OPN-, THP-, or double-null mice all possessed a dramatically reduced ability to inhibit the adhesion of calcium oxalate monohydrate crystals to renal epithelial cells. These data establish OPN and THP as powerful and functionally synergistic inhibitors of calcium phosphate and calcium oxalate crystallization in vivo and suggest that defects in either molecule may contribute to renal calcinosis and stone formation, an exceedingly common condition that afflicts up to 12% males and 5% females.
RasGRP1 regulates antigen-induced developmental programming by naive CD8 T cells.
Priatel, John J; Chen, Xiaoxi; Huang, Yu-Hsuan; Chow, Michael T; Zenewicz, Lauren A; Coughlin, Jason J; Shen, Hao; Stone, James C; Tan, Rusung; Teh, Hung Sia
2010-01-15
Ag encounter by naive CD8 T cells initiates a developmental program consisting of cellular proliferation, changes in gene expression, and the formation of effector and memory T cells. The strength and duration of TCR signaling are known to be important parameters regulating the differentiation of naive CD8 T cells, although the molecular signals arbitrating these processes remain poorly defined. The Ras-guanyl nucleotide exchange factor RasGRP1 has been shown to transduce TCR-mediated signals critically required for the maturation of developing thymocytes. To elucidate the role of RasGRP1 in CD8 T cell differentiation, in vitro and in vivo experiments were performed with 2C TCR transgenic CD8 T cells lacking RasGRP1. In this study, we report that RasGRP1 regulates the threshold of T cell activation and Ag-induced expansion, at least in part, through the regulation of IL-2 production. Moreover, RasGRP1(-/-) 2C CD8 T cells exhibit an anergic phenotype in response to cognate Ag stimulation that is partially reversible upon the addition of exogenous IL-2. By contrast, the capacity of IL-2/IL-2R interactions to mediate Ras activation and CD8 T cell expansion and differentiation appears to be largely RasGRP1-independent. Collectively, our results demonstrate that RasGRP1 plays a selective role in T cell signaling, controlling the initiation and duration of CD8 T cell immune responses.
Lipid droplet formation on opposing sides of the endoplasmic reticulum
Sturley, Stephen L.; Hussain, M. Mahmood
2012-01-01
In animal cells, the primary repositories of esterified fatty acids and alcohols (neutral lipids) are lipid droplets that form on the lumenal and/or cytoplasmic side of the endoplasmic reticulum (ER) membrane. A monolayer of amphipathic lipids, intermeshed with key proteins, serves to solubilize neutral lipids as they are synthesized and desorbed. In specialized cells, mobilization of the lipid cargo for delivery to other tissues occurs by secretion of lipoproteins into the plasma compartment. Serum lipoprotein assembly requires an obligate structural protein anchor (apolipoprotein B) and a dedicated chaperone, microsomal triglyceride transfer protein. By contrast, lipid droplets that form on the cytoplasmic face of the ER lack an obligate protein scaffold or any required chaperone/lipid transfer protein. Mobilization of neutral lipids from the cytosol requires regulated hydrolysis followed by transfer of the products to different organelles or export from cells. Several proteins play a key role in controlling droplet number, stability, and catabolism; however, it is our premise that their formation initiates spontaneously, solely as a consequence of neutral lipid synthesis. This default pathway directs droplets into the cytoplasm where they accumulate in many lipid disorders. PMID:22701043
Dendritic Cells Control Fibroblastic Reticular Network Tension and Lymph Node Expansion
Acton, Sophie E.; Farrugia, Aaron J.; Astarita, Jillian L.; Mourão-Sá, Diego; Jenkins, Robert P.; Nye, Emma; Hooper, Steven; van Blijswijk, Janneke; Rogers, Neil C.; Snelgrove, Kathryn J.; Rosewell, Ian; Moita, Luis F.; Stamp, Gordon; Turley, Shannon J.; Sahai, Erik; Sousa, Caetano Reis e
2014-01-01
Following immunogenic challenge, infiltrating and dividing lymphocytes significantly increase lymph node (LN) cellularity leading to organ expansion1,2. Here we report that the physical elasticity of LNs is maintained in part by podoplanin (PDPN) signalling in stromal fibroblastic reticular cells (FRCs) and its modulation by CLEC-2 expressed on dendritic cells (DCs). We show that PDPN induces actomyosin contractility in FRCs via activation of RhoA/C and downstream Rho-kinase. Engagement by CLEC-2 causes PDPN clustering and rapidly uncouples PDPN from RhoA/C activation, relaxing the actomyosin cytoskeleton and permitting FRC stretching. Notably, administration of CLEC-2 protein to immunised mice augments LN expansion. In contrast, the latter is significantly constrained in mice selectively lacking CLEC-2 expression in DCs. Thus, the same DCs that initiate immunity by presenting antigens to T lymphocytes3 also initiate remodeling of LNs by delivering CLEC-2 to FRCs. CLEC-2 modulation of PDPN signalling permits FRC network stretching and allows for the rapid LN expansion driven by lymphocyte influx and proliferation that is the critical hallmark of adaptive immunity. PMID:25341788
HOXA5 plays tissue-specific roles in the developing respiratory system.
Landry-Truchon, Kim; Houde, Nicolas; Boucherat, Olivier; Joncas, France-Hélène; Dasen, Jeremy S; Philippidou, Polyxeni; Mansfield, Jennifer H; Jeannotte, Lucie
2017-10-01
Hoxa5 is essential for development of several organs and tissues. In the respiratory system, loss of Hoxa5 function causes neonatal death due to respiratory distress. Expression of HOXA5 protein in mesenchyme of the respiratory tract and in phrenic motor neurons of the central nervous system led us to address the individual contribution of these Hoxa5 expression domains using a conditional gene targeting approach. Hoxa5 does not play a cell-autonomous role in lung epithelium, consistent with lack of HOXA5 expression in this cell layer. In contrast, ablation of Hoxa5 in mesenchyme perturbed trachea development, lung epithelial cell differentiation and lung growth. Further, deletion of Hoxa5 in motor neurons resulted in abnormal diaphragm innervation and musculature, and lung hypoplasia. It also reproduced the neonatal lethality observed in null mutants, indicating that the defective diaphragm is the main cause of impaired survival at birth. Thus, Hoxa5 possesses tissue-specific functions that differentially contribute to the morphogenesis of the respiratory tract. © 2017. Published by The Company of Biologists Ltd.
Carr, Daniel J J; Wuest, Todd; Tomanek, Lisa; Silverman, Robert H; Williams, Bryan R G
2006-01-01
Mice deficient in RNA-dependent protein kinase (PKR–/–) or deficient in PKR and a functional 2′,5′-oligoadenylate synthetase (OAS) pathway (PKR/RL–/–) are more susceptible to genital herpes simplex virus type 2 (HSV-2) infection than wild-type mice or mice that are deficient only in a functional OAS pathway (RL–/–) as measured by survival over 30 days. The increase in susceptibility correlated with an increase in virus titre recovered from vaginal tissue or brainstem of infected mice during acute infection. There was also an increase in CD45+ cells and CD8+ T cells residing in the central nervous system of HSV-2-infected PKR/RL–/– mice in comparison with RL–/– or wild-type control animals. In contrast, there was a reduction in the HSV-specific CD8+ T cells within the draining lymph node of the PKR/RL–/– mice. Collectively, activation of PKR, but not of OAS, contributes significantly to the local control and spread of HSV-2 following genital infection. PMID:16895559
Essential Role of Lymph Nodes in Contact Hypersensitivity Revealed in Lymphotoxin-α–Deficient Mice
Rennert, Paul D.; Hochman, Paula S.; Flavell, Richard A.; Chaplin, David D.; Jayaraman, Sundararajan; Browning, Jeffrey L.; Fu, Yang-Xin
2001-01-01
Lymph nodes (LNs) are important sentinal organs, populated by circulating lymphocytes and antigen-bearing cells exiting the tissue beds. Although cellular and humoral immune responses are induced in LNs by antigenic challenge, it is not known if LNs are essential for acquired immunity. We examined immune responses in mice that lack LNs due to genetic deletion of lymphotoxin ligands or in utero blockade of membrane lymphotoxin. We report that LNs are absolutely required for generating contact hypersensitivity, a T cell–dependent cellular immune response induced by epicutaneous hapten. We show that the homing of epidermal Langerhans cells in response to hapten application is specifically directed to LNs, providing a cellular basis for this unique LN function. In contrast, the spleen cannot mediate contact hypersensitivity because antigen-bearing epidermal Langerhans cells do not access splenic white pulp. Finally, we formally demonstrate that LNs provide a unique environment essential for generating this acquired immune response by reversing the LN defect in lymphotoxin-α−/− mice, thereby restoring the capacity for contact hypersensitivity. PMID:11390430
Neuropilin-2 mediates VEGF-C–induced lymphatic sprouting together with VEGFR3
Xu, Yunling; Yuan, Li; Mak, Judy; Pardanaud, Luc; Caunt, Maresa; Kasman, Ian; Larrivée, Bruno; del Toro, Raquel; Suchting, Steven; Medvinsky, Alexander; Silva, Jillian; Yang, Jian; Thomas, Jean-Léon; Koch, Alexander W.; Alitalo, Kari
2010-01-01
Vascular sprouting is a key process-driving development of the vascular system. In this study, we show that neuropilin-2 (Nrp2), a transmembrane receptor for the lymphangiogenic vascular endothelial growth factor C (VEGF-C), plays an important role in lymphatic vessel sprouting. Blocking VEGF-C binding to Nrp2 using antibodies specifically inhibits sprouting of developing lymphatic endothelial tip cells in vivo. In vitro analyses show that Nrp2 modulates lymphatic endothelial tip cell extension and prevents tip cell stalling and retraction during vascular sprout formation. Genetic deletion of Nrp2 reproduces the sprouting defects seen after antibody treatment. To investigate whether this defect depends on Nrp2 interaction with VEGF receptor 2 (VEGFR2) and/or 3, we intercrossed heterozygous mice lacking one allele of these receptors. Double-heterozygous nrp2vegfr2 mice develop normally without detectable lymphatic sprouting defects. In contrast, double-heterozygote nrp2vegfr3 mice show a reduction of lymphatic vessel sprouting and decreased lymph vessel branching in adult organs. Thus, interaction between Nrp2 and VEGFR3 mediates proper lymphatic vessel sprouting in response to VEGF-C. PMID:20065093
Zhang, Delong; Li, Chen; Zhang, Chi; Slipchenko, Mikhail N.; Eakins, Gregory; Cheng, Ji-Xin
2016-01-01
Chemical contrast has long been sought for label-free visualization of biomolecules and materials in complex living systems. Although infrared spectroscopic imaging has come a long way in this direction, it is thus far only applicable to dried tissues because of the strong infrared absorption by water. It also suffers from low spatial resolution due to long wavelengths and lacks optical sectioning capabilities. We overcome these limitations through sensing vibrational absorption–induced photothermal effect by a visible laser beam. Our mid-infrared photothermal (MIP) approach reached 10 μM detection sensitivity and submicrometer lateral spatial resolution. This performance has exceeded the diffraction limit of infrared microscopy and allowed label-free three-dimensional chemical imaging of live cells and organisms. Distributions of endogenous lipid and exogenous drug inside single cells were visualized. We further demonstrated in vivo MIP imaging of lipids and proteins in Caenorhabditis elegans. The reported MIP imaging technology promises broad applications from monitoring metabolic activities to high-resolution mapping of drug molecules in living systems, which are beyond the reach of current infrared microscopy. PMID:27704043
Zhang, Delong; Li, Chen; Zhang, Chi; Slipchenko, Mikhail N; Eakins, Gregory; Cheng, Ji-Xin
2016-09-01
Chemical contrast has long been sought for label-free visualization of biomolecules and materials in complex living systems. Although infrared spectroscopic imaging has come a long way in this direction, it is thus far only applicable to dried tissues because of the strong infrared absorption by water. It also suffers from low spatial resolution due to long wavelengths and lacks optical sectioning capabilities. We overcome these limitations through sensing vibrational absorption-induced photothermal effect by a visible laser beam. Our mid-infrared photothermal (MIP) approach reached 10 μM detection sensitivity and submicrometer lateral spatial resolution. This performance has exceeded the diffraction limit of infrared microscopy and allowed label-free three-dimensional chemical imaging of live cells and organisms. Distributions of endogenous lipid and exogenous drug inside single cells were visualized. We further demonstrated in vivo MIP imaging of lipids and proteins in Caenorhabditis elegans . The reported MIP imaging technology promises broad applications from monitoring metabolic activities to high-resolution mapping of drug molecules in living systems, which are beyond the reach of current infrared microscopy.
Taurine chloramine: a possible oxidant reservoir.
Ogino, Tetsuya; Than, Tin Aung; Hosako, Mutsumi; Ozaki, Michitaka; Omori, Masako; Okada, Shigeru
2009-01-01
Taurine is abundant in polymorphonuclear leukocytes (PMNs) where it reacts with PMN-derived hypochlorous acid to form taurine chloramine (Tau-NHCl), a substance that does not readily cross the cell membrane. When PMNs were stimulated in PBS lacking taurine, extracellular oxidant concentration was low, but the concentration increased 3-4 fold when 15 mM taurine was added, indicating that taurine lowers oxidant levels inside the cell. When Tau-NHCl was added to Jurkat cells in suspension, its half life was about 75 min. In contrast, membrane-permeable ammonia mono-chloramine (NH2Cl) has a half life of only 6 min. Accordingly, NH2Cl oxidizes cytosolic proteins, such as IkappaB, and inhibits NF-kappaB activation, whereas Tau-NHCl exhibits no comparable effect. However, when NH4+ was added to the medium, Tau-NHCl oxidizes IkappaB and inhibits NF-kappaB activation, probably through oxidant transfer to NH4+ leading to NH2Cl formation. These results indicate that Tau-NHCl can serve as an oxidant reservoir, exhibiting either delayed oxidant effects or acting as an oxidant at a distant site.
5-HT1A Receptors on Mature Dentate Gyrus Granule Cells are Critical for the Antidepressant Response
Samuels, Benjamin Adam; Anacker, Christoph; Hu, Alice; Levinstein, Marjorie R.; Pickenhagen, Anouchka; Tsetsenis, Theodore; Madroñal, Noelia; Donaldson, Zoe R.; Drew, Liam John; Dranovsky, Alex; Gross, Cornelius T.; Tanaka, Kenji F.; Hen, René
2015-01-01
Selective serotonin reuptake inhibitors (SSRIs) are widely used antidepressants, but the mechanisms by which they influence behavior are only partially resolved. Adult hippocampal neurogenesis is necessary for some of the responses to SSRIs, but it is unknown whether the mature dentate gyrus granule cells (mature DG GCs) also contribute. We deleted Serotonin 1A receptor (5HT1AR; a receptor required for the SSRI response) specifically from DG GCs and found that the effects of the SSRI fluoxetine on behavior and the Hypothalamic-Pituitary-Adrenal (HPA) axis were abolished. By contrast, mice lacking 5HT1ARs only in young adult born granule cells (abGCs) showed normal fluoxetine responses. Importantly, 5HT1AR deficient mice engineered to express functional 5HT1ARs only in DG GCs responded to fluoxetine, indicating that 5HT1ARs in DG GCs are sufficient to mediate an antidepressant response. Taken together, these data indicate that both mature DG GCs and young abGCs must be engaged for an antidepressant response. PMID:26389840
RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL.
Lawlor, Kate E; Khan, Nufail; Mildenhall, Alison; Gerlic, Motti; Croker, Ben A; D'Cruz, Akshay A; Hall, Cathrine; Kaur Spall, Sukhdeep; Anderton, Holly; Masters, Seth L; Rashidi, Maryam; Wicks, Ian P; Alexander, Warren S; Mitsuuchi, Yasuhiro; Benetatos, Christopher A; Condon, Stephen M; Wong, W Wei-Lynn; Silke, John; Vaux, David L; Vince, James E
2015-02-18
RIPK3 and its substrate MLKL are essential for necroptosis, a lytic cell death proposed to cause inflammation via the release of intracellular molecules. Whether and how RIPK3 might drive inflammation in a manner independent of MLKL and cell lysis remains unclear. Here we show that following LPS treatment, or LPS-induced necroptosis, the TLR adaptor protein TRIF and inhibitor of apoptosis proteins (IAPs: X-linked IAP, cellular IAP1 and IAP2) regulate RIPK3 and MLKL ubiquitylation. Hence, when IAPs are absent, LPS triggers RIPK3 to activate caspase-8, promoting apoptosis and NLRP3-caspase-1 activation, independent of RIPK3 kinase activity and MLKL. In contrast, in the absence of both IAPs and caspase-8, RIPK3 kinase activity and MLKL are essential for TLR-induced NLRP3 activation. Consistent with in vitro experiments, interleukin-1 (IL-1)-dependent autoantibody-mediated arthritis is exacerbated in mice lacking IAPs, and is reduced by deletion of RIPK3, but not MLKL. Therefore RIPK3 can promote NLRP3 inflammasome and IL-1β inflammatory responses independent of MLKL and necroptotic cell death.
Differential endocytosis of CD4 in lymphocytic and nonlymphocytic cells
1991-01-01
The endocytosis of the T cell differentiation antigen CD4 has been investigated in CD4-transfected HeLa cells, the promyelocytic HL-60 cell line, and in a number of leukemia- or lymphoma-derived T cell lines. CD4 internalization was followed using radioiodinated antibodies in an acid-elution endocytosis assay, or by covalently modifying cell surface proteins with biotin and analyzing CD4 distributions by immunoprecipitation; both approaches gave equivalent results. The assays demonstrated that in transfected HeLa cells and in HL-60 cells CD4 was constitutively internalized and recycled in the absence of ligand. Immunogold labeling and electron microscopy demonstrated that CD4 enters cells through coated pits. In contrast to the nonlymphocytic cells, T cell lines showed very little endocytosis of CD4. Measurements of fluid phase endocytosis and morphometric analysis of the endosome compartment indicated that the endocytic capacities of HeLa and lymphoid cells are equivalent and suggested that the low level of CD4 uptake in lymphocytic cells is due to exclusion of CD4 from coated pits. This conclusion was supported by experiments using truncated CD4 molecules, lacking the bulk of the cytoplasmic domain, which were internalized equally efficiently in both transfected lymphocytes and HeLa cells. Together, these results indicate that the cytoplasmic domain of CD4 mediates the different interactions with the endocytic apparatus in lymphoid and nonlymphoid cells. We suggest that the CD4- associated lymphocyte-specific protein tyrosine kinase p56lck may be involved in preventing CD4 endocytosis in T cells. PMID:1900077
Agladze, Konstantin; Wang, Xin; Romeo, Tony
2005-01-01
Using fast Fourier transform (FFT) analysis, we previously observed that cells within Escherichia coli biofilm are organized in nonrandom or periodic spatial patterns (K. Agladze et al., J. Bacteriol. 185:5632-5638, 2003). Here, we developed a gravity displacement assay for examining cell adherence and used it to quantitatively monitor the formation of two distinct forms of cell attachment, temporary and permanent, during early biofilm development. Temporarily attached cells were mainly surface associated by a cell pole; permanent attachments were via the lateral cell surface. While temporary attachment precedes permanent attachment, both forms can coexist in a population. Exposure of attached cells to gravity liberated an unattached population capable of rapidly reassembling a new monolayer, composed of temporarily attached cells, and possessing periodicity. A csrA mutant, which forms biofilm more vigorously than its wild-type parent, exhibited an increased proportion of permanently attached cells and a form of attachment that was not apparent in the parent strain, permanent polar attachment. Nevertheless, it formed periodic attachment patterns. In contrast, biofilm mutants with altered lipopolysaccharide synthesis (waaG) exhibited increased cell-cell interactions, bypassed the polar attachment step, and produced FFT spectra characteristic of aperiodic cell distribution. Mutants lacking the polysaccharide adhesin β-1,6-N-acetyl-d-glucosamine (ΔpgaC) also exhibited aperiodic cell distribution, but without apparent cell-cell interactions, and were defective in forming permanent attachments. Thus, spatial periodicity of biofilm microstructure is genetically determined and evident during the formation of temporary cell surface attachments. PMID:16321928
Sun, Hao; Swanson, William H; Arvidson, Brian; Dul, Mitchell W
2008-11-01
Contrast gain signatures of inferred magnocellular and parvocellular postreceptoral pathways were assessed for patients with glaucoma using a contrast discrimination paradigm developed by Pokorny and Smith. The potential causes for changes in contrast gain signature were investigated using model simulations of ganglion cell contrast responses. Foveal contrast discrimination thresholds were measured with a pedestal-Delta-pedestal paradigm developed by Pokorny and Smith [Pokorny, J., & Smith, V. C. (1997). Psychophysical signatures associated with magnocellular and parvocellular pathway contrast gain. Journal of the Optical Society of America A, 14(9), 2477-2486]. Stimuli were 27 ms luminance increments superimposed on 227 ms pulsed Delta-pedestals. Contrast thresholds and contrast gain signatures mediated by the inferred magnocellular (MC) and parvocellular (PC) pathways were assessed using linear fits to contrast discrimination thresholds at either lower or higher Delta-pedestal contrasts, respectively. Twenty-seven patients with glaucoma were tested, as well as 16 age-similar control subjects free of eye disease. Contrast sensitivity and contrast gain signature mediated by the inferred MC pathway were lower for the glaucoma group, and reduced contrast gain signature was correlated with reduced contrast sensitivity (r(2)=45%, p<.0005). These two parameters mediated by the inferred PC pathway were little affected for the glaucoma group. Model simulations suggest that the reduced contrast sensitivity and contrast gain signature were consistent with the hypothesis that reduced MC ganglion cell dendritic complexity can lead to reduced effective retinal illuminance, and hence increased semi-saturation contrast of the ganglion cell contrast response functions. The contrast sensitivity and contrast gain signature of the inferred MC pathway were reduced in patients with glaucoma. The results were consistent with a model of ganglion cell dysfunction due to reduced synaptic density.
The Nootropic Concept and Dyslexia.
ERIC Educational Resources Information Center
Wilsher, Colin R.
1986-01-01
Studies with Nootropic psychoactive drugs (such as Piracetam) suggest that Piracetam lacks significant side effects; promotes memory and learning; and improves the reading ability of dyslexics, possibly by directly affecting the left-brain hemisphere. Results are contrasted with studies showing the lack of effectiveness of intensive teaching.…
Yang, Qiang; Zhang, Roushu; Cai, Hui; Wang, Lai-Xi
2017-09-08
The mammalian α1,6-fucosyltransferase (FUT8) catalyzes the core fucosylation of N -glycans in the biosynthesis of glycoproteins. Previously, intensive in vitro studies with crude extract or purified enzyme concluded that the attachment of a GlcNAc on the α1,3 mannose arm of N -glycan is essential for FUT8-catalyzed core fucosylation. In contrast, we have recently shown that expression of erythropoietin in a GnTI knock-out, FUT8-overexpressing cell line results in the production of fully core-fucosylated glycoforms of the oligomannose substrate Man 5 GlcNAc 2 , suggesting that FUT8 can catalyze core fucosylation of N -glycans lacking an α1,3-arm GlcNAc in cells. Here, we revisited the substrate specificity of FUT8 by examining its in vitro activity toward an array of selected N -glycans, glycopeptides, and glycoproteins. Consistent with previous studies, we found that free N -glycans lacking an unmasked α1,3-arm GlcNAc moiety are not FUT8 substrates. However, Man 5 GlcNAc 2 glycan could be efficiently core-fucosylated by FUT8 in an appropriate protein/peptide context, such as with the erythropoietin protein, a V3 polypeptide derived from HIV-1 gp120, or a simple 9-fluorenylmethyl chloroformate-protected Asn moiety. Interestingly, when placed in the V3 polypeptide context, a mature bi-antennary complex-type N -glycan also could be core-fucosylated by FUT8, albeit at much lower efficiency than the Man 5 GlcNAc 2 peptide. This study represents the first report of in vitro FUT8-catalyzed core fucosylation of N -glycans lacking the α1,3-arm GlcNAc moiety. Our results suggest that an appropriate polypeptide context or other adequate structural elements in the acceptor substrate could facilitate the core fucosylation by FUT8. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Sette, Giovanni; Salvati, Valentina; Giordani, Ilenia; Pilozzi, Emanuela; Quacquarini, Denise; Duranti, Enrico; De Nicola, Francesca; Pallocca, Matteo; Fanciulli, Maurizio; Falchi, Mario; Pallini, Roberto; De Maria, Ruggero; Eramo, Adriana
2018-07-01
Availability of tumor and non-tumor patient-derived models would promote the development of more effective therapeutics for non-small cell lung cancer (NSCLC). Recently, conditionally reprogrammed cells (CRC) methodology demonstrated exceptional potential for the expansion of epithelial cells from patient tissues. However, the possibility to expand patient-derived lung cancer cells using CRC protocols is controversial. Here, we used CRC approach to expand cells from non-tumoral and tumor biopsies of patients with primary or metastatic NSCLC as well as pulmonary metastases of colorectal or breast cancers. CRC cultures were obtained from both tumor and non-malignant tissues with extraordinary high efficiency. Tumor cells were tracked in vitro through tumorigenicity assay, monitoring of tumor-specific genetic alterations and marker expression. Cultures were composed of EpCAM+ lung epithelial cells lacking tumorigenic potential. NSCLC biopsies-derived cultures rapidly lost patient-specific genetic mutations or tumor antigens. Similarly, pulmonary metastases of colon or breast cancer generated CRC cultures of lung epithelial cells. All CRC cultures examined displayed epithelial lung stem cell phenotype and function. In contrast, brain metastatic lung cancer biopsies failed to generate CRC cultures. In conclusion, patient-derived primary and metastatic lung cancer cells were negatively selected under CRC conditions, limiting the expansion to non-malignant lung epithelial stem cells from either tumor or non-tumor tissue sources. Thus, CRC approach cannot be applied for direct therapeutic testing of patient lung tumor cells, as the tumor-derived CRC cultures are composed of (non-tumoral) airway basal cells. © 2018 UICC.
Zhou, Zuping; French, Deborah L.; Ma, Ge; Eisenstein, Samuel; Chen, Ying; Divino, Celia M.; Keller, Gordon; Chen, Shu-Hsia; Pan, Ping-Ying
2015-01-01
Emerging evidence suggests that myeloid-derived suppressor cells (MDSCs) have great potential as a novel immune intervention modality in the fields of transplantation and autoimmune diseases. Thus far, efforts to develop MDSC-based therapeutic strategies have been hampered by the lack of a reliable source of MDSCs. Here we show that functional MDSCs can be efficiently generated from mouse embryonic stem (ES) cells and bone marrow hematopoietic stem (HS) cells. In vitro-derived MDSCs encompass two homogenous subpopulations: CD115+Ly-6C+ and CD115+Ly-6C− cells. The CD115+Ly-6C+ subset is equivalent to the monocytic Gr-1+CD115+F4/80+ MDSCs found in tumor-bearing mice. In contrast, the CD115+Ly-6C− cells, a previously unreported population of MDSCs, resemble the granulocyte/macrophage progenitors developmentally. In vitro, ES- and HS-MDSCs exhibit robust suppression against T-cell proliferation induced by polyclonal stimuli or alloantigens via multiple mechanisms involving nitric oxide synthase-mediated NO production and interleukin (IL)-10. Impressively, they display even stronger suppressive activity and significantly enhance ability to induce CD4+CD25+Foxp3+ regulatory T-cell development compared with tumor-derived MDSCs. Furthermore, adoptive transfer of ES-MDSCs can effectively prevent alloreactive T-cell-mediated lethal graft-versus-host disease, leading to nearly 82% long-term survival among treated mice. The successful in vitro generation of MDSCs may represent a critical step toward potential clinical application of MDSCs. PMID:20073041
Porter, Holly A.; Carey, Gregory B.; Keegan, Achsah D.
2012-01-01
The adaptors IRS1 and IRS2 link growth factor receptors to downstream signaling pathways that regulate proliferation and survival. Both suppress factor-withdrawal-induced apoptosis and have been implicated in cancer progression. However, recent studies suggest IRS1 and IRS2 mediate differential functions in cancer pathogenesis. IRS1 promoted breast cancer proliferation, while IRS2 promoted metastasis. The role of IRS1 and IRS2 in controlling cell responses to chemotherapy is unknown. To determine the role of IRS1 and IRS2 in the sensitivity of cells to chemotherapy, we treated 32D cells lacking or expressing IRS proteins with various concentrations of chemotherapeutic agents. We found that expression of IRS1, in contrast to IRS2, enhanced the sensitivity of 32D cells to chemotherapy-induced apoptosis. When IRS2 was expressed with IRS1, the cells no longer showed enhanced sensitivity. Expression of IRS1 did not alter the expression of pro- and anti-apoptotic proteins; however, 32D-IRS1 cells expressed higher levels of Annexin A2. In 32D-IRS1 cells, IRS1 and Annexin A2 were both located in cytoplasmic and membrane fractions. We also found that IRS1 coprecipitated with Annexin A2, while IRS2 did not. Decreasing Annexin A2 levels reduced 32D-IRS1 cell sensitivity to chemotherapy. These results suggest IRS1 enhances sensitivity to chemotherapy in part through Annexin A2. PMID:22652453
Smirnov, Asya; Solga, Michael D; Lannigan, Joanne; Criss, Alison K
2015-08-01
Recognition, binding, internalization, and elimination of pathogens and cell debris are important functions of professional as well as non-professional phagocytes. However, high-throughput methods for quantifying cell-associated particles and discriminating bound from internalized particles have been lacking. Here we describe a protocol for using imaging flow cytometry to quantify the attached and phagocytosed particles that are associated with a population of cells. Cells were exposed to fluorescent particles, fixed, and exposed to an antibody of a different fluorophore that recognizes the particles. The antibody is added without cell permeabilization, such that the antibody only binds extracellular particles. Cells with and without associated particles were identified by imaging flow cytometry. For each cell with associated particles, a spot count algorithm was employed to quantify the number of extracellular (double fluorescent) and intracellular (single fluorescent) particles per cell, from which the percent particle internalization was determined. The spot count algorithm was empirically validated by examining the fluorescence and phase contrast images acquired by the flow cytometer. We used this protocol to measure binding and internalization of the bacterium Neisseria gonorrhoeae by primary human neutrophils, using different bacterial variants and under different cellular conditions. The results acquired using imaging flow cytometry agreed with findings that were previously obtained using conventional immunofluorescence microscopy. This protocol provides a rapid, powerful method for measuring the association and internalization of any particle by any cell type. Copyright © 2015 Elsevier B.V. All rights reserved.
Gonadoblastoma: evidence for a stepwise progression to dysgerminoma in a dysgenetic ovary.
Pauls, Katharina; Franke, Folker E; Büttner, Reinhard; Zhou, Hui
2005-09-01
Gonadoblastomas are neoplasms of dysgenetic gonads which may undergo regression or become overgrown by malignant germ cell tumors (mGCTs). Since little is known about their relationship to normal gonadal development and mGCTs, we studied the phenotype and antigenic profile of gonadoblastomas in comparison with adjacent dysgerminomas and fetal gonads. Three cases of gonadoblastomas and fetal gonads of both sexes were analyzed using oncofetal markers to M2A-antigen (M2A), germ cell alkaline phosphatase (PLAP/GCAP), receptor tyrosine kinase c-kit (c-kit), and somatic angiotensin converting enzyme (sACE) as well as the proliferation marker MIB-1. Morphologically, microfollicular pattern of gonadoblastomas showed a fetal germ cell organization reminiscent of oocytic clusters of fetal ovaries. They contained both cell types, similar to oocytes (M2A-, GCAP-, c-kit+/-, sACE-) and oogonia (M2A+, GCAP+, c-kit+, sACE+). The percentage of germ cells immunoreactive for oncofetal markers and the proliferation index increased from microfollicular over coronary patterns to adjacent dysgerminomas. Supportive cells of gonadoblastomas showed a uniform phenotype (CK18+, vimentin+, sACE+, alpha-inhibin+, M2A-) but in contrast to fetal germ cells lacked a clear equivalence to fetal tissues. Our results show that gonadoblastomas mimic female fetal ovary and exhibit a stepwise progression from follicular pattern to coronary pattern and finally to dysgerminomas.
Magnusson, Mattias; Sierra, Maria I.; Sasidharan, Rajkumar; Prashad, Sacha L.; Romero, Melissa; Saarikoski, Pamela; Van Handel, Ben; Huang, Andy; Li, Xinmin; Mikkola, Hanna K. A.
2013-01-01
Lack of HLA-matched hematopoietic stem cells (HSC) limits the number of patients with life-threatening blood disorders that can be treated by HSC transplantation. So far, insufficient understanding of the regulatory mechanisms governing human HSC has precluded the development of effective protocols for culturing HSC for therapeutic use and molecular studies. We defined a culture system using OP9M2 mesenchymal stem cell (MSC) stroma that protects human hematopoietic stem/progenitor cells (HSPC) from differentiation and apoptosis. In addition, it facilitates a dramatic expansion of multipotent progenitors that retain the immunophenotype (CD34+CD38−CD90+) characteristic of human HSPC and proliferative potential over several weeks in culture. In contrast, transplantable HSC could be maintained, but not significantly expanded, during 2-week culture. Temporal analysis of the transcriptome of the ex vivo expanded CD34+CD38−CD90+ cells documented remarkable stability of most transcriptional regulators known to govern the undifferentiated HSC state. Nevertheless, it revealed dynamic fluctuations in transcriptional programs that associate with HSC behavior and may compromise HSC function, such as dysregulation of PBX1 regulated genetic networks. This culture system serves now as a platform for modeling human multilineage hematopoietic stem/progenitor cell hierarchy and studying the complex regulation of HSC identity and function required for successful ex vivo expansion of transplantable HSC. PMID:23342037
Su, Hang; Yin, Zhaozheng; Huh, Seungil; Kanade, Takeo
2013-10-01
Phase-contrast microscopy is one of the most common and convenient imaging modalities to observe long-term multi-cellular processes, which generates images by the interference of lights passing through transparent specimens and background medium with different retarded phases. Despite many years of study, computer-aided phase contrast microscopy analysis on cell behavior is challenged by image qualities and artifacts caused by phase contrast optics. Addressing the unsolved challenges, the authors propose (1) a phase contrast microscopy image restoration method that produces phase retardation features, which are intrinsic features of phase contrast microscopy, and (2) a semi-supervised learning based algorithm for cell segmentation, which is a fundamental task for various cell behavior analysis. Specifically, the image formation process of phase contrast microscopy images is first computationally modeled with a dictionary of diffraction patterns; as a result, each pixel of a phase contrast microscopy image is represented by a linear combination of the bases, which we call phase retardation features. Images are then partitioned into phase-homogeneous atoms by clustering neighboring pixels with similar phase retardation features. Consequently, cell segmentation is performed via a semi-supervised classification technique over the phase-homogeneous atoms. Experiments demonstrate that the proposed approach produces quality segmentation of individual cells and outperforms previous approaches. Copyright © 2013 Elsevier B.V. All rights reserved.
Bouleftour, Wafa; Bouet, Guenaelle; Granito, Renata Neves; Thomas, Mireille; Linossier, Marie-Thérèse; Vanden-Bossche, Arnaud; Aubin, Jane E; Lafage-Proust, Marie-Hélène; Vico, Laurence; Malaval, Luc
2015-03-01
Osteopontin (OPN) and bone sialoprotein (BSP) are coexpressed in osteoblasts and osteoclasts, and display overlapping properties. We used daily injection of parathyroid hormone 1-84 (iPTH) over the calvaria of BSP knockout (-/-) mice to investigate further their functional specificity and redundancy. iPTH stimulated bone formation in both +/+ and -/- mice, increasing to the same degree periosteum, osteoid and total bone thickness. Expression of OPN, osterix, osteocalcin (OCN) and DMP1 was also increased by iPTH in both genotypes. In contrast to +/+, calvaria cell cultures from -/- mice revealed few osteoblast colonies, no mineralization and little expression of OCN, MEPE or DMP1. In contrast, OPN levels were 5× higher in -/- versus +/+ cultures. iPTH increased alkaline phosphatase (ALP) activity in cell cultures of both genotypes, with higher OCN and the induction of mineralization in -/- cultures. siRNA blocking of OPN expression did not alter the anabolic action of the hormone in BSP +/+ calvaria, while it blunted iPTH effects in -/- mice, reduced to a modest increase in periosteum thickness. In -/- (not +/+) cell cultures, siOPN blocked the stimulation by iPTH of ALP activity and OCN expression, as well as the induction of mineralization. Thus, full expression of either OPN or BSP is necessary for the anabolic effect of PTH at least in the ectopic calvaria injection model. This suggests that OPN may compensate for the lack of BSP in the response to this hormonal challenge, and provides evidence of functional overlap between these cognate proteins. © 2014 Wiley Periodicals, Inc., A Wiley Company.
Böhland, Martin; Kress, Eugenia; Stope, Matthias B; Pufe, Thomas; Tauber, Simone C; Brandenburg, Lars-Ove
2016-10-15
Bacterial meningitis is - despite therapeutical progress during the last decades - still characterized by high mortality and severe permanent neurogical sequelae. The brain is protected from penetrating pathogens by both the blood-brain barrier and the innate immune system. Invading pathogens are recognized by so-called pattern recognition receptors including the Toll-like receptors (TLR) which are expressed by glial immune cells in the central nervous system. Among these, TLR2 is responsible for the detection of Gram-positive bacteria such as the meningitis-causing pathogen Streptococcus pneumoniae. Here, we used TLR2-deficient mice to investigate the effects on mortality, bacterial growth and inflammation in a mouse model of pneumococcal meningitis. Our results revealed a significantly increased mortality rate and higher bacterial burden in TLR2-deficient mice with pneumococcal meningitis. Furthermore, infected TLR2-deficient mice suffered from a significantly increased pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) and Chemokine (C-C motif) ligand 2 (CCL2) or CCL3 chemokine expression and decreased expression of anti-inflammatory cytokines and antimicrobial peptides. In contrast, glial cell activation assessed by glial cell marker expression was comparable to wildtype mice. Taken together, the results suggest that TLR2 is essential for an efficient immune response against Streptococcus pneumoniae meningitis since lack of the receptor led to a worse outcome by higher mortality due to increased bacterial burden, weakened innate immune response and reduced expression of antimicrobial peptides. Copyright © 2016 Elsevier B.V. All rights reserved.
Koutsoudis, Maria D; Tsaltas, Dimitrios; Minogue, Timothy D; von Bodman, Susanne B
2006-04-11
The phytopathogenic bacterium Pantoea stewartii subsp. stewartii synthesizes stewartan exo/capsular polysaccharide (EPS) in a cell density-dependent manner governed by the EsaI/EsaR quorum-sensing (QS) system. This study analyzes biofilm development and host colonization of the WT and QS regulatory mutant strains of P. stewartii. First, we show that the cell density-dependent synthesis of stewartan EPS, governed by the EsaI/EsaR QS system, is required for proper bacterial adhesion and development of spatially defined, 3D biofilms. Second, a nonvirulent mutant lacking the esaI gene adheres strongly to surfaces and develops densely packed, less structurally defined biofilms in vitro. This strain appears to be arrested in a low cell density developmental mode. Exposure of this strain to exogenous N-acyl-homoserine lactone counteracts this adhesion phenotype. Third, QS mutants lacking the EsaR repressor attach poorly to surfaces and form amorphous biofilms heavily enmeshed in excess EPS. Fourth, the WT strain disseminates efficiently within the xylem, primarily in a basipetal direction. In contrast, the two QS mutant strains remain largely localized at the site of infection. Fifth, and most significantly, epifluorescence microscopic imaging of infected leaf tissue and excised xylem vessels reveals that the bacteria colonize the xylem with unexpected specificity, particularly toward the annular rings and spiral secondary wall thickenings of protoxylem, as opposed to indiscriminate growth to fill the xylem lumen. These observations are significant to bacterial plant pathogenesis in general and may reveal targets for disease control.
Koutsoudis, Maria D.; Tsaltas, Dimitrios; Minogue, Timothy D.; von Bodman, Susanne B.
2006-01-01
The phytopathogenic bacterium Pantoea stewartii subsp. stewartii synthesizes stewartan exo/capsular polysaccharide (EPS) in a cell density-dependent manner governed by the EsaI/EsaR quorum-sensing (QS) system. This study analyzes biofilm development and host colonization of the WT and QS regulatory mutant strains of P. stewartii. First, we show that the cell density-dependent synthesis of stewartan EPS, governed by the EsaI/EsaR QS system, is required for proper bacterial adhesion and development of spatially defined, 3D biofilms. Second, a nonvirulent mutant lacking the esaI gene adheres strongly to surfaces and develops densely packed, less structurally defined biofilms in vitro. This strain appears to be arrested in a low cell density developmental mode. Exposure of this strain to exogenous N-acyl-homoserine lactone counteracts this adhesion phenotype. Third, QS mutants lacking the EsaR repressor attach poorly to surfaces and form amorphous biofilms heavily enmeshed in excess EPS. Fourth, the WT strain disseminates efficiently within the xylem, primarily in a basipetal direction. In contrast, the two QS mutant strains remain largely localized at the site of infection. Fifth, and most significantly, epifluorescence microscopic imaging of infected leaf tissue and excised xylem vessels reveals that the bacteria colonize the xylem with unexpected specificity, particularly toward the annular rings and spiral secondary wall thickenings of protoxylem, as opposed to indiscriminate growth to fill the xylem lumen. These observations are significant to bacterial plant pathogenesis in general and may reveal targets for disease control. PMID:16585516
Flegal, Matthew; Blimkie, Melinda; Roch-Lefevre, Sandrine; Gregoire, Eric; Klokov, Dmitry
2013-12-05
Health effects of tritium, a β-emitter and a by-product of the nuclear industry, is a subject of significant controversy. This mouse in vivo study was undertaken to monitor biological effects of low level tritium exposure. Mice were exposed to tritiated drinking water (HTO) at 10 KBq/L, 1 MBq/L and 20 MBq/L concentrations for one month. The treatment did not result in a significant increase of apoptosis in splenocytes. To examine if this low level tritium exposure alters radiosensitivity, the extracted splenocytes were challenged in vitro with 2 Gy γ-radiation, and apoptotic responses at 1 and 24 h were measured. No alterations in the radiosensitivity were detected in cells from mice exposed to tritium compared to sham-treated mice. In contrast, low dose γ-irradiation at 20 or 100 mGy, resulted in a significant increase in resistance to apoptotic cell death after 2 Gy irradiation; an indication of the radioadaptive response. Overall, our data suggest that low concentrations of tritium given to mice as HTO in drinking water do not exert cytotoxic effect in splenocytes, nor do they change cellular sensitivity to additional high dose γ-radiation. The latter may be considered as the lack of a radioadaptive response, typically observed after low dose γ-irradiation.
Mast cells promote melanoma colonization of lungs.
Öhrvik, Helena; Grujic, Mirjana; Waern, Ida; Gustafson, Ann-Marie; Ernst, Nancy; Roers, Axel; Hartmann, Karin; Pejler, Gunnar
2016-10-18
Mast cells have been implicated in malignant processes, mainly through clinical correlative studies and by experiments performed using animals lacking mast cells due to defective c-kit signaling. However, mast cell-deficient mouse models based on c-kit defects have recently been questioned for their relevance. Here we addressed the effect of mast cells in a tumor setting by using transgenic Mcpt5-Cre+ R-DTA+ mice, in which the deficiency of mast cells is independent of c-kit defects. Melanoma cells (B16.F10) were administered either subcutaneously or intravenously into Mcpt5-Cre+ R-DTA+ mice or Mcpt5-Cre- R-DTA+ littermate controls, followed by the assessment of formed tumors. In the subcutaneous model, mast cells were abundant in the tumor stroma of control mice but were absent in Mcpt5-Cre+ R-DTA+ mice. However, the absence of mast cells did not affect tumor size. In contrast, after intravenous administration of B16.F10 cells, melanoma colonization of the lungs was markedly reduced in Mcpt5-Cre+ R-DTA+ vs. Mcpt5-Cre- R-DTA+ animals. Decreased melanoma colonization of the lungs in Mcpt5-Cre+ R-DTA+ animals was accompanied by increased inflammatory cell recruitment into the bronchoalveolar lavage fluid, suggesting that mast cells suppress inflammation in this setting. Further, qPCR analysis revealed significant alterations in the expression of Twist and E-cadherin in lungs of Mcpt5-Cre+ R-DTA+ vs. control Mcpt5-Cre- R-DTA+ animals, suggesting an impact of mast cells on epithelial-mesenchymal transition. In conclusion, this study reveals that mast cells promote melanoma colonization of the lung.
Sandig, M; Hergott, G J; Kalnins, V I
1990-01-01
The junctional complexes in chick retinal pigment epithelial (RPE) cells in situ contain unusually large zonulae adhaerentes (ZAs) composed of subunits termed zonula adhaerens complexes (ZACs). To determine whether the properties of the ZAs differ between RPE cells which contain ZACs, and MDCK cells which lack ZACs, we investigated the effects of treatment with trypsin and/or low Ca2+ by transmission electron microscopy and staining for F-actin. Treatment of RPE cells for 1 h with trypsin alone has no apparent effect on the morphology of the ZA in either MDCK or RPE cells. In contrast to the ZAs in MDCK cells, which split after 3 min in low Ca2+, the ZAs in chick RPE cells stay intact even after 2 h, although the intermembrane discs, i.e., the extracellular components of the ZACs, are no longer visible. After 30 min of treatment with trypsin and low Ca2+, the ZAs split in both cell types. The CMBs start to contract, translocate toward the cell interior, and eventually disappear. This process continues even when the RPE cells are returned to normal medium. New ZAs, composed of ZACs, form between RPE cells 3 h after return to normal medium. These findings suggest that the ZACs in the ZAs of RPE cells are not directly responsible for the increase in resistance to low Ca2+. They also show that the ZA-junctions in RPE cells are not only structurally different from those previously examined, but also behave differently in response to experimental manipulation.
Roles of p53 and p27 Kip1 in the regulation of neurogenesis in the murine adult subventricular zone
Gil-Perotin, Sara; Haines, Jeffery D.; Kaur, Jasbir; Marin-Husstege, Mireya; Spinetta, Michael J.; Kim, Kwi-Hye; Duran-Moreno, Maria; Schallert, Timothy; Zindy, Frederique; Roussel, Martine F.; Garcia-Verdugo, Jose M.; Casaccia, Patrizia
2011-01-01
The tumor suppressor protein p53 (Trp53) and the cell cycle inhibitor p27 Kip1 (Cdknb1) have both been implicated in regulating proliferation of adult subventricular zone (aSVZ) cells. We previously reported that genetic ablation of Trp53 (Trp53 −/−) or Cdknb1 (p27 Kip1−/−) increased proliferation of cells in the aSVZ, but differentially affected the number of adult born neuroblasts. We therefore hypothesized that these molecules might play non-redundant roles. To test this hypothesis we generated mice lacking both genes (Trp53 −/−;p27 Kip1−/−) and analysed the consequences on aSVZ cells and adult neuroblasts. Proliferation and self-renewal of cultured aSVZ cells were increased in the double mutants compared with control, but the mice did not develop spontaneous brain tumors. In contrast, the number of adult-born neuroblasts in the double mutants was similar to wild-type animals and suggested a complementation of the p27 Kip1−/− phenotype due to loss of Trp53. Cellular differences detected in the aSVZ correlated with cellular changes in the olfactory bulb and behavioral data on novel odor recognition. The exploration time for new odors was reduced in p27 Kip1−/− mice, increased in Trp53 −/− mice and normalized in the double Trp53−/−;p27 Kip1−/− mutants. At the molecular level, Trp53 −/− aSVZ cells were characterized by higher levels of NeuroD and Math3 and by the ability to generate neurons more readily. In contrast, p27 Kip1−/− cells generated fewer neurons, due to enhanced proteasomal degradation of pro-neural transcription factors. Together, these results suggest that p27 Kip1 and p53 function non-redundantly to modulate proliferation and self-renewal of aSVZ cells and antagonistically in regulating adult neurogenesis. PMID:21899604
Docking is not a prerequisite but a temporal constraint for fusion of secretory granules.
Kasai, Kazuo; Fujita, Takuji; Gomi, Hiroshi; Izumi, Tetsuro
2008-07-01
We examined secretory granule dynamics using total internal reflection fluorescence microscopy in normal pancreatic beta cells and their mutants devoid of Rab27a and/or its effector, granuphilin, which play critical roles in the docking and recruitment of insulin granules to the plasma membrane. In the early phase of glucose stimulation in wild-type cells, we observed marked fusion of granules recruited from a relatively distant area, in parallel with that from granules located underneath the plasma membrane. Furthermore, despite a lack of granules directly attached to the plasma membrane, both spontaneous and evoked fusion was increased in granuphilin-null cells. In addition to these granuphilin-null phenotypes, Rab27a/granuphilin doubly deficient cells showed the decreases in granules located next to the docked area and in fusion from granules near the plasma membrane in the early phase of glucose-stimulated secretion, similar to Rab27a-mutated cells. Thus, the two proteins play nonoverlapping roles in insulin exocytosis: granuphilin acts on the granules underneath the plasma membrane, whereas Rab27a acts on those in a more distal area. These findings demonstrate that, in contrast to our conventional understanding, stable attachment of secretory granules to the plasma membrane is not prerequisite but temporally inhibitory for both spontaneous and evoked fusion.
van Manen, Henk-Jan; van Apeldoorn, Aart A; Verrijk, Ruud; van Blitterswijk, Clemens A; Otto, Cees
2007-01-01
Micro- and nanospheres composed of biodegradable polymers show promise as versatile devices for the controlled delivery of biopharmaceuticals. Whereas important properties such as drug release profiles, biocompatibility, and (bio)degradability have been determined for many types of biodegradable particles, information about particle degradation inside phagocytic cells is usually lacking. Here, we report the use of confocal Raman microscopy to obtain chemical information about cross-linked dextran hydrogel microspheres and amphiphilic poly(ethylene glycol)-terephthalate/poly(butylene terephthalate) (PEGT/PBT) microspheres inside RAW 264.7 macrophage phagosomes. Using quantitative Raman microspectroscopy, we show that the dextran concentration inside phagocytosed dextran microspheres decreases with cell incubation time. In contrast to dextran microspheres, we did not observe PEGT/PBT microsphere degradation after 1 week of internalization by macrophages, confirming previous studies showing that dextran microsphere degradation proceeds faster than PEGT/PBT degradation. Raman microscopy further showed the conversion of macrophages to lipid-laden foam cells upon prolonged incubation with both types of microspheres, suggesting that a cellular inflammatory response is induced by these biomaterials in cell culture. Our results exemplify the power of Raman microscopy to characterize microsphere degradation in cells and offer exciting prospects for this technique as a noninvasive, label-free optical tool in biomaterials histology and tissue engineering. PMID:17722552
Elucidation of the roles of tumor integrin β1 in the extravasation stage of the metastasis cascade
Chen, Michelle B.; Lamar, John M.; Li, Ran
2016-01-01
Tumor integrin β1 (ITGB1) contributes to primary tumor growth and metastasis, but its specific roles have yet been clearly elucidated. In this study, we engineered an three-dimensional microfluidic model of the human microvasculature to recapitulate the environment wherein extravasation takes place and assess the consequences of β1 depletion in cancer cells. Combined with confocal imaging, these tools allowed us to decipher the detailed morphology of transmigrating tumor cells and associated endothelial cells in vitro at high spatio-temporal resolution not easily achieved in conventional transmigration assays. Dynamic imaging revealed that β1-depleted cells lacked the ability to sustain protrusions into the subendothelial matrix in contrast to control cells. Specifically, adhesion via α3β1 and α6β1 to subendothelial laminin was a critical prerequisite for successful transmigration. β1 was required to invade past the endothelial basement membrane, whereas its attenuation in a syngeneic tumor model resulted in reduced metastatic colonization of the lung, an effect not observed upon depletion of other integrin alpha and beta subunits. Collectively, our findings in this novel model of the vascularized tumor microenvironment revealed a critical requirement for β1 in several steps of extravasation, providing new insights into the mechanisms underlying metastasis. PMID:26988988
Kim, Hyun Ju; Jeong, Haeyoung; Hwang, Seungwoo; Lee, Moo-Seung; Lee, Yong-Jik; Lee, Dong-Woo; Lee, Sang Jun
2014-01-01
Microbial adaptations often occur via genomic mutations under adverse environmental conditions. This study used Escherichia coli ΔadhE cells as a model system to investigate adaptation to anaerobic conditions, which we then compared with the adaptive mechanisms of two closely related E. coli strains, K-12 and B. In contrast to K-12 ΔadhE cells, the E. coli B ΔadhE cells exhibited significantly delayed adaptive growth under anaerobic conditions. Adaptation by the K-12 and B strains mainly employed anaerobic lactate fermentation to restore cellular growth. Several mutations were identified in the pta or pflB genes of adapted K-12 cells, but mostly in the pta gene of the B strains. However, the types of mutation in the adapted K-12 and B strains were similar. Cellular viability was affected directly by severe redox imbalance in B ΔadhE cells, which also impaired their ability to adapt to anaerobic conditions. This study demonstrates that closely related microorganisms may undergo different adaptations under the same set of adverse conditions, which might be associated with the specific metabolic characteristics of each strain. This study provides new insights into short-term microbial adaptation to stressful conditions, which may reflect dynamic microbial population changes in nature.
Export requirements of pneumolysin in Streptococcus pneumoniae.
Price, Katherine E; Greene, Neil G; Camilli, Andrew
2012-07-01
Streptococcus pneumoniae is a major causative agent of otitis media, pneumonia, bacteremia, and meningitis. Pneumolysin (Ply), a member of the cholesterol-dependent cytolysins (CDCs), is produced by virtually all clinical isolates of S. pneumoniae, and ply mutant strains are severely attenuated in mouse models of colonization and infection. In contrast to all other known members of the CDC family, Ply lacks a signal peptide for export outside the cell. Instead, Ply has been hypothesized to be released upon autolysis or, alternatively, via a nonautolytic mechanism that remains undefined. We show that an exogenously added signal sequence is not sufficient for Sec-dependent Ply secretion in S. pneumoniae but is sufficient in the surrogate host Bacillus subtilis. Previously, we showed that Ply is localized primarily to the cell wall compartment in the absence of detectable cell lysis. Here we show that Ply released by autolysis cannot reassociate with intact cells, suggesting that there is a Ply export mechanism that is coupled to cell wall localization of the protein. This putative export mechanism is capable of secreting a related CDC without its signal sequence. We show that B. subtilis can export Ply, suggesting that the export pathway is conserved. Finally, through truncation and domain swapping analyses, we show that export is dependent on domain 2 of Ply.
Export Requirements of Pneumolysin in Streptococcus pneumoniae
Price, Katherine E.; Greene, Neil G.
2012-01-01
Streptococcus pneumoniae is a major causative agent of otitis media, pneumonia, bacteremia, and meningitis. Pneumolysin (Ply), a member of the cholesterol-dependent cytolysins (CDCs), is produced by virtually all clinical isolates of S. pneumoniae, and ply mutant strains are severely attenuated in mouse models of colonization and infection. In contrast to all other known members of the CDC family, Ply lacks a signal peptide for export outside the cell. Instead, Ply has been hypothesized to be released upon autolysis or, alternatively, via a nonautolytic mechanism that remains undefined. We show that an exogenously added signal sequence is not sufficient for Sec-dependent Ply secretion in S. pneumoniae but is sufficient in the surrogate host Bacillus subtilis. Previously, we showed that Ply is localized primarily to the cell wall compartment in the absence of detectable cell lysis. Here we show that Ply released by autolysis cannot reassociate with intact cells, suggesting that there is a Ply export mechanism that is coupled to cell wall localization of the protein. This putative export mechanism is capable of secreting a related CDC without its signal sequence. We show that B. subtilis can export Ply, suggesting that the export pathway is conserved. Finally, through truncation and domain swapping analyses, we show that export is dependent on domain 2 of Ply. PMID:22563048
McCole, Ruth B.; Fonseka, Chamith Y.; Koren, Amnon; Wu, C.-ting
2014-01-01
Ultraconserved elements (UCEs) are strongly depleted from segmental duplications and copy number variations (CNVs) in the human genome, suggesting that deletion or duplication of a UCE can be deleterious to the mammalian cell. Here we address the process by which CNVs become depleted of UCEs. We begin by showing that depletion for UCEs characterizes the most recent large-scale human CNV datasets and then find that even newly formed de novo CNVs, which have passed through meiosis at most once, are significantly depleted for UCEs. In striking contrast, CNVs arising specifically in cancer cells are, as a rule, not depleted for UCEs and can even become significantly enriched. This observation raises the possibility that CNVs that arise somatically and are relatively newly formed are less likely to have established a CNV profile that is depleted for UCEs. Alternatively, lack of depletion for UCEs from cancer CNVs may reflect the diseased state. In support of this latter explanation, somatic CNVs that are not associated with disease are depleted for UCEs. Finally, we show that it is possible to observe the CNVs of induced pluripotent stem (iPS) cells become depleted of UCEs over time, suggesting that depletion may be established through selection against UCE-disrupting CNVs without the requirement for meiotic divisions. PMID:25340765
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corey, Elizabeth A.; Iorio, Ronald M.; Program in Immunology and Virology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
2009-01-05
Fusion promotion by measles virus (MV) depends on an interaction between the hemagglutinin (H) and fusion (F) glycoproteins. Amino acid substitutions in MV H that drastically reduce hemagglutinating activity result in an increase in the amount of H (primarily the 74 kDa isoform) detectable in a complex with F at the cell surface. This is in direct contrast to the loss of the ability to detect a complex between the fusion protein of Newcastle disease virus and most attachment proteins that lack receptor binding activity. These opposing results provide support for the existence of different mechanisms for the regulation ofmore » fusion by these two paramyxoviruses.« less
Insights into the role of the unusual disulfide bond in copper-zinc superoxide dismutase.
Sea, Kevin; Sohn, Se Hui; Durazo, Armando; Sheng, Yuewei; Shaw, Bryan F; Cao, Xiaohang; Taylor, Alexander B; Whitson, Lisa J; Holloway, Stephen P; Hart, P John; Cabelli, Diane E; Gralla, Edith Butler; Valentine, Joan Selverstone
2015-01-23
The functional and structural significance of the intrasubunit disulfide bond in copper-zinc superoxide dismutase (SOD1) was studied by characterizing mutant forms of human SOD1 (hSOD) and yeast SOD1 lacking the disulfide bond. We determined x-ray crystal structures of metal-bound and metal-deficient hC57S SOD1. C57S hSOD1 isolated from yeast contained four zinc ions per protein dimer and was structurally very similar to wild type. The addition of copper to this four-zinc protein gave properly reconstituted 2Cu,2Zn C57S hSOD, and its spectroscopic properties indicated that the coordination geometry of the copper was remarkably similar to that of holo wild type hSOD1. In contrast, the addition of copper and zinc ions to apo C57S human SOD1 failed to give proper reconstitution. Using pulse radiolysis, we determined SOD activities of yeast and human SOD1s lacking disulfide bonds and found that they were enzymatically active at ∼10% of the wild type rate. These results are contrary to earlier reports that the intrasubunit disulfide bonds in SOD1 are essential for SOD activity. Kinetic studies revealed further that the yeast mutant SOD1 had less ionic attraction for superoxide, possibly explaining the lower rates. Saccharomyces cerevisiae cells lacking the sod1 gene do not grow aerobically in the absence of lysine, but expression of C57S SOD1 increased growth to 30-50% of the growth of cells expressing wild type SOD1, supporting that C57S SOD1 retained a significant amount of activity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Insights into the Role of the Unusual Disulfide Bond in Copper-Zinc Superoxide Dismutase*
Sea, Kevin; Sohn, Se Hui; Durazo, Armando; Sheng, Yuewei; Shaw, Bryan F.; Cao, Xiaohang; Taylor, Alexander B.; Whitson, Lisa J.; Holloway, Stephen P.; Hart, P. John; Cabelli, Diane E.; Gralla, Edith Butler; Valentine, Joan Selverstone
2015-01-01
The functional and structural significance of the intrasubunit disulfide bond in copper-zinc superoxide dismutase (SOD1) was studied by characterizing mutant forms of human SOD1 (hSOD) and yeast SOD1 lacking the disulfide bond. We determined x-ray crystal structures of metal-bound and metal-deficient hC57S SOD1. C57S hSOD1 isolated from yeast contained four zinc ions per protein dimer and was structurally very similar to wild type. The addition of copper to this four-zinc protein gave properly reconstituted 2Cu,2Zn C57S hSOD, and its spectroscopic properties indicated that the coordination geometry of the copper was remarkably similar to that of holo wild type hSOD1. In contrast, the addition of copper and zinc ions to apo C57S human SOD1 failed to give proper reconstitution. Using pulse radiolysis, we determined SOD activities of yeast and human SOD1s lacking disulfide bonds and found that they were enzymatically active at ∼10% of the wild type rate. These results are contrary to earlier reports that the intrasubunit disulfide bonds in SOD1 are essential for SOD activity. Kinetic studies revealed further that the yeast mutant SOD1 had less ionic attraction for superoxide, possibly explaining the lower rates. Saccharomyces cerevisiae cells lacking the sod1 gene do not grow aerobically in the absence of lysine, but expression of C57S SOD1 increased growth to 30–50% of the growth of cells expressing wild type SOD1, supporting that C57S SOD1 retained a significant amount of activity. PMID:25433341
Nanoscale coordination polymers exhibiting luminescence properties and NMR relaxivity
NASA Astrophysics Data System (ADS)
Chelebaeva, Elena; Larionova, Joulia; Guari, Yannick; Ferreira, Rute A. S.; Carlos, Luis D.; Trifonov, Alexander A.; Kalaivani, Thangavel; Lascialfari, Alessandro; Guérin, Christian; Molvinger, Karine; Datas, Lucien; Maynadier, Marie; Gary-Bobo, Magali; Garcia, Marcel
2011-03-01
This article presents the first example of ultra-small (3-4 nm) magneto-luminescent cyano-bridged coordination polymer nanoparticles Ln0.333+Gdx3+/[Mo(CN)8]3- (Ln = Eu (x = 0.34), Tb (x = 0.35)) enwrapped by a natural biocompatible polymer chitosan. The aqueous colloidal solutions of these nanoparticles present a luminescence characteristic of the corresponding lanthanides (5D0 --> 7F0-4 (Eu3+) or the 5D4 --> 7F6-2 (Tb3+)) under UV excitation and a green luminescence of the chitosan shell under excitation in the visible region. Magnetic Resonance Imaging (MRI) efficiency, i.e. the nuclear relaxivity, measurements performed for Ln0.333+Gdx3+/[Mo(CN)8]3- nanoparticles show r1p and r2p relaxivities slightly higher than or comparable to the ones of the commercial paramagnetic compounds Gd-DTPA® or Omniscan® indicating that our samples may potentially be considered as a positive contrast agent for MRI. The in vitro studies performed on these nanoparticles show that they maybe internalized into human cancer and normal cells and well detected by fluorescence at the single cell level. They present high stability even at low pH and lack of cytotoxicity both in human cancer and normal cells.This article presents the first example of ultra-small (3-4 nm) magneto-luminescent cyano-bridged coordination polymer nanoparticles Ln0.333+Gdx3+/[Mo(CN)8]3- (Ln = Eu (x = 0.34), Tb (x = 0.35)) enwrapped by a natural biocompatible polymer chitosan. The aqueous colloidal solutions of these nanoparticles present a luminescence characteristic of the corresponding lanthanides (5D0 --> 7F0-4 (Eu3+) or the 5D4 --> 7F6-2 (Tb3+)) under UV excitation and a green luminescence of the chitosan shell under excitation in the visible region. Magnetic Resonance Imaging (MRI) efficiency, i.e. the nuclear relaxivity, measurements performed for Ln0.333+Gdx3+/[Mo(CN)8]3- nanoparticles show r1p and r2p relaxivities slightly higher than or comparable to the ones of the commercial paramagnetic compounds Gd-DTPA® or Omniscan® indicating that our samples may potentially be considered as a positive contrast agent for MRI. The in vitro studies performed on these nanoparticles show that they maybe internalized into human cancer and normal cells and well detected by fluorescence at the single cell level. They present high stability even at low pH and lack of cytotoxicity both in human cancer and normal cells. Electronic supplementary information (ESI) available: TEM images and size distribution histograms, IR and emission spectra, diffraction pattern and HRTEM coupled EDX analysis. See DOI: 10.1039/c0nr00709a
NASA Astrophysics Data System (ADS)
Pu, Fan; Salarian, Mani; Xue, Shenghui; Qiao, Jingjuan; Feng, Jie; Tan, Shanshan; Patel, Anvi; Li, Xin; Mamouni, Kenza; Hekmatyar, Khan; Zou, Juan; Wu, Daqing; Yang, Jenny J.
2016-06-01
Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high resolution has yet to be achieved due to the lack of contrast agents with significantly improved relaxivity for sensitivity, targeting capabilities and metal selectivity. We have previously reported our creation of a novel class of protein Gd3+ contrast agents, ProCA32, which displayed significantly improved relaxivity while exhibiting strong Gd3+ binding selectivity over physiological metal ions. In this study, we report our effort in further developing biomarker-targeted protein MRI contrast agents for molecular imaging of PSMA. Among three PSMA targeted contrast agents engineered with addition of different molecular recognition sequences, ProCA32.PSMA exhibits a binding affinity of 1.1 +/- 0.1 μM for PSMA while the metal binding affinity is maintained at 0.9 +/- 0.1 × 10-22 M. In addition, ProCA32.PSMA exhibits r1 of 27.6 mM-1 s-1 and r2 of 37.9 mM-1 s-1 per Gd (55.2 and 75.8 mM-1 s-1 per molecule r1 and r2, respectively) at 1.4 T. At 7 T, ProCA32.PSMA also has r2 of 94.0 mM-1 s-1 per Gd (188.0 mM-1 s-1 per molecule) and r1 of 18.6 mM-1 s-1 per Gd (37.2 mM-1 s-1 per molecule). This contrast capability enables the first MRI enhancement dependent on PSMA expression levels in tumor bearing mice using both T1 and T2-weighted MRI at 7 T. Further development of these PSMA-targeted contrast agents are expected to be used for the precision imaging of prostate cancer at an early stage and to monitor disease progression and staging, as well as determine the effect of therapeutic treatment by non-invasive evaluation of the PSMA level using MRI.Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high resolution has yet to be achieved due to the lack of contrast agents with significantly improved relaxivity for sensitivity, targeting capabilities and metal selectivity. We have previously reported our creation of a novel class of protein Gd3+ contrast agents, ProCA32, which displayed significantly improved relaxivity while exhibiting strong Gd3+ binding selectivity over physiological metal ions. In this study, we report our effort in further developing biomarker-targeted protein MRI contrast agents for molecular imaging of PSMA. Among three PSMA targeted contrast agents engineered with addition of different molecular recognition sequences, ProCA32.PSMA exhibits a binding affinity of 1.1 +/- 0.1 μM for PSMA while the metal binding affinity is maintained at 0.9 +/- 0.1 × 10-22 M. In addition, ProCA32.PSMA exhibits r1 of 27.6 mM-1 s-1 and r2 of 37.9 mM-1 s-1 per Gd (55.2 and 75.8 mM-1 s-1 per molecule r1 and r2, respectively) at 1.4 T. At 7 T, ProCA32.PSMA also has r2 of 94.0 mM-1 s-1 per Gd (188.0 mM-1 s-1 per molecule) and r1 of 18.6 mM-1 s-1 per Gd (37.2 mM-1 s-1 per molecule). This contrast capability enables the first MRI enhancement dependent on PSMA expression levels in tumor bearing mice using both T1 and T2-weighted MRI at 7 T. Further development of these PSMA-targeted contrast agents are expected to be used for the precision imaging of prostate cancer at an early stage and to monitor disease progression and staging, as well as determine the effect of therapeutic treatment by non-invasive evaluation of the PSMA level using MRI. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09071g
Structure of Penaeus stylirostris Densovirus, a Shrimp Pathogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaufmann, Bärbel; Bowman, Valorie D.; Li, Yi
Penaeus stylirostris densovirus (PstDNV), a pathogen of penaeid shrimp, causes significant damage to farmed and wild shrimp populations. In contrast to other parvoviruses, PstDNV probably has only one type of capsid protein that lacks the phospholipase A2 activity that has been implicated as a requirement during parvoviral host cell infection. The structure of recombinant virus-like particles, composed of 60 copies of the 37.5-kDa coat protein, the smallest parvoviral capsid protein reported thus far, was determined to 2.5-{angstrom} resolution by X-ray crystallography. The structure represents the first near-atomic resolution structure within the genus Brevidensovirus. The capsid protein has a {beta}-barrel 'jellymore » roll' motif similar to that found in many icosahedral viruses, including other parvoviruses. The N-terminal portion of the PstDNV coat protein adopts a 'domain-swapped' conformation relative to its twofold-related neighbor similar to the insect parvovirus Galleria mellonella densovirus (GmDNV) but in stark contrast to vertebrate parvoviruses. However, most of the surface loops have little structural resemblance to any of the known parvoviral capsid proteins.« less
Sahly, Iman; Dufour, Eric; Schietroma, Cataldo; Michel, Vincent; Bahloul, Amel; Perfettini, Isabelle; Pepermans, Elise; Estivalet, Amrit; Carette, Diane; Aghaie, Asadollah; Ebermann, Inga; Lelli, Andrea; Iribarne, Maria; Hardelin, Jean-Pierre; Weil, Dominique; Sahel, José-Alain; El-Amraoui, Aziz; Petit, Christine
2012-10-15
The mechanisms underlying retinal dystrophy in Usher syndrome type I (USH1) remain unknown because mutant mice lacking any of the USH1 proteins-myosin VIIa, harmonin, cadherin-23, protocadherin-15, sans-do not display retinal degeneration. We found here that, in macaque photoreceptor cells, all USH1 proteins colocalized at membrane interfaces (i) between the inner and outer segments in rods and (ii) between the microvillus-like calyceal processes and the outer segment basolateral region in rods and cones. This pattern, conserved in humans and frogs, was mediated by the formation of an USH1 protein network, which was associated with the calyceal processes from the early embryonic stages of outer segment growth onwards. By contrast, mouse photoreceptors lacked calyceal processes and had no USH1 proteins at the inner-outer segment interface. We suggest that USH1 proteins form an adhesion belt around the basolateral region of the photoreceptor outer segment in humans, and that defects in this structure cause the retinal degeneration in USH1 patients.
Localization of Usher 1 proteins to the photoreceptor calyceal processes, which are absent from mice
Sahly, Iman; Dufour, Eric; Schietroma, Cataldo; Michel, Vincent; Bahloul, Amel; Perfettini, Isabelle; Pepermans, Elise; Estivalet, Amrit; Carette, Diane; Aghaie, Asadollah; Ebermann, Inga; Lelli, Andrea; Iribarne, Maria; Hardelin, Jean-Pierre; Weil, Dominique; Sahel, José-Alain
2012-01-01
The mechanisms underlying retinal dystrophy in Usher syndrome type I (USH1) remain unknown because mutant mice lacking any of the USH1 proteins—myosin VIIa, harmonin, cadherin-23, protocadherin-15, sans—do not display retinal degeneration. We found here that, in macaque photoreceptor cells, all USH1 proteins colocalized at membrane interfaces (i) between the inner and outer segments in rods and (ii) between the microvillus-like calyceal processes and the outer segment basolateral region in rods and cones. This pattern, conserved in humans and frogs, was mediated by the formation of an USH1 protein network, which was associated with the calyceal processes from the early embryonic stages of outer segment growth onwards. By contrast, mouse photoreceptors lacked calyceal processes and had no USH1 proteins at the inner–outer segment interface. We suggest that USH1 proteins form an adhesion belt around the basolateral region of the photoreceptor outer segment in humans, and that defects in this structure cause the retinal degeneration in USH1 patients. PMID:23045546
Xiao, M; Luo, Z; Mantel, C; Broxmeyer, H E; Lu, L
2000-02-01
Human growth factor-dependent cell line TF1, which lacks interleukin (IL)-9 receptors (R) and does not grow in IL-9, was transduced with a retroviral vector containing human IL-9R cDNA and a selection marker. An IL-9-dependent TF1 cell line, which could also grow in other cytokines, was established after selection in G418 and could produce mature RBC in response to cytokine stimulation. TF1 cells transduced with the same viral vector without the IL-9R insert cDNA (mock control) and then selected responded the same as nontransduced TF1 cells. They failed to grow in response to IL-9 and did not generate RBC. An increased number and size of burst-forming units-erythroid (BFU-E)-like colonies were detected from IL-9R-transduced TF1 cells, compared with mock-transduced cells, in response to erythropoietin (EPO) and IL-9. To evaluate self-renewal and differentiation capacity, colony-replating assays were performed in the presence of IL-3, GM-CSF, IL-9, and EPO. After four replatings, the cloning efficiency of IL-9R-transduced TF1 cells decreased from 98% to 38%, most likely due to terminal erythroid cell differentiation. In contrast, no change in replating efficiency was detected in mock-transduced cells. TF1 cells stably expressing IL-9R and responding to IL-9 can serve as a cell line model to study the intracellular signals mediating IL-9-induced erythroid cell proliferation and differentiation.
Role of T cells in sex differences in syngeneic bone marrow transfers.
Raveche, E S; Santoro, T; Brecher, G; Tjio, J H
1985-11-01
Transferred marrow cells will proliferate in normal mice not exposed to irradiation or any other type of stem cell depletion when five consecutive transfers of 40 million cells are given. Approximately 25% of the mitotic cells are of male donor origin observed cytogenetically in all of the female recipient spleens and marrow analyzed from two weeks to one and one-half years after transfusions. Male donor stem cells are accepted and form a stable component of the self-renewing stem cell pool. In contrast, only 5% female cells are found in male recipients. This sex difference in engraftment is not hormonal since castration of recipients does not alter the percentage of donor cells. Rigorous T depletion of female donor bone marrow, however, increases the percentage of donor engraftment to the level observed when male marrow, either whole or T depleted, is transferred to female recipients. The success of T-depleted female stem cells to seed male recipients is observed in both C57BL/6, a responder strain in which females readily respond to the H-Y antigen as manifest by skin graft rejection, and CBA/J, a strain in which females do not readily respond to H-Y. In addition, recipient nude BALB/c males, which lack a thymus, fail to accept whole bone marrow from BALB/c females. However, male bone marrow cells seed BALB/c nude females. These studies demonstrate that the poor engraftment of female cells in transfused male recipients is abrogated by the removal of T cells from the donor female marrow.
NASA Astrophysics Data System (ADS)
Fragola, Alexandra; Bouccara, Sophie; Pezet, Sophie; Lequeux, Nicolas; Loriette, Vincent; Pons, Thomas
2017-02-01
The in vivo detection of rare circulating cells using non invasive fluorescence imaging would provide a key tool to study migration of eg. tumoral or immunological cells. Fluorescence detection is however currently limited by a lack of contrast between the small emission of isolated, fast circulating cells and the strong autofluorescence background of the surrounding tissues. We present the development of near infrared emitting quantum dots (NIR-QDs) with long fluorescence lifetime for sensitive time-gated in vivo imaging of circulating cells. These QDs are composed of low toxicity ZnCuInSe/ZnS materials and made biocompatible using a novel multidentate imidazole zwitterionic block copolymer, ensuring their long term intracellular stability. Cells of interest can thus be labeled ex vivo with QDs, injected intravenously and imaged in the near infrared range. Excitation using a pulsed laser coupled to time-gated detection enables the efficient rejection of short lifetime (≈ ns) autofluorescence background and detection of long lifetime (≈ 150 ns) fluorescence from QD-labeled cells. We demonstrate efficient in vivo imaging of single fast-flowing cells, which opens opportunities for future biological studies. [1] M. Tasso et al, "Sulfobetaine-Vinylimidazole block copolymers: a robust quantum dot surface chemistry expanding bioimaging's horizons", ACS Nano, 9(11), 2015 [2] S. Bouccara et al, "Time-gated cell imaging using long lifetime near-infrared-emitting quantum dots for autofluorescence rejection", J Biomed Optc, 19(5), 2014
Papetti, Michael; Kozlowski, Piotr
2018-04-01
Many aspects of cell physiology, including migration, membrane function, and cell division, are best understood by observing live cell dynamics over time using video microscopy. To probe these phenomena in colon epithelial cells using simple components with a limited budget, we have constructed an inexpensive (<$410) self-contained apparatus, consisting of a closed-loop, feedback-controlled system regulated by a PID (proportional-integrative-derivative) controller contained within a 0.077 m 3 insulated acrylic box. Temperature, humidity, pH, and proliferative capacity of colon epithelial cells in this system mimic those in a standard tissue culture incubator for over four days. Our system offers significant advantages over existing cost-prohibitive commercially available and custom-made devices because of its very low cost, use of PID temperature control, lack of reliance on constant infusion of external humidified, heated air or carbon dioxide, ability to directly measure cell culture medium temperature, and combination of exquisite cellular detail with minimal focus drift under physiological conditions for extended periods of time. Using this apparatus, coupled with an inverted microscope equipped with phase contrast optics and a programmable digital camera, we have observed many events in colon epithelial cells not visible by static imaging, including kinetics of normal and abnormal mitoses, dynamic membrane structures, intracellular vesicle movements, and cell migration. © 2018 International Society for Advancement of Cytometry. © 2018 International Society for Advancement of Cytometry.
Designing a Pedagogical Model for Web Engineering Education: An Evolutionary Perspective
ERIC Educational Resources Information Center
Hadjerrouit, Said
2005-01-01
In contrast to software engineering, which relies on relatively well established development approaches, there is a lack of a proven methodology that guides Web engineers in building reliable and effective Web-based systems. Currently, Web engineering lacks process models, architectures, suitable techniques and methods, quality assurance, and a…
HyperMinds for HyperTimes: The Demise of Rational, Logical Thought?
ERIC Educational Resources Information Center
Campbell, Robert J.
1998-01-01
Contrasts rational thought with "hyperthinking" where individuals have no concept of how to gather, evaluate, and use information to create coherent arguments. Examines hypermind characteristics: lack of self-knowledge, prey to sensory stimulation, poor communication and thinking skills, lack of metacognitive abilities, and inability to…
Quantitative tracking of tumor cells in phase-contrast microscopy exploiting halo artifact pattern
NASA Astrophysics Data System (ADS)
Kang, Mi-Sun; Song, Soo-Min; Lee, Hana; Kim, Myoung-Hee
2012-03-01
Tumor cell morphology is closely related to its invasiveness characteristics and migratory behaviors. An invasive tumor cell has a highly irregular shape, whereas a spherical cell is non-metastatic. Thus, quantitative analysis of cell features is crucial to determine tumor malignancy or to test the efficacy of anticancer treatment. We use phase-contrast microscopy to analyze single cell morphology and to monitor its change because it enables observation of long-term activity of living cells without photobleaching and phototoxicity, which is common in other fluorescence-labeled microscopy. Despite this advantage, there are image-level drawbacks to phase-contrast microscopy, such as local light effect and contrast interference ring, among others. Thus, we first applied a local filter to compensate for non-uniform illumination. Then, we used intensity distribution information to detect the cell boundary. In phase-contrast microscopy images, the cell normally appears as a dark region surrounded by a bright halo. As the halo artifact around the cell body is minimal and has an asymmetric diffusion pattern, we calculated the cross-sectional plane that intersected the center of each cell and was orthogonal to the first principal axis. Then, we extracted the dark cell region by level set. However, a dense population of cultured cells still rendered single-cell analysis difficult. Finally, we measured roundness and size to classify tumor cells into malignant and benign groups. We validated segmentation accuracy by comparing our findings with manually obtained results.
Kitamura, Y.; Taguchi, T.; Yokoyama, M.; Inoue, M.; Yamatodani, A.; Asano, H.; Koyama, T.; Kanamaru, A.; Hatanaka, K.; Wershil, B. K.; Galli, S. J.
1986-01-01
(WB × C57BL/6)F1-W/Wv mice possess a genetic defect in multipotential hematopoietic stem cells; the mice are anemic and lack mast cells. The authors injected diluted India ink intravenously into W/WV mice and congenic normal +/+ mice and searched for genetically determined differences in the development of complications of the injection. In both W/WV and +/+ mice, intravenous ink resulted in thrombocytopenia and markedly prolonged bleeding times, as well as prolonged partial thromboplastin and prothrombin times and reduced fibrinogen concentrations. These effects were similar in W/WV and +/+ mice, although the reduction in platelet counts was greater in W/WV mice. In addition, the mortality associated with ink injection was significantly higher in W/WV mice than in congenic +/+ mice. Most W/WV mice which died first exhibited paralysis, and examination under the dissection microscope revealed that ink injection resulted in significantly more cerebral thromboemboli in W/WV mice than in +/+ controls. Bone marrow transplantation from +/+ mice corrected both the mast cell deficiency and the anemia of W/WV mice and protected the W/WV recipients from the adverse consequences of ink injection. By contrast, +/+ mice rendered as anemic as W/WV mice by breeding did not exhibit increased morbidity and mortality after ink injection. (WC × C57BL/6)F1-S1/S1d mice, which are anemic and lack mast cells because of a genetic defect different from that of W/WV mice, also exhibited increased morbidity and mortality after intravenous ink. Finally, mixture of ink with commercial heparin prior to intravenous injection markedly reduced the incidence of cerebral thromboembolism and death in W/WV mice. Taken together, these findings suggest that the increased morbidity and mortality exhibited by W/WV and S1/S1d mice that received injected ink might be related to their mast cell deficiency rather than to their anemia. But measurement of the histamine content of the blood and various tissues of WBB6F1-+/+ mice injected with ink, and examination of their tissues in 1-μ sections, indicated that intravenous ink did not cause substantial mast cell degranulation. As a result, the possibility that mast cells protect +/+ mice from the adverse effects of intravenous ink by a mechanism other than degranulation and release of heparin, or that the differences in the response of W/WV or S1/S1d mice and their +/+ littermates are due to defects other than their lack of mast cells, cannot be excluded. ImagesFigure 2Figure 4 PMID:3513601
Richie, Daryl L.; Takeoka, Kenneth T.; Bojkovic, Jade; Metzger, Louis E.; Rath, Christopher M.; Sawyer, William S.; Wei, Jun-Rong; Dean, Charles R.
2016-01-01
The lipid A moiety of lipopolysaccharide (LPS) is the main constituent of the outer leaflet of the Gram-negative bacterial outer membrane (OM) and is essential in many Gram-negative pathogens. An exception is Acinetobacter baumannii ATCC 19606, where mutants lacking enzymes occurring early in lipid A biosynthesis (LpxA, LpxC or LpxD), and correspondingly lacking LPS, can grow. In contrast, we show here that LpxH, an enzyme that occurs downstream of LpxD in the lipid A biosynthetic pathway, is essential for growth in this strain. Multiple attempts to disrupt lpxH on the genome were unsuccessful, and when LpxH expression was controlled by an isopropyl β-d-1-thiogalactopyranoside (IPTG) inducible promoter, cell growth under typical laboratory conditions required IPTG induction. Mass spectrometry analysis of cells shifted from LpxH-induced to uninduced (and whose growth was correspondingly slowing as LpxH was depleted) showed a large cellular accumulation of UDP-2,3-diacyl-GlcN (substrate of LpxH), a C14:0(3-OH) acyl variant of the LpxD substrate (UDP-3-O-[(R)-3-OH-C14]-GlcN), and disaccharide 1-monophosphate (DSMP). Furthermore, the viable cell counts of the LpxH depleted cultures dropped modestly, and electron microscopy revealed clear defects at the cell (inner) membrane, suggesting lipid A intermediate accumulation was toxic. Consistent with this, blocking the synthesis of these intermediates by inhibition of the upstream LpxC enzyme using CHIR-090 abrogated the requirement for IPTG induction of LpxH. Taken together, these data indicate that LpxH is essential for growth in A. baumannii ATCC19606, because, unlike earlier pathway steps like LpxA or LpxC, blockage of LpxH causes accumulation of detergent-like pathway intermediates that prevents cell growth. PMID:27526195
Garvin, Lindsay M; Chen, Yajun; Damsker, Jesse M; Rose, Mary C
2016-06-01
Overproduction of secretory mucins contributes to morbidity/mortality in inflammatory lung diseases. Inflammatory mediators directly increase expression of mucin genes, but few drugs have been shown to directly repress mucin gene expression. IL-1β upregulates the MUC5AC mucin gene in part via the transcription factors NFκB while the glucocorticoid Dexamethasone (Dex) transcriptionally represses MUC5AC expression by Dex-activated GR binding to two GRE cis-sites in the MUC5AC promoter in lung epithelial cells. VBP compounds (ReveraGen BioPharma) maintain anti-inflammatory activity through inhibition of NFκB but exhibit reduced GRE-mediated transcriptional properties associated with adverse side-effects and thus have potential to minimize harmful side effects of long-term steroid therapy in inflammatory lung diseases. We investigated VBP15 efficacy as an anti-mucin agent in two types of airway epithelial cells and analyzed the transcription factor activity and promoter binding associated with VBP15-induced MUC5AC repression. VBP15 reduced MUC5AC mRNA abundance in a dose- and time-dependent manner similar to Dex in the presence or absence of IL-1β in A549 and differentiated human bronchial epithelial cells. Repression was abrogated in the presence of RU486, demonstrating a requirement for GR in the VBP15-induced repression of MUC5AC. Inhibition of NFκB activity resulted in reduced baseline expression of MUC5AC indicating that constitutive activity maintains MUC5AC production. Chromatin immunoprecipitation analysis demonstrated lack of GR and of p65 (NFκB) binding to composite GRE domains in the MUC5AC promoter following VBP15 exposure of cells, in contrast to Dex. These data demonstrate that VBP15 is a novel anti-mucin agent that mediates the reduction of MUC5AC gene expression differently than the classical glucocorticoid, Dex. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rosenbaum, J S; Azhar, S; Hoffman, B B
1987-12-15
The DDT1-MF2 cell line is a transformed smooth muscle cell line which is known to possess both alpha 1 and beta 2 adrenergic receptors. We have utilized these cells to compare the effects of epinephrine pretreatment on the functional capabilities of these two different adrenergic receptors. Pretreatment of the cells grown in suspension with 10(-7) M epinephrine for 6 hr resulted in desensitization of beta receptor stimulated cyclic AMP accumulation. The maximal response to isoproterenol was decreased to 46 +/- 6% of the value in controls (P less than 0.05); there was also a decrease in the sensitivity of the cells to isoproterenol (log EC50 = -6.65 +/- 0.22 vs -7.26 +/- 0.11 in controls, P less than 0.05). Also, there was a decrease in the number of beta receptors from 257 +/- 29 to 163 +/- 22 fmol/mg protein. In contrast, pretreatment with 10(-6) M epinephrine for 6 hr failed to induce a loss of sensitivity in the ability of the alpha 1 receptor agonist phenylephrine to stimulate inositol triphosphate accumulation (log EC50 = -5.59 +/- 0.18 vs -5.42 +/- 0.44 in control cells). A 2-fold increase in basal inositol monophosphate accumulation was observed after epinephrine pretreatment (P less than 0.05); however, there was no change in maximal phenylephrine-stimulated inositol monophosphate accumulation in these cells. There was a small decrease in the alpha 1 receptor number after epinephrine pretreatment (Bmax = 457 +/- 89 fmol/mg protein vs 540 +/- 94 in control cells, P less than 0.05). In contrast to epinephrine pretreatment, pretreatment of cells in suspension with 10(-7) M 12-O-tetradecanoylphorbol-13-acetate (TPA) for 15 min resulted in a nearly complete blunting in the ability of both norepinephrine and phenylephrine to stimulate inositol phosphate accumulation: after norepinephrine stimulation, 774 +/- 34 dpm in TPA-pretreated cells vs 2590 +/- 10 in control cells; inositol monophosphate accumulation after phenylephrine stimulation 576 +/- 25 dpm in TPA-pretreated cells vs 1660 +/- 27 in control cells. Basal levels of inositol monophosphate remained unchanged at 544 +/- 28 dpm vs 505 +/- 31 in TPA-pretreated cells compared to control cells. These data indicate that protein kinase C may exert a negative feedback control on the alpha 1 receptor in these cells and that direct activation of protein kinase C by phorbol esters may have a different effect on the alpha 1 adrenergic receptor system in DDT1-MF2 cells than does prolonged exposure to epinephrine.
Towards endometriosis diagnosis by gadofosveset-trisodium enhanced magnetic resonance imaging.
Schreinemacher, Marc H; Backes, Walter H; Slenter, Jos M; Xanthoulea, Sofia; Delvoux, Bert; van Winden, Larissa; Beets-Tan, Regina G; Evers, Johannes L H; Dunselman, Gerard A J; Romano, Andrea
2012-01-01
Endometriosis is defined as the presence of endometrial tissue outside the uterus. It affects 10-15% of women during reproductive age and has a big personal and social impact due to chronic pelvic pain, subfertility, loss of work-hours and medical costs. Such conditions are exacerbated by the fact that the correct diagnosis is made as late as 8-11 years after symptom presentation. This is due to the lack of a reliable non-invasive diagnostic test and the fact that the reference diagnostic standard is laparoscopy (invasive, expensive and not without risks). High-molecular weight gadofosveset-trisodium is used as contrast agent in Magnetic Resonance Imaging (MRI). Since it extravasates from hyperpermeable vessels more easily than from mature blood vessels, this contrast agent detects angiogenesis efficiently. Endometriosis has high angiogenic activity. Therefore, we have tested the possibility to detect endometriosis non-invasively using Dynamic Contrast-Enhanced MRI (DCE-MRI) and gadofosveset-trisodium as a contrast agent in a mouse model. Endometriotic lesions were surgically induced in nine mice by autologous transplantation. Three weeks after lesion induction, mice were scanned by DCE-MRI. Dynamic image analysis showed that the rates of uptake (inwash), persistence and outwash of the contrast agent were different between endometriosis and control tissues (large blood vessels and back muscle). Due to the extensive angiogenesis in induced lesions, the contrast agent persisted longer in endometriotic than control tissues, thus enhancing the MRI signal intensity. DCE-MRI was repeated five weeks after lesion induction, and contrast enhancement was similar to that observed three weeks after endometriosis induction. The endothelial-cell marker CD31 and the pericyte marker α-smooth-muscle-actin (mature vessels) were detected with immunohistochemistry and confirmed that endometriotic lesions had significantly higher prevalence of new vessels (CD31 only positive) than the uterus and control tissues. The diagnostic value of gadofosveset-trisodium to detect endometriosis should be tested in human settings.
Subudhi, Sonu; Rapin, Noreen; Dorville, Nicole; Hill, Janet E; Town, Jennifer; Willis, Craig K R; Bollinger, Trent K; Misra, Vikram
2018-03-01
Little is known about the relationship of Gammaherpesviruses with their bat hosts. Gammaherpesviruses are of interest because of their long-term infection of lymphoid cells and their potential to cause cancer. Here, we report the characterization of a novel bat herpesvirus isolated from a big brown bat (Eptesicus fuscus) in Canada. The genome of the virus, tentatively named Eptesicus fuscus herpesvirus (EfHV), is 166,748 base pairs. Phylogenetically EfHV is a member of Gammaherpesvirinae, in which it belongs to the Genus Rhadinovirus and is closely related to other bat Gammaherpesviruses. In contrast to other known Gammaherpesviruses, the EfHV genome contains coding sequences similar to those of class I and II host major histocompatibility antigens. The virus is capable of infecting and replicating in human, monkey, cat and pig cell lines. Although we detected EfHV in 20 of 28 big brown bats tested, these bats lacked neutralizing antibodies against the virus. Copyright © 2018 Elsevier Inc. All rights reserved.
Talmadge, J E; Talmadge, C B; Zbar, B; McEwen, R; Meeker, A K; Tribble, H
1987-06-01
The mechanism by which tumor allografts escape host immunologic attack was investigated. B16-BL6 cells (the bladder 6 subline of the B16 melanoma) (H-2b) were transfected with a gene (Dd) encoding an allogeneic class I major histocompatibility complex antigen. Clones that expressed Dd antigen were injected into the footpads of nonimmune syngeneic mice, syngeneic immune mice, and nude mice. Under conditions of immunologic selection a clone that contained multiple copies of the transfected gene formed variants that lacked the transfected gene. Primary tumors and pulmonary metastases of immunized mice and pulmonary metastases of nonimmunized mice had lost the Dd gene and, in most cases, all of the associated plasmid. In contrast, in immunodeficient nude mice, primary tumors and pulmonary metastases retained the Dd gene and the associated plasmid. Deletion of genes encoding cell surface antigens may be one of the mechanisms by which allogeneic tumors escape immunologic attack.
Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1
Morland, Cecilie; Andersson, Krister A.; Haugen, Øyvind P.; Hadzic, Alena; Kleppa, Liv; Gille, Andreas; Rinholm, Johanne E.; Palibrk, Vuk; Diget, Elisabeth H.; Kennedy, Lauritz H.; Stølen, Tomas; Hennestad, Eivind; Moldestad, Olve; Cai, Yiqing; Puchades, Maja; Offermanns, Stefan; Vervaeke, Koen; Bjørås, Magnar; Wisløff, Ulrik; Storm-Mathisen, Jon; Bergersen, Linda H.
2017-01-01
Physical exercise can improve brain function and delay neurodegeneration; however, the initial signal from muscle to brain is unknown. Here we show that the lactate receptor (HCAR1) is highly enriched in pial fibroblast-like cells that line the vessels supplying blood to the brain, and in pericyte-like cells along intracerebral microvessels. Activation of HCAR1 enhances cerebral vascular endothelial growth factor A (VEGFA) and cerebral angiogenesis. High-intensity interval exercise (5 days weekly for 7 weeks), as well as L-lactate subcutaneous injection that leads to an increase in blood lactate levels similar to exercise, increases brain VEGFA protein and capillary density in wild-type mice, but not in knockout mice lacking HCAR1. In contrast, skeletal muscle shows no vascular HCAR1 expression and no HCAR1-dependent change in vascularization induced by exercise or lactate. Thus, we demonstrate that a substance released by exercising skeletal muscle induces supportive effects in brain through an identified receptor. PMID:28534495
Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1.
Morland, Cecilie; Andersson, Krister A; Haugen, Øyvind P; Hadzic, Alena; Kleppa, Liv; Gille, Andreas; Rinholm, Johanne E; Palibrk, Vuk; Diget, Elisabeth H; Kennedy, Lauritz H; Stølen, Tomas; Hennestad, Eivind; Moldestad, Olve; Cai, Yiqing; Puchades, Maja; Offermanns, Stefan; Vervaeke, Koen; Bjørås, Magnar; Wisløff, Ulrik; Storm-Mathisen, Jon; Bergersen, Linda H
2017-05-23
Physical exercise can improve brain function and delay neurodegeneration; however, the initial signal from muscle to brain is unknown. Here we show that the lactate receptor (HCAR1) is highly enriched in pial fibroblast-like cells that line the vessels supplying blood to the brain, and in pericyte-like cells along intracerebral microvessels. Activation of HCAR1 enhances cerebral vascular endothelial growth factor A (VEGFA) and cerebral angiogenesis. High-intensity interval exercise (5 days weekly for 7 weeks), as well as L-lactate subcutaneous injection that leads to an increase in blood lactate levels similar to exercise, increases brain VEGFA protein and capillary density in wild-type mice, but not in knockout mice lacking HCAR1. In contrast, skeletal muscle shows no vascular HCAR1 expression and no HCAR1-dependent change in vascularization induced by exercise or lactate. Thus, we demonstrate that a substance released by exercising skeletal muscle induces supportive effects in brain through an identified receptor.
Siderophore production by pathogenic mucorales and uptake of deferoxamine B.
Larcher, Gérald; Dias, Marylène; Razafimandimby, Bienvenue; Bomal, Danielle; Bouchara, Jean-Philippe
2013-12-01
Clinical reports have established that mucormycosis, mainly caused by Rhizopus spp., frequently occurs in patients treated with deferoxamine B (DFO, Desferal(®)) which is misappropriated by these fungi. Siderophore production by twenty mucoralean isolates was therefore investigated using a commercial iron-depleted culture medium. Siderophore production was detected for most of the isolates. Our experiments confirmed that feroxamine B (iron chelate of DFO) promoted in vitro growth of Rhizopus arrhizus. Electrophoretic analysis of somatic extracts revealed iron-regulated proteins of 60 and 32 kDa which were lacking in iron-depleted culture conditions. Using a fluorescent derivative of deferoxamine B, we showed by fluorescence microscopy the entry of the siderophore within the fungal cells, thus suggesting a shuttle mechanism encompassing the uptake of the entire siderophore-ion complex into the cell. This useful tool renders possible a better understanding of iron metabolism in Mucorales which could lead to the development of new diagnostic method or new antifungal therapy using siderophores as imaging contrast agents or active drug vectors.
Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration
Mor, Danielle E.; Tsika, Elpida; Mazzulli, Joseph R.; Gould, Neal S.; Kim, Hanna; Daniels, Malcolm J.; Doshi, Shachee; Gupta, Preetika; Grossman, Jennifer L.; Tan, Victor X.; Kalb, Robert G.; Caldwell, Kim A.; Caldwell, Guy A.; Wolfe, John H.; Ischiropoulos, Harry
2018-01-01
Parkinson’s disease is defined by the loss of dopaminergic neurons in the substantia nigra and formation of Lewy body inclusions containing aggregated α-synuclein. Efforts to explain dopamine neuron vulnerability are hindered by the lack of dopaminergic cell death in α-synuclein transgenic mice. To address this, we manipulated dopamine levels in addition to α-synuclein expression. Nigra-targeted expression of mutant tyrosine hydroxylase with enhanced catalytic activity increased dopamine without damaging neurons in non-transgenic mice. In contrast, raising dopamine in mice expressing human A53T mutant α-synuclein induced progressive nigrostriatal degeneration and reduced locomotion. Dopamine elevation in A53T mice increased levels of potentially toxic α-synuclein oligomers, resulting in conformationally and functionally modified species. Moreover, in genetically tractable C. elegans models expression of α-synuclein mutated at the site of interaction with dopamine prevented dopamine-induced toxicity. The data suggest a unique mechanism linking two cardinal features of Parkinson’s disease, dopaminergic cell death and α-synuclein aggregation. PMID:28920936
Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration.
Mor, Danielle E; Tsika, Elpida; Mazzulli, Joseph R; Gould, Neal S; Kim, Hanna; Daniels, Malcolm J; Doshi, Shachee; Gupta, Preetika; Grossman, Jennifer L; Tan, Victor X; Kalb, Robert G; Caldwell, Kim A; Caldwell, Guy A; Wolfe, John H; Ischiropoulos, Harry
2017-11-01
Parkinson's disease (PD) is defined by the loss of dopaminergic neurons in the substantia nigra and the formation of Lewy body inclusions containing aggregated α-synuclein. Efforts to explain dopamine neuron vulnerability are hindered by the lack of dopaminergic cell death in α-synuclein transgenic mice. To address this, we manipulated both dopamine levels and α-synuclein expression. Nigrally targeted expression of mutant tyrosine hydroxylase with enhanced catalytic activity increased dopamine levels without damaging neurons in non-transgenic mice. In contrast, raising dopamine levels in mice expressing human A53T mutant α-synuclein induced progressive nigrostriatal degeneration and reduced locomotion. Dopamine elevation in A53T mice increased levels of potentially toxic α-synuclein oligomers, resulting in conformationally and functionally modified species. Moreover, in genetically tractable Caenorhabditis elegans models, expression of α-synuclein mutated at the site of interaction with dopamine prevented dopamine-induced toxicity. These data suggest that a unique mechanism links two cardinal features of PD: dopaminergic cell death and α-synuclein aggregation.
Avraham, Karen B.
2016-01-01
The vertebrate inner ear houses highly specialized sensory organs, tuned to detect and encode sound, head motion and gravity. Gene expression programs under the control of transcription factors orchestrate the formation and specialization of the non-sensory inner ear labyrinth and its sensory constituents. More recently, epigenetic factors and non-coding RNAs emerged as an additional layer of gene regulation, both in inner ear development and disease. In this review, we provide an overview on how epigenetic modifications and non-coding RNAs, in particular microRNAs (miRNAs), influence gene expression and summarize recent discoveries that highlight their critical role in the proper formation of the inner ear labyrinth and its sensory organs. In contrast to non-mammalian vertebrates, adult mammals lack the ability to regenerate inner ear mechano-sensory hair cells. Finally, we discuss recent insights into how epigenetic factors and miRNAs may facilitate, or in the case of mammals, restrict sensory hair cell regeneration. PMID:27836639
Induced phenylpropanoid metabolism during suberization and lignification: a comparative analysis
NASA Technical Reports Server (NTRS)
Bernards, M. A.; Susag, L. M.; Bedgar, D. L.; Anterola, A. M.; Lewis, N. G.
2000-01-01
Induction of the biosynthesis of phenylpropanoids was monitored at the enzyme level through measurement of the temporal change in the activity of two marker enzymes of phenylpropanoid metabolism, phenylalanine ammonia-lyase, (PAL, E.C. 4.1.3.5) and 4-coumaryl-CoA ligase (4-CL, E.C. 6.2.1.12) and two marker enzymes for hydroxycinnamyl alcohol biosynthesis, cinnamoyl-CoA:NADP+ oxidoreductase (CCR, E.C. 1.2.1.44) and cinnamyl alcohol dehydrogenase (CAD, E.C. 1.1.1.195) in both suberizing potato (Solanum tuberosum) tubers and lignifying loblolly pine (Pinus taeda) cell cultures. While measurable activities of PAL, 4-CL and CAD increased upon initiation of suberization in potato tubers, that of CCR did not. By contrast, all four enzymes were induced upon initiation of lignification in pine cell cultures. The lack of CCR induction in potato by wound treatment is consistent with the channelling of hydroxycinnamoyl-CoA derivatives away from monolignol formation and toward other hydroxycinnamoyl derivatives such as those that accumulate during suberization.
Imaging transplanted stem cells in real time using an MRI dual-contrast method
Ngen, Ethel J.; Wang, Lee; Kato, Yoshinori; Krishnamachary, Balaji; Zhu, Wenlian; Gandhi, Nishant; Smith, Barbara; Armour, Michael; Wong, John; Gabrielson, Kathleen; Artemov, Dmitri
2015-01-01
Stem cell therapies are currently being investigated for the repair of brain injuries. Although exogenous stem cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) prior to transplantation provides a means to noninvasively monitor stem cell transplantation by magnetic resonance imaging (MRI), monitoring cell death is still a challenge. Here, we investigate the feasibility of using an MRI dual-contrast technique to detect cell delivery, cell migration and cell death after stem cell transplantation. Human mesenchymal stem cells were dual labelled with SPIONs and gadolinium-based chelates (GdDTPA). The viability, proliferation rate, and differentiation potential of the labelled cells were then evaluated. The feasibility of this MRI technique to distinguish between live and dead cells was next evaluated using MRI phantoms, and in vivo using both immune-competent and immune-deficient mice, following the induction of brain injury in the mice. All results were validated with bioluminescence imaging. In live cells, a negative (T2/T2*) MRI contrast predominates, and is used to track cell delivery and cell migration. Upon cell death, a diffused positive (T1) MRI contrast is generated in the vicinity of the dead cells, and serves as an imaging marker for cell death. Ultimately, this technique could be used to manage stem cell therapies. PMID:26330231
Imaging transplanted stem cells in real time using an MRI dual-contrast method.
Ngen, Ethel J; Wang, Lee; Kato, Yoshinori; Krishnamachary, Balaji; Zhu, Wenlian; Gandhi, Nishant; Smith, Barbara; Armour, Michael; Wong, John; Gabrielson, Kathleen; Artemov, Dmitri
2015-09-02
Stem cell therapies are currently being investigated for the repair of brain injuries. Although exogenous stem cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) prior to transplantation provides a means to noninvasively monitor stem cell transplantation by magnetic resonance imaging (MRI), monitoring cell death is still a challenge. Here, we investigate the feasibility of using an MRI dual-contrast technique to detect cell delivery, cell migration and cell death after stem cell transplantation. Human mesenchymal stem cells were dual labelled with SPIONs and gadolinium-based chelates (GdDTPA). The viability, proliferation rate, and differentiation potential of the labelled cells were then evaluated. The feasibility of this MRI technique to distinguish between live and dead cells was next evaluated using MRI phantoms, and in vivo using both immune-competent and immune-deficient mice, following the induction of brain injury in the mice. All results were validated with bioluminescence imaging. In live cells, a negative (T2/T2*) MRI contrast predominates, and is used to track cell delivery and cell migration. Upon cell death, a diffused positive (T1) MRI contrast is generated in the vicinity of the dead cells, and serves as an imaging marker for cell death. Ultimately, this technique could be used to manage stem cell therapies.
Magnetic field direction differentially impacts the growth of different cell types.
Tian, Xiaofei; Wang, Dongmei; Zha, Meng; Yang, Xingxing; Ji, Xinmiao; Zhang, Lei; Zhang, Xin
2018-04-05
Magnetic resonance imaging (MRI) machines have horizontal or upright static magnetic field (SMF) of 0.1-3 T (Tesla) at sites of patients and operators, but the biological effects of these SMFs still remain elusive. We examined 12 different cell lines, including 5 human solid tumor cell lines, 2 human leukemia cell lines and 4 human non-cancer cell lines, as well as the Chinese hamster ovary cell line. Permanent magnets were used to provide 0.2-1 T SMFs with different magnetic field directions. We found that an upward magnetic field of 0.2-1 T could effectively reduce the cell numbers of all human solid tumor cell lines we tested, but a downward magnetic field mostly had no statistically significant effect. However, the leukemia cells in suspension, which do not have shape-induced anisotropy, were inhibited by both upward and downward magnetic fields. In contrast, the cell numbers of most non-cancer cells were not affected by magnetic fields of all directions. Moreover, the upward magnetic field inhibited GIST-T1 tumor growth in nude mice by 19.3% (p < 0.05) while the downward magnetic field did not produce significant effect. In conclusion, although still lack of mechanistical insights, our results show that different magnetic field directions produce divergent effects on cancer cell numbers as well as tumor growth in mice. This not only verified the safety of SMF exposure related to current MRI machines but also revealed the possible antitumor potential of magnetic field with an upward direction.
Distorted secretory granule composition in mast cells with multiple protease deficiency.
Grujic, Mirjana; Calounova, Gabriela; Eriksson, Inger; Feyerabend, Thorsten; Rodewald, Hans-Reimer; Tchougounova, Elena; Kjellén, Lena; Pejler, Gunnar
2013-10-01
Mast cells are characterized by an abundance of secretory granules densely packed with inflammatory mediators such as bioactive amines, cytokines, serglycin proteoglycans with negatively charged glycosaminoglycan side chains of either heparin or chondroitin sulfate type, and large amounts of positively charged proteases. Despite the large biological impact of mast cell granules and their contents on various pathologies, the mechanisms that regulate granule composition are incompletely understood. In this study, we hypothesized that granule composition is dependent on a dynamic electrostatic interrelationship between different granule compounds. As a tool to evaluate this possibility, we generated mice in which mast cells are multideficient in a panel of positively charged proteases: the chymase mouse mast cell protease-4, the tryptase mouse mast cell protease-6, and carboxypeptidase A3. Through a posttranslational effect, mast cells from these mice additionally lack mouse mast cell protease-5 protein. Mast cells from mice deficient in individual proteases showed normal morphology. In contrast, mast cells with combined protease deficiency displayed a profound distortion of granule integrity, as seen both by conventional morphological criteria and by transmission electron microscopy. An assessment of granule content revealed that the distorted granule integrity in multiprotease-deficient mast cells was associated with a profound reduction of highly negatively charged heparin, whereas no reduction in chondroitin sulfate storage was observed. Taken together with previous findings showing that the storage of basic proteases conversely is regulated by anionic proteoglycans, these data suggest that secretory granule composition in mast cells is dependent on a dynamic interrelationship between granule compounds of opposite electrical charge.
Sakaki, Kelly; Esmaeilsabzali, Hadi; Massah, Shabnam; Prefontaine, Gratien G; Dechev, Nikolai; Burke, Robert D; Park, Edward J
2013-11-01
Single cell electroporation (SCE), via microcapillary, is an effective method for molecular, transmembrane transport used to gain insight on cell processes with minimal preparation. Although possessing great potential, SCE is difficult to execute and the technology spans broad fields within cell biology and engineering. The technical complexities, the focus and expertise demanded during manual operation, and the lack of an automated SCE platform limit the widespread use of this technique, thus the potential of SCE has not been realized. In this study, an automated biomanipulator for SCE is presented. Our system is capable of delivering molecules into the cytoplasm of extremely thin cellular features of adherent cells. The intent of the system is to abstract the technical challenges and exploit the accuracy and repeatability of automated instrumentation, leaving only the focus of the experimental design to the operator. Each sequence of SCE including cell and SCE site localization, tip-membrane contact detection, and SCE has been automated. Positions of low-contrast cells are localized and "SCE sites" for microcapillary tip placement are determined using machine vision. In addition, new milestones within automated cell manipulation have been achieved. The system described herein has the capability of automated SCE of "thin" cell features less than 10 μm in thickness. Finally, SCE events are anticipated using visual feedback, while monitoring fluorescing dye entering the cytoplasm of a cell. The execution is demonstrated by inserting a combination of a fluorescing dye and a reporter gene into NIH/3T3 fibroblast cells.
Morgan, Joshua T; Wood, Joshua A; Walker, Naomi J; Raghunathan, Vijay Krishna; Borjesson, Dori L; Murphy, Christopher J; Russell, Paul
2014-01-01
To support the growing promise of regenerative medicine in glaucoma, we characterized the similarities and differences between human trabecular meshwork (HTM) cells and human mesenchymal stem cells (hMSCs). HTM cells and hMSCs were phenotypically characterized by flow cytometry. Using quantitative polymerase chain reaction, the expression of myoc, angptl7, sox2, pou5f1, and notch1 was determined in both cell types with and without dexamethasone (Dex). Immunosuppressive behavior of HTM cells and hMSCs was determined using T cells activated with phytohemagglutinin. T-cell proliferation was determined using BrdU incorporation and flow cytometry. Multipotency of HTM cells and hMSCs was determined using adipogenic and osteogenic differentiation media as well as aqueous humor (AH). Alpha-smooth muscle actin (αSMA) expression was determined in HTM cells, hMSCs, and HTM tissue. Phenotypically, HTM and hMSCs expressed CD73, CD90, CD105, and CD146 but not CD31, CD34, and CD45 and similar sox2, pou5f1, and notch1 expression. Both cell types suppressed T-cell proliferation. However, HTM cells, but not hMSCs, upregulated myoc and angptl7 in response to Dex. Additionally, HTM cells did not differentiate into adipocytes or osteocytes. Culture of hMSCs in 20%, but not 100%, AH potently induced alkaline phosphatase activity. HTM cells in culture possessed uniformly strong expression of αSMA, which contrasted with the limited expression in hMSCs and spatially discrete expression in HTM tissue. HTM cells possess a number of important similarities with hMSCs but lack multipotency, one of the defining characteristics of stem cells. Further work is needed to explore the molecular mechanisms and functional implications underlying the phenotypic similarities.
Morgan, Joshua T.; Wood, Joshua A.; Walker, Naomi J.; Raghunathan, Vijay Krishna; Borjesson, Dori L.; Murphy, Christopher J.
2014-01-01
Abstract Purpose: To support the growing promise of regenerative medicine in glaucoma, we characterized the similarities and differences between human trabecular meshwork (HTM) cells and human mesenchymal stem cells (hMSCs). Methods: HTM cells and hMSCs were phenotypically characterized by flow cytometry. Using quantitative polymerase chain reaction, the expression of myoc, angptl7, sox2, pou5f1, and notch1 was determined in both cell types with and without dexamethasone (Dex). Immunosuppressive behavior of HTM cells and hMSCs was determined using T cells activated with phytohemagglutinin. T-cell proliferation was determined using BrdU incorporation and flow cytometry. Multipotency of HTM cells and hMSCs was determined using adipogenic and osteogenic differentiation media as well as aqueous humor (AH). Alpha-smooth muscle actin (αSMA) expression was determined in HTM cells, hMSCs, and HTM tissue. Results: Phenotypically, HTM and hMSCs expressed CD73, CD90, CD105, and CD146 but not CD31, CD34, and CD45 and similar sox2, pou5f1, and notch1 expression. Both cell types suppressed T-cell proliferation. However, HTM cells, but not hMSCs, upregulated myoc and angptl7 in response to Dex. Additionally, HTM cells did not differentiate into adipocytes or osteocytes. Culture of hMSCs in 20%, but not 100%, AH potently induced alkaline phosphatase activity. HTM cells in culture possessed uniformly strong expression of αSMA, which contrasted with the limited expression in hMSCs and spatially discrete expression in HTM tissue. Conclusions: HTM cells possess a number of important similarities with hMSCs but lack multipotency, one of the defining characteristics of stem cells. Further work is needed to explore the molecular mechanisms and functional implications underlying the phenotypic similarities. PMID:24456002
Tokunaga, A; Akert, K; Sandri, C; Bennett, M V
1980-08-01
The medullary electromotor nucleus (EMN) of Sternarchus albifrons was studied at the light and electron microscopic levels. The EMN consists of a dense meshwork of myelinated axons and glial elements with interposed large neurons; it is provided with an abundant supply of capillaries. Two types of essentially adrendritic nerve cells were distinguished on the basis of size: giant neurons (approx. 70 micrometers in diameter) and large neurons (approx. 30 micrometers in diameter). Their population ratio is 1:4. Only giant cells are labelled following the injection of retrograde tracer into the spinal cord; they are therefore identified with the so-called "relay cells" of other gymnotids. Tracer experiments further suggest that the descending axons of these relay cells give off collateral branches throughout the elongated spinal electromotor nucleus. In contrast, the large cells remain unlabelled and therefore lack spinal projections; they most likely correspond to "pacemaker cells." The perikaryal surface, including axon hillock and proximal part of initial segment of both types of EMN cells, is contacted by clusters of synaptic terminals and astrocytic processes. Two main varieties of synaptic terminals occur: (1) large endings and (2) ordinary end feet with standard size (S-type) and variable size (Sv-type) clear, spherical vesicles. The junction between large endings and EMN cells is characterized by the combination of gap junctions and surrounding intermediate junctions whose freeze-fracture characteristics were morphometrically analyzed. The large endings were formed by nodes of Ranvier as well as by fiber terminations, and synchronization within the EMN may be achieved by presynaptic fibers. Some of the contacts occur directly on the initial segment, which could allow activity to bypass the soma. It is concluded that the elctromotor system of Sternarchus is comprised of a rapid conduction pathway where medullary pacemaker and relay cells as well as spinal electromotor neurons are coupled by synapses with gap junctions. In contrast to the spinal electromotor neurons, the medullary EMN cells receive synapses with morphological characteristics of chemical transmission, and the S-type and SV-type terminals may possibly correspond to Gray's Type I and Type II synapses, respectively. These synapses may be involved in modulation of the electric organ discharge frequency.
Jiang, Linghuo; Xu, Dayong; Hameed, Ahsan; Fang, Tianshu; Bakr Ahmad Fazili, Abu; Asghar, Faiza
2018-06-01
Pmr1 is the Golgi/ER calcium pump, while Rch1 is a newly identified negative regulator of calcium influx in the plasma membrane of yeast cells. We show here that CaRch1 plays a dominant role over CaPmr1 in response of Candida albicans to SDS and tunicamycin stresses, while CaPmr1 has a major role in cell wall stress. Deletion of CaRCH1 increases the calcium/calcineurin signaling level in cells lacking CaPMR1. Calcineurin function is required for the role of CaRch1 in SDS stresses, while it is required for the function of CaPmr1 under all conditions examined. Disruption of CaRCH1 alone does not reduce the cell wall chitin, mannan or β-glucan content, but lack of CaRCH1 slightly decreases the chitin content of cells lacking CaPMR1. Furthermore, CaRch1 and CaPmr1 have an additive effect on filamentation of C. albicans cells in vitro. Cells lacking both CaRCH1 and CaPMR1 and cells lacking CaPMR1 alone show a similar degree of virulence attenuation, being much more attenuated than cells lacking CaRCH1 alone. Therefore, CaRch1 genetically interacts with CaPmr1 in the regulation of in vitro filamentation in C. albicans. Copyright © 2018 Elsevier Inc. All rights reserved.
Walker, Matthew; Godin, Michel; Pelling, Andrew E
2018-05-28
Although our understanding of cellular behavior in response to extracellular biological and mechanical stimuli has greatly advanced using conventional 2D cell culture methods, these techniques lack physiological relevance. To a cell, the extracellular environment of a 2D plastic petri dish is artificially flat, extremely rigid, static and void of matrix protein. In contrast, we developed the microtissue vacuum-actuated stretcher (MVAS) to probe cellular behavior within a 3D multicellular environment composed of innate matrix protein, and in response to continuous uniaxial stretch. An array format, compatibility with live imaging and high-throughput fabrication techniques make the MVAS highly suited for biomedical research and pharmaceutical discovery. We validated our approach by characterizing the bulk microtissue strain, the microtissue strain field and single cell strain, and by assessing F-actin expression in response to chronic cyclic strain of 10%. The MVAS was shown to be capable of delivering reproducible dynamic bulk strain amplitudes up to 13%. The strain at the single cell level was found to be 10.4% less than the microtissue axial strain due to cellular rotation. Chronic cyclic strain produced a 35% increase in F-actin expression consistent with cytoskeletal reinforcement previously observed in 2D cell culture. The MVAS may further our understanding of the reciprocity shared between cells and their environment, which is critical to meaningful biomedical research and successful therapeutic approaches.
Conditional knockout of retinal determination genes in differentiating cells in Drosophila.
Jin, Meng; Eblimit, Aiden; Pulikkathara, Merlyn; Corr, Stuart; Chen, Rui; Mardon, Graeme
2016-08-01
Conditional gene knockout in postmitotic cells is a valuable technique which allows the study of gene function with spatiotemporal control. Surprisingly, in contrast to its long-term and extensive use in mouse studies, this technology is lacking in Drosophila. Here, we use a novel method for generating complete loss of eyes absent (eya) or sine oculis (so) function in postmitotic cells posterior to the morphogenetic furrow (MF). Specifically, genomic rescue constructs with flippase recognition target (FRT) sequences flanking essential exons are used to generate conditional null alleles. By removing gene function in differentiating cells, we show that eya and so are dispensable for larval photoreceptor differentiation, but are required for differentiation during pupal development. Both eya and so are necessary for photoreceptor survival and the apoptosis caused by loss of eya or so function is likely a secondary consequence of inappropriate differentiation. We also confirm their requirement for cone cell development and reveal a novel role in interommatidial bristle (IOB) formation. In addition, so is required for normal eye disc morphology. This is the first report of a knockout method to study eya and so function in postmitotic cells. This technology will open the door to a large array of new functional studies in virtually any tissue and at any stage of development or in adults. © 2016 Federation of European Biochemical Societies.
Marrocco, Antonella; Meade, B. Jean; Long, Carrie M.; Lukomska, Ewa; Marshall, Nikki B.; Anderson, Stacey E.
2015-01-01
N-Butylbenzene sulfonamide (NBBS) is a commonly used plasticizer found in numerous products. Due to its extensive use, lack of adequate toxicological data, and suspicion of toxicity based on the presence of structural alerts, it was nominated to the National Toxicology Program for comprehensive toxicological testing. The purpose of this study was to evaluate the potential for hypersensitivity and immune suppression following dermal exposure to NBBS using a murine model. NBBS tested negative in a combined irritancy/local lymph node assay (LLNA), classifying it as nonirritating and nonsensitizing. To estimate the immunosuppressive potential of NBBS, assays that assessed immunotoxicity were performed, including the immumnoglobulin (Ig) M response to T-cell-dependent antigen sheep red blood cells (SRBC), using the plaque-forming cell (PFC) assay and immune cell phenotyping. After a 28-d treatment with NBBS, mice exposed to the lowest concentration (25% NBBS) showed a significant increase in IgM-producing B cells in the spleen. No marked changes were identified in immune cell markers in the lymph node. In contrast to body weight, a significant elevation in kidney and liver weight was observed following dermal exposure to all concentrations of NBBS. These results demonstrate that dermal exposure to NBBS, other than liver and kidney toxicity, did not apparently induce immunotoxicity in a murine model. PMID:26291892
Baker, Emma K; Taylor, Scott; Gupte, Ankita; Sharp, Phillip P; Walia, Mannu; Walsh, Nicole C; Zannettino, Andrew CW; Chalk, Alistair M; Burns, Christopher J; Walkley, Carl R
2015-01-01
Osteosarcoma (OS) survival rates have plateaued in part due to a lack of new therapeutic options. Here we demonstrate that bromodomain inhibitors (BETi), JQ1, I-BET151, I-BET762, exert potent anti-tumour activity against primary and established OS cell lines, mediated by inhibition of BRD4. Strikingly, unlike previous observations in long-term established human OS cell lines, the antiproliferative activity of JQ1 in primary OS cells was driven by the induction of apoptosis, not cell cycle arrest. In further contrast, JQ1 activity in OS was mediated independently of MYC downregulation. We identified that JQ1 suppresses the transcription factor FOSL1 by displacement of BRD4 from its locus. Loss of FOSL1 phenocopied the antiproliferative effects of JQ1, identifying FOSL1 suppression as a potential novel therapeutic approach for OS. As a monotherapy JQ1 demonstrated significant anti-tumour activity in vivo in an OS graft model. Further, combinatorial treatment approaches showed that JQ1 increased the sensitivity of OS cells to doxorubicin and induced potent synergistic activity when rationally combined with CDK inhibitors. The greater level of activity achieved with the combination of BETi with CDK inhibitors demonstrates the efficacy of this combination therapy. Taken together, our studies show that BET inhibitors are a promising new therapeutic for OS. PMID:25944566
Qi, Jia; Duan, Suyan; Huang, Zhimin; Zhang, Chengning; Wu, Lin; Zeng, Ming; Zhang, Bo; Wang, Ningning; Mao, Huijuan; Zhang, Aihua; Xing, Changying; Yuan, Yanggang
2017-01-01
Cisplatin chemotherapy often causes acute kidney injury (AKI) in cancer patients. There is increasing evidence that mitochondrial dysfunction plays an important role in cisplatin-induced nephrotoxicity. Degradation of damaged mitochondria is carried out by mitophagy. Although mitophagy is considered of particular importance in protecting against AKI, little is known of the precise role of mitophagy and its molecular mechanisms during cisplatin-induced nephrotoxicity. Also, evidence that activation of mitophagy improved mitochondrial function is lacking. Furthermore, several evidences have shown that mitochondrial fission coordinates with mitophagy. The aim of this study was to investigate whether activation of mitophagy protects against mitochondrial dysfunction and renal proximal tubular cells injury during cisplatin treatment. The effect of mitochondrial fission on mitophagy was also investigated. In cultured human renal proximal tubular cells, we observed that 3-methyladenine, a pharmacological inhibitor of autophagy, blocked mitophagy and exacerbated cisplatin-induced mitochondrial dysfunction and cells injury. In contrast, autophagy activator rapamycin enhanced mitophagy and protected against the harmful effects of cisplatin on mitochondrial function and cells viability. Suppression of mitochondrial fission by knockdown of its main regulator dynamin-related protein-1 (Drp1) decreased cisplatin-induced mitophagy. Meanwhile, Drp1 suppression protected against cisplatin-induced cells injury by inhibiting mitochondrial dysfunction. Our results provide evidence that Drp1-depedent mitophagy has potential as renoprotective targets for the treatment of cisplatin-induced AKI. PMID:28423497
ERIC Educational Resources Information Center
Metcalf, Richard M.
Although there has been previous research concerned with image size, brightness, and contrast in projection standards, the work has lacked careful conceptualization. In this study, size was measured in terms of the visual angle subtended by the material, brightness was stated in foot-lamberts, and contrast was defined as the ratio of the…
Hess, David A.; Craft, Timothy P.; Wirthlin, Louisa; Hohm, Sarah; Zhou, Ping; Eades, William C.; Creer, Michael H.; Sands, Mark S.; Nolta, Jan A.
2011-01-01
Transplanted adult progenitor cells distribute to peripheral organs and can promote endogenous cellular repair in damaged tissues. However, development of cell-based regenerative therapies has been hindered by the lack of pre-clinical models to efficiently assess multiple organ distribution and difficulty defining human cells with regenerative function. After transplantation into beta-glucuronidase (GUSB)-deficient NOD/SCID/MPSVII mice, we characterized the distribution of lineage depleted human umbilical cord blood-derived cells purified by selection using high aldehyde dehydrogenase activity (ALDH) with CD133 co-expression. ALDHhi or ALDHhiCD133+ cells produced robust hematopoietic reconstitution, and variable levels of tissue distribution in multiple organs. GUSB+ donor cells that co-expressed human (HLA-A,B,C) and hematopoietic (CD45+) cell surface markers were the primary cell phenotype found adjacent to the vascular beds of several tissues, including islet and ductal regions of mouse pancreata. In contrast, variable phenotypes were detected in the chimeric liver, with HLA+/CD45+ cells demonstrating robust GUSB expression adjacent to blood vessels, and CD45−/HLA− cells with diluted GUSB expression predominant in the liver parenchyma. However, true non-hematopoietic human (HLA+/CD45−) cells were rarely detected in other peripheral tissues, suggesting that these GUSB+/HLA−/CD45− cells in the liver were a result of downregulated human surface marker expression in vivo, not widespread seeding of non-hematopoietic cells. However, relying solely on continued expression of cell surface markers, as employed in traditional xenotransplantation models, may underestimate true tissue distribution. ALDH-expressing progenitor cells demonstrated widespread and tissue-specific distribution of variable cellular phenotypes, indicating that these adult progenitor cells should be explored in transplantation models of tissue damage. PMID:18055447
Kumar, Vibhor; Rayan, Nirmala Arul; Muratani, Masafumi; Lim, Stefan; Elanggovan, Bavani; Xin, Lixia; Lu, Tess; Makhija, Harshyaa; Poschmann, Jeremie; Lufkin, Thomas; Ng, Huck Hui; Prabhakar, Shyam
2016-05-01
Although over 35 different histone acetylation marks have been described, the overwhelming majority of regulatory genomics studies focus exclusively on H3K27ac and H3K9ac. In order to identify novel epigenomic traits of regulatory elements, we constructed a benchmark set of validated enhancers by performing 140 enhancer assays in human T cells. We tested 40 chromatin signatures on this unbiased enhancer set and identified H2BK20ac, a little-studied histone modification, as the most predictive mark of active enhancers. Notably, we detected a novel class of functionally distinct enhancers enriched in H2BK20ac but lacking H3K27ac, which was present in all examined cell lines and also in embryonic forebrain tissue. H2BK20ac was also unique in highlighting cell-type-specific promoters. In contrast, other acetylation marks were present in all active promoters, regardless of cell-type specificity. In stimulated microglial cells, H2BK20ac was more correlated with cell-state-specific expression changes than H3K27ac, with TGF-beta signaling decoupling the two acetylation marks at a subset of regulatory elements. In summary, our study reveals a previously unknown connection between histone acetylation and cell-type-specific gene regulation and indicates that H2BK20ac profiling can be used to uncover new dimensions of gene regulation. © 2016 Kumar et al.; Published by Cold Spring Harbor Laboratory Press.
Kumar, Vibhor; Rayan, Nirmala Arul; Muratani, Masafumi; Lim, Stefan; Elanggovan, Bavani; Xin, Lixia; Lu, Tess; Makhija, Harshyaa; Poschmann, Jeremie; Lufkin, Thomas; Ng, Huck Hui; Prabhakar, Shyam
2016-01-01
Although over 35 different histone acetylation marks have been described, the overwhelming majority of regulatory genomics studies focus exclusively on H3K27ac and H3K9ac. In order to identify novel epigenomic traits of regulatory elements, we constructed a benchmark set of validated enhancers by performing 140 enhancer assays in human T cells. We tested 40 chromatin signatures on this unbiased enhancer set and identified H2BK20ac, a little-studied histone modification, as the most predictive mark of active enhancers. Notably, we detected a novel class of functionally distinct enhancers enriched in H2BK20ac but lacking H3K27ac, which was present in all examined cell lines and also in embryonic forebrain tissue. H2BK20ac was also unique in highlighting cell-type-specific promoters. In contrast, other acetylation marks were present in all active promoters, regardless of cell-type specificity. In stimulated microglial cells, H2BK20ac was more correlated with cell-state-specific expression changes than H3K27ac, with TGF-beta signaling decoupling the two acetylation marks at a subset of regulatory elements. In summary, our study reveals a previously unknown connection between histone acetylation and cell-type-specific gene regulation and indicates that H2BK20ac profiling can be used to uncover new dimensions of gene regulation. PMID:26957309
Bakos, Agnes; Banati, Ferenc; Koroknai, Anita; Takacs, Maria; Salamon, Daniel; Minarovits-Kormuta, Susanna; Schwarzmann, Fritz; Wolf, Hans; Niller, Hans Helmut; Minarovits, Janos
2007-10-01
Transcripts for the Epstein-Barr virus (EBV) encoded nuclear antigens (EBNAs) are initiated at alternative promoters (Wp, Cp, for EBNA 1-6 transcripts and Qp, for EBNA 1 transcripts only) located in the BamHI W, C or Q fragment of the viral genome. To understand the host-cell dependent expression of EBNAs in EBV-associated tumors (lymphomas and carcinomas) and in vitro transformed cell lines, it is necessary to analyse the regulatory mechanisms governing the activity of the alternative promoters of EBNA transcripts. Such studies focused mainly on lymphoid cell lines carrying latent EBV genomes, due to the lack of EBV-associated carcinoma cell lines maintaining latent EBV genomes during cultivation in tissue culture. We took advantage of the unique nasopharyngeal carcinoma cell line, C666-1, harboring EBV genomes, and undertook a detailed analysis of CpG methylation patterns and in vivo protein-DNA interactions at the latency promoters Qp and Cp. We found that the active, unmethylated Qp was marked with strong footprints of cellular transcription factors and the viral protein EBNA 1. In contrast, we could not detect binding of relevant transcription factors to the methylated, silent Cp. We concluded that the epigenetic marks at Qp and Cp in C666-1 cells of epithelial origin resemble those of group I Burkitt's lymphoma cell lines.
New Tools for Comparing Microscopy Images: Quantitative Analysis of Cell Types in Bacillus subtilis
van Gestel, Jordi; Vlamakis, Hera
2014-01-01
Fluorescence microscopy is a method commonly used to examine individual differences between bacterial cells, yet many studies still lack a quantitative analysis of fluorescence microscopy data. Here we introduce some simple tools that microbiologists can use to analyze and compare their microscopy images. We show how image data can be converted to distribution data. These data can be subjected to a cluster analysis that makes it possible to objectively compare microscopy images. The distribution data can further be analyzed using distribution fitting. We illustrate our methods by scrutinizing two independently acquired data sets, each containing microscopy images of a doubly labeled Bacillus subtilis strain. For the first data set, we examined the expression of srfA and tapA, two genes which are expressed in surfactin-producing and matrix-producing cells, respectively. For the second data set, we examined the expression of eps and tapA; these genes are expressed in matrix-producing cells. We show that srfA is expressed by all cells in the population, a finding which contrasts with a previously reported bimodal distribution of srfA expression. In addition, we show that eps and tapA do not always have the same expression profiles, despite being expressed in the same cell type: both operons are expressed in cell chains, while single cells mainly express eps. These findings exemplify that the quantification and comparison of microscopy data can yield insights that otherwise would go unnoticed. PMID:25448819
New tools for comparing microscopy images: quantitative analysis of cell types in Bacillus subtilis.
van Gestel, Jordi; Vlamakis, Hera; Kolter, Roberto
2015-02-15
Fluorescence microscopy is a method commonly used to examine individual differences between bacterial cells, yet many studies still lack a quantitative analysis of fluorescence microscopy data. Here we introduce some simple tools that microbiologists can use to analyze and compare their microscopy images. We show how image data can be converted to distribution data. These data can be subjected to a cluster analysis that makes it possible to objectively compare microscopy images. The distribution data can further be analyzed using distribution fitting. We illustrate our methods by scrutinizing two independently acquired data sets, each containing microscopy images of a doubly labeled Bacillus subtilis strain. For the first data set, we examined the expression of srfA and tapA, two genes which are expressed in surfactin-producing and matrix-producing cells, respectively. For the second data set, we examined the expression of eps and tapA; these genes are expressed in matrix-producing cells. We show that srfA is expressed by all cells in the population, a finding which contrasts with a previously reported bimodal distribution of srfA expression. In addition, we show that eps and tapA do not always have the same expression profiles, despite being expressed in the same cell type: both operons are expressed in cell chains, while single cells mainly express eps. These findings exemplify that the quantification and comparison of microscopy data can yield insights that otherwise would go unnoticed. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Prestwich, Glenn D
2007-08-15
The common technique of growing cells on tissue culture plastic (TCP) is gradually being supplanted by methods for culturing cells in two-dimensions (2-D) on matrices with more appropriate physical and biological properties or by encapsulation of cells in three-dimensions (3-D). The universal acceptance of the new 3-D paradigm is currently constrained by the lack of a biocompatible material in the marketplace that offers ease of use, experimental flexibility, and a seamless transition from in vitro to in vivo applications. In this Prospect, I argue that the standard for 3-D cell culture should be bio-inspired, biomimetic materials that can be used "as is" in drug discovery, toxicology, cell banking, and ultimately in medicine. Such biomaterials must therefore be highly reproducible, manufacturable, approvable, and affordable. To obtain integrated, functional, multicellular systems that recapitulate tissues and organs, the needs of the true end-users-physicians and patients-must dictate the key design criteria. Herein I describe the development of one such material that meets these requirements: a covalently crosslinked, biodegradable, simplified mimic of the extracellular matrix (ECM) that permits 3-D culture of cells in vitro and enables tissue formation in vivo. In contrast to materials that were designed for in vitro cell culture and then found unsuitable for clinical use, these semi-synthetic hyaluronan-derived materials were developed for in vivo tissue repair, and are now being re-engineered for in vitro applications in research.
Gründling, Angelika; Schneewind, Olaf
2006-01-01
Staphylococcus simulans bv. staphylolyticus secretes lysostaphin, a bacteriocin that cleaves pentaglycine cross bridges in the cell wall of Staphylococcus aureus. The C-terminal cell wall-targeting domain (CWT) of lysostaphin is required for selective binding of this bacteriocin to S. aureus cells; however, the molecular target for this was unknown. We used purified green fluorescent protein fused to CWT (GFP-CWT) to reveal species-specific association of the reporter with staphylococci. GFP-CWT bound S. aureus cells as well as purified peptidoglycan sacculi. The addition of cross-linked murein, disaccharides linked to interconnected wall peptides, blocked GFP-CWT binding to staphylococci, whereas murein monomers or lysostaphin-solubilized cell wall fragments did not. S. aureus strain Newman variants lacking the capacity for synthesizing polysaccharide capsule (capFO), poly-N-acetylglucosamine (icaAC), lipoprotein (lgt), cell wall-anchored proteins (srtA), or the glycolipid anchor of lipoteichoic acid (ypfP) bound GFP-CWT similar to wild-type staphylococci. A tagO mutant strain, defective in the synthesis of polyribitol wall teichoic acid attached to the cell wall envelope, displayed increased GFP-CWT binding. In contrast, a femAB mutation, reducing both the amount and the length of peptidoglycan cross-linking (monoglycine cross bridges), showed a dramatic reduction in GFP-CWT binding. Thus, the CWT domain of lysostaphin directs the bacteriocin to cross-linked peptidoglycan, which also serves as the substrate for its glycyl-glycine endopeptidase domain. PMID:16547033
Gründling, Angelika; Schneewind, Olaf
2006-04-01
Staphylococcus simulans bv. staphylolyticus secretes lysostaphin, a bacteriocin that cleaves pentaglycine cross bridges in the cell wall of Staphylococcus aureus. The C-terminal cell wall-targeting domain (CWT) of lysostaphin is required for selective binding of this bacteriocin to S. aureus cells; however, the molecular target for this was unknown. We used purified green fluorescent protein fused to CWT (GFP-CWT) to reveal species-specific association of the reporter with staphylococci. GFP-CWT bound S. aureus cells as well as purified peptidoglycan sacculi. The addition of cross-linked murein, disaccharides linked to interconnected wall peptides, blocked GFP-CWT binding to staphylococci, whereas murein monomers or lysostaphin-solubilized cell wall fragments did not. S. aureus strain Newman variants lacking the capacity for synthesizing polysaccharide capsule (capFO), poly-N-acetylglucosamine (icaAC), lipoprotein (lgt), cell wall-anchored proteins (srtA), or the glycolipid anchor of lipoteichoic acid (ypfP) bound GFP-CWT similar to wild-type staphylococci. A tagO mutant strain, defective in the synthesis of polyribitol wall teichoic acid attached to the cell wall envelope, displayed increased GFP-CWT binding. In contrast, a femAB mutation, reducing both the amount and the length of peptidoglycan cross-linking (monoglycine cross bridges), showed a dramatic reduction in GFP-CWT binding. Thus, the CWT domain of lysostaphin directs the bacteriocin to cross-linked peptidoglycan, which also serves as the substrate for its glycyl-glycine endopeptidase domain.
Onal, Melda; St John, Hillary C; Danielson, Allison L; Pike, J Wesley
2016-02-01
Receptor activator of nuclear factor-κB ligand (RANKL) is a tumor necrosis factor (TNF)-like cytokine that is necessary for osteoclast formation and survival. Elevated RANKL synthesis is associated with both increased osteoclast number and bone resorption. Earlier studies identified an enhancer 76 kb upstream of the Tnfsf11 transcriptional start site (TSS) termed RL-D5 or the distal control region (DCR) that modulates RANKL expression in response to PTH, 1,25(OH)2D3,, and an array of cytokines. Mice lacking RL-D5 exhibit high bone mass associated with decreased RANKL expression in bone, spleen, and thymus. In addition to RL-D5, genome-wide studies have identified 9 additional Tnfsf11 enhancers residing upstream of the gene's TSS, which provide RANKL cell type-specificity and responsiveness to local and systemic factors. ChIP-chip analyses has revealed inducible vitamin D receptor (VDR) and cAMP response element-binding protein (CREB) binding at an enhancer termed RL-D2 23 kb upstream of the Tnfsf11 TSS in osteoblastic ST2 cells. Herein, we use ChIP-seq analyses to confirm this finding and then delete this enhancer from the mouse genome to determine its physiological role in vivo. RL-D2(-/-) primary stromal cells showed decreased RANKL-induction by both forskolin and 1,25(OH)2D3 ex vivo. Consistent with this, the parathyroid hormone (PTH) induction of RANKL expression was significantly blunted in RL-D2(-/-) mice in vivo. In contrast, lack of RL-D2 had no effect on 1,25(OH)2D3 induction of RANKL in vivo. Similar to the results found in RL-D5(-/-) mice, lack of RL-D2 led to decreased skeletal RANKL expression, resulting in decreased osteoclast numbers and a progressive increase in bone mineral density. Lack of RL-D2 increased cancellous bone mass in femur and spine but did not alter femoral cortical bone thickness. These results highlight the role of distal enhancers in the regulation of RANKL expression by PTH and perhaps 1,25(OH)2D3 and suggest that the RL-D2 and RL-D5 enhancers contribute in either an additive or synergistic manner to regulate bone remodeling. © 2015 American Society for Bone and Mineral Research.
Solaymani-Mohammadi, Shahram; Lakhdari, Omar; Minev, Ivelina; Shenouda, Steve; Frey, Blake F; Billeskov, Rolf; Singer, Steven M; Berzofsky, Jay A; Eckmann, Lars; Kagnoff, Martin F
2016-03-01
The programmed death-1 receptor is expressed on a wide range of immune effector cells, including T cells, natural killer T cells, dendritic cells, macrophages, and natural killer cells. In malignancies and chronic viral infections, increased expression of programmed death-1 by T cells is generally associated with a poor prognosis. However, its role in early host microbial defense at the intestinal mucosa is not well understood. We report that programmed death-1 expression is increased on conventional natural killer cells but not on CD4(+), CD8(+) or natural killer T cells, or CD11b(+) or CD11c(+) macrophages or dendritic cells after infection with the mouse pathogen Citrobacter rodentium. Mice genetically deficient in programmed death-1 or treated with anti-programmed death-1 antibody were more susceptible to acute enteric and systemic infection with Citrobacter rodentium. Wild-type but not programmed death-1-deficient mice infected with Citrobacter rodentium showed significantly increased expression of the conventional mucosal NK cell effector molecules granzyme B and perforin. In contrast, natural killer cells from programmed death-1-deficient mice had impaired expression of those mediators. Consistent with programmed death-1 being important for intracellular expression of natural killer cell effector molecules, mice depleted of natural killer cells and perforin-deficient mice manifested increased susceptibility to acute enteric infection with Citrobacter rodentium. Our findings suggest that increased programmed death-1 signaling pathway expression by conventional natural killer cells promotes host protection at the intestinal mucosa during acute infection with a bacterial gut pathogen by enhancing the expression and production of important effectors of natural killer cell function. © Society for Leukocyte Biology.
Arina, Ainhoa; Karrison, Theodore; Galka, Eva; Schreiber, Karin; Weichselbaum, Ralph R.; Schreiber, Hans
2017-01-01
Adoptively transferred CD8+ T cells can stabilize the size of solid tumors over long periods of time by exclusively recognizing antigen cross-presented on tumor stroma. However, these tumors eventually escape T cell–mediated growth control. The aim of this study was to eradicate such persistent cancers. In our model, the SIYRYYGL antigen is expressed by cancer cells that lack the MHC-I molecule Kb needed for direct presentation, but the antigen is picked up and cross-presented by tumor stroma. A single injection of antigen-specific 2C CD8+ T cells caused long-term inhibition of tumor growth, but without further intervention, tumors started to progress after approximately 3 months. Escape was associated with reduced numbers of circulating 2C cells. Tumor-infiltrating 2C cells produced significantly less TNFα and expressed more of the “exhaustion” markers PD-1 and Tim-3 than T cells from lymphoid organs. High-dose local ionizing radiation, depletion of myeloid-derived suppressor cells, infusions of additional 2C cells, and antibodies blocking PD-L1 did not prevent tumor escape. In contrast, adoptive transfer of allogeneic CD4+ T cells restored the numbers of circulating Ag-specific CD8+ T cells and their intratumoral function, resulting in tumor eradication. These CD4+ T cells had no antitumor effects in the absence of CD8+ T cells and recognized the alloantigen cross-presented on tumor stroma. CD4+ T cells might also be effective in cancer patients when PD1/PD-L1 blockade does not rescue intratumoral CD8+ T-cell function and tumors persist. PMID:28077434
Xu, Xiao-Jun; Song, De-Gang; Poussin, Mathilde; Ye, Qunrui; Sharma, Prannda; Rodríguez-García, Alba; Tang, Yong-Min; Powell, Daniel J.
2016-01-01
Exogenous cytokines are widely applied to enhance the anti-tumor ability of immune cells. However, systematic comparative studies of their effects on chimeric antigen receptor (CAR)-engineered T (CART) cells are lacking. In this study, CART cells targeting folate receptor-alpha were generated and expanded ex vivo in the presence of different cytokines (IL-2, IL-7, IL-15, IL-18, and IL-21), and their expansion, phenotype and cytotoxic capacity were evaluated, in vitro and in vivo. Moreover, the effect of the administration of these cytokines along with CART cells in vivo was also studied. IL-2, IL-7, and IL-15 favored the ex vivo expansion of CART cells compared to other cytokines or no cytokine treatment. IL-7 induced the highest proportion of memory stem cell-like CART cells in the final product, and IL-21 supported the expansion of CART cells with a younger phenotype, while IL-2 induced more differentiated CART cells. IL-2 and IL-15-exposed CART cells secreted more proinflammatory cytokines and presented stronger tumor-lysis ability in vitro. However, when tested in vivo, CART cells exposed to IL-2 ex vivo showed the least anti-tumor effect. In contrast, the administration of IL-15 and IL-21 in combination with CART cells in vivo increased their tumor killing capacity. According to our results, IL-7 and IL-15 show promise to promote ex vivo expansion of CART cells, while IL-15 and IL-21 seem better suited for in vivo administration after CART cell infusion. Collectively, these results may have a profound impact on the efficacy of CART cells in both hematologic and solid cancers. PMID:27409425
Bissell, Mina J.; Muschler, John L.
2010-02-23
The present invention provides methods and compositions for the diagnosis and treatment of cells lacking normal growth arresting characteristic. The present invention demonstrates that many tumor cells lack normal cell surface .alpha.-dystroglycan and thereby lack dystroglycan function. Dystroglycan can be lost from the cell surface by proteolytic shedding of a fragment of .alpha.-dystroglycan into the surrounding medium. Upon restoration of dystroglycan function and over-expression of the dystroglycan gene, the once tumorigenic cells revert to non-tumorigenic cells which polarize and arrest cell growth in the presence of basement membrane proteins, demonstrating that dystroglycan functions as a tumor marker and suppressor.
Quantitative phase-contrast digital holographic microscopy for cell dynamic evaluation
NASA Astrophysics Data System (ADS)
Yu, Lingfeng; Mohanty, Samarendra; Berns, Michael W.; Chen, Zhongping
2009-02-01
The laser microbeam uses lasers to alter and/or to ablate intracellular organelles and cellular and tissue samples, and, today, has become an important tool for cell biologists to study the molecular mechanism of complex biological systems by removing individual cells or sub-cellular organelles. However, absolute quantitation of the localized alteration/damage to transparent phase objects, such as the cell membrane or chromosomes, was not possible using conventional phase-contrast or differential interference contrast microscopy. We report the development of phase-contrast digital holographic microscopy for quantitative evaluation of cell dynamic changes in real time during laser microsurgery. Quantitative phase images are recorded during the process of laser microsurgery and thus, the dynamic change in phase can be continuously evaluated. Out-of-focus organelles are re-focused by numerical reconstruction algorithms.
Contrast-Marking Prosodic Emphasis in Williams Syndrome: Results of Detailed Phonetic Analysis
ERIC Educational Resources Information Center
Ito, Kiwako; Martens, Marilee A.
2017-01-01
Background: Past reports on the speech production of individuals with Williams syndrome (WS) suggest that their prosody is anomalous and may lead to challenges in spoken communication. While existing prosodic assessments confirm that individuals with WS fail to use prosodic emphasis to express contrast, those reports typically lack detailed…
Hemodynamic and tubular changes induced by contrast media.
Caiazza, Antonella; Russo, Luigi; Sabbatini, Massimo; Russo, Domenico
2014-01-01
The incidence of acute kidney injury induced by contrast media (CI-AKI) is the third cause of AKI in hospitalized patients. Contrast media cause relevant alterations both in renal hemodynamics and in renal tubular cell function that lead to CI-AKI. The vasoconstriction of intrarenal vasculature is the main hemodynamic change induced by contrast media; the vasoconstriction is accompanied by a cascade of events leading to ischemia and reduction of glomerular filtration rate. Cytotoxicity of contrast media causes apoptosis of tubular cells with consequent formation of casts and worsening of ischemia. There is an interplay between the negative effects of contrast media on renal hemodynamics and on tubular cell function that leads to activation of renin-angiotensin system and increased production of reactive oxygen species (ROS) within the kidney. Production of ROS intensifies cellular hypoxia through endothelial dysfunction and alteration of mechanisms regulating tubular cells transport. The physiochemical characteristics of contrast media play a critical role in the incidence of CI-AKI. Guidelines suggest the use of either isoosmolar or low-osmolar contrast media rather than high-osmolar contrast media particularly in patients at increased risk of CI-AKI. Older age, presence of atherosclerosis, congestive heart failure, chronic renal disease, nephrotoxic drugs, and diuretics may multiply the risk of CI-AKI.
Hemodynamic and Tubular Changes Induced by Contrast Media
Caiazza, Antonella; Russo, Luigi; Russo, Domenico
2014-01-01
The incidence of acute kidney injury induced by contrast media (CI-AKI) is the third cause of AKI in hospitalized patients. Contrast media cause relevant alterations both in renal hemodynamics and in renal tubular cell function that lead to CI-AKI. The vasoconstriction of intrarenal vasculature is the main hemodynamic change induced by contrast media; the vasoconstriction is accompanied by a cascade of events leading to ischemia and reduction of glomerular filtration rate. Cytotoxicity of contrast media causes apoptosis of tubular cells with consequent formation of casts and worsening of ischemia. There is an interplay between the negative effects of contrast media on renal hemodynamics and on tubular cell function that leads to activation of renin-angiotensin system and increased production of reactive oxygen species (ROS) within the kidney. Production of ROS intensifies cellular hypoxia through endothelial dysfunction and alteration of mechanisms regulating tubular cells transport. The physiochemical characteristics of contrast media play a critical role in the incidence of CI-AKI. Guidelines suggest the use of either isoosmolar or low-osmolar contrast media rather than high-osmolar contrast media particularly in patients at increased risk of CI-AKI. Older age, presence of atherosclerosis, congestive heart failure, chronic renal disease, nephrotoxic drugs, and diuretics may multiply the risk of CI-AKI. PMID:24678510
Effects of cholinergic drugs on receptive field properties of rabbit retinal ganglion cells
Ariel, M.; Daw, N. W.
1982-01-01
1. Retinal ganglion cells were recorded extracellularly from the rabbit's eye in situ to study the effects of cholinergic drugs on receptive field properties. Physostigmine, an acetylcholinesterase inhibitor, and nicotine increased the spontaneous activity of nearly all retinal ganglion cell types. The effectiveness of physostigmine was roughly correlated with the neurone's inherent level of spontaneous activity. Brisk cells, having high rates of spontaneous firing, showed large increases in their maintained discharge, whereas sluggish cells, with few or no spontaneous spikes, showed small and sometimes transient increases in spontaneous activity during physostigmine. 2. The sensitivity of ganglion cells to spots of optimal size and position did not change substantially during the infusion of physostigmine. However, the responsiveness to light (number of spikes per stimulus above the spontaneous level) increased. This effect occurred with sluggish and more complex cells, rarely with brisk cells. 3. Another effect of physostigmine on sluggish and more complex cells was to make these cells `on—off'. The additional response to the inappropriate change in contrast had a long latency and lacked an initial transient burst. 4. Complex receptive field properties such as orientation sensitivity, radial grating inhibition, speed tuning and size specificity were also examined. These inhibitory properties were still present during infusion of physostigmine and, in most cases, the trigger feature of each cell type remained. 5. These results are consistent with pharmacological results on ACh release from the retina. There appear to be two types of release of ACh, having their most powerful influences on separate classes of cells. One release (transient), occurs at light onset and offset and acts primarily on sluggish and more complex ganglion cells; the other release (tonic) is not light-modulated and acts primarily on brisk cells. A wiring diagram for the ACh cells is suggested. PMID:7097593
Chen, Binglai; Kim, Eun-Hee; Xu, Pin-Xian
2009-02-01
Mouse olfactory epithelium (OE) originates from ectodermally derived placode, the olfactory placode that arises at the anterior end of the neural plate. Tissue grafting and recombination experiments suggest that the placode is derived from a common preplacodal domain around the neural plate and its development is directed by signals arising from the underlying mesoderm and adjacent neuroectoderm. In mice, loss of Six1 affects OE morphogenesis but not placode formation. We show here that embryos lacking both Six1 and Six4 failed to form the olfactory placode but the preplacodal region appeared to be specified as judged by the expression of Eya2, which marks the common preplacodal domain, suggesting a synergistic requirement of Six1 and Six4 in patterning the preplacodal ectoderm to a morphologic placode. Our results show that Six1 and Six4 are coexpressed in the preplacodal ectoderm from E8.0. In the olfactory pit, Six4 expression was observed in the peripheral precursors that overlap with Mash1-expressing cells, the early committed neuronal lineage. In contrast, Six1 is highly distributed in the peripheral regions where stem cells reside at E10.5 and it overlaps with Sox2 expression. Both genes are expressed in the basal and apical neuronal progenitors in the OE. Analyses of Six1;Six4 double mutant embryos demonstrated that the slightly thickened epithelium observed in the mutant was not induced for neuronal development. In contrast, in Six1(-/-) embryos, all neuronal lineage markers were initially expressed but the pattern of their expression was altered. Although very few, the pioneer neurons were initially present in the Six1 mutant OE. However, neurogenesis ceased by E12.5 due to markedly increased cell apoptosis and reduced proliferation, thus defining the cellular defects occurring in Six1(-/-) OE that have not been previously observed. Our findings demonstrate that Six1/4 function at the top of early events controlling olfactory placode formation and neuronal development. Our analyses show that the threshold of Six1/4 may be crucial for the expression of olfactory specific genes and that Six1 and Six4 may act synergistically to mediate olfactory placode specification and patterning through Fgf and Bmp signaling pathways.
Are gadolinium-based contrast media nephrotoxic? A renal biopsy study.
Akgun, Hulya; Gonlusen, Gulfiliz; Cartwright, Joiner; Suki, Wadi N; Truong, Luan D
2006-09-01
Gadolinium-based contrast media were originally introduced as alternatives to iodinated media for magnetic resonance imaging. Although originally thought to be nonnephrotoxic, gadolinium-based contrast media have recently been reported to be associated with acute renal failure; the mechanism and the underlying renal injury are not completely understood. We report what is, to our knowledge, the first renal biopsy in this context. A 56-year-old patient underwent 2 consecutive vascular imaging procedures in conjunction with gadolinium-based contrast medium administration. A few days later, the patient developed acute renal failure. A renal biopsy showed acute tubular cell injury including patchy tubular cell necrosis, tubular cell degeneration, and marked proliferation of tubular cells, together with mild interstitial edema and interstitial inflammation, but without significant glomerular or vascular changes. During supportive therapy, renal function was partially regained. This case emphasizes the potential nephrotoxicity of gadolinium-based contrast media and suggests that the nephrotoxicity is related to potentially reversible acute tubular cell injury.
Morada, Mary; Pendyala, Lakhsmi; Wu, Gang; Merali, Salim; Yarlett, Nigel
2013-01-01
Invasion of human intestinal epithelial cells (HCT-8) by Cryptosporidium parvum resulted in a rapid induction of host cell spermidine/spermine N1-acetyltransferase 1 (hSSAT-1) mRNA, causing a 4-fold increase in SSAT-1 enzyme activity after 24 h of infection. In contrast, host cell SSAT-2, spermine oxidase, and acetylpolyamine oxidase (hAPAO) remained unchanged during this period. Intracellular polyamine levels of C. parvum-infected human epithelial cells were determined, and it was found that spermidine remained unchanged and putrescine increased by 2.5-fold after 15 h and then decreased after 24 h, whereas spermine decreased by 3.9-fold after 15 h. Concomitant with these changes, N1-acetylspermine and N1-acetylspermidine both increased by 115- and 24-fold, respectively. Increased SSAT-1 has previously been shown to be involved in the endoplasmic reticulum (ER) stress response leading to apoptosis. Several stress response proteins were increased in HCT-8 cells infected with C. parvum, including calreticulin, a major calcium-binding chaperone in the ER; GRP78/BiP, a prosurvival ER chaperone; and Nrf2, a transcription factor that binds to antioxidant response elements, thus activating them. However, poly(ADP-ribose) polymerase, a protein involved in DNA repair and programmed cell death, was decreased. Cumulatively, these results suggest that the invasion of HCT-8 cells by C. parvum results in an ER stress response by the host cell that culminates in overexpression of host cell SSAT-1 and elevated N1-acetylpolyamines, which can be used by a parasite that lacks ornithine decarboxylase. PMID:23986438
Noonin, Chadanat; Lin, Xionghui; Jiravanichpaisal, Pikul; Söderhäll, Kenneth; Söderhäll, Irene
2012-11-20
During evolution, the innate and adaptive immune systems were developed to protect organisms from non-self substances. The innate immune system is phylogenetically more ancient and is present in most multicellular organisms, whereas adaptive responses are restricted to vertebrates. Arthropods lack the blood cells of the lymphoid lineage and oxygen-carrying erythrocytes, making them suitable model animals for studying the regulation of the blood cells of the innate immune system. Many crustaceans have a long life span and need to continuously synthesize blood cells, in contrast to many insects. The hematopoietic tissue (HPT) of Pacifastacus leniusculus provides a simple model for studying hematopoiesis, because the tissue can be isolated, and the proliferation of stem cells and their differentiation can be studied both in vivo and in vitro. Here, we demonstrate new findings of a physical link between the HPT and the brain. Actively proliferating cells were localized to an anterior proliferation center (APC) in the anterior part of the tissue near the area linking the HPT to the brain, whereas more differentiated cells were detected in the posterior part. The central areas of HPT expand in response to lipopolysaccharide-induced blood loss. Cells isolated from the APC divide rapidly and form cell clusters in vitro; conversely, the cells from the remaining HPT form monolayers, and they can be induced to differentiate in vitro. Our findings offer an opportunity to learn more about invertebrate hematopoiesis and its connection to the central nervous system, thereby obtaining new information about the evolution of different blood and nerve cell lineages.
Ng, Jovyn K T; Schröder, Roswitha; Sutherland, Paul W; Hallett, Ian C; Hall, Miriam I; Prakash, Roneel; Smith, Bronwen G; Melton, Laurence D; Johnston, Jason W
2013-11-19
There is a paucity of information regarding development of fruit tissue microstructure and changes in the cell walls during fruit growth, and how these developmental processes differ between cultivars with contrasting softening behaviour. In this study we compare two apple cultivars that show different softening rates during fruit development and ripening. We investigate whether these different softening behaviours manifest themselves late during ethylene-induced softening in the ripening phase, or early during fruit expansion and maturation. 'Scifresh' (slow softening) and 'Royal Gala' (rapid softening) apples show differences in cortical microstructure and cell adhesion as early as the cell expansion phase. 'Scifresh' apples showed reduced loss of firmness and greater dry matter accumulation compared with 'Royal Gala' during early fruit development, suggesting differences in resource allocation that influence tissue structural properties. Tricellular junctions in 'Scifresh' were rich in highly-esterified pectin, contributing to stronger cell adhesion and an increased resistance to the development of large airspaces during cell expansion. Consequently, mature fruit of 'Scifresh' showed larger, more angular shaped cells than 'Royal Gala', with less airspaces and denser tissue. Stronger cell adhesion in ripe 'Scifresh' resulted in tissue fracture by cell rupture rather than by cell-to-cell-separation as seen in 'Royal Gala'. CDTA-soluble pectin differed in both cultivars during development, implicating its involvement in cell adhesion. Low pectin methylesterase activity during early stages of fruit development coupled with the lack of immuno-detectable PG was associated with increased cell adhesion in 'Scifresh'. Our results indicate that cell wall structures leading to differences in softening rates of apple fruit develop early during fruit growth and well before the induction of the ripening process.
Type 1 diabetes in NOD mice unaffected by mast cell deficiency.
Gutierrez, Dario A; Fu, Wenxian; Schonefeldt, Susann; Feyerabend, Thorsten B; Ortiz-Lopez, Adriana; Lampi, Yulia; Liston, Adrian; Mathis, Diane; Rodewald, Hans-Reimer
2014-11-01
Mast cells have been invoked as important players in immune responses associated with autoimmune diseases. Based on in vitro studies, or in vivo through the use of Kit mutant mice, mast cells have been suggested to play immunological roles in direct antigen presentation to both CD4(+) and CD8(+) T cells, in the regulation of T-cell and dendritic cell migration to lymph nodes, and in Th1 versus Th2 polarization, all of which could significantly impact the immune response against self-antigens in autoimmune disease, including type 1 diabetes (T1D). Until now, the role of mast cells in the onset and incidence of T1D has only been indirectly tested through the use of low-specificity mast cell inhibitors and activators, and published studies reported contrasting results. Our three laboratories have generated independently two strains of mast cell-deficient nonobese diabetic (NOD) mice, NOD.Cpa3(Cre/+) (Heidelberg) and NOD.Kit(W-sh/W-sh) (Leuven and Boston), to address the effects of mast cell deficiency on the development of T1D in the NOD strain. Our collective data demonstrate that both incidence and progression of T1D in NOD mice are independent of mast cells. Moreover, analysis of pancreatic lymph node cells indicated that lack of mast cells has no discernible effect on the autoimmune response, which involves both innate and adaptive immune components. Our results demonstrate that mast cells are not involved in T1D in the NOD strain, making their role in this process nonessential and excluding them as potential therapeutic targets. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
2013-01-01
Background There is a paucity of information regarding development of fruit tissue microstructure and changes in the cell walls during fruit growth, and how these developmental processes differ between cultivars with contrasting softening behaviour. In this study we compare two apple cultivars that show different softening rates during fruit development and ripening. We investigate whether these different softening behaviours manifest themselves late during ethylene-induced softening in the ripening phase, or early during fruit expansion and maturation. Results ‘Scifresh’ (slow softening) and ‘Royal Gala’ (rapid softening) apples show differences in cortical microstructure and cell adhesion as early as the cell expansion phase. ‘Scifresh’ apples showed reduced loss of firmness and greater dry matter accumulation compared with ‘Royal Gala’ during early fruit development, suggesting differences in resource allocation that influence tissue structural properties. Tricellular junctions in ‘Scifresh’ were rich in highly-esterified pectin, contributing to stronger cell adhesion and an increased resistance to the development of large airspaces during cell expansion. Consequently, mature fruit of ‘Scifresh’ showed larger, more angular shaped cells than ‘Royal Gala’, with less airspaces and denser tissue. Stronger cell adhesion in ripe ‘Scifresh’ resulted in tissue fracture by cell rupture rather than by cell-to-cell-separation as seen in ‘Royal Gala’. CDTA-soluble pectin differed in both cultivars during development, implicating its involvement in cell adhesion. Low pectin methylesterase activity during early stages of fruit development coupled with the lack of immuno-detectable PG was associated with increased cell adhesion in ‘Scifresh’. Conclusions Our results indicate that cell wall structures leading to differences in softening rates of apple fruit develop early during fruit growth and well before the induction of the ripening process. PMID:24252512
Strandmark, J; Steinfelder, S; Berek, C; Kühl, A A; Rausch, S; Hartmann, S
2017-05-01
Infections with enteric nematodes result in systemic type 2 helper T (Th2) responses, expansion of immunoglobulin (Ig)G1 antibodies, and eosinophilia. Eosinophils have a supportive role in mucosal Th2 induction during airway hyperreactivity. Whether eosinophils affect the local T-cell and antibody response in the gut-associated lymphoid tissue during enteric infections is unknown. We infected eosinophil-deficient ΔdblGATA-1 mice with the Th2-inducing small intestinal nematode Heligmosomoides polygyrus and found that parasite fecundity was decreased in the absence of eosinophils. A lack of eosinophils resulted in significantly augmented expression of GATA-3 and IL-4 by CD4 + T cells during acute infection, a finding strictly limited to Peyer's patches (PP). The increase in IL-4-producing cells in ΔdblGATA-1 mice was particularly evident within the CXCR5 + PD-1 + T-follicular helper cell population and was associated with a switch of germinal centre B cells to IgG1 production and elevated serum IgG1 levels. In contrast, infected wild-type mice had a modest IgG1 response in the PP, whereas successfully maintaining a population of IgA + germinal center B cells. Our results suggest a novel role for eosinophils during intestinal infection whereby they restrict IL-4 responses by follicular T helper cells and IgG1 class switching in the PP to ensure maintenance of local IgA production.
Maddika, Subbareddy; Ande, Sudharsana Rao; Wiechec, Emilia; Hansen, Lise Lotte; Wesselborg, Sebastian; Los, Marek
2008-04-01
Here, we show that CDK2, an S-phase cyclin-dependent kinase, is a novel target for Akt during cell cycle progression and apoptosis. Akt phosphorylates CDK2 at threonine 39 residue both in vitro and in vivo. Although CDK2 threonine 39 phosphorylation mediated by Akt enhances cyclin-A binding, it is dispensable for its basal binding and the kinase activity. In addition, for the first time, we report a transient nucleo-cytoplasmic shuttling of Akt during specific stages of the cell cycle, in particular during the late S and G2 phases. The Akt that is re-localized to the nucleus phosphorylates CDK2 and causes the temporary cytoplasmic localization of the CDK2-cyclin-A complex. The CDK2 cytoplasmic redistribution is required for cell progression from S to G2-M phase, because the CDK2 T39A mutant, which lacks the phosphorylation site and is defective in cytoplasmic localization, severely affects cell cycle progression at the transition from S to G2-M. Interestingly, we also show that the Akt/CDK2 pathway is constitutively activated by some anticancer drugs, such as methotrexate and docetaxel, and under these conditions it promotes, rather than represses, cell death. Thus, the constitutive activation of the Akt/CDK2 pathway and changed subcellular localization promotes apoptosis. By contrast, the transient, physiological Akt/CDK2 activation is necessary for cell cycle progression.
High-throughput measurements of the optical redox ratio using a commercial microplate reader.
Cannon, Taylor M; Shah, Amy T; Walsh, Alex J; Skala, Melissa C
2015-01-01
There is a need for accurate, high-throughput, functional measures to gauge the efficacy of potential drugs in living cells. As an early marker of drug response in cells, cellular metabolism provides an attractive platform for high-throughput drug testing. Optical techniques can noninvasively monitor NADH and FAD, two autofluorescent metabolic coenzymes. The autofluorescent redox ratio, defined as the autofluorescence intensity of NADH divided by that of FAD, quantifies relative rates of cellular glycolysis and oxidative phosphorylation. However, current microscopy methods for redox ratio quantification are time-intensive and low-throughput, limiting their practicality in drug screening. Alternatively, high-throughput commercial microplate readers quickly measure fluorescence intensities for hundreds of wells. This study found that a commercial microplate reader can differentiate the receptor status of breast cancer cell lines (p < 0.05) based on redox ratio measurements without extrinsic contrast agents. Furthermore, microplate reader redox ratio measurements resolve response (p < 0.05) and lack of response (p > 0.05) in cell lines that are responsive and nonresponsive, respectively, to the breast cancer drug trastuzumab. These studies indicate that the microplate readers can be used to measure the redox ratio in a high-throughput manner and are sensitive enough to detect differences in cellular metabolism that are consistent with microscopy results.
Kaufmann, Kerstin B.; Brendel, Christian; Suerth, Julia D.; Mueller-Kuller, Uta; Chen-Wichmann, Linping; Schwäble, Joachim; Pahujani, Shweta; Kunkel, Hana; Schambach, Axel; Baum, Christopher; Grez, Manuel
2013-01-01
Comparative integrome analysis has revealed that the most neutral integration pattern among retroviruses is attributed to alpharetroviruses. We chose X-linked chronic granulomatous disease (X-CGD) as model to evaluate the potential of self-inactivating (SIN) alpharetroviral vectors for gene therapy of monogenic diseases. Therefore, we combined the alpharetroviral vector backbone with the elongation factor-1α short promoter, both considered to possess a low genotoxic profile, to drive transgene (gp91phox) expression. Following efficient transduction transgene expression was sustained and provided functional correction of the CGD phenotype in a cell line model at low vector copy number. Further analysis in a murine X-CGD transplantation model revealed gene-marking of bone marrow cells and oxidase positive granulocytes in peripheral blood. Transduction of human X-CGD CD34+ cells provided functional correction up to wild-type levels and long-term expression upon transplantation into a humanized mouse model. In contrast to lentiviral vectors, no aberrantly spliced transcripts containing cellular exons fused to alpharetroviral sequences were found in transduced cells, implying that the safety profile of alpharetroviral vectors may extend beyond their neutral integration profile. Taken together, this highlights the potential of this SIN alpharetroviral system as a platform for new candidate vectors for future gene therapy of hematopoietic disorders. PMID:23207695
Viloria, Katrina; Munasinghe, Amanda; Asher, Sharan; Bogyere, Roberto; Jones, Lucy; Hill, Natasha J
2016-11-25
SPARC is a matricellular protein that is involved in both pancreatic cancer and diabetes. It belongs to a wider family of proteins that share structural and functional similarities. Relatively little is known about this extended family, but evidence of regulatory interactions suggests the importance of a holistic approach to their study. We show that Hevin, SPOCKs, and SMOCs are strongly expressed within islets, ducts, and blood vessels, suggesting important roles for these proteins in the normal pancreas, while FSTL-1 expression is localised to the stromal compartment reminiscent of SPARC. In direct contrast to SPARC, however, FSTL-1 expression is reduced in pancreatic cancer. Consistent with this, FSTL-1 inhibited pancreatic cancer cell proliferation. The complexity of SPARC family proteins is further revealed by the detection of multiple cell-type specific isoforms that arise due to a combination of post-translational modification and alternative splicing. Identification of splice variants lacking a signal peptide suggests the existence of novel intracellular isoforms. This study underlines the importance of addressing the complexity of the SPARC family and provides a new framework to explain their controversial and contradictory effects. We also demonstrate for the first time that FSTL-1 suppresses pancreatic cancer cell growth.
The role of membrane dynamics in electrical and infrared neural stimulation
NASA Astrophysics Data System (ADS)
Moen, Erick K.; Beier, Hope T.; Ibey, Bennett L.; Armani, Andrea M.
2016-03-01
We recently developed a nonlinear optical imaging technique based on second harmonic generation (SHG) to identify membrane disruption events in live cells. This technique was used to detect nanoporation in the plasma membrane following nanosecond pulsed electric field (nsPEF) exposure. It has been hypothesized that similar poration events could be induced by the thermal gradients generated by infrared (IR) laser energy. Optical pulses are a highly desirable stimulus for the nervous system, as they are capable of inhibiting and producing action potentials in a highly localized but non-contact fashion. However, the underlying mechanisms involved with infrared neural stimulation (INS) are not well understood. The ability of our method to non-invasively measure membrane structure and transmembrane potential via Two Photon Fluorescence (TPF) make it uniquely suited to neurological research. In this work, we leverage our technique to understand what role membrane structure plays during INS and contrast it with nsPEF stimulation. We begin by examining the effect of IR pulses on CHO-K1 cells before progressing to primary hippocampal neurons. The use of these two cell lines allows us to directly compare poration as a result of IR pulses to nsPEF exposure in both a neuron-derived cell line, and one likely lacking native channels sensitive to thermal stimuli.
Detection of high CD44 expression in oral cancers using the novel monoclonal antibody, C44Mab-5.
Yamada, Shinji; Itai, Shunsuke; Nakamura, Takuro; Yanaka, Miyuki; Kaneko, Mika K; Kato, Yukinari
2018-07-01
CD44 is a transmembrane glycoprotein that regulates a variety of genes related to cell-adhesion, migration, proliferation, differentiation, and survival. A large number of alternative splicing isoforms of CD44, containing various combinations of alternative exons, have been reported. CD44 standard (CD44s), which lacks variant exons, is widely expressed on the surface of most tissues and all hematopoietic cells. In contrast, CD44 variant isoforms show tissue-specific expression patterns and have been extensively studied as both prognostic markers and therapeutic targets in cancer and other diseases. In this study, we immunized mice with CHO-K1 cell lines overexpressing CD44v3-10 to obtain novel anti-CD44 mAbs. One of the clones, C 44 Mab-5 (IgG 1 , kappa), recognized both CD44s and CD44v3-10. C 44 Mab-5 also reacted with oral cancer cells such as Ca9-22, HO-1-u-1, SAS, HSC-2, HSC-3, and HSC-4 using flow cytometry. Moreover, immunohistochemical analysis revealed that C 44 Mab-5 detected 166/182 (91.2%) of oral cancers. These results suggest that the C 44 Mab-5 antibody may be useful for investigating the expression and function of CD44 in various cancers.
Ruppin, Eytan; Papin, Jason A; de Figueiredo, Luis F; Schuster, Stefan
2010-08-01
With the advent of modern omics technologies, it has become feasible to reconstruct (quasi-) whole-cell metabolic networks and characterize them in more and more detail. Computer simulations of the dynamic behavior of such networks are difficult due to a lack of kinetic data and to computational limitations. In contrast, network analysis based on appropriate constraints such as the steady-state condition (constraint-based analysis) is feasible and allows one to derive conclusions about the system's metabolic capabilities. Here, we review methods for the reconstruction of metabolic networks, modeling techniques such as flux balance analysis and elementary flux modes and current progress in their development and applications. Game-theoretical methods for studying metabolic networks are discussed as well. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ahmed Mohamed, E. T.; Schubert, S.; Gilberger, T. W.; Kamanyi, A., Jr.; Wannemacher, R.; Grill, W.
2006-03-01
Acoustic and optical multiple contrast microscopy has been employed in order to explore characterizable parameters of red blood cells, including cells infected by the parasite Plasmodium falciparum, in order to investigate cellular modifications caused by the infection and to identify possible detection schemes for disease monitoring. Imaging schemes were based on fluorescence, optical transmission, optical reflection, and amplitude and phase of ultrasound reflected from the cells. Contrast variations observed in acoustic microscopy, but not in optical microscopy, were tentatively ascribed to changes caused by the infection.
NASA Astrophysics Data System (ADS)
Suman, Rakesh; O'Toole, Peter
2014-03-01
Here we report a novel label free, high contrast and quantitative method for imaging live cells. The technique reconstructs an image from overlapping diffraction patterns using a ptychographical algorithm. The algorithm utilises both amplitude and phase data from the sample to report on quantitative changes related to the refractive index (RI) and thickness of the specimen. We report the ability of this technique to generate high contrast images, to visualise neurite elongation in neuronal cells, and to provide measure of cell proliferation.
Unterweger, Daniel; Kitaoka, Maya; Miyata, Sarah T; Bachmann, Verena; Brooks, Teresa M; Moloney, Jessica; Sosa, Oscar; Silva, David; Duran-Gonzalez, Jorge; Provenzano, Daniele; Pukatzki, Stefan
2012-01-01
The type VI secretion system (T6SS) mediates protein translocation across the cell membrane of Gram-negative bacteria, including Vibrio cholerae - the causative agent of cholera. All V. cholerae strains examined to date harbor gene clusters encoding a T6SS. Structural similarity and sequence homology between components of the T6SS and the T4 bacteriophage cell-puncturing device suggest that the T6SS functions as a contractile molecular syringe to inject effector molecules into prokaryotic and eukaryotic target cells. Regulation of the T6SS is critical. A subset of V. cholerae strains, including the clinical O37 serogroup strain V52, express T6SS constitutively. In contrast, pandemic strains impose tight control that can be genetically disrupted: mutations in the quorum sensing gene luxO and the newly described regulator gene tsrA lead to constitutive T6SS expression in the El Tor strain C6706. In this report, we examined environmental V. cholerae isolates from the Rio Grande with regard to T6SS regulation. Rough V. cholerae lacking O-antigen carried a nonsense mutation in the gene encoding the global T6SS regulator VasH and did not display virulent behavior towards Escherichia coli and other environmental bacteria. In contrast, smooth V. cholerae strains engaged constitutively in type VI-mediated secretion and displayed virulence towards prokaryotes (E. coli and other environmental bacteria) and a eukaryote (the social amoeba Dictyostelium discoideum). Furthermore, smooth V. cholerae strains were able to outcompete each other in a T6SS-dependent manner. The work presented here suggests that constitutive T6SS expression provides V. cholerae with an advantage in intraspecific and interspecific competition.
Molecular pharmacological profile of the nonredox-type 5-lipoxygenase inhibitor CJ-13,610.
Fischer, Lutz; Steinhilber, Dieter; Werz, Oliver
2004-07-01
5-Lipoxygenase (5-LO) is a crucial enzyme in the synthesis of the bioactive leukotrienes (LTs) from arachidonic acid (AA), and inhibitors of 5-LO are thought to prevent the untowarded pathophysiological effects of LTs. In this study, we present the molecular pharmacological profile of the novel nonredox-type 5-LO inhibitor CJ-13,610 that was evaluated in various in vitro assays. In intact human polymorphonuclear leukocytes (PMNL), challenged with the Ca(2+)-ionophore A23187, CJ-13,610 potently suppressed 5-LO product formation with an IC(50)=0.07 microm. Supplementation of exogenous AA impaired the efficacy of CJ-13,610, implying a competitive mode of action. In analogy to ZM230487 and L-739.010, two closely related nonredox-type 5-LO inhibitors, CJ-13,610 up to 30 microm failed to inhibit 5-LO in cell-free assay systems under nonreducing conditions, but inclusion of peroxidase activity restored the efficacy of CJ-13,610 (IC(50)=0.3 microm). In contrast to ZM230487 and L-739.010, the potency of CJ-13,610 does not depend on the cell stimulus or the activation pathway of 5-LO. Thus, 5-LO product formation in PMNL induced by phosphorylation events was equally suppressed by CJ-13,610 as compared to Ca(2+)-mediated 5-LO activation. In transfected HeLa cells, CJ-13,610 only slightly discriminated between phosphorylatable wild-type 5-LO and a 5-LO mutant that lacks phosphorylation sites. In summary, CJ-13,610 may possess considerable potential as a potent orally active nonredox-type 5-LO inhibitor that lacks certain disadvantages of former representatives of this class of 5-LO inhibitors.
Epidermal regulation of dermal fibroblast activity.
Garner, W L
1998-07-01
Although the association between delayed burn wound healing and subsequent hypertrophic scar formation is well-established, the mechanism for this relationship is unknown. Unhealed burn wounds lack an epidermis, suggesting a possible regulatory role for the epidermis in controlling dermal fibroblast matrix synthesis. Therefore, we examined the effect of epidermal cells and media conditioned by epidermal cells on fibroblast collagen synthesis and replication. Purified fibroblast and keratinocyte cell strains were developed from discarded normal adult human skin. Conditioned media were created by incubation of cytokine-free and serum-free medium with either confluent fibroblast or keratinocyte cultures for 18 hours (n = 3). Nearly confluent fibroblast cultures were exposed for 48 hours to graded concentrations of either unconditioned medium (control), conditioned medium, or varying numbers of keratinocytes. Replication was quantified by the incorporation of 3H-thymidine. Collagen synthesis was measured by the incorporation of 3H-proline into collagenase-sensitive protein. Data were compared using analysis of variance (ANOVA) and linear regression. Keratinocyte conditioned medium induced a significant increase in replication (n = 3) (p = 0.004) and a decrease in collagen synthesis (n = 6) (p < 0.001). In contrast, neither fibroblast conditioned medium nor control medium had an effect on fibroblast replication or collagen synthesis. Co-culture of fibroblast with a graded number of keratinocytes similarly decreased collagen synthesis (n = 6) (p < 0.001). Dermal fibroblast collagen synthesis appears to be regulated by a soluble keratinocyte product. This result suggests a mechanism for the clinical observation that unhealed burn wounds, which lack the epidermis, demonstrate excess collagen production and scar. Clinical strategies to decrease hypertrophic scar should include an attempt at early wound closure with skin grafting or the application of cultured epithelial autografts.
Sharma, Ajay; Gaidamakova, Elena K.; Matrosova, Vera Y.; Bennett, Brian; Daly, Michael J.; Hoffman, Brian M.
2013-01-01
The remarkable ability of bacterium Deinococcus radiodurans to survive extreme doses of γ-rays (12,000 Gy), 20 times greater than Escherichia coli, is undiminished by loss of Mn-dependent superoxide dismutase (SodA). D. radiodurans radiation resistance is attributed to the accumulation of low-molecular-weight (LMW) “antioxidant” Mn2+–metabolite complexes that protect essential enzymes from oxidative damage. However, in vivo information about such complexes within D. radiodurans cells is lacking, and the idea that they can supplant reactive-oxygen-species (ROS)–scavenging enzymes remains controversial. In this report, measurements by advanced paramagnetic resonance techniques [electron-spin-echo (ESE)-EPR/electron nuclear double resonance/ESE envelope modulation (ESEEM)] reveal differential details of the in vivo Mn2+ speciation in D. radiodurans and E. coli cells and their responses to 10 kGy γ-irradiation. The Mn2+ of D. radiodurans exists predominantly as LMW complexes with nitrogenous metabolites and orthophosphate, with negligible EPR signal from Mn2+ of SodA. Thus, the extreme radiation resistance of D. radiodurans cells cannot be attributed to SodA. Correspondingly, 10 kGy irradiation causes no change in D. radiodurans Mn2+ speciation, despite the paucity of holo-SodA. In contrast, the EPR signal of E. coli is dominated by signals from low-symmetry enzyme sites such as that of SodA, with a minority pool of LMW Mn2+ complexes that show negligible coordination by nitrogenous metabolites. Nonetheless, irradiation of E. coli majorly changes LMW Mn2+ speciation, with extensive binding of nitrogenous ligands created by irradiation. We infer that E. coli is highly susceptible to radiation-induced ROS because it lacks an adequate supply of LMW Mn antioxidants. PMID:23536297
Bacterial Colonization of Host Cells in the Absence of Cholesterol
Gilk, Stacey D.; Cockrell, Diane C.; Luterbach, Courtney; Hansen, Bryan; Knodler, Leigh A.; Ibarra, J. Antonio; Steele-Mortimer, Olivia; Heinzen, Robert A.
2013-01-01
Reports implicating important roles for cholesterol and cholesterol-rich lipid rafts in host-pathogen interactions have largely employed sterol sequestering agents and biosynthesis inhibitors. Because the pleiotropic effects of these compounds can complicate experimental interpretation, we developed a new model system to investigate cholesterol requirements in pathogen infection utilizing DHCR24−/− mouse embryonic fibroblasts (MEFs). DHCR24−/− MEFs lack the Δ24 sterol reductase required for the final enzymatic step in cholesterol biosynthesis, and consequently accumulate desmosterol into cellular membranes. Defective lipid raft function by DHCR24−/− MEFs adapted to growth in cholesterol-free medium was confirmed by showing deficient uptake of cholera-toxin B and impaired signaling by epidermal growth factor. Infection in the absence of cholesterol was then investigated for three intracellular bacterial pathogens: Coxiella burnetii, Salmonella enterica serovar Typhimurium, and Chlamydia trachomatis. Invasion by S. Typhimurium and C. trachomatis was unaltered in DHCR24−/− MEFs. In contrast, C. burnetii entry was significantly decreased in −cholesterol MEFs, and also in +cholesterol MEFs when lipid raft-associated αVβ3 integrin was blocked, suggesting a role for lipid rafts in C. burnetii uptake. Once internalized, all three pathogens established their respective vacuolar niches and replicated normally. However, the C. burnetii-occupied vacuole within DHCR24−/− MEFs lacked the CD63-postive material and multilamellar membranes typical of vacuoles formed in wild type cells, indicating cholesterol functions in trafficking of multivesicular bodies to the pathogen vacuole. These data demonstrate that cholesterol is not essential for invasion and intracellular replication by S. Typhimurium and C. trachomatis, but plays a role in C. burnetii-host cell interactions. PMID:23358892
Collins, J K; Chesebro, B
1981-01-01
An erythroleukemia cell clone, 7C, which failed to produce reverse transcriptase-containing virions or infectious virus, was found to produce noninfectious virus particles by gradient banding of [3H]leucine- and [3H]uridine-labeled virions. The RNA from the 7C virus was shown to consist of the normal 70S size component, which converted to 35S upon heat denaturation. In contrast, the 7C virion proteins showed multiple defects. Analysis of the virion proteins by gel electrophoresis demonstrated that the pr65 gag precursor was incorporated into the 7C virus and that the processing of this precursor was severely diminished. Polymerase proteins pr180gag-pol and pr120pol were also detected in virions, and a third possible polymerase protein, p70, was reduced in size compared to its normal counterpart, p80. Incorporation of the viral gp70 glycoprotein into particles was also reduced 10-fold, despite synthesis and incorporation of gp70 into the 7C cell membrane in normal amounts. Pulse-chase analysis of the synthesis of the viral gag and env proteins in 7C cells showed greatly reduced amounts of pr180gag-pol, pr65gag, p80gag, and p42gag, whereas pr90env, gp70, and spleen focus-forming virus-specific gp55 were synthesized and processed normally. These results suggested that at least one defect in 7C virus was impaired cleavage of gag or pol proteins or both, most likely due to a lack of the appropriate viral protease, and that this lack of cleavage might affect incorporation of gp70 into virus particles. Images PMID:6163868
Farioli-Vecchioli, Stefano; Mattera, Andrea; Micheli, Laura; Ceccarelli, Manuela; Leonardi, Luca; Saraulli, Daniele; Costanzi, Marco; Cestari, Vincenzo; Rouault, Jean-Pierre; Tirone, Felice
2014-07-01
Physical exercise increases the generation of new neurons in adult neurogenesis. However, only few studies have investigated the beneficial effects of physical exercise in paradigms of impaired neurogenesis. Here, we demonstrate that running fully reverses the deficient adult neurogenesis within the hippocampus and subventricular zone of the lateral ventricle, observed in mice lacking the antiproliferative gene Btg1. We also evaluated for the first time how running influences the cell cycle kinetics of stem and precursor subpopulations of wild-type and Btg1-null mice, using a new method to determine the cell cycle length. Our data show that in wild-type mice running leads to a cell cycle shortening only of NeuroD1-positive progenitor cells. In contrast, in Btg1-null mice, physical exercise fully reactivates the defective hippocampal neurogenesis, by shortening the S-phase length and the overall cell cycle duration of both neural stem (glial fibrillary acidic protein(+) and Sox2(+)) and progenitor (NeuroD1(+)) cells. These events are sufficient and necessary to reactivate the hyperproliferation observed in Btg1-null early-postnatal mice and to expand the pool of adult neural stem and progenitor cells. Such a sustained increase of cell proliferation in Btg1-null mice after running provides a long-lasting increment of proliferation, differentiation, and production of newborn neurons, which rescues the impaired pattern separation previously identified in Btg1-null mice. This study shows that running positively affects the cell cycle kinetics of specific subpopulations of newly generated neurons and suggests that the plasticity of neural stem cells without cell cycle inhibitory control is reactivated by running, with implications for the long-term modulation of neurogenesis. © 2014 AlphaMed Press.
Tim-3 directly enhances CD8 T cell responses to acute Listeria monocytogenes infection
Gorman, Jacob V.; Starbeck-Miller, Gabriel; Pham, Nhat-Long L.; Traver, Geri L.; Rothman, Paul B.; Harty, John T.; Colgan, John D.
2014-01-01
Tim-3 is a surface molecule expressed throughout the immune system that can mediate both stimulatory and inhibitory effects. Previous studies have provided evidence that Tim-3 functions to enforce CD8 T cell exhaustion, a dysfunctional state associated with chronic stimulation. In contrast, the role of Tim-3 in the regulation of CD8 T cell responses to acute and transient stimulation remains undefined. To address this knowledge gap, we examined how Tim-3 affects CD8 T cell responses to acute Listeria monocytogenes (LM) infection. Analysis of wild-type (WT) mice infected with LM revealed that Tim-3 was transiently expressed by activated CD8 T cells and was associated primarily with acquisition of an effector phenotype. Comparison of responses to LM by WT and Tim-3 KO mice showed that the absence of Tim-3 significantly reduced the magnitudes of both primary and secondary CD8 T cell responses, which correlated with decreased IFN-γ production and degranulation by Tim-3 KO cells stimulated with peptide antigen ex vivo. To address the T cell-intrinsic role of Tim-3, we analyzed responses to LM infection by WT and Tim-3 KO TCR-transgenic CD8 T cells following adoptive transfer into a shared WT host. In this setting, the accumulation of CD8 T cells and the generation of cytokine-producing cells were significantly reduced by the lack of Tim-3, demonstrating that this molecule has a direct effect on CD8 T cell function. Combined, our results suggest that Tim-3 can mediate a stimulatory effect on CD8 T cell responses to an acute infection. PMID:24567532
The effect of platelet lysate supplementation of a dextran-based hydrogel on cartilage formation.
Moreira Teixeira, Liliana S; Leijten, Jeroen C H; Wennink, Jos W H; Chatterjea, Anindita G; Feijen, Jan; van Blitterswijk, Clemens A; Dijkstra, Pieter J; Karperien, Marcel
2012-05-01
In situ gelating dextran-tyramine (Dex-TA) injectable hydrogels have previously shown promising features for cartilage repair. Yet, despite suitable mechanical properties, this system lacks intrinsic biological signals. In contrast, platelet lysate-derived hydrogels are rich in growth factors and anti-inflammatory cytokines, but mechanically unstable. We hypothesized that the advantages of these systems may be combined in one hydrogel, which can be easily translated into clinical settings. Platelet lysate was successfully incorporated into Dex-TA polymer solution prior to gelation. After enzymatic crosslinking, rheological and morphological evaluations were performed. Subsequently, the effect of platelet lysate on cell migration, adhesion, proliferation and multi-lineage differentiation was determined. Finally, we evaluated the integration potential of this gel onto osteoarthritis-affected cartilage. The mechanical properties and covalent attachment of Dex-TA to cartilage tissue during in situ gel formation were successfully combined with the advantages of platelet lysate, revealing the potential of this enhanced hydrogel as a cell-free approach. The addition of platelet lysate did not affect the mechanical properties and porosity of Dex-TA hydrogels. Furthermore, platelet lysate derived anabolic growth factors promoted proliferation and triggered chondrogenic differentiation of mesenchymal stromal cells. Copyright © 2012 Elsevier Ltd. All rights reserved.
MOF maintains transcriptional programs regulating cellular stress response
Sheikh, B N; Bechtel-Walz, W; Lucci, J; Karpiuk, O; Hild, I; Hartleben, B; Vornweg, J; Helmstädter, M; Sahyoun, A H; Bhardwaj, V; Stehle, T; Diehl, S; Kretz, O; Voss, A K; Thomas, T; Manke, T; Huber, T B; Akhtar, A
2016-01-01
MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differentiated tissues at steady state and under stress conditions. In proliferating cells, MOF directly binds and maintains the expression of genes required for cell cycle progression. In contrast, MOF is dispensable for terminally differentiated, postmitotic glomerular podocytes under physiological conditions. However, in response to injury, MOF is absolutely critical for podocyte maintenance in vivo. Consistently, we detect defective nuclear, endoplasmic reticulum and Golgi structures, as well as presence of multivesicular bodies in vivo in podocytes lacking Mof following injury. Undertaking genome-wide expression analysis of podocytes, we uncover several MOF-regulated pathways required for stress response. We find that MOF, along with the members of the non-specific lethal but not the male-specific lethal complex, directly binds to genes encoding the lysosome, endocytosis and vacuole pathways, which are known regulators of podocyte maintenance. Thus, our work identifies MOF as a key regulator of cellular stress response in glomerular podocytes. PMID:26387537
Outer segment phagocytosis by cultured retinal pigment epithelial cells requires Gas6.
Hall, M O; Prieto, A L; Obin, M S; Abrams, T A; Burgess, B L; Heeb, M J; Agnew, B J
2001-10-01
The function and viability of vertebrate photoreceptors requires the daily phagocytosis of photoreceptor outer segments (OS) by the adjacent retinal pigment epithelium (RPE). We demonstrate here a critical role in this process for Gas6 and by implication one of its receptor protein tyrosine kinases (RTKs), Mertk (Mer). Gas6 specifically and selectively stimulates the phagocytosis of OS by normal cultured rat RPE cells. The magnitude of the response is dose-dependent and shows an absolute requirement for calcium. By contrast the Royal College of Surgeons (RCS) rat RPE cells, in which a mutation in the gene Mertk results in the expression of a truncated, non-functional receptor, does not respond to Gas6. These data strongly suggest that activation of Mertk by its ligand, Gas6, is the specific signaling pathway responsible for initiating the ingestion of shed OS. Moreover, photoreceptor degeneration in the RCS rat retina, which lacks Mertk, and in humans with a mutation in Mertk, strongly suggests that the Gas6/Mertk signaling pathway is essential for photoreceptor viability. We believe that this is the first demonstration of a specific function for Gas6 in the eye. Copyright 2001 Academic Press.
Franckaert, Dean; Dooley, James; Roos, Evelyne; Floess, Stefan; Huehn, Jochen; Luche, Herve; Fehling, Hans Joerg; Liston, Adrian; Linterman, Michelle A; Schlenner, Susan M
2015-04-01
Costimulatory signals by CD28 are critical for thymic regulatory T-cell (Treg) development. To determine the functional relevance of CD28 for peripheral Treg post thymic selection, we crossed the widely used Forkhead box protein 3 (Foxp3)-CreYFP mice to mice bearing a conditional Cd28 allele. Treg-specific CD28 deficiency provoked a severe autoimmune syndrome as a result of a strong disadvantage in competitive fitness and proliferation of CD28-deficient Tregs. By contrast, Treg survival and lineage integrity were not affected by the lack of CD28. This data demonstrate that, even after the initial induction requirement, Treg maintain a higher dependency on CD28 signalling than conventional T cells for homeostasis. In addition, we found the Foxp3-CreYFP allele to be a hypomorph, with reduced Foxp3 protein levels. Furthermore, we report here the stochastic activity of the Foxp3-CreYFP allele in non-Tregs, sufficient to recombine some conditional alleles (including Cd28) but not others (including R26-RFP). This hypomorphism and 'leaky' expression of the Foxp3-CreYFP allele should be considered when analysing the conditionally mutated Treg.
MOF maintains transcriptional programs regulating cellular stress response.
Sheikh, B N; Bechtel-Walz, W; Lucci, J; Karpiuk, O; Hild, I; Hartleben, B; Vornweg, J; Helmstädter, M; Sahyoun, A H; Bhardwaj, V; Stehle, T; Diehl, S; Kretz, O; Voss, A K; Thomas, T; Manke, T; Huber, T B; Akhtar, A
2016-05-01
MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differentiated tissues at steady state and under stress conditions. In proliferating cells, MOF directly binds and maintains the expression of genes required for cell cycle progression. In contrast, MOF is dispensable for terminally differentiated, postmitotic glomerular podocytes under physiological conditions. However, in response to injury, MOF is absolutely critical for podocyte maintenance in vivo. Consistently, we detect defective nuclear, endoplasmic reticulum and Golgi structures, as well as presence of multivesicular bodies in vivo in podocytes lacking Mof following injury. Undertaking genome-wide expression analysis of podocytes, we uncover several MOF-regulated pathways required for stress response. We find that MOF, along with the members of the non-specific lethal but not the male-specific lethal complex, directly binds to genes encoding the lysosome, endocytosis and vacuole pathways, which are known regulators of podocyte maintenance. Thus, our work identifies MOF as a key regulator of cellular stress response in glomerular podocytes.
Contribution of Cerebellar Sensorimotor Adaptation to Hippocampal Spatial Memory
Passot, Jean-Baptiste; Sheynikhovich, Denis; Duvelle, Éléonore; Arleo, Angelo
2012-01-01
Complementing its primary role in motor control, cerebellar learning has also a bottom-up influence on cognitive functions, where high-level representations build up from elementary sensorimotor memories. In this paper we examine the cerebellar contribution to both procedural and declarative components of spatial cognition. To do so, we model a functional interplay between the cerebellum and the hippocampal formation during goal-oriented navigation. We reinterpret and complete existing genetic behavioural observations by means of quantitative accounts that cross-link synaptic plasticity mechanisms, single cell and population coding properties, and behavioural responses. In contrast to earlier hypotheses positing only a purely procedural impact of cerebellar adaptation deficits, our results suggest a cerebellar involvement in high-level aspects of behaviour. In particular, we propose that cerebellar learning mechanisms may influence hippocampal place fields, by contributing to the path integration process. Our simulations predict differences in place-cell discharge properties between normal mice and L7-PKCI mutant mice lacking long-term depression at cerebellar parallel fibre-Purkinje cell synapses. On the behavioural level, these results suggest that, by influencing the accuracy of hippocampal spatial codes, cerebellar deficits may impact the exploration-exploitation balance during spatial navigation. PMID:22485133
ERIC Educational Resources Information Center
Albareda-Castellot, Barbara; Pons, Ferran; Sebastian-Galles
2011-01-01
Contrasting results have been reported regarding the phonetic acquisition of bilinguals. A lack of discrimination has been observed for certain native contrasts in 8-month-old Catalan-Spanish bilingual infants (Bosch & Sebastian-Galles, 2003a), though not in French-English bilingual infants (Burns, Yoshida, Hill & Werker, 2007; Sundara, Polka &…
Connecting Instructional and Cognitive Aspects of an LE: A Study of the Global Seminar Project
ERIC Educational Resources Information Center
Savelyeva, Tamara
2012-01-01
My research problem is based on the lack of unifying conceptual cohesion between the discourses concerning cognitive and instructional aspects of learning environments (LE). I contrast that lack with practical developments of LE studies connected at the level of practical implementation and evaluation. Next, I briefly review the LE boundaries,…
Richter, Hanno; Lanthier, Martin; Nevin, Kelly P; Lovley, Derek R
2007-08-01
The ability of Pelobacter carbinolicus to oxidize electron donors with electron transfer to the anodes of microbial fuel cells was evaluated because microorganisms closely related to Pelobacter species are generally abundant on the anodes of microbial fuel cells harvesting electricity from aquatic sediments. P. carbinolicus could not produce current in a microbial fuel cell with electron donors which support Fe(III) oxide reduction by this organism. Current was produced using a coculture of P. carbinolicus and Geobacter sulfurreducens with ethanol as the fuel. Ethanol consumption was associated with the transitory accumulation of acetate and hydrogen. G. sulfurreducens alone could not metabolize ethanol, suggesting that P. carbinolicus grew in the fuel cell by converting ethanol to hydrogen and acetate, which G. sulfurreducens oxidized with electron transfer to the anode. Up to 83% of the electrons available in ethanol were recovered as electricity and in the metabolic intermediate acetate. Hydrogen consumption by G. sulfurreducens was important for ethanol metabolism by P. carbinolicus. Confocal microscopy and analysis of 16S rRNA genes revealed that half of the cells growing on the anode surface were P. carbinolicus, but there was a nearly equal number of planktonic cells of P. carbinolicus. In contrast, G. sulfurreducens was primarily attached to the anode. P. carbinolicus represents the first Fe(III) oxide-reducing microorganism found to be unable to produce current in a microbial fuel cell, providing the first suggestion that the mechanisms for extracellular electron transfer to Fe(III) oxides and fuel cell anodes may be different.
Gauchers disease--a reappraisal of hematopoietic stem cell transplantation.
Ito, Sawa; Barrett, A John
2013-03-01
Hematopoietic stem cell transplantation (HSCT), first performed in 1984, was the first treatment approach for Gaucher's disease (GD) which had curative intent. The early successes in HSCT were soon eclipsed by the introduction of a highly effective enzyme replacement therapy (ERT), which has remained the single most widely used treatment. Experience with HSCT is limited to about 50 reported cases, mainly performed in the last century, with an overall survival around 85%. HSCT typically achieves complete correction of visceral and bony changes and can fully stabilize neurological features in otherwise progressive type II and III GD. ERT, in contrast, is completely safe and effective, but is limited by cost, incomplete resolution of visceral, hematological, and bony features in some patients, and lack of neurological correction in type II and III disease. In this review, we summarize and compare HSCT and ERT. With 20 years of experience of ERT, its limitations as well as its advantages are now well delineated. Meanwhile progress in HSCT over the last decade suggests that transplantation would today represent a very safe curative approach for GD offering one time complete correction of the disease, contrasting with the lifelong need for ERT with its associated expense and dependence on sophisticated drug manufacture. Additionally, unlike ERT, HSCT can be beneficial for neurological forms of GD. We conclude that the time has come to re-evaluate HSCT in selected patients with GD where ERT is less likely to fully eradicate symptoms of the disease.
Mutations in the NHEJ Component XRCC4 Cause Primordial Dwarfism
Murray, Jennie E.; van der Burg, Mirjam; IJspeert, Hanna; Carroll, Paula; Wu, Qian; Ochi, Takashi; Leitch, Andrea; Miller, Edward S.; Kysela, Boris; Jawad, Alireza; Bottani, Armand; Brancati, Francesco; Cappa, Marco; Cormier-Daire, Valerie; Deshpande, Charu; Faqeih, Eissa A.; Graham, Gail E.; Ranza, Emmanuelle; Blundell, Tom L.; Jackson, Andrew P.; Stewart, Grant S.; Bicknell, Louise S.
2015-01-01
Non-homologous end joining (NHEJ) is a key cellular process ensuring genome integrity. Mutations in several components of the NHEJ pathway have been identified, often associated with severe combined immunodeficiency (SCID), consistent with the requirement for NHEJ during V(D)J recombination to ensure diversity of the adaptive immune system. In contrast, we have recently found that biallelic mutations in LIG4 are a common cause of microcephalic primordial dwarfism (MPD), a phenotype characterized by prenatal-onset extreme global growth failure. Here we provide definitive molecular genetic evidence supported by biochemical, cellular, and immunological data for mutations in XRCC4, encoding the obligate binding partner of LIG4, causing MPD. We report the identification of biallelic mutations in XRCC4 in five families. Biochemical and cellular studies demonstrate that these alterations substantially decrease XRCC4 protein levels leading to reduced cellular ligase IV activity. Consequently, NHEJ-dependent repair of ionizing-radiation-induced DNA double-strand breaks is compromised in XRCC4 cells. Similarly, immunoglobulin junctional diversification is impaired in cells. However, immunoglobulin levels are normal, and individuals lack overt signs of immunodeficiency. Additionally, in contrast to individuals with LIG4 mutations, pancytopenia leading to bone marrow failure has not been observed. Hence, alterations that alter different NHEJ proteins give rise to a phenotypic spectrum, from SCID to extreme growth failure, with deficiencies in certain key components of this repair pathway predominantly exhibiting growth deficits, reflecting differential developmental requirements for NHEJ proteins to support growth and immune maturation. PMID:25728776
Mastro, Kevin J.; Bouchard, Rachel S.; Holt, Hiromi A. K.
2014-01-01
Cell-type diversity in the brain enables the assembly of complex neural circuits, whose organization and patterns of activity give rise to brain function. However, the identification of distinct neuronal populations within a given brain region is often complicated by a lack of objective criteria to distinguish one neuronal population from another. In the external segment of the globus pallidus (GPe), neuronal populations have been defined using molecular, anatomical, and electrophysiological criteria, but these classification schemes are often not generalizable across preparations and lack consistency even within the same preparation. Here, we present a novel use of existing transgenic mouse lines, Lim homeobox 6 (Lhx6)–Cre and parvalbumin (PV)–Cre, to define genetically distinct cell populations in the GPe that differ molecularly, anatomically, and electrophysiologically. Lhx6–GPe neurons, which do not express PV, are concentrated in the medial portion of the GPe. They have lower spontaneous firing rates, narrower dynamic ranges, and make stronger projections to the striatum and substantia nigra pars compacta compared with PV–GPe neurons. In contrast, PV–GPe neurons are more concentrated in the lateral portions of the GPe. They have narrower action potentials, deeper afterhyperpolarizations, and make stronger projections to the subthalamic nucleus and parafascicular nucleus of the thalamus. These electrophysiological and anatomical differences suggest that Lhx6–GPe and PV–GPe neurons participate in different circuits with the potential to contribute to different aspects of motor function and dysfunction in disease. PMID:24501350
CTC1-mediated C-strand fill-in is an essential step in telomere length maintenance
Feng, Xuyang; Hsu, Shih-Jui; Kasbek, Christopher; Chaiken, Mary
2017-01-01
Abstract To prevent progressive telomere shortening as a result of conventional DNA replication, new telomeric DNA must be added onto the chromosome end. The de novo DNA synthesis involves elongation of the G-rich strand of the telomere by telomerase. In human cells, the CST complex (CTC1-STN1-TEN1) also functions in telomere replication. CST first aids in duplication of the telomeric dsDNA. Then after telomerase has extended the G-rich strand, CST facilitates fill-in synthesis of the complementary C-strand. Here, we analyze telomere structure after disruption of human CTC1 and demonstrate that functional CST is essential for telomere length maintenance due to its role in mediating C-strand fill-in. Removal of CTC1 results in elongation of the 3΄ overhang on the G-rich strand. This leads to accumulation of RPA and telomeric DNA damage signaling. G-overhang length increases with time after CTC1 disruption and at early times net G-strand growth is apparent, indicating telomerase-mediated G-strand extension. In contrast, C-strand length decreases continuously, indicating a deficiency in C-strand fill-in synthesis. The lack of C-strand maintenance leads to gradual shortening of the telomeric dsDNA, similar to that observed in cells lacking telomerase. Thus, telomerase-mediated G-strand extension and CST-mediated C-strand fill-in are equally important for telomere length maintenance. PMID:28334750
Geer, David J.; Swartz, Daniel D.; Andreadis, Stelios T.
2005-01-01
Exogenous keratinocyte growth factor (KGF) significantly enhances wound healing, but its use is hampered by a short biological half-life and lack of tissue selectivity. We used a biomimetic approach to achieve cell-controlled delivery of KGF by covalently attaching a fluorescent matrix-binding peptide that contained two domains: one recognized by factor XIII and the other by plasmin. Modified KGF was incorporated into the fibrin matrix at high concentration in a factor XIII-dependent manner. Cell-mediated activation of plasminogen to plasmin degraded the fibrin matrix and cleaved the peptides, releasing active KGF to the local microenvironment and enhancing epithelial cell proliferation and migration. To demonstrate in vivo effectiveness, we used a hybrid model of wound healing that involved transplanting human bioengineered skin onto athymic mice. At 6 weeks after grafting, the transplanted tissues underwent full thickness wounding and treatment with fibrin gels containing bound KGF. In contrast to topical KGF, fibrin-bound KGF persisted in the wounds for several days and was released gradually, resulting in significantly enhanced wound closure. A fibrinolytic inhibitor prevented this healing, indicating the requirement for cell-mediated fibrin degradation to release KGF. In conclusion, this biomimetic approach of localized, cell-controlled delivery of growth factors may accelerate healing of large full-thickness wounds and chronic wounds that are notoriously difficult to heal. PMID:16314471
Okamoto, Toru; Campbell, Stephanie; Mehta, Ninad; Thibault, John; Colman, Peter M; Barry, Michele; Huang, David C S; Kvansakul, Marc
2012-11-01
Many viruses express inhibitors of programmed cell death (apoptosis), thereby countering host defenses that would otherwise rapidly clear infected cells. To counter this, viruses such as adenoviruses and herpesviruses express recognizable homologs of the mammalian prosurvival protein Bcl-2. In contrast, the majority of poxviruses lack viral Bcl-2 (vBcl-2) homologs that are readily identified by sequence similarities. One such virus, myxoma virus, which is the causative agent of myxomatosis, expresses a virulence factor that is a potent inhibitor of apoptosis. In spite of the scant sequence similarity to Bcl-2, myxoma virus M11L adopts an almost identical 3-dimensional fold. We used M11L as bait in a sequence similarity search for other Bcl-2-like proteins and identified six putative vBcl-2 proteins from poxviruses. Some are potent inhibitors of apoptosis, in particular sheeppox virus SPPV14, which inhibited cell death induced by multiple agents. Importantly, SPPV14 compensated for the loss of antiapoptotic F1L in vaccinia virus and acts to directly counter the cell death mediators Bax and Bak. SPPV14 also engages a unique subset of the death-promoting BH3-only ligands, including Bim, Puma, Bmf, and Hrk. This suggests that SPPV14 may have been selected for specific biological roles as a virulence factor for sheeppox virus.
Murphy, B; Hillman, C; McDonnel, S
2014-01-22
Feline immunodeficiency virus (FIV)-infected cats enter a clinically asymptomatic phase during chronic infection. Despite the lack of overt clinical disease, the asymptomatic phase is characterized by persistent immunologic impairment. In the peripheral blood obtained from cats experimentally infected with FIV-C for approximately 5 years, we identified a persistent inversion of the CD4/CD8 ratio. We cloned and sequenced the FIV-C long terminal repeat containing the viral promoter from cells infected with the inoculating virus and from in vivo-derived peripheral blood mononuclear cells and CD4 T cells isolated at multiple time points throughout the asymptomatic phase. Relative to the inoculating virus, viral sequences amplified from cells isolated from all of the infected animals demonstrated multiple single nucleotide mutations and a short deletion within the viral U3, R and U5 regions. A transcriptionally inactivating proviral mutation in the U3 promoter AP-1 site was identified at multiple time points from all of the infected animals but not within cell-associated viral RNA. In contrast, no mutations were identified within the sequence of the viral dUTPase gene amplified from PBMC isolated at approximately 5 years post-infection relative to the inoculating sequence. The possible implications of these mutations to viral pathogenesis are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Kleinschnitz, Christoph; Kraft, Peter; Dreykluft, Angela; Hagedorn, Ina; Göbel, Kerstin; Schuhmann, Michael K; Langhauser, Friederike; Helluy, Xavier; Schwarz, Tobias; Bittner, Stefan; Mayer, Christian T; Brede, Marc; Varallyay, Csanad; Pham, Mirko; Bendszus, Martin; Jakob, Peter; Magnus, Tim; Meuth, Sven G; Iwakura, Yoichiro; Zernecke, Alma; Sparwasser, Tim; Nieswandt, Bernhard; Stoll, Guido; Wiendl, Heinz
2013-01-24
We have recently identified T cells as important mediators of ischemic brain damage, but the contribution of the different T-cell subsets is unclear. Forkhead box P3 (FoxP3)-positive regulatory T cells (Tregs) are generally regarded as prototypic anti-inflammatory cells that maintain immune tolerance and counteract tissue damage in a variety of immune-mediated disorders. In the present study, we examined the role of Tregs after experimental brain ischemia/reperfusion injury. Selective depletion of Tregs in the DEREG mouse model dramatically reduced infarct size and improved neurologic function 24 hours after stroke and this protective effect was preserved at later stages of infarct development. The specificity of this detrimental Treg effect was confirmed by adoptive transfer experiments in wild-type mice and in Rag1(-/-) mice lacking lymphocytes. Mechanistically, Tregs induced microvascular dysfunction in vivo by increased interaction with the ischemic brain endothelium via the LFA-1/ICAM-1 pathway and platelets and these findings were confirmed in vitro. Ablation of Tregs reduced microvascular thrombus formation and improved cerebral reperfusion on stroke, as revealed by ultra-high-field magnetic resonance imaging at 17.6 Tesla. In contrast, established immunoregulatory characteristics of Tregs had no functional relevance. We define herein a novel and unexpected role of Tregs in a primary nonimmunologic disease state.
Toda, Naohiro; Mori, Kiyoshi; Kasahara, Masato; Ishii, Akira; Koga, Kenichi; Ohno, Shoko; Mori, Keita P.; Kato, Yukiko; Osaki, Keisuke; Kuwabara, Takashige; Kojima, Katsutoshi; Taura, Daisuke; Sone, Masakatsu; Matsusaka, Taiji; Nakao, Kazuwa; Mukoyama, Masashi; Yanagita, Motoko; Yokoi, Hideki
2017-01-01
Connective tissue growth factor (CTGF) coordinates the signaling of growth factors and promotes fibrosis. Neonatal death of systemic CTGF knockout (KO) mice has hampered analysis of CTGF in adult renal diseases. We established 3 types of CTGF conditional KO (cKO) mice to investigate a role and source of CTGF in anti-glomerular basement membrane (GBM) glomerulonephritis. Tamoxifen-inducible systemic CTGF (Rosa-CTGF) cKO mice exhibited reduced proteinuria with ameliorated crescent formation and mesangial expansion in anti-GBM nephritis after induction. Although CTGF is expressed by podocytes at basal levels, podocyte-specific CTGF (pod-CTGF) cKO mice showed no improvement in renal injury. In contrast, PDGFRα promoter-driven CTGF (Pdgfra-CTGF) cKO mice, which predominantly lack CTGF expression by mesangial cells, exhibited reduced proteinuria with ameliorated histological changes. Glomerular macrophage accumulation, expression of Adgre1 and Ccl2, and ratio of M1/M2 macrophages were all reduced both in Rosa-CTGF cKO and Pdgfra-CTGF cKO mice, but not in pod-CTGF cKO mice. TGF-β1-stimulated Ccl2 upregulation in mesangial cells and macrophage adhesion to activated mesangial cells were decreased by reduction of CTGF. These results reveal a novel mechanism of macrophage migration into glomeruli with nephritis mediated by CTGF derived from mesangial cells, implicating the therapeutic potential of CTGF inhibition in glomerulonephritis. PMID:28191821
Toda, Naohiro; Mori, Kiyoshi; Kasahara, Masato; Ishii, Akira; Koga, Kenichi; Ohno, Shoko; Mori, Keita P; Kato, Yukiko; Osaki, Keisuke; Kuwabara, Takashige; Kojima, Katsutoshi; Taura, Daisuke; Sone, Masakatsu; Matsusaka, Taiji; Nakao, Kazuwa; Mukoyama, Masashi; Yanagita, Motoko; Yokoi, Hideki
2017-02-13
Connective tissue growth factor (CTGF) coordinates the signaling of growth factors and promotes fibrosis. Neonatal death of systemic CTGF knockout (KO) mice has hampered analysis of CTGF in adult renal diseases. We established 3 types of CTGF conditional KO (cKO) mice to investigate a role and source of CTGF in anti-glomerular basement membrane (GBM) glomerulonephritis. Tamoxifen-inducible systemic CTGF (Rosa-CTGF) cKO mice exhibited reduced proteinuria with ameliorated crescent formation and mesangial expansion in anti-GBM nephritis after induction. Although CTGF is expressed by podocytes at basal levels, podocyte-specific CTGF (pod-CTGF) cKO mice showed no improvement in renal injury. In contrast, PDGFRα promoter-driven CTGF (Pdgfra-CTGF) cKO mice, which predominantly lack CTGF expression by mesangial cells, exhibited reduced proteinuria with ameliorated histological changes. Glomerular macrophage accumulation, expression of Adgre1 and Ccl2, and ratio of M1/M2 macrophages were all reduced both in Rosa-CTGF cKO and Pdgfra-CTGF cKO mice, but not in pod-CTGF cKO mice. TGF-β1-stimulated Ccl2 upregulation in mesangial cells and macrophage adhesion to activated mesangial cells were decreased by reduction of CTGF. These results reveal a novel mechanism of macrophage migration into glomeruli with nephritis mediated by CTGF derived from mesangial cells, implicating the therapeutic potential of CTGF inhibition in glomerulonephritis.
Kim, Hyun Ju; Jeong, Haeyoung; Hwang, Seungwoo; Lee, Moo-Seung; Lee, Yong-Jik; Lee, Dong-Woo; Lee, Sang Jun
2014-01-01
Microbial adaptations often occur via genomic mutations under adverse environmental conditions. This study used Escherichia coli ΔadhE cells as a model system to investigate adaptation to anaerobic conditions, which we then compared with the adaptive mechanisms of two closely related E. coli strains, K-12 and B. In contrast to K-12 ΔadhE cells, the E. coli B ΔadhE cells exhibited significantly delayed adaptive growth under anaerobic conditions. Adaptation by the K-12 and B strains mainly employed anaerobic lactate fermentation to restore cellular growth. Several mutations were identified in the pta or pflB genes of adapted K-12 cells, but mostly in the pta gene of the B strains. However, the types of mutation in the adapted K-12 and B strains were similar. Cellular viability was affected directly by severe redox imbalance in B ΔadhE cells, which also impaired their ability to adapt to anaerobic conditions. This study demonstrates that closely related microorganisms may undergo different adaptations under the same set of adverse conditions, which might be associated with the specific metabolic characteristics of each strain. This study provides new insights into short-term microbial adaptation to stressful conditions, which may reflect dynamic microbial population changes in nature. PMID:25250024
Dalla Rosa, Ilaria; Zhang, Hongliang; Khiati, Salim; Wu, Xiaolin; Pommier, Yves
2017-12-08
Mitochondrial DNA (mtDNA) is essential for cell viability because it encodes subunits of the respiratory chain complexes. Mitochondrial topoisomerase IB (TOP1MT) facilitates mtDNA replication by removing DNA topological tensions produced during mtDNA transcription, but it appears to be dispensable. To test whether cells lacking TOP1MT have aberrant mtDNA transcription, we performed mitochondrial transcriptome profiling. To that end, we designed and implemented a customized tiling array, which enabled genome-wide, strand-specific, and simultaneous detection of all mitochondrial transcripts. Our technique revealed that Top1mt KO mouse cells process the mitochondrial transcripts normally but that protein-coding mitochondrial transcripts are elevated. Moreover, we found discrete long noncoding RNAs produced by H-strand transcription and encompassing the noncoding regulatory region of mtDNA in human and murine cells and tissues. Of note, these noncoding RNAs were strongly up-regulated in the absence of TOP1MT. In contrast, 7S DNA, produced by mtDNA replication, was reduced in the Top1mt KO cells. We propose that the long noncoding RNA species in the D-loop region are generated by the extension of H-strand transcripts beyond their canonical stop site and that TOP1MT acts as a topological barrier and regulator for mtDNA transcription and D-loop formation.
De La Cruz-Rivera, Pamela C; Kanchwala, Mohammed; Liang, Hanquan; Kumar, Ashwani; Wang, Lin-Fa; Xing, Chao; Schoggins, John W
2018-01-01
Bats host a large number of zoonotic viruses, including several viruses that are highly pathogenic to other mammals. The mechanisms underlying this rich viral diversity are unknown, but they may be linked to unique immunological features that allow bats to act as asymptomatic viral reservoirs. Vertebrates respond to viral infection by inducing IFNs, which trigger antiviral defenses through IFN-stimulated gene (ISG) expression. Although the IFN system of several bats is characterized at the genomic level, less is known about bat IFN-mediated transcriptional responses. In this article, we show that IFN signaling in bat cells from the black flying fox ( Pteropus alecto ) consists of conserved and unique ISG expression profiles. In IFN-stimulated cells, bat ISGs comprise two unique temporal subclusters with similar early induction kinetics but distinct late-phase declines. In contrast, human ISGs lack this decline phase and remained elevated for longer periods. Notably, in unstimulated cells, bat ISGs were expressed more highly than their human counterparts. We also found that the antiviral effector 2-5A-dependent endoribonuclease, which is not an ISG in humans, is highly IFN inducible in black flying fox cells and contributes to cell-intrinsic control of viral infection. These studies reveal distinctive innate immune features that may underlie a unique virus-host relationship in bats. Copyright © 2017 by The American Association of Immunologists, Inc.
Liedert, Bernd; Pluim, Dick; Schellens, Jan; Thomale, Jürgen
2006-01-01
The anticancer drug cisplatin executes its cytotoxic activity via formation of intra- and interstrand crosslinks in DNA. The relative contribution of structurally defined cisplatin adducts to induce apoptosis and the cellular processing of these lesions is still poorly understood mostly due to the lack of sensitive analytical tools for in vivo studies. Here we describe a new method to establish and characterize monoclonal antibodies (Mab) for structurally defined DNA adducts. The two major reaction products of cisplatin, the guanine–guanine (Pt-[GG]) and adenine–guanine (Pt-[AG]) intrastrand crosslinks are recognized by Mab R-C18 and R-B3, respectively. Both antibodies were employed in an immuno-cytological assay allowing the quantification of drug-induced lesions in individual cell nuclei at clinically relevant doses. Analyzing various tissues of cisplatin-treated C57Bl/6 mice the accumulation of Pt-(GG) was highest in kidney tubular cells compared with 30, 50 and 90% lower levels in kidney stroma, liver and peripheral blood cells, respectively. Adduct kinetics revealed that wild type mouse cells remove up to 80% of the crosslinks in contrast to their complete persistence in nucleotide excision repair-deficient (XPC−/−) mice. The aptitude of the immunoassay for human molecular dosimetry studies was demonstrated by measuring adduct levels in tumor biopsies from patients treated with cisplatin. PMID:16571898
Haas, Kalina T; Lee, MiYoung; Esposito, Alessandro; Venkitaraman, Ashok R
2018-01-01
Abstract RAD51 recombinase assembles on single-stranded (ss)DNA substrates exposed by DNA end-resection to initiate homologous recombination (HR), a process fundamental to genome integrity. RAD51 assembly has been characterized using purified proteins, but its ultrastructural topography in the cell nucleus is unexplored. Here, we combine cell genetics with single-molecule localization microscopy and a palette of bespoke analytical tools, to visualize molecular transactions during RAD51 assembly in the cellular milieu at resolutions approaching 30–40 nm. In several human cell types, RAD51 focalizes in clusters that progressively extend into long filaments, which abut—but do not overlap—with globular bundles of replication protein A (RPA). Extended filaments alter topographically over time, suggestive of succeeding steps in HR. In cells depleted of the tumor suppressor protein BRCA2, or overexpressing its RAD51-binding BRC repeats, RAD51 fails to assemble at damage sites, although RPA accumulates unhindered. By contrast, in cells lacking a BRCA2 carboxyl (C)-terminal region targeted by cancer-causing mutations, damage-induced RAD51 assemblies initiate but do not extend into filaments. We suggest a model wherein RAD51 assembly proceeds concurrently with end-resection at adjacent sites, via an initiation step dependent on the BRC repeats, followed by filament extension through the C-terminal region of BRCA2. PMID:29309696
de Jong, Emma; Strunk, Tobias; Burgner, David; Lavoie, Pascal M; Currie, Andrew
2017-09-01
The extreme vulnerability of preterm infants to invasive microbial infections has been attributed to "immature" innate immune defenses. Monocytes are important innate immune sentinel cells critical in the defense against infection in blood. They achieve this via diverse mechanisms that include pathogen recognition receptor- and inflammasome-mediated detection of microbes, migration into infected tissues, and differentiation into Mϕs and dendritic cells, initiation of the inflammatory cascade by free radicals and cytokine/chemokine production, pathogen clearance by phagocytosis and intracellular killing, and the removal of apoptotic cells. Relatively little is known about these cells in preterm infants, especially about how their phenotype adapts to changes in the microbial environment during the immediate postnatal period. Overall, preterm monocytes exhibit attenuated proinflammatory cytokine responses following stimulation by whole bacterial or specific microbial components in vitro. These attenuated cytokine responses cannot be explained by a lack of intracellular signaling events downstream of pattern recognition receptors. This hyporesponsiveness also contrasts with mature, term-like phagocytosis capabilities detectable even in the most premature infant. Finally, human data on the effects of fetal chorioamnionitis on monocyte biology are incomplete and inconsistent. In this review, we present an integrated view of human studies focused on monocyte functions in preterm infants. We discuss how a developmental immaturity of these cells may contribute to preterm infants' susceptibility to infections. © Society for Leukocyte Biology.
Kwon, Jungkee; Wang, Yu-Lai; Setsuie, Rieko; Sekiguchi, Satoshi; Sato, Yae; Sakurai, Mikako; Noda, Mami; Aoki, Shunsuke; Yoshikawa, Yasuhiro; Wada, Keiji
2004-01-01
The experimentally induced cryptorchid mouse model is useful for elucidating the in vivo molecular mechanism of germ cell apoptosis. Apoptosis, in general, is thought to be partly regulated by the ubiquitin-proteasome system. Here, we analyzed the function of two closely related members of the ubiquitin C-terminal hydrolase (UCH) family in testicular germ cell apoptosis experimentally induced by cryptorchidism. The two enzymes, UCH-L1 and UCH-L3, deubiquitinate ubiquitin-protein conjugates and control the cellular balance of ubiquitin. The testes of gracile axonal dystrophy (gad) mice, which lack UCH-L1, were resistant to cryptorchid stress-related injury and had reduced ubiquitin levels. The level of both anti-apoptotic (Bcl-2 family and XIAP) and prosurvival (pCREB and BDNF) proteins was significantly higher in gad mice after cryptorchid stress. In contrast, Uchl3 knockout mice showed profound testicular atrophy and apoptotic germ cell loss after cryptorchid injury. Ubiquitin level was not significantly different between wild-type and Uchl3 knockout mice, whereas the levels of Nedd8 and the apoptotic proteins p53, Bax, and caspase3 were elevated in Uchl3 knockout mice. These results demonstrate that UCH-L1 and UCH-L3 function differentially to regulate the cellular levels of anti-apoptotic, prosurvival, and apoptotic proteins during testicular germ cell apoptosis. PMID:15466400
Swevers, Luc; Liu, Jisheng; Huvenne, Hanneke; Smagghe, Guy
2011-01-01
RNA interference (RNAi), an RNA-dependent gene silencing process that is initiated by double-stranded RNA (dsRNA) molecules, has been applied with variable success in lepidopteran insects, in contrast to the high efficiency achieved in the coleopteran Tribolium castaneum. To gain insight into the factors that determine the efficiency of RNAi, a survey was carried out to check the expression of factors that constitute the machinery of the small interfering RNA (siRNA) and microRNA (miRNA) pathways in different tissues and stages of the silkmoth, Bombyx mori. It was found that the dsRNA-binding protein R2D2, an essential component in the siRNA pathway in Drosophila, was expressed at minimal levels in silkmoth tissues. The silkmoth-derived Bm5 cell line was also deficient in expression of mRNA encoding full-length BmTranslin, an RNA-binding factor that has been shown to stimulate the efficiency of RNAi. However, despite the lack of expression of the RNA-binding proteins, silencing of a luciferase reporter gene was observed by co-transfection of luc dsRNA using a lipophilic reagent. In contrast, gene silencing was not detected when the cells were soaked in culture medium supplemented with dsRNA. The introduction of an expression construct for Tribolium R2D2 (TcR2D2) did not influence the potency of luc dsRNA to silence the luciferase reporter. Immunostaining experiments further showed that both TcR2D2 and BmTranslin accumulated at defined locations within the cytoplasm of transfected cells. Our results offer a first evaluation of the expression of the RNAi machinery in silkmoth tissues and Bm5 cells and provide evidence for a functional RNAi response to intracellular dsRNA in the absence of R2D2 and Translin. The failure of TcR2D2 to stimulate the intracellular RNAi pathway in Bombyx cells is discussed. PMID:21637842
Meza, Daphne; Wang, Danni; Wang, Yu; Borwege, Sabine; Sanai, Nader; Liu, Jonathan T C
2015-04-01
Fluorescence image-guided surgery (FIGS), with contrast provided by 5-ALA-induced PpIX, has been shown to enable a higher extent of resection of high-grade gliomas. However, conventional FIGS with low-power microscopy lacks the sensitivity to aid in low-grade glioma (LGG) resection because PpIX signal is weak and sparse in such tissues. Intraoperative high-resolution microscopy of PpIX fluorescence has been proposed as a method to guide LGG resection, where sub-cellular resolution allows for the visualization of sparse and punctate mitochondrial PpIX production in tumor cells. Here, we assess the performance of three potentially portable high-resolution microscopy techniques that may be used for the intraoperative imaging of human LGG tissue samples with PpIX contrast: high-resolution fiber-optic microscopy (HRFM), high-resolution wide-field microscopy (WFM), and dual-axis confocal (DAC) microscopy. Thick unsectioned human LGG tissue samples (n = 7) with 5-ALA-induced PpIX contrast were imaged using three imaging techniques (HRFM, WFM, DAC). The average signal-to-background ratio (SBR) was then calculated for each imaging modality (5 images per tissue, per modality). HRFM provides the ease of use and portability of a flexible fiber bundle, and is simple and inexpensive to build. However, in most cases (6/7), HRFM is not capable of detecting PpIX signal from LGGs due to high autofluorescence, generated by the fiber bundle under laser illumination at 405 nm, which overwhelms the PpIX signal and impedes its visualization. WFM is a camera-based method possessing high lateral resolution but poor axial resolution, resulting in sub-optimal image contrast. Consistent successful detection of PpIX signal throughout our human LGG tissue samples (n = 7), with an acceptable image contrast (SBR >2), was only achieved using DAC microscopy, which offers superior image resolution and contrast that is comparable to histology, but requires a laser-scanning mechanism to achieve optical sectioning. © 2015 Wiley Periodicals, Inc.
Williams, Brent A.; Law, Arjun Datt; Routy, Bertrand; denHollander, Neal; Gupta, Vikas; Wang, Xing-Hua; Chaboureau, Amélie; Viswanathan, Sowmya; Keating, Armand
2017-01-01
Background Autologous NK cell therapy can treat a variety of malignancies, but is limited by patient-specific variations in potency and cell number expansion. In contrast, allogeneic NK cell lines can overcome many of these limitations. Cells from the permanent NK-92 line are constitutively activated, lack inhibitory receptors and appear to be safe based on two prior phase I trials. Materials and Methods We conducted a single-center, non-randomized, non-blinded, open-label, Phase I dose-escalation trial of irradiated NK-92 cells in adults with refractory hematological malignancies who relapsed after autologous hematopoietic cell transplantation (AHCT). The objectives were to determine safety, feasibility and evidence of activity. Patients were treated at one of three dose levels (1 × 109 cells/m2, 3 × 109 cells/m2 and 5 × 109 cells/m2), given on day 1, 3 and 5 for a planned total of six monthly cycles. Results Twelve patients with lymphoma or multiple myeloma who relapsed after AHCT for relapsed/refractory disease were enrolled in this trial. The treatment was well tolerated, with minor toxicities restricted to acute infusional events, including fever, chills, nausea and fatigue. Two patients achieved a complete response (Hodgkin lymphoma and multiple myeloma), two patients had minor responses and one had clinical improvement on the trial. Conclusions Irradiated NK-92 cells can be administered at very high doses with minimal toxicity in patients with refractory blood cancers, who had relapsed after AHCT. We conclude that high dose NK-92 therapy is safe, shows some evidence of efficacy in patients with refractory blood cancers and warrants further clinical investigation. PMID:29179517
Saba, Nakhle S.; Levy, Laura S.
2011-01-01
AIDS-related Non-Hodgkin Lymphoma (AIDS-NHL) constitutes an aggressive variety of lymphomas characterized by increased extranodal involvement, relapse rate and resistance to chemotherapy. PKCβ targeting showed promising results in preclinical and clinical studies involving a wide variety of cancers, but studies describing the role of PKCβ in AIDS-NHL are primitive if not lacking. In the present study, three AIDS-NHL cell lines were examined: 2F7 (AIDS-Burkitt Lymphoma), BCBL-1 (AIDS-Primary Effusion Lymphoma) and UMCL01-101 (AIDS-Diffuse Large B Cell Lymphoma). Immunoblot analysis demonstrated expression of PKCβ1 and PKCβ2 in 2F7 and UMCL01-101 cells, and PKCβ1 alone in BCBL-1 cells. The viability of 2F7 and BCBL-1 cells decreased significantly in the presence of PKCβ-selective inhibitor at IC50 of 14 μM and 15 μM, respectively, as measured by MTS assay. In contrast, UMCL01-101 cells were relatively resistant. As determined using flow cytometric TUNEL assay with propidium iodide staining, the responsiveness of sensitive cells was associated with apoptotic induction and cell cycle inhibition. PKCβ-selective inhibition was observed not to affect AKT phosphorylation, but to induce a rapid and sustained reduction in the phosphorylation of GSK3β, ribosomal protein S6, and mTOR in sensitive cell lines. The results indicate that PKCβ plays an important role in AIDS-related NHL survival, and suggest that PKCβ targeting should be considered in a broader spectrum of NHL. The observations in BCBL-1 were unexpected in the absence of PKCβ2 expression and implicate PKCβ1 as a regulator in those cells. PMID:21997316
Handa, A; Muramatsu, S; Qiu, J; Mizukami, H; Brown, K E
2000-08-01
Although adeno-associated virus (AAV)-2 has a broad tissue-host range and can transduce a wide variety of tissue types, some cells, such as erythro-megakaryoblastoid cells, are non-permissive and appear to lack the AAV-2 receptor. However, limited studies have been reported with the related dependovirus AAV-3. We have previously cloned this virus, characterized its genome and produced an infectious clone. In this study, the gene for green fluorescent protein (GFP) was inserted into AAV-2- and AAV-3-based plasmids and recombinant viruses were produced. These viruses were then used to transduce haematopoietic cells and the transduction efficiencies were compared. In contrast to recombinant (r) AAV-2, rAAV-3 successfully transduced erythroid and megakaryoblastoid cells, although rAAV-2 was superior in transduction of lymphocyte-derived cell lines. Recently, it was reported that heparan sulphate can act as a receptor of AAV-2. The infectivity of rAAV-2 and rAAV-3 was tested with mutant cell lines of Chinese hamster ovary cells that were defective for heparin or heparan sulphate expression on the cell surface. There was no correlation between the ability of rAAV-2 or rAAV-3 to infect cells and the cell surface expression of heparan sulphate and, although heparin blocked both rAAV-2 and rAAV-3 transduction, the ID(50) of rAAV-3 was higher than that of rAAV-2. In addition, virus-binding overlay assays indicated that AAV-2 and AAV-3 bound different membrane proteins. These results suggest not only that there are different cellular receptors for AAV-2 and AAV-3, but that rAAV-3 vectors may be preferred for transduction of some haematopoietic cell types.
Sánchez-Sampedro, L; Mejías-Pérez, E; S Sorzano, Carlos Óscar; Nájera, J L; Esteban, M
2016-07-15
The NYVAC poxvirus vector is used as vaccine candidate for HIV and other diseases, although there is only limited experimental information on its immunogenicity and effectiveness for use against human pathogens. Here we defined the selective advantage of NYVAC vectors in a mouse model by comparing the immune responses and protection induced by vectors that express the LACK (Leishmania-activated C-kinase antigen), alone or with insertion of the viral host range gene C7L that allows the virus to replicate in human cells. Using DNA prime/virus boost protocols, we show that replication-competent NYVAC-LACK that expresses C7L (NYVAC-LACK-C7L) induced higher-magnitude polyfunctional CD8(+) and CD4(+) primary adaptive and effector memory T cell responses (IFNγ, TNFα, IL-2, CD107a) to LACK antigen than non-replicating NYVAC-LACK. Compared to NYVAC-LACK, the NYVAC-LACK-C7L-induced CD8(+) T cell population also showed higher proliferation when stimulated with LACK antigen. After a challenge by subcutaneous Leishmania major metacyclic promastigotes, NYVAC-LACK-C7L-vaccinated mouse groups showed greater protection than the NYVAC-LACK-vaccinated group. Our results indicate that the type and potency of immune responses induced by LACK-expressing NYVAC vectors is improved by insertion of the C7L gene, and that a replication-competent vector as a vaccine renders greater protection against a human pathogen than a non-replicating vector. Copyright © 2016 Elsevier B.V. All rights reserved.