DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-01-11
GENI Project: Georgia Tech is developing a decentralized, autonomous, internet-like control architecture and control software system for the electric power grid. Georgia Tech’s new architecture is based on the emerging concept of electricity prosumers—economically motivated actors that can produce, consume, or store electricity. Under Georgia Tech’s architecture, all of the actors in an energy system are empowered to offer associated energy services based on their capabilities. The actors achieve their sustainability, efficiency, reliability, and economic objectives, while contributing to system-wide reliability and efficiency goals. This is in marked contrast to the current one-way, centralized control paradigm.
Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Simarro, Raúl; Benet, Ginés
2015-02-25
This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS) parameters and the optimization of control using Quality of Control (QoC) parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS) communication standard as proposed by the Object Management Group (OMG). As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl) has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC) system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems.
Poza-Lujan, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, José-Enrique; Simarro, Raúl; Benet, Ginés
2015-01-01
This paper is part of a study of intelligent architectures for distributed control and communications systems. The study focuses on optimizing control systems by evaluating the performance of middleware through quality of service (QoS) parameters and the optimization of control using Quality of Control (QoC) parameters. The main aim of this work is to study, design, develop, and evaluate a distributed control architecture based on the Data-Distribution Service for Real-Time Systems (DDS) communication standard as proposed by the Object Management Group (OMG). As a result of the study, an architecture called Frame-Sensor-Adapter to Control (FSACtrl) has been developed. FSACtrl provides a model to implement an intelligent distributed Event-Based Control (EBC) system with support to measure QoS and QoC parameters. The novelty consists of using, simultaneously, the measured QoS and QoC parameters to make decisions about the control action with a new method called Event Based Quality Integral Cycle. To validate the architecture, the first five Braitenberg vehicles have been implemented using the FSACtrl architecture. The experimental outcomes, demonstrate the convenience of using jointly QoS and QoC parameters in distributed control systems. PMID:25723145
A knowledge-base generating hierarchical fuzzy-neural controller.
Kandadai, R M; Tien, J M
1997-01-01
We present an innovative fuzzy-neural architecture that is able to automatically generate a knowledge base, in an extractable form, for use in hierarchical knowledge-based controllers. The knowledge base is in the form of a linguistic rule base appropriate for a fuzzy inference system. First, we modify Berenji and Khedkar's (1992) GARIC architecture to enable it to automatically generate a knowledge base; a pseudosupervised learning scheme using reinforcement learning and error backpropagation is employed. Next, we further extend this architecture to a hierarchical controller that is able to generate its own knowledge base. Example applications are provided to underscore its viability.
NASA Astrophysics Data System (ADS)
Eguiraun, M.; Jugo, J.; Arredondo, I.; del Campo, M.; Feuchtwanger, J.; Etxebarria, V.; Bermejo, F. J.
2013-04-01
ISHN (Ion Source Hydrogen Negative) consists of a Penning type ion source in operation at ESS-Bilbao facilities. From the control point of view, this source is representative of the first steps and decisions taken towards the general control architecture of the whole accelerator to be built. The ISHN main control system is based on a PXI architecture, under a real-time controller which is programmed using LabVIEW. This system, with additional elements, is connected to the general control system. The whole system is based on EPICS for the control network, and the modularization of the communication layers of the accelerator plays an important role in the proposed control architecture.
Design of an integrated airframe/propulsion control system architecture
NASA Technical Reports Server (NTRS)
Cohen, Gerald C.; Lee, C. William; Strickland, Michael J.; Torkelson, Thomas C.
1990-01-01
The design of an integrated airframe/propulsion control system architecture is described. The design is based on a prevalidation methodology that uses both reliability and performance. A detailed account is given for the testing associated with a subset of the architecture and concludes with general observations of applying the methodology to the architecture.
An architecture for rule based system explanation
NASA Technical Reports Server (NTRS)
Fennel, T. R.; Johannes, James D.
1990-01-01
A system architecture is presented which incorporate both graphics and text into explanations provided by rule based expert systems. This architecture facilitates explanation of the knowledge base content, the control strategies employed by the system, and the conclusions made by the system. The suggested approach combines hypermedia and inference engine capabilities. Advantages include: closer integration of user interface, explanation system, and knowledge base; the ability to embed links to deeper knowledge underlying the compiled knowledge used in the knowledge base; and allowing for more direct control of explanation depth and duration by the user. User models are suggested to control the type, amount, and order of information presented.
NASA Technical Reports Server (NTRS)
Martin-Alvarez, A.; Hayati, S.; Volpe, R.; Petras, R.
1999-01-01
An advanced design and implementation of a Control Architecture for Long Range Autonomous Planetary Rovers is presented using a hierarchical top-down task decomposition, and the common structure of each design is presented based on feedback control theory. Graphical programming is presented as a common intuitive language for the design when a large design team is composed of managers, architecture designers, engineers, programmers, and maintenance personnel. The whole design of the control architecture consists in the classic control concepts of cyclic data processing and event-driven reaction to achieve all the reasoning and behaviors needed. For this purpose, a commercial graphical tool is presented that includes the mentioned control capabilities. Messages queues are used for inter-communication among control functions, allowing Artificial Intelligence (AI) reasoning techniques based on queue manipulation. Experimental results show a highly autonomous control system running in real time on top the JPL micro-rover Rocky 7 controlling simultaneously several robotic devices. This paper validates the sinergy between Artificial Intelligence and classic control concepts in having in advanced Control Architecture for Long Range Autonomous Planetary Rovers.
NASA Technical Reports Server (NTRS)
Jethwa, Dipan; Selmic, Rastko R.; Figueroa, Fernando
2008-01-01
This paper presents a concept of feedback control for smart actuators that are compatible with smart sensors, communication protocols, and a hierarchical Integrated System Health Management (ISHM) architecture developed by NASA s Stennis Space Center. Smart sensors and actuators typically provide functionalities such as automatic configuration, system condition awareness and self-diagnosis. Spacecraft and rocket test facilities are in the early stages of adopting these concepts. The paper presents a concept combining the IEEE 1451-based ISHM architecture with a transducer health monitoring capability to enhance the control process. A control system testbed for intelligent actuator control, with on-board ISHM capabilities, has been developed and implemented. Overviews of the IEEE 1451 standard, the smart actuator architecture, and control based on this architecture are presented.
Multi-Agent Architecture with Support to Quality of Service and Quality of Control
NASA Astrophysics Data System (ADS)
Poza-Luján, Jose-Luis; Posadas-Yagüe, Juan-Luis; Simó-Ten, Jose-Enrique
Multi Agent Systems (MAS) are one of the most suitable frameworks for the implementation of intelligent distributed control system. Agents provide suitable flexibility to give support to implied heterogeneity in cyber-physical systems. Quality of Service (QoS) and Quality of Control (QoC) parameters are commonly utilized to evaluate the efficiency of the communications and the control loop. Agents can use the quality measures to take a wide range of decisions, like suitable placement on the control node or to change the workload to save energy. This article describes the architecture of a multi agent system that provides support to QoS and QoC parameters to optimize de system. The architecture uses a Publish-Subscriber model, based on Data Distribution Service (DDS) to send the control messages. Due to the nature of the Publish-Subscribe model, the architecture is suitable to implement event-based control (EBC) systems. The architecture has been called FSACtrl.
A comparative analysis of loop heat pipe based thermal architectures for spacecraft thermal control
NASA Technical Reports Server (NTRS)
Pauken, Mike; Birur, Gaj
2004-01-01
Loop Heat Pipes (LHP) have gained acceptance as a viable means of heat transport in many spacecraft in recent years. However, applications using LHP technology tend to only remove waste heat from a single component to an external radiator. Removing heat from multiple components has been done by using multiple LHPs. This paper discusses the development and implementation of a Loop Heat Pipe based thermal architecture for spacecraft. In this architecture, a Loop Heat Pipe with multiple evaporators and condensers is described in which heat load sharing and thermal control of multiple components can be achieved. A key element in using a LHP thermal architecture is defining the need for such an architecture early in the spacecraft design process. This paper describes an example in which a LHP based thermal architecture can be used and how such a system can have advantages in weight, cost and reliability over other kinds of distributed thermal control systems. The example used in this paper focuses on a Mars Rover Thermal Architecture. However, the principles described here are applicable to Earth orbiting spacecraft as well.
Controllable 3D architectures of aligned carbon nanotube arrays by multi-step processes
NASA Astrophysics Data System (ADS)
Huang, Shaoming
2003-06-01
An effective way to fabricate large area three-dimensional (3D) aligned CNTs pattern based on pyrolysis of iron(II) phthalocyanine (FePc) by two-step processes is reported. The controllable generation of different lengths and selective growth of the aligned CNT arrays on metal-patterned (e.g., Ag and Au) substrate are the bases for generating such 3D aligned CNTs architectures. By controlling experimental conditions 3D aligned CNT arrays with different lengths/densities and morphologies/structures as well as multi-layered architectures can be fabricated in large scale by multi-step pyrolysis of FePc. These 3D architectures could have interesting properties and be applied for developing novel nanotube-based devices.
Transmission control unit drive based on the AUTOSAR standard
NASA Astrophysics Data System (ADS)
Guo, Xiucai; Qin, Zhen
2018-03-01
It is a trend of automotive electronics industry in the future that automotive electronics embedded system development based on the AUTOSAR standard. AUTOSAR automotive architecture standard has proposed the transmission control unit (TCU) development architecture and designed its interfaces and configurations in detail. This essay has discussed that how to drive the TCU based on AUTOSAR standard architecture. The results show that driving the TCU with the AUTOSAR system improves reliability and shortens development cycles.
Advanced control architecture for autonomous vehicles
NASA Astrophysics Data System (ADS)
Maurer, Markus; Dickmanns, Ernst D.
1997-06-01
An advanced control architecture for autonomous vehicles is presented. The hierarchical architecture consists of four levels: a vehicle level, a control level, a rule-based level and a knowledge-based level. A special focus is on forms of internal representation, which have to be chosen adequately for each level. The control scheme is applied to VaMP, a Mercedes passenger car which autonomously performs missions on German freeways. VaMP perceives the environment with its sense of vision and conventional sensors. It controls its actuators for locomotion and attention focusing. Modules for perception, cognition and action are discussed.
Fuzzy-Neural Controller in Service Requests Distribution Broker for SOA-Based Systems
NASA Astrophysics Data System (ADS)
Fras, Mariusz; Zatwarnicka, Anna; Zatwarnicki, Krzysztof
The evolution of software architectures led to the rising importance of the Service Oriented Architecture (SOA) concept. This architecture paradigm support building flexible distributed service systems. In the paper the architecture of service request distribution broker designed for use in SOA-based systems is proposed. The broker is built with idea of fuzzy control. The functional and non-functional request requirements in conjunction with monitoring of execution and communication links are used to distribute requests. Decisions are made with use of fuzzy-neural network.
Benchmarking hardware architecture candidates for the NFIRAOS real-time controller
NASA Astrophysics Data System (ADS)
Smith, Malcolm; Kerley, Dan; Herriot, Glen; Véran, Jean-Pierre
2014-07-01
As a part of the trade study for the Narrow Field Infrared Adaptive Optics System, the adaptive optics system for the Thirty Meter Telescope, we investigated the feasibility of performing real-time control computation using a Linux operating system and Intel Xeon E5 CPUs. We also investigated a Xeon Phi based architecture which allows higher levels of parallelism. This paper summarizes both the CPU based real-time controller architecture and the Xeon Phi based RTC. The Intel Xeon E5 CPU solution meets the requirements and performs the computation for one AO cycle in an average of 767 microseconds. The Xeon Phi solution did not meet the 1200 microsecond time requirement and also suffered from unpredictable execution times. More detailed benchmark results are reported for both architectures.
NASA Astrophysics Data System (ADS)
Acernese, Fausto; Barone, Fabrizio; De Rosa, Rosario; Eleuteri, Antonio; Milano, Leopoldo; Pardi, Silvio; Ricciardi, Iolanda; Russo, Guido
2004-09-01
One of the main requirements of a digital system for the control of interferometric detectors of gravitational waves is the computing power, that is a direct consequence of the increasing complexity of the digital algorithms necessary for the control signals generation. For this specific task many specialized non standard real-time architectures have been developed, often very expensive and difficult to upgrade. On the other hand, such computing power is generally fully available for off-line applications on standard Pc based systems. Therefore, a possible and obvious solution may be provided by the integration of both the real-time and off-line architecture resulting in a hybrid control system architecture based on standards available components, trying to get both the advantages of the perfect data synchronization provided by the real-time systems and by the large computing power available on Pc based systems. Such integration may be provided by the implementation of the link between the two different architectures through the standard Ethernet network, whose data transfer speed is largely increasing in these years, using the TCP/IP, UDP and raw Ethernet protocols. In this paper we describe the architecture of an hybrid Ethernet based real-time control system prototype we implemented in Napoli, discussing its characteristics and performances. Finally we discuss a possible application to the real-time control of a suspended mass of the mode cleaner of the 3m prototype optical interferometer for gravitational wave detection (IDGW-3P) operational in Napoli.
Thermal Control System Automation Project (TCSAP)
NASA Technical Reports Server (NTRS)
Boyer, Roger L.
1991-01-01
Information is given in viewgraph form on the Space Station Freedom (SSF) Thermal Control System Automation Project (TCSAP). Topics covered include the assembly of the External Thermal Control System (ETCS); the ETCS functional schematic; the baseline Fault Detection, Isolation, and Recovery (FDIR), including the development of a knowledge based system (KBS) for application of rule based reasoning to the SSF ETCS; TCSAP software architecture; the High Fidelity Simulator architecture; the TCSAP Runtime Object Database (RODB) data flow; KBS functional architecture and logic flow; TCSAP growth and evolution; and TCSAP relationships.
NASA Astrophysics Data System (ADS)
Rucinski, Marek; Coates, Adam; Montano, Giuseppe; Allouis, Elie; Jameux, David
2015-09-01
The Lightweight Advanced Robotic Arm Demonstrator (LARAD) is a state-of-the-art, two-meter long robotic arm for planetary surface exploration currently being developed by a UK consortium led by Airbus Defence and Space Ltd under contract to the UK Space Agency (CREST-2 programme). LARAD has a modular design, which allows for experimentation with different electronics and control software. The control system architecture includes the on-board computer, control software and firmware, and the communication infrastructure (e.g. data links, switches) connecting on-board computer(s), sensors, actuators and the end-effector. The purpose of the control system is to operate the arm according to pre-defined performance requirements, monitoring its behaviour in real-time and performing safing/recovery actions in case of faults. This paper reports on the results of a recent study about the feasibility of the development and integration of a novel control system architecture for LARAD fully based on the SpaceWire protocol. The current control system architecture is based on the combination of two communication protocols, Ethernet and CAN. The new SpaceWire-based control system will allow for improved monitoring and telecommanding performance thanks to higher communication data rate, allowing for the adoption of advanced control schemes, potentially based on multiple vision sensors, and for the handling of sophisticated end-effectors that require fine control, such as science payloads or robotic hands.
Open architecture CMM motion controller
NASA Astrophysics Data System (ADS)
Chang, David; Spence, Allan D.; Bigg, Steve; Heslip, Joe; Peterson, John
2001-12-01
Although initially the only Coordinate Measuring Machine (CMM) sensor available was a touch trigger probe, technological advances in sensors and computing have greatly increased the variety of available inspection sensors. Non-contact laser digitizers and analog scanning touch probes require very well tuned CMM motion control, as well as an extensible, open architecture interface. This paper describes the implementation of a retrofit CMM motion controller designed for open architecture interface to a variety of sensors. The controller is based on an Intel Pentium microcomputer and a Servo To Go motion interface electronics card. Motor amplifiers, safety, and additional interface electronics are housed in a separate enclosure. Host Signal Processing (HSP) is used for the motion control algorithm. Compared to the usual host plus DSP architecture, single CPU HSP simplifies integration with the various sensors, and implementation of software geometric error compensation. Motion control tuning is accomplished using a remote computer via 100BaseTX Ethernet. A Graphical User Interface (GUI) is used to enter geometric error compensation data, and to optimize the motion control tuning parameters. It is shown that this architecture achieves the required real time motion control response, yet is much easier to extend to additional sensors.
Flexible distributed architecture for semiconductor process control and experimentation
NASA Astrophysics Data System (ADS)
Gower, Aaron E.; Boning, Duane S.; McIlrath, Michael B.
1997-01-01
Semiconductor fabrication requires an increasingly expensive and integrated set of tightly controlled processes, driving the need for a fabrication facility with fully computerized, networked processing equipment. We describe an integrated, open system architecture enabling distributed experimentation and process control for plasma etching. The system was developed at MIT's Microsystems Technology Laboratories and employs in-situ CCD interferometry based analysis in the sensor-feedback control of an Applied Materials Precision 5000 Plasma Etcher (AME5000). Our system supports accelerated, advanced research involving feedback control algorithms, and includes a distributed interface that utilizes the internet to make these fabrication capabilities available to remote users. The system architecture is both distributed and modular: specific implementation of any one task does not restrict the implementation of another. The low level architectural components include a host controller that communicates with the AME5000 equipment via SECS-II, and a host controller for the acquisition and analysis of the CCD sensor images. A cell controller (CC) manages communications between these equipment and sensor controllers. The CC is also responsible for process control decisions; algorithmic controllers may be integrated locally or via remote communications. Finally, a system server images connections from internet/intranet (web) based clients and uses a direct link with the CC to access the system. Each component communicates via a predefined set of TCP/IP socket based messages. This flexible architecture makes integration easier and more robust, and enables separate software components to run on the same or different computers independent of hardware or software platform.
Knowledge-based processing for aircraft flight control
NASA Technical Reports Server (NTRS)
Painter, John H.; Glass, Emily; Economides, Gregory; Russell, Paul
1994-01-01
This Contractor Report documents research in Intelligent Control using knowledge-based processing in a manner dual to methods found in the classic stochastic decision, estimation, and control discipline. Such knowledge-based control has also been called Declarative, and Hybid. Software architectures were sought, employing the parallelism inherent in modern object-oriented modeling and programming. The viewpoint adopted was that Intelligent Control employs a class of domain-specific software architectures having features common over a broad variety of implementations, such as management of aircraft flight, power distribution, etc. As much attention was paid to software engineering issues as to artificial intelligence and control issues. This research considered that particular processing methods from the stochastic and knowledge-based worlds are duals, that is, similar in a broad context. They provide architectural design concepts which serve as bridges between the disparate disciplines of decision, estimation, control, and artificial intelligence. This research was applied to the control of a subsonic transport aircraft in the airport terminal area.
Advanced computer architecture specification for automated weld systems
NASA Technical Reports Server (NTRS)
Katsinis, Constantine
1994-01-01
This report describes the requirements for an advanced automated weld system and the associated computer architecture, and defines the overall system specification from a broad perspective. According to the requirements of welding procedures as they relate to an integrated multiaxis motion control and sensor architecture, the computer system requirements are developed based on a proven multiple-processor architecture with an expandable, distributed-memory, single global bus architecture, containing individual processors which are assigned to specific tasks that support sensor or control processes. The specified architecture is sufficiently flexible to integrate previously developed equipment, be upgradable and allow on-site modifications.
Multi-Agent Diagnosis and Control of an Air Revitalization System for Life Support in Space
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Kowing, Jeffrey; Nieten, Joseph; Graham, Jeffrey s.; Schreckenghost, Debra; Bonasso, Pete; Fleming, Land D.; MacMahon, Matt; Thronesbery, Carroll
2000-01-01
An architecture of interoperating agents has been developed to provide control and fault management for advanced life support systems in space. In this adjustable autonomy architecture, software agents coordinate with human agents and provide support in novel fault management situations. This architecture combines the Livingstone model-based mode identification and reconfiguration (MIR) system with the 3T architecture for autonomous flexible command and control. The MIR software agent performs model-based state identification and diagnosis. MIR identifies novel recovery configurations and the set of commands required for the recovery. The AZT procedural executive and the human operator use the diagnoses and recovery recommendations, and provide command sequencing. User interface extensions have been developed to support human monitoring of both AZT and MIR data and activities. This architecture has been demonstrated performing control and fault management for an oxygen production system for air revitalization in space. The software operates in a dynamic simulation testbed.
NASA Astrophysics Data System (ADS)
Saponara, M.; Tramutola, A.; Creten, P.; Hardy, J.; Philippe, C.
2013-08-01
Optimization-based control techniques such as Model Predictive Control (MPC) are considered extremely attractive for space rendezvous, proximity operations and capture applications that require high level of autonomy, optimal path planning and dynamic safety margins. Such control techniques require high-performance computational needs for solving large optimization problems. The development and implementation in a flight representative avionic architecture of a MPC based Guidance, Navigation and Control system has been investigated in the ESA R&T study “On-line Reconfiguration Control System and Avionics Architecture” (ORCSAT) of the Aurora programme. The paper presents the baseline HW and SW avionic architectures, and verification test results obtained with a customised RASTA spacecraft avionics development platform from Aeroflex Gaisler.
Partially Decentralized Control Architectures for Satellite Formations
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell; Bauer, Frank H.
2002-01-01
In a partially decentralized control architecture, more than one but less than all nodes have supervisory capability. This paper describes an approach to choosing the number of supervisors in such au architecture, based on a reliability vs. cost trade. It also considers the implications of these results for the design of navigation systems for satellite formations that could be controlled with a partially decentralized architecture. Using an assumed cost model, analytic and simulation-based results indicate that it may be cheaper to achieve a given overall system reliability with a partially decentralized architecture containing only a few supervisors, than with either fully decentralized or purely centralized architectures. Nominally, the subset of supervisors may act as centralized estimation and control nodes for corresponding subsets of the remaining subordinate nodes, and act as decentralized estimation and control peers with respect to each other. However, in the context of partially decentralized satellite formation control, the absolute positions and velocities of each spacecraft are unique, so that correlations which make estimates using only local information suboptimal only occur through common biases and process noise. Covariance and monte-carlo analysis of a simplified system show that this lack of correlation may allow simplification of the local estimators while preserving the global optimality of the maneuvers commanded by the supervisors.
NASA Technical Reports Server (NTRS)
Stevens, H. D.; Miles, E. S.; Rock, S. J.; Cannon, R. H.
1994-01-01
Expanding man's presence in space requires capable, dexterous robots capable of being controlled from the Earth. Traditional 'hand-in-glove' control paradigms require the human operator to directly control virtually every aspect of the robot's operation. While the human provides excellent judgment and perception, human interaction is limited by low bandwidth, delayed communications. These delays make 'hand-in-glove' operation from Earth impractical. In order to alleviate many of the problems inherent to remote operation, Stanford University's Aerospace Robotics Laboratory (ARL) has developed the Object-Based Task-Level Control architecture. Object-Based Task-Level Control (OBTLC) removes the burden of teleoperation from the human operator and enables execution of tasks not possible with current techniques. OBTLC is a hierarchical approach to control where the human operator is able to specify high-level, object-related tasks through an intuitive graphical user interface. Infrequent task-level command replace constant joystick operations, eliminating communications bandwidth and time delay problems. The details of robot control and task execution are handled entirely by the robot and computer control system. The ARL has implemented the OBTLC architecture on a set of Free-Flying Space Robots. The capability of the OBTLC architecture has been demonstrated by controlling the ARL Free-Flying Space Robots from NASA Ames Research Center.
NASA Technical Reports Server (NTRS)
Swei, Sean
2014-01-01
We propose to develop a robust guidance and control system for the ADEPT (Adaptable Deployable Entry and Placement Technology) entry vehicle. A control-centric model of ADEPT will be developed to quantify the performance of candidate guidance and control architectures for both aerocapture and precision landing missions. The evaluation will be based on recent breakthroughs in constrained controllability/reachability analysis of control systems and constrained-based energy-minimum trajectory optimization for guidance development operating in complex environments.
The UAS control segment architecture: an overview
NASA Astrophysics Data System (ADS)
Gregory, Douglas A.; Batavia, Parag; Coats, Mark; Allport, Chris; Jennings, Ann; Ernst, Richard
2013-05-01
The Under Secretary of Defense (Acquisition, Technology and Logistics) directed the Services in 2009 to jointly develop and demonstrate a common architecture for command and control of Department of Defense (DoD) Unmanned Aircraft Systems (UAS) Groups 2 through 5. The UAS Control Segment (UCS) Architecture is an architecture framework for specifying and designing the softwareintensive capabilities of current and emerging UCS systems in the DoD inventory. The UCS Architecture is based on Service Oriented Architecture (SOA) principles that will be adopted by each of the Services as a common basis for acquiring, integrating, and extending the capabilities of the UAS Control Segment. The UAS Task Force established the UCS Working Group to develop and support the UCS Architecture. The Working Group currently has over three hundred members, and is open to qualified representatives from DoD-approved defense contractors, academia, and the Government. The UCS Architecture is currently at Release 2.2, with Release 3.0 planned for July 2013. This paper discusses the current and planned elements of the UCS Architecture, and related activities of the UCS Community of Interest.
Software architecture of INO340 telescope control system
NASA Astrophysics Data System (ADS)
Ravanmehr, Reza; Khosroshahi, Habib
2016-08-01
The software architecture plays an important role in distributed control system of astronomical projects because many subsystems and components must work together in a consistent and reliable way. We have utilized a customized architecture design approach based on "4+1 view model" in order to design INOCS software architecture. In this paper, after reviewing the top level INOCS architecture, we present the software architecture model of INOCS inspired by "4+1 model", for this purpose we provide logical, process, development, physical, and scenario views of our architecture using different UML diagrams and other illustrative visual charts. Each view presents INOCS software architecture from a different perspective. We finish the paper by science data operation of INO340 and the concluding remarks.
Hybrid techniques for the digital control of mechanical and optical systems
NASA Astrophysics Data System (ADS)
Acernese, Fausto; Barone, Fabrizio; De Rosa, Rosario; Eleuteri, Antonio; Milano, Leopoldo; Pardi, Silvio; Ricciardi, Iolanda; Russo, Guido
2004-07-01
One of the main requirements of a digital system for the control of interferometric detectors of gravitational waves is the computing power, that is a direct consequence of the increasing complexity of the digital algorithms necessary for the control signals generation. For this specific task many specialised non standard real-time architectures have been developed, often very expensive and difficult to upgrade. On the other hand, such computing power is generally fully available for off-line applications on standard Pc based systems. Therefore, a possible and obvious solution may be provided by the integration of both the the real-time and off-line architecture resulting in a hybrid control system architecture based on standards available components, trying to get both the advantages of the perfect data synchronization provided by the real-time systems and by the large computing power available on Pc based systems. Such integration may be provided by the implementation of the link between the two different architectures through the standard Ethernet network, whose data transfer speed is largely increasing in these years, using the TCP/IP and UDP protocols. In this paper we describe the architecture of an hybrid Ethernet based real-time control system protoype we implemented in Napoli, discussing its characteristics and performances. Finally we discuss a possible application to the real-time control of a suspended mass of the mode cleaner of the 3m prototype optical interferometer for gravitational wave detection (IDGW-3P) operational in Napoli.
A limit-cycle self-organizing map architecture for stable arm control.
Huang, Di-Wei; Gentili, Rodolphe J; Katz, Garrett E; Reggia, James A
2017-01-01
Inspired by the oscillatory nature of cerebral cortex activity, we recently proposed and studied self-organizing maps (SOMs) based on limit cycle neural activity in an attempt to improve the information efficiency and robustness of conventional single-node, single-pattern representations. Here we explore for the first time the use of limit cycle SOMs to build a neural architecture that controls a robotic arm by solving inverse kinematics in reach-and-hold tasks. This multi-map architecture integrates open-loop and closed-loop controls that learn to self-organize oscillatory neural representations and to harness non-fixed-point neural activity even for fixed-point arm reaching tasks. We show through computer simulations that our architecture generalizes well, achieves accurate, fast, and smooth arm movements, and is robust in the face of arm perturbations, map damage, and variations of internal timing parameters controlling the flow of activity. A robotic implementation is evaluated successfully without further training, demonstrating for the first time that limit cycle maps can control a physical robot arm. We conclude that architectures based on limit cycle maps can be organized to function effectively as neural controllers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Open multi-agent control architecture to support virtual-reality-based man-machine interfaces
NASA Astrophysics Data System (ADS)
Freund, Eckhard; Rossmann, Juergen; Brasch, Marcel
2001-10-01
Projective Virtual Reality is a new and promising approach to intuitively operable man machine interfaces for the commanding and supervision of complex automation systems. The user interface part of Projective Virtual Reality heavily builds on latest Virtual Reality techniques, a task deduction component and automatic action planning capabilities. In order to realize man machine interfaces for complex applications, not only the Virtual Reality part has to be considered but also the capabilities of the underlying robot and automation controller are of great importance. This paper presents a control architecture that has proved to be an ideal basis for the realization of complex robotic and automation systems that are controlled by Virtual Reality based man machine interfaces. The architecture does not just provide a well suited framework for the real-time control of a multi robot system but also supports Virtual Reality metaphors and augmentations which facilitate the user's job to command and supervise a complex system. The developed control architecture has already been used for a number of applications. Its capability to integrate sensor information from sensors of different levels of abstraction in real-time helps to make the realized automation system very responsive to real world changes. In this paper, the architecture will be described comprehensively, its main building blocks will be discussed and one realization that is built based on an open source real-time operating system will be presented. The software design and the features of the architecture which make it generally applicable to the distributed control of automation agents in real world applications will be explained. Furthermore its application to the commanding and control of experiments in the Columbus space laboratory, the European contribution to the International Space Station (ISS), is only one example which will be described.
Different micromanipulation applications based on common modular control architecture
NASA Astrophysics Data System (ADS)
Sipola, Risto; Vallius, Tero; Pudas, Marko; Röning, Juha
2010-01-01
This paper validates a previously introduced scalable modular control architecture and shows how it can be used to implement research equipment. The validation is conducted by presenting different kinds of micromanipulation applications that use the architecture. Conditions of the micro-world are very different from those of the macro-world. Adhesive forces are significant compared to gravitational forces when micro-scale objects are manipulated. Manipulation is mainly conducted by automatic control relying on haptic feedback provided by force sensors. The validated architecture is a hierarchical layered hybrid architecture, including a reactive layer and a planner layer. The implementation of the architecture is modular, and the architecture has a lot in common with open architectures. Further, the architecture is extensible, scalable, portable and it enables reuse of modules. These are the qualities that we validate in this paper. To demonstrate the claimed features, we present different applications that require special control in micrometer, millimeter and centimeter scales. These applications include a device that measures cell adhesion, a device that examines properties of thin films, a device that measures adhesion of micro fibers and a device that examines properties of submerged gel produced by bacteria. Finally, we analyze how the architecture is used in these applications.
NASA Technical Reports Server (NTRS)
Campbell, Stefan F.; Kaneshige, John T.
2010-01-01
Presented here is a Predictor-Based Model Reference Adaptive Control (PMRAC) architecture for a generic transport aircraft. At its core, this architecture features a three-axis, non-linear, dynamic-inversion controller. Command inputs for this baseline controller are provided by pilot roll-rate, pitch-rate, and sideslip commands. This paper will first thoroughly present the baseline controller followed by a description of the PMRAC adaptive augmentation to this control system. Results are presented via a full-scale, nonlinear simulation of NASA s Generic Transport Model (GTM).
A reinforcement learning-based architecture for fuzzy logic control
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1992-01-01
This paper introduces a new method for learning to refine a rule-based fuzzy logic controller. A reinforcement learning technique is used in conjunction with a multilayer neural network model of a fuzzy controller. The approximate reasoning based intelligent control (ARIC) architecture proposed here learns by updating its prediction of the physical system's behavior and fine tunes a control knowledge base. Its theory is related to Sutton's temporal difference (TD) method. Because ARIC has the advantage of using the control knowledge of an experienced operator and fine tuning it through the process of learning, it learns faster than systems that train networks from scratch. The approach is applied to a cart-pole balancing system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalsi, Karan; Fuller, Jason C.; Somani, Abhishek
Disclosed herein are representative embodiments of methods, apparatus, and systems for facilitating operation and control of a resource distribution system (such as a power grid). Among the disclosed embodiments is a distributed hierarchical control architecture (DHCA) that enables smart grid assets to effectively contribute to grid operations in a controllable manner, while helping to ensure system stability and equitably rewarding their contribution. Embodiments of the disclosed architecture can help unify the dispatch of these resources to provide both market-based and balancing services.
Fault tolerant and lifetime control architecture for autonomous vehicles
NASA Astrophysics Data System (ADS)
Bogdanov, Alexander; Chen, Yi-Liang; Sundareswaran, Venkataraman; Altshuler, Thomas
2008-04-01
Increased vehicle autonomy, survivability and utility can provide an unprecedented impact on mission success and are one of the most desirable improvements for modern autonomous vehicles. We propose a general architecture of intelligent resource allocation, reconfigurable control and system restructuring for autonomous vehicles. The architecture is based on fault-tolerant control and lifetime prediction principles, and it provides improved vehicle survivability, extended service intervals, greater operational autonomy through lower rate of time-critical mission failures and lesser dependence on supplies and maintenance. The architecture enables mission distribution, adaptation and execution constrained on vehicle and payload faults and desirable lifetime. The proposed architecture will allow managing missions more efficiently by weighing vehicle capabilities versus mission objectives and replacing the vehicle only when it is necessary.
FPGA implementation of bit controller in double-tick architecture
NASA Astrophysics Data System (ADS)
Kobylecki, Michał; Kania, Dariusz
2017-11-01
This paper presents a comparison of the two original architectures of programmable bit controllers built on FPGAs. Programmable Logic Controllers (which include, among other things programmable bit controllers) built on FPGAs provide a efficient alternative to the controllers based on microprocessors which are expensive and often too slow. The presented and compared methods allow for the efficient implementation of any bit control algorithm written in Ladder Diagram language into the programmable logic system in accordance with IEC61131-3. In both cases, we have compared the effect of the applied architecture on the performance of executing the same bit control program in relation to its own size.
Duff, Armin; Fibla, Marti Sanchez; Verschure, Paul F M J
2011-06-30
Intelligence depends on the ability of the brain to acquire and apply rules and representations. At the neuronal level these properties have been shown to critically depend on the prefrontal cortex. Here we present, in the context of the Distributed Adaptive Control architecture (DAC), a biologically based model for flexible control and planning based on key physiological properties of the prefrontal cortex, i.e. reward modulated sustained activity and plasticity of lateral connectivity. We test the model in a series of pertinent tasks, including multiple T-mazes and the Tower of London that are standard experimental tasks to assess flexible control and planning. We show that the model is both able to acquire and express rules that capture the properties of the task and to quickly adapt to changes. Further, we demonstrate that this biomimetic self-contained cognitive architecture generalizes to planning. In addition, we analyze the extended DAC architecture, called DAC 6, as a model that can be applied for the creation of intelligent and psychologically believable synthetic agents. Copyright © 2010 Elsevier Inc. All rights reserved.
High-autonomy control of space resource processing plants
NASA Technical Reports Server (NTRS)
Schooley, Larry C.; Zeigler, Bernard P.; Cellier, Francois E.; Wang, Fei-Yue
1993-01-01
A highly autonomous intelligent command/control architecture has been developed for planetary surface base industrial process plants and Space Station Freedom experimental facilities. The architecture makes use of a high-level task-oriented mode with supervisory control from one or several remote sites, and integrates advanced network communications concepts and state-of-the-art man/machine interfaces with the most advanced autonomous intelligent control. Attention is given to the full-dynamics model of a Martian oxygen-production plant, event-based/fuzzy-logic process control, and fault management practices.
NASA Astrophysics Data System (ADS)
Belapurkar, Rohit K.
Future aircraft engine control systems will be based on a distributed architecture, in which, the sensors and actuators will be connected to the Full Authority Digital Engine Control (FADEC) through an engine area network. Distributed engine control architecture will allow the implementation of advanced, active control techniques along with achieving weight reduction, improvement in performance and lower life cycle cost. The performance of a distributed engine control system is predominantly dependent on the performance of the communication network. Due to the serial data transmission policy, network-induced time delays and sampling jitter are introduced between the sensor/actuator nodes and the distributed FADEC. Communication network faults and transient node failures may result in data dropouts, which may not only degrade the control system performance but may even destabilize the engine control system. Three different architectures for a turbine engine control system based on a distributed framework are presented. A partially distributed control system for a turbo-shaft engine is designed based on ARINC 825 communication protocol. Stability conditions and control design methodology are developed for the proposed partially distributed turbo-shaft engine control system to guarantee the desired performance under the presence of network-induced time delay and random data loss due to transient sensor/actuator failures. A fault tolerant control design methodology is proposed to benefit from the availability of an additional system bandwidth and from the broadcast feature of the data network. It is shown that a reconfigurable fault tolerant control design can help to reduce the performance degradation in presence of node failures. A T-700 turbo-shaft engine model is used to validate the proposed control methodology based on both single input and multiple-input multiple-output control design techniques.
Practical Application of Model-based Programming and State-based Architecture to Space Missions
NASA Technical Reports Server (NTRS)
Horvath, Gregory; Ingham, Michel; Chung, Seung; Martin, Oliver; Williams, Brian
2006-01-01
A viewgraph presentation to develop models from systems engineers that accomplish mission objectives and manage the health of the system is shown. The topics include: 1) Overview; 2) Motivation; 3) Objective/Vision; 4) Approach; 5) Background: The Mission Data System; 6) Background: State-based Control Architecture System; 7) Background: State Analysis; 8) Overview of State Analysis; 9) Background: MDS Software Frameworks; 10) Background: Model-based Programming; 10) Background: Titan Model-based Executive; 11) Model-based Execution Architecture; 12) Compatibility Analysis of MDS and Titan Architectures; 13) Integrating Model-based Programming and Execution into the Architecture; 14) State Analysis and Modeling; 15) IMU Subsystem State Effects Diagram; 16) Titan Subsystem Model: IMU Health; 17) Integrating Model-based Programming and Execution into the Software IMU; 18) Testing Program; 19) Computationally Tractable State Estimation & Fault Diagnosis; 20) Diagnostic Algorithm Performance; 21) Integration and Test Issues; 22) Demonstrated Benefits; and 23) Next Steps
Design of Distributed Engine Control Systems with Uncertain Delay.
Liu, Xiaofeng; Li, Yanxi; Sun, Xu
Future gas turbine engine control systems will be based on distributed architecture, in which, the sensors and actuators will be connected to the controllers via a communication network. The performance of the distributed engine control (DEC) is dependent on the network performance. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS). Typical turboshaft engine-distributed controllers are designed based on the NCCS framework with a H∞ output feedback under network-induced time delays and uncertain disturbances. The sufficient conditions for robust stability are derived via the Lyapunov stability theory and linear matrix inequality approach. Both numerical and hardware-in-loop simulations illustrate the effectiveness of the presented method.
Design of Distributed Engine Control Systems with Uncertain Delay
Li, Yanxi; Sun, Xu
2016-01-01
Future gas turbine engine control systems will be based on distributed architecture, in which, the sensors and actuators will be connected to the controllers via a communication network. The performance of the distributed engine control (DEC) is dependent on the network performance. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS). Typical turboshaft engine-distributed controllers are designed based on the NCCS framework with a H∞ output feedback under network-induced time delays and uncertain disturbances. The sufficient conditions for robust stability are derived via the Lyapunov stability theory and linear matrix inequality approach. Both numerical and hardware-in-loop simulations illustrate the effectiveness of the presented method. PMID:27669005
Ground support system methodology and architecture
NASA Technical Reports Server (NTRS)
Schoen, P. D.
1991-01-01
A synergistic approach to systems test and support is explored. A building block architecture provides transportability of data, procedures, and knowledge. The synergistic approach also lowers cost and risk for life cycle of a program. The determination of design errors at the earliest phase reduces cost of vehicle ownership. Distributed scaleable architecture is based on industry standards maximizing transparency and maintainability. Autonomous control structure provides for distributed and segmented systems. Control of interfaces maximizes compatibility and reuse, reducing long term program cost. Intelligent data management architecture also reduces analysis time and cost (automation).
An OSI architecture for the deep space network
NASA Technical Reports Server (NTRS)
Heuser, W. Randy; Cooper, Lynne P.
1993-01-01
The flexibility and robustness of a monitor and control system are a direct result of the underlying inter-processor communications architecture. A new architecture for monitor & Control at the Deep Space Network Communications Complexes has been developed based on the Open System Interconnection (OSI) standards. The suitability of OSI standards for DSN M&C has been proven in the laboratory. The laboratory success has resulted in choosing an OSI-based architecture for DSS-13 M&C. DSS-13 is the DSN experimental station and is not part of the 'operational' DSN; it's role is to provide an environment to test new communications concepts can be tested and conduct unique science experiments. Therefore, DSS-13 must be robust enough to support operational activities, while also being flexible enough to enable experimentation. This paper describes the M&C architecture developed for DSS-13 and the results from system and operational testing.
A new flight control and management system architecture and configuration
NASA Astrophysics Data System (ADS)
Kong, Fan-e.; Chen, Zongji
2006-11-01
The advanced fighter should possess the performance such as super-sound cruising, stealth, agility, STOVL(Short Take-Off Vertical Landing),powerful communication and information processing. For this purpose, it is not enough only to improve the aerodynamic and propulsion system. More importantly, it is necessary to enhance the control system. A complete flight control system provides not only autopilot, auto-throttle and control augmentation, but also the given mission management. F-22 and JSF possess considerably outstanding flight control system on the basis of pave pillar and pave pace avionics architecture. But their control architecture is not enough integrated. The main purpose of this paper is to build a novel fighter control system architecture. The control system constructed on this architecture should be enough integrated, inexpensive, fault-tolerant, high safe, reliable and effective. And it will take charge of both the flight control and mission management. Starting from this purpose, this paper finishes the work as follows: First, based on the human nervous control, a three-leveled hierarchical control architecture is proposed. At the top of the architecture, decision level is in charge of decision-making works. In the middle, organization & coordination level will schedule resources, monitor the states of the fighter and switch the control modes etc. And the bottom is execution level which holds the concrete drive and measurement; then, according to their function and resources all the tasks involving flight control and mission management are sorted to individual level; at last, in order to validate the three-leveled architecture, a physical configuration is also showed. The configuration is distributed and applies some new advancement in information technology industry such line replaced module and cluster technology.
Space Internet-Embedded Web Technologies Demonstration
NASA Technical Reports Server (NTRS)
Foltz, David A.
2001-01-01
The NASA Glenn Research Center recently demonstrated the ability to securely command and control space-based assets by using the Internet and standard Internet Protocols (IP). This is a significant accomplishment because future NASA missions will benefit by using Internet standards-based protocols. The benefits include reduced mission costs and increased mission efficiency. The Internet-Based Space Command and Control System Architecture demonstrated at the NASA Inspection 2000 event proved that this communications architecture is viable for future NASA missions.
Status, Vision, and Challenges of an Intelligent Distributed Engine Control Architecture
NASA Technical Reports Server (NTRS)
Behbahani, Alireza; Culley, Dennis; Garg, Sanjay; Millar, Richard; Smith, Bert; Wood, Jim; Mahoney, Tim; Quinn, Ronald; Carpenter, Sheldon; Mailander, Bill;
2007-01-01
A Distributed Engine Control Working Group (DECWG) consisting of the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) and industry has been formed to examine the current and future requirements of propulsion engine systems. The scope of this study will include an assessment of the paradigm shift from centralized engine control architecture to an architecture based on distributed control utilizing open system standards. Included will be a description of the work begun in the 1990's, which continues today, followed by the identification of the remaining technical challenges which present barriers to on-engine distributed control.
NASA Technical Reports Server (NTRS)
Perry, Jay L.; Abney, Morgan B.; Frederick, Kenneth R.; Greenwood, Zachary W.; Kayatin, Matthew J.; Newton, Robert L.; Parrish, Keith J.; Roman, Monsi C.; Takada, Kevin C.; Miller, Lee A.;
2013-01-01
A subsystem architecture derived from the International Space Station's (ISS) Atmosphere Revitalization Subsystem (ARS) has been functionally demonstrated. This ISS-derived architecture features re-arranged unit operations for trace contaminant control and carbon dioxide removal functions, a methane purification component as a precursor to enhance resource recovery over ISS capability, operational modifications to a water electrolysis-based oxygen generation assembly, and an alternative major atmospheric constituent monitoring concept. Results from this functional demonstration are summarized and compared to the performance observed during ground-based testing conducted on an ISS-like subsystem architecture. Considerations for further subsystem architecture and process technology development are discussed.
Optical burst switching based satellite backbone network
NASA Astrophysics Data System (ADS)
Li, Tingting; Guo, Hongxiang; Wang, Cen; Wu, Jian
2018-02-01
We propose a novel time slot based optical burst switching (OBS) architecture for GEO/LEO based satellite backbone network. This architecture can provide high speed data transmission rate and high switching capacity . Furthermore, we design the control plane of this optical satellite backbone network. The software defined network (SDN) and network slice (NS) technologies are introduced. Under the properly designed control mechanism, this backbone network is flexible to support various services with diverse transmission requirements. Additionally, the LEO access and handoff management in this network is also discussed.
The JCMT Observatory Control System
NASA Astrophysics Data System (ADS)
Rees, Nick; Economou, Frossie; Jenness, Tim; Kackley, Russell; Walther, Craig; Dent, Bill; Folger, Martin; Gao, Xiaofeng; Kelly, Dennis; Lightfoot, John; Pain, Ian; Hovey, Gary; Willis, Tony; Redman, Russell
The JCMT, the world's largest sub-mm telescope, has had essentially the same VAX/VMS based control system since it was commissioned. For the next generation of instrumentation we are implementing a new Unix/VxWorks based system, based on the successful ORAC system that was recently released on UKIRT. This paper gives a broad overview of the system architecture and includes some discussion on the choices made. The pros and cons of using XML as an inherent part of the system architecture are also discussed.
2015 Assessment of the Ballistic Missile Defense System (BMDS)
2016-04-01
performance and test adequacy of the BMDS, its four autonomous BMDS systems, and its sensor/command and control architecture. The four autonomous BMDS...Patriot. The Command and Control , Battle Management, and Communications (C2BMC) element anchors the sensor/command and control architecture. This...Warfare operations against a cruise missile surrogate. Ground-based Midcourse Defense (GMD). GMD has demonstrated capability against small
On the Design of a Comprehensive Authorisation Framework for Service Oriented Architecture (SOA)
2013-07-01
Authentication Server AZM Authorisation Manager AZS Authorisation Server BP Business Process BPAA Business Process Authorisation Architecture BPAD Business...Internet Protocol Security JAAS Java Authentication and Authorisation Service MAC Mandatory Access Control RBAC Role Based Access Control RCA Regional...the authentication process, make authorisation decisions using application specific access control functions that results in the practice of
Predictor-Based Model Reference Adaptive Control
NASA Technical Reports Server (NTRS)
Lavretsky, Eugene; Gadient, Ross; Gregory, Irene M.
2009-01-01
This paper is devoted to robust, Predictor-based Model Reference Adaptive Control (PMRAC) design. The proposed adaptive system is compared with the now-classical Model Reference Adaptive Control (MRAC) architecture. Simulation examples are presented. Numerical evidence indicates that the proposed PMRAC tracking architecture has better than MRAC transient characteristics. In this paper, we presented a state-predictor based direct adaptive tracking design methodology for multi-input dynamical systems, with partially known dynamics. Efficiency of the design was demonstrated using short period dynamics of an aircraft. Formal proof of the reported PMRAC benefits constitute future research and will be reported elsewhere.
Colloidal-based additive manufacturing of bio-inspired composites
NASA Astrophysics Data System (ADS)
Studart, Andre R.
Composite materials in nature exhibit heterogeneous architectures that are tuned to fulfill the functional demands of the surrounding environment. Examples range from the cellulose-based organic structure of plants to highly mineralized collagen-based skeletal parts like bone and teeth. Because they are often utilized to combine opposing properties such as strength and low-density or stiffness and wear resistance, the heterogeneous architecture of natural materials can potentially address several of the technical limitations of artificial homogeneous composites. However, current man-made manufacturing technologies do not allow for the level of composition and fiber orientation control found in natural heterogeneous systems. In this talk, I will present two additive manufacturing technologies recently developed in our group to build composites with exquisite architectures only rivaled by structures made by living organisms in nature. Since the proposed techniques utilize colloidal suspensions as feedstock, understanding the physics underlying the stability, assembly and rheology of the printing inks is key to predict and control the architecture of manufactured parts. Our results will show that additive manufacturing routes offer a new exciting pathway for the fabrication of biologically-inspired composite materials with unprecedented architectures and functionalities.
An architecture for rapid prototyping of control schemes for artificial ventricles.
Ficola, Antonio; Pagnottelli, Stefano; Valigi, Paolo; Zoppitelli, Maurizio
2004-01-01
This paper presents an experimental system aimed at rapid prototyping of feedback control schemes for ventricular assist devices, and artificial ventricles in general. The system comprises a classical mock circulatory system, an actuated bellow-based ventricle chamber, and a software architecture for control schemes implementation and experimental data acquisition, visualization and storing. Several experiments have been carried out, showing good performance of ventricular pressure tracking control schemes.
Distributed and Modular CAN-Based Architecture for Hardware Control and Sensor Data Integration
Losada, Diego P.; Fernández, Joaquín L.; Paz, Enrique; Sanz, Rafael
2017-01-01
In this article, we present a CAN-based (Controller Area Network) distributed system to integrate sensors, actuators and hardware controllers in a mobile robot platform. With this work, we provide a robust, simple, flexible and open system to make hardware elements or subsystems communicate, that can be applied to different robots or mobile platforms. Hardware modules can be connected to or disconnected from the CAN bus while the system is working. It has been tested in our mobile robot Rato, based on a RWI (Real World Interface) mobile platform, to replace the old sensor and motor controllers. It has also been used in the design of two new robots: BellBot and WatchBot. Currently, our hardware integration architecture supports different sensors, actuators and control subsystems, such as motor controllers and inertial measurement units. The integration architecture was tested and compared with other solutions through a performance analysis of relevant parameters such as transmission efficiency and bandwidth usage. The results conclude that the proposed solution implements a lightweight communication protocol for mobile robot applications that avoids transmission delays and overhead. PMID:28467381
Distributed and Modular CAN-Based Architecture for Hardware Control and Sensor Data Integration.
Losada, Diego P; Fernández, Joaquín L; Paz, Enrique; Sanz, Rafael
2017-05-03
In this article, we present a CAN-based (Controller Area Network) distributed system to integrate sensors, actuators and hardware controllers in a mobile robot platform. With this work, we provide a robust, simple, flexible and open system to make hardware elements or subsystems communicate, that can be applied to different robots or mobile platforms. Hardware modules can be connected to or disconnected from the CAN bus while the system is working. It has been tested in our mobile robot Rato, based on a RWI (Real World Interface) mobile platform, to replace the old sensor and motor controllers. It has also been used in the design of two new robots: BellBot and WatchBot. Currently, our hardware integration architecture supports different sensors, actuators and control subsystems, such as motor controllers and inertial measurement units. The integration architecture was tested and compared with other solutions through a performance analysis of relevant parameters such as transmission efficiency and bandwidth usage. The results conclude that the proposed solution implements a lightweight communication protocol for mobile robot applications that avoids transmission delays and overhead.
Bio-inspired adaptive feedback error learning architecture for motor control.
Tolu, Silvia; Vanegas, Mauricio; Luque, Niceto R; Garrido, Jesús A; Ros, Eduardo
2012-10-01
This study proposes an adaptive control architecture based on an accurate regression method called Locally Weighted Projection Regression (LWPR) and on a bio-inspired module, such as a cerebellar-like engine. This hybrid architecture takes full advantage of the machine learning module (LWPR kernel) to abstract an optimized representation of the sensorimotor space while the cerebellar component integrates this to generate corrective terms in the framework of a control task. Furthermore, we illustrate how the use of a simple adaptive error feedback term allows to use the proposed architecture even in the absence of an accurate analytic reference model. The presented approach achieves an accurate control with low gain corrective terms (for compliant control schemes). We evaluate the contribution of the different components of the proposed scheme comparing the obtained performance with alternative approaches. Then, we show that the presented architecture can be used for accurate manipulation of different objects when their physical properties are not directly known by the controller. We evaluate how the scheme scales for simulated plants of high Degrees of Freedom (7-DOFs).
NASA Astrophysics Data System (ADS)
Zhao, Yongli; Ji, Yuefeng; Zhang, Jie; Li, Hui; Xiong, Qianjin; Qiu, Shaofeng
2014-08-01
Ultrahigh throughout capacity requirement is challenging the current optical switching nodes with the fast development of data center networks. Pbit/s level all optical switching networks need to be deployed soon, which will cause the high complexity of node architecture. How to control the future network and node equipment together will become a new problem. An enhanced Software Defined Networking (eSDN) control architecture is proposed in the paper, which consists of Provider NOX (P-NOX) and Node NOX (N-NOX). With the cooperation of P-NOX and N-NOX, the flexible control of the entire network can be achieved. All optical switching network testbed has been experimentally demonstrated with efficient control of enhanced Software Defined Networking (eSDN). Pbit/s level all optical switching nodes in the testbed are implemented based on multi-dimensional switching architecture, i.e. multi-level and multi-planar. Due to the space and cost limitation, each optical switching node is only equipped with four input line boxes and four output line boxes respectively. Experimental results are given to verify the performance of our proposed control and switching architecture.
Predicting Loss-of-Control Boundaries Toward a Piloting Aid
NASA Technical Reports Server (NTRS)
Barlow, Jonathan; Stepanyan, Vahram; Krishnakumar, Kalmanje
2012-01-01
This work presents an approach to predicting loss-of-control with the goal of providing the pilot a decision aid focused on maintaining the pilot's control action within predicted loss-of-control boundaries. The predictive architecture combines quantitative loss-of-control boundaries, a data-based predictive control boundary estimation algorithm and an adaptive prediction method to estimate Markov model parameters in real-time. The data-based loss-of-control boundary estimation algorithm estimates the boundary of a safe set of control inputs that will keep the aircraft within the loss-of-control boundaries for a specified time horizon. The adaptive prediction model generates estimates of the system Markov Parameters, which are used by the data-based loss-of-control boundary estimation algorithm. The combined algorithm is applied to a nonlinear generic transport aircraft to illustrate the features of the architecture.
Software structure for Vega/Chara instrument
NASA Astrophysics Data System (ADS)
Clausse, J.-M.
2008-07-01
VEGA (Visible spEctroGraph and polArimeter) is one of the focal instruments of the CHARA array at Mount Wilson near Los Angeles. Its control system is based on techniques developed on the GI2T interferometer (Grand Interferometre a 2 Telescopes) and on the SIRIUS fibered hyper telescope testbed at OCA (Observatoire de la Cote d'Azur). This article describes the software and electronics architecture of the instrument. It is based on local network architecture and uses also Virtual Private Network connections. The server part is based on Windows XP (VC++). The control software is on Linux (C, GTK). For the control of the science detector and the fringe tracking systems, distributed API use real-time techniques. The control software gathers all the necessary informations of the instrument. It allows an automatic management of the instrument by using an original task scheduler. This architecture intends to drive the instrument from remote sites, such as our institute in South of France.
Control of Macromolecular Architectures for Renewable Polymers: Case Studies
NASA Astrophysics Data System (ADS)
Tang, Chuanbing
The development of sustainable polymers from nature biomass is growing, but facing fierce competition from existing petrochemical-based counterparts. Controlling macromolecular architectures to maximize the properties of renewable polymers is a desirable approach to gain advantages. Given the complexity of biomass, there needs special consideration other than traditional design. In the presentation, I will talk about a few case studies on how macromolecular architectures could tune the properties of sustainable bioplastics and elastomers from renewable biomass such as resin acids (natural rosin) and plant oils.
Automatic control of a negative ion source
NASA Astrophysics Data System (ADS)
Saadatmand, K.; Sredniawski, J.; Solensten, L.
1989-04-01
A CAMAC based control architecture is devised for a Berkeley-type H - volume ion source [1]. The architecture employs three 80386 TM PCs. One PC is dedicated to control and monitoring of source operation. The other PC functions with digitizers to provide data acquisition of waveforms. The third PC is used for off-line analysis. Initially, operation of the source was put under remote computer control (supervisory). This was followed by development of an automated startup procedure. Finally, a study of the physics of operation is now underway to establish a data base from which automatic beam optimization can be derived.
Layered Architectures for Quantum Computers and Quantum Repeaters
NASA Astrophysics Data System (ADS)
Jones, Nathan C.
This chapter examines how to organize quantum computers and repeaters using a systematic framework known as layered architecture, where machine control is organized in layers associated with specialized tasks. The framework is flexible and could be used for analysis and comparison of quantum information systems. To demonstrate the design principles in practice, we develop architectures for quantum computers and quantum repeaters based on optically controlled quantum dots, showing how a myriad of technologies must operate synchronously to achieve fault-tolerance. Optical control makes information processing in this system very fast, scalable to large problem sizes, and extendable to quantum communication.
A candidate architecture for monitoring and control in chemical transfer propulsion systems
NASA Technical Reports Server (NTRS)
Binder, Michael P.; Millis, Marc G.
1990-01-01
To support the exploration of space, a reusable space-based rocket engine must be developed. This engine must sustain superior operability and man-rated levels of reliability over several missions with limited maintenance or inspection between flights. To meet these requirements, an expander cycle engine incorporating a highly capable control and health monitoring system is planned. Alternatives for the functional organization and the implementation architecture of the engine's monitoring and control system are discussed. On the basis of this discussion, a decentralized architecture is favored. The trade-offs between several implementation options are outlined and future work is proposed.
NASA Astrophysics Data System (ADS)
Singh, Surya P. N.; Thayer, Scott M.
2002-02-01
This paper presents a novel algorithmic architecture for the coordination and control of large scale distributed robot teams derived from the constructs found within the human immune system. Using this as a guide, the Immunology-derived Distributed Autonomous Robotics Architecture (IDARA) distributes tasks so that broad, all-purpose actions are refined and followed by specific and mediated responses based on each unit's utility and capability to timely address the system's perceived need(s). This method improves on initial developments in this area by including often overlooked interactions of the innate immune system resulting in a stronger first-order, general response mechanism. This allows for rapid reactions in dynamic environments, especially those lacking significant a priori information. As characterized via computer simulation of a of a self-healing mobile minefield having up to 7,500 mines and 2,750 robots, IDARA provides an efficient, communications light, and scalable architecture that yields significant operation and performance improvements for large-scale multi-robot coordination and control.
An Architecture for Controlling Multiple Robots
NASA Technical Reports Server (NTRS)
Aghazarian, Hrand; Pirjanian, Paolo; Schenker, Paul; Huntsberger, Terrance
2004-01-01
The Control Architecture for Multirobot Outpost (CAMPOUT) is a distributed-control architecture for coordinating the activities of multiple robots. In the CAMPOUT, multiple-agent activities and sensor-based controls are derived as group compositions and involve coordination of more basic controllers denoted, for present purposes, as behaviors. The CAMPOUT provides basic mechanistic concepts for representation and execution of distributed group activities. One considers a network of nodes that comprise behaviors (self-contained controllers) augmented with hyper-links, which are used to exchange information between the nodes to achieve coordinated activities. Group behavior is guided by a scripted plan, which encodes a conditional sequence of single-agent activities. Thus, higher-level functionality is composed by coordination of more basic behaviors under the downward task decomposition of a multi-agent planner
A computer architecture for intelligent machines
NASA Technical Reports Server (NTRS)
Lefebvre, D. R.; Saridis, G. N.
1992-01-01
The theory of intelligent machines proposes a hierarchical organization for the functions of an autonomous robot based on the principle of increasing precision with decreasing intelligence. An analytic formulation of this theory using information-theoretic measures of uncertainty for each level of the intelligent machine has been developed. The authors present a computer architecture that implements the lower two levels of the intelligent machine. The architecture supports an event-driven programming paradigm that is independent of the underlying computer architecture and operating system. Execution-level controllers for motion and vision systems are briefly addressed, as well as the Petri net transducer software used to implement coordination-level functions. A case study illustrates how this computer architecture integrates real-time and higher-level control of manipulator and vision systems.
Instrumentation and control building, architectural, sections and elevation. Specifications No. ...
Instrumentation and control building, architectural, sections and elevation. Specifications No. Eng -04-353-55-72; Drawing No. 60-09-12; sheet 65 of 148; file no. 1321/16. Stamped: record drawing - as constructed. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Control Center, Test Area 1-115, near Altair & Saturn Boulevards, Boron, Kern County, CA
Instrumentation and control building, architectural, floor plans. Specifications no. Eng-04-353-55-72; Drawing No. 60-09-12' sheet 64 of 148; file no. 1321/15. Stamped: record drawing - as constructed. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Control Center, Test Area 1-115, near Altair & Saturn Boulevards, Boron, Kern County, CA
Advanced Lighting Controls for Reducing Energy use and Cost in DoD Installations
2013-05-01
OccuSwitch Wireless is a room-based lighting control system employing dimmable light sources, occupancy and daylight sensors , wireless interconnection...combination of wireless and wired control solution for building-wide networked system that maximizes the use of daylight while improving visual...architecture of Hybrid ILDC. Architecture: The system features wireless connectivity among sensors and actuators within a zone and exploits wired
Integrating Software Modules For Robot Control
NASA Technical Reports Server (NTRS)
Volpe, Richard A.; Khosla, Pradeep; Stewart, David B.
1993-01-01
Reconfigurable, sensor-based control system uses state variables in systematic integration of reusable control modules. Designed for open-architecture hardware including many general-purpose microprocessors, each having own local memory plus access to global shared memory. Implemented in software as extension of Chimera II real-time operating system. Provides transparent computing mechanism for intertask communication between control modules and generic process-module architecture for multiprocessor realtime computation. Used to control robot arm. Proves useful in variety of other control and robotic applications.
Research and development of service robot platform based on artificial psychology
NASA Astrophysics Data System (ADS)
Zhang, Xueyuan; Wang, Zhiliang; Wang, Fenhua; Nagai, Masatake
2007-12-01
Some related works about the control architecture of robot system are briefly summarized. According to the discussions above, this paper proposes control architecture of service robot based on artificial psychology. In this control architecture, the robot can obtain the cognition of environment through sensors, and then be handled with intelligent model, affective model and learning model, and finally express the reaction to the outside stimulation through its behavior. For better understanding the architecture, hierarchical structure is also discussed. The control system of robot can be divided into five layers, namely physical layer, drives layer, information-processing and behavior-programming layer, application layer and system inspection and control layer. This paper shows how to achieve system integration from hardware modules, software interface and fault diagnosis. Embedded system GENE-8310 is selected as the PC platform of robot APROS-I, and its primary memory media is CF card. The arms and body of the robot are constituted by 13 motors and some connecting fittings. Besides, the robot has a robot head with emotional facial expression, and the head has 13 DOFs. The emotional and intelligent model is one of the most important parts in human-machine interaction. In order to better simulate human emotion, an emotional interaction model for robot is proposed according to the theory of need levels of Maslom and mood information of Siminov. This architecture has already been used in our intelligent service robot.
Time domain passivity controller for 4-channel time-delay bilateral teleoperation.
Rebelo, Joao; Schiele, Andre
2015-01-01
This paper presents an extension of the time-domain passivity control approach to a four-channel bilateral controller under the effects of time delays. Time-domain passivity control has been used successfully to stabilize teleoperation systems with position-force and position-position controllers; however, the performance with such control architectures is sub-optimal both with and without time delays. This work extends the network representation of the time-domain passivity controller to the four-channel architecture, which provides perfect transparency to the user without time delay. The proposed architecture is based on modelling the controllers as dependent voltage sources and using only series passivity controllers. The obtained results are shown on a one degree-of-freedom setup and illustrate the stabilization behaviour of the proposed controller when time delay is present in the communication channel.
NASA Astrophysics Data System (ADS)
Park, Soomyung; Joo, Seong-Soon; Yae, Byung-Ho; Lee, Jong-Hyun
2002-07-01
In this paper, we present the Optical Cross-Connect (OXC) Management Control System Architecture, which has the scalability and robust maintenance and provides the distributed managing environment in the optical transport network. The OXC system we are developing, which is divided into the hardware and the internal and external software for the OXC system, is made up the OXC subsystem with the Optical Transport Network (OTN) sub layers-hardware and the optical switch control system, the signaling control protocol subsystem performing the User-to-Network Interface (UNI) and Network-to-Network Interface (NNI) signaling control, the Operation Administration Maintenance & Provisioning (OAM&P) subsystem, and the network management subsystem. And the OXC management control system has the features that can support the flexible expansion of the optical transport network, provide the connectivity to heterogeneous external network elements, be added or deleted without interrupting OAM&P services, be remotely operated, provide the global view and detail information for network planner and operator, and have Common Object Request Broker Architecture (CORBA) based the open system architecture adding and deleting the intelligent service networking functions easily in future. To meet these considerations, we adopt the object oriented development method in the whole developing steps of the system analysis, design, and implementation to build the OXC management control system with the scalability, the maintenance, and the distributed managing environment. As a consequently, the componentification for the OXC operation management functions of each subsystem makes the robust maintenance, and increases code reusability. Also, the component based OXC management control system architecture will have the flexibility and scalability in nature.
Emulation of Industrial Control Field Device Protocols
2013-03-01
platforms such as the Arduino ( based on the Atmel AVR architecture) or popular PIC architecture based devices, which are programmed for specific functions...UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base , Ohio DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION...confidence intervals for the mean. Based on these results, extensive knowledge of the specific implementations of the protocols or timing profiles of the
A subsumptive, hierarchical, and distributed vision-based architecture for smart robotics.
DeSouza, Guilherme N; Kak, Avinash C
2004-10-01
We present a distributed vision-based architecture for smart robotics that is composed of multiple control loops, each with a specialized level of competence. Our architecture is subsumptive and hierarchical, in the sense that each control loop can add to the competence level of the loops below, and in the sense that the loops can present a coarse-to-fine gradation with respect to vision sensing. At the coarsest level, the processing of sensory information enables a robot to become aware of the approximate location of an object in its field of view. On the other hand, at the finest end, the processing of stereo information enables a robot to determine more precisely the position and orientation of an object in the coordinate frame of the robot. The processing in each module of the control loops is completely independent and it can be performed at its own rate. A control Arbitrator ranks the results of each loop according to certain confidence indices, which are derived solely from the sensory information. This architecture has clear advantages regarding overall performance of the system, which is not affected by the "slowest link," and regarding fault tolerance, since faults in one module does not affect the other modules. At this time we are able to demonstrate the utility of the architecture for stereoscopic visual servoing. The architecture has also been applied to mobile robot navigation and can easily be extended to tasks such as "assembly-on-the-fly."
NASA Technical Reports Server (NTRS)
Bhandari, Pradeep; Birur, Gajanana; Prina, Mauro; Ramirez, Brenda; Paris, Anthony; Novak, Keith; Pauken, Michael
2006-01-01
This viewgraph presentation reviews the heat rejection and heat recovery system for thermal control of the Mars Science Laboratory (MSL). The MSL mission will use mechanically pumped fluid loop based architecture for thermal control of the spacecraft and rover. The architecture is designed to harness waste heat from an Multi Mission Radioisotope Thermo-electric Generator (MMRTG) during Mars surface operations for thermal control during cold conditions and also reject heat during the cruise aspect of the mission. There are several test that are being conducted that will insure the safety of this concept. This architecture can be used during any future interplanetary missions utilizing radioisotope power systems for power generation.
Software control architecture for autonomous vehicles
NASA Astrophysics Data System (ADS)
Nelson, Michael L.; DeAnda, Juan R.; Fox, Richard K.; Meng, Xiannong
1999-07-01
The Strategic-Tactical-Execution Software Control Architecture (STESCA) is a tri-level approach to controlling autonomous vehicles. Using an object-oriented approach, STESCA has been developed as a generalization of the Rational Behavior Model (RBM). STESCA was initially implemented for the Phoenix Autonomous Underwater Vehicle (Naval Postgraduate School -- Monterey, CA), and is currently being implemented for the Pioneer AT land-based wheeled vehicle. The goals of STESCA are twofold. First is to create a generic framework to simplify the process of creating a software control architecture for autonomous vehicles of any type. Second is to allow for mission specification system by 'anyone' with minimal training to control the overall vehicle functionality. This paper describes the prototype implementation of STESCA for the Pioneer AT.
Control architecture for an adaptive electronically steerable flash lidar and associated instruments
NASA Astrophysics Data System (ADS)
Ruppert, Lyle; Craner, Jeremy; Harris, Timothy
2014-09-01
An Electronically Steerable Flash Lidar (ESFL), developed by Ball Aerospace & Technologies Corporation, allows realtime adaptive control of configuration and data-collection strategy based on recent or concurrent observations and changing situations. This paper reviews, at a high level, some of the algorithms and control architecture built into ESFL. Using ESFL as an example, it also discusses the merits and utility such adaptable instruments in Earth-system studies.
Evaluation of an Outer Loop Retrofit Architecture for Intelligent Turbofan Engine Thrust Control
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Sowers, T. Shane
2006-01-01
The thrust control capability of a retrofit architecture for intelligent turbofan engine control and diagnostics is evaluated. The focus of the study is on the portion of the hierarchical architecture that performs thrust estimation and outer loop thrust control. The inner loop controls fan speed so the outer loop automatically adjusts the engine's fan speed command to maintain thrust at the desired level, based on pilot input, even as the engine deteriorates with use. The thrust estimation accuracy is assessed under nominal and deteriorated conditions at multiple operating points, and the closed loop thrust control performance is studied, all in a complex real-time nonlinear turbofan engine simulation test bed. The estimation capability, thrust response, and robustness to uncertainty in the form of engine degradation are evaluated.
NASA Astrophysics Data System (ADS)
Zhao, Yongli; Li, Yajie; Wang, Xinbo; Chen, Bowen; Zhang, Jie
2016-09-01
A hierarchical software-defined networking (SDN) control architecture is designed for multi-domain optical networks with the Open Daylight (ODL) controller. The OpenFlow-based Control Virtual Network Interface (CVNI) protocol is deployed between the network orchestrator and the domain controllers. Then, a dynamic bandwidth on demand (BoD) provisioning solution is proposed based on time scheduling in software-defined multi-domain optical networks (SD-MDON). Shared Risk Link Groups (SRLG)-disjoint routing schemes are adopted to separate each tenant for reliability. The SD-MDON testbed is built based on the proposed hierarchical control architecture. Then the proposed time scheduling-based BoD (Ts-BoD) solution is experimentally demonstrated on the testbed. The performance of the Ts-BoD solution is evaluated with respect to blocking probability, resource utilization, and lightpath setup latency.
Nebot, Patricio; Torres-Sospedra, Joaquín; Martínez, Rafael J
2011-01-01
The control architecture is one of the most important part of agricultural robotics and other robotic systems. Furthermore its importance increases when the system involves a group of heterogeneous robots that should cooperate to achieve a global goal. A new control architecture is introduced in this paper for groups of robots in charge of doing maintenance tasks in agricultural environments. Some important features such as scalability, code reuse, hardware abstraction and data distribution have been considered in the design of the new architecture. Furthermore, coordination and cooperation among the different elements in the system is allowed in the proposed control system. By integrating a network oriented device server Player, Java Agent Development Framework (JADE) and High Level Architecture (HLA), the previous concepts have been considered in the new architecture presented in this paper. HLA can be considered the most important part because it not only allows the data distribution and implicit communication among the parts of the system but also allows to simultaneously operate with simulated and real entities, thus allowing the use of hybrid systems in the development of applications.
NASA Astrophysics Data System (ADS)
Gimazov, R.; Shidlovskiy, S.
2018-05-01
In this paper, we consider the architecture of the algorithm for extreme regulation in the photovoltaic system. An algorithm based on an adaptive neural network with fuzzy inference is proposed. The implementation of such an algorithm not only allows solving a number of problems in existing algorithms for extreme power regulation of photovoltaic systems, but also creates a reserve for the creation of a universal control system for a photovoltaic system.
Applications of Payload Directed Flight
NASA Technical Reports Server (NTRS)
Ippolito, Corey; Fladeland, Matthew M.; Yeh, Yoo Hsiu
2009-01-01
Next generation aviation flight control concepts require autonomous and intelligent control system architectures that close control loops directly around payload sensors in manner more integrated and cohesive that in traditional autopilot designs. Research into payload directed flight control at NASA Ames Research Center is investigating new and novel architectures that can satisfy the requirements for next generation control and automation concepts for aviation. Tighter integration between sensor and machine requires definition of specific sensor-directed control modes to tie the sensor data directly into a vehicle control structures throughout the entire control architecture, from low-level stability- and control loops, to higher level mission planning and scheduling reasoning systems. Payload directed flight systems can thus provide guidance, navigation, and control for vehicle platforms hosting a suite of onboard payload sensors. This paper outlines related research into the field of payload directed flight; and outlines requirements and operating concepts for payload directed flight systems based on identified needs from the scientific literature.'
Launch Vehicle Control Center Architectures
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Levesque, Marl; Williams, Randall; Mclaughlin, Tom
2014-01-01
Launch vehicles within the international community vary greatly in their configuration and processing. Each launch site has a unique processing flow based on the specific launch vehicle configuration. Launch and flight operations are managed through a set of control centers associated with each launch site. Each launch site has a control center for launch operations; however flight operations support varies from being co-located with the launch site to being shared with the space vehicle control center. There is also a nuance of some having an engineering support center which may be co-located with either the launch or flight control center, or in a separate geographical location altogether. A survey of control center architectures is presented for various launch vehicles including the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures shares some similarities in basic structure while differences in functional distribution also exist. The driving functions which lead to these factors are considered and a model of control center architectures is proposed which supports these commonalities and variations.
A unified approach to the design of clinical reporting systems.
Gouveia-Oliveira, A; Salgado, N C; Azevedo, A P; Lopes, L; Raposo, V D; Almeida, I; de Melo, F G
1994-12-01
Computer-based Clinical Reporting Systems (CRS) for diagnostic departments that use structured data entry have a number of functional and structural affinities suggesting that a common software architecture for CRS may be defined. Such an architecture should allow easy expandability and reusability of a CRS. We report the development methodology and the architecture of SISCOPE, a CRS originally designed for gastrointestinal endoscopy that is expandable and reusable. Its main components are a patient database, a knowledge base, a reports base, and screen and reporting engines. The knowledge base contains the description of the controlled vocabulary and all the information necessary to control the menu system, and is easily accessed and modified with a conventional text editor. The structure of the controlled vocabulary is formally presented as an entity-relationship diagram. The screen engine drives a dynamic user interface and the reporting engine automatically creates a medical report; both engines operate by following a set of rules and the information contained in the knowledge base. Clinical experience has shown this architecture to be highly flexible and to allow frequent modifications of both the vocabulary and the menu system. This structure provided increased collaboration among development teams, insulating the domain expert from the details of the database, and enabling him to modify the system as necessary and to test the changes immediately. The system has also been reused in several different domains.
Adaptive Attitude Control of the Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Muse, Jonathan
2010-01-01
An H(sub infinity)-NMA architecture for the Crew Launch Vehicle was developed in a state feedback setting. The minimal complexity adaptive law was shown to improve base line performance relative to a performance metric based on Crew Launch Vehicle design requirements for all most all of the Worst-on-Worst dispersion cases. The adaptive law was able to maintain stability for some dispersions that are unstable with the nominal control law. Due to the nature of the H(sub infinity)-NMA architecture, the augmented adaptive control signal has low bandwidth which is a great benefit for a manned launch vehicle.
Centralized and distributed control architectures under Foundation Fieldbus network.
Persechini, Maria Auxiliadora Muanis; Jota, Fábio Gonçalves
2013-01-01
This paper aims at discussing possible automation and control system architectures based on fieldbus networks in which the controllers can be implemented either in a centralized or in a distributed form. An experimental setup is used to demonstrate some of the addressed issues. The control and automation architecture is composed of a supervisory system, a programmable logic controller and various other devices connected to a Foundation Fieldbus H1 network. The procedures used in the network configuration, in the process modelling and in the design and implementation of controllers are described. The specificities of each one of the considered logical organizations are also discussed. Finally, experimental results are analysed using an algorithm for the assessment of control loops to compare the performances between the centralized and the distributed implementations. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots.
Liu, Chengju; Chen, Qijun; Wang, Danwei
2011-06-01
This paper deals with the locomotion control of quadruped robots inspired by the biological concept of central pattern generator (CPG). A control architecture is proposed with a 3-D workspace trajectory generator and a motion engine. The workspace trajectory generator generates adaptive workspace trajectories based on CPGs, and the motion engine realizes joint motion imputes. The proposed architecture is able to generate adaptive workspace trajectories online by tuning the parameters of the CPG network to adapt to various terrains. With feedback information, a quadruped robot can walk through various terrains with adaptive joint control signals. A quadruped platform AIBO is used to validate the proposed locomotion control system. The experimental results confirm the effectiveness of the proposed control architecture. A comparison by experiments shows the superiority of the proposed method against the traditional CPG-joint-space control method.
Service-Oriented Architecture Afloat: A Capabilities-Based Prioritization Scheme
2013-04-01
to “information superiority,” ultimately enhancing warfighting capability. Introduction The Program Executive Office for Command, Control...gateway architecture for IP satellite networks with dynamic resource mangement and DiffServ QoS provision. International Journal of Satellite
NASA Integrated Network Monitor and Control Software Architecture
NASA Technical Reports Server (NTRS)
Shames, Peter; Anderson, Michael; Kowal, Steve; Levesque, Michael; Sindiy, Oleg; Donahue, Kenneth; Barnes, Patrick
2012-01-01
The National Aeronautics and Space Administration (NASA) Space Communications and Navigation office (SCaN) has commissioned a series of trade studies to define a new architecture intended to integrate the three existing networks that it operates, the Deep Space Network (DSN), Space Network (SN), and Near Earth Network (NEN), into one integrated network that offers users a set of common, standardized, services and interfaces. The integrated monitor and control architecture utilizes common software and common operator interfaces that can be deployed at all three network elements. This software uses state-of-the-art concepts such as a pool of re-programmable equipment that acts like a configurable software radio, distributed hierarchical control, and centralized management of the whole SCaN integrated network. For this trade space study a model-based approach using SysML was adopted to describe and analyze several possible options for the integrated network monitor and control architecture. This model was used to refine the design and to drive the costing of the four different software options. This trade study modeled the three existing self standing network elements at point of departure, and then described how to integrate them using variations of new and existing monitor and control system components for the different proposed deployments under consideration. This paper will describe the trade space explored, the selected system architecture, the modeling and trade study methods, and some observations on useful approaches to implementing such model based trade space representation and analysis.
A discrete decentralized variable structure robotic controller
NASA Technical Reports Server (NTRS)
Tumeh, Zuheir S.
1989-01-01
A decentralized trajectory controller for robotic manipulators is designed and tested using a multiprocessor architecture and a PUMA 560 robot arm. The controller is made up of a nominal model-based component and a correction component based on a variable structure suction control approach. The second control component is designed using bounds on the difference between the used and actual values of the model parameters. Since the continuous manipulator system is digitally controlled along a trajectory, a discretized equivalent model of the manipulator is used to derive the controller. The motivation for decentralized control is that the derived algorithms can be executed in parallel using a distributed, relatively inexpensive, architecture where each joint is assigned a microprocessor. Nonlinear interaction and coupling between joints is treated as a disturbance torque that is estimated and compensated for.
Domain specific software architectures: Command and control
NASA Technical Reports Server (NTRS)
Braun, Christine; Hatch, William; Ruegsegger, Theodore; Balzer, Bob; Feather, Martin; Goldman, Neil; Wile, Dave
1992-01-01
GTE is the Command and Control contractor for the Domain Specific Software Architectures program. The objective of this program is to develop and demonstrate an architecture-driven, component-based capability for the automated generation of command and control (C2) applications. Such a capability will significantly reduce the cost of C2 applications development and will lead to improved system quality and reliability through the use of proven architectures and components. A major focus of GTE's approach is the automated generation of application components in particular subdomains. Our initial work in this area has concentrated in the message handling subdomain; we have defined and prototyped an approach that can automate one of the most software-intensive parts of C2 systems development. This paper provides an overview of the GTE team's DSSA approach and then presents our work on automated support for message processing.
Launch Vehicle Control Center Architectures
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Williams, Randall; McLaughlin, Tom
2014-01-01
This analysis is a survey of control center architectures of the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures have similarities in basic structure, and differences in functional distribution of responsibilities for the phases of operations: (a) Launch vehicles in the international community vary greatly in configuration and process; (b) Each launch site has a unique processing flow based on the specific configurations; (c) Launch and flight operations are managed through a set of control centers associated with each launch site, however the flight operations may be a different control center than the launch center; and (d) The engineering support centers are primarily located at the design center with a small engineering support team at the launch site.
NASA Technical Reports Server (NTRS)
Rickard, D. A.; Bodenheimer, R. E.
1976-01-01
Digital computer components which perform two dimensional array logic operations (Tse logic) on binary data arrays are described. The properties of Golay transforms which make them useful in image processing are reviewed, and several architectures for Golay transform processors are presented with emphasis on the skeletonizing algorithm. Conventional logic control units developed for the Golay transform processors are described. One is a unique microprogrammable control unit that uses a microprocessor to control the Tse computer. The remaining control units are based on programmable logic arrays. Performance criteria are established and utilized to compare the various Golay transform machines developed. A critique of Tse logic is presented, and recommendations for additional research are included.
Strategies for concurrent processing of complex algorithms in data driven architectures
NASA Technical Reports Server (NTRS)
Stoughton, John W.; Mielke, Roland R.
1988-01-01
Research directed at developing a graph theoretical model for describing data and control flow associated with the execution of large grained algorithms in a special distributed computer environment is presented. This model is identified by the acronym ATAMM which represents Algorithms To Architecture Mapping Model. The purpose of such a model is to provide a basis for establishing rules for relating an algorithm to its execution in a multiprocessor environment. Specifications derived from the model lead directly to the description of a data flow architecture which is a consequence of the inherent behavior of the data and control flow described by the model. The purpose of the ATAMM based architecture is to provide an analytical basis for performance evaluation. The ATAMM model and architecture specifications are demonstrated on a prototype system for concept validation.
ALLIANCE: An architecture for fault tolerant, cooperative control of heterogeneous mobile robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, L.E.
1995-02-01
This research addresses the problem of achieving fault tolerant cooperation within small- to medium-sized teams of heterogeneous mobile robots. The author describes a novel behavior-based, fully distributed architecture, called ALLIANCE, that utilizes adaptive action selection to achieve fault tolerant cooperative control in robot missions involving loosely coupled, largely independent tasks. The robots in this architecture possess a variety of high-level functions that they can perform during a mission, and must at all times select an appropriate action based on the requirements of the mission, the activities of other robots, the current environmental conditions, and their own internal states. Since suchmore » cooperative teams often work in dynamic and unpredictable environments, the software architecture allows the team members to respond robustly and reliably to unexpected environmental changes and modifications in the robot team that may occur due to mechanical failure, the learning of new skills, or the addition or removal of robots from the team by human intervention. After presenting ALLIANCE, the author describes in detail experimental results of an implementation of this architecture on a team of physical mobile robots performing a cooperative box pushing demonstration. These experiments illustrate the ability of ALLIANCE to achieve adaptive, fault-tolerant cooperative control amidst dynamic changes in the capabilities of the robot team.« less
A safety-based decision making architecture for autonomous systems
NASA Technical Reports Server (NTRS)
Musto, Joseph C.; Lauderbaugh, L. K.
1991-01-01
Engineering systems designed specifically for space applications often exhibit a high level of autonomy in the control and decision-making architecture. As the level of autonomy increases, more emphasis must be placed on assimilating the safety functions normally executed at the hardware level or by human supervisors into the control architecture of the system. The development of a decision-making structure which utilizes information on system safety is detailed. A quantitative measure of system safety, called the safety self-information, is defined. This measure is analogous to the reliability self-information defined by McInroy and Saridis, but includes weighting of task constraints to provide a measure of both reliability and cost. An example is presented in which the safety self-information is used as a decision criterion in a mobile robot controller. The safety self-information is shown to be consistent with the entropy-based Theory of Intelligent Machines defined by Saridis.
OFMspert: An architecture for an operator's associate that evolves to an intelligent tutor
NASA Technical Reports Server (NTRS)
Mitchell, Christine M.
1991-01-01
With the emergence of new technology for both human-computer interaction and knowledge-based systems, a range of opportunities exist which enhance the effectiveness and efficiency of controllers of high-risk engineering systems. The design of an architecture for an operator's associate is described. This associate is a stand-alone model-based system designed to interact with operators of complex dynamic systems, such as airplanes, manned space systems, and satellite ground control systems in ways comparable to that of a human assistant. The operator function model expert system (OFMspert) architecture and the design and empirical validation of OFMspert's understanding component are described. The design and validation of OFMspert's interactive and control components are also described. A description of current work in which OFMspert provides the foundation in the development of an intelligent tutor that evolves to an assistant, as operator expertise evolves from novice to expert, is provided.
Course 6: Physics of Composite Cell Membrane and Actin Based Cytoskeleton
NASA Astrophysics Data System (ADS)
Sackmann, E.; Bausch, A. R.; Vonna, L.
1 Architecture of composite cell membranes 1.1 The lipid/protein bilayer is a multicomponent smectic phase with mosaic like architecture 1.2 The spectrin/actin cytoskeleton as hyperelastic cell stabilizer 1.3 The actin cortex: Architecture and function 2 Physics of the actin based cytoskeleton 2.1 Actin is a living semiflexible polymer 2.2 Actin network as viscoelastic body 2.3 Correlation between macroscopic viscoelasticity and molecular 3 Heterogeneous actin gels in cells and biological function 3.1 Manipulation of actin gels 3.2 Control of organization and function of actin cortex by cell signalling 4 Micromechanics and microrheometry of cells 5 Activation of endothelial cells: On the possibility of formation of stress fibers as phase transition of actin-network triggered by cell signalling pathways 6 On cells as adaptive viscoplastic bodies 7 Controll of cellular protrusions controlled by actin/myosin cortex
Mehdi, Niaz; Rehan, Muhammad; Malik, Fahad Mumtaz; Bhatti, Aamer Iqbal; Tufail, Muhammad
2014-05-01
This paper describes the anti-windup compensator (AWC) design methodologies for stable and unstable cascade plants with cascade controllers facing actuator saturation. Two novel full-order decoupling AWC architectures, based on equivalence of the overall closed-loop system, are developed to deal with windup effects. The decoupled architectures have been developed, to formulate the AWC synthesis problem, by assuring equivalence of the coupled and the decoupled architectures, instead of using an analogy, for cascade control systems. A comparison of both AWC architectures from application point of view is provided to consolidate their utilities. Mainly, one of the architecture is better in terms of computational complexity for implementation, while the other is suitable for unstable cascade systems. On the basis of the architectures for cascade systems facing stability and performance degradation problems in the event of actuator saturation, the global AWC design methodologies utilizing linear matrix inequalities (LMIs) are developed. These LMIs are synthesized by application of the Lyapunov theory, the global sector condition and the ℒ2 gain reduction of the uncertain decoupled nonlinear component of the decoupled architecture. Further, an LMI-based local AWC design methodology is derived by utilizing a local sector condition by means of a quadratic Lyapunov function to resolve the windup problem for unstable cascade plants under saturation. To demonstrate effectiveness of the proposed AWC schemes, an underactuated mechanical system, the ball-and-beam system, is considered, and details of the simulation and practical implementation results are described. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Programming model for distributed intelligent systems
NASA Technical Reports Server (NTRS)
Sztipanovits, J.; Biegl, C.; Karsai, G.; Bogunovic, N.; Purves, B.; Williams, R.; Christiansen, T.
1988-01-01
A programming model and architecture which was developed for the design and implementation of complex, heterogeneous measurement and control systems is described. The Multigraph Architecture integrates artificial intelligence techniques with conventional software technologies, offers a unified framework for distributed and shared memory based parallel computational models and supports multiple programming paradigms. The system can be implemented on different hardware architectures and can be adapted to strongly different applications.
A novel control architecture for physiological tremor compensation in teleoperated systems.
Ghorbanian, A; Zareinejad, M; Rezaei, S M; Sheikhzadeh, H; Baghestan, K
2013-09-01
Telesurgery delivers surgical care to a 'remote' patient by means of robotic manipulators. When accurate positioning of the surgeon's tool is required, as in microsurgery, physiological tremor causes unwanted imprecision during a surgical operation. Accurate estimation/compensation of physiological tremor in teleoperation systems has been shown to improve performance during telesurgery. A new control architecture is proposed for estimation and compensation of physiological tremor in the presence of communication time delays. This control architecture guarantees stability with satisfactory transparency. In addition, the proposed method can be used for applications that require modifications in transmitted signals through communication channels. Stability of the bilateral tremor-compensated teleoperation is preserved by extending the bilateral teleoperation to the equivalent trilateral Dual-master/Single-slave teleoperation. The bandlimited multiple Fourier linear combiner (BMFLC) algorithm is employed for real-time estimation of the operator's physiological tremor. Two kinds of stability analysis are employed. In the model-base controller, Llewellyn's Criterion is used to analyze the teleoperation absolute stability. In the second method, a nonmodel-based controller is proposed and the stability of the time-delayed teleoperated system is proved by employing a Lyapunov function. Experimental results are presented to validate the effectiveness of the new control architecture. The tremorous motion is measured by accelerometer to be compensated in real time. In addition, a Needle-Insertion setup is proposed as a slave robot for the application of brachytherapy, in which the needle penetrates in the desired position. The slave performs the desired task in two classes of environments (free motion of the slave and in the soft tissue). Experiments show that the proposed control architecture effectively compensates the user's tremorous motion and the slave follows only the master's voluntary motion in a stable manner. Copyright © 2012 John Wiley & Sons, Ltd.
Access control mechanism of wireless gateway based on open flow
NASA Astrophysics Data System (ADS)
Peng, Rong; Ding, Lei
2017-08-01
In order to realize the access control of wireless gateway and improve the access control of wireless gateway devices, an access control mechanism of SDN architecture which is based on Open vSwitch is proposed. The mechanism utilizes the features of the controller--centralized control and programmable. Controller send access control flow table based on the business logic. Open vSwitch helps achieve a specific access control strategy based on the flow table.
A Survey on Next-generation Power Grid Data Architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Shutang; Zhu, Dr. Lin; Liu, Yong
2015-01-01
The operation and control of power grids will increasingly rely on data. A high-speed, reliable, flexible and secure data architecture is the prerequisite of the next-generation power grid. This paper summarizes the challenges in collecting and utilizing power grid data, and then provides reference data architecture for future power grids. Based on the data architecture deployment, related research on data architecture is reviewed and summarized in several categories including data measurement/actuation, data transmission, data service layer, data utilization, as well as two cross-cutting issues, interoperability and cyber security. Research gaps and future work are also presented.
Design of an integrated airframe/propulsion control system architecture
NASA Technical Reports Server (NTRS)
Cohen, Gerald C.; Lee, C. William; Strickland, Michael J.
1990-01-01
The design of an integrated airframe/propulsion control system architecture is described. The design is based on a prevalidation methodology that used both reliability and performance tools. An account is given of the motivation for the final design and problems associated with both reliability and performance modeling. The appendices contain a listing of the code for both the reliability and performance model used in the design.
Baseline Architecture of ITER Control System
NASA Astrophysics Data System (ADS)
Wallander, A.; Di Maio, F.; Journeaux, J.-Y.; Klotz, W.-D.; Makijarvi, P.; Yonekawa, I.
2011-08-01
The control system of ITER consists of thousands of computers processing hundreds of thousands of signals. The control system, being the primary tool for operating the machine, shall integrate, control and coordinate all these computers and signals and allow a limited number of staff to operate the machine from a central location with minimum human intervention. The primary functions of the ITER control system are plant control, supervision and coordination, both during experimental pulses and 24/7 continuous operation. The former can be split in three phases; preparation of the experiment by defining all parameters; executing the experiment including distributed feed-back control and finally collecting, archiving, analyzing and presenting all data produced by the experiment. We define the control system as a set of hardware and software components with well defined characteristics. The architecture addresses the organization of these components and their relationship to each other. We distinguish between physical and functional architecture, where the former defines the physical connections and the latter the data flow between components. In this paper, we identify the ITER control system based on the plant breakdown structure. Then, the control system is partitioned into a workable set of bounded subsystems. This partition considers at the same time the completeness and the integration of the subsystems. The components making up subsystems are identified and defined, a naming convention is introduced and the physical networks defined. Special attention is given to timing and real-time communication for distributed control. Finally we discuss baseline technologies for implementing the proposed architecture based on analysis, market surveys, prototyping and benchmarking carried out during the last year.
Dynamic Task Assignment of Autonomous Distributed AGV in an Intelligent FMS Environment
NASA Astrophysics Data System (ADS)
Fauadi, Muhammad Hafidz Fazli Bin Md; Lin, Hao Wen; Murata, Tomohiro
The need of implementing distributed system is growing significantly as it is proven to be effective for organization to be flexible against a highly demanding market. Nevertheless, there are still large technical gaps need to be addressed to gain significant achievement. We propose a distributed architecture to control Automated Guided Vehicle (AGV) operation based on multi-agent architecture. System architectures and agents' functions have been designed to support distributed control of AGV. Furthermore, enhanced agent communication protocol has been configured to accommodate dynamic attributes of AGV task assignment procedure. Result proved that the technique successfully provides a better solution.
Requirements for an Integrated UAS CNS Architecture
NASA Technical Reports Server (NTRS)
Templin, Fred L.; Jain, Raj; Sheffield, Greg; Taboso-Ballesteros, Pedro; Ponchak, Denise
2017-01-01
Communications, Navigation and Surveillance (CNS) requirements must be developed in order to establish a CNS architecture supporting Unmanned Air Systems integration in the National Air Space (UAS in the NAS). These requirements must address cybersecurity, future communications, satellite-based navigation and APNT, and scalable surveillance and situational awareness. CNS integration, consolidation and miniaturization requirements are also important to support the explosive growth in small UAS deployment. Air Traffic Management (ATM) must also be accommodated to support critical Command and Control (C2) for Air Traffic Controllers (ATC). This document therefore presents UAS CNS requirements that will guide the architecture.
NASA Astrophysics Data System (ADS)
Saha, Rony Kumer; Aswakul, Chaodit
2017-01-01
In this paper, a multi-band enabled femtocell base station (FCBS) and user equipment (UE) architecture is proposed in a multi-tier network that consists of small cells, including femtocells and picocells deployed over the coverage of a macrocell for splitting uplink and downlink (UL/DL) as well as control-plane and user-plane (C-/U-plane) for 5G mobile networks. Since splitting is performed at the same FCBS, we define this architecture as the same base station based split architecture (SBSA). For multiple bands, we consider co-channel (CC) microwave and different frequency (DF) 60 GHz millimeter wave (mmWave) bands for FCBSs and UEs with respect to the microwave band used by their over-laid macrocell base station. All femtocells are assumed to be deployed in a 3-dimensional multi-storage building. For CC microwave band, cross-tier CC interference of femtocells with macrocell is avoided using almost blank subframe based enhanced inter-cell interference coordination techniques. The co-existence of CC microwave and DF mmWave bands for SBSA on the same FCBS and UE is first studied to show their performance disparities in terms of system capacity and spectral efficiency in order to provide incentives for employing multiple bands at the same FCBS and UE and identify a suitable band for routing decoupled UL/DL or C-/U-plane traffic. We then present a number of disruptive architectural design alternatives of multi-band enabled SBSA for 5G mobile networks for UL/DL and C-/U-plane splitting, including a disruptive and complete splitting of UL/DL and C-/U-plane as well as a combined UL/DL and C-/U-plane splitting, by exploiting dual connectivity on CC microwave and DF mmWave bands. The outperformances of SBSA in terms of system level capacity, average spectral efficiency, energy efficiency, and control-plane overhead traffic capacity in comparison with different base stations based split architecture (DBSA) are shown. Finally, a number of technical and business perspectives as well as key research issues of SBSA are discussed.
Computer vision camera with embedded FPGA processing
NASA Astrophysics Data System (ADS)
Lecerf, Antoine; Ouellet, Denis; Arias-Estrada, Miguel
2000-03-01
Traditional computer vision is based on a camera-computer system in which the image understanding algorithms are embedded in the computer. To circumvent the computational load of vision algorithms, low-level processing and imaging hardware can be integrated in a single compact module where a dedicated architecture is implemented. This paper presents a Computer Vision Camera based on an open architecture implemented in an FPGA. The system is targeted to real-time computer vision tasks where low level processing and feature extraction tasks can be implemented in the FPGA device. The camera integrates a CMOS image sensor, an FPGA device, two memory banks, and an embedded PC for communication and control tasks. The FPGA device is a medium size one equivalent to 25,000 logic gates. The device is connected to two high speed memory banks, an IS interface, and an imager interface. The camera can be accessed for architecture programming, data transfer, and control through an Ethernet link from a remote computer. A hardware architecture can be defined in a Hardware Description Language (like VHDL), simulated and synthesized into digital structures that can be programmed into the FPGA and tested on the camera. The architecture of a classical multi-scale edge detection algorithm based on a Laplacian of Gaussian convolution has been developed to show the capabilities of the system.
An Adaptive Critic Approach to Reference Model Adaptation
NASA Technical Reports Server (NTRS)
Krishnakumar, K.; Limes, G.; Gundy-Burlet, K.; Bryant, D.
2003-01-01
Neural networks have been successfully used for implementing control architectures for different applications. In this work, we examine a neural network augmented adaptive critic as a Level 2 intelligent controller for a C- 17 aircraft. This intelligent control architecture utilizes an adaptive critic to tune the parameters of a reference model, which is then used to define the angular rate command for a Level 1 intelligent controller. The present architecture is implemented on a high-fidelity non-linear model of a C-17 aircraft. The goal of this research is to improve the performance of the C-17 under degraded conditions such as control failures and battle damage. Pilot ratings using a motion based simulation facility are included in this paper. The benefits of using an adaptive critic are documented using time response comparisons for severe damage situations.
NASA Technical Reports Server (NTRS)
Dorais, Gregory A.; Nicewarner, Keith
2006-01-01
We present an multi-agent model-based autonomy architecture with monitoring, planning, diagnosis, and execution elements. We discuss an internal spacecraft free-flying robot prototype controlled by an implementation of this architecture and a ground test facility used for development. In addition, we discuss a simplified environment control life support system for the spacecraft domain also controlled by an implementation of this architecture. We discuss adjustable autonomy and how it applies to this architecture. We describe an interface that provides the user situation awareness of both autonomous systems and enables the user to dynamically edit the plans prior to and during execution as well as control these agents at various levels of autonomy. This interface also permits the agents to query the user or request the user to perform tasks to help achieve the commanded goals. We conclude by describing a scenario where these two agents and a human interact to cooperatively detect, diagnose and recover from a simulated spacecraft fault.
Controlling Styrene Maleic Acid Lipid Particles through RAFT.
Smith, Anton A A; Autzen, Henriette E; Laursen, Tomas; Wu, Vincent; Yen, Max; Hall, Aaron; Hansen, Scott D; Cheng, Yifan; Xu, Ting
2017-11-13
The ability of styrene maleic acid copolymers to dissolve lipid membranes into nanosized lipid particles is a facile method of obtaining membrane proteins in solubilized lipid discs while conserving part of their native lipid environment. While the currently used copolymers can readily extract membrane proteins in native nanodiscs, their highly disperse composition is likely to influence the dispersity of the discs as well as the extraction efficiency. In this study, reversible addition-fragmentation chain transfer was used to control the polymer architecture and dispersity of molecular weights with a high-precision. Based on Monte Carlo simulations of the polymerizations, the monomer composition was predicted and allowed a structure-function analysis of the polymer architecture, in relation to their ability to assemble into lipid nanoparticles. We show that a higher degree of control of the polymer architecture generates more homogeneous samples. We hypothesize that low dispersity copolymers, with control of polymer architecture are an ideal framework for the rational design of polymers for customized isolation and characterization of integral membrane proteins in native lipid bilayer systems.
An Architecture to Enable Autonomous Control of Spacecraft
NASA Technical Reports Server (NTRS)
May, Ryan D.; Dever, Timothy P.; Soeder, James F.; George, Patrick J.; Morris, Paul H.; Colombano, Silvano P.; Frank, Jeremy D.; Schwabacher, Mark A.; Wang, Liu; LawLer, Dennis
2014-01-01
Autonomy is required for manned spacecraft missions distant enough that light-time communication delays make ground-based mission control infeasible. Presently, ground controllers develop a complete schedule of power modes for all spacecraft components based on a large number of factors. The proposed architecture is an early attempt to formalize and automate this process using on-vehicle computation resources. In order to demonstrate this architecture, an autonomous electrical power system controller and vehicle Mission Manager are constructed. These two components are designed to work together in order to plan upcoming load use as well as respond to unanticipated deviations from the plan. The communication protocol was developed using "paper" simulations prior to formally encoding the messages and developing software to implement the required functionality. These software routines exchange data via TCP/IP sockets with the Mission Manager operating at NASA Ames Research Center and the autonomous power controller running at NASA Glenn Research Center. The interconnected systems are tested and shown to be effective at planning the operation of a simulated quasi-steady state spacecraft power system and responding to unexpected disturbances.
Semantically Enhanced Online Configuration of Feedback Control Schemes.
Milis, Georgios M; Panayiotou, Christos G; Polycarpou, Marios M
2018-03-01
Recent progress toward the realization of the "Internet of Things" has improved the ability of physical and soft/cyber entities to operate effectively within large-scale, heterogeneous systems. It is important that such capacity be accompanied by feedback control capabilities sufficient to ensure that the overall systems behave according to their specifications and meet their functional objectives. To achieve this, such systems require new architectures that facilitate the online deployment, composition, interoperability, and scalability of control system components. Most current control systems lack scalability and interoperability because their design is based on a fixed configuration of specific components, with knowledge of their individual characteristics only implicitly passed through the design. This paper addresses the need for flexibility when replacing components or installing new components, which might occur when an existing component is upgraded or when a new application requires a new component, without the need to readjust or redesign the overall system. A semantically enhanced feedback control architecture is introduced for a class of systems, aimed at accommodating new components into a closed-loop control framework by exploiting the semantic inference capabilities of an ontology-based knowledge model. This architecture supports continuous operation of the control system, a crucial property for large-scale systems for which interruptions have negative impact on key performance metrics that may include human comfort and welfare or economy costs. A case-study example from the smart buildings domain is used to illustrate the proposed architecture and semantic inference mechanisms.
Experiences with Ada in an embedded system
NASA Technical Reports Server (NTRS)
Labaugh, Robert J.
1988-01-01
Recent experiences with using Ada in a real time environment are described. The application was the control system for an experimental robotic arm. The objectives of the effort were to experiment with developing embedded applications in Ada, evaluating the suitability of the language for the application, and determining the performance of the system. Additional objectives were to develop a control system based on the NASA/NBS Standard Reference Model for Telerobot Control System Architecture (NASREM) in Ada, and to experiment with the control laws and how to incorporate them into the NASREM architecture.
Strategies for concurrent processing of complex algorithms in data driven architectures
NASA Technical Reports Server (NTRS)
Stoughton, John W.; Mielke, Roland R.
1987-01-01
The results of ongoing research directed at developing a graph theoretical model for describing data and control flow associated with the execution of large grained algorithms in a spatial distributed computer environment is presented. This model is identified by the acronym ATAMM (Algorithm/Architecture Mapping Model). The purpose of such a model is to provide a basis for establishing rules for relating an algorithm to its execution in a multiprocessor environment. Specifications derived from the model lead directly to the description of a data flow architecture which is a consequence of the inherent behavior of the data and control flow described by the model. The purpose of the ATAMM based architecture is to optimize computational concurrency in the multiprocessor environment and to provide an analytical basis for performance evaluation. The ATAMM model and architecture specifications are demonstrated on a prototype system for concept validation.
A computer architecture for intelligent machines
NASA Technical Reports Server (NTRS)
Lefebvre, D. R.; Saridis, G. N.
1991-01-01
The Theory of Intelligent Machines proposes a hierarchical organization for the functions of an autonomous robot based on the Principle of Increasing Precision With Decreasing Intelligence. An analytic formulation of this theory using information-theoretic measures of uncertainty for each level of the intelligent machine has been developed in recent years. A computer architecture that implements the lower two levels of the intelligent machine is presented. The architecture supports an event-driven programming paradigm that is independent of the underlying computer architecture and operating system. Details of Execution Level controllers for motion and vision systems are addressed, as well as the Petri net transducer software used to implement Coordination Level functions. Extensions to UNIX and VxWorks operating systems which enable the development of a heterogeneous, distributed application are described. A case study illustrates how this computer architecture integrates real-time and higher-level control of manipulator and vision systems.
NASA Astrophysics Data System (ADS)
Romanchuk, V. A.; Lukashenko, V. V.
2018-05-01
The technique of functioning of a control system by a computing cluster based on neurocomputers is proposed. Particular attention is paid to the method of choosing the structure of the computing cluster due to the fact that the existing methods are not effective because of a specialized hardware base - neurocomputers, which are highly parallel computer devices with an architecture different from the von Neumann architecture. A developed algorithm for choosing the computational structure of a cloud cluster is described, starting from the direction of data transfer in the flow control graph of the program and its adjacency matrix.
An e-consent-based shared EHR system architecture for integrated healthcare networks.
Bergmann, Joachim; Bott, Oliver J; Pretschner, Dietrich P; Haux, Reinhold
2007-01-01
Virtual integration of distributed patient data promises advantages over a consolidated health record, but raises questions mainly about practicability and authorization concepts. Our work aims on specification and development of a virtual shared health record architecture using a patient-centred integration and authorization model. A literature survey summarizes considerations of current architectural approaches. Complemented by a methodical analysis in two regional settings, a formal architecture model was specified and implemented. Results presented in this paper are a survey of architectural approaches for shared health records and an architecture model for a virtual shared EHR, which combines a patient-centred integration policy with provider-oriented document management. An electronic consent system assures, that access to the shared record remains under control of the patient. A corresponding system prototype has been developed and is currently being introduced and evaluated in a regional setting. The proposed architecture is capable of partly replacing message-based communications. Operating highly available provider repositories for the virtual shared EHR requires advanced technology and probably means additional costs for care providers. Acceptance of the proposed architecture depends on transparently embedding document validation and digital signature into the work processes. The paradigm shift from paper-based messaging to a "pull model" needs further evaluation.
Design development of a neural network-based telemetry monitor
NASA Technical Reports Server (NTRS)
Lembeck, Michael F.
1992-01-01
This paper identifies the requirements and describes an architectural framework for an artificial neural network-based system that is capable of fulfilling monitoring and control requirements of future aerospace missions. Incorporated into this framework are a newly developed training algorithm and the concept of cooperative network architectures. The feasibility of such an approach is demonstrated for its ability to identify faults in low frequency waveforms.
NASA Astrophysics Data System (ADS)
Cao, Haotian; Song, Xiaolin; Zhao, Song; Bao, Shan; Huang, Zhi
2017-08-01
Automated driving has received a broad of attentions from the academia and industry, since it is effective to greatly reduce the severity of potential traffic accidents and achieve the ultimate automobile safety and comfort. This paper presents an optimal model-based trajectory following architecture for highly automated vehicle in its driving tasks such as automated guidance or lane keeping, which includes a velocity-planning module, a steering controller and a velocity-tracking controller. The velocity-planning module considering the optimal time-consuming and passenger comforts simultaneously could generate a smooth velocity profile. The robust sliding mode control (SMC) steering controller with adaptive preview time strategy could not only track the target path well, but also avoid a big lateral acceleration occurred in its path-tracking progress due to a fuzzy-adaptive preview time mechanism introduced. In addition, an SMC controller with input-output linearisation method for velocity tracking is built and validated. Simulation results show this trajectory following architecture are effective and feasible for high automated driving vehicle, comparing with the Driver-in-the-Loop simulations performed by an experienced driver and novice driver, respectively. The simulation results demonstrate that the present trajectory following architecture could plan a satisfying longitudinal speed profile, track the target path well and safely when dealing with different road geometry structure, it ensures a good time efficiency and driving comfort simultaneously.
The deployment of routing protocols in distributed control plane of SDN.
Jingjing, Zhou; Di, Cheng; Weiming, Wang; Rong, Jin; Xiaochun, Wu
2014-01-01
Software defined network (SDN) provides a programmable network through decoupling the data plane, control plane, and application plane from the original closed system, thus revolutionizing the existing network architecture to improve the performance and scalability. In this paper, we learned about the distributed characteristics of Kandoo architecture and, meanwhile, improved and optimized Kandoo's two levels of controllers based on ideological inspiration of RCP (routing control platform). Finally, we analyzed the deployment strategies of BGP and OSPF protocol in a distributed control plane of SDN. The simulation results show that our deployment strategies are superior to the traditional routing strategies.
Hardware architecture design of image restoration based on time-frequency domain computation
NASA Astrophysics Data System (ADS)
Wen, Bo; Zhang, Jing; Jiao, Zipeng
2013-10-01
The image restoration algorithms based on time-frequency domain computation is high maturity and applied widely in engineering. To solve the high-speed implementation of these algorithms, the TFDC hardware architecture is proposed. Firstly, the main module is designed, by analyzing the common processing and numerical calculation. Then, to improve the commonality, the iteration control module is planed for iterative algorithms. In addition, to reduce the computational cost and memory requirements, the necessary optimizations are suggested for the time-consuming module, which include two-dimensional FFT/IFFT and the plural calculation. Eventually, the TFDC hardware architecture is adopted for hardware design of real-time image restoration system. The result proves that, the TFDC hardware architecture and its optimizations can be applied to image restoration algorithms based on TFDC, with good algorithm commonality, hardware realizability and high efficiency.
Computer-aided tissue engineering: benefiting from the control over scaffold micro-architecture.
Tarawneh, Ahmad M; Wettergreen, Matthew; Liebschner, Michael A K
2012-01-01
Minimization schema in nature affects the material arrangements of most objects, independent of scale. The field of cellular solids has focused on the generalization of these natural architectures (bone, wood, coral, cork, honeycombs) for material improvement and elucidation into natural growth mechanisms. We applied this approach for the comparison of a set of complex three-dimensional (3D) architectures containing the same material volume but dissimilar architectural arrangements. Ball and stick representations of these architectures at varied material volumes were characterized according to geometric properties, such as beam length, beam diameter, surface area, space filling efficiency, and pore volume. Modulus, deformation properties, and stress distributions as contributed solely by architectural arrangements was revealed through finite element simulations. We demonstrated that while density is the greatest factor in controlling modulus, optimal material arrangement could result in equal modulus values even with volumetric discrepancies of up to 10%. We showed that at low porosities, loss of architectural complexity allows these architectures to be modeled as closed celled solids. At these lower porosities, the smaller pores do not greatly contribute to the overall modulus of the architectures and that a stress backbone is responsible for the modulus. Our results further indicated that when considering a deposition-based growth pattern, such as occurs in nature, surface area plays a large role in the resulting strength of these architectures, specifically for systems like bone. This completed study represents the first step towards the development of mathematical algorithms to describe the mechanical properties of regular and symmetric architectures used for tissue regenerative applications. The eventual goal is to create logical set of rules that can explain the structural properties of an architecture based solely upon its geometry. The information could then be used in an automatic fashion to generate patient-specific scaffolds for the treatment of tissue defects.
Yoo, Jeong-Ki; Kim, Jong-Hwan
2012-02-01
When a humanoid robot moves in a dynamic environment, a simple process of planning and following a path may not guarantee competent performance for dynamic obstacle avoidance because the robot acquires limited information from the environment using a local vision sensor. Thus, it is essential to update its local map as frequently as possible to obtain more information through gaze control while walking. This paper proposes a fuzzy integral-based gaze control architecture incorporated with the modified-univector field-based navigation for humanoid robots. To determine the gaze direction, four criteria based on local map confidence, waypoint, self-localization, and obstacles, are defined along with their corresponding partial evaluation functions. Using the partial evaluation values and the degree of consideration for criteria, fuzzy integral is applied to each candidate gaze direction for global evaluation. For the effective dynamic obstacle avoidance, partial evaluation functions about self-localization error and surrounding obstacles are also used for generating virtual dynamic obstacle for the modified-univector field method which generates the path and velocity of robot toward the next waypoint. The proposed architecture is verified through the comparison with the conventional weighted sum-based approach with the simulations using a developed simulator for HanSaRam-IX (HSR-IX).
Using manufacturing message specification for monitor and control at Venus
NASA Technical Reports Server (NTRS)
Heuser, W. Randy; Chen, Richard L.; Stockett, Michael H.
1993-01-01
The flexibility and robustness of a monitor and control (M&C) system are a direct result of the underlying interprocessor communications architecture. A new architecture for M&C at the Deep Space Communications Complexes (DSCC's) has been developed based on the Manufacturing Message Specification (MMS) process control standard of the Open System Interconnection (OSI) suite of protocols. This architecture has been tested both in a laboratory environment and under operational conditions at the Deep Space Network (DSN) experimental Venus station (DSS-13). The Venus experience in the application of OSI standards to support M&C has been extremely successful. MMS meets the functional needs of the station and provides a level of flexibility and responsiveness previously unknown in that environment. The architecture is robust enough to meet current operational needs and flexible enough to provide a migration path for new subsystems. This paper will describe the architecture of the Venus M&C system, discuss how MMS was used and the requirements this imposed on other parts of the system, and provide results from systems and operational testing at the Venus site.
Predictor-Based Model Reference Adaptive Control
NASA Technical Reports Server (NTRS)
Lavretsky, Eugene; Gadient, Ross; Gregory, Irene M.
2010-01-01
This paper is devoted to the design and analysis of a predictor-based model reference adaptive control. Stable adaptive laws are derived using Lyapunov framework. The proposed architecture is compared with the now classical model reference adaptive control. A simulation example is presented in which numerical evidence indicates that the proposed controller yields improved transient characteristics.
NASA Astrophysics Data System (ADS)
Prasad, Guru; Jayaram, Sanjay; Ward, Jami; Gupta, Pankaj
2004-09-01
In this paper, Aximetric proposes a decentralized Command and Control (C2) architecture for a distributed control of a cluster of on-board health monitoring and software enabled control systems called
Simulated fault injection - A methodology to evaluate fault tolerant microprocessor architectures
NASA Technical Reports Server (NTRS)
Choi, Gwan S.; Iyer, Ravishankar K.; Carreno, Victor A.
1990-01-01
A simulation-based fault-injection method for validating fault-tolerant microprocessor architectures is described. The approach uses mixed-mode simulation (electrical/logic analysis), and injects transient errors in run-time to assess the resulting fault impact. As an example, a fault-tolerant architecture which models the digital aspects of a dual-channel real-time jet-engine controller is used. The level of effectiveness of the dual configuration with respect to single and multiple transients is measured. The results indicate 100 percent coverage of single transients. Approximately 12 percent of the multiple transients affect both channels; none result in controller failure since two additional levels of redundancy exist.
Zheng, Song; Zhang, Qi; Zheng, Rong; Huang, Bi-Qin; Song, Yi-Lin; Chen, Xin-Chu
2017-01-01
In recent years, the smart home field has gained wide attention for its broad application prospects. However, families using smart home systems must usually adopt various heterogeneous smart devices, including sensors and devices, which makes it more difficult to manage and control their home system. How to design a unified control platform to deal with the collaborative control problem of heterogeneous smart devices is one of the greatest challenges in the current smart home field. The main contribution of this paper is to propose a universal smart home control platform architecture (IAPhome) based on a multi-agent system and communication middleware, which shows significant adaptability and advantages in many aspects, including heterogeneous devices connectivity, collaborative control, human-computer interaction and user self-management. The communication middleware is an important foundation to design and implement this architecture which makes it possible to integrate heterogeneous smart devices in a flexible way. A concrete method of applying the multi-agent software technique to solve the integrated control problem of the smart home system is also presented. The proposed platform architecture has been tested in a real smart home environment, and the results indicate that the effectiveness of our approach for solving the collaborative control problem of different smart devices. PMID:28926957
Zheng, Song; Zhang, Qi; Zheng, Rong; Huang, Bi-Qin; Song, Yi-Lin; Chen, Xin-Chu
2017-09-16
In recent years, the smart home field has gained wide attention for its broad application prospects. However, families using smart home systems must usually adopt various heterogeneous smart devices, including sensors and devices, which makes it more difficult to manage and control their home system. How to design a unified control platform to deal with the collaborative control problem of heterogeneous smart devices is one of the greatest challenges in the current smart home field. The main contribution of this paper is to propose a universal smart home control platform architecture (IAPhome) based on a multi-agent system and communication middleware, which shows significant adaptability and advantages in many aspects, including heterogeneous devices connectivity, collaborative control, human-computer interaction and user self-management. The communication middleware is an important foundation to design and implement this architecture which makes it possible to integrate heterogeneous smart devices in a flexible way. A concrete method of applying the multi-agent software technique to solve the integrated control problem of the smart home system is also presented. The proposed platform architecture has been tested in a real smart home environment, and the results indicate that the effectiveness of our approach for solving the collaborative control problem of different smart devices.
An intelligent CNC machine control system architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, D.J.; Loucks, C.S.
1996-10-01
Intelligent, agile manufacturing relies on automated programming of digitally controlled processes. Currently, processes such as Computer Numerically Controlled (CNC) machining are difficult to automate because of highly restrictive controllers and poor software environments. It is also difficult to utilize sensors and process models for adaptive control, or to integrate machining processes with other tasks within a factory floor setting. As part of a Laboratory Directed Research and Development (LDRD) program, a CNC machine control system architecture based on object-oriented design and graphical programming has been developed to address some of these problems and to demonstrate automated agile machining applications usingmore » platform-independent software.« less
NASA Astrophysics Data System (ADS)
Dewell, Larry D.; Tajdaran, Kiarash; Bell, Raymond M.; Liu, Kuo-Chia; Bolcar, Matthew R.; Sacks, Lia W.; Crooke, Julie A.; Blaurock, Carl
2017-09-01
The need for high payload dynamic stability and ultra-stable mechanical systems is an overarching technology need for large space telescopes such as the Large Ultraviolet / Optical / Infrared (LUVOIR) Surveyor. Wavefront error stability of less than 10 picometers RMS of uncorrected system WFE per wavefront control step represents a drastic performance improvement over current space-based telescopes being fielded. Previous studies of similar telescope architectures have shown that passive telescope isolation approaches are hard-pressed to meet dynamic stability requirements and usually involve complex actively-controlled elements and sophisticated metrology. To meet these challenging dynamic stability requirements, an isolation architecture that involves no mechanical contact between telescope and the host spacecraft structure has the potential of delivering this needed performance improvement. One such architecture, previously developed by Lockheed Martin called Disturbance Free Payload (DFP), is applied to and analyzed for LUVOIR. In a noncontact DFP architecture, the payload and spacecraft fly in close proximity, and interact via non-contact actuators to allow precision payload pointing and isolation from spacecraft vibration. Because disturbance isolation through non-contact, vibration isolation down to zero frequency is possible, and high-frequency structural dynamics of passive isolators are not introduced into the system. In this paper, the system-level analysis of a non-contact architecture is presented for LUVOIR, based on requirements that are directly traceable to its science objectives, including astrophysics and the direct imaging of habitable exoplanets. Aspects of architecture and how they contribute to system performance are examined and tailored to the LUVOIR architecture and concept of operation.
MonALISA, an agent-based monitoring and control system for the LHC experiments
NASA Astrophysics Data System (ADS)
Balcas, J.; Kcira, D.; Mughal, A.; Newman, H.; Spiropulu, M.; Vlimant, J. R.
2017-10-01
MonALISA, which stands for Monitoring Agents using a Large Integrated Services Architecture, has been developed over the last fifteen years by California Insitute of Technology (Caltech) and its partners with the support of the software and computing program of the CMS and ALICE experiments at the Large Hadron Collider (LHC). The framework is based on Dynamic Distributed Service Architecture and is able to provide complete system monitoring, performance metrics of applications, Jobs or services, system control and global optimization services for complex systems. A short overview and status of MonALISA is given in this paper.
Event-Based Control Strategy for Mobile Robots in Wireless Environments.
Socas, Rafael; Dormido, Sebastián; Dormido, Raquel; Fabregas, Ernesto
2015-12-02
In this paper, a new event-based control strategy for mobile robots is presented. It has been designed to work in wireless environments where a centralized controller has to interchange information with the robots over an RF (radio frequency) interface. The event-based architectures have been developed for differential wheeled robots, although they can be applied to other kinds of robots in a simple way. The solution has been checked over classical navigation algorithms, like wall following and obstacle avoidance, using scenarios with a unique or multiple robots. A comparison between the proposed architectures and the classical discrete-time strategy is also carried out. The experimental results shows that the proposed solution has a higher efficiency in communication resource usage than the classical discrete-time strategy with the same accuracy.
Event-Based Control Strategy for Mobile Robots in Wireless Environments
Socas, Rafael; Dormido, Sebastián; Dormido, Raquel; Fabregas, Ernesto
2015-01-01
In this paper, a new event-based control strategy for mobile robots is presented. It has been designed to work in wireless environments where a centralized controller has to interchange information with the robots over an RF (radio frequency) interface. The event-based architectures have been developed for differential wheeled robots, although they can be applied to other kinds of robots in a simple way. The solution has been checked over classical navigation algorithms, like wall following and obstacle avoidance, using scenarios with a unique or multiple robots. A comparison between the proposed architectures and the classical discrete-time strategy is also carried out. The experimental results shows that the proposed solution has a higher efficiency in communication resource usage than the classical discrete-time strategy with the same accuracy. PMID:26633412
Integration of Sensors, Controllers and Instruments Using a Novel OPC Architecture
2017-01-01
The interconnection between sensors, controllers and instruments through a communication network plays a vital role in the performance and effectiveness of a control system. Since its inception in the 90s, the Object Linking and Embedding for Process Control (OPC) protocol has provided open connectivity for monitoring and automation systems. It has been widely used in several environments such as industrial facilities, building and energy automation, engineering education and many others. This paper presents a novel OPC-based architecture to implement automation systems devoted to R&D and educational activities. The proposal is a novel conceptual framework, structured into four functional layers where the diverse components are categorized aiming to foster the systematic design and implementation of automation systems involving OPC communication. Due to the benefits of OPC, the proposed architecture provides features like open connectivity, reliability, scalability, and flexibility. Furthermore, four successful experimental applications of such an architecture, developed at the University of Extremadura (UEX), are reported. These cases are a proof of concept of the ability of this architecture to support interoperability for different domains. Namely, the automation of energy systems like a smart microgrid and photobioreactor facilities, the implementation of a network-accessible industrial laboratory and the development of an educational hardware-in-the-loop platform are described. All cases include a Programmable Logic Controller (PLC) to automate and control the plant behavior, which exchanges operative data (measurements and signals) with a multiplicity of sensors, instruments and supervisory systems under the structure of the novel OPC architecture. Finally, the main conclusions and open research directions are highlighted. PMID:28654002
Integration of Sensors, Controllers and Instruments Using a Novel OPC Architecture.
González, Isaías; Calderón, Antonio José; Barragán, Antonio Javier; Andújar, José Manuel
2017-06-27
The interconnection between sensors, controllers and instruments through a communication network plays a vital role in the performance and effectiveness of a control system. Since its inception in the 90s, the Object Linking and Embedding for Process Control (OPC) protocol has provided open connectivity for monitoring and automation systems. It has been widely used in several environments such as industrial facilities, building and energy automation, engineering education and many others. This paper presents a novel OPC-based architecture to implement automation systems devoted to R&D and educational activities. The proposal is a novel conceptual framework, structured into four functional layers where the diverse components are categorized aiming to foster the systematic design and implementation of automation systems involving OPC communication. Due to the benefits of OPC, the proposed architecture provides features like open connectivity, reliability, scalability, and flexibility. Furthermore, four successful experimental applications of such an architecture, developed at the University of Extremadura (UEX), are reported. These cases are a proof of concept of the ability of this architecture to support interoperability for different domains. Namely, the automation of energy systems like a smart microgrid and photobioreactor facilities, the implementation of a network-accessible industrial laboratory and the development of an educational hardware-in-the-loop platform are described. All cases include a Programmable Logic Controller (PLC) to automate and control the plant behavior, which exchanges operative data (measurements and signals) with a multiplicity of sensors, instruments and supervisory systems under the structure of the novel OPC architecture. Finally, the main conclusions and open research directions are highlighted.
Lewis, Richard L; Shvartsman, Michael; Singh, Satinder
2013-07-01
We explore the idea that eye-movement strategies in reading are precisely adapted to the joint constraints of task structure, task payoff, and processing architecture. We present a model of saccadic control that separates a parametric control policy space from a parametric machine architecture, the latter based on a small set of assumptions derived from research on eye movements in reading (Engbert, Nuthmann, Richter, & Kliegl, 2005; Reichle, Warren, & McConnell, 2009). The eye-control model is embedded in a decision architecture (a machine and policy space) that is capable of performing a simple linguistic task integrating information across saccades. Model predictions are derived by jointly optimizing the control of eye movements and task decisions under payoffs that quantitatively express different desired speed-accuracy trade-offs. The model yields distinct eye-movement predictions for the same task under different payoffs, including single-fixation durations, frequency effects, accuracy effects, and list position effects, and their modulation by task payoff. The predictions are compared to-and found to accord with-eye-movement data obtained from human participants performing the same task under the same payoffs, but they are found not to accord as well when the assumptions concerning payoff optimization and processing architecture are varied. These results extend work on rational analysis of oculomotor control and adaptation of reading strategy (Bicknell & Levy, ; McConkie, Rayner, & Wilson, 1973; Norris, 2009; Wotschack, 2009) by providing evidence for adaptation at low levels of saccadic control that is shaped by quantitatively varying task demands and the dynamics of processing architecture. Copyright © 2013 Cognitive Science Society, Inc.
Construction of integrated case environments.
Losavio, Francisca; Matteo, Alfredo; Pérez, María
2003-01-01
The main goal of Computer-Aided Software Engineering (CASE) technology is to improve the entire software system development process. The CASE approach is not merely a technology; it involves a fundamental change in the process of software development. The tendency of the CASE approach, technically speaking, is the integration of tools that assist in the application of specific methods. In this sense, the environment architecture, which includes the platform and the system's hardware and software, constitutes the base of the CASE environment. The problem of tools integration has been proposed for two decades. Current integration efforts emphasize the interoperability of tools, especially in distributed environments. In this work we use the Brown approach. The environment resulting from the application of this model is called a federative environment, focusing on the fact that this architecture pays special attention to the connections among the components of the environment. This approach is now being used in component-based design. This paper describes a concrete experience in civil engineering and architecture fields, for the construction of an integrated CASE environment. A generic architectural framework based on an intermediary architectural pattern is applied to achieve the integration of the different tools. This intermediary represents the control perspective of the PAC (Presentation-Abstraction-Control) style, which has been implemented as a Mediator pattern and it has been used in the interactive systems domain. In addition, a process is given to construct the integrated CASE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loparo, Kenneth; Kolacinski, Richard; Threeanaew, Wanchat
A central goal of the work was to enable both the extraction of all relevant information from sensor data, and the application of information gained from appropriate processing and fusion at the system level to operational control and decision-making at various levels of the control hierarchy through: 1. Exploiting the deep connection between information theory and the thermodynamic formalism, 2. Deployment using distributed intelligent agents with testing and validation in a hardware-in-the loop simulation environment. Enterprise architectures are the organizing logic for key business processes and IT infrastructure and, while the generality of current definitions provides sufficient flexibility, the currentmore » architecture frameworks do not inherently provide the appropriate structure. Of particular concern is that existing architecture frameworks often do not make a distinction between ``data'' and ``information.'' This work defines an enterprise architecture for health and condition monitoring of power plant equipment and further provides the appropriate foundation for addressing shortcomings in current architecture definition frameworks through the discovery of the information connectivity between the elements of a power generation plant. That is, to identify the correlative structure between available observations streams using informational measures. The principle focus here is on the implementation and testing of an emergent, agent-based, algorithm based on the foraging behavior of ants for eliciting this structure and on measures for characterizing differences between communication topologies. The elicitation algorithms are applied to data streams produced by a detailed numerical simulation of Alstom’s 1000 MW ultra-super-critical boiler and steam plant. The elicitation algorithm and topology characterization can be based on different informational metrics for detecting connectivity, e.g. mutual information and linear correlation.« less
Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch.
Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang
2016-01-19
Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture.
Building SDN-Based Agricultural Vehicular Sensor Networks Based on Extended Open vSwitch
Huang, Tao; Yan, Siyu; Yang, Fan; Pan, Tian; Liu, Jiang
2016-01-01
Software-defined vehicular sensor networks in agriculture, such as autonomous vehicle navigation based on wireless multi-sensor networks, can lead to more efficient precision agriculture. In SDN-based vehicle sensor networks, the data plane is simplified and becomes more efficient by introducing a centralized controller. However, in a wireless environment, the main controller node may leave the sensor network due to the dynamic topology change or the unstable wireless signal, leaving the rest of network devices without control, e.g., a sensor node as a switch may forward packets according to stale rules until the controller updates the flow table entries. To solve this problem, this paper proposes a novel SDN-based vehicular sensor networks architecture which can minimize the performance penalty of controller connection loss. We achieve this by designing a connection state detection and self-learning mechanism. We build prototypes based on extended Open vSwitch and Ryu. The experimental results show that the recovery time from controller connection loss is under 100 ms and it keeps rule updating in real time with a stable throughput. This architecture enhances the survivability and stability of SDN-based vehicular sensor networks in precision agriculture. PMID:26797616
Learning and tuning fuzzy logic controllers through reinforcements.
Berenji, H R; Khedkar, P
1992-01-01
A method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. It is shown that: the generalized approximate-reasoning-based intelligent control (GARIC) architecture learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
Real-time control system for adaptive resonator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flath, L; An, J; Brase, J
2000-07-24
Sustained operation of high average power solid-state lasers currently requires an adaptive resonator to produce the optimal beam quality. We describe the architecture of a real-time adaptive control system for correcting intra-cavity aberrations in a heat capacity laser. Image data collected from a wavefront sensor are processed and used to control phase with a high-spatial-resolution deformable mirror. Our controller takes advantage of recent developments in low-cost, high-performance processor technology. A desktop-based computational engine and object-oriented software architecture replaces the high-cost rack-mount embedded computers of previous systems.
System design in an evolving system-of-systems architecture and concept of operations
NASA Astrophysics Data System (ADS)
Rovekamp, Roger N., Jr.
Proposals for space exploration architectures have increased in complexity and scope. Constituent systems (e.g., rovers, habitats, in-situ resource utilization facilities, transfer vehicles, etc) must meet the needs of these architectures by performing in multiple operational environments and across multiple phases of the architecture's evolution. This thesis proposes an approach for using system-of-systems engineering principles in conjunction with system design methods (e.g., Multi-objective optimization, genetic algorithms, etc) to create system design options that perform effectively at both the system and system-of-systems levels, across multiple concepts of operations, and over multiple architectural phases. The framework is presented by way of an application problem that investigates the design of power systems within a power sharing architecture for use in a human Lunar Surface Exploration Campaign. A computer model has been developed that uses candidate power grid distribution solutions for a notional lunar base. The agent-based model utilizes virtual control agents to manage the interactions of various exploration and infrastructure agents. The philosophy behind the model is based both on lunar power supply strategies proposed in literature, as well as on the author's own approaches for power distribution strategies of future lunar bases. In addition to proposing a framework for system design, further implications of system-of-systems engineering principles are briefly explored, specifically as they relate to producing more robust cross-cultural system-of-systems architecture solutions.
Controlling the autonomy of a reconnaissance robot
NASA Astrophysics Data System (ADS)
Dalgalarrondo, Andre; Dufourd, Delphine; Filliat, David
2004-09-01
In this paper, we present our research on the control of a mobile robot for indoor reconnaissance missions. Based on previous work concerning our robot control architecture HARPIC, we have developed a man machine interface and software components that allow a human operator to control a robot at different levels of autonomy. This work aims at studying how a robot could be helpful in indoor reconnaissance and surveillance missions in hostile environment. In such missions, since a soldier faces many threats and must protect himself while looking around and holding his weapon, he cannot devote his attention to the teleoperation of the robot. Moreover, robots are not yet able to conduct complex missions in a fully autonomous mode. Thus, in a pragmatic way, we have built a software that allows dynamic swapping between control modes (manual, safeguarded and behavior-based) while automatically performing map building and localization of the robot. It also includes surveillance functions like movement detection and is designed for multirobot extensions. We first describe the design of our agent-based robot control architecture and discuss the various ways to control and interact with a robot. The main modules and functionalities implementing those ideas in our architecture are detailed. More precisely, we show how we combine manual controls, obstacle avoidance, wall and corridor following, way point and planned travelling. Some experiments on a Pioneer robot equipped with various sensors are presented. Finally, we suggest some promising directions for the development of robots and user interfaces for hostile environment and discuss our planned future improvements.
NASA Astrophysics Data System (ADS)
Dağlarli, Evren; Temeltaş, Hakan
2007-04-01
This paper presents artificial emotional system based autonomous robot control architecture. Hidden Markov model developed as mathematical background for stochastic emotional and behavior transitions. Motivation module of architecture considered as behavioral gain effect generator for achieving multi-objective robot tasks. According to emotional and behavioral state transition probabilities, artificial emotions determine sequences of behaviors. Also motivational gain effects of proposed architecture can be observed on the executing behaviors during simulation.
Design and Modeling of a Variable Heat Rejection Radiator
NASA Technical Reports Server (NTRS)
Miller, Jennifer R.; Birur, Gajanana C.; Ganapathi, Gani B.; Sunada, Eric T.; Berisford, Daniel F.; Stephan, Ryan
2011-01-01
Variable Heat Rejection Radiator technology needed for future NASA human rated & robotic missions Primary objective is to enable a single loop architecture for human-rated missions (1) Radiators are typically sized for maximum heat load in the warmest continuous environment resulting in a large panel area (2) Large radiator area results in fluid being susceptible to freezing at low load in cold environment and typically results in a two-loop system (3) Dual loop architecture is approximately 18% heavier than single loop architecture (based on Orion thermal control system mass) (4) Single loop architecture requires adaptability to varying environments and heat loads
Scalable boson sampling with time-bin encoding using a loop-based architecture.
Motes, Keith R; Gilchrist, Alexei; Dowling, Jonathan P; Rohde, Peter P
2014-09-19
We present an architecture for arbitrarily scalable boson sampling using two nested fiber loops. The architecture has fixed experimental complexity, irrespective of the size of the desired interferometer, whose scale is limited only by fiber and switch loss rates. The architecture employs time-bin encoding, whereby the incident photons form a pulse train, which enters the loops. Dynamically controlled loop coupling ratios allow the construction of the arbitrary linear optics interferometers required for boson sampling. The architecture employs only a single point of interference and may thus be easier to stabilize than other approaches. The scheme has polynomial complexity and could be realized using demonstrated present-day technologies.
BGen: A UML Behavior Network Generator Tool
NASA Technical Reports Server (NTRS)
Huntsberger, Terry; Reder, Leonard J.; Balian, Harry
2010-01-01
BGen software was designed for autogeneration of code based on a graphical representation of a behavior network used for controlling automatic vehicles. A common format used for describing a behavior network, such as that used in the JPL-developed behavior-based control system, CARACaS ["Control Architecture for Robotic Agent Command and Sensing" (NPO-43635), NASA Tech Briefs, Vol. 32, No. 10 (October 2008), page 40] includes a graph with sensory inputs flowing through the behaviors in order to generate the signals for the actuators that drive and steer the vehicle. A computer program to translate Unified Modeling Language (UML) Freeform Implementation Diagrams into a legacy C implementation of Behavior Network has been developed in order to simplify the development of C-code for behavior-based control systems. UML is a popular standard developed by the Object Management Group (OMG) to model software architectures graphically. The C implementation of a Behavior Network is functioning as a decision tree.
Evaluating a Control System Architecture Based on a Formally Derived AOCS Model
NASA Astrophysics Data System (ADS)
Ilic, Dubravka; Latvala, Timo; Varpaaniemi, Kimmo; Vaisanen, Pauli; Troubitsyna, Elena; Laibinis, Linas
2010-08-01
Attitude & Orbit Control System (AOCS) refers to a wider class of control systems which are used to determine and control the attitude of the spacecraft while in orbit, based on the information obtained from various sensors. In this paper, we propose an approach to evaluate a typical (yet somewhat simplified) AOCS architecture using formal development - based on the Event-B method. As a starting point, an Ada specification of the AOCS is translated into a formal specification and further refined to incorporate all the details of its original source code specification. This way we are able not only to evaluate the Ada specification by expressing and verifying specific system properties in our formal models, but also to determine how well the chosen modelling framework copes with the level of detail required for an actual implementation and code generation from the derived models.
Model based design introduction: modeling game controllers to microprocessor architectures
NASA Astrophysics Data System (ADS)
Jungwirth, Patrick; Badawy, Abdel-Hameed
2017-04-01
We present an introduction to model based design. Model based design is a visual representation, generally a block diagram, to model and incrementally develop a complex system. Model based design is a commonly used design methodology for digital signal processing, control systems, and embedded systems. Model based design's philosophy is: to solve a problem - a step at a time. The approach can be compared to a series of steps to converge to a solution. A block diagram simulation tool allows a design to be simulated with real world measurement data. For example, if an analog control system is being upgraded to a digital control system, the analog sensor input signals can be recorded. The digital control algorithm can be simulated with the real world sensor data. The output from the simulated digital control system can then be compared to the old analog based control system. Model based design can compared to Agile software develop. The Agile software development goal is to develop working software in incremental steps. Progress is measured in completed and tested code units. Progress is measured in model based design by completed and tested blocks. We present a concept for a video game controller and then use model based design to iterate the design towards a working system. We will also describe a model based design effort to develop an OS Friendly Microprocessor Architecture based on the RISC-V.
The Deployment of Routing Protocols in Distributed Control Plane of SDN
Jingjing, Zhou; Di, Cheng; Weiming, Wang; Rong, Jin; Xiaochun, Wu
2014-01-01
Software defined network (SDN) provides a programmable network through decoupling the data plane, control plane, and application plane from the original closed system, thus revolutionizing the existing network architecture to improve the performance and scalability. In this paper, we learned about the distributed characteristics of Kandoo architecture and, meanwhile, improved and optimized Kandoo's two levels of controllers based on ideological inspiration of RCP (routing control platform). Finally, we analyzed the deployment strategies of BGP and OSPF protocol in a distributed control plane of SDN. The simulation results show that our deployment strategies are superior to the traditional routing strategies. PMID:25250395
Portable inference engine: An extended CLIPS for real-time production systems
NASA Technical Reports Server (NTRS)
Le, Thach; Homeier, Peter
1988-01-01
The present C-Language Integrated Production System (CLIPS) architecture has not been optimized to deal with the constraints of real-time production systems. Matching in CLIPS is based on the Rete Net algorithm, whose assumption of working memory stability might fail to be satisfied in a system subject to real-time dataflow. Further, the CLIPS forward-chaining control mechanism with a predefined conflict resultion strategy may not effectively focus the system's attention on situation-dependent current priorties, or appropriately address different kinds of knowledge which might appear in a given application. Portable Inference Engine (PIE) is a production system architecture based on CLIPS which attempts to create a more general tool while addressing the problems of real-time expert systems. Features of the PIE design include a modular knowledge base, a modified Rete Net algorithm, a bi-directional control strategy, and multiple user-defined conflict resolution strategies. Problems associated with real-time applications are analyzed and an explanation is given for how the PIE architecture addresses these problems.
Model-Based Engine Control Architecture with an Extended Kalman Filter
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Connolly, Joseph W.
2016-01-01
This paper discusses the design and implementation of an extended Kalman filter (EKF) for model-based engine control (MBEC). Previously proposed MBEC architectures feature an optimal tuner Kalman Filter (OTKF) to produce estimates of both unmeasured engine parameters and estimates for the health of the engine. The success of this approach relies on the accuracy of the linear model and the ability of the optimal tuner to update its tuner estimates based on only a few sensors. Advances in computer processing are making it possible to replace the piece-wise linear model, developed off-line, with an on-board nonlinear model running in real-time. This will reduce the estimation errors associated with the linearization process, and is typically referred to as an extended Kalman filter. The non-linear extended Kalman filter approach is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k) and compared to the previously proposed MBEC architecture. The results show that the EKF reduces the estimation error, especially during transient operation.
Model-Based Engine Control Architecture with an Extended Kalman Filter
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Connolly, Joseph W.
2016-01-01
This paper discusses the design and implementation of an extended Kalman filter (EKF) for model-based engine control (MBEC). Previously proposed MBEC architectures feature an optimal tuner Kalman Filter (OTKF) to produce estimates of both unmeasured engine parameters and estimates for the health of the engine. The success of this approach relies on the accuracy of the linear model and the ability of the optimal tuner to update its tuner estimates based on only a few sensors. Advances in computer processing are making it possible to replace the piece-wise linear model, developed off-line, with an on-board nonlinear model running in real-time. This will reduce the estimation errors associated with the linearization process, and is typically referred to as an extended Kalman filter. The nonlinear extended Kalman filter approach is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k) and compared to the previously proposed MBEC architecture. The results show that the EKF reduces the estimation error, especially during transient operation.
Li, Cai; Lowe, Robert; Ziemke, Tom
2014-01-01
In this article, we propose an architecture of a bio-inspired controller that addresses the problem of learning different locomotion gaits for different robot morphologies. The modeling objective is split into two: baseline motion modeling and dynamics adaptation. Baseline motion modeling aims to achieve fundamental functions of a certain type of locomotion and dynamics adaptation provides a "reshaping" function for adapting the baseline motion to desired motion. Based on this assumption, a three-layer architecture is developed using central pattern generators (CPGs, a bio-inspired locomotor center for the baseline motion) and dynamic motor primitives (DMPs, a model with universal "reshaping" functions). In this article, we use this architecture with the actor-critic algorithms for finding a good "reshaping" function. In order to demonstrate the learning power of the actor-critic based architecture, we tested it on two experiments: (1) learning to crawl on a humanoid and, (2) learning to gallop on a puppy robot. Two types of actor-critic algorithms (policy search and policy gradient) are compared in order to evaluate the advantages and disadvantages of different actor-critic based learning algorithms for different morphologies. Finally, based on the analysis of the experimental results, a generic view/architecture for locomotion learning is discussed in the conclusion.
Li, Cai; Lowe, Robert; Ziemke, Tom
2014-01-01
In this article, we propose an architecture of a bio-inspired controller that addresses the problem of learning different locomotion gaits for different robot morphologies. The modeling objective is split into two: baseline motion modeling and dynamics adaptation. Baseline motion modeling aims to achieve fundamental functions of a certain type of locomotion and dynamics adaptation provides a “reshaping” function for adapting the baseline motion to desired motion. Based on this assumption, a three-layer architecture is developed using central pattern generators (CPGs, a bio-inspired locomotor center for the baseline motion) and dynamic motor primitives (DMPs, a model with universal “reshaping” functions). In this article, we use this architecture with the actor-critic algorithms for finding a good “reshaping” function. In order to demonstrate the learning power of the actor-critic based architecture, we tested it on two experiments: (1) learning to crawl on a humanoid and, (2) learning to gallop on a puppy robot. Two types of actor-critic algorithms (policy search and policy gradient) are compared in order to evaluate the advantages and disadvantages of different actor-critic based learning algorithms for different morphologies. Finally, based on the analysis of the experimental results, a generic view/architecture for locomotion learning is discussed in the conclusion. PMID:25324773
Autonomous control systems - Architecture and fundamental issues
NASA Technical Reports Server (NTRS)
Antsaklis, P. J.; Passino, K. M.; Wang, S. J.
1988-01-01
A hierarchical functional autonomous controller architecture is introduced. In particular, the architecture for the control of future space vehicles is described in detail; it is designed to ensure the autonomous operation of the control system and it allows interaction with the pilot and crew/ground station, and the systems on board the autonomous vehicle. The fundamental issues in autonomous control system modeling and analysis are discussed. It is proposed to utilize a hybrid approach to modeling and analysis of autonomous systems. This will incorporate conventional control methods based on differential equations and techniques for the analysis of systems described with a symbolic formalism. In this way, the theory of conventional control can be fully utilized. It is stressed that autonomy is the design requirement and intelligent control methods appear at present, to offer some of the necessary tools to achieve autonomy. A conventional approach may evolve and replace some or all of the `intelligent' functions. It is shown that in addition to conventional controllers, the autonomous control system incorporates planning, learning, and FDI (fault detection and identification).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tal, J.; Lopez, A.; Edwards, J.M.
1995-04-01
In this paper, an alternative solution to the traditional CNC machine tool controller has been introduced. Software and hardware modules have been described and their incorporation in a CNC control system has been outlined. This type of CNC machine tool controller demonstrates that technology is accessible and can be readily implemented into an open architecture machine tool controller. Benefit to the user is greater controller flexibility, while being economically achievable. PC based, motion as well as non-motion features will provide flexibility through a Windows environment. Up-grading this type of controller system through software revisions will keep the machine tool inmore » a competitive state with minimal effort. Software and hardware modules are mass produced permitting competitive procurement and incorporation. Open architecture CNC systems provide diagnostics thus enhancing maintainability, and machine tool up-time. A major concern of traditional CNC systems has been operator training time. Training time can be greatly minimized by making use of Windows environment features.« less
The Flask Security Architecture: System Support for Diverse Security Policies
2006-01-01
Flask microkernel -based operating sys tem, that successfully overcomes these obstacles to pol- icy flexibility. The cleaner separation of mechanism and...other object managers in the system to en- force those access control decisions. Although the pro totype system is microkernel -based, the security...mecha nisms do not depend on a microkernel architecture and will easily generalize beyond it. The resulting system provides policy flexibility. It sup
Digital avionics: A cornerstone of aviation
NASA Technical Reports Server (NTRS)
Spitzer, Cary R.
1990-01-01
Digital avionics is continually expanding its role in communication (HF and VHF, satellite, data links), navigation (ground-based systems, inertial and satellite-based systems), and flight-by-wire control. Examples of electronic flight control system architecture, pitch, roll, and yaw control are presented. Modeling of complex hardware systems, electromagnetic interference, and software are discussed.
NASA Astrophysics Data System (ADS)
Hasbullah Mohd Isa, Wan; Taha, Zahari; Mohd Khairuddin, Ismail; Majeed, Anwar P. P. Abdul; Fikri Muhammad, Khairul; Abdo Hashem, Mohammed; Mahmud, Jamaluddin; Mohamed, Zulkifli
2016-02-01
This paper presents the modelling and control of a two degree of freedom upper extremity exoskeleton by means of an intelligent active force control (AFC) mechanism. The Newton-Euler formulation was used in deriving the dynamic modelling of both the anthropometry based human upper extremity as well as the exoskeleton that consists of the upper arm and the forearm. A proportional-derivative (PD) architecture is employed in this study to investigate its efficacy performing joint-space control objectives. An intelligent AFC algorithm is also incorporated into the PD to investigate the effectiveness of this hybrid system in compensating disturbances. The Mamdani Fuzzy based rule is employed to approximate the estimated inertial properties of the system to ensure the AFC loop responds efficiently. It is found that the IAFC-PD performed well against the disturbances introduced into the system as compared to the conventional PD control architecture in performing the desired trajectory tracking.
A hybrid joint based controller for an upper extremity exoskeleton
NASA Astrophysics Data System (ADS)
Mohd Khairuddin, Ismail; Taha, Zahari; Majeed, Anwar P. P. Abdul; Hakeem Deboucha, Abdel; Azraai Mohd Razman, Mohd; Aziz Jaafar, Abdul; Mohamed, Zulkifli
2016-02-01
This paper presents the modelling and control of a two degree of freedom upper extremity exoskeleton. The Euler-Lagrange formulation was used in deriving the dynamic modelling of both the human upper limb as well as the exoskeleton that consists of the upper arm and the forearm. The human model is based on anthropometrical measurements of the upper limb. The proportional-derivative (PD) computed torque control (CTC) architecture is employed in this study to investigate its efficacy performing joint-space control objectives specifically in rehabilitating the elbow and shoulder joints along the sagittal plane. An active force control (AFC) algorithm is also incorporated into the PD-CTC to investigate the effectiveness of this hybrid system in compensating disturbances. It was found that the AFC- PD-CTC performs well against the disturbances introduced into the system whilst achieving acceptable trajectory tracking as compared to the conventional PD-CTC control architecture.
System architecture for asynchronous multi-processor robotic control system
NASA Technical Reports Server (NTRS)
Steele, Robert D.; Long, Mark; Backes, Paul
1993-01-01
The architecture for the Modular Telerobot Task Execution System (MOTES) as implemented in the Supervisory Telerobotics (STELER) Laboratory is described. MOTES is the software component of the remote site of a local-remote telerobotic system which is being developed for NASA for space applications, in particular Space Station Freedom applications. The system is being developed to provide control and supervised autonomous control to support both space based operation and ground-remote control with time delay. The local-remote architecture places task planning responsibilities at the local site and task execution responsibilities at the remote site. This separation allows the remote site to be designed to optimize task execution capability within a limited computational environment such as is expected in flight systems. The local site task planning system could be placed on the ground where few computational limitations are expected. MOTES is written in the Ada programming language for a multiprocessor environment.
Pax permanent Martian base: Space architecture for the first human habitation on Mars, volume 5
NASA Technical Reports Server (NTRS)
Huebner-Moths, Janis; Fieber, Joseph P.; Rebholz, Patrick J.; Paruleski, Kerry L.; Moore, Gary T. (Editor)
1992-01-01
America at the Threshold: Report of the Synthesis Group on America's Space Exploration Initiative (the 'Synthesis Report,' sometimes called the Stafford Report after its astronaut chair, published in 1991) recommended that NASA explore what it called four 'architectures,' i.e., four different scenarios for habitation on Mars. The Advanced Design Program in Space Architecture at the University of Wisconsin-Milwaukee supported this report and two of its scenarios--'Architecture 1' and 'Architecture 4'--during the spring of 1992. This report investigates the implications of different mission scenarios, the Martian environment, supporting technologies, and especially human factors and environment-behavior considerations for the design of the first permanent Martian base. The report is comprised of sections on mission analysis, implications of the Martian atmosphere and geologic environment, development of habitability design requirements based on environment-behavior and human factors research, and a full design proposed (concept design and design development) for the first permanent Martian base and habitat. The design is presented in terms of a base site plan, master plan based on a Mars direct scenario phased through IOC, and design development details of a complete Martian habitat for 18 crew members including all laboratory, mission control, and crew support spaces.
Fan-out Estimation in Spin-based Quantum Computer Scale-up.
Nguyen, Thien; Hill, Charles D; Hollenberg, Lloyd C L; James, Matthew R
2017-10-17
Solid-state spin-based qubits offer good prospects for scaling based on their long coherence times and nexus to large-scale electronic scale-up technologies. However, high-threshold quantum error correction requires a two-dimensional qubit array operating in parallel, posing significant challenges in fabrication and control. While architectures incorporating distributed quantum control meet this challenge head-on, most designs rely on individual control and readout of all qubits with high gate densities. We analysed the fan-out routing overhead of a dedicated control line architecture, basing the analysis on a generalised solid-state spin qubit platform parameterised to encompass Coulomb confined (e.g. donor based spin qubits) or electrostatically confined (e.g. quantum dot based spin qubits) implementations. The spatial scalability under this model is estimated using standard electronic routing methods and present-day fabrication constraints. Based on reasonable assumptions for qubit control and readout we estimate 10 2 -10 5 physical qubits, depending on the quantum interconnect implementation, can be integrated and fanned-out independently. Assuming relatively long control-free interconnects the scalability can be extended. Ultimately, the universal quantum computation may necessitate a much higher number of integrated qubits, indicating that higher dimensional electronics fabrication and/or multiplexed distributed control and readout schemes may be the preferredstrategy for large-scale implementation.
Melidis, Christos; Iizuka, Hiroyuki; Marocco, Davide
2018-05-01
In this paper, we present a novel approach to human-robot control. Taking inspiration from behaviour-based robotics and self-organisation principles, we present an interfacing mechanism, with the ability to adapt both towards the user and the robotic morphology. The aim is for a transparent mechanism connecting user and robot, allowing for a seamless integration of control signals and robot behaviours. Instead of the user adapting to the interface and control paradigm, the proposed architecture allows the user to shape the control motifs in their way of preference, moving away from the case where the user has to read and understand an operation manual, or it has to learn to operate a specific device. Starting from a tabula rasa basis, the architecture is able to identify control patterns (behaviours) for the given robotic morphology and successfully merge them with control signals from the user, regardless of the input device used. The structural components of the interface are presented and assessed both individually and as a whole. Inherent properties of the architecture are presented and explained. At the same time, emergent properties are presented and investigated. As a whole, this paradigm of control is found to highlight the potential for a change in the paradigm of robotic control, and a new level in the taxonomy of human in the loop systems.
Virtualization - A Key Cost Saver in NASA Multi-Mission Ground System Architecture
NASA Technical Reports Server (NTRS)
Swenson, Paul; Kreisler, Stephen; Sager, Jennifer A.; Smith, Dan
2014-01-01
With science team budgets being slashed, and a lack of adequate facilities for science payload teams to operate their instruments, there is a strong need for innovative new ground systems that are able to provide necessary levels of capability processing power, system availability and redundancy while maintaining a small footprint in terms of physical space, power utilization and cooling.The ground system architecture being presented is based off of heritage from several other projects currently in development or operations at Goddard, but was designed and built specifically to meet the needs of the Science and Planetary Operations Control Center (SPOCC) as a low-cost payload command, control, planning and analysis operations center. However, this SPOCC architecture was designed to be generic enough to be re-used partially or in whole by other labs and missions (since its inception that has already happened in several cases!)The SPOCC architecture leverages a highly available VMware-based virtualization cluster with shared SAS Direct-Attached Storage (DAS) to provide an extremely high-performing, low-power-utilization and small-footprint compute environment that provides Virtual Machine resources shared among the various tenant missions in the SPOCC. The storage is also expandable, allowing future missions to chain up to 7 additional 2U chassis of storage at an extremely competitive cost if they require additional archive or virtual machine storage space.The software architecture provides a fully-redundant GMSEC-based message bus architecture based on the ActiveMQ middleware to track all health and safety status within the SPOCC ground system. All virtual machines utilize the GMSEC system agents to report system host health over the GMSEC bus, and spacecraft payload health is monitored using the Hammers Integrated Test and Operations System (ITOS) Galaxy Telemetry and Command (TC) system, which performs near-real-time limit checking and data processing on the downlinked data stream and injects messages into the GMSEC bus that are monitored to automatically page the on-call operator or Systems Administrator (SA) when an off-nominal condition is detected. This architecture, like the LTSP thin clients, are shared across all tenant missions.Other required IT security controls are implemented at the ground system level, including physical access controls, logical system-level authentication authorization management, auditing and reporting, network management and a NIST 800-53 FISMA-Moderate IT Security plan Risk Assessment Contingency Plan, helping multiple missions share the cost of compliance with agency-mandated directives.The SPOCC architecture provides science payload control centers and backup mission operations centers with a cost-effective, standardized approach to virtualizing and monitoring resources that were traditionally multiple racks full of physical machines. The increased agility in deploying new virtual systems and thin client workstations can provide significant savings in personnel costs for maintaining the ground system. The cost savings in procurement, power, rack footprint and cooling as well as the shared multi-mission design greatly reduces upfront cost for missions moving into the facility. Overall, the authors hope that this architecture will become a model for how future NASA operations centers are constructed!
Cooperative crossing of traffic intersections in a distributed robot system
NASA Astrophysics Data System (ADS)
Rausch, Alexander; Oswald, Norbert; Levi, Paul
1995-09-01
In traffic scenarios a distributed robot system has to cope with problems like resource sharing, distributed planning, distributed job scheduling, etc. While travelling along a street segment can be done autonomously by each robot, crossing of an intersection as a shared resource forces the robot to coordinate its actions with those of other robots e.g. by means of negotiations. We discuss the issue of cooperation on the design of a robot control architecture. Task and sensor specific cooperation between robots requires the robots' architectures to be interlinked at different hierarchical levels. Inside each level control cycles are running in parallel and provide fast reaction on events. Internal cooperation may occur between cycles of the same level. Altogether the architecture is matrix-shaped and contains abstract control cycles with a certain degree of autonomy. Based upon the internal structure of a cycle we consider the horizontal and vertical interconnection of cycles to form an individual architecture. Thereafter we examine the linkage of several agents and its influence on an interacting architecture. A prototypical implementation of a scenario, which combines aspects of active vision and cooperation, illustrates our approach. Two vision-guided vehicles are faced with line following, intersection recognition and negotiation.
NASA Technical Reports Server (NTRS)
Feinberg, Lee D.; Hagopian, John; Budinoff, Jason; Dean, Bruce; Howard, Joe
2004-01-01
This paper summarizes efforts underway at the Goddard Space Flight Center to demonstrate a new type of space telescope architecture that builds on the rigid segmented telescope heritage of the James Webb Space Telescope but that solves several key challenges for future space telescopes. The architecture is based on a cost-effective segmented spherical primary mirror combined with a unique wavefront sensing and control system that allows for continuous phasing of the primary mirror. The segmented spherical primary allows for cost-effective 3-meter class (e.g., Midex and Discovery) missions as well as enables 30-meter telescope solutions that can be manufactured in a reasonable amount of time and for a reasonable amount of money. The continuous wavefront sensing and control architecture enables missions in low-earth-orbit and missions that do not require expensive stable structures and thermal control systems. For the 30-meter class applications, the paper discusses considerations for assembling and testing the telescopes in space. The paper also summarizes the scientific and technological roadmap for the architecture and also gives an overview of technology development, design studies, and testbed activities underway to demonstrate its feasibility.
NASA Technical Reports Server (NTRS)
Feinberg, Lee; Hagopian, John; Budinoff, Jason; Dean, Bruce; Howard, Joe
2005-01-01
This paper summarizes efforts underway at the Goddard Space Flight Center to demonstrate a new type of space telescope architecture that builds on the rigid, segmented telescope heritage of the James Webb Space Telescope but that solves several key challenges for future space telescopes. The architecture is based on a cost-effective segmented spherical primary mirror combined with a unique wavefront sensing and control system that allows for continuous phasing of the primary mirror. The segmented spherical primary allows for cost-effective 3-meter class (eg, Midex and Discovery) missions as well as enables 30-meter telescope solutions that can be manufactured in a reasonable amount of time and for a reasonable amount of money. The continuous wavefront sensing and control architecture enables missions in low-earth-orbit and missions that do not require expensive stable structures and thermal control systems. For the 30-meter class applications, the paper discusses considerations for assembling and testing the telescopes in space. The paper also summarizes the scientific and technological roadmap for the architecture and also gives an overview of technology development, design studies, and testbed activities underway to demonstrate it s feasibility.
Stability Analysis of Distributed Engine Control Systems Under Communication Packet Drop (Postprint)
2008-07-01
use, modify, reproduce, release, perform, display, or disclose the work. 14. ABSTRACT Currently, Full Authority Digital Engine Control ( FADEC ...based on a centralized architecture framework is being widely used for gas turbine engine control. However, current FADEC is not able to meet the...system (DEC). FADEC based on Distributed Control Systems (DCS) offers modularity, improved control systems prognostics and fault tolerance along with
Multivariable Techniques for High-Speed Research Flight Control Systems
NASA Technical Reports Server (NTRS)
Newman, Brett A.
1999-01-01
This report describes the activities and findings conducted under contract with NASA Langley Research Center. Subject matter is the investigation of suitable multivariable flight control design methodologies and solutions for large, flexible high-speed vehicles. Specifically, methodologies are to address the inner control loops used for stabilization and augmentation of a highly coupled airframe system possibly involving rigid-body motion, structural vibrations, unsteady aerodynamics, and actuator dynamics. Design and analysis techniques considered in this body of work are both conventional-based and contemporary-based, and the vehicle of interest is the High-Speed Civil Transport (HSCT). Major findings include: (1) control architectures based on aft tail only are not well suited for highly flexible, high-speed vehicles, (2) theoretical underpinnings of the Wykes structural mode control logic is based on several assumptions concerning vehicle dynamic characteristics, and if not satisfied, the control logic can break down leading to mode destabilization, (3) two-loop control architectures that utilize small forward vanes with the aft tail provide highly attractive and feasible solutions to the longitudinal axis control challenges, and (4) closed-loop simulation sizing analyses indicate the baseline vane model utilized in this report is most likely oversized for normal loading conditions.
Privacy and Access Control for IHE-Based Systems
NASA Astrophysics Data System (ADS)
Katt, Basel; Breu, Ruth; Hafner, Micahel; Schabetsberger, Thomas; Mair, Richard; Wozak, Florian
Electronic Health Record (EHR) is the heart element of any e-health system, which aims at improving the quality and efficiency of healthcare through the use of information and communication technologies. The sensitivity of the data contained in the health record poses a great challenge to security. In this paper we propose a security architecture for EHR systems that are conform with IHE profiles. In this architecture we are tackling the problems of access control and privacy. Furthermore, a prototypical implementation of the proposed model is presented.
Artificial Intelligence for Controlling Robotic Aircraft
NASA Technical Reports Server (NTRS)
Krishnakumar, Kalmanje
2005-01-01
A document consisting mostly of lecture slides presents overviews of artificial-intelligence-based control methods now under development for application to robotic aircraft [called Unmanned Aerial Vehicles (UAVs) in the paper] and spacecraft and to the next generation of flight controllers for piloted aircraft. Following brief introductory remarks, the paper presents background information on intelligent control, including basic characteristics defining intelligent systems and intelligent control and the concept of levels of intelligent control. Next, the paper addresses several concepts in intelligent flight control. The document ends with some concluding remarks, including statements to the effect that (1) intelligent control architectures can guarantee stability of inner control loops and (2) for UAVs, intelligent control provides a robust way to accommodate an outer-loop control architecture for planning and/or related purposes.
Towards Internet QoS provisioning based on generic distributed QoS adaptive routing engine.
Haikal, Amira Y; Badawy, M; Ali, Hesham A
2014-01-01
Increasing efficiency and quality demands of modern Internet technologies drive today's network engineers to seek to provide quality of service (QoS). Internet QoS provisioning gives rise to several challenging issues. This paper introduces a generic distributed QoS adaptive routing engine (DQARE) architecture based on OSPFxQoS. The innovation of the proposed work in this paper is its undependability on the used QoS architectures and, moreover, splitting of the control strategy from data forwarding mechanisms, so we guarantee a set of absolute stable mechanisms on top of which Internet QoS can be built. DQARE architecture is furnished with three relevant traffic control schemes, namely, service differentiation, QoS routing, and traffic engineering. The main objective of this paper is to (i) provide a general configuration guideline for service differentiation, (ii) formalize the theoretical properties of different QoS routing algorithms and then introduce a QoS routing algorithm (QOPRA) based on dynamic programming technique, and (iii) propose QoS multipath forwarding (QMPF) model for paths diversity exploitation. NS2-based simulations proved the DQARE superiority in terms of delay, packet delivery ratio, throughput, and control overhead. Moreover, extensive simulations are used to compare the proposed QOPRA algorithm and QMPF model with their counterparts in the literature.
Towards Internet QoS Provisioning Based on Generic Distributed QoS Adaptive Routing Engine
Haikal, Amira Y.; Badawy, M.; Ali, Hesham A.
2014-01-01
Increasing efficiency and quality demands of modern Internet technologies drive today's network engineers to seek to provide quality of service (QoS). Internet QoS provisioning gives rise to several challenging issues. This paper introduces a generic distributed QoS adaptive routing engine (DQARE) architecture based on OSPFxQoS. The innovation of the proposed work in this paper is its undependability on the used QoS architectures and, moreover, splitting of the control strategy from data forwarding mechanisms, so we guarantee a set of absolute stable mechanisms on top of which Internet QoS can be built. DQARE architecture is furnished with three relevant traffic control schemes, namely, service differentiation, QoS routing, and traffic engineering. The main objective of this paper is to (i) provide a general configuration guideline for service differentiation, (ii) formalize the theoretical properties of different QoS routing algorithms and then introduce a QoS routing algorithm (QOPRA) based on dynamic programming technique, and (iii) propose QoS multipath forwarding (QMPF) model for paths diversity exploitation. NS2-based simulations proved the DQARE superiority in terms of delay, packet delivery ratio, throughput, and control overhead. Moreover, extensive simulations are used to compare the proposed QOPRA algorithm and QMPF model with their counterparts in the literature. PMID:25309955
NASA Technical Reports Server (NTRS)
1983-01-01
Mission scenarios and space station architectures are discussed. Electrical power subsystems (EPS), environmental control and life support, subsystems (ECLSS), and reaction control subsystem (RCS) architectures are addressed. Thermal control subsystems, (TCS), guidance/navigation and control (GN and C), information management systems IMS), communications and tracking (C and T), and propellant transfer and storage systems architectures are discussed.
The MGS Avionics System Architecture: Exploring the Limits of Inheritance
NASA Technical Reports Server (NTRS)
Bunker, R.
1994-01-01
Mars Global Surveyor (MGS) avionics system architecture comprises much of the electronics on board the spacecraft: electrical power, attitude and articulation control, command and data handling, telecommunications, and flight software. Schedule and cost constraints dictated a mix of new and inherited designs, especially hardware upgrades based on findings of the Mars Observer failure review boards.
Performance and Challenges of Service-Oriented Architecture for Wireless Sensor Networks.
Alshinina, Remah; Elleithy, Khaled
2017-03-08
Wireless Sensor Networks (WSNs) have become essential components for a variety of environmental, surveillance, military, traffic control, and healthcare applications. These applications face critical challenges such as communication, security, power consumption, data aggregation, heterogeneities of sensor hardware, and Quality of Service (QoS) issues. Service-Oriented Architecture (SOA) is a software architecture that can be integrated with WSN applications to address those challenges. The SOA middleware bridges the gap between the high-level requirements of different applications and the hardware constraints of WSNs. This survey explores state-of-the-art approaches based on SOA and Service-Oriented Middleware (SOM) architecture that provide solutions for WSN challenges. The categories of this paper are based on approaches of SOA with and without middleware for WSNs. Additionally, features of SOA and middleware architectures for WSNs are compared to achieve more robust and efficient network performance. Design issues of SOA middleware for WSNs and its characteristics are also highlighted. The paper concludes with future research directions in SOM architecture to meet all requirements of emerging application of WSNs.
Performance and Challenges of Service-Oriented Architecture for Wireless Sensor Networks
Alshinina, Remah; Elleithy, Khaled
2017-01-01
Wireless Sensor Networks (WSNs) have become essential components for a variety of environmental, surveillance, military, traffic control, and healthcare applications. These applications face critical challenges such as communication, security, power consumption, data aggregation, heterogeneities of sensor hardware, and Quality of Service (QoS) issues. Service-Oriented Architecture (SOA) is a software architecture that can be integrated with WSN applications to address those challenges. The SOA middleware bridges the gap between the high-level requirements of different applications and the hardware constraints of WSNs. This survey explores state-of-the-art approaches based on SOA and Service-Oriented Middleware (SOM) architecture that provide solutions for WSN challenges. The categories of this paper are based on approaches of SOA with and without middleware for WSNs. Additionally, features of SOA and middleware architectures for WSNs are compared to achieve more robust and efficient network performance. Design issues of SOA middleware for WSNs and its characteristics are also highlighted. The paper concludes with future research directions in SOM architecture to meet all requirements of emerging application of WSNs. PMID:28282896
A GH-Based Ontology to Support Applications for Automating Decision Support
2005-03-01
architecture for a decision support sys - tem. For this reason, it obtains data from, and updates, a database. IDA also wanted the prototype’s architecture...Chief In- formation Officer CoABS Control of Agent Based Sys - tems DBMS Database Management System DoD Department of Defense DTD Document Type...Generic Hub, the Moyeu Générique, and the Generische Nabe , specifying each as a separate service description with property names and values of the GH
A PC-Based Controller for Dextrous Arms
NASA Technical Reports Server (NTRS)
Fiorini, Paolo; Seraji, Homayoun; Long, Mark
1996-01-01
This paper describes the architecture and performance of a PC-based controller for 7-DOF dextrous manipulators. The computing platform is a 486-based personal computer equipped with a bus extender to access the robot Multibus controller, together with a single board computer as the graphical engine, and with a parallel I/O board to interface with a force-torque sensor mounted on the manipulator wrist.
Distributed dynamic simulations of networked control and building performance applications.
Yahiaoui, Azzedine
2018-02-01
The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the minimum energy consumption possible, and in doing so generally refers to Building Automation and Control Systems (BACS) architecture. Instead of costly and time-consuming experiments, this paper focuses on using distributed dynamic simulations to analyze the real-time performance of network-based building control systems in ABs and improve the functions of the BACS technology. The paper also presents the development and design of a distributed dynamic simulation environment with the capability of representing the BACS architecture in simulation by run-time coupling two or more different software tools over a network. The application and capability of this new dynamic simulation environment are demonstrated by an experimental design in this paper.
Distributed dynamic simulations of networked control and building performance applications
Yahiaoui, Azzedine
2017-01-01
The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the minimum energy consumption possible, and in doing so generally refers to Building Automation and Control Systems (BACS) architecture. Instead of costly and time-consuming experiments, this paper focuses on using distributed dynamic simulations to analyze the real-time performance of network-based building control systems in ABs and improve the functions of the BACS technology. The paper also presents the development and design of a distributed dynamic simulation environment with the capability of representing the BACS architecture in simulation by run-time coupling two or more different software tools over a network. The application and capability of this new dynamic simulation environment are demonstrated by an experimental design in this paper. PMID:29568135
NASA Astrophysics Data System (ADS)
Zhang, Daili
Increasing societal demand for automation has led to considerable efforts to control large-scale complex systems, especially in the area of autonomous intelligent control methods. The control system of a large-scale complex system needs to satisfy four system level requirements: robustness, flexibility, reusability, and scalability. Corresponding to the four system level requirements, there arise four major challenges. First, it is difficult to get accurate and complete information. Second, the system may be physically highly distributed. Third, the system evolves very quickly. Fourth, emergent global behaviors of the system can be caused by small disturbances at the component level. The Multi-Agent Based Control (MABC) method as an implementation of distributed intelligent control has been the focus of research since the 1970s, in an effort to solve the above-mentioned problems in controlling large-scale complex systems. However, to the author's best knowledge, all MABC systems for large-scale complex systems with significant uncertainties are problem-specific and thus difficult to extend to other domains or larger systems. This situation is partly due to the control architecture of multiple agents being determined by agent to agent coupling and interaction mechanisms. Therefore, the research objective of this dissertation is to develop a comprehensive, generalized framework for the control system design of general large-scale complex systems with significant uncertainties, with the focus on distributed control architecture design and distributed inference engine design. A Hybrid Multi-Agent Based Control (HyMABC) architecture is proposed by combining hierarchical control architecture and module control architecture with logical replication rings. First, it decomposes a complex system hierarchically; second, it combines the components in the same level as a module, and then designs common interfaces for all of the components in the same module; third, replications are made for critical agents and are organized into logical rings. This architecture maintains clear guidelines for complexity decomposition and also increases the robustness of the whole system. Multiple Sectioned Dynamic Bayesian Networks (MSDBNs) as a distributed dynamic probabilistic inference engine, can be embedded into the control architecture to handle uncertainties of general large-scale complex systems. MSDBNs decomposes a large knowledge-based system into many agents. Each agent holds its partial perspective of a large problem domain by representing its knowledge as a Dynamic Bayesian Network (DBN). Each agent accesses local evidence from its corresponding local sensors and communicates with other agents through finite message passing. If the distributed agents can be organized into a tree structure, satisfying the running intersection property and d-sep set requirements, globally consistent inferences are achievable in a distributed way. By using different frequencies for local DBN agent belief updating and global system belief updating, it balances the communication cost with the global consistency of inferences. In this dissertation, a fully factorized Boyen-Koller (BK) approximation algorithm is used for local DBN agent belief updating, and the static Junction Forest Linkage Tree (JFLT) algorithm is used for global system belief updating. MSDBNs assume a static structure and a stable communication network for the whole system. However, for a real system, sub-Bayesian networks as nodes could be lost, and the communication network could be shut down due to partial damage in the system. Therefore, on-line and automatic MSDBNs structure formation is necessary for making robust state estimations and increasing survivability of the whole system. A Distributed Spanning Tree Optimization (DSTO) algorithm, a Distributed D-Sep Set Satisfaction (DDSSS) algorithm, and a Distributed Running Intersection Satisfaction (DRIS) algorithm are proposed in this dissertation. Combining these three distributed algorithms and a Distributed Belief Propagation (DBP) algorithm in MSDBNs makes state estimations robust to partial damage in the whole system. Combining the distributed control architecture design and the distributed inference engine design leads to a process of control system design for a general large-scale complex system. As applications of the proposed methodology, the control system design of a simplified ship chilled water system and a notional ship chilled water system have been demonstrated step by step. Simulation results not only show that the proposed methodology gives a clear guideline for control system design for general large-scale complex systems with dynamic and uncertain environment, but also indicate that the combination of MSDBNs and HyMABC can provide excellent performance for controlling general large-scale complex systems.
Fine pointing control for free-space optical communication
NASA Technical Reports Server (NTRS)
Portillo, A. A.; Ortiz, G. G.; Racho, C.
2000-01-01
Free-Space Optical Communications requires precise, stable laser pointing to maintain operating conditions. This paper also describes the software and hardware implementation of Fine Pointing Control based on the Optical Communications Demonstrator architecture.
Learning and tuning fuzzy logic controllers through reinforcements
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Khedkar, Pratap
1992-01-01
A new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. In particular, our Generalized Approximate Reasoning-based Intelligent Control (GARIC) architecture: (1) learns and tunes a fuzzy logic controller even when only weak reinforcements, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto, Sutton, and Anderson to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and has demonstrated significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
Privacy-preserving photo sharing based on a public key infrastructure
NASA Astrophysics Data System (ADS)
Yuan, Lin; McNally, David; Küpçü, Alptekin; Ebrahimi, Touradj
2015-09-01
A significant number of pictures are posted to social media sites or exchanged through instant messaging and cloud-based sharing services. Most social media services offer a range of access control mechanisms to protect users privacy. As it is not in the best interest of many such services if their users restrict access to their shared pictures, most services keep users' photos unprotected which makes them available to all insiders. This paper presents an architecture for a privacy-preserving photo sharing based on an image scrambling scheme and a public key infrastructure. A secure JPEG scrambling is applied to protect regional visual information in photos. Protected images are still compatible with JPEG coding and therefore can be viewed by any one on any device. However, only those who are granted secret keys will be able to descramble the photos and view their original versions. The proposed architecture applies an attribute-based encryption along with conventional public key cryptography, to achieve secure transmission of secret keys and a fine-grained control over who may view shared photos. In addition, we demonstrate the practical feasibility of the proposed photo sharing architecture with a prototype mobile application, ProShare, which is built based on iOS platform.
A unified architecture for biomedical search engines based on semantic web technologies.
Jalali, Vahid; Matash Borujerdi, Mohammad Reza
2011-04-01
There is a huge growth in the volume of published biomedical research in recent years. Many medical search engines are designed and developed to address the over growing information needs of biomedical experts and curators. Significant progress has been made in utilizing the knowledge embedded in medical ontologies and controlled vocabularies to assist these engines. However, the lack of common architecture for utilized ontologies and overall retrieval process, hampers evaluating different search engines and interoperability between them under unified conditions. In this paper, a unified architecture for medical search engines is introduced. Proposed model contains standard schemas declared in semantic web languages for ontologies and documents used by search engines. Unified models for annotation and retrieval processes are other parts of introduced architecture. A sample search engine is also designed and implemented based on the proposed architecture in this paper. The search engine is evaluated using two test collections and results are reported in terms of precision vs. recall and mean average precision for different approaches used by this search engine.
ePix: a class of architectures for second generation LCLS cameras
Dragone, A.; Caragiulo, P.; Markovic, B.; ...
2014-03-31
ePix is a novel class of ASIC architectures, based on a common platform, optimized to build modular scalable detectors for LCLS. The platform architecture is composed of a random access analog matrix of pixel with global shutter, fast parallel column readout, and dedicated sigma-delta analog-to-digital converters per column. It also implements a dedicated control interface and all the required support electronics to perform configuration, calibration and readout of the matrix. Based on this platform a class of front-end ASICs and several camera modules, meeting different requirements, can be developed by designing specific pixel architectures. This approach reduces development time andmore » expands the possibility of integration of detector modules with different size, shape or functionality in the same camera. The ePix platform is currently under development together with the first two integrating pixel architectures: ePix100 dedicated to ultra low noise applications and ePix10k for high dynamic range applications.« less
Study of a unified hardware and software fault-tolerant architecture
NASA Technical Reports Server (NTRS)
Lala, Jaynarayan; Alger, Linda; Friend, Steven; Greeley, Gregory; Sacco, Stephen; Adams, Stuart
1989-01-01
A unified architectural concept, called the Fault Tolerant Processor Attached Processor (FTP-AP), that can tolerate hardware as well as software faults is proposed for applications requiring ultrareliable computation capability. An emulation of the FTP-AP architecture, consisting of a breadboard Motorola 68010-based quadruply redundant Fault Tolerant Processor, four VAX 750s as attached processors, and four versions of a transport aircraft yaw damper control law, is used as a testbed in the AIRLAB to examine a number of critical issues. Solutions of several basic problems associated with N-Version software are proposed and implemented on the testbed. This includes a confidence voter to resolve coincident errors in N-Version software. A reliability model of N-Version software that is based upon the recent understanding of software failure mechanisms is also developed. The basic FTP-AP architectural concept appears suitable for hosting N-Version application software while at the same time tolerating hardware failures. Architectural enhancements for greater efficiency, software reliability modeling, and N-Version issues that merit further research are identified.
NASA Technical Reports Server (NTRS)
Markley, R. W.; Williams, B. F.
1993-01-01
NASA has proposed missions to the Moon and Mars that reflect three areas of emphasis: human presence, exploration, and space resource development for the benefit of Earth. A major requirement for such missions is a robust and reliable communications architecture. Network management--the ability to maintain some degree of human and automatic control over the span of the network from the space elements to the end users on Earth--is required to realize such robust and reliable communications. This article addresses several of the architectural issues associated with space network management. Round-trip delays, such as the 5- to 40-min delays in the Mars case, introduce a host of problems that must be solved by delegating significant control authority to remote nodes. Therefore, management hierarchy is one of the important architectural issues. The following article addresses these concerns, and proposes a network management approach based on emerging standards that covers the needs for fault, configuration, and performance management, delegated control authority, and hierarchical reporting of events. A relatively simple approach based on standards was demonstrated in the DSN 2000 Information Systems Laboratory, and the results are described.
A Cloud-Based Simulation Architecture for Pandemic Influenza Simulation
Eriksson, Henrik; Raciti, Massimiliano; Basile, Maurizio; Cunsolo, Alessandro; Fröberg, Anders; Leifler, Ola; Ekberg, Joakim; Timpka, Toomas
2011-01-01
High-fidelity simulations of pandemic outbreaks are resource consuming. Cluster-based solutions have been suggested for executing such complex computations. We present a cloud-based simulation architecture that utilizes computing resources both locally available and dynamically rented online. The approach uses the Condor framework for job distribution and management of the Amazon Elastic Computing Cloud (EC2) as well as local resources. The architecture has a web-based user interface that allows users to monitor and control simulation execution. In a benchmark test, the best cost-adjusted performance was recorded for the EC2 H-CPU Medium instance, while a field trial showed that the job configuration had significant influence on the execution time and that the network capacity of the master node could become a bottleneck. We conclude that it is possible to develop a scalable simulation environment that uses cloud-based solutions, while providing an easy-to-use graphical user interface. PMID:22195089
Herrero, Héctor; Outón, Jose Luis; Puerto, Mildred; Sallé, Damien; López de Ipiña, Karmele
2017-01-01
This paper presents a state machine-based architecture, which enhances the flexibility and reusability of industrial robots, more concretely dual-arm multisensor robots. The proposed architecture, in addition to allowing absolute control of the execution, eases the programming of new applications by increasing the reusability of the developed modules. Through an easy-to-use graphical user interface, operators are able to create, modify, reuse and maintain industrial processes, increasing the flexibility of the cell. Moreover, the proposed approach is applied in a real use case in order to demonstrate its capabilities and feasibility in industrial environments. A comparative analysis is presented for evaluating the presented approach versus traditional robot programming techniques. PMID:28561750
Herrero, Héctor; Outón, Jose Luis; Puerto, Mildred; Sallé, Damien; López de Ipiña, Karmele
2017-05-31
This paper presents a state machine-based architecture, which enhances the flexibility and reusability of industrial robots, more concretely dual-arm multisensor robots. The proposed architecture, in addition to allowing absolute control of the execution, eases the programming of new applications by increasing the reusability of the developed modules. Through an easy-to-use graphical user interface, operators are able to create, modify, reuse and maintain industrial processes, increasing the flexibility of the cell. Moreover, the proposed approach is applied in a real use case in order to demonstrate its capabilities and feasibility in industrial environments. A comparative analysis is presented for evaluating the presented approach versus traditional robot programming techniques.
A surface code quantum computer in silicon
Hill, Charles D.; Peretz, Eldad; Hile, Samuel J.; House, Matthew G.; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.
2015-01-01
The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel—posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited. PMID:26601310
A surface code quantum computer in silicon.
Hill, Charles D; Peretz, Eldad; Hile, Samuel J; House, Matthew G; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y; Hollenberg, Lloyd C L
2015-10-01
The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel-posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited.
NASA Technical Reports Server (NTRS)
Klarer, P.
1994-01-01
An alternative methodology for designing an autonomous navigation and control system is discussed. This generalized hybrid system is based on a less sequential and less anthropomorphic approach than that used in the more traditional artificial intelligence (AI) technique. The architecture is designed to allow both synchronous and asynchronous operations between various behavior modules. This is accomplished by intertask communications channels which implement each behavior module and each interconnection node as a stand-alone task. The proposed design architecture allows for construction of hybrid systems which employ both subsumption and traditional AI techniques as well as providing for a teleoperator's interface. Implementation of the architecture is planned for the prototype Robotic All Terrain Lunar Explorer Rover (RATLER) which is described briefly.
Field Tested Service Oriented Robotic Architecture: Case Study
NASA Technical Reports Server (NTRS)
Flueckiger, Lorenzo; Utz, Hanz
2012-01-01
This paper presents the lessons learned from six years of experiments with planetary rover prototypes running the Service Oriented Robotic Architecture (SORA) developed by the Intelligent Robotics Group (IRG) at NASA Ames Research Center. SORA relies on proven software methods and technologies applied to the robotic world. Based on a Service Oriented Architecture and robust middleware, SORA extends its reach beyond the on-board robot controller and supports the full suite of software tools used during mission scenarios from ground control to remote robotic sites. SORA has been field tested in numerous scenarios of robotic lunar and planetary exploration. The results of these high fidelity experiments are illustrated through concrete examples that have shown the benefits of using SORA as well as its limitations.
NASA Astrophysics Data System (ADS)
Kretschmer, E.; Bachner, M.; Blank, J.; Dapp, R.; Ebersoldt, A.; Friedl-Vallon, F.; Guggenmoser, T.; Gulde, T.; Hartmann, V.; Lutz, R.; Maucher, G.; Neubert, T.; Oelhaf, H.; Preusse, P.; Schardt, G.; Schmitt, C.; Schönfeld, A.; Tan, V.
2015-06-01
The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), a Fourier-transform-spectrometer-based limb spectral imager, operates on high-altitude research aircraft to study the transit region between the troposphere and the stratosphere. It is one of the most sophisticated systems to be flown on research aircraft in Europe, requiring constant monitoring and human intervention in addition to an automation system. To ensure proper functionality and interoperability on multiple platforms, a flexible control and communication system was laid out. The architectures of the communication system as well as the protocols used are reviewed. The integration of this architecture in the automation process as well as the scientific campaign flight application context are discussed.
NASA Astrophysics Data System (ADS)
Kretschmer, E.; Bachner, M.; Blank, J.; Dapp, R.; Ebersoldt, A.; Friedl-Vallon, F.; Guggenmoser, T.; Gulde, T.; Hartmann, V.; Lutz, R.; Maucher, G.; Neubert, T.; Oelhaf, H.; Preusse, P.; Schardt, G.; Schmitt, C.; Schönfeld, A.; Tan, V.
2015-02-01
The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), a Fourier transform spectrometer based limb spectral imager, operates on high-altitude research aircraft to study the transit region between the troposphere and the stratosphere. It is one of the most sophisticated systems to be flown on research aircraft in Europe, requiring constant monitoring and human intervention in addition to an automation system. To ensure proper functionality and interoperability on multiple platforms, a flexible control and communication system was laid out. The architectures of the communication system as well as the protocols used are reviewed. The integration of this architecture in the automation process as well as the scientific campaign flight application context are discussed.
A Multi-Component Automated Laser-Origami System for Cyber-Manufacturing
NASA Astrophysics Data System (ADS)
Ko, Woo-Hyun; Srinivasa, Arun; Kumar, P. R.
2017-12-01
Cyber-manufacturing systems can be enhanced by an integrated network architecture that is easily configurable, reliable, and scalable. We consider a cyber-physical system for use in an origami-type laser-based custom manufacturing machine employing folding and cutting of sheet material to manufacture 3D objects. We have developed such a system for use in a laser-based autonomous custom manufacturing machine equipped with real-time sensing and control. The basic elements in the architecture are built around the laser processing machine. They include a sensing system to estimate the state of the workpiece, a control system determining control inputs for a laser system based on the estimated data and user’s job requests, a robotic arm manipulating the workpiece in the work space, and middleware, named Etherware, supporting the communication among the systems. We demonstrate automated 3D laser cutting and bending to fabricate a 3D product as an experimental result.
Liu, Shenglin; Zhang, Xutian; Wang, Guohong; Zhang, Qiang
2012-03-01
Based on specified demands on medical devices maintenance for clinical engineers and Browser/Server architecture technology, a medical device maintenance information platform was developed, which implemented the following modules such as repair, preventive maintenance, accessories management, training, document, system management and regional cooperation. The characteristics of this system were summarized and application in increase of repair efficiency, improvement of preventive maintenance and cost control was introduced. The application of this platform increases medical device maintenance service level.
New approaches to digital transformation of petrochemical production
NASA Astrophysics Data System (ADS)
Andieva, E. Y.; Kapelyuhovskaya, A. A.
2017-08-01
The newest concepts of the reference architecture of digital industrial transformation are considered, the problems of their application for the enterprises having in their life cycle oil products processing and marketing are revealed. The concept of the reference architecture, providing a systematic representation of the fundamental changes in the approaches to production management based on the automation of production process control is proposed.
Power System Information Delivering System Based on Distributed Object
NASA Astrophysics Data System (ADS)
Tanaka, Tatsuji; Tsuchiya, Takehiko; Tamura, Setsuo; Seki, Tomomichi; Kubota, Kenji
In recent years, improvement in computer performance and development of computer network technology or the distributed information processing technology has a remarkable thing. Moreover, the deregulation is starting and will be spreading in the electric power industry in Japan. Consequently, power suppliers are required to supply low cost power with high quality services to customers. Corresponding to these movements the authors have been proposed SCOPE (System Configuration Of PowEr control system) architecture for distributed EMS/SCADA (Energy Management Systems / Supervisory Control and Data Acquisition) system based on distributed object technology, which offers the flexibility and expandability adapting those movements. In this paper, the authors introduce a prototype of the power system information delivering system, which was developed based on SCOPE architecture. This paper describes the architecture and the evaluation results of this prototype system. The power system information delivering system supplies useful power systems information such as electric power failures to the customers using Internet and distributed object technology. This system is new type of SCADA system which monitors failure of power transmission system and power distribution system with geographic information integrated way.
An Autonomous Autopilot Control System Design for Small-Scale UAVs
NASA Technical Reports Server (NTRS)
Ippolito, Corey; Pai, Ganeshmadhav J.; Denney, Ewen W.
2012-01-01
This paper describes the design and implementation of a fully autonomous and programmable autopilot system for small scale autonomous unmanned aerial vehicle (UAV) aircraft. This system was implemented in Reflection and has flown on the Exploration Aerial Vehicle (EAV) platform at NASA Ames Research Center, currently only as a safety backup for an experimental autopilot. The EAV and ground station are built on a component-based architecture called the Reflection Architecture. The Reflection Architecture is a prototype for a real-time embedded plug-and-play avionics system architecture which provides a transport layer for real-time communications between hardware and software components, allowing each component to focus solely on its implementation. The autopilot module described here, although developed in Reflection, contains no design elements dependent on this architecture.
A GaAs vector processor based on parallel RISC microprocessors
NASA Astrophysics Data System (ADS)
Misko, Tim A.; Rasset, Terry L.
A vector processor architecture based on the development of a 32-bit microprocessor using gallium arsenide (GaAs) technology has been developed. The McDonnell Douglas vector processor (MVP) will be fabricated completely from GaAs digital integrated circuits. The MVP architecture includes a vector memory of 1 megabyte, a parallel bus architecture with eight processing elements connected in parallel, and a control processor. The processing elements consist of a reduced instruction set CPU (RISC) with four floating-point coprocessor units and necessary memory interface functions. This architecture has been simulated for several benchmark programs including complex fast Fourier transform (FFT), complex inner product, trigonometric functions, and sort-merge routine. The results of this study indicate that the MVP can process a 1024-point complex FFT at a speed of 112 microsec (389 megaflops) while consuming approximately 618 W of power in a volume of approximately 0.1 ft-cubed.
NASA Astrophysics Data System (ADS)
Al-Ziayyir, Haitham; Hodgetts, David
2015-04-01
The main reservoir in Rumaila /West Qurna oilfields is the Zubair Formation of Hautervian and Barremian age. This silicilastic formation extends over the regions of central and southern Iraq. This study attempts to improve the understanding of the architectural elements and their control on fluid flow paths within the Zubair Formation. A significant source of uncertainty in the zubair formation is the control on hydrodynamic pressure distribution. The reasons for pressure variation in the Zubair are not well understood. This work aims to reduce this uncertainty by providing a more detailed knowledge of reservoir architecture, distribution of barriers and baffles, and reservoir compartmentalization. To characterize the stratigraphic architecture of the Zubair formation,high resolution reservoir models that incorporate dynamic and static data were built. Facies modelling is accomplished by means of stochastic modelling techniques.The work is based on a large data set collected from the Rumaila oilfields. These data, comprising conventional logs of varying vintages, NMR logs, cores from six wells, and pressure data, were used for performing geological and petrophysical analyses.Flow simulation studies have also been applied to examine the impact of architecture on recovery. Understanding of geology and reservoir performance can be greatly improved by using an efficient, quick and viable integrated analysis, interpretation, and modelling.
An Adaptive Control Technology for Safety of a GTM-like Aircraft
NASA Technical Reports Server (NTRS)
Matsutani, Megumi; Crespo, Luis G.; Annaswamy, Anuradha; Jang, Jinho
2010-01-01
An adaptive control architecture for safe performance of a transport aircraft subject to various adverse conditions is proposed and verified in this report. This architecture combines a nominal controller based on a Linear Quadratic Regulator with integral action, and an adaptive controller that accommodates actuator saturation and bounded disturbances. The effectiveness of the baseline controller and its adaptive augmentation are evaluated using a stand-alone control veri fication methodology. Case studies that pair individual parameter uncertainties with critical flight maneuvers are studied. The resilience of the controllers is determined by evaluating the degradation in closed-loop performance resulting from increasingly larger deviations in the uncertain parameters from their nominal values. Symmetric and asymmetric actuator failures, flight upsets, and center of gravity displacements, are some of the uncertainties considered.
Uribe, Gustavo A; Blobel, Bernd; López, Diego M; Ruiz, Alonso A
2015-01-01
The development of software supporting inter-disciplinary systems like the type 2 diabetes mellitus care requires the deployment of methodologies designed for this type of interoperability. The GCM framework allows the architectural description of such systems and the development of software solutions based on it. A first step of the GCM methodology is the definition of a generic architecture, followed by its specialization for specific use cases. This paper describes the specialization of the generic architecture of a system, supporting Type 2 diabetes mellitus glycemic control, for a pharmacotherapy use case. It focuses on the behavioral aspect of the system, i.e. the policy domain and the definition of the rules governing the system. The design of this architecture reflects the inter-disciplinary feature of the methodology. Finally, the resulting architecture allows building adaptive, intelligent and complete systems.
Why is a computational framework for motivational and metacognitive control needed?
NASA Astrophysics Data System (ADS)
Sun, Ron
2018-01-01
This paper discusses, in the context of computational modelling and simulation of cognition, the relevance of deeper structures in the control of behaviour. Such deeper structures include motivational control of behaviour, which provides underlying causes for actions, and also metacognitive control, which provides higher-order processes for monitoring and regulation. It is argued that such deeper structures are important and thus cannot be ignored in computational cognitive architectures. A general framework based on the Clarion cognitive architecture is outlined that emphasises the interaction amongst action selection, motivation, and metacognition. The upshot is that it is necessary to incorporate all essential processes; short of that, the understanding of cognition can only be incomplete.
Acquisition of Autonomous Behaviors by Robotic Assistants
NASA Technical Reports Server (NTRS)
Peters, R. A., II; Sarkar, N.; Bodenheimer, R. E.; Brown, E.; Campbell, C.; Hambuchen, K.; Johnson, C.; Koku, A. B.; Nilas, P.; Peng, J.
2005-01-01
Our research achievements under the NASA-JSC grant contributed significantly in the following areas. Multi-agent based robot control architecture called the Intelligent Machine Architecture (IMA) : The Vanderbilt team received a Space Act Award for this research from NASA JSC in October 2004. Cognitive Control and the Self Agent : Cognitive control in human is the ability to consciously manipulate thoughts and behaviors using attention to deal with conflicting goals and demands. We have been updating the IMA Self Agent towards this goal. If opportunity arises, we would like to work with NASA to empower Robonaut to do cognitive control. Applications 1. SES for Robonaut, 2. Robonaut Fault Diagnostic System, 3. ISAC Behavior Generation and Learning, 4. Segway Research.
A comparison of two software architectural styles for space-based control systems
NASA Technical Reports Server (NTRS)
Dvorak, D.
2003-01-01
In the hardware/software design of control systems it is almost an article of faith to decompose a system into loosely coupled subsystems, with state variables encapsulated inside device and subsystem objects.
NASA Astrophysics Data System (ADS)
Li, Ming; Yin, Hongxi; Xing, Fangyuan; Wang, Jingchao; Wang, Honghuan
2016-02-01
With the features of network virtualization and resource programming, Software Defined Optical Network (SDON) is considered as the future development trend of optical network, provisioning a more flexible, efficient and open network function, supporting intraconnection and interconnection of data centers. Meanwhile cloud platform can provide powerful computing, storage and management capabilities. In this paper, with the coordination of SDON and cloud platform, a multi-domain SDON architecture based on cloud control plane has been proposed, which is composed of data centers with database (DB), path computation element (PCE), SDON controller and orchestrator. In addition, the structure of the multidomain SDON orchestrator and OpenFlow-enabled optical node are proposed to realize the combination of centralized and distributed effective management and control platform. Finally, the functional verification and demonstration are performed through our optical experiment network.
Hardware/software codesign for embedded RISC core
NASA Astrophysics Data System (ADS)
Liu, Peng
2001-12-01
This paper describes hardware/software codesign method of the extendible embedded RISC core VIRGO, which based on MIPS-I instruction set architecture. VIRGO is described by Verilog hardware description language that has five-stage pipeline with shared 32-bit cache/memory interface, and it is controlled by distributed control scheme. Every pipeline stage has one small controller, which controls the pipeline stage status and cooperation among the pipeline phase. Since description use high level language and structure is distributed, VIRGO core has highly extension that can meet the requirements of application. We take look at the high-definition television MPEG2 MPHL decoder chip, constructed the hardware/software codesign virtual prototyping machine that can research on VIRGO core instruction set architecture, and system on chip memory size requirements, and system on chip software, etc. We also can evaluate the system on chip design and RISC instruction set based on the virtual prototyping machine platform.
One-dimension-based spatially ordered architectures for solar energy conversion.
Liu, Siqi; Tang, Zi-Rong; Sun, Yugang; Colmenares, Juan Carlos; Xu, Yi-Jun
2015-08-07
The severe consequences of fossil fuel consumption have resulted in a need for alternative sustainable sources of energy. Conversion and storage of solar energy via a renewable method, such as photocatalysis, holds great promise as such an alternative. One-dimensional (1D) nanostructures have gained attention in solar energy conversion because they have a long axis to absorb incident sunlight yet a short radial distance for separation of photogenerated charge carriers. In particular, well-ordered spatially high dimensional architectures based on 1D nanostructures with well-defined facets or anisotropic shapes offer an exciting opportunity for bridging the gap between 1D nanostructures and the micro and macro world, providing a platform for integration of nanostructures on a larger and more manageable scale into high-performance solar energy conversion applications. In this review, we focus on the progress of photocatalytic solar energy conversion over controlled one-dimension-based spatially ordered architecture hybrids. Assembly and classification of these novel architectures are summarized, and we discuss the opportunity and future direction of integration of 1D materials into high-dimensional, spatially organized architectures, with a perspective toward improved collective performance in various artificial photoredox applications.
Wei, Dacheng; Liu, Yunqi; Cao, Lingchao; Fu, Lei; Li, Xianglong; Wang, Yu; Yu, Gui; Zhu, Daoben
2006-02-01
Here we develop a simple method by using flow fluctuation to synthesize arrays of multi-branched carbon nanotubes (CNTs) that are far more complex than those previously reported. The architectures and compositions can be well controlled, thus avoiding any template or additive. A branching mechanism of fluctuation-promoted coalescence of catalyst particles is proposed. This finding will provide a hopeful approach to the goal of CNT-based integrated circuits and be valuable for applying branched junctions in nanoelectronics and producing branched junctions of other materials.
Gilgamesh: A Multithreaded Processor-In-Memory Architecture for Petaflops Computing
NASA Technical Reports Server (NTRS)
Sterling, T. L.; Zima, H. P.
2002-01-01
Processor-in-Memory (PIM) architectures avoid the von Neumann bottleneck in conventional machines by integrating high-density DRAM and CMOS logic on the same chip. Parallel systems based on this new technology are expected to provide higher scalability, adaptability, robustness, fault tolerance and lower power consumption than current MPPs or commodity clusters. In this paper we describe the design of Gilgamesh, a PIM-based massively parallel architecture, and elements of its execution model. Gilgamesh extends existing PIM capabilities by incorporating advanced mechanisms for virtualizing tasks and data and providing adaptive resource management for load balancing and latency tolerance. The Gilgamesh execution model is based on macroservers, a middleware layer which supports object-based runtime management of data and threads allowing explicit and dynamic control of locality and load balancing. The paper concludes with a discussion of related research activities and an outlook to future work.
Carmena, Jose M.
2016-01-01
Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain’s behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user’s motor intention during CLDA—a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to parameter initialization. Finally, the architecture extended control to tasks beyond those used for CLDA training. These results have significant implications towards the development of clinically-viable neuroprosthetics. PMID:27035820
Architecture for reactive planning of robot actions
NASA Astrophysics Data System (ADS)
Riekki, Jukka P.; Roening, Juha
1995-01-01
In this article, a reactive system for planning robot actions is described. The described hierarchical control system architecture consists of planning-executing-monitoring-modelling elements (PEMM elements). A PEMM element is a goal-oriented, combined processing and data element. It includes a planner, an executor, a monitor, a modeler, and a local model. The elements form a tree-like structure. An element receives tasks from its ancestor and sends subtasks to its descendants. The model knowledge is distributed into the local models, which are connected to each other. The elements can be synchronized. The PEMM architecture is strictly hierarchical. It integrated planning, sensing, and modelling into a single framework. A PEMM-based control system is reactive, as it can cope with asynchronous events and operate under time constraints. The control system is intended to be used primarily to control mobile robots and robot manipulators in dynamic and partially unknown environments. It is suitable especially for applications consisting of physically separated devices and computing resources.
Control Architecture for Robotic Agent Command and Sensing
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance; Aghazarian, Hrand; Estlin, Tara; Gaines, Daniel
2008-01-01
Control Architecture for Robotic Agent Command and Sensing (CARACaS) is a recent product of a continuing effort to develop architectures for controlling either a single autonomous robotic vehicle or multiple cooperating but otherwise autonomous robotic vehicles. CARACaS is potentially applicable to diverse robotic systems that could include aircraft, spacecraft, ground vehicles, surface water vessels, and/or underwater vessels. CARACaS incudes an integral combination of three coupled agents: a dynamic planning engine, a behavior engine, and a perception engine. The perception and dynamic planning en - gines are also coupled with a memory in the form of a world model. CARACaS is intended to satisfy the need for two major capabilities essential for proper functioning of an autonomous robotic system: a capability for deterministic reaction to unanticipated occurrences and a capability for re-planning in the face of changing goals, conditions, or resources. The behavior engine incorporates the multi-agent control architecture, called CAMPOUT, described in An Architecture for Controlling Multiple Robots (NPO-30345), NASA Tech Briefs, Vol. 28, No. 11 (November 2004), page 65. CAMPOUT is used to develop behavior-composition and -coordination mechanisms. Real-time process algebra operators are used to compose a behavior network for any given mission scenario. These operators afford a capability for producing a formally correct kernel of behaviors that guarantee predictable performance. By use of a method based on multi-objective decision theory (MODT), recommendations from multiple behaviors are combined to form a set of control actions that represents their consensus. In this approach, all behaviors contribute simultaneously to the control of the robotic system in a cooperative rather than a competitive manner. This approach guarantees a solution that is good enough with respect to resolution of complex, possibly conflicting goals within the constraints of the mission to be accomplished by the vehicle(s).
An adaptable product for material processing and life science missions
NASA Technical Reports Server (NTRS)
Wassick, Gregory; Dobbs, Michael
1995-01-01
The Experiment Control System II (ECS-II) is designed to make available to the microgravity research community the same tools and mode of automated experimentation that their ground-based counterparts have enjoyed for the last two decades. The design goal was accomplished by combining commercial automation tools familiar to the experimenter community with system control components that interface with the on-orbit platform in a distributed architecture. The architecture insulates the tools necessary for managing a payload. By using commercial software and hardware components whenever possible, development costs were greatly reduced when compared to traditional space development projects. Using commercial-off-the-shelf (COTS) components also improved the usability documentation, and reducing the need for training of the system by providing familiar user interfaces, providing a wealth of readily available documentation, and reducing the need for training on system-specific details. The modularity of the distributed architecture makes it very amenable for modification to different on-orbit experiments requiring robotics-based automation.
Ntofon, Okung-Dike; Channegowda, Mayur P; Efstathiou, Nikolaos; Rashidi Fard, Mehdi; Nejabati, Reza; Hunter, David K; Simeonidou, Dimitra
2013-02-25
In this paper, a novel Software-Defined Networking (SDN) architecture is proposed for high-end Ultra High Definition (UHD) media applications. UHD media applications require huge amounts of bandwidth that can only be met with high-capacity optical networks. In addition, there are requirements for control frameworks capable of delivering effective application performance with efficient network utilization. A novel SDN-based Controller that tightly integrates application-awareness with network control and management is proposed for such applications. An OpenFlow-enabled test-bed demonstrator is reported with performance evaluations of advanced online and offline media- and network-aware schedulers.
FPGA-based real-time phase measuring profilometry algorithm design and implementation
NASA Astrophysics Data System (ADS)
Zhan, Guomin; Tang, Hongwei; Zhong, Kai; Li, Zhongwei; Shi, Yusheng
2016-11-01
Phase measuring profilometry (PMP) has been widely used in many fields, like Computer Aided Verification (CAV), Flexible Manufacturing System (FMS) et al. High frame-rate (HFR) real-time vision-based feedback control will be a common demands in near future. However, the instruction time delay in the computer caused by numerous repetitive operations greatly limit the efficiency of data processing. FPGA has the advantages of pipeline architecture and parallel execution, and it fit for handling PMP algorithm. In this paper, we design a fully pipelined hardware architecture for PMP. The functions of hardware architecture includes rectification, phase calculation, phase shifting, and stereo matching. The experiment verified the performance of this method, and the factors that may influence the computation accuracy was analyzed.
Schuler, Thilo; Boeker, Martin; Klar, Rüdiger; Müller, Marcel
2007-01-01
The requirements of highly specialized clinical domains are often underrepresented in hospital information systems (HIS). Common consequences are that documentation remains to be paper-based or external systems with insufficient HIS integration are used. This paper presents a solution to overcome this deficiency in the form of a generic framework based on the HL7 Clinical Document Architecture. The central architectural idea is the definition of customized forms using a schema-controlled XML language. These flexible form definitions drive the user interface, the data storage, and standardized data exchange. A successful proof-of-concept application in a dermatologic outpatient wound care department has been implemented, and is well accepted by the clinicians. Our work with HL7 CDA revealed the need for further practical research in the health information standards realm.
Yang, Hui; Zhang, Jie; Ji, Yuefeng; Tan, Yuanlong; Lin, Yi; Han, Jianrui; Lee, Young
2015-09-07
Data center interconnection with elastic optical network is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. In our previous work, we implemented cross stratum optimization of optical network and application stratums resources that allows to accommodate data center services. In view of this, this study extends the data center resources to user side to enhance the end-to-end quality of service. We propose a novel data center service localization (DCSL) architecture based on virtual resource migration in software defined elastic data center optical network. A migration evaluation scheme (MES) is introduced for DCSL based on the proposed architecture. The DCSL can enhance the responsiveness to the dynamic end-to-end data center demands, and effectively reduce the blocking probability to globally optimize optical network and application resources. The overall feasibility and efficiency of the proposed architecture are experimentally verified on the control plane of our OpenFlow-based enhanced SDN testbed. The performance of MES scheme under heavy traffic load scenario is also quantitatively evaluated based on DCSL architecture in terms of path blocking probability, provisioning latency and resource utilization, compared with other provisioning scheme.
Controlling Material Reactivity Using Architecture
Sullivan, Kyle T.; Zhu, Cheng; Duoss, Eric B.; ...
2015-12-16
3D-printing methods are used to generate reactive material architectures. We observed several geometric parameters in order to influence the resultant flame propagation velocity, indicating that the architecture can be utilized to control reactivity. Two different architectures, channels and hurdles, are generated, and thin films of thermite are deposited onto the surface. Additionally, the architecture offers a route to control, at will, the energy release rate in reactive composite materials.
NASA Technical Reports Server (NTRS)
Jani, Yashvant
1992-01-01
The reinforcement learning techniques developed at Ames Research Center are being applied to proximity and docking operations using the Shuttle and Solar Maximum Mission (SMM) satellite simulation. In utilizing these fuzzy learning techniques, we also use the Approximate Reasoning based Intelligent Control (ARIC) architecture, and so we use two terms interchangeable to imply the same. This activity is carried out in the Software Technology Laboratory utilizing the Orbital Operations Simulator (OOS). This report is the deliverable D3 in our project activity and provides the test results of the fuzzy learning translational controller. This report is organized in six sections. Based on our experience and analysis with the attitude controller, we have modified the basic configuration of the reinforcement learning algorithm in ARIC as described in section 2. The shuttle translational controller and its implementation in fuzzy learning architecture is described in section 3. Two test cases that we have performed are described in section 4. Our results and conclusions are discussed in section 5, and section 6 provides future plans and summary for the project.
Architecture for fiber-optic sensors and actuators in aircraft propulsion systems
NASA Technical Reports Server (NTRS)
Glomb, W. L., Jr.
1990-01-01
This paper describes a design for fiber-optic sensing and control in advanced aircraft Electronic Engine Control (EEC). The recommended architecture is an on-engine EEC which contains electro-optic interface circuits for fiber-optic sensors. Size and weight are reduced by multiplexing arrays of functionally similar sensors on a pairs of optical fibers to common electro-optical interfaces. The architecture contains interfaces to seven sensor groups. Nine distinct fiber-optic sensor types were found to provide the sensing functions. Analysis revealed no strong discriminator (except reliability of laser diodes and remote electronics) on which to base a selection of preferred common interface type. A hardware test program is recommended to assess the relative maturity of the technologies and to determine real performance in the engine environment.
Real-Time Wavefront Control for the PALM-3000 High Order Adaptive Optics System
NASA Technical Reports Server (NTRS)
Truong, Tuan N.; Bouchez, Antonin H.; Dekany, Richard G.; Guiwits, Stephen R.; Roberts, Jennifer E.; Troy, Mitchell
2008-01-01
We present a cost-effective scalable real-time wavefront control architecture based on off-the-shelf graphics processing units hosted in an ultra-low latency, high-bandwidth interconnect PC cluster environment composed of modules written in the component-oriented language of nesC. The architecture enables full-matrix reconstruction of the wavefront at up to 2 KHz with latency under 250 us for the PALM-3000 adaptive optics systems, a state-of-the-art upgrade on the 5.1 meter Hale Telescope that consists of a 64 x 64 subaperture Shack-Hartmann wavefront sensor and a 3368 active actuator high order deformable mirror in series with a 241 active actuator tweeter DM. The architecture can easily scale up to support much larger AO systems at higher rates and lower latency.
Space Telecommunications Radio Architecture (STRS)
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.
2006-01-01
A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG's SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA s current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.
Space Telecommunications Radio Architecture (STRS): Technical Overview
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.
2006-01-01
A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG s SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA's current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.
An eConsent-based System Architecture Supporting Cooperation in Integrated Healthcare Networks.
Bergmann, Joachim; Bott, Oliver J; Hoffmann, Ina; Pretschner, Dietrich P
2005-01-01
The economical need for efficient healthcare leads to cooperative shared care networks. A virtual electronic health record is required, which integrates patient related information but reflects the distributed infrastructure and restricts access only to those health professionals involved into the care process. Our work aims on specification and development of a system architecture fulfilling these requirements to be used in concrete regional pilot studies. Methodical analysis and specification have been performed in a healthcare network using the formal method and modelling tool MOSAIK-M. The complexity of the application field was reduced by focusing on the scenario of thyroid disease care, which still includes various interdisciplinary cooperation. Result is an architecture for a secure distributed electronic health record for integrated care networks, specified in terms of a MOSAIK-M-based system model. The architecture proposes business processes, application services, and a sophisticated security concept, providing a platform for distributed document-based, patient-centred, and secure cooperation. A corresponding system prototype has been developed for pilot studies, using advanced application server technologies. The architecture combines a consolidated patient-centred document management with a decentralized system structure without needs for replication management. An eConsent-based approach assures, that access to the distributed health record remains under control of the patient. The proposed architecture replaces message-based communication approaches, because it implements a virtual health record providing complete and current information. Acceptance of the new communication services depends on compatibility with the clinical routine. Unique and cross-institutional identification of a patient is also a challenge, but will loose significance with establishing common patient cards.
NASA Technical Reports Server (NTRS)
Iannicca, Dennis C.; McKim, James H.; Stewart, David H.; Thadhani, Suresh K.; Young, Daniel P.
2015-01-01
NASA Glenn Research Center, in cooperation with Rockwell Collins, is working to develop a prototype Control and Non-Payload Communications (CNPC) radio platform as part of NASA Integrated Systems Research Program's (ISRP) Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) project. A primary focus of the project is to work with the FAA and industry standards bodies to build and demonstrate a safe, secure, and efficient CNPC architecture that can be used by industry to evaluate the feasibility of deploying a system using these technologies in an operational capacity. GRC has been working in conjunction with these groups to assess threats, identify security requirements, and to develop a system of standards-based security controls that can be applied to the current GRC prototype CNPC architecture as a demonstration platform. The security controls were integrated into a lab test bed mock-up of the Mobile IPv6 architecture currently being used for NASA flight testing, and a series of network tests were conducted to evaluate the security overhead of the controls compared to the baseline CNPC link without any security. The aim of testing was to evaluate the performance impact of the additional security control overhead when added to the Mobile IPv6 architecture in various modes of operation. The statistics collected included packet captures at points along the path to gauge packet size as the sample data traversed the CNPC network, round trip latency, jitter, and throughput. The effort involved a series of tests of the baseline link, a link with Robust Header Compression (ROHC) and without security controls, a link with security controls and without ROHC, and finally a link with both ROHC and security controls enabled. The effort demonstrated that ROHC is both desirable and necessary to offset the additional expected overhead of applying security controls to the CNPC link.
Kinetic Inductance Memory Cell and Architecture for Superconducting Computers
NASA Astrophysics Data System (ADS)
Chen, George J.
Josephson memory devices typically use a superconducting loop containing one or more Josephson junctions to store information. The magnetic inductance of the loop in conjunction with the Josephson junctions provides multiple states to store data. This thesis shows that replacing the magnetic inductor in a memory cell with a kinetic inductor can lead to a smaller cell size. However, magnetic control of the cells is lost. Thus, a current-injection based architecture for a memory array has been designed to work around this problem. The isolation between memory cells that magnetic control provides is provided through resistors in this new architecture. However, these resistors allow leakage current to flow which ultimately limits the size of the array due to power considerations. A kinetic inductance memory array will be limited to 4K bits with a read access time of 320 ps for a 1 um linewidth technology. If a power decoder could be developed, the memory architecture could serve as the blueprint for a fast (<1 ns), large scale (>1 Mbit) superconducting memory array.
Learning and tuning fuzzy logic controllers through reinforcements
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Khedkar, Pratap
1992-01-01
This paper presents a new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system. In particular, our generalized approximate reasoning-based intelligent control (GARIC) architecture (1) learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward neural network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto et al. (1983) to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
Getting to the roots of it: Genetic and hormonal control of root architecture
Jung, Janelle K. H.; McCouch, Susan
2013-01-01
Root system architecture (RSA) – the spatial configuration of a root system – is an important developmental and agronomic trait, with implications for overall plant architecture, growth rate and yield, abiotic stress resistance, nutrient uptake, and developmental plasticity in response to environmental changes. Root architecture is modulated by intrinsic, hormone-mediated pathways, intersecting with pathways that perceive and respond to external, environmental signals. The recent development of several non-invasive 2D and 3D root imaging systems has enhanced our ability to accurately observe and quantify architectural traits on complex whole-root systems. Coupled with the powerful marker-based genotyping and sequencing platforms currently available, these root phenotyping technologies lend themselves to large-scale genome-wide association studies, and can speed the identification and characterization of the genes and pathways involved in root system development. This capability provides the foundation for examining the contribution of root architectural traits to the performance of crop varieties in diverse environments. This review focuses on our current understanding of the genes and pathways involved in determining RSA in response to both intrinsic and extrinsic (environmental) response pathways, and provides a brief overview of the latest root system phenotyping technologies and their potential impact on elucidating the genetic control of root development in plants. PMID:23785372
Architecture effects on multivalent interactions by polypeptide-based multivalent ligands
NASA Astrophysics Data System (ADS)
Liu, Shuang
Multivalent interactions are characterized by the simultaneous binding between multiple ligands and multiple binding sites, either in solutions or at interfaces. In biological systems, most multivalent interactions occur between protein receptors and carbohydrate ligands through hydrogen-bonding and hydrophobic interactions. Compared with weak affinity binding between one ligand and one binding site, i.e. monovalent interaction, multivalent interactioins provide greater avidity and specificity, and therefore play unique roles in a broad range of biological activities. Moreover, the studies of multivalent interactions are also essential for producing effective inhibitors and effectors of biological processes that could have important therapeutic applications. Synthetic multivalent ligands have been designed to mimic the biological functions of natural multivalent interactions, and various types of scaffolds have been used to display multiple ligands, including small molecules, linear polymers, dendrimers, nanoparticle surfaces, monolayer surfaces and liposomes. Studies have shown that multivalent interactions can be highly affected by various architectural parameters of these multivalent ligands, including ligand identities, valencies, spacing, ligand densities, nature of linker arms, scaffold length and scaffold conformation. Most of these multivalent ligands are chemically synthesized and have limitations of controlling over sequence and conformation, which is a barrier for mimicking ordered and controlled natural biological systems. Therefore, multivalent ligands with precisely controlled architecture are required for improved structure-function relationship studies. Protein engineering methods with subsequent chemical coupling of ligands provide significant advantages of controlling over backbone conformation and functional group placement, and therefore have been used to synthesize recombinant protein-based materials with desired properties similar to natural protein materials, including structural as well as functional proteins. Therefore, polypeptide-based multivalent scaffolds are used to display ligands to assess the contribution of different architectural parameters to the multivalent binding events. In this work, a family of alanine-rich alpha-helical glycopolypeptides was designed and synthesized by a combination of protein engineering and chemical coupling, to display two types of saccharide ligands for two different multivalent binding systems. The valencies, chain length and spacing between adjacent ligands of these multivalent ligands were designed in order to study architecture effects on multivalent interactions. The polypeptides and their glycoconjugates were characterized via various methods, including SDS-PAGE, NMR, HPLC, amino acid analysis (AAA), MALDI, circular dichroism (CD) and GPC. In the first multivalent binding system, cholera toxin B pentamer (CT B5) was chosen to be the protein receptor due to its well-characterized structure, lack of significant steric interference of binding to multiple binding sites, and requirement of only simple monosaccharide as ligands. Galactopyranoside was incorporated into polypeptide scaffolds through amine-carboxylic acid coupling to the side chains of glutamic acid residues. The inhibition and binding to CT B5 of these glycopolypeptide ligands were evaluated by direct enzyme-linked assay (DELA). As a complement method, weak affinity chromatography (WAC) was also used to evaluate glycopolypeptides binding to a CT B5 immobilized column. The architecture effects on CT B 5 inhibition are discussed. In the second system, cell surface receptor L-selectin was targeted by polypeptide-based multivalent ligands containing disulfated galactopyranoside ligands, due to its important roles in various immunological activities. The effects of glycopolypeptide architectural variables L-selectin shedding were evaluated via ELISA-based assays. These polypeptide-based multivalent ligands are suggested to be useful for elucidating architecture effects on multivalent interactions, manipulating multivalent interactions and the subsequent cellular responses in different systems. These materials have great potential applications in therapeutics and could also provide guidelines for design of multivalent ligands for other protein receptors.
Yoo, Dongjin
2012-07-01
Advanced additive manufacture (AM) techniques are now being developed to fabricate scaffolds with controlled internal pore architectures in the field of tissue engineering. In general, these techniques use a hybrid method which combines computer-aided design (CAD) with computer-aided manufacturing (CAM) tools to design and fabricate complicated three-dimensional (3D) scaffold models. The mathematical descriptions of micro-architectures along with the macro-structures of the 3D scaffold models are limited by current CAD technologies as well as by the difficulty of transferring the designed digital models to standard formats for fabrication. To overcome these difficulties, we have developed an efficient internal pore architecture design system based on triply periodic minimal surface (TPMS) unit cell libraries and associated computational methods to assemble TPMS unit cells into an entire scaffold model. In addition, we have developed a process planning technique based on TPMS internal architecture pattern of unit cells to generate tool paths for freeform fabrication of tissue engineering porous scaffolds. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
The Diamond Beamline Controls and Data Acquisition Software Architecture
NASA Astrophysics Data System (ADS)
Rees, N.
2010-06-01
The software for the Diamond Light Source beamlines[1] is based on two complementary software frameworks: low level control is provided by the Experimental Physics and Industrial Control System (EPICS) framework[2][3] and the high level user interface is provided by the Java based Generic Data Acquisition or GDA[4][5]. EPICS provides a widely used, robust, generic interface across a wide range of hardware where the user interfaces are focused on serving the needs of engineers and beamline scientists to obtain detailed low level views of all aspects of the beamline control systems. The GDA system provides a high-level system that combines an understanding of scientific concepts, such as reciprocal lattice coordinates, a flexible python syntax scripting interface for the scientific user to control their data acquisition, and graphical user interfaces where necessary. This paper describes the beamline software architecture in more detail, highlighting how these complementary frameworks provide a flexible system that can accommodate a wide range of requirements.
Real-time control for manufacturing space shuttle main engines: Work in progress
NASA Technical Reports Server (NTRS)
Ruokangas, Corinne C.
1988-01-01
During the manufacture of space-based assemblies such as Space Shuttle Main Engines, flexibility is required due to the high-cost and low-volume nature of the end products. Various systems have been developed pursuing the goal of adaptive, flexible manufacturing for several space applications, including an Advanced Robotic Welding System for the manufacture of complex components of the Space Shuttle Main Engines. The Advanced Robotic Welding System (AROWS) is an on-going joint effort, funded by NASA, between NASA/Marshall Space Flight Center, and two divisions of Rockwell International: Rocketdyne and the Science Center. AROWS includes two levels of flexible control of both motion and process parameters: Off-line programming using both geometric and weld-process data bases, and real-time control incorporating multiple sensors during weld execution. Both control systems were implemented using conventional hardware and software architectures. The feasibility of enhancing the real-time control system using the problem-solving architecture of Schemer is investigated and described.
Software defined network architecture based research on load balancing strategy
NASA Astrophysics Data System (ADS)
You, Xiaoqian; Wu, Yang
2018-05-01
As a new type network architecture, software defined network has the key idea of separating the control place of the network from the transmission plane, to manage and control the network in a concentrated way; in addition, the network interface is opened on the control layer and the data layer, so as to achieve programmable control of the network. Considering that only the single shortest route is taken into the calculation of traditional network data flow transmission, and congestion and resource consumption caused by excessive load of link circuits are ignored, a link circuit load based flow media business QoS gurantee system is proposed in this article to divide the flow in the network into ordinary data flow and QoS flow. In this way, it supervises the link circuit load with the controller so as to calculate reasonable route rapidly and issue the flow table to the exchanger, to finish rapid data transmission. In addition, it establishes a simulation platform to acquire optimized result through simulation experiment.
Command and Control of Space Assets Through Internet-Based Technologies Demonstrated
NASA Technical Reports Server (NTRS)
Foltz, David A.
2002-01-01
The NASA Glenn Research Center successfully demonstrated a transmission-control-protocol/ Internet-protocol- (TCP/IP) based approach to the command and control of onorbit assets over a secure network. This is a significant accomplishment because future NASA missions will benefit by using Internet-standards-based protocols. Benefits of this Internet-based space command and control system architecture include reduced mission costs and increased mission efficiency. The demonstration proved that this communications architecture is viable for future NASA missions. This demonstration was a significant feat involving multiple NASA organizations and industry. Phillip Paulsen, from Glenn's Project Development and Integration Office, served as the overall project lead, and David Foltz, from Glenn's Satellite Networks and Architectures Branch, provided the hybrid networking support for the required Internet connections. The goal was to build a network that would emulate a connection between a space experiment on the International Space Station and a researcher accessing the experiment from anywhere on the Internet, as shown. The experiment was interfaced to a wireless 802.11 network inside the demonstration area. The wireless link provided connectivity to the Tracking and Data Relay Satellite System (TDRSS) Internet Link Terminal (TILT) satellite uplink terminal located 300 ft away in a parking lot on top of a panel van. TILT provided a crucial link in this demonstration. Leslie Ambrose, NASA Goddard Space Flight Center, provided the TILT/TDRSS support. The TILT unit transmitted the signal to TDRS 6 and was received at the White Sands Second TDRSS Ground Station. This station provided the gateway to the Internet. Coordination also took place at the White Sands station to install a Veridian Firewall and automated security incident measurement (ASIM) system to the Second TDRSS Ground Station Internet gateway. The firewall provides a trusted network for the simulated space experiment. A second Internet connection at the demonstration area was implemented to provide Internet connectivity to a group of workstations to serve as platforms for controlling the simulated space experiment. Installation of this Internet connection was coordinated with an Internet service provider (ISP) and local NASA Johnson Space Center personnel. Not only did this TCP/IP-based architecture prove that a principal investigator on the Internet can securely command and control on-orbit assets, it also demonstrated that valuable virtual testing of planned on-orbit activities can be conducted over the Internet prior to actual deployment in space.
Control software and electronics architecture design in the framework of the E-ELT instrumentation
NASA Astrophysics Data System (ADS)
Di Marcantonio, P.; Coretti, I.; Cirami, R.; Comari, M.; Santin, P.; Pucillo, M.
2010-07-01
During the last years the European Southern Observatory (ESO), in collaboration with other European astronomical institutes, has started several feasibility studies for the E-ELT (European-Extremely Large Telescope) instrumentation and post-focal adaptive optics. The goal is to create a flexible suite of instruments to deal with the wide variety of scientific questions astronomers would like to see solved in the coming decades. In this framework INAF-Astronomical Observatory of Trieste (INAF-AOTs) is currently responsible of carrying out the analysis and the preliminary study of the architecture of the electronics and control software of three instruments: CODEX (control software and electronics) and OPTIMOS-EVE/OPTIMOS-DIORAMAS (control software). To cope with the increased complexity and new requirements for stability, precision, real-time latency and communications among sub-systems imposed by these instruments, new solutions have been investigated by our group. In this paper we present the proposed software and electronics architecture based on a distributed common framework centered on the Component/Container model that uses OPC Unified Architecture as a standard layer to communicate with COTS components of three different vendors. We describe three working prototypes that have been set-up in our laboratory and discuss their performances, integration complexity and ease of deployment.
Command and Control: An Introduction
1989-03-01
34 [Ref. 13:p. 31) F. SUMMARY With an understanding of the architecture of generic command and control sytems , it is now time to examine the 146 methods...Center ABM Antiballistic Missile ACCS Army Command and Control System ACE Aviation Combat Element ADP Automatic Data Processing AFB Air Force Base AFM Air
NASA Technical Reports Server (NTRS)
Glass, Brian J.; Thompson, S.; Paulsen, G.
2010-01-01
Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.
Pax: A permanent base for human habitation of Mars
NASA Technical Reports Server (NTRS)
Moore, Gary T.; Rebholz, Patrick J.; Fieber, Joseph P.; Huebner-Moths, Janis; Paruleski, Kerry L.
1992-01-01
The Advanced Design Program in Space Architecture at the University of Wisconsin-Milwaukee supported the synthesis report and two of its scenarios - 'Architecture 1' and 'Architecture 4' - and the Weaver ExPO report on near-term extraterrestrial explorations during the spring of 1992. The project investigated the implications of different mission scenarios, the Martian environment, supporting technologies, and especially human factors and environment-behavior considerations for the design of the first permanent Martian base. This paper presents the results of that investigation. The paper summarizes site selection, development of habitability design requirements based on environment-behavior research, construction sequencing, and a full concept design and design development for a first permanent Martian base and habitat. The proposed design is presented in terms of an integrative mission scenario and master plan phased through initial operational configuration, base site plan, and design development details of a complete Martian habitat for 18 crew members including all laboratory, mission control, and crew support spaces.
Wei, Hua; Fei, Yang; Guo-Hua, Peng
2017-01-16
To improve the management level of patients' information of schistosomiasis control stations in Nanchang City, the B/S three-layer architecture and ASP+SQL technology were applied to formulate the WEB-based management system of chronic schistosomiasis patients' information, so as to achieve the information sharing of chronic schistosomiasis among schistosomiasis control stations.
Controlling Material Reactivity Using Architecture.
Sullivan, Kyle T; Zhu, Cheng; Duoss, Eric B; Gash, Alexander E; Kolesky, David B; Kuntz, Joshua D; Lewis, Jennifer A; Spadaccini, Christopher M
2016-03-09
3D-printing methods are used to generate reactive material architectures. Several geometric parameters are observed to influence the resultant flame propagation velocity, indicating that the architecture can be utilized to control reactivity. Two different architectures, channels and hurdles, are generated, and thin films of thermite are deposited onto the surface. The architecture offers an additional route to control, at will, the energy release rate in reactive composite materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Distributed environmental control
NASA Technical Reports Server (NTRS)
Cleveland, Gary A.
1992-01-01
We present an architecture of distributed, independent control agents designed to work with the Computer Aided System Engineering and Analysis (CASE/A) simulation tool. CASE/A simulates behavior of Environmental Control and Life Support Systems (ECLSS). We describe a lattice of agents capable of distributed sensing and overcoming certain sensor and effector failures. We address how the architecture can achieve the coordinating functions of a hierarchical command structure while maintaining the robustness and flexibility of independent agents. These agents work between the time steps of the CASE/A simulation tool to arrive at command decisions based on the state variables maintained by CASE/A. Control is evaluated according to both effectiveness (e.g., how well temperature was maintained) and resource utilization (the amount of power and materials used).
Sun, Mengshu; Xue, Yuankun; Bogdan, Paul; Tang, Jian; Wang, Yanzhi; Lin, Xue
2018-01-01
Recently, a new approach has been introduced that leverages and over-provisions energy storage devices (ESDs) in data centers for performing power capping and facilitating capex/opex reductions, without performance overhead. To fully realize the potential benefits of the hierarchical ESD structure, we propose a comprehensive design, control, and provisioning framework including (i) designing power delivery architecture supporting hierarchical ESD structure and hybrid ESDs for some levels, as well as (ii) control and provisioning of the hierarchical ESD structure including run-time ESD charging/discharging control and design-time determination of ESD types, homogeneous/hybrid options, ESD provisioning at each level. Experiments have been conducted using real Google data center workloads based on realistic data center specifications.
Xue, Yuankun; Bogdan, Paul; Tang, Jian; Wang, Yanzhi; Lin, Xue
2018-01-01
Recently, a new approach has been introduced that leverages and over-provisions energy storage devices (ESDs) in data centers for performing power capping and facilitating capex/opex reductions, without performance overhead. To fully realize the potential benefits of the hierarchical ESD structure, we propose a comprehensive design, control, and provisioning framework including (i) designing power delivery architecture supporting hierarchical ESD structure and hybrid ESDs for some levels, as well as (ii) control and provisioning of the hierarchical ESD structure including run-time ESD charging/discharging control and design-time determination of ESD types, homogeneous/hybrid options, ESD provisioning at each level. Experiments have been conducted using real Google data center workloads based on realistic data center specifications. PMID:29351553
Space Launch System Ascent Flight Control Design
NASA Technical Reports Server (NTRS)
VanZwieten, Tannen S.; Orr, Jeb S.; Wall, John H.; Hall, Charles E.
2014-01-01
A robust and flexible autopilot architecture for NASA's Space Launch System (SLS) family of launch vehicles is presented. As the SLS configurations represent a potentially significant increase in complexity and performance capability of the integrated flight vehicle, it was recognized early in the program that a new, generalized autopilot design should be formulated to fulfill the needs of this new space launch architecture. The present design concept is intended to leverage existing NASA and industry launch vehicle design experience and maintain the extensibility and modularity necessary to accommodate multiple vehicle configurations while relying on proven and flight-tested control design principles for large boost vehicles. The SLS flight control architecture combines a digital three-axis autopilot with traditional bending filters to support robust active or passive stabilization of the vehicle's bending and sloshing dynamics using optimally blended measurements from multiple rate gyros on the vehicle structure. The algorithm also relies on a pseudo-optimal control allocation scheme to maximize the performance capability of multiple vectored engines while accommodating throttling and engine failure contingencies in real time with negligible impact to stability characteristics. The architecture supports active in-flight load relief through the use of a nonlinear observer driven by acceleration measurements, and envelope expansion and robustness enhancement is obtained through the use of a multiplicative forward gain modulation law based upon a simple model reference adaptive control scheme.
Space Launch System Ascent Flight Control Design
NASA Technical Reports Server (NTRS)
Orr, Jeb S.; Wall, John H.; VanZwieten, Tannen S.; Hall, Charles E.
2014-01-01
A robust and flexible autopilot architecture for NASA's Space Launch System (SLS) family of launch vehicles is presented. The SLS configurations represent a potentially significant increase in complexity and performance capability when compared with other manned launch vehicles. It was recognized early in the program that a new, generalized autopilot design should be formulated to fulfill the needs of this new space launch architecture. The present design concept is intended to leverage existing NASA and industry launch vehicle design experience and maintain the extensibility and modularity necessary to accommodate multiple vehicle configurations while relying on proven and flight-tested control design principles for large boost vehicles. The SLS flight control architecture combines a digital three-axis autopilot with traditional bending filters to support robust active or passive stabilization of the vehicle's bending and sloshing dynamics using optimally blended measurements from multiple rate gyros on the vehicle structure. The algorithm also relies on a pseudo-optimal control allocation scheme to maximize the performance capability of multiple vectored engines while accommodating throttling and engine failure contingencies in real time with negligible impact to stability characteristics. The architecture supports active in-flight disturbance compensation through the use of nonlinear observers driven by acceleration measurements. Envelope expansion and robustness enhancement is obtained through the use of a multiplicative forward gain modulation law based upon a simple model reference adaptive control scheme.
Experimental investigation of active rib stitch knitted architecture for flow control applications
NASA Astrophysics Data System (ADS)
Abel, Julianna M.; Mane, Poorna; Pascoe, Benjamin; Luntz, Jonathan; Brei, Diann
2010-04-01
Actively manipulating flow characteristics around the wing can enhance the high-lift capability and reduce drag; thereby, increasing fuel economy, improving maneuverability and operation over diverse flight conditions which enables longer, more varied missions. Active knits, a novel class of cellular structural smart material actuator architectures created by continuous, interlocked loops of stranded active material, produce distributed actuation that can actively manipulate the local surface of the aircraft wing to improve flow characteristics. Rib stitch active knits actuate normal to the surface, producing span-wise discrete periodic arrays that can withstand aerodynamic forces while supplying the necessary displacement for flow control. This paper presents a preliminary experimental investigation of the pressuredisplacement actuation performance capabilities of a rib stitch active knit based upon shape memory alloy (SMA) wire. SMA rib stitch prototypes in both individual form and in stacked and nestled architectures were experimentally tested for their quasi-static load-displacement characteristics, verifying the parallel and series relationships of the architectural configurations. The various configurations tested demonstrated the potential of active knits to generate the required level of distributed surface displacements while under aerodynamic level loads for various forms of flow control.
NASA Astrophysics Data System (ADS)
Clites, Tyler R.; Carty, Matthew J.; Srinivasan, Shriya; Zorzos, Anthony N.; Herr, Hugh M.
2017-06-01
Objective. Proprioceptive mechanisms play a critical role in both reflexive and volitional lower extremity control. Significant strides have been made in the development of bionic limbs that are capable of bi-directional communication with the peripheral nervous system, but none of these systems have been capable of providing physiologically-relevant muscle-based proprioceptive feedback through natural neural pathways. In this study, we present the agonist-antagonist myoneural interface (AMI), a surgical approach with the capacity to provide graded kinesthetic feedback from a prosthesis through mechanical activation of native mechanoreceptors within residual agonist-antagonist muscle pairs. Approach. (1) Sonomicrometery and electroneurography measurement systems were validated using a servo-based muscle tensioning system. (2) A heuristic controller was implemented to modulate functional electrical stimulation of an agonist muscle, using sonomicrometric measurements of stretch from a mechanically-coupled antagonist muscle as feedback. (3) One AMI was surgically constructed in the hindlimb of each rat. (4) The gastrocnemius-soleus complex of the rat was cycled through a series of ramp-and-hold stretches in two different muscle architectures: native (physiologically-intact) and AMI (modified). Integrated electroneurography from the tibial nerve was compared across the two architectures. Main results. Correlation between stretch and afferent signal demonstrated that the AMI is capable of provoking graded afferent signals in response to ramp-and-hold stretches, in a manner similar to the native muscle architecture. The response magnitude in the AMI was reduced when compared to the native architecture, likely due to lower stretch amplitudes. The closed-loop control system showed robustness at high stretch magnitudes, with some oscillation at low stretch magnitudes. Significance. These results indicate that the AMI has the potential to communicate meaningful kinesthetic feedback from a prosthetic limb by replicating the agonist-antagonist relationships that are fundamental to physiological proprioception.
Silicon CMOS architecture for a spin-based quantum computer.
Veldhorst, M; Eenink, H G J; Yang, C H; Dzurak, A S
2017-12-15
Recent advances in quantum error correction codes for fault-tolerant quantum computing and physical realizations of high-fidelity qubits in multiple platforms give promise for the construction of a quantum computer based on millions of interacting qubits. However, the classical-quantum interface remains a nascent field of exploration. Here, we propose an architecture for a silicon-based quantum computer processor based on complementary metal-oxide-semiconductor (CMOS) technology. We show how a transistor-based control circuit together with charge-storage electrodes can be used to operate a dense and scalable two-dimensional qubit system. The qubits are defined by the spin state of a single electron confined in quantum dots, coupled via exchange interactions, controlled using a microwave cavity, and measured via gate-based dispersive readout. We implement a spin qubit surface code, showing the prospects for universal quantum computation. We discuss the challenges and focus areas that need to be addressed, providing a path for large-scale quantum computing.
Terra Harvest software architecture
NASA Astrophysics Data System (ADS)
Humeniuk, Dave; Klawon, Kevin
2012-06-01
Under the Terra Harvest Program, the DIA has the objective of developing a universal Controller for the Unattended Ground Sensor (UGS) community. The mission is to define, implement, and thoroughly document an open architecture that universally supports UGS missions, integrating disparate systems, peripherals, etc. The Controller's inherent interoperability with numerous systems enables the integration of both legacy and future UGS System (UGSS) components, while the design's open architecture supports rapid third-party development to ensure operational readiness. The successful accomplishment of these objectives by the program's Phase 3b contractors is demonstrated via integration of the companies' respective plug-'n'-play contributions that include controllers, various peripherals, such as sensors, cameras, etc., and their associated software drivers. In order to independently validate the Terra Harvest architecture, L-3 Nova Engineering, along with its partner, the University of Dayton Research Institute, is developing the Terra Harvest Open Source Environment (THOSE), a Java Virtual Machine (JVM) running on an embedded Linux Operating System. The Use Cases on which the software is developed support the full range of UGS operational scenarios such as remote sensor triggering, image capture, and data exfiltration. The Team is additionally developing an ARM microprocessor-based evaluation platform that is both energy-efficient and operationally flexible. The paper describes the overall THOSE architecture, as well as the design decisions for some of the key software components. Development process for THOSE is discussed as well.
Actuated Hybrid Mirrors for Space Telescopes
NASA Technical Reports Server (NTRS)
Hickey, Gregory; Ealey, Mark; Redding, David
2010-01-01
This paper describes new, large, ultra-lightweight, replicated, actively controlled mirrors, for use in space telescopes. These mirrors utilize SiC substrates, with embedded solid-state actuators, bonded to Nanolaminate metal foil reflective surfaces. Called Actuated Hybrid Mirrors (AHMs), they use replication techniques for high optical quality as well as rapid, low cost manufacturing. They enable an Active Optics space telescope architecture that uses periodic image-based wavefront sensing and control to assure diffraction-limited performance, while relaxing optical system fabrication, integration and test requirements. The proposed International Space Station Observatory seeks to demonstrate this architecture in space.
The entropy reduction engine: Integrating planning, scheduling, and control
NASA Technical Reports Server (NTRS)
Drummond, Mark; Bresina, John L.; Kedar, Smadar T.
1991-01-01
The Entropy Reduction Engine, an architecture for the integration of planning, scheduling, and control, is described. The architecture is motivated, presented, and analyzed in terms of its different components; namely, problem reduction, temporal projection, and situated control rule execution. Experience with this architecture has motivated the recent integration of learning. The learning methods are described along with their impact on architecture performance.
Architectures for mission control at the Jet Propulsion Laboratory
NASA Technical Reports Server (NTRS)
Davidson, Reger A.; Murphy, Susan C.
1992-01-01
JPL is currently converting to an innovative control center data system which is a distributed, open architecture for telemetry delivery and which is enabling advancement towards improved automation and operability, as well as new technology, in mission operations at JPL. The scope of mission control within mission operations is examined. The concepts of a mission control center and how operability can affect the design of a control center data system are discussed. Examples of JPL's mission control architecture, data system development, and prototype efforts at the JPL Operations Engineering Laboratory are provided. Strategies for the future of mission control architectures are outlined.
Graphical explanation in an expert system for Space Station Freedom rack integration
NASA Technical Reports Server (NTRS)
Craig, F. G.; Cutts, D. E.; Fennel, T. R.; Purves, B.
1990-01-01
The rationale and methodology used to incorporate graphics into explanations provided by an expert system for Space Station Freedom rack integration is examined. The rack integration task is typical of a class of constraint satisfaction problems for large programs where expertise from several areas is required. Graphically oriented approaches are used to explain the conclusions made by the system, the knowledge base content, and even at more abstract levels the control strategies employed by the system. The implemented architecture combines hypermedia and inference engine capabilities. The advantages of this architecture include: closer integration of user interface, explanation system, and knowledge base; the ability to embed links to deeper knowledge underlying the compiled knowledge used in the knowledge base; and allowing for more direct control of explanation depth and duration by the user. The graphical techniques employed range from simple statis presentation of schematics to dynamic creation of a series of pictures presented motion picture style. User models control the type, amount, and order of information presented.
Synthesis and supramolecular assembly of biomimetic polymers
NASA Astrophysics Data System (ADS)
Marciel, Amanda Brittany
A grand challenge in materials chemistry is the synthesis of macromolecules and polymers with precise shapes and architectures. Polymer microstructure and architecture strongly affect the resulting functionality of advanced materials, yet understanding the static and dynamic properties of these complex macromolecules in bulk has been difficult due to their inherit polydispersity. Single molecule studies have provided a wealth of information on linear flexible and semi-flexible polymers in dilute solutions. However, few investigations have focused on industrially relevant complex topologies (e.g., star, comb, hyperbranched polymers) in industrially relevant solution conditions (e.g., semi-dilute, concentrated). Therefore, from this perspective there is a strong need to synthesize precision complex architectures for bulk studies as well as complex architectures compatible with current single molecule techniques to study static and dynamic polymer properties. In this way, we developed a hybrid synthetic strategy to produce branched polymer architectures based on chemically modified DNA. Overall, this approach enables control of backbone length and flexibility, as well as branch grafting density and chemical identity. We utilized a two-step scheme based on enzymatic incorporation of non-natural nucleotides containing bioorthogonal dibenzocyclooctyne (DBCO) functional groups along the main polymer backbone, followed by copper-free "click" chemistry to graft synthetic polymer branches or oligonucleotide branches to the DNA backbone, thereby allowing for the synthesis of a variety of polymer architectures, including three-arm stars, H-polymers, graft block copolymers, and comb polymers for materials assembly and single molecule studies. Bulk materials properties are also affected by industrial processing conditions that alter polymer morphology. Therefore, in an alternative strategy we developed a microfluidic-based approach to assemble highly aligned synthetic oligopeptides nanostructures using microscale extensional flows. This strategy enabled reproducible, reliable fabrication of aligned hierarchical constructs that do not form spontaneously in solution. In this way, fluidic-directed assembly of supramolecular structures allows for unprecedented manipulation at the nano- and mesoscale, which has the potential to provide rapid and efficient control of functional materials properties.
Controle du vol longitudinal d'un avion civil avec satisfaction de qualiies de manoeuvrabilite
NASA Astrophysics Data System (ADS)
Saussie, David Alexandre
2010-03-01
Fulfilling handling qualities still remains a challenging problem during flight control design. These criteria of different nature are derived from a wide experience based upon flight tests and data analysis, and they have to be considered if one expects a good behaviour of the aircraft. The goal of this thesis is to develop synthesis methods able to satisfy these criteria with fixed classical architectures imposed by the manufacturer or with a new flight control architecture. This is applied to the longitudinal flight model of a Bombardier Inc. business jet aircraft, namely the Challenger 604. A first step of our work consists in compiling the most commonly used handling qualities in order to compare them. A special attention is devoted to the dropback criterion for which theoretical analysis leads us to establish a practical formulation for synthesis purpose. Moreover, the comparison of the criteria through a reference model highlighted dominant criteria that, once satisfied, ensure that other ones are satisfied too. Consequently, we are able to consider the fulfillment of these criteria in the fixed control architecture framework. Guardian maps (Saydy et al., 1990) are then considered to handle the problem. Initially for robustness study, they are integrated in various algorithms for controller synthesis. Incidently, this fixed architecture problem is similar to the static output feedback stabilization problem and reduced-order controller synthesis. Algorithms performing stabilization and pole assignment in a specific region of the complex plane are then proposed. Afterwards, they are extended to handle the gain-scheduling problem. The controller is then scheduled through the entire flight envelope with respect to scheduling parameters. Thereafter, the fixed architecture is put aside while only conserving the same output signals. The main idea is to use Hinfinity synthesis to obtain an initial controller satisfying handling qualities thanks to reference model pairing and robust versus mass and center of gravity variations. Using robust modal control (Magni, 2002), we are able to reduce substantially the controller order and to structure it in order to come close to a classical architecture. An auto-scheduling method finally allows us to schedule the controller with respect to scheduling parameters. Two different paths are used to solve the same problem; each one exhibits its own advantages and disadvantages.
A global spacecraft control network for spacecraft autonomy research
NASA Technical Reports Server (NTRS)
Kitts, Christopher A.
1996-01-01
The development and implementation of the Automated Space System Experimental Testbed (ASSET) space operations and control network, is reported on. This network will serve as a command and control architecture for spacecraft operations and will offer a real testbed for the application and validation of advanced autonomous spacecraft operations strategies. The proposed network will initially consist of globally distributed amateur radio ground stations at locations throughout North America and Europe. These stations will be linked via Internet to various control centers. The Stanford (CA) control center will be capable of human and computer based decision making for the coordination of user experiments, resource scheduling and fault management. The project's system architecture is described together with its proposed use as a command and control system, its value as a testbed for spacecraft autonomy research, and its current implementation.
NASA's SDR Standard: Space Telecommunications Radio System
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Johnson, Sandra K.
2007-01-01
A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG s SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA s current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.
Software Defined Radio Standard Architecture and its Application to NASA Space Missions
NASA Technical Reports Server (NTRS)
Andro, Monty; Reinhart, Richard C.
2006-01-01
A software defined radio (SDR) architecture used in space-based platforms proposes to standardize certain aspects of radio development such as interface definitions, functional control and execution, and application software and firmware development. NASA has charted a team to develop an open software defined radio hardware and software architecture to support NASA missions and determine the viability of an Agency-wide Standard. A draft concept of the proposed standard has been released and discussed among organizations in the SDR community. Appropriate leveraging of the JTRS SCA, OMG's SWRadio Architecture and other aspects are considered. A standard radio architecture offers potential value by employing common waveform software instantiation, operation, testing and software maintenance. While software defined radios offer greater flexibility, they also poses challenges to the radio development for the space environment in terms of size, mass and power consumption and available technology. An SDR architecture for space must recognize and address the constraints of space flight hardware, and systems along with flight heritage and culture. NASA is actively participating in the development of technology and standards related to software defined radios. As NASA considers a standard radio architecture for space communications, input and coordination from government agencies, the industry, academia, and standards bodies is key to a successful architecture. The unique aspects of space require thorough investigation of relevant terrestrial technologies properly adapted to space. The talk will describe NASA's current effort to investigate SDR applications to space missions and a brief overview of a candidate architecture under consideration for space based platforms.
Architectural setup for online monitoring and control of process parameters in robot-based ISF
NASA Astrophysics Data System (ADS)
Störkle, Denis Daniel; Thyssen, Lars; Kuhlenkötter, Bernd
2017-10-01
This article describes new developments in an incremental, robot-based sheet metal forming process (Roboforming) for the production of sheet metal components for small lot sizes and prototypes. The dieless kinematic-based generation of the shape is implemented by means of two industrial robots, which are interconnected to a cooperating robot system. Compared to other incremental sheet forming (ISF) machines, this system offers high geometrical design flexibility without the need of any part-dependent tools. However, the industrial application of ISF is still limited by certain constraints, e.g. the low geometrical accuracy. Responding to these constraints, the authors introduce a new architectural setup extending the current one by a superordinate process control. This sophisticated control consists of two modules, i.e. the compensation of the two industrial robots' low structural stiffness as well as a combined force/torque control. It is assumed that this contribution will lead to future research and development projects in which the authors will thoroughly investigate ISF process parameters influencing the geometric accuracy of the forming results.
A proposal for an SDN-based SIEPON architecture
NASA Astrophysics Data System (ADS)
Khalili, Hamzeh; Sallent, Sebastià; Piney, José Ramón; Rincón, David
2017-11-01
Passive Optical Network (PON) elements such as Optical Line Terminal (OLT) and Optical Network Units (ONUs) are currently managed by inflexible legacy network management systems. Software-Defined Networking (SDN) is a new networking paradigm that improves the operation and management of networks. In this paper, we propose a novel architecture, based on the SDN concept, for Ethernet Passive Optical Networks (EPON) that includes the Service Interoperability standard (SIEPON). In our proposal, the OLT is partially virtualized and some of its functionalities are allocated to the core network management system, while the OLT itself is replaced by an OpenFlow (OF) switch. A new MultiPoint MAC Control (MPMC) sublayer extension based on the OpenFlow protocol is presented. This would allow the SDN controller to manage and enhance the resource utilization, flow monitoring, bandwidth assignment, quality-of-service (QoS) guarantees, and energy management of the optical network access, to name a few possibilities. The OpenFlow switch is extended with synchronous ports to retain the time-critical nature of the EPON network. OpenFlow messages are also extended with new functionalities to implement the concept of EPON Service Paths (ESPs). Our simulation-based results demonstrate the effectiveness of the new architecture, while retaining a similar (or improved) performance in terms of delay and throughput when compared to legacy PONs.
Peer-to-peer Cooperative Scheduling Architecture for National Grid Infrastructure
NASA Astrophysics Data System (ADS)
Matyska, Ludek; Ruda, Miroslav; Toth, Simon
For some ten years, the Czech National Grid Infrastructure MetaCentrum uses a single central PBSPro installation to schedule jobs across the country. This centralized approach keeps a full track about all the clusters, providing support for jobs spanning several sites, implementation for the fair-share policy and better overall control of the grid environment. Despite a steady progress in the increased stability and resilience to intermittent very short network failures, growing number of sites and processors makes this architecture, with a single point of failure and scalability limits, obsolete. As a result, a new scheduling architecture is proposed, which relies on higher autonomy of clusters. It is based on a peer to peer network of semi-independent schedulers for each site or even cluster. Each scheduler accepts jobs for the whole infrastructure, cooperating with other schedulers on implementation of global policies like central job accounting, fair-share, or submission of jobs across several sites. The scheduling system is integrated with the Magrathea system to support scheduling of virtual clusters, including the setup of their internal network, again eventually spanning several sites. On the other hand, each scheduler is local to one of several clusters and is able to directly control and submit jobs to them even if the connection of other scheduling peers is lost. In parallel to the change of the overall architecture, the scheduling system itself is being replaced. Instead of PBSPro, chosen originally for its declared support of large scale distributed environment, the new scheduling architecture is based on the open-source Torque system. The implementation and support for the most desired properties in PBSPro and Torque are discussed and the necessary modifications to Torque to support the MetaCentrum scheduling architecture are presented, too.
Towards multi-platform software architecture for Collaborative Teleoperation
NASA Astrophysics Data System (ADS)
Domingues, Christophe; Otmane, Samir; Davesne, Frederic; Mallem, Malik
2009-03-01
Augmented Reality (AR) can provide to a Human Operator (HO) a real help in achieving complex tasks, such as remote control of robots and cooperative teleassistance. Using appropriate augmentations, the HO can interact faster, safer and easier with the remote real world. In this paper, we present an extension of an existing distributed software and network architecture for collaborative teleoperation based on networked human-scaled mixed reality and mobile platform. The first teleoperation system was composed by a VR application and a Web application. However the 2 systems cannot be used together and it is impossible to control a distant robot simultaneously. Our goal is to update the teleoperation system to permit a heterogeneous collaborative teleoperation between the 2 platforms. An important feature of this interface is based on the use of different Virtual Reality platforms and different Mobile platforms to control one or many robots.
Towards multi-platform software architecture for Collaborative Teleoperation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domingues, Christophe; Otmane, Samir; Davesne, Frederic
2009-03-05
Augmented Reality (AR) can provide to a Human Operator (HO) a real help in achieving complex tasks, such as remote control of robots and cooperative teleassistance. Using appropriate augmentations, the HO can interact faster, safer and easier with the remote real world. In this paper, we present an extension of an existing distributed software and network architecture for collaborative teleoperation based on networked human-scaled mixed reality and mobile platform. The first teleoperation system was composed by a VR application and a Web application. However the 2 systems cannot be used together and it is impossible to control a distant robotmore » simultaneously. Our goal is to update the teleoperation system to permit a heterogeneous collaborative teleoperation between the 2 platforms. An important feature of this interface is based on the use of different Virtual Reality platforms and different Mobile platforms to control one or many robots.« less
Cavity-based architecture to preserve quantum coherence and entanglement
NASA Astrophysics Data System (ADS)
Man, Zhong-Xiao; Xia, Yun-Jie; Lo Franco, Rosario
2015-09-01
Quantum technology relies on the utilization of resources, like quantum coherence and entanglement, which allow quantum information and computation processing. This achievement is however jeopardized by the detrimental effects of the environment surrounding any quantum system, so that finding strategies to protect quantum resources is essential. Non-Markovian and structured environments are useful tools to this aim. Here we show how a simple environmental architecture made of two coupled lossy cavities enables a switch between Markovian and non-Markovian regimes for the dynamics of a qubit embedded in one of the cavity. Furthermore, qubit coherence can be indefinitely preserved if the cavity without qubit is perfect. We then focus on entanglement control of two independent qubits locally subject to such an engineered environment and discuss its feasibility in the framework of circuit quantum electrodynamics. With up-to-date experimental parameters, we show that our architecture allows entanglement lifetimes orders of magnitude longer than the spontaneous lifetime without local cavity couplings. This cavity-based architecture is straightforwardly extendable to many qubits for scalability.
Cavity-based architecture to preserve quantum coherence and entanglement.
Man, Zhong-Xiao; Xia, Yun-Jie; Lo Franco, Rosario
2015-09-09
Quantum technology relies on the utilization of resources, like quantum coherence and entanglement, which allow quantum information and computation processing. This achievement is however jeopardized by the detrimental effects of the environment surrounding any quantum system, so that finding strategies to protect quantum resources is essential. Non-Markovian and structured environments are useful tools to this aim. Here we show how a simple environmental architecture made of two coupled lossy cavities enables a switch between Markovian and non-Markovian regimes for the dynamics of a qubit embedded in one of the cavity. Furthermore, qubit coherence can be indefinitely preserved if the cavity without qubit is perfect. We then focus on entanglement control of two independent qubits locally subject to such an engineered environment and discuss its feasibility in the framework of circuit quantum electrodynamics. With up-to-date experimental parameters, we show that our architecture allows entanglement lifetimes orders of magnitude longer than the spontaneous lifetime without local cavity couplings. This cavity-based architecture is straightforwardly extendable to many qubits for scalability.
Cavity-based architecture to preserve quantum coherence and entanglement
Man, Zhong-Xiao; Xia, Yun-Jie; Lo Franco, Rosario
2015-01-01
Quantum technology relies on the utilization of resources, like quantum coherence and entanglement, which allow quantum information and computation processing. This achievement is however jeopardized by the detrimental effects of the environment surrounding any quantum system, so that finding strategies to protect quantum resources is essential. Non-Markovian and structured environments are useful tools to this aim. Here we show how a simple environmental architecture made of two coupled lossy cavities enables a switch between Markovian and non-Markovian regimes for the dynamics of a qubit embedded in one of the cavity. Furthermore, qubit coherence can be indefinitely preserved if the cavity without qubit is perfect. We then focus on entanglement control of two independent qubits locally subject to such an engineered environment and discuss its feasibility in the framework of circuit quantum electrodynamics. With up-to-date experimental parameters, we show that our architecture allows entanglement lifetimes orders of magnitude longer than the spontaneous lifetime without local cavity couplings. This cavity-based architecture is straightforwardly extendable to many qubits for scalability. PMID:26351004
NASA Technical Reports Server (NTRS)
Feinberg, Lee; Rioux, Norman; Bolcar, Matthew; Liu, Alice; Guyon, Oliver; Stark, Chris; Arenberg, Jon
2016-01-01
Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10^-10 contrast measurements and sufficient throughput and sensitivity for high yield Exo-Earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an Exo-Earth yield assessment to evaluate potential performance. These efforts are combined through integrated modeling, coronagraph evaluations, and Exo-Earth yield calculations to assess the potential performance of the selected architecture. In addition, we discusses the scalability of this architecture to larger apertures and the technological tall poles to enabling it.
Optimization of shared autonomy vehicle control architectures for swarm operations.
Sengstacken, Aaron J; DeLaurentis, Daniel A; Akbarzadeh-T, Mohammad R
2010-08-01
The need for greater capacity in automotive transportation (in the midst of constrained resources) and the convergence of key technologies from multiple domains may eventually produce the emergence of a "swarm" concept of operations. The swarm, which is a collection of vehicles traveling at high speeds and in close proximity, will require technology and management techniques to ensure safe, efficient, and reliable vehicle interactions. We propose a shared autonomy control approach, in which the strengths of both human drivers and machines are employed in concert for this management. Building from a fuzzy logic control implementation, optimal architectures for shared autonomy addressing differing classes of drivers (represented by the driver's response time) are developed through a genetic-algorithm-based search for preferred fuzzy rules. Additionally, a form of "phase transition" from a safe to an unsafe swarm architecture as the amount of sensor capability is varied uncovers key insights on the required technology to enable successful shared autonomy for swarm operations.
van Rheenen, Wouter; Shatunov, Aleksey; Dekker, Annelot M; McLaughlin, Russell L; Diekstra, Frank P; Pulit, Sara L; van der Spek, Rick A A; Võsa, Urmo; de Jong, Simone; Robinson, Matthew R; Yang, Jian; Fogh, Isabella; van Doormaal, Perry TC; Tazelaar, Gijs H P; Koppers, Max; Blokhuis, Anna M; Sproviero, William; Jones, Ashley R; Kenna, Kevin P; van Eijk, Kristel R; Harschnitz, Oliver; Schellevis, Raymond D; Brands, William J; Medic, Jelena; Menelaou, Androniki; Vajda, Alice; Ticozzi, Nicola; Lin, Kuang; Rogelj, Boris; Vrabec, Katarina; Ravnik-Glavač, Metka; Koritnik, Blaž; Zidar, Janez; Leonardis, Lea; Grošelj, Leja Dolenc; Millecamps, Stéphanie; Salachas, François; Meininger, Vincent; de Carvalho, Mamede; Pinto, Susana; Mora, Jesus S; Rojas-García, Ricardo; Polak, Meraida; Chandran, Siddharthan; Colville, Shuna; Swingler, Robert; Morrison, Karen E; Shaw, Pamela J; Hardy, John; Orrell, Richard W; Pittman, Alan; Sidle, Katie; Fratta, Pietro; Malaspina, Andrea; Topp, Simon; Petri, Susanne; Abdulla, Susanne; Drepper, Carsten; Sendtner, Michael; Meyer, Thomas; Ophoff, Roel A; Staats, Kim A; Wiedau-Pazos, Martina; Lomen-Hoerth, Catherine; Van Deerlin, Vivianna M; Trojanowski, John Q; Elman, Lauren; McCluskey, Leo; Basak, A Nazli; Tunca, Ceren; Hamzeiy, Hamid; Parman, Yesim; Meitinger, Thomas; Lichtner, Peter; Radivojkov-Blagojevic, Milena; Andres, Christian R; Maurel, Cindy; Bensimon, Gilbert; Landwehrmeyer, Bernhard; Brice, Alexis; Payan, Christine A M; Saker-Delye, Safaa; Dürr, Alexandra; Wood, Nicholas W; Tittmann, Lukas; Lieb, Wolfgang; Franke, Andre; Rietschel, Marcella; Cichon, Sven; Nöthen, Markus M; Amouyel, Philippe; Tzourio, Christophe; Dartigues, Jean-François; Uitterlinden, Andre G; Rivadeneira, Fernando; Estrada, Karol; Hofman, Albert; Curtis, Charles; Blauw, Hylke M; van der Kooi, Anneke J; de Visser, Marianne; Goris, An; Weber, Markus; Shaw, Christopher E; Smith, Bradley N; Pansarasa, Orietta; Cereda, Cristina; Bo, Roberto Del; Comi, Giacomo P; D’Alfonso, Sandra; Bertolin, Cinzia; Sorarù, Gianni; Mazzini, Letizia; Pensato, Viviana; Gellera, Cinzia; Tiloca, Cinzia; Ratti, Antonia; Calvo, Andrea; Moglia, Cristina; Brunetti, Maura; Arcuti, Simona; Capozzo, Rosa; Zecca, Chiara; Lunetta, Christian; Penco, Silvana; Riva, Nilo; Padovani, Alessandro; Filosto, Massimiliano; Muller, Bernard; Stuit, Robbert Jan; Blair, Ian; Zhang, Katharine; McCann, Emily P; Fifita, Jennifer A; Nicholson, Garth A; Rowe, Dominic B; Pamphlett, Roger; Kiernan, Matthew C; Grosskreutz, Julian; Witte, Otto W; Ringer, Thomas; Prell, Tino; Stubendorff, Beatrice; Kurth, Ingo; Hübner, Christian A; Leigh, P Nigel; Casale, Federico; Chio, Adriano; Beghi, Ettore; Pupillo, Elisabetta; Tortelli, Rosanna; Logroscino, Giancarlo; Powell, John; Ludolph, Albert C; Weishaupt, Jochen H; Robberecht, Wim; Van Damme, Philip; Franke, Lude; Pers, Tune H; Brown, Robert H; Glass, Jonathan D; Landers, John E; Hardiman, Orla; Andersen, Peter M; Corcia, Philippe; Vourc’h, Patrick; Silani, Vincenzo; Wray, Naomi R; Visscher, Peter M; de Bakker, Paul I W; van Es, Michael A; Pasterkamp, R Jeroen; Lewis, Cathryn M; Breen, Gerome; Al-Chalabi, Ammar; van den Berg, Leonard H; Veldink, Jan H
2017-01-01
To elucidate the genetic architecture of amyotrophic lateral sclerosis (ALS) and find associated loci, we assembled a custom imputation reference panel from whole-genome-sequenced patients with ALS and matched controls (n = 1,861). Through imputation and mixed-model association analysis in 12,577 cases and 23,475 controls, combined with 2,579 cases and 2,767 controls in an independent replication cohort, we fine-mapped a new risk locus on chromosome 21 and identified C21orf2 as a gene associated with ALS risk. In addition, we identified MOBP and SCFD1 as new associated risk loci. We established evidence of ALS being a complex genetic trait with a polygenic architecture. Furthermore, we estimated the SNP-based heritability at 8.5%, with a distinct and important role for low-frequency variants (frequency 1–10%). This study motivates the interrogation of larger samples with full genome coverage to identify rare causal variants that underpin ALS risk. PMID:27455348
SCOS 2: A distributed architecture for ground system control
NASA Astrophysics Data System (ADS)
Keyte, Karl P.
The current generation of spacecraft ground control systems in use at the European Space Agency/European Space Operations Centre (ESA/ESOC) is based on the SCOS 1. Such systems have become difficult to manage in both functional and financial terms. The next generation of spacecraft is demanding more flexibility in the use, configuration and distribution of control facilities as well as functional requirements capable of matching those being planned for future missions. SCOS 2 is more than a successor to SCOS 1. Many of the shortcomings of the existing system have been carefully analyzed by user and technical communities and a complete redesign was made. Different technologies were used in many areas including hardware platform, network architecture, user interfaces and implementation techniques, methodologies and language. As far as possible a flexible design approach has been made using popular industry standards to provide vendor independence in both hardware and software areas. This paper describes many of the new approaches made in the architectural design of the SCOS 2.
Executive control systems in the engineering design environment. M.S. Thesis
NASA Technical Reports Server (NTRS)
Hurst, P. W.
1985-01-01
An executive control system (ECS) is a software structure for unifying various applications codes into a comprehensive system. It provides a library of applications, a uniform access method through a cental user interface, and a data management facility. A survey of twenty-four executive control systems designed to unify various CAD/CAE applications for use in diverse engineering design environments within government and industry was conducted. The goals of this research were to establish system requirements to survey state-of-the-art architectural design approaches, and to provide an overview of the historical evolution of these systems. Foundations for design are presented and include environmental settings, system requirements, major architectural components, and a system classification scheme based on knowledge of the supported engineering domain(s). An overview of the design approaches used in developing the major architectural components of an ECS is presented with examples taken from the surveyed systems. Attention is drawn to four major areas of ECS development: interdisciplinary usage; standardization; knowledge utilization; and computer science technology transfer.
Network architecture for global biomedical monitoring service.
Lopez-Casado, Carmen; Tejero-Calado, Juan; Bernal-Martin, Antonio; Lopez-Gomez, Miguel; Romero-Romero, Marco; Quesada, Guillermo; Lorca, Julio; Garcia, Eugenia
2005-01-01
Most of the patients who are in hospitals and, increasingly, patients controlled remotely from their homes, at-home monitoring, are continuously monitored in order to control their evolution. The medical devices used up to now, force the sanitary staff to go to the patients' room to control the biosignals that are being monitored, although in many cases, patients are in perfect conditions. If patient is at home, it is he or she who has to go to the hospital to take the record of the monitored signal. New wireless technologies, such as BlueTooth and WLAN, make possible the deployment of systems that allow the display and storage of those signals in any place where the hospital intranet is accessible. In that way, unnecessary displacements are avoided. This paper presents a network architecture that allows the identification of the biosignal acquisition device as IP network nodes. The system is based on a TCP/IP architecture which is scalable and avoids the deployment of a specific purpose network.
A processing architecture for associative short-term memory in electronic noses
NASA Astrophysics Data System (ADS)
Pioggia, G.; Ferro, M.; Di Francesco, F.; DeRossi, D.
2006-11-01
Electronic nose (e-nose) architectures usually consist of several modules that process various tasks such as control, data acquisition, data filtering, feature selection and pattern analysis. Heterogeneous techniques derived from chemometrics, neural networks, and fuzzy rules used to implement such tasks may lead to issues concerning module interconnection and cooperation. Moreover, a new learning phase is mandatory once new measurements have been added to the dataset, thus causing changes in the previously derived model. Consequently, if a loss in the previous learning occurs (catastrophic interference), real-time applications of e-noses are limited. To overcome these problems this paper presents an architecture for dynamic and efficient management of multi-transducer data processing techniques and for saving an associative short-term memory of the previously learned model. The architecture implements an artificial model of a hippocampus-based working memory, enabling the system to be ready for real-time applications. Starting from the base models available in the architecture core, dedicated models for neurons, maps and connections were tailored to an artificial olfactory system devoted to analysing olive oil. In order to verify the ability of the processing architecture in associative and short-term memory, a paired-associate learning test was applied. The avoidance of catastrophic interference was observed.
Architectures for intelligent machines
NASA Technical Reports Server (NTRS)
Saridis, George N.
1991-01-01
The theory of intelligent machines has been recently reformulated to incorporate new architectures that are using neural and Petri nets. The analytic functions of an intelligent machine are implemented by intelligent controls, using entropy as a measure. The resulting hierarchical control structure is based on the principle of increasing precision with decreasing intelligence. Each of the three levels of the intelligent control is using different architectures, in order to satisfy the requirements of the principle: the organization level is moduled after a Boltzmann machine for abstract reasoning, task planning and decision making; the coordination level is composed of a number of Petri net transducers supervised, for command exchange, by a dispatcher, which also serves as an interface to the organization level; the execution level, include the sensory, planning for navigation and control hardware which interacts one-to-one with the appropriate coordinators, while a VME bus provides a channel for database exchange among the several devices. This system is currently implemented on a robotic transporter, designed for space construction at the CIRSSE laboratories at the Rensselaer Polytechnic Institute. The progress of its development is reported.
Connecting a cognitive architecture to robotic perception
NASA Astrophysics Data System (ADS)
Kurup, Unmesh; Lebiere, Christian; Stentz, Anthony; Hebert, Martial
2012-06-01
We present an integrated architecture in which perception and cognition interact and provide information to each other leading to improved performance in real-world situations. Our system integrates the Felzenswalb et. al. object-detection algorithm with the ACT-R cognitive architecture. The targeted task is to predict and classify pedestrian behavior in a checkpoint scenario, most specifically to discriminate between normal versus checkpoint-avoiding behavior. The Felzenswalb algorithm is a learning-based algorithm for detecting and localizing objects in images. ACT-R is a cognitive architecture that has been successfully used to model human cognition with a high degree of fidelity on tasks ranging from basic decision-making to the control of complex systems such as driving or air traffic control. The Felzenswalb algorithm detects pedestrians in the image and provides ACT-R a set of features based primarily on their locations. ACT-R uses its pattern-matching capabilities, specifically its partial-matching and blending mechanisms, to track objects across multiple images and classify their behavior based on the sequence of observed features. ACT-R also provides feedback to the Felzenswalb algorithm in the form of expected object locations that allow the algorithm to eliminate false-positives and improve its overall performance. This capability is an instance of the benefits pursued in developing a richer interaction between bottom-up perceptual processes and top-down goal-directed cognition. We trained the system on individual behaviors (only one person in the scene) and evaluated its performance across single and multiple behavior sets.
Yang, Hui; He, Yongqi; Zhang, Jie; Ji, Yuefeng; Bai, Wei; Lee, Young
2016-04-18
Cloud radio access network (C-RAN) has become a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing using cloud BBUs. In our previous work, we implemented cross stratum optimization of optical network and application stratums resources that allows to accommodate the services in optical networks. In view of this, this study extends to consider the multiple dimensional resources optimization of radio, optical and BBU processing in 5G age. We propose a novel multi-stratum resources optimization (MSRO) architecture with network functions virtualization for cloud-based radio over optical fiber networks (C-RoFN) using software defined control. A global evaluation scheme (GES) for MSRO in C-RoFN is introduced based on the proposed architecture. The MSRO can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical and BBU resources effectively to maximize radio coverage. The efficiency and feasibility of the proposed architecture are experimentally demonstrated on OpenFlow-based enhanced SDN testbed. The performance of GES under heavy traffic load scenario is also quantitatively evaluated based on MSRO architecture in terms of resource occupation rate and path provisioning latency, compared with other provisioning scheme.
Feed Forward Neural Network and Optimal Control Problem with Control and State Constraints
NASA Astrophysics Data System (ADS)
Kmet', Tibor; Kmet'ová, Mária
2009-09-01
A feed forward neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints. The paper extends adaptive critic neural network architecture proposed by [5] to the optimal control problems with control and state constraints. The optimal control problem is transcribed into a nonlinear programming problem which is implemented with adaptive critic neural network. The proposed simulation method is illustrated by the optimal control problem of nitrogen transformation cycle model. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.
Hybrid Adaptive Flight Control with Model Inversion Adaptation
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2011-01-01
This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.
NASA Astrophysics Data System (ADS)
Kuang, Jun; Dai, Zhaohe; Liu, Luqi; Yang, Zhou; Jin, Ming; Zhang, Zhong
2015-05-01
Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and CNT. The resulting materials possess excellent properties of combined high specific strength, elasticity and mechanical stability, which cannot be achieved in neat CNT and graphene foams. The improved mechanical properties are attributed to the synergistic-effect-induced highly organized, multi-scaled hierarchical architectures. Moreover, with their excellent electrical conductivity, we demonstrated that the hybrid foams could be used as pressure sensors in the fields related to artificial skin.Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and CNT. The resulting materials possess excellent properties of combined high specific strength, elasticity and mechanical stability, which cannot be achieved in neat CNT and graphene foams. The improved mechanical properties are attributed to the synergistic-effect-induced highly organized, multi-scaled hierarchical architectures. Moreover, with their excellent electrical conductivity, we demonstrated that the hybrid foams could be used as pressure sensors in the fields related to artificial skin. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00841g
Predictable and reliable ECG monitoring over IEEE 802.11 WLANs within a hospital.
Park, Juyoung; Kang, Kyungtae
2014-09-01
Telecardiology provides mobility for patients who require constant electrocardiogram (ECG) monitoring. However, its safety is dependent on the predictability and robustness of data delivery, which must overcome errors in the wireless channel through which the ECG data are transmitted. We report here a framework that can be used to gauge the applicability of IEEE 802.11 wireless local area network (WLAN) technology to ECG monitoring systems in terms of delay constraints and transmission reliability. For this purpose, a medical-grade WLAN architecture achieved predictable delay through the combination of a medium access control mechanism based on the point coordination function provided by IEEE 802.11 and an error control scheme based on Reed-Solomon coding and block interleaving. The size of the jitter buffer needed was determined by this architecture to avoid service dropout caused by buffer underrun, through analysis of variations in transmission delay. Finally, we assessed this architecture in terms of service latency and reliability by modeling the transmission of uncompressed two-lead electrocardiogram data from the MIT-BIH Arrhythmia Database and highlight the applicability of this wireless technology to telecardiology.
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Connolly, Joseph W.
2016-01-01
This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40k (CMAPSS40k) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Connolly, Joseph W.
2015-01-01
This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40,000) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.
Implementation and design of a teleoperation system based on a VMEBUS/68020 pipelined architecture
NASA Technical Reports Server (NTRS)
Lee, Thomas S.
1989-01-01
A pipelined control design and architecture for a force-feedback teleoperation system that is being implemented at the Jet Propulsion Laboratory and which will be integrated with the autonomous portion of the testbed to achieve share control is described. At the local site, the operator sees real-time force/torque displays and moves two 6-degree of freedom (dof) force-reflecting hand-controllers as his hands feel the contact force/torques generated at the remote site where the robots interact with the environment. He also uses a graphical user menu to monitor robot states and specify system options. The teleoperation software is written in the C language and runs on MC68020-based processor boards in the VME chassis, which utilizes a real-time operating system; the hardware is configured to realize a four-stage pipeline configuration. The environment is very flexible, such that the system can easily be configured as a stand-alone facility for performing independent research in human factors, force control, and time-delayed systems.
Proximity-based access control for context-sensitive information provision in SOA-based systems
NASA Astrophysics Data System (ADS)
Rajappan, Gowri; Wang, Xiaofei; Grant, Robert; Paulini, Matthew
2014-06-01
Service Oriented Architecture (SOA) has enabled open-architecture integration of applications within an enterprise. For net-centric Command and Control (C2), this elucidates information sharing between applications and users, a critical requirement for mission success. The Information Technology (IT) access control schemes, which arbitrate who gets access to what information, do not yet have the contextual knowledge to dynamically allow this information sharing to happen dynamically. The access control might prevent legitimate users from accessing information relevant to the current mission context, since this context may be very different from the context for which the access privileges were configured. We evaluate a pair of data relevance measures - proximity and risk - and use these as the basis of dynamic access control. Proximity is a measure of the strength of connection between the user and the resource. However, proximity is not sufficient, since some data might have a negative impact, if leaked, which far outweighs importance to the subject's mission. For this, we use a risk measure to quantify the downside of data compromise. Given these contextual measures of proximity and risk, we investigate extending Attribute-Based Access Control (ABAC), which is used by the Department of Defense, and Role-Based Access Control (RBAC), which is widely used in the civilian market, so that these standards-based access control models are given contextual knowledge to enable dynamic information sharing. Furthermore, we consider the use of such a contextual access control scheme in a SOA-based environment, in particular for net-centric C2.
A Multi-Purpose Modular Electronics Integration Node for Exploration Extravehicular Activity
NASA Technical Reports Server (NTRS)
Hodgson, Edward; Papale, William; Wichowski, Robert; Rosenbush, David; Hawes, Kevin; Stankiewicz, Tom
2013-01-01
As NASA works to develop an effective integrated portable life support system design for exploration Extravehicular activity (EVA), alternatives to the current system s electrical power and control architecture are needed to support new requirements for flexibility, maintainability, reliability, and reduced mass and volume. Experience with the current Extravehicular Mobility Unit (EMU) has demonstrated that the current architecture, based in a central power supply, monitoring and control unit, with dedicated analog wiring harness connections to active components in the system has a significant impact on system packaging and seriously constrains design flexibility in adapting to component obsolescence and changing system needs over time. An alternative architecture based in the use of a digital data bus offers possible wiring harness and system power savings, but risks significant penalties in component complexity and cost. A hybrid architecture that relies on a set of electronic and power interface nodes serving functional models within the Portable Life Support System (PLSS) is proposed to minimize both packaging and component level penalties. A common interface node hardware design can further reduce penalties by reducing the nonrecurring development costs, making miniaturization more practical, maximizing opportunities for maturation and reliability growth, providing enhanced fault tolerance, and providing stable design interfaces for system components and a central control. Adaptation to varying specific module requirements can be achieved with modest changes in firmware code within the module. A preliminary design effort has developed a common set of hardware interface requirements and functional capabilities for such a node based on anticipated modules comprising an exploration PLSS, and a prototype node has been designed assembled, programmed, and tested. One instance of such a node has been adapted to support testing the swingbed carbon dioxide and humidity control element in NASA s advanced PLSS 2.0 test article. This paper will describe the common interface node design concept, results of the prototype development and test effort, and plans for use in NASA PLSS 2.0 integrated tests.
A proposal of an architecture for the coordination level of intelligent machines
NASA Technical Reports Server (NTRS)
Beard, Randall; Farah, Jeff; Lima, Pedro
1993-01-01
The issue of obtaining a practical, structured, and detailed description of an architecture for the Coordination Level of Center for Intelligent Robotic Systems for Sapce Exploration (CIRSSE) Testbed Intelligent Controller is addressed. Previous theoretical and implementation works were the departure point for the discussion. The document is organized as follows: after this introductory section, section 2 summarizes the overall view of the Intelligent Machine (IM) as a control system, proposing a performance measure on which to base its design. Section 3 addresses with some detail implementation issues. An hierarchic petri-net with feedback-based learning capabilities is proposed. Finally, section 4 is an attempt to address the feedback problem. Feedback is used for two functions: error recovery and reinforcement learning of the correct translations for the petri-net transitions.
An Open Specification for Space Project Mission Operations Control Architectures
NASA Technical Reports Server (NTRS)
Hooke, A.; Heuser, W. R.
1995-01-01
An 'open specification' for Space Project Mission Operations Control Architectures is under development in the Spacecraft Control Working Group of the American Institute for Aeronautics and Astro- nautics. This architecture identifies 5 basic elements incorporated in the design of similar operations systems: Data, System Management, Control Interface, Decision Support Engine, & Space Messaging Service.
A synchronized computational architecture for generalized bilateral control of robot arms
NASA Technical Reports Server (NTRS)
Bejczy, Antal K.; Szakaly, Zoltan
1987-01-01
This paper describes a computational architecture for an interconnected high speed distributed computing system for generalized bilateral control of robot arms. The key method of the architecture is the use of fully synchronized, interrupt driven software. Since an objective of the development is to utilize the processing resources efficiently, the synchronization is done in the hardware level to reduce system software overhead. The architecture also achieves a balaced load on the communication channel. The paper also describes some architectural relations to trading or sharing manual and automatic control.
Analyzing Resiliency of the Smart Grid Communication Architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anas AlMajali, Anas; Viswanathan, Arun; Neuman, Clifford
Smart grids are susceptible to cyber-attack as a result of new communication, control and computation techniques employed in the grid. In this paper, we characterize and analyze the resiliency of smart grid communication architecture, specifically an RF mesh based architecture, under cyber attacks. We analyze the resiliency of the communication architecture by studying the performance of high-level smart grid functions such as metering, and demand response which depend on communication. Disrupting the operation of these functions impacts the operational resiliency of the smart grid. Our analysis shows that it takes an attacker only a small fraction of meters to compromisemore » the communication resiliency of the smart grid. We discuss the implications of our result to critical smart grid functions and to the overall security of the smart grid.« less
Advanced ground station architecture
NASA Technical Reports Server (NTRS)
Zillig, David; Benjamin, Ted
1994-01-01
This paper describes a new station architecture for NASA's Ground Network (GN). The architecture makes efficient use of emerging technologies to provide dramatic reductions in size, operational complexity, and operational and maintenance costs. The architecture, which is based on recent receiver work sponsored by the Office of Space Communications Advanced Systems Program, allows integration of both GN and Space Network (SN) modes of operation in the same electronics system. It is highly configurable through software and the use of charged coupled device (CCD) technology to provide a wide range of operating modes. Moreover, it affords modularity of features which are optional depending on the application. The resulting system incorporates advanced RF, digital, and remote control technology capable of introducing significant operational, performance, and cost benefits to a variety of NASA communications and tracking applications.
A Novel Approach to Noise-Filtering Based on a Gain-Scheduling Neural Network Architecture
NASA Technical Reports Server (NTRS)
Troudet, T.; Merrill, W.
1994-01-01
A gain-scheduling neural network architecture is proposed to enhance the noise-filtering efficiency of feedforward neural networks, in terms of both nominal performance and robustness. The synergistic benefits of the proposed architecture are demonstrated and discussed in the context of the noise-filtering of signals that are typically encountered in aerospace control systems. The synthesis of such a gain-scheduled neurofiltering provides the robustness of linear filtering, while preserving the nominal performance advantage of conventional nonlinear neurofiltering. Quantitative performance and robustness evaluations are provided for the signal processing of pitch rate responses to typical pilot command inputs for a modern fighter aircraft model.
The role of architecture and ontology for interoperability.
Blobel, Bernd; González, Carolina; Oemig, Frank; Lopéz, Diego; Nykänen, Pirkko; Ruotsalainen, Pekka
2010-01-01
Turning from organization-centric to process-controlled or even to personalized approaches, advanced healthcare settings have to meet special interoperability challenges. eHealth and pHealth solutions must assure interoperability between actors cooperating to achieve common business objectives. Hereby, the interoperability chain also includes individually tailored technical systems, but also sensors and actuators. For enabling corresponding pervasive computing and even autonomic computing, individualized systems have to be based on an architecture framework covering many domains, scientifically managed by specialized disciplines using their specific ontologies in a formalized way. Therefore, interoperability has to advance from a communication protocol to an architecture-centric approach mastering ontology coordination challenges.
NASA Technical Reports Server (NTRS)
Feinberg, Lee; Bolcar, Matt; Liu, Alice; Guyon, Olivier; Stark,Chris; Arenberg, Jon
2016-01-01
Key challenges of a future large aperture, segmented Ultraviolet Optical Infrared (UVOIR) Telescope capable of performing a spectroscopic survey of hundreds of Exoplanets will be sufficient stability to achieve 10-10 contrast measurements and sufficient throughput and sensitivity for high yield Exo-Earth spectroscopic detection. Our team has collectively assessed an optimized end to end architecture including a high throughput coronagraph capable of working with a segmented telescope, a cost-effective and heritage based stable segmented telescope, a control architecture that minimizes the amount of new technologies, and an Exo-Earth yield assessment to evaluate potential performance.
Modelling and control of an upper extremity exoskeleton for rehabilitation
NASA Astrophysics Data System (ADS)
Taha, Zahari; Majeed, Anwar P. P. Abdul; Tze, Mohd Yashim Wong Paul; Abdo Hashem, Mohammed; Mohd Khairuddin, Ismail; Azraai Mohd Razman, Mohd
2016-02-01
This paper presents the modelling and control of a two degree of freedom upper extremity exoskeleton for rehabilitation. The Lagrangian formulation was employed to obtain the dynamic modelling of both the anthropometric based human upper limb as well as the exoskeleton that comprises of the upper arm and the forearm. A proportional-derivative (PD) architecture is employed to investigate its efficacy performing a joint task trajectory tracking in performing flexion/extension on the elbow joint as well as the forward adduction/abduction on the shoulder joint. An active force control (AFC) algorithm is also incorporated into the aforementioned controller to examine its effectiveness in compensating disturbances. It was found from the study that the AFC-PD performed well against the disturbances introduced into the system without compromising its tracking performances as compared to the conventional PD control architecture.
Study on virtual instrument developing system based on intelligent virtual control
NASA Astrophysics Data System (ADS)
Tang, Baoping; Cheng, Fabin; Qin, Shuren
2005-01-01
The paper introduces a non-programming developing system of a virtual instument (VI), i.e., a virtual measurement instrument developing system (VMIDS) based on intelligent virtual control (IVC). The background of the IVC-based VMIDS is described briefly, and the hierarchical message bus (HMB)-based software architecture of VMIDS is discussed in detail. The three parts and functions of VMIDS are introduced, and the process of non-programming developing VI is further described.
2013-04-22
Following for Unmanned Aerial Vehicles Using L1 Adaptive Augmentation of Commercial Autopilots, Journal of Guidance, Control, and Dynamics, (3 2010): 0...Naira Hovakimyan. L1 Adaptive Controller for MIMO system with Unmatched Uncertainties using Modi?ed Piecewise Constant Adaptation Law, IEEE 51st...adaptive input nominal input with Nominal input L1 ‐based control generator This L1 adaptive control architecture uses data from the reference model
NASA Astrophysics Data System (ADS)
Ren, Danping; Wu, Shanshan; Zhang, Lijing
2016-09-01
In view of the characteristics of the global control and flexible monitor of software-defined networks (SDN), we proposes a new optical access network architecture dedicated to Wavelength Division Multiplexing-Passive Optical Network (WDM-PON) systems based on SDN. The network coding (NC) technology is also applied into this architecture to enhance the utilization of wavelength resource and reduce the costs of light source. Simulation results show that this scheme can optimize the throughput of the WDM-PON network, greatly reduce the system time delay and energy consumption.
A UML-based ontology for describing hospital information system architectures.
Winter, A; Brigl, B; Wendt, T
2001-01-01
To control the heterogeneity inherent to hospital information systems the information management needs appropriate hospital information systems modeling methods or techniques. This paper shows that, for several reasons, available modeling approaches are not able to answer relevant questions of information management. To overcome this major deficiency we offer an UML-based ontology for describing hospital information systems architectures. This ontology views at three layers: the domain layer, the logical tool layer, and the physical tool layer, and defines the relevant components. The relations between these components, especially between components of different layers make the answering of our information management questions possible.
A fault-tolerant control architecture for unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Drozeski, Graham R.
Research has presented several approaches to achieve varying degrees of fault-tolerance in unmanned aircraft. Approaches in reconfigurable flight control are generally divided into two categories: those which incorporate multiple non-adaptive controllers and switch between them based on the output of a fault detection and identification element, and those that employ a single adaptive controller capable of compensating for a variety of fault modes. Regardless of the approach for reconfigurable flight control, certain fault modes dictate system restructuring in order to prevent a catastrophic failure. System restructuring enables active control of actuation not employed by the nominal system to recover controllability of the aircraft. After system restructuring, continued operation requires the generation of flight paths that adhere to an altered flight envelope. The control architecture developed in this research employs a multi-tiered hierarchy to allow unmanned aircraft to generate and track safe flight paths despite the occurrence of potentially catastrophic faults. The hierarchical architecture increases the level of autonomy of the system by integrating five functionalities with the baseline system: fault detection and identification, active system restructuring, reconfigurable flight control; reconfigurable path planning, and mission adaptation. Fault detection and identification algorithms continually monitor aircraft performance and issue fault declarations. When the severity of a fault exceeds the capability of the baseline flight controller, active system restructuring expands the controllability of the aircraft using unconventional control strategies not exploited by the baseline controller. Each of the reconfigurable flight controllers and the baseline controller employ a proven adaptive neural network control strategy. A reconfigurable path planner employs an adaptive model of the vehicle to re-shape the desired flight path. Generation of the revised flight path is posed as a linear program constrained by the response of the degraded system. Finally, a mission adaptation component estimates limitations on the closed-loop performance of the aircraft and adjusts the aircraft mission accordingly. A combination of simulation and flight test results using two unmanned helicopters validates the utility of the hierarchical architecture.
Lee, Jung-Seob; Cha, Hwang Do; Shim, Jin-Hyung; Jung, Jin Woo; Kim, Jong Young; Cho, Dong-Woo
2012-07-01
Fabrication of a three-dimensional (3D) scaffold with increased mechanical strength may be an essential requirement for more advanced bone tissue engineering scaffolds. Various material- and chemical-based approaches have been explored to enhance the mechanical properties of engineered bone tissue scaffolds. In this study, the effects of pore architecture and stacking direction on the mechanical and cell proliferation properties of a scaffold were investigated. The 3D scaffold was prepared using solid freeform fabrication technology with a multihead deposition system. Various types of scaffolds with different pore architectures (lattice, stagger, and triangle types) and stacking directions (horizontal and vertical directions) were fabricated with a blend of polycaprolactone and poly lactic-co-glycolic acid. In compression tests, the triangle-type scaffold was the strongest among the experimental groups. Stacking direction affected the mechanical properties of scaffolds. An in vitro cell counting kit-8 assay showed no significant differences in optical density depending on the different pore architectures and stacking directions. In conclusion, mechanical properties of scaffolds can be enhanced by controlling pore architecture and stacking direction. Copyright © 2012 Wiley Periodicals, Inc.
Motion camera based on a custom vision sensor and an FPGA architecture
NASA Astrophysics Data System (ADS)
Arias-Estrada, Miguel
1998-09-01
A digital camera for custom focal plane arrays was developed. The camera allows the test and development of analog or mixed-mode arrays for focal plane processing. The camera is used with a custom sensor for motion detection to implement a motion computation system. The custom focal plane sensor detects moving edges at the pixel level using analog VLSI techniques. The sensor communicates motion events using the event-address protocol associated to a temporal reference. In a second stage, a coprocessing architecture based on a field programmable gate array (FPGA) computes the time-of-travel between adjacent pixels. The FPGA allows rapid prototyping and flexible architecture development. Furthermore, the FPGA interfaces the sensor to a compact PC computer which is used for high level control and data communication to the local network. The camera could be used in applications such as self-guided vehicles, mobile robotics and smart surveillance systems. The programmability of the FPGA allows the exploration of further signal processing like spatial edge detection or image segmentation tasks. The article details the motion algorithm, the sensor architecture, the use of the event- address protocol for velocity vector computation and the FPGA architecture used in the motion camera system.
Remote hardware-reconfigurable robotic camera
NASA Astrophysics Data System (ADS)
Arias-Estrada, Miguel; Torres-Huitzil, Cesar; Maya-Rueda, Selene E.
2001-10-01
In this work, a camera with integrated image processing capabilities is discussed. The camera is based on an imager coupled to an FPGA device (Field Programmable Gate Array) which contains an architecture for real-time computer vision low-level processing. The architecture can be reprogrammed remotely for application specific purposes. The system is intended for rapid modification and adaptation for inspection and recognition applications, with the flexibility of hardware and software reprogrammability. FPGA reconfiguration allows the same ease of upgrade in hardware as a software upgrade process. The camera is composed of a digital imager coupled to an FPGA device, two memory banks, and a microcontroller. The microcontroller is used for communication tasks and FPGA programming. The system implements a software architecture to handle multiple FPGA architectures in the device, and the possibility to download a software/hardware object from the host computer into its internal context memory. System advantages are: small size, low power consumption, and a library of hardware/software functionalities that can be exchanged during run time. The system has been validated with an edge detection and a motion processing architecture, which will be presented in the paper. Applications targeted are in robotics, mobile robotics, and vision based quality control.
Uribe, Gustavo A; Blobel, Bernd; López, Diego M; Schulz, Stefan
2015-01-01
Chronic diseases such as Type 2 Diabetes Mellitus (T2DM) constitute a big burden to the global health economy. T2DM Care Management requires a multi-disciplinary and multi-organizational approach. Because of different languages and terminologies, education, experiences, skills, etc., such an approach establishes a special interoperability challenge. The solution is a flexible, scalable, business-controlled, adaptive, knowledge-based, intelligent system following a systems-oriented, architecture-centric, ontology-based and policy-driven approach. The architecture of real systems is described, using the basics and principles of the Generic Component Model (GCM). For representing the functional aspects of a system the Business Process Modeling Notation (BPMN) is used. The system architecture obtained is presented using a GCM graphical notation, class diagrams and BPMN diagrams. The architecture-centric approach considers the compositional nature of the real world system and its functionalities, guarantees coherence, and provides right inferences. The level of generality provided in this paper facilitates use case specific adaptations of the system. By that way, intelligent, adaptive and interoperable T2DM care systems can be derived from the presented model as presented in another publication.
Redondo, Jonatan Pajares; González, Lisardo Prieto; Guzman, Javier García; Boada, Beatriz L; Díaz, Vicente
2018-02-06
Nowadays, the current vehicles are incorporating control systems in order to improve their stability and handling. These control systems need to know the vehicle dynamics through the variables (lateral acceleration, roll rate, roll angle, sideslip angle, etc.) that are obtained or estimated from sensors. For this goal, it is necessary to mount on vehicles not only low-cost sensors, but also low-cost embedded systems, which allow acquiring data from sensors and executing the developed algorithms to estimate and to control with novel higher speed computing. All these devices have to be integrated in an adequate architecture with enough performance in terms of accuracy, reliability and processing time. In this article, an architecture to carry out the estimation and control of vehicle dynamics has been developed. This architecture was designed considering the basic principles of IoT and integrates low-cost sensors and embedded hardware for orchestrating the experiments. A comparison of two different low-cost systems in terms of accuracy, acquisition time and reliability has been done. Both devices have been compared with the VBOX device from Racelogic, which has been used as the ground truth. The comparison has been made from tests carried out in a real vehicle. The lateral acceleration and roll rate have been analyzed in order to quantify the error of these devices.
Díaz, Vicente
2018-01-01
Nowadays, the current vehicles are incorporating control systems in order to improve their stability and handling. These control systems need to know the vehicle dynamics through the variables (lateral acceleration, roll rate, roll angle, sideslip angle, etc.) that are obtained or estimated from sensors. For this goal, it is necessary to mount on vehicles not only low-cost sensors, but also low-cost embedded systems, which allow acquiring data from sensors and executing the developed algorithms to estimate and to control with novel higher speed computing. All these devices have to be integrated in an adequate architecture with enough performance in terms of accuracy, reliability and processing time. In this article, an architecture to carry out the estimation and control of vehicle dynamics has been developed. This architecture was designed considering the basic principles of IoT and integrates low-cost sensors and embedded hardware for orchestrating the experiments. A comparison of two different low-cost systems in terms of accuracy, acquisition time and reliability has been done. Both devices have been compared with the VBOX device from Racelogic, which has been used as the ground truth. The comparison has been made from tests carried out in a real vehicle. The lateral acceleration and roll rate have been analyzed in order to quantify the error of these devices. PMID:29415507
DOE Office of Scientific and Technical Information (OSTI.GOV)
STADLER, MICHAEL; MASHAYEKH, SALMAN; DEFOREST, NICHOLAS
The ODC Microgrid Controller is an optimization-based model predicative microgrid controller (MPMC) to minimize operation cost (and/or CO2 emissions) in a microgrid in the grid-connected mode. It is composed of several modules, including a) forecasting, b) optimization, c) data exchange and d) power balancing modules. In the presence of a multi-layered control system architecture, these modules will reside in the supervisory control layer.
Design of Distributed Engine Control Systems for Stability Under Communication Packet Dropouts
2009-08-01
remarks. II. Distributed Engine Control Systems A. FADEC based on Distributed Engine Control Architecture (DEC) In Distributed Engine...Control, the functions of Full Authority Digital Engine Control ( FADEC ) are distributed at the component level. Each sensor/actuator is to be replaced...diagnostics and health management functionality. Dual channel digital serial communication network is used to connect these smart modules with FADEC . Fig
Efficient Online Learning Algorithms Based on LSTM Neural Networks.
Ergen, Tolga; Kozat, Suleyman Serdar
2017-09-13
We investigate online nonlinear regression and introduce novel regression structures based on the long short term memory (LSTM) networks. For the introduced structures, we also provide highly efficient and effective online training methods. To train these novel LSTM-based structures, we put the underlying architecture in a state space form and introduce highly efficient and effective particle filtering (PF)-based updates. We also provide stochastic gradient descent and extended Kalman filter-based updates. Our PF-based training method guarantees convergence to the optimal parameter estimation in the mean square error sense provided that we have a sufficient number of particles and satisfy certain technical conditions. More importantly, we achieve this performance with a computational complexity in the order of the first-order gradient-based methods by controlling the number of particles. Since our approach is generic, we also introduce a gated recurrent unit (GRU)-based approach by directly replacing the LSTM architecture with the GRU architecture, where we demonstrate the superiority of our LSTM-based approach in the sequential prediction task via different real life data sets. In addition, the experimental results illustrate significant performance improvements achieved by the introduced algorithms with respect to the conventional methods over several different benchmark real life data sets.
The sixth generation robot in space
NASA Technical Reports Server (NTRS)
Butcher, A.; Das, A.; Reddy, Y. V.; Singh, H.
1990-01-01
The knowledge based simulator developed in the artificial intelligence laboratory has become a working test bed for experimenting with intelligent reasoning architectures. With this simulator, recently, small experiments have been done with an aim to simulate robot behavior to avoid colliding paths. An automatic extension of such experiments to intelligently planning robots in space demands advanced reasoning architectures. One such architecture for general purpose problem solving is explored. The robot, seen as a knowledge base machine, goes via predesigned abstraction mechanism for problem understanding and response generation. The three phases in one such abstraction scheme are: abstraction for representation, abstraction for evaluation, and abstraction for resolution. Such abstractions require multimodality. This multimodality requires the use of intensional variables to deal with beliefs in the system. Abstraction mechanisms help in synthesizing possible propagating lattices for such beliefs. The machine controller enters into a sixth generation paradigm.
The NASA/OAST telerobot testbed architecture
NASA Technical Reports Server (NTRS)
Matijevic, J. R.; Zimmerman, W. F.; Dolinsky, S.
1989-01-01
Through a phased development such as a laboratory-based research testbed, the NASA/OAST Telerobot Testbed provides an environment for system test and demonstration of the technology which will usefully complement, significantly enhance, or even replace manned space activities. By integrating advanced sensing, robotic manipulation and intelligent control under human-interactive supervision, the Testbed will ultimately demonstrate execution of a variety of generic tasks suggestive of space assembly, maintenance, repair, and telescience. The Testbed system features a hierarchical layered control structure compatible with the incorporation of evolving technologies as they become available. The Testbed system is physically implemented in a computing architecture which allows for ease of integration of these technologies while preserving the flexibility for test of a variety of man-machine modes. The development currently in progress on the functional and implementation architectures of the NASA/OAST Testbed and capabilities planned for the coming years are presented.
Assembly kinetics determine the architecture of α-actinin crosslinked F-actin networks.
Falzone, Tobias T; Lenz, Martin; Kovar, David R; Gardel, Margaret L
2012-05-29
The actin cytoskeleton is organized into diverse meshworks and bundles that support many aspects of cell physiology. Understanding the self-assembly of these actin-based structures is essential for developing predictive models of cytoskeletal organization. Here we show that the competing kinetics of bundle formation with the onset of dynamic arrest arising from filament entanglements and crosslinking determine the architecture of reconstituted actin networks formed with α-actinin crosslinks. Crosslink-mediated bundle formation only occurs in dilute solutions of highly mobile actin filaments. As actin polymerization proceeds, filament mobility and bundle formation are arrested concomitantly. By controlling the onset of dynamic arrest, perturbations to actin assembly kinetics dramatically alter the architecture of biochemically identical samples. Thus, the morphology of reconstituted F-actin networks is a kinetically determined structure similar to those formed by physical gels and glasses. These results establish mechanisms controlling the structure and mechanics in diverse semiflexible biopolymer networks.
A Programmable SDN+NFV Architecture for UAV Telemetry Monitoring
NASA Technical Reports Server (NTRS)
White, Kyle J. S.; Pezaros, Dimitrios P.; Denney, Ewen; Knudson, Matt D.
2017-01-01
With the explosive growth in UAV numbers forecast worldwide, a core concern is how to manage the ad-hoc network configuration required for mobility management. As UAVs migrate among ground control stations, associated network services, routing and operational control must also rapidly migrate to ensure a seamless transition. In this paper, we present a novel, lightweight and modular architecture which supports high mobility, resilience and flexibility through the application of SDN and NFV principles on top of the UAV infrastructure. By combining SDN programmability and Network Function Virtualization we can achieve resilient infrastructure migration of network services, such as network monitoring and anomaly detection, coupled with migrating UAVs to enable high mobility management. Our container-based monitoring and anomaly detection Network Functions (NFs) can be tuned to specific UAV models providing operators better insight during live, high-mobility deployments. We evaluate our architecture against telemetry from over 80flights from a scientific research UAV infrastructure.
A single-board NMR spectrometer based on a software defined radio architecture
NASA Astrophysics Data System (ADS)
Tang, Weinan; Wang, Weimin
2011-01-01
A single-board software defined radio (SDR) spectrometer for nuclear magnetic resonance (NMR) is presented. The SDR-based architecture, realized by combining a single field programmable gate array (FPGA) and a digital signal processor (DSP) with peripheral radio frequency (RF) front-end circuits, makes the spectrometer compact and reconfigurable. The DSP, working as a pulse programmer, communicates with a personal computer via a USB interface and controls the FPGA through a parallel port. The FPGA accomplishes digital processing tasks such as a numerically controlled oscillator (NCO), digital down converter (DDC) and gradient waveform generator. The NCO, with agile control of phase, frequency and amplitude, is part of a direct digital synthesizer that is used to generate an RF pulse. The DDC performs quadrature demodulation, multistage low-pass filtering and gain adjustment to produce a bandpass signal (receiver bandwidth from 3.9 kHz to 10 MHz). The gradient waveform generator is capable of outputting shaped gradient pulse waveforms and supports eddy-current compensation. The spectrometer directly acquires an NMR signal up to 30 MHz in the case of baseband sampling and is suitable for low-field (<0.7 T) application. Due to the featured SDR architecture, this prototype has flexible add-on ability and is expected to be suitable for portable NMR systems.
An Intelligent Propulsion Control Architecture to Enable More Autonomous Vehicle Operation
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Sowers, T. Shane; Simon, Donald L.; Owen, A. Karl; Rinehart, Aidan W.; Chicatelli, Amy K.; Acheson, Michael J.; Hueschen, Richard M.; Spiers, Christopher W.
2018-01-01
This paper describes an intelligent propulsion control architecture that coordinates with the flight control to reduce the amount of pilot intervention required to operate the vehicle. Objectives of the architecture include the ability to: automatically recognize the aircraft operating state and flight phase; configure engine control to optimize performance with knowledge of engine condition and capability; enhance aircraft performance by coordinating propulsion control with flight control; and recognize off-nominal propulsion situations and to respond to them autonomously. The hierarchical intelligent propulsion system control can be decomposed into a propulsion system level and an individual engine level. The architecture is designed to be flexible to accommodate evolving requirements, adapt to technology improvements, and maintain safety.
The symbolic computation and automatic analysis of trajectories
NASA Technical Reports Server (NTRS)
Grossman, Robert
1991-01-01
Research was generally done on computation of trajectories of dynamical systems, especially control systems. Algorithms were further developed for rewriting expressions involving differential operators. The differential operators involved arise in the local analysis of nonlinear control systems. An initial design was completed of the system architecture for software to analyze nonlinear control systems using data base computing.
Wilson, John T; Postma, Almar; Keller, Salka; Convertine, Anthony J; Moad, Graeme; Rizzardo, Ezio; Meagher, Laurence; Chiefari, John; Stayton, Patrick S
2015-03-01
Protein-based vaccines offer a number of important advantages over organism-based vaccines but generally elicit poor CD8(+) T cell responses. We have previously demonstrated that pH-responsive, endosomolytic polymers can enhance protein antigen delivery to major histocompatibility complex class I (MHC-I) antigen presentation pathways thereby augmenting CD8(+) T cell responses following immunization. Here, we describe a new family of nanocarriers for protein antigen delivery assembled using architecturally distinct pH-responsive polymers. Reversible addition-fragmentation chain transfer (RAFT) polymerization was used to synthesize linear, hyperbranched, and core-crosslinked copolymers of 2-(N,N-diethylamino)ethyl methacrylate (DEAEMA) and butyl methacrylate (BMA) that were subsequently chain extended with a hydrophilic N,N-dimethylacrylamide (DMA) segment copolymerized with thiol-reactive pyridyl disulfide (PDS) groups. In aqueous solution, polymer chains assembled into 25 nm micellar nanoparticles and enabled efficient and reducible conjugation of a thiolated protein antigen, ovalbumin. Polymers demonstrated pH-dependent membrane-destabilizing activity in an erythrocyte lysis assay, with the hyperbranched and cross-linked polymer architectures exhibiting significantly higher hemolysis at pH ≤ 7.0 than the linear diblock. Antigen delivery with the hyperbranched and cross-linked polymer architecture enhanced in vitro MHC-I antigen presentation relative to free antigen, whereas the linear construct did not have a discernible effect. The hyperbranched system elicited a four- to fivefold increase in MHC-I presentation relative to the cross-linked architecture, demonstrating the superior capacity of the hyperbranched architecture in enhancing MHC-I presentation. This work demonstrates that the architecture of pH-responsive, endosomolytic polymers can have dramatic effects on intracellular antigen delivery, and offers a promising strategy for enhancing CD8(+) T cell responses to protein-based vaccines.
Komatsoulis, George A; Warzel, Denise B; Hartel, Francis W; Shanbhag, Krishnakant; Chilukuri, Ram; Fragoso, Gilberto; Coronado, Sherri de; Reeves, Dianne M; Hadfield, Jillaine B; Ludet, Christophe; Covitz, Peter A
2008-02-01
One of the requirements for a federated information system is interoperability, the ability of one computer system to access and use the resources of another system. This feature is particularly important in biomedical research systems, which need to coordinate a variety of disparate types of data. In order to meet this need, the National Cancer Institute Center for Bioinformatics (NCICB) has created the cancer Common Ontologic Representation Environment (caCORE), an interoperability infrastructure based on Model Driven Architecture. The caCORE infrastructure provides a mechanism to create interoperable biomedical information systems. Systems built using the caCORE paradigm address both aspects of interoperability: the ability to access data (syntactic interoperability) and understand the data once retrieved (semantic interoperability). This infrastructure consists of an integrated set of three major components: a controlled terminology service (Enterprise Vocabulary Services), a standards-based metadata repository (the cancer Data Standards Repository) and an information system with an Application Programming Interface (API) based on Domain Model Driven Architecture. This infrastructure is being leveraged to create a Semantic Service-Oriented Architecture (SSOA) for cancer research by the National Cancer Institute's cancer Biomedical Informatics Grid (caBIG).
Komatsoulis, George A.; Warzel, Denise B.; Hartel, Frank W.; Shanbhag, Krishnakant; Chilukuri, Ram; Fragoso, Gilberto; de Coronado, Sherri; Reeves, Dianne M.; Hadfield, Jillaine B.; Ludet, Christophe; Covitz, Peter A.
2008-01-01
One of the requirements for a federated information system is interoperability, the ability of one computer system to access and use the resources of another system. This feature is particularly important in biomedical research systems, which need to coordinate a variety of disparate types of data. In order to meet this need, the National Cancer Institute Center for Bioinformatics (NCICB) has created the cancer Common Ontologic Representation Environment (caCORE), an interoperability infrastructure based on Model Driven Architecture. The caCORE infrastructure provides a mechanism to create interoperable biomedical information systems. Systems built using the caCORE paradigm address both aspects of interoperability: the ability to access data (syntactic interoperability) and understand the data once retrieved (semantic interoperability). This infrastructure consists of an integrated set of three major components: a controlled terminology service (Enterprise Vocabulary Services), a standards-based metadata repository (the cancer Data Standards Repository) and an information system with an Application Programming Interface (API) based on Domain Model Driven Architecture. This infrastructure is being leveraged to create a Semantic Service Oriented Architecture (SSOA) for cancer research by the National Cancer Institute’s cancer Biomedical Informatics Grid (caBIG™). PMID:17512259
Blueprint for a microwave trapped ion quantum computer.
Lekitsch, Bjoern; Weidt, Sebastian; Fowler, Austin G; Mølmer, Klaus; Devitt, Simon J; Wunderlich, Christof; Hensinger, Winfried K
2017-02-01
The availability of a universal quantum computer may have a fundamental impact on a vast number of research fields and on society as a whole. An increasingly large scientific and industrial community is working toward the realization of such a device. An arbitrarily large quantum computer may best be constructed using a modular approach. We present a blueprint for a trapped ion-based scalable quantum computer module, making it possible to create a scalable quantum computer architecture based on long-wavelength radiation quantum gates. The modules control all operations as stand-alone units, are constructed using silicon microfabrication techniques, and are within reach of current technology. To perform the required quantum computations, the modules make use of long-wavelength radiation-based quantum gate technology. To scale this microwave quantum computer architecture to a large size, we present a fully scalable design that makes use of ion transport between different modules, thereby allowing arbitrarily many modules to be connected to construct a large-scale device. A high error-threshold surface error correction code can be implemented in the proposed architecture to execute fault-tolerant operations. With appropriate adjustments, the proposed modules are also suitable for alternative trapped ion quantum computer architectures, such as schemes using photonic interconnects.
The architecture of a distributed medical dictionary.
Fowler, J; Buffone, G; Moreau, D
1995-01-01
Exploiting high-speed computer networks to provide a national medical information infrastructure is a goal for medical informatics. The Distributed Medical Dictionary under development at Baylor College of Medicine is a model for an architecture that supports collaborative development of a distributed online medical terminology knowledge-base. A prototype is described that illustrates the concept. Issues that must be addressed by such a system include high availability, acceptable response time, support for local idiom, and control of vocabulary.
Orion Flight Test Architecture Benefits of MBSE Approach
NASA Technical Reports Server (NTRS)
Reed, Don; Simpson, Kim
2012-01-01
Exploration Flight Test 1 (EFT-1) is an unmanned first orbital flight test of the Multi Purpose Crew Vehicle (MPCV) Mission s purpose is to: Test Orion s ascent, on-orbit and entry capabilities Monitor critical activities Provide ground control in support of contingency scenarios Requires development of a large scale end-to-end information system network architecture To effectively communicate the scope of the end-to-end system a model-based system engineering approach was chosen.
New Technologies for Space Avionics, 1993
NASA Technical Reports Server (NTRS)
Aibel, David W.; Harris, David R.; Bartlett, Dave; Black, Steve; Campagna, Dave; Fernald, Nancy; Garbos, Ray
1993-01-01
The report reviews a 1993 effort that investigated issues associated with the development of requirements, with the practice of concurrent engineering and with rapid prototyping, in the development of a next-generation Reaction Jet Drive Controller. This report details lessons learned, the current status of the prototype, and suggestions for future work. The report concludes with a discussion of the vision of future avionics architectures based on the principles associated with open architectures and integrated vehicle health management.
Next Generation Image-Based Phenotyping of Root System Architecture
NASA Astrophysics Data System (ADS)
Davis, T. W.; Shaw, N. M.; Cheng, H.; Larson, B. G.; Craft, E. J.; Shaff, J. E.; Schneider, D. J.; Piñeros, M. A.; Kochian, L. V.
2016-12-01
The development of the Plant Root Imaging and Data Acquisition (PRIDA) hardware/software system enables researchers to collect digital images, along with all the relevant experimental details, of a range of hydroponically grown agricultural crop roots for 2D and 3D trait analysis. Previous efforts of image-based root phenotyping focused on young cereals, such as rice; however, there is a growing need to measure both older and larger root systems, such as those of maize and sorghum, to improve our understanding of the underlying genetics that control favorable rooting traits for plant breeding programs to combat the agricultural risks presented by climate change. Therefore, a larger imaging apparatus has been prototyped for capturing 3D root architecture with an adaptive control system and innovative plant root growth media that retains three-dimensional root architectural features. New publicly available multi-platform software has been released with considerations for both high throughput (e.g., 3D imaging of a single root system in under ten minutes) and high portability (e.g., support for the Raspberry Pi computer). The software features unified data collection, management, exploration and preservation for continued trait and genetics analysis of root system architecture. The new system makes data acquisition efficient and includes features that address the needs of researchers and technicians, such as reduced imaging time, semi-automated camera calibration with uncertainty characterization, and safe storage of the critical experimental data.
Tele-Supervised Adaptive Ocean Sensor Fleet
NASA Technical Reports Server (NTRS)
Lefes, Alberto; Podnar, Gregg W.; Dolan, John M.; Hosler, Jeffrey C.; Ames, Troy J.
2009-01-01
The Tele-supervised Adaptive Ocean Sensor Fleet (TAOSF) is a multi-robot science exploration architecture and system that uses a group of robotic boats (the Ocean-Atmosphere Sensor Integration System, or OASIS) to enable in-situ study of ocean surface and subsurface characteristics and the dynamics of such ocean phenomena as coastal pollutants, oil spills, hurricanes, or harmful algal blooms (HABs). The OASIS boats are extended- deployment, autonomous ocean surface vehicles. The TAOSF architecture provides an integrated approach to multi-vehicle coordination and sliding human-vehicle autonomy. One feature of TAOSF is the adaptive re-planning of the activities of the OASIS vessels based on sensor input ( smart sensing) and sensorial coordination among multiple assets. The architecture also incorporates Web-based communications that permit control of the assets over long distances and the sharing of data with remote experts. Autonomous hazard and assistance detection allows the automatic identification of hazards that require human intervention to ensure the safety and integrity of the robotic vehicles, or of science data that require human interpretation and response. Also, the architecture is designed for science analysis of acquired data in order to perform an initial onboard assessment of the presence of specific science signatures of immediate interest. TAOSF integrates and extends five subsystems developed by the participating institutions: Emergent Space Tech - nol ogies, Wallops Flight Facility, NASA s Goddard Space Flight Center (GSFC), Carnegie Mellon University, and Jet Propulsion Laboratory (JPL). The OASIS Autonomous Surface Vehicle (ASV) system, which includes the vessels as well as the land-based control and communications infrastructure developed for them, controls the hardware of each platform (sensors, actuators, etc.), and also provides a low-level waypoint navigation capability. The Multi-Platform Simulation Environment from GSFC is a surrogate for the OASIS ASV system and allows for independent development and testing of higher-level software components. The Platform Communicator acts as a proxy for both actual and simulated platforms. It translates platform-independent messages from the higher control systems to the device-dependent communication protocols. This enables the higher-level control systems to interact identically with heterogeneous actual or simulated platforms.
Yang, Hui; Zhang, Jie; Zhao, Yongli; Ji, Yuefeng; Wu, Jialin; Lin, Yi; Han, Jianrui; Lee, Young
2015-05-18
Inter-data center interconnect with IP over elastic optical network (EON) is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. In our previous work, we implemented multi-stratum resources integration among IP networks, optical networks and application stratums resources that allows to accommodate data center services. In view of this, this study extends to consider the service resilience in case of edge optical node failure. We propose a novel multi-stratum resources integrated resilience (MSRIR) architecture for the services in software defined inter-data center interconnect based on IP over EON. A global resources integrated resilience (GRIR) algorithm is introduced based on the proposed architecture. The MSRIR can enable cross stratum optimization and provide resilience using the multiple stratums resources, and enhance the data center service resilience responsiveness to the dynamic end-to-end service demands. The overall feasibility and efficiency of the proposed architecture is experimentally verified on the control plane of our OpenFlow-based enhanced SDN (eSDN) testbed. The performance of GRIR algorithm under heavy traffic load scenario is also quantitatively evaluated based on MSRIR architecture in terms of path blocking probability, resilience latency and resource utilization, compared with other resilience algorithms.
Yang, Hui; Zhang, Jie; Ji, Yuefeng; Tian, Rui; Han, Jianrui; Lee, Young
2015-11-30
Data center interconnect with elastic optical network is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. In our previous work, we implemented multi-stratum resilience between IP and elastic optical networks that allows to accommodate data center services. In view of this, this study extends to consider the resource integration by breaking the limit of network device, which can enhance the resource utilization. We propose a novel multi-stratum resources integration (MSRI) architecture based on network function virtualization in software defined elastic data center optical interconnect. A resource integrated mapping (RIM) scheme for MSRI is introduced in the proposed architecture. The MSRI can accommodate the data center services with resources integration when the single function or resource is relatively scarce to provision the services, and enhance globally integrated optimization of optical network and application resources. The overall feasibility and efficiency of the proposed architecture are experimentally verified on the control plane of OpenFlow-based enhanced software defined networking (eSDN) testbed. The performance of RIM scheme under heavy traffic load scenario is also quantitatively evaluated based on MSRI architecture in terms of path blocking probability, provisioning latency and resource utilization, compared with other provisioning schemes.
Integrating Computer Architectures into the Design of High-Performance Controllers
NASA Technical Reports Server (NTRS)
Jacklin, Stephen A.; Leyland, Jane A.; Warmbrodt, William
1986-01-01
Modern control systems must typically perform real-time identification and control, as well as coordinate a host of other activities related to user interaction, on-line graphics, and file management. This paper discusses five global design considerations that are useful to integrate array processor, multimicroprocessor, and host computer system architecture into versatile, high-speed controllers. Such controllers are capable of very high control throughput, and can maintain constant interaction with the non-real-time or user environment. As an application example, the architecture of a high-speed, closed-loop controller used to actively control helicopter vibration will be briefly discussed. Although this system has been designed for use as the controller for real-time rotorcraft dynamics and control studies in a wind-tunnel environment, the control architecture can generally be applied to a wide range of automatic control applications.
ELISA, a demonstrator environment for information systems architecture design
NASA Technical Reports Server (NTRS)
Panem, Chantal
1994-01-01
This paper describes an approach of reusability of software engineering technology in the area of ground space system design. System engineers have lots of needs similar to software developers: sharing of a common data base, capitalization of knowledge, definition of a common design process, communication between different technical domains. Moreover system designers need to simulate dynamically their system as early as possible. Software development environments, methods and tools now become operational and widely used. Their architecture is based on a unique object base, a set of common management services and they host a family of tools for each life cycle activity. In late '92, CNES decided to develop a demonstrative software environment supporting some system activities. The design of ground space data processing systems was chosen as the application domain. ELISA (Integrated Software Environment for Architectures Specification) was specified as a 'demonstrator', i.e. a sufficient basis for demonstrations, evaluation and future operational enhancements. A process with three phases was implemented: system requirements definition, design of system architectures models, and selection of physical architectures. Each phase is composed of several activities that can be performed in parallel, with the provision of Commercial Off the Shelves Tools. ELISA has been delivered to CNES in January 94, currently used for demonstrations and evaluations on real projects (e.g. SPOT4 Satellite Control Center). It is on the way of new evolutions.
Controlling Infrastructure Costs: Right-Sizing the Mission Control Facility
NASA Technical Reports Server (NTRS)
Martin, Keith; Sen-Roy, Michael; Heiman, Jennifer
2009-01-01
Johnson Space Center's Mission Control Center is a space vehicle, space program agnostic facility. The current operational design is essentially identical to the original facility architecture that was developed and deployed in the mid-90's. In an effort to streamline the support costs of the mission critical facility, the Mission Operations Division (MOD) of Johnson Space Center (JSC) has sponsored an exploratory project to evaluate and inject current state-of-the-practice Information Technology (IT) tools, processes and technology into legacy operations. The general push in the IT industry has been trending towards a data-centric computer infrastructure for the past several years. Organizations facing challenges with facility operations costs are turning to creative solutions combining hardware consolidation, virtualization and remote access to meet and exceed performance, security, and availability requirements. The Operations Technology Facility (OTF) organization at the Johnson Space Center has been chartered to build and evaluate a parallel Mission Control infrastructure, replacing the existing, thick-client distributed computing model and network architecture with a data center model utilizing virtualization to provide the MCC Infrastructure as a Service. The OTF will design a replacement architecture for the Mission Control Facility, leveraging hardware consolidation through the use of blade servers, increasing utilization rates for compute platforms through virtualization while expanding connectivity options through the deployment of secure remote access. The architecture demonstrates the maturity of the technologies generally available in industry today and the ability to successfully abstract the tightly coupled relationship between thick-client software and legacy hardware into a hardware agnostic "Infrastructure as a Service" capability that can scale to meet future requirements of new space programs and spacecraft. This paper discusses the benefits and difficulties that a migration to cloud-based computing philosophies has uncovered when compared to the legacy Mission Control Center architecture. The team consists of system and software engineers with extensive experience with the MCC infrastructure and software currently used to support the International Space Station (ISS) and Space Shuttle program (SSP).
An architecture for real-time vision processing
NASA Technical Reports Server (NTRS)
Chien, Chiun-Hong
1994-01-01
To study the feasibility of developing an architecture for real time vision processing, a task queue server and parallel algorithms for two vision operations were designed and implemented on an i860-based Mercury Computing System 860VS array processor. The proposed architecture treats each vision function as a task or set of tasks which may be recursively divided into subtasks and processed by multiple processors coordinated by a task queue server accessible by all processors. Each idle processor subsequently fetches a task and associated data from the task queue server for processing and posts the result to shared memory for later use. Load balancing can be carried out within the processing system without the requirement for a centralized controller. The author concludes that real time vision processing cannot be achieved without both sequential and parallel vision algorithms and a good parallel vision architecture.
NASA Astrophysics Data System (ADS)
Kelley, Troy D.; McGhee, S.
2013-05-01
This paper describes the ongoing development of a robotic control architecture that inspired by computational cognitive architectures from the discipline of cognitive psychology. The Symbolic and Sub-Symbolic Robotics Intelligence Control System (SS-RICS) combines symbolic and sub-symbolic representations of knowledge into a unified control architecture. The new architecture leverages previous work in cognitive architectures, specifically the development of the Adaptive Character of Thought-Rational (ACT-R) and Soar. This paper details current work on learning from episodes or events. The use of episodic memory as a learning mechanism has, until recently, been largely ignored by computational cognitive architectures. This paper details work on metric level episodic memory streams and methods for translating episodes into abstract schemas. The presentation will include research on learning through novelty and self generated feedback mechanisms for autonomous systems.
NASA Technical Reports Server (NTRS)
Erickson, Jon D. (Editor)
1992-01-01
The present volume on cooperative intelligent robotics in space discusses sensing and perception, Space Station Freedom robotics, cooperative human/intelligent robot teams, and intelligent space robotics. Attention is given to space robotics reasoning and control, ground-based space applications, intelligent space robotics architectures, free-flying orbital space robotics, and cooperative intelligent robotics in space exploration. Topics addressed include proportional proximity sensing for telerobots using coherent lasar radar, ground operation of the mobile servicing system on Space Station Freedom, teleprogramming a cooperative space robotic workcell for space stations, and knowledge-based task planning for the special-purpose dextrous manipulator. Also discussed are dimensions of complexity in learning from interactive instruction, an overview of the dynamic predictive architecture for robotic assistants, recent developments at the Goddard engineering testbed, and parallel fault-tolerant robot control.
Lessons Learned from Engineering a Multi-Mission Satellite Operations Center
NASA Technical Reports Server (NTRS)
Madden, Maureen; Cary, Everett, Jr.; Esposito, Timothy; Parker, Jeffrey; Bradley, David
2006-01-01
NASA's Small Explorers (SMEX) satellites have surpassed their designed science-lifetimes and their flight operations teams are now facing the challenge of continuing operations with reduced funding. At present, these missions are being reengineered into a fleet-oriented ground system at Goddard Space Flight Center (GSFC). When completed, this ground system will provide command and control of four SMEX missions and will demonstrate fleet automation and control concepts. As a path-finder for future mission consolidation efforts, this ground system will also demonstrate new ground-based technologies that show promise of supporting longer mission lifecycles and simplifying component integration. One of the core technologies being demonstrated in the SMEiX Mission Operations Center is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture uses commercial Message Oriented Middleware with a common messaging standard to realize a higher level of component interoperability, allowing for interchangeable components in ground systems. Moreover, automation technologies utilizing the GMSEC architecture are being evaluated and implemented to provide extended lights-out operations. This mode of operation will provide routine monitoring and control of the heterogeneous spacecraft fleet. The operational concepts being developed will reduce the need for staffed contacts and is seen as a necessity for fleet management. This paper will describe the experiences of the integration team throughout the reengineering effort of the SMEX ground system. Additionally, lessons learned will be presented based on the team s experiences with integrating multiple missions into a fleet-based automated ground system.
A modular microfluidic architecture for integrated biochemical analysis.
Shaikh, Kashan A; Ryu, Kee Suk; Goluch, Edgar D; Nam, Jwa-Min; Liu, Juewen; Thaxton, C Shad; Chiesl, Thomas N; Barron, Annelise E; Lu, Yi; Mirkin, Chad A; Liu, Chang
2005-07-12
Microfluidic laboratory-on-a-chip (LOC) systems based on a modular architecture are presented. The architecture is conceptualized on two levels: a single-chip level and a multiple-chip module (MCM) system level. At the individual chip level, a multilayer approach segregates components belonging to two fundamental categories: passive fluidic components (channels and reaction chambers) and active electromechanical control structures (sensors and actuators). This distinction is explicitly made to simplify the development process and minimize cost. Components belonging to these two categories are built separately on different physical layers and can communicate fluidically via cross-layer interconnects. The chip that hosts the electromechanical control structures is called the microfluidic breadboard (FBB). A single LOC module is constructed by attaching a chip comprised of a custom arrangement of fluid routing channels and reactors (passive chip) to the FBB. Many different LOC functions can be achieved by using different passive chips on an FBB with a standard resource configuration. Multiple modules can be interconnected to form a larger LOC system (MCM level). We demonstrated the utility of this architecture by developing systems for two separate biochemical applications: one for detection of protein markers of cancer and another for detection of metal ions. In the first case, free prostate-specific antigen was detected at 500 aM concentration by using a nanoparticle-based bio-bar-code protocol on a parallel MCM system. In the second case, we used a DNAzyme-based biosensor to identify the presence of Pb(2+) (lead) at a sensitivity of 500 nM in <1 nl of solution.
Frequency-agile dual-frequency lidar for integrated coherent radar-lidar architectures.
Vercesi, Valeria; Onori, Daniel; Laghezza, Francesco; Scotti, Filippo; Bogoni, Antonella; Scaffardi, Mirco
2015-04-01
We propose a novel architecture for implementing a dual-frequency lidar (DFL) exploiting differential Doppler shift measurement. The two frequency tones, needed for target velocity measurements, are selected from the spectrum of a mode-locked laser operating in the C-band. The tones' separation is easily controlled by using a programmable wavelength selective switch, thus allowing for a dynamic trade-off among robustness to atmospheric turbulence and sensitivity. Speed measurements for different tone separations equal to 10, 40, 80, and 160 GHz are demonstrated, proving the system's capability of working in different configurations. Thanks to the acquisition system based on an analog-to-digital converter and digital-signal processing, real-time velocity measurements are demonstrated. The MLL-based proposed architecture enables the integration of the DFL with a photonic-based radar that exploits the same laser for generating and receiving radio-frequency signal with high performance, thus allowing for simultaneous or complementary target observations by exploiting the advantages of both radar and lidar.
Atzori, Manfredo; Cognolato, Matteo; Müller, Henning
2016-01-01
Natural control methods based on surface electromyography (sEMG) and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications, and commercial prostheses are capable of offering natural control for only a few movements. In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its methods for natural control of robotic hands via sEMG using a large number of intact subjects and amputees. We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 transradial amputees. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets. The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods, but lower than the results obtained with the best reference methods in our tests. The results show that convolutional neural networks with a very simple architecture can produce accurate results comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters) can be fundamental for the analysis of sEMG data. Larger networks can achieve higher accuracy on computer vision and object recognition tasks. This fact suggests that it may be interesting to evaluate if larger networks can increase sEMG classification accuracy too. PMID:27656140
Atzori, Manfredo; Cognolato, Matteo; Müller, Henning
2016-01-01
Natural control methods based on surface electromyography (sEMG) and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications, and commercial prostheses are capable of offering natural control for only a few movements. In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its methods for natural control of robotic hands via sEMG using a large number of intact subjects and amputees. We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 transradial amputees. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets. The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods, but lower than the results obtained with the best reference methods in our tests. The results show that convolutional neural networks with a very simple architecture can produce accurate results comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters) can be fundamental for the analysis of sEMG data. Larger networks can achieve higher accuracy on computer vision and object recognition tasks. This fact suggests that it may be interesting to evaluate if larger networks can increase sEMG classification accuracy too.
Dynamics and design principles of a basic regulatory architecture controlling metabolic pathways.
Chin, Chen-Shan; Chubukov, Victor; Jolly, Emmitt R; DeRisi, Joe; Li, Hao
2008-06-17
The dynamic features of a genetic network's response to environmental fluctuations represent essential functional specifications and thus may constrain the possible choices of network architecture and kinetic parameters. To explore the connection between dynamics and network design, we have analyzed a general regulatory architecture that is commonly found in many metabolic pathways. Such architecture is characterized by a dual control mechanism, with end product feedback inhibition and transcriptional regulation mediated by an intermediate metabolite. As a case study, we measured with high temporal resolution the induction profiles of the enzymes in the leucine biosynthetic pathway in response to leucine depletion, using an automated system for monitoring protein expression levels in single cells. All the genes in the pathway are known to be coregulated by the same transcription factors, but we observed drastically different dynamic responses for enzymes upstream and immediately downstream of the key control point-the intermediate metabolite alpha-isopropylmalate (alphaIPM), which couples metabolic activity to transcriptional regulation. Analysis based on genetic perturbations suggests that the observed dynamics are due to differential regulation by the leucine branch-specific transcription factor Leu3, and that the downstream enzymes are strictly controlled and highly expressed only when alphaIPM is available. These observations allow us to build a simplified mathematical model that accounts for the observed dynamics and can correctly predict the pathway's response to new perturbations. Our model also suggests that transient dynamics and steady state can be separately tuned and that the high induction levels of the downstream enzymes are necessary for fast leucine recovery. It is likely that principles emerging from this work can reveal how gene regulation has evolved to optimize performance in other metabolic pathways with similar architecture.
Neural Architectures for Control
NASA Technical Reports Server (NTRS)
Peterson, James K.
1991-01-01
The cerebellar model articulated controller (CMAC) neural architectures are shown to be viable for the purposes of real-time learning and control. Software tools for the exploration of CMAC performance are developed for three hardware platforms, the MacIntosh, the IBM PC, and the SUN workstation. All algorithm development was done using the C programming language. These software tools were then used to implement an adaptive critic neuro-control design that learns in real-time how to back up a trailer truck. The truck backer-upper experiment is a standard performance measure in the neural network literature, but previously the training of the controllers was done off-line. With the CMAC neural architectures, it was possible to train the neuro-controllers on-line in real-time on a MS-DOS PC 386. CMAC neural architectures are also used in conjunction with a hierarchical planning approach to find collision-free paths over 2-D analog valued obstacle fields. The method constructs a coarse resolution version of the original problem and then finds the corresponding coarse optimal path using multipass dynamic programming. CMAC artificial neural architectures are used to estimate the analog transition costs that dynamic programming requires. The CMAC architectures are trained in real-time for each obstacle field presented. The coarse optimal path is then used as a baseline for the construction of a fine scale optimal path through the original obstacle array. These results are a very good indication of the potential power of the neural architectures in control design. In order to reach as wide an audience as possible, we have run a seminar on neuro-control that has met once per week since 20 May 1991. This seminar has thoroughly discussed the CMAC architecture, relevant portions of classical control, back propagation through time, and adaptive critic designs.
NASA Astrophysics Data System (ADS)
Chiaro, B.; Neill, C.; Chen, Z.; Dunsworth, A.; Foxen, B.; Quintana, C.; Wenner, J.; Martinis, J. M.; Google Quantum Hardware Team
Fast, high fidelity two qubit gates are an essential requirement of a quantum processor. In this talk, we discuss how the tunable coupling of the gmon architecture provides a pathway for an improved two qubit controlled-Z gate. The maximum inter-qubit coupling strength gmax = 60 MHz is sufficient for fast adiabatic two qubit gates to be performed as quickly as single qubit gates, reducing dephasing errors. Additionally, the ability to turn the coupling off allows all qubits to idle at low magnetic flux sensitivity, further reducing susceptibility to noise. However, the flexibility that this platform offers comes at the expense of increased control complexity. We describe our strategy for addressing the control challenges of the gmon architecture and show experimental progress toward fast, high fidelity controlled-Z gates with gmon qubits.
Thomas, Philip; Branicky, Michael; van den Bogert, Antonie; Jagodnik, Kathleen
2010-01-01
Clinical tests have shown that the dynamics of a human arm, controlled using Functional Electrical Stimulation (FES), can vary significantly between and during trials. In this paper, we study the application of the actor-critic architecture, with neural networks for the both the actor and the critic, as a controller that can adapt to these changing dynamics of a human arm. Development and tests were done in simulation using a planar arm model and Hill-based muscle dynamics. We begin by training it using a Proportional Derivative (PD) controller as a supervisor. We then make clinically relevant changes to the dynamics of the arm and test the actor-critic’s ability to adapt without supervision in a reasonable number of episodes. Finally, we devise methods for achieving both rapid learning and long-term stability. PMID:20689654
Thomas, Philip; Branicky, Michael; van den Bogert, Antonie; Jagodnik, Kathleen
2009-01-01
Clinical tests have shown that the dynamics of a human arm, controlled using Functional Electrical Stimulation (FES), can vary significantly between and during trials. In this paper, we study the application of the actor-critic architecture, with neural networks for the both the actor and the critic, as a controller that can adapt to these changing dynamics of a human arm. Development and tests were done in simulation using a planar arm model and Hill-based muscle dynamics. We begin by training it using a Proportional Derivative (PD) controller as a supervisor. We then make clinically relevant changes to the dynamics of the arm and test the actor-critic's ability to adapt without supervision in a reasonable number of episodes. Finally, we devise methods for achieving both rapid learning and long-term stability.
Research on Heat Dissipation of Electric Vehicle Based on Safety Architecture Optimization
NASA Astrophysics Data System (ADS)
Zhou, Chao; Guo, Yajuan; Huang, Wei; Jiang, Haitao; Wu, Liwei
2017-10-01
In order to solve the problem of excessive temperature in the discharge process of lithium-ion battery and the temperature difference between batteries, a heat dissipation of electric vehicle based on safety architecture optimization is designed. The simulation is used to optimize the temperature field of the heat dissipation of the battery. A reasonable heat dissipation control scheme is formulated to achieve heat dissipation requirements. The results show that the ideal working temperature range of the lithium ion battery is 20?∼45?, and the temperature difference between the batteries should be controlled within 5?. A cooling fan is arranged at the original air outlet of the battery model, and the two cooling fans work in turn to realize the reciprocating flow. The temperature difference is controlled within 5? to ensure the good temperature uniformity between the batteries of the electric vehicle. Based on the above finding, it is concluded that the heat dissipation design for electric vehicle batteries is safe and effective, which is the most effective methods to ensure battery life and vehicle safety.
NASA Technical Reports Server (NTRS)
Simon, Donald L.
2010-01-01
Aircraft engine performance trend monitoring and gas path fault diagnostics are closely related technologies that assist operators in managing the health of their gas turbine engine assets. Trend monitoring is the process of monitoring the gradual performance change that an aircraft engine will naturally incur over time due to turbomachinery deterioration, while gas path diagnostics is the process of detecting and isolating the occurrence of any faults impacting engine flow-path performance. Today, performance trend monitoring and gas path fault diagnostic functions are performed by a combination of on-board and off-board strategies. On-board engine control computers contain logic that monitors for anomalous engine operation in real-time. Off-board ground stations are used to conduct fleet-wide engine trend monitoring and fault diagnostics based on data collected from each engine each flight. Continuing advances in avionics are enabling the migration of portions of the ground-based functionality on-board, giving rise to more sophisticated on-board engine health management capabilities. This paper reviews the conventional engine performance trend monitoring and gas path fault diagnostic architecture commonly applied today, and presents a proposed enhanced on-board architecture for future applications. The enhanced architecture gains real-time access to an expanded quantity of engine parameters, and provides advanced on-board model-based estimation capabilities. The benefits of the enhanced architecture include the real-time continuous monitoring of engine health, the early diagnosis of fault conditions, and the estimation of unmeasured engine performance parameters. A future vision to advance the enhanced architecture is also presented and discussed
Simulink-Based Simulation Architecture for Evaluating Controls for Aerospace Vehicles (SAREC-ASV)
NASA Technical Reports Server (NTRS)
Christhilf, David m.; Bacon, Barton J.
2006-01-01
The Simulation Architecture for Evaluating Controls for Aerospace Vehicles (SAREC-ASV) is a Simulink-based approach to providing an engineering quality desktop simulation capability for finding trim solutions, extracting linear models for vehicle analysis and control law development, and generating open-loop and closed-loop time history responses for control system evaluation. It represents a useful level of maturity rather than a finished product. The layout is hierarchical and supports concurrent component development and validation, with support from the Concurrent Versions System (CVS) software management tool. Real Time Workshop (RTW) is used to generate pre-compiled code for substantial component modules, and templates permit switching seamlessly between original Simulink and code compiled for various platforms. Two previous limitations are addressed. Turn around time for incorporating tabular model components was improved through auto-generation of required Simulink diagrams based on data received in XML format. The layout was modified to exploit a Simulink "compile once, evaluate multiple times" capability for zero elapsed time for use in trimming and linearizing. Trim is achieved through a Graphical User Interface (GUI) with a narrow, script definable interface to the vehicle model which facilitates incorporating new models.
Model learning for robot control: a survey.
Nguyen-Tuong, Duy; Peters, Jan
2011-11-01
Models are among the most essential tools in robotics, such as kinematics and dynamics models of the robot's own body and controllable external objects. It is widely believed that intelligent mammals also rely on internal models in order to generate their actions. However, while classical robotics relies on manually generated models that are based on human insights into physics, future autonomous, cognitive robots need to be able to automatically generate models that are based on information which is extracted from the data streams accessible to the robot. In this paper, we survey the progress in model learning with a strong focus on robot control on a kinematic as well as dynamical level. Here, a model describes essential information about the behavior of the environment and the influence of an agent on this environment. In the context of model-based learning control, we view the model from three different perspectives. First, we need to study the different possible model learning architectures for robotics. Second, we discuss what kind of problems these architecture and the domain of robotics imply for the applicable learning methods. From this discussion, we deduce future directions of real-time learning algorithms. Third, we show where these scenarios have been used successfully in several case studies.
NASA Technical Reports Server (NTRS)
Jacklin, S. A.; Leyland, J. A.; Warmbrodt, W.
1985-01-01
Modern control systems must typically perform real-time identification and control, as well as coordinate a host of other activities related to user interaction, online graphics, and file management. This paper discusses five global design considerations which are useful to integrate array processor, multimicroprocessor, and host computer system architectures into versatile, high-speed controllers. Such controllers are capable of very high control throughput, and can maintain constant interaction with the nonreal-time or user environment. As an application example, the architecture of a high-speed, closed-loop controller used to actively control helicopter vibration is briefly discussed. Although this system has been designed for use as the controller for real-time rotorcraft dynamics and control studies in a wind tunnel environment, the controller architecture can generally be applied to a wide range of automatic control applications.
Oliveira, A M C; Batista, R O; Carneiro, P C S; Carneiro, J E S; Cruz, C D
2015-09-28
Cultivars of common bean with more erect plant architecture and greater tolerance to degree of lodging are required by producers. Thus, to evaluate the potential of hypocotyl diameter (HD) in family selection for plant architecture improvement of common bean, the HDs of 32 F2 plants were measured in 3 distinct populations, and the characteristics related to plant architecture were analyzed in their progenies. Ninety-six F2:3 families and 4 controls were evaluated in a randomized block design, with 3 replications, analyzing plant architecture grade, HD, and grain yield during the winter 2010 and drought 2011 seasons. We found that the correlation between the HD of F2 plants and traits related to plant architecture of F2:3 progenies were of low magnitude compared to the estimates for correlations considering the parents, indicating a high environmental influence on HD in bean plants. There was a predominance of additive genetic effects on the determination of hypocotyl diameter, which showed higher precision and accuracy compared to plant architecture grade. Thus, this characteristic can be used to select progenies in plant architecture improvement of common beans; however, selection must be based on the means of at least 39 plants in the plot, according to the results of repeatability analysis.
A performance analysis of advanced I/O architectures for PC-based network file servers
NASA Astrophysics Data System (ADS)
Huynh, K. D.; Khoshgoftaar, T. M.
1994-12-01
In the personal computing and workstation environments, more and more I/O adapters are becoming complete functional subsystems that are intelligent enough to handle I/O operations on their own without much intervention from the host processor. The IBM Subsystem Control Block (SCB) architecture has been defined to enhance the potential of these intelligent adapters by defining services and conventions that deliver command information and data to and from the adapters. In recent years, a new storage architecture, the Redundant Array of Independent Disks (RAID), has been quickly gaining acceptance in the world of computing. In this paper, we would like to discuss critical system design issues that are important to the performance of a network file server. We then present a performance analysis of the SCB architecture and disk array technology in typical network file server environments based on personal computers (PCs). One of the key issues investigated in this paper is whether a disk array can outperform a group of disks (of same type, same data capacity, and same cost) operating independently, not in parallel as in a disk array.
Di Lucente, S; Luo, J; Centelles, R Pueyo; Rohit, A; Zou, S; Williams, K A; Dorren, H J S; Calabretta, N
2013-01-14
Data centers have to sustain the rapid growth of data traffic due to the increasing demand of bandwidth-hungry internet services. The current intra-data center fat tree topology causes communication bottlenecks in the server interaction process, power-hungry O-E-O conversions that limit the minimum latency and the power efficiency of these systems. In this paper we numerically and experimentally investigate an optical packet switch architecture with modular structure and highly distributed control that allow configuration times in the order of nanoseconds. Numerical results indicate that the candidate architecture scaled over 4000 ports, provides an overall throughput over 50 Tb/s and a packet loss rate below 10(-6) while assuring sub-microsecond latency. We present experimental results that demonstrate the feasibility of a 16x16 optical packet switch based on parallel 1x4 integrated optical cross-connect modules. Error-free operations can be achieved with 4 dB penalty while the overall energy consumption is of 66 pJ/b. Based on those results, we discuss feasibility to scale the architecture to a much larger port count.
Hybrid Power Management-Based Vehicle Architecture
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2011-01-01
Hybrid Power Management (HPM) is the integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications (s ee figure). The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The basic vehicle architecture consists of a primary power source, and possibly other power sources, that provides all power to a common energy storage system that is used to power the drive motors and vehicle accessory systems. This architecture also provides power as an emergency power system. Each component is independent, permitting it to be optimized for its intended purpose. The key element of HPM is the energy storage system. All generated power is sent to the energy storage system, and all loads derive their power from that system. This can significantly reduce the power requirement of the primary power source, while increasing the vehicle reliability. Ultracapacitors are ideal for an HPM-based energy storage system due to their exceptionally long cycle life, high reliability, high efficiency, high power density, and excellent low-temperature performance. Multiple power sources and multiple loads are easily incorporated into an HPM-based vehicle. A gas turbine is a good primary power source because of its high efficiency, high power density, long life, high reliability, and ability to operate on a wide range of fuels. An HPM controller maintains optimal control over each vehicle component. This flexible operating system can be applied to all vehicles to considerably improve vehicle efficiency, reliability, safety, security, and performance. The HPM-based vehicle architecture has many advantages over conventional vehicle architectures. Ultracapacitors have a much longer cycle life than batteries, which greatly improves system reliability, reduces life-of-system costs, and reduces environmental impact as ultracapacitors will probably never need to be replaced and disposed of. The environmentally safe ultracapacitor components reduce disposal concerns, and their recyclable nature reduces the environmental impact. High ultracapacitor power density provides high power during surges, and the ability to absorb high power during recharging. Ultracapacitors are extremely efficient in capturing recharging energy, are rugged, reliable, maintenance-free, have excellent lowtemperature characteristic, provide consistent performance over time, and promote safety as they can be left indefinitely in a safe, discharged state whereas batteries cannot.
Universal discrete Fourier optics RF photonic integrated circuit architecture.
Hall, Trevor J; Hasan, Mehedi
2016-04-04
This paper describes a coherent electro-optic circuit architecture that generates a frequency comb consisting of N spatially separated orders using a generalised Mach-Zenhder interferometer (MZI) with its N × 1 combiner replaced by an optical N × N Discrete Fourier Transform (DFT). Advantage may be taken of the tight optical path-length control, component and circuit symmetries and emerging trimming algorithms offered by photonic integration in any platform that offers linear electro-optic phase modulation such as LiNbO3, silicon, III-V or hybrid technology. The circuit architecture subsumes all MZI-based RF photonic circuit architectures in the prior art given an appropriate choice of output port(s) and dimension N although the principal application envisaged is phase correlated subcarrier generation for all optical orthogonal frequency division multiplexing. A transfer matrix approach is used to model the operation of the architecture. The predictions of the model are validated by simulations performed using an industry standard software tool. Implementation is found to be practical.
A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems.
Khan, Murad; Silva, Bhagya Nathali; Han, Kijun
2017-02-09
The Web of Things (WoT) plays an important role in the representation of the objects connected to the Internet of Things in a more transparent and effective way. Thus, it enables seamless and ubiquitous web communication between users and the smart things. Considering the importance of WoT, we propose a WoT-based emerging sensor network (WoT-ESN), which collects data from sensors, routes sensor data to the web, and integrate smart things into the web employing a representational state transfer (REST) architecture. A smart home scenario is introduced to evaluate the proposed WoT-ESN architecture. The smart home scenario is tested through computer simulation of the energy consumption of various household appliances, device discovery, and response time performance. The simulation results show that the proposed scheme significantly optimizes the energy consumption of the household appliances and the response time of the appliances.
GEARS: An Enterprise Architecture Based On Common Ground Services
NASA Astrophysics Data System (ADS)
Petersen, S.
2014-12-01
Earth observation satellites collect a broad variety of data used in applications that range from weather forecasting to climate monitoring. Within NOAA the National Environmental Satellite Data and Information Service (NESDIS) supports these applications by operating satellites in both geosynchronous and polar orbits. Traditionally NESDIS has acquired and operated its satellites as stand-alone systems with their own command and control, mission management, processing, and distribution systems. As the volume, velocity, veracity, and variety of sensor data and products produced by these systems continues to increase, NESDIS is migrating to a new concept of operation in which it will operate and sustain the ground infrastructure as an integrated Enterprise. Based on a series of common ground services, the Ground Enterprise Architecture System (GEARS) approach promises greater agility, flexibility, and efficiency at reduced cost. This talk describes the new architecture and associated development activities, and presents the results of initial efforts to improve product processing and distribution.
A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems
Khan, Murad; Silva, Bhagya Nathali; Han, Kijun
2017-01-01
The Web of Things (WoT) plays an important role in the representation of the objects connected to the Internet of Things in a more transparent and effective way. Thus, it enables seamless and ubiquitous web communication between users and the smart things. Considering the importance of WoT, we propose a WoT-based emerging sensor network (WoT-ESN), which collects data from sensors, routes sensor data to the web, and integrate smart things into the web employing a representational state transfer (REST) architecture. A smart home scenario is introduced to evaluate the proposed WoT-ESN architecture. The smart home scenario is tested through computer simulation of the energy consumption of various household appliances, device discovery, and response time performance. The simulation results show that the proposed scheme significantly optimizes the energy consumption of the household appliances and the response time of the appliances. PMID:28208787
3D Architectured Graphene/Metal Oxide Hybrids for Gas Sensors: A Review
Xia, Yi; Li, Ran; Chen, Ruosong; Wang, Jing; Xiang, Lan
2018-01-01
Graphene/metal oxide-based materials have been demonstrated as promising candidates for gas sensing applications due to the enhanced sensing performance and synergetic effects of the two components. Plenty of metal oxides such as SnO2, ZnO, WO3, etc. have been hybridized with graphene to improve the gas sensing properties. However, graphene/metal oxide nanohybrid- based gas sensors still have several limitations in practical application such as the insufficient sensitivity and response rate, and long recovery time in some cases. To achieve higher sensing performances of graphene/metal oxides nanocomposites, many recent efforts have been devoted to the controllable synthesis of 3D graphene/metal oxides architectures owing to their large surface area and well-organized structure for the enhanced gas adsorption/diffusion on sensing films. This review summarizes recent advances in the synthesis, assembly, and applications of 3D architectured graphene/metal oxide hybrids for gas sensing. PMID:29735951
NASA Astrophysics Data System (ADS)
Zaharov, A. A.; Nissenbaum, O. V.; Ponomaryov, K. Y.; Nesgovorov, E. S.
2018-01-01
In this paper we study application of Internet of Thing concept and devices to secure automated process control systems. We review different approaches in IoT (Internet of Things) architecture and design and propose them for several applications in security of automated process control systems. We consider an Attribute-based encryption in context of access control mechanism implementation and promote a secret key distribution scheme between attribute authorities and end devices.
NASA Astrophysics Data System (ADS)
Marukame, Takao; Nishi, Yoshifumi; Yasuda, Shin-ichi; Tanamoto, Tetsufumi
2018-04-01
The use of memristive devices for creating artificial neurons is promising for brain-inspired computing from the viewpoints of computation architecture and learning protocol. We present an energy-efficient multiplier accumulator based on a memristive array architecture incorporating both analog and digital circuitries. The analog circuitry is used to full advantage for neural networks, as demonstrated by the spike-timing-dependent plasticity (STDP) in fabricated AlO x /TiO x -based metal-oxide memristive devices. STDP protocols for controlling periodic analog resistance with long-range stability were experimentally verified using a variety of voltage amplitudes and spike timings.
Hwang, Chihyun; Kim, Tae-Hee; Cho, Yoon-Gyo; Kim, Jieun; Song, Hyun-Kon
2015-01-01
All-in-one assemblies of separator, electrode and current collector (SECA) for lithium ion batteries are presented by using 1D nanowires of Si and Cu (nwSi and nwCu). Even without binders, integrity of SECA is secured via structural joints based on ductility of Cu as well as entanglement of nwSi and nwCu. By controlling the ratio of the nanowires, the number of contact points and voids accommodating volume expansion of Si active material are tunable. Zero volume expansion and high energy density are simultaneously achievable by the architecture. PMID:25720334
Critical zone architecture and processes: a geophysical perspective
NASA Astrophysics Data System (ADS)
Holbrook, W. S.
2016-12-01
The "critical zone (CZ)," Earth's near-surface layer that reaches from treetop to bedrock, sustains terrestrial life by storing water and producing nutrients. Despite is central importance, however, the CZ remains poorly understood, due in part to the complexity of interacting biogeochemical and physical processes that take place there, and in part due to the difficulty of measuring CZ properties and processes at depth. Major outstanding questions include: What is the architecture of the CZ? How does that architecture vary across scales and across gradients in climate, lithology, topography, biology and regional states of stress? What processes control the architecture of the CZ? At what depth does weathering initiate, and what controls the rates at which it proceeds? Based on recent geophysical campaigns at seven Critical Zone Observatory (CZO) sites and several other locations, a geophysical perspective on CZ architecture and processes is emerging. CZ architecture can be usefully divided into four layers, each of which has distinct geophysical properties: soil, saprolite, weathered bedrock and protolith. The distribution of those layers across landscapes varies depending on protolith composition and internal structure, topography, climate (P/T) and the regional state of stress. Combined observations from deep CZ drilling, geophysics and geochemistry demonstrate that chemical weathering initiates deep in the CZ, in concert with mechanical weathering (fracturing), as chemical weathering appears concentrated along fractures in borehole walls. At the Calhoun CZO, the plagioclase weathering front occurs at nearly 40 m depth, at the base of a 25-m-thick layer of weathered bedrock. The principal boundary in porosity, however, occurs at the saprolite/weathered bedrock boundary: porosity decreases over an order of magnitude, from 50% to 5% over an 8-m-thick zone at the base of saprolite. Porosity in weathered bedrock is between 2-5%. Future progress will depend on (1) more tightly linked geophysical, geochemical, hydrological and drilling studies, (2) 3D and 4D studies of deep CZ structure, and (3) measurements at multiple scales in the CZ, from pores to plots to hillslopes to catchments.
An Architecture to Promote the Commercialization of Space Mission Command and Control
NASA Technical Reports Server (NTRS)
Jones, Michael K.
1996-01-01
This paper describes a command and control architecture that encompasses space mission operations centers, ground terminals, and spacecraft. This architecture is intended to promote the growth of a lucrative space mission operations command and control market through a set of open standards used by both gevernment and profit-making space mission operators.
Air Traffic Control: Complete and Enforced Architecture Needed for FAA Systems Modernization
DOT National Transportation Integrated Search
1997-02-01
Because of the size, complexity, and importance of FAA's air traffic control : (ATC) modernization, the General Accounting Office (GAO) reviewed it to : determine (1) whether FAA has a target architecture(s), and associated : subarchitectures, to gui...
NASA Astrophysics Data System (ADS)
Luo, Aiwen; An, Fengwei; Zhang, Xiangyu; Chen, Lei; Huang, Zunkai; Jürgen Mattausch, Hans
2018-04-01
Feature extraction techniques are a cornerstone of object detection in computer-vision-based applications. The detection performance of vison-based detection systems is often degraded by, e.g., changes in the illumination intensity of the light source, foreground-background contrast variations or automatic gain control from the camera. In order to avoid such degradation effects, we present a block-based L1-norm-circuit architecture which is configurable for different image-cell sizes, cell-based feature descriptors and image resolutions according to customization parameters from the circuit input. The incorporated flexibility in both the image resolution and the cell size for multi-scale image pyramids leads to lower computational complexity and power consumption. Additionally, an object-detection prototype for performance evaluation in 65 nm CMOS implements the proposed L1-norm circuit together with a histogram of oriented gradients (HOG) descriptor and a support vector machine (SVM) classifier. The proposed parallel architecture with high hardware efficiency enables real-time processing, high detection robustness, small chip-core area as well as low power consumption for multi-scale object detection.
Decentralized and Modular Electrical Architecture
NASA Astrophysics Data System (ADS)
Elisabelar, Christian; Lebaratoux, Laurence
2014-08-01
This paper presents the studies made on the definition and design of a decentralized and modular electrical architecture that can be used for power distribution, active thermal control (ATC), standard inputs-outputs electrical interfaces.Traditionally implemented inside central unit like OBC or RTU, these interfaces can be dispatched in the satellite by using MicroRTU.CNES propose a similar approach of MicroRTU. The system is based on a bus called BRIO (Bus Réparti des IO), which is composed, by a power bus and a RS485 digital bus. BRIO architecture is made with several miniature terminals called BTCU (BRIO Terminal Control Unit) distributed in the spacecraft.The challenge was to design and develop the BTCU with very little volume, low consumption and low cost. The standard BTCU models are developed and qualified with a configuration dedicated to ATC, while the first flight model will fly on MICROSCOPE for PYRO actuations and analogue acquisitions. The design of the BTCU is made in order to be easily adaptable for all type of electric interface needs.Extension of this concept is envisaged for power conditioning and distribution unit, and a Modular PCDU based on BRIO concept is proposed.
Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly
NASA Astrophysics Data System (ADS)
Lin, Qing-Yuan; Mason, Jarad A.; Li, Zhongyang; Zhou, Wenjie; O’Brien, Matthew N.; Brown, Keith A.; Jones, Matthew R.; Butun, Serkan; Lee, Byeongdu; Dravid, Vinayak P.; Aydin, Koray; Mirkin, Chad A.
2018-02-01
DNA programmable assembly has been combined with top-down lithography to construct superlattices of discrete, reconfigurable nanoparticle architectures on a gold surface over large areas. Specifically, the assembly of individual colloidal plasmonic nanoparticles with different shapes and sizes is controlled by oligonucleotides containing “locked” nucleic acids and confined environments provided by polymer pores to yield oriented architectures that feature tunable arrangements and independently controllable distances at both nanometer- and micrometer-length scales. These structures, which would be difficult to construct by other common assembly methods, provide a platform to systematically study and control light-matter interactions in nanoparticle-based optical materials. The generality and potential of this approach are explored by identifying a broadband absorber with a solvent polarity response that allows dynamic tuning of visible light absorption.
Architecture for distributed actuation and sensing using smart piezoelectric elements
NASA Astrophysics Data System (ADS)
Etienne-Cummings, Ralph; Pourboghrat, Farzad; Maruboyina, Hari K.; Abrate, Serge; Dhali, Shirshak K.
1998-07-01
We discuss vibration control of a cantilevered plate with multiple sensors and actuators. An architecture is chosen to minimize the number of control and sensing wires required. A custom VLSI chip, integrated with the sensor/actuator elements, controls the local behavior of the plate. All the actuators are addressed in parallel; local decode logic selects which actuator is stimulated. Downloaded binary data controls the applied voltage and modulation frequency for each actuator, and High Voltage MOSFETs are used to activate them. The sensors, which are independent adjacent piezoelectric ceramic elements, can be accessed in a random or sequential manner. An A/D card and GPIB interconnected test equipment allow a PC to read the sensors' outputs and dictate the actuation procedure. A visual programming environment is used to integrate the sensors, controller and actuators. Based on the constitutive relations for the piezoelectric material, simple models for the sensors and actuators are derived. A two level hierarchical robust controller is derived for motion control and for damping of vibrations.
Technology for On-Chip Qubit Control with Microfabricated Surface Ion Traps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Highstrete, Clark; Scott, Sean Michael; Nordquist, Christopher D.
2013-11-01
Trapped atomic ions are a leading physical system for quantum information processing. However, scalability and operational fidelity remain limiting technical issues often associated with optical qubit control. One promising approach is to develop on-chip microwave electronic control of ion qubits based on the atomic hyperfine interaction. This project developed expertise and capabilities at Sandia toward on-chip electronic qubit control in a scalable architecture. The project developed a foundation of laboratory capabilities, including trapping the 171Yb + hyperfine ion qubit and developing an experimental microwave coherent control capability. Additionally, the project investigated the integration of microwave device elements with surface ionmore » traps utilizing Sandia’s state-of-the-art MEMS microfabrication processing. This effort culminated in a device design for a multi-purpose ion trap experimental platform for investigating on-chip microwave qubit control, laying the groundwork for further funded R&D to develop on-chip microwave qubit control in an architecture that is suitable to engineering development.« less
Wang, Zhihui; Kiryu, Tohru
2006-04-01
Since machine-based exercise still uses local facilities, it is affected by time and place. We designed a web-based system architecture based on the Java 2 Enterprise Edition that can accomplish continuously supported machine-based exercise. In this system, exercise programs and machines are loosely coupled and dynamically integrated on the site of exercise via the Internet. We then extended the conventional health promotion model, which contains three types of players (users, exercise trainers, and manufacturers), by adding a new player: exercise program creators. Moreover, we developed a self-describing strategy to accommodate a variety of exercise programs and provide ease of use to users on the web. We illustrate our novel design with examples taken from our feasibility study on a web-based cycle ergometer exercise system. A biosignal-based workload control approach was introduced to ensure that users performed appropriate exercise alone.
State Analysis: A Control Architecture View of Systems Engineering
NASA Technical Reports Server (NTRS)
Rasmussen, Robert D.
2005-01-01
A viewgraph presentation on the state analysis process is shown. The topics include: 1) Issues with growing complexity; 2) Limits of common practice; 3) Exploiting a control point of view; 4) A glimpse at the State Analysis process; 5) Synergy with model-based systems engineering; and 6) Bridging the systems to software gap.
Coordination of Distributed Fuzzy Behaviors in Mobile Robot Control
NASA Technical Reports Server (NTRS)
Tunstel, E.
1995-01-01
This presentation describes an approach to behavior coordination and conflict resolution within the context of a hierarchical architecture of fuzzy behaviors. Coordination is achieved using weighted decision-making based on behavioral degrees of applicability. This strategy is appropriate for fuzzy control of systems that can be represented by hierarchical or decentralized structures.
A New Internet Tool for Automatic Evaluation in Control Systems and Programming
ERIC Educational Resources Information Center
Munoz de la Pena, D.; Gomez-Estern, F.; Dormido, S.
2012-01-01
In this paper we present a web-based innovative education tool designed for automating the collection, evaluation and error detection in practical exercises assigned to computer programming and control engineering students. By using a student/instructor code-fusion architecture, the conceptual limits of multiple-choice tests are overcome by far.…
2013-04-03
cooperative control, LEGO robotic testbed, non-linear dynamics 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES...testbed The architecture of the LEGO robots (® LEGO is a trademark and/or copyright of the LEGO Group) used in tests were based off the quick-start
A Stateful Multicast Access Control Mechanism for Future Metro-Area-Networks.
ERIC Educational Resources Information Center
Sun, Wei-qiang; Li, Jin-sheng; Hong, Pei-lin
2003-01-01
Multicasting is a necessity for a broadband metro-area-network; however security problems exist with current multicast protocols. A stateful multicast access control mechanism, based on MAPE, is proposed. The architecture of MAPE is discussed, as well as the states maintained and messages exchanged. The scheme is flexible and scalable. (Author/AEF)
Mixing console design for telematic applications in live performance and remote recording
NASA Astrophysics Data System (ADS)
Samson, David J.
The development of a telematic mixing console addresses audio engineers' need for a fully integrated system architecture that improves efficiency and control for applications such as distributed performance and remote recording. Current systems used in state of the art telematic performance rely on software-based interconnections with complex routing schemes that offer minimal flexibility or control over key parameters needed to achieve a professional workflow. The lack of hardware-based control in the current model limits the full potential of both the engineer and the system. The new architecture provides a full-featured platform that, alongside customary features, integrates (1) surround panning capability for motorized, binaural manikin heads, as well as all sources in the included auralization module, (2) self-labelling channel strips, responsive to change at all remote sites, (3) onboard roundtrip latency monitoring, (4) synchronized remote audio recording and monitoring, and (5) flexible routing. These features combined with robust parameter automation and precise analog control will raise the standard for telematic systems as well as advance the development of networked audio systems for both research and professional audio markets.
A Hybrid Power Management (HPM) Based Vehicle Architecture
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2011-01-01
Society desires vehicles with reduced fuel consumption and reduced emissions. This presents a challenge and an opportunity for industry and the government. The NASA John H. Glenn Research Center (GRC) has developed a Hybrid Power Management (HPM) based vehicle architecture for space and terrestrial vehicles. GRC's Electrical and Electromagnetics Branch of the Avionics and Electrical Systems Division initiated the HPM Program for the GRC Technology Transfer and Partnership Office. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The basic vehicle architecture consists of a primary power source, and possibly other power sources, providing all power to a common energy storage system, which is used to power the drive motors and vehicle accessory systems, as well as provide power as an emergency power system. Each component is independent, permitting it to be optimized for its intended purpose. This flexible vehicle architecture can be applied to all vehicles to considerably improve system efficiency, reliability, safety, security, and performance. This unique vehicle architecture has the potential to alleviate global energy concerns, improve the environment, stimulate the economy, and enable new missions.
NASA Astrophysics Data System (ADS)
Sun, Z.; Cao, Y. K.
2015-08-01
The paper focuses on the versatility of data processing workflows ranging from BIM-based survey to structural analysis and reverse modeling. In China nowadays, a large number of historic architecture are in need of restoration, reinforcement and renovation. But the architects are not prepared for the conversion from the booming AEC industry to architectural preservation. As surveyors working with architects in such projects, we have to develop efficient low-cost digital survey workflow robust to various types of architecture, and to process the captured data for architects. Although laser scanning yields high accuracy in architectural heritage documentation and the workflow is quite straightforward, the cost and portability hinder it from being used in projects where budget and efficiency are of prime concern. We integrate Structure from Motion techniques with UAV and total station in data acquisition. The captured data is processed for various purposes illustrated with three case studies: the first one is as-built BIM for a historic building based on registered point clouds according to Ground Control Points; The second one concerns structural analysis for a damaged bridge using Finite Element Analysis software; The last one relates to parametric automated feature extraction from captured point clouds for reverse modeling and fabrication.
NASA Astrophysics Data System (ADS)
Gin, Douglas
2003-03-01
The development of materials with controlled nanostructures is one of the most important new areas of scientific research in chemistry and engineering. Our research group has developed a novel approach for making nanostructured polymer materials with unique functional properties using liquid crystals as starting materials. In this approach, we design polymerizable organic building blocks based on lyotropic liquid crystals (LLCs) (i.e., amphiphiles or surfactants) that carry, or can accommodate, a functional property of general interest. Through appropriate molecular design, these monomers self-assemble in the presence of water into fluid, yet ordered phase-separated, water-hydrocarbon assemblies with predictable nanoscale geometries. The architectures of these LLC phases can range from stacked two-dimensional lamellae to hexagonally ordered cylindrical channels with uniform feature sizes in the 1-10 nm range. These LLC phases are then photopolymerized into robust polymer networks with preservation of their small-scale structures. This approach allows us to investigate the effect of nanometer-scale architecture on important bulk properties, as well as to engineer chemical environments on the nanometer-scale for several areas of application. In this talk, new functional materials based on the polymerization of the lyotropic inverted hexagonal phase will be presented as one example of our general approach. Issues in the design and photopolymerization of functional amphiphilic monomers that adopt this LC architecture will be discussed. More importantly, the use of the resulting nanostructured polymer networks in three areas of application will be presented: (1) as templates for the synthesis of functional nanocomposites; (2) as tunable heterogeneous catalysts, and (3) as nanoporous membrane and separation media. In particular, issues pertaining to the contribution of nanoscale architecture to the performance of these systems will be highlighted. Opportunities for tailoring the nanoscale chemical environment and architecture of these materials through molecular design will be presented. Finally, the development of methods for controlling macroscopic orientation through processing will also be discussed.
On the integration of reinforcement learning and approximate reasoning for control
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1991-01-01
The author discusses the importance of strengthening the knowledge representation characteristic of reinforcement learning techniques using methods such as approximate reasoning. The ARIC (approximate reasoning-based intelligent control) architecture is an example of such a hybrid approach in which the fuzzy control rules are modified (fine-tuned) using reinforcement learning. ARIC also demonstrates that it is possible to start with an approximately correct control knowledge base and learn to refine this knowledge through further experience. On the other hand, techniques such as the TD (temporal difference) algorithm and Q-learning establish stronger theoretical foundations for their use in adaptive control and also in stability analysis of hybrid reinforcement learning and approximate reasoning-based controllers.
Design and implementation of workflow engine for service-oriented architecture
NASA Astrophysics Data System (ADS)
Peng, Shuqing; Duan, Huining; Chen, Deyun
2009-04-01
As computer network is developed rapidly and in the situation of the appearance of distribution specialty in enterprise application, traditional workflow engine have some deficiencies, such as complex structure, bad stability, poor portability, little reusability and difficult maintenance. In this paper, in order to improve the stability, scalability and flexibility of workflow management system, a four-layer architecture structure of workflow engine based on SOA is put forward according to the XPDL standard of Workflow Management Coalition, the route control mechanism in control model is accomplished and the scheduling strategy of cyclic routing and acyclic routing is designed, and the workflow engine which adopts the technology such as XML, JSP, EJB and so on is implemented.
Shared Medical Imaging Repositories.
Lebre, Rui; Bastião, Luís; Costa, Carlos
2018-01-01
This article describes the implementation of a solution for the integration of ownership concept and access control over medical imaging resources, making possible the centralization of multiple instances of repositories. The proposed architecture allows the association of permissions to repository resources and delegation of rights to third entities. It includes a programmatic interface for management of proposed services, made available through web services, with the ability to create, read, update and remove all components resulting from the architecture. The resulting work is a role-based access control mechanism that was integrated with Dicoogle Open-Source Project. The solution has several application scenarios like, for instance, collaborative platforms for research and tele-radiology services deployed at Cloud.
INO340 telescope control system: middleware requirements, design, and evaluation
NASA Astrophysics Data System (ADS)
Shalchian, Hengameh; Ravanmehr, Reza
2016-07-01
The INO340 Control System (INOCS) is being designed in terms of a distributed real-time architecture. The real-time (soft and firm) nature of many processes inside INOCS causes the communication paradigm between its different components to be time-critical and sensitive. For this purpose, we have chosen the Data Distribution Service (DDS) standard as the communications middleware which is itself based on the publish-subscribe paradigm. In this paper, we review and compare the main middleware types, and then we illustrate the middleware architecture of INOCS and its specific requirements. Finally, we present the experimental results, performed to evaluate our middleware in order to ensure that it meets our requirements.
Discovering operating modes in telemetry data from the Shuttle Reaction Control System
NASA Technical Reports Server (NTRS)
Manganaris, Stefanos; Fisher, Doug; Kulkarni, Deepak
1994-01-01
This paper addresses the problem of detecting and diagnosing faults in physical systems, for which suitable system models are not available. An architecture is proposed that integrates the on-line acquisition and exploitation of monitoring and diagnostic knowledge. The focus is on the component of the architecture that discovers classes of behaviors with similar characteristics by observing a system in operation. A characterization of behaviors based on best fitting approximation models is investigated. An experimental prototype has been implemented to test it. Preliminary results in diagnosing faults of the reaction control system of the space shuttle are presented. The merits and limitations of the approach are identified and directions for future work are set.
NASA Astrophysics Data System (ADS)
Petit, C.; Le Louarn, M.; Fusco, T.; Madec, P.-Y.
2011-09-01
Various tomographic control solutions have been proposed during the last decades to ensure efficient or even optimal closed-loop correction to tomographic Adaptive Optics (AO) concepts such as Laser Tomographic AO (LTAO), Multi-Conjugate AO (MCAO). The optimal solution, based on Linear Quadratic Gaussian (LQG) approach, as well as suboptimal but efficient solutions such as Pseudo-Open Loop Control (POLC) require multiple Matrix Vector Multiplications (MVM). Disregarding their respective performance, these efficient control solutions thus exhibit strong increase of on-line complexity and their implementation may become difficult in demanding cases. Among them, two cases are of particular interest. First, the system Real-Time Computer architecture and implementation is derived from past or present solutions and does not support multiple MVM. This is the case of the AO Facility which RTC architecture is derived from the SPARTA platform and inherits its simple MVM architecture, which does not fit with LTAO control solutions for instance. Second, considering future systems such as Extremely Large Telescopes, the number of degrees of freedom is twenty to one hundred times bigger than present systems. In these conditions, tomographic control solutions can hardly be used in their standard form and optimized implementation shall be considered. Single MVM tomographic control solutions represent a potential solution, and straightforward solutions such as Virtual Deformable Mirrors have been already proposed for LTAO but with tuning issues. We investigate in this paper the possibility to derive from tomographic control solutions, such as POLC or LQG, simplified control solutions ensuring simple MVM architecture and that could be thus implemented on nowadays systems or future complex systems. We theoretically derive various solutions and analyze their respective performance on various systems thanks to numerical simulation. We discuss the optimization of their performance and stability issues with respect to classic control solutions. We finally discuss off-line computation and implementation constraints.
NASA Astrophysics Data System (ADS)
Liu, Jianping; Xian, Benzhong; Wang, Junhui; Ji, Youliang; Lu, Zhiyong; Liu, Saijun
2017-12-01
The sedimentary architectures of submarine/sublacustrine fans are controlled by sedimentary processes, geomorphology and sediment composition in sediment gravity flows. To advance understanding of sedimentary architecture of debris fans formed predominantly by debris flows in deep-water environments, a sub-lacustrine fan (Y11 fan) within a lacustrine succession has been identified and studied through the integration of core data, well logging data and 3D seismic data in the Eocene Dongying Depression, Bohai Bay Basin, east China. Six types of resedimented lithofacies can be recognized, which are further grouped into five broad lithofacies associations. Quantification of gravity flow processes on the Y11 fan is suggested by quantitative lithofacies analysis, which demonstrates that the fan is dominated by debris flows, while turbidity currents and sandy slumps are less important. The distribution, geometry and sedimentary architecture are documented using well data and 3D seismic data. A well-developed depositional lobe with a high aspect ratio is identified based on a sandstone isopach map. Canyons and/or channels are absent, which is probably due to the unsteady sediment supply from delta-front collapse. Distributary tongue-shaped debris flow deposits can be observed at different stages of fan growth, suggesting a lobe constructed by debrite tongue complexes. Within each stage of the tongue complexes, architectural elements are interpreted by wireline log motifs showing amalgamated debrite tongues, which constitute the primary fan elements. Based on lateral lithofacies distribution and vertical sequence analysis, it is proposed that lakefloor erosion, entrainment and dilution in the flow direction lead to an organized distribution of sandy debrites, muddy debrites and turbidites on individual debrite tongues. Plastic rheology of debris flows combined with fault-related topography are considered the major factors that control sediment distribution and fan architecture. An important implication of this study is that a deep-water depositional model for debrite-dominated systems was proposed, which may be applicable to other similar deep-water environments.
NASA Technical Reports Server (NTRS)
Kolar, Mike; Estefan, Jeff; Giovannoni, Brian; Barkley, Erik
2011-01-01
Topics covered (1) Why Governance and Why Now? (2) Characteristics of Architecture Governance (3) Strategic Elements (3a) Architectural Principles (3b) Architecture Board (3c) Architecture Compliance (4) Architecture Governance Infusion Process. Governance is concerned with decision making (i.e., setting directions, establishing standards and principles, and prioritizing investments). Architecture governance is the practice and orientation by which enterprise architectures and other architectures are managed and controlled at an enterprise-wide level
Optimum Guidance Law and Information Management for a Large Number of Formation Flying Spacecrafts
NASA Astrophysics Data System (ADS)
Tsuda, Yuichi; Nakasuka, Shinichi
In recent years, formation flying technique is recognized as one of the most important technologies for deep space and orbital missions that involve multiple spacecraft operations. Formation flying mission improves simultaneous observability over a wide area, redundancy and reconfigurability of the system with relatively small and low cost spacecrafts compared with the conventional single spacecraft mission. From the viewpoint of guidance and control, realizing formation flying mission usually requires tight maintenance and control of the relative distances, speeds and orientations between the member satellites. This paper studies a practical architecture for formation flight missions focusing mainly on guidance and control, and describes a new guidance algorithm for changing and keeping the relative positions and speeds of the satellites in formation. The resulting algorithm is suitable for onboard processing and gives the optimum impulsive trajectory for satellites flying closely around a certain reference orbit, that can be elliptic, parabolic or hyperbolic. Based on this guidance algorithm, this study introduces an information management methodology between the member spacecrafts which is suitable for a large formation flight architecture. Routing and multicast communication based on the wireless local area network technology are introduced. Some mathematical analyses and computer simulations will be shown in the presentation to reveal the feasibility of the proposed formation flight architecture, especially when a very large number of satellites join the formation.
Organic Light Emitting Devices with Linearly-Graded Mixed Host Architecture
NASA Astrophysics Data System (ADS)
Lee, Sang Min
Organic Light Emitting Devices (OLEDs) with a linearly-graded mixed (LGM) host architecture in the emissive layer (EML) were studied by the application of a newly-developed thermal deposition boat. A new thermal deposition boat, featuring indirect deposition control and fast rate response, was developed in order to make an evaporation coater of high space utilization and to achieve a real time linearly-graded rate control during the device fabrication process. A new design of dual-hole boat, based on the reduced wall resistance of the side hole toward the vapor flow, enabled the indirect deposition rate control with sufficient control accuracy by using the feature of the stable ratio of rates from top and side holes. Minimizing the thermal mass of the body and designing a direct heat transfer with a coil placed inside the boat resulted in the realization of the linearly-graded deposition rate within acceptable deviation range. Thanks to the feature of fast rate response, it was possible to control the linearly-graded rate of each host material during the process and to apply the architecture to some of the fluorescent and phosphorescent OLED devices. The reported efficiency improvement of a fluorescent OLED, based on step-graded junction in the literature, was well reproduced in an OLED with a LGM architecture, demonstrating that charge balance in the emissive layer can be further improved using the LGM architecture. By minimizing the internal energy barrier in the LGM device, a higher EL efficiency was well demonstrated over the uniformly-mixed (UM) host device, where residual internal interfaces were present as additional quenching sites in the EML. Similar effects were observed in blue phosphorescent OLED devices, where the mobility of the hole transport material (HTM) was usually much higher than that of the electron transport material (ETM) such that the recombination zone was more localized at the EML/ETL interface. It was found that the main effect of the LGM host was to shift the recombination zone inside of the EML and away from and ETL interface such that luminance quenching near the interface was much lower compared to the UM host, where the main recombination zone was localized near the interface and so more sensitive to the interface quenching.
Safety Verification of a Fault Tolerant Reconfigurable Autonomous Goal-Based Robotic Control System
NASA Technical Reports Server (NTRS)
Braman, Julia M. B.; Murray, Richard M; Wagner, David A.
2007-01-01
Fault tolerance and safety verification of control systems are essential for the success of autonomous robotic systems. A control architecture called Mission Data System (MDS), developed at the Jet Propulsion Laboratory, takes a goal-based control approach. In this paper, a method for converting goal network control programs into linear hybrid systems is developed. The linear hybrid system can then be verified for safety in the presence of failures using existing symbolic model checkers. An example task is simulated in MDS and successfully verified using HyTech, a symbolic model checking software for linear hybrid systems.
NASA Technical Reports Server (NTRS)
Campbell, Stefan F.; Kaneshige, John T.; Nguyen, Nhan T.; Krishakumar, Kalmanje S.
2010-01-01
Presented here is the evaluation of multiple adaptive control technologies for a generic transport aircraft simulation. For this study, seven model reference adaptive control (MRAC) based technologies were considered. Each technology was integrated into an identical dynamic-inversion control architecture and tuned using a methodology based on metrics and specific design requirements. Simulation tests were then performed to evaluate each technology s sensitivity to time-delay, flight condition, model uncertainty, and artificially induced cross-coupling. The resulting robustness and performance characteristics were used to identify potential strengths, weaknesses, and integration challenges of the individual adaptive control technologies
Investigation of an advanced fault tolerant integrated avionics system
NASA Technical Reports Server (NTRS)
Dunn, W. R.; Cottrell, D.; Flanders, J.; Javornik, A.; Rusovick, M.
1986-01-01
Presented is an advanced, fault-tolerant multiprocessor avionics architecture as could be employed in an advanced rotorcraft such as LHX. The processor structure is designed to interface with existing digital avionics systems and concepts including the Army Digital Avionics System (ADAS) cockpit/display system, navaid and communications suites, integrated sensing suite, and the Advanced Digital Optical Control System (ADOCS). The report defines mission, maintenance and safety-of-flight reliability goals as might be expected for an operational LHX aircraft. Based on use of a modular, compact (16-bit) microprocessor card family, results of a preliminary study examining simplex, dual and standby-sparing architectures is presented. Given the stated constraints, it is shown that the dual architecture is best suited to meet reliability goals with minimum hardware and software overhead. The report presents hardware and software design considerations for realizing the architecture including redundancy management requirements and techniques as well as verification and validation needs and methods.
A static data flow simulation study at Ames Research Center
NASA Technical Reports Server (NTRS)
Barszcz, Eric; Howard, Lauri S.
1987-01-01
Demands in computational power, particularly in the area of computational fluid dynamics (CFD), led NASA Ames Research Center to study advanced computer architectures. One architecture being studied is the static data flow architecture based on research done by Jack B. Dennis at MIT. To improve understanding of this architecture, a static data flow simulator, written in Pascal, has been implemented for use on a Cray X-MP/48. A matrix multiply and a two-dimensional fast Fourier transform (FFT), two algorithms used in CFD work at Ames, have been run on the simulator. Execution times can vary by a factor of more than 2 depending on the partitioning method used to assign instructions to processing elements. Service time for matching tokens has proved to be a major bottleneck. Loop control and array address calculation overhead can double the execution time. The best sustained MFLOPS rates were less than 50% of the maximum capability of the machine.
Strategies for concurrent processing of complex algorithms in data driven architectures
NASA Technical Reports Server (NTRS)
Stoughton, John W.; Mielke, Roland R.
1988-01-01
The purpose is to document research to develop strategies for concurrent processing of complex algorithms in data driven architectures. The problem domain consists of decision-free algorithms having large-grained, computationally complex primitive operations. Such are often found in signal processing and control applications. The anticipated multiprocessor environment is a data flow architecture containing between two and twenty computing elements. Each computing element is a processor having local program memory, and which communicates with a common global data memory. A new graph theoretic model called ATAMM which establishes rules for relating a decomposed algorithm to its execution in a data flow architecture is presented. The ATAMM model is used to determine strategies to achieve optimum time performance and to develop a system diagnostic software tool. In addition, preliminary work on a new multiprocessor operating system based on the ATAMM specifications is described.
Service Oriented Robotic Architecture for Space Robotics: Design, Testing, and Lessons Learned
NASA Technical Reports Server (NTRS)
Fluckiger, Lorenzo Jean Marc E; Utz, Hans Heinrich
2013-01-01
This paper presents the lessons learned from six years of experiments with planetary rover prototypes running the Service Oriented Robotic Architecture (SORA) developed by the Intelligent Robotics Group (IRG) at the NASA Ames Research Center. SORA relies on proven software engineering methods and technologies applied to space robotics. Based on a Service Oriented Architecture and robust middleware, SORA encompasses on-board robot control and a full suite of software tools necessary for remotely operated exploration missions. SORA has been eld tested in numerous scenarios of robotic lunar and planetary exploration. The experiments conducted by IRG with SORA exercise a large set of the constraints encountered in space applications: remote robotic assets, ight relevant science instruments, distributed operations, high network latencies and unreliable or intermittent communication links. In this paper, we present the results of these eld tests in regard to the developed architecture, and discuss its bene ts and limitations.
Engineering the architectural diversity of heterogeneous metallic nanocrystals.
Yu, Yue; Zhang, Qingbo; Xie, Jianping; Lee, Jim Yang
2013-01-01
Similar to molecular engineering where structural diversity is used to create more property variations for application explorations, the architectural engineering of heterogeneous metallic nanocrystals (HMNCs) can likewise increase the versatility of metallic nanocrystals (NCs). Here we present a synthesis strategy capable of engineering the architectural diversity of HMNCs through rational and independent programming of every architecture-determining element, that is, the shape and size of the component NCs and their spatial arrangement. The strategy is based on the galvanic replacement reaction of a self-sustaining layer formed by underpotential deposition on a polyhedral NC. The selective deposition of satellite NCs on specific site of the central NC is realized by creating a geometry-dependent heterogeneous electron distribution. This site-selective deposition approach is applicable to central NCs in various polyhedral shapes and sizes. The satellite NCs can further develop their own shape and size through crystal growth kinetics control.
The K9 On-Board Rover Architecture
NASA Technical Reports Server (NTRS)
Bresina, John L.; Bualat, Maria; Fair, Michael; Washington, Richard; Wright, Anne
2006-01-01
This paper describes the software architecture of NASA Ames Research Center s K9 rover. The goal of the onboard software architecture team was to develop a modular, flexible framework that would allow both high- and low-level control of the K9 hardware. Examples of low-level control are the simple drive or pan/tilt commands which are handled by the resource managers, and examples of high-level control are the command sequences which are handled by the conditional executive. In between these two control levels are complex behavioral commands which are handled by the pilot, such as drive to goal with obstacle avoidance or visually servo to a target. This paper presents the design of the architecture as of Fall 2000. We describe the state of the architecture implementation as well as its current evolution. An early version of the architecture was used for K9 operations during a dual-rover field experiment conducted by NASA Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) from May 14 to May 16, 2000.
Mobile Phone Middleware Architecture for Energy and Context Awareness in Location-Based Services
Galeana-Zapién, Hiram; Torres-Huitzil, César; Rubio-Loyola, Javier
2014-01-01
The disruptive innovation of smartphone technology has enabled the development of mobile sensing applications leveraged on specialized sensors embedded in the device. These novel mobile phone applications rely on advanced sensor information processes, which mainly involve raw data acquisition, feature extraction, data interpretation and transmission. However, the continuous accessing of sensing resources to acquire sensor data in smartphones is still very expensive in terms of energy, particularly due to the periodic use of power-intensive sensors, such as the Global Positioning System (GPS) receiver. The key underlying idea to design energy-efficient schemes is to control the duty cycle of the GPS receiver. However, adapting the sensing rate based on dynamic context changes through a flexible middleware has received little attention in the literature. In this paper, we propose a novel modular middleware architecture and runtime environment to directly interface with application programming interfaces (APIs) and embedded sensors in order to manage the duty cycle process based on energy and context aspects. The proposed solution has been implemented in the Android software stack. It allows continuous location tracking in a timely manner and in a transparent way to the user. It also enables the deployment of sensing policies to appropriately control the sampling rate based on both energy and perceived context. We validate the proposed solution taking into account a reference location-based service (LBS) architecture. A cloud-based storage service along with online mobility analysis tools have been used to store and access sensed data. Experimental measurements demonstrate the feasibility and efficiency of our middleware, in terms of energy and location resolution. PMID:25513821
Mobile phone middleware architecture for energy and context awareness in location-based services.
Galeana-Zapién, Hiram; Torres-Huitzil, César; Rubio-Loyola, Javier
2014-12-10
The disruptive innovation of smartphone technology has enabled the development of mobile sensing applications leveraged on specialized sensors embedded in the device. These novel mobile phone applications rely on advanced sensor information processes, which mainly involve raw data acquisition, feature extraction, data interpretation and transmission. However, the continuous accessing of sensing resources to acquire sensor data in smartphones is still very expensive in terms of energy, particularly due to the periodic use of power-intensive sensors, such as the Global Positioning System (GPS) receiver. The key underlying idea to design energy-efficient schemes is to control the duty cycle of the GPS receiver. However, adapting the sensing rate based on dynamic context changes through a flexible middleware has received little attention in the literature. In this paper, we propose a novel modular middleware architecture and runtime environment to directly interface with application programming interfaces (APIs) and embedded sensors in order to manage the duty cycle process based on energy and context aspects. The proposed solution has been implemented in the Android software stack. It allows continuous location tracking in a timely manner and in a transparent way to the user. It also enables the deployment of sensing policies to appropriately control the sampling rate based on both energy and perceived context. We validate the proposed solution taking into account a reference location-based service (LBS) architecture. A cloud-based storage service along with online mobility analysis tools have been used to store and access sensed data. Experimental measurements demonstrate the feasibility and efficiency of our middleware, in terms of energy and location resolution.
Doing It Right: 366 answers to computing questions you didn't know you had
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herring, Stuart Davis
Slides include information on history: version control, version control: branches, version control: Git, releases, requirements, readability, readability control flow, global variables, architecture, architecture redundancy, processes, input/output, unix, etcetera.
Architecture of a wireless Personal Assistant for telemedical diabetes care.
García-Sáez, Gema; Hernando, M Elena; Martínez-Sarriegui, Iñaki; Rigla, Mercedes; Torralba, Verónica; Brugués, Eulalia; de Leiva, Alberto; Gómez, Enrique J
2009-06-01
Advanced information technologies joined to the increasing use of continuous medical devices for monitoring and treatment, have made possible the definition of a new telemedical diabetes care scenario based on a hand-held Personal Assistant (PA). This paper describes the architecture, functionality and implementation of the PA, which communicates different medical devices in a personal wireless network. The PA is a mobile system for patients with diabetes connected to a telemedical center. The software design follows a modular approach to make the integration of medical devices or new functionalities independent from the rest of its components. Physicians can remotely control medical devices from the telemedicine server through the integration of the Common Object Request Broker Architecture (CORBA) and mobile GPRS communications. Data about PA modules' usage and patients' behavior evaluation come from a pervasive tracing system implemented into the PA. The PA architecture has been technically validated with commercially available medical devices during a clinical experiment for ambulatory monitoring and expert feedback through telemedicine. The clinical experiment has allowed defining patients' patterns of usage and preferred scenarios and it has proved the Personal Assistant's feasibility. The patients showed high acceptability and interest in the system as recorded in the usability and utility questionnaires. Future work will be devoted to the validation of the system with automatic control strategies from the telemedical center as well as with closed-loop control algorithms.
Zhang, Lipei; Xing, Xing; Zheng, Lingling; Chen, Zhijian; Xiao, Lixin; Qu, Bo; Gong, Qihuang
2014-01-01
Vertical phase separation of the donor and the acceptor in organic bulk heterojunction solar cells is crucial to improve the exciton dissociation and charge transport efficiencies. This is because whilst the exciton diffusion length is limited, the organic film must be thick enough to absorb sufficient light. However, it is still a challenge to control the phase separation of a binary blend in a bulk heterojunction device architecture. Here we report the realization of vertical phase separation induced by in situ photo-polymerization of the acrylate-based fulleride. The power conversion efficiency of the devices with vertical phase separation increased by 20%. By optimising the device architecture, the power conversion efficiency of the single junction device reached 8.47%. We believe that in situ photo-polymerization of acrylate-based fulleride is a universal and controllable way to realise vertical phase separation in organic blends. PMID:24861168
An autonomous satellite architecture integrating deliberative reasoning and behavioural intelligence
NASA Technical Reports Server (NTRS)
Lindley, Craig A.
1993-01-01
This paper describes a method for the design of autonomous spacecraft, based upon behavioral approaches to intelligent robotics. First, a number of previous spacecraft automation projects are reviewed. A methodology for the design of autonomous spacecraft is then presented, drawing upon both the European Space Agency technological center (ESTEC) automation and robotics methodology and the subsumption architecture for autonomous robots. A layered competency model for autonomous orbital spacecraft is proposed. A simple example of low level competencies and their interaction is presented in order to illustrate the methodology. Finally, the general principles adopted for the control hardware design of the AUSTRALIS-1 spacecraft are described. This system will provide an orbital experimental platform for spacecraft autonomy studies, supporting the exploration of different logical control models, different computational metaphors within the behavioral control framework, and different mappings from the logical control model to its physical implementation.
Cvijetic, Neda; Tanaka, Akihiro; Kanonakis, Konstantinos; Wang, Ting
2014-08-25
We demonstrate the first SDN-controlled optical topology-reconfigurable mobile fronthaul (MFH) architecture for bidirectional coordinated multipoint (CoMP) and low latency inter-cell device-to-device (D2D) connectivity in the 5G mobile networking era. SDN-based OpenFlow control is used to dynamically instantiate the CoMP and inter-cell D2D features as match/action combinations in control plane flow tables of software-defined optical and electrical switching elements. Dynamic re-configurability is thereby introduced into the optical MFH topology, while maintaining back-compatibility with legacy fiber deployments. 10 Gb/s peak rates with <7 μs back-to-back transmission latency and 29.6 dB total power budget are experimentally demonstrated, confirming the attractiveness of the new approach for optical MFH of future 5G mobile systems.
NASA Technical Reports Server (NTRS)
Albus, James S.; Mccain, Harry G.; Lumia, Ronald
1989-01-01
The document describes the NASA Standard Reference Model (NASREM) Architecture for the Space Station Telerobot Control System. It defines the functional requirements and high level specifications of the control system for the NASA space Station document for the functional specification, and a guideline for the development of the control system architecture, of the 10C Flight Telerobot Servicer. The NASREM telerobot control system architecture defines a set of standard modules and interfaces which facilitates software design, development, validation, and test, and make possible the integration of telerobotics software from a wide variety of sources. Standard interfaces also provide the software hooks necessary to incrementally upgrade future Flight Telerobot Systems as new capabilities develop in computer science, robotics, and autonomous system control.
NASA Astrophysics Data System (ADS)
Yang, Hui; Zhang, Jie; Ji, Yuefeng; He, Yongqi; Lee, Young
2016-07-01
Cloud radio access network (C-RAN) becomes a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing in 5G area. However, the radio network, optical network and processing unit cloud have been decoupled from each other, so that their resources are controlled independently. Traditional architecture cannot implement the resource optimization and scheduling for the high-level service guarantee due to the communication obstacle among them with the growing number of mobile internet users. In this paper, we report a study on multi-dimensional resources integration (MDRI) for service provisioning in cloud radio over fiber network (C-RoFN). A resources integrated provisioning (RIP) scheme using an auxiliary graph is introduced based on the proposed architecture. The MDRI can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical network and processing resources effectively to maximize radio coverage. The feasibility of the proposed architecture is experimentally verified on OpenFlow-based enhanced SDN testbed. The performance of RIP scheme under heavy traffic load scenario is also quantitatively evaluated to demonstrate the efficiency of the proposal based on MDRI architecture in terms of resource utilization, path blocking probability, network cost and path provisioning latency, compared with other provisioning schemes.
Yang, Hui; Zhang, Jie; Ji, Yuefeng; He, Yongqi; Lee, Young
2016-07-28
Cloud radio access network (C-RAN) becomes a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing in 5G area. However, the radio network, optical network and processing unit cloud have been decoupled from each other, so that their resources are controlled independently. Traditional architecture cannot implement the resource optimization and scheduling for the high-level service guarantee due to the communication obstacle among them with the growing number of mobile internet users. In this paper, we report a study on multi-dimensional resources integration (MDRI) for service provisioning in cloud radio over fiber network (C-RoFN). A resources integrated provisioning (RIP) scheme using an auxiliary graph is introduced based on the proposed architecture. The MDRI can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical network and processing resources effectively to maximize radio coverage. The feasibility of the proposed architecture is experimentally verified on OpenFlow-based enhanced SDN testbed. The performance of RIP scheme under heavy traffic load scenario is also quantitatively evaluated to demonstrate the efficiency of the proposal based on MDRI architecture in terms of resource utilization, path blocking probability, network cost and path provisioning latency, compared with other provisioning schemes.
Yang, Hui; Zhang, Jie; Ji, Yuefeng; He, Yongqi; Lee, Young
2016-01-01
Cloud radio access network (C-RAN) becomes a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing in 5G area. However, the radio network, optical network and processing unit cloud have been decoupled from each other, so that their resources are controlled independently. Traditional architecture cannot implement the resource optimization and scheduling for the high-level service guarantee due to the communication obstacle among them with the growing number of mobile internet users. In this paper, we report a study on multi-dimensional resources integration (MDRI) for service provisioning in cloud radio over fiber network (C-RoFN). A resources integrated provisioning (RIP) scheme using an auxiliary graph is introduced based on the proposed architecture. The MDRI can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical network and processing resources effectively to maximize radio coverage. The feasibility of the proposed architecture is experimentally verified on OpenFlow-based enhanced SDN testbed. The performance of RIP scheme under heavy traffic load scenario is also quantitatively evaluated to demonstrate the efficiency of the proposal based on MDRI architecture in terms of resource utilization, path blocking probability, network cost and path provisioning latency, compared with other provisioning schemes. PMID:27465296
Blueprint for a microwave trapped ion quantum computer
Lekitsch, Bjoern; Weidt, Sebastian; Fowler, Austin G.; Mølmer, Klaus; Devitt, Simon J.; Wunderlich, Christof; Hensinger, Winfried K.
2017-01-01
The availability of a universal quantum computer may have a fundamental impact on a vast number of research fields and on society as a whole. An increasingly large scientific and industrial community is working toward the realization of such a device. An arbitrarily large quantum computer may best be constructed using a modular approach. We present a blueprint for a trapped ion–based scalable quantum computer module, making it possible to create a scalable quantum computer architecture based on long-wavelength radiation quantum gates. The modules control all operations as stand-alone units, are constructed using silicon microfabrication techniques, and are within reach of current technology. To perform the required quantum computations, the modules make use of long-wavelength radiation–based quantum gate technology. To scale this microwave quantum computer architecture to a large size, we present a fully scalable design that makes use of ion transport between different modules, thereby allowing arbitrarily many modules to be connected to construct a large-scale device. A high error–threshold surface error correction code can be implemented in the proposed architecture to execute fault-tolerant operations. With appropriate adjustments, the proposed modules are also suitable for alternative trapped ion quantum computer architectures, such as schemes using photonic interconnects. PMID:28164154
A Retro-Fit Control Architecture to Maintain Engine Performance With Usage
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Sowers, T. Shane; Garg, Sanjay
2007-01-01
An outer loop retrofit engine control architecture is presented which modifies fan speed command to obtain a desired thrust based on throttle position. This maintains the throttle-to-thrust relationship in the presence of engine degradation, which has the effect of changing the engine s thrust output for a given fan speed. Such an approach can minimize thrust asymmetry in multi-engine aircraft, and reduce pilot workload. The outer loop control is demonstrated under various levels of engine deterioration using a standard deterioration profile as well as an atypical profile. It is evaluated across various transients covering a wide operating range. The modified fan speed command still utilizes the standard engine control logic so all original life and operability limits remain in place. In all cases it is shown that with the outer loop thrust control in place, the deteriorated engine is able to match the thrust performance of a new engine up to the limits the controller will allow.
An introduction to autonomous control systems
NASA Technical Reports Server (NTRS)
Antsaklis, Panos J.; Passino, Kevin M.; Wang, S. J.
1991-01-01
The functions, characteristics, and benefits of autonomous control are outlined. An autonomous control functional architecture for future space vehicles that incorporates the concepts and characteristics described is presented. The controller is hierarchical, with an execution level (the lowest level), coordination level (middle level), and management and organization level (highest level). The general characteristics of the overall architecture, including those of the three levels, are explained, and an example to illustrate their functions is given. Mathematical models for autonomous systems, including 'logical' discrete event system models, are discussed. An approach to the quantitative, systematic modeling, analysis, and design of autonomous controllers is also discussed. It is a hybrid approach since it uses conventional analysis techniques based on difference and differential equations and new techniques for the analysis of the systems described with a symbolic formalism such as finite automata. Some recent results from the areas of planning and expert systems, machine learning, artificial neural networks, and the area restructurable controls are briefly outlined.
Coordination control of flexible manufacturing systems
NASA Astrophysics Data System (ADS)
Menon, Satheesh R.
One of the first attempts was made to develop a model driven system for coordination control of Flexible Manufacturing Systems (FMS). The structure and activities of the FMS are modeled using a colored Petri Net based system. This approach has the advantage of being able to model the concurrency inherent in the system. It provides a method for encoding the system state, state transitions and the feasible transitions at any given state. Further structural analysis (for detecting conflicting actions, deadlocks which might occur during operation, etc.) can be performed. The problem is also addressed of implementing and testing the behavior of existing dynamic scheduling approaches in simulations of realistic situations. A simulation architecture was proposed and performance evaluation was carried out for establishing the correctness of the model, stability of the system from a structural (deadlocks) and temporal (boundedness of backlogs) points of view, and for collection of statistics for performance measures such as machine and robot utilizations, average wait times and idle times of resources. A real-time implementation architecture for the coordination controller was also developed and implemented in a software simulated environment. Given the current technology of FMS control, the model-driven colored Petri net-based approach promises to develop a very flexible control environment.
Control of Architecture in Rhombic Dodecahedral Pt–Ni Nanoframe Electrocatalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becknell, Nigel; Son, Yoonkook; Kim, Dohyung
Platinum-based alloys are known to demonstrate advanced properties in electrochemical reactions that are relevant for proton exchange membrane fuel cells and electrolyzers. Further development of Pt alloy electrocatalysts relies on the design of architectures with highly active surfaces and optimized utilization of the expensive elpment, Pt. Here, we show that the three-dimensional Pt anisotropy of Pt-Ni rhombic dodecahedra can be tuned by controlling the ratio between Pt and Ni precursors such that either a completely hollow nanoframe or a new architecture, the excavated nanoframe, can be obtained. The excavated nanoframe showed similar to 10 times higher specific and similar tomore » 6 times higher mass activity for the oxygen reduction reaction than Pt/C, and twice the mass activity of the hollow nanoframe. The high activity is attributed to enhanced Ni content in the near-surface region and the extended two-dimensional sheet structure within the nanoframe that minimizes the number of buried Pt sites.« less
Assembly Kinetics Determine the Architecture of α-actinin Crosslinked F-actin Networks
Falzone, Tobias T.; Lenz, Martin; Kovar, David R.; Gardel, Margaret L.
2013-01-01
The actin cytoskeleton is organized into diverse meshworks and bundles that support many aspects of cell physiology. Understanding the self-assembly of these actin-based structures is essential for developing predictive models of cytoskeletal organization. Here we show that the competing kinetics of bundle formation with the onset of dynamic arrest arising from filament entanglements and cross-linking determine the architecture of reconstituted actin networks formed with α-actinin cross-links. Cross-link mediated bundle formation only occurs in dilute solutions of highly mobile actin filaments. As actin polymerization proceeds, filament mobility and bundle formation are arrested concomitantly. By controlling the onset of dynamic arrest, perturbations to actin assembly kinetics dramatically alter the architecture of biochemically identical samples. Thus, the morphology of reconstituted F-actin networks is a kinetically determined structure similar to those formed by physical gels and glasses. These results establish mechanisms controlling the structure and mechanics in diverse semi-flexible biopolymer networks. PMID:22643888
Supervisory Control System Architecture for Advanced Small Modular Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cetiner, Sacit M; Cole, Daniel L; Fugate, David L
2013-08-01
This technical report was generated as a product of the Supervisory Control for Multi-Modular SMR Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (SMR) Research and Development Program of the U.S. Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular advanced SMR (AdvSMR) plants. This research activity advances the state-of-the art by incorporating decision making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides a brief history ofmore » hierarchical functional architectures and the current state-of-the-art, describes a reference AdvSMR to show the dependencies between systems, presents a hierarchical structure for supervisory control, indicates the importance of understanding trip setpoints, applies a new theoretic approach for comparing architectures, identifies cyber security controls that should be addressed early in system design, and describes ongoing work to develop system requirements and hardware/software configurations.« less
Convolutional neural network architectures for predicting DNA–protein binding
Zeng, Haoyang; Edwards, Matthew D.; Liu, Ge; Gifford, David K.
2016-01-01
Motivation: Convolutional neural networks (CNN) have outperformed conventional methods in modeling the sequence specificity of DNA–protein binding. Yet inappropriate CNN architectures can yield poorer performance than simpler models. Thus an in-depth understanding of how to match CNN architecture to a given task is needed to fully harness the power of CNNs for computational biology applications. Results: We present a systematic exploration of CNN architectures for predicting DNA sequence binding using a large compendium of transcription factor datasets. We identify the best-performing architectures by varying CNN width, depth and pooling designs. We find that adding convolutional kernels to a network is important for motif-based tasks. We show the benefits of CNNs in learning rich higher-order sequence features, such as secondary motifs and local sequence context, by comparing network performance on multiple modeling tasks ranging in difficulty. We also demonstrate how careful construction of sequence benchmark datasets, using approaches that control potentially confounding effects like positional or motif strength bias, is critical in making fair comparisons between competing methods. We explore how to establish the sufficiency of training data for these learning tasks, and we have created a flexible cloud-based framework that permits the rapid exploration of alternative neural network architectures for problems in computational biology. Availability and Implementation: All the models analyzed are available at http://cnn.csail.mit.edu. Contact: gifford@mit.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307608
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Smart grids are susceptible to cyber-attack as a result of new communication, control and computation techniques employed in the grid. In this paper, we characterize and analyze the resiliency of smart grid communication architecture, specifically an RF mesh based architecture, under cyber attacks. We analyze the resiliency of the communication architecture by studying the performance of high-level smart grid functions such as metering, and demand response which depend on communication. Disrupting the operation of these functions impacts the operational resiliency of the smart grid. Our analysis shows that it takes an attacker only a small fraction of meters to compromisemore » the communication resiliency of the smart grid. We discuss the implications of our result to critical smart grid functions and to the overall security of the smart grid.« less
Initial Evaluations of LoC Prediction Algorithms Using the NASA Vertical Motion Simulator
NASA Technical Reports Server (NTRS)
Krishnakumar, Kalmanje; Stepanyan, Vahram; Barlow, Jonathan; Hardy, Gordon; Dorais, Greg; Poolla, Chaitanya; Reardon, Scott; Soloway, Donald
2014-01-01
Flying near the edge of the safe operating envelope is an inherently unsafe proposition. Edge of the envelope here implies that small changes or disturbances in system state or system dynamics can take the system out of the safe envelope in a short time and could result in loss-of-control events. This study evaluated approaches to predicting loss-of-control safety margins as the aircraft gets closer to the edge of the safe operating envelope. The goal of the approach is to provide the pilot aural, visual, and tactile cues focused on maintaining the pilot's control action within predicted loss-of-control boundaries. Our predictive architecture combines quantitative loss-of-control boundaries, an adaptive prediction method to estimate in real-time Markov model parameters and associated stability margins, and a real-time data-based predictive control margins estimation algorithm. The combined architecture is applied to a nonlinear transport class aircraft. Evaluations of various feedback cues using both test and commercial pilots in the NASA Ames Vertical Motion-base Simulator (VMS) were conducted in the summer of 2013. The paper presents results of this evaluation focused on effectiveness of these approaches and the cues in preventing the pilots from entering a loss-of-control event.
RICIS Symposium 1992: Mission and Safety Critical Systems Research and Applications
NASA Technical Reports Server (NTRS)
1992-01-01
This conference deals with computer systems which control systems whose failure to operate correctly could produce the loss of life and or property, mission and safety critical systems. Topics covered are: the work of standards groups, computer systems design and architecture, software reliability, process control systems, knowledge based expert systems, and computer and telecommunication protocols.
Bio-Inspired Nanomaterials: Protein Cage Nano-Architectures
2008-04-01
chemical modification of protein cage materials and controlled chemical synthesis under mild biological conditions. High- resolution structural...properties based on a combination of controlled mobility and metal ligand interactions. Using the exterior surface of the CCMV viral cage we have chemically ...follows: Patterning by microplotter was achieved by depositing a preselected antibody solution directly onto chemically activated silicon or gold
NASA Technical Reports Server (NTRS)
Logan, J. R.; Pulvermacher, M. K.
1991-01-01
Range Scheduling Aid (RSA) is presented in the form of the viewgraphs. The following subject areas are covered: satellite control network; current and new approaches to range scheduling; MITRE tasking; RSA features; RSA display; constraint based analytic capability; RSA architecture; and RSA benefits.
Wang, Ke; Nirmalathas, Ampalavanapillai; Lim, Christina; Skafidas, Efstratios; Alameh, Kamal
2013-07-01
In this paper, we propose and experimentally demonstrate a free-space based high-speed reconfigurable card-to-card optical interconnect architecture with broadcast capability, which is required for control functionalities and efficient parallel computing applications. Experimental results show that 10 Gb/s data can be broadcast to all receiving channels for up to 30 cm with a worst-case receiver sensitivity better than -12.20 dBm. In addition, arbitrary multicasting with the same architecture is also investigated. 10 Gb/s reconfigurable point-to-point link and multicast channels are simultaneously demonstrated with a measured receiver sensitivity power penalty of ~1.3 dB due to crosstalk.
A DRM based on renewable broadcast encryption
NASA Astrophysics Data System (ADS)
Ramkumar, Mahalingam; Memon, Nasir
2005-07-01
We propose an architecture for digital rights management based on a renewable, random key pre-distribution (KPD) scheme, HARPS (hashed random preloaded subsets). The proposed architecture caters for broadcast encryption by a trusted authority (TA) and by "parent" devices (devices used by vendors who manufacture compliant devices) for periodic revocation of devices. The KPD also facilitates broadcast encryption by peer devices, which permits peers to distribute content, and efficiently control access to the content encryption secret using subscription secrets. The underlying KPD also caters for broadcast authentication and mutual authentication of any two devices, irrespective of the vendors manufacturing the device, and thus provides a comprehensive solution for securing interactions between devices taking part in a DRM system.
A Cockpit-Based Application for Traffic Aware Trajectory Optimization
NASA Technical Reports Server (NTRS)
Woods, Sharon E.; Vivona, Robert A.; Roscoe, David A.; LeFebvre, Brendan C.; Wing, David J.; Ballin, Mark G.
2013-01-01
The Traffic Aware Planner (TAP) is a cockpit-based advisory tool designed to be hosted on a Class 2 Electronic Flight Bag and developed to enable the concept of Traffic Aware Strategic Aircrew Requests (TASAR). This near-term concept provides pilots with optimized route changes that reduce fuel burn or flight time, avoids interactions with known traffic, weather and restricted airspace, and may be used by the pilots to request a trajectory change from air traffic control. TAP's internal architecture and algorithms are derived from the Autonomous Operations Planner, a flight-deck automation system developed by NASA to support research into aircraft self-separation. This paper reviews the architecture, functionality and operation of TAP.
Xu, Shangjie; Luo, Ying; Haag, Rainer
2007-08-07
A simple general synthetic concept to build dendritic core-shell architectures with pH-labile linkers based on hyperbranched PEI cores and biocompatible PEG shells is presented. Using these dendritic core-shell architectures as nanocarriers, the encapsulation and transport of polar dyes of different sizes is studied. The results show that the acid-labile nanocarriers exhibit much higher transport capacities for dyes than unfunctionalized hyperbranched PEI. The cleavage of imine bonds and controlled release of the polar dyes revealed that weak acidic condition (pH approximately 5.0) could cleave the imine bonds linker and release the dyes up to five times faster than neutral conditions (pH = 7.4).
NASA Technical Reports Server (NTRS)
Miller, Christopher J.; Goodrick, Dan
2017-01-01
The problem of control command and maneuver induced structural loads is an important aspect of any control system design. The aircraft structure and the control architecture must be designed to achieve desired piloted control responses while limiting the imparted structural loads. The classical approach is to utilize high structural margins, restrict control surface commands to a limited set of analyzed combinations, and train pilots to follow procedural maneuvering limitations. With recent advances in structural sensing and the continued desire to improve safety and vehicle fuel efficiency, it is both possible and desirable to develop control architectures that enable lighter vehicle weights while maintaining and improving protection against structural damage. An optimal control technique has been explored and shown to achieve desirable vehicle control performance while limiting sensed structural loads. The subject of this paper is the design of the optimal control architecture, and provides the reader with some techniques for tailoring the architecture, along with detailed simulation results.
Flexible software architecture for user-interface and machine control in laboratory automation.
Arutunian, E B; Meldrum, D R; Friedman, N A; Moody, S E
1998-10-01
We describe a modular, layered software architecture for automated laboratory instruments. The design consists of a sophisticated user interface, a machine controller and multiple individual hardware subsystems, each interacting through a client-server architecture built entirely on top of open Internet standards. In our implementation, the user-interface components are built as Java applets that are downloaded from a server integrated into the machine controller. The user-interface client can thereby provide laboratory personnel with a familiar environment for experiment design through a standard World Wide Web browser. Data management and security are seamlessly integrated at the machine-controller layer using QNX, a real-time operating system. This layer also controls hardware subsystems through a second client-server interface. This architecture has proven flexible and relatively easy to implement and allows users to operate laboratory automation instruments remotely through an Internet connection. The software architecture was implemented and demonstrated on the Acapella, an automated fluid-sample-processing system that is under development at the University of Washington.
National IVHS Architecture Development Strategy
DOT National Transportation Integrated Search
1994-01-27
NATIONAL INFORMATION AND CONTROL SYSTEMS ARE EMERGING THAT REQUIRE SYSTEM ARCHITECTURES FOR DEPLOYMENT ACROSS THE NATION, E.G., AIR TRAFFIC CONTROL SYSTEMS, MILITARY COMMAND AND CONTROL SYSTEMS, AND OTHER NATIONAL INFORMATION SYSTEMS. THE REQUIRED CH...
Modeling, simulation, and high-autonomy control of a Martian oxygen production plant
NASA Technical Reports Server (NTRS)
Schooley, L. C.; Cellier, F. E.; Wang, F.-Y.; Zeigler, B. P.
1992-01-01
Progress on a project for the development of a high-autonomy intelligent command and control architecture for process plants used to produce oxygen from local planetary resources is reported. A distributed command and control architecture is being developed and implemented so that an oxygen production plant, or other equipment, can be reliably commanded and controlled over an extended time period in a high-autonomy mode with high-level task-oriented teleoperation from one or several remote locations. During the reporting period, progress was made at all levels of the architecture. At the remote site, several remote observers can now participate in monitoring the plant. At the local site, a command and control center was introduced for increased flexibility, reliability, and robustness. The local control architecture was enhanced to control multiple tubes in parallel, and was refined for increased robustness. The simulation model was enhanced to full dynamics descriptions.
Ultra-Stable Segmented Telescope Sensing and Control Architecture
NASA Technical Reports Server (NTRS)
Feinberg, Lee; Bolcar, Matthew; Knight, Scott; Redding, David
2017-01-01
The LUVOIR team is conducting two full architecture studies Architecture A 15 meter telescope that folds up in an 8.4m SLS Block 2 shroud is nearly complete. Architecture B 9.2 meter that uses an existing fairing size will begin study this Fall. This talk will summarize the ultra-stable architecture of the 15m segmented telescope including the basic requirements, the basic rationale for the architecture, the technologies employed, and the expected performance. This work builds on several dynamics and thermal studies performed for ATLAST segmented telescope configurations. The most important new element was an approach to actively control segments for segment to segment motions which will be discussed later.
NASA Technical Reports Server (NTRS)
Jones, Michael K.
1998-01-01
Various issues associated with interoperability for space mission monitor and control are presented in viewgraph form. Specific topics include: 1) Space Project Mission Operations Control Architecture (SuperMOCA) goals and methods for achieving them; 2) Specifics on the architecture: open standards ad layering, enhancing interoperability, and promoting commercialization; 3) An advertisement; 4) Status of the task - government/industry cooperation and architecture and technology demonstrations; and 5) Key features of messaging services and virtual devices.
A diagnostic prototype of the potable water subsystem of the Space Station Freedom ECLSS
NASA Technical Reports Server (NTRS)
Lukefahr, Brenda D.; Rochowiak, Daniel M.; Benson, Brian L.; Rogers, John S.; Mckee, James W.
1989-01-01
In analyzing the baseline Environmental Control and Life Support System (ECLSS) command and control architecture, various processes are found which would be enhanced by the use of knowledge based system methods of implementation. The most suitable process for prototyping using rule based methods are documented, while domain knowledge resources and other practical considerations are examined. Requirements for a prototype rule based software system are documented. These requirements reflect Space Station Freedom ECLSS software and hardware development efforts, and knowledge based system requirements. A quick prototype knowledge based system environment is researched and developed.
A Distributed Trajectory-Oriented Approach to Managing Traffic Complexity
NASA Technical Reports Server (NTRS)
Idris, Husni; Wing, David J.; Vivona, Robert; Garcia-Chico, Jose-Luis
2007-01-01
In order to handle the expected increase in air traffic volume, the next generation air transportation system is moving towards a distributed control architecture, in which ground-based service providers such as controllers and traffic managers and air-based users such as pilots share responsibility for aircraft trajectory generation and management. While its architecture becomes more distributed, the goal of the Air Traffic Management (ATM) system remains to achieve objectives such as maintaining safety and efficiency. It is, therefore, critical to design appropriate control elements to ensure that aircraft and groundbased actions result in achieving these objectives without unduly restricting user-preferred trajectories. This paper presents a trajectory-oriented approach containing two such elements. One is a trajectory flexibility preservation function, by which aircraft plan their trajectories to preserve flexibility to accommodate unforeseen events. And the other is a trajectory constraint minimization function by which ground-based agents, in collaboration with air-based agents, impose just-enough restrictions on trajectories to achieve ATM objectives, such as separation assurance and flow management. The underlying hypothesis is that preserving trajectory flexibility of each individual aircraft naturally achieves the aggregate objective of avoiding excessive traffic complexity, and that trajectory flexibility is increased by minimizing constraints without jeopardizing the intended ATM objectives. The paper presents conceptually how the two functions operate in a distributed control architecture that includes self separation. The paper illustrates the concept through hypothetical scenarios involving conflict resolution and flow management. It presents a functional analysis of the interaction and information flow between the functions. It also presents an analytical framework for defining metrics and developing methods to preserve trajectory flexibility and minimize its constraints. In this framework flexibility is defined in terms of robustness and adaptability to disturbances and the impact of constraints is illustrated through analysis of a trajectory solution space with limited degrees of freedom and in simple constraint situations involving meeting multiple times of arrival and resolving a conflict.
Fuzzy Behavior-Based Navigation for Planetary
NASA Technical Reports Server (NTRS)
Tunstel, Edward; Danny, Harrison; Lippincott, Tanya; Jamshidi, Mo
1997-01-01
Adaptive behavioral capabilities are necessary for robust rover navigation in unstructured and partially-mapped environments. A control approach is described which exploits the approximate reasoning capability of fuzzy logic to produce adaptive motion behavior. In particular, a behavior-based architecture for hierarchical fuzzy control of microrovers is presented. Its structure is described, as well as mechanisms of control decision-making which give rise to adaptive behavior. Control decisions for local navigation result from a consensus of recommendations offered only by behaviors that are applicable to current situations. Simulation predicts the navigation performance on a microrover in simplified Mars-analog terrain.
NASA Astrophysics Data System (ADS)
Black, Randy; Bai, Haowei; Michalicek, Andrew; Shelton, Blaine; Villela, Mark
2008-01-01
Currently, autonomy in space applications is limited by a variety of technology gaps. Innovative application of wireless technology and avionics architectural principles drawn from the Orion crew exploration vehicle provide solutions for several of these gaps. The Vision for Space Exploration envisions extensive use of autonomous systems. Economic realities preclude continuing the level of operator support currently required of autonomous systems in space. In order to decrease the number of operators, more autonomy must be afforded to automated systems. However, certification authorities have been notoriously reluctant to certify autonomous software in the presence of humans or when costly missions may be jeopardized. The Orion avionics architecture, drawn from advanced commercial aircraft avionics, is based upon several architectural principles including partitioning in software. Robust software partitioning provides "brick wall" separation between software applications executing on a single processor, along with controlled data movement between applications. Taking advantage of these attributes, non-deterministic applications can be placed in one partition and a "Safety" application created in a separate partition. This "Safety" partition can track the position of astronauts or critical equipment and prevent any unsafe command from executing. Only the Safety partition need be certified to a human rated level. As a proof-of-concept demonstration, Honeywell has teamed with the Ultra WideBand (UWB) Working Group at NASA Johnson Space Center to provide tracking of humans, autonomous systems, and critical equipment. Using UWB the NASA team can determine positioning to within less than one inch resolution, allowing a Safety partition to halt operation of autonomous systems in the event that an unplanned collision is imminent. Another challenge facing autonomous systems is the coordination of multiple autonomous agents. Current approaches address the issue as one of networking and coordination of multiple independent units, each with its own mission. As a proof-of-concept Honeywell is developing and testing various algorithms that lead to a deterministic, fault tolerant, reliable wireless backplane. Just as advanced avionics systems control several subsystems, actuators, sensors, displays, etc.; a single "master" autonomous agent (or base station computer) could control multiple autonomous systems. The problem is simplified to controlling a flexible body consisting of several sensors and actuators, rather than one of coordinating multiple independent units. By filling technology gaps associated with space based autonomous system, wireless technology and Orion architectural principles provide the means for decreasing operational costs and simplifying problems associated with collaboration of multiple autonomous systems.
NASA Astrophysics Data System (ADS)
Kozicki, Janek
This talk focuses on recent advances in the construction of a prototype 1000 m2 Martian out-post for 8 inhabitants. The architectural design for such a Martian base has been presented previously on COSPAR 2008, the presentation being entitled ,,Architectural design proposal for a Martian base to continue NASA Mars Design Reference Mission". The presentation was welcomed with warm interest by various institutions, some of which offered help in building a prototype such as providing the building site or funding. This year's oral presentation will focus on a progress report and will briefly describe the architectural design. The architectural design is inspired by terrestrial pneumatic architecture. It has small volume, can be easily transported and provides a large habitable space. An architectural solution analo-gous to a terrestrial house with a studio and a workshop was assumed. The spatial placement of the following zones was carefully considered: residential, agricultural and science, as well as garage and workshop. Further attention was paid to transportation routes and a control and communications center. The issues of a life support system, energy, food, water and waste recycling were also discussed. This Martian base was designed to be crewed by a team of eight people to stay on Mars for at least one and a half year. An Open Plan architectural solution was assumed, with a high level of modularity. Walls of standardized sizes with zip-fasteners allow free rearrangement of the interior to adapt to a new situation. The prototype of such a Polish-origin Martian outpost will be used in a manner similar to MDRS or FMARS but to a larger extent. The prototype's design itself will be tested and corrected to achieve a design which can be used on Mars. The procedure of unfolding the pneumatic modules and floor leveling will be tested. The 1000 m2 interior will be used for various simulation exercises: socio-psychological testing, interior arrangement experiments, agricultural simulations, growing plants in Martian conditions and other kinds of tests. The presented prototype focuses on the ergonomic and psychological aspects of longer stay in a Martian environment. It provides the Martian crew with a comfortable habitable space larger than DRM modules. The practical proposal is to send this base to Mars in a DRM transpor-tation module after prototype testing is completed. The author hopes that this or other similar Martian base designs will help in establishing a permanent presence of humans on Mars.
NASA Astrophysics Data System (ADS)
Bergstedt, Robert; Fink, Charles G.; Flint, Graham W.; Hargis, David E.; Peppler, Philipp W.
1997-07-01
Laser Power Corporation has developed a new type of projection display, based upon microlaser technology and a novel scan architecture, which provides the foundation for bright, extremely high resolution images. A review of projection technologies is presented along with the limitations of each and the difficulties they experience in trying to generate high resolution imagery. The design of the microlaser based projector is discussed along with the advantage of this technology. High power red, green, and blue microlasers have been designed and developed specifically for use in projection displays. These sources, in combination with high resolution, high contrast modulator, produce a 24 bit color gamut, capable of supporting the full range of real world colors. The new scan architecture, which reduces the modulation rate and scan speeds required, is described. This scan architecture, along with the inherent brightness of the laser provides the fundamentals necessary to produce a 5120 by 4096 resolution display. The brightness and color uniformity of the display is excellent, allowing for tiling of the displays with far fewer artifacts than those in a traditionally tiled display. Applications for the display include simulators, command and control centers, and electronic cinema.
Verification and Tuning of an Adaptive Controller for an Unmanned Air Vehicle
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Matsutani, Megumi; Annaswamy, Anuradha M.
2010-01-01
This paper focuses on the analysis and tuning of a controller based on the Adaptive Control Technology for Safe Flight (ACTS) architecture. The ACTS architecture consists of a nominal, non-adaptive controller that provides satisfactory performance under nominal flying conditions, and an adaptive controller that provides robustness under off-nominal ones. A framework unifying control verification and gain tuning is used to make the controller s ability to satisfy the closed-loop requirements more robust to uncertainty. In this paper we tune the gains of both controllers using this approach. Some advantages and drawbacks of adaptation are identified by performing a global robustness assessment of both the adaptive controller and its non-adaptive counterpart. The analyses used to determine these characteristics are based on evaluating the degradation in closed-loop performance resulting from uncertainties having increasing levels of severity. The specific adverse conditions considered can be grouped into three categories: aerodynamic uncertainties, structural damage, and actuator failures. These failures include partial and total loss of control effectiveness, locked-in-place control surface deflections, and engine out conditions. The requirements considered are the peak structural loading, the ability of the controller to track pilot commands, the ability of the controller to keep the aircraft s state within the reliable flight envelope, and the handling/riding qualities of the aircraft. The nominal controller resulting from these tuning strategies was successfully validated using the NASA GTM Flight Test Vehicle.
Memristor-Based Computing Architecture: Design Methodologies and Circuit Techniques
2013-03-01
MEMRISTOR-BASED COMPUTING ARCHITECTURE : DESIGN METHODOLOGIES AND CIRCUIT TECHNIQUES POLYTECHNIC INSTITUTE OF NEW YORK UNIVERSITY...TECHNICAL REPORT 3. DATES COVERED (From - To) OCT 2010 – OCT 2012 4. TITLE AND SUBTITLE MEMRISTOR-BASED COMPUTING ARCHITECTURE : DESIGN METHODOLOGIES...schemes for a memristor-based reconfigurable architecture design have not been fully explored yet. Therefore, in this project, we investigated
NASA Astrophysics Data System (ADS)
Hanson, Jeffrey A.; McLaughlin, Keith L.; Sereno, Thomas J.
2011-06-01
We have developed a flexible, target-driven, multi-modal, physics-based fusion architecture that efficiently searches sensor detections for targets and rejects clutter while controlling the combinatoric problems that commonly arise in datadriven fusion systems. The informational constraints imposed by long lifetime requirements make systems vulnerable to false alarms. We demonstrate that our data fusion system significantly reduces false alarms while maintaining high sensitivity to threats. In addition, mission goals can vary substantially in terms of targets-of-interest, required characterization, acceptable latency, and false alarm rates. Our fusion architecture provides the flexibility to match these trade-offs with mission requirements unlike many conventional systems that require significant modifications for each new mission. We illustrate our data fusion performance with case studies that span many of the potential mission scenarios including border surveillance, base security, and infrastructure protection. In these studies, we deployed multi-modal sensor nodes - including geophones, magnetometers, accelerometers and PIR sensors - with low-power processing algorithms and low-bandwidth wireless mesh networking to create networks capable of multi-year operation. The results show our data fusion architecture maintains high sensitivities while suppressing most false alarms for a variety of environments and targets.
NASA Astrophysics Data System (ADS)
Fiorani, D.; Acierno, M.
2017-05-01
The aim of the present research is to develop an instrument able to adequately support the conservation process by means of a twofold approach, based on both BIM environment and ontology formalisation. Although BIM has been successfully experimented within AEC (Architecture Engineering Construction) field, it has showed many drawbacks for architectural heritage. To cope with unicity and more generally complexity of ancient buildings, applications so far developed have shown to poorly adapt BIM to conservation design with unsatisfactory results (Dore, Murphy 2013; Carrara 2014). In order to combine achievements reached within AEC through BIM environment (design control and management) with an appropriate, semantically enriched and flexible The presented model has at its core a knowledge base developed through information ontologies and oriented around the formalization and computability of all the knowledge necessary for the full comprehension of the object of architectural heritage an its conservation. Such a knowledge representation is worked out upon conceptual categories defined above all within architectural criticism and conservation scope. The present paper aims at further extending the scope of conceptual modelling within cultural heritage conservation already formalized by the model. A special focus is directed on decay analysis and surfaces conservation project.
TEAM (Technologies Enabling Agile Manufacturing) shop floor control requirements guide: Version 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-03-28
TEAM will create a shop floor control system (SFC) to link the pre-production planning to shop floor execution. SFC must meet the requirements of a multi-facility corporation, where control must be maintained between co-located facilities down to individual workstations within each facility. SFC must also meet the requirements of a small corporation, where there may only be one small facility. A hierarchical architecture is required to meet these diverse needs. The hierarchy contains the following levels: Enterprise, Factory, Cell, Station, and Equipment. SFC is focused on the top three levels. Each level of the hierarchy is divided into three basicmore » functions: Scheduler, Dispatcher, and Monitor. The requirements of each function depend on the hierarchical level in which it is to be used. For example, the scheduler at the Enterprise level must allocate production to individual factories and assign due-dates; the scheduler at the Cell level must provide detailed start and stop times of individual operations. Finally the system shall have the following features: distributed and open-architecture. Open architecture software is required in order that the appropriate technology be used at each level of the SFC hierarchy, and even at different instances within the same hierarchical level (for example, Factory A uses discrete-event simulation scheduling software, and Factory B uses an optimization-based scheduler). A distributed implementation is required to reduce the computational burden of the overall system, and allow for localized control. A distributed, open-architecture implementation will also require standards for communication between hierarchical levels.« less
Design and Field Experimentation of a Cooperative ITS Architecture Based on Distributed RSUs.
Moreno, Asier; Osaba, Eneko; Onieva, Enrique; Perallos, Asier; Iovino, Giovanni; Fernández, Pablo
2016-07-22
This paper describes a new cooperative Intelligent Transportation System architecture that aims to enable collaborative sensing services. The main goal of this architecture is to improve transportation efficiency and performance. The system, which has been proven within the participation in the ICSI (Intelligent Cooperative Sensing for Improved traffic efficiency) European project, encompasses the entire process of capture and management of available road data. For this purpose, it applies a combination of cooperative services and methods for data sensing, acquisition, processing and communication amongst road users, vehicles, infrastructures and related stakeholders. Additionally, the advantages of using the proposed system are exposed. The most important of these advantages is the use of a distributed architecture, moving the system intelligence from the control centre to the peripheral devices. The global architecture of the system is presented, as well as the software design and the interaction between its main components. Finally, functional and operational results observed through the experimentation are described. This experimentation has been carried out in two real scenarios, in Lisbon (Portugal) and Pisa (Italy).
Design and Field Experimentation of a Cooperative ITS Architecture Based on Distributed RSUs †
Moreno, Asier; Osaba, Eneko; Onieva, Enrique; Perallos, Asier; Iovino, Giovanni; Fernández, Pablo
2016-01-01
This paper describes a new cooperative Intelligent Transportation System architecture that aims to enable collaborative sensing services. The main goal of this architecture is to improve transportation efficiency and performance. The system, which has been proven within the participation in the ICSI (Intelligent Cooperative Sensing for Improved traffic efficiency) European project, encompasses the entire process of capture and management of available road data. For this purpose, it applies a combination of cooperative services and methods for data sensing, acquisition, processing and communication amongst road users, vehicles, infrastructures and related stakeholders. Additionally, the advantages of using the proposed system are exposed. The most important of these advantages is the use of a distributed architecture, moving the system intelligence from the control centre to the peripheral devices. The global architecture of the system is presented, as well as the software design and the interaction between its main components. Finally, functional and operational results observed through the experimentation are described. This experimentation has been carried out in two real scenarios, in Lisbon (Portugal) and Pisa (Italy). PMID:27455277
Designing Next Generation Massively Multithreaded Architectures for Irregular Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumeo, Antonino; Secchi, Simone; Villa, Oreste
Irregular applications, such as data mining or graph-based computations, show unpredictable memory/network access patterns and control structures. Massively multi-threaded architectures with large node count, like the Cray XMT, have been shown to address their requirements better than commodity clusters. In this paper we present the approaches that we are currently pursuing to design future generations of these architectures. First, we introduce the Cray XMT and compare it to other multithreaded architectures. We then propose an evolution of the architecture, integrating multiple cores per node and next generation network interconnect. We advocate the use of hardware support for remote memory referencemore » aggregation to optimize network utilization. For this evaluation we developed a highly parallel, custom simulation infrastructure for multi-threaded systems. Our simulator executes unmodified XMT binaries with very large datasets, capturing effects due to contention and hot-spotting, while predicting execution times with greater than 90% accuracy. We also discuss the FPGA prototyping approach that we are employing to study efficient support for irregular applications in next generation manycore processors.« less
Design and Analysis of a Neuromemristive Reservoir Computing Architecture for Biosignal Processing
Kudithipudi, Dhireesha; Saleh, Qutaiba; Merkel, Cory; Thesing, James; Wysocki, Bryant
2016-01-01
Reservoir computing (RC) is gaining traction in several signal processing domains, owing to its non-linear stateful computation, spatiotemporal encoding, and reduced training complexity over recurrent neural networks (RNNs). Previous studies have shown the effectiveness of software-based RCs for a wide spectrum of applications. A parallel body of work indicates that realizing RNN architectures using custom integrated circuits and reconfigurable hardware platforms yields significant improvements in power and latency. In this research, we propose a neuromemristive RC architecture, with doubly twisted toroidal structure, that is validated for biosignal processing applications. We exploit the device mismatch to implement the random weight distributions within the reservoir and propose mixed-signal subthreshold circuits for energy efficiency. A comprehensive analysis is performed to compare the efficiency of the neuromemristive RC architecture in both digital(reconfigurable) and subthreshold mixed-signal realizations. Both Electroencephalogram (EEG) and Electromyogram (EMG) biosignal benchmarks are used for validating the RC designs. The proposed RC architecture demonstrated an accuracy of 90 and 84% for epileptic seizure detection and EMG prosthetic finger control, respectively. PMID:26869876
Ehrampoosh, Shervin; Dave, Mohit; Kia, Michael A; Rablau, Corneliu; Zadeh, Mehrdad H
2013-01-01
This paper presents an enhanced haptic-enabled master-slave teleoperation system which can be used to provide force feedback to surgeons in minimally invasive surgery (MIS). One of the research goals was to develop a combined-control architecture framework that included both direct force reflection (DFR) and position-error-based (PEB) control strategies. To achieve this goal, it was essential to measure accurately the direct contact forces between deformable bodies and a robotic tool tip. To measure the forces at a surgical tool tip and enhance the performance of the teleoperation system, an optical force sensor was designed, prototyped, and added to a robot manipulator. The enhanced teleoperation architecture was formulated by developing mathematical models for the optical force sensor, the extended slave robot manipulator, and the combined-control strategy. Human factor studies were also conducted to (a) examine experimentally the performance of the enhanced teleoperation system with the optical force sensor, and (b) study human haptic perception during the identification of remote object deformability. The first experiment was carried out to discriminate deformability of objects when human subjects were in direct contact with deformable objects by means of a laparoscopic tool. The control parameters were then tuned based on the results of this experiment using a gain-scheduling method. The second experiment was conducted to study the effectiveness of the force feedback provided through the enhanced teleoperation system. The results show that the force feedback increased the ability of subjects to correctly identify materials of different deformable types. In addition, the virtual force feedback provided by the teleoperation system comes close to the real force feedback experienced in direct MIS. The experimental results provide design guidelines for choosing and validating the control architecture and the optical force sensor.
A Biologically Inspired Cooperative Multi-Robot Control Architecture
NASA Technical Reports Server (NTRS)
Howsman, Tom; Craft, Mike; ONeil, Daniel; Howell, Joe T. (Technical Monitor)
2002-01-01
A prototype cooperative multi-robot control architecture suitable for the eventual construction of large space structures has been developed. In nature, there are numerous examples of complex architectures constructed by relatively simple insects, such as termites and wasps, which cooperatively assemble their nests. The prototype control architecture emulates this biological model. Actions of each of the autonomous robotic construction agents are only indirectly coordinated, thus mimicking the distributed construction processes of various social insects. The robotic construction agents perform their primary duties stigmergically i.e., without direct inter-agent communication and without a preprogrammed global blueprint of the final design. Communication and coordination between individual agents occurs indirectly through the sensed modifications that each agent makes to the structure. The global stigmergic building algorithm prototyped during the initial research assumes that the robotic builders only perceive the current state of the structure under construction. Simulation studies have established that an idealized form of the proposed architecture was indeed capable of producing representative large space structures with autonomous robots. This paper will explore the construction simulations in order to illustrate the multi-robot control architecture.
Distributed numerical controllers
NASA Astrophysics Data System (ADS)
Orban, Peter E.
2001-12-01
While the basic principles of Numerical Controllers (NC) have not changed much during the years, the implementation of NCs' has changed tremendously. NC equipment has evolved from yesterday's hard-wired specialty control apparatus to today's graphics intensive, networked, increasingly PC based open systems, controlling a wide variety of industrial equipment with positioning needs. One of the newest trends in NC technology is the distributed implementation of the controllers. Distributed implementation promises to offer robustness, lower implementation costs, and a scalable architecture. Historically partitioning has been done along the hierarchical levels, moving individual modules into self contained units. The paper discusses various NC architectures, the underlying technology for distributed implementation, and relevant design issues. First the functional requirements of individual NC modules are analyzed. Module functionality, cycle times, and data requirements are examined. Next the infrastructure for distributed node implementation is reviewed. Various communication protocols and distributed real-time operating system issues are investigated and compared. Finally, a different, vertical system partitioning, offering true scalability and reconfigurability is presented.
Nano-Star-Shaped Polymers for Drug Delivery Applications.
Yang, Da-Peng; Oo, Ma Nwe Nwe Linn; Deen, Gulam Roshan; Li, Zibiao; Loh, Xian Jun
2017-11-01
With the advancement of polymer engineering, complex star-shaped polymer architectures can be synthesized with ease, bringing about a host of unique properties and applications. The polymer arms can be functionalized with different chemical groups to fine-tune the response behavior or be endowed with targeting ligands or stimuli responsive moieties to control its physicochemical behavior and self-organization in solution. Rheological properties of these solutions can be modulated, which also facilitates the control of the diffusion of the drug from these star-based nanocarriers. However, these star-shaped polymers designed for drug delivery are still in a very early stage of development. Due to the sheer diversity of macromolecules that can take on the star architectures and the various combinations of functional groups that can be cross-linked together, there remain many structure-property relationships which have yet to be fully established. This review aims to provide an introductory perspective on the basic synthetic methods of star-shaped polymers, the properties which can be controlled by the unique architecture, and also recent advances in drug delivery applications related to these star candidates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sun, Lidan; Wang, Yaqun; Yan, Xiaolan; Cheng, Tangren; Ma, Kaifeng; Yang, Weiru; Pan, Huitang; Zheng, Chengfei; Zhu, Xuli; Wang, Jia; Wu, Rongling; Zhang, Qixiang
2014-01-01
Mei, Prunus mume Sieb. et Zucc., is an ornamental plant popular in East Asia and, as an important member of genus Prunus, has played a pivotal role in systematic studies of the Rosaceae. However, the genetic architecture of botanical traits in this species remains elusive. This paper represents the first genome-wide mapping study of quantitative trait loci (QTLs) that affect stem growth and form, leaf morphology and leaf anatomy in an intraspecific cross derived from two different mei cultivars. Genetic mapping based on a high-density linkage map constricted from 120 SSRs and 1,484 SNPs led to the detection of multiple QTLs for each trait, some of which exert pleiotropic effects on correlative traits. Each QTL explains 3-12% of the phenotypic variance. Several leaf size traits were found to share common QTLs, whereas growth-related traits and plant form traits might be controlled by a different set of QTLs. Our findings provide unique insights into the genetic control of tree growth and architecture in mei and help to develop an efficient breeding program for selecting superior mei cultivars.
Memristor-Based Synapse Design and Training Scheme for Neuromorphic Computing Architecture
2012-06-01
system level built upon the conventional Von Neumann computer architecture [2][3]. Developing the neuromorphic architecture at chip level by...SCHEME FOR NEUROMORPHIC COMPUTING ARCHITECTURE 5a. CONTRACT NUMBER FA8750-11-2-0046 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER 62788F 6...creation of memristor-based neuromorphic computing architecture. Rather than the existing crossbar-based neuron network designs, we focus on memristor
PERCLOS: A Valid Psychophysiological Measure of Alertness As Assessed by Psychomotor Vigilance
DOT National Transportation Integrated Search
2002-04-01
The Logical Architecture is based on a Computer Aided Systems Engineering (CASE) model of the requirements for the flow of data and control through the various functions included in Intelligent Transportation Systems (ITS). Process Specifications pro...
Knowledge-based processing for aircraft flight control
NASA Technical Reports Server (NTRS)
Painter, John H.
1991-01-01
The purpose is to develop algorithms and architectures for embedding artificial intelligence in aircraft guidance and control systems. With the approach adopted, AI-computing is used to create an outer guidance loop for driving the usual aircraft autopilot. That is, a symbolic processor monitors the operation and performance of the aircraft. Then, based on rules and other stored knowledge, commands are automatically formulated for driving the autopilot so as to accomplish desired flight operations. The focus is on developing a software system which can respond to linguistic instructions, input in a standard format, so as to formulate a sequence of simple commands to the autopilot. The instructions might be a fairly complex flight clearance, input either manually or by data-link. Emphasis is on a software system which responds much like a pilot would, employing not only precise computations, but, also, knowledge which is less precise, but more like common-sense. The approach is based on prior work to develop a generic 'shell' architecture for an AI-processor, which may be tailored to many applications by describing the application in appropriate processor data bases (libraries). Such descriptions include numerical models of the aircraft and flight control system, as well as symbolic (linguistic) descriptions of flight operations, rules, and tactics.
Open modular architecture controls at GM Powertrain: technology and implementation
NASA Astrophysics Data System (ADS)
Bailo, Clark P.; Yen, C. J.
1997-01-01
General Motors Powertrain Group (GMPTG) has been the leader in implementing open, modular architecture controller (OMAC) technologies in its manufacturing applications since 1986. The interest in OMAC has been greatly expanded for the past two years because of the advancement of personal computer technologies and the publishing of the OMAC whitepaper by the US automotive companies stating the requirements of OMAC technologies in automotive applications. The purpose of this paper is to describe the current OMAC projects and the future direction of implementation at GMPTG. An overview of the OMAC project and the definition of the OMAC concept are described first. The rationale of pursuing open technologies is explained from the perspective of GMPTG in lieu of its agile manufacturing strategy. Examples of existing PC-based control applications are listed to demonstrate the extensive commitment to PC-based technologies that has already been put in place. A migration plan form PC-based to OMAC-based systems with the thorough approach of validation are presented next to convey the direction that GMPTG is taking in implementing OMAC technologies. Leveraged technology development projects are described to illustrate the philosophy and approaches toward the development of OMAC technologies at GMPTG. Finally, certain implementation issues are discussed to emphasize efforts that are still required to have successful implementations of OMAC systems.
NASA Astrophysics Data System (ADS)
Deloose, I.; Pace, A.
1994-12-01
The two CERN isotope separators named ISOLDE have been running on the new Personal Computer (PC) based control system since April 1992. The new architecture that makes heavy use of the commercial software and hardware of the PC market has been implemented on the 1700 geographically distributed control channels of the two separators and their experimental area. Eleven MSDOS Intel-based PCs with approximately 80 acquisition and control boards are used to access the equipment and are controlled from three PCs running Microsoft Windows used as consoles through a Novell Local Area Network. This paper describes the interesting solutions found and discusses the reduced programming workload and costs that have been obtained.
Active Fault Tolerant Control for Ultrasonic Piezoelectric Motor
NASA Astrophysics Data System (ADS)
Boukhnifer, Moussa
2012-07-01
Ultrasonic piezoelectric motor technology is an important system component in integrated mechatronics devices working on extreme operating conditions. Due to these constraints, robustness and performance of the control interfaces should be taken into account in the motor design. In this paper, we apply a new architecture for a fault tolerant control using Youla parameterization for an ultrasonic piezoelectric motor. The distinguished feature of proposed controller architecture is that it shows structurally how the controller design for performance and robustness may be done separately which has the potential to overcome the conflict between performance and robustness in the traditional feedback framework. A fault tolerant control architecture includes two parts: one part for performance and the other part for robustness. The controller design works in such a way that the feedback control system will be solely controlled by the proportional plus double-integral
Adaptive method with intercessory feedback control for an intelligent agent
Goldsmith, Steven Y.
2004-06-22
An adaptive architecture method with feedback control for an intelligent agent provides for adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. An adaptive architecture method with feedback control for multiple intelligent agents provides for coordinating and adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. Re-programming of the adaptive architecture is through a nexus which coordinates reflexive and deliberator components.
Scaffold Architecture Controls Insulinoma Clustering, Viability, and Insulin Production
Blackstone, Britani N.; Palmer, Andre F.; Rilo, Horacio R.
2014-01-01
Recently, in vitro diagnostic tools have shifted focus toward personalized medicine by incorporating patient cells into traditional test beds. These cell-based platforms commonly utilize two-dimensional substrates that lack the ability to support three-dimensional cell structures seen in vivo. As monolayer cell cultures have previously been shown to function differently than cells in vivo, the results of such in vitro tests may not accurately reflect cell response in vivo. It is therefore of interest to determine the relationships between substrate architecture, cell structure, and cell function in 3D cell-based platforms. To investigate the effect of substrate architecture on insulinoma organization and function, insulinomas were seeded onto 2D gelatin substrates and 3D fibrous gelatin scaffolds with three distinct fiber diameters and fiber densities. Cell viability and clustering was assessed at culture days 3, 5, and 7 with baseline insulin secretion and glucose-stimulated insulin production measured at day 7. Small, closely spaced gelatin fibers promoted the formation of large, rounded insulinoma clusters, whereas monolayer organization and large fibers prevented cell clustering and reduced glucose-stimulated insulin production. Taken together, these data show that scaffold properties can be used to control the organization and function of insulin-producing cells and may be useful as a 3D test bed for diabetes drug development. PMID:24410263
Advanced nanoelectronic architectures for THz-based biological agent detection
NASA Astrophysics Data System (ADS)
Woolard, Dwight L.; Jensen, James O.
2009-02-01
The U.S. Army Research Office (ARO) and the U.S. Army Edgewood Chemical Biological Center (ECBC) jointly lead and support novel research programs that are advancing the state-of-the-art in nanoelectronic engineering in application areas that have relevance to national defense and security. One fundamental research area that is presently being emphasized by ARO and ECBC is the exploratory investigation of new bio-molecular architectural concepts that can be used to achieve rapid, reagent-less detection and discrimination of biological warfare (BW) agents, through the control of multi-photon and multi-wavelength processes at the nanoscale. This paper will overview an ARO/ECBC led multidisciplinary research program presently under the support of the U.S. Defense Threat Reduction Agency (DTRA) that seeks to develop new devices and nanoelectronic architectures that are effective for extracting THz signatures from target bio-molecules. Here, emphasis will be placed on the new nanosensor concepts and THz/Optical measurement methodologies for spectral-based sequencing/identification of genetic molecules.
Zapf, Thomas; Tan, Cherng-Wen Darren; Reinelt, Tobias; Huber, Christoph; Shaohua, Ding; Geifman-Shochat, Susana; Paulsen, Harald; Sinner, Eva-Kathrin
2015-12-01
One of most important processes in nature is the harvesting and dissipation of solar energy with the help of light-harvesting complex II (LHCII). This protein, along with its associated pigments, is the main solar-energy collector in higher plants. We aimed to generate stable, highly controllable, and sustainable polymer-based membrane systems containing LHCII-pigment complexes ready for light harvesting. LHCII was produced by cell-free protein synthesis based on wheat-germ extract, and the successful integration of LHCII and its pigments into different membrane architectures was monitored. The unidirectionality of LHCII insertion was investigated by protease digestion assays. Fluorescence measurements indicated chlorophyll integration in the presence of LHCII in spherical as well as planar bilayer architectures. Surface plasmon enhanced fluorescence spectroscopy (SPFS) was used to reveal energy transfer from chlorophyll b to chlorophyll a, which indicates native folding of the LHCII proteins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, Alan M; Killough, Stephen M; Bigelow, Tim S
2011-01-01
Power Supply Controls are being developed at Oak Ridge National Laboratory (ORNL) to test transmission line components of the Electron Cyclotron Heating (ECH) system, with a focus on gyrotrons and waveguides, in support of the International Thermonuclear Experimental Reactor (ITER). The control is performed by several Programmable Logic Controllers (PLC s) located near the different equipment. A technique of Supervisory Control and Data Acquisition (SCADA) is presented to monitor, control, and log actions of the PLC s on a PC through use of Allen Bradley s Remote I/O communication interface coupled with an Open Process Control/Object Linking and Embedding [OLE]more » for Process Control (OPC) Server/Client architecture. The OPC data is then linked to a National Instruments (NI) LabVIEW system for monitoring and control. Details of the architecture and insight into applicability to other systems are presented in the rest of this paper. Future integration with an EPICS (Experimental Physics Industrial Control System) based mini-CODAC (Control, Data Access and Communication) SCADA system is under consideration, and integration considerations will be briefly introduced.« less
Jagannathan, Sarangapani; He, Pingan
2008-12-01
In this paper, a suite of adaptive neural network (NN) controllers is designed to deliver a desired tracking performance for the control of an unknown, second-order, nonlinear discrete-time system expressed in nonstrict feedback form. In the first approach, two feedforward NNs are employed in the controller with tracking error as the feedback variable whereas in the adaptive critic NN architecture, three feedforward NNs are used. In the adaptive critic architecture, two action NNs produce virtual and actual control inputs, respectively, whereas the third critic NN approximates certain strategic utility function and its output is employed for tuning action NN weights in order to attain the near-optimal control action. Both the NN control methods present a well-defined controller design and the noncausal problem in discrete-time backstepping design is avoided via NN approximation. A comparison between the controller methodologies is highlighted. The stability analysis of the closed-loop control schemes is demonstrated. The NN controller schemes do not require an offline learning phase and the NN weights can be initialized at zero or random. Results show that the performance of the proposed controller schemes is highly satisfactory while meeting the closed-loop stability.
1987-12-01
Application Programs Intelligent Disk Database Controller Manangement System Operating System Host .1’ I% Figure 2. Intelligent Disk Controller Application...8217. /- - • Database Control -% Manangement System Disk Data Controller Application Programs Operating Host I"" Figure 5. Processor-Per- Head data. Therefore, the...However. these ad- ditional properties have been proven in classical set and relation theory [75]. These additional properties are described here
Use of COTS in the Multimission Advanced Ground Intelligent Control (MAGIC) program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowley, N.L.
1997-11-01
This tutorial will discuss the experiences of the Space System Technologies Division of the USAF Phillips Laboratory (PL/VTS) in developing a COTS-based satellite control system. The system`s primary use is a testbed for new technologies that are intended for future integration into the operational satellite control system. As such, the control system architecture must be extremely open and flexible so we can integrate new components and functions easily and also provide our system to contractors for their component work. The system is based on commercial hardware, is based on Windows NT, and makes the maximum use of COTS components andmore » industry standards.« less
NASA Astrophysics Data System (ADS)
Ben Cheikh, Bassem; Bor-Angelier, Catherine; Racoceanu, Daniel
2017-03-01
Breast carcinomas are cancers that arise from the epithelial cells of the breast, which are the cells that line the lobules and the lactiferous ducts. Breast carcinoma is the most common type of breast cancer and can be divided into different subtypes based on architectural features and growth patterns, recognized during a histopathological examination. Tumor microenvironment (TME) is the cellular environment in which tumor cells develop. Being composed of various cell types having different biological roles, TME is recognized as playing an important role in the progression of the disease. The architectural heterogeneity in breast carcinomas and the spatial interactions with TME are, to date, not well understood. Developing a spatial model of tumor architecture and spatial interactions with TME can advance our understanding of tumor heterogeneity. Furthermore, generating histological synthetic datasets can contribute to validating, and comparing analytical methods that are used in digital pathology. In this work, we propose a modeling method that applies to different breast carcinoma subtypes and TME spatial distributions based on mathematical morphology. The model is based on a few morphological parameters that give access to a large spectrum of breast tumor architectures and are able to differentiate in-situ ductal carcinomas (DCIS) and histological subtypes of invasive carcinomas such as ductal (IDC) and lobular carcinoma (ILC). In addition, a part of the parameters of the model controls the spatial distribution of TME relative to the tumor. The validation of the model has been performed by comparing morphological features between real and simulated images.
Communication Needs Assessment for Distributed Turbine Engine Control
NASA Technical Reports Server (NTRS)
Culley, Dennis E.; Behbahani, Alireza R.
2008-01-01
Control system architecture is a major contributor to future propulsion engine performance enhancement and life cycle cost reduction. The control system architecture can be a means to effect net weight reduction in future engine systems, provide a streamlined approach to system design and implementation, and enable new opportunities for performance optimization and increased awareness about system health. The transition from a centralized, point-to-point analog control topology to a modular, networked, distributed system is paramount to extracting these system improvements. However, distributed engine control systems are only possible through the successful design and implementation of a suitable communication system. In a networked system, understanding the data flow between control elements is a fundamental requirement for specifying the communication architecture which, itself, is dependent on the functional capability of electronics in the engine environment. This paper presents an assessment of the communication needs for distributed control using strawman designs and relates how system design decisions relate to overall goals as we progress from the baseline centralized architecture, through partially distributed and fully distributed control systems.
Morouço, Pedro; Biscaia, Sara; Viana, Tânia; Franco, Margarida; Malça, Cândida; Mateus, Artur; Moura, Carla; Ferreira, Frederico C; Mitchell, Geoffrey; Alves, Nuno M
2016-01-01
Biomaterial properties and controlled architecture of scaffolds are essential features to provide an adequate biological and mechanical support for tissue regeneration, mimicking the ingrowth tissues. In this study, a bioextrusion system was used to produce 3D biodegradable scaffolds with controlled architecture, comprising three types of constructs: (i) poly( ε -caprolactone) (PCL) matrix as reference; (ii) PCL-based matrix reinforced with cellulose nanofibers (CNF); and (iii) PCL-based matrix reinforced with CNF and hydroxyapatite nanoparticles (HANP). The effect of the addition and/or combination of CNF and HANP into the polymeric matrix of PCL was investigated, with the effects of the biomaterial composition on the constructs (morphological, thermal, and mechanical performances) being analysed. Scaffolds were produced using a single lay-down pattern of 0/90°, with the same processing parameters among all constructs being assured. The performed morphological analyses showed a satisfactory distribution of CNF within the polymer matrix and high reliability was obtained among the produced scaffolds. Significant effects on surface wettability and thermal properties were observed, among scaffolds. Regarding the mechanical properties, higher scaffold stiffness in the reinforced scaffolds was obtained. Results from the cytotoxicity assay suggest that all the composite scaffolds presented good biocompatibility. The results of this first study on cellulose and hydroxyapatite reinforced constructs with controlled architecture clearly demonstrate the potential of these 3D composite constructs for cell cultivation with enhanced mechanical properties.
Lessons Learned from Engineering a Multi-Mission Satellite Operations Center
NASA Technical Reports Server (NTRS)
Madden, Maureen; Cary, Everett, Jr.; Esposito, Timothy; Parker, Jeffrey; Bradley, David
2006-01-01
NASA's Small Explorers (SMEX) satellites have surpassed their designed science-lifetimes and their flight operations teams are now facing the challenge of continuing operations with reduced funding. At present, these missions are being re-engineered into a fleet-oriented ground system at Goddard Space Flight Center (GSFC). When completed, this ground system will provide command and control of four SMEX missions and will demonstrate fleet automation and control concepts. As a path-finder for future mission consolidation efforts, this ground system will also demonstrate new ground-based technologies that show promise of supporting longer mission lifecycles and simplifying component integration. One of the core technologies being demonstrated in the SMEX Mission Operations Center is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture uses commercial Message Oriented Middleware with a common messaging standard to realize a higher level of component interoperability, allowing for interchangeable components in ground systems. Moreover, automation technologies utilizing the GMSEC architecture are being evaluated and implemented to provide extended lights-out operations. This mode of operation will provide routine monitoring and control of the heterogeneous spacecraft fleet. The operational concepts being developed will reduce the need for staffed contacts and is seen as a necessity for fleet management. This paper will describe the experiences of the integration team throughout the re-enginering effort of the SMEX ground system. Additionally, lessons learned will be presented based on the team's experiences with integrating multiple missions into a fleet-automated ground system.
ERIC Educational Resources Information Center
Vassileva, Julita
1990-01-01
Discusses the structure of intelligent tutoring systems (ITSs) and describes the development of a new structure for ITSs that is not domain dependent and is more readily adaptable by individual teachers. Pedagogical rules that help decide how much student control versus how much teacher control is present in the system are discussed. (14…
The computation in diagnostics for tokamaks: systems, designs, approaches
NASA Astrophysics Data System (ADS)
Krawczyk, Rafał; Linczuk, Paweł; Czarski, Tomasz; Wojeński, Andrzej; Chernyshova, Maryna; Poźniak, Krzysztof; Kolasiński, Piotr; Kasprowicz, Grzegorz; Zabołotny, Wojciech; Kowalska-Strzeciwilk, Ewa; Malinowski, Karol; Gaska, Michał
2017-08-01
The requirements given for GEM (Gaseous Electron Multiplier) detector based acquisition system for plasma impurities diagnostics triggered a need for the development of a specialized software and hardware architecture. The amount of computations with latency and throughput restrictions cause that an advanced solution is sought for. In order to provide a mechanism fitting the designated tokamaks, an insight into existing solutions was necessary. In the article there is discussed architecture of systems used for plasma diagnostics and in related scientific fields. The developed solution is compared and contrasted with other diagnostic and control systems. Particular attention is payed to specific requirements for plasma impurities diagnostics in tokamak thermal fusion reactor. Subsequently, the details are presented that justified the choice of the system architecture and the discussion on various approaches is given.
Development of the network architecture of the Canadian MSAT system
NASA Technical Reports Server (NTRS)
Davies, N. George; Shoamanesh, Alireza; Leung, Victor C. M.
1988-01-01
A description is given of the present concept for the Canadian Mobile Satellite (MSAT) System and the development of the network architecture which will accommodate the planned family of three categories of service: a mobile radio service (MRS), a mobile telephone service (MTS), and a mobile data service (MDS). The MSAT satellite will have cross-strapped L-band and Ku-band transponders to provide communications services between L-band mobile terminals and fixed base stations supporting dispatcher-type MRS, gateway stations supporting MTS interconnections to the public telephone network, data hub stations supporting the MDS, and the network control center. The currently perceived centralized architecture with demand assignment multiple access for the circuit switched MRS, MTS and permanently assigned channels for the packet switched MDS is discussed.
A robot control architecture supported on contraction theory
NASA Astrophysics Data System (ADS)
Silva, Jorge; Sequeira, João; Santos, Cristina
2017-01-01
This paper proposes fundamentals for stability and success of a global system composed by a mobile robot, a real environment and a navigation architecture with time constraints. Contraction theory is a typical framework that provides tools and properties to prove the stability and convergence of the global system to a unique fixed point that identifies the mission success. A stability indicator based on the combination contraction property is developed to identify the mission success as a stability measure. The architecture is fully designed through C1 nonlinear dynamical systems and feedthrough maps, which makes it amenable for contraction analysis. Experiments in a realistic and uncontrolled environment are realised to verify if inherent perturbations of the sensory information and of the environment affect the stability and success of the global system.
Development of the network architecture of the Canadian MSAT system
NASA Astrophysics Data System (ADS)
Davies, N. George; Shoamanesh, Alireza; Leung, Victor C. M.
1988-05-01
A description is given of the present concept for the Canadian Mobile Satellite (MSAT) System and the development of the network architecture which will accommodate the planned family of three categories of service: a mobile radio service (MRS), a mobile telephone service (MTS), and a mobile data service (MDS). The MSAT satellite will have cross-strapped L-band and Ku-band transponders to provide communications services between L-band mobile terminals and fixed base stations supporting dispatcher-type MRS, gateway stations supporting MTS interconnections to the public telephone network, data hub stations supporting the MDS, and the network control center. The currently perceived centralized architecture with demand assignment multiple access for the circuit switched MRS, MTS and permanently assigned channels for the packet switched MDS is discussed.
Controlled molecular self-assembly of complex three-dimensional structures in soft materials
Huang, Changjin; Quinn, David; Suresh, Subra
2018-01-01
Many applications in tissue engineering, flexible electronics, and soft robotics call for approaches that are capable of producing complex 3D architectures in soft materials. Here we present a method using molecular self-assembly to generate hydrogel-based 3D architectures that resembles the appealing features of the bottom-up process in morphogenesis of living tissues. Our strategy effectively utilizes the three essential components dictating living tissue morphogenesis to produce complex 3D architectures: modulation of local chemistry, material transport, and mechanics, which can be engineered by controlling the local distribution of polymerization inhibitor (i.e., oxygen), diffusion of monomers/cross-linkers through the porous structures of cross-linked polymer network, and mechanical constraints, respectively. We show that oxygen plays a role in hydrogel polymerization which is mechanistically similar to the role of growth factors in tissue growth, and the continued growth of hydrogel enabled by diffusion of monomers/cross-linkers into the porous hydrogel similar to the mechanisms of tissue growth enabled by material transport. The capability and versatility of our strategy are demonstrated through biomimetics of tissue morphogenesis for both plants and animals, and its application to generate other complex 3D architectures. Our technique opens avenues to studying many growth phenomena found in nature and generating complex 3D structures to benefit diverse applications. PMID:29255037
UAF: a generic OPC unified architecture framework
NASA Astrophysics Data System (ADS)
Pessemier, Wim; Deconinck, Geert; Raskin, Gert; Saey, Philippe; Van Winckel, Hans
2012-09-01
As an emerging Service Oriented Architecture (SOA) specically designed for industrial automation and process control, the OPC Unied Architecture specication should be regarded as an attractive candidate for controlling scientic instrumentation. Even though an industry-backed standard such as OPC UA can oer substantial added value to these projects, its inherent complexity poses an important obstacle for adopting the technology. Building OPC UA applications requires considerable eort, even when taking advantage of a COTS Software Development Kit (SDK). The OPC Unied Architecture Framework (UAF) attempts to reduce this burden by introducing an abstraction layer between the SDK and the application code in order to achieve a better separation of the technical and the functional concerns. True to its industrial origin, the primary requirement of the framework is to maintain interoperability by staying close to the standard specications, and by expecting the minimum compliance from other OPC UA servers and clients. UAF can therefore be regarded as a software framework to quickly and comfortably develop and deploy OPC UA-based applications, while remaining compatible to third party OPC UA-compliant toolkits, servers (such as PLCs) and clients (such as SCADA software). In the rst phase, as covered by this paper, only the client-side of UAF has been tackled in order to transparently handle discovery, session management, subscriptions, monitored items etc. We describe the design principles and internal architecture of our open-source software project, the rst results of the framework running at the Mercator Telescope, and we give a preview of the planned server-side implementation.
Dynamic Inversion based Control of a Docking Mechanism
NASA Technical Reports Server (NTRS)
Kulkarni, Nilesh V.; Ippolito, Corey; Krishnakumar, Kalmanje
2006-01-01
The problem of position and attitude control of the Stewart platform based docking mechanism is considered motivated by its future application in space missions requiring the autonomous docking capability. The control design is initiated based on the framework of the intelligent flight control architecture being developed at NASA Ames Research Center. In this paper, the baseline position and attitude control system is designed using dynamic inversion with proportional-integral augmentation. The inverse dynamics uses a Newton-Euler formulation that includes the platform dynamics, the dynamics of the individual legs along with viscous friction in the joints. Simulation results are presented using forward dynamics simulated by a commercial physics engine that builds the system as individual elements with appropriate joints and uses constrained numerical integration,
Execution environment for intelligent real-time control systems
NASA Technical Reports Server (NTRS)
Sztipanovits, Janos
1987-01-01
Modern telerobot control technology requires the integration of symbolic and non-symbolic programming techniques, different models of parallel computations, and various programming paradigms. The Multigraph Architecture, which has been developed for the implementation of intelligent real-time control systems is described. The layered architecture includes specific computational models, integrated execution environment and various high-level tools. A special feature of the architecture is the tight coupling between the symbolic and non-symbolic computations. It supports not only a data interface, but also the integration of the control structures in a parallel computing environment.
Neural control of magnetic suspension systems
NASA Technical Reports Server (NTRS)
Gray, W. Steven
1993-01-01
The purpose of this research program is to design, build and test (in cooperation with NASA personnel from the NASA Langley Research Center) neural controllers for two different small air-gap magnetic suspension systems. The general objective of the program is to study neural network architectures for the purpose of control in an experimental setting and to demonstrate the feasibility of the concept. The specific objectives of the research program are: (1) to demonstrate through simulation and experimentation the feasibility of using neural controllers to stabilize a nonlinear magnetic suspension system; (2) to investigate through simulation and experimentation the performance of neural controllers designs under various types of parametric and nonparametric uncertainty; (3) to investigate through simulation and experimentation various types of neural architectures for real-time control with respect to performance and complexity; and (4) to benchmark in an experimental setting the performance of neural controllers against other types of existing linear and nonlinear compensator designs. To date, the first one-dimensional, small air-gap magnetic suspension system has been built, tested and delivered to the NASA Langley Research Center. The device is currently being stabilized with a digital linear phase-lead controller. The neural controller hardware is under construction. Two different neural network paradigms are under consideration, one based on hidden layer feedforward networks trained via back propagation and one based on using Gaussian radial basis functions trained by analytical methods related to stability conditions. Some advanced nonlinear control algorithms using feedback linearization and sliding mode control are in simulation studies.
Sawmill: A Logging File System for a High-Performance RAID Disk Array
1995-01-01
from limiting disk performance, new controller architectures connect the disks directly to the network so that data movement bypasses the file server...These developments raise two questions for file systems: how to get the best performance from a RAID, and how to use such a controller architecture ...the RAID-II storage system; this architecture provides a fast data path that moves data rapidly among the disks, high-speed controller memory, and the
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Turso, James A.; Shah, Neerav; Sowers, T. Shane; Owen, A. Karl
2005-01-01
A retrofit architecture for intelligent turbofan engine control and diagnostics that changes the fan speed command to maintain thrust is proposed and its demonstration in a piloted flight simulator is described. The objective of the implementation is to increase the level of autonomy of the propulsion system, thereby reducing pilot workload in the presence of anomalies and engine degradation due to wear. The main functions of the architecture are to diagnose the cause of changes in the engine s operation, warning the pilot if necessary, and to adjust the outer loop control reference signal in response to the changes. This requires that the retrofit control architecture contain the capability to determine the changed relationship between fan speed and thrust, and the intelligence to recognize the cause of the change in order to correct it or warn the pilot. The proposed retrofit architecture is able to determine the fan speed setting through recognition of the degradation level of the engine, and it is able to identify specific faults and warn the pilot. In the flight simulator it was demonstrated that when degradation is introduced into an engine with standard fan speed control, the pilot needs to take corrective action to maintain heading. Utilizing the intelligent retrofit control architecture, the engine thrust is automatically adjusted to its expected value, eliminating yaw without pilot intervention.
Planning assistance for the NASA 30/20 GHz program. Network control architecture study.
NASA Technical Reports Server (NTRS)
Inukai, T.; Bonnelycke, B.; Strickland, S.
1982-01-01
Network Control Architecture for a 30/20 GHz flight experiment system operating in the Time Division Multiple Access (TDMA) was studied. Architecture development, identification of processing functions, and performance requirements for the Master Control Station (MCS), diversity trunking stations, and Customer Premises Service (CPS) stations are covered. Preliminary hardware and software processing requirements as well as budgetary cost estimates for the network control system are given. For the trunking system control, areas covered include on board SS-TDMA switch organization, frame structure, acquisition and synchronization, channel assignment, fade detection and adaptive power control, on board oscillator control, and terrestrial network timing. For the CPS control, they include on board processing and adaptive forward error correction control.
Dynamic protein assembly by programmable DNA strand displacement.
Chen, Rebecca P; Blackstock, Daniel; Sun, Qing; Chen, Wilfred
2018-04-01
Inspired by the remarkable ability of natural protein switches to sense and respond to a wide range of environmental queues, here we report a strategy to engineer synthetic protein switches by using DNA strand displacement to dynamically organize proteins with highly diverse and complex logic gate architectures. We show that DNA strand displacement can be used to dynamically control the spatial proximity and the corresponding fluorescence resonance energy transfer between two fluorescent proteins. Performing Boolean logic operations enabled the explicit control of protein proximity using multi-input, reversible and amplification architectures. We further demonstrate the power of this technology beyond sensing by achieving dynamic control of an enzyme cascade. Finally, we establish the utility of the approach as a synthetic computing platform that drives the dynamic reconstitution of a split enzyme for targeted prodrug activation based on the sensing of cancer-specific miRNAs.
Interfacing insect brain for space applications.
Di Pino, Giovanni; Seidl, Tobias; Benvenuto, Antonella; Sergi, Fabrizio; Campolo, Domenico; Accoto, Dino; Maria Rossini, Paolo; Guglielmelli, Eugenio
2009-01-01
Insects exhibit remarkable navigation capabilities that current control architectures are still far from successfully mimic and reproduce. In this chapter, we present the results of a study on conceptualizing insect/machine hybrid controllers for improving autonomy of exploratory vehicles. First, the different principally possible levels of interfacing between insect and machine are examined followed by a review of current approaches towards hybridity and enabling technologies. Based on the insights of this activity, we propose a double hybrid control architecture which hinges around the concept of "insect-in-a-cockpit." It integrates both biological/artificial (insect/robot) modules and deliberative/reactive behavior. The basic assumption is that "low-level" tasks are managed by the robot, while the "insect intelligence" is exploited whenever high-level problem solving and decision making is required. Both neural and natural interfacing have been considered to achieve robustness and redundancy of exchanged information.