Sample records for control algorithm implementation

  1. A real time microcomputer implementation of sensor failure detection for turbofan engines

    NASA Technical Reports Server (NTRS)

    Delaat, John C.; Merrill, Walter C.

    1989-01-01

    An algorithm was developed which detects, isolates, and accommodates sensor failures using analytical redundancy. The performance of this algorithm was demonstrated on a full-scale F100 turbofan engine. The algorithm was implemented in real-time on a microprocessor-based controls computer which includes parallel processing and high order language programming. Parallel processing was used to achieve the required computational power for the real-time implementation. High order language programming was used in order to reduce the programming and maintenance costs of the algorithm implementation software. The sensor failure algorithm was combined with an existing multivariable control algorithm to give a complete control implementation with sensor analytical redundancy. The real-time microprocessor implementation of the algorithm which resulted in the successful completion of the algorithm engine demonstration, is described.

  2. Neural Generalized Predictive Control: A Newton-Raphson Implementation

    NASA Technical Reports Server (NTRS)

    Soloway, Donald; Haley, Pamela J.

    1997-01-01

    An efficient implementation of Generalized Predictive Control using a multi-layer feedforward neural network as the plant's nonlinear model is presented. In using Newton-Raphson as the optimization algorithm, the number of iterations needed for convergence is significantly reduced from other techniques. The main cost of the Newton-Raphson algorithm is in the calculation of the Hessian, but even with this overhead the low iteration numbers make Newton-Raphson faster than other techniques and a viable algorithm for real-time control. This paper presents a detailed derivation of the Neural Generalized Predictive Control algorithm with Newton-Raphson as the minimization algorithm. Simulation results show convergence to a good solution within two iterations and timing data show that real-time control is possible. Comments about the algorithm's implementation are also included.

  3. Implementation of Real-Time Feedback Flow Control Algorithms on a Canonical Testbed

    NASA Technical Reports Server (NTRS)

    Tian, Ye; Song, Qi; Cattafesta, Louis

    2005-01-01

    This report summarizes the activities on "Implementation of Real-Time Feedback Flow Control Algorithms on a Canonical Testbed." The work summarized consists primarily of two parts. The first part summarizes our previous work and the extensions to adaptive ID and control algorithms. The second part concentrates on the validation of adaptive algorithms by applying them to a vibration beam test bed. Extensions to flow control problems are discussed.

  4. Massively parallel algorithms for real-time wavefront control of a dense adaptive optics system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fijany, A.; Milman, M.; Redding, D.

    1994-12-31

    In this paper massively parallel algorithms and architectures for real-time wavefront control of a dense adaptive optic system (SELENE) are presented. The authors have already shown that the computation of a near optimal control algorithm for SELENE can be reduced to the solution of a discrete Poisson equation on a regular domain. Although, this represents an optimal computation, due the large size of the system and the high sampling rate requirement, the implementation of this control algorithm poses a computationally challenging problem since it demands a sustained computational throughput of the order of 10 GFlops. They develop a novel algorithm,more » designated as Fast Invariant Imbedding algorithm, which offers a massive degree of parallelism with simple communication and synchronization requirements. Due to these features, this algorithm is significantly more efficient than other Fast Poisson Solvers for implementation on massively parallel architectures. The authors also discuss two massively parallel, algorithmically specialized, architectures for low-cost and optimal implementation of the Fast Invariant Imbedding algorithm.« less

  5. Development of Algorithms for Control of Humidity in Plant Growth Chambers

    NASA Technical Reports Server (NTRS)

    Costello, Thomas A.

    2003-01-01

    Algorithms were developed to control humidity in plant growth chambers used for research on bioregenerative life support at Kennedy Space Center. The algorithms used the computed water vapor pressure (based on measured air temperature and relative humidity) as the process variable, with time-proportioned outputs to operate the humidifier and de-humidifier. Algorithms were based upon proportional-integral-differential (PID) and Fuzzy Logic schemes and were implemented using I/O Control software (OPTO-22) to define and download the control logic to an autonomous programmable logic controller (PLC, ultimate ethernet brain and assorted input-output modules, OPTO-22), which performed the monitoring and control logic processing, as well the physical control of the devices that effected the targeted environment in the chamber. During limited testing, the PLC's successfully implemented the intended control schemes and attained a control resolution for humidity of less than 1%. The algorithms have potential to be used not only with autonomous PLC's but could also be implemented within network-based supervisory control programs. This report documents unique control features that were implemented within the OPTO-22 framework and makes recommendations regarding future uses of the hardware and software for biological research by NASA.

  6. A Robustly Stabilizing Model Predictive Control Algorithm

    NASA Technical Reports Server (NTRS)

    Ackmece, A. Behcet; Carson, John M., III

    2007-01-01

    A model predictive control (MPC) algorithm that differs from prior MPC algorithms has been developed for controlling an uncertain nonlinear system. This algorithm guarantees the resolvability of an associated finite-horizon optimal-control problem in a receding-horizon implementation.

  7. Hardware Implementation of Maximum Power Point Tracking for Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Maganga, Othman; Phillip, Navneesh; Burnham, Keith J.; Montecucco, Andrea; Siviter, Jonathan; Knox, Andrew; Simpson, Kevin

    2014-06-01

    This work describes the practical implementation of two maximum power point tracking (MPPT) algorithms, namely those of perturb and observe, and extremum seeking control. The proprietary dSPACE system is used to perform hardware in the loop (HIL) simulation whereby the two control algorithms are implemented using the MATLAB/Simulink (Mathworks, Natick, MA) software environment in order to control a synchronous buck-boost converter connected to two commercial thermoelectric modules. The process of performing HIL simulation using dSPACE is discussed, and a comparison between experimental and simulated results is highlighted. The experimental results demonstrate the validity of the two MPPT algorithms, and in conclusion the benefits and limitations of real-time implementation of MPPT controllers using dSPACE are discussed.

  8. Implementation of a partitioned algorithm for simulation of large CSI problems

    NASA Technical Reports Server (NTRS)

    Alvin, Kenneth F.; Park, K. C.

    1991-01-01

    The implementation of a partitioned numerical algorithm for determining the dynamic response of coupled structure/controller/estimator finite-dimensional systems is reviewed. The partitioned approach leads to a set of coupled first and second-order linear differential equations which are numerically integrated with extrapolation and implicit step methods. The present software implementation, ACSIS, utilizes parallel processing techniques at various levels to optimize performance on a shared-memory concurrent/vector processing system. A general procedure for the design of controller and filter gains is also implemented, which utilizes the vibration characteristics of the structure to be solved. Also presented are: example problems; a user's guide to the software; the procedures and algorithm scripts; a stability analysis for the algorithm; and the source code for the parallel implementation.

  9. Implementation of Maximum Power Point Tracking (MPPT) Solar Charge Controller using Arduino

    NASA Astrophysics Data System (ADS)

    Abdelilah, B.; Mouna, A.; KouiderM’Sirdi, N.; El Hossain, A.

    2018-05-01

    the platform Arduino with a number of sensors standard can be used as components of an electronic system for acquiring measures and controls. This paper presents the design of a low-cost and effective solar charge controller. This system includes several elements such as the solar panel converter DC/DC, battery, circuit MPPT using Microcontroller, sensors, and the MPPT algorithm. The MPPT (Maximum Power Point Tracker) algorithm has been implemented using an Arduino Nano with the preferred program. The voltage and current of the Panel are taken where the program implemented will work and using this algorithm that MPP will be reached. This paper provides details on the solar charge control device at the maximum power point. The results include the change of the duty cycle with the change in load and thus mean the variation of the buck converter output voltage and current controlled by the MPPT algorithm.

  10. EV Charging Algorithm Implementation with User Price Preference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bin; Hu, Boyang; Qiu, Charlie

    2015-02-17

    in this paper, we propose and implement a smart Electric Vehicle (EV) charging algorithm to control the EV charging infrastructures according to users’ price preferences. EVSE (Electric Vehicle Supply Equipment), equipped with bidirectional communication devices and smart meters, can be remotely monitored by the proposed charging algorithm applied to EV control center and mobile app. On the server side, ARIMA model is utilized to fit historical charging load data and perform day-ahead prediction. A pricing strategy with energy bidding policy is proposed and implemented to generate a charging price list to be broadcasted to EV users through mobile app. Onmore » the user side, EV drivers can submit their price preferences and daily travel schedules to negotiate with Control Center to consume the expected energy and minimize charging cost simultaneously. The proposed algorithm is tested and validated through the experimental implementations in UCLA parking lots.« less

  11. The architecture of adaptive neural network based on a fuzzy inference system for implementing intelligent control in photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Gimazov, R.; Shidlovskiy, S.

    2018-05-01

    In this paper, we consider the architecture of the algorithm for extreme regulation in the photovoltaic system. An algorithm based on an adaptive neural network with fuzzy inference is proposed. The implementation of such an algorithm not only allows solving a number of problems in existing algorithms for extreme power regulation of photovoltaic systems, but also creates a reserve for the creation of a universal control system for a photovoltaic system.

  12. Data-driven gradient algorithm for high-precision quantum control

    NASA Astrophysics Data System (ADS)

    Wu, Re-Bing; Chu, Bing; Owens, David H.; Rabitz, Herschel

    2018-04-01

    In the quest to achieve scalable quantum information processing technologies, gradient-based optimal control algorithms (e.g., grape) are broadly used for implementing high-precision quantum gates, but their performance is often hindered by deterministic or random errors in the system model and the control electronics. In this paper, we show that grape can be taught to be more effective by jointly learning from the design model and the experimental data obtained from process tomography. The resulting data-driven gradient optimization algorithm (d-grape) can in principle correct all deterministic gate errors, with a mild efficiency loss. The d-grape algorithm may become more powerful with broadband controls that involve a large number of control parameters, while other algorithms usually slow down due to the increased size of the search space. These advantages are demonstrated by simulating the implementation of a two-qubit controlled-not gate.

  13. Control algorithm implementation for a redundant degree of freedom manipulator

    NASA Technical Reports Server (NTRS)

    Cohan, Steve

    1991-01-01

    This project's purpose is to develop and implement control algorithms for a kinematically redundant robotic manipulator. The manipulator is being developed concurrently by Odetics Inc., under internal research and development funding. This SBIR contract supports algorithm conception, development, and simulation, as well as software implementation and integration with the manipulator hardware. The Odetics Dexterous Manipulator is a lightweight, high strength, modular manipulator being developed for space and commercial applications. It has seven fully active degrees of freedom, is electrically powered, and is fully operational in 1 G. The manipulator consists of five self-contained modules. These modules join via simple quick-disconnect couplings and self-mating connectors which allow rapid assembly/disassembly for reconfiguration, transport, or servicing. Each joint incorporates a unique drive train design which provides zero backlash operation, is insensitive to wear, and is single fault tolerant to motor or servo amplifier failure. The sensing system is also designed to be single fault tolerant. Although the initial prototype is not space qualified, the design is well-suited to meeting space qualification requirements. The control algorithm design approach is to develop a hierarchical system with well defined access and interfaces at each level. The high level endpoint/configuration control algorithm transforms manipulator endpoint position/orientation commands to joint angle commands, providing task space motion. At the same time, the kinematic redundancy is resolved by controlling the configuration (pose) of the manipulator, using several different optimizing criteria. The center level of the hierarchy servos the joints to their commanded trajectories using both linear feedback and model-based nonlinear control techniques. The lowest control level uses sensed joint torque to close torque servo loops, with the goal of improving the manipulator dynamic behavior. The control algorithms are subjected to a dynamic simulation before implementation.

  14. Space Launch System Implementation of Adaptive Augmenting Control

    NASA Technical Reports Server (NTRS)

    Wall, John H.; Orr, Jeb S.; VanZwieten, Tannen S.

    2014-01-01

    Given the complex structural dynamics, challenging ascent performance requirements, and rigorous flight certification constraints owing to its manned capability, the NASA Space Launch System (SLS) launch vehicle requires a proven thrust vector control algorithm design with highly optimized parameters to provide stable and high-performance flight. On its development path to Preliminary Design Review (PDR), the SLS flight control system has been challenged by significant vehicle flexibility, aerodynamics, and sloshing propellant. While the design has been able to meet all robust stability criteria, it has done so with little excess margin. Through significant development work, an Adaptive Augmenting Control (AAC) algorithm has been shown to extend the envelope of failures and flight anomalies the SLS control system can accommodate while maintaining a direct link to flight control stability criteria such as classical gain and phase margin. In this paper, the work performed to mature the AAC algorithm as a baseline component of the SLS flight control system is presented. The progress to date has brought the algorithm design to the PDR level of maturity. The algorithm has been extended to augment the full SLS digital 3-axis autopilot, including existing load-relief elements, and the necessary steps for integration with the production flight software prototype have been implemented. Several updates which have been made to the adaptive algorithm to increase its performance, decrease its sensitivity to expected external commands, and safeguard against limitations in the digital implementation are discussed with illustrating results. Monte Carlo simulations and selected stressing case results are also shown to demonstrate the algorithm's ability to increase the robustness of the integrated SLS flight control system.

  15. Cosine Kuramoto Based Distribution of a Convoy with Limit-Cycle Obstacle Avoidance Through the Use of Simulated Agents

    NASA Astrophysics Data System (ADS)

    Howerton, William

    This thesis presents a method for the integration of complex network control algorithms with localized agent specific algorithms for maneuvering and obstacle avoidance. This method allows for successful implementation of group and agent specific behaviors. It has proven to be robust and will work for a variety of vehicle platforms. Initially, a review and implementation of two specific algorithms will be detailed. The first, a modified Kuramoto model was developed by Xu [1] which utilizes tools from graph theory to efficiently perform the task of distributing agents. The second algorithm developed by Kim [2] is an effective method for wheeled robots to avoid local obstacles using a limit-cycle navigation method. The results of implementing these methods on a test-bed of wheeled robots will be presented. Control issues related to outside disturbances not anticipated in the original theory are then discussed. A novel method of using simulated agents to separate the task of distributing agents from agent specific velocity and heading commands has been developed and implemented to address these issues. This new method can be used to combine various behaviors and is not limited to a specific control algorithm.

  16. Peak reduction for commercial buildings using energy storage

    NASA Astrophysics Data System (ADS)

    Chua, K. H.; Lim, Y. S.; Morris, S.

    2017-11-01

    Battery-based energy storage has emerged as a cost-effective solution for peak reduction due to the decrement of battery’s price. In this study, a battery-based energy storage system is developed and implemented to achieve an optimal peak reduction for commercial customers with the limited energy capacity of the energy storage. The energy storage system is formed by three bi-directional power converter rated at 5 kVA and a battery bank with capacity of 64 kWh. Three control algorithms, namely fixed-threshold, adaptive-threshold, and fuzzy-based control algorithms have been developed and implemented into the energy storage system in a campus building. The control algorithms are evaluated and compared under different load conditions. The overall experimental results show that the fuzzy-based controller is the most effective algorithm among the three controllers in peak reduction. The fuzzy-based control algorithm is capable of incorporating a priori qualitative knowledge and expertise about the load characteristic of the buildings as well as the useable energy without over-discharging the batteries.

  17. Resonator reset in circuit QED by optimal control for large open quantum systems

    NASA Astrophysics Data System (ADS)

    Boutin, Samuel; Andersen, Christian Kraglund; Venkatraman, Jayameenakshi; Ferris, Andrew J.; Blais, Alexandre

    2017-10-01

    We study an implementation of the open GRAPE (gradient ascent pulse engineering) algorithm well suited for large open quantum systems. While typical implementations of optimal control algorithms for open quantum systems rely on explicit matrix exponential calculations, our implementation avoids these operations, leading to a polynomial speedup of the open GRAPE algorithm in cases of interest. This speedup, as well as the reduced memory requirements of our implementation, are illustrated by comparison to a standard implementation of open GRAPE. As a practical example, we apply this open-system optimization method to active reset of a readout resonator in circuit QED. In this problem, the shape of a microwave pulse is optimized such as to empty the cavity from measurement photons as fast as possible. Using our open GRAPE implementation, we obtain pulse shapes, leading to a reset time over 4 times faster than passive reset.

  18. Learning-based traffic signal control algorithms with neighborhood information sharing: An application for sustainable mobility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aziz, H. M. Abdul; Zhu, Feng; Ukkusuri, Satish V.

    Here, this research applies R-Markov Average Reward Technique based reinforcement learning (RL) algorithm, namely RMART, for vehicular signal control problem leveraging information sharing among signal controllers in connected vehicle environment. We implemented the algorithm in a network of 18 signalized intersections and compare the performance of RMART with fixed, adaptive, and variants of the RL schemes. Results show significant improvement in system performance for RMART algorithm with information sharing over both traditional fixed signal timing plans and real time adaptive control schemes. Additionally, the comparison with reinforcement learning algorithms including Q learning and SARSA indicate that RMART performs better atmore » higher congestion levels. Further, a multi-reward structure is proposed that dynamically adjusts the reward function with varying congestion states at the intersection. Finally, the results from test networks show significant reduction in emissions (CO, CO 2, NO x, VOC, PM 10) when RL algorithms are implemented compared to fixed signal timings and adaptive schemes.« less

  19. Design and implementation of multichannel global active structural acoustic control for a device casing

    NASA Astrophysics Data System (ADS)

    Mazur, Krzysztof; Wrona, Stanislaw; Pawelczyk, Marek

    2018-01-01

    The paper presents the idea and discussion on implementation of multichannel global active noise control systems. As a test plant an active casing is used. It has been developed by the authors to reduce device noise directly at the source by controlling vibration of its casing. To provide global acoustic effect in the whole environment, where the device operates, it requires a number of secondary sources and sensors for each casing wall, thus making the whole active control structure complicated, i.e. with a large number of interacting channels. The paper discloses all details concerning hardware setup and efficient implementation of control algorithms for the multichannel case. A new formulation is presented to introduce the distributed version of the Switched-error Filtered-reference Least Mean Squares (FXLMS) algorithm together with adaptation rate enhancement. The convergence rate of the proposed algorithm is compared with original Multiple-error FXLMS. A number of hints followed from many years of authors' experience on microprocessor control systems design and signal processing algorithms optimization are presented. They can be used for various active control and signal processing applications, both for academic research and commercialization.

  20. Design and Implementation of Hybrid CORDIC Algorithm Based on Phase Rotation Estimation for NCO

    PubMed Central

    Zhang, Chaozhu; Han, Jinan; Li, Ke

    2014-01-01

    The numerical controlled oscillator has wide application in radar, digital receiver, and software radio system. Firstly, this paper introduces the traditional CORDIC algorithm. Then in order to improve computing speed and save resources, this paper proposes a kind of hybrid CORDIC algorithm based on phase rotation estimation applied in numerical controlled oscillator (NCO). Through estimating the direction of part phase rotation, the algorithm reduces part phase rotation and add-subtract unit, so that it decreases delay. Furthermore, the paper simulates and implements the numerical controlled oscillator by Quartus II software and Modelsim software. Finally, simulation results indicate that the improvement over traditional CORDIC algorithm is achieved in terms of ease of computation, resource utilization, and computing speed/delay while maintaining the precision. It is suitable for high speed and precision digital modulation and demodulation. PMID:25110750

  1. Space Launch System Implementation of Adaptive Augmenting Control

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Wall, John H.; Orr, Jeb S.

    2014-01-01

    Given the complex structural dynamics, challenging ascent performance requirements, and rigorous flight certification constraints owing to its manned capability, the NASA Space Launch System (SLS) launch vehicle requires a proven thrust vector control algorithm design with highly optimized parameters to robustly demonstrate stable and high performance flight. On its development path to preliminary design review (PDR), the stability of the SLS flight control system has been challenged by significant vehicle flexibility, aerodynamics, and sloshing propellant dynamics. While the design has been able to meet all robust stability criteria, it has done so with little excess margin. Through significant development work, an adaptive augmenting control (AAC) algorithm previously presented by Orr and VanZwieten, has been shown to extend the envelope of failures and flight anomalies for which the SLS control system can accommodate while maintaining a direct link to flight control stability criteria (e.g. gain & phase margin). In this paper, the work performed to mature the AAC algorithm as a baseline component of the SLS flight control system is presented. The progress to date has brought the algorithm design to the PDR level of maturity. The algorithm has been extended to augment the SLS digital 3-axis autopilot, including existing load-relief elements, and necessary steps for integration with the production flight software prototype have been implemented. Several updates to the adaptive algorithm to increase its performance, decrease its sensitivity to expected external commands, and safeguard against limitations in the digital implementation are discussed with illustrating results. Monte Carlo simulations and selected stressing case results are shown to demonstrate the algorithm's ability to increase the robustness of the integrated SLS flight control system.

  2. A real-time implementation of an advanced sensor failure detection, isolation, and accommodation algorithm

    NASA Technical Reports Server (NTRS)

    Delaat, J. C.; Merrill, W. C.

    1983-01-01

    A sensor failure detection, isolation, and accommodation algorithm was developed which incorporates analytic sensor redundancy through software. This algorithm was implemented in a high level language on a microprocessor based controls computer. Parallel processing and state-of-the-art 16-bit microprocessors are used along with efficient programming practices to achieve real-time operation.

  3. Delay compensation in integrated communication and control systems. II - Implementation and verification

    NASA Technical Reports Server (NTRS)

    Luck, Rogelio; Ray, Asok

    1990-01-01

    The implementation and verification of the delay-compensation algorithm are addressed. The delay compensator has been experimentally verified at an IEEE 802.4 network testbed for velocity control of a DC servomotor. The performance of the delay-compensation algorithm was also examined by combined discrete-event and continuous-time simulation of the flight control system of an advanced aircraft that uses the SAE (Society of Automotive Engineers) linear token passing bus for data communications.

  4. Fuzzy decoupling controller based on multimode control algorithm of PI-single neuron and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Xianxia; Wang, Jian; Qin, Tinggao

    2003-09-01

    Intelligent control algorithms are introduced into the control system of temperature and humidity. A multi-mode control algorithm of PI-Single Neuron is proposed for single loop control of temperature and humidity. In order to remove the coupling between temperature and humidity, a new decoupling method is presented, which is called fuzzy decoupling. The decoupling is achieved by using a fuzzy controller that dynamically modifies the static decoupling coefficient. Taking the control algorithm of PI-Single Neuron as the single loop control of temperature and humidity, the paper provides the simulated output response curves with no decoupling control, static decoupling control and fuzzy decoupling control. Those control algorithms are easily implemented in singlechip-based hardware systems.

  5. Design and FPGA Implementation of a Universal Chaotic Signal Generator Based on the Verilog HDL Fixed-Point Algorithm and State Machine Control

    NASA Astrophysics Data System (ADS)

    Qiu, Mo; Yu, Simin; Wen, Yuqiong; Lü, Jinhu; He, Jianbin; Lin, Zhuosheng

    In this paper, a novel design methodology and its FPGA hardware implementation for a universal chaotic signal generator is proposed via the Verilog HDL fixed-point algorithm and state machine control. According to continuous-time or discrete-time chaotic equations, a Verilog HDL fixed-point algorithm and its corresponding digital system are first designed. In the FPGA hardware platform, each operation step of Verilog HDL fixed-point algorithm is then controlled by a state machine. The generality of this method is that, for any given chaotic equation, it can be decomposed into four basic operation procedures, i.e. nonlinear function calculation, iterative sequence operation, iterative values right shifting and ceiling, and chaotic iterative sequences output, each of which corresponds to only a state via state machine control. Compared with the Verilog HDL floating-point algorithm, the Verilog HDL fixed-point algorithm can save the FPGA hardware resources and improve the operation efficiency. FPGA-based hardware experimental results validate the feasibility and reliability of the proposed approach.

  6. Robust control of electrostatic torsional micromirrors using adaptive sliding-mode control

    NASA Astrophysics Data System (ADS)

    Sane, Harshad S.; Yazdi, Navid; Mastrangelo, Carlos H.

    2005-01-01

    This paper presents high-resolution control of torsional electrostatic micromirrors beyond their inherent pull-in instability using robust sliding-mode control (SMC). The objectives of this paper are two-fold - firstly, to demonstrate the applicability of SMC for MEMS devices; secondly - to present a modified SMC algorithm that yields improved control accuracy. SMC enables compact realization of a robust controller tolerant of device characteristic variations and nonlinearities. Robustness of the control loop is demonstrated through extensive simulations and measurements on MEMS with a wide range in their characteristics. Control of two-axis gimbaled micromirrors beyond their pull-in instability with overall 10-bit pointing accuracy is confirmed experimentally. In addition, this paper presents an analysis of the sources of errors in discrete-time implementation of the control algorithm. To minimize these errors, we present an adaptive version of the SMC algorithm that yields substantial performance improvement without considerably increasing implementation complexity.

  7. PSO Algorithm for an Optimal Power Controller in a Microgrid

    NASA Astrophysics Data System (ADS)

    Al-Saedi, W.; Lachowicz, S.; Habibi, D.; Bass, O.

    2017-07-01

    This paper presents the Particle Swarm Optimization (PSO) algorithm to improve the quality of the power supply in a microgrid. This algorithm is proposed for a real-time selftuning method that used in a power controller for an inverter based Distributed Generation (DG) unit. In such system, the voltage and frequency are the main control objectives, particularly when the microgrid is islanded or during load change. In this work, the PSO algorithm is implemented to find the optimal controller parameters to satisfy the control objectives. The results show high performance of the applied PSO algorithm of regulating the microgrid voltage and frequency.

  8. A real-time simulation evaluation of an advanced detection. Isolation and accommodation algorithm for sensor failures in turbine engines

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.; Delaat, J. C.

    1986-01-01

    An advanced sensor failure detection, isolation, and accommodation (ADIA) algorithm has been developed for use with an aircraft turbofan engine control system. In a previous paper the authors described the ADIA algorithm and its real-time implementation. Subsequent improvements made to the algorithm and implementation are discussed, and the results of an evaluation presented. The evaluation used a real-time, hybrid computer simulation of an F100 turbofan engine.

  9. Optimal Decentralized Protocol for Electric Vehicle Charging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, LW; Topcu, U; Low, SH

    We propose a decentralized algorithm to optimally schedule electric vehicle (EV) charging. The algorithm exploits the elasticity of electric vehicle loads to fill the valleys in electric load profiles. We first formulate the EV charging scheduling problem as an optimal control problem, whose objective is to impose a generalized notion of valley-filling, and study properties of optimal charging profiles. We then give a decentralized algorithm to iteratively solve the optimal control problem. In each iteration, EVs update their charging profiles according to the control signal broadcast by the utility company, and the utility company alters the control signal to guidemore » their updates. The algorithm converges to optimal charging profiles (that are as "flat" as they can possibly be) irrespective of the specifications (e.g., maximum charging rate and deadline) of EVs, even if EVs do not necessarily update their charging profiles in every iteration, and use potentially outdated control signal when they update. Moreover, the algorithm only requires each EV solving its local problem, hence its implementation requires low computation capability. We also extend the algorithm to track a given load profile and to real-time implementation.« less

  10. Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems

    NASA Technical Reports Server (NTRS)

    Gregg, Hugh; Healey, Kathleen; Hack, Edmund; Wong, Carla

    1987-01-01

    Expert systems that require access to data bases, complex simulations and real time instrumentation have both symbolic as well as algorithmic computing needs. These needs could both be met using a general computing workstation running both symbolic and algorithmic code, or separate, specialized computers networked together. The later approach was chosen to implement TEXSYS, the thermal expert system, developed to demonstrate the ability of an expert system to autonomously control the thermal control system of the space station. TEXSYS has been implemented on a Symbolics workstation, and will be linked to a microVAX computer that will control a thermal test bed. Integration options are explored and several possible solutions are presented.

  11. Motor Control and Regulation for a Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara; Lyons, Valerie

    2003-01-01

    This talk will focus on the motor control algorithms used to regulate the flywheel system at the NASA Glenn Research Center. First a discussion of the inner loop torque control technique will be given. It is based on the principle of field orientation and is implemented without a position or speed sensor (sensorless control). Then the outer loop charge and discharge algorithm will be presented. This algorithm controls the acceleration of the flywheel during charging and the deceleration while discharging. The algorithm also allows the flywheel system to regulate the DC bus voltage during the discharge cycle.

  12. Cavity control as a new quantum algorithms implementation treatment

    NASA Astrophysics Data System (ADS)

    AbuGhanem, M.; Homid, A. H.; Abdel-Aty, M.

    2018-02-01

    Based on recent experiments [ Nature 449, 438 (2007) and Nature Physics 6, 777 (2010)], a new approach for realizing quantum gates for the design of quantum algorithms was developed. Accordingly, the operation times of such gates while functioning in algorithm applications depend on the number of photons present in their resonant cavities. Multi-qubit algorithms can be realized in systems in which the photon number is increased slightly over the qubit number. In addition, the time required for operation is considerably less than the dephasing and relaxation times of the systems. The contextual use of the photon number as a main control in the realization of any algorithm was demonstrated. The results indicate the possibility of a full integration into the realization of multi-qubit multiphoton states and its application in algorithm designs. Furthermore, this approach will lead to a successful implementation of these designs in future experiments.

  13. A vision-based end-point control for a two-link flexible manipulator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Obergfell, Klaus

    1991-01-01

    The measurement and control of the end-effector position of a large two-link flexible manipulator are investigated. The system implementation is described and an initial algorithm for static end-point positioning is discussed. Most existing robots are controlled through independent joint controllers, while the end-effector position is estimated from the joint positions using a kinematic relation. End-point position feedback can be used to compensate for uncertainty and structural deflections. Such feedback is especially important for flexible robots. Computer vision is utilized to obtain end-point position measurements. A look-and-move control structure alleviates the disadvantages of the slow and variable computer vision sampling frequency. This control structure consists of an inner joint-based loop and an outer vision-based loop. A static positioning algorithm was implemented and experimentally verified. This algorithm utilizes the manipulator Jacobian to transform a tip position error to a joint error. The joint error is then used to give a new reference input to the joint controller. The convergence of the algorithm is demonstrated experimentally under payload variation. A Landmark Tracking System (Dickerson, et al 1990) is used for vision-based end-point measurements. This system was modified and tested. A real-time control system was implemented on a PC and interfaced with the vision system and the robot.

  14. Integrated G and C Implementation within IDOS: A Simulink Based Reusable Launch Vehicle Simulation

    NASA Technical Reports Server (NTRS)

    Fisher, Joseph E.; Bevacqua, Tim; Lawrence, Douglas A.; Zhu, J. Jim; Mahoney, Michael

    2003-01-01

    The implementation of multiple Integrated Guidance and Control (IG&C) algorithms per flight phase within a vehicle simulation poses a daunting task to coordinate algorithm interactions with the other G&C components and with vehicle subsystems. Currently being developed by Universal Space Lines LLC (USL) under contract from NASA, the Integrated Development and Operations System (IDOS) contains a high fidelity Simulink vehicle simulation, which provides a means to test cutting edge G&C technologies. Combining the modularity of this vehicle simulation and Simulink s built-in primitive blocks provide a quick way to implement algorithms. To add discrete-event functionality to the unfinished IDOS simulation, Vehicle Event Manager (VEM) and Integrated Vehicle Health Monitoring (IVHM) subsystems were created to provide discrete-event and pseudo-health monitoring processing capabilities. Matlab's Stateflow is used to create the IVHM and Event Manager subsystems and to implement a supervisory logic controller referred to as the Auto-commander as part of the IG&C to coordinate the control system adaptation and reconfiguration and to select the control and guidance algorithms for a given flight phase. Manual creation of the Stateflow charts for all of these subsystems is a tedious and time-consuming process. The Stateflow Auto-builder was developed as a Matlab based software tool for the automatic generation of a Stateflow chart from information contained in a database. This paper describes the IG&C, VEM and IVHM implementations in IDOS. In addition, this paper describes the Stateflow Auto-builder.

  15. Algorithms for a Closed-Loop Artificial Pancreas: The Case for Model Predictive Control

    PubMed Central

    Bequette, B. Wayne

    2013-01-01

    The relative merits of model predictive control (MPC) and proportional-integral-derivative (PID) control are discussed, with the end goal of a closed-loop artificial pancreas (AP). It is stressed that neither MPC nor PID are single algorithms, but rather are approaches or strategies that may be implemented very differently by different engineers. The primary advantages to MPC are that (i) constraints on the insulin delivery rate (and/or insulin on board) can be explicitly included in the control calculation; (ii) it is a general framework that makes it relatively easy to include the effect of meals, exercise, and other events that are a function of the time of day; and (iii) it is flexible enough to include many different objectives, from set-point tracking (target) to zone (control to range). In the end, however, it is recognized that the control algorithm, while important, represents only a portion of the effort required to develop a closed-loop AP. Thus, any number of algorithms/approaches can be successful—the engineers involved in the design must have experience with the particular technique, including the important experience of implementing the algorithm in human studies and not simply through simulation studies. PMID:24351190

  16. Adaptive Control Strategies for Flexible Robotic Arm

    NASA Technical Reports Server (NTRS)

    Bialasiewicz, Jan T.

    1996-01-01

    The control problem of a flexible robotic arm has been investigated. The control strategies that have been developed have a wide application in approaching the general control problem of flexible space structures. The following control strategies have been developed and evaluated: neural self-tuning control algorithm, neural-network-based fuzzy logic control algorithm, and adaptive pole assignment algorithm. All of the above algorithms have been tested through computer simulation. In addition, the hardware implementation of a computer control system that controls the tip position of a flexible arm clamped on a rigid hub mounted directly on the vertical shaft of a dc motor, has been developed. An adaptive pole assignment algorithm has been applied to suppress vibrations of the described physical model of flexible robotic arm and has been successfully tested using this testbed.

  17. Implementation of an adaptive controller for the startup and steady-state running of a biomethanation process operated in the CSTR mode.

    PubMed

    Renard, P; Van Breusegem, V; Nguyen, M T; Naveau, H; Nyns, E J

    1991-10-20

    An adaptive control algorithm has been implemented on a biomethanation process to maintain propionate concentration, a stable variable, at a given low value, by steering the dilution rate. It was thereby expected to ensure the stability of the process during the startup and during steady-state running with an acceptable performance. The methane pilot reactor was operated in the completely mixed, once-through mode and computer-controlled during 161 days. The results yielded the real-life validation of the adaptive control algorithm, and documented the stability and acceptable performance expected.

  18. Appendix F. Developmental enforcement algorithm definition document : predictive braking enforcement algorithm definition document.

    DOT National Transportation Integrated Search

    2012-05-01

    The purpose of this document is to fully define and describe the logic flow and mathematical equations for a predictive braking enforcement algorithm intended for implementation in a Positive Train Control (PTC) system.

  19. Engineering platform and experimental protocol for design and evaluation of a neurally-controlled powered transfemoral prosthesis.

    PubMed

    Zhang, Fan; Liu, Ming; Harper, Stephen; Lee, Michael; Huang, He

    2014-07-22

    To enable intuitive operation of powered artificial legs, an interface between user and prosthesis that can recognize the user's movement intent is desired. A novel neural-machine interface (NMI) based on neuromuscular-mechanical fusion developed in our previous study has demonstrated a great potential to accurately identify the intended movement of transfemoral amputees. However, this interface has not yet been integrated with a powered prosthetic leg for true neural control. This study aimed to report (1) a flexible platform to implement and optimize neural control of powered lower limb prosthesis and (2) an experimental setup and protocol to evaluate neural prosthesis control on patients with lower limb amputations. First a platform based on a PC and a visual programming environment were developed to implement the prosthesis control algorithms, including NMI training algorithm, NMI online testing algorithm, and intrinsic control algorithm. To demonstrate the function of this platform, in this study the NMI based on neuromuscular-mechanical fusion was hierarchically integrated with intrinsic control of a prototypical transfemoral prosthesis. One patient with a unilateral transfemoral amputation was recruited to evaluate our implemented neural controller when performing activities, such as standing, level-ground walking, ramp ascent, and ramp descent continuously in the laboratory. A novel experimental setup and protocol were developed in order to test the new prosthesis control safely and efficiently. The presented proof-of-concept platform and experimental setup and protocol could aid the future development and application of neurally-controlled powered artificial legs.

  20. An Algorithm of an X-ray Hit Allocation to a Single Pixel in a Cluster and Its Test-Circuit Implementation

    DOE PAGES

    Deptuch, Grzegorz W.; Fahim, Farah; Grybos, Pawel; ...

    2017-06-28

    An on-chip implementable algorithm for allocation of an X-ray photon imprint, called a hit, to a single pixel in the presence of charge sharing in a highly segmented pixel detector is described. Its proof-of-principle implementation is also given supported by the results of tests using a highly collimated X-ray photon beam from a synchrotron source. The algorithm handles asynchronous arrivals of X-ray photons. Activation of groups of pixels, comparisons of peak amplitudes of pulses within an active neighborhood and finally latching of the results of these comparisons constitute the three procedural steps of the algorithm. A grouping of pixels tomore » one virtual pixel, that recovers composite signals and event driven strobes, to control comparisons of fractional signals between neighboring pixels are the actuators of the algorithm. The circuitry necessary to implement the algorithm requires an extensive inter-pixel connection grid of analog and digital signals, that are exchanged between pixels. A test-circuit implementation of the algorithm was achieved with a small array of 32 × 32 pixels and the device was exposed to an 8 keV highly collimated to a diameter of 3-μm X-ray beam. Furthermore, the results of these tests are given in this paper assessing physical implementation of the algorithm.« less

  1. PID controller tuning using metaheuristic optimization algorithms for benchmark problems

    NASA Astrophysics Data System (ADS)

    Gholap, Vishal; Naik Dessai, Chaitali; Bagyaveereswaran, V.

    2017-11-01

    This paper contributes to find the optimal PID controller parameters using particle swarm optimization (PSO), Genetic Algorithm (GA) and Simulated Annealing (SA) algorithm. The algorithms were developed through simulation of chemical process and electrical system and the PID controller is tuned. Here, two different fitness functions such as Integral Time Absolute Error and Time domain Specifications were chosen and applied on PSO, GA and SA while tuning the controller. The proposed Algorithms are implemented on two benchmark problems of coupled tank system and DC motor. Finally, comparative study has been done with different algorithms based on best cost, number of iterations and different objective functions. The closed loop process response for each set of tuned parameters is plotted for each system with each fitness function.

  2. Advanced detection, isolation, and accommodation of sensor failures in turbofan engines: Real-time microcomputer implementation

    NASA Technical Reports Server (NTRS)

    Delaat, John C.; Merrill, Walter C.

    1990-01-01

    The objective of the Advanced Detection, Isolation, and Accommodation Program is to improve the overall demonstrated reliability of digital electronic control systems for turbine engines. For this purpose, an algorithm was developed which detects, isolates, and accommodates sensor failures by using analytical redundancy. The performance of this algorithm was evaluated on a real time engine simulation and was demonstrated on a full scale F100 turbofan engine. The real time implementation of the algorithm is described. The implementation used state-of-the-art microprocessor hardware and software, including parallel processing and high order language programming.

  3. A real time, FEM based optimal control algorithm and its implementation using parallel processing hardware (transistors) in a microprocessor environment

    NASA Technical Reports Server (NTRS)

    Patten, William Neff

    1989-01-01

    There is an evident need to discover a means of establishing reliable, implementable controls for systems that are plagued by nonlinear and, or uncertain, model dynamics. The development of a generic controller design tool for tough-to-control systems is reported. The method utilizes a moving grid, time infinite element based solution of the necessary conditions that describe an optimal controller for a system. The technique produces a discrete feedback controller. Real time laboratory experiments are now being conducted to demonstrate the viability of the method. The algorithm that results is being implemented in a microprocessor environment. Critical computational tasks are accomplished using a low cost, on-board, multiprocessor (INMOS T800 Transputers) and parallel processing. Progress to date validates the methodology presented. Applications of the technique to the control of highly flexible robotic appendages are suggested.

  4. Active Engine Mount Technology for Automobiles

    NASA Technical Reports Server (NTRS)

    Rahman, Z.; Spanos, J.

    1996-01-01

    We present a narrow-band tracking control using a variant of the Least Mean Square (LMS) algorithm [1,2,3] for supressing automobile engine/drive-train vibration disturbances. The algorithm presented here has a simple structure and may be implemented in a low cost micro controller.

  5. Control of equipment isolation system using wavelet-based hybrid sliding mode control

    NASA Astrophysics Data System (ADS)

    Huang, Shieh-Kung; Loh, Chin-Hsiung

    2017-04-01

    Critical non-structural equipment, including life-saving equipment in hospitals, circuit breakers, computers, high technology instrumentations, etc., is vulnerable to strong earthquakes, and on top of that, the failure of the vibration-sensitive equipment will cause severe economic loss. In order to protect vibration-sensitive equipment or machinery against strong earthquakes, various innovative control algorithms are developed to compensate the internal forces that to be applied. These new or improved control strategies, such as the control algorithms based on optimal control theory and sliding mode control (SMC), are also developed for structures engineering as a key element in smart structure technology. The optimal control theory, one of the most common methodologies in feedback control, finds control forces through achieving a certain optimal criterion by minimizing a cost function. For example, the linear-quadratic regulator (LQR) was the most popular control algorithm over the past three decades, and a number of modifications have been proposed to increase the efficiency of classical LQR algorithm. However, except to the advantage of simplicity and ease of implementation, LQR are susceptible to parameter uncertainty and modeling error due to complex nature of civil structures. Different from LQR control, a robust and easy to be implemented control algorithm, SMC has also been studied. SMC is a nonlinear control methodology that forces the structural system to slide along surfaces or boundaries; hence this control algorithm is naturally robust with respect to parametric uncertainties of a structure. Early attempts at protecting vibration-sensitive equipment were based on the use of existing control algorithms as described above. However, in recent years, researchers have tried to renew the existing control algorithms or developing a new control algorithm to adapt the complex nature of civil structures which include the control of both structures and non-structural components. The aim of this paper is to develop a hybrid control algorithm on the control of both structures and equipments simultaneously to overcome the limitations of classical feedback control through combining the advantage of classic LQR and SMC. To suppress vibrations with the frequency contents of strong earthquakes differing from the natural frequencies of civil structures, the hybrid control algorithms integrated with the wavelet-base vibration control algorithm is developed. The performance of classical, hybrid, and wavelet-based hybrid control algorithms as well as the responses of structure and non-structural components are evaluated and discussed through numerical simulation in this study.

  6. Phase retrieval algorithm for JWST Flight and Testbed Telescope

    NASA Astrophysics Data System (ADS)

    Dean, Bruce H.; Aronstein, David L.; Smith, J. Scott; Shiri, Ron; Acton, D. Scott

    2006-06-01

    An image-based wavefront sensing and control algorithm for the James Webb Space Telescope (JWST) is presented. The algorithm heritage is discussed in addition to implications for algorithm performance dictated by NASA's Technology Readiness Level (TRL) 6. The algorithm uses feedback through an adaptive diversity function to avoid the need for phase-unwrapping post-processing steps. Algorithm results are demonstrated using JWST Testbed Telescope (TBT) commissioning data and the accuracy is assessed by comparison with interferometer results on a multi-wave phase aberration. Strategies for minimizing aliasing artifacts in the recovered phase are presented and orthogonal basis functions are implemented for representing wavefronts in irregular hexagonal apertures. Algorithm implementation on a parallel cluster of high-speed digital signal processors (DSPs) is also discussed.

  7. A homotopy algorithm for digital optimal projection control GASD-HADOC

    NASA Technical Reports Server (NTRS)

    Collins, Emmanuel G., Jr.; Richter, Stephen; Davis, Lawrence D.

    1993-01-01

    The linear-quadratic-gaussian (LQG) compensator was developed to facilitate the design of control laws for multi-input, multi-output (MIMO) systems. The compensator is computed by solving two algebraic equations for which standard closed-loop solutions exist. Unfortunately, the minimal dimension of an LQG compensator is almost always equal to the dimension of the plant and can thus often violate practical implementation constraints on controller order. This deficiency is especially highlighted when considering control-design for high-order systems such as flexible space structures. This deficiency motivated the development of techniques that enable the design of optimal controllers whose dimension is less than that of the design plant. A homotopy approach based on the optimal projection equations that characterize the necessary conditions for optimal reduced-order control. Homotopy algorithms have global convergence properties and hence do not require that the initializing reduced-order controller be close to the optimal reduced-order controller to guarantee convergence. However, the homotopy algorithm previously developed for solving the optimal projection equations has sublinear convergence properties and the convergence slows at higher authority levels and may fail. A new homotopy algorithm for synthesizing optimal reduced-order controllers for discrete-time systems is described. Unlike the previous homotopy approach, the new algorithm is a gradient-based, parameter optimization formulation and was implemented in MATLAB. The results reported may offer the foundation for a reliable approach to optimal, reduced-order controller design.

  8. Development and implementation of a navigator-facilitated care coordination algorithm to improve clinical outcomes of underserved Latino patients with uncontrolled diabetes.

    PubMed

    Congdon, Heather Brennan; Eldridge, Barbara Hoffman; Truong, Hoai-An

    2013-11-01

    Development and implementation of an interprofessional navigator-facilitated care coordination algorithm (NAVCOM) for low-income, uninsured patients with uncontrolled diabetes at a safety-net clinic resulted in improvement of disease control as evidenced by improvement in hemoglobin A1C. This report describes the process and lessons learned from the development and implementation of NAVCOM and patient success stories.

  9. An enhanced velocity-based algorithm for safe implementations of gain-scheduled controllers

    NASA Astrophysics Data System (ADS)

    Lhachemi, H.; Saussié, D.; Zhu, G.

    2017-09-01

    This paper presents an enhanced velocity-based algorithm to implement gain-scheduled controllers for nonlinear and parameter-dependent systems. A new scheme including pre- and post-filtering is proposed with the assumption that the time-derivative of the controller inputs is not available for feedback control. It is shown that the proposed control structure can preserve the input-output properties of the linearised closed-loop system in the neighbourhood of each equilibrium point, avoiding the emergence of the so-called hidden coupling terms. Moreover, it is guaranteed that this implementation will not introduce unobservable or uncontrollable unstable modes, and hence the internal stability will not be affected. A case study dealing with the design of a pitch-axis missile autopilot is carried out and the numerical simulation results confirm the validity of the proposed approach.

  10. Evaluation of a fuzzy logic ramp metering algorithm : a comparative study among three ramp metering algorithms used in the greater Seattle area

    DOT National Transportation Integrated Search

    2000-02-01

    A Fuzzy Logic Ramp Metering Algorithm was implemented on 126 ramps in the greater Seattle area. Two multiple-ramp study sites were evaluted by comparing the fuzzy logic controller (FLC) to the other two ramp metering algorithms in operation at those ...

  11. Algorithm design, user interface, and optimization procedure for a fuzzy logic ramp metering algorithm : a training manual for freeway operations engineers

    DOT National Transportation Integrated Search

    2000-02-01

    This training manual describes the fuzzy logic ramp metering algorithm in detail, as implemented system-wide in the greater Seattle area. The method of defining the inputs to the controller and optimizing the performance of the algorithm is explained...

  12. Closed-Loop Optimal Control Implementations for Space Applications

    DTIC Science & Technology

    2016-12-01

    analyses of a series of optimal control problems, several real- time optimal control algorithms are developed that continuously adapt to feedback on the...through the analyses of a series of optimal control problems, several real- time optimal control algorithms are developed that continuously adapt to...information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering

  13. A study of interactive control scheduling and economic assessment for robotic systems

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A class of interactive control systems is derived by generalizing interactive manipulator control systems. Tasks of interactive control systems can be represented as a network of a finite set of actions which have specific operational characteristics and specific resource requirements, and which are of limited duration. This has enabled the decomposition of the overall control algorithm simultaneously and asynchronously. The performance benefits of sensor referenced and computer-aided control of manipulators in a complex environment is evaluated. The first phase of the CURV arm control system software development and the basic features of the control algorithms and their software implementation are presented. An optimal solution for a production scheduling problem that will be easy to implement in practical situations is investigated.

  14. Convergence Rates of Finite Difference Stochastic Approximation Algorithms

    DTIC Science & Technology

    2016-06-01

    dfferences as gradient approximations. It is shown that the convergence of these algorithms can be accelerated by controlling the implementation of the...descent algorithm, under various updating schemes using finite dfferences as gradient approximations. It is shown that the convergence of these...the Kiefer-Wolfowitz algorithm and the mirror descent algorithm, under various updating schemes using finite differences as gradient approximations. It

  15. Evaluation of FNS control systems: software development and sensor characterization.

    PubMed

    Riess, J; Abbas, J J

    1997-01-01

    Functional Neuromuscular Stimulation (FNS) systems activate paralyzed limbs by electrically stimulating motor neurons. These systems have been used to restore functions such as standing and stepping in people with thoracic level spinal cord injury. Research in our laboratory is directed at the design and evaluation of the control algorithms for generating posture and movement. This paper describes software developed for implementing FNS control systems and the characterization of a sensor system used to implement and evaluate controllers in the laboratory. In order to assess FNS control algorithms, we have developed a versatile software package using Lab VIEW (National Instruments, Corp). This package provides the ability to interface with sensor systems via serial port or A/D board, implement data processing and real-time control algorithms, and interface with neuromuscular stimulation devices. In our laboratory, we use the Flock of Birds (Ascension Technology Corp.) motion tracking sensor system to monitor limb segment position and orientation (6 degrees of freedom). Errors in the sensor system have been characterized and nonlinear polynomial models have been developed to account for these errors. With this compensation, the error in the distance measurement is reduced by 90 % so that the maximum error is less than 1 cm.

  16. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Kreutz, K.; Jain, A.

    1989-01-01

    A spatial operator algebra for modeling the control and trajectory design of manipulation is discussed, with emphasis on its analytical formulation and implementation in the Ada programming language. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of the manipulator. Inversion is obtained using techniques of recursive filtering and smoothing. The operator alegbra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. Implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection, thus greatly simplifying the transition from an abstract problem formulation and solution to the detailed mechanization of a specific algorithm.

  17. Network control processor for a TDMA system

    NASA Astrophysics Data System (ADS)

    Suryadevara, Omkarmurthy; Debettencourt, Thomas J.; Shulman, R. B.

    Two unique aspects of designing a network control processor (NCP) to monitor and control a demand-assigned, time-division multiple-access (TDMA) network are described. The first involves the implementation of redundancy by synchronizing the databases of two geographically remote NCPs. The two sets of databases are kept in synchronization by collecting data on both systems, transferring databases, sending incremental updates, and the parallel updating of databases. A periodic audit compares the checksums of the databases to ensure synchronization. The second aspect involves the use of a tracking algorithm to dynamically reallocate TDMA frame space. This algorithm detects and tracks current and long-term load changes in the network. When some portions of the network are overloaded while others have excess capacity, the algorithm automatically calculates and implements a new burst time plan.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deptuch, G. W.; Fahim, F.; Grybos, P.

    An on-chip implementable algorithm for allocation of an X-ray photon imprint, called a hit, to a single pixel in the presence of charge sharing in a highly segmented pixel detector is described. Its proof-of-principle implementation is also given supported by the results of tests using a highly collimated X-ray photon beam from a synchrotron source. The algorithm handles asynchronous arrivals of X-ray photons. Activation of groups of pixels, comparisons of peak amplitudes of pulses within an active neighborhood and finally latching of the results of these comparisons constitute the three procedural steps of the algorithm. A grouping of pixels tomore » one virtual pixel that recovers composite signals and event driven strobes to control comparisons of fractional signals between neighboring pixels are the actuators of the algorithm. The circuitry necessary to implement the algorithm requires an extensive inter-pixel connection grid of analog and digital signals that are exchanged between pixels. A test-circuit implementation of the algorithm was achieved with a small array of 32×32 pixels and the device was exposed to an 8 keV highly collimated to a diameter of 3 μm X-ray beam. The results of these tests are given in the paper assessing physical implementation of the algorithm.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deptuch, Grzegorz W.; Fahim, Farah; Grybos, Pawel

    An on-chip implementable algorithm for allocation of an X-ray photon imprint, called a hit, to a single pixel in the presence of charge sharing in a highly segmented pixel detector is described. Its proof-of-principle implementation is also given supported by the results of tests using a highly collimated X-ray photon beam from a synchrotron source. The algorithm handles asynchronous arrivals of X-ray photons. Activation of groups of pixels, comparisons of peak amplitudes of pulses within an active neighborhood and finally latching of the results of these comparisons constitute the three procedural steps of the algorithm. A grouping of pixels tomore » one virtual pixel, that recovers composite signals and event driven strobes, to control comparisons of fractional signals between neighboring pixels are the actuators of the algorithm. The circuitry necessary to implement the algorithm requires an extensive inter-pixel connection grid of analog and digital signals, that are exchanged between pixels. A test-circuit implementation of the algorithm was achieved with a small array of 32 × 32 pixels and the device was exposed to an 8 keV highly collimated to a diameter of 3-μm X-ray beam. Furthermore, the results of these tests are given in this paper assessing physical implementation of the algorithm.« less

  20. Guidance, navigation, and control subsystem equipment selection algorithm using expert system methods

    NASA Technical Reports Server (NTRS)

    Allen, Cheryl L.

    1991-01-01

    Enhanced engineering tools can be obtained through the integration of expert system methodologies and existing design software. The application of these methodologies to the spacecraft design and cost model (SDCM) software provides an improved technique for the selection of hardware for unmanned spacecraft subsystem design. The knowledge engineering system (KES) expert system development tool was used to implement a smarter equipment section algorithm than that which is currently achievable through the use of a standard data base system. The guidance, navigation, and control subsystems of the SDCM software was chosen as the initial subsystem for implementation. The portions of the SDCM code which compute the selection criteria and constraints remain intact, and the expert system equipment selection algorithm is embedded within this existing code. The architecture of this new methodology is described and its implementation is reported. The project background and a brief overview of the expert system is described, and once the details of the design are characterized, an example of its implementation is demonstrated.

  1. Implementation and control of a 3 degree-of-freedom, force-reflecting manual controller

    NASA Astrophysics Data System (ADS)

    Kim, Whee-Kuk; Bevill, Pat; Tesar, Delbert

    1991-02-01

    Most available manual controllers which are used in bilateral or force-reflecting teleoperator systems can be characterized by their bulky size heavy weight high cost low magnitude of reflecting-force lack of smoothness insufficient transparency and simplified architectures. A compact smooth lightweight portable universal manual controller could provide a markedly improved level of transparency and be able to drive a broad spectrum of slave manipulators. This implies that a single stand-off position could be used for a diverse population of remote systems and that a standard environment for training of operators would result in reduced costs and higher reliability. In the implementation presented in this paper a parallel 3 degree-of-freedom (DOF) spherical structure (for compactness and reduced weight) is combined with high gear-ratio reducers using a force control algorithm to produce a " power steering" effect for enhanced smoothness and transparency. The force control algorithm has the further benefit of minimizing the effect of the system friction and non-linear inertia forces. The fundamental analytical description for the spherical force-reflecting manual controller such as forward position analysis reflecting-force transformation and applied force control algorithm are presented. Also a brief description of the system integration its actual implementation and preliminary test results are presented in the paper.

  2. Efficient experimental design of high-fidelity three-qubit quantum gates via genetic programming

    NASA Astrophysics Data System (ADS)

    Devra, Amit; Prabhu, Prithviraj; Singh, Harpreet; Arvind; Dorai, Kavita

    2018-03-01

    We have designed efficient quantum circuits for the three-qubit Toffoli (controlled-controlled-NOT) and the Fredkin (controlled-SWAP) gate, optimized via genetic programming methods. The gates thus obtained were experimentally implemented on a three-qubit NMR quantum information processor, with a high fidelity. Toffoli and Fredkin gates in conjunction with the single-qubit Hadamard gates form a universal gate set for quantum computing and are an essential component of several quantum algorithms. Genetic algorithms are stochastic search algorithms based on the logic of natural selection and biological genetics and have been widely used for quantum information processing applications. We devised a new selection mechanism within the genetic algorithm framework to select individuals from a population. We call this mechanism the "Luck-Choose" mechanism and were able to achieve faster convergence to a solution using this mechanism, as compared to existing selection mechanisms. The optimization was performed under the constraint that the experimentally implemented pulses are of short duration and can be implemented with high fidelity. We demonstrate the advantage of our pulse sequences by comparing our results with existing experimental schemes and other numerical optimization methods.

  3. Supervisory Power Management Control Algorithms for Hybrid Electric Vehicles. A Survey

    DOE PAGES

    Malikopoulos, Andreas

    2014-03-31

    The growing necessity for environmentally benign hybrid propulsion systems has led to the development of advanced power management control algorithms to maximize fuel economy and minimize pollutant emissions. This paper surveys the control algorithms for hybrid electric vehicles (HEVs) and plug-in HEVs (PHEVs) that have been reported in the literature to date. The exposition ranges from parallel, series, and power split HEVs and PHEVs and includes a classification of the algorithms in terms of their implementation and the chronological order of their appearance. Remaining challenges and potential future research directions are also discussed.

  4. Field-programmable analogue arrays for the sensorless control of DC motors

    NASA Astrophysics Data System (ADS)

    Rivera, J.; Dueñas, I.; Ortega, S.; Del Valle, J. L.

    2018-02-01

    This work presents the analogue implementation of a sensorless controller for direct current motors based on the super-twisting (ST) sliding mode technique, by means of field programmable analogue arrays (FPAA). The novelty of this work is twofold, first is the use of the ST algorithm in a sensorless scheme for DC motors, and the implementation method of this type of sliding mode controllers in FPAAs. The ST algorithm reduces the chattering problem produced with the deliberate use of the sign function in classical sliding mode approaches. On the other hand, the advantages of the implementation method over a digital one are that the controller is not digitally approximated, the controller gains are not fine tuned and the implementation does not require the use of analogue-to-digital and digital-to-analogue converter circuits. In addition to this, the FPAA is a reconfigurable, lower cost and power consumption technology. Simulation and experimentation results were registered, where a more accurate transient response and lower power consumption were obtained by the proposed implementation method when compared to a digital implementation. Also, a more accurate performance by the DC motor is obtained with proposed sensorless ST technique when compared with a classical sliding mode approach.

  5. Robust and real-time rotor control with magnetic bearings

    NASA Technical Reports Server (NTRS)

    Sinha, A.; Wang, K. W.; Mease, K. L.

    1991-01-01

    This paper deals with the sliding mode control of a rigid rotor via radial magnetic bearings. The digital control algorithm and the results from numerical simulations are presented for an experimental rig. The experimental system which has been set up to digitally implement and validate the sliding mode control algorithm is described. Two methods for the development of control softwares are presented. Experimental results for individual rotor axis are discussed.

  6. An algorithm for control system design via parameter optimization. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Sinha, P. K.

    1972-01-01

    An algorithm for design via parameter optimization has been developed for linear-time-invariant control systems based on the model reference adaptive control concept. A cost functional is defined to evaluate the system response relative to nominal, which involves in general the error between the system and nominal response, its derivatives and the control signals. A program for the practical implementation of this algorithm has been developed, with the computational scheme for the evaluation of the performance index based on Lyapunov's theorem for stability of linear invariant systems.

  7. Enhanced factoring with a bose-einstein condensate.

    PubMed

    Sadgrove, Mark; Kumar, Sanjay; Nakagawa, Ken'ichi

    2008-10-31

    We present a novel method to realize analog sum computation with a Bose-Einstein condensate in an optical lattice potential subject to controlled phase jumps. We use the method to implement the Gauss sum algorithm for factoring numbers. By exploiting higher order quantum momentum states, we are able to improve the algorithm's accuracy beyond the limits of the usual classical implementation.

  8. Implementation of ternary Shor’s algorithm based on vibrational states of an ion in anharmonic potential

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Chen, Shu-Ming; Zhang, Jian; Wu, Chun-Wang; Wu, Wei; Chen, Ping-Xing

    2015-03-01

    It is widely believed that Shor’s factoring algorithm provides a driving force to boost the quantum computing research. However, a serious obstacle to its binary implementation is the large number of quantum gates. Non-binary quantum computing is an efficient way to reduce the required number of elemental gates. Here, we propose optimization schemes for Shor’s algorithm implementation and take a ternary version for factorizing 21 as an example. The optimized factorization is achieved by a two-qutrit quantum circuit, which consists of only two single qutrit gates and one ternary controlled-NOT gate. This two-qutrit quantum circuit is then encoded into the nine lower vibrational states of an ion trapped in a weakly anharmonic potential. Optimal control theory (OCT) is employed to derive the manipulation electric field for transferring the encoded states. The ternary Shor’s algorithm can be implemented in one single step. Numerical simulation results show that the accuracy of the state transformations is about 0.9919. Project supported by the National Natural Science Foundation of China (Grant No. 61205108) and the High Performance Computing (HPC) Foundation of National University of Defense Technology, China.

  9. Design and implementation of robust controllers for a gait trainer.

    PubMed

    Wang, F C; Yu, C H; Chou, T Y

    2009-08-01

    This paper applies robust algorithms to control an active gait trainer for children with walking disabilities. Compared with traditional rehabilitation procedures, in which two or three trainers are required to assist the patient, a motor-driven mechanism was constructed to improve the efficiency of the procedures. First, a six-bar mechanism was designed and constructed to mimic the trajectory of children's ankles in walking. Second, system identification techniques were applied to obtain system transfer functions at different operating points by experiments. Third, robust control algorithms were used to design Hinfinity robust controllers for the system. Finally, the designed controllers were implemented to verify experimentally the system performance. From the results, the proposed robust control strategies are shown to be effective.

  10. Motor Control of Two Flywheels Enabling Combined Attitude Control and Bus Regulation

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.

    2004-01-01

    This presentation discussed the flywheel technology development work that is ongoing at NASA GRC with a particular emphasis on the flywheel system control. The "field orientation" motor/generator control algorithm was discussed and explained. The position-sensorless angle and speed estimation algorithm was presented. The motor current response to a step change in command at low (10 kRPM) and high (60 kRPM) was discussed. The flywheel DC bus regulation control was explained and experimental results presented. Finally, the combined attitude control and energy storage algorithm that controls two flywheels simultaneously was presented. Experimental results were shown that verified the operational capability of the algorithm. shows high speed flywheel energy storage (60,000 RPM) and the successful implementation of an algorithm to simultaneously control both energy storage and a single axis of attitude with two flywheels. Overall, the presentation demonstrated that GRC has an operational facility that

  11. [Research on magnetic coupling centrifugal blood pump control based on a self-tuning fuzzy PI algorithm].

    PubMed

    Yang, Lei; Yang, Ming; Xu, Zihao; Zhuang, Xiaoqi; Wang, Wei; Zhang, Haibo; Han, Lu; Xu, Liang

    2014-10-01

    The purpose of this paper is to report the research and design of control system of magnetic coupling centrifugal blood pump in our laboratory, and to briefly describe the structure of the magnetic coupling centrifugal blood pump and principles of the body circulation model. The performance of blood pump is not only related to materials and structure, but also depends on the control algorithm. We studied the algorithm about motor current double-loop control for brushless DC motor. In order to make the algorithm adjust parameter change in different situations, we used the self-tuning fuzzy PI control algorithm and gave the details about how to design fuzzy rules. We mainly used Matlab Simulink to simulate the motor control system to test the performance of algorithm, and briefly introduced how to implement these algorithms in hardware system. Finally, by building the platform and conducting experiments, we proved that self-tuning fuzzy PI control algorithm could greatly improve both dynamic and static performance of blood pump and make the motor speed and the blood pump flow stable and adjustable.

  12. LMI-Based Generation of Feedback Laws for a Robust Model Predictive Control Algorithm

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet; Carson, John M., III

    2007-01-01

    This technical note provides a mathematical proof of Corollary 1 from the paper 'A Nonlinear Model Predictive Control Algorithm with Proven Robustness and Resolvability' that appeared in the 2006 Proceedings of the American Control Conference. The proof was omitted for brevity in the publication. The paper was based on algorithms developed for the FY2005 R&TD (Research and Technology Development) project for Small-body Guidance, Navigation, and Control [2].The framework established by the Corollary is for a robustly stabilizing MPC (model predictive control) algorithm for uncertain nonlinear systems that guarantees the resolvability of the associated nite-horizon optimal control problem in a receding-horizon implementation. Additional details of the framework are available in the publication.

  13. A Flexible VHDL Floating Point Module for Control Algorithm Implementation in Space Applications

    NASA Astrophysics Data System (ADS)

    Padierna, A.; Nicoleau, C.; Sanchez, J.; Hidalgo, I.; Elvira, S.

    2012-08-01

    The implementation of control loops for space applications is an area with great potential. However, the characteristics of this kind of systems, such as its wide dynamic range of numeric values, make inadequate the use of fixed-point algorithms.However, because the generic chips available for the treatment of floating point data are, in general, not qualified to operate in space environments and the possibility of using an IP module in a FPGA/ASIC qualified for space is not viable due to the low amount of logic cells available for these type of devices, it is necessary to find a viable alternative.For these reasons, in this paper a VHDL Floating Point Module is presented. This proposal allows the design and execution of floating point algorithms with acceptable occupancy to be implemented in FPGAs/ASICs qualified for space environments.

  14. Cavity parameters identification for TESLA control system development

    NASA Astrophysics Data System (ADS)

    Czarski, Tomasz; Pozniak, Krysztof T.; Romaniuk, Ryszard S.; Simrock, Stefan

    2005-08-01

    Aim of the control system development for TESLA cavity is a more efficient stabilization of the pulsed, accelerating EM field inside resonator. Cavity parameters identification is an essential task for the comprehensive control algorithm. TESLA cavity simulator has been successfully implemented using high-speed FPGA technology. Electromechanical model of the cavity resonator includes Lorentz force detuning and beam loading. The parameters identification is based on the electrical model of the cavity. The model is represented by state space equation for envelope of the cavity voltage driven by current generator and beam loading. For a given model structure, the over-determined matrix equation is created covering long enough measurement range with the solution according to the least-squares method. A low-degree polynomial approximation is applied to estimate the time-varying cavity detuning during the pulse. The measurement channel distortion is considered, leading to the external cavity model seen by the controller. The comprehensive algorithm of the cavity parameters identification was implemented in the Matlab system with different modes of operation. Some experimental results were presented for different cavity operational conditions. The following considerations have lead to the synthesis of the efficient algorithm for the cavity control system predicted for the potential FPGA technology implementation.

  15. Investigation of practical applications of H infinity control theory to the design of control systems for large space structures

    NASA Technical Reports Server (NTRS)

    Irwin, R. Dennis

    1988-01-01

    The applicability of H infinity control theory to the problems of large space structures (LSS) control was investigated. A complete evaluation to any technique as a candidate for large space structure control involves analytical evaluation, algorithmic evaluation, evaluation via simulation studies, and experimental evaluation. The results of analytical and algorithmic evaluations are documented. The analytical evaluation involves the determination of the appropriateness of the underlying assumptions inherent in the H infinity theory, the determination of the capability of the H infinity theory to achieve the design goals likely to be imposed on an LSS control design, and the identification of any LSS specific simplifications or complications of the theory. The resuls of the analytical evaluation are presented in the form of a tutorial on the subject of H infinity control theory with the LSS control designer in mind. The algorthmic evaluation of H infinity for LSS control pertains to the identification of general, high level algorithms for effecting the application of H infinity to LSS control problems, the identification of specific, numerically reliable algorithms necessary for a computer implementation of the general algorithms, the recommendation of a flexible software system for implementing the H infinity design steps, and ultimately the actual development of the necessary computer codes. Finally, the state of the art in H infinity applications is summarized with a brief outline of the most promising areas of current research.

  16. Comparison of Reconstruction and Control algorithms on the ESO end-to-end simulator OCTOPUS

    NASA Astrophysics Data System (ADS)

    Montilla, I.; Béchet, C.; Lelouarn, M.; Correia, C.; Tallon, M.; Reyes, M.; Thiébaut, É.

    Extremely Large Telescopes are very challenging concerning their Adaptive Optics requirements. Their diameters, the specifications demanded by the science for which they are being designed for, and the planned use of Extreme Adaptive Optics systems, imply a huge increment in the number of degrees of freedom in the deformable mirrors. It is necessary to study new reconstruction algorithms to implement the real time control in Adaptive Optics at the required speed. We have studied the performance, applied to the case of the European ELT, of three different algorithms: the matrix-vector multiplication (MVM) algorithm, considered as a reference; the Fractal Iterative Method (FrIM); and the Fourier Transform Reconstructor (FTR). The algorithms have been tested on ESO's OCTOPUS software, which simulates the atmosphere, the deformable mirror, the sensor and the closed-loop control. The MVM is the default reconstruction and control method implemented in OCTOPUS, but it scales in O(N2) operations per loop so it is not considered as a fast algorithm for wave-front reconstruction and control on an Extremely Large Telescope. The two other methods are the fast algorithms studied in the E-ELT Design Study. The performance, as well as their response in the presence of noise and with various atmospheric conditions, has been compared using a Single Conjugate Adaptive Optics configuration for a 42 m diameter ELT, with a total amount of 5402 actuators. Those comparisons made on a common simulator allow to enhance the pros and cons of the various methods, and give us a better understanding of the type of reconstruction algorithm that an ELT demands.

  17. A modern control theory based algorithm for control of the NASA/JPL 70-meter antenna axis servos

    NASA Technical Reports Server (NTRS)

    Hill, R. E.

    1987-01-01

    A digital computer-based state variable controller was designed and applied to the 70-m antenna axis servos. The general equations and structure of the algorithm and provisions for alternate position error feedback modes to accommodate intertarget slew, encoder referenced tracking, and precision tracking modes are descibed. Development of the discrete time domain control model and computation of estimator and control gain parameters based on closed loop pole placement criteria are discussed. The new algorithm was successfully implemented and tested in the 70-m antenna at Deep Space Network station 63 in Spain.

  18. A comparison of two adaptive algorithms for the control of active engine mounts

    NASA Astrophysics Data System (ADS)

    Hillis, A. J.; Harrison, A. J. L.; Stoten, D. P.

    2005-08-01

    This paper describes work conducted in order to control automotive active engine mounts, consisting of a conventional passive mount and an internal electromagnetic actuator. Active engine mounts seek to cancel the oscillatory forces generated by the rotation of out-of-balance masses within the engine. The actuator generates a force dependent on a control signal from an algorithm implemented with a real-time DSP. The filtered-x least-mean-square (FXLMS) adaptive filter is used as a benchmark for comparison with a new implementation of the error-driven minimal controller synthesis (Er-MCSI) adaptive controller. Both algorithms are applied to an active mount fitted to a saloon car equipped with a four-cylinder turbo-diesel engine, and have no a priori knowledge of the system dynamics. The steady-state and transient performance of the two algorithms are compared and the relative merits of the two approaches are discussed. The Er-MCSI strategy offers significant computational advantages as it requires no cancellation path modelling. The Er-MCSI controller is found to perform in a fashion similar to the FXLMS filter—typically reducing chassis vibration by 50-90% under normal driving conditions.

  19. Longitudinal Control for Mengshi Autonomous Vehicle via Cloud Model

    NASA Astrophysics Data System (ADS)

    Gao, H. B.; Zhang, X. Y.; Li, D. Y.; Liu, Y. C.

    2018-03-01

    Dynamic robustness and stability control is a requirement for self-driving of autonomous vehicle. Longitudinal control method of autonomous is a key technique which has drawn the attention of industry and academe. In this paper, we present a longitudinal control algorithm based on cloud model for Mengshi autonomous vehicle to ensure the dynamic stability and tracking performance of Mengshi autonomous vehicle. An experiments is applied to test the implementation of the longitudinal control algorithm. Empirical results show that if the longitudinal control algorithm based Gauss cloud model are applied to calculate the acceleration, and the vehicles drive at different speeds, a stable longitudinal control effect is achieved.

  20. Parallel grid generation algorithm for distributed memory computers

    NASA Technical Reports Server (NTRS)

    Moitra, Stuti; Moitra, Anutosh

    1994-01-01

    A parallel grid-generation algorithm and its implementation on the Intel iPSC/860 computer are described. The grid-generation scheme is based on an algebraic formulation of homotopic relations. Methods for utilizing the inherent parallelism of the grid-generation scheme are described, and implementation of multiple levELs of parallelism on multiple instruction multiple data machines are indicated. The algorithm is capable of providing near orthogonality and spacing control at solid boundaries while requiring minimal interprocessor communications. Results obtained on the Intel hypercube for a blended wing-body configuration are used to demonstrate the effectiveness of the algorithm. Fortran implementations bAsed on the native programming model of the iPSC/860 computer and the Express system of software tools are reported. Computational gains in execution time speed-up ratios are given.

  1. Petri nets SM-cover-based on heuristic coloring algorithm

    NASA Astrophysics Data System (ADS)

    Tkacz, Jacek; Doligalski, Michał

    2015-09-01

    In the paper, coloring heuristic algorithm of interpreted Petri nets is presented. Coloring is used to determine the State Machines (SM) subnets. The present algorithm reduces the Petri net in order to reduce the computational complexity and finds one of its possible State Machines cover. The proposed algorithm uses elements of interpretation of Petri nets. The obtained result may not be the best, but it is sufficient for use in rapid prototyping of logic controllers. Found SM-cover will be also used in the development of algorithms for decomposition, and modular synthesis and implementation of parallel logic controllers. Correctness developed heuristic algorithm was verified using Gentzen formal reasoning system.

  2. Numerical algorithms for computations of feedback laws arising in control of flexible systems

    NASA Technical Reports Server (NTRS)

    Lasiecka, Irena

    1989-01-01

    Several continuous models will be examined, which describe flexible structures with boundary or point control/observation. Issues related to the computation of feedback laws are examined (particularly stabilizing feedbacks) with sensors and actuators located either on the boundary or at specific point locations of the structure. One of the main difficulties is due to the great sensitivity of the system (hyperbolic systems with unbounded control actions), with respect to perturbations caused either by uncertainty of the model or by the errors introduced in implementing numerical algorithms. Thus, special care must be taken in the choice of the appropriate numerical schemes which eventually lead to implementable finite dimensional solutions. Finite dimensional algorithms are constructed on a basis of a priority analysis of the properties of the original, continuous (infinite diversional) systems with the following criteria in mind: (1) convergence and stability of the algorithms and (2) robustness (reasonable insensitivity with respect to the unknown parameters of the systems). Examples with mixed finite element methods and spectral methods are provided.

  3. Design and implementation of EP-based PID controller for chaos synchronization of Rikitake circuit systems.

    PubMed

    Hou, Yi-You

    2017-09-01

    This article addresses an evolutionary programming (EP) algorithm technique-based and proportional-integral-derivative (PID) control methods are established to guarantee synchronization of the master and slave Rikitake chaotic systems. For PID synchronous control, the evolutionary programming (EP) algorithm is used to find the optimal PID controller parameters k p , k i , k d by integrated absolute error (IAE) method for the convergence conditions. In order to verify the system performance, the basic electronic components containing operational amplifiers (OPAs), resistors, and capacitors are used to implement the proposed chaotic Rikitake systems. Finally, the experimental results validate the proposed Rikitake chaotic synchronization approach. Copyright © 2017. Published by Elsevier Ltd.

  4. A parallel row-based algorithm with error control for standard-cell replacement on a hypercube multiprocessor

    NASA Technical Reports Server (NTRS)

    Sargent, Jeff Scott

    1988-01-01

    A new row-based parallel algorithm for standard-cell placement targeted for execution on a hypercube multiprocessor is presented. Key features of this implementation include a dynamic simulated-annealing schedule, row-partitioning of the VLSI chip image, and two novel new approaches to controlling error in parallel cell-placement algorithms; Heuristic Cell-Coloring and Adaptive (Parallel Move) Sequence Control. Heuristic Cell-Coloring identifies sets of noninteracting cells that can be moved repeatedly, and in parallel, with no buildup of error in the placement cost. Adaptive Sequence Control allows multiple parallel cell moves to take place between global cell-position updates. This feedback mechanism is based on an error bound derived analytically from the traditional annealing move-acceptance profile. Placement results are presented for real industry circuits and the performance is summarized of an implementation on the Intel iPSC/2 Hypercube. The runtime of this algorithm is 5 to 16 times faster than a previous program developed for the Hypercube, while producing equivalent quality placement. An integrated place and route program for the Intel iPSC/2 Hypercube is currently being developed.

  5. Polyhedral Interpolation for Optimal Reaction Control System Jet Selection

    NASA Technical Reports Server (NTRS)

    Gefert, Leon P.; Wright, Theodore

    2014-01-01

    An efficient algorithm is described for interpolating optimal values for spacecraft Reaction Control System jet firing duty cycles. The algorithm uses the symmetrical geometry of the optimal solution to reduce the number of calculations and data storage requirements to a level that enables implementation on the small real time flight control systems used in spacecraft. The process minimizes acceleration direction errors, maximizes control authority, and minimizes fuel consumption.

  6. A comparison of force control algorithms for robots in contact with flexible environments

    NASA Technical Reports Server (NTRS)

    Wilfinger, Lee S.

    1992-01-01

    In order to perform useful tasks, the robot end-effector must come into contact with its environment. For such tasks, force feedback is frequently used to control the interaction forces. Control of these forces is complicated by the fact that the flexibility of the environment affects the stability of the force control algorithm. Because of the wide variety of different materials present in everyday environments, it is necessary to gain an understanding of how environmental flexibility affects the stability of force control algorithms. This report presents the theory and experimental results of two force control algorithms: Position Accommodation Control and Direct Force Servoing. The implementation of each of these algorithms on a two-arm robotic test bed located in the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE) is discussed in detail. The behavior of each algorithm when contacting materials of different flexibility is experimentally determined. In addition, several robustness improvements to the Direct Force Servoing algorithm are suggested and experimentally verified. Finally, a qualitative comparison of the force control algorithms is provided, along with a description of a general tuning process for each control method.

  7. Optimal tracking control for a class of nonlinear discrete-time systems with time delays based on heuristic dynamic programming.

    PubMed

    Zhang, Huaguang; Song, Ruizhuo; Wei, Qinglai; Zhang, Tieyan

    2011-12-01

    In this paper, a novel heuristic dynamic programming (HDP) iteration algorithm is proposed to solve the optimal tracking control problem for a class of nonlinear discrete-time systems with time delays. The novel algorithm contains state updating, control policy iteration, and performance index iteration. To get the optimal states, the states are also updated. Furthermore, the "backward iteration" is applied to state updating. Two neural networks are used to approximate the performance index function and compute the optimal control policy for facilitating the implementation of HDP iteration algorithm. At last, we present two examples to demonstrate the effectiveness of the proposed HDP iteration algorithm.

  8. The upwind control volume scheme for unstructured triangular grids

    NASA Technical Reports Server (NTRS)

    Giles, Michael; Anderson, W. Kyle; Roberts, Thomas W.

    1989-01-01

    A new algorithm for the numerical solution of the Euler equations is presented. This algorithm is particularly suited to the use of unstructured triangular meshes, allowing geometric flexibility. Solutions are second-order accurate in the steady state. Implementation of the algorithm requires minimal grid connectivity information, resulting in modest storage requirements, and should enhance the implementation of the scheme on massively parallel computers. A novel form of upwind differencing is developed, and is shown to yield sharp resolution of shocks. Two new artificial viscosity models are introduced that enhance the performance of the new scheme. Numerical results for transonic airfoil flows are presented, which demonstrate the performance of the algorithm.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, SB; Cady, ST; Dominguez-Garcia, AD

    This paper presents the theory and implementation of a distributed algorithm for controlling differential power processing converters in photovoltaic (PV) applications. This distributed algorithm achieves true maximum power point tracking of series-connected PV submodules by relying only on local voltage measurements and neighbor-to-neighbor communication between the differential power converters. Compared to previous solutions, the proposed algorithm achieves reduced number of perturbations at each step and potentially faster tracking without adding extra hardware; all these features make this algorithm well-suited for long submodule strings. The formulation of the algorithm, discussion of its properties, as well as three case studies are presented.more » The performance of the distributed tracking algorithm has been verified via experiments, which yielded quantifiable improvements over other techniques that have been implemented in practice. Both simulations and hardware experiments have confirmed the effectiveness of the proposed distributed algorithm.« less

  10. A high performance hardware implementation image encryption with AES algorithm

    NASA Astrophysics Data System (ADS)

    Farmani, Ali; Jafari, Mohamad; Miremadi, Seyed Sohrab

    2011-06-01

    This paper describes implementation of a high-speed encryption algorithm with high throughput for encrypting the image. Therefore, we select a highly secured symmetric key encryption algorithm AES(Advanced Encryption Standard), in order to increase the speed and throughput using pipeline technique in four stages, control unit based on logic gates, optimal design of multiplier blocks in mixcolumn phase and simultaneous production keys and rounds. Such procedure makes AES suitable for fast image encryption. Implementation of a 128-bit AES on FPGA of Altra company has been done and the results are as follow: throughput, 6 Gbps in 471MHz. The time of encrypting in tested image with 32*32 size is 1.15ms.

  11. Experiences with serial and parallel algorithms for channel routing using simulated annealing

    NASA Technical Reports Server (NTRS)

    Brouwer, Randall Jay

    1988-01-01

    Two algorithms for channel routing using simulated annealing are presented. Simulated annealing is an optimization methodology which allows the solution process to back up out of local minima that may be encountered by inappropriate selections. By properly controlling the annealing process, it is very likely that the optimal solution to an NP-complete problem such as channel routing may be found. The algorithm presented proposes very relaxed restrictions on the types of allowable transformations, including overlapping nets. By freeing that restriction and controlling overlap situations with an appropriate cost function, the algorithm becomes very flexible and can be applied to many extensions of channel routing. The selection of the transformation utilizes a number of heuristics, still retaining the pseudorandom nature of simulated annealing. The algorithm was implemented as a serial program for a workstation, and a parallel program designed for a hypercube computer. The details of the serial implementation are presented, including many of the heuristics used and some of the resulting solutions.

  12. Self-tuning control of attitude and momentum management for the Space Station

    NASA Technical Reports Server (NTRS)

    Shieh, L. S.; Sunkel, J. W.; Yuan, Z. Z.; Zhao, X. M.

    1992-01-01

    This paper presents a hybrid state-space self-tuning design methodology using dual-rate sampling for suboptimal digital adaptive control of attitude and momentum management for the Space Station. This new hybrid adaptive control scheme combines an on-line recursive estimation algorithm for indirectly identifying the parameters of a continuous-time system from the available fast-rate sampled data of the inputs and states and a controller synthesis algorithm for indirectly finding the slow-rate suboptimal digital controller from the designed optimal analog controller. The proposed method enables the development of digitally implementable control algorithms for the robust control of Space Station Freedom with unknown environmental disturbances and slowly time-varying dynamics.

  13. Data Synchronization Discrepancies in a Formation Flight Control System

    NASA Technical Reports Server (NTRS)

    Ryan, Jack; Hanson, Curtis E.; Norlin, Ken A.; Allen, Michael J.; Schkolnik, Gerard (Technical Monitor)

    2001-01-01

    Aircraft hardware-in-the-loop simulation is an invaluable tool to flight test engineers; it reveals design and implementation flaws while operating in a controlled environment. Engineers, however, must always be skeptical of the results and analyze them within their proper context. Engineers must carefully ascertain whether an anomaly that occurs in the simulation will also occur in flight. This report presents a chronology illustrating how misleading simulation timing problems led to the implementation of an overly complex position data synchronization guidance algorithm in place of a simpler one. The report illustrates problems caused by the complex algorithm and how the simpler algorithm was chosen in the end. Brief descriptions of the project objectives, approach, and simulation are presented. The misleading simulation results and the conclusions then drawn are presented. The complex and simple guidance algorithms are presented with flight data illustrating their relative success.

  14. Neural network-based run-to-run controller using exposure and resist thickness adjustment

    NASA Astrophysics Data System (ADS)

    Geary, Shane; Barry, Ronan

    2003-06-01

    This paper describes the development of a run-to-run control algorithm using a feedforward neural network, trained using the backpropagation training method. The algorithm is used to predict the critical dimension of the next lot using previous lot information. It is compared to a common prediction algorithm - the exponentially weighted moving average (EWMA) and is shown to give superior prediction performance in simulations. The manufacturing implementation of the final neural network showed significantly improved process capability when compared to the case where no run-to-run control was utilised.

  15. Gradient Optimization for Analytic conTrols - GOAT

    NASA Astrophysics Data System (ADS)

    Assémat, Elie; Machnes, Shai; Tannor, David; Wilhelm-Mauch, Frank

    Quantum optimal control becomes a necessary step in a number of studies in the quantum realm. Recent experimental advances showed that superconducting qubits can be controlled with an impressive accuracy. However, most of the standard optimal control algorithms are not designed to manage such high accuracy. To tackle this issue, a novel quantum optimal control algorithm have been introduced: the Gradient Optimization for Analytic conTrols (GOAT). It avoids the piecewise constant approximation of the control pulse used by standard algorithms. This allows an efficient implementation of very high accuracy optimization. It also includes a novel method to compute the gradient that provides many advantages, e.g. the absence of backpropagation or the natural route to optimize the robustness of the control pulses. This talk will present the GOAT algorithm and a few applications to transmons systems.

  16. Implementation of a Space Communications Cognitive Engine

    NASA Technical Reports Server (NTRS)

    Hackett, Timothy M.; Bilen, Sven G.; Ferreira, Paulo Victor R.; Wyglinski, Alexander M.; Reinhart, Richard C.

    2017-01-01

    Although communications-based cognitive engines have been proposed, very few have been implemented in a full system, especially in a space communications system. In this paper, we detail the implementation of a multi-objective reinforcement-learning algorithm and deep artificial neural networks for the use as a radio-resource-allocation controller. The modular software architecture presented encourages re-use and easy modification for trying different algorithms. Various trade studies involved with the system implementation and integration are discussed. These include the choice of software libraries that provide platform flexibility and promote reusability, choices regarding the deployment of this cognitive engine within a system architecture using the DVB-S2 standard and commercial hardware, and constraints placed on the cognitive engine caused by real-world radio constraints. The implemented radio-resource allocation-management controller was then integrated with the larger spaceground system developed by NASA Glenn Research Center (GRC).

  17. Analysis and simulation tools for solar array power systems

    NASA Astrophysics Data System (ADS)

    Pongratananukul, Nattorn

    This dissertation presents simulation tools developed specifically for the design of solar array power systems. Contributions are made in several aspects of the system design phases, including solar source modeling, system simulation, and controller verification. A tool to automate the study of solar array configurations using general purpose circuit simulators has been developed based on the modeling of individual solar cells. Hierarchical structure of solar cell elements, including semiconductor properties, allows simulation of electrical properties as well as the evaluation of the impact of environmental conditions. A second developed tool provides a co-simulation platform with the capability to verify the performance of an actual digital controller implemented in programmable hardware such as a DSP processor, while the entire solar array including the DC-DC power converter is modeled in software algorithms running on a computer. This "virtual plant" allows developing and debugging code for the digital controller, and also to improve the control algorithm. One important task in solar arrays is to track the maximum power point on the array in order to maximize the power that can be delivered. Digital controllers implemented with programmable processors are particularly attractive for this task because sophisticated tracking algorithms can be implemented and revised when needed to optimize their performance. The proposed co-simulation tools are thus very valuable in developing and optimizing the control algorithm, before the system is built. Examples that demonstrate the effectiveness of the proposed methodologies are presented. The proposed simulation tools are also valuable in the design of multi-channel arrays. In the specific system that we have designed and tested, the control algorithm is implemented on a single digital signal processor. In each of the channels the maximum power point is tracked individually. In the prototype we built, off-the-shelf commercial DC-DC converters were utilized. At the end, the overall performance of the entire system was evaluated using solar array simulators capable of simulating various I-V characteristics, and also by using an electronic load. Experimental results are presented.

  18. Implementing the Deutsch-Jozsa algorithm with macroscopic ensembles

    NASA Astrophysics Data System (ADS)

    Semenenko, Henry; Byrnes, Tim

    2016-05-01

    Quantum computing implementations under consideration today typically deal with systems with microscopic degrees of freedom such as photons, ions, cold atoms, and superconducting circuits. The quantum information is stored typically in low-dimensional Hilbert spaces such as qubits, as quantum effects are strongest in such systems. It has, however, been demonstrated that quantum effects can be observed in mesoscopic and macroscopic systems, such as nanomechanical systems and gas ensembles. While few-qubit quantum information demonstrations have been performed with such macroscopic systems, a quantum algorithm showing exponential speedup over classical algorithms is yet to be shown. Here, we show that the Deutsch-Jozsa algorithm can be implemented with macroscopic ensembles. The encoding that we use avoids the detrimental effects of decoherence that normally plagues macroscopic implementations. We discuss two mapping procedures which can be chosen depending upon the constraints of the oracle and the experiment. Both methods have an exponential speedup over the classical case, and only require control of the ensembles at the level of the total spin of the ensembles. It is shown that both approaches reproduce the qubit Deutsch-Jozsa algorithm, and are robust under decoherence.

  19. F100 Multivariable Control Synthesis Program. Computer Implementation of the F100 Multivariable Control Algorithm

    NASA Technical Reports Server (NTRS)

    Soeder, J. F.

    1983-01-01

    As turbofan engines become more complex, the development of controls necessitate the use of multivariable control techniques. A control developed for the F100-PW-100(3) turbofan engine by using linear quadratic regulator theory and other modern multivariable control synthesis techniques is described. The assembly language implementation of this control on an SEL 810B minicomputer is described. This implementation was then evaluated by using a real-time hybrid simulation of the engine. The control software was modified to run with a real engine. These modifications, in the form of sensor and actuator failure checks and control executive sequencing, are discussed. Finally recommendations for control software implementations are presented.

  20. Decreased rates of hypoglycemia following implementation of a comprehensive computerized insulin order set and titration algorithm in the inpatient setting.

    PubMed

    Sinha Gregory, Naina; Seley, Jane Jeffrie; Gerber, Linda M; Tang, Chin; Brillon, David

    2016-12-01

    More than one-third of hospitalized patients have hyperglycemia. Despite evidence that improving glycemic control leads to better outcomes, achieving recognized targets remains a challenge. The objective of this study was to evaluate the implementation of a computerized insulin order set and titration algorithm on rates of hypoglycemia and overall inpatient glycemic control. A prospective observational study evaluating the impact of a glycemic order set and titration algorithm in an academic medical center in non-critical care medical and surgical inpatients. The initial intervention was hospital-wide implementation of a comprehensive insulin order set. The secondary intervention was initiation of an insulin titration algorithm in two pilot medicine inpatient units. Point of care testing blood glucose reports were analyzed. These reports included rates of hypoglycemia (BG < 70 mg/dL) and hyperglycemia (BG >200 mg/dL in phase 1, BG > 180 mg/dL in phase 2). In the first phase of the study, implementation of the insulin order set was associated with decreased rates of hypoglycemia (1.92% vs 1.61%; p < 0.001) and increased rates of hyperglycemia (24.02% vs 27.27%; p < 0.001) from 2010 to 2011. In the second phase, addition of a titration algorithm was associated with decreased rates of hypoglycemia (2.57% vs 1.82%; p = 0.039) and increased rates of hyperglycemia (31.76% vs 41.33%; p < 0.001) from 2012 to 2013. A comprehensive computerized insulin order set and titration algorithm significantly decreased rates of hypoglycemia. This significant reduction in hypoglycemia was associated with increased rates of hyperglycemia. Hardwiring the algorithm into the electronic medical record may foster adoption.

  1. Linear Time Algorithms to Restrict Insider Access using Multi-Policy Access Control Systems

    PubMed Central

    Mell, Peter; Shook, James; Harang, Richard; Gavrila, Serban

    2017-01-01

    An important way to limit malicious insiders from distributing sensitive information is to as tightly as possible limit their access to information. This has always been the goal of access control mechanisms, but individual approaches have been shown to be inadequate. Ensemble approaches of multiple methods instantiated simultaneously have been shown to more tightly restrict access, but approaches to do so have had limited scalability (resulting in exponential calculations in some cases). In this work, we take the Next Generation Access Control (NGAC) approach standardized by the American National Standards Institute (ANSI) and demonstrate its scalability. The existing publicly available reference implementations all use cubic algorithms and thus NGAC was widely viewed as not scalable. The primary NGAC reference implementation took, for example, several minutes to simply display the set of files accessible to a user on a moderately sized system. In our approach, we take these cubic algorithms and make them linear. We do this by reformulating the set theoretic approach of the NGAC standard into a graph theoretic approach and then apply standard graph algorithms. We thus can answer important access control decision questions (e.g., which files are available to a user and which users can access a file) using linear time graph algorithms. We also provide a default linear time mechanism to visualize and review user access rights for an ensemble of access control mechanisms. Our visualization appears to be a simple file directory hierarchy but in reality is an automatically generated structure abstracted from the underlying access control graph that works with any set of simultaneously instantiated access control policies. It also provide an implicit mechanism for symbolic linking that provides a powerful access capability. Our work thus provides the first efficient implementation of NGAC while enabling user privilege review through a novel visualization approach. This may help transition from concept to reality the idea of using ensembles of simultaneously instantiated access control methodologies, thereby limiting insider threat. PMID:28758045

  2. Flight Validation of a Metrics Driven L(sub 1) Adaptive Control

    NASA Technical Reports Server (NTRS)

    Dobrokhodov, Vladimir; Kitsios, Ioannis; Kaminer, Isaac; Jones, Kevin D.; Xargay, Enric; Hovakimyan, Naira; Cao, Chengyu; Lizarraga, Mariano I.; Gregory, Irene M.

    2008-01-01

    The paper addresses initial steps involved in the development and flight implementation of new metrics driven L1 adaptive flight control system. The work concentrates on (i) definition of appropriate control driven metrics that account for the control surface failures; (ii) tailoring recently developed L1 adaptive controller to the design of adaptive flight control systems that explicitly address these metrics in the presence of control surface failures and dynamic changes under adverse flight conditions; (iii) development of a flight control system for implementation of the resulting algorithms onboard of small UAV; and (iv) conducting a comprehensive flight test program that demonstrates performance of the developed adaptive control algorithms in the presence of failures. As the initial milestone the paper concentrates on the adaptive flight system setup and initial efforts addressing the ability of a commercial off-the-shelf AP with and without adaptive augmentation to recover from control surface failures.

  3. Robust tuning of robot control systems

    NASA Technical Reports Server (NTRS)

    Minis, I.; Uebel, M.

    1992-01-01

    The computed torque control problem is examined for a robot arm with flexible, geared, joint drive systems which are typical in many industrial robots. The standard computed torque algorithm is not directly applicable to this class of manipulators because of the dynamics introduced by the joint drive system. The proposed approach to computed torque control combines a computed torque algorithm with torque controller at each joint. Three such control schemes are proposed. The first scheme uses the joint torque control system currently implemented on the robot arm and a novel form of the computed torque algorithm. The other two use the standard computed torque algorithm and a novel model following torque control system based on model following techniques. Standard tasks and performance indices are used to evaluate the performance of the controllers. Both numerical simulations and experiments are used in evaluation. The study shows that all three proposed systems lead to improved tracking performance over a conventional PD controller.

  4. GPU Acceleration of DSP for Communication Receivers.

    PubMed

    Gunther, Jake; Gunther, Hyrum; Moon, Todd

    2017-09-01

    Graphics processing unit (GPU) implementations of signal processing algorithms can outperform CPU-based implementations. This paper describes the GPU implementation of several algorithms encountered in a wide range of high-data rate communication receivers including filters, multirate filters, numerically controlled oscillators, and multi-stage digital down converters. These structures are tested by processing the 20 MHz wide FM radio band (88-108 MHz). Two receiver structures are explored: a single channel receiver and a filter bank channelizer. Both run in real time on NVIDIA GeForce GTX 1080 graphics card.

  5. Stall Recovery Guidance Algorithms Based on Constrained Control Approaches

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vahram; Krishnakumar, Kalmanje; Kaneshige, John; Acosta, Diana

    2016-01-01

    Aircraft loss-of-control, in particular approach to stall or fully developed stall, is a major factor contributing to aircraft safety risks, which emphasizes the need to develop algorithms that are capable of assisting the pilots to identify the problem and providing guidance to recover the aircraft. In this paper we present several stall recovery guidance algorithms, which are implemented in the background without interfering with flight control system and altering the pilot's actions. They are using input and state constrained control methods to generate guidance signals, which are provided to the pilot in the form of visual cues. It is the pilot's decision to follow these signals. The algorithms are validated in the pilot-in-the loop medium fidelity simulation experiment.

  6. Error bounds of adaptive dynamic programming algorithms for solving undiscounted optimal control problems.

    PubMed

    Liu, Derong; Li, Hongliang; Wang, Ding

    2015-06-01

    In this paper, we establish error bounds of adaptive dynamic programming algorithms for solving undiscounted infinite-horizon optimal control problems of discrete-time deterministic nonlinear systems. We consider approximation errors in the update equations of both value function and control policy. We utilize a new assumption instead of the contraction assumption in discounted optimal control problems. We establish the error bounds for approximate value iteration based on a new error condition. Furthermore, we also establish the error bounds for approximate policy iteration and approximate optimistic policy iteration algorithms. It is shown that the iterative approximate value function can converge to a finite neighborhood of the optimal value function under some conditions. To implement the developed algorithms, critic and action neural networks are used to approximate the value function and control policy, respectively. Finally, a simulation example is given to demonstrate the effectiveness of the developed algorithms.

  7. Application of IFT and SPSA to servo system control.

    PubMed

    Rădac, Mircea-Bogdan; Precup, Radu-Emil; Petriu, Emil M; Preitl, Stefan

    2011-12-01

    This paper treats the application of two data-based model-free gradient-based stochastic optimization techniques, i.e., iterative feedback tuning (IFT) and simultaneous perturbation stochastic approximation (SPSA), to servo system control. The representative case of controlled processes modeled by second-order systems with an integral component is discussed. New IFT and SPSA algorithms are suggested to tune the parameters of the state feedback controllers with an integrator in the linear-quadratic-Gaussian (LQG) problem formulation. An implementation case study concerning the LQG-based design of an angular position controller for a direct current servo system laboratory equipment is included to highlight the pros and cons of IFT and SPSA from an application's point of view. The comparison of IFT and SPSA algorithms is focused on an insight into their implementation.

  8. Tunable, Flexible and Efficient Optimization of Control Pulses for Superconducting Qubits, part I - Theory

    NASA Astrophysics Data System (ADS)

    Machnes, Shai; AsséMat, Elie; Tannor, David; Wilhelm, Frank

    Quantum computation places very stringent demands on gate fidelities, and experimental implementations require both the controls and the resultant dynamics to conform to hardware-specific ansatzes and constraints. Superconducting qubits present the additional requirement that pulses have simple parametrizations, so they can be further calibrated in the experiment, to compensate for uncertainties in system characterization. We present a novel, conceptually simple and easy-to-implement gradient-based optimal control algorithm, GOAT, which satisfies all the above requirements. In part II we shall demonstrate the algorithm's capabilities, by using GOAT to optimize fast high-accuracy pulses for two leading superconducting qubits architectures - Xmons and IBM's flux-tunable couplers.

  9. Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems

    NASA Technical Reports Server (NTRS)

    Gregg, Hugh; Healey, Kathleen; Hack, Edmund; Wong, Carla

    1988-01-01

    Expert systems that require access to data bases, complex simulations and real time instrumentation have both symbolic and algorithmic needs. Both of these needs could be met using a general purpose workstation running both symbolic and algorithmic codes, or separate, specialized computers networked together. The later approach was chosen to implement TEXSYS, the thermal expert system, developed by the NASA Ames Research Center in conjunction with the Johnson Space Center to demonstrate the ability of an expert system to autonomously monitor the thermal control system of the space station. TEXSYS has been implemented on a Symbolics workstation, and will be linked to a microVAX computer that will control a thermal test bed. The integration options and several possible solutions are presented.

  10. Compensation of distributed delays in integrated communication and control systems

    NASA Technical Reports Server (NTRS)

    Ray, Asok; Luck, Rogelio

    1991-01-01

    The concept, analysis, implementation, and verification of a method for compensating delays that are distributed between the sensors, controller, and actuators within a control loop are discussed. With the objective of mitigating the detrimental effects of these network induced delays, a predictor-controller algorithm was formulated and analyzed. Robustness of the delay compensation algorithm was investigated relative to parametric uncertainties in plant modeling. The delay compensator was experimentally verified on an IEEE 802.4 network testbed for velocity control of a DC servomotor.

  11. Segmentation of financial seals and its implementation on a DSP-based system

    NASA Astrophysics Data System (ADS)

    He, Jin; Liu, Tiegen; Guo, Jingjing; Zhang, Hao

    2009-11-01

    Automatic seal imprint identification is an important part of modern financial security. Accurate segmentation is the basis of correct identification. In this paper, a DSP (digital signal processor) based identification system was designed, and an adaptive algorithm was proposed to extract binary seal images from financial instruments. As the kernel of the identification system, a DSP chip of TMS320DM642 was used to implement image processing, controlling and coordinating works of each system module. The proposed algorithm consisted of three stages, including extraction of grayscale seal image, denoising and binarization. A grayscale seal image was extracted by color transform from a financial instrument image. Adaptive morphological operations were used to highlight details of the extracted grayscale seal image and smooth the background. After median filter for noise elimination, the filtered seal image was binarized by Otsu's method. The algorithm was developed based on the DSP development environment CCS and real-time operation system DSP/BIOS. To simplify the implementation of the proposed algorithm, the calibration of white balance and the coarse positioning of the seal imprint were implemented by TMS320DM642 controlling image acquisition. IMGLIB of TMS320DM642 was used for the efficiency improvement. The experiment result showed that financial seal imprints, even with intricate and dense strokes can be correctly segmented by the proposed algorithm. Adhesion and incompleteness distortions in the segmentation results were reduced, even when the original seal imprint had a poor quality.

  12. Advanced detection, isolation and accommodation of sensor failures: Real-time evaluation

    NASA Technical Reports Server (NTRS)

    Merrill, Walter C.; Delaat, John C.; Bruton, William M.

    1987-01-01

    The objective of the Advanced Detection, Isolation, and Accommodation (ADIA) Program is to improve the overall demonstrated reliability of digital electronic control systems for turbine engines by using analytical redundacy to detect sensor failures. The results of a real time hybrid computer evaluation of the ADIA algorithm are presented. Minimum detectable levels of sensor failures for an F100 engine control system are determined. Also included are details about the microprocessor implementation of the algorithm as well as a description of the algorithm itself.

  13. Real-Time Feedback Control of Flow-Induced Cavity Tones. Part 2; Adaptive Control

    NASA Technical Reports Server (NTRS)

    Kegerise, M. A.; Cabell, R. H.; Cattafesta, L. N., III

    2006-01-01

    An adaptive generalized predictive control (GPC) algorithm was formulated and applied to the cavity flow-tone problem. The algorithm employs gradient descent to update the GPC coefficients at each time step. Past input-output data and an estimate of the open-loop pulse response sequence are all that is needed to implement the algorithm for application at fixed Mach numbers. Transient measurements made during controller adaptation revealed that the controller coefficients converged to a steady state in the mean, and this implies that adaptation can be turned off at some point with no degradation in control performance. When converged, the control algorithm demonstrated multiple Rossiter mode suppression at fixed Mach numbers ranging from 0.275 to 0.38. However, as in the case of fixed-gain GPC, the adaptive GPC performance was limited by spillover in sidebands around the suppressed Rossiter modes. The algorithm was also able to maintain suppression of multiple cavity tones as the freestream Mach number was varied over a modest range (0.275 to 0.29). Beyond this range, stable operation of the control algorithm was not possible due to the fixed plant model in the algorithm.

  14. Conjugate-Gradient Algorithms For Dynamics Of Manipulators

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Scheid, Robert E.

    1993-01-01

    Algorithms for serial and parallel computation of forward dynamics of multiple-link robotic manipulators by conjugate-gradient method developed. Parallel algorithms have potential for speedup of computations on multiple linked, specialized processors implemented in very-large-scale integrated circuits. Such processors used to stimulate dynamics, possibly faster than in real time, for purposes of planning and control.

  15. Training Recurrent Neural Networks With the Levenberg-Marquardt Algorithm for Optimal Control of a Grid-Connected Converter.

    PubMed

    Fu, Xingang; Li, Shuhui; Fairbank, Michael; Wunsch, Donald C; Alonso, Eduardo

    2015-09-01

    This paper investigates how to train a recurrent neural network (RNN) using the Levenberg-Marquardt (LM) algorithm as well as how to implement optimal control of a grid-connected converter (GCC) using an RNN. To successfully and efficiently train an RNN using the LM algorithm, a new forward accumulation through time (FATT) algorithm is proposed to calculate the Jacobian matrix required by the LM algorithm. This paper explores how to incorporate FATT into the LM algorithm. The results show that the combination of the LM and FATT algorithms trains RNNs better than the conventional backpropagation through time algorithm. This paper presents an analytical study on the optimal control of GCCs, including theoretically ideal optimal and suboptimal controllers. To overcome the inapplicability of the optimal GCC controller under practical conditions, a new RNN controller with an improved input structure is proposed to approximate the ideal optimal controller. The performance of an ideal optimal controller and a well-trained RNN controller was compared in close to real-life power converter switching environments, demonstrating that the proposed RNN controller can achieve close to ideal optimal control performance even under low sampling rate conditions. The excellent performance of the proposed RNN controller under challenging and distorted system conditions further indicates the feasibility of using an RNN to approximate optimal control in practical applications.

  16. Pre-Hardware Optimization and Implementation Of Fast Optics Closed Control Loop Algorithms

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Lyon, Richard G.; Herman, Jay R.; Abuhassan, Nader

    2004-01-01

    One of the main heritage tools used in scientific and engineering data spectrum analysis is the Fourier Integral Transform and its high performance digital equivalent - the Fast Fourier Transform (FFT). The FFT is particularly useful in two-dimensional (2-D) image processing (FFT2) within optical systems control. However, timing constraints of a fast optics closed control loop would require a supercomputer to run the software implementation of the FFT2 and its inverse, as well as other image processing representative algorithm, such as numerical image folding and fringe feature extraction. A laboratory supercomputer is not always available even for ground operations and is not feasible for a night project. However, the computationally intensive algorithms still warrant alternative implementation using reconfigurable computing technologies (RC) such as Digital Signal Processors (DSP) and Field Programmable Gate Arrays (FPGA), which provide low cost compact super-computing capabilities. We present a new RC hardware implementation and utilization architecture that significantly reduces the computational complexity of a few basic image-processing algorithm, such as FFT2, image folding and phase diversity for the NASA Solar Viewing Interferometer Prototype (SVIP) using a cluster of DSPs and FPGAs. The DSP cluster utilization architecture also assures avoidance of a single point of failure, while using commercially available hardware. This, combined with the control algorithms pre-hardware optimization, or the first time allows construction of image-based 800 Hertz (Hz) optics closed control loops on-board a spacecraft, based on the SVIP ground instrument. That spacecraft is the proposed Earth Atmosphere Solar Occultation Imager (EASI) to study greenhouse gases CO2, C2H, H2O, O3, O2, N2O from Lagrange-2 point in space. This paper provides an advanced insight into a new type of science capabilities for future space exploration missions based on on-board image processing for control and for robotics missions using vision sensors. It presents a top-level description of technologies required for the design and construction of SVIP and EASI and to advance the spatial-spectral imaging and large-scale space interferometry science and engineering.

  17. Development of an above-knee prosthesis equipped with a microcomputer-controlled knee joint: first test results.

    PubMed

    Aeyels, B; Peeraer, L; Vander Sloten, J; Van der Perre, G

    1992-05-01

    The shortcomings of conventional above-knee prostheses are due to their lack of adaptive control. Implementation of a microcomputer controlling the knee joint in a passive way has been suggested to enhance the patient's gait comfort, safety and cosmesis. This approach was used in the design of a new prosthetic system for the above-knee amputee, and tested on one patient. The knee joint of a conventional, modular prosthesis was replaced by a knee joint mechanism, equipped with a controllable brake on the knee joint axis. Sensors and a microcomputer were added, keeping the system self-contained. The modularity of the design permits the use of an alternative, external, PC-based control unit, emulating the self-contained one, and offering extended data monitoring and storage facilities. For both units an operating environment was written, including sensor/actuator interfacing and the implementation of a real-time interrupt, executing the control algorithm. A double finite state approach was used in the design of the control algorithm. On a higher level, the mode identification algorithm reveals the patient's intent. Within a specific mode (lower level), the relevant mode control algorithm looks for the current phase within the gait cycle. Within a particular phase, a specific simple control action with the brake replaces normal knee muscle activity. Tests were carried out with one prosthetic patient using a basic control algorithm for level walking, allowing controlled knee flexion during stance phase. The technical feasibility of such a concept is illustrated by the test results, even though only flexion during early stance phase was controlled during the trials.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. A sweep algorithm for massively parallel simulation of circuit-switched networks

    NASA Technical Reports Server (NTRS)

    Gaujal, Bruno; Greenberg, Albert G.; Nicol, David M.

    1992-01-01

    A new massively parallel algorithm is presented for simulating large asymmetric circuit-switched networks, controlled by a randomized-routing policy that includes trunk-reservation. A single instruction multiple data (SIMD) implementation is described, and corresponding experiments on a 16384 processor MasPar parallel computer are reported. A multiple instruction multiple data (MIMD) implementation is also described, and corresponding experiments on an Intel IPSC/860 parallel computer, using 16 processors, are reported. By exploiting parallelism, our algorithm increases the possible execution rate of such complex simulations by as much as an order of magnitude.

  19. Graphics Processing Unit (GPU) implementation of image processing algorithms to improve system performance of the Control, Acquisition, Processing, and Image Display System (CAPIDS) of the Micro-Angiographic Fluoroscope (MAF).

    PubMed

    Vasan, S N Swetadri; Ionita, Ciprian N; Titus, A H; Cartwright, A N; Bednarek, D R; Rudin, S

    2012-02-23

    We present the image processing upgrades implemented on a Graphics Processing Unit (GPU) in the Control, Acquisition, Processing, and Image Display System (CAPIDS) for the custom Micro-Angiographic Fluoroscope (MAF) detector. Most of the image processing currently implemented in the CAPIDS system is pixel independent; that is, the operation on each pixel is the same and the operation on one does not depend upon the result from the operation on the other, allowing the entire image to be processed in parallel. GPU hardware was developed for this kind of massive parallel processing implementation. Thus for an algorithm which has a high amount of parallelism, a GPU implementation is much faster than a CPU implementation. The image processing algorithm upgrades implemented on the CAPIDS system include flat field correction, temporal filtering, image subtraction, roadmap mask generation and display window and leveling. A comparison between the previous and the upgraded version of CAPIDS has been presented, to demonstrate how the improvement is achieved. By performing the image processing on a GPU, significant improvements (with respect to timing or frame rate) have been achieved, including stable operation of the system at 30 fps during a fluoroscopy run, a DSA run, a roadmap procedure and automatic image windowing and leveling during each frame.

  20. Programmable logic controller implementation of an auto-tuned predictive control based on minimal plant information.

    PubMed

    Valencia-Palomo, G; Rossiter, J A

    2011-01-01

    This paper makes two key contributions. First, it tackles the issue of the availability of constrained predictive control for low-level control loops. Hence, it describes how the constrained control algorithm is embedded in an industrial programmable logic controller (PLC) using the IEC 61131-3 programming standard. Second, there is a definition and implementation of a novel auto-tuned predictive controller; the key novelty is that the modelling is based on relatively crude but pragmatic plant information. Laboratory experiment tests were carried out in two bench-scale laboratory systems to prove the effectiveness of the combined algorithm and hardware solution. For completeness, the results are compared with a commercial proportional-integral-derivative (PID) controller (also embedded in the PLC) using the most up to date auto-tuning rules. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Machine Learning Control For Highly Reconfigurable High-Order Systems

    DTIC Science & Technology

    2015-01-02

    develop and flight test a Reinforcement Learning based approach for autonomous tracking of ground targets using a fixed wing Unmanned...Reinforcement Learning - based algorithms are developed for learning agents’ time dependent dynamics while also learning to control them. Three algorithms...to a wide range of engineering- based problems . Implementation of these solutions, however, is often complicated by the hysteretic, non-linear,

  2. Optical Method For Monitoring Tool Control For Green Burnishing With Using Of Algorithms With Adaptive Settings

    NASA Astrophysics Data System (ADS)

    Lukyanov, A. A.; Grigoriev, S. N.; Bobrovskij, I. N.; Melnikov, P. A.; Bobrovskij, N. M.

    2017-05-01

    With regard to the complexity of the new technology and increase its reliability requirements laboriousness of control operations in industrial quality control systems increases significantly. The importance of quality management control due to the fact that its promotes the correct use of production conditions, the relevant requirements are required. Digital image processing allows to reach a new technological level of production (new technological way). The most complicated automated interpretation of information is the basis for decision-making in the management of production processes. In the case of surface analysis of tools used for processing with the using of metalworking fluids (MWF) it is more complicated. The authors suggest new algorithm for optical inspection of the wear of the cylinder tool for burnishing, which used in surface plastic deformation without using of MWF. The main advantage of proposed algorithm is the possibility of automatic recognition of images of burnisher tool with the subsequent allocation of its boundaries, finding a working surface and automatically allocating the defects and wear area. Software that implements the algorithm was developed by the authors in Matlab programming environment, but can be implemented using other programming languages.

  3. PheKB: a catalog and workflow for creating electronic phenotype algorithms for transportability.

    PubMed

    Kirby, Jacqueline C; Speltz, Peter; Rasmussen, Luke V; Basford, Melissa; Gottesman, Omri; Peissig, Peggy L; Pacheco, Jennifer A; Tromp, Gerard; Pathak, Jyotishman; Carrell, David S; Ellis, Stephen B; Lingren, Todd; Thompson, Will K; Savova, Guergana; Haines, Jonathan; Roden, Dan M; Harris, Paul A; Denny, Joshua C

    2016-11-01

    Health care generated data have become an important source for clinical and genomic research. Often, investigators create and iteratively refine phenotype algorithms to achieve high positive predictive values (PPVs) or sensitivity, thereby identifying valid cases and controls. These algorithms achieve the greatest utility when validated and shared by multiple health care systems.Materials and Methods We report the current status and impact of the Phenotype KnowledgeBase (PheKB, http://phekb.org), an online environment supporting the workflow of building, sharing, and validating electronic phenotype algorithms. We analyze the most frequent components used in algorithms and their performance at authoring institutions and secondary implementation sites. As of June 2015, PheKB contained 30 finalized phenotype algorithms and 62 algorithms in development spanning a range of traits and diseases. Phenotypes have had over 3500 unique views in a 6-month period and have been reused by other institutions. International Classification of Disease codes were the most frequently used component, followed by medications and natural language processing. Among algorithms with published performance data, the median PPV was nearly identical when evaluated at the authoring institutions (n = 44; case 96.0%, control 100%) compared to implementation sites (n = 40; case 97.5%, control 100%). These results demonstrate that a broad range of algorithms to mine electronic health record data from different health systems can be developed with high PPV, and algorithms developed at one site are generally transportable to others. By providing a central repository, PheKB enables improved development, transportability, and validity of algorithms for research-grade phenotypes using health care generated data. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. PheKB: a catalog and workflow for creating electronic phenotype algorithms for transportability

    PubMed Central

    Kirby, Jacqueline C; Speltz, Peter; Rasmussen, Luke V; Basford, Melissa; Gottesman, Omri; Peissig, Peggy L; Pacheco, Jennifer A; Tromp, Gerard; Pathak, Jyotishman; Carrell, David S; Ellis, Stephen B; Lingren, Todd; Thompson, Will K; Savova, Guergana; Haines, Jonathan; Roden, Dan M; Harris, Paul A

    2016-01-01

    Objective Health care generated data have become an important source for clinical and genomic research. Often, investigators create and iteratively refine phenotype algorithms to achieve high positive predictive values (PPVs) or sensitivity, thereby identifying valid cases and controls. These algorithms achieve the greatest utility when validated and shared by multiple health care systems. Materials and Methods We report the current status and impact of the Phenotype KnowledgeBase (PheKB, http://phekb.org), an online environment supporting the workflow of building, sharing, and validating electronic phenotype algorithms. We analyze the most frequent components used in algorithms and their performance at authoring institutions and secondary implementation sites. Results As of June 2015, PheKB contained 30 finalized phenotype algorithms and 62 algorithms in development spanning a range of traits and diseases. Phenotypes have had over 3500 unique views in a 6-month period and have been reused by other institutions. International Classification of Disease codes were the most frequently used component, followed by medications and natural language processing. Among algorithms with published performance data, the median PPV was nearly identical when evaluated at the authoring institutions (n = 44; case 96.0%, control 100%) compared to implementation sites (n = 40; case 97.5%, control 100%). Discussion These results demonstrate that a broad range of algorithms to mine electronic health record data from different health systems can be developed with high PPV, and algorithms developed at one site are generally transportable to others. Conclusion By providing a central repository, PheKB enables improved development, transportability, and validity of algorithms for research-grade phenotypes using health care generated data. PMID:27026615

  5. Blended control, predictor-corrector guidance algorithm: an enabling technology for Mars aerocapture.

    PubMed

    Jits, Roman Y; Walberg, Gerald D

    2004-03-01

    A guidance scheme designed for coping with significant dispersion in the vehicle's state and atmospheric conditions is presented. In order to expand the flyable aerocapture envelope, control of the vehicle is realized through bank angle and angle-of-attack modulation. Thus, blended control of the vehicle is achieved, where the lateral and vertical motions of the vehicle are decoupled. The overall implementation approach is described, together with the guidance algorithm macrologic and structure. Results of guidance algorithm tests in the presence of various single and multiple off-nominal conditions are presented and discussed. c2003 Published by Elsevier Ltd.

  6. Fault-tolerant nonlinear adaptive flight control using sliding mode online learning.

    PubMed

    Krüger, Thomas; Schnetter, Philipp; Placzek, Robin; Vörsmann, Peter

    2012-08-01

    An expanded nonlinear model inversion flight control strategy using sliding mode online learning for neural networks is presented. The proposed control strategy is implemented for a small unmanned aircraft system (UAS). This class of aircraft is very susceptible towards nonlinearities like atmospheric turbulence, model uncertainties and of course system failures. Therefore, these systems mark a sensible testbed to evaluate fault-tolerant, adaptive flight control strategies. Within this work the concept of feedback linearization is combined with feed forward neural networks to compensate for inversion errors and other nonlinear effects. Backpropagation-based adaption laws of the network weights are used for online training. Within these adaption laws the standard gradient descent backpropagation algorithm is augmented with the concept of sliding mode control (SMC). Implemented as a learning algorithm, this nonlinear control strategy treats the neural network as a controlled system and allows a stable, dynamic calculation of the learning rates. While considering the system's stability, this robust online learning method therefore offers a higher speed of convergence, especially in the presence of external disturbances. The SMC-based flight controller is tested and compared with the standard gradient descent backpropagation algorithm in the presence of system failures. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. A neural network based implementation of an MPC algorithm applied in the control systems of electromechanical plants

    NASA Astrophysics Data System (ADS)

    Marusak, Piotr M.; Kuntanapreeda, Suwat

    2018-01-01

    The paper considers application of a neural network based implementation of a model predictive control (MPC) control algorithm to electromechanical plants. Properties of such control plants implicate that a relatively short sampling time should be used. However, in such a case, finding the control value numerically may be too time-consuming. Therefore, the current paper tests the solution based on transforming the MPC optimization problem into a set of differential equations whose solution is the same as that of the original optimization problem. This set of differential equations can be interpreted as a dynamic neural network. In such an approach, the constraints can be introduced into the optimization problem with relative ease. Moreover, the solution of the optimization problem can be obtained faster than when the standard numerical quadratic programming routine is used. However, a very careful tuning of the algorithm is needed to achieve this. A DC motor and an electrohydraulic actuator are taken as illustrative examples. The feasibility and effectiveness of the proposed approach are demonstrated through numerical simulations.

  8. Effect of a culture-based screening algorithm on tuberculosis incidence in immigrants and refugees bound for the United States: a population-based cross-sectional study.

    PubMed

    Liu, Yecai; Posey, Drew L; Cetron, Martin S; Painter, John A

    2015-03-17

    Before 2007, immigrants and refugees bound for the United States were screened for tuberculosis (TB) by a smear-based algorithm that could not diagnose smear-negative/culture-positive TB. In 2007, the Centers for Disease Control and Prevention implemented a culture-based algorithm. To evaluate the effect of the culture-based algorithm on preventing the importation of TB to the United States by immigrants and refugees from foreign countries. Population-based, cross-sectional study. Panel physician sites for overseas medical examination. Immigrants and refugees with TB. Comparison of the increase of smear-negative/culture-positive TB cases diagnosed overseas among immigrants and refugees by the culture-based algorithm with the decline of reported cases among foreign-born persons within 1 year after arrival in the United States from 2007 to 2012. Of the 3 212 421 arrivals of immigrants and refugees from 2007 to 2012, a total of 1 650 961 (51.4%) were screened by the smear-based algorithm and 1 561 460 (48.6%) were screened by the culture-based algorithm. Among the 4032 TB cases diagnosed by the culture-based algorithm, 2195 (54.4%) were smear-negative/culture-positive. Before implementation (2002 to 2006), the annual number of reported cases among foreign-born persons within 1 year after arrival was relatively constant (range, 1424 to 1626 cases; mean, 1504 cases) but decreased from 1511 to 940 cases during implementation (2007 to 2012). During the same period, the annual number of smear-negative/culture-positive TB cases diagnosed overseas among immigrants and refugees bound for the United States by the culture-based algorithm increased from 4 to 629. This analysis did not control for the decline in new arrivals of nonimmigrant visitors to the United States and the decrease of incidence of TB in their countries of origin. Implementation of the culture-based algorithm may have substantially reduced the incidence of TB among newly arrived, foreign-born persons in the United States. None.

  9. A novel N-input voting algorithm for X-by-wire fault-tolerant systems.

    PubMed

    Karimi, Abbas; Zarafshan, Faraneh; Al-Haddad, S A R; Ramli, Abdul Rahman

    2014-01-01

    Voting is an important operation in multichannel computation paradigm and realization of ultrareliable and real-time control systems that arbitrates among the results of N redundant variants. These systems include N-modular redundant (NMR) hardware systems and diversely designed software systems based on N-version programming (NVP). Depending on the characteristics of the application and the type of selected voter, the voting algorithms can be implemented for either hardware or software systems. In this paper, a novel voting algorithm is introduced for real-time fault-tolerant control systems, appropriate for applications in which N is large. Then, its behavior has been software implemented in different scenarios of error-injection on the system inputs. The results of analyzed evaluations through plots and statistical computations have demonstrated that this novel algorithm does not have the limitations of some popular voting algorithms such as median and weighted; moreover, it is able to significantly increase the reliability and availability of the system in the best case to 2489.7% and 626.74%, respectively, and in the worst case to 3.84% and 1.55%, respectively.

  10. Advanced power system protection and incipient fault detection and protection of spaceborne power systems

    NASA Technical Reports Server (NTRS)

    Russell, B. Don

    1989-01-01

    This research concentrated on the application of advanced signal processing, expert system, and digital technologies for the detection and control of low grade, incipient faults on spaceborne power systems. The researchers have considerable experience in the application of advanced digital technologies and the protection of terrestrial power systems. This experience was used in the current contracts to develop new approaches for protecting the electrical distribution system in spaceborne applications. The project was divided into three distinct areas: (1) investigate the applicability of fault detection algorithms developed for terrestrial power systems to the detection of faults in spaceborne systems; (2) investigate the digital hardware and architectures required to monitor and control spaceborne power systems with full capability to implement new detection and diagnostic algorithms; and (3) develop a real-time expert operating system for implementing diagnostic and protection algorithms. Significant progress has been made in each of the above areas. Several terrestrial fault detection algorithms were modified to better adapt to spaceborne power system environments. Several digital architectures were developed and evaluated in light of the fault detection algorithms.

  11. Algorithm and data support of traffic congestion forecasting in the controlled transport

    NASA Astrophysics Data System (ADS)

    Dmitriev, S. V.

    2015-06-01

    The topicality of problem of the traffic congestion forecasting in the logistic systems of product movement highways is considered. The concepts: the controlled territory, the highway occupancy by vehicles, the parking and the controlled territory are introduced. Technical realizabilityof organizing the necessary flow of information on the state of the transport system for its regulation has been marked. Sequence of practical implementation of the solution is given. An algorithm for predicting traffic congestion in the controlled transport system is suggested.

  12. Case studies on design, simulation and visualization of control and measurement applications using REX control system

    NASA Astrophysics Data System (ADS)

    Ozana, Stepan; Pies, Martin; Docekal, Tomas

    2016-06-01

    REX Control System is a professional advanced tool for design and implementation of complex control systems that belongs to softPLC category. It covers the entire process starting from simulation of functionality of the application before deployment, through implementation on real-time target, towards analysis, diagnostics and visualization. Basically it consists of two parts: the development tools and the runtime system. It is also compatible with Simulink environment, and the way of implementation of control algorithm is very similar. The control scheme is finally compiled (using RexDraw utility) and uploaded into a chosen real-time target (using RexView utility). There is a wide variety of hardware platforms and real-time operating systems supported by REX Control System such as for example Windows Embedded, Linux, Linux/Xenomai deployed on SBC, IPC, PAC, Raspberry Pi and others with many I/O interfaces. It is modern system designed both for measurement and control applications, offering a lot of additional functions concerning data archiving, visualization based on HTML5, and communication standards. The paper will sum up possibilities of its use in educational process, focused on control of case studies of physical models with classical and advanced control algorithms.

  13. Implementation of Nonlinear Control Laws for an Optical Delay Line

    NASA Technical Reports Server (NTRS)

    Hench, John J.; Lurie, Boris; Grogan, Robert; Johnson, Richard

    2000-01-01

    This paper discusses the implementation of a globally stable nonlinear controller algorithm for the Real-Time Interferometer Control System Testbed (RICST) brassboard optical delay line (ODL) developed for the Interferometry Technology Program at the Jet Propulsion Laboratory. The control methodology essentially employs loop shaping to implement linear control laws. while utilizing nonlinear elements as means of ameliorating the effects of actuator saturation in its coarse, main, and vernier stages. The linear controllers were implemented as high-order digital filters and were designed using Bode integral techniques to determine the loop shape. The nonlinear techniques encompass the areas of exact linearization, anti-windup control, nonlinear rate limiting and modal control. Details of the design procedure are given as well as data from the actual mechanism.

  14. Improving generalized inverted index lock wait times

    NASA Astrophysics Data System (ADS)

    Borodin, A.; Mirvoda, S.; Porshnev, S.; Ponomareva, O.

    2018-01-01

    Concurrent operations on tree like data structures is a cornerstone of any database system. Concurrent operations intended for improving read\\write performance and usually implemented via some way of locking. Deadlock-free methods of concurrency control are known as tree locking protocols. These protocols provide basic operations(verbs) and algorithm (ways of operation invocations) for applying it to any tree-like data structure. These algorithms operate on data, managed by storage engine which are very different among RDBMS implementations. In this paper, we discuss tree locking protocol implementation for General inverted index (Gin) applied to multiversion concurrency control (MVCC) storage engine inside PostgreSQL RDBMS. After that we introduce improvements to locking protocol and provide usage statistics about evaluation of our improvement in very high load environment in one of the world’s largest IT company.

  15. Central safety factor and β N control on NSTX-U via beam power and plasma boundary shape modification, using TRANSP for closed loop simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyer, M. D.; Andre, R.; Gates, D. A.

    The high-performance operational goals of NSTX-U will require development of advanced feedback control algorithms, including control of ßN and the safety factor profile. In this work, a novel approach to simultaneously controlling ßN and the value of the safety factor on the magnetic axis, q0, through manipulation of the plasma boundary shape and total beam power, is proposed. Simulations of the proposed scheme show promising results and motivate future experimental implementation and eventual integration into a more complex current profile control scheme planned to include actuation of individual beam powers, density, and loop voltage. As part of this work, amore » flexible framework for closed loop simulations within the high-fidelity code TRANSP was developed. The framework, used here to identify control-design-oriented models and to tune and test the proposed controller, exploits many of the predictive capabilities of TRANSP and provides a means for performing control calculations based on user-supplied data (controller matrices, target waveforms, etc.). The flexible framework should enable high-fidelity testing of a variety of control algorithms, thereby reducing the amount of expensive experimental time needed to implement new control algorithms on NSTX-U and other devices.« less

  16. Central safety factor and βN control on NSTX-U via beam power and plasma boundary shape modification, using TRANSP for closed loop simulations

    NASA Astrophysics Data System (ADS)

    Boyer, M. D.; Andre, R.; Gates, D. A.; Gerhardt, S.; Goumiri, I. R.; Menard, J.

    2015-05-01

    The high-performance operational goals of NSTX-U will require development of advanced feedback control algorithms, including control of βN and the safety factor profile. In this work, a novel approach to simultaneously controlling βN and the value of the safety factor on the magnetic axis, q0, through manipulation of the plasma boundary shape and total beam power, is proposed. Simulations of the proposed scheme show promising results and motivate future experimental implementation and eventual integration into a more complex current profile control scheme planned to include actuation of individual beam powers, density, and loop voltage. As part of this work, a flexible framework for closed loop simulations within the high-fidelity code TRANSP was developed. The framework, used here to identify control-design-oriented models and to tune and test the proposed controller, exploits many of the predictive capabilities of TRANSP and provides a means for performing control calculations based on user-supplied data (controller matrices, target waveforms, etc). The flexible framework should enable high-fidelity testing of a variety of control algorithms, thereby reducing the amount of expensive experimental time needed to implement new control algorithms on NSTX-U and other devices.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Woohyun; Katipamula, Srinivas; Lutes, Robert G.

    This report describes how the intelligent load control (ILC) algorithm can be implemented to achieve peak demand reduction while minimizing impacts on occupant comfort. The algorithm was designed to minimize the additional sensors and minimum configuration requirements to enable a scalable and cost-effective implementation for both large and small-/medium-sized commercial buildings. The ILC algorithm uses an analytic hierarchy process (AHP) to dynamically prioritize the available curtailable loads based on both quantitative (deviation of zone conditions from set point) and qualitative rules (types of zone). Although the ILC algorithm described in this report was highly tailored to work with rooftop units,more » it can be generalized for application to other building loads such as variable-air-volume (VAV) boxes and lighting systems.« less

  18. Software-Implemented Fault Tolerance in Communications Systems

    NASA Technical Reports Server (NTRS)

    Gantenbein, Rex E.

    1994-01-01

    Software-implemented fault tolerance (SIFT) is used in many computer-based command, control, and communications (C(3)) systems to provide the nearly continuous availability that they require. In the communications subsystem of Space Station Alpha, SIFT algorithms are used to detect and recover from failures in the data and command link between the Station and its ground support. The paper presents a review of these algorithms and discusses how such techniques can be applied to similar systems found in applications such as manufacturing control, military communications, and programmable devices such as pacemakers. With support from the Tracking and Communication Division of NASA's Johnson Space Center, researchers at the University of Wyoming are developing a testbed for evaluating the effectiveness of these algorithms prior to their deployment. This testbed will be capable of simulating a variety of C(3) system failures and recording the response of the Space Station SIFT algorithms to these failures. The design of this testbed and the applicability of the approach in other environments is described.

  19. Adaptive dynamic programming for finite-horizon optimal control of discrete-time nonlinear systems with ε-error bound.

    PubMed

    Wang, Fei-Yue; Jin, Ning; Liu, Derong; Wei, Qinglai

    2011-01-01

    In this paper, we study the finite-horizon optimal control problem for discrete-time nonlinear systems using the adaptive dynamic programming (ADP) approach. The idea is to use an iterative ADP algorithm to obtain the optimal control law which makes the performance index function close to the greatest lower bound of all performance indices within an ε-error bound. The optimal number of control steps can also be obtained by the proposed ADP algorithms. A convergence analysis of the proposed ADP algorithms in terms of performance index function and control policy is made. In order to facilitate the implementation of the iterative ADP algorithms, neural networks are used for approximating the performance index function, computing the optimal control policy, and modeling the nonlinear system. Finally, two simulation examples are employed to illustrate the applicability of the proposed method.

  20. EEG/ERP adaptive noise canceller design with controlled search space (CSS) approach in cuckoo and other optimization algorithms.

    PubMed

    Ahirwal, M K; Kumar, Anil; Singh, G K

    2013-01-01

    This paper explores the migration of adaptive filtering with swarm intelligence/evolutionary techniques employed in the field of electroencephalogram/event-related potential noise cancellation or extraction. A new approach is proposed in the form of controlled search space to stabilize the randomness of swarm intelligence techniques especially for the EEG signal. Swarm-based algorithms such as Particles Swarm Optimization, Artificial Bee Colony, and Cuckoo Optimization Algorithm with their variants are implemented to design optimized adaptive noise canceler. The proposed controlled search space technique is tested on each of the swarm intelligence techniques and is found to be more accurate and powerful. Adaptive noise canceler with traditional algorithms such as least-mean-square, normalized least-mean-square, and recursive least-mean-square algorithms are also implemented to compare the results. ERP signals such as simulated visual evoked potential, real visual evoked potential, and real sensorimotor evoked potential are used, due to their physiological importance in various EEG studies. Average computational time and shape measures of evolutionary techniques are observed 8.21E-01 sec and 1.73E-01, respectively. Though, traditional algorithms take negligible time consumption, but are unable to offer good shape preservation of ERP, noticed as average computational time and shape measure difference, 1.41E-02 sec and 2.60E+00, respectively.

  1. Some design guidelines for discrete-time adaptive controllers

    NASA Technical Reports Server (NTRS)

    Rohrs, C. E.; Athans, M.; Valavani, L.; Stein, G.

    1985-01-01

    There have been many algorithms proposed for adaptive control which will provide globally asymptotically stable controllers if some stringent conditions on the plant are met. The conditions on the plant cannot be met in practice as all plants will contain high frequency unmolded dynamics therefore, blind implementation of the published algorithms can lead to disastrous results. This paper uses a linearization analysis of a non-linear adaptive controller to demonstrate analytically design guidelines which aleviate some of the problems associated with adaptive control in the presence of unmodeled dynamics.

  2. F-8C adaptive control law refinement and software development

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Stein, G.

    1981-01-01

    An explicit adaptive control algorithm based on maximum likelihood estimation of parameters was designed. To avoid iterative calculations, the algorithm uses parallel channels of Kalman filters operating at fixed locations in parameter space. This algorithm was implemented in NASA/DFRC's Remotely Augmented Vehicle (RAV) facility. Real-time sensor outputs (rate gyro, accelerometer, surface position) are telemetered to a ground computer which sends new gain values to an on-board system. Ground test data and flight records were used to establish design values of noise statistics and to verify the ground-based adaptive software.

  3. Mystic: Implementation of the Static Dynamic Optimal Control Algorithm for High-Fidelity, Low-Thrust Trajectory Design

    NASA Technical Reports Server (NTRS)

    Whiffen, Gregory J.

    2006-01-01

    Mystic software is designed to compute, analyze, and visualize optimal high-fidelity, low-thrust trajectories, The software can be used to analyze inter-planetary, planetocentric, and combination trajectories, Mystic also provides utilities to assist in the operation and navigation of low-thrust spacecraft. Mystic will be used to design and navigate the NASA's Dawn Discovery mission to orbit the two largest asteroids, The underlying optimization algorithm used in the Mystic software is called Static/Dynamic Optimal Control (SDC). SDC is a nonlinear optimal control method designed to optimize both 'static variables' (parameters) and dynamic variables (functions of time) simultaneously. SDC is a general nonlinear optimal control algorithm based on Bellman's principal.

  4. Active control of impulsive noise with symmetric α-stable distribution based on an improved step-size normalized adaptive algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Yali; Zhang, Qizhi; Yin, Yixin

    2015-05-01

    In this paper, active control of impulsive noise with symmetric α-stable (SαS) distribution is studied. A general step-size normalized filtered-x Least Mean Square (FxLMS) algorithm is developed based on the analysis of existing algorithms, and the Gaussian distribution function is used to normalize the step size. Compared with existing algorithms, the proposed algorithm needs neither the parameter selection and thresholds estimation nor the process of cost function selection and complex gradient computation. Computer simulations have been carried out to suggest that the proposed algorithm is effective for attenuating SαS impulsive noise, and then the proposed algorithm has been implemented in an experimental ANC system. Experimental results show that the proposed scheme has good performance for SαS impulsive noise attenuation.

  5. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Kreutz, Kenneth; Jain, Abhinandan

    1989-01-01

    A recently developed spatial operator algebra, useful for modeling, control, and trajectory design of manipulators is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics. Furthermore, implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection. Thus, the transition from an abstract problem formulation and solution to the detailed mechanizaton of specific algorithms is greatly simplified. The analytical formulation of the operator algebra, as well as its implementation in the Ada programming language are discussed.

  6. Value Iteration Adaptive Dynamic Programming for Optimal Control of Discrete-Time Nonlinear Systems.

    PubMed

    Wei, Qinglai; Liu, Derong; Lin, Hanquan

    2016-03-01

    In this paper, a value iteration adaptive dynamic programming (ADP) algorithm is developed to solve infinite horizon undiscounted optimal control problems for discrete-time nonlinear systems. The present value iteration ADP algorithm permits an arbitrary positive semi-definite function to initialize the algorithm. A novel convergence analysis is developed to guarantee that the iterative value function converges to the optimal performance index function. Initialized by different initial functions, it is proven that the iterative value function will be monotonically nonincreasing, monotonically nondecreasing, or nonmonotonic and will converge to the optimum. In this paper, for the first time, the admissibility properties of the iterative control laws are developed for value iteration algorithms. It is emphasized that new termination criteria are established to guarantee the effectiveness of the iterative control laws. Neural networks are used to approximate the iterative value function and compute the iterative control law, respectively, for facilitating the implementation of the iterative ADP algorithm. Finally, two simulation examples are given to illustrate the performance of the present method.

  7. Attitude control system of the Delfi-n3Xt satellite

    NASA Astrophysics Data System (ADS)

    Reijneveld, J.; Choukroun, D.

    2013-12-01

    This work is concerned with the development of the attitude control algorithms that will be implemented on board of the Delfi-n3xt nanosatellite, which is to be launched in 2013. One of the mission objectives is to demonstrate Sun pointing and three axis stabilization. The attitude control modes and the associated algorithms are described. The control authority is shared between three body-mounted magnetorquers (MTQ) and three orthogonal reaction wheels. The attitude information is retrieved from Sun vector measurements, Earth magnetic field measurements, and gyro measurements. The design of the control is achieved as a trade between simplicity and performance. Stabilization and Sun pointing are achieved via the successive application of the classical Bdot control law and a quaternion feedback control. For the purpose of Sun pointing, a simple quaternion estimation scheme is implemented based on geometric arguments, where the need for a costly optimal filtering algorithm is alleviated, and a single line of sight (LoS) measurement is required - here the Sun vector. Beyond the three-axis Sun pointing mode, spinning Sun pointing modes are also described and used as demonstration modes. The three-axis Sun pointing mode requires reaction wheels and magnetic control while the spinning control modes are implemented with magnetic control only. In addition, a simple scheme for angular rates estimation using Sun vector and Earth magnetic measurements is tested in the case of gyro failures. The various control modes performances are illustrated via extensive simulations over several orbits time spans. The simulated models of the dynamical space environment, of the attitude hardware, and the onboard controller logic are using realistic assumptions. All control modes satisfy the minimal Sun pointing requirements allowed for power generation.

  8. Research of digital controlled DC/DC converter based on STC12C5410AD

    NASA Astrophysics Data System (ADS)

    Chen, Dan-Jiang; Jin, Xin; Xiao, Zhi-Hong

    2010-02-01

    In order to study application of digital control technology on DC/DC converter, principle of increment mode PID control algorithm was analyzed in the paper. Then, a SCM named STC12C5410AD was introduced with its internal resources and characteristics. The PID control algorithm can be implemented easily based on it. The output of PID control was used to change the value of a variable that is 255 times than duty cycle, and this reduced the error of calculation. The valid of the presented algorithm was verified by an experiment for a BUCK DC/DC converter. The experimental results indicated that output voltage of the BUCK converter is stable with low ripple.

  9. Backup Attitude Control Algorithms for the MAP Spacecraft

    NASA Technical Reports Server (NTRS)

    ODonnell, James R., Jr.; Andrews, Stephen F.; Ericsson-Jackson, Aprille J.; Flatley, Thomas W.; Ward, David K.; Bay, P. Michael

    1999-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The MAP spacecraft will perform its mission, studying the early origins of the universe, in a Lissajous orbit around the Earth-Sun L(sub 2) Lagrange point. Due to limited mass, power, and financial resources, a traditional reliability concept involving fully redundant components was not feasible. This paper will discuss the redundancy philosophy used on MAP, describe the hardware redundancy selected (and why), and present backup modes and algorithms that were designed in lieu of additional attitude control hardware redundancy to improve the odds of mission success. Three of these modes have been implemented in the spacecraft flight software. The first onboard mode allows the MAP Kalman filter to be used with digital sun sensor (DSS) derived rates, in case of the failure of one of MAP's two two-axis inertial reference units. Similarly, the second onboard mode allows a star tracker only mode, using attitude and derived rate from one or both of MAP's star trackers for onboard attitude determination and control. The last backup mode onboard allows a sun-line angle offset to be commanded that will allow solar radiation pressure to be used for momentum management and orbit stationkeeping. In addition to the backup modes implemented on the spacecraft, two backup algorithms have been developed in the event of less likely contingencies. One of these is an algorithm for implementing an alternative scan pattern to MAP's nominal dual-spin science mode using only one or two reaction wheels and thrusters. Finally, an algorithm has been developed that uses thruster one shots while in science mode for momentum management. This algorithm has been developed in case system momentum builds up faster than anticipated, to allow adequate momentum management while minimizing interruptions to science. In this paper, each mode and algorithm will be discussed, and simulation results presented.

  10. A Sparse Self-Consistent Field Algorithm and Its Parallel Implementation: Application to Density-Functional-Based Tight Binding.

    PubMed

    Scemama, Anthony; Renon, Nicolas; Rapacioli, Mathias

    2014-06-10

    We present an algorithm and its parallel implementation for solving a self-consistent problem as encountered in Hartree-Fock or density functional theory. The algorithm takes advantage of the sparsity of matrices through the use of local molecular orbitals. The implementation allows one to exploit efficiently modern symmetric multiprocessing (SMP) computer architectures. As a first application, the algorithm is used within the density-functional-based tight binding method, for which most of the computational time is spent in the linear algebra routines (diagonalization of the Fock/Kohn-Sham matrix). We show that with this algorithm (i) single point calculations on very large systems (millions of atoms) can be performed on large SMP machines, (ii) calculations involving intermediate size systems (1000-100 000 atoms) are also strongly accelerated and can run efficiently on standard servers, and (iii) the error on the total energy due to the use of a cutoff in the molecular orbital coefficients can be controlled such that it remains smaller than the SCF convergence criterion.

  11. Efficient Online Optimized Quantum Control for Adiabatic Quantum Computation

    NASA Astrophysics Data System (ADS)

    Quiroz, Gregory

    Adiabatic quantum computation (AQC) relies on controlled adiabatic evolution to implement a quantum algorithm. While control evolution can take many forms, properly designed time-optimal control has been shown to be particularly advantageous for AQC. Grover's search algorithm is one such example where analytically-derived time-optimal control leads to improved scaling of the minimum energy gap between the ground state and first excited state and thus, the well-known quadratic quantum speedup. Analytical extensions beyond Grover's search algorithm present a daunting task that requires potentially intractable calculations of energy gaps and a significant degree of model certainty. Here, an in situ quantum control protocol is developed for AQC. The approach is shown to yield controls that approach the analytically-derived time-optimal controls for Grover's search algorithm. In addition, the protocol's convergence rate as a function of iteration number is shown to be essentially independent of system size. Thus, the approach is potentially scalable to many-qubit systems.

  12. Fuzzy control of magnetic bearings

    NASA Technical Reports Server (NTRS)

    Feeley, J. J.; Niederauer, G. M.; Ahlstrom, D. J.

    1991-01-01

    The use of an adaptive fuzzy control algorithm implemented on a VLSI chip for the control of a magnetic bearing was considered. The architecture of the adaptive fuzzy controller is similar to that of a neural network. The performance of the fuzzy controller is compared to that of a conventional controller by computer simulation.

  13. Novel algorithm implementations in DARC: the Durham AO real-time controller

    NASA Astrophysics Data System (ADS)

    Basden, Alastair; Bitenc, Urban; Jenkins, David

    2016-07-01

    The Durham AO Real-time Controller has been used on-sky with the CANARY AO demonstrator instrument since 2010, and is also used to provide control for several AO test-benches, including DRAGON. Over this period, many new real-time algorithms have been developed, implemented and demonstrated, leading to performance improvements for CANARY. Additionally, the computational performance of this real-time system has continued to improve. Here, we provide details about recent updates and changes made to DARC, and the relevance of these updates, including new algorithms, to forthcoming AO systems. We present the computational performance of DARC when used on different hardware platforms, including hardware accelerators, and determine the relevance and potential for ELT scale systems. Recent updates to DARC have included algorithms to handle elongated laser guide star images, including correlation wavefront sensing, with options to automatically update references during AO loop operation. Additionally, sub-aperture masking options have been developed to increase signal to noise ratio when operating with non-symmetrical wavefront sensor images. The development of end-user tools has progressed with new options for configuration and control of the system. New wavefront sensor camera models and DM models have been integrated with the system, increasing the number of possible hardware configurations available, and a fully open-source AO system is now a reality, including drivers necessary for commercial cameras and DMs. The computational performance of DARC makes it suitable for ELT scale systems when implemented on suitable hardware. We present tests made on different hardware platforms, along with the strategies taken to optimise DARC for these systems.

  14. A time-efficient algorithm for implementing the Catmull-Clark subdivision method

    NASA Astrophysics Data System (ADS)

    Ioannou, G.; Savva, A.; Stylianou, V.

    2015-10-01

    Splines are the most popular methods in Figure Modeling and CAGD (Computer Aided Geometric Design) in generating smooth surfaces from a number of control points. The control points define the shape of a figure and splines calculate the required number of points which when displayed on a computer screen the result is a smooth surface. However, spline methods are based on a rectangular topological structure of points, i.e., a two-dimensional table of vertices, and thus cannot generate complex figures, such as the human and animal bodies that their complex structure does not allow them to be defined by a regular rectangular grid. On the other hand surface subdivision methods, which are derived by splines, generate surfaces which are defined by an arbitrary topology of control points. This is the reason that during the last fifteen years subdivision methods have taken the lead over regular spline methods in all areas of modeling in both industry and research. The cost of executing computer software developed to read control points and calculate the surface is run-time, due to the fact that the surface-structure required for handling arbitrary topological grids is very complicate. There are many software programs that have been developed related to the implementation of subdivision surfaces however, not many algorithms are documented in the literature, to support developers for writing efficient code. This paper aims to assist programmers by presenting a time-efficient algorithm for implementing subdivision splines. The Catmull-Clark which is the most popular of the subdivision methods has been employed to illustrate the algorithm.

  15. A semi-active suspension control algorithm for vehicle comprehensive vertical dynamics performance

    NASA Astrophysics Data System (ADS)

    Nie, Shida; Zhuang, Ye; Liu, Weiping; Chen, Fan

    2017-08-01

    Comprehensive performance of the vehicle, including ride qualities and road-holding, is essentially of great value in practice. Many up-to-date semi-active control algorithms improve vehicle dynamics performance effectively. However, it is hard to improve comprehensive performance for the conflict between ride qualities and road-holding around the second-order resonance. Hence, a new control algorithm is proposed to achieve a good trade-off between ride qualities and road-holding. In this paper, the properties of the invariant points are analysed, which gives an insight into the performance conflicting around the second-order resonance. Based on it, a new control algorithm is proposed. The algorithm employs a novel frequency selector to balance suspension ride and handling performance by adopting a medium damping around the second-order resonance. The results of this study show that the proposed control algorithm could improve the performance of ride qualities and suspension working space up to 18.3% and 8.2%, respectively, with little loss of road-holding compared to the passive suspension. Consequently, the comprehensive performance can be improved by 6.6%. Hence, the proposed algorithm is of great potential to be implemented in practice.

  16. Bio-inspired online variable recruitment control of fluidic artificial muscles

    NASA Astrophysics Data System (ADS)

    Jenkins, Tyler E.; Chapman, Edward M.; Bryant, Matthew

    2016-12-01

    This paper details the creation of a hybrid variable recruitment control scheme for fluidic artificial muscle (FAM) actuators with an emphasis on maximizing system efficiency and switching control performance. Variable recruitment is the process of altering a system’s active number of actuators, allowing operation in distinct force regimes. Previously, FAM variable recruitment was only quantified with offline, manual valve switching; this study addresses the creation and characterization of novel, on-line FAM switching control algorithms. The bio-inspired algorithms are implemented in conjunction with a PID and model-based controller, and applied to a simulated plant model. Variable recruitment transition effects and chatter rejection are explored via a sensitivity analysis, allowing a system designer to weigh tradeoffs in actuator modeling, algorithm choice, and necessary hardware. Variable recruitment is further developed through simulation of a robotic arm tracking a variety of spline position inputs, requiring several levels of actuator recruitment. Switching controller performance is quantified and compared with baseline systems lacking variable recruitment. The work extends current variable recruitment knowledge by creating novel online variable recruitment control schemes, and exploring how online actuator recruitment affects system efficiency and control performance. Key topics associated with implementing a variable recruitment scheme, including the effects of modeling inaccuracies, hardware considerations, and switching transition concerns are also addressed.

  17. A simple model-based control for Pichia pastoris allows a more efficient heterologous protein production bioprocess.

    PubMed

    Cos, Oriol; Ramon, Ramon; Montesinos, José Luis; Valero, Francisco

    2006-09-05

    A predictive control algorithm coupled with a PI feedback controller has been satisfactorily implemented in the heterologous Rhizopus oryzae lipase production by Pichia pastoris methanol utilization slow (Mut(s)) phenotype. This control algorithm has allowed the study of the effect of methanol concentration, ranging from 0.5 to 1.75 g/L, on heterologous protein production. The maximal lipolytic activity (490 UA/mL), specific yield (11,236 UA/g(biomass)), productivity (4,901 UA/L . h), and specific productivity (112 UA/g(biomass)h were reached for a methanol concentration of 1 g/L. These parameters are almost double than those obtained with a manual control at a similar methanol set-point. The study of the specific growth, consumption, and production rates showed different patterns for these rates depending on the methanol concentration set-point. Results obtained have shown the need of implementing a robust control scheme when reproducible quality and productivity are sought. It has been demonstrated that the model-based control proposed here is a very efficient, robust, and easy-to-implement strategy from an industrial application point of view. (c) 2006 Wiley Periodicals, Inc.

  18. An Energy-Efficient Underground Localization System Based on Heterogeneous Wireless Networks

    PubMed Central

    Yuan, Yazhou; Chen, Cailian; Guan, Xinping; Yang, Qiuling

    2015-01-01

    A precision positioning system with energy efficiency is of great necessity for guaranteeing personnel safety in underground mines. The location information of the miners' should be transmitted to the control center timely and reliably; therefore, a heterogeneous network with the backbone based on high speed Industrial Ethernet is deployed. Since the mobile wireless nodes are working in an irregular tunnel, a specific wireless propagation model cannot fit all situations. In this paper, an underground localization system is designed to enable the adaptation to kinds of harsh tunnel environments, but also to reduce the energy consumption and thus prolong the lifetime of the network. Three key techniques are developed and implemented to improve the system performance, including a step counting algorithm with accelerometers, a power control algorithm and an adaptive packets scheduling scheme. The simulation study and experimental results show the effectiveness of the proposed algorithms and the implementation. PMID:26016918

  19. Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems

    NASA Technical Reports Server (NTRS)

    Gregg, Hugh; Healey, Kathleen; Hack, Edmund; Wong, Carla

    1987-01-01

    Traditional expert systems, such as diagnostic and training systems, interact with users only through a keyboard and screen, and are usually symbolic in nature. Expert systems that require access to data bases, complex simulations and real-time instrumentation have both symbolic as well as algorithmic computing needs. These needs could both be met using a general purpose workstation running both symbolic and algorithmic code, or separate, specialized computers networked together. The latter approach was chosen to implement TEXSYS, the thermal expert system, developed by NASA Ames Research Center in conjunction with Johnson Space Center to demonstrate the ability of an expert system to autonomously monitor the thermal control system of the space station. TEXSYS has been implemented on a Symbolics workstation, and will be linked to a microVAX computer that will control a thermal test bed. This paper will explore the integration options, and present several possible solutions.

  20. [Quality of documentation of intraoperative and postoperative complications : improvement of documentation for a nationwide quality assurance program and comparison with routine data].

    PubMed

    Jakob, J; Marenda, D; Sold, M; Schlüter, M; Post, S; Kienle, P

    2014-08-01

    Complications after cholecystectomy are continuously documented in a nationwide database in Germany. Recent studies demonstrated a lack of reliability of these data. The aim of the study was to evaluate the impact of a control algorithm on documentation quality and the use of routine diagnosis coding as an additional validation instrument. Completeness and correctness of the documentation of complications after cholecystectomy was compared over a time interval of 12 months before and after implementation of an algorithm for faster and more accurate documentation. Furthermore, the coding of all diagnoses was screened to identify intraoperative and postoperative complications. The sensitivity of the documentation for complications improved from 46 % to 70 % (p = 0.05, specificity 98 % in both time intervals). A prolonged time interval of more than 6 weeks between patient discharge and documentation was associated with inferior data quality (incorrect documentation in 1.5 % versus 15 %, p < 0.05). The rate of case documentation within the 6 weeks after hospital discharge was clearly improved after implementation of the control algorithm. Sensitivity and specificity of screening for complications by evaluating routine diagnoses coding were 70 % and 85 %, respectively. The quality of documentation was improved by implementation of a simple memory algorithm.

  1. Cascade generalized predictive control strategy for boiler drum level.

    PubMed

    Xu, Min; Li, Shaoyuan; Cai, Wenjian

    2005-07-01

    This paper proposes a cascade model predictive control scheme for boiler drum level control. By employing generalized predictive control structures for both inner and outer loops, measured and unmeasured disturbances can be effectively rejected, and drum level at constant load is maintained. In addition, nonminimum phase characteristic and system constraints in both loops can be handled effectively by generalized predictive control algorithms. Simulation results are provided to show that cascade generalized predictive control results in better performance than that of well tuned cascade proportional integral differential controllers. The algorithm has also been implemented to control a 75-MW boiler plant, and the results show an improvement over conventional control schemes.

  2. Acoustooptic linear algebra processors - Architectures, algorithms, and applications

    NASA Technical Reports Server (NTRS)

    Casasent, D.

    1984-01-01

    Architectures, algorithms, and applications for systolic processors are described with attention to the realization of parallel algorithms on various optical systolic array processors. Systolic processors for matrices with special structure and matrices of general structure, and the realization of matrix-vector, matrix-matrix, and triple-matrix products and such architectures are described. Parallel algorithms for direct and indirect solutions to systems of linear algebraic equations and their implementation on optical systolic processors are detailed with attention to the pipelining and flow of data and operations. Parallel algorithms and their optical realization for LU and QR matrix decomposition are specifically detailed. These represent the fundamental operations necessary in the implementation of least squares, eigenvalue, and SVD solutions. Specific applications (e.g., the solution of partial differential equations, adaptive noise cancellation, and optimal control) are described to typify the use of matrix processors in modern advanced signal processing.

  3. FFT Computation with Systolic Arrays, A New Architecture

    NASA Technical Reports Server (NTRS)

    Boriakoff, Valentin

    1994-01-01

    The use of the Cooley-Tukey algorithm for computing the l-d FFT lends itself to a particular matrix factorization which suggests direct implementation by linearly-connected systolic arrays. Here we present a new systolic architecture that embodies this algorithm. This implementation requires a smaller number of processors and a smaller number of memory cells than other recent implementations, as well as having all the advantages of systolic arrays. For the implementation of the decimation-in-frequency case, word-serial data input allows continuous real-time operation without the need of a serial-to-parallel conversion device. No control or data stream switching is necessary. Computer simulation of this architecture was done in the context of a 1024 point DFT with a fixed point processor, and CMOS processor implementation has started.

  4. Suboptimal Scheduling in Switched Systems With Continuous-Time Dynamics: A Least Squares Approach.

    PubMed

    Sardarmehni, Tohid; Heydari, Ali

    2018-06-01

    Two approximate solutions for optimal control of switched systems with autonomous subsystems and continuous-time dynamics are presented. The first solution formulates a policy iteration (PI) algorithm for the switched systems with recursive least squares. To reduce the computational burden imposed by the PI algorithm, a second solution, called single loop PI, is presented. Online and concurrent training algorithms are discussed for implementing each solution. At last, effectiveness of the presented algorithms is evaluated through numerical simulations.

  5. Efficient lossy compression implementations of hyperspectral images: tools, hardware platforms, and comparisons

    NASA Astrophysics Data System (ADS)

    García, Aday; Santos, Lucana; López, Sebastián.; Callicó, Gustavo M.; Lopez, Jose F.; Sarmiento, Roberto

    2014-05-01

    Efficient onboard satellite hyperspectral image compression represents a necessity and a challenge for current and future space missions. Therefore, it is mandatory to provide hardware implementations for this type of algorithms in order to achieve the constraints required for onboard compression. In this work, we implement the Lossy Compression for Exomars (LCE) algorithm on an FPGA by means of high-level synthesis (HSL) in order to shorten the design cycle. Specifically, we use CatapultC HLS tool to obtain a VHDL description of the LCE algorithm from C-language specifications. Two different approaches are followed for HLS: on one hand, introducing the whole C-language description in CatapultC and on the other hand, splitting the C-language description in functional modules to be implemented independently with CatapultC, connecting and controlling them by an RTL description code without HLS. In both cases the goal is to obtain an FPGA implementation. We explain the several changes applied to the original Clanguage source code in order to optimize the results obtained by CatapultC for both approaches. Experimental results show low area occupancy of less than 15% for a SRAM-based Virtex-5 FPGA and a maximum frequency above 80 MHz. Additionally, the LCE compressor was implemented into an RTAX2000S antifuse-based FPGA, showing an area occupancy of 75% and a frequency around 53 MHz. All these serve to demonstrate that the LCE algorithm can be efficiently executed on an FPGA onboard a satellite. A comparison between both implementation approaches is also provided. The performance of the algorithm is finally compared with implementations on other technologies, specifically a graphics processing unit (GPU) and a single-threaded CPU.

  6. Design and implementation of a vision-based hovering and feature tracking algorithm for a quadrotor

    NASA Astrophysics Data System (ADS)

    Lee, Y. H.; Chahl, J. S.

    2016-10-01

    This paper demonstrates an approach to the vision-based control of the unmanned quadrotors for hover and object tracking. The algorithms used the Speed Up Robust Features (SURF) algorithm to detect objects. The pose of the object in the image was then calculated in order to pass the pose information to the flight controller. Finally, the flight controller steered the quadrotor to approach the object based on the calculated pose data. The above processes was run using standard onboard resources found in the 3DR Solo quadrotor in an embedded computing environment. The obtained results showed that the algorithm behaved well during its missions, tracking and hovering, although there were significant latencies due to low CPU performance of the onboard image processing system.

  7. Case studies on design, simulation and visualization of control and measurement applications using REX control system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozana, Stepan, E-mail: stepan.ozana@vsb.cz; Pies, Martin, E-mail: martin.pies@vsb.cz; Docekal, Tomas, E-mail: docekalt@email.cz

    REX Control System is a professional advanced tool for design and implementation of complex control systems that belongs to softPLC category. It covers the entire process starting from simulation of functionality of the application before deployment, through implementation on real-time target, towards analysis, diagnostics and visualization. Basically it consists of two parts: the development tools and the runtime system. It is also compatible with Simulink environment, and the way of implementation of control algorithm is very similar. The control scheme is finally compiled (using RexDraw utility) and uploaded into a chosen real-time target (using RexView utility). There is a widemore » variety of hardware platforms and real-time operating systems supported by REX Control System such as for example Windows Embedded, Linux, Linux/Xenomai deployed on SBC, IPC, PAC, Raspberry Pi and others with many I/O interfaces. It is modern system designed both for measurement and control applications, offering a lot of additional functions concerning data archiving, visualization based on HTML5, and communication standards. The paper will sum up possibilities of its use in educational process, focused on control of case studies of physical models with classical and advanced control algorithms.« less

  8. ICPL: Intelligent Cooperative Planning and Learning for Multi-agent Systems

    DTIC Science & Technology

    2012-02-29

    objective was to develop a new planning approach for teams!of multiple UAVs that tightly integrates learning and cooperative!control algorithms at... algorithms at multiple levels of the planning architecture. The research results enabled a team of mobile agents to learn to adapt and react to uncertainty in...expressive representation that incorporates feature conjunctions. Our algorithm is simple to implement, fast to execute, and can be combined with any

  9. Small Body GN&C Research Report: A Robust Model Predictive Control Algorithm with Guaranteed Resolvability

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet A.; Carson, John M., III

    2005-01-01

    A robustly stabilizing MPC (model predictive control) algorithm for uncertain nonlinear systems is developed that guarantees the resolvability of the associated finite-horizon optimal control problem in a receding-horizon implementation. The control consists of two components; (i) feedforward, and (ii) feedback part. Feed-forward control is obtained by online solution of a finite-horizon optimal control problem for the nominal system dynamics. The feedback control policy is designed off-line based on a bound on the uncertainty in the system model. The entire controller is shown to be robustly stabilizing with a region of attraction composed of initial states for which the finite-horizon optimal control problem is feasible. The controller design for this algorithm is demonstrated on a class of systems with uncertain nonlinear terms that have norm-bounded derivatives, and derivatives in polytopes. An illustrative numerical example is also provided.

  10. Design of a microprocessor-based Control, Interface and Monitoring (CIM unit for turbine engine controls research

    NASA Technical Reports Server (NTRS)

    Delaat, J. C.; Soeder, J. F.

    1983-01-01

    High speed minicomputers were used in the past to implement advanced digital control algorithms for turbine engines. These minicomputers are typically large and expensive. It is desirable for a number of reasons to use microprocessor-based systems for future controls research. They are relatively compact, inexpensive, and are representative of the hardware that would be used for actual engine-mounted controls. The Control, Interface, and Monitoring Unit (CIM) contains a microprocessor-based controls computer, necessary interface hardware and a system to monitor while it is running an engine. It is presently being used to evaluate an advanced turbofan engine control algorithm.

  11. Design and hardware-in-loop implementation of collision avoidance algorithms for heavy commercial road vehicles

    NASA Astrophysics Data System (ADS)

    Rajaram, Vignesh; Subramanian, Shankar C.

    2016-07-01

    An important aspect from the perspective of operational safety of heavy road vehicles is the detection and avoidance of collisions, particularly at high speeds. The development of a collision avoidance system is the overall focus of the research presented in this paper. The collision avoidance algorithm was developed using a sliding mode controller (SMC) and compared to one developed using linear full state feedback in terms of performance and controller effort. Important dynamic characteristics such as load transfer during braking, tyre-road interaction, dynamic brake force distribution and pneumatic brake system response were considered. The effect of aerodynamic drag on the controller performance was also studied. The developed control algorithms have been implemented on a Hardware-in-Loop experimental set-up equipped with the vehicle dynamic simulation software, IPG/TruckMaker®. The evaluation has been performed for realistic traffic scenarios with different loading and road conditions. The Hardware-in-Loop experimental results showed that the SMC and full state feedback controller were able to prevent the collision. However, when the discrepancies in the form of parametric variations were included, the SMC provided better results in terms of reduced stopping distance and lower controller effort compared to the full state feedback controller.

  12. Validation of deformable image registration algorithms on CT images of ex vivo porcine bladders with fiducial markers.

    PubMed

    Wognum, S; Heethuis, S E; Rosario, T; Hoogeman, M S; Bel, A

    2014-07-01

    The spatial accuracy of deformable image registration (DIR) is important in the implementation of image guided adaptive radiotherapy techniques for cancer in the pelvic region. Validation of algorithms is best performed on phantoms with fiducial markers undergoing controlled large deformations. Excised porcine bladders, exhibiting similar filling and voiding behavior as human bladders, provide such an environment. The aim of this study was to determine the spatial accuracy of different DIR algorithms on CT images of ex vivo porcine bladders with radiopaque fiducial markers applied to the outer surface, for a range of bladder volumes, using various accuracy metrics. Five excised porcine bladders with a grid of 30-40 radiopaque fiducial markers attached to the outer wall were suspended inside a water-filled phantom. The bladder was filled with a controlled amount of water with added contrast medium for a range of filling volumes (100-400 ml in steps of 50 ml) using a luer lock syringe, and CT scans were acquired at each filling volume. DIR was performed for each data set, with the 100 ml bladder as the reference image. Six intensity-based algorithms (optical flow or demons-based) implemented in theMATLAB platform DIRART, a b-spline algorithm implemented in the commercial software package VelocityAI, and a structure-based algorithm (Symmetric Thin Plate Spline Robust Point Matching) were validated, using adequate parameter settings according to values previously published. The resulting deformation vector field from each registration was applied to the contoured bladder structures and to the marker coordinates for spatial error calculation. The quality of the algorithms was assessed by comparing the different error metrics across the different algorithms, and by comparing the effect of deformation magnitude (bladder volume difference) per algorithm, using the Independent Samples Kruskal-Wallis test. The authors found good structure accuracy without dependency on bladder volume difference for all but one algorithm, and with the best result for the structure-based algorithm. Spatial accuracy as assessed from marker errors was disappointing for all algorithms, especially for large volume differences, implying that the deformations described by the registration did not represent anatomically correct deformations. The structure-based algorithm performed the best in terms of marker error for the large volume difference (100-400 ml). In general, for the small volume difference (100-150 ml) the algorithms performed relatively similarly. The structure-based algorithm exhibited the best balance in performance between small and large volume differences, and among the intensity-based algorithms, the algorithm implemented in VelocityAI exhibited the best balance. Validation of multiple DIR algorithms on a novel physiological bladder phantom revealed that the structure accuracy was good for most algorithms, but that the spatial accuracy as assessed from markers was low for all algorithms, especially for large deformations. Hence, many of the available algorithms exhibit sufficient accuracy for contour propagation purposes, but possibly not for accurate dose accumulation.

  13. Enhancement of tracking performance in electro-optical system based on servo control algorithm

    NASA Astrophysics Data System (ADS)

    Choi, WooJin; Kim, SungSu; Jung, DaeYoon; Seo, HyoungKyu

    2017-10-01

    Modern electro-optical surveillance and reconnaissance systems require tracking capability to get exact images of target or to accurately direct the line of sight to target which is moving or still. This leads to the tracking system composed of image based tracking algorithm and servo control algorithm. In this study, we focus on the servo control function to minimize the overshoot in the tracking motion and do not miss the target. The scheme is to limit acceleration and velocity parameters in the tracking controller, depending on the target state information in the image. We implement the proposed techniques by creating a system model of DIRCM and simulate the same environment, validate the performance on the actual equipment.

  14. A fast implementation of MPC-based motion cueing algorithms for mid-size road vehicle motion simulators

    NASA Astrophysics Data System (ADS)

    Bruschetta, M.; Maran, F.; Beghi, A.

    2017-06-01

    The use of dynamic driving simulators is constantly increasing in the automotive community, with applications ranging from vehicle development to rehab and driver training. The effectiveness of such devices is related to their capabilities of well reproducing the driving sensations, hence it is crucial that the motion control strategies generate both realistic and feasible inputs to the platform. Such strategies are called motion cueing algorithms (MCAs). In recent years several MCAs based on model predictive control (MPC) techniques have been proposed. The main drawback associated with the use of MPC is its computational burden, that may limit their application to high performance dynamic simulators. In the paper, a fast, real-time implementation of an MPC-based MCA for 9 DOF, high performance platform is proposed. Effectiveness of the approach in managing the available working area is illustrated by presenting experimental results from an implementation on a real device with a 200 Hz control frequency.

  15. A fast new algorithm for a robot neurocontroller using inverse QR decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, A.S.; Khemaissia, S.

    2000-01-01

    A new adaptive neural network controller for robots is presented. The controller is based on direct adaptive techniques. Unlike many neural network controllers in the literature, inverse dynamical model evaluation is not required. A numerically robust, computationally efficient processing scheme for neutral network weight estimation is described, namely, the inverse QR decomposition (INVQR). The inverse QR decomposition and a weighted recursive least-squares (WRLS) method for neural network weight estimation is derived using Cholesky factorization of the data matrix. The algorithm that performs the efficient INVQR of the underlying space-time data matrix may be implemented in parallel on a triangular array.more » Furthermore, its systolic architecture is well suited for VLSI implementation. Another important benefit is well suited for VLSI implementation. Another important benefit of the INVQR decomposition is that it solves directly for the time-recursive least-squares filter vector, while avoiding the sequential back-substitution step required by the QR decomposition approaches.« less

  16. Development of a control algorithm for the ultrasound scanning robot (NCCUSR) using ultrasound image and force feedback.

    PubMed

    Kim, Yeoun Jae; Seo, Jong Hyun; Kim, Hong Rae; Kim, Kwang Gi

    2017-06-01

    Clinicians who frequently perform ultrasound scanning procedures often suffer from musculoskeletal disorders, arthritis, and myalgias. To minimize their occurrence and to assist clinicians, ultrasound scanning robots have been developed worldwide. Although, to date, there is still no commercially available ultrasound scanning robot, many control methods have been suggested and researched. These control algorithms are either image based or force based. If the ultrasound scanning robot control algorithm was a combination of the two algorithms, it could benefit from the advantage of each one. However, there are no existing control methods for ultrasound scanning robots that combine force control and image analysis. Therefore, in this work, a control algorithm is developed for an ultrasound scanning robot using force feedback and ultrasound image analysis. A manipulator-type ultrasound scanning robot named 'NCCUSR' is developed and a control algorithm for this robot is suggested and verified. First, conventional hybrid position-force control is implemented for the robot and the hybrid position-force control algorithm is combined with ultrasound image analysis to fully control the robot. The control method is verified using a thyroid phantom. It was found that the proposed algorithm can be applied to control the ultrasound scanning robot and experimental outcomes suggest that the images acquired using the proposed control method can yield a rating score that is equivalent to images acquired directly by the clinicians. The proposed control method can be applied to control the ultrasound scanning robot. However, more work must be completed to verify the proposed control method in order to become clinically feasible. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Computational complexities and storage requirements of some Riccati equation solvers

    NASA Technical Reports Server (NTRS)

    Utku, Senol; Garba, John A.; Ramesh, A. V.

    1989-01-01

    The linear optimal control problem of an nth-order time-invariant dynamic system with a quadratic performance functional is usually solved by the Hamilton-Jacobi approach. This leads to the solution of the differential matrix Riccati equation with a terminal condition. The bulk of the computation for the optimal control problem is related to the solution of this equation. There are various algorithms in the literature for solving the matrix Riccati equation. However, computational complexities and storage requirements as a function of numbers of state variables, control variables, and sensors are not available for all these algorithms. In this work, the computational complexities and storage requirements for some of these algorithms are given. These expressions show the immensity of the computational requirements of the algorithms in solving the Riccati equation for large-order systems such as the control of highly flexible space structures. The expressions are also needed to compute the speedup and efficiency of any implementation of these algorithms on concurrent machines.

  18. Design and validation of a real-time spiking-neural-network decoder for brain-machine interfaces.

    PubMed

    Dethier, Julie; Nuyujukian, Paul; Ryu, Stephen I; Shenoy, Krishna V; Boahen, Kwabena

    2013-06-01

    Cortically-controlled motor prostheses aim to restore functions lost to neurological disease and injury. Several proof of concept demonstrations have shown encouraging results, but barriers to clinical translation still remain. In particular, intracortical prostheses must satisfy stringent power dissipation constraints so as not to damage cortex. One possible solution is to use ultra-low power neuromorphic chips to decode neural signals for these intracortical implants. The first step is to explore in simulation the feasibility of translating decoding algorithms for brain-machine interface (BMI) applications into spiking neural networks (SNNs). Here we demonstrate the validity of the approach by implementing an existing Kalman-filter-based decoder in a simulated SNN using the Neural Engineering Framework (NEF), a general method for mapping control algorithms onto SNNs. To measure this system's robustness and generalization, we tested it online in closed-loop BMI experiments with two rhesus monkeys. Across both monkeys, a Kalman filter implemented using a 2000-neuron SNN has comparable performance to that of a Kalman filter implemented using standard floating point techniques. These results demonstrate the tractability of SNN implementations of statistical signal processing algorithms on different monkeys and for several tasks, suggesting that a SNN decoder, implemented on a neuromorphic chip, may be a feasible computational platform for low-power fully-implanted prostheses. The validation of this closed-loop decoder system and the demonstration of its robustness and generalization hold promise for SNN implementations on an ultra-low power neuromorphic chip using the NEF.

  19. GPU-based optimal control for RWM feedback in tokamaks

    DOE PAGES

    Clement, Mitchell; Hanson, Jeremy; Bialek, Jim; ...

    2017-08-23

    The design and implementation of a Graphics Processing Unit (GPU) based Resistive Wall Mode (RWM) controller to perform feedback control on the RWM using Linear Quadratic Gaussian (LQG) control is reported herein. Also, the control algorithm is based on a simplified DIII-D VALEN model. By using NVIDIA’s GPUDirect RDMA framework, the digitizer and output module are able to write and read directly to and from GPU memory, eliminating memory transfers between host and GPU. In conclusion, the system and algorithm was able to reduce plasma response excited by externally applied fields by 32% during development experiments.

  20. GPU-based optimal control for RWM feedback in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clement, Mitchell; Hanson, Jeremy; Bialek, Jim

    The design and implementation of a Graphics Processing Unit (GPU) based Resistive Wall Mode (RWM) controller to perform feedback control on the RWM using Linear Quadratic Gaussian (LQG) control is reported herein. Also, the control algorithm is based on a simplified DIII-D VALEN model. By using NVIDIA’s GPUDirect RDMA framework, the digitizer and output module are able to write and read directly to and from GPU memory, eliminating memory transfers between host and GPU. In conclusion, the system and algorithm was able to reduce plasma response excited by externally applied fields by 32% during development experiments.

  1. Texas Medication Algorithm Project: development and feasibility testing of a treatment algorithm for patients with bipolar disorder.

    PubMed

    Suppes, T; Swann, A C; Dennehy, E B; Habermacher, E D; Mason, M; Crismon, M L; Toprac, M G; Rush, A J; Shon, S P; Altshuler, K Z

    2001-06-01

    Use of treatment guidelines for treatment of major psychiatric illnesses has increased in recent years. The Texas Medication Algorithm Project (TMAP) was developed to study the feasibility and process of developing and implementing guidelines for bipolar disorder, major depressive disorder, and schizophrenia in the public mental health system of Texas. This article describes the consensus process used to develop the first set of TMAP algorithms for the Bipolar Disorder Module (Phase 1) and the trial testing the feasibility of their implementation in inpatient and outpatient psychiatric settings across Texas (Phase 2). The feasibility trial answered core questions regarding implementation of treatment guidelines for bipolar disorder. A total of 69 patients were treated with the original algorithms for bipolar disorder developed in Phase 1 of TMAP. Results support that physicians accepted the guidelines, followed recommendations to see patients at certain intervals, and utilized sequenced treatment steps differentially over the course of treatment. While improvements in clinical symptoms (24-item Brief Psychiatric Rating Scale) were observed over the course of enrollment in the trial, these conclusions are limited by the fact that physician volunteers were utilized for both treatment and ratings. and there was no control group. Results from Phases 1 and 2 indicate that it is possible to develop and implement a treatment guideline for patients with a history of mania in public mental health clinics in Texas. TMAP Phase 3, a recently completed larger and controlled trial assessing the clinical and economic impact of treatment guidelines and patient and family education in the public mental health system of Texas, improves upon this methodology.

  2. Double-tick realization of binary control program

    NASA Astrophysics Data System (ADS)

    Kobylecki, Michał; Kania, Dariusz

    2016-12-01

    This paper presents a procedure for the implementation of control algorithms for hardware-bit compatible with the standard IEC61131-3. The described transformation based on the sets of calculus and graphs, allows translation of the original form of the control program to the form in full compliance with the original, giving the architecture represented by two tick. The proposed method enables the efficient implementation of the control bits in the FPGA with the use of a standardized programming language LD.

  3. Formation control of robotic swarm using bounded artificial forces.

    PubMed

    Qin, Long; Zha, Yabing; Yin, Quanjun; Peng, Yong

    2013-01-01

    Formation control of multirobot systems has drawn significant attention in the recent years. This paper presents a potential field control algorithm, navigating a swarm of robots into a predefined 2D shape while avoiding intermember collisions. The algorithm applies in both stationary and moving targets formation. We define the bounded artificial forces in the form of exponential functions, so that the behavior of the swarm drove by the forces can be adjusted via selecting proper control parameters. The theoretical analysis of the swarm behavior proves the stability and convergence properties of the algorithm. We further make certain modifications upon the forces to improve the robustness of the swarm behavior in the presence of realistic implementation considerations. The considerations include obstacle avoidance, local minima, and deformation of the shape. Finally, detailed simulation results validate the efficiency of the proposed algorithm, and the direction of possible futrue work is discussed in the conclusions.

  4. Formation Control of Robotic Swarm Using Bounded Artificial Forces

    PubMed Central

    Zha, Yabing; Peng, Yong

    2013-01-01

    Formation control of multirobot systems has drawn significant attention in the recent years. This paper presents a potential field control algorithm, navigating a swarm of robots into a predefined 2D shape while avoiding intermember collisions. The algorithm applies in both stationary and moving targets formation. We define the bounded artificial forces in the form of exponential functions, so that the behavior of the swarm drove by the forces can be adjusted via selecting proper control parameters. The theoretical analysis of the swarm behavior proves the stability and convergence properties of the algorithm. We further make certain modifications upon the forces to improve the robustness of the swarm behavior in the presence of realistic implementation considerations. The considerations include obstacle avoidance, local minima, and deformation of the shape. Finally, detailed simulation results validate the efficiency of the proposed algorithm, and the direction of possible futrue work is discussed in the conclusions. PMID:24453809

  5. Simultaneous vibration control and energy harvesting using actor-critic based reinforcement learning

    NASA Astrophysics Data System (ADS)

    Loong, Cheng Ning; Chang, C. C.; Dimitrakopoulos, Elias G.

    2018-03-01

    Mitigating excessive vibration of civil engineering structures using various types of devices has been a conspicuous research topic in the past few decades. Some devices, such as electromagnetic transducers, which have a capability of exerting control forces while simultaneously harvesting energy, have been proposed recently. These devices make possible a self-regenerative system that can semi-actively mitigate structural vibration without the need of external energy. Integrating mechanical, electrical components, and control algorithms, these devices open up a new research domain that needs to be addressed. In this study, the feasibility of using an actor-critic based reinforcement learning control algorithm for simultaneous vibration control and energy harvesting for a civil engineering structure is investigated. The actor-critic based reinforcement learning control algorithm is a real-time, model-free adaptive technique that can adjust the controller parameters based on observations and reward signals without knowing the system characteristics. It is suitable for the control of a partially known nonlinear system with uncertain parameters. The feasibility of implementing this algorithm on a building structure equipped with an electromagnetic damper will be investigated in this study. Issues related to the modelling of learning algorithm, initialization and convergence will be presented and discussed.

  6. Implementation of advanced feedback control algorithms for controlled resonant magnetic perturbation physics studies on EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Frassinetti, L.; Olofsson, K. E. J.; Brunsell, P. R.; Drake, J. R.

    2011-06-01

    The EXTRAP T2R feedback system (active coils, sensor coils and controller) is used to study and develop new tools for advanced control of the MHD instabilities in fusion plasmas. New feedback algorithms developed in EXTRAP T2R reversed-field pinch allow flexible and independent control of each magnetic harmonic. Methods developed in control theory and applied to EXTRAP T2R allow a closed-loop identification of the machine plant and of the resistive wall modes growth rates. The plant identification is the starting point for the development of output-tracking algorithms which enable the generation of external magnetic perturbations. These algorithms will then be used to study the effect of a resonant magnetic perturbation (RMP) on the tearing mode (TM) dynamics. It will be shown that the stationary RMP can induce oscillations in the amplitude and jumps in the phase of the rotating TM. It will be shown that the RMP strongly affects the magnetic island position.

  7. Autonomous vehicle navigation utilizing fuzzy controls concepts for a next generation wheelchair.

    PubMed

    Hansen, J D; Barrett, S F; Wright, C H G; Wilcox, M

    2008-01-01

    Three different positioning techniques were investigated to create an autonomous vehicle that could accurately navigate towards a goal: Global Positioning System (GPS), compass dead reckoning, and Ackerman steering. Each technique utilized a fuzzy logic controller that maneuvered a four-wheel car towards a target. The reliability and the accuracy of the navigation methods were investigated by modeling the algorithms in software and implementing them in hardware. To implement the techniques in hardware, positioning sensors were interfaced to a remote control car and a microprocessor. The microprocessor utilized the sensor measurements to orient the car with respect to the target. Next, a fuzzy logic control algorithm adjusted the front wheel steering angle to minimize the difference between the heading and bearing. After minimizing the heading error, the car maintained a straight steering angle along its path to the final destination. The results of this research can be used to develop applications that require precise navigation. The design techniques can also be implemented on alternate platforms such as a wheelchair to assist with autonomous navigation.

  8. Real-time dynamics simulation of the Cassini spacecraft using DARTS. Part 1: Functional capabilities and the spatial algebra algorithm

    NASA Technical Reports Server (NTRS)

    Jain, A.; Man, G. K.

    1993-01-01

    This paper describes the Dynamics Algorithms for Real-Time Simulation (DARTS) real-time hardware-in-the-loop dynamics simulator for the National Aeronautics and Space Administration's Cassini spacecraft. The spacecraft model consists of a central flexible body with a number of articulated rigid-body appendages. The demanding performance requirements from the spacecraft control system require the use of a high fidelity simulator for control system design and testing. The DARTS algorithm provides a new algorithmic and hardware approach to the solution of this hardware-in-the-loop simulation problem. It is based upon the efficient spatial algebra dynamics for flexible multibody systems. A parallel and vectorized version of this algorithm is implemented on a low-cost, multiprocessor computer to meet the simulation timing requirements.

  9. A junction-tree based learning algorithm to optimize network wide traffic control: A coordinated multi-agent framework

    DOE PAGES

    Zhu, Feng; Aziz, H. M. Abdul; Qian, Xinwu; ...

    2015-01-31

    Our study develops a novel reinforcement learning algorithm for the challenging coordinated signal control problem. Traffic signals are modeled as intelligent agents interacting with the stochastic traffic environment. The model is built on the framework of coordinated reinforcement learning. The Junction Tree Algorithm (JTA) based reinforcement learning is proposed to obtain an exact inference of the best joint actions for all the coordinated intersections. Moreover, the algorithm is implemented and tested with a network containing 18 signalized intersections in VISSIM. Finally, our results show that the JTA based algorithm outperforms independent learning (Q-learning), real-time adaptive learning, and fixed timing plansmore » in terms of average delay, number of stops, and vehicular emissions at the network level.« less

  10. Prevalence of Traditional and Reverse-Algorithm Syphilis Screening in Laboratory Practice: A Survey of Participants in the College of American Pathologists Syphilis Serology Proficiency Testing Program.

    PubMed

    Rhoads, Daniel D; Genzen, Jonathan R; Bashleben, Christine P; Faix, James D; Ansari, M Qasim

    2017-01-01

    -Syphilis serology screening in laboratory practice is evolving. Traditionally, the syphilis screening algorithm begins with a nontreponemal immunoassay, which is manually performed by a laboratory technologist. In contrast, the reverse algorithm begins with a treponemal immunoassay, which can be automated. The Centers for Disease Control and Prevention has recognized both approaches, but little is known about the current state of laboratory practice, which could impact test utilization and interpretation. -To assess the current state of laboratory practice for syphilis serologic screening. -In August 2015, a voluntary questionnaire was sent to the 2360 laboratories that subscribe to the College of American Pathologists syphilis serology proficiency survey. -Of the laboratories surveyed, 98% (2316 of 2360) returned the questionnaire, and about 83% (1911 of 2316) responded to at least some questions. Twenty-eight percent (378 of 1364) reported revision of their syphilis screening algorithm within the past 2 years, and 9% (170 of 1905) of laboratories anticipated changing their screening algorithm in the coming year. Sixty-three percent (1205 of 1911) reported using the traditional algorithm, 16% (304 of 1911) reported using the reverse algorithm, and 2.5% (47 of 1911) reported using both algorithms, whereas 9% (169 of 1911) reported not performing a reflex confirmation test. Of those performing the reverse algorithm, 74% (282 of 380) implemented a new testing platform when introducing the new algorithm. -The majority of laboratories still perform the traditional algorithm, but a significant minority have implemented the reverse-screening algorithm. Although the nontreponemal immunologic response typically wanes after cure and becomes undetectable, treponemal immunoassays typically remain positive for life, and it is important for laboratorians and clinicians to consider these assay differences when implementing, using, and interpreting serologic syphilis screening algorithms.

  11. Implementation of Automatic Focusing Algorithms for a Computer Vision System with Camera Control.

    DTIC Science & Technology

    1983-08-15

    obtainable from real data, rather than relying on a stock database. Often, computer vision and image processing algorithms become subconsciously tuned to...two coils on the same mount structure. Since it was not possible to reprogram the binary system, we turned to the POPEYE system for both its grey

  12. PLA realizations for VLSI state machines

    NASA Technical Reports Server (NTRS)

    Gopalakrishnan, S.; Whitaker, S.; Maki, G.; Liu, K.

    1990-01-01

    A major problem associated with state assignment procedures for VLSI controllers is obtaining an assignment that produces minimal or near minimal logic. The key item in Programmable Logic Array (PLA) area minimization is the number of unique product terms required by the design equations. This paper presents a state assignment algorithm for minimizing the number of product terms required to implement a finite state machine using a PLA. Partition algebra with predecessor state information is used to derive a near optimal state assignment. A maximum bound on the number of product terms required can be obtained by inspecting the predecessor state information. The state assignment algorithm presented is much simpler than existing procedures and leads to the same number of product terms or less. An area-efficient PLA structure implemented in a 1.0 micron CMOS process is presented along with a summary of the performance for a controller implemented using this design procedure.

  13. Effects of Computer Architecture on FFT (Fast Fourier Transform) Algorithm Performance.

    DTIC Science & Technology

    1983-12-01

    Criteria for Efficient Implementation of FFT Algorithms," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-30, pp. 107-109, Feb...1982. Burrus, C. S. and P. W. Eschenbacher. "An In-Place, In-Order Prime Factor FFT Algorithm," IEEE Transactions on Acoustics, Speech, and Signal... Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-30, pp. 217-226, Apr. 1982. Control Data Corporation. CDC Cyber 170 Computer Systems

  14. Accelerated optimization and automated discovery with covariance matrix adaptation for experimental quantum control

    NASA Astrophysics Data System (ADS)

    Roslund, Jonathan; Shir, Ofer M.; Bäck, Thomas; Rabitz, Herschel

    2009-10-01

    Optimization of quantum systems by closed-loop adaptive pulse shaping offers a rich domain for the development and application of specialized evolutionary algorithms. Derandomized evolution strategies (DESs) are presented here as a robust class of optimizers for experimental quantum control. The combination of stochastic and quasi-local search embodied by these algorithms is especially amenable to the inherent topology of quantum control landscapes. Implementation of DES in the laboratory results in efficiency gains of up to ˜9 times that of the standard genetic algorithm, and thus is a promising tool for optimization of unstable or fragile systems. The statistical learning upon which these algorithms are predicated also provide the means for obtaining a control problem’s Hessian matrix with no additional experimental overhead. The forced optimal covariance adaptive learning (FOCAL) method is introduced to enable retrieval of the Hessian matrix, which can reveal information about the landscape’s local structure and dynamic mechanism. Exploitation of such algorithms in quantum control experiments should enhance their efficiency and provide additional fundamental insights.

  15. Design and implementation of new control room system in Damavand tokamak

    NASA Astrophysics Data System (ADS)

    Rasouli, H.; Zamanian, H.; Gheidi, M.; Kheiri-Fard, M.; Kouhi, A.

    2017-07-01

    The aim of this paper is design and implementation of an up-to-date control room. The previous control room had a lot of constraints and it was not apposite to the sophisticated diagnostic systems as well as to the modern control and multivariable systems. Although it provided the best output for the considered experiments and implementing offline algorithms among all similar plants, it needed to be developed to provide more capability for complex algorithm mechanisms and this work introduces our efforts in this area. Accordingly, four leading systems were designed and implemented, including real-time control system, online Data Acquisition System (DAS), offline DAS, monitoring and data transmission system. In the control system, three real-time control modules were established based on Digital Signal Processor (DSP). Thanks to them, implementation of the classic and linear and nonlinear intelligent controllers was possible to control the plasma position and its elongation. Also, online DAS was constructed in two modules. Using them, voltages and currents of charge for the capacitor banks and pressure of different parts in vacuum vessel were measured and monitored. Likewise, by real-time processing of the online data, the safety protocol of plant performance was accomplished. In addition, the offline DAS was organized in 13 modules based on Field Programmable Gate Array (FPGA). This system can be used for gathering all diagnostic, control, and performance data in 156 channels. Data transmission system and storing mechanism in the server was provided by data transmitting network and MDSplus standard protocol. Moreover, monitoring software was designed so that it could display the required plots for physical analyses. Taking everything into account, this new platform can improve the quality and quantity of research activities in plasma physics for Damavand tokamak.

  16. Discrete-Time Deterministic $Q$ -Learning: A Novel Convergence Analysis.

    PubMed

    Wei, Qinglai; Lewis, Frank L; Sun, Qiuye; Yan, Pengfei; Song, Ruizhuo

    2017-05-01

    In this paper, a novel discrete-time deterministic Q -learning algorithm is developed. In each iteration of the developed Q -learning algorithm, the iterative Q function is updated for all the state and control spaces, instead of updating for a single state and a single control in traditional Q -learning algorithm. A new convergence criterion is established to guarantee that the iterative Q function converges to the optimum, where the convergence criterion of the learning rates for traditional Q -learning algorithms is simplified. During the convergence analysis, the upper and lower bounds of the iterative Q function are analyzed to obtain the convergence criterion, instead of analyzing the iterative Q function itself. For convenience of analysis, the convergence properties for undiscounted case of the deterministic Q -learning algorithm are first developed. Then, considering the discounted factor, the convergence criterion for the discounted case is established. Neural networks are used to approximate the iterative Q function and compute the iterative control law, respectively, for facilitating the implementation of the deterministic Q -learning algorithm. Finally, simulation results and comparisons are given to illustrate the performance of the developed algorithm.

  17. Algorithmic cooling in liquid-state nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Atia, Yosi; Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2016-01-01

    Algorithmic cooling is a method that employs thermalization to increase qubit purification level; namely, it reduces the qubit system's entropy. We utilized gradient ascent pulse engineering, an optimal control algorithm, to implement algorithmic cooling in liquid-state nuclear magnetic resonance. Various cooling algorithms were applied onto the three qubits of C132-trichloroethylene, cooling the system beyond Shannon's entropy bound in several different ways. In particular, in one experiment a carbon qubit was cooled by a factor of 4.61. This work is a step towards potentially integrating tools of NMR quantum computing into in vivo magnetic-resonance spectroscopy.

  18. Moving Horizon Estimation on a Chip

    DTIC Science & Technology

    2014-06-26

    description, e.g. VHDL or Verilog, for FPGA implementation . Especially for those whose main expertise is in control system design, writing algorithms in C...ditional Kalman Filter(KF) where recursive solution is available. We devel- oped various MHE designs and implemented them on the Xilinx Zynq ZC702 FPGA...practical deployment of the MHE technology. 2.2 Implementation of MHE on FPGA The next paper demonstrated the feasibility of implementing MHE algo

  19. Improving the quality of e-commerce web service: what is important for the request scheduling algorithm?

    NASA Astrophysics Data System (ADS)

    Suchacka, Grazyna

    2005-02-01

    The paper concerns a new research area that is Quality of Web Service (QoWS). The need for QoWS is motivated by a still growing number of Internet users, by a steady development and diversification of Web services, and especially by popularization of e-commerce applications. The goal of the paper is a critical analysis of the literature concerning scheduling algorithms for e-commerce Web servers. The paper characterizes factors affecting the load of the Web servers and discusses ways of improving their efficiency. Crucial QoWS requirements of the business Web server are identified: serving requests before their individual deadlines, supporting user session integrity, supporting different classes of users and minimizing a number of rejected requests. It is justified that meeting these requirements and implementing them in an admission control (AC) and scheduling algorithm for the business Web server is crucial to the functioning of e-commerce Web sites and revenue generated by them. The paper presents results of the literature analysis and discusses algorithms that implement these important QoWS requirements. The analysis showed that very few algorithms take into consideration the above mentioned factors and that there is a need for designing an algorithm implementing them.

  20. Robot Control Based On Spatial-Operator Algebra

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo; Kreutz, Kenneth K.; Jain, Abhinandan

    1992-01-01

    Method for mathematical modeling and control of robotic manipulators based on spatial-operator algebra providing concise representation and simple, high-level theoretical frame-work for solution of kinematical and dynamical problems involving complicated temporal and spatial relationships. Recursive algorithms derived immediately from abstract spatial-operator expressions by inspection. Transition from abstract formulation through abstract solution to detailed implementation of specific algorithms to compute solution greatly simplified. Complicated dynamical problems like two cooperating robot arms solved more easily.

  1. High-Speed Current dq PI Controller for Vector Controlled PMSM Drive

    PubMed Central

    Reaz, Mamun Bin Ibne; Rahman, Labonnah Farzana; Chang, Tae Gyu

    2014-01-01

    High-speed current controller for vector controlled permanent magnet synchronous motor (PMSM) is presented. The controller is developed based on modular design for faster calculation and uses fixed-point proportional-integral (PI) method for improved accuracy. Current dq controller is usually implemented in digital signal processor (DSP) based computer. However, DSP based solutions are reaching their physical limits, which are few microseconds. Besides, digital solutions suffer from high implementation cost. In this research, the overall controller is realizing in field programmable gate array (FPGA). FPGA implementation of the overall controlling algorithm will certainly trim down the execution time significantly to guarantee the steadiness of the motor. Agilent 16821A Logic Analyzer is employed to validate the result of the implemented design in FPGA. Experimental results indicate that the proposed current dq PI controller needs only 50 ns of execution time in 40 MHz clock, which is the lowest computational cycle for the era. PMID:24574913

  2. On-orbit flight control algorithm description

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Algorithms are presented for rotational and translational control of the space shuttle orbiter in the orbital mission phases, which are external tank separation, orbit insertion, on-orbit and de-orbit. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effectors by using an executive routine/functional subroutine format. Software functional requirements are described using block diagrams where feasible, and input--output tables, and the software implementation of each function is presented in equations and structured flow charts. Included are a glossary of all symbols used to define the requirements, and an appendix of supportive material.

  3. Study of efficient video compression algorithms for space shuttle applications

    NASA Technical Reports Server (NTRS)

    Poo, Z.

    1975-01-01

    Results are presented of a study on video data compression techniques applicable to space flight communication. This study is directed towards monochrome (black and white) picture communication with special emphasis on feasibility of hardware implementation. The primary factors for such a communication system in space flight application are: picture quality, system reliability, power comsumption, and hardware weight. In terms of hardware implementation, these are directly related to hardware complexity, effectiveness of the hardware algorithm, immunity of the source code to channel noise, and data transmission rate (or transmission bandwidth). A system is recommended, and its hardware requirement summarized. Simulations of the study were performed on the improved LIM video controller which is computer-controlled by the META-4 CPU.

  4. Electric machine differential for vehicle traction control and stability control

    NASA Astrophysics Data System (ADS)

    Kuruppu, Sandun Shivantha

    Evolving requirements in energy efficiency and tightening regulations for reliable electric drivetrains drive the advancement of the hybrid electric (HEV) and full electric vehicle (EV) technology. Different configurations of EV and HEV architectures are evaluated for their performance. The future technology is trending towards utilizing distinctive properties in electric machines to not only to improve efficiency but also to realize advanced road adhesion controls and vehicle stability controls. Electric machine differential (EMD) is such a concept under current investigation for applications in the near future. Reliability of a power train is critical. Therefore, sophisticated fault detection schemes are essential in guaranteeing reliable operation of a complex system such as an EMD. The research presented here emphasize on implementation of a 4kW electric machine differential, a novel single open phase fault diagnostic scheme, an implementation of a real time slip optimization algorithm and an electric machine differential based yaw stability improvement study. The proposed d-q current signature based SPO fault diagnostic algorithm detects the fault within one electrical cycle. The EMD based extremum seeking slip optimization algorithm reduces stopping distance by 30% compared to hydraulic braking based ABS.

  5. Minimal algorithm for running an internal combustion engine

    NASA Astrophysics Data System (ADS)

    Stoica, V.; Borborean, A.; Ciocan, A.; Manciu, C.

    2018-01-01

    The internal combustion engine control is a well-known topic within automotive industry and is widely used. However, in research laboratories and universities the use of a control system trading is not the best solution because of predetermined operating algorithms, and calibrations (accessible only by the manufacturer) without allowing massive intervention from outside. Laboratory solutions on the market are very expensive. Consequently, in the paper we present a minimal algorithm required to start-up and run an internal combustion engine. The presented solution can be adapted to function on performance microcontrollers available on the market at the present time and at an affordable price. The presented algorithm was implemented in LabView and runs on a CompactRIO hardware platform.

  6. Traffic Flow Management Using Aggregate Flow Models and the Development of Disaggregation Methods

    NASA Technical Reports Server (NTRS)

    Sun, Dengfeng; Sridhar, Banavar; Grabbe, Shon

    2010-01-01

    A linear time-varying aggregate traffic flow model can be used to develop Traffic Flow Management (tfm) strategies based on optimization algorithms. However, there are no methods available in the literature to translate these aggregate solutions into actions involving individual aircraft. This paper describes and implements a computationally efficient disaggregation algorithm, which converts an aggregate (flow-based) solution to a flight-specific control action. Numerical results generated by the optimization method and the disaggregation algorithm are presented and illustrated by applying them to generate TFM schedules for a typical day in the U.S. National Airspace System. The results show that the disaggregation algorithm generates control actions for individual flights while keeping the air traffic behavior very close to the optimal solution.

  7. Visual Servoing for an Autonomous Hexarotor Using a Neural Network Based PID Controller.

    PubMed

    Lopez-Franco, Carlos; Gomez-Avila, Javier; Alanis, Alma Y; Arana-Daniel, Nancy; Villaseñor, Carlos

    2017-08-12

    In recent years, unmanned aerial vehicles (UAVs) have gained significant attention. However, we face two major drawbacks when working with UAVs: high nonlinearities and unknown position in 3D space since it is not provided with on-board sensors that can measure its position with respect to a global coordinate system. In this paper, we present a real-time implementation of a servo control, integrating vision sensors, with a neural proportional integral derivative (PID), in order to develop an hexarotor image based visual servo control (IBVS) that knows the position of the robot by using a velocity vector as a reference to control the hexarotor position. This integration requires a tight coordination between control algorithms, models of the system to be controlled, sensors, hardware and software platforms and well-defined interfaces, to allow the real-time implementation, as well as the design of different processing stages with their respective communication architecture. All of these issues and others provoke the idea that real-time implementations can be considered as a difficult task. For the purpose of showing the effectiveness of the sensor integration and control algorithm to address these issues on a high nonlinear system with noisy sensors as cameras, experiments were performed on the Asctec Firefly on-board computer, including both simulation and experimenta results.

  8. Visual Servoing for an Autonomous Hexarotor Using a Neural Network Based PID Controller

    PubMed Central

    Lopez-Franco, Carlos; Alanis, Alma Y.; Arana-Daniel, Nancy; Villaseñor, Carlos

    2017-01-01

    In recent years, unmanned aerial vehicles (UAVs) have gained significant attention. However, we face two major drawbacks when working with UAVs: high nonlinearities and unknown position in 3D space since it is not provided with on-board sensors that can measure its position with respect to a global coordinate system. In this paper, we present a real-time implementation of a servo control, integrating vision sensors, with a neural proportional integral derivative (PID), in order to develop an hexarotor image based visual servo control (IBVS) that knows the position of the robot by using a velocity vector as a reference to control the hexarotor position. This integration requires a tight coordination between control algorithms, models of the system to be controlled, sensors, hardware and software platforms and well-defined interfaces, to allow the real-time implementation, as well as the design of different processing stages with their respective communication architecture. All of these issues and others provoke the idea that real-time implementations can be considered as a difficult task. For the purpose of showing the effectiveness of the sensor integration and control algorithm to address these issues on a high nonlinear system with noisy sensors as cameras, experiments were performed on the Asctec Firefly on-board computer, including both simulation and experimenta results. PMID:28805689

  9. Modeling and implementation of concurrent logic controllers with use of Petri nets, LSMs, and sequent calculus

    NASA Astrophysics Data System (ADS)

    Tkacz, J.; Bukowiec, A.; Doligalski, M.

    2017-08-01

    The paper presentes the method of modeling and implementation of concurrent controllers. Concurrent controllers are specified by Petri nets. Then Petri nets are decomposed using symbolic deduction method of analysis. Formal methods like sequent calculus system with considered elements of Thelen's algorithm have been used here. As a result, linked state machines (LSMs) are received. Each FSM is implemented using methods of structural decomposition during process of logic synthesis. The method of multiple encoding of microinstruction has been applied. It leads to decreased number of Boolean function realized by combinational part of FSM. The additional decoder could be implemented with the use of memory blocks.

  10. Use of non-adiabatic geometric phase for quantum computing by NMR.

    PubMed

    Das, Ranabir; Kumar, S K Karthick; Kumar, Anil

    2005-12-01

    Geometric phases have stimulated researchers for its potential applications in many areas of science. One of them is fault-tolerant quantum computation. A preliminary requisite of quantum computation is the implementation of controlled dynamics of qubits. In controlled dynamics, one qubit undergoes coherent evolution and acquires appropriate phase, depending on the state of other qubits. If the evolution is geometric, then the phase acquired depend only on the geometry of the path executed, and is robust against certain types of error. This phenomenon leads to an inherently fault-tolerant quantum computation. Here we suggest a technique of using non-adiabatic geometric phase for quantum computation, using selective excitation. In a two-qubit system, we selectively evolve a suitable subsystem where the control qubit is in state |1, through a closed circuit. By this evolution, the target qubit gains a phase controlled by the state of the control qubit. Using the non-adiabatic geometric phase we demonstrate implementation of Deutsch-Jozsa algorithm and Grover's search algorithm in a two-qubit system.

  11. Validation of deformable image registration algorithms on CT images of ex vivo porcine bladders with fiducial markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wognum, S., E-mail: s.wognum@gmail.com; Heethuis, S. E.; Bel, A.

    2014-07-15

    Purpose: The spatial accuracy of deformable image registration (DIR) is important in the implementation of image guided adaptive radiotherapy techniques for cancer in the pelvic region. Validation of algorithms is best performed on phantoms with fiducial markers undergoing controlled large deformations. Excised porcine bladders, exhibiting similar filling and voiding behavior as human bladders, provide such an environment. The aim of this study was to determine the spatial accuracy of different DIR algorithms on CT images ofex vivo porcine bladders with radiopaque fiducial markers applied to the outer surface, for a range of bladder volumes, using various accuracy metrics. Methods: Fivemore » excised porcine bladders with a grid of 30–40 radiopaque fiducial markers attached to the outer wall were suspended inside a water-filled phantom. The bladder was filled with a controlled amount of water with added contrast medium for a range of filling volumes (100–400 ml in steps of 50 ml) using a luer lock syringe, and CT scans were acquired at each filling volume. DIR was performed for each data set, with the 100 ml bladder as the reference image. Six intensity-based algorithms (optical flow or demons-based) implemented in theMATLAB platform DIRART, a b-spline algorithm implemented in the commercial software package VelocityAI, and a structure-based algorithm (Symmetric Thin Plate Spline Robust Point Matching) were validated, using adequate parameter settings according to values previously published. The resulting deformation vector field from each registration was applied to the contoured bladder structures and to the marker coordinates for spatial error calculation. The quality of the algorithms was assessed by comparing the different error metrics across the different algorithms, and by comparing the effect of deformation magnitude (bladder volume difference) per algorithm, using the Independent Samples Kruskal-Wallis test. Results: The authors found good structure accuracy without dependency on bladder volume difference for all but one algorithm, and with the best result for the structure-based algorithm. Spatial accuracy as assessed from marker errors was disappointing for all algorithms, especially for large volume differences, implying that the deformations described by the registration did not represent anatomically correct deformations. The structure-based algorithm performed the best in terms of marker error for the large volume difference (100–400 ml). In general, for the small volume difference (100–150 ml) the algorithms performed relatively similarly. The structure-based algorithm exhibited the best balance in performance between small and large volume differences, and among the intensity-based algorithms, the algorithm implemented in VelocityAI exhibited the best balance. Conclusions: Validation of multiple DIR algorithms on a novel physiological bladder phantom revealed that the structure accuracy was good for most algorithms, but that the spatial accuracy as assessed from markers was low for all algorithms, especially for large deformations. Hence, many of the available algorithms exhibit sufficient accuracy for contour propagation purposes, but possibly not for accurate dose accumulation.« less

  12. New Factorization Techniques and Fast Serial and Parrallel Algorithms for Operational Space Control of Robot Manipulators

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Djouani, Karim; Fried, George; Pontnau, Jean

    1997-01-01

    In this paper a new factorization technique for computation of inverse of mass matrix, and the operational space mass matrix, as arising in implementation of the operational space control scheme, is presented.

  13. Optimal Full Information Synthesis for Flexible Structures Implemented on Cray Supercomputers

    NASA Technical Reports Server (NTRS)

    Lind, Rick; Balas, Gary J.

    1995-01-01

    This paper considers an algorithm for synthesis of optimal controllers for full information feedback. The synthesis procedure reduces to a single linear matrix inequality which may be solved via established convex optimization algorithms. The computational cost of the optimization is investigated. It is demonstrated the problem dimension and corresponding matrices can become large for practical engineering problems. This algorithm represents a process that is impractical for standard workstations for large order systems. A flexible structure is presented as a design example. Control synthesis requires several days on a workstation but may be solved in a reasonable amount of time using a Cray supercomputer.

  14. Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Hawkins, Albin; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    NASA's first autonomous formation flying mission completed its primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center (GSFC) implemented a universal 3-axis formation flying algorithm in an autonomous executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard flight design and presents the validation results of this unique system. Results from functionality assessment through fully autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a standalone algorithm.

  15. Design and validation of a real-time spiking-neural-network decoder for brain-machine interfaces

    NASA Astrophysics Data System (ADS)

    Dethier, Julie; Nuyujukian, Paul; Ryu, Stephen I.; Shenoy, Krishna V.; Boahen, Kwabena

    2013-06-01

    Objective. Cortically-controlled motor prostheses aim to restore functions lost to neurological disease and injury. Several proof of concept demonstrations have shown encouraging results, but barriers to clinical translation still remain. In particular, intracortical prostheses must satisfy stringent power dissipation constraints so as not to damage cortex. Approach. One possible solution is to use ultra-low power neuromorphic chips to decode neural signals for these intracortical implants. The first step is to explore in simulation the feasibility of translating decoding algorithms for brain-machine interface (BMI) applications into spiking neural networks (SNNs). Main results. Here we demonstrate the validity of the approach by implementing an existing Kalman-filter-based decoder in a simulated SNN using the Neural Engineering Framework (NEF), a general method for mapping control algorithms onto SNNs. To measure this system’s robustness and generalization, we tested it online in closed-loop BMI experiments with two rhesus monkeys. Across both monkeys, a Kalman filter implemented using a 2000-neuron SNN has comparable performance to that of a Kalman filter implemented using standard floating point techniques. Significance. These results demonstrate the tractability of SNN implementations of statistical signal processing algorithms on different monkeys and for several tasks, suggesting that a SNN decoder, implemented on a neuromorphic chip, may be a feasible computational platform for low-power fully-implanted prostheses. The validation of this closed-loop decoder system and the demonstration of its robustness and generalization hold promise for SNN implementations on an ultra-low power neuromorphic chip using the NEF.

  16. Development and validation of an automated ventilator-associated event electronic surveillance system: A report of a successful implementation.

    PubMed

    Hebert, Courtney; Flaherty, Jennifer; Smyer, Justin; Ding, Jing; Mangino, Julie E

    2018-03-01

    Surveillance is an important tool for infection control; however, this task can often be time-consuming and take away from infection prevention activities. With the increasing availability of comprehensive electronic health records, there is an opportunity to automate these surveillance activities. The objective of this article is to describe the implementation of an electronic algorithm for ventilator-associated events (VAEs) at a large academic medical center METHODS: This article reports on a 6-month manual validation of a dashboard for VAEs. We developed a computerized algorithm for automatically detecting VAEs and compared the output of this algorithm to the traditional, manual method of VAE surveillance. Manual surveillance by the infection preventionists identified 13 possible and 11 probable ventilator-associated pneumonias (VAPs), and the VAE dashboard identified 16 possible and 13 probable VAPs. The dashboard had 100% sensitivity and 100% accuracy when compared with manual surveillance for possible and probable VAP. We report on the successfully implemented VAE dashboard. Workflow of the infection preventionists was simplified after implementation of the dashboard with subjective time-savings reported. Implementing a computerized dashboard for VAE surveillance at a medical center with a comprehensive electronic health record is feasible; however, this required significant initial and ongoing work on the part of data analysts and infection preventionists. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  17. Wavefront Control Toolbox for James Webb Space Telescope Testbed

    NASA Technical Reports Server (NTRS)

    Shiri, Ron; Aronstein, David L.; Smith, Jeffery Scott; Dean, Bruce H.; Sabatke, Erin

    2007-01-01

    We have developed a Matlab toolbox for wavefront control of optical systems. We have applied this toolbox to the optical models of James Webb Space Telescope (JWST) in general and to the JWST Testbed Telescope (TBT) in particular, implementing both unconstrained and constrained wavefront optimization to correct for possible misalignments present on the segmented primary mirror or the monolithic secondary mirror. The optical models implemented in Zemax optical design program and information is exchanged between Matlab and Zemax via the Dynamic Data Exchange (DDE) interface. The model configuration is managed using the XML protocol. The optimization algorithm uses influence functions for each adjustable degree of freedom of the optical mode. The iterative and non-iterative algorithms have been developed to converge to a local minimum of the root-mean-square (rms) of wavefront error using singular value decomposition technique of the control matrix of influence functions. The toolkit is highly modular and allows the user to choose control strategies for the degrees of freedom to be adjusted on a given iteration and wavefront convergence criterion. As the influence functions are nonlinear over the control parameter space, the toolkit also allows for trade-offs between frequency of updating the local influence functions and execution speed. The functionality of the toolbox and the validity of the underlying algorithms have been verified through extensive simulations.

  18. Experiment on a three-beam adaptive array for EHF frequency-hopped signals using a fast algorithm, phase-D

    NASA Astrophysics Data System (ADS)

    Yen, J. L.; Kremer, P.; Amin, N.; Fung, J.

    1989-05-01

    The Department of National Defence (Canada) has been conducting studies into multi-beam adaptive arrays for extremely high frequency (EHF) frequency hopped signals. A three-beam 43 GHz adaptive antenna and a beam control processor is under development. An interactive software package for the operation of the array, capable of applying different control algorithms is being written. A maximum signal to jammer plus noise ratio (SJNR) was found to provide superior performance in preventing degradation of user signals in the presence of nearby jammers. A new fast algorithm using a modified conjugate gradient approach was found to be a very efficient way to implement anti-jamming arrays based on maximum SJNR criterion. The present study was intended to refine and simplify this algorithm and to implement the algorithm on an experimental array for real-time evaluation of anti-jamming performance. A three-beam adaptive array was used. A simulation package was used in the evaluation of multi-beam systems using more than three beams and different user-jammer scenarios. An attempt to further reduce the computation burden through continued analysis of maximum SJNR met with limited success. A method to acquire and track an incoming laser beam is proposed.

  19. Experiment on a three-beam adaptive array for EHF frequency-hopped signals using a fast algorithm, phase E

    NASA Astrophysics Data System (ADS)

    Yen, J. L.; Kremer, P.; Fung, J.

    1990-05-01

    The Department of National Defence (Canada) has been conducting studies into multi-beam adaptive arrays for extremely high frequency (EHF) frequency hopped signals. A three-beam 43 GHz adaptive antenna and a beam control processor is under development. An interactive software package for the operation of the array, capable of applying different control algorithms is being written. A maximum signal to jammer plus noise ratio (SJNR) has been found to provide superior performance in preventing degradation of user signals in the presence of nearby jammers. A new fast algorithm using a modified conjugate gradient approach has been found to be a very efficient way to implement anti-jamming arrays based on maximum SJNR criterion. The present study was intended to refine and simplify this algorithm and to implement the algorithm on an experimental array for real-time evaluation of anti-jamming performance. A three-beam adaptive array was used. A simulation package was used in the evaluation of multi-beam systems using more than three beams and different user-jammer scenarios. An attempt to further reduce the computation burden through further analysis of maximum SJNR met with limited success. The investigation of a new angle detector for spatial tracking in heterodyne laser space communications was completed.

  20. Algorithms for the detection of chewing behavior in dietary monitoring applications

    NASA Astrophysics Data System (ADS)

    Schmalz, Mark S.; Helal, Abdelsalam; Mendez-Vasquez, Andres

    2009-08-01

    The detection of food consumption is key to the implementation of successful behavior modification in support of dietary monitoring and therapy, for example, during the course of controlling obesity, diabetes, or cardiovascular disease. Since the vast majority of humans consume food via mastication (chewing), we have designed an algorithm that automatically detects chewing behaviors in surveillance video of a person eating. Our algorithm first detects the mouth region, then computes the spatiotemporal frequency spectrum of a small perioral region (including the mouth). Spectral data are analyzed to determine the presence of periodic motion that characterizes chewing. A classifier is then applied to discriminate different types of chewing behaviors. Our algorithm was tested on seven volunteers, whose behaviors included chewing with mouth open, chewing with mouth closed, talking, static face presentation (control case), and moving face presentation. Early test results show that the chewing behaviors induce a temporal frequency peak at 0.5Hz to 2.5Hz, which is readily detected using a distance-based classifier. Computational cost is analyzed for implementation on embedded processing nodes, for example, in a healthcare sensor network. Complexity analysis emphasizes the relationship between the work and space estimates of the algorithm, and its estimated error. It is shown that chewing detection is possible within a computationally efficient, accurate, and subject-independent framework.

  1. Adaptive control of anaerobic digestion processes-a pilot-scale application.

    PubMed

    Renard, P; Dochain, D; Bastin, G; Naveau, H; Nyns, E J

    1988-03-01

    A simple adaptive control algorithm, for which theoretical stability and convergence properties had been previously demonstrated, has been successfully implemented on a biomethanation pilot reactor. The methane digester, operated in the CSTR mode was submitted to a shock load, and successfully computer controlled during the subsequent transitory state.

  2. Analysis, preliminary design and simulation systems for control-structure interaction problems

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Alvin, Kenneth F.

    1991-01-01

    Software aspects of control-structure interaction (CSI) analysis are discussed. The following subject areas are covered: (1) implementation of a partitioned algorithm for simulation of large CSI problems; (2) second-order discrete Kalman filtering equations for CSI simulations; and (3) parallel computations and control of adaptive structures.

  3. User's guide to the Fault Inferring Nonlinear Detection System (FINDS) computer program

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Godiwala, P. M.; Satz, H. S.

    1988-01-01

    Described are the operation and internal structure of the computer program FINDS (Fault Inferring Nonlinear Detection System). The FINDS algorithm is designed to provide reliable estimates for aircraft position, velocity, attitude, and horizontal winds to be used for guidance and control laws in the presence of possible failures in the avionics sensors. The FINDS algorithm was developed with the use of a digital simulation of a commercial transport aircraft and tested with flight recorded data. The algorithm was then modified to meet the size constraints and real-time execution requirements on a flight computer. For the real-time operation, a multi-rate implementation of the FINDS algorithm has been partitioned to execute on a dual parallel processor configuration: one based on the translational dynamics and the other on the rotational kinematics. The report presents an overview of the FINDS algorithm, the implemented equations, the flow charts for the key subprograms, the input and output files, program variable indexing convention, subprogram descriptions, and the common block descriptions used in the program.

  4. Multiplexed Predictive Control of a Large Commercial Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Richter, hanz; Singaraju, Anil; Litt, Jonathan S.

    2008-01-01

    Model predictive control is a strategy well-suited to handle the highly complex, nonlinear, uncertain, and constrained dynamics involved in aircraft engine control problems. However, it has thus far been infeasible to implement model predictive control in engine control applications, because of the combination of model complexity and the time allotted for the control update calculation. In this paper, a multiplexed implementation is proposed that dramatically reduces the computational burden of the quadratic programming optimization that must be solved online as part of the model-predictive-control algorithm. Actuator updates are calculated sequentially and cyclically in a multiplexed implementation, as opposed to the simultaneous optimization taking place in conventional model predictive control. Theoretical aspects are discussed based on a nominal model, and actual computational savings are demonstrated using a realistic commercial engine model.

  5. Numerical Algorithms for Acoustic Integrals - The Devil is in the Details

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.

    1996-01-01

    The accurate prediction of the aeroacoustic field generated by aerospace vehicles or nonaerospace machinery is necessary for designers to control and reduce source noise. Powerful computational aeroacoustic methods, based on various acoustic analogies (primarily the Lighthill acoustic analogy) and Kirchhoff methods, have been developed for prediction of noise from complicated sources, such as rotating blades. Both methods ultimately predict the noise through a numerical evaluation of an integral formulation. In this paper, we consider three generic acoustic formulations and several numerical algorithms that have been used to compute the solutions to these formulations. Algorithms for retarded-time formulations are the most efficient and robust, but they are difficult to implement for supersonic-source motion. Collapsing-sphere and emission-surface formulations are good alternatives when supersonic-source motion is present, but the numerical implementations of these formulations are more computationally demanding. New algorithms - which utilize solution adaptation to provide a specified error level - are needed.

  6. Design and Implementation of the PALM-3000 Real-Time Control System

    NASA Technical Reports Server (NTRS)

    Truong, Tuan N.; Bouchez, Antonin H.; Burruss, Rick S.; Dekany, Richard G.; Guiwits, Stephen R.; Roberts, Jennifer E.; Shelton, Jean C.; Troy, Mitchell

    2012-01-01

    This paper reflects, from a computational perspective, on the experience gathered in designing and implementing realtime control of the PALM-3000 adaptive optics system currently in operation at the Palomar Observatory. We review the algorithms that serve as functional requirements driving the architecture developed, and describe key design issues and solutions that contributed to the system's low compute-latency. Additionally, we describe an implementation of dense matrix-vector-multiplication for wavefront reconstruction that exceeds 95% of the maximum sustained achievable bandwidth on NVIDIA Geforce 8800GTX GPU.

  7. A ground track control algorithm for the Topographic Mapping Laser Altimeter (TMLA)

    NASA Technical Reports Server (NTRS)

    Blaes, V.; Mcintosh, R.; Roszman, L.; Cooley, J.

    1993-01-01

    The results of an analysis of an algorithm that will provide autonomous onboard orbit control using orbits determined with Global Positioning System (GPS) data. The algorithm uses the GPS data to (1) compute the ground track error relative to a fixed longitude grid, and (2) determine the altitude adjustment required to correct the longitude error. A program was written on a personal computer (PC) to test the concept for numerous altitudes and values of solar flux using a simplified orbit model including only the J sub 2 zonal harmonic and simple orbit decay computations. The algorithm was then implemented in a precision orbit propagation program having a full range of perturbations. The analysis showed that, even with all perturbations (including actual time histories of solar flux variation), the algorithm could effectively control the spacecraft ground track and yield more than 99 percent Earth coverage in the time required to complete one coverage cycle on the fixed grid (220 to 230 days depending on altitude and overlap allowance).

  8. Feedback control system based on a remote operated PID controller implemented using mbed NXP LPC1768 development board

    NASA Astrophysics Data System (ADS)

    Pricop, Emil; Zamfir, Florin; Paraschiv, Nicolae

    2015-11-01

    Process control is a challenging research topic for both academia and industry for a long time. Controllers evolved from the classical SISO approach to modern fuzzy or neuro-fuzzy embedded devices with networking capabilities, however PID algorithms are still used in the most industrial control loops. In this paper, we focus on the implementation of a PID controller using mbed NXP LPC1768 development board. This board integrates a powerful ARM Cortex- M3 core and has networking capabilities. The implemented controller can be remotely operated by using an Internet connection and a standard Web browser. The main advantages of the proposed embedded system are customizability, easy operation and very low power consumption. The experimental results obtained by using a simulated process are analysed and shows that the implementation can be done with success in industrial applications.

  9. Trajectory Control of Rendezvous with Maneuver Target Spacecraft

    NASA Technical Reports Server (NTRS)

    Zhou, Zhinqiang

    2012-01-01

    In this paper, a nonlinear trajectory control algorithm of rendezvous with maneuvering target spacecraft is presented. The disturbance forces on the chaser and target spacecraft and the thrust forces on the chaser spacecraft are considered in the analysis. The control algorithm developed in this paper uses the relative distance and relative velocity between the target and chaser spacecraft as the inputs. A general formula of reference relative trajectory of the chaser spacecraft to the target spacecraft is developed and applied to four different proximity maneuvers, which are in-track circling, cross-track circling, in-track spiral rendezvous and cross-track spiral rendezvous. The closed-loop differential equations of the proximity relative motion with the control algorithm are derived. It is proven in the paper that the tracking errors between the commanded relative trajectory and the actual relative trajectory are bounded within a constant region determined by the control gains. The prediction of the tracking errors is obtained. Design examples are provided to show the implementation of the control algorithm. The simulation results show that the actual relative trajectory tracks the commanded relative trajectory tightly. The predicted tracking errors match those calculated in the simulation results. The control algorithm developed in this paper can also be applied to interception of maneuver target spacecraft and relative trajectory control of spacecraft formation flying.

  10. Complete low-cost implementation of a teleoperated control system for a humanoid robot.

    PubMed

    Cela, Andrés; Yebes, J Javier; Arroyo, Roberto; Bergasa, Luis M; Barea, Rafael; López, Elena

    2013-01-24

    Humanoid robotics is a field of a great research interest nowadays. This work implements a low-cost teleoperated system to control a humanoid robot, as a first step for further development and study of human motion and walking. A human suit is built, consisting of 8 sensors, 6 resistive linear potentiometers on the lower extremities and 2 digital accelerometers for the arms. The goal is to replicate the suit movements in a small humanoid robot. The data from the sensors is wirelessly transmitted via two ZigBee RF configurable modules installed on each device: the robot and the suit. Replicating the suit movements requires a robot stability control module to prevent falling down while executing different actions involving knees flexion. This is carried out via a feedback control system with an accelerometer placed on the robot's back. The measurement from this sensor is filtered using Kalman. In addition, a two input fuzzy algorithm controlling five servo motors regulates the robot balance. The humanoid robot is controlled by a medium capacity processor and a low computational cost is achieved for executing the different algorithms. Both hardware and software of the system are based on open platforms. The successful experiments carried out validate the implementation of the proposed teleoperated system.

  11. Complete Low-Cost Implementation of a Teleoperated Control System for a Humanoid Robot

    PubMed Central

    Cela, Andrés; Yebes, J. Javier; Arroyo, Roberto; Bergasa, Luis M.; Barea, Rafael; López, Elena

    2013-01-01

    Humanoid robotics is a field of a great research interest nowadays. This work implements a low-cost teleoperated system to control a humanoid robot, as a first step for further development and study of human motion and walking. A human suit is built, consisting of 8 sensors, 6 resistive linear potentiometers on the lower extremities and 2 digital accelerometers for the arms. The goal is to replicate the suit movements in a small humanoid robot. The data from the sensors is wirelessly transmitted via two ZigBee RF configurable modules installed on each device: the robot and the suit. Replicating the suit movements requires a robot stability control module to prevent falling down while executing different actions involving knees flexion. This is carried out via a feedback control system with an accelerometer placed on the robot's back. The measurement from this sensor is filtered using Kalman. In addition, a two input fuzzy algorithm controlling five servo motors regulates the robot balance. The humanoid robot is controlled by a medium capacity processor and a low computational cost is achieved for executing the different algorithms. Both hardware and software of the system are based on open platforms. The successful experiments carried out validate the implementation of the proposed teleoperated system. PMID:23348029

  12. Implementation of an Adaptive Controller System from Concept to Flight Test

    NASA Technical Reports Server (NTRS)

    Larson, Richard R.; Burken, John J.; Butler, Bradley S.; Yokum, Steve

    2009-01-01

    The National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) is conducting ongoing flight research using adaptive controller algorithms. A highly modified McDonnell-Douglas NF-15B airplane called the F-15 Intelligent Flight Control System (IFCS) is used to test and develop these algorithms. Modifications to this airplane include adding canards and changing the flight control systems to interface a single-string research controller processor for neural network algorithms. Research goals include demonstration of revolutionary control approaches that can efficiently optimize aircraft performance in both normal and failure conditions and advancement of neural-network-based flight control technology for new aerospace system designs. This report presents an overview of the processes utilized to develop adaptive controller algorithms during a flight-test program, including a description of initial adaptive controller concepts and a discussion of modeling formulation and performance testing. Design finalization led to integration with the system interfaces, verification of the software, validation of the hardware to the requirements, design of failure detection, development of safety limiters to minimize the effect of erroneous neural network commands, and creation of flight test control room displays to maximize human situational awareness; these are also discussed.

  13. Development of a solar-powered electric bicycle in bike sharing transportation system

    NASA Astrophysics Data System (ADS)

    Adhisuwignjo, S.; Siradjuddin, I.; Rifa'i, M.; Putri, R. I.

    2017-06-01

    The increasing mobility has directly led to deteriorating traffic conditions, extra fuel consumption, increasing automobile exhaust emissions, air pollution and lowering quality of life. Apart from being clean, cheap and equitable mode of transport for short-distance journeys, cycling can potentially offer solutions to the problem of urban mobility. Many cities have tried promoting cycling particularly through the implementation of bike-sharing. Apparently the fourth generation bikesharing system has been promoted utilizing electric bicycles which considered as a clean technology implementation. Utilization of solar power is probably the development keys in the fourth generation bikesharing system and will become the standard in bikesharing system in the future. Electric bikes use batteries as a source of energy, thus they require a battery charger system which powered from the solar cells energy. This research aims to design and implement electric bicycle battery charging system with solar energy sources using fuzzy logic algorithm. It is necessary to develop an electric bicycle battery charging system with solar energy sources using fuzzy logic algorithm. The study was conducted by means of experimental method which includes the design, manufacture and testing controller systems. The designed fuzzy algorithm have been planted in EEPROM microcontroller ATmega8535. The charging current was set at 1.2 Amperes and the full charged battery voltage was observed to be 40 Volts. The results showed a fuzzy logic controller was able to maintain the charging current of 1.2 Ampere with an error rate of less than 5% around the set point. The process of charging electric bike lead acid batteries from empty to fully charged was 5 hours. In conclusion, the development of solar-powered electric bicycle controlled using fuzzy logic controller can keep the battery charging current in solar-powered electric bicycle to remain stable. This shows that the fuzzy algorithm can be used as a controller in the process of charging for a solar electric bicycle.

  14. Asymmetrical booster ascent guidance and control system design study. Volume 5: Space shuttle powered explicit guidance. [space shuttle development

    NASA Technical Reports Server (NTRS)

    Jaggers, R. F.

    1974-01-01

    An optimum powered explicit guidance algorithm capable of handling all space shuttle exoatospheric maneuvers is presented. The theoretical and practical basis for the currently baselined space shuttle powered flight guidance equations and logic is documented. Detailed flow diagrams for implementing the steering computations for all shuttle phases, including powered return to launch site (RTLS) abort, are also presented. Derivation of the powered RTLS algorithm is provided, as well as detailed flow diagrams for implementing the option. The flow diagrams and equations are compatible with the current powered flight documentation.

  15. Control of Complex Dynamic Systems by Neural Networks

    NASA Technical Reports Server (NTRS)

    Spall, James C.; Cristion, John A.

    1993-01-01

    This paper considers the use of neural networks (NN's) in controlling a nonlinear, stochastic system with unknown process equations. The NN is used to model the resulting unknown control law. The approach here is based on using the output error of the system to train the NN controller without the need to construct a separate model (NN or other type) for the unknown process dynamics. To implement such a direct adaptive control approach, it is required that connection weights in the NN be estimated while the system is being controlled. As a result of the feedback of the unknown process dynamics, however, it is not possible to determine the gradient of the loss function for use in standard (back-propagation-type) weight estimation algorithms. Therefore, this paper considers the use of a new stochastic approximation algorithm for this weight estimation, which is based on a 'simultaneous perturbation' gradient approximation that only requires the system output error. It is shown that this algorithm can greatly enhance the efficiency over more standard stochastic approximation algorithms based on finite-difference gradient approximations.

  16. The Use of Software Agents for Autonomous Control of a DC Space Power System

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Loparo, Kenneth A.

    2014-01-01

    In order to enable manned deep-space missions, the spacecraft must be controlled autonomously using on-board algorithms. A control architecture is proposed to enable this autonomous operation for an spacecraft electric power system and then implemented using a highly distributed network of software agents. These agents collaborate and compete with each other in order to implement each of the control functions. A subset of this control architecture is tested against a steadystate power system simulation and found to be able to solve a constrained optimization problem with competing objectives using only local information.

  17. Labview Implementation of Image Processing and Phasing Control for the SIBOA Segmented Mirror Testbed

    NASA Technical Reports Server (NTRS)

    Partridge, James D.

    2002-01-01

    'NASA is preparing to launch the Next Generation Space Telescope (NGST). This telescope will be larger than the Hubble Space Telescope, be launched on an Atlas missile rather than the Space Shuttle, have a segmented primary mirror, and be placed in a higher orbit. All these differences pose significant challenges.' This effort addresses the challenge of implementing an algorithm for aligning the segments of the primary mirror during the initial deployment that was designed by Philip Olivier and members of SOMTC (Space Optics Manufacturing Technology Center). The implementation was to be performed on the SIBOA (Systematic Image Based Optical Alignment) test bed. Unfortunately, hardware/software aspect concerning SIBOA and an extended time period for algorithm development prevented testing before the end of the study period. Properties of the digital camera were studied and understood, resulting in the current ability of selecting optimal settings regarding saturation. The study was successful in manually capturing several images of two stacked segments with various relative phases. These images can be used to calibrate the algorithm for future implementation. Currently the system is ready for testing.

  18. Acceleration and torque feedback for robotic control - Experimental results

    NASA Technical Reports Server (NTRS)

    Mclnroy, John E.; Saridis, George N.

    1990-01-01

    Gross motion control of robotic manipulators typically requires significant on-line computations to compensate for nonlinear dynamics due to gravity, Coriolis, centripetal, and friction nonlinearities. One controller proposed by Luo and Saridis avoids these computations by feeding back joint acceleration and torque. This study implements the controller on a Puma 600 robotic manipulator. Joint acceleration measurement is obtained by measuring linear accelerations of each joint, and deriving a computationally efficient transformation from the linear measurements to the angular accelerations. Torque feedback is obtained by using the previous torque sent to the joints. The implementation has stability problems on the Puma 600 due to the extremely high gains inherent in the feedback structure. Since these high gains excite frequency modes in the Puma 600, the algorithm is modified to decrease the gain inherent in the feedback structure. The resulting compensator is stable and insensitive to high frequency unmodeled dynamics. Moreover, a second compensator is proposed which uses acceleration and torque feedback, but still allows nonlinear terms to be fed forward. Thus, by feeding the increment in the easily calculated gravity terms forward, improved responses are obtained. Both proposed compensators are implemented, and the real time results are compared to those obtained with the computed torque algorithm.

  19. A homotopy method based on WENO schemes for solving steady state problems of hyperbolic conservation laws

    DTIC Science & Technology

    2012-09-03

    prac- tice to solve these initial value problems. Additionally, the predictor / corrector methods are combined with adaptive stepsize and adaptive ...for implementing a numerical path tracking algorithm is to decide which predictor / corrector method to employ, how large to take the step ∆t, and what...the endgame algorithm . Output: A steady state solution Set ǫ = 1 while ǫ >= ǫend do set the stepsize ∆ǫ by using adaptive stepsize control algorithm

  20. Real-Time Neural Signals Decoding onto Off-the-Shelf DSP Processors for Neuroprosthetic Applications.

    PubMed

    Pani, Danilo; Barabino, Gianluca; Citi, Luca; Meloni, Paolo; Raspopovic, Stanisa; Micera, Silvestro; Raffo, Luigi

    2016-09-01

    The control of upper limb neuroprostheses through the peripheral nervous system (PNS) can allow restoring motor functions in amputees. At present, the important aspect of the real-time implementation of neural decoding algorithms on embedded systems has been often overlooked, notwithstanding the impact that limited hardware resources have on the efficiency/effectiveness of any given algorithm. Present study is addressing the optimization of a template matching based algorithm for PNS signals decoding that is a milestone for its real-time, full implementation onto a floating-point digital signal processor (DSP). The proposed optimized real-time algorithm achieves up to 96% of correct classification on real PNS signals acquired through LIFE electrodes on animals, and can correctly sort spikes of a synthetic cortical dataset with sufficiently uncorrelated spike morphologies (93% average correct classification) comparably to the results obtained with top spike sorter (94% on average on the same dataset). The power consumption enables more than 24 h processing at the maximum load, and latency model has been derived to enable a fair performance assessment. The final embodiment demonstrates the real-time performance onto a low-power off-the-shelf DSP, opening to experiments exploiting the efferent signals to control a motor neuroprosthesis.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mou, J.I.; King, C.

    The focus of this study is to develop a sensor fused process modeling and control methodology to model, assess, and then enhance the performance of a hexapod machine for precision product realization. Deterministic modeling technique was used to derive models for machine performance assessment and enhancement. Sensor fusion methodology was adopted to identify the parameters of the derived models. Empirical models and computational algorithms were also derived and implemented to model, assess, and then enhance the machine performance. The developed sensor fusion algorithms can be implemented on a PC-based open architecture controller to receive information from various sensors, assess themore » status of the process, determine the proper action, and deliver the command to actuators for task execution. This will enhance a hexapod machine`s capability to produce workpieces within the imposed dimensional tolerances.« less

  2. Obstacle Detection using Binocular Stereo Vision in Trajectory Planning for Quadcopter Navigation

    NASA Astrophysics Data System (ADS)

    Bugayong, Albert; Ramos, Manuel, Jr.

    2018-02-01

    Quadcopters are one of the most versatile unmanned aerial vehicles due to its vertical take-off and landing as well as hovering capabilities. This research uses the Sum of Absolute Differences (SAD) block matching algorithm for stereo vision. A complementary filter was used in sensor fusion to combine obtained quadcopter orientation data from the accelerometer and the gyroscope. PID control was implemented for the motor control and VFH+ algorithm was implemented for trajectory planning. Results show that the quadcopter was able to consistently actuate itself in the roll, yaw and z-axis during obstacle avoidance but was however found to be inconsistent in the pitch axis during forward and backward maneuvers due to the significant noise present in the pitch axis angle outputs compared to the roll and yaw axes.

  3. Singular perturbation techniques for real time aircraft trajectory optimization and control

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Moerder, D. D.

    1982-01-01

    The usefulness of singular perturbation methods for developing real time computer algorithms to control and optimize aircraft flight trajectories is examined. A minimum time intercept problem using F-8 aerodynamic and propulsion data is used as a baseline. This provides a framework within which issues relating to problem formulation, solution methodology and real time implementation are examined. Theoretical questions relating to separability of dynamics are addressed. With respect to implementation, situations leading to numerical singularities are identified, and procedures for dealing with them are outlined. Also, particular attention is given to identifying quantities that can be precomputed and stored, thus greatly reducing the on-board computational load. Numerical results are given to illustrate the minimum time algorithm, and the resulting flight paths. An estimate is given for execution time and storage requirements.

  4. Data-driven process decomposition and robust online distributed modelling for large-scale processes

    NASA Astrophysics Data System (ADS)

    Shu, Zhang; Lijuan, Li; Lijuan, Yao; Shipin, Yang; Tao, Zou

    2018-02-01

    With the increasing attention of networked control, system decomposition and distributed models show significant importance in the implementation of model-based control strategy. In this paper, a data-driven system decomposition and online distributed subsystem modelling algorithm was proposed for large-scale chemical processes. The key controlled variables are first partitioned by affinity propagation clustering algorithm into several clusters. Each cluster can be regarded as a subsystem. Then the inputs of each subsystem are selected by offline canonical correlation analysis between all process variables and its controlled variables. Process decomposition is then realised after the screening of input and output variables. When the system decomposition is finished, the online subsystem modelling can be carried out by recursively block-wise renewing the samples. The proposed algorithm was applied in the Tennessee Eastman process and the validity was verified.

  5. Woofer-tweeter adaptive optics scanning laser ophthalmoscopic imaging based on Lagrange-multiplier damped least-squares algorithm.

    PubMed

    Zou, Weiyao; Qi, Xiaofeng; Burns, Stephen A

    2011-07-01

    We implemented a Lagrange-multiplier (LM)-based damped least-squares (DLS) control algorithm in a woofer-tweeter dual deformable-mirror (DM) adaptive optics scanning laser ophthalmoscope (AOSLO). The algorithm uses data from a single Shack-Hartmann wavefront sensor to simultaneously correct large-amplitude low-order aberrations by a woofer DM and small-amplitude higher-order aberrations by a tweeter DM. We measured the in vivo performance of high resolution retinal imaging with the dual DM AOSLO. We compared the simultaneous LM-based DLS dual DM controller with both single DM controller, and a successive dual DM controller. We evaluated performance using both wavefront (RMS) and image quality metrics including brightness and power spectrum. The simultaneous LM-based dual DM AO can consistently provide near diffraction-limited in vivo routine imaging of human retina.

  6. SLAM algorithm applied to robotics assistance for navigation in unknown environments.

    PubMed

    Cheein, Fernando A Auat; Lopez, Natalia; Soria, Carlos M; di Sciascio, Fernando A; Pereira, Fernando Lobo; Carelli, Ricardo

    2010-02-17

    The combination of robotic tools with assistance technology determines a slightly explored area of applications and advantages for disability or elder people in their daily tasks. Autonomous motorized wheelchair navigation inside an environment, behaviour based control of orthopaedic arms or user's preference learning from a friendly interface are some examples of this new field. In this paper, a Simultaneous Localization and Mapping (SLAM) algorithm is implemented to allow the environmental learning by a mobile robot while its navigation is governed by electromyographic signals. The entire system is part autonomous and part user-decision dependent (semi-autonomous). The environmental learning executed by the SLAM algorithm and the low level behaviour-based reactions of the mobile robot are robotic autonomous tasks, whereas the mobile robot navigation inside an environment is commanded by a Muscle-Computer Interface (MCI). In this paper, a sequential Extended Kalman Filter (EKF) feature-based SLAM algorithm is implemented. The features correspond to lines and corners -concave and convex- of the environment. From the SLAM architecture, a global metric map of the environment is derived. The electromyographic signals that command the robot's movements can be adapted to the patient's disabilities. For mobile robot navigation purposes, five commands were obtained from the MCI: turn to the left, turn to the right, stop, start and exit. A kinematic controller to control the mobile robot was implemented. A low level behavior strategy was also implemented to avoid robot's collisions with the environment and moving agents. The entire system was tested in a population of seven volunteers: three elder, two below-elbow amputees and two young normally limbed patients. The experiments were performed within a closed low dynamic environment. Subjects took an average time of 35 minutes to navigate the environment and to learn how to use the MCI. The SLAM results have shown a consistent reconstruction of the environment. The obtained map was stored inside the Muscle-Computer Interface. The integration of a highly demanding processing algorithm (SLAM) with a MCI and the communication between both in real time have shown to be consistent and successful. The metric map generated by the mobile robot would allow possible future autonomous navigation without direct control of the user, whose function could be relegated to choose robot destinations. Also, the mobile robot shares the same kinematic model of a motorized wheelchair. This advantage can be exploited for wheelchair autonomous navigation.

  7. FPGA implementation of bit controller in double-tick architecture

    NASA Astrophysics Data System (ADS)

    Kobylecki, Michał; Kania, Dariusz

    2017-11-01

    This paper presents a comparison of the two original architectures of programmable bit controllers built on FPGAs. Programmable Logic Controllers (which include, among other things programmable bit controllers) built on FPGAs provide a efficient alternative to the controllers based on microprocessors which are expensive and often too slow. The presented and compared methods allow for the efficient implementation of any bit control algorithm written in Ladder Diagram language into the programmable logic system in accordance with IEC61131-3. In both cases, we have compared the effect of the applied architecture on the performance of executing the same bit control program in relation to its own size.

  8. Realization of quantum gates with multiple control qubits or multiple target qubits in a cavity

    NASA Astrophysics Data System (ADS)

    Waseem, Muhammad; Irfan, Muhammad; Qamar, Shahid

    2015-06-01

    We propose a scheme to realize a three-qubit controlled phase gate and a multi-qubit controlled NOT gate of one qubit simultaneously controlling n-target qubits with a four-level quantum system in a cavity. The implementation time for multi-qubit controlled NOT gate is independent of the number of qubit. Three-qubit phase gate is generalized to n-qubit phase gate with multiple control qubits. The number of steps reduces linearly as compared to conventional gate decomposition method. Our scheme can be applied to various types of physical systems such as superconducting qubits coupled to a resonator and trapped atoms in a cavity. Our scheme does not require adjustment of level spacing during the gate implementation. We also show the implementation of Deutsch-Joza algorithm. Finally, we discuss the imperfections due to cavity decay and the possibility of physical implementation of our scheme.

  9. Quality control algorithms for rainfall measurements

    NASA Astrophysics Data System (ADS)

    Golz, Claudia; Einfalt, Thomas; Gabella, Marco; Germann, Urs

    2005-09-01

    One of the basic requirements for a scientific use of rain data from raingauges, ground and space radars is data quality control. Rain data could be used more intensively in many fields of activity (meteorology, hydrology, etc.), if the achievable data quality could be improved. This depends on the available data quality delivered by the measuring devices and the data quality enhancement procedures. To get an overview of the existing algorithms a literature review and literature pool have been produced. The diverse algorithms have been evaluated to meet VOLTAIRE objectives and sorted in different groups. To test the chosen algorithms an algorithm pool has been established, where the software is collected. A large part of this work presented here is implemented in the scope of the EU-project VOLTAIRE ( Validati on of mu ltisensors precipit ation fields and numerical modeling in Mediter ran ean test sites).

  10. Development and Implementation of a Hardware In-the-Loop Test Bed for Unmanned Aerial Vehicle Control Algorithms

    NASA Technical Reports Server (NTRS)

    Nyangweso, Emmanuel; Bole, Brian

    2014-01-01

    Successful prediction and management of battery life using prognostic algorithms through ground and flight tests is important for performance evaluation of electrical systems. This paper details the design of test beds suitable for replicating loading profiles that would be encountered in deployed electrical systems. The test bed data will be used to develop and validate prognostic algorithms for predicting battery discharge time and battery failure time. Online battery prognostic algorithms will enable health management strategies. The platform used for algorithm demonstration is the EDGE 540T electric unmanned aerial vehicle (UAV). The fully designed test beds developed and detailed in this paper can be used to conduct battery life tests by controlling current and recording voltage and temperature to develop a model that makes a prediction of end-of-charge and end-of-life of the system based on rapid state of health (SOH) assessment.

  11. Layer-oriented multigrid wavefront reconstruction algorithms for multi-conjugate adaptive optics

    NASA Astrophysics Data System (ADS)

    Gilles, Luc; Ellerbroek, Brent L.; Vogel, Curtis R.

    2003-02-01

    Multi-conjugate adaptive optics (MCAO) systems with 104-105 degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of AO degrees of freedom. In this paper, we develop an iterative sparse matrix implementation of minimum variance wavefront reconstruction for telescope diameters up to 32m with more than 104 actuators. The basic approach is the preconditioned conjugate gradient method, using a multigrid preconditioner incorporating a layer-oriented (block) symmetric Gauss-Seidel iterative smoothing operator. We present open-loop numerical simulation results to illustrate algorithm convergence.

  12. One-way quantum computing in superconducting circuits

    NASA Astrophysics Data System (ADS)

    Albarrán-Arriagada, F.; Alvarado Barrios, G.; Sanz, M.; Romero, G.; Lamata, L.; Retamal, J. C.; Solano, E.

    2018-03-01

    We propose a method for the implementation of one-way quantum computing in superconducting circuits. Measurement-based quantum computing is a universal quantum computation paradigm in which an initial cluster state provides the quantum resource, while the iteration of sequential measurements and local rotations encodes the quantum algorithm. Up to now, technical constraints have limited a scalable approach to this quantum computing alternative. The initial cluster state can be generated with available controlled-phase gates, while the quantum algorithm makes use of high-fidelity readout and coherent feedforward. With current technology, we estimate that quantum algorithms with above 20 qubits may be implemented in the path toward quantum supremacy. Moreover, we propose an alternative initial state with properties of maximal persistence and maximal connectedness, reducing the required resources of one-way quantum computing protocols.

  13. IIR filtering based adaptive active vibration control methodology with online secondary path modeling using PZT actuators

    NASA Astrophysics Data System (ADS)

    Boz, Utku; Basdogan, Ipek

    2015-12-01

    Structural vibrations is a major cause for noise problems, discomfort and mechanical failures in aerospace, automotive and marine systems, which are mainly composed of plate-like structures. In order to reduce structural vibrations on these structures, active vibration control (AVC) is an effective approach. Adaptive filtering methodologies are preferred in AVC due to their ability to adjust themselves for varying dynamics of the structure during the operation. The filtered-X LMS (FXLMS) algorithm is a simple adaptive filtering algorithm widely implemented in active control applications. Proper implementation of FXLMS requires availability of a reference signal to mimic the disturbance and model of the dynamics between the control actuator and the error sensor, namely the secondary path. However, the controller output could interfere with the reference signal and the secondary path dynamics may change during the operation. This interference problem can be resolved by using an infinite impulse response (IIR) filter which considers feedback of the one or more previous control signals to the controller output and the changing secondary path dynamics can be updated using an online modeling technique. In this paper, IIR filtering based filtered-U LMS (FULMS) controller is combined with online secondary path modeling algorithm to suppress the vibrations of a plate-like structure. The results are validated through numerical and experimental studies. The results show that the FULMS with online secondary path modeling approach has more vibration rejection capabilities with higher convergence rate than the FXLMS counterpart.

  14. Solving rational matrix equations in the state space with applications to computer-aided control-system design

    NASA Technical Reports Server (NTRS)

    Packard, A. K.; Sastry, S. S.

    1986-01-01

    A method of solving a class of linear matrix equations over various rings is proposed, using results from linear geometric control theory. An algorithm, successfully implemented, is presented, along with non-trivial numerical examples. Applications of the method to the algebraic control system design methodology are discussed.

  15. Preliminary Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Hawkins, Albin

    2001-01-01

    NASA's first autonomous formation flying mission is completing a primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center has implemented an autonomous universal three-axis formation flying algorithm in executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard design and presents the preliminary validation results of this unique system. Results from functionality assessment and autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a stand-alone algorithm.

  16. A Nonlinear Digital Control Solution for a DC/DC Power Converter

    NASA Technical Reports Server (NTRS)

    Zhu, Minshao

    2002-01-01

    A digital Nonlinear Proportional-Integral-Derivative (NPID) control algorithm was proposed to control a 1-kW, PWM, DC/DC, switching power converter. The NPID methodology is introduced and a practical hardware control solution is obtained. The design of the controller was completed using Matlab (trademark) Simulink, while the hardware-in-the-loop testing was performed using both the dSPACE (trademark) rapid prototyping system, and a stand-alone Texas Instruments (trademark) Digital Signal Processor (DSP)-based system. The final Nonlinear digital control algorithm was implemented and tested using the ED408043-1 Westinghouse DC-DC switching power converter. The NPID test results are discussed and compared to the results of a standard Proportional-Integral (PI) controller.

  17. Development of Real Time Implementation of 5/5 Rule based Fuzzy Logic Controller Shunt Active Power Filter for Power Quality Improvement

    NASA Astrophysics Data System (ADS)

    Puhan, Pratap Sekhar; Ray, Pravat Kumar; Panda, Gayadhar

    2016-12-01

    This paper presents the effectiveness of 5/5 Fuzzy rule implementation in Fuzzy Logic Controller conjunction with indirect control technique to enhance the power quality in single phase system, An indirect current controller in conjunction with Fuzzy Logic Controller is applied to the proposed shunt active power filter to estimate the peak reference current and capacitor voltage. Current Controller based pulse width modulation (CCPWM) is used to generate the switching signals of voltage source inverter. Various simulation results are presented to verify the good behaviour of the Shunt active Power Filter (SAPF) with proposed two levels Hysteresis Current Controller (HCC). For verification of Shunt Active Power Filter in real time, the proposed control algorithm has been implemented in laboratory developed setup in dSPACE platform.

  18. Medical Image Processing Server applied to Quality Control of Nuclear Medicine.

    NASA Astrophysics Data System (ADS)

    Vergara, C.; Graffigna, J. P.; Marino, E.; Omati, S.; Holleywell, P.

    2016-04-01

    This paper is framed within the area of medical image processing and aims to present the process of installation, configuration and implementation of a processing server of medical images (MIPS) in the Fundación Escuela de Medicina Nuclear located in Mendoza, Argentina (FUESMEN). It has been developed in the Gabinete de Tecnologia Médica (GA.TE.ME), Facultad de Ingeniería-Universidad Nacional de San Juan. MIPS is a software that using the DICOM standard, can receive medical imaging studies of different modalities or viewing stations, then it executes algorithms and finally returns the results to other devices. To achieve the objectives previously mentioned, preliminary tests were conducted in the laboratory. More over, tools were remotely installed in clinical enviroment. The appropiate protocols for setting up and using them in different services were established once defined those suitable algorithms. Finally, it’s important to focus on the implementation and training that is provided in FUESMEN, using nuclear medicine quality control processes. Results on implementation are exposed in this work.

  19. Implementation of a three-qubit refined Deutsch Jozsa algorithm using SFG quantum logic gates

    NASA Astrophysics Data System (ADS)

    DelDuce, A.; Savory, S.; Bayvel, P.

    2006-05-01

    In this paper we present a quantum logic circuit which can be used for the experimental demonstration of a three-qubit solid state quantum computer based on a recent proposal of optically driven quantum logic gates. In these gates, the entanglement of randomly placed electron spin qubits is manipulated by optical excitation of control electrons. The circuit we describe solves the Deutsch problem with an improved algorithm called the refined Deutsch-Jozsa algorithm. We show that it is possible to select optical pulses that solve the Deutsch problem correctly, and do so without losing quantum information to the control electrons, even though the gate parameters vary substantially from one gate to another.

  20. Tcl as a Software Environment for a TCS

    NASA Astrophysics Data System (ADS)

    Terrett, David L.

    2002-12-01

    This paper describes how the Tcl scripting language and C API has been used as the software environment for a telescope pointing kernel so that new pointing algorithms and software architectures can be developed and tested without needing a real-time operating system or real-time software environment. It has enabled development to continue outside the framework of a specific telescope project while continuing to build a system that is sufficiently complete to be capable of controlling real hardware but expending minimum effort on replacing the services that would normally by provided by a real-time software environment. Tcl is used as a scripting language for configuring the system at startup and then as the command interface for controlling the running system; the Tcl C language API is used to provided a system independent interface to file and socket I/O and other operating system services. The pointing algorithms themselves are implemented as a set of C++ objects calling C library functions that implement the algorithms described in [2]. Although originally designed as a test and development environment, the system, running as a soft real-time process on Linux, has been used to test the SOAR mount control system and will be used as the pointing kernel of the SOAR telescope control system

  1. Single neural adaptive controller and neural network identifier based on PSO algorithm for spherical actuators with 3D magnet array

    NASA Astrophysics Data System (ADS)

    Yan, Liang; Zhang, Lu; Zhu, Bo; Zhang, Jingying; Jiao, Zongxia

    2017-10-01

    Permanent magnet spherical actuator (PMSA) is a multi-variable featured and inter-axis coupled nonlinear system, which unavoidably compromises its motion control implementation. Uncertainties such as external load and friction torque of ball bearing and manufacturing errors also influence motion performance significantly. Therefore, the objective of this paper is to propose a controller based on a single neural adaptive (SNA) algorithm and a neural network (NN) identifier optimized with a particle swarm optimization (PSO) algorithm to improve the motion stability of PMSA with three-dimensional magnet arrays. The dynamic model and computed torque model are formulated for the spherical actuator, and a dynamic decoupling control algorithm is developed. By utilizing the global-optimization property of the PSO algorithm, the NN identifier is trained to avoid locally optimal solution and achieve high-precision compensations to uncertainties. The employment of the SNA controller helps to reduce the effect of compensation errors and convert the system to a stable one, even if there is difference between the compensations and uncertainties due to external disturbances. A simulation model is established, and experiments are conducted on the research prototype to validate the proposed control algorithm. The amplitude of the parameter perturbation is set to 5%, 10%, and 15%, respectively. The strong robustness of the proposed hybrid algorithm is validated by the abundant simulation data. It shows that the proposed algorithm can effectively compensate the influence of uncertainties and eliminate the effect of inter-axis couplings of the spherical actuator.

  2. A framework for interval-valued information system

    NASA Astrophysics Data System (ADS)

    Yin, Yunfei; Gong, Guanghong; Han, Liang

    2012-09-01

    Interval-valued information system is used to transform the conventional dataset into the interval-valued form. To conduct the interval-valued data mining, we conduct two investigations: (1) construct the interval-valued information system, and (2) conduct the interval-valued knowledge discovery. In constructing the interval-valued information system, we first make the paired attributes in the database discovered, and then, make them stored in the neighbour locations in a common database and regard them as 'one' new field. In conducting the interval-valued knowledge discovery, we utilise some related priori knowledge and regard the priori knowledge as the control objectives; and design an approximate closed-loop control mining system. On the implemented experimental platform (prototype), we conduct the corresponding experiments and compare the proposed algorithms with several typical algorithms, such as the Apriori algorithm, the FP-growth algorithm and the CLOSE+ algorithm. The experimental results show that the interval-valued information system method is more effective than the conventional algorithms in discovering interval-valued patterns.

  3. Microcomputer technology applications: Charger and regulator software for a breadboard programmable power processor

    NASA Technical Reports Server (NTRS)

    Green, D. M.

    1978-01-01

    Software programs are described, one which implements a voltage regulation function, and one which implements a charger function with peak-power tracking of its input. The software, written in modular fashion, is intended as a vehicle for further experimentation with the P-3 system. A control teleprinter allows an operator to make parameter modifications to the control algorithm during experiments. The programs require 3K ROM and 2K ram each. User manuals for each system are included as well as a third program for simple I/O control.

  4. Computer vision camera with embedded FPGA processing

    NASA Astrophysics Data System (ADS)

    Lecerf, Antoine; Ouellet, Denis; Arias-Estrada, Miguel

    2000-03-01

    Traditional computer vision is based on a camera-computer system in which the image understanding algorithms are embedded in the computer. To circumvent the computational load of vision algorithms, low-level processing and imaging hardware can be integrated in a single compact module where a dedicated architecture is implemented. This paper presents a Computer Vision Camera based on an open architecture implemented in an FPGA. The system is targeted to real-time computer vision tasks where low level processing and feature extraction tasks can be implemented in the FPGA device. The camera integrates a CMOS image sensor, an FPGA device, two memory banks, and an embedded PC for communication and control tasks. The FPGA device is a medium size one equivalent to 25,000 logic gates. The device is connected to two high speed memory banks, an IS interface, and an imager interface. The camera can be accessed for architecture programming, data transfer, and control through an Ethernet link from a remote computer. A hardware architecture can be defined in a Hardware Description Language (like VHDL), simulated and synthesized into digital structures that can be programmed into the FPGA and tested on the camera. The architecture of a classical multi-scale edge detection algorithm based on a Laplacian of Gaussian convolution has been developed to show the capabilities of the system.

  5. Centralized and distributed control architectures under Foundation Fieldbus network.

    PubMed

    Persechini, Maria Auxiliadora Muanis; Jota, Fábio Gonçalves

    2013-01-01

    This paper aims at discussing possible automation and control system architectures based on fieldbus networks in which the controllers can be implemented either in a centralized or in a distributed form. An experimental setup is used to demonstrate some of the addressed issues. The control and automation architecture is composed of a supervisory system, a programmable logic controller and various other devices connected to a Foundation Fieldbus H1 network. The procedures used in the network configuration, in the process modelling and in the design and implementation of controllers are described. The specificities of each one of the considered logical organizations are also discussed. Finally, experimental results are analysed using an algorithm for the assessment of control loops to compare the performances between the centralized and the distributed implementations. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Real-time path planning and autonomous control for helicopter autorotation

    NASA Astrophysics Data System (ADS)

    Yomchinda, Thanan

    Autorotation is a descending maneuver that can be used to recover helicopters in the event of total loss of engine power; however it is an extremely difficult and complex maneuver. The objective of this work is to develop a real-time system which provides full autonomous control for autorotation landing of helicopters. The work includes the development of an autorotation path planning method and integration of the path planner with a primary flight control system. The trajectory is divided into three parts: entry, descent and flare. Three different optimization algorithms are used to generate trajectories for each of these segments. The primary flight control is designed using a linear dynamic inversion control scheme, and a path following control law is developed to track the autorotation trajectories. Details of the path planning algorithm, trajectory following control law, and autonomous autorotation system implementation are presented. The integrated system is demonstrated in real-time high fidelity simulations. Results indicate feasibility of the capability of the algorithms to operate in real-time and of the integrated systems ability to provide safe autorotation landings. Preliminary simulations of autonomous autorotation on a small UAV are presented which will lead to a final hardware demonstration of the algorithms.

  7. Maximum wind energy extraction strategies using power electronic converters

    NASA Astrophysics Data System (ADS)

    Wang, Quincy Qing

    2003-10-01

    This thesis focuses on maximum wind energy extraction strategies for achieving the highest energy output of variable speed wind turbine power generation systems. Power electronic converters and controls provide the basic platform to accomplish the research of this thesis in both hardware and software aspects. In order to send wind energy to a utility grid, a variable speed wind turbine requires a power electronic converter to convert a variable voltage variable frequency source into a fixed voltage fixed frequency supply. Generic single-phase and three-phase converter topologies, converter control methods for wind power generation, as well as the developed direct drive generator, are introduced in the thesis for establishing variable-speed wind energy conversion systems. Variable speed wind power generation system modeling and simulation are essential methods both for understanding the system behavior and for developing advanced system control strategies. Wind generation system components, including wind turbine, 1-phase IGBT inverter, 3-phase IGBT inverter, synchronous generator, and rectifier, are modeled in this thesis using MATLAB/SIMULINK. The simulation results have been verified by a commercial simulation software package, PSIM, and confirmed by field test results. Since the dynamic time constants for these individual models are much different, a creative approach has also been developed in this thesis to combine these models for entire wind power generation system simulation. An advanced maximum wind energy extraction strategy relies not only on proper system hardware design, but also on sophisticated software control algorithms. Based on literature review and computer simulation on wind turbine control algorithms, an intelligent maximum wind energy extraction control algorithm is proposed in this thesis. This algorithm has a unique on-line adaptation and optimization capability, which is able to achieve maximum wind energy conversion efficiency through continuously improving the performance of wind power generation systems. This algorithm is independent of wind power generation system characteristics, and does not need wind speed and turbine speed measurements. Therefore, it can be easily implemented into various wind energy generation systems with different turbine inertia and diverse system hardware environments. In addition to the detailed description of the proposed algorithm, computer simulation results are presented in the thesis to demonstrate the advantage of this algorithm. As a final confirmation of the algorithm feasibility, the algorithm has been implemented inside a single-phase IGBT inverter, and tested with a wind simulator system in research laboratory. Test results were found consistent with the simulation results. (Abstract shortened by UMI.)

  8. A problem of optimal control and observation for distributed homogeneous multi-agent system

    NASA Astrophysics Data System (ADS)

    Kruglikov, Sergey V.

    2017-12-01

    The paper considers the implementation of a algorithm for controlling a distributed complex of several mobile multi-robots. The concept of a unified information space of the controlling system is applied. The presented information and mathematical models of participants and obstacles, as real agents, and goals and scenarios, as virtual agents, create the base forming the algorithmic and software background for computer decision support system. The controlling scheme assumes the indirect management of the robotic team on the basis of optimal control and observation problem predicting intellectual behavior in a dynamic, hostile environment. A basic content problem is a compound cargo transportation by a group of participants in the case of a distributed control scheme in the terrain with multiple obstacles.

  9. Optimal Control for Aperiodic Dual-Rate Systems With Time-Varying Delays

    PubMed Central

    Salt, Julián; Guinaldo, María; Chacón, Jesús

    2018-01-01

    In this work, we consider a dual-rate scenario with slow input and fast output. Our objective is the maximization of the decay rate of the system through the suitable choice of the n-input signals between two measures (periodic sampling) and their times of application. The optimization algorithm is extended for time-varying delays in order to make possible its implementation in networked control systems. We provide experimental results in an air levitation system to verify the validity of the algorithm in a real plant. PMID:29747441

  10. Optimal Control for Aperiodic Dual-Rate Systems With Time-Varying Delays.

    PubMed

    Aranda-Escolástico, Ernesto; Salt, Julián; Guinaldo, María; Chacón, Jesús; Dormido, Sebastián

    2018-05-09

    In this work, we consider a dual-rate scenario with slow input and fast output. Our objective is the maximization of the decay rate of the system through the suitable choice of the n -input signals between two measures (periodic sampling) and their times of application. The optimization algorithm is extended for time-varying delays in order to make possible its implementation in networked control systems. We provide experimental results in an air levitation system to verify the validity of the algorithm in a real plant.

  11. Development of Hardware-in-the-Loop Simulation Based on Gazebo and Pixhawk for Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Nguyen, Khoa Dang; Ha, Cheolkeun

    2018-04-01

    Hardware-in-the-loop simulation (HILS) is well known as an effective approach in the design of unmanned aerial vehicles (UAV) systems, enabling engineers to test the control algorithm on a hardware board with a UAV model on the software. Performance of HILS is determined by performances of the control algorithm, the developed model, and the signal transfer between the hardware and software. The result of HILS is degraded if any signal could not be transferred to the correct destination. Therefore, this paper aims to develop a middleware software to secure communications in HILS system for testing the operation of a quad-rotor UAV. In our HILS, the Gazebo software is used to generate a nonlinear six-degrees-of-freedom (6DOF) model, sensor model, and 3D visualization for the quad-rotor UAV. Meanwhile, the flight control algorithm is designed and implemented on the Pixhawk hardware. New middleware software, referred to as the control application software (CAS), is proposed to ensure the connection and data transfer between Gazebo and Pixhawk using the multithread structure in Qt Creator. The CAS provides a graphical user interface (GUI), allowing the user to monitor the status of packet transfer, and perform the flight control commands and the real-time tuning parameters for the quad-rotor UAV. Numerical implementations have been performed to prove the effectiveness of the middleware software CAS suggested in this paper.

  12. Design and Development of a Smart Exercise Bike for Motor Rehabilitation in Individuals with Parkinson’s Disease

    PubMed Central

    Mohammadi-Abdar, Hassan; Ridgel, Angela L.; Discenzo, Fred M.; Loparo, Kenneth A.

    2016-01-01

    Recent studies in rehabilitation of Parkinson’s disease (PD) have shown that cycling on a tandem bike at a high pedaling rate can reduce the symptoms of the disease. In this research, a smart motorized bicycle has been designed and built for assisting Parkinson’s patients with exercise to improve motor function. The exercise bike can accurately control the rider’s experience at an accelerated pedaling rate while capturing real-time test data. Here, the design and development of the electronics and hardware as well as the software and control algorithms are presented. Two control algorithms have been developed for the bike; one that implements an inertia load (static mode) and one that implements a speed reference (dynamic mode). In static mode the bike operates as a regular exercise bike with programmable resistance (load) that captures and records the required signals such as heart rate, cadence and power. In dynamic mode the bike operates at a user-selected speed (cadence) with programmable variability in speed that has been shown to be essential to achieving the desired motor performance benefits for PD patients. In addition, the flexible and extensible design of the bike permits readily changing the control algorithm and incorporating additional I/O as needed to provide a wide range of riding experiences. Furthermore, the network-enabled controller provides remote access to bike data during a riding session. PMID:27298575

  13. Direct adaptive control of a PUMA 560 industrial robot

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun; Lee, Thomas; Delpech, Michel

    1989-01-01

    The implementation and experimental validation of a new direct adaptive control scheme on a PUMA 560 industrial robot is described. The testbed facility consists of a Unimation PUMA 560 six-jointed robot and controller, and a DEC MicroVAX II computer which hosts the Robot Control C Library software. The control algorithm is implemented on the MicroVAX which acts as a digital controller for the PUMA robot, and the Unimation controller is effectively bypassed and used merely as an I/O device to interface the MicroVAX to the joint motors. The control algorithm for each robot joint consists of an auxiliary signal generated by a constant-gain Proportional plus Integral plus Derivative (PID) controller, and an adaptive position-velocity (PD) feedback controller with adjustable gains. The adaptive independent joint controllers compensate for the inter-joint couplings and achieve accurate trajectory tracking without the need for the complex dynamic model and parameter values of the robot. Extensive experimental results on PUMA joint control are presented to confirm the feasibility of the proposed scheme, in spite of strong interactions between joint motions. Experimental results validate the capabilities of the proposed control scheme. The control scheme is extremely simple and computationally very fast for concurrent processing with high sampling rates.

  14. Implementation and on-sky results of an optimal wavefront controller for the MMT NGS adaptive optics system

    NASA Astrophysics Data System (ADS)

    Powell, Keith B.; Vaitheeswaran, Vidhya

    2010-07-01

    The MMT observatory has recently implemented and tested an optimal wavefront controller for the NGS adaptive optics system. Open loop atmospheric data collected at the telescope is used as the input to a MATLAB based analytical model. The model uses nonlinear constrained minimization to determine controller gains and optimize the system performance. The real-time controller performing the adaptive optics close loop operation is implemented on a dedicated high performance PC based quad core server. The controller algorithm is written in C and uses the GNU scientific library for linear algebra. Tests at the MMT confirmed the optimal controller significantly reduced the residual RMS wavefront compared with the previous controller. Significant reductions in image FWHM and increased peak intensities were obtained in J, H and K-bands. The optimal PID controller is now operating as the baseline wavefront controller for the MMT NGS-AO system.

  15. Implementation of input command shaping to reduce vibration in flexible space structures

    NASA Technical Reports Server (NTRS)

    Chang, Kenneth W.; Seering, Warren P.; Rappole, B. Whitney

    1992-01-01

    Viewgraphs on implementation of input command shaping to reduce vibration in flexible space structures are presented. Goals of the research are to explore theory of input command shaping to find an efficient algorithm for flexible space structures; to characterize Middeck Active Control Experiment (MACE) test article; and to implement input shaper on the MACE structure and interpret results. Background on input shaping, simulation results, experimental results, and future work are included.

  16. Unified Framework for Development, Deployment and Robust Testing of Neuroimaging Algorithms

    PubMed Central

    Joshi, Alark; Scheinost, Dustin; Okuda, Hirohito; Belhachemi, Dominique; Murphy, Isabella; Staib, Lawrence H.; Papademetris, Xenophon

    2011-01-01

    Developing both graphical and command-line user interfaces for neuroimaging algorithms requires considerable effort. Neuroimaging algorithms can meet their potential only if they can be easily and frequently used by their intended users. Deployment of a large suite of such algorithms on multiple platforms requires consistency of user interface controls, consistent results across various platforms and thorough testing. We present the design and implementation of a novel object-oriented framework that allows for rapid development of complex image analysis algorithms with many reusable components and the ability to easily add graphical user interface controls. Our framework also allows for simplified yet robust nightly testing of the algorithms to ensure stability and cross platform interoperability. All of the functionality is encapsulated into a software object requiring no separate source code for user interfaces, testing or deployment. This formulation makes our framework ideal for developing novel, stable and easy-to-use algorithms for medical image analysis and computer assisted interventions. The framework has been both deployed at Yale and released for public use in the open source multi-platform image analysis software—BioImage Suite (bioimagesuite.org). PMID:21249532

  17. Power System Decomposition for Practical Implementation of Bulk-Grid Voltage Control Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallem, Mallikarjuna R.; Vyakaranam, Bharat GNVSR; Holzer, Jesse T.

    Power system algorithms such as AC optimal power flow and coordinated volt/var control of the bulk power system are computationally intensive and become difficult to solve in operational time frames. The computational time required to run these algorithms increases exponentially as the size of the power system increases. The solution time for multiple subsystems is less than that for solving the entire system simultaneously, and the local nature of the voltage problem lends itself to such decomposition. This paper describes an algorithm that can be used to perform power system decomposition from the point of view of the voltage controlmore » problem. Our approach takes advantage of the dominant localized effect of voltage control and is based on clustering buses according to the electrical distances between them. One of the contributions of the paper is to use multidimensional scaling to compute n-dimensional Euclidean coordinates for each bus based on electrical distance to perform algorithms like K-means clustering. A simple coordinated reactive power control of photovoltaic inverters for voltage regulation is used to demonstrate the effectiveness of the proposed decomposition algorithm and its components. The proposed decomposition method is demonstrated on the IEEE 118-bus system.« less

  18. Novel Algorithm/Hardware Partnerships for Real-Time Nonlinear Control

    DTIC Science & Technology

    2014-02-28

    Investigate Tempest Technologies 28 February 2014 Abstract The real-time implementation of controls in nonlinear systems remains one of the great...button for resetting the FPGA board in Max-Plus MVM FPGA system. We utilize the built-in 32MB BPI flash as storage for the Tempest Max-Plus MVM

  19. Efficient parallel linear scaling construction of the density matrix for Born-Oppenheimer molecular dynamics.

    PubMed

    Mniszewski, S M; Cawkwell, M J; Wall, M E; Mohd-Yusof, J; Bock, N; Germann, T C; Niklasson, A M N

    2015-10-13

    We present an algorithm for the calculation of the density matrix that for insulators scales linearly with system size and parallelizes efficiently on multicore, shared memory platforms with small and controllable numerical errors. The algorithm is based on an implementation of the second-order spectral projection (SP2) algorithm [ Niklasson, A. M. N. Phys. Rev. B 2002 , 66 , 155115 ] in sparse matrix algebra with the ELLPACK-R data format. We illustrate the performance of the algorithm within self-consistent tight binding theory by total energy calculations of gas phase poly(ethylene) molecules and periodic liquid water systems containing up to 15,000 atoms on up to 16 CPU cores. We consider algorithm-specific performance aspects, such as local vs nonlocal memory access and the degree of matrix sparsity. Comparisons to sparse matrix algebra implementations using off-the-shelf libraries on multicore CPUs, graphics processing units (GPUs), and the Intel many integrated core (MIC) architecture are also presented. The accuracy and stability of the algorithm are illustrated with long duration Born-Oppenheimer molecular dynamics simulations of 1000 water molecules and a 303 atom Trp cage protein solvated by 2682 water molecules.

  20. Coherent controlization using superconducting qubits

    PubMed Central

    Friis, Nicolai; Melnikov, Alexey A.; Kirchmair, Gerhard; Briegel, Hans J.

    2015-01-01

    Coherent controlization, i.e., coherent conditioning of arbitrary single- or multi-qubit operations on the state of one or more control qubits, is an important ingredient for the flexible implementation of many algorithms in quantum computation. This is of particular significance when certain subroutines are changing over time or when they are frequently modified, such as in decision-making algorithms for learning agents. We propose a scheme to realize coherent controlization for any number of superconducting qubits coupled to a microwave resonator. For two and three qubits, we present an explicit construction that is of high relevance for quantum learning agents. We demonstrate the feasibility of our proposal, taking into account loss, dephasing, and the cavity self-Kerr effect. PMID:26667893

  1. Implementation of an optimum profile guidance system on STOLAND

    NASA Technical Reports Server (NTRS)

    Flanagan, P. F.

    1978-01-01

    The implementation on the STOLAND airborne digital computer of an optimum profile guidance system for the augmentor wing jet STOL research aircraft is described. Major tasks were to implement the guidance and control logic to airborne computer software and to integrate the module with the existing STOLAND navigation, display, and autopilot routines. The optimum profile guidance system comprises an algorithm for synthesizing mimimum fuel trajectories for a wide range of starting positions in the terminal area and a control law for flying the aircraft automatically along the trajectory. The avionics software developed is described along with a FORTRAN program that was constructed to reflect the modular nature and algorthms implemented in the avionics software.

  2. Pilot symbol-assisted beamforming algorithms in the WCDMA reverse link

    NASA Astrophysics Data System (ADS)

    Kong, Dongkeon; Lee, Jong H.; Chun, Joohwan; Woo, Yeon Sik; Soh, Ju Won

    2001-08-01

    We present a pilot symbol-assisted beamforming algorithm and a simulation tool of smart antennas for Wideband Code Division Multiple Access (WCDMA) in reverse link. In the 3GPP WCDMA system smart antenna technology has more room to play with than in the second generation wireless mobile systems such as IS-95 because the pilot symbol in Dedicated Physical Control Channel (DPCCH) can be utilized. First we show a smart antenna structure and adaptation algorithms, and then we explain a low-level smart antenna implementation using Simulink and MATLAB. In the design of our smart antenna system we pay special attention for the easiness of the interface to the baseband modem; Our ultimate goal is to implement a baseband smart antenna chip sets that can easily be added to to-be-existed baseband WCDMA modem units.

  3. Fuzzy Mixed Assembly Line Sequencing and Scheduling Optimization Model Using Multiobjective Dynamic Fuzzy GA

    PubMed Central

    Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari

    2014-01-01

    A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962

  4. Development of a Two-Wheel Contingency Mode for the MAP Spacecraft

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; ODonnell, James R., Jr.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    In the event of a failure of one of MAP's three reaction wheel assemblies (RWAs), it is not possible to achieve three-axis, full-state attitude control using the remaining two wheels. Hence, two of the attitude control algorithms implemented on the MAP spacecraft will no longer be usable in their current forms: Inertial Mode, used for slewing to and holding inertial attitudes, and Observing Mode, which implements the nominal dual-spin science mode. This paper describes the effort to create a complete strategy for using software algorithms to cope with a RWA failure. The discussion of the design process will be divided into three main subtopics: performing orbit maneuvers to reach and maintain an orbit about the second Earth-Sun libration point in the event of a RWA failure, completing the mission using a momentum-bias two-wheel science mode, and developing a new thruster-based mode for adjusting the inertially fixed momentum bias. In this summary, the philosophies used in designing these changes is shown; the full paper will supplement these with algorithm descriptions and testing results.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Mark A.; Bigelow, Matthew; Gilkey, Jeff C.

    The Super Strypi Navigation, Guidance & Control Software is a real-time implementation of the navigation, guidance and control algorithms designed to deliver a payload to a desired orbit for the rail launched Super Strypi launch vehicle. The software contains all flight control algorithms required from pre-launch until orbital insertion. The flight sequencer module calls the NG&C functions at the appropriate times of flight. Additional functionality includes all the low level drivers and I/O for communicating to other systems within the launch vehicle and to the ground support equipment. The software is designed such that changes to the launch location andmore » desired orbit can be changed without recompiling the code.« less

  6. Adding control to arbitrary unknown quantum operations

    PubMed Central

    Zhou, Xiao-Qi; Ralph, Timothy C.; Kalasuwan, Pruet; Zhang, Mian; Peruzzo, Alberto; Lanyon, Benjamin P.; O'Brien, Jeremy L.

    2011-01-01

    Although quantum computers promise significant advantages, the complexity of quantum algorithms remains a major technological obstacle. We have developed and demonstrated an architecture-independent technique that simplifies adding control qubits to arbitrary quantum operations—a requirement in many quantum algorithms, simulations and metrology. The technique, which is independent of how the operation is done, does not require knowledge of what the operation is, and largely separates the problems of how to implement a quantum operation in the laboratory and how to add a control. Here, we demonstrate an entanglement-based version in a photonic system, realizing a range of different two-qubit gates with high fidelity. PMID:21811242

  7. A synergistic method for vibration suppression of an elevator mechatronic system

    NASA Astrophysics Data System (ADS)

    Knezevic, Bojan Z.; Blanusa, Branko; Marcetic, Darko P.

    2017-10-01

    Modern elevators are complex mechatronic systems which have to satisfy high performance in precision, safety and ride comfort. Each elevator mechatronic system (EMS) contains a mechanical subsystem which is characterized by its resonant frequency. In order to achieve high performance of the whole system, the control part of the EMS inevitably excites resonant circuits causing the occurrence of vibration. This paper proposes a synergistic solution based on the jerk control and the upgrade of the speed controller with a band-stop filter to restore lost ride comfort and speed control caused by vibration. The band-stop filter eliminates the resonant component from the speed controller spectra and jerk control provides operating of the speed controller in a linear mode as well as increased ride comfort. The original method for band-stop filter tuning based on Goertzel algorithm and Kiefer search algorithm is proposed in this paper. In order to generate the speed reference trajectory which can be defined by different shapes and amplitudes of jerk, a unique generalized model is proposed. The proposed algorithm is integrated in the power drive control algorithm and implemented on the digital signal processor. Through experimental verifications on a scale down prototype of the EMS it has been verified that only synergistic effect of controlling jerk and filtrating the reference torque can completely eliminate vibrations.

  8. Architecture and data processing alternatives for the TSE computer. Volume 3: Execution of a parallel counting algorithm using array logic (Tse) devices

    NASA Technical Reports Server (NTRS)

    Metcalfe, A. G.; Bodenheimer, R. E.

    1976-01-01

    A parallel algorithm for counting the number of logic-l elements in a binary array or image developed during preliminary investigation of the Tse concept is described. The counting algorithm is implemented using a basic combinational structure. Modifications which improve the efficiency of the basic structure are also presented. A programmable Tse computer structure is proposed, along with a hardware control unit, Tse instruction set, and software program for execution of the counting algorithm. Finally, a comparison is made between the different structures in terms of their more important characteristics.

  9. Diagnostic work-up and loss of tuberculosis suspects in Jogjakarta, Indonesia.

    PubMed

    Ahmad, Riris Andono; Matthys, Francine; Dwihardiani, Bintari; Rintiswati, Ning; de Vlas, Sake J; Mahendradhata, Yodi; van der Stuyft, Patrick

    2012-02-15

    Early and accurate diagnosis of pulmonary tuberculosis (TB) is critical for successful TB control. To assist in the diagnosis of smear-negative pulmonary TB, the World Health Organisation (WHO) recommends the use of a diagnostic algorithm. Our study evaluated the implementation of the national tuberculosis programme's diagnostic algorithm in routine health care settings in Jogjakarta, Indonesia. The diagnostic algorithm is based on the WHO TB diagnostic algorithm, which had already been implemented in the health facilities. We prospectively documented the diagnostic work-up of all new tuberculosis suspects until a diagnosis was reached. We used clinical audit forms to record each step chronologically. Data on the patient's gender, age, symptoms, examinations (types, dates, and results), and final diagnosis were collected. Information was recorded for 754 TB suspects; 43.5% of whom were lost during the diagnostic work-up in health centres, 0% in lung clinics. Among the TB suspects who completed diagnostic work-ups, 51.1% and 100.0% were diagnosed without following the national TB diagnostic algorithm in health centres and lung clinics, respectively. However, the work-up in the health centres and lung clinics generally conformed to international standards for tuberculosis care (ISTC). Diagnostic delays were significantly longer in health centres compared to lung clinics. The high rate of patients lost in health centres needs to be addressed through the implementation of TB suspect tracing and better programme supervision. The national TB algorithm needs to be revised and differentiated according to the level of care.

  10. Accommodation of practical constraints by a linear programming jet select. [for Space Shuttle

    NASA Technical Reports Server (NTRS)

    Bergmann, E.; Weiler, P.

    1983-01-01

    An experimental spacecraft control system will be incorporated into the Space Shuttle flight software and exercised during a forthcoming mission to evaluate its performance and handling qualities. The control system incorporates a 'phase space' control law to generate rate change requests and a linear programming jet select to compute jet firings. Posed as a linear programming problem, jet selection must represent the rate change request as a linear combination of jet acceleration vectors where the coefficients are the jet firing times, while minimizing the fuel expended in satisfying that request. This problem is solved in real time using a revised Simplex algorithm. In order to implement the jet selection algorithm in the Shuttle flight control computer, it was modified to accommodate certain practical features of the Shuttle such as limited computer throughput, lengthy firing times, and a large number of control jets. To the authors' knowledge, this is the first such application of linear programming. It was made possible by careful consideration of the jet selection problem in terms of the properties of linear programming and the Simplex algorithm. These modifications to the jet select algorithm may by useful for the design of reaction controlled spacecraft.

  11. Hardware realization of an SVM algorithm implemented in FPGAs

    NASA Astrophysics Data System (ADS)

    Wiśniewski, Remigiusz; Bazydło, Grzegorz; Szcześniak, Paweł

    2017-08-01

    The paper proposes a technique of hardware realization of a space vector modulation (SVM) of state function switching in matrix converter (MC), oriented on the implementation in a single field programmable gate array (FPGA). In MC the SVM method is based on the instantaneous space-vector representation of input currents and output voltages. The traditional computation algorithms usually involve digital signal processors (DSPs) which consumes the large number of power transistors (18 transistors and 18 independent PWM outputs) and "non-standard positions of control pulses" during the switching sequence. Recently, hardware implementations become popular since computed operations may be executed much faster and efficient due to nature of the digital devices (especially concurrency). In the paper, we propose a hardware algorithm of SVM computation. In opposite to the existing techniques, the presented solution applies COordinate Rotation DIgital Computer (CORDIC) method to solve the trigonometric operations. Furthermore, adequate arithmetic modules (that is, sub-devices) used for intermediate calculations, such as code converters or proper sectors selectors (for output voltages and input current) are presented in detail. The proposed technique has been implemented as a design described with the use of Verilog hardware description language. The preliminary results of logic implementation oriented on the Xilinx FPGA (particularly, low-cost device from Artix-7 family from Xilinx was used) are also presented.

  12. Dispatch Strategy Development for Grid-tied Household Energy Systems

    NASA Astrophysics Data System (ADS)

    Cardwell, Joseph

    The prevalence of renewable generation will increase in the next several decades and offset conventional generation more and more. Yet this increase is not coming without challenges. Solar, wind, and even some water resources are intermittent and unpredictable, and thereby create scheduling challenges due to their inherent "uncontrolled" nature. To effectively manage these distributed renewable assets, new control algorithms must be developed for applications including energy management, bridge power, and system stability. This can be completed through a centralized control center though efforts are being made to parallel the control architecture with the organization of the renewable assets themselves--namely, distributed controls. Building energy management systems are being employed to control localized energy generation, storage, and use to reduce disruption on the net utility load. One such example is VOLTTRONTM, an agent-based platform for building energy control in real time. In this thesis, algorithms developed in VOLTTRON simulate a home energy management system that consists of a solar PV array, a lithium-ion battery bank, and the grid. Dispatch strategies are implemented to reduce energy charges from overall consumption (/kWh) and demand charges (/kW). Dispatch strategies for implementing storage devices are tuned on a month-to-month basis to provide a meaningful economic advantage under simulated scenarios to explore algorithm sensitivity to changing external factors. VOLTTRON agents provide automated real-time optimization of dispatch strategies to efficiently manage energy supply and demand, lower consumer costs associated with energy usage, and reduce load on the utility grid.

  13. Fault diagnosis and fault-tolerant finite control set-model predictive control of a multiphase voltage-source inverter supplying BLDC motor.

    PubMed

    Salehifar, Mehdi; Moreno-Equilaz, Manuel

    2016-01-01

    Due to its fault tolerance, a multiphase brushless direct current (BLDC) motor can meet high reliability demand for application in electric vehicles. The voltage-source inverter (VSI) supplying the motor is subjected to open circuit faults. Therefore, it is necessary to design a fault-tolerant (FT) control algorithm with an embedded fault diagnosis (FD) block. In this paper, finite control set-model predictive control (FCS-MPC) is developed to implement the fault-tolerant control algorithm of a five-phase BLDC motor. The developed control method is fast, simple, and flexible. A FD method based on available information from the control block is proposed; this method is simple, robust to common transients in motor and able to localize multiple open circuit faults. The proposed FD and FT control algorithm are embedded in a five-phase BLDC motor drive. In order to validate the theory presented, simulation and experimental results are conducted on a five-phase two-level VSI supplying a five-phase BLDC motor. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Proceedings: Sisal `93

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feo, J.T.

    1993-10-01

    This report contain papers on: Programmability and performance issues; The case of an iterative partial differential equation solver; Implementing the kernal of the Australian Region Weather Prediction Model in Sisal; Even and quarter-even prime length symmetric FFTs and their Sisal Implementations; Top-down thread generation for Sisal; Overlapping communications and computations on NUMA architechtures; Compiling technique based on dataflow analysis for funtional programming language Valid; Copy elimination for true multidimensional arrays in Sisal 2.0; Increasing parallelism for an optimization that reduces copying in IF2 graphs; Caching in on Sisal; Cache performance of Sisal Vs. FORTRAN; FFT algorithms on a shared-memory multiprocessor;more » A parallel implementation of nonnumeric search problems in Sisal; Computer vision algorithms in Sisal; Compilation of Sisal for a high-performance data driven vector processor; Sisal on distributed memory machines; A virtual shared addressing system for distributed memory Sisal; Developing a high-performance FFT algorithm in Sisal for a vector supercomputer; Implementation issues for IF2 on a static data-flow architechture; and Systematic control of parallelism in array-based data-flow computation. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less

  15. A generic implementation of replica exchange with solute tempering (REST2) algorithm in NAMD for complex biophysical simulations

    NASA Astrophysics Data System (ADS)

    Jo, Sunhwan; Jiang, Wei

    2015-12-01

    Replica Exchange with Solute Tempering (REST2) is a powerful sampling enhancement algorithm of molecular dynamics (MD) in that it needs significantly smaller number of replicas but achieves higher sampling efficiency relative to standard temperature exchange algorithm. In this paper, we extend the applicability of REST2 for quantitative biophysical simulations through a robust and generic implementation in greatly scalable MD software NAMD. The rescaling procedure of force field parameters controlling REST2 "hot region" is implemented into NAMD at the source code level. A user can conveniently select hot region through VMD and write the selection information into a PDB file. The rescaling keyword/parameter is written in NAMD Tcl script interface that enables an on-the-fly simulation parameter change. Our implementation of REST2 is within communication-enabled Tcl script built on top of Charm++, thus communication overhead of an exchange attempt is vanishingly small. Such a generic implementation facilitates seamless cooperation between REST2 and other modules of NAMD to provide enhanced sampling for complex biomolecular simulations. Three challenging applications including native REST2 simulation for peptide folding-unfolding transition, free energy perturbation/REST2 for absolute binding affinity of protein-ligand complex and umbrella sampling/REST2 Hamiltonian exchange for free energy landscape calculation were carried out on IBM Blue Gene/Q supercomputer to demonstrate efficacy of REST2 based on the present implementation.

  16. A permutation-based non-parametric analysis of CRISPR screen data.

    PubMed

    Jia, Gaoxiang; Wang, Xinlei; Xiao, Guanghua

    2017-07-19

    Clustered regularly-interspaced short palindromic repeats (CRISPR) screens are usually implemented in cultured cells to identify genes with critical functions. Although several methods have been developed or adapted to analyze CRISPR screening data, no single specific algorithm has gained popularity. Thus, rigorous procedures are needed to overcome the shortcomings of existing algorithms. We developed a Permutation-Based Non-Parametric Analysis (PBNPA) algorithm, which computes p-values at the gene level by permuting sgRNA labels, and thus it avoids restrictive distributional assumptions. Although PBNPA is designed to analyze CRISPR data, it can also be applied to analyze genetic screens implemented with siRNAs or shRNAs and drug screens. We compared the performance of PBNPA with competing methods on simulated data as well as on real data. PBNPA outperformed recent methods designed for CRISPR screen analysis, as well as methods used for analyzing other functional genomics screens, in terms of Receiver Operating Characteristics (ROC) curves and False Discovery Rate (FDR) control for simulated data under various settings. Remarkably, the PBNPA algorithm showed better consistency and FDR control on published real data as well. PBNPA yields more consistent and reliable results than its competitors, especially when the data quality is low. R package of PBNPA is available at: https://cran.r-project.org/web/packages/PBNPA/ .

  17. A simple, inexpensive, and effective implementation of a vision-guided autonomous robot

    NASA Astrophysics Data System (ADS)

    Tippetts, Beau; Lillywhite, Kirt; Fowers, Spencer; Dennis, Aaron; Lee, Dah-Jye; Archibald, James

    2006-10-01

    This paper discusses a simple, inexpensive, and effective implementation of a vision-guided autonomous robot. This implementation is a second year entrance for Brigham Young University students to the Intelligent Ground Vehicle Competition. The objective of the robot was to navigate a course constructed of white boundary lines and orange obstacles for the autonomous competition. A used electric wheelchair was used as the robot base. The wheelchair was purchased from a local thrift store for $28. The base was modified to include Kegresse tracks using a friction drum system. This modification allowed the robot to perform better on a variety of terrains, resolving issues with last year's design. In order to control the wheelchair and retain the robust motor controls already on the wheelchair the wheelchair joystick was simply removed and replaced with a printed circuit board that emulated joystick operation and was capable of receiving commands through a serial port connection. Three different algorithms were implemented and compared: a purely reactive approach, a potential fields approach, and a machine learning approach. Each of the algorithms used color segmentation methods to interpret data from a digital camera in order to identify the features of the course. This paper will be useful to those interested in implementing an inexpensive vision-based autonomous robot.

  18. Guidance and control of swarms of spacecraft

    NASA Astrophysics Data System (ADS)

    Morgan, Daniel James

    There has been considerable interest in formation flying spacecraft due to their potential to perform certain tasks at a cheaper cost than monolithic spacecraft. Formation flying enables the use of smaller, cheaper spacecraft that distribute the risk of the mission. Recently, the ideas of formation flying have been extended to spacecraft swarms made up of hundreds to thousands of 100-gram-class spacecraft known as femtosatellites. The large number of spacecraft and limited capabilities of each individual spacecraft present a significant challenge in guidance, navigation, and control. This dissertation deals with the guidance and control algorithms required to enable the flight of spacecraft swarms. The algorithms developed in this dissertation are focused on achieving two main goals: swarm keeping and swarm reconfiguration. The objectives of swarm keeping are to maintain bounded relative distances between spacecraft, prevent collisions between spacecraft, and minimize the propellant used by each spacecraft. Swarm reconfiguration requires the transfer of the swarm to a specific shape. Like with swarm keeping, minimizing the propellant used and preventing collisions are the main objectives. Additionally, the algorithms required for swarm keeping and swarm reconfiguration should be decentralized with respect to communication and computation so that they can be implemented on femtosats, which have limited hardware capabilities. The algorithms developed in this dissertation are concerned with swarms located in low Earth orbit. In these orbits, Earth oblateness and atmospheric drag have a significant effect on the relative motion of the swarm. The complicated dynamic environment of low Earth orbits further complicates the swarm-keeping and swarm-reconfiguration problems. To better develop and test these algorithms, a nonlinear, relative dynamic model with J2 and drag perturbations is developed. This model is used throughout this dissertation to validate the algorithms using computer simulations. The swarm-keeping problem can be solved by placing the spacecraft on J2-invariant relative orbits, which prevent collisions and minimize the drift of the swarm over hundreds of orbits using a single burn. These orbits are achieved by energy matching the spacecraft to the reference orbit. Additionally, these conditions can be repeatedly applied to minimize the drift of the swarm when atmospheric drag has a large effect (orbits with an altitude under 500 km). The swarm reconfiguration is achieved using two steps: trajectory optimization and assignment. The trajectory optimization problem can be written as a nonlinear, optimal control problem. This optimal control problem is discretized, decoupled, and convexified so that the individual femtosats can efficiently solve the optimization. Sequential convex programming is used to generate the control sequences and trajectories required to safely and efficiently transfer a spacecraft from one position to another. The sequence of trajectories is shown to converge to a Karush-Kuhn-Tucker point of the nonconvex problem. In the case where many of the spacecraft are interchangeable, a variable-swarm, distributed auction algorithm is used to determine the assignment of spacecraft to target positions. This auction algorithm requires only local communication and all of the bidding parameters are stored locally. The assignment generated using this auction algorithm is shown to be near optimal and to converge in a finite number of bids. Additionally, the bidding process is used to modify the number of targets used in the assignment so that the reconfiguration can be achieved even when there is a disconnected communication network or a significant loss of agents. Once the assignment is achieved, the trajectory optimization can be run using the terminal positions determined by the auction algorithm. To implement these algorithms in real time a model predictive control formulation is used. Model predictive control uses a finite horizon to apply the most up-to-date control sequence while simultaneously calculating a new assignment and trajectory based on updated state information. Using a finite horizon allows collisions to only be considered between spacecraft that are near each other at the current time. This relaxes the all-to-all communication assumption so that only neighboring agents need to communicate. Experimental validation is done using the formation flying testbed. The swarm-reconfiguration algorithms are tested using multiple quadrotors. Experiments have been performed using sequential convex programming for offline trajectory planning, model predictive control and sequential convex programming for real-time trajectory generation, and the variable-swarm, distributed auction algorithm for optimal assignment. These experiments show that the swarm-reconfiguration algorithms can be implemented in real time using actual hardware. In general, this dissertation presents guidance and control algorithms that maintain and reconfigure swarms of spacecraft while maintaining the shape of the swarm, preventing collisions between the spacecraft, and minimizing the amount of propellant used.

  19. QCE: A Simulator for Quantum Computer Hardware

    NASA Astrophysics Data System (ADS)

    Michielsen, Kristel; de Raedt, Hans

    2003-09-01

    The Quantum Computer Emulator (QCE) described in this paper consists of a simulator of a generic, general purpose quantum computer and a graphical user interface. The latter is used to control the simulator, to define the hardware of the quantum computer and to debug and execute quantum algorithms. QCE runs in a Windows 98/NT/2000/ME/XP environment. It can be used to validate designs of physically realizable quantum processors and as an interactive educational tool to learn about quantum computers and quantum algorithms. A detailed exposition is given of the implementation of the CNOT and the Toffoli gate, the quantum Fourier transform, Grover's database search algorithm, an order finding algorithm, Shor's algorithm, a three-input adder and a number partitioning algorithm. We also review the results of simulations of an NMR-like quantum computer.

  20. Real time mitigation of atmospheric turbulence in long distance imaging using the lucky region fusion algorithm with FPGA and GPU hardware acceleration

    NASA Astrophysics Data System (ADS)

    Jackson, Christopher Robert

    "Lucky-region" fusion (LRF) is a synthetic imaging technique that has proven successful in enhancing the quality of images distorted by atmospheric turbulence. The LRF algorithm selects sharp regions of an image obtained from a series of short exposure frames, and fuses the sharp regions into a final, improved image. In previous research, the LRF algorithm had been implemented on a PC using the C programming language. However, the PC did not have sufficient sequential processing power to handle real-time extraction, processing and reduction required when the LRF algorithm was applied to real-time video from fast, high-resolution image sensors. This thesis describes two hardware implementations of the LRF algorithm to achieve real-time image processing. The first was created with a VIRTEX-7 field programmable gate array (FPGA). The other developed using the graphics processing unit (GPU) of a NVIDIA GeForce GTX 690 video card. The novelty in the FPGA approach is the creation of a "black box" LRF video processing system with a general camera link input, a user controller interface, and a camera link video output. We also describe a custom hardware simulation environment we have built to test the FPGA LRF implementation. The advantage of the GPU approach is significantly improved development time, integration of image stabilization into the system, and comparable atmospheric turbulence mitigation.

  1. Solar Sail Attitude Control Performance Comparison

    NASA Technical Reports Server (NTRS)

    Bladt, Jeff J.; Lawrence, Dale A.

    2005-01-01

    Performance of two solar sail attitude control implementations is evaluated. One implementation employs four articulated reflective vanes located at the periphery of the sail assembly to generate control torque about all three axes. A second attitude control configuration uses mass on a gimbaled boom to alter the center-of-mass location relative to the center-of-pressure producing roll and pitch torque along with a pair of articulated control vanes for yaw control. Command generation algorithms employ linearized dynamics with a feedback inversion loop to map desired vehicle attitude control torque into vane and/or gimbal articulation angle commands. We investigate the impact on actuator deflection angle behavior due to variations in how the Jacobian matrix is incorporated into the feedback inversion loop. Additionally, we compare how well each implementation tracks a commanded thrust profile, which has been generated to follow an orbit trajectory from the sun-earth L1 point to a sub-L1 station.

  2. An embedded vision system for an unmanned four-rotor helicopter

    NASA Astrophysics Data System (ADS)

    Lillywhite, Kirt; Lee, Dah-Jye; Tippetts, Beau; Fowers, Spencer; Dennis, Aaron; Nelson, Brent; Archibald, James

    2006-10-01

    In this paper an embedded vision system and control module is introduced that is capable of controlling an unmanned four-rotor helicopter and processing live video for various law enforcement, security, military, and civilian applications. The vision system is implemented on a newly designed compact FPGA board (Helios). The Helios board contains a Xilinx Virtex-4 FPGA chip and memory making it capable of implementing real time vision algorithms. A Smooth Automated Intelligent Leveling daughter board (SAIL), attached to the Helios board, collects attitude and heading information to be processed in order to control the unmanned helicopter. The SAIL board uses an electrolytic tilt sensor, compass, voltage level converters, and analog to digital converters to perform its operations. While level flight can be maintained, problems stemming from the characteristics of the tilt sensor limits maneuverability of the helicopter. The embedded vision system has proven to give very good results in its performance of a number of real-time robotic vision algorithms.

  3. Temperature control in a solar collector field using Filtered Dynamic Matrix Control.

    PubMed

    Lima, Daniel Martins; Normey-Rico, Julio Elias; Santos, Tito Luís Maia

    2016-05-01

    This paper presents the output temperature control of a solar collector field of a desalinization plant using the Filtered Dynamic Matrix Control (FDMC). The FDMC is a modified controller based on the Dynamic Matrix Control (DMC), a predictive control strategy widely used in industry. In the FDMC, a filter is used in the prediction error, which allows the modification of the robustness and disturbance rejection characteristics of the original algorithm. The implementation and tuning of the FDMC are simple and maintain the advantages of DMC. Several simulation results using a validated model of the solar plant are presented considering different scenarios. The results are also compared to nonlinear control techniques, showing that FDMC, if properly tuned, can yield similar results to more complex control algorithms. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Efficient Scalable Median Filtering Using Histogram-Based Operations.

    PubMed

    Green, Oded

    2018-05-01

    Median filtering is a smoothing technique for noise removal in images. While there are various implementations of median filtering for a single-core CPU, there are few implementations for accelerators and multi-core systems. Many parallel implementations of median filtering use a sorting algorithm for rearranging the values within a filtering window and taking the median of the sorted value. While using sorting algorithms allows for simple parallel implementations, the cost of the sorting becomes prohibitive as the filtering windows grow. This makes such algorithms, sequential and parallel alike, inefficient. In this work, we introduce the first software parallel median filtering that is non-sorting-based. The new algorithm uses efficient histogram-based operations. These reduce the computational requirements of the new algorithm while also accessing the image fewer times. We show an implementation of our algorithm for both the CPU and NVIDIA's CUDA supported graphics processing unit (GPU). The new algorithm is compared with several other leading CPU and GPU implementations. The CPU implementation has near perfect linear scaling with a speedup on a quad-core system. The GPU implementation is several orders of magnitude faster than the other GPU implementations for mid-size median filters. For small kernels, and , comparison-based approaches are preferable as fewer operations are required. Lastly, the new algorithm is open-source and can be found in the OpenCV library.

  5. An Object-Oriented Collection of Minimum Degree Algorithms: Design, Implementation, and Experiences

    NASA Technical Reports Server (NTRS)

    Kumfert, Gary; Pothen, Alex

    1999-01-01

    The multiple minimum degree (MMD) algorithm and its variants have enjoyed 20+ years of research and progress in generating fill-reducing orderings for sparse, symmetric positive definite matrices. Although conceptually simple, efficient implementations of these algorithms are deceptively complex and highly specialized. In this case study, we present an object-oriented library that implements several recent minimum degree-like algorithms. We discuss how object-oriented design forces us to decompose these algorithms in a different manner than earlier codes and demonstrate how this impacts the flexibility and efficiency of our C++ implementation. We compare the performance of our code against other implementations in C or Fortran.

  6. Robustness of continuous-time adaptive control algorithms in the presence of unmodeled dynamics

    NASA Technical Reports Server (NTRS)

    Rohrs, C. E.; Valavani, L.; Athans, M.; Stein, G.

    1985-01-01

    This paper examines the robustness properties of existing adaptive control algorithms to unmodeled plant high-frequency dynamics and unmeasurable output disturbances. It is demonstrated that there exist two infinite-gain operators in the nonlinear dynamic system which determines the time-evolution of output and parameter errors. The pragmatic implications of the existence of such infinite-gain operators is that: (1) sinusoidal reference inputs at specific frequencies and/or (2) sinusoidal output disturbances at any frequency (including dc), can cause the loop gain to increase without bound, thereby exciting the unmodeled high-frequency dynamics, and yielding an unstable control system. Hence, it is concluded that existing adaptive control algorithms as they are presented in the literature referenced in this paper, cannot be used with confidence in practical designs where the plant contains unmodeled dynamics because instability is likely to result. Further understanding is required to ascertain how the currently implemented adaptive systems differ from the theoretical systems studied here and how further theoretical development can improve the robustness of adaptive controllers.

  7. Experimental setup for evaluating an adaptive user interface for teleoperation control

    NASA Astrophysics Data System (ADS)

    Wijayasinghe, Indika B.; Peetha, Srikanth; Abubakar, Shamsudeen; Saadatzi, Mohammad Nasser; Cremer, Sven; Popa, Dan O.

    2017-05-01

    A vital part of human interactions with a machine is the control interface, which single-handedly could define the user satisfaction and the efficiency of performing a task. This paper elaborates the implementation of an experimental setup to study an adaptive algorithm that can help the user better tele-operate the robot. The formulation of the adaptive interface and associate learning algorithms are general enough to apply when the mapping between the user controls and the robot actuators is complex and/or ambiguous. The method uses a genetic algorithm to find the optimal parameters that produce the input-output mapping for teleoperation control. In this paper, we describe the experimental setup and associated results that was used to validate the adaptive interface to a differential drive robot from two different input devices; a joystick, and a Myo gesture control armband. Results show that after the learning phase, the interface converges to an intuitive mapping that can help even inexperienced users drive the system to a goal location.

  8. Congestion control and routing over satellite networks

    NASA Astrophysics Data System (ADS)

    Cao, Jinhua

    Satellite networks and transmissions find their application in fields of computer communications, telephone communications, television broadcasting, transportation, space situational awareness systems and so on. This thesis mainly focuses on two networking issues affecting satellite networking: network congestion control and network routing optimization. Congestion, which leads to long queueing delays, packet losses or both, is a networking problem that has drawn the attention of many researchers. The goal of congestion control mechanisms is to ensure high bandwidth utilization while avoiding network congestion by regulating the rate at which traffic sources inject packets into a network. In this thesis, we propose a stable congestion controller using data-driven, safe switching control theory to improve the dynamic performance of satellite Transmission Control Protocol/Active Queue Management (TCP/AQM) networks. First, the stable region of the Proportional-Integral (PI) parameters for a nominal model is explored. Then, a PI controller, whose parameters are adaptively tuned by switching among members of a given candidate set, using observed plant data, is presented and compared with some classical AQM policy examples, such as Random Early Detection (RED) and fixed PI control. A new cost detectable switching law with an interval cost function switching algorithm, which improves the performance and also saves the computational cost, is developed and compared with a law commonly used in the switching control literature. Finite-gain stability of the system is proved. A fuzzy logic PI controller is incorporated as a special candidate to achieve good performance at all nominal points with the available set of candidate controllers. Simulations are presented to validate the theory. An effocient routing algorithm plays a key role in optimizing network resources. In this thesis, we briefly analyze Low Earth Orbit (LEO) satellite networks, review the Cross Entropy (CE) method and then develop a novel on-demand routing system named Cross Entropy Accelerated Ant Routing System (CEAARS) for regular constellation LEO satellite networks. By implementing simulations on an Iridium-like satellite network, we compare the proposed CEAARS algorithm with the two approaches to adaptive routing protocols on the Internet: distance-vector (DV) and link-state (LS), as well as with the original Cross Entropy Ant Routing System (CEARS). DV algorithms are based on distributed Bellman Ford algorithm, and LS algorithms are implementation of Dijkstras single source shortest path. The results show that CEAARS not only remarkably improves the convergence speed of achieving optimal or suboptimal paths, but also reduces the number of overhead ants (management packets).

  9. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems

    NASA Astrophysics Data System (ADS)

    Ghaffari, Azad

    Power map and Maximum Power Point (MPP) of Photovoltaic (PV) and Wind Energy Conversion Systems (WECS) highly depend on system dynamics and environmental parameters, e.g., solar irradiance, temperature, and wind speed. Power optimization algorithms for PV systems and WECS are collectively known as Maximum Power Point Tracking (MPPT) algorithm. Gradient-based Extremum Seeking (ES), as a non-model-based MPPT algorithm, governs the system to its peak point on the steepest descent curve regardless of changes of the system dynamics and variations of the environmental parameters. Since the power map shape defines the gradient vector, then a close estimate of the power map shape is needed to create user assignable transients in the MPPT algorithm. The Hessian gives a precise estimate of the power map in a neighborhood around the MPP. The estimate of the inverse of the Hessian in combination with the estimate of the gradient vector are the key parts to implement the Newton-based ES algorithm. Hence, we generate an estimate of the Hessian using our proposed perturbation matrix. Also, we introduce a dynamic estimator to calculate the inverse of the Hessian which is an essential part of our algorithm. We present various simulations and experiments on the micro-converter PV systems to verify the validity of our proposed algorithm. The ES scheme can also be used in combination with other control algorithms to achieve desired closed-loop performance. The WECS dynamics is slow which causes even slower response time for the MPPT based on the ES. Hence, we present a control scheme, extended from Field-Oriented Control (FOC), in combination with feedback linearization to reduce the convergence time of the closed-loop system. Furthermore, the nonlinear control prevents magnetic saturation of the stator of the Induction Generator (IG). The proposed control algorithm in combination with the ES guarantees the closed-loop system robustness with respect to high level parameter uncertainty in the IG dynamics. The simulation results verify the effectiveness of the proposed algorithm.

  10. An embedded controller for a 7-degree of freedom prosthetic arm.

    PubMed

    Tenore, Francesco; Armiger, Robert S; Vogelstein, R Jacob; Wenstrand, Douglas S; Harshbarger, Stuart D; Englehart, Kevin

    2008-01-01

    We present results from an embedded real-time hardware system capable of decoding surface myoelectric signals (sMES) to control a seven degree of freedom upper limb prosthesis. This is one of the first hardware implementations of sMES decoding algorithms and the most advanced controller to-date. We compare decoding results from the device to simulation results from a real-time PC-based operating system. Performance of both systems is shown to be similar, with decoding accuracy greater than 90% for the floating point software simulation and 80% for fixed point hardware and software implementations.

  11. An Adaptive Buddy Check for Observational Quality Control

    NASA Technical Reports Server (NTRS)

    Dee, Dick P.; Rukhovets, Leonid; Todling, Ricardo; DaSilva, Arlindo M.; Larson, Jay W.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    An adaptive buddy check algorithm is presented that adjusts tolerances for outlier observations based on the variability of surrounding data. The algorithm derives from a statistical hypothesis test combined with maximum-likelihood covariance estimation. Its stability is shown to depend on the initial identification of outliers by a simple background check. The adaptive feature ensures that the final quality control decisions are not very sensitive to prescribed statistics of first-guess and observation errors, nor on other approximations introduced into the algorithm. The implementation of the algorithm in a global atmospheric data assimilation is described. Its performance is contrasted with that of a non-adaptive buddy check, for the surface analysis of an extreme storm that took place in Europe on 27 December 1999. The adaptive algorithm allowed the inclusion of many important observations that differed greatly from the first guess and that would have been excluded on the basis of prescribed statistics. The analysis of the storm development was much improved as a result of these additional observations.

  12. SLAM algorithm applied to robotics assistance for navigation in unknown environments

    PubMed Central

    2010-01-01

    Background The combination of robotic tools with assistance technology determines a slightly explored area of applications and advantages for disability or elder people in their daily tasks. Autonomous motorized wheelchair navigation inside an environment, behaviour based control of orthopaedic arms or user's preference learning from a friendly interface are some examples of this new field. In this paper, a Simultaneous Localization and Mapping (SLAM) algorithm is implemented to allow the environmental learning by a mobile robot while its navigation is governed by electromyographic signals. The entire system is part autonomous and part user-decision dependent (semi-autonomous). The environmental learning executed by the SLAM algorithm and the low level behaviour-based reactions of the mobile robot are robotic autonomous tasks, whereas the mobile robot navigation inside an environment is commanded by a Muscle-Computer Interface (MCI). Methods In this paper, a sequential Extended Kalman Filter (EKF) feature-based SLAM algorithm is implemented. The features correspond to lines and corners -concave and convex- of the environment. From the SLAM architecture, a global metric map of the environment is derived. The electromyographic signals that command the robot's movements can be adapted to the patient's disabilities. For mobile robot navigation purposes, five commands were obtained from the MCI: turn to the left, turn to the right, stop, start and exit. A kinematic controller to control the mobile robot was implemented. A low level behavior strategy was also implemented to avoid robot's collisions with the environment and moving agents. Results The entire system was tested in a population of seven volunteers: three elder, two below-elbow amputees and two young normally limbed patients. The experiments were performed within a closed low dynamic environment. Subjects took an average time of 35 minutes to navigate the environment and to learn how to use the MCI. The SLAM results have shown a consistent reconstruction of the environment. The obtained map was stored inside the Muscle-Computer Interface. Conclusions The integration of a highly demanding processing algorithm (SLAM) with a MCI and the communication between both in real time have shown to be consistent and successful. The metric map generated by the mobile robot would allow possible future autonomous navigation without direct control of the user, whose function could be relegated to choose robot destinations. Also, the mobile robot shares the same kinematic model of a motorized wheelchair. This advantage can be exploited for wheelchair autonomous navigation. PMID:20163735

  13. Model-Free Optimal Tracking Control via Critic-Only Q-Learning.

    PubMed

    Luo, Biao; Liu, Derong; Huang, Tingwen; Wang, Ding

    2016-10-01

    Model-free control is an important and promising topic in control fields, which has attracted extensive attention in the past few years. In this paper, we aim to solve the model-free optimal tracking control problem of nonaffine nonlinear discrete-time systems. A critic-only Q-learning (CoQL) method is developed, which learns the optimal tracking control from real system data, and thus avoids solving the tracking Hamilton-Jacobi-Bellman equation. First, the Q-learning algorithm is proposed based on the augmented system, and its convergence is established. Using only one neural network for approximating the Q-function, the CoQL method is developed to implement the Q-learning algorithm. Furthermore, the convergence of the CoQL method is proved with the consideration of neural network approximation error. With the convergent Q-function obtained from the CoQL method, the adaptive optimal tracking control is designed based on the gradient descent scheme. Finally, the effectiveness of the developed CoQL method is demonstrated through simulation studies. The developed CoQL method learns with off-policy data and implements with a critic-only structure, thus it is easy to realize and overcome the inadequate exploration problem.

  14. Fuzzy Logic Based Anomaly Detection for Embedded Network Security Cyber Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ondrej Linda; Todd Vollmer; Jason Wright

    Resiliency and security in critical infrastructure control systems in the modern world of cyber terrorism constitute a relevant concern. Developing a network security system specifically tailored to the requirements of such critical assets is of a primary importance. This paper proposes a novel learning algorithm for anomaly based network security cyber sensor together with its hardware implementation. The presented learning algorithm constructs a fuzzy logic rule based model of normal network behavior. Individual fuzzy rules are extracted directly from the stream of incoming packets using an online clustering algorithm. This learning algorithm was specifically developed to comply with the constrainedmore » computational requirements of low-cost embedded network security cyber sensors. The performance of the system was evaluated on a set of network data recorded from an experimental test-bed mimicking the environment of a critical infrastructure control system.« less

  15. Autonomous learning based on cost assumptions: theoretical studies and experiments in robot control.

    PubMed

    Ribeiro, C H; Hemerly, E M

    2000-02-01

    Autonomous learning techniques are based on experience acquisition. In most realistic applications, experience is time-consuming: it implies sensor reading, actuator control and algorithmic update, constrained by the learning system dynamics. The information crudeness upon which classical learning algorithms operate make such problems too difficult and unrealistic. Nonetheless, additional information for facilitating the learning process ideally should be embedded in such a way that the structural, well-studied characteristics of these fundamental algorithms are maintained. We investigate in this article a more general formulation of the Q-learning method that allows for a spreading of information derived from single updates towards a neighbourhood of the instantly visited state and converges to optimality. We show how this new formulation can be used as a mechanism to safely embed prior knowledge about the structure of the state space, and demonstrate it in a modified implementation of a reinforcement learning algorithm in a real robot navigation task.

  16. Algorithm for Controlling a Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Benedict, Scott M.

    2004-01-01

    An algorithm has been developed for controlling a centrifugal compressor that serves as the prime mover in a heatpump system. Experimental studies have shown that the operating conditions for maximum compressor efficiency are close to the boundary beyond which surge occurs. Compressor surge is a destructive condition in which there are instantaneous reversals of flow associated with a high outlet-to-inlet pressure differential. For a given cooling load, the algorithm sets the compressor speed at the lowest possible value while adjusting the inlet guide vane angle and diffuser vane angle to maximize efficiency, subject to an overriding requirement to prevent surge. The onset of surge is detected via the onset of oscillations of the electric current supplied to the compressor motor, associated with surge-induced oscillations of the torque exerted by and on the compressor rotor. The algorithm can be implemented in any of several computer languages.

  17. Predicting Recovery Potential for Individual Stroke Patients Increases Rehabilitation Efficiency.

    PubMed

    Stinear, Cathy M; Byblow, Winston D; Ackerley, Suzanne J; Barber, P Alan; Smith, Marie-Claire

    2017-04-01

    Several clinical measures and biomarkers are associated with motor recovery after stroke, but none are used to guide rehabilitation for individual patients. The objective of this study was to evaluate the implementation of upper limb predictions in stroke rehabilitation, by combining clinical measures and biomarkers using the Predict Recovery Potential (PREP) algorithm. Predictions were provided for patients in the implementation group (n=110) and withheld from the comparison group (n=82). Predictions guided rehabilitation therapy focus for patients in the implementation group. The effects of predictive information on clinical practice (length of stay, therapist confidence, therapy content, and dose) were evaluated. Clinical outcomes (upper limb function, impairment and use, independence, and quality of life) were measured 3 and 6 months poststroke. The primary clinical practice outcome was inpatient length of stay. The primary clinical outcome was Action Research Arm Test score 3 months poststroke. Length of stay was 1 week shorter for the implementation group (11 days; 95% confidence interval, 9-13 days) than the comparison group (17 days; 95% confidence interval, 14-21 days; P =0.001), controlling for upper limb impairment, age, sex, and comorbidities. Therapists were more confident ( P =0.004) and modified therapy content according to predictions for the implementation group ( P <0.05). The algorithm correctly predicted the primary clinical outcome for 80% of patients in both groups. There were no adverse effects of algorithm implementation on patient outcomes at 3 or 6 months poststroke. PREP algorithm predictions modify therapy content and increase rehabilitation efficiency after stroke without compromising clinical outcome. URL: http://anzctr.org.au. Unique identifier: ACTRN12611000755932. © 2017 American Heart Association, Inc.

  18. Wind Turbine Control Design to Reduce Capital Costs: 7 January 2009 - 31 August 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darrow, P. J.

    2010-01-01

    This report first discusses and identifies which wind turbine components can benefit from advanced control algorithms and also presents results from a preliminary loads case analysis using a baseline controller. Next, it describes the design, implementation, and simulation-based testing of an advanced controller to reduce loads on those components. The case-by-case loads analysis and advanced controller design will help guide future control research.

  19. Computationally efficient algorithm for high sampling-frequency operation of active noise control

    NASA Astrophysics Data System (ADS)

    Rout, Nirmal Kumar; Das, Debi Prasad; Panda, Ganapati

    2015-05-01

    In high sampling-frequency operation of active noise control (ANC) system the length of the secondary path estimate and the ANC filter are very long. This increases the computational complexity of the conventional filtered-x least mean square (FXLMS) algorithm. To reduce the computational complexity of long order ANC system using FXLMS algorithm, frequency domain block ANC algorithms have been proposed in past. These full block frequency domain ANC algorithms are associated with some disadvantages such as large block delay, quantization error due to computation of large size transforms and implementation difficulties in existing low-end DSP hardware. To overcome these shortcomings, the partitioned block ANC algorithm is newly proposed where the long length filters in ANC are divided into a number of equal partitions and suitably assembled to perform the FXLMS algorithm in the frequency domain. The complexity of this proposed frequency domain partitioned block FXLMS (FPBFXLMS) algorithm is quite reduced compared to the conventional FXLMS algorithm. It is further reduced by merging one fast Fourier transform (FFT)-inverse fast Fourier transform (IFFT) combination to derive the reduced structure FPBFXLMS (RFPBFXLMS) algorithm. Computational complexity analysis for different orders of filter and partition size are presented. Systematic computer simulations are carried out for both the proposed partitioned block ANC algorithms to show its accuracy compared to the time domain FXLMS algorithm.

  20. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Monenegro, Justino (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used proportional-integral-derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM-based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a DSP (Digital Signal Processor) or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSP) devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacecraft. Radiation tolerant FPGA's are a feasible option for reaching this goal.

  1. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Montenegro, Justino (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of Field Programmable Gate Arrays (FPGA's) in the hardware implementation of fast digital signal processing functions. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used Proportional-Integral-Derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a Digital Signal Processor (DSP) device or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using DSP devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, Pulse Width Modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacemap. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive-control algorithm approaches. Radiation tolerant FPGA's are a feasible option for reaching this goal.

  2. Real-time plasma control based on the ISTTOK tomography diagnostica)

    NASA Astrophysics Data System (ADS)

    Carvalho, P. J.; Carvalho, B. B.; Neto, A.; Coelho, R.; Fernandes, H.; Sousa, J.; Varandas, C.; Chávez-Alarcón, E.; Herrera-Velázquez, J. J. E.

    2008-10-01

    The presently available processing power in generic processing units (GPUs) combined with state-of-the-art programmable logic devices benefits the implementation of complex, real-time driven, data processing algorithms for plasma diagnostics. A tomographic reconstruction diagnostic has been developed for the ISTTOK tokamak, based on three linear pinhole cameras each with ten lines of sight. The plasma emissivity in a poloidal cross section is computed locally on a submillisecond time scale, using a Fourier-Bessel algorithm, allowing the use of the output signals for active plasma position control. The data acquisition and reconstruction (DAR) system is based on ATCA technology and consists of one acquisition board with integrated field programmable gate array (FPGA) capabilities and a dual-core Pentium module running real-time application interface (RTAI) Linux. In this paper, the DAR real-time firmware/software implementation is presented, based on (i) front-end digital processing in the FPGA; (ii) a device driver specially developed for the board which enables streaming data acquisition to the host GPU; and (iii) a fast reconstruction algorithm running in Linux RTAI. This system behaves as a module of the central ISTTOK control and data acquisition system (FIRESIGNAL). Preliminary results of the above experimental setup are presented and a performance benchmarking against the magnetic coil diagnostic is shown.

  3. Low-level processing for real-time image analysis

    NASA Technical Reports Server (NTRS)

    Eskenazi, R.; Wilf, J. M.

    1979-01-01

    A system that detects object outlines in television images in real time is described. A high-speed pipeline processor transforms the raw image into an edge map and a microprocessor, which is integrated into the system, clusters the edges, and represents them as chain codes. Image statistics, useful for higher level tasks such as pattern recognition, are computed by the microprocessor. Peak intensity and peak gradient values are extracted within a programmable window and are used for iris and focus control. The algorithms implemented in hardware and the pipeline processor architecture are described. The strategy for partitioning functions in the pipeline was chosen to make the implementation modular. The microprocessor interface allows flexible and adaptive control of the feature extraction process. The software algorithms for clustering edge segments, creating chain codes, and computing image statistics are also discussed. A strategy for real time image analysis that uses this system is given.

  4. Implementation of the Algorithm for Congestion control in the Dynamic Circuit Network (DCN)

    NASA Astrophysics Data System (ADS)

    Nalamwar, H. S.; Ivanov, M. A.; Buddhawar, G. U.

    2017-01-01

    Transport Control Protocol (TCP) incast congestion happens when a number of senders work in parallel with the same server where the high bandwidth and low latency network problem occurs. For many data center network applications such as a search engine, heavy traffic is present on such a server. Incast congestion degrades the entire performance as packets are lost at a server side due to buffer overflow, and as a result, the response time becomes longer. In this work, we focus on TCP throughput, round-trip time (RTT), receive window and retransmission. Our method is based on the proactive adjust of the TCP receive window before the packet loss occurs. We aim to avoid the wastage of the bandwidth by adjusting its size as per the number of packets. To avoid the packet loss, the ICTCP algorithm has been implemented in the data center network (ToR).

  5. Fixed-rate layered multicast congestion control

    NASA Astrophysics Data System (ADS)

    Bing, Zhang; Bing, Yuan; Zengji, Liu

    2006-10-01

    A new fixed-rate layered multicast congestion control algorithm called FLMCC is proposed. The sender of a multicast session transmits data packets at a fixed rate on each layer, while receivers each obtain different throughput by cumulatively subscribing to deferent number of layers based on their expected rates. In order to provide TCP-friendliness and estimate the expected rate accurately, a window-based mechanism implemented at receivers is presented. To achieve this, each receiver maintains a congestion window, adjusts it based on the GAIMD algorithm, and from the congestion window an expected rate is calculated. To measure RTT, a new method is presented which combines an accurate measurement with a rough estimation. A feedback suppression based on a random timer mechanism is given to avoid feedback implosion in the accurate measurement. The protocol is simple in its implementation. Simulations indicate that FLMCC shows good TCP-friendliness, responsiveness as well as intra-protocol fairness, and provides high link utilization.

  6. Digital micromirror device camera with per-pixel coded exposure for high dynamic range imaging.

    PubMed

    Feng, Wei; Zhang, Fumin; Wang, Weijing; Xing, Wei; Qu, Xinghua

    2017-05-01

    In this paper, we overcome the limited dynamic range of the conventional digital camera, and propose a method of realizing high dynamic range imaging (HDRI) from a novel programmable imaging system called a digital micromirror device (DMD) camera. The unique feature of the proposed new method is that the spatial and temporal information of incident light in our DMD camera can be flexibly modulated, and it enables the camera pixels always to have reasonable exposure intensity by DMD pixel-level modulation. More importantly, it allows different light intensity control algorithms used in our programmable imaging system to achieve HDRI. We implement the optical system prototype, analyze the theory of per-pixel coded exposure for HDRI, and put forward an adaptive light intensity control algorithm to effectively modulate the different light intensity to recover high dynamic range images. Via experiments, we demonstrate the effectiveness of our method and implement the HDRI on different objects.

  7. SURGNET: An Integrated Surgical Data Transmission System for Telesurgery.

    PubMed

    Natarajan, Sriram; Ganz, Aura

    2009-01-01

    Remote surgery information requires quick and reliable transmission between the surgeon and the patient site. However, the networks that interconnect the surgeon and patient sites are usually time varying and lossy which can cause packet loss and delay jitter. In this paper we propose SURGNET, a telesurgery system for which we developed the architecture, algorithms and implemented it on a testbed. The algorithms include adaptive packet prediction and buffer time adjustment techniques which reduce the negative effects caused by the lossy and time varying networks. To evaluate the proposed SURGNET system, at the therapist site, we implemented a therapist panel which controls the force feedback device movements and provides image analysis functionality. At the patient site we controlled a virtual reality applet built in Matlab. The varying network conditions were emulated using NISTNet emulator. Our results show that even for severe packet loss and variable delay jitter, the proposed integrated synchronization techniques significantly improve SURGNET performance.

  8. The controlled growth method - A tool for structural optimization

    NASA Technical Reports Server (NTRS)

    Hajela, P.; Sobieszczanski-Sobieski, J.

    1981-01-01

    An adaptive design variable linking scheme in a NLP based optimization algorithm is proposed and evaluated for feasibility of application. The present scheme, based on an intuitive effectiveness measure for each variable, differs from existing methodology in that a single dominant variable controls the growth of all others in a prescribed optimization cycle. The proposed method is implemented for truss assemblies and a wing box structure for stress, displacement and frequency constraints. Substantial reduction in computational time, even more so for structures under multiple load conditions, coupled with a minimal accompanying loss in accuracy, vindicates the algorithm.

  9. Study of aircraft centered navigation, guidance, and traffic situation system concept for terminal area operation

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Will, R. W.; Grantham, C.

    1972-01-01

    A concept for automating the control of air traffic in the terminal area in which the primary man-machine interface is the cockpit is described. The ground and airborne inputs required for implementing this concept are discussed. Digital data link requirements of 10,000 bits per second are explained. A particular implementation of this concept including a sequencing and separation algorithm which generates flight paths and implements a natural order landing sequence is presented. Onboard computer/display avionics utilizing a traffic situation display is described. A preliminary simulation of this concept has been developed which includes a simple, efficient sequencing algorithm and a complete aircraft dynamics model. This simulated jet transport was flown through automated terminal-area traffic situations by pilots using relatively sophisticated displays, and pilot performance and observations are discussed.

  10. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Ormsby, John (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing (DSP) functions. Such capability also makes and FPGA a suitable platform for the digital implementation of closed loop controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance in a compact form-factor. Other researchers have presented the notion that a second order digital filter with proportional-integral-derivative (PID) control functionality can be implemented in an FPGA. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSF) devices. Our goal is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. Meeting our goals requires alternative compact implementation of such functionality to withstand the harsh environment encountered on spacecraft. Radiation tolerant FPGA's are a feasible option for reaching these goals.

  11. Band-pass filtering algorithms for adaptive control of compressor pre-stall modes in aircraft gas-turbine engine

    NASA Astrophysics Data System (ADS)

    Kuznetsova, T. A.

    2018-05-01

    The methods for increasing gas-turbine aircraft engines' (GTE) adaptive properties to interference based on empowerment of automatic control systems (ACS) are analyzed. The flow pulsation in suction and a discharge line of the compressor, which may cause the stall, are considered as the interference. The algorithmic solution to the problem of GTE pre-stall modes’ control adapted to stability boundary is proposed. The aim of the study is to develop the band-pass filtering algorithms to provide the detection functions of the compressor pre-stall modes for ACS GTE. The characteristic feature of pre-stall effect is the increase of pressure pulsation amplitude over the impeller at the multiples of the rotor’ frequencies. The used method is based on a band-pass filter combining low-pass and high-pass digital filters. The impulse response of the high-pass filter is determined through a known low-pass filter impulse response by spectral inversion. The resulting transfer function of the second order band-pass filter (BPF) corresponds to a stable system. The two circuit implementations of BPF are synthesized. Designed band-pass filtering algorithms were tested in MATLAB environment. Comparative analysis of amplitude-frequency response of proposed implementation allows choosing the BPF scheme providing the best quality of filtration. The BPF reaction to the periodic sinusoidal signal, simulating the experimentally obtained pressure pulsation function in the pre-stall mode, was considered. The results of model experiment demonstrated the effectiveness of applying band-pass filtering algorithms as part of ACS to identify the pre-stall mode of the compressor for detection of pressure fluctuations’ peaks, characterizing the compressor’s approach to the stability boundary.

  12. Approximately adaptive neural cooperative control for nonlinear multiagent systems with performance guarantee

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Yang, Tianyu; Staskevich, Gennady; Abbe, Brian

    2017-04-01

    This paper studies the cooperative control problem for a class of multiagent dynamical systems with partially unknown nonlinear system dynamics. In particular, the control objective is to solve the state consensus problem for multiagent systems based on the minimisation of certain cost functions for individual agents. Under the assumption that there exist admissible cooperative controls for such class of multiagent systems, the formulated problem is solved through finding the optimal cooperative control using the approximate dynamic programming and reinforcement learning approach. With the aid of neural network parameterisation and online adaptive learning, our method renders a practically implementable approximately adaptive neural cooperative control for multiagent systems. Specifically, based on the Bellman's principle of optimality, the Hamilton-Jacobi-Bellman (HJB) equation for multiagent systems is first derived. We then propose an approximately adaptive policy iteration algorithm for multiagent cooperative control based on neural network approximation of the value functions. The convergence of the proposed algorithm is rigorously proved using the contraction mapping method. The simulation results are included to validate the effectiveness of the proposed algorithm.

  13. Flexible Residential Smart Grid Simulation Framework

    NASA Astrophysics Data System (ADS)

    Xiang, Wang

    Different scheduling and coordination algorithms controlling household appliances' operations can potentially lead to energy consumption reduction and/or load balancing in conjunction with different electricity pricing methods used in smart grid programs. In order to easily implement different algorithms and evaluate their efficiency against other ideas, a flexible simulation framework is desirable in both research and business fields. However, such a platform is currently lacking or underdeveloped. In this thesis, we provide a simulation framework to focus on demand side residential energy consumption coordination in response to different pricing methods. This simulation framework, equipped with an appliance consumption library using realistic values, aims to closely represent the average usage of different types of appliances. The simulation results of traditional usage yield close matching values compared to surveyed real life consumption records. Several sample coordination algorithms, pricing schemes, and communication scenarios are also implemented to illustrate the use of the simulation framework.

  14. Galileo Attitude Determination: Experiences with a Rotating Star Scanner

    NASA Technical Reports Server (NTRS)

    Merken, L.; Singh, G.

    1991-01-01

    The Galileo experience with a rotating star scanner is discussed in terms of problems encountered in flight, solutions implemented, and lessons learned. An overview of the Galileo project and the attitude and articulation control subsystem is given and the star scanner hardware and relevant software algorithms are detailed. The star scanner is the sole source of inertial attitude reference for this spacecraft. Problem symptoms observed in flight are discussed in terms of effects on spacecraft performance and safety. Sources of thse problems include contributions from flight software idiosyncrasies and inadequate validation of the ground procedures used to identify target stars for use by the autonomous on-board star identification algorithm. Problem fixes (some already implemented and some only proposed) are discussed. A general conclusion is drawn regarding the inherent difficulty of performing simulation tests to validate algorithms which are highly sensitive to external inputs of statistically 'rare' events.

  15. Data Compression for Maskless Lithography Systems: Architecture, Algorithms and Implementation

    DTIC Science & Technology

    2008-05-19

    Data Compression for Maskless Lithography Systems: Architecture, Algorithms and Implementation Vito Dai Electrical Engineering and Computer Sciences...servers or to redistribute to lists, requires prior specific permission. Data Compression for Maskless Lithography Systems: Architecture, Algorithms and...for Maskless Lithography Systems: Architecture, Algorithms and Implementation Copyright 2008 by Vito Dai 1 Abstract Data Compression for Maskless

  16. A real-time phoneme counting algorithm and application for speech rate monitoring.

    PubMed

    Aharonson, Vered; Aharonson, Eran; Raichlin-Levi, Katia; Sotzianu, Aviv; Amir, Ofer; Ovadia-Blechman, Zehava

    2017-03-01

    Adults who stutter can learn to control and improve their speech fluency by modifying their speaking rate. Existing speech therapy technologies can assist this practice by monitoring speaking rate and providing feedback to the patient, but cannot provide an accurate, quantitative measurement of speaking rate. Moreover, most technologies are too complex and costly to be used for home practice. We developed an algorithm and a smartphone application that monitor a patient's speaking rate in real time and provide user-friendly feedback to both patient and therapist. Our speaking rate computation is performed by a phoneme counting algorithm which implements spectral transition measure extraction to estimate phoneme boundaries. The algorithm is implemented in real time in a mobile application that presents its results in a user-friendly interface. The application incorporates two modes: one provides the patient with visual feedback of his/her speech rate for self-practice and another provides the speech therapist with recordings, speech rate analysis and tools to manage the patient's practice. The algorithm's phoneme counting accuracy was validated on ten healthy subjects who read a paragraph at slow, normal and fast paces, and was compared to manual counting of speech experts. Test-retest and intra-counter reliability were assessed. Preliminary results indicate differences of -4% to 11% between automatic and human phoneme counting. Differences were largest for slow speech. The application can thus provide reliable, user-friendly, real-time feedback for speaking rate control practice. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Time-delayed chameleon: Analysis, synchronization and FPGA implementation

    NASA Astrophysics Data System (ADS)

    Rajagopal, Karthikeyan; Jafari, Sajad; Laarem, Guessas

    2017-12-01

    In this paper we report a time-delayed chameleon-like chaotic system which can belong to different families of chaotic attractors depending on the choices of parameters. Such a characteristic of self-excited and hidden chaotic flows in a simple 3D system with time delay has not been reported earlier. Dynamic analysis of the proposed time-delayed systems are analysed in time-delay space and parameter space. A novel adaptive modified functional projective lag synchronization algorithm is derived for synchronizing identical time-delayed chameleon systems with uncertain parameters. The proposed time-delayed systems and the synchronization algorithm with controllers and parameter estimates are then implemented in FPGA using hardware-software co-simulation and the results are presented.

  18. Model for the design of distributed data bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ram, S.

    This research focuses on developing a model to solve the File Allocation Problem (FAP). The model integrates two major design issues, namely Concurrently Control and Data Distribution. The central node locking mechanism is incorporated in developing a nonlinear integer programming model. Two solution algorithms are proposed, one of which was implemented in FORTRAN.V. The allocation of data bases and programs are examined using this heuristic. Several decision rules were also formulated based on the results of the heuristic. A second more comprehensive heuristic was proposed, based on the knapsack problem. The development and implementation of this algorithm has been leftmore » as a topic for future research.« less

  19. Apparatus and method for tracking a molecule or particle in three dimensions

    DOEpatents

    Werner, James H [Los Alamos, NM; Goodwin, Peter M [Los Alamos, NM; Lessard, Guillaume [Santa Fe, NM

    2009-03-03

    An apparatus and method were used to track the movement of fluorescent particles in three dimensions. Control software was used with the apparatus to implement a tracking algorithm for tracking the motion of the individual particles in glycerol/water mixtures. Monte Carlo simulations suggest that the tracking algorithms in combination with the apparatus may be used for tracking the motion of single fluorescent or fluorescently labeled biomolecules in three dimensions.

  20. Self-Tuning of Design Variables for Generalized Predictive Control

    NASA Technical Reports Server (NTRS)

    Lin, Chaung; Juang, Jer-Nan

    2000-01-01

    Three techniques are introduced to determine the order and control weighting for the design of a generalized predictive controller. These techniques are based on the application of fuzzy logic, genetic algorithms, and simulated annealing to conduct an optimal search on specific performance indexes or objective functions. Fuzzy logic is found to be feasible for real-time and on-line implementation due to its smooth and quick convergence. On the other hand, genetic algorithms and simulated annealing are applicable for initial estimation of the model order and control weighting, and final fine-tuning within a small region of the solution space, Several numerical simulations for a multiple-input and multiple-output system are given to illustrate the techniques developed in this paper.

  1. Knowledge-Based Scheduling of Arrival Aircraft in the Terminal Area

    NASA Technical Reports Server (NTRS)

    Krzeczowski, K. J.; Davis, T.; Erzberger, H.; Lev-Ram, Israel; Bergh, Christopher P.

    1995-01-01

    A knowledge based method for scheduling arrival aircraft in the terminal area has been implemented and tested in real time simulation. The scheduling system automatically sequences, assigns landing times, and assign runways to arrival aircraft by utilizing continuous updates of aircraft radar data and controller inputs. The scheduling algorithm is driven by a knowledge base which was obtained in over two thousand hours of controller-in-the-loop real time simulation. The knowledge base contains a series of hierarchical 'rules' and decision logic that examines both performance criteria, such as delay reductions, as well as workload reduction criteria, such as conflict avoidance. The objective of the algorithm is to devise an efficient plan to land the aircraft in a manner acceptable to the air traffic controllers. This paper describes the scheduling algorithms, gives examples of their use, and presents data regarding their potential benefits to the air traffic system.

  2. Pole-placement Predictive Functional Control for under-damped systems with real numbers algebra.

    PubMed

    Zabet, K; Rossiter, J A; Haber, R; Abdullah, M

    2017-11-01

    This paper presents the new algorithm of PP-PFC (Pole-placement Predictive Functional Control) for stable, linear under-damped higher-order processes. It is shown that while conventional PFC aims to get first-order exponential behavior, this is not always straightforward with significant under-damped modes and hence a pole-placement PFC algorithm is proposed which can be tuned more precisely to achieve the desired dynamics, but exploits complex number algebra and linear combinations in order to deliver guarantees of stability and performance. Nevertheless, practical implementation is easier by avoiding complex number algebra and hence a modified formulation of the PP-PFC algorithm is also presented which utilises just real numbers while retaining the key attributes of simple algebra, coding and tuning. The potential advantages are demonstrated with numerical examples and real-time control of a laboratory plant. Copyright © 2017 ISA. All rights reserved.

  3. Knowledge-based scheduling of arrival aircraft

    NASA Technical Reports Server (NTRS)

    Krzeczowski, K.; Davis, T.; Erzberger, H.; Lev-Ram, I.; Bergh, C.

    1995-01-01

    A knowledge-based method for scheduling arrival aircraft in the terminal area has been implemented and tested in real-time simulation. The scheduling system automatically sequences, assigns landing times, and assigns runways to arrival aircraft by utilizing continuous updates of aircraft radar data and controller inputs. The scheduling algorithms is driven by a knowledge base which was obtained in over two thousand hours of controller-in-the-loop real-time simulation. The knowledge base contains a series of hierarchical 'rules' and decision logic that examines both performance criteria, such as delay reduction, as well as workload reduction criteria, such as conflict avoidance. The objective of the algorithms is to devise an efficient plan to land the aircraft in a manner acceptable to the air traffic controllers. This paper will describe the scheduling algorithms, give examples of their use, and present data regarding their potential benefits to the air traffic system.

  4. Coherent feedback control of a single qubit in diamond

    NASA Astrophysics Data System (ADS)

    Hirose, Masashi; Cappellaro, Paola

    2016-04-01

    Engineering desired operations on qubits subjected to the deleterious effects of their environment is a critical task in quantum information processing, quantum simulation and sensing. The most common approach relies on open-loop quantum control techniques, including optimal-control algorithms based on analytical or numerical solutions, Lyapunov design and Hamiltonian engineering. An alternative strategy, inspired by the success of classical control, is feedback control. Because of the complications introduced by quantum measurement, closed-loop control is less pervasive in the quantum setting and, with exceptions, its experimental implementations have been mainly limited to quantum optics experiments. Here we implement a feedback-control algorithm using a solid-state spin qubit system associated with the nitrogen vacancy centre in diamond, using coherent feedback to overcome the limitations of measurement-based feedback, and show that it can protect the qubit against intrinsic dephasing noise for milliseconds. In coherent feedback, the quantum system is connected to an auxiliary quantum controller (ancilla) that acquires information about the output state of the system (by an entangling operation) and performs an appropriate feedback action (by a conditional gate). In contrast to open-loop dynamical decoupling techniques, feedback control can protect the qubit even against Markovian noise and for an arbitrary period of time (limited only by the coherence time of the ancilla), while allowing gate operations. It is thus more closely related to quantum error-correction schemes, although these require larger and increasing qubit overheads. Increasing the number of fresh ancillas enables protection beyond their coherence time. We further evaluate the robustness of the feedback protocol, which could be applied to quantum computation and sensing, by exploring a trade-off between information gain and decoherence protection, as measurement of the ancilla-qubit correlation after the feedback algorithm voids the protection, even if the rest of the dynamics is unchanged.

  5. Suboptimal LQR-based spacecraft full motion control: Theory and experimentation

    NASA Astrophysics Data System (ADS)

    Guarnaccia, Leone; Bevilacqua, Riccardo; Pastorelli, Stefano P.

    2016-05-01

    This work introduces a real time suboptimal control algorithm for six-degree-of-freedom spacecraft maneuvering based on a State-Dependent-Algebraic-Riccati-Equation (SDARE) approach and real-time linearization of the equations of motion. The control strategy is sub-optimal since the gains of the linear quadratic regulator (LQR) are re-computed at each sample time. The cost function of the proposed controller has been compared with the one obtained via a general purpose optimal control software, showing, on average, an increase in control effort of approximately 15%, compensated by real-time implementability. Lastly, the paper presents experimental tests on a hardware-in-the-loop six-degree-of-freedom spacecraft simulator, designed for testing new guidance, navigation, and control algorithms for nano-satellites in a one-g laboratory environment. The tests show the real-time feasibility of the proposed approach.

  6. Integrated Design and Implementation of Embedded Control Systems with Scilab

    PubMed Central

    Ma, Longhua; Xia, Feng; Peng, Zhe

    2008-01-01

    Embedded systems are playing an increasingly important role in control engineering. Despite their popularity, embedded systems are generally subject to resource constraints and it is therefore difficult to build complex control systems on embedded platforms. Traditionally, the design and implementation of control systems are often separated, which causes the development of embedded control systems to be highly time-consuming and costly. To address these problems, this paper presents a low-cost, reusable, reconfigurable platform that enables integrated design and implementation of embedded control systems. To minimize the cost, free and open source software packages such as Linux and Scilab are used. Scilab is ported to the embedded ARM-Linux system. The drivers for interfacing Scilab with several communication protocols including serial, Ethernet, and Modbus are developed. Experiments are conducted to test the developed embedded platform. The use of Scilab enables implementation of complex control algorithms on embedded platforms. With the developed platform, it is possible to perform all phases of the development cycle of embedded control systems in a unified environment, thus facilitating the reduction of development time and cost. PMID:27873827

  7. Integrated Design and Implementation of Embedded Control Systems with Scilab.

    PubMed

    Ma, Longhua; Xia, Feng; Peng, Zhe

    2008-09-05

    Embedded systems are playing an increasingly important role in control engineering. Despite their popularity, embedded systems are generally subject to resource constraints and it is therefore difficult to build complex control systems on embedded platforms. Traditionally, the design and implementation of control systems are often separated, which causes the development of embedded control systems to be highly timeconsuming and costly. To address these problems, this paper presents a low-cost, reusable, reconfigurable platform that enables integrated design and implementation of embedded control systems. To minimize the cost, free and open source software packages such as Linux and Scilab are used. Scilab is ported to the embedded ARM-Linux system. The drivers for interfacing Scilab with several communication protocols including serial, Ethernet, and Modbus are developed. Experiments are conducted to test the developed embedded platform. The use of Scilab enables implementation of complex control algorithms on embedded platforms. With the developed platform, it is possible to perform all phases of the development cycle of embedded control systems in a unified environment, thus facilitating the reduction of development time and cost.

  8. An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, part 2

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.; Nachtigal, Noel M.

    1990-01-01

    It is shown how the look-ahead Lanczos process (combined with a quasi-minimal residual QMR) approach) can be used to develop a robust black box solver for large sparse non-Hermitian linear systems. Details of an implementation of the resulting QMR algorithm are presented. It is demonstrated that the QMR method is closely related to the biconjugate gradient (BCG) algorithm; however, unlike BCG, the QMR algorithm has smooth convergence curves and good numerical properties. We report numerical experiments with our implementation of the look-ahead Lanczos algorithm, both for eigenvalue problem and linear systems. Also, program listings of FORTRAN implementations of the look-ahead algorithm and the QMR method are included.

  9. Experimental implementation of heat-bath algorithmic cooling using solid-state nuclear magnetic resonance.

    PubMed

    Baugh, J; Moussa, O; Ryan, C A; Nayak, A; Laflamme, R

    2005-11-24

    The counter-intuitive properties of quantum mechanics have the potential to revolutionize information processing by enabling the development of efficient algorithms with no known classical counterparts. Harnessing this power requires the development of a set of building blocks, one of which is a method to initialize the set of quantum bits (qubits) to a known state. Additionally, fresh ancillary qubits must be available during the course of computation to achieve fault tolerance. In any physical system used to implement quantum computation, one must therefore be able to selectively and dynamically remove entropy from the part of the system that is to be mapped to qubits. One such method is an 'open-system' cooling protocol in which a subset of qubits can be brought into contact with an external system of large heat capacity. Theoretical efforts have led to an implementation-independent cooling procedure, namely heat-bath algorithmic cooling. These efforts have culminated with the proposal of an optimal algorithm, the partner-pairing algorithm, which was used to compute the physical limits of heat-bath algorithmic cooling. Here we report the experimental realization of multi-step cooling of a quantum system via heat-bath algorithmic cooling. The experiment was carried out using nuclear magnetic resonance of a solid-state ensemble three-qubit system. We demonstrate the repeated repolarization of a particular qubit to an effective spin-bath temperature, and alternating logical operations within the three-qubit subspace to ultimately cool a second qubit below this temperature. Demonstration of the control necessary for these operations represents an important step forward in the manipulation of solid-state nuclear magnetic resonance qubits.

  10. Internal quality control: planning and implementation strategies.

    PubMed

    Westgard, James O

    2003-11-01

    The first essential in setting up internal quality control (IQC) of a test procedure in the clinical laboratory is to select the proper IQC procedure to implement, i.e. choosing the statistical criteria or control rules, and the number of control measurements, according to the quality required for the test and the observed performance of the method. Then the right IQC procedure must be properly implemented. This review focuses on strategies for planning and implementing IQC procedures in order to improve the quality of the IQC. A quantitative planning process is described that can be implemented with graphical tools such as power function or critical-error graphs and charts of operating specifications. Finally, a total QC strategy is formulated to minimize cost and maximize quality. A general strategy for IQC implementation is recommended that employs a three-stage design in which the first stage provides high error detection, the second stage low false rejection and the third stage prescribes the length of the analytical run, making use of an algorithm involving the average of normal patients' data.

  11. Experimental research control software system

    NASA Astrophysics Data System (ADS)

    Cohn, I. A.; Kovalenko, A. G.; Vystavkin, A. N.

    2014-05-01

    A software system, intended for automation of a small scale research, has been developed. The software allows one to control equipment, acquire and process data by means of simple scripts. The main purpose of that development is to increase experiment automation easiness, thus significantly reducing experimental setup automation efforts. In particular, minimal programming skills are required and supervisors have no reviewing troubles. Interactions between scripts and equipment are managed automatically, thus allowing to run multiple scripts simultaneously. Unlike well-known data acquisition commercial software systems, the control is performed by an imperative scripting language. This approach eases complex control and data acquisition algorithms implementation. A modular interface library performs interaction with external interfaces. While most widely used interfaces are already implemented, a simple framework is developed for fast implementations of new software and hardware interfaces. While the software is in continuous development with new features being implemented, it is already used in our laboratory for automation of a helium-3 cryostat control and data acquisition. The software is open source and distributed under Gnu Public License.

  12. Real-time robot deliberation by compilation and monitoring of anytime algorithms

    NASA Technical Reports Server (NTRS)

    Zilberstein, Shlomo

    1994-01-01

    Anytime algorithms are algorithms whose quality of results improves gradually as computation time increases. Certainty, accuracy, and specificity are metrics useful in anytime algorighm construction. It is widely accepted that a successful robotic system must trade off between decision quality and the computational resources used to produce it. Anytime algorithms were designed to offer such a trade off. A model of compilation and monitoring mechanisms needed to build robots that can efficiently control their deliberation time is presented. This approach simplifies the design and implementation of complex intelligent robots, mechanizes the composition and monitoring processes, and provides independent real time robotic systems that automatically adjust resource allocation to yield optimum performance.

  13. Experimental quantum computing to solve systems of linear equations.

    PubMed

    Cai, X-D; Weedbrook, C; Su, Z-E; Chen, M-C; Gu, Mile; Zhu, M-J; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2013-06-07

    Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2×2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.

  14. Flight data processing with the F-8 adaptive algorithm

    NASA Technical Reports Server (NTRS)

    Hartmann, G.; Stein, G.; Petersen, K.

    1977-01-01

    An explicit adaptive control algorithm based on maximum likelihood estimation of parameters has been designed for NASA's DFBW F-8 aircraft. To avoid iterative calculations, the algorithm uses parallel channels of Kalman filters operating at fixed locations in parameter space. This algorithm has been implemented in NASA/DFRC's Remotely Augmented Vehicle (RAV) facility. Real-time sensor outputs (rate gyro, accelerometer and surface position) are telemetered to a ground computer which sends new gain values to an on-board system. Ground test data and flight records were used to establish design values of noise statistics and to verify the ground-based adaptive software. The software and its performance evaluation based on flight data are described

  15. SCREEN: A simple layperson administered screening algorithm in low resource international settings significantly reduces waiting time for critically ill children in primary healthcare clinics.

    PubMed

    Hansoti, Bhakti; Jenson, Alexander; Kironji, Antony G; Katz, Joanne; Levin, Scott; Rothman, Richard; Kelen, Gabor D; Wallis, Lee A

    2017-01-01

    In low resource settings, an inadequate number of trained healthcare workers and high volumes of children presenting to Primary Healthcare Centers (PHC) result in prolonged waiting times and significant delays in identifying and evaluating critically ill children. The Sick Children Require Emergency Evaluation Now (SCREEN) program, a simple six-question screening algorithm administered by lay healthcare workers, was developed in 2014 to rapidly identify critically ill children and to expedite their care at the point of entry into a clinic. We sought to determine the impact of SCREEN on waiting times for critically ill children post real world implementation in Cape Town, South Africa. This is a prospective, observational implementation-effectiveness hybrid study that sought to determine: (1) the impact of SCREEN implementation on waiting times as a primary outcome measure, and (2) the effectiveness of the SCREEN tool in accurately identifying critically ill children when utilised by the QM and adherence by the QM to the SCREEN algorithm as secondary outcome measures. The study was conducted in two phases, Phase I control (pre-SCREEN implementation- three months in 2014) and Phase II (post-SCREEN implementation-two distinct three month periods in 2016). In Phase I, 1600 (92.38%) of 1732 children presenting to 4 clinics, had sufficient data for analysis and comprised the control sample. In Phase II, all 3383 of the children presenting to the 26 clinics during the sampling time frame had sufficient data for analysis. The proportion of critically ill children who saw a professional nurse within 10 minutes increased tenfold from 6.4% to 64% (Phase I to Phase II) with the median time to seeing a professional nurse reduced from 100.3 minutes to 4.9 minutes, (p < .001, respectively). Overall layperson screening compared to Integrated Management of Childhood Illnesses (IMCI) designation by a nurse had a sensitivity of 94.2% and a specificity of 88.1%, despite large variance in adherence to the SCREEN algorithm across clinics. The SCREEN program when implemented in a real-world setting can significantly reduce waiting times for critically ill children in PHCs, however further work is required to improve the implementation of this innovative program.

  16. Hardware implementation of fuzzy Petri net as a controller.

    PubMed

    Gniewek, Lesław; Kluska, Jacek

    2004-06-01

    The paper presents a new approach to fuzzy Petri net (FPN) and its hardware implementation. The authors' motivation is as follows. Complex industrial processes can be often decomposed into many parallelly working subprocesses, which can, in turn, be modeled using Petri nets. If all the process variables (or events) are assumed to be two-valued signals, then it is possible to obtain a hardware or software control device, which works according to the algorithm described by conventional Petri net. However, the values of real signals are contained in some bounded interval and can be interpreted as events which are not only true or false, but rather true in some degree from the interval [0, 1]. Such a natural interpretation from multivalued logic (fuzzy logic) point of view, concerns sensor outputs, control signals, time expiration, etc. It leads to the idea of FPN as a controller, which one can rather simply obtain, and which would be able to process both analog, and binary signals. In the paper both graphical, and algebraic representations of the proposed FPN are given. The conditions under which transitions can be fired are described. The algebraic description of the net and a theorem which enables computation of new marking in the net, based on current marking, are formulated. Hardware implementation of the FPN, which uses fuzzy JK flip-flops and fuzzy gates, are proposed. An example illustrating usefulness of the proposed FPN for control algorithm description and its synthesis as a controller device for the concrete production process are presented.

  17. Design of a broadband active silencer using μ-synthesis

    NASA Astrophysics Data System (ADS)

    Bai, Mingsian R.; Zeung, Pingshun

    2004-01-01

    A robust spatially feedforward controller is developed for broadband attenuation of noise in ducts. To meet the requirements of robust performance and robust stability in the presence of plant uncertainties, a μ-synthesis procedure via D- K iteration is exploited to obtain the optimal controller. This approach considers uncertainties as modelling errors of the nominal plant in high frequency and is implemented using a floating point digital signal processor (DSP). Experimental investigation was undertaken on a finite-length duct to justify the proposed controller. The μ- controller is compared to other control algorithms such as the H2 method, the H∞ method and the filtered-U least mean square (FULMS) algorithm. Experimental results indicate that the proposed system has attained 25.8 dB maximal attenuation in the band 250-650 Hz.

  18. Evaluation of Swift Start TCP in Long-Delay Environment

    NASA Technical Reports Server (NTRS)

    Lawas-Grodek, Frances J.; Tran, Diepchi T.

    2004-01-01

    This report presents the test results of the Swift Start algorithm in single-flow and multiple-flow testbeds under the effects of high propagation delays, various slow bottlenecks, and small queue sizes. Although this algorithm estimates capacity and implements packet pacing, the findings were that in a heavily congested link, the Swift Start algorithm will not be applicable. The reason is that the bottleneck estimation is falsely influenced by timeouts induced by retransmissions and the expiration of delayed acknowledgment (ACK) timers, thus causing the modified Swift Start code to fall back to regular transmission control protocol (TCP).

  19. Inversion for Refractivity Parameters Using a Dynamic Adaptive Cuckoo Search with Crossover Operator Algorithm

    PubMed Central

    Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang

    2016-01-01

    Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938

  20. FPGA-based Klystron linearization implementations in scope of ILC

    DOE PAGES

    Omet, M.; Michizono, S.; Matsumoto, T.; ...

    2015-01-23

    We report the development and implementation of four FPGA-based predistortion-type klystron linearization algorithms. Klystron linearization is essential for the realization of ILC, since it is required to operate the klystrons 7% in power below their saturation. The work presented was performed in international collaborations at the Fermi National Accelerator Laboratory (FNAL), USA and the Deutsches Elektronen Synchrotron (DESY), Germany. With the newly developed algorithms, the generation of correction factors on the FPGA was improved compared to past algorithms, avoiding quantization and decreasing memory requirements. At FNAL, three algorithms were tested at the Advanced Superconducting Test Accelerator (ASTA), demonstrating a successfulmore » implementation for one algorithm and a proof of principle for two algorithms. Furthermore, the functionality of the algorithm implemented at DESY was demonstrated successfully in a simulation.« less

  1. Diagnostic work-up and loss of tuberculosis suspects in Jogjakarta, Indonesia

    PubMed Central

    2012-01-01

    Background Early and accurate diagnosis of pulmonary tuberculosis (TB) is critical for successful TB control. To assist in the diagnosis of smear-negative pulmonary TB, the World Health Organisation (WHO) recommends the use of a diagnostic algorithm. Our study evaluated the implementation of the national tuberculosis programme's diagnostic algorithm in routine health care settings in Jogjakarta, Indonesia. The diagnostic algorithm is based on the WHO TB diagnostic algorithm, which had already been implemented in the health facilities. Methods We prospectively documented the diagnostic work-up of all new tuberculosis suspects until a diagnosis was reached. We used clinical audit forms to record each step chronologically. Data on the patient's gender, age, symptoms, examinations (types, dates, and results), and final diagnosis were collected. Results Information was recorded for 754 TB suspects; 43.5% of whom were lost during the diagnostic work-up in health centres, 0% in lung clinics. Among the TB suspects who completed diagnostic work-ups, 51.1% and 100.0% were diagnosed without following the national TB diagnostic algorithm in health centres and lung clinics, respectively. However, the work-up in the health centres and lung clinics generally conformed to international standards for tuberculosis care (ISTC). Diagnostic delays were significantly longer in health centres compared to lung clinics. Conclusions The high rate of patients lost in health centres needs to be addressed through the implementation of TB suspect tracing and better programme supervision. The national TB algorithm needs to be revised and differentiated according to the level of care. PMID:22333111

  2. Strategies for concurrent processing of complex algorithms in data driven architectures

    NASA Technical Reports Server (NTRS)

    Stoughton, John W.; Mielke, Roland R.; Som, Sukhamony

    1990-01-01

    The performance modeling and enhancement for periodic execution of large-grain, decision-free algorithms in data flow architectures is examined. Applications include real-time implementation of control and signal processing algorithms where performance is required to be highly predictable. The mapping of algorithms onto the specified class of data flow architectures is realized by a marked graph model called ATAMM (Algorithm To Architecture Mapping Model). Performance measures and bounds are established. Algorithm transformation techniques are identified for performance enhancement and reduction of resource (computing element) requirements. A systematic design procedure is described for generating operating conditions for predictable performance both with and without resource constraints. An ATAMM simulator is used to test and validate the performance prediction by the design procedure. Experiments on a three resource testbed provide verification of the ATAMM model and the design procedure.

  3. Strategies for concurrent processing of complex algorithms in data driven architectures

    NASA Technical Reports Server (NTRS)

    Som, Sukhamoy; Stoughton, John W.; Mielke, Roland R.

    1990-01-01

    Performance modeling and performance enhancement for periodic execution of large-grain, decision-free algorithms in data flow architectures are discussed. Applications include real-time implementation of control and signal processing algorithms where performance is required to be highly predictable. The mapping of algorithms onto the specified class of data flow architectures is realized by a marked graph model called algorithm to architecture mapping model (ATAMM). Performance measures and bounds are established. Algorithm transformation techniques are identified for performance enhancement and reduction of resource (computing element) requirements. A systematic design procedure is described for generating operating conditions for predictable performance both with and without resource constraints. An ATAMM simulator is used to test and validate the performance prediction by the design procedure. Experiments on a three resource testbed provide verification of the ATAMM model and the design procedure.

  4. The implement of Talmud property allocation algorithm based on graphic point-segment way

    NASA Astrophysics Data System (ADS)

    Cen, Haifeng

    2017-04-01

    Under the guidance of the Talmud allocation scheme's theory, the paper analyzes the algorithm implemented process via the perspective of graphic point-segment way, and designs the point-segment way's Talmud property allocation algorithm. Then it uses Java language to implement the core of allocation algorithm, by using Android programming to build a visual interface.

  5. Floating-point scaling technique for sources separation automatic gain control

    NASA Astrophysics Data System (ADS)

    Fermas, A.; Belouchrani, A.; Ait-Mohamed, O.

    2012-07-01

    Based on the floating-point representation and taking advantage of scaling factor indetermination in blind source separation (BSS) processing, we propose a scaling technique applied to the separation matrix, to avoid the saturation or the weakness in the recovered source signals. This technique performs an automatic gain control in an on-line BSS environment. We demonstrate the effectiveness of this technique by using the implementation of a division-free BSS algorithm with two inputs, two outputs. The proposed technique is computationally cheaper and efficient for a hardware implementation compared to the Euclidean normalisation.

  6. Adaptive Neural Network Algorithm for Power Control in Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Masri Husam Fayiz, Al

    2017-01-01

    The aim of this paper is to design, test and evaluate a prototype of an adaptive neural network algorithm for the power controlling system of a nuclear power plant. The task of power control in nuclear reactors is one of the fundamental tasks in this field. Therefore, researches are constantly conducted to ameliorate the power reactor control process. Currently, in the Department of Automation in the National Research Nuclear University (NRNU) MEPhI, numerous studies are utilizing various methodologies of artificial intelligence (expert systems, neural networks, fuzzy systems and genetic algorithms) to enhance the performance, safety, efficiency and reliability of nuclear power plants. In particular, a study of an adaptive artificial intelligent power regulator in the control systems of nuclear power reactors is being undertaken to enhance performance and to minimize the output error of the Automatic Power Controller (APC) on the grounds of a multifunctional computer analyzer (simulator) of the Water-Water Energetic Reactor known as Vodo-Vodyanoi Energetichesky Reaktor (VVER) in Russian. In this paper, a block diagram of an adaptive reactor power controller was built on the basis of an intelligent control algorithm. When implementing intelligent neural network principles, it is possible to improve the quality and dynamic of any control system in accordance with the principles of adaptive control. It is common knowledge that an adaptive control system permits adjusting the controller’s parameters according to the transitions in the characteristics of the control object or external disturbances. In this project, it is demonstrated that the propitious options for an automatic power controller in nuclear power plants is a control system constructed on intelligent neural network algorithms.

  7. Four-dimensional guidance algorithms for aircraft in an air traffic control environment

    NASA Technical Reports Server (NTRS)

    Pecsvaradi, T.

    1975-01-01

    Theoretical development and computer implementation of three guidance algorithms are presented. From a small set of input parameters the algorithms generate the ground track, altitude profile, and speed profile required to implement an experimental 4-D guidance system. Given a sequence of waypoints that define a nominal flight path, the first algorithm generates a realistic, flyable ground track consisting of a sequence of straight line segments and circular arcs. Each circular turn is constrained by the minimum turning radius of the aircraft. The ground track and the specified waypoint altitudes are used as inputs to the second algorithm which generates the altitude profile. The altitude profile consists of piecewise constant flight path angle segments, each segment lying within specified upper and lower bounds. The third algorithm generates a feasible speed profile subject to constraints on the rate of change in speed, permissible speed ranges, and effects of wind. Flight path parameters are then combined into a chronological sequence to form the 4-D guidance vectors. These vectors can be used to drive the autopilot/autothrottle of the aircraft so that a 4-D flight path could be tracked completely automatically; or these vectors may be used to drive the flight director and other cockpit displays, thereby enabling the pilot to track a 4-D flight path manually.

  8. Evaluation of several state-of-charge algorithms

    NASA Astrophysics Data System (ADS)

    Espinosa, J. M.; Martin, M. E.; Burke, A. F.

    1988-09-01

    One of the important needs in marketing an electric vehicle is a device which reliably indicates battery state-of-charge for all types of driving. The purpose of the state-of-charge indicator is analogous to a gas gauge in an internal combustion engine powered vehicle. Many different approaches have been tried to accurately predict battery state-of-charge. This report evaluates several of these approaches. Four different algorithms were implemented into software on an IBM PC and tested using a battery test database for ALCO 2200 lead-acid batteries generated at the INEL. The database was obtained under controlled conditions which compare with the battery response in real EV use. Each algorithm is described in detail as to theory and operational functionality. Also discussed is the hardware and data requirements particular to implementing the individual algorithms. The algorithms were evaluated for accuracy using constant power, stepped power, and simulated vehicle (SFUDS79) discharge profiles. Attempts were made to explain the cause of differences between the predicted and actual state-of-charge and to provide possible remedies to correct them. Recommendations for future work on battery state-of-charge indicators are presented that utilize the hardware and software now in place in the INEL Battery Laboratory.

  9. Aircraft control surface failure detection and isolation using the OSGLR test. [orthogonal series generalized likelihood ratio

    NASA Technical Reports Server (NTRS)

    Bonnice, W. F.; Motyka, P.; Wagner, E.; Hall, S. R.

    1986-01-01

    The performance of the orthogonal series generalized likelihood ratio (OSGLR) test in detecting and isolating commercial aircraft control surface and actuator failures is evaluated. A modification to incorporate age-weighting which significantly reduces the sensitivity of the algorithm to modeling errors is presented. The steady-state implementation of the algorithm based on a single linear model valid for a cruise flight condition is tested using a nonlinear aircraft simulation. A number of off-nominal no-failure flight conditions including maneuvers, nonzero flap deflections, different turbulence levels and steady winds were tested. Based on the no-failure decision functions produced by off-nominal flight conditions, the failure detection and isolation performance at the nominal flight condition was determined. The extension of the algorithm to a wider flight envelope by scheduling on dynamic pressure and flap deflection is examined. Based on this testing, the OSGLR algorithm should be capable of detecting control surface failures that would affect the safe operation of a commercial aircraft. Isolation may be difficult if there are several surfaces which produce similar effects on the aircraft. Extending the algorithm over the entire operating envelope of a commercial aircraft appears feasible.

  10. Model-Based Fault Tolerant Control

    NASA Technical Reports Server (NTRS)

    Kumar, Aditya; Viassolo, Daniel

    2008-01-01

    The Model Based Fault Tolerant Control (MBFTC) task was conducted under the NASA Aviation Safety and Security Program. The goal of MBFTC is to develop and demonstrate real-time strategies to diagnose and accommodate anomalous aircraft engine events such as sensor faults, actuator faults, or turbine gas-path component damage that can lead to in-flight shutdowns, aborted take offs, asymmetric thrust/loss of thrust control, or engine surge/stall events. A suite of model-based fault detection algorithms were developed and evaluated. Based on the performance and maturity of the developed algorithms two approaches were selected for further analysis: (i) multiple-hypothesis testing, and (ii) neural networks; both used residuals from an Extended Kalman Filter to detect the occurrence of the selected faults. A simple fusion algorithm was implemented to combine the results from each algorithm to obtain an overall estimate of the identified fault type and magnitude. The identification of the fault type and magnitude enabled the use of an online fault accommodation strategy to correct for the adverse impact of these faults on engine operability thereby enabling continued engine operation in the presence of these faults. The performance of the fault detection and accommodation algorithm was extensively tested in a simulation environment.

  11. Self-tuning multivariable pole placement control of a multizone crystal growth furnace

    NASA Technical Reports Server (NTRS)

    Batur, C.; Sharpless, R. B.; Duval, W. M. B.; Rosenthal, B. N.

    1992-01-01

    This paper presents the design and implementation of a multivariable self-tuning temperature controller for the control of lead bromide crystal growth. The crystal grows inside a multizone transparent furnace. There are eight interacting heating zones shaping the axial temperature distribution inside the furnace. A multi-input, multi-output furnace model is identified on-line by a recursive least squares estimation algorithm. A multivariable pole placement controller based on this model is derived and implemented. Comparison between single-input, single-output and multi-input, multi-output self-tuning controllers demonstrates that the zone-to-zone interactions can be minimized better by a multi-input, multi-output controller design. This directly affects the quality of crystal grown.

  12. The SAPHIRE server: a new algorithm and implementation.

    PubMed Central

    Hersh, W.; Leone, T. J.

    1995-01-01

    SAPHIRE is an experimental information retrieval system implemented to test new approaches to automated indexing and retrieval of medical documents. Due to limitations in its original concept-matching algorithm, a modified algorithm has been implemented which allows greater flexibility in partial matching and different word order within concepts. With the concomitant growth in client-server applications and the Internet in general, the new algorithm has been implemented as a server that can be accessed via other applications on the Internet. PMID:8563413

  13. A cellular automata based FPGA realization of a new metaheuristic bat-inspired algorithm

    NASA Astrophysics Data System (ADS)

    Progias, Pavlos; Amanatiadis, Angelos A.; Spataro, William; Trunfio, Giuseppe A.; Sirakoulis, Georgios Ch.

    2016-10-01

    Optimization algorithms are often inspired by processes occuring in nature, such as animal behavioral patterns. The main concern with implementing such algorithms in software is the large amounts of processing power they require. In contrast to software code, that can only perform calculations in a serial manner, an implementation in hardware, exploiting the inherent parallelism of single-purpose processors, can prove to be much more efficient both in speed and energy consumption. Furthermore, the use of Cellular Automata (CA) in such an implementation would be efficient both as a model for natural processes, as well as a computational paradigm implemented well on hardware. In this paper, we propose a VHDL implementation of a metaheuristic algorithm inspired by the echolocation behavior of bats. More specifically, the CA model is inspired by the metaheuristic algorithm proposed earlier in the literature, which could be considered at least as efficient than other existing optimization algorithms. The function of the FPGA implementation of our algorithm is explained in full detail and results of our simulations are also demonstrated.

  14. Shape control of large space structures

    NASA Technical Reports Server (NTRS)

    Hagan, M. T.

    1982-01-01

    A survey has been conducted to determine the types of control strategies which have been proposed for controlling the vibrations in large space structures. From this survey several representative control strategies were singled out for detailed analyses. The application of these strategies to a simplified model of a large space structure has been simulated. These simulations demonstrate the implementation of the control algorithms and provide a basis for a preliminary comparison of their suitability for large space structure control.

  15. Research in Network Management Techniques for Tactical Data Communications Network.

    DTIC Science & Technology

    1982-09-01

    the control period. Research areas include Packet Network modelling, adaptive network routing, network design algorithms, network design techniques...contro!lers are designed to perform their limited tasks optimally. For the dynamic routing problem considered here, the local controllers are node...feedback to finding in optimum stead-o-state routing (static strategies) under non - control which can be easily implemented in real time. congested

  16. Implementation of an unmanned aerial vehicle for new generation Peterbilt trucks

    NASA Astrophysics Data System (ADS)

    Srinivasan K, Venkatesh

    As science and technology continue to advance, innovative developments in transportation can enhance product safety and security for the benefit and welfare of society. The federal government requires every commercial truck to be inspected before each trip. This pre-trip inspection ensures the safe mechanical condition of each vehicle before it is used. An Unmanned Aerial Vehicle (UAV) could be used to provide an automated inspection, thus reducing driver workload, inspection costs and time while increasing inspection accuracy. This thesis develops a primary component of the algorithm that is required to implement UAV pre-trip inspections for commercial trucks using an android-based application. Specifically, this thesis provides foundational work of providing stable height control in an outdoor environment using a laser sensor and an android flight control application that includes take-off, landing, throttle control, and real-time video transmission. The height algorithm developed is the core of this thesis project. Phantom 2 Vision+ uses a pressure sensor to calculate the altitude of the drone for height stabilization. However, these altitude readings do not provide the precision required for this project. Rather, the goal of autonomously controlling height with great precision necessitated the use of a laser rangefinder sensor in the development of the height control algorithm. Another major contribution from this thesis research is to extend the limited capabilities of the DJI software development kit in order to provide more sophisticated control goals without modifying the drone dynamics. The results of this project are also directly applicable to a number of additional uses of drones in the transportation industry.

  17. Multi-Objectives Optimization of Ventilation Controllers for Passive Cooling in Residential Buildings

    PubMed Central

    Grygierek, Krzysztof; Ferdyn-Grygierek, Joanna

    2018-01-01

    An inappropriate indoor climate, mostly indoor temperature, may cause occupants’ discomfort. There are a great number of air conditioning systems that make it possible to maintain the required thermal comfort. Their installation, however, involves high investment costs and high energy demand. The study analyses the possibilities of limiting too high a temperature in residential buildings using passive cooling by means of ventilation with ambient cool air. A fuzzy logic controller whose aim is to control mechanical ventilation has been proposed and optimized. In order to optimize the controller, the modified Multiobjective Evolutionary Algorithm, based on the Strength Pareto Evolutionary Algorithm, has been adopted. The optimization algorithm has been implemented in MATLAB®, which is coupled by MLE+ with EnergyPlus for performing dynamic co-simulation between the programs. The example of a single detached building shows that the occupants’ thermal comfort in a transitional climate may improve significantly owing to mechanical ventilation controlled by the suggested fuzzy logic controller. When the system is connected to the traditional cooling system, it may further bring about a decrease in cooling demand. PMID:29642525

  18. Control strategies for effective robot assisted gait rehabilitation: the state of art and future prospects.

    PubMed

    Cao, Jinghui; Xie, Sheng Quan; Das, Raj; Zhu, Guo L

    2014-12-01

    A large number of gait rehabilitation robots, together with a variety of control strategies, have been developed and evaluated during the last decade. Initially, control strategies applied to rehabilitation robots were adapted from those applied to traditional industrial robots. However, these strategies cannot optimise effectiveness of gait rehabilitation. As a result, researchers have been investigating control strategies tailored for the needs of rehabilitation. Among these control strategies, assisted-as-needed (AAN) control is one of the most popular research topics in this field. AAN training strategies have gained the theoretical and practical evidence based backup from motor learning principles and clinical studies. Various approaches to AAN training have been proposed and investigated by research groups all around the world. This article presents a review on control algorithms of gait rehabilitation robots to summarise related knowledge and investigate potential trends of development. There are existing review papers on control strategies of rehabilitation robots. The review by Marchal-Crespo and Reinkensmeyer (2009) had a broad cover of control strategies of all kinds of rehabilitation robots. Hussain et al. (2011) had specifically focused on treadmill gait training robots and covered a limited number of control implementations on them. This review article encompasses more detailed information on control strategies for robot assisted gait rehabilitation, but is not limited to treadmill based training. It also investigates the potential to further develop assist-as-needed gait training based on assessments of patients' ability. In this paper, control strategies are generally divided into the trajectory tracking control and AAN control. The review covers these two basic categories, as well as other control algorithm and technologies derived from them, such as biofeedback control. Assessments on human gait ability are also included to investigate how to further develop implementations based on assist-as-needed concept. For the consideration of effectiveness, clinical studies on robotic gait rehabilitation are reviewed and analysed from the viewpoint of control algorithm. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Integrated identification, modeling and control with applications

    NASA Astrophysics Data System (ADS)

    Shi, Guojun

    This thesis deals with the integration of system design, identification, modeling and control. In particular, six interdisciplinary engineering problems are addressed and investigated. Theoretical results are established and applied to structural vibration reduction and engine control problems. First, the data-based LQG control problem is formulated and solved. It is shown that a state space model is not necessary to solve this problem; rather a finite sequence from the impulse response is the only model data required to synthesize an optimal controller. The new theory avoids unnecessary reliance on a model, required in the conventional design procedure. The infinite horizon model predictive control problem is addressed for multivariable systems. The basic properties of the receding horizon implementation strategy is investigated and the complete framework for solving the problem is established. The new theory allows the accommodation of hard input constraints and time delays. The developed control algorithms guarantee the closed loop stability. A closed loop identification and infinite horizon model predictive control design procedure is established for engine speed regulation. The developed algorithms are tested on the Cummins Engine Simulator and desired results are obtained. A finite signal-to-noise ratio model is considered for noise signals. An information quality index is introduced which measures the essential information precision required for stabilization. The problems of minimum variance control and covariance control are formulated and investigated. Convergent algorithms are developed for solving the problems of interest. The problem of the integrated passive and active control design is addressed in order to improve the overall system performance. A design algorithm is developed, which simultaneously finds: (i) the optimal values of the stiffness and damping ratios for the structure, and (ii) an optimal output variance constrained stabilizing controller such that the active control energy is minimized. A weighted q-Markov COVER method is introduced for identification with measurement noise. The result is use to develop an iterative closed loop identification/control design algorithm. The effectiveness of the algorithm is illustrated by experimental results.

  20. Torque-based optimal acceleration control for electric vehicle

    NASA Astrophysics Data System (ADS)

    Lu, Dongbin; Ouyang, Minggao

    2014-03-01

    The existing research of the acceleration control mainly focuses on an optimization of the velocity trajectory with respect to a criterion formulation that weights acceleration time and fuel consumption. The minimum-fuel acceleration problem in conventional vehicle has been solved by Pontryagin's maximum principle and dynamic programming algorithm, respectively. The acceleration control with minimum energy consumption for battery electric vehicle(EV) has not been reported. In this paper, the permanent magnet synchronous motor(PMSM) is controlled by the field oriented control(FOC) method and the electric drive system for the EV(including the PMSM, the inverter and the battery) is modeled to favor over a detailed consumption map. The analytical algorithm is proposed to analyze the optimal acceleration control and the optimal torque versus speed curve in the acceleration process is obtained. Considering the acceleration time, a penalty function is introduced to realize a fast vehicle speed tracking. The optimal acceleration control is also addressed with dynamic programming(DP). This method can solve the optimal acceleration problem with precise time constraint, but it consumes a large amount of computation time. The EV used in simulation and experiment is a four-wheel hub motor drive electric vehicle. The simulation and experimental results show that the required battery energy has little difference between the acceleration control solved by analytical algorithm and that solved by DP, and is greatly reduced comparing with the constant pedal opening acceleration. The proposed analytical and DP algorithms can minimize the energy consumption in EV's acceleration process and the analytical algorithm is easy to be implemented in real-time control.

  1. User's manual for a fuel-conservative descent planning algorithm implemented on a small programmable calculator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vicroy, D.D.

    A simplified flight management descent algorithm was developed and programmed on a small programmable calculator. It was designed to aid the pilot in planning and executing a fuel conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. An explanation and examples of how the algorithm is used,more » as well as a detailed flow chart and listing of the algorithm are contained.« less

  2. Categorizing Variations of Student-Implemented Sorting Algorithms

    ERIC Educational Resources Information Center

    Taherkhani, Ahmad; Korhonen, Ari; Malmi, Lauri

    2012-01-01

    In this study, we examined freshmen students' sorting algorithm implementations in data structures and algorithms' course in two phases: at the beginning of the course before the students received any instruction on sorting algorithms, and after taking a lecture on sorting algorithms. The analysis revealed that many students have insufficient…

  3. Dual Fine Tracking Control of a Satellite Laser Communication Uplink

    DTIC Science & Technology

    2006-09-14

    rejec- tion results for LQG control compared with adaptive least mean squares (LMS) and gradient adaptive lattice (GAL) algorithms , however, both...period [7, page 256]. The steady-state Kalman filter, defined by the predictor / corrector form, is implemented for each beam respectively as [7, page...Disturbance Environment . . . . . . . . . . . . . . . . . 97 B.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Appendix C . Aircraft

  4. Alcator C-Mod Digital Plasma Control System

    NASA Astrophysics Data System (ADS)

    Wolfe, S. M.

    2005-10-01

    A new digital plasma control system (DPCS) has been implemented for Alcator C-Mod. The new system was put into service at the start of the 2005 run campaign and has been in routine operation since. The system consists of two 64-input, 16-output cPCI digitizers attached to a rack-mounted single-CPU Linux server, which performs both the I/O and the computation. During initial operation, the system was set up to directly emulate the original C-Mod ``Hybrid'' MIMO linear control system. Compatibility with the previous control system allows the existing user interface software and data structures to be used with the new hardware. The control program is written in IDL and runs under standard Linux. Interrupts are disabled during the plasma pulses to achieve real-time operation. A synchronous loop is executed with a nominal cycle rate of 10 kHz. Emulation of the original linear control algorithms requires 50 μsec per iteration, with the time evenly split between I/O and computation, so rates of about 20 KHz are achievable. Reliable vertical position control has been demonstrated with cycle rates as low as 5 KHz. Additional computations, including non-linear algorithms and adaptive response, are implemented as optional procedure calls within the main real-time loop.

  5. An Agent Inspired Reconfigurable Computing Implementation of a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Weir, John M.; Wells, B. Earl

    2003-01-01

    Many software systems have been successfully implemented using an agent paradigm which employs a number of independent entities that communicate with one another to achieve a common goal. The distributed nature of such a paradigm makes it an excellent candidate for use in high speed reconfigurable computing hardware environments such as those present in modem FPGA's. In this paper, a distributed genetic algorithm that can be applied to the agent based reconfigurable hardware model is introduced. The effectiveness of this new algorithm is evaluated by comparing the quality of the solutions found by the new algorithm with those found by traditional genetic algorithms. The performance of a reconfigurable hardware implementation of the new algorithm on an FPGA is compared to traditional single processor implementations.

  6. Applied Joint-Space Torque and Stiffness Control of Tendon-Driven Fingers

    NASA Technical Reports Server (NTRS)

    Abdallah, Muhammad E.; Platt, Robert, Jr.; Wampler, Charles W.; Hargrave, Brian

    2010-01-01

    Existing tendon-driven fingers have applied force control through independent tension controllers on each tendon, i.e. in the tendon-space. The coupled kinematics of the tendons, however, cause such controllers to exhibit a transient coupling in their response. This problem can be resolved by alternatively framing the controllers in the joint-space of the manipulator. This work presents a joint-space torque control law that demonstrates both a decoupled and significantly faster response than an equivalent tendon-space formulation. The law also demonstrates greater speed and robustness than comparable PI controllers. In addition, a tension distribution algorithm is presented here to allocate forces from the joints to the tendons. It allocates the tensions so that they satisfy both an upper and lower bound, and it does so without requiring linear programming or open-ended iterations. The control law and tension distribution algorithm are implemented on the robotic hand of Robonaut-2.

  7. Implementing a self-structuring data learning algorithm

    NASA Astrophysics Data System (ADS)

    Graham, James; Carson, Daniel; Ternovskiy, Igor

    2016-05-01

    In this paper, we elaborate on what we did to implement our self-structuring data learning algorithm. To recap, we are working to develop a data learning algorithm that will eventually be capable of goal driven pattern learning and extrapolation of more complex patterns from less complex ones. At this point we have developed a conceptual framework for the algorithm, but have yet to discuss our actual implementation and the consideration and shortcuts we needed to take to create said implementation. We will elaborate on our initial setup of the algorithm and the scenarios we used to test our early stage algorithm. While we want this to be a general algorithm, it is necessary to start with a simple scenario or two to provide a viable development and testing environment. To that end, our discussion will be geared toward what we include in our initial implementation and why, as well as what concerns we may have. In the future, we expect to be able to apply our algorithm to a more general approach, but to do so within a reasonable time, we needed to pick a place to start.

  8. Operational Implementation of Sea Ice Concentration Estimates from the AMSR2 Sensor

    NASA Technical Reports Server (NTRS)

    Meier, Walter N.; Stewart, J. Scott; Liu, Yinghui; Key, Jeffrey; Miller, Jeffrey A.

    2017-01-01

    An operation implementation of a passive microwave sea ice concentration algorithm to support NOAA's operational mission is presented. The NASA team 2 algorithm, previously developed for the NASA advanced microwave scanning radiometer for the Earth observing system (AMSR-E) product suite, is adapted for operational use with the JAXA AMSR2 sensor through several enhancements. First, the algorithm is modified to process individual swaths and provide concentration from the most recent swaths instead of a 24-hour average. A latency (time since observation) field and a 24-hour concentration range (maximum-minimum) are included to provide indications of data timeliness and variability. Concentration from the Bootstrap algorithm is a secondary field to provide complementary sea ice information. A quality flag is implemented to provide information on interpolation, filtering, and other quality control steps. The AMSR2 concentration fields are compared with a different AMSR2 passive microwave product, and then validated via comparison with sea ice concentration from the Suomi visible and infrared imaging radiometer suite. This validation indicates the AMSR2 concentrations have a bias of 3.9% and an RMSE of 11.0% in the Arctic, and a bias of 4.45% and RMSE of 8.8% in the Antarctic. In most cases, the NOAA operational requirements for accuracy are met. However, in low-concentration regimes, such as during melt and near the ice edge, errors are higher because of the limitations of passive microwave sensors and the algorithm retrieval.

  9. Implementation of internal model based control and individual pitch control to reduce fatigue loads and tower vibrations in wind turbines

    NASA Astrophysics Data System (ADS)

    Mohammadi, Ebrahim; Fadaeinedjad, Roohollah; Moschopoulos, Gerry

    2018-05-01

    Vibration control and fatigue loads reduction are important issues in large-scale wind turbines. Identifying the vibration frequencies and tuning dampers and controllers at these frequencies are major concerns in many control methods. In this paper, an internal model control (IMC) method with an adaptive algorithm is implemented to first identify the vibration frequency of the wind turbine tower and then to cancel the vibration signal. Standard individual pitch control (IPC) is also implemented to compare the performance of the controllers in term of fatigue loads reduction. Finally, the performance of the system when both controllers are implemented together is evaluated. Simulation results demonstrate that using only IMC or IPC alone has advantages and can reduce fatigue loads on specific components. IMC can identify and suppress tower vibrations in both fore-aft and side-to-side directions, whereas, IPC can reduce fatigue loads on blades, shaft and yaw bearings. When both IMC and IPC are implemented together, the advantages of both controllers can be used. The aforementioned analysis and comparisons were not studied in literature and this study fills this gap. FAST, AreoDyn and Simulink are used to simulate the mechanical, aerodynamic and electrical aspects of wind turbine.

  10. An adaptive transmission protocol for managing dynamic shared states in collaborative surgical simulation.

    PubMed

    Qin, J; Choi, K S; Ho, Simon S M; Heng, P A

    2008-01-01

    A force prediction algorithm is proposed to facilitate virtual-reality (VR) based collaborative surgical simulation by reducing the effect of network latencies. State regeneration is used to correct the estimated prediction. This algorithm is incorporated into an adaptive transmission protocol in which auxiliary features such as view synchronization and coupling control are equipped to ensure the system consistency. We implemented this protocol using multi-threaded technique on a cluster-based network architecture.

  11. Robust Control Algorithm for a Two Cart System and an Inverted Pendulum

    NASA Technical Reports Server (NTRS)

    Wilson, Chris L.; Capo-Lugo, Pedro

    2011-01-01

    The Rectilinear Control System can be used to simulate a launch vehicle during liftoff. Several control schemes have been developed that can control different dynamic models of the rectilinear plant. A robust control algorithm was developed that can control a pendulum to maintain an inverted position. A fluid slosh tank will be attached to the pendulum in order to test robustness in the presence of unknown slosh characteristics. The rectilinear plant consists of a DC motor and three carts mounted in series. Each cart s weight can be adjusted with brass masses and the carts can be coupled with springs. The pendulum is mounted on the first cart and an adjustable air damper can be attached to the third cart if desired. Each cart and the pendulum have a quadrature encoder to determine position. Full state feedback was implemented in order to develop the control algorithm along with a state estimator to determine the velocity states of the system. A MATLAB program was used to convert the state space matrices from continuous time to discrete time. This program also used a desired phase margin and damping ratio to determine the feedback gain matrix that would be used in the LabVIEW program. This experiment will allow engineers to gain a better understanding of liquid propellant slosh dynamics, therefore enabling them to develop more robust control algorithms for launch vehicle systems

  12. Estimation of water quality parameters of inland and coastal waters with the use of a toolkit for processing of remote sensing data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dekker, A.G.; Hoogenboom, H.J.; Rijkeboer, M.

    1997-06-01

    Deriving thematic maps of water quality parameters from a remote sensing image requires a number of processing steps, such as calibration, atmospheric correction, air/water interface correction, and application of water quality algorithms. A prototype software environment has recently been developed that enables the user to perform and control these processing steps. Main parts of this environment are: (i) access to the MODTRAN 3 radiative transfer code for removing atmospheric and air-water interface influences, (ii) a tool for analyzing of algorithms for estimating water quality and (iii) a spectral database, containing apparent and inherent optical properties and associated water quality parameters.more » The use of the software is illustrated by applying implemented algorithms for estimating chlorophyll to data from a spectral library of Dutch inland waters with CHL ranging from 1 to 500 pg 1{sup -1}. The algorithms currently implemented in the Toolkit software are recommended for optically simple waters, but for optically complex waters development of more advanced retrieval methods is required.« less

  13. A sample implementation for parallelizing Divide-and-Conquer algorithms on the GPU.

    PubMed

    Mei, Gang; Zhang, Jiayin; Xu, Nengxiong; Zhao, Kunyang

    2018-01-01

    The strategy of Divide-and-Conquer (D&C) is one of the frequently used programming patterns to design efficient algorithms in computer science, which has been parallelized on shared memory systems and distributed memory systems. Tzeng and Owens specifically developed a generic paradigm for parallelizing D&C algorithms on modern Graphics Processing Units (GPUs). In this paper, by following the generic paradigm proposed by Tzeng and Owens, we provide a new and publicly available GPU implementation of the famous D&C algorithm, QuickHull, to give a sample and guide for parallelizing D&C algorithms on the GPU. The experimental results demonstrate the practicality of our sample GPU implementation. Our research objective in this paper is to present a sample GPU implementation of a classical D&C algorithm to help interested readers to develop their own efficient GPU implementations with fewer efforts.

  14. Advanced Traffic Signal Control Algorithms Phase II

    DOT National Transportation Integrated Search

    2015-12-15

    The goal of the project was to design and implement an in-vehicle system that calculates and provide speed advice to the driver of the vehicle, using Signal Phase and Timing (SPaT) and Geometric Information Description (GID) information of the signal...

  15. Defining asthma and assessing asthma outcomes using electronic health record data: a systematic scoping review.

    PubMed

    Al Sallakh, Mohammad A; Vasileiou, Eleftheria; Rodgers, Sarah E; Lyons, Ronan A; Sheikh, Aziz; Davies, Gwyneth A

    2017-06-01

    There is currently no consensus on approaches to defining asthma or assessing asthma outcomes using electronic health record-derived data. We explored these approaches in the recent literature and examined the clarity of reporting.We systematically searched for asthma-related articles published between January 1, 2014 and December 31, 2015, extracted the algorithms used to identify asthma patients and assess severity, control and exacerbations, and examined how the validity of these outcomes was justified.From 113 eligible articles, we found significant heterogeneity in the algorithms used to define asthma (n=66 different algorithms), severity (n=18), control (n=9) and exacerbations (n=24). For the majority of algorithms (n=106), validity was not justified. In the remaining cases, approaches ranged from using algorithms validated in the same databases to using nonvalidated algorithms that were based on clinical judgement or clinical guidelines. The implementation of these algorithms was suboptimally described overall.Although electronic health record-derived data are now widely used to study asthma, the approaches being used are significantly varied and are often underdescribed, rendering it difficult to assess the validity of studies and compare their findings. Given the substantial growth in this body of literature, it is crucial that scientific consensus is reached on the underlying definitions and algorithms. Copyright ©ERS 2017.

  16. Sensor Fusion to Estimate the Depth and Width of the Weld Bead in Real Time in GMAW Processes

    PubMed Central

    Sampaio, Renato Coral; Vargas, José A. R.

    2018-01-01

    The arc welding process is widely used in industry but its automatic control is limited by the difficulty in measuring the weld bead geometry and closing the control loop on the arc, which has adverse environmental conditions. To address this problem, this work proposes a system to capture the welding variables and send stimuli to the Gas Metal Arc Welding (GMAW) conventional process with a constant voltage power source, which allows weld bead geometry estimation with an open-loop control. Dynamic models of depth and width estimators of the weld bead are implemented based on the fusion of thermographic data, welding current and welding voltage in a multilayer perceptron neural network. The estimators were trained and validated off-line with data from a novel algorithm developed to extract the features of the infrared image, a laser profilometer was implemented to measure the bead dimensions and an image processing algorithm that measures depth by making a longitudinal cut in the weld bead. These estimators are optimized for embedded devices and real-time processing and were implemented on a Field-Programmable Gate Array (FPGA) device. Experiments to collect data, train and validate the estimators are presented and discussed. The results show that the proposed method is useful in industrial and research environments. PMID:29570698

  17. Sensor Fusion to Estimate the Depth and Width of the Weld Bead in Real Time in GMAW Processes.

    PubMed

    Bestard, Guillermo Alvarez; Sampaio, Renato Coral; Vargas, José A R; Alfaro, Sadek C Absi

    2018-03-23

    The arc welding process is widely used in industry but its automatic control is limited by the difficulty in measuring the weld bead geometry and closing the control loop on the arc, which has adverse environmental conditions. To address this problem, this work proposes a system to capture the welding variables and send stimuli to the Gas Metal Arc Welding (GMAW) conventional process with a constant voltage power source, which allows weld bead geometry estimation with an open-loop control. Dynamic models of depth and width estimators of the weld bead are implemented based on the fusion of thermographic data, welding current and welding voltage in a multilayer perceptron neural network. The estimators were trained and validated off-line with data from a novel algorithm developed to extract the features of the infrared image, a laser profilometer was implemented to measure the bead dimensions and an image processing algorithm that measures depth by making a longitudinal cut in the weld bead. These estimators are optimized for embedded devices and real-time processing and were implemented on a Field-Programmable Gate Array (FPGA) device. Experiments to collect data, train and validate the estimators are presented and discussed. The results show that the proposed method is useful in industrial and research environments.

  18. Parallel optimization algorithms and their implementation in VLSI design

    NASA Technical Reports Server (NTRS)

    Lee, G.; Feeley, J. J.

    1991-01-01

    Two new parallel optimization algorithms based on the simplex method are described. They may be executed by a SIMD parallel processor architecture and be implemented in VLSI design. Several VLSI design implementations are introduced. An application example is reported to demonstrate that the algorithms are effective.

  19. Zombie algorithms: a timesaving remote sensing systems engineering tool

    NASA Astrophysics Data System (ADS)

    Ardanuy, Philip E.; Powell, Dylan C.; Marley, Stephen

    2008-08-01

    In modern horror fiction, zombies are generally undead corpses brought back from the dead by supernatural or scientific means, and are rarely under anyone's direct control. They typically have very limited intelligence, and hunger for the flesh of the living [1]. Typical spectroradiometric or hyperspectral instruments providess calibrated radiances for a number of remote sensing algorithms. The algorithms typically must meet specified latency and availability requirements while yielding products at the required quality. These systems, whether research, operational, or a hybrid, are typically cost constrained. Complexity of the algorithms can be high, and may evolve and mature over time as sensor characterization changes, product validation occurs, and areas of scientific basis improvement are identified and completed. This suggests the need for a systems engineering process for algorithm maintenance that is agile, cost efficient, repeatable, and predictable. Experience on remote sensing science data systems suggests the benefits of "plug-n-play" concepts of operation. The concept, while intuitively simple, can be challenging to implement in practice. The use of zombie algorithms-empty shells that outwardly resemble the form, fit, and function of a "complete" algorithm without the implemented theoretical basis-provides the ground systems advantages equivalent to those obtained by integrating sensor engineering models onto the spacecraft bus. Combined with a mature, repeatable process for incorporating the theoretical basis, or scientific core, into the "head" of the zombie algorithm, along with associated scripting and registration, provides an easy "on ramp" for the rapid and low-risk integration of scientific applications into operational systems.

  20. The evaluation of the OSGLR algorithm for restructurable controls

    NASA Technical Reports Server (NTRS)

    Bonnice, W. F.; Wagner, E.; Hall, S. R.; Motyka, P.

    1986-01-01

    The detection and isolation of commercial aircraft control surface and actuator failures using the orthogonal series generalized likelihood ratio (OSGLR) test was evaluated. The OSGLR algorithm was chosen as the most promising algorithm based on a preliminary evaluation of three failure detection and isolation (FDI) algorithms (the detection filter, the generalized likelihood ratio test, and the OSGLR test) and a survey of the literature. One difficulty of analytic FDI techniques and the OSGLR algorithm in particular is their sensitivity to modeling errors. Therefore, methods of improving the robustness of the algorithm were examined with the incorporation of age-weighting into the algorithm being the most effective approach, significantly reducing the sensitivity of the algorithm to modeling errors. The steady-state implementation of the algorithm based on a single cruise linear model was evaluated using a nonlinear simulation of a C-130 aircraft. A number of off-nominal no-failure flight conditions including maneuvers, nonzero flap deflections, different turbulence levels and steady winds were tested. Based on the no-failure decision functions produced by off-nominal flight conditions, the failure detection performance at the nominal flight condition was determined. The extension of the algorithm to a wider flight envelope by scheduling the linear models used by the algorithm on dynamic pressure and flap deflection was also considered. Since simply scheduling the linear models over the entire flight envelope is unlikely to be adequate, scheduling of the steady-state implentation of the algorithm was briefly investigated.

  1. Outlier detection in contamination control

    NASA Astrophysics Data System (ADS)

    Weintraub, Jeffrey; Warrick, Scott

    2018-03-01

    A machine-learning model is presented that effectively partitions historical process data into outlier and inlier subpopulations. This is necessary in order to avoid using outlier data to build a model for detecting process instability. Exact control limits are given without recourse to approximations and the error characteristics of the control model are derived. A worked example for contamination control is presented along with the machine learning algorithm used and all the programming statements needed for implementation.

  2. Cooperative Search by UAV Teams: A Model Predictive Approach Using Dynamic Graphs

    DTIC Science & Technology

    2011-10-01

    decentralized processing and control architecture. SLAMEM asset models accurately represent the Unicorn UAV platforms and other standard military platforms in...IMPLEMENTATION The CGBMPS algorithm has been successfully field-tested using both Unicorn [27] and Raven [20] UAV platforms. This section describes...the hardware-software system setup and implementation used for testing with Unicorns , Toyon’s UAV test platform. We also present some results from the

  3. Comparison of predictive control methods for high consumption industrial furnace.

    PubMed

    Stojanovski, Goran; Stankovski, Mile

    2013-01-01

    We describe several predictive control approaches for high consumption industrial furnace control. These furnaces are major consumers in production industries, and reducing their fuel consumption and optimizing the quality of the products is one of the most important engineer tasks. In order to demonstrate the benefits from implementation of the advanced predictive control algorithms, we have compared several major criteria for furnace control. On the basis of the analysis, some important conclusions have been drawn.

  4. Optimizing Approximate Weighted Matching on Nvidia Kepler K40

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naim, Md; Manne, Fredrik; Halappanavar, Mahantesh

    Matching is a fundamental graph problem with numerous applications in science and engineering. While algorithms for computing optimal matchings are difficult to parallelize, approximation algorithms on the other hand generally compute high quality solutions and are amenable to parallelization. In this paper, we present efficient implementations of the current best algorithm for half-approximate weighted matching, the Suitor algorithm, on Nvidia Kepler K-40 platform. We develop four variants of the algorithm that exploit hardware features to address key challenges for a GPU implementation. We also experiment with different combinations of work assigned to a warp. Using an exhaustive set ofmore » $269$ inputs, we demonstrate that the new implementation outperforms the previous best GPU algorithm by $10$ to $$100\\times$$ for over $100$ instances, and from $100$ to $$1000\\times$$ for $15$ instances. We also demonstrate up to $$20\\times$$ speedup relative to $2$ threads, and up to $$5\\times$$ relative to $16$ threads on Intel Xeon platform with $16$ cores for the same algorithm. The new algorithms and implementations provided in this paper will have a direct impact on several applications that repeatedly use matching as a key compute kernel. Further, algorithm designs and insights provided in this paper will benefit other researchers implementing graph algorithms on modern GPU architectures.« less

  5. Refinement and evaluation of helicopter real-time self-adaptive active vibration controller algorithms

    NASA Technical Reports Server (NTRS)

    Davis, M. W.

    1984-01-01

    A Real-Time Self-Adaptive (RTSA) active vibration controller was used as the framework in developing a computer program for a generic controller that can be used to alleviate helicopter vibration. Based upon on-line identification of system parameters, the generic controller minimizes vibration in the fuselage by closed-loop implementation of higher harmonic control in the main rotor system. The new generic controller incorporates a set of improved algorithms that gives the capability to readily define many different configurations by selecting one of three different controller types (deterministic, cautious, and dual), one of two linear system models (local and global), and one or more of several methods of applying limits on control inputs (external and/or internal limits on higher harmonic pitch amplitude and rate). A helicopter rotor simulation analysis was used to evaluate the algorithms associated with the alternative controller types as applied to the four-bladed H-34 rotor mounted on the NASA Ames Rotor Test Apparatus (RTA) which represents the fuselage. After proper tuning all three controllers provide more effective vibration reduction and converge more quickly and smoothly with smaller control inputs than the initial RTSA controller (deterministic with external pitch-rate limiting). It is demonstrated that internal limiting of the control inputs a significantly improves the overall performance of the deterministic controller.

  6. Functional Based Adaptive and Fuzzy Sliding Controller for Non-Autonomous Active Suspension System

    NASA Astrophysics Data System (ADS)

    Huang, Shiuh-Jer; Chen, Hung-Yi

    In this paper, an adaptive sliding controller is developed for controlling a vehicle active suspension system. The functional approximation technique is employed to substitute the unknown non-autonomous functions of the suspension system and release the model-based requirement of sliding mode control algorithm. In order to improve the control performance and reduce the implementation problem, a fuzzy strategy with online learning ability is added to compensate the functional approximation error. The update laws of the functional approximation coefficients and the fuzzy tuning parameters are derived from the Lyapunov theorem to guarantee the system stability. The proposed controller is implemented on a quarter-car hydraulic actuating active suspension system test-rig. The experimental results show that the proposed controller suppresses the oscillation amplitude of the suspension system effectively.

  7. An efficient implementation of Forward-Backward Least-Mean-Square Adaptive Line Enhancers

    NASA Technical Reports Server (NTRS)

    Yeh, H.-G.; Nguyen, T. M.

    1995-01-01

    An efficient implementation of the forward-backward least-mean-square (FBLMS) adaptive line enhancer is presented in this article. Without changing the characteristics of the FBLMS adaptive line enhancer, the proposed implementation technique reduces multiplications by 25% and additions by 12.5% in two successive time samples in comparison with those operations of direct implementation in both prediction and weight control. The proposed FBLMS architecture and algorithm can be applied to digital receivers for enhancing signal-to-noise ratio to allow fast carrier acquisition and tracking in both stationary and nonstationary environments.

  8. Model predictive and reallocation problem for CubeSat fault recovery and attitude control

    NASA Astrophysics Data System (ADS)

    Franchi, Loris; Feruglio, Lorenzo; Mozzillo, Raffaele; Corpino, Sabrina

    2018-01-01

    In recent years, thanks to the increase of the know-how on machine-learning techniques and the advance of the computational capabilities of on-board processing, expensive computing algorithms, such as Model Predictive Control, have begun to spread in space applications even on small on-board processor. The paper presents an algorithm for an optimal fault recovery of a 3U CubeSat, developed in MathWorks Matlab & Simulink environment. This algorithm involves optimization techniques aiming at obtaining the optimal recovery solution, and involves a Model Predictive Control approach for the attitude control. The simulated system is a CubeSat in Low Earth Orbit: the attitude control is performed with three magnetic torquers and a single reaction wheel. The simulation neglects the errors in the attitude determination of the satellite, and focuses on the recovery approach and control method. The optimal recovery approach takes advantage of the properties of magnetic actuation, which gives the possibility of the redistribution of the control action when a fault occurs on a single magnetic torquer, even in absence of redundant actuators. In addition, the paper presents the results of the implementation of Model Predictive approach to control the attitude of the satellite.

  9. Error field optimization in DIII-D using extremum seeking control

    DOE PAGES

    Lanctot, M. J.; Olofsson, K. E. J.; Capella, M.; ...

    2016-06-03

    A closed-loop error field control algorithm is implemented in the Plasma Control System of the DIII-D tokamak and used to identify optimal control currents during a single plasma discharge. The algorithm, based on established extremum seeking control theory, exploits the link in tokamaks between maximizing the toroidal angular momentum and minimizing deleterious non-axisymmetric magnetic fields. Slowly-rotating n = 1 fields (the dither), generated by external coils, are used to perturb the angular momentum, monitored in real-time using a charge-exchange spectroscopy diagnostic. Simple signal processing of the rotation measurements extracts information about the rotation gradient with respect to the control coilmore » currents. This information is used to converge the control coil currents to a point that maximizes the toroidal angular momentum. The technique is well-suited for multi-coil, multi-harmonic error field optimizations in disruption sensitive devices as it does not require triggering locked tearing modes or plasma current disruptions. Control simulations highlight the importance of the initial search direction on the rate of the convergence, and identify future algorithm upgrades that may allow more rapid convergence that projects to convergence times in ITER on the order of tens of seconds.« less

  10. Overview of implementation of DARPA GPU program in SAIC

    NASA Astrophysics Data System (ADS)

    Braunreiter, Dennis; Furtek, Jeremy; Chen, Hai-Wen; Healy, Dennis

    2008-04-01

    This paper reviews the implementation of DARPA MTO STAP-BOY program for both Phase I and II conducted at Science Applications International Corporation (SAIC). The STAP-BOY program conducts fast covariance factorization and tuning techniques for space-time adaptive process (STAP) Algorithm Implementation on Graphics Processor unit (GPU) Architectures for Embedded Systems. The first part of our presentation on the DARPA STAP-BOY program will focus on GPU implementation and algorithm innovations for a prototype radar STAP algorithm. The STAP algorithm will be implemented on the GPU, using stream programming (from companies such as PeakStream, ATI Technologies' CTM, and NVIDIA) and traditional graphics APIs. This algorithm will include fast range adaptive STAP weight updates and beamforming applications, each of which has been modified to exploit the parallel nature of graphics architectures.

  11. PONS2train: tool for testing the MLP architecture and local traning methods for runoff forecast

    NASA Astrophysics Data System (ADS)

    Maca, P.; Pavlasek, J.; Pech, P.

    2012-04-01

    The purpose of presented poster is to introduce the PONS2train developed for runoff prediction via multilayer perceptron - MLP. The software application enables the implementation of 12 different MLP's transfer functions, comparison of 9 local training algorithms and finally the evaluation the MLP performance via 17 selected model evaluation metrics. The PONS2train software is written in C++ programing language. Its implementation consists of 4 classes. The NEURAL_NET and NEURON classes implement the MLP, the CRITERIA class estimates model evaluation metrics and for model performance evaluation via testing and validation datasets. The DATA_PATTERN class prepares the validation, testing and calibration datasets. The software application uses the LAPACK, BLAS and ARMADILLO C++ linear algebra libraries. The PONS2train implements the first order local optimization algorithms: standard on-line and batch back-propagation with learning rate combined with momentum and its variants with the regularization term, Rprop and standard batch back-propagation with variable momentum and learning rate. The second order local training algorithms represents: the Levenberg-Marquardt algorithm with and without regularization and four variants of scaled conjugate gradients. The other important PONS2train features are: the multi-run, the weight saturation control, early stopping of trainings, and the MLP weights analysis. The weights initialization is done via two different methods: random sampling from uniform distribution on open interval or Nguyen Widrow method. The data patterns can be transformed via linear and nonlinear transformation. The runoff forecast case study focuses on PONS2train implementation and shows the different aspects of the MLP training, the MLP architecture estimation, the neural network weights analysis and model uncertainty estimation.

  12. Fuel-injection control of S.I. engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, S.B.; Won, M.; Hedrick, J.K.

    1994-12-31

    It is known that about 50% of air pollutants comes from automotive engine exhaust, and mostly in a transient state operation. However, the wide operating range, the inherent nonlinearities of the induction process and the large modeling uncertainties make the design of the fuel-injection controller very difficult. Also, the unavoidable large time-delay between control action and measurement causes the problem of chattering. In this paper, an observer-based control algorithm based on sliding mode control technique is suggested for fast response and small amplitude chattering of the air-to-fuel ratio. A direct adaptive control using Gaussian networks is applied to the compensationmore » of transient fueling dynamics. The proposed controller is simple enough for on-line computation and is implemented on an automotive engine using a PC-386. The simulation and the experimental results show that this algorithm reduces the chattering magnitude considerably and is robust to modeling errors.« less

  13. Development of an analytical guidance algorithm for lunar descent

    NASA Astrophysics Data System (ADS)

    Chomel, Christina Tvrdik

    In recent years, NASA has indicated a desire to return humans to the moon. With NASA planning manned missions within the next couple of decades, the concept development for these lunar vehicles has begun. The guidance, navigation, and control (GN&C) computer programs that will perform the function of safely landing a spacecraft on the moon are part of that development. The lunar descent guidance algorithm takes the horizontally oriented spacecraft from orbital speeds hundreds of kilometers from the desired landing point to the landing point at an almost vertical orientation and very low speed. Existing lunar descent GN&C algorithms date back to the Apollo era with little work available for implementation since then. Though these algorithms met the criteria of the 1960's, they are cumbersome today. At the basis of the lunar descent phase are two elements: the targeting, which generates a reference trajectory, and the real-time guidance, which forces the spacecraft to fly that trajectory. The Apollo algorithm utilizes a complex, iterative, numerical optimization scheme for developing the reference trajectory. The real-time guidance utilizes this reference trajectory in the form of a quartic rather than a more general format to force the real-time trajectory errors to converge to zero; however, there exist no guarantees under any conditions for this convergence. The proposed algorithm implements a purely analytical targeting algorithm used to generate two-dimensional trajectories "on-the-fly"' or to retarget the spacecraft to another landing site altogether. It is based on the analytical solutions to the equations for speed, downrange, and altitude as a function of flight path angle and assumes two constant thrust acceleration curves. The proposed real-time guidance algorithm has at its basis the three-dimensional non-linear equations of motion and a control law that is proven to converge under certain conditions through Lyapunov analysis to a reference trajectory formatted as a function of downrange, altitude, speed, and flight path angle. The two elements of the guidance algorithm are joined in Monte Carlo analysis to prove their robustness to initial state dispersions and mass and thrust errors. The robustness of the retargeting algorithm is also demonstrated.

  14. Optimal Control for Fast and Robust Generation of Entangled States in Anisotropic Heisenberg Chains

    NASA Astrophysics Data System (ADS)

    Zhang, Xiong-Peng; Shao, Bin; Zou, Jian

    2017-05-01

    Motivated by some recent results of the optimal control (OC) theory, we study anisotropic XXZ Heisenberg spin-1/2 chains with control fields acting on a single spin, with the aim of exploring how maximally entangled state can be prepared. To achieve the goal, we use a numerical optimization algorithm (e.g., the Krotov algorithm, which was shown to be capable of reaching the quantum speed limit) to search an optimal set of control parameters, and then obtain OC pulses corresponding to the target fidelity. We find that the minimum time for implementing our target state depending on the anisotropy parameter Δ of the model. Finally, we analyze the robustness of the obtained results for the optimal fidelities and the effectiveness of the Krotov method under some realistic conditions.

  15. Single step optimization of manipulator maneuvers with variable structure control

    NASA Technical Reports Server (NTRS)

    Chen, N.; Dwyer, T. A. W., III

    1987-01-01

    One step ahead optimization has been recently proposed for spacecraft attitude maneuvers as well as for robot manipulator maneuvers. Such a technique yields a discrete time control algorithm implementable as a sequence of state-dependent, quadratic programming problems for acceleration optimization. Its sensitivity to model accuracy, for the required inversion of the system dynamics, is shown in this paper to be alleviated by a fast variable structure control correction, acting between the sampling intervals of the slow one step ahead discrete time acceleration command generation algorithm. The slow and fast looping concept chosen follows that recently proposed for optimal aiming strategies with variable structure control. Accelerations required by the VSC correction are reserved during the slow one step ahead command generation so that the ability to overshoot the sliding surface is guaranteed.

  16. Maximum power point tracking techniques for wind energy systems using three levels boost converter

    NASA Astrophysics Data System (ADS)

    Tran, Cuong Hung; Nollet, Frédéric; Essounbouli, Najib; Hamzaoui, Abdelaziz

    2018-05-01

    This paper presents modeling and simulation of three level Boost DC-DC converter in Wind Energy Conversion System (WECS). Three-level Boost converter has significant advantage compared to conventional Boost. A maximum power point tracking (MPPT) method for a variable speed wind turbine using permanent magnet synchronous generator (PMSG) is also presented. Simulation of three-level Boost converter topology with Perturb and Observe algorithm and Fuzzy Logic Control is implemented in MATLAB/SIMULINK. Results of this simulation show that the system with MPPT using fuzzy logic controller has better performance to the Perturb and Observe algorithm: fast response under changing conditions and small oscillation.

  17. ProjectQ: Compiling quantum programs for various backends

    NASA Astrophysics Data System (ADS)

    Haener, Thomas; Steiger, Damian S.; Troyer, Matthias

    In order to control quantum computers beyond the current generation, a high level quantum programming language and optimizing compilers will be essential. Therefore, we have developed ProjectQ - an open source software framework to facilitate implementing and running quantum algorithms both in software and on actual quantum hardware. Here, we introduce the backends available in ProjectQ. This includes a high-performance simulator and emulator to test and debug quantum algorithms, tools for resource estimation, and interfaces to several small-scale quantum devices. We demonstrate the workings of the framework and show how easily it can be further extended to control upcoming quantum hardware.

  18. Numerical Evaluation of the "Dual-Kernel Counter-flow" Matric Convolution Integral that Arises in Discrete/Continuous (D/C) Control Theory

    NASA Technical Reports Server (NTRS)

    Nixon, Douglas D.

    2009-01-01

    Discrete/Continuous (D/C) control theory is a new generalized theory of discrete-time control that expands the concept of conventional (exact) discrete-time control to create a framework for design and implementation of discretetime control systems that include a continuous-time command function generator so that actuator commands need not be constant between control decisions, but can be more generally defined and implemented as functions that vary with time across sample period. Because the plant/control system construct contains two linear subsystems arranged in tandem, a novel dual-kernel counter-flow convolution integral appears in the formulation. As part of the D/C system design and implementation process, numerical evaluation of that integral over the sample period is required. Three fundamentally different evaluation methods and associated algorithms are derived for the constant-coefficient case. Numerical results are matched against three available examples that have closed-form solutions.

  19. Control Software for a High-Performance Telerobot

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert J.; Finger, William

    2005-01-01

    A computer program for controlling a high-performance, force-reflecting telerobot has been developed. The goal in designing a telerobot-control system is to make the velocity of the slave match the master velocity, and the environmental force on the master match the force on the slave. Instability can arise from even small delays in propagation of signals between master and slave units. The present software, based on an impedance-shaping algorithm, ensures stability even in the presence of long delays. It implements a real-time algorithm that processes position and force measurements from the master and slave and represents the master/slave communication link as a transmission line. The algorithm also uses the history of the control force and the slave motion to estimate the impedance of the environment. The estimate of the impedance of the environment is used to shape the controlled slave impedance to match the transmission-line impedance. The estimate of the environmental impedance is used to match the master and transmission-line impedances and to estimate the slave/environment force in order to present that force immediately to the operator via the master unit.

  20. Parameter selection in limited data cone-beam CT reconstruction using edge-preserving total variation algorithms

    NASA Astrophysics Data System (ADS)

    Lohvithee, Manasavee; Biguri, Ander; Soleimani, Manuchehr

    2017-12-01

    There are a number of powerful total variation (TV) regularization methods that have great promise in limited data cone-beam CT reconstruction with an enhancement of image quality. These promising TV methods require careful selection of the image reconstruction parameters, for which there are no well-established criteria. This paper presents a comprehensive evaluation of parameter selection in a number of major TV-based reconstruction algorithms. An appropriate way of selecting the values for each individual parameter has been suggested. Finally, a new adaptive-weighted projection-controlled steepest descent (AwPCSD) algorithm is presented, which implements the edge-preserving function for CBCT reconstruction with limited data. The proposed algorithm shows significant robustness compared to three other existing algorithms: ASD-POCS, AwASD-POCS and PCSD. The proposed AwPCSD algorithm is able to preserve the edges of the reconstructed images better with fewer sensitive parameters to tune.

  1. Robust Online Hamiltonian Learning

    NASA Astrophysics Data System (ADS)

    Granade, Christopher; Ferrie, Christopher; Wiebe, Nathan; Cory, David

    2013-05-01

    In this talk, we introduce a machine-learning algorithm for the problem of inferring the dynamical parameters of a quantum system, and discuss this algorithm in the example of estimating the precession frequency of a single qubit in a static field. Our algorithm is designed with practicality in mind by including parameters that control trade-offs between the requirements on computational and experimental resources. The algorithm can be implemented online, during experimental data collection, or can be used as a tool for post-processing. Most importantly, our algorithm is capable of learning Hamiltonian parameters even when the parameters change from experiment-to-experiment, and also when additional noise processes are present and unknown. Finally, we discuss the performance of the our algorithm by appeal to the Cramer-Rao bound. This work was financially supported by the Canadian government through NSERC and CERC and by the United States government through DARPA. NW would like to acknowledge funding from USARO-DTO.

  2. Performance Evaluation of Multichannel Adaptive Algorithms for Local Active Noise Control

    NASA Astrophysics Data System (ADS)

    DE DIEGO, M.; GONZALEZ, A.

    2001-07-01

    This paper deals with the development of a multichannel active noise control (ANC) system inside an enclosed space. The purpose is to design a real practical system which works well in local ANC applications. Moreover, the algorithm implemented in the adaptive controller should be robust, of low computational complexity and it should manage to generate a uniform useful-size zone of quite in order to allow the head motion of a person seated on a seat inside a car. Experiments were carried out under semi-anechoic and listening room conditions to verify the successful implementation of the multichannel system. The developed prototype consists of an array of up to four microphones used as error sensors mounted on the headrest of a seat place inside the enclosure. One loudspeaker was used as single primary source and two secondary sources were placed facing the seat. The aim of this multichannel system is to reduce the sound pressure levels in an area around the error sensors, following a local control strategy. When using this technique, the cancellation points are not only the error sensor positions but an area around them, which is measured by using a monitoring microphone. Different multichannel adaptive algorithms for ANC have been analyzed and their performance verified. Multiple error algorithms are used in order to cancel out different types of primary noise (engine noise and random noise) with several configurations (up to four channels system). As an alternative to the multiple error LMS algorithm (multichannel version of the filtered-X LMS algorithm, MELMS), the least maximum mean squares (LMMS) and the scanning error-LMS algorithm have been developed in this work in order to reduce computational complexity and achieve a more uniform residual field. The ANC algorithms were programmed on a digital signal processing board equipped with a TMS320C40 floating point DSP processor. Measurements concerning real-time experiments on local noise reduction in two environments and at frequencies below 230 Hz are presented. Better noise levels attenuation is obtained in the semianechoic chamber due to the simplicity of the acoustic field. The size of the zone of quiet makes the system useful at relatively low frequencies and it is large enough to cover a listener's head movements. The spatial extent of the zones of quiet is generally observed to increase as the error sensors are moved away from the secondary source, they are put closer together or its number increases. In summary, different algorithms' performance and the viability of the multichannel system for local active noise control in real listening conditions are evaluated and some guidelines for designing such systems are then proposed.

  3. Development of modular control software for construction 3D-printer

    NASA Astrophysics Data System (ADS)

    Bazhanov, A.; Yudin, D.; Porkhalo, V.

    2018-03-01

    This article discusses the approach to developing modular software for real-time control of an industrial construction 3D printer. The proposed structure of a two-level software solution is implemented for a robotic system that moves in a Cartesian coordinate system with multi-axis interpolation. An algorithm for the formation and analysis of a path is considered to enable the most effective control of printing through dynamic programming.

  4. Neural networks for continuous online learning and control.

    PubMed

    Choy, Min Chee; Srinivasan, Dipti; Cheu, Ruey Long

    2006-11-01

    This paper proposes a new hybrid neural network (NN) model that employs a multistage online learning process to solve the distributed control problem with an infinite horizon. Various techniques such as reinforcement learning and evolutionary algorithm are used to design the multistage online learning process. For this paper, the infinite horizon distributed control problem is implemented in the form of real-time distributed traffic signal control for intersections in a large-scale traffic network. The hybrid neural network model is used to design each of the local traffic signal controllers at the respective intersections. As the state of the traffic network changes due to random fluctuation of traffic volumes, the NN-based local controllers will need to adapt to the changing dynamics in order to provide effective traffic signal control and to prevent the traffic network from becoming overcongested. Such a problem is especially challenging if the local controllers are used for an infinite horizon problem where online learning has to take place continuously once the controllers are implemented into the traffic network. A comprehensive simulation model of a section of the Central Business District (CBD) of Singapore has been developed using PARAMICS microscopic simulation program. As the complexity of the simulation increases, results show that the hybrid NN model provides significant improvement in traffic conditions when evaluated against an existing traffic signal control algorithm as well as a new, continuously updated simultaneous perturbation stochastic approximation-based neural network (SPSA-NN). Using the hybrid NN model, the total mean delay of each vehicle has been reduced by 78% and the total mean stoppage time of each vehicle has been reduced by 84% compared to the existing traffic signal control algorithm. This shows the efficacy of the hybrid NN model in solving large-scale traffic signal control problem in a distributed manner. Also, it indicates the possibility of using the hybrid NN model for other applications that are similar in nature as the infinite horizon distributed control problem.

  5. Distributed Containment Control for Multiple Unknown Second-Order Nonlinear Systems With Application to Networked Lagrangian Systems.

    PubMed

    Mei, Jie; Ren, Wei; Li, Bing; Ma, Guangfu

    2015-09-01

    In this paper, we consider the distributed containment control problem for multiagent systems with unknown nonlinear dynamics. More specifically, we focus on multiple second-order nonlinear systems and networked Lagrangian systems. We first study the distributed containment control problem for multiple second-order nonlinear systems with multiple dynamic leaders in the presence of unknown nonlinearities and external disturbances under a general directed graph that characterizes the interaction among the leaders and the followers. A distributed adaptive control algorithm with an adaptive gain design based on the approximation capability of neural networks is proposed. We present a necessary and sufficient condition on the directed graph such that the containment error can be reduced as small as desired. As a byproduct, the leaderless consensus problem is solved with asymptotical convergence. Because relative velocity measurements between neighbors are generally more difficult to obtain than relative position measurements, we then propose a distributed containment control algorithm without using neighbors' velocity information. A two-step Lyapunov-based method is used to study the convergence of the closed-loop system. Next, we apply the ideas to deal with the containment control problem for networked unknown Lagrangian systems under a general directed graph. All the proposed algorithms are distributed and can be implemented using only local measurements in the absence of communication. Finally, simulation examples are provided to show the effectiveness of the proposed control algorithms.

  6. Photoacoustic-Based-Close-Loop Temperature Control for Nanoparticle Hyperthermia.

    PubMed

    Xiaohua, Feng; Fei, Gao; Yuanjin, Zheng

    2015-07-01

    Hyperthermia therapy requires tight temperature control to achieve selective killing of cancerous tissue with minimal damage on surrounding healthy tissues. To this end, accurate temperature monitoring and subsequent heating control are critical. However, an economic, portable, and real-time temperature control solution is currently lacking. To bridge this gap, we present a novel portable close-loop system for hyperthermia temperature control, in which photoacoustic technique is proposed for noninvasive real-time temperature measurement. Exploiting the high sensitivity of photoacoustics, the temperature is monitored with an accuracy of around 0.18 °C and then fed back to a controller implemented on field programmable gate array (FPGA) for temperature control. Dubbed as portable hyperthermia feedback controller (pHFC), it stabilizes the temperature at preset values by regulating the hyperthermia power with a proportional-integral-derivative (PID) algorithm; and to facilitate digital implementation, the pHFC further converts the PID output into switching values (0 and 1) with the pulse width modulation (PWM) algorithm. Proof-of-concept hyperthermia experiments demonstrate that the pHFC system is able to bring the temperature from baseline to predetermined value with an accuracy of 0.3° and a negligible temperature overshoot. The pHFC can potentially be translated to clinical applications with customized hyperthermia system design. This paper can facilitate future efforts in seamless integration of close-loop temperature control solution and various clinical hyperthermia systems.

  7. A High Fuel Consumption Efficiency Management Scheme for PHEVs Using an Adaptive Genetic Algorithm

    PubMed Central

    Lee, Wah Ching; Tsang, Kim Fung; Chi, Hao Ran; Hung, Faan Hei; Wu, Chung Kit; Chui, Kwok Tai; Lau, Wing Hong; Leung, Yat Wah

    2015-01-01

    A high fuel efficiency management scheme for plug-in hybrid electric vehicles (PHEVs) has been developed. In order to achieve fuel consumption reduction, an adaptive genetic algorithm scheme has been designed to adaptively manage the energy resource usage. The objective function of the genetic algorithm is implemented by designing a fuzzy logic controller which closely monitors and resembles the driving conditions and environment of PHEVs, thus trading off between petrol versus electricity for optimal driving efficiency. Comparison between calculated results and publicized data shows that the achieved efficiency of the fuzzified genetic algorithm is better by 10% than existing schemes. The developed scheme, if fully adopted, would help reduce over 600 tons of CO2 emissions worldwide every day. PMID:25587974

  8. Use of the preconditioned conjugate gradient algorithm as a generic solver for mixed-model equations in animal breeding applications.

    PubMed

    Tsuruta, S; Misztal, I; Strandén, I

    2001-05-01

    Utility of the preconditioned conjugate gradient algorithm with a diagonal preconditioner for solving mixed-model equations in animal breeding applications was evaluated with 16 test problems. The problems included single- and multiple-trait analyses, with data on beef, dairy, and swine ranging from small examples to national data sets. Multiple-trait models considered low and high genetic correlations. Convergence was based on relative differences between left- and right-hand sides. The ordering of equations was fixed effects followed by random effects, with no special ordering within random effects. The preconditioned conjugate gradient program implemented with double precision converged for all models. However, when implemented in single precision, the preconditioned conjugate gradient algorithm did not converge for seven large models. The preconditioned conjugate gradient and successive overrelaxation algorithms were subsequently compared for 13 of the test problems. The preconditioned conjugate gradient algorithm was easy to implement with the iteration on data for general models. However, successive overrelaxation requires specific programming for each set of models. On average, the preconditioned conjugate gradient algorithm converged in three times fewer rounds of iteration than successive overrelaxation. With straightforward implementations, programs using the preconditioned conjugate gradient algorithm may be two or more times faster than those using successive overrelaxation. However, programs using the preconditioned conjugate gradient algorithm would use more memory than would comparable implementations using successive overrelaxation. Extensive optimization of either algorithm can influence rankings. The preconditioned conjugate gradient implemented with iteration on data, a diagonal preconditioner, and in double precision may be the algorithm of choice for solving mixed-model equations when sufficient memory is available and ease of implementation is essential.

  9. Active disturbance rejection control for output force creep characteristics of ionic polymer metal composites

    NASA Astrophysics Data System (ADS)

    Xiong, Yan; Chen, Yang; Sun, Zhiyong; Hao, Lina; Dong, Jie

    2014-07-01

    Ionic polymer metal composites (IPMCs) are a type of electroactive polymer (EAP) that can be used as both sensors and actuators. An IPMC has enormous potential application in the field of biomimetic robotics, medical devices, and so on. However, an IPMC actuator has a great number of disadvantages, such as creep and time-variation, making it vulnerable to external disturbances. In addition, the complex actuation mechanism makes it difficult to model and the demand of the control algorithm is laborious to implement. In this paper, we obtain a creep model of the IPMC by means of model identification based on the method of creep operator linear superposition. Although the mathematical model is not approximate to the IPMC accurate model, it is accurate enough to be used in MATLAB to prove the control algorithm. A controller based on the active disturbance rejection control (ADRC) method is designed to solve the drawbacks previously given. Because the ADRC controller is separate from the mathematical model of the controlled plant, the control algorithm has the ability to complete disturbance estimation and compensation. Some factors, such as all external disturbances, uncertainty factors, the inaccuracy of the identification model and different kinds of IPMCs, have little effect on controlling the output block force of the IPMC. Furthermore, we use the particle swarm optimization algorithm to adjust ADRC parameters so that the IPMC actuator can approach the desired block force with unknown external disturbances. Simulations and experimental examples validate the effectiveness of the ADRC controller.

  10. Glycaemic control and implementation of the ADA/EASD-2006 consensus algorithm in type 2 diabetes mellitus patients in primary care in Spain.

    PubMed

    Alvarez-Guisasola, F

    2014-01-01

    In 2006, the American Diabetes Association and the European Association for the Study of Diabetes established a consensus algorithm (ADA/EASD-2006) for the adjustment of drug therapy for type 2 diabetes mellitus (T2DM). To study glycaemic control in T2DM patients and the implementation of the ADA/EASD-2006 recommendations in primary care centres in Spain. Prospective observational study in 1194 patients with T2DM conducted in 250 primary care centres in Spain. Patients were assessed at study inclusion (V0) and at 3 (V1) and 6 months (V2) post baseline. Information was collected at the level of DM control, HbA(1c) < 7% (HbC) and implementation of the ADA/EASD-2006 guidelines. Type 2 diabetes mellitus patients (53% women; mean age 64.9 years) had a mean (SD) HbA(1c) 7.8 (1.4)% and HbC 25.2% at baseline, 95% of them were receiving oral antihyperglycaemic agents (AAs) only. At V1, HbA(1c) was 7.3 (1.1)% and HbC was 38.1%; 65.0% of patients were receiving oral AAs, 5.6% insulin and 27.9% oral AAs plus insulin. At V2, HbA(1c) was 7.1 (0.9)% and HbC was 48.0%; 57.1% of patients were receiving oral AAs, 5.0% insulin and 36.9% oral AAs plus insulin. The ADA/EASD-2006 algorithm was adhered to in 33% patients up to study month 3, vs. 17.2% throughout the entire 6-month period. In patients with T2DM seen in primary care, the HbA1c target was met in 48.0% after adjusting their AAs. However, this is not reflected in greater implementation of the ADA/EASD-2006 guidelines, which are adhered to in only 17%. © 2013 John Wiley & Sons Ltd.

  11. Distributed Kalman filtering compared to Fourier domain preconditioned conjugate gradient for laser guide star tomography on extremely large telescopes.

    PubMed

    Gilles, Luc; Massioni, Paolo; Kulcsár, Caroline; Raynaud, Henri-François; Ellerbroek, Brent

    2013-05-01

    This paper discusses the performance and cost of two computationally efficient Fourier-based tomographic wavefront reconstruction algorithms for wide-field laser guide star (LGS) adaptive optics (AO). The first algorithm is the iterative Fourier domain preconditioned conjugate gradient (FDPCG) algorithm developed by Yang et al. [Appl. Opt.45, 5281 (2006)], combined with pseudo-open-loop control (POLC). FDPCG's computational cost is proportional to N log(N), where N denotes the dimensionality of the tomography problem. The second algorithm is the distributed Kalman filter (DKF) developed by Massioni et al. [J. Opt. Soc. Am. A28, 2298 (2011)], which is a noniterative spatially invariant controller. When implemented in the Fourier domain, DKF's cost is also proportional to N log(N). Both algorithms are capable of estimating spatial frequency components of the residual phase beyond the wavefront sensor (WFS) cutoff frequency thanks to regularization, thereby reducing WFS spatial aliasing at the expense of more computations. We present performance and cost analyses for the LGS multiconjugate AO system under design for the Thirty Meter Telescope, as well as DKF's sensitivity to uncertainties in wind profile prior information. We found that, provided the wind profile is known to better than 10% wind speed accuracy and 20 deg wind direction accuracy, DKF, despite its spatial invariance assumptions, delivers a significantly reduced wavefront error compared to the static FDPCG minimum variance estimator combined with POLC. Due to its nonsequential nature and high degree of parallelism, DKF is particularly well suited for real-time implementation on inexpensive off-the-shelf graphics processing units.

  12. A set-associative, fault-tolerant cache design

    NASA Technical Reports Server (NTRS)

    Lamet, Dan; Frenzel, James F.

    1992-01-01

    The design of a defect-tolerant control circuit for a set-associative cache memory is presented. The circuit maintains the stack ordering necessary for implementing the Least Recently Used (LRU) replacement algorithm. A discussion of programming techniques for bypassing defective blocks is included.

  13. A general heuristic for genome rearrangement problems.

    PubMed

    Dias, Ulisses; Galvão, Gustavo Rodrigues; Lintzmayer, Carla Négri; Dias, Zanoni

    2014-06-01

    In this paper, we present a general heuristic for several problems in the genome rearrangement field. Our heuristic does not solve any problem directly, it is rather used to improve the solutions provided by any non-optimal algorithm that solve them. Therefore, we have implemented several algorithms described in the literature and several algorithms developed by ourselves. As a whole, we implemented 23 algorithms for 9 well known problems in the genome rearrangement field. A total of 13 algorithms were implemented for problems that use the notions of prefix and suffix operations. In addition, we worked on 5 algorithms for the classic problem of sorting by transposition and we conclude the experiments by presenting results for 3 approximation algorithms for the sorting by reversals and transpositions problem and 2 approximation algorithms for the sorting by reversals problem. Another algorithm with better approximation ratio can be found for the last genome rearrangement problem, but it is purely theoretical with no practical implementation. The algorithms we implemented in addition to our heuristic lead to the best practical results in each case. In particular, we were able to improve results on the sorting by transpositions problem, which is a very special case because many efforts have been made to generate algorithms with good results in practice and some of these algorithms provide results that equal the optimum solutions in many cases. Our source codes and benchmarks are freely available upon request from the authors so that it will be easier to compare new approaches against our results.

  14. Adaptive control based on retrospective cost optimization

    NASA Technical Reports Server (NTRS)

    Bernstein, Dennis S. (Inventor); Santillo, Mario A. (Inventor)

    2012-01-01

    A discrete-time adaptive control law for stabilization, command following, and disturbance rejection that is effective for systems that are unstable, MIMO, and/or nonminimum phase. The adaptive control algorithm includes guidelines concerning the modeling information needed for implementation. This information includes the relative degree, the first nonzero Markov parameter, and the nonminimum-phase zeros. Except when the plant has nonminimum-phase zeros whose absolute value is less than the plant's spectral radius, the required zero information can be approximated by a sufficient number of Markov parameters. No additional information about the poles or zeros need be known. Numerical examples are presented to illustrate the algorithm's effectiveness in handling systems with errors in the required modeling data, unknown latency, sensor noise, and saturation.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed Abdelrahman; roger Haggard; Wagdy Mahmoud

    The final goal of this project was the development of a system that is capable of controlling an industrial process effectively through the integration of information obtained through intelligent sensor fusion and intelligent control technologies. The industry of interest in this project was the metal casting industry as represented by cupola iron-melting furnaces. However, the developed technology is of generic type and hence applicable to several other industries. The system was divided into the following four major interacting components: 1. An object oriented generic architecture to integrate the developed software and hardware components @. Generic algorithms for intelligent signal analysismore » and sensor and model fusion 3. Development of supervisory structure for integration of intelligent sensor fusion data into the controller 4. Hardware implementation of intelligent signal analysis and fusion algorithms« less

  16. The design of mobile robot control system for the aged and the disabled

    NASA Astrophysics Data System (ADS)

    Qiang, Wang; Lei, Shi; Xiang, Gao; Jin, Zhang

    2017-01-01

    This paper designs a control system of mobile robot for the aged and the disabled, which consists of two main parts: human-computer interaction and drive control module. The data of the two parts is transferred via universal asynchronous receiver/transmitter. In the former part, the speed and direction information of the mobile robot is obtained by hall joystick. In the latter part, the electronic differential algorithm is developed to implement the robot mobile function by driving two-wheel motors. In order to improve the comfort of the robot when speed or direction is changed, the least squares algorithm is used to optimize the speed characteristic curves of the two motors. Experimental results have verified the effectiveness of the designed system.

  17. Test results of flight guidance for fuel conservative descents in a time-based metered air traffic environment. [terminal configured vehicle

    NASA Technical Reports Server (NTRS)

    Knox, C. E.; Person, L. H., Jr.

    1981-01-01

    The NASA developed, implemented, and flight tested a flight management algorithm designed to improve the accuracy of delivering an airplane in a fuel-conservative manner to a metering fix at a time designated by air traffic control. This algorithm provides a 3D path with time control (4D) for the TCV B-737 airplane to make an idle-thrust, clean configured (landing gear up, flaps zero, and speed brakes retracted) descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path is calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithms are described and flight test results are presented.

  18. Optimal control of hybrid qubits: Implementing the quantum permutation algorithm

    NASA Astrophysics Data System (ADS)

    Rivera-Ruiz, C. M.; de Lima, E. F.; Fanchini, F. F.; Lopez-Richard, V.; Castelano, L. K.

    2018-03-01

    The optimal quantum control theory is employed to determine electric pulses capable of producing quantum gates with a fidelity higher than 0.9997, when noise is not taken into account. Particularly, these quantum gates were chosen to perform the permutation algorithm in hybrid qubits in double quantum dots (DQDs). The permutation algorithm is an oracle based quantum algorithm that solves the problem of the permutation parity faster than a classical algorithm without the necessity of entanglement between particles. The only requirement for achieving the speedup is the use of a one-particle quantum system with at least three levels. The high fidelity found in our results is closely related to the quantum speed limit, which is a measure of how fast a quantum state can be manipulated. Furthermore, we model charge noise by considering an average over the optimal field centered at different values of the reference detuning, which follows a Gaussian distribution. When the Gaussian spread is of the order of 5 μ eV (10% of the correct value), the fidelity is still higher than 0.95. Our scheme also can be used for the practical realization of different quantum algorithms in DQDs.

  19. Set-Membership Identification for Robust Control Design

    DTIC Science & Technology

    1993-04-28

    system G can be regarded as having no memory in (18) in terms of G and 0, we get of events prior to t = 1, the initial time. Roughly, this means all...algorithm in [1]. Also in our application, the size of the matrices involved is quite large and special attention should be paid to the memory ...management and algorithmic implementation; otherwise huge amounts of memory will be required to perform the optimization even for modest values of M and N

  20. A Computerized Decision Support System for Depression in Primary Care

    PubMed Central

    Kurian, Benji T.; Trivedi, Madhukar H.; Grannemann, Bruce D.; Claassen, Cynthia A.; Daly, Ella J.; Sunderajan, Prabha

    2009-01-01

    Objective: In 2004, results from The Texas Medication Algorithm Project (TMAP) showed better clinical outcomes for patients whose physicians adhered to a paper-and-pencil algorithm compared to patients who received standard clinical treatment for major depressive disorder (MDD). However, implementation of and fidelity to the treatment algorithm among various providers was observed to be inadequate. A computerized decision support system (CDSS) for the implementation of the TMAP algorithm for depression has since been developed to improve fidelity and adherence to the algorithm. Method: This was a 2-group, parallel design, clinical trial (one patient group receiving MDD treatment from physicians using the CDSS and the other patient group receiving usual care) conducted at 2 separate primary care clinics in Texas from March 2005 through June 2006. Fifty-five patients with MDD (DSM-IV criteria) with no significant difference in disease characteristics were enrolled, 32 of whom were treated by physicians using CDSS and 23 were treated by physicians using usual care. The study's objective was to evaluate the feasibility and efficacy of implementing a CDSS to assist physicians acutely treating patients with MDD compared to usual care in primary care. Primary efficacy outcomes for depression symptom severity were based on the 17-item Hamilton Depression Rating Scale (HDRS17) evaluated by an independent rater. Results: Patients treated by physicians employing CDSS had significantly greater symptom reduction, based on the HDRS17, than patients treated with usual care (P < .001). Conclusions: The CDSS algorithm, utilizing measurement-based care, was superior to usual care for patients with MDD in primary care settings. Larger randomized controlled trials are needed to confirm these findings. Trial Registration: clinicaltrials.gov Identifier: NCT00551083 PMID:19750065

  1. A computerized decision support system for depression in primary care.

    PubMed

    Kurian, Benji T; Trivedi, Madhukar H; Grannemann, Bruce D; Claassen, Cynthia A; Daly, Ella J; Sunderajan, Prabha

    2009-01-01

    In 2004, results from The Texas Medication Algorithm Project (TMAP) showed better clinical outcomes for patients whose physicians adhered to a paper-and-pencil algorithm compared to patients who received standard clinical treatment for major depressive disorder (MDD). However, implementation of and fidelity to the treatment algorithm among various providers was observed to be inadequate. A computerized decision support system (CDSS) for the implementation of the TMAP algorithm for depression has since been developed to improve fidelity and adherence to the algorithm. This was a 2-group, parallel design, clinical trial (one patient group receiving MDD treatment from physicians using the CDSS and the other patient group receiving usual care) conducted at 2 separate primary care clinics in Texas from March 2005 through June 2006. Fifty-five patients with MDD (DSM-IV criteria) with no significant difference in disease characteristics were enrolled, 32 of whom were treated by physicians using CDSS and 23 were treated by physicians using usual care. The study's objective was to evaluate the feasibility and efficacy of implementing a CDSS to assist physicians acutely treating patients with MDD compared to usual care in primary care. Primary efficacy outcomes for depression symptom severity were based on the 17-item Hamilton Depression Rating Scale (HDRS(17)) evaluated by an independent rater. Patients treated by physicians employing CDSS had significantly greater symptom reduction, based on the HDRS(17), than patients treated with usual care (P < .001). The CDSS algorithm, utilizing measurement-based care, was superior to usual care for patients with MDD in primary care settings. Larger randomized controlled trials are needed to confirm these findings. clinicaltrials.gov Identifier: NCT00551083.

  2. Speech recognition for embedded automatic positioner for laparoscope

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Yin, Qingyun; Wang, Yi; Yu, Daoyin

    2014-07-01

    In this paper a novel speech recognition methodology based on Hidden Markov Model (HMM) is proposed for embedded Automatic Positioner for Laparoscope (APL), which includes a fixed point ARM processor as the core. The APL system is designed to assist the doctor in laparoscopic surgery, by implementing the specific doctor's vocal control to the laparoscope. Real-time respond to the voice commands asks for more efficient speech recognition algorithm for the APL. In order to reduce computation cost without significant loss in recognition accuracy, both arithmetic and algorithmic optimizations are applied in the method presented. First, depending on arithmetic optimizations most, a fixed point frontend for speech feature analysis is built according to the ARM processor's character. Then the fast likelihood computation algorithm is used to reduce computational complexity of the HMM-based recognition algorithm. The experimental results show that, the method shortens the recognition time within 0.5s, while the accuracy higher than 99%, demonstrating its ability to achieve real-time vocal control to the APL.

  3. Nonlinear Dynamic Model-Based Multiobjective Sensor Network Design Algorithm for a Plant with an Estimator-Based Control System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Prokash; Bhattacharyya, Debangsu; Turton, Richard

    Here, a novel sensor network design (SND) algorithm is developed for maximizing process efficiency while minimizing sensor network cost for a nonlinear dynamic process with an estimator-based control system. The multiobjective optimization problem is solved following a lexicographic approach where the process efficiency is maximized first followed by minimization of the sensor network cost. The partial net present value, which combines the capital cost due to the sensor network and the operating cost due to deviation from the optimal efficiency, is proposed as an alternative objective. The unscented Kalman filter is considered as the nonlinear estimator. The large-scale combinatorial optimizationmore » problem is solved using a genetic algorithm. The developed SND algorithm is applied to an acid gas removal (AGR) unit as part of an integrated gasification combined cycle (IGCC) power plant with CO 2 capture. Due to the computational expense, a reduced order nonlinear model of the AGR process is identified and parallel computation is performed during implementation.« less

  4. Nonlinear Dynamic Model-Based Multiobjective Sensor Network Design Algorithm for a Plant with an Estimator-Based Control System

    DOE PAGES

    Paul, Prokash; Bhattacharyya, Debangsu; Turton, Richard; ...

    2017-06-06

    Here, a novel sensor network design (SND) algorithm is developed for maximizing process efficiency while minimizing sensor network cost for a nonlinear dynamic process with an estimator-based control system. The multiobjective optimization problem is solved following a lexicographic approach where the process efficiency is maximized first followed by minimization of the sensor network cost. The partial net present value, which combines the capital cost due to the sensor network and the operating cost due to deviation from the optimal efficiency, is proposed as an alternative objective. The unscented Kalman filter is considered as the nonlinear estimator. The large-scale combinatorial optimizationmore » problem is solved using a genetic algorithm. The developed SND algorithm is applied to an acid gas removal (AGR) unit as part of an integrated gasification combined cycle (IGCC) power plant with CO 2 capture. Due to the computational expense, a reduced order nonlinear model of the AGR process is identified and parallel computation is performed during implementation.« less

  5. A hierarchical framework for air traffic control

    NASA Astrophysics Data System (ADS)

    Roy, Kaushik

    Air travel in recent years has been plagued by record delays, with over $8 billion in direct operating costs being attributed to 100 million flight delay minutes in 2007. Major contributing factors to delay include weather, congestion, and aging infrastructure; the Next Generation Air Transportation System (NextGen) aims to alleviate these delays through an upgrade of the air traffic control system. Changes to large-scale networked systems such as air traffic control are complicated by the need for coordinated solutions over disparate temporal and spatial scales. Individual air traffic controllers must ensure aircraft maintain safe separation locally with a time horizon of seconds to minutes, whereas regional plans are formulated to efficiently route flows of aircraft around weather and congestion on the order of every hour. More efficient control algorithms that provide a coordinated solution are required to safely handle a larger number of aircraft in a fixed amount of airspace. Improved estimation algorithms are also needed to provide accurate aircraft state information and situational awareness for human controllers. A hierarchical framework is developed to simultaneously solve the sometimes conflicting goals of regional efficiency and local safety. Careful attention is given in defining the interactions between the layers of this hierarchy. In this way, solutions to individual air traffic problems can be targeted and implemented as needed. First, the regional traffic flow management problem is posed as an optimization problem and shown to be NP-Hard. Approximation methods based on aggregate flow models are developed to enable real-time implementation of algorithms that reduce the impact of congestion and adverse weather. Second, the local trajectory design problem is solved using a novel slot-based sector model. This model is used to analyze sector capacity under varying traffic patterns, providing a more comprehensive understanding of how increased automation in NextGen will affect the overall performance of air traffic control. The dissertation also provides solutions to several key estimation problems that support corresponding control tasks. Throughout the development of these estimation algorithms, aircraft motion is modeled using hybrid systems, which encapsulate both the discrete flight mode of an aircraft and the evolution of continuous states such as position and velocity. The target-tracking problem is posed as one of hybrid state estimation, and two new algorithms are developed to exploit structure specific to aircraft motion, especially near airports. First, discrete mode evolution is modeled using state-dependent transitions, in which the likelihood of changing flight modes is dependent on aircraft state. Second, an estimator is designed for systems with limited mode changes, including arrival aircraft. Improved target tracking facilitates increased safety in collision avoidance and trajectory design problems. A multiple-target tracking and identity management algorithm is developed to improve situational awareness for controllers about multiple maneuvering targets in a congested region. Finally, tracking algorithms are extended to predict aircraft landing times; estimated time of arrival prediction is one example of important decision support information for air traffic control.

  6. Hardware architecture design of image restoration based on time-frequency domain computation

    NASA Astrophysics Data System (ADS)

    Wen, Bo; Zhang, Jing; Jiao, Zipeng

    2013-10-01

    The image restoration algorithms based on time-frequency domain computation is high maturity and applied widely in engineering. To solve the high-speed implementation of these algorithms, the TFDC hardware architecture is proposed. Firstly, the main module is designed, by analyzing the common processing and numerical calculation. Then, to improve the commonality, the iteration control module is planed for iterative algorithms. In addition, to reduce the computational cost and memory requirements, the necessary optimizations are suggested for the time-consuming module, which include two-dimensional FFT/IFFT and the plural calculation. Eventually, the TFDC hardware architecture is adopted for hardware design of real-time image restoration system. The result proves that, the TFDC hardware architecture and its optimizations can be applied to image restoration algorithms based on TFDC, with good algorithm commonality, hardware realizability and high efficiency.

  7. Implementation and performance evaluation of acoustic denoising algorithms for UAV

    NASA Astrophysics Data System (ADS)

    Chowdhury, Ahmed Sony Kamal

    Unmanned Aerial Vehicles (UAVs) have become popular alternative for wildlife monitoring and border surveillance applications. Elimination of the UAV's background noise and classifying the target audio signal effectively are still a major challenge. The main goal of this thesis is to remove UAV's background noise by means of acoustic denoising techniques. Existing denoising algorithms, such as Adaptive Least Mean Square (LMS), Wavelet Denoising, Time-Frequency Block Thresholding, and Wiener Filter, were implemented and their performance evaluated. The denoising algorithms were evaluated for average Signal to Noise Ratio (SNR), Segmental SNR (SSNR), Log Likelihood Ratio (LLR), and Log Spectral Distance (LSD) metrics. To evaluate the effectiveness of the denoising algorithms on classification of target audio, we implemented Support Vector Machine (SVM) and Naive Bayes classification algorithms. Simulation results demonstrate that LMS and Discrete Wavelet Transform (DWT) denoising algorithm offered superior performance than other algorithms. Finally, we implemented the LMS and DWT algorithms on a DSP board for hardware evaluation. Experimental results showed that LMS algorithm's performance is robust compared to DWT for various noise types to classify target audio signals.

  8. Imitative modeling automatic system Control of steam pressure in the main steam collector with the influence on the main Servomotor steam turbine

    NASA Astrophysics Data System (ADS)

    Andriushin, A. V.; Zverkov, V. P.; Kuzishchin, V. F.; Ryzhkov, O. S.; Sabanin, V. R.

    2017-11-01

    The research and setting results of steam pressure in the main steam collector “Do itself” automatic control system (ACS) with high-speed feedback on steam pressure in the turbine regulating stage are presented. The ACS setup is performed on the simulation model of the controlled object developed for this purpose with load-dependent static and dynamic characteristics and a non-linear control algorithm with pulse control of the turbine main servomotor. A method for tuning nonlinear ACS with a numerical algorithm for multiparametric optimization and a procedure for separate dynamic adjustment of control devices in a two-loop ACS are proposed and implemented. It is shown that the nonlinear ACS adjusted with the proposed method with the regulators constant parameters ensures reliable and high-quality operation without the occurrence of oscillations in the transient processes the operating range of the turbine loads.

  9. Preliminary input to the space shuttle reaction control subsystem failure detection and identification software requirements (uncontrolled)

    NASA Technical Reports Server (NTRS)

    Bergmann, E.

    1976-01-01

    The current baseline method and software implementation of the space shuttle reaction control subsystem failure detection and identification (RCS FDI) system is presented. This algorithm is recommended for conclusion in the redundancy management (RM) module of the space shuttle guidance, navigation, and control system. Supporting software is presented, and recommended for inclusion in the system management (SM) and display and control (D&C) systems. RCS FDI uses data from sensors in the jets, in the manifold isolation valves, and in the RCS fuel and oxidizer storage tanks. A list of jet failures and fuel imbalance warnings is generated for use by the jet selection algorithm of the on-orbit and entry flight control systems, and to inform the crew and ground controllers of RCS failure status. Manifold isolation valve close commands are generated in the event of failed on or leaking jets to prevent loss of large quantities of RCS fuel.

  10. Autorotation flight control system

    NASA Technical Reports Server (NTRS)

    Bachelder, Edward N. (Inventor); Aponso, Bimal L. (Inventor); Lee, Dong-Chan (Inventor)

    2011-01-01

    The present invention provides computer implemented methodology that permits the safe landing and recovery of rotorcraft following engine failure. With this invention successful autorotations may be performed from well within the unsafe operating area of the height-velocity profile of a helicopter by employing the fast and robust real-time trajectory optimization algorithm that commands control motion through an intuitive pilot display, or directly in the case of autonomous rotorcraft. The algorithm generates optimal trajectories and control commands via the direct-collocation optimization method, solved using a nonlinear programming problem solver. The control inputs computed are collective pitch and aircraft pitch, which are easily tracked and manipulated by the pilot or converted to control actuator commands for automated operation during autorotation in the case of an autonomous rotorcraft. The formulation of the optimal control problem has been carefully tailored so the solutions resemble those of an expert pilot, accounting for the performance limitations of the rotorcraft and safety concerns.

  11. Gallium arsenide processing elements for motion estimation full-search algorithm

    NASA Astrophysics Data System (ADS)

    Lopez, Jose F.; Cortes, P.; Lopez, S.; Sarmiento, Roberto

    2001-11-01

    The Block-Matching motion estimation algorithm (BMA) is the most popular method for motion-compensated coding of image sequence. Among the several possible searching methods to compute this algorithm, the full-search BMA (FBMA) has obtained great interest from the scientific community due to its regularity, optimal solution and low control overhead which simplifies its VLSI realization. On the other hand, its main drawback is the demand of an enormous amount of computation. There are different ways of overcoming this factor, being the use of advanced technologies, such as Gallium Arsenide (GaAs), the one adopted in this article together with different techniques to reduce area overhead. By exploiting GaAs properties, improvements can be obtained in the implementation of feasible systems for real time video compression architectures. Different primitives used in the implementation of processing elements (PE) for a FBMA scheme are presented. As a result, Pes running at 270 MHz have been developed in order to study its functionality and performance. From these results, an implementation for MPEG applications is proposed, leading to an architecture running at 145 MHz with a power dissipation of 3.48 W and an area of 11.5 mm2.

  12. Global interrupt and barrier networks

    DOEpatents

    Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E; Heidelberger, Philip; Kopcsay, Gerard V.; Steinmacher-Burow, Burkhard D.; Takken, Todd E.

    2008-10-28

    A system and method for generating global asynchronous signals in a computing structure. Particularly, a global interrupt and barrier network is implemented that implements logic for generating global interrupt and barrier signals for controlling global asynchronous operations performed by processing elements at selected processing nodes of a computing structure in accordance with a processing algorithm; and includes the physical interconnecting of the processing nodes for communicating the global interrupt and barrier signals to the elements via low-latency paths. The global asynchronous signals respectively initiate interrupt and barrier operations at the processing nodes at times selected for optimizing performance of the processing algorithms. In one embodiment, the global interrupt and barrier network is implemented in a scalable, massively parallel supercomputing device structure comprising a plurality of processing nodes interconnected by multiple independent networks, with each node including one or more processing elements for performing computation or communication activity as required when performing parallel algorithm operations. One multiple independent network includes a global tree network for enabling high-speed global tree communications among global tree network nodes or sub-trees thereof. The global interrupt and barrier network may operate in parallel with the global tree network for providing global asynchronous sideband signals.

  13. A Lightweight White-Box Symmetric Encryption Algorithm against Node Capture for WSNs †

    PubMed Central

    Shi, Yang; Wei, Wujing; He, Zongjian

    2015-01-01

    Wireless Sensor Networks (WSNs) are often deployed in hostile environments and, thus, nodes can be potentially captured by an adversary. This is a typical white-box attack context, i.e., the adversary may have total visibility of the implementation of the build-in cryptosystem and full control over its execution platform. Handling white-box attacks in a WSN scenario is a challenging task. Existing encryption algorithms for white-box attack contexts require large memory footprint and, hence, are not applicable for wireless sensor networks scenarios. As a countermeasure against the threat in this context, in this paper, we propose a class of lightweight secure implementations of the symmetric encryption algorithm SMS4. The basic idea of our approach is to merge several steps of the round function of SMS4 into table lookups, blended by randomly generated mixing bijections. Therefore, the size of the implementations are significantly reduced while keeping the same security efficiency. The security and efficiency of the proposed solutions are theoretically analyzed. Evaluation shows our solutions satisfy the requirement of sensor nodes in terms of limited memory size and low computational costs. PMID:26007737

  14. Proposal for An Algorithm for Screening for Undernutrition in Hospitalized Children.

    PubMed

    Huysentruyt, Koen; De Schepper, Jean; Bontems, Patrick; Alliet, Philippe; Peeters, Ellen; Roelants, Mathieu; Van Biervliet, Stephanie; Hauser, Bruno; Vandenplas, Yvan

    2016-11-01

    The prevalence of disease-related undernutrition in hospitalized children has not decreased significantly in the last decades in Europe. A recent large multicentric European study reported a percentage of underweight children ranging across countries from 4.0% to 9.3%. Nutritional screening has been put forward as a strategy to detect and prevent undernutrition in hospitalized children. It allows timely implementation of adequate nutritional support and prevents further nutritional deterioration of hospitalized children. In this article, a hands-on practical guideline for the implementation of a nutritional care program in hospitalized children is provided. The difference between nutritional status (anthropometry with or without additional technical investigations) at admission and nutritional risk (the risk of the need for a nutritional intervention or the risk for nutritional deterioration during hospital stay) is the focus of this article. Based on the quality control circle principle of Deming, a nutritional care algorithm, with detailed instructions specific for the pediatric population was developed and implementation in daily practice is proposed. Further research is required to prove the applicability and the merit of this algorithm. It can, however, serve as a basis to provide European or even wider guidelines.

  15. Implementation of MPEG-2 encoder to multiprocessor system using multiple MVPs (TMS320C80)

    NASA Astrophysics Data System (ADS)

    Kim, HyungSun; Boo, Kenny; Chung, SeokWoo; Choi, Geon Y.; Lee, YongJin; Jeon, JaeHo; Park, Hyun Wook

    1997-05-01

    This paper presents the efficient algorithm mapping for the real-time MPEG-2 encoding on the KAIST image computing system (KICS), which has a parallel architecture using five multimedia video processors (MVPs). The MVP is a general purpose digital signal processor (DSP) of Texas Instrument. It combines one floating-point processor and four fixed- point DSPs on a single chip. The KICS uses the MVP as a primary processing element (PE). Two PEs form a cluster, and there are two processing clusters in the KICS. Real-time MPEG-2 encoder is implemented through the spatial and the functional partitioning strategies. Encoding process of spatially partitioned half of the video input frame is assigned to ne processing cluster. Two PEs perform the functionally partitioned MPEG-2 encoding tasks in the pipelined operation mode. One PE of a cluster carries out the transform coding part and the other performs the predictive coding part of the MPEG-2 encoding algorithm. One MVP among five MVPs is used for system control and interface with host computer. This paper introduces an implementation of the MPEG-2 algorithm with a parallel processing architecture.

  16. A Digital Control Algorithm for Magnetic Suspension Systems

    NASA Technical Reports Server (NTRS)

    Britton, Thomas C.

    1996-01-01

    An ongoing program exists to investigate and develop magnetic suspension technologies and modelling techniques at NASA Langley Research Center. Presently, there is a laboratory-scale large air-gap suspension system capable of five degree-of-freedom (DOF) control that is operational and a six DOF system that is under development. Those systems levitate a cylindrical element containing a permanent magnet core above a planar array of electromagnets, which are used for levitation and control purposes. In order to evaluate various control approaches with those systems, the Generic Real-Time State-Space Controller (GRTSSC) software package was developed. That control software package allows the user to implement multiple control methods and allows for varied input/output commands. The development of the control algorithm is presented. The desired functionality of the software is discussed, including the ability to inject noise on sensor inputs and/or actuator outputs. Various limitations, common issues, and trade-offs are discussed including data format precision; the drawbacks of using either Direct Memory Access (DMA), interrupts, or program control techniques for data acquisition; and platform dependent concerns related to the portability of the software, such as memory addressing formats. Efforts to minimize overall controller loop-rate and a comparison of achievable controller sample rates are discussed. The implementation of a modular code structure is presented. The format for the controller input data file and the noise information file is presented. Controller input vector information is available for post-processing by mathematical analysis software such as MATLAB1.

  17. Active feedforward noise control and signal tracking of headsets: Electroacoustic analysis and system implementation.

    PubMed

    Bai, Mingsian R; Pan, Weichi; Chen, Hungyu

    2018-03-01

    Active noise control (ANC) of headsets is revisited in this paper. An in-depth electroacoustic analysis of the combined loudspeaker-cavity headset system is conducted on the basis of electro-mechano-acoustical analogous circuits. Model matching of the primary path and the secondary path leads to a feedforward control architecture. The ideal controller sheds some light on the key parameters that affect the noise reduction performance. Filtered-X least-mean-squares algorithm is employed to implement the feedforward controller on a digital signal processor. Since the relative delay of the primary path and the secondary path is crucial to the noise reduction performance, multirate signal processing with polyphase implementation is utilized to minimize the effective analog-digital conversion delay in the secondary path. Ad hoc decimation and interpolation filters are designed in order not to introduce excessive phase delays at the cutoff. Real-time experiments are undertaken to validate the implemented ANC system. Listening tests are also conducted to compare the fixed controller and the adaptive controller in terms of noise reduction and signal tracking performance for three noise types. The results have demonstrated that the fixed feedforward controller achieved satisfactory noise reduction performance and signal tracking quality.

  18. Adaptive fuzzy PID control of hydraulic servo control system for large axial flow compressor

    NASA Astrophysics Data System (ADS)

    Wang, Yannian; Wu, Peizhi; Liu, Chengtao

    2017-09-01

    To improve the stability of the large axial compressor, an efficient and special intelligent hydraulic servo control system is designed and implemented. The adaptive fuzzy PID control algorithm is used to control the position of the hydraulic servo cylinder steadily, which overcomes the drawback that the PID parameters should be adjusted based on the different applications. The simulation and the test results show that the system has a better dynamic property and a stable state performance.

  19. Description of the Spacecraft Control Laboratory Experiment (SCOLE) facility

    NASA Technical Reports Server (NTRS)

    Williams, Jeffrey P.; Rallo, Rosemary A.

    1987-01-01

    A laboratory facility for the study of control laws for large flexible spacecraft is described. The facility fulfills the requirements of the Spacecraft Control Laboratory Experiment (SCOLE) design challenge for a laboratory experiment, which will allow slew maneuvers and pointing operations. The structural apparatus is described in detail sufficient for modelling purposes. The sensor and actuator types and characteristics are described so that identification and control algorithms may be designed. The control implementation computer and real-time subroutines are also described.

  20. Description of the Spacecraft Control Laboratory Experiment (SCOLE) facility

    NASA Technical Reports Server (NTRS)

    Williams, Jeffrey P.; Rallo, Rosemary A.

    1987-01-01

    A laboratory facility for the study of control laws for large flexible spacecraft is described. The facility fulfills the requirements of the Spacecraft Control Laboratory Experiment (SCOLE) design challenge for laboratory experiments, which will allow slew maneuvers and pointing operations. The structural apparatus is described in detail sufficient for modelling purposes. The sensor and actuator types and characteristics are described so that identification and control algorithms may be designed. The control implementation computer and real-time subroutines are also described.

  1. Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes. Part 3

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1998-01-01

    Decoding algorithms based on the trellis representation of a code (block or convolutional) drastically reduce decoding complexity. The best known and most commonly used trellis-based decoding algorithm is the Viterbi algorithm. It is a maximum likelihood decoding algorithm. Convolutional codes with the Viterbi decoding have been widely used for error control in digital communications over the last two decades. This chapter is concerned with the application of the Viterbi decoding algorithm to linear block codes. First, the Viterbi algorithm is presented. Then, optimum sectionalization of a trellis to minimize the computational complexity of a Viterbi decoder is discussed and an algorithm is presented. Some design issues for IC (integrated circuit) implementation of a Viterbi decoder are considered and discussed. Finally, a new decoding algorithm based on the principle of compare-select-add is presented. This new algorithm can be applied to both block and convolutional codes and is more efficient than the conventional Viterbi algorithm based on the add-compare-select principle. This algorithm is particularly efficient for rate 1/n antipodal convolutional codes and their high-rate punctured codes. It reduces computational complexity by one-third compared with the Viterbi algorithm.

  2. Problems of Automation and Management Principles Information Flow in Manufacturing

    NASA Astrophysics Data System (ADS)

    Grigoryuk, E. N.; Bulkin, V. V.

    2017-07-01

    Automated control systems of technological processes are complex systems that are characterized by the presence of elements of the overall focus, the systemic nature of the implemented algorithms for the exchange and processing of information, as well as a large number of functional subsystems. The article gives examples of automatic control systems and automated control systems of technological processes held parallel between them by identifying strengths and weaknesses. Other proposed non-standard control system of technological process.

  3. Adaptive piezoelectric sensoriactuator

    NASA Technical Reports Server (NTRS)

    Clark, Jr., Robert L. (Inventor); Vipperman, Jeffrey S. (Inventor); Cole, Daniel G. (Inventor)

    1996-01-01

    An adaptive algorithm implemented in digital or analog form is used in conjunction with a voltage controlled amplifier to compensate for the feedthrough capacitance of piezoelectric sensoriactuator. The mechanical response of the piezoelectric sensoriactuator is resolved from the electrical response by adaptively altering the gain imposed on the electrical circuit used for compensation. For wideband, stochastic input disturbances, the feedthrough capacitance of the sensoriactuator can be identified on-line, providing a means of implementing direct-rate-feedback control in analog hardware. The device is capable of on-line system health monitoring since a quasi-stable dynamic capacitance is indicative of sustained health of the piezoelectric element.

  4. Backstepping-based cooperative and adaptive tracking control design for a group of underactuated AUVs in horizontal plan

    NASA Astrophysics Data System (ADS)

    Ghommam, Jawhar; Saad, Maarouf

    2014-05-01

    In this paper, we investigate new implementable cooperative adaptive backstepping controllers for a group of underactuated autonomous vehicles that are communicating with their local neighbours to track a time-varying virtual leader of which the relative position may only be available to a portion of the team members. At the kinematic cooperative control level of the autonomous underwater vehicle, the virtual cooperative controller is basically designed on a proportional and derivative consensus algorithm presented in Ren (2010), which involves velocity information from local neighbours. In this paper, we propose a new design algorithm based on singular perturbation theory that precludes the use of the neighbours' velocity information in the cooperative design. At the dynamic cooperative control level, calculation of the partial derivatives of some stabilising functions which in turn will contain velocity information from the local neighbours is required. To facilitate the implementation of the cooperative controllers, we propose a command filter approach technique to avoid analytic differentiation of the virtual cooperative control laws. We show how Lyapunov-based techniques and graph theory can be combined together to yield a robust cooperative controller where the uncertain dynamics of the cooperating vehicles and the constraints on the communication topology which contains a directed spanning tree are explicitly taken into account. Simulation results with a dynamic model of underactuated autonomous underwater vehicles moving on the horizontal plane are presented and discussed.

  5. A Novel Approach to Implement Takagi-Sugeno Fuzzy Models.

    PubMed

    Chang, Chia-Wen; Tao, Chin-Wang

    2017-09-01

    This paper proposes new algorithms based on the fuzzy c-regressing model algorithm for Takagi-Sugeno (T-S) fuzzy modeling of the complex nonlinear systems. A fuzzy c-regression state model (FCRSM) algorithm is a T-S fuzzy model in which the functional antecedent and the state-space-model-type consequent are considered with the available input-output data. The antecedent and consequent forms of the proposed FCRSM consists mainly of two advantages: one is that the FCRSM has low computation load due to only one input variable is considered in the antecedent part; another is that the unknown system can be modeled to not only the polynomial form but also the state-space form. Moreover, the FCRSM can be extended to FCRSM-ND and FCRSM-Free algorithms. An algorithm FCRSM-ND is presented to find the T-S fuzzy state-space model of the nonlinear system when the input-output data cannot be precollected and an assumed effective controller is available. In the practical applications, the mathematical model of controller may be hard to be obtained. In this case, an online tuning algorithm, FCRSM-FREE, is designed such that the parameters of a T-S fuzzy controller and the T-S fuzzy state model of an unknown system can be online tuned simultaneously. Four numerical simulations are given to demonstrate the effectiveness of the proposed approach.

  6. Fault Tolerant Parallel Implementations of Iterative Algorithms for Optimal Control Problems

    DTIC Science & Technology

    1988-01-21

    p/.V)] steps, but did not discuss any specific parallel implementation. Gajski [51 improved upon this result by performing the SIMD computation in...N = p2. our approach reduces to that of [51, except that Gajski presents the coefficient computation and partial solution phases as a single...8217>. the SIMD algo- rithm presented by Gajski [5] can be most efficiently mapped to a unidirec- tional ring network with broadcasting capability. Based

  7. Innovative hyperchaotic encryption algorithm for compressed video

    NASA Astrophysics Data System (ADS)

    Yuan, Chun; Zhong, Yuzhuo; Yang, Shiqiang

    2002-12-01

    It is accepted that stream cryptosystem can achieve good real-time performance and flexibility which implements encryption by selecting few parts of the block data and header information of the compressed video stream. Chaotic random number generator, for example Logistics Map, is a comparatively promising substitute, but it is easily attacked by nonlinear dynamic forecasting and geometric information extracting. In this paper, we present a hyperchaotic cryptography scheme to encrypt the compressed video, which integrates Logistics Map with Z(232 - 1) field linear congruential algorithm to strengthen the security of the mono-chaotic cryptography, meanwhile, the real-time performance and flexibility of the chaotic sequence cryptography are maintained. It also integrates with the dissymmetrical public-key cryptography and implements encryption and identity authentification on control parameters at initialization phase. In accord with the importance of data in compressed video stream, encryption is performed in layered scheme. In the innovative hyperchaotic cryptography, the value and the updating frequency of control parameters can be changed online to satisfy the requirement of the network quality, processor capability and security requirement. The innovative hyperchaotic cryprography proves robust security by cryptoanalysis, shows good real-time performance and flexible implement capability through the arithmetic evaluating and test.

  8. Intelligent neural network and fuzzy logic control of industrial and power systems

    NASA Astrophysics Data System (ADS)

    Kuljaca, Ognjen

    The main role played by neural network and fuzzy logic intelligent control algorithms today is to identify and compensate unknown nonlinear system dynamics. There are a number of methods developed, but often the stability analysis of neural network and fuzzy control systems was not provided. This work will meet those problems for the several algorithms. Some more complicated control algorithms included backstepping and adaptive critics will be designed. Nonlinear fuzzy control with nonadaptive fuzzy controllers is also analyzed. An experimental method for determining describing function of SISO fuzzy controller is given. The adaptive neural network tracking controller for an autonomous underwater vehicle is analyzed. A novel stability proof is provided. The implementation of the backstepping neural network controller for the coupled motor drives is described. Analysis and synthesis of adaptive critic neural network control is also provided in the work. Novel tuning laws for the system with action generating neural network and adaptive fuzzy critic are given. Stability proofs are derived for all those control methods. It is shown how these control algorithms and approaches can be used in practical engineering control. Stability proofs are given. Adaptive fuzzy logic control is analyzed. Simulation study is conducted to analyze the behavior of the adaptive fuzzy system on the different environment changes. A novel stability proof for adaptive fuzzy logic systems is given. Also, adaptive elastic fuzzy logic control architecture is described and analyzed. A novel membership function is used for elastic fuzzy logic system. The stability proof is proffered. Adaptive elastic fuzzy logic control is compared with the adaptive nonelastic fuzzy logic control. The work described in this dissertation serves as foundation on which analysis of particular representative industrial systems will be conducted. Also, it gives a good starting point for analysis of learning abilities of adaptive and neural network control systems, as well as for the analysis of the different algorithms such as elastic fuzzy systems.

  9. Feed forward and feedback control for over-ground locomotion in anaesthetized cats

    NASA Astrophysics Data System (ADS)

    Mazurek, K. A.; Holinski, B. J.; Everaert, D. G.; Stein, R. B.; Etienne-Cummings, R.; Mushahwar, V. K.

    2012-04-01

    The biological central pattern generator (CPG) integrates open and closed loop control to produce over-ground walking. The goal of this study was to develop a physiologically based algorithm capable of mimicking the biological system to control multiple joints in the lower extremities for producing over-ground walking. The algorithm used state-based models of the step cycle each of which produced different stimulation patterns. Two configurations were implemented to restore over-ground walking in five adult anaesthetized cats using intramuscular stimulation (IMS) of the main hip, knee and ankle flexor and extensor muscles in the hind limbs. An open loop controller relied only on intrinsic timing while a hybrid-CPG controller added sensory feedback from force plates (representing limb loading), and accelerometers and gyroscopes (representing limb position). Stimulation applied to hind limb muscles caused extension or flexion in the hips, knees and ankles. A total of 113 walking trials were obtained across all experiments. Of these, 74 were successful in which the cats traversed 75% of the 3.5 m over-ground walkway. In these trials, the average peak step length decreased from 24.9 ± 8.4 to 21.8 ± 7.5 (normalized units) and the median number of steps per trial increased from 7 (Q1 = 6, Q3 = 9) to 9 (8, 11) with the hybrid-CPG controller. Moreover, within these trials, the hybrid-CPG controller produced more successful steps (step length ≤ 20 cm ground reaction force ≥ 12.5% body weight) than the open loop controller: 372 of 544 steps (68%) versus 65 of 134 steps (49%), respectively. This supports our previous preliminary findings, and affirms that physiologically based hybrid-CPG approaches produce more successful stepping than open loop controllers. The algorithm provides the foundation for a neural prosthetic controller and a framework to implement more detailed control of locomotion in the future.

  10. Feed forward and feedback control for over-ground locomotion in anaesthetized cats

    PubMed Central

    Mazurek, K A; Holinski, B J; Everaert, D G; Stein, R B; Etienne-Cummings, R; Mushahwar, V K

    2012-01-01

    The biological central pattern generator (CPG) integrates open and closed loop control to produce over-ground walking. The goal of this study was to develop a physiologically based algorithm capable of mimicking the biological system to control multiple joints in the lower extremities for producing over-ground walking. The algorithm used state-based models of the step cycle each of which produced different stimulation patterns. Two configurations were implemented to restore over-ground walking in five adult anaesthetized cats using intramuscular stimulation (IMS) of the main hip, knee and ankle flexor and extensor muscles in the hind limbs. An open loop controller relied only on intrinsic timing while a hybrid-CPG controller added sensory feedback from force plates (representing limb loading), and accelerometers and gyroscopes (representing limb position). Stimulation applied to hind limb muscles caused extension or flexion in the hips, knees and ankles. A total of 113 walking trials were obtained across all experiments. Of these, 74 were successful in which the cats traversed 75% of the 3.5 m over-ground walkway. In these trials, the average peak step length decreased from 24.9 ± 8.4 to 21.8 ± 7.5 (normalized units) and the median number of steps per trial increased from 7 (Q1=6, Q3 = 9) to 9 (8, 11) with the hybrid-CPG controller. Moreover, these trials, the hybrid-CPG controller produced more successful steps (step length ≤ 20 cm; ground reaction force ≥ 12.5% body weight) than the open loop controller: 372 of 544 steps (68%) versus 65 of 134 steps (49%), respectively. This supports our previous preliminary findings, and affirms that physiologically based hybrid-CPG approaches produce more successful stepping than open loop controllers. The algorithm provides the foundation for a neural prosthetic controller and a framework to implement more detailed control of locomotion in the future. PMID:22328615

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omet, M.; Michizono, S.; Matsumoto, T.

    We report the development and implementation of four FPGA-based predistortion-type klystron linearization algorithms. Klystron linearization is essential for the realization of ILC, since it is required to operate the klystrons 7% in power below their saturation. The work presented was performed in international collaborations at the Fermi National Accelerator Laboratory (FNAL), USA and the Deutsches Elektronen Synchrotron (DESY), Germany. With the newly developed algorithms, the generation of correction factors on the FPGA was improved compared to past algorithms, avoiding quantization and decreasing memory requirements. At FNAL, three algorithms were tested at the Advanced Superconducting Test Accelerator (ASTA), demonstrating a successfulmore » implementation for one algorithm and a proof of principle for two algorithms. Furthermore, the functionality of the algorithm implemented at DESY was demonstrated successfully in a simulation.« less

  12. Combining two open source tools for neural computation (BioPatRec and Netlab) improves movement classification for prosthetic control.

    PubMed

    Prahm, Cosima; Eckstein, Korbinian; Ortiz-Catalan, Max; Dorffner, Georg; Kaniusas, Eugenijus; Aszmann, Oskar C

    2016-08-31

    Controlling a myoelectric prosthesis for upper limbs is increasingly challenging for the user as more electrodes and joints become available. Motion classification based on pattern recognition with a multi-electrode array allows multiple joints to be controlled simultaneously. Previous pattern recognition studies are difficult to compare, because individual research groups use their own data sets. To resolve this shortcoming and to facilitate comparisons, open access data sets were analysed using components of BioPatRec and Netlab pattern recognition models. Performances of the artificial neural networks, linear models, and training program components were compared. Evaluation took place within the BioPatRec environment, a Matlab-based open source platform that provides feature extraction, processing and motion classification algorithms for prosthetic control. The algorithms were applied to myoelectric signals for individual and simultaneous classification of movements, with the aim of finding the best performing algorithm and network model. Evaluation criteria included classification accuracy and training time. Results in both the linear and the artificial neural network models demonstrated that Netlab's implementation using scaled conjugate training algorithm reached significantly higher accuracies than BioPatRec. It is concluded that the best movement classification performance would be achieved through integrating Netlab training algorithms in the BioPatRec environment so that future prosthesis training can be shortened and control made more reliable. Netlab was therefore included into the newest release of BioPatRec (v4.0).

  13. Classical and adaptive control of ex vivo skeletal muscle contractions using Functional Electrical Stimulation (FES)

    PubMed Central

    Shoemaker, Adam; Grange, Robert W.; Abaid, Nicole; Leonessa, Alexander

    2017-01-01

    Functional Electrical Stimulation is a promising approach to treat patients by stimulating the peripheral nerves and their corresponding motor neurons using electrical current. This technique helps maintain muscle mass and promote blood flow in the absence of a functioning nervous system. The goal of this work is to control muscle contractions from FES via three different algorithms and assess the most appropriate controller providing effective stimulation of the muscle. An open-loop system and a closed-loop system with three types of model-free feedback controllers were assessed for tracking control of skeletal muscle contractions: a Proportional-Integral (PI) controller, a Model Reference Adaptive Control algorithm, and an Adaptive Augmented PI system. Furthermore, a mathematical model of a muscle-mass-spring system was implemented in simulation to test the open-loop case and closed-loop controllers. These simulations were carried out and then validated through experiments ex vivo. The experiments included muscle contractions following four distinct trajectories: a step, sine, ramp, and square wave. Overall, the closed-loop controllers followed the stimulation trajectories set for all the simulated and tested muscles. When comparing the experimental outcomes of each controller, we concluded that the Adaptive Augmented PI algorithm provided the best closed-loop performance for speed of convergence and disturbance rejection. PMID:28273101

  14. PhosSA: Fast and accurate phosphorylation site assignment algorithm for mass spectrometry data.

    PubMed

    Saeed, Fahad; Pisitkun, Trairak; Hoffert, Jason D; Rashidian, Sara; Wang, Guanghui; Gucek, Marjan; Knepper, Mark A

    2013-11-07

    Phosphorylation site assignment of high throughput tandem mass spectrometry (LC-MS/MS) data is one of the most common and critical aspects of phosphoproteomics. Correctly assigning phosphorylated residues helps us understand their biological significance. The design of common search algorithms (such as Sequest, Mascot etc.) do not incorporate site assignment; therefore additional algorithms are essential to assign phosphorylation sites for mass spectrometry data. The main contribution of this study is the design and implementation of a linear time and space dynamic programming strategy for phosphorylation site assignment referred to as PhosSA. The proposed algorithm uses summation of peak intensities associated with theoretical spectra as an objective function. Quality control of the assigned sites is achieved using a post-processing redundancy criteria that indicates the signal-to-noise ratio properties of the fragmented spectra. The quality assessment of the algorithm was determined using experimentally generated data sets using synthetic peptides for which phosphorylation sites were known. We report that PhosSA was able to achieve a high degree of accuracy and sensitivity with all the experimentally generated mass spectrometry data sets. The implemented algorithm is shown to be extremely fast and scalable with increasing number of spectra (we report up to 0.5 million spectra/hour on a moderate workstation). The algorithm is designed to accept results from both Sequest and Mascot search engines. An executable is freely available at http://helixweb.nih.gov/ESBL/PhosSA/ for academic research purposes.

  15. Dynamic modeling of parallel robots for computed-torque control implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Codourey, A.

    1998-12-01

    In recent years, increased interest in parallel robots has been observed. Their control with modern theory, such as the computed-torque method, has, however, been restrained, essentially due to the difficulty in establishing a simple dynamic model that can be calculated in real time. In this paper, a simple method based on the virtual work principle is proposed for modeling parallel robots. The mass matrix of the robot, needed for decoupling control strategies, does not explicitly appear in the formulation; however, it can be computed separately, based on kinetic energy considerations. The method is applied to the DELTA parallel robot, leadingmore » to a very efficient model that has been implemented in a real-time computed-torque control algorithm.« less

  16. Instrumentation, control, and automation for submerged anaerobic membrane bioreactors.

    PubMed

    Robles, Ángel; Durán, Freddy; Ruano, María Victoria; Ribes, Josep; Rosado, Alfredo; Seco, Aurora; Ferrer, José

    2015-01-01

    A submerged anaerobic membrane bioreactor (AnMBR) demonstration plant with two commercial hollow-fibre ultrafiltration systems (PURON®, Koch Membrane Systems, PUR-PSH31) was designed and operated for urban wastewater treatment. An instrumentation, control, and automation (ICA) system was designed and implemented for proper process performance. Several single-input-single-output (SISO) feedback control loops based on conventional on-off and PID algorithms were implemented to control the following operating variables: flow-rates (influent, permeate, sludge recycling and wasting, and recycled biogas through both reactor and membrane tanks), sludge wasting volume, temperature, transmembrane pressure, and gas sparging. The proposed ICA for AnMBRs for urban wastewater treatment enables the optimization of this new technology to be achieved with a high level of process robustness towards disturbances.

  17. Understanding conflict-resolution taskload: Implementing advisory conflict-detection and resolution algorithms in an airspace

    NASA Astrophysics Data System (ADS)

    Vela, Adan Ernesto

    2011-12-01

    From 2010 to 2030, the number of instrument flight rules aircraft operations handled by Federal Aviation Administration en route traffic centers is predicted to increase from approximately 39 million flights to 64 million flights. The projected growth in air transportation demand is likely to result in traffic levels that exceed the abilities of the unaided air traffic controller in managing, separating, and providing services to aircraft. Consequently, the Federal Aviation Administration, and other air navigation service providers around the world, are making several efforts to improve the capacity and throughput of existing airspaces. Ultimately, the stated goal of the Federal Aviation Administration is to triple the available capacity of the National Airspace System by 2025. In an effort to satisfy air traffic demand through the increase of airspace capacity, air navigation service providers are considering the inclusion of advisory conflict-detection and resolution systems. In a human-in-the-loop framework, advisory conflict-detection and resolution decision-support tools identify potential conflicts and propose resolution commands for the air traffic controller to verify and issue to aircraft. A number of researchers and air navigation service providers hypothesize that the inclusion of combined conflict-detection and resolution tools into air traffic control systems will reduce or transform controller workload and enable the required increases in airspace capacity. In an effort to understand the potential workload implications of introducing advisory conflict-detection and resolution tools, this thesis provides a detailed study of the conflict event process and the implementation of conflict-detection and resolution algorithms. Specifically, the research presented here examines a metric of controller taskload: how many resolution commands an air traffic controller issues under the guidance of a conflict-detection and resolution decision-support tool. The goal of the research is to understand how the formulation, capabilities, and implementation of conflict-detection and resolution tools affect the controller taskload (system demands) associated with the conflict-resolution process, and implicitly the controller workload (physical and psychological demands). Furthermore this thesis seeks to establish best practices for the design of future conflict-detection and resolution systems. To generalize conclusions on the conflict-resolution taskload and best design practices of conflict-detection and resolution systems, this thesis focuses on abstracting and parameterizing the behaviors and capabilities of the advisory tools. Ideally, this abstraction of advisory decision-support tools serves as an alternative to exhaustively designing tools, implementing them in high-fidelity simulations, and analyzing their conflict-resolution taskload. Such an approach of simulating specific conflict-detection and resolution systems limits the type of conclusions that can be drawn concerning the design of more generic algorithms. In the process of understanding conflict-detection and resolution systems, evidence in the thesis reveals that the most effective approach to reducing conflict-resolution taskload is to improve conflict-detection systems. Furthermore, studies in the this thesis indicate that there is significant exibility in the design of conflict-resolution algorithms.

  18. Effective algorithm for solving complex problems of production control and of material flows control of industrial enterprise

    NASA Astrophysics Data System (ADS)

    Mezentsev, Yu A.; Baranova, N. V.

    2018-05-01

    A universal economical and mathematical model designed for determination of optimal strategies for managing subsystems (components of subsystems) of production and logistics of enterprises is considered. Declared universality allows taking into account on the system level both production components, including limitations on the ways of converting raw materials and components into sold goods, as well as resource and logical restrictions on input and output material flows. The presented model and generated control problems are developed within the framework of the unified approach that allows one to implement logical conditions of any complexity and to define corresponding formal optimization tasks. Conceptual meaning of used criteria and limitations are explained. The belonging of the generated tasks of the mixed programming with the class of NP is shown. An approximate polynomial algorithm for solving the posed optimization tasks for mixed programming of real dimension with high computational complexity is proposed. Results of testing the algorithm on the tasks in a wide range of dimensions are presented.

  19. NMR implementation of adiabatic SAT algorithm using strongly modulated pulses.

    PubMed

    Mitra, Avik; Mahesh, T S; Kumar, Anil

    2008-03-28

    NMR implementation of adiabatic algorithms face severe problems in homonuclear spin systems since the qubit selective pulses are long and during this period, evolution under the Hamiltonian and decoherence cause errors. The decoherence destroys the answer as it causes the final state to evolve to mixed state and in homonuclear systems, evolution under the internal Hamiltonian causes phase errors preventing the initial state to converge to the solution state. The resolution of these issues is necessary before one can proceed to implement an adiabatic algorithm in a large system where homonuclear coupled spins will become a necessity. In the present work, we demonstrate that by using "strongly modulated pulses" (SMPs) for the creation of interpolating Hamiltonian, one can circumvent both the problems and successfully implement the adiabatic SAT algorithm in a homonuclear three qubit system. This work also demonstrates that the SMPs tremendously reduce the time taken for the implementation of the algorithm, can overcome problems associated with decoherence, and will be the modality in future implementation of quantum information processing by NMR.

  20. Digital signal processing algorithms for automatic voice recognition

    NASA Technical Reports Server (NTRS)

    Botros, Nazeih M.

    1987-01-01

    The current digital signal analysis algorithms are investigated that are implemented in automatic voice recognition algorithms. Automatic voice recognition means, the capability of a computer to recognize and interact with verbal commands. The digital signal is focused on, rather than the linguistic, analysis of speech signal. Several digital signal processing algorithms are available for voice recognition. Some of these algorithms are: Linear Predictive Coding (LPC), Short-time Fourier Analysis, and Cepstrum Analysis. Among these algorithms, the LPC is the most widely used. This algorithm has short execution time and do not require large memory storage. However, it has several limitations due to the assumptions used to develop it. The other 2 algorithms are frequency domain algorithms with not many assumptions, but they are not widely implemented or investigated. However, with the recent advances in the digital technology, namely signal processors, these 2 frequency domain algorithms may be investigated in order to implement them in voice recognition. This research is concerned with real time, microprocessor based recognition algorithms.

  1. Motion Cueing Algorithm Development: New Motion Cueing Program Implementation and Tuning

    NASA Technical Reports Server (NTRS)

    Houck, Jacob A. (Technical Monitor); Telban, Robert J.; Cardullo, Frank M.; Kelly, Lon C.

    2005-01-01

    A computer program has been developed for the purpose of driving the NASA Langley Research Center Visual Motion Simulator (VMS). This program includes two new motion cueing algorithms, the optimal algorithm and the nonlinear algorithm. A general description of the program is given along with a description and flowcharts for each cueing algorithm, and also descriptions and flowcharts for subroutines used with the algorithms. Common block variable listings and a program listing are also provided. The new cueing algorithms have a nonlinear gain algorithm implemented that scales each aircraft degree-of-freedom input with a third-order polynomial. A description of the nonlinear gain algorithm is given along with past tuning experience and procedures for tuning the gain coefficient sets for each degree-of-freedom to produce the desired piloted performance. This algorithm tuning will be needed when the nonlinear motion cueing algorithm is implemented on a new motion system in the Cockpit Motion Facility (CMF) at the NASA Langley Research Center.

  2. An Adaptive Fuzzy-Logic Traffic Control System in Conditions of Saturated Transport Stream

    PubMed Central

    Marakhimov, A. R.; Igamberdiev, H. Z.; Umarov, Sh. X.

    2016-01-01

    This paper considers the problem of building adaptive fuzzy-logic traffic control systems (AFLTCS) to deal with information fuzziness and uncertainty in case of heavy traffic streams. Methods of formal description of traffic control on the crossroads based on fuzzy sets and fuzzy logic are proposed. This paper also provides efficient algorithms for implementing AFLTCS and develops the appropriate simulation models to test the efficiency of suggested approach. PMID:27517081

  3. An active structural acoustic control approach for the reduction of the structure-borne road noise

    NASA Astrophysics Data System (ADS)

    Douville, Hugo; Berry, Alain; Masson, Patrice

    2002-11-01

    The reduction of the structure-borne road noise generated inside the cabin of an automobile is investigated using an Active Structural Acoustic Control (ASAC) approach. First, a laboratory test bench consisting of a wheel/suspension/lower suspension A-arm assembly has been developed in order to identify the vibroacoustic transfer paths (up to 250 Hz) for realistic road noise excitation of the wheel. Frequency Response Function (FRF) measurements between the excitation/control actuators and each suspension/chassis linkage are used to characterize the different transfer paths that transmit energy through the chassis of the car. Second, a FE/BE model (Finite/Boundary Elements) was developed to simulate the acoustic field of an automobile cab interior. This model is used to predict the acoustic field inside the cabin as a response to the measured forces applied on the suspension/chassis linkages. Finally, an experimental implementation of ASAC is presented. The control approach relies on the use of inertial actuators to modify the vibration behavior of the suspension and the automotive chassis such that its noise radiation efficiency is decreased. The implemented algorithm consists of a MIMO (Multiple-Input-Multiple-Output) feedforward configuration with a filtered-X LMS algorithm using an advanced reference signal (width FIR filters) using the Simulink/Dspace environment for control prototyping.

  4. Flexible distributed architecture for semiconductor process control and experimentation

    NASA Astrophysics Data System (ADS)

    Gower, Aaron E.; Boning, Duane S.; McIlrath, Michael B.

    1997-01-01

    Semiconductor fabrication requires an increasingly expensive and integrated set of tightly controlled processes, driving the need for a fabrication facility with fully computerized, networked processing equipment. We describe an integrated, open system architecture enabling distributed experimentation and process control for plasma etching. The system was developed at MIT's Microsystems Technology Laboratories and employs in-situ CCD interferometry based analysis in the sensor-feedback control of an Applied Materials Precision 5000 Plasma Etcher (AME5000). Our system supports accelerated, advanced research involving feedback control algorithms, and includes a distributed interface that utilizes the internet to make these fabrication capabilities available to remote users. The system architecture is both distributed and modular: specific implementation of any one task does not restrict the implementation of another. The low level architectural components include a host controller that communicates with the AME5000 equipment via SECS-II, and a host controller for the acquisition and analysis of the CCD sensor images. A cell controller (CC) manages communications between these equipment and sensor controllers. The CC is also responsible for process control decisions; algorithmic controllers may be integrated locally or via remote communications. Finally, a system server images connections from internet/intranet (web) based clients and uses a direct link with the CC to access the system. Each component communicates via a predefined set of TCP/IP socket based messages. This flexible architecture makes integration easier and more robust, and enables separate software components to run on the same or different computers independent of hardware or software platform.

  5. Application of controller partitioning optimization procedure to integrated flight/propulsion control design for a STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Schmidt, Phillip H.

    1993-01-01

    A parameter optimization framework has earlier been developed to solve the problem of partitioning a centralized controller into a decentralized, hierarchical structure suitable for integrated flight/propulsion control implementation. This paper presents results from the application of the controller partitioning optimization procedure to IFPC design for a Short Take-Off and Vertical Landing (STOVL) aircraft in transition flight. The controller partitioning problem and the parameter optimization algorithm are briefly described. Insight is provided into choosing various 'user' selected parameters in the optimization cost function such that the resulting optimized subcontrollers will meet the characteristics of the centralized controller that are crucial to achieving the desired closed-loop performance and robustness, while maintaining the desired subcontroller structure constraints that are crucial for IFPC implementation. The optimization procedure is shown to improve upon the initial partitioned subcontrollers and lead to performance comparable to that achieved with the centralized controller. This application also provides insight into the issues that should be addressed at the centralized control design level in order to obtain implementable partitioned subcontrollers.

  6. Design and implementation of co-operative control strategy for hybrid AC/DC microgrids

    NASA Astrophysics Data System (ADS)

    Mahmud, Rasel

    This thesis is mainly divided in two major sections: 1) Modeling and control of AC microgrid, DC microgrid, Hybrid AC/DC microgrid using distributed co-operative control, and 2) Development of a four bus laboratory prototype of an AC microgrid system. At first, a distributed cooperative control (DCC) for a DC microgrid considering the state-of-charge (SoC) of the batteries in a typical plug-in-electric-vehicle (PEV) is developed. In DC microgrids, this methodology is developed to assist the load sharing amongst the distributed generation units (DGs), according to their ratings with improved voltage regulation. Subsequently, a DCC based control algorithm for AC microgrid is also investigated to improve the performance of AC microgrid in terms of power sharing among the DGs, voltage regulation and frequency deviation. The results validate the advantages of the proposed methodology as compared to traditional droop control of AC microgrid. The DCC-based control methodology for AC microgrid and DC microgrid are further expanded to develop a DCC-based power management algorithm for hybrid AC/DC microgrid. The developed algorithm for hybrid microgrid controls the power flow through the interfacing converter (IC) between the AC and DC microgrids. This will facilitate the power sharing between the DGs according to their power ratings. Moreover, it enables the fixed scheduled power delivery at different operating conditions, while maintaining good voltage regulation and improved frequency profile. The second section provides a detailed explanation and step-by-step design and development of an AC/DC microgrid testbed. Controllers for the three-phase inverters are designed and tested on different generation units along with their corresponding inductor-capacitor-inductor (LCL) filters to eliminate the switching frequency harmonics. Electric power distribution line models are developed to form the microgrid network topology. Voltage and current sensors are placed in the proper positions to achieve a full visibility over the microgrid. A running average filter (RAF) based enhanced phase-locked-loop (EPLL) is designed and implemented to extract frequency and phase angle information. A PLL-based synchronizing scheme is also developed to synchronize the DGs to the microgrid. The developed laboratory prototype runs on dSpace platform for real time data acquisition, communication and controller implementation.

  7. Design and implementation of digital controllers for smart structures using field-programmable gate arrays

    NASA Astrophysics Data System (ADS)

    Kelly, Jamie S.; Bowman, Hiroshi C.; Rao, Vittal S.; Pottinger, Hardy J.

    1997-06-01

    Implementation issues represent an unfamiliar challenge to most control engineers, and many techniques for controller design ignore these issues outright. Consequently, the design of controllers for smart structural systems usually proceeds without regard for their eventual implementation, thus resulting either in serious performance degradation or in hardware requirements that squander power, complicate integration, and drive up cost. The level of integration assumed by the Smart Patch further exacerbates these difficulties, and any design inefficiency may render the realization of a single-package sensor-controller-actuator system infeasible. The goal of this research is to automate the controller implementation process and to relieve the design engineer of implementation concerns like quantization, computational efficiency, and device selection. We specifically target Field Programmable Gate Arrays (FPGAs) as our hardware platform because these devices are highly flexible, power efficient, and reprogrammable. The current study develops an automated implementation sequence that minimizes hardware requirements while maintaining controller performance. Beginning with a state space representation of the controller, the sequence automatically generates a configuration bitstream for a suitable FPGA implementation. MATLAB functions optimize and simulate the control algorithm before translating it into the VHSIC hardware description language. These functions improve power efficiency and simplify integration in the final implementation by performing a linear transformation that renders the controller computationally friendly. The transformation favors sparse matrices in order to reduce multiply operations and the hardware necessary to support them; simultaneously, the remaining matrix elements take on values that minimize limit cycles and parameter sensitivity. The proposed controller design methodology is implemented on a simple cantilever beam test structure using FPGA hardware. The experimental closed loop response is compared with that of an automated FPGA controller implementation. Finally, we explore the integration of FPGA based controllers into a multi-chip module, which we believe represents the next step towards the realization of the Smart Patch.

  8. Implementation of an Adaptive Controller System from Concept to Flight Test

    NASA Technical Reports Server (NTRS)

    Larson, Richard R.; Burken, John J.; Butler, Bradley S.

    2009-01-01

    The National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) is conducting ongoing flight research using adaptive controller algorithms. A highly modified McDonnell-Douglas NF-15B airplane called the F-15 Intelligent Flight Control System (IFCS) was used for these algorithms. This airplane has been modified by the addition of canards and by changing the flight control systems to interface a single-string research controller processor for neural network algorithms. Research goals included demonstration of revolutionary control approaches that can efficiently optimize aircraft performance for both normal and failure conditions, and to advance neural-network-based flight control technology for new aerospace systems designs. Before the NF-15B IFCS airplane was certified for flight test, however, certain processes needed to be completed. This paper presents an overview of these processes, including a description of the initial adaptive controller concepts followed by a discussion of modeling formulation and performance testing. Upon design finalization, the next steps are: integration with the system interfaces, verification of the software, validation of the hardware to the requirements, design of failure detection, development of safety limiters to minimize the effect of erroneous neural network commands, and creation of flight test control room displays to maximize human situational awareness.

  9. Reinforcement learning for partially observable dynamic processes: adaptive dynamic programming using measured output data.

    PubMed

    Lewis, F L; Vamvoudakis, Kyriakos G

    2011-02-01

    Approximate dynamic programming (ADP) is a class of reinforcement learning methods that have shown their importance in a variety of applications, including feedback control of dynamical systems. ADP generally requires full information about the system internal states, which is usually not available in practical situations. In this paper, we show how to implement ADP methods using only measured input/output data from the system. Linear dynamical systems with deterministic behavior are considered herein, which are systems of great interest in the control system community. In control system theory, these types of methods are referred to as output feedback (OPFB). The stochastic equivalent of the systems dealt with in this paper is a class of partially observable Markov decision processes. We develop both policy iteration and value iteration algorithms that converge to an optimal controller that requires only OPFB. It is shown that, similar to Q -learning, the new methods have the important advantage that knowledge of the system dynamics is not needed for the implementation of these learning algorithms or for the OPFB control. Only the order of the system, as well as an upper bound on its "observability index," must be known. The learned OPFB controller is in the form of a polynomial autoregressive moving-average controller that has equivalent performance with the optimal state variable feedback gain.

  10. Multiple Lookup Table-Based AES Encryption Algorithm Implementation

    NASA Astrophysics Data System (ADS)

    Gong, Jin; Liu, Wenyi; Zhang, Huixin

    Anew AES (Advanced Encryption Standard) encryption algorithm implementation was proposed in this paper. It is based on five lookup tables, which are generated from S-box(the substitution table in AES). The obvious advantages are reducing the code-size, improving the implementation efficiency, and helping new learners to understand the AES encryption algorithm and GF(28) multiplication which are necessary to correctly implement AES[1]. This method can be applied on processors with word length 32 or above, FPGA and others. And correspondingly we can implement it by VHDL, Verilog, VB and other languages.

  11. Human voluntary activity integration in the control of a standing-up rehabilitation robot: a simulation study.

    PubMed

    Kamnik, Roman; Bajd, Tadej

    2007-11-01

    The paper presents a novel control approach for the robot-assisted motion augmentation of disabled subjects during the standing-up manoeuvre. The main goal of the proposal is to integrate the voluntary activity of a person in the control scheme of the rehabilitation robot. The algorithm determines the supportive force to be tracked by a robot force controller. The basic idea behind the calculation of supportive force is to quantify the deficit in the dynamic equilibrium of the trunk. The proposed algorithm was implemented as a Kalman filter procedure and evaluated in a simulation environment. The simulation results proved the adequate and robust performance of "patient-driven" robot-assisted standing-up training. In addition, the possibility of varying the training conditions with different degrees of the subject's initiative is demonstrated.

  12. Adaptive MPC based on MIMO ARX-Laguerre model.

    PubMed

    Ben Abdelwahed, Imen; Mbarek, Abdelkader; Bouzrara, Kais

    2017-03-01

    This paper proposes a method for synthesizing an adaptive predictive controller using a reduced complexity model. This latter is given by the projection of the ARX model on Laguerre bases. The resulting model is entitled MIMO ARX-Laguerre and it is characterized by an easy recursive representation. The adaptive predictive control law is computed based on multi-step-ahead finite-element predictors, identified directly from experimental input/output data. The model is tuned in each iteration by an online identification algorithms of both model parameters and Laguerre poles. The proposed approach avoids time consuming numerical optimization algorithms associated with most common linear predictive control strategies, which makes it suitable for real-time implementation. The method is used to synthesize and test in numerical simulations adaptive predictive controllers for the CSTR process benchmark. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Fuzzy Logic Based Control for Autonomous Mobile Robot Navigation

    PubMed Central

    Masmoudi, Mohamed Slim; Masmoudi, Mohamed

    2016-01-01

    This paper describes the design and the implementation of a trajectory tracking controller using fuzzy logic for mobile robot to navigate in indoor environments. Most of the previous works used two independent controllers for navigation and avoiding obstacles. The main contribution of the paper can be summarized in the fact that we use only one fuzzy controller for navigation and obstacle avoidance. The used mobile robot is equipped with DC motor, nine infrared range (IR) sensors to measure the distance to obstacles, and two optical encoders to provide the actual position and speeds. To evaluate the performances of the intelligent navigation algorithms, different trajectories are used and simulated using MATLAB software and SIMIAM navigation platform. Simulation results show the performances of the intelligent navigation algorithms in terms of simulation times and travelled path. PMID:27688748

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Physical device safety is typically implemented locally using embedded controllers, while operations safety is primarily performed in control centers. Safe operations can be enhanced by correct design of device-level control algorithms, and protocols, procedures and operator training at the control-room level, but all can fail. Moreover, these elements exchange data and issue commands via vulnerable communication layers. In order to secure these gaps and enhance operational safety, we believe monitoring of command sequences must be combined with an awareness of physical device limitations and automata models that capture safety mechanisms. One way of doing this is by leveraging specification-based intrusionmore » detection to monitor for physical constraint violations. The method can also verify that physical infrastructure state is consistent with monitoring information and control commands exchanged between field devices and control centers. This additional security layer enhances protection from both outsider attacks and insider mistakes. We implemented specification-based SCADA command analyzers using physical constraint algorithms directly in the Bro framework and Broccoli APIs for three separate scenarios: a water heater, an automated distribution system, and an over-current protection scheme. To accomplish this, we added low-level analyzers capable of examining control system-specific protocol packets for both Modbus TCP and DNP3, and also higher-level analyzers able to interpret device command and data streams within the context of each device's physical capabilities and present operational state. Thus the software that we are making available includes the Bro/Broccoli scripts for these three scenarios, as well as simulators, written in C, of those scenarios that generate sample traffic that is monitored by the Bro/Broccoli scripts. In addition, we have also implemented systems to directly pull cyber-physical information from the OSIsoft PI historian system. We have included the Python scripts used to perform that monitoring.« less

  15. GPUbased, Microsecond Latency, HectoChannel MIMO Feedback Control of Magnetically Confined Plasmas

    NASA Astrophysics Data System (ADS)

    Rath, Nikolaus

    Feedback control has become a crucial tool in the research on magnetic confinement of plasmas for achieving controlled nuclear fusion. This thesis presents a novel plasma feedback control system that, for the first time, employs a Graphics Processing Unit (GPU) for microsecond-latency, real-time control computations. This novel application area for GPU computing is opened up by a new system architecture that is optimized for low-latency computations on less than kilobyte sized data samples as they occur in typical plasma control algorithms. In contrast to traditional GPU computing approaches that target complex, high-throughput computations with massive amounts of data, the architecture presented in this thesis uses the GPU as the primary processing unit rather than as an auxiliary of the CPU, and data is transferred from A-D/D-A converters directly into GPU memory using peer-to-peer PCI Express transfers. The described design has been implemented in a new, GPU-based control system for the High-Beta Tokamak - Extended Pulse (HBT-EP) device. The system is built from commodity hardware and uses an NVIDIA GeForce GPU and D-TACQ A-D/D-A converters providing a total of 96 input and 64 output channels. The system is able to run with sampling periods down to 4 μs and latencies down to 8 μs. The GPU provides a total processing power of 1.5 x 1012 floating point operations per second. To illustrate the performance and versatility of both the general architecture and concrete implementation, a new control algorithm has been developed. The algorithm is designed for the control of multiple rotating magnetic perturbations in situations where the plasma equilibrium is not known exactly and features an adaptive system model: instead of requiring the rotation frequencies and growth rates embedded in the system model to be set a priori, the adaptive algorithm derives these parameters from the evolution of the perturbation amplitudes themselves. This results in non-linear control computations with high computational demands, but is handled easily by the GPU based system. Both digital processing latency and an arbitrary multi-pole response of amplifiers and control coils is fully taken into account for the generation of control signals. To separate sensor signals into perturbed and equilibrium components without knowledge of the equilibrium fields, a new separation method based on biorthogonal decomposition is introduced and used to derive a filter that performs the separation in real-time. The control algorithm has been implemented and tested on the new, GPU-based feedback control system of the HBT-EP tokamak. In this instance, the algorithm was set up to control four rotating n = 1 perturbations at different poloidal angles. The perturbations were treated as coupled in frequency but independent in amplitude and phase, so that the system effectively controls a helical n = 1 perturbation with unknown poloidal spectrum. Depending on the plasma's edge safety factor and rotation frequency, the control system is shown to be able to suppress the amplitude of the dominant 8 kHz mode by up to 60% or amplify the saturated amplitude by a factor of up to two. Intermediate feedback phases combine suppression and amplification with a speed up or slow down of the mode rotation frequency. Increasing feedback gain results in the excitation of an additional, slowly rotating 1.4 kHz mode without further effects on the 8 kHz mode. The feedback performance is found to exceed previous results obtained with an FPGA- and Kalman-filter based control system without requiring any tuning of system model parameters. Experimental results are compared with simulations based on a combination of the Boozer surface current model and the Fitzpatrick-Aydemir model. Within the subset of phenomena that can be represented by the model as well as determined experimentally, qualitative agreement is found.

  16. Inertial Sensor-Based Touch and Shake Metaphor for Expressive Control of 3D Virtual Avatars

    PubMed Central

    Patil, Shashidhar; Chintalapalli, Harinadha Reddy; Kim, Dubeom; Chai, Youngho

    2015-01-01

    In this paper, we present an inertial sensor-based touch and shake metaphor for expressive control of a 3D virtual avatar in a virtual environment. An intuitive six degrees-of-freedom wireless inertial motion sensor is used as a gesture and motion control input device with a sensor fusion algorithm. The algorithm enables user hand motions to be tracked in 3D space via magnetic, angular rate, and gravity sensors. A quaternion-based complementary filter is implemented to reduce noise and drift. An algorithm based on dynamic time-warping is developed for efficient recognition of dynamic hand gestures with real-time automatic hand gesture segmentation. Our approach enables the recognition of gestures and estimates gesture variations for continuous interaction. We demonstrate the gesture expressivity using an interactive flexible gesture mapping interface for authoring and controlling a 3D virtual avatar and its motion by tracking user dynamic hand gestures. This synthesizes stylistic variations in a 3D virtual avatar, producing motions that are not present in the motion database using hand gesture sequences from a single inertial motion sensor. PMID:26094629

  17. Some Improvements on Signed Window Algorithms for Scalar Multiplications in Elliptic Curve Cryptosystems

    NASA Technical Reports Server (NTRS)

    Vo, San C.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Scalar multiplication is an essential operation in elliptic curve cryptosystems because its implementation determines the speed and the memory storage requirements. This paper discusses some improvements on two popular signed window algorithms for implementing scalar multiplications of an elliptic curve point - Morain-Olivos's algorithm and Koyarna-Tsuruoka's algorithm.

  18. A Turbine Based Combined Cycle Engine Inlet Model and Mode Transition Simulation Based on HiTECC Tool

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey; Stueber, Thomas

    2012-01-01

    An inlet system is being tested to evaluate methodologies for a turbine based combined cycle propulsion system to perform a controlled inlet mode transition. Prior to wind tunnel based hardware testing of controlled mode transitions, simulation models are used to test, debug, and validate potential control algorithms. One candidate simulation package for this purpose is the High Mach Transient Engine Cycle Code (HiTECC). The HiTECC simulation package models the inlet system, propulsion systems, thermal energy, geometry, nozzle, and fuel systems. This paper discusses the modification and redesign of the simulation package and control system to represent the NASA large-scale inlet model for Combined Cycle Engine mode transition studies, mounted in NASA Glenn s 10-foot by 10-foot Supersonic Wind Tunnel. This model will be used for designing and testing candidate control algorithms before implementation.

  19. A Turbine Based Combined Cycle Engine Inlet Model and Mode Transition Simulation Based on HiTECC Tool

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Stueber, Thomas J.

    2012-01-01

    An inlet system is being tested to evaluate methodologies for a turbine based combined cycle propulsion system to perform a controlled inlet mode transition. Prior to wind tunnel based hardware testing of controlled mode transitions, simulation models are used to test, debug, and validate potential control algorithms. One candidate simulation package for this purpose is the High Mach Transient Engine Cycle Code (HiTECC). The HiTECC simulation package models the inlet system, propulsion systems, thermal energy, geometry, nozzle, and fuel systems. This paper discusses the modification and redesign of the simulation package and control system to represent the NASA large-scale inlet model for Combined Cycle Engine mode transition studies, mounted in NASA Glenn s 10- by 10-Foot Supersonic Wind Tunnel. This model will be used for designing and testing candidate control algorithms before implementation.

  20. A self-tuning automatic voltage regulator designed for an industrial environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, D.; Hogg, B.W.; Swidenbank, E.

    Examination of the performance of fixed parameter controllers has resulted in the development of self-tuning strategies for excitation control of turbogenerator systems. In conjunction with the advanced control algorithms, sophisticated measurement techniques have previously been adopted on micromachine systems to provide generator terminal quantities. In power stations, however, a minimalist hardware arrangement would be selected leading to relatively simple measurement techniques. The performance of a range of self-tuning schemes is investigated on an industrial test-bed, employing a typical industrial hardware measurement system. Individual controllers are implemented on a standard digital automatic voltage regulator, as installed in power stations. This employsmore » a VME platform, and the self-tuning algorithms are introduced by linking to a transputer network. The AVR includes all normal features, such as field forcing, VAR limiting and overflux protection. Self-tuning controller performance is compared with that of a fixed gain digital AVR.« less

Top