Arsenic Mobilization Through Microbial Bioreduction of Ferrihydrite Nanoparticles
NASA Astrophysics Data System (ADS)
Tadanier, C. J.; Roller, J.; Schreiber, M. E.
2004-12-01
Under anaerobic conditions Fe(III)-reducing microorganisms can couple the reduction of solid phase Fe(III) (hydr)oxides with the oxidation of organic carbon. Nutrients and trace metals, such as arsenic, associated with Fe(III) hydroxides may be mobilized through microbially-mediated surface reduction. Although arsenic mobilization has been attributed to mineral surface reduction in a variety of pristine and contaminated environments, minimal information exists on the mechanisms causing this arsenic mobilization. Understanding of the fundamental biochemical and physicochemical processes involved in these mobilization mechanisms is still limited, and has been complicated by the often contradictory and interchangeable terminology used in the literature to describe them. We studied arsenic mobilization mechanisms using a series of controlled microcosm experiments containing aggregated arsenic-bearing ferrihydrite nanoparticles and an Fe(III)-reducing microorganism, Geobacter metallireducens. The phase distribution of iron and arsenic was determined through filtration and ultracentrifugation techniques. Experimental results showed that in the biotic trials, approximately 10 percent of the Fe(III) was reduced to Fe(II) by microbial activity, which remained associated with ferrihydrite surfaces. Biotic activity resulted in changes in nanoparticle surface potential and caused deflocculation of nanoparticle aggregates. Deflocculated nanoparticles were able to pass through a 0.2 micron filter and could only be removed from solution by ultracentrifugation. Arsenic mobilized over time in the biotic trials was found to be exclusively associated with the nanoparticles; 98 percent of arsenic that passed through a 0.2 micron filter was removed from solution by ultracentrifugation. None of these changes were observed in abiotic controls. Because arsenic contamination of natural waters due to mobilization from mineral surfaces is a significant route of human arsenic exposure worldwide, improved understanding of the biologically-mediated mechanisms that partition arsenic between solid and solution phases is required for development of effective treatment and remediation strategies.
Sulfide-driven arsenic mobilization from arsenopyrite and black shale pyrite
Zhu, W.; Young, L.Y.; Yee, N.; Serfes, M.; Rhine, E.D.; Reinfelder, J.R.
2008-01-01
We examined the hypothesis that sulfide drives arsenic mobilization from pyritic black shale by a sulfide-arsenide exchange and oxidation reaction in which sulfide replaces arsenic in arsenopyrite forming pyrite, and arsenide (As-1) is concurrently oxidized to soluble arsenite (As+3). This hypothesis was tested in a series of sulfide-arsenide exchange experiments with arsenopyrite (FeAsS), homogenized black shale from the Newark Basin (Lockatong formation), and pyrite isolated from Newark Basin black shale incubated under oxic (21% O2), hypoxic (2% O2, 98% N2), and anoxic (5% H2, 95% N2) conditions. The oxidation state of arsenic in Newark Basin black shale pyrite was determined using X-ray absorption-near edge structure spectroscopy (XANES). Incubation results show that sulfide (1 mM initial concentration) increases arsenic mobilization to the dissolved phase from all three solids under oxic and hypoxic, but not anoxic conditions. Indeed under oxic and hypoxic conditions, the presence of sulfide resulted in the mobilization in 48 h of 13-16 times more arsenic from arsenopyrite and 6-11 times more arsenic from isolated black shale pyrite than in sulfide-free controls. XANES results show that arsenic in Newark Basin black shale pyrite has the same oxidation state as that in FeAsS (-1) and thus extend the sulfide-arsenide exchange mechanism of arsenic mobilization to sedimentary rock, black shale pyrite. Biologically active incubations of whole black shale and its resident microorganisms under sulfate reducing conditions resulted in sevenfold higher mobilization of soluble arsenic than sterile controls. Taken together, our results indicate that sulfide-driven arsenic mobilization would be most important under conditions of redox disequilibrium, such as when sulfate-reducing bacteria release sulfide into oxic groundwater, and that microbial sulfide production is expected to enhance arsenic mobilization in sedimentary rock aquifers with major pyrite-bearing, black shale formations. ?? 2008 Elsevier Ltd. All rights reserved.
ASSESSING THE MOBILITY OF ARSENIC IN CONTAMINATED SEDIMENTS
The mobility of arsenic is controlled, in part, by partitioning to mineral surfaces in soils and sediments. Determination of the risk posed to human or ecosystem health by arsenic and identification of remediation technologies that could be employed to eliminate or reduce risk i...
Numerical Modeling of Arsenic Mobility during Reductive Iron-Mineral Transformations.
Rawson, Joey; Prommer, Henning; Siade, Adam; Carr, Jackson; Berg, Michael; Davis, James A; Fendorf, Scott
2016-03-01
Millions of individuals worldwide are chronically exposed to hazardous concentrations of arsenic from contaminated drinking water. Despite massive efforts toward understanding the extent and underlying geochemical processes of the problem, numerical modeling and reliable predictions of future arsenic behavior remain a significant challenge. One of the key knowledge gaps concerns a refined understanding of the mechanisms that underlie arsenic mobilization, particularly under the onset of anaerobic conditions, and the quantification of the factors that affect this process. In this study, we focus on the development and testing of appropriate conceptual and numerical model approaches to represent and quantify the reductive dissolution of iron oxides, the concomitant release of sorbed arsenic, and the role of iron-mineral transformations. The initial model development in this study was guided by data and hypothesized processes from a previously reported,1 well-controlled column experiment in which arsenic desorption from ferrihydrite coated sands by variable loads of organic carbon was investigated. Using the measured data as constraints, we provide a quantitative interpretation of the processes controlling arsenic mobility during the microbial reductive transformation of iron oxides. Our analysis suggests that the observed arsenic behavior is primarily controlled by a combination of reductive dissolution of ferrihydrite, arsenic incorporation into or co-precipitation with freshly transformed iron minerals, and partial arsenic redox transformations.
APPROACHES TO CHARACTERIZING SOLID PHASE ARSENIC SPECIATION IN SOILS
The partitioning of arsenic to soil solids is an important process controlling the stabilization of arsenic wastes and mobility of arsenic in the environment. Identification of the physicochemical characteristics of the partitioning mechanism(s) is important for treatment op...
Cheng, Hefa; Hu, Yuanan; Luo, Jian; Xu, Bin; Zhao, Jianfu
2009-06-15
Acid mine drainage (AMD) is often accompanied with elevated concentrations of arsenic, in the forms of arsenite, As(III), and/or arsenate, As(V), due to the high affinity of arsenic for sulfide mineral ores. This review summarizes the major geochemical processes controlling the release, speciation, fate, and distribution of inorganic arsenic in mine drainage and natural systems. Arsenic speciation depends highly on redox potential and pH of the solution, and arsenite can be oxidized to the less toxic arsenate form. Homogeneous oxidation of arsenite occurs rather slowly while its heterogeneous oxidation on mineral surfaces can greatly enhance the reaction rates. Little evidence suggests that precipitation reaction limits the concentrations of arsenic in natural water, while co-precipitation may lead to rapid arsenic removal when large amount of iron hydroxides precipitate out of the aqueous phase upon neutralization of the mine drainage. Both arsenate and arsenite adsorb on common metal oxides and clay minerals through formation of inner-sphere and/or outer-sphere complexes, controlling arsenic concentration in natural water bodies. Arsenite adsorbs less strongly than arsenate in the typical pH range of natural water and is more mobile. Part of the adsorbed arsenic species can be exchanged by common anions (e.g., PO(4)(3-) and SO(4)(2-)), especially phosphate, which leads to their re-mobilization. Understanding the geochemistry of arsenic is helpful for predicting its mobility and fate in AMD and natural systems, and for designing of cost-effective remediation/treatment strategies to reduce the occurrence and risk of arsenic contamination.
NASA Astrophysics Data System (ADS)
Jaffe, P. R.; MacDonald, L. H.; Paull, J.
2009-12-01
Plants and hydrology influence the transport of arsenic in wetlands by changing the dominant redox chemistry in the subsurface, and different plant and hydrological regimes can serve as effective barriers or promoters of metal transport. Inorganic arsenic, especially arsenate, binds to iron oxides in wetlands. In flooded wetland sediments, organic carbon from plants consumes oxygen and promotes reductive iron dissolution, which leads to arsenic release, while plants simultaneously create microoxic regimes around root hairs that oxidize and precipitate iron, promoting arsenic capture. Hydrology influences arsenic mobility by promoting wetting and drying cycles. Such cycles can lead to rapid shifts from anaerobic to aerobic conditions, and vice versa, with lasting impact on the oxidation state of iron and, by extension, the mobility of arsenic. Remediation strategies should take these competing conditions into account, and to help inform these strategies this study examines the chemistry of an industrially contaminated wetland when the above mechanisms aggregate. The study tests whether, in bulk, plants promote iron reduction or oxidation in intermittently flooded or consistently flooded sediments, and how this impacts arsenic mobility. This research uses a novel dialysis-based monitoring technique to examine the macro-properties of arsenic transport at the sediment water interface and at depth. Dialysis-based monitoring allows long-term seasonal trends in anaerobic porewater and allows active hypothesis testing on the influence of plants on redox chemistry. This study finds that plants promote iron reduction and that iron-reducing zones tend to correlate with zones with mobile arsenic. However, one newly reported and important finding of this study is that a brief summer drought that dried and oxidized sediments with a long history of iron-reduction zone served to effectively halt iron reduction for many months, and this corresponded to a lasting decline in dissolved arsenic concentrations during that time. This finding clearly links hydrological controls on sediment chemistry to arsenic mobility. Through mechanisms like this that influences iron, plants and hydrology impact many contaminants and, although focusing on arsenic, the principals uncovered from this detailed research bear real-world implications for forecasting and managing the transport of a variety of contaminants in wetland systems.
Reductive dissolution of iron oxyhydr(oxides) and release of adsorbed or coprecipitated arsenic is often implicated as a key process that controls the mobility and bioavailability of arsenic in anoxic environments. Yet a complete assessment of arsenic transport and fate requires...
Because arsenic in ground water and surface water poses a risk to ecosystem and human health, more detailed information is needed on the factors that govern arsenic fate and transport in the environment. Arsenic mobility in natural systems is often linked to iron and sulfur cycl...
Liao, Vivian Hsiu-Chuan; Chu, Yu-Ju; Su, Yu-Chen; Lin, Po-Cheng; Hwang, Yaw-Huei; Liu, Chen-Wuing; Liao, Chung-Min; Chang, Fi-John; Yu, Chan-Wei
2011-12-15
High levels of arsenic in groundwater and drinking water represent a major health problem worldwide. Drinking arsenic-contaminated groundwater is a likely cause of blackfoot disease (BFD) in Taiwan, but mechanisms controlling the mobilization of arsenic present at elevated concentrations within aquifers remain understudied. Microcosm experiments using sediments from arsenic contaminated shallow alluvial aquifers in the blackfoot disease endemic area showed simultaneous microbial reduction of Fe(III) and As(V). Significant soluble Fe(II) (0.23±0.03 mM) in pore waters and mobilization of As(III) (206.7±21.2 nM) occurred during the first week. Aqueous Fe(II) and As(III) respectively reached concentrations of 0.27±0.01 mM and 571.4±63.3 nM after 8 weeks. We also showed that the addition of acetate caused a further increase in aqueous Fe(II) but the dissolved arsenic did not increase. We further isolated an As(V)-reducing bacterium native to aquifer sediments which showed that the direct enzymatic reduction of As(V) to the potentially more-soluble As(III) in pore water is possible in this aquifer. Our results provide evidence that microorganisms can mediate the release of sedimentary arsenic to groundwater in this region and the capacity for arsenic release was not limited by the availability of electron donors in the sediments. Copyright © 2011 Elsevier B.V. All rights reserved.
Mobilization of arsenic from contaminated sediment by anionic and nonionic surfactants.
Liang, Chuan; Peng, Xianjia
2017-06-01
The increasing manufacture of surfactants and their wide application in industry, agriculture and household detergents have resulted in large amounts of surfactant residuals being discharged into water and distributed into sediment. Surfactants have the potential to enhance arsenic mobility, leading to risks to the environment and even human beings. In this study, batch and column experiments were conducted to investigate arsenic mobilization from contaminated sediment by the commercial anionic surfactants sodium dodecylbenzenesulfonate (SDBS), sodium dodecyl sulfate (SDS), sodium laureth sulfate (AES) and nonionic surfactants phenyl-polyethylene glycol (Triton X-100) and polyethylene glycol sorbitan monooleate (Tween-80). The ability of surfactants to mobilize arsenic followed the order AES>SDBS>SDS≈Triton X-100>Tween 80. Arsenic mobilization by AES and Triton X-100 increased greatly with the increase of surfactant concentration and pH, while arsenic release by SDBS, SDS and Tween-80 slightly increased. The divalent ion Ca 2+ caused greater reduction of arsenic mobilization than Na + . Sequential extraction experiments showed that the main fraction of arsenic mobilized was the specifically adsorbed fraction. Solid phase extraction showed that arsenate (As(V)) was the main species mobilized by surfactants, accounting for 65.05%-77.68% of the total mobilized arsenic. The mobilization of arsenic was positively correlated with the mobilization of iron species. The main fraction of mobilized arsenic was the dissolved fraction, accounting for 70% of total mobilized arsenic. Copyright © 2016. Published by Elsevier B.V.
Microbial Mineral Weathering for Nutrient Acquisition Releases Arsenic
NASA Astrophysics Data System (ADS)
Mailloux, B. J.; Alexandrova, E.; Keimowitz, A.; Wovkulich, K.; Freyer, G.; Stolz, J.; Kenna, T.; Pichler, T.; Polizzotto, M.; Dong, H.; Radloff, K. A.; van Geen, A.
2008-12-01
Tens of millions of people in Southeast Asia drink groundwater contaminated with naturally occurring arsenic. The process of arsenic release from the sediment to the groundwater remains poorly understood. Experiments were performed to determine if microbial mineral weathering for nutrient acquisition can serve as a potential mechanism for arsenic mobilization. We performed microcosm experiments with Burkholderia fungorum, phosphate free artificial groundwater, and natural apatite. Controls included incubations with no cells and with killed cells. Additionally, samples were treated with two spikes - an arsenic spike, to show that arsenic release is independent of the initial arsenic concentration, and a phosphate spike to determine whether release occurs at field relevant phosphate conditions. We show in laboratory experiments that phosphate-limited cells of Burkholderia fungorum mobilize ancillary arsenic from apatite as a by-product of mineral weathering for nutrient acquisition. The released arsenic does not undergo a redox transformation but appears to be solubilized from the apatite mineral lattice as arsenate during weathering. Apatite has been shown to be commonly present in sediment samples from Bangladesh aquifers. Analysis of apatite purified from the Ganges, Brahamputra, Meghna drainage basin shows 210 mg/kg of arsenic, which is higher than the average crustal level. Finally, we demonstrate the presence of the microbial phenotype that releases arsenic from apatite in Bangladesh sediments. These results suggest that microbial weathering for nutrient acquisition could be an important mechanism for arsenic mobilization.
SEQUENTIAL EXTRACTIONS FOR PARTITIONING OF ARSENIC ON HYDROUS IRON OXIDES AND IRON SULFIDES
The objective of this study was to use model solids to test solutions designed to extract arsenic from relatively labile solid phase fractions. The use of sequential extractions provides analytical constraints on the identification of mineral phases that control arsenic mobility...
Arsenic mobilization from solid phase Fe (III) hydroxides is an issue of concern, as water-borne arsenic can migrate into pristine environments, endangering aquatic and human life. In general, metal oxide (hydroxides) exerts a dominating effect on the fate and transport of arseni...
Mapoma, Harold Wilson Tumwitike; Xie, Xianjun; Pi, Kunfu; Liu, Yaqing; Zhu, Yapeng
2016-03-01
This paper discusses the reactive transport and evolution of arsenic along a selected flow path in a study plot within the central part of Datong basin. The simulation used the TOUGHREACT code. The spatial and temporal trends in hydrochemistry and mineral volume fraction along a flow path were observed. Furthermore, initial simulation of major ions and pH fits closely to the measured data. The study shows that equilibrium conditions may be attained at different stress periods for each parameter simulated. It is noted that the variations in ionic chemistry have a greater impact on arsenic distribution while reducing conditions drive the mobilization of arsenic. The study concluded that the reduction of Fe(iii) and As(v) and probably SO4/HS cycling are significant factors affecting localized mobilization of arsenic. Besides cation exchange and water-rock interaction, incongruent dissolution of silicates is also a significant control mechanism of general chemistry of the Datong basin aquifer.
Arsenic Redistribution Between Sediments and Water Near a Highly Contaminated Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keimowitz,A.; Zheng, Y.; Chillrud, S.
2005-01-01
Mechanisms controlling arsenic partitioning between sediment, groundwater, porewaters, and surface waters were investigated at the Vineland Chemical Company Superfund site in southern New Jersey. Extensive inorganic and organic arsenic contamination at this site (historical total arsenic >10 000 {micro}g L{sup -1} or >130 {micro}M in groundwater) has spread downstream to the Blackwater Branch, Maurice River, and Union Lake. Stream discharge was measured in the Blackwater Branch, and water samples and sediment cores were obtained from both the stream and the lake. Porewaters and sediments were analyzed for arsenic speciation as well as total arsenic, iron, manganese, and sulfur, and theymore » indicate that geochemical processes controlling mobility of arsenic were different in these two locations. Arsenic partitioning in the Blackwater Branch was consistent with arsenic primarily being controlled by sulfur, whereas in Union Lake, the data were consistent with arsenic being controlled largely by iron. Stream discharge and arsenic concentrations indicate that despite large-scale groundwater extraction and treatment, >99% of arsenic transport away from the site results from continued discharge of high arsenic groundwater to the stream, rather than remobilization of arsenic in stream sediments. Changing redox conditions would be expected to change arsenic retention on sediments. In sulfur-controlled stream sediments, more oxic conditions could oxidize arsenic-bearing sulfide minerals, thereby releasing arsenic to porewaters and streamwaters; in iron-controlled lake sediments, more reducing conditions could release arsenic from sediments via reductive dissolution of arsenic-bearing iron oxides.« less
NASA Astrophysics Data System (ADS)
Wen, Bing; Zhou, Aiguo; Zhou, Jianwei; Liu, Cunfu; Huang, Yuliu; Li, Ligang
2018-02-01
The Xikuangshan(XKS) mine, the world's largest antimony mine, was chosen for a detailed arsenic hydrogeochemical study because of the elevated arsenic in bedrock aquifers used by local residents. Hydrochemical data, δ34S values of dissolved SO42- and 87Sr/86Sr ratios have been analyzed to identify the predominant geochemical processes that control the arsenic mobilization within the aquifers. Groundwater samples can be divided into three major types: low arsenic groundwater (0-50 μg/L), high arsenic groundwater (50-1000 μg/L) and anomalous high arsenic groundwater (>1000 μg/L). Arsenic occurs under oxidizing conditions at the XKS Sb mine as the HAsO42- anion. The Ca/Na ratio correlates significantly with HCO3-/Na and Sr/Na ratios, indicating that carbonate dissolution and silicate weathering are the dominant processes controlling groundwater hydrochemistry. The δ34S values of the groundwater indicate that dissolved SO42- in groundwater is mainly sourced from the oxidation of sulfide minerals, and elevated As concentrations in groundwater are influenced by the mixing of mine water and surface water. Furthermore, the δ34S values are not correlated with dissolved As concentrations and Fe concentrations, suggesting that the reduction dissolution of Fe(III) hydroxides is not the dominant process controlling As mobilization. The 87Sr/86Sr ratios imply that elevated As concentrations in groundwater are primarily derived from the interaction with the stibnite and silicified limestone. More specifically, the excess-Na ion, the feature of Ca/Na ratio, and the spatial association of elevated As concentrations in groundwater collectively suggest that high and anomalous high arsenic groundwater are associated with smelting slags and, in particular, the arsenic alkali residue. In general, the hydrochemistry analysis, especially the S and Sr isotope evidences elucidate that elevated As concentrations and As mobilization are influenced by several geochemical processes, including: (1) bedrock weathering; (2) oxidation of arsenopyrite and the dominant sulfides in the ores; (3) mixing of mine drainage and surface water; (4) leaching of the arsenic alkali residue; and (5) sorption-desorption from Fe/Mn oxides/hydroxides.
Huang, Shuangbing; Liu, Changrong; Wang, Yanxin; Zhan, Hongbin
2014-01-01
The effects of various geochemical processes on arsenic enrichment in a high-arsenic aquifer at Jianghan Plain in Central China were investigated using multivariate models developed from combined adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR). The results indicated that the optimum variable group for the AFNIS model consisted of bicarbonate, ammonium, phosphorus, iron, manganese, fluorescence index, pH, and siderite saturation. These data suggest that reductive dissolution of iron/manganese oxides, phosphate-competitive adsorption, pH-dependent desorption, and siderite precipitation could integrally affect arsenic concentration. Analysis of the MLR models indicated that reductive dissolution of iron(III) was primarily responsible for arsenic mobilization in groundwaters with low arsenic concentration. By contrast, for groundwaters with high arsenic concentration (i.e., > 170 μg/L), reductive dissolution of iron oxides approached a dynamic equilibrium. The desorption effects from phosphate-competitive adsorption and the increase in pH exhibited arsenic enrichment superior to that caused by iron(III) reductive dissolution as the groundwater chemistry evolved. The inhibition effect of siderite precipitation on arsenic mobilization was expected to exist in groundwater that was highly saturated with siderite. The results suggest an evolutionary dominance of specific geochemical process over other factors controlling arsenic concentration, which presented a heterogeneous distribution in aquifers. Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of Environmental Science and Health, Part A, to view the supplemental file.
Rutherford, D.W.; Bednar, A.J.; Garbarino, J.R.; Needham, R.; Staver, K.W.; Wershaw, R. L.
2003-01-01
Poultry litter often contains arsenic as a result of organo-arsenical feed additives. When the poultry litter is applied to agricultural fields, the arsenic is released to the environment and may result in increased arsenic in surface and groundwater and increased uptake by plants. The release of arsenic from poultry litter, litter-amended soils, and soils without litter amendment was examined by extraction with water and strong acids (HCI and HN03). The extracts were analyzed for As, C, P, Cu, Zn, and Fe. Copper, zinc, and iron are also poultry feed additives. Soils with a known history of litter application and controlled application rate of arsenic-containing poultry litter were obtained from the University of Maryland Agricultural Experiment Station. Soils from fields with long-term application of poultry litter were obtained from a tilled field on the Delmarva Peninsula (MD) and an untilled Oklahoma pasture. Samples from an adjacent forest or nearby pasture that had no history of litter application were used as controls. Depth profiles were sampled for the Oklahoma pasture soils. Analysis of the poultry litter showed that 75% of the arsenic was readily soluble in water. Extraction of soils shows that weakly bound arsenic mobilized by water correlates positively with C, P, Cu, and Zn in amended fields and appears to come primarily from the litter. Strongly bound arsenic correlates positively with Fe in amended fields and suggests sorption or coprecipitation of As and Fe in the soil column.
Mueller, Seth H.; Goldfarb, Richard J.; Verplanck, Philip L.; Trainor, Thomas P.; Sanzolone, Richard F.; Adams, Monique; Gough, Larry P.; Day, Warren C.
2007-01-01
Epigenetic mineral deposits in the Tintina Gold Province are generally characterized by high concentrations of arsenic and antimony in their mineral assemblage. A total of 347 samples (ground water, surface water, and stream sediment) were collected to investigate the distribution and mobility of arsenic and antimony in the environment near known mineral deposits. Samples were collected from east to west at Keno Hill and Brewery Creek, Yukon, Canada; and Cleary Hill, True North, Scrafford Mine, Fairbanks, Ryan Lode, Stampede Creek, Slate Creek, and Donlin Creek, all in Alaska. Surface- and ground-water samples are all slightly acidic to near-neutral in pH (5-8), have a wide range in specific conductance (surface water 17-2,980 microsiemens per centimeter and ground water 170-2,940 microsiemens per centimeter), and show elevated dissolved arsenic and antimony concentrations (arsenic in surface water is less than 1 to 380 micrograms per liter and in ground water is less than 1 micrograms per liter to 1.5 milligrams per liter; antimony in surface water is less than 2 to 660 micrograms per liter and in ground water is less than 2 to 60 micrograms per liter). Stream sediments downstream from these deposits have high concentrations of arsenic and antimony (arsenic median is 1,670 parts per million, maximum is 10,000 parts per million; antimony median is 192 parts per million, maximum is 7,200 parts per million). The mobility of arsenic and antimony is controlled by the local redox environment, with arsenic being less mobile in oxidized surface waters relative to antimony, and arsenic more mobile in reduced ground water. These factors suggest that both antimony and arsenic may be useful pathfinder elements in water and sediment for targeting similar style deposits elsewhere in the Tintina Gold Province.
Gross, Eliza L.; Low, Dennis J.
2013-01-01
Logistic regression models were created to predict and map the probability of elevated arsenic concentrations in groundwater statewide in Pennsylvania and in three intrastate regions to further improve predictions for those three regions (glacial aquifer system, Gettysburg Basin, Newark Basin). Although the Pennsylvania and regional predictive models retained some different variables, they have common characteristics that can be grouped by (1) geologic and soils variables describing arsenic sources and mobilizers, (2) geochemical variables describing the geochemical environment of the groundwater, and (3) locally specific variables that are unique to each of the three regions studied and not applicable to statewide analysis. Maps of Pennsylvania and the three intrastate regions were produced that illustrate that areas most at risk are those with geology and soils capable of functioning as an arsenic source or mobilizer and geochemical groundwater conditions able to facilitate redox reactions. The models have limitations because they may not characterize areas that have localized controls on arsenic mobility. The probability maps associated with this report are intended for regional-scale use and may not be accurate for use at the field scale or when considering individual wells.
Arsenic transformation and mobilization from minerals by the arsenite oxidizing strain WAO
Rhine, E.D.; Onesios, K.M.; Serfes, M.E.; Reinfelder, J.R.; Young, L.Y.
2008-01-01
Analysis of arsenic concentrations in New Jersey well water from the Newark Basin showed up to 15% of the wells exceed 10 ??g L-1, with a maximum of 215 ??g L-1. In some geologic settings in the basin, this mobile arsenic could be from the weathering of pyrite (FeS2) found in black shale that contains up to 4% arsenic by weight. We hypothesized that under oxic conditions at circumneutral pH, the microbially mediated oxidation of sulfide in the pyrite lattice would lead to the release of pyrite-bound arsenic. Moreover, the oxidation of aqueous As(III) to As(V) by aerobic microorganisms could further enhance arsenic mobilization from the solid phase. Enrichment cultures under aerobic, As(III)-oxidizing conditions were established under circumneutral pH with weathered black shale from the Newark Basin as the inoculum source. Strain WAO, an autotrophic inorganic-sulfur and As(III)-oxidizer, was isolated and phylogenetically and physiologically characterized. Arsenic mobilization studies from arsenopyrite (FeAsS) mineral, conducted with strain WAO at circumneutral pH, showed microbially enhanced mobilization of arsenic and complete oxidation of released arsenic and sulfur to stoichiometric amounts of arsenate and sulfate. In addition, WAO preferentially colonized pyrite on the surface of arsenic-bearing, black shale thick sections. These findings support the hypothesis that microorganisms can directly mobilize and transform arsenic bound in mineral form at circumneutral pH and suggest that the microbial mobilization of arsenic into groundwater may be important in other arsenic-impacted aquifers. ?? 2008 American Chemical Society.
Weiske, Arndt; Schaller, Jörg; Hegewald, Tilo; Machill, Susanne; Werner, Ingo; Dudel, E Gert
2013-12-01
Metal and metalloid mobilization processes within seepage water are of major concern in a range of water reservoir systems. The mobilization process of arsenic and heavy metals within a dam and sediments of a drinking water reservoir was investigated. Principle component analysis (PCA) on time series data of seepage water showed a clear positive correlation of arsenic with iron and DOC (dissolved organic carbon), and a negative correlation with nitrate due to respiratory processes. A relationship of reductive metal and metalloid mobilization with respiration of old carbon was shown. The system is influenced by sediment layers as well as a recent DOC input from degraded ombrotrophic peatbogs in the catchment area. The isotopic composition ((12)C, (13)C and (14)C) of DOC is altered along the path from basin to seepage water, but no significant changes in structural parameters (LC-OCD-OND, FT-IR) could be seen. DIC (dissolved inorganic carbon) in seepage water partly originates from respiratory processes, and a higher relationship of it with sediment carbon than with the DOC inventory of infiltrating water was found. This study revealed the interaction of respiratory processes with metal and metalloid mobilization in sediment water flows. In contrast to the presumption that emerging DOC via respiratory processes mainly controls arsenic and metal mobilization it could be shown that the presence of aged carbon compounds is essential. The findings emphasize the importance of aged organic carbon for DOC, DIC, arsenic and metal turnover.
Beesley, Luke; Inneh, Onyeka S; Norton, Gareth J; Moreno-Jimenez, Eduardo; Pardo, Tania; Clemente, Rafael; Dawson, Julian J C
2014-03-01
Amending contaminated soils with organic wastes can influence trace element mobility and toxicity. Soluble concentrations of metals and arsenic were measured in pore water and aqueous soil extracts following the amendment of a heavily contaminated mine soil with compost and biochar (10% v:v) in a pot experiment. Speciation modelling and toxicity assays (Vibrio fischeri luminescence inhibition and Lolium perenne germination) were performed to discriminate mechanisms controlling metal mobility and assess toxicity risk thereafter. Biochar reduced free metal concentrations furthest but dissolved organic carbon primarily controlled metal mobility after compost amendment. Individually, both amendments induced considerable solubilisation of arsenic to pore water (>2500 μg l(-1)) related to pH and soluble phosphate but combining amendments most effectively reduced toxicity due to simultaneous reductions in extractable metals and increases in soluble nutrients (P). Thus the measure-monitor-model approach taken determined that combining the amendments was most effective at mitigating attendant toxicity risk. Copyright © 2013 Elsevier Ltd. All rights reserved.
Drewniak, Lukasz; Styczek, Aleksandra; Majder-Lopatka, Malgorzata; Sklodowska, Aleksandra
2008-12-01
The aim of the present study was to find out if bacteria present in ancient gold mine could transform immobilized arsenic into its mobile form and increase its dissemination in the environment. Twenty-two arsenic-hypertolerant cultivable bacterial strains were isolated. No chemolithoautotrophs, which could use arsenite as an electron donor as well as arsenate as an electron acceptor, were identified. Five isolates exhibited hypertolerance to arsenic: up to 500mM of arsenate. A correlation between the presence of siderophores and high resistance to arsenic was found. The results of this study show that detoxification processes based on arsenate reductase activity might be significant in dissemination of arsenic pollution. It was concluded that the activity of the described heterotrophic bacteria contributes to the mobilization of arsenic in the more toxic As(III) form and a new mechanism of arsenic mobilization from a scorodite was proposed.
NASA Astrophysics Data System (ADS)
Xie, Zuoming; Wang, Yanxin; Duan, Mengyu; Xie, Xianjun; Su, Chunli
2011-03-01
Endemic arsenic poisoning due to long-term drinking of high arsenic groundwater has been reported in Datong Basin, northern China. To investigate the effects of microbial activities on arsenic mobilization in contaminated aquifers, Bacillus cereus ( B. cereus) isolated from high arsenic aquifer sediments of the basin was used in our microcosm experiments. The arsenic concentration in the treatment with both bacteria and sodium citrate or glucose had a rapid increase in the first 18 d, and then, it declined. Supplemented with bacteria only, the concentration could increase on the second day. By contrast, the arsenic concentration in the treatment supplemented with sodium citrate or glucose was kept very low. These results indicate that bacterial activities promoted the release of arsenic in the sediments. Bacterial activities also influenced other geochemical parameters of the aqueous phase, such as pH, Eh, and the concentrations of dissolved Fe, Mn, and Al that are important controls on arsenic release. The removal of Fe, Mn, and Al from sediment samples was observed with the presence of B. cereus. The effects of microbial activities on Fe, Mn, and Al release were nearly the same as those on As mobilization. The pH values of the treatments inoculated with bacteria were lower than those without bacteria, still at alkaline levels. With the decrease of Eh values in treatments inoculated with bacteria, the microcosms became more reducing and are thus favorable for arsenic release.
Meliker, J.R.; Slotnick, M.J.; Avruskin, G.A.; Haack, S.K.; Nriagu, J.O.
2009-01-01
Arsenic concentrations exceeding 10 ??g/l, the United States maximum contaminant level and the World Health Organization guideline value, are frequently reported in groundwater from bedrock and unconsolidated aquifers of southeastern Michigan. Although arsenic-bearing minerals (including arsenian pyrite and oxide/hydroxide phases) have been identified in Marshall Sandstone bedrock of the Mississippian aquifer system and in tills of the unconsolidated aquifer system, mechanisms responsible for arsenic mobilization and subsequent transport in groundwater are equivocal. Recent evidence has begun to suggest that groundwater recharge and characteristics of well construction may affect arsenic mobilization and transport. Therefore, we investigated the relationship between dissolved arsenic concentrations, reported groundwater recharge rates, well construction characteristics, and geology in unconsolidated and bedrock aquifers. Results of multiple linear regression analyses indicate that arsenic contamination is more prevalent in bedrock wells that are cased in proximity to the bedrock-unconsolidated interface; no other factors were associated with arsenic contamination in water drawn from bedrock or unconsolidated aquifers. Conditions appropriate for arsenic mobilization may be found along the bedrock-unconsolidated interface, including changes in reduction/oxidation potential and enhanced biogeochemical activity because of differences between geologic strata. These results are valuable for understanding arsenic mobilization and guiding well construction practices in southeastern Michigan, and may also provide insights for other regions faced with groundwater arsenic contamination. ?? Springer-Verlag 2008.
Li, M D; Wang, Y X; Li, P; Deng, Y M; Xie, X J
2014-12-01
Environmental isotopology of sulfur and oxygen of dissolved sulfate in groundwater was conducted in the Hetao Plain, northwestern China, aiming to better understand the processes controlling arsenic mobilization in arsenic-rich aqueous systems. A total of 22 groundwater samples were collected from domestic wells in the Hetao Plain. Arsenic concentrations ranged from 11.0 to 388 μg/L. The δ(34)S-SO4 and δ(18)O-SO4 values of dissolved sulfate covered a range from +1.48 to +22.4‰ and +8.17‰ to +14.8‰ in groundwater, respectively. The wide range of δ(34)S-SO4 values reflected either an input of different sources of sulfate, such as gypsum dissolution and fertilizer application, or a modification from biogeochemical process of bacterial sulfate reduction. The positive correlation between δ(34)S-SO4 and arsenic concentrations suggested that bacteria mediated processes played an important role in the mobilization of arsenic. The δ(18)O-SO4 values correlated non-linearly with δ(34)S-SO4, but within a relatively narrow range (+8.17 to +14.8‰), implying that complexities inherent in the sulfate-oxygen (O-SO4(2-)) origins, for instance, water-derived oxygen (O-H2O), molecular oxygen (O-O2) and isotope exchanging with dissolved oxides, are accounted for oxygen isotope composition of dissolved sulfate in groundwater in the Hetao Plain.
Effects of Chlorine Promoted Oxidation on Arsenic Release from Sulfide Minerals
NASA Astrophysics Data System (ADS)
West, N.; Schreiber, M.; Gotkowitz, M.
2007-12-01
High arsenic concentrations (>100 ppb) have been measured in wells completed in the Ordovician St. Peter sandstone aquifer of eastern Wisconsin. The primary source of arsenic is As-bearing sulfide minerals within the aquifer. Periodic disinfection of wells by chlorination may facilitate arsenic release to groundwater by increasing the rate of sulfide mineral oxidation. During typical well disinfection procedures, aquifer solids exposed along uncased portions of wells remain in direct contact with chlorine disinfection solutions for up to twenty-four hours. Due to the redox sensitivity of arsenic mobility in groundwater, it is important to evaluate the effect of repeatedly adding oxidizers to an arsenic impacted aquifer system. This study focuses on abiotic processes that mobilize arsenic from the solid phase during controlled exposure to chlorinated solutions. Two St. Peter samples with As concentrations of 21 and 674 ppm were selected for the experiments. Before reaction, the aquifer mineralogy is characterized using scanning electron microscopy (SEM) and electron microprobe analysis (EMPA). The samples are then reacted with solutions of 60 mg/L free chlorine, 1200 mg/L free chlorine, or nanopure water (control) at pH 7.0 and pH 8.5. These parameters represent typical solution chemistries present within the wells after disinfection. Solutions are sampled periodically during the experiments and analyzed for As, Fe, other trace metals such as Co, Mo, Cr, and Ni, and sulfate. Analysis of the post-reaction solids using SEM, EMPA, laser ablation ICP-MS and Raman techniques are used to document the changes in mineralogy due to chlorination and to document which solid phases contain As.
Oremland, Ronald S.; Stolz, John F.
2003-01-01
Arsenic is a metalloid whose name conjures up images of murder. Nonetheless, certain prokaryotes use arsenic oxyanions for energy generation, either by oxidizing arsenite or by respiring arsenate. These microbes are phylogenetically diverse and occur in a wide range of habitats. Arsenic cycling may take place in the absence of oxygen and can contribute to organic matter oxidation. In aquifers, these microbial reactions may mobilize arsenic from the solid to the aqueous phase, resulting in contaminated drinking water. Here we review what is known about arsenic-metabolizing bacteria and their potential impact on speciation and mobilization of arsenic in nature.
Arsenic mobilization in shallow aquifers due to CO 2 intrusion from storage reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Ting; Dai, Zhenxue; Viswanathan, Hari S.
We developed an integrated framework of combined batch experiments and reactive transport simulations to quantify water-rock-CO 2 interactions and arsenic (As) mobilization responses to CO 2 and/or saline water leakage into USDWs. Experimental and simulation results suggest that when CO 2 is introduced, pH drops immediately that initiates release of As from clay minerals. Calcite dissolution can increase pH slightly and cause As re-adsorption. Thus, the mineralogy of the USDW is ultimately a determining factor of arsenic fate and transport. Salient results suggest that: (1) As desorption/adsorption from/onto clay minerals is the major reaction controlling its mobilization, and clay mineralsmore » could mitigate As mobilization with surface complexation reactions; (2) dissolution of available calcite plays a critical role in buffering pH; (3) high salinity in general hinders As release from minerals; and (4) the magnitude and quantitative uncertainty of As mobilization are predicated on the values of reaction rates and surface area of calcite, adsorption surface areas and equilibrium constants of clay minerals, and cation exchange capacity. Results of this study are intended to improve ability to quantify risks associated with potential leakage of reservoir fluids into shallow aquifers, in particular the possible environmental impacts of As mobilization at carbon sequestration sites.« less
Arsenic mobilization in shallow aquifers due to CO 2 intrusion from storage reservoirs
Xiao, Ting; Dai, Zhenxue; Viswanathan, Hari S.; ...
2017-06-05
We developed an integrated framework of combined batch experiments and reactive transport simulations to quantify water-rock-CO 2 interactions and arsenic (As) mobilization responses to CO 2 and/or saline water leakage into USDWs. Experimental and simulation results suggest that when CO 2 is introduced, pH drops immediately that initiates release of As from clay minerals. Calcite dissolution can increase pH slightly and cause As re-adsorption. Thus, the mineralogy of the USDW is ultimately a determining factor of arsenic fate and transport. Salient results suggest that: (1) As desorption/adsorption from/onto clay minerals is the major reaction controlling its mobilization, and clay mineralsmore » could mitigate As mobilization with surface complexation reactions; (2) dissolution of available calcite plays a critical role in buffering pH; (3) high salinity in general hinders As release from minerals; and (4) the magnitude and quantitative uncertainty of As mobilization are predicated on the values of reaction rates and surface area of calcite, adsorption surface areas and equilibrium constants of clay minerals, and cation exchange capacity. Results of this study are intended to improve ability to quantify risks associated with potential leakage of reservoir fluids into shallow aquifers, in particular the possible environmental impacts of As mobilization at carbon sequestration sites.« less
Neumann, Rebecca B.; St. Vincent, Allison P.; Roberts, Linda C.; Badruzzaman, A. Borhan M.; Ali, M. Ashraf; Harvey, Charles F.
2011-01-01
Irrigation of rice fields in Bangladesh with arsenic-contaminated groundwater transfers tens of cubic kilometers of water and thousands of tons of arsenic from aquifers to rice fields each year. Here we combine observations of infiltration patterns with measurements of porewater chemical composition from our field site in Munshiganj Bangladesh to characterize the mobility of arsenic in soils beneath rice fields. We find that very little arsenic delivered by irrigation returns to the aquifer, and that recharging water mobilizes little, if any, arsenic from rice field subsoils. Arsenic from irrigation water is deposited on surface soils and sequestered along flow paths that pass through bunds, the raised soil boundaries around fields. Additionally, timing of flow into bunds limits the transport of biologically available organic carbon from rice fields into the subsurface where it could stimulate reduction processes that mobilize arsenic from soils and sediments. Together, these results explain why groundwater irrigated rice fields act as net sinks of arsenic from groundwater. PMID:21332196
Controls on the Mobility of Antimony in Mine Waste from Three Deposit Types
NASA Astrophysics Data System (ADS)
Jamieson, H.; Radková, A. B.; Fawcett, S.
2017-12-01
Antimony can be considered both a critical metal and an environmental hazard, with a toxicity similar to arsenic. It is concentrated in stibnite deposits, but also present in polymetallic and precious metal ores, frequently accompanied by arsenic. We have studied the mineralogical controls on the mobility of antimony in three types of mine waste: stibnite tailings from an antimony mine, tetrahedrite-bearing waste rock from copper mining, and gold mine tailings and ore roaster waste. Our results demonstrate that the tendency of antimony to leach into the aqueous environment or remain sequestered in solid phases depends on the primary host minerals and conditions governing the precipitation of secondary antimony-hosting phases. In tailings at the Beaver Brook antimony mine in Newfoundland, Canada, stibnite oxidizes rapidly, and secondary minerals such as the relatively insoluble Sb-Fe tripuhyite-like phase and Sb-bearing goethite. However, under dry conditions, the most important secondary Sb host is the Mg-Sb hydroxide brandholzite, but this easily soluble mineral disappears when it rains. Antimony that was originally hosted in tetrahedrite, a complex multi-element sulfosalt, in the historic waste rock piles at Špania Dolina-Piesky, Slovakia, is not as mobile as Cu and As during weathering but reprecipiates to a mixture of tripuhyite and romeite. Finally, the original antimony-hosting minerals, both stibnite and sulphosalts, in the gold ore at Giant Mine, Yellowknife, Canada were completely destroyed during ore roasting. In tailings-contaminated sediments, antimony persists in roaster-generated iron oxide phases, except under reducing conditions where some of the antimony forms a Sb-S phase. The combined presence of antimony and arsenic in mine waste complicates risk assessment but in general, our findings suggest that antimony is less mobile than arsenic in the environment.
ARSENIC MOBILIZATION BY THE DISSIMILATORY FE(III)-REDUCING BACTERIUM SHEWANELLA ALGA BRY. (R825399)
The mobility of arsenic commonly increases as reducing conditions are
established within sediments or flooded soils. Although the reduction of arsenic
increases its solubility at circumneutral pH, hydrous ferric oxides (HFO)
strongly sorb both As(V) (arsenate) and ...
Leaching of Arsenic from Granular Ferric Hydroxide Residuals under Mature Landfill Conditions
Ghosh, Amlan; Mukiibi, Muhammed; Sáez, A. Eduardo; Ela, Wendell P.
2008-01-01
Most arsenic bearing solid residuals (ABSR) from water treatment will be disposed in non-hazardous landfills. The lack of an appropriate leaching test to predict arsenic mobilization from ABSR creates a need to evaluate the magnitude and mechanisms of arsenic release under landfill conditions. This work studies the leaching of arsenic and iron from a common ABSR, granular ferric hydroxide, in a laboratory-scale column that simulates the biological and physicochemical conditions of a mature, mixed solid waste landfill. The column operated for approximately 900 days and the mode of transport as well as chemical speciation of iron and arsenic changed with column age. Both iron and arsenic were readily mobilized under the anaerobic, reducing conditions. During the early stages of operation, most arsenic and iron leaching (80% and 65%, respectively) was associated with suspended particulate matter and iron was lost proportionately faster than arsenic. In later stages, while the rate of iron leaching declined, the arsenic leaching rate increased greater than 7-fold. The final phase was characterized by dissolved species leaching. Future work on the development of standard batch leaching tests should take into account the dominant mobilization mechanisms identified in this work: solid associated transport, reductive sorbent dissolution, and microbially mediated arsenic reduction. PMID:17051802
Leaching of arsenic from granular ferric hydroxide residuals under mature landfill conditions.
Ghosh, Amlan; Mukiibi, Muhammed; Sáez, A Eduardo; Ela, Wendell P
2006-10-01
Most arsenic bearing solid residuals (ABSR) from water treatment will be disposed in nonhazardous landfills. The lack of an appropriate leaching test to predict arsenic mobilization from ABSR creates a need to evaluate the magnitude and mechanisms of arsenic release under landfill conditions. This work studies the leaching of arsenic and iron from a common ABSR, granular ferric hydroxide, in a laboratory-scale column that simulates the biological and physicochemical conditions of a mature, mixed solid waste landfill. The column operated for approximately 900 days and the mode of transport as well as chemical speciation of iron and arsenic changed with column age. Both iron and arsenic were readily mobilized under the anaerobic, reducing conditions. During the early stages of operation, most arsenic and iron leaching (80% and 65%, respectively) was associated with suspended particulate matter, and iron was lost proportionately faster than arsenic. In later stages, while the rate of iron leaching declined, the arsenic leaching rate increased greater than 7-fold. The final phase was characterized by dissolved species leaching. Future work on the development of standard batch leaching tests should take into account the dominant mobilization mechanisms identified in this work: solid associated transport, reductive sorbent dissolution, and microbially mediated arsenic reduction.
Control of arsenic mobilization in paddy soils by manganese and iron oxides.
Xu, Xiaowei; Chen, Chuan; Wang, Peng; Kretzschmar, Ruben; Zhao, Fang-Jie
2017-12-01
Reductive mobilization of arsenic (As) in paddy soils under flooded conditions is an important reason for the relatively high accumulation of As in rice, posing a risk to food safety and human health. The extent of As mobilization varies widely among paddy soils, but the reasons are not well understood. In this study, we investigated As mobilization in six As-contaminated paddy soils (total As ranging from 73 to 122 mg kg -1 ) in flooded incubation and pot experiments. Arsenic speciation in the solution and solid phases were determined. The magnitude of As mobilization into the porewater varied by > 100 times among the six soils. Porewater As concentration correlated closely with the concentration of oxalate-extractable As, suggesting that As associated with amorphous iron (oxyhydr)oxides represents the potentially mobilizable pool of As under flooded conditions. Soil containing a high level of manganese oxides showed the lowest As mobilization, likely because Mn oxides retard As mobilization by slowing down the drop of redox potential upon soil flooding and maintaining a higher arsenate to arsenite ratio in the solid and solution phases. Additions of a synthetic Mn oxide (hausmannite) to two paddy soils increased arsenite oxidation, decreased As mobilization into the porewater and decreased As concentrations in rice grain and straw. Consistent with previous studies using simplified model systems or pure mineral phases, the present study shows that Mn oxides and amorphous Fe (oxyhydr)oxides are important factors controlling reductive As mobilization in As-contaminated paddy soils. In addition, this study also suggests a potential mitigation strategy using exogenous Mn oxides to decrease As uptake by rice in paddy soils containing low levels of indigenous Mn oxides, although further work is needed to verify its efficacy and possible secondary effects under field conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Linking AS, SE, V, and MN Behavior to Natural Biostimulated Uranium Cycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keimowitz, Alison; Ranville, James; Mailloux, Brian
The project “Linking As, Se, V, and Mn behavior to Natural and Biostimulated Uranium Cycling” successfully investigated Arsenic cycling the Rifle Colorado IFRC. This project trained undergraduate and graduate students at the Colorado School of Mines, Vassar College, and Barnard College. This resulted in both undergraduate theses and a PhD thesis and multiple publications. The science was highly successful and we were able to test the main hypotheses. We have shown that (H1) under reducing conditions that promote uranium immobilization arsenic is readily mobilized, that (H2) thioarsenic species are abundant during this mobilization, and (H3) we have examined arsenic mobilizationmore » for site sediment. At the Rifle IFRC Acetate was added during experiments to immobilize Uranium. These experiments successfully immobilized uranium but unfortunately would mobilize arsenic. We developed robust sampling and analysis methods for thioarsenic species. We showed that the mobilization occurred under sulfate reducing conditions and the majority of the arsenic was in the form of thioarsenic species. Previous studies had predicted the presence of thioarsenic species but this study used robust field and laboratory methods to quantitatively determine the presence of thioarsenic species. During stimulation in wells with high arsenic the primary species were trithioarsenate and dithioarsenate. In wells with low levels of arsenic release thioarsenates were absent or minor components. Fortunately after the injection of acetate ended the aquifer would become less reducing and the arsenic concentrations would decrease to pre-injection levels. In aquifers where organic carbon is being added as a remedial method or as a contaminant the transient mobility of arsenic during sulfidogenesis should be considered especially in sulfate rich aquifers as this could impact downgradient water quality.« less
Effects of sulfur in flooded paddy soils: Implications for iron chemistry and arsenic mobilization
NASA Astrophysics Data System (ADS)
Avancha, S.; Boye, K.
2013-12-01
In the Mekong delta in Cambodia, naturally occurring arsenic (amplified by erosion in the Himalaya Mountains) in paddy soils is mobilized during the seasonal flooding. As a consequence, rice grown on the flooded soils may take up arsenic and expose people eating the rice to this carcinogenic substance. Iron and sulfur both interact strongly with arsenic in paddy soils: iron oxides are strong adsorbents for arsenic in oxic conditions, and sulfur (in the form of sulfide) is a strong adsorbent under anoxic conditions. In the process of reductive dissolution of iron oxides, arsenic, which had been adsorbed to the iron oxides, is released. Therefore, higher levels of reduced iron (ferrous iron) will likely correlate with higher levels of mobilized arsenic. However, the mobilized arsenic may then co-precipitate with or adsorb to iron sulfides, which form under sulfate-reducing conditions and with the aid of certain microbes already present in the soil. In a batch experiment, we investigated how these processes correlate and which has the greatest influence on arsenic mobilization and potential plant availability. The experiment was designed to measure the effects of various sources of sulfur (dried rice straw, charred rice straw, and gypsum) on the iron and arsenic release in an arsenic-contaminated paddy soil from Cambodia under flooded conditions. The two types of rice straw were designed to introduce the same amount of organic sulfur (7.7 μg/g of soil), but different levels of available carbon, since carbon stimulates microbial activity in the soil. In comparison, two different levels of gypsum (calcium sulfate) were used, 7.7 and 34.65 μg/g of soil, to test the effect of directly available inorganic sulfate without carbon addition. The soil was flooded with a buffer solution at pH 7.07 in airtight serum vials and kept as a slurry on a shaker at 25 °C. We measured pH, alkalinity, ferrous iron, ferric iron, sulfide, sulfate, total iron, sulfur, and arsenic in the aqueous phase on days 1, 3, 8, 15, 22, 29 and 38 from the start of the experiment.
ARSENIC MOBILIZATION FROM SEDIMENTS IN MICROCOSMS UNDER SULFATE REDUCTION
Sun, Jing; Quicksall, Andrew N.; Chillrud, Steven N.; Mailloux, Brian J.; Bostick, Benjamin C.
2016-01-01
Arsenic is often assumed to be immobile in sulfidic environments. Here, laboratory-scale microcosms were conducted to investigate whether microbial sulfate reduction could control dissolved arsenic concentrations sufficiently for use in groundwater remediation. Sediments from the Vineland Superfund site and the Coeur d'Alene mining district were amended with different combination of lactate and sulfate and incubated for 30 to 40 days. In general, sulfate reduction in Vineland sediments resulted in transient and incomplete arsenic removal, or arsenic release from sediments. Sulfate reduction in the Coeur d'Alene sediments was more effective at removing arsenic from solution than the Vineland sediments, probably by arsenic substitution and adsorption within iron sulfides. X-ray absorption spectroscopy indicated that the Vineland sediments initially contained abundant reactive ferrihydrite, and underwent extensive sulfur cycling during incubation. As a result, arsenic in the Vineland sediments could not be effectively converted to immobile arsenic-bearing sulfides, but instead a part of the arsenic was probably converted to soluble thioarsenates. These results suggest that coupling between the iron and sulfur redox cycles must be fully understood for in situ arsenic immobilization by sulfate reduction to be successful. PMID:27037658
Farmer, G. Lang; Goldfarb, Richard J.; Lilly, Michael R.; Bolton, Bob; Meier, Allen L.; Sanzolone, Richard F.
2000-01-01
Major- and trace-element abundances, and Sr and Pb isotopic compositions, of ground waters in and near Fairbanks, Alaska, were determined to characterize their chemical characteristics and to assess the factors controlling variations in dissolved arsenic concentrations. Collected samples show majorelement (Ca>Mg>Na>K) and strontium and lead isotopic compositions characteristic of waters that have interacted with lithologies comprising the Fairbanks Schist. Dissolved arsenic concentrations are not highly correlated with the abundances of other major and trace elements in these waters; however, waters with high arsenic concentrations (5.4 to 450 parts per billion) tend to have relatively high concentrations of antimony (as much as 1.7 ppb). The correlation between arsenic and antimony suggests that both elements were derived from the oxidation of hypogene sulfide minerals (arsenopyrite) that originally formed within the Fairbanks Schist during hydrothermal activity associated with the emplacement of Cretaceous granitic rocks. Variations in measured arsenic concentrations are due, in part, to the variations in the original abundance of upgradient sulfide minerals from a given well or spring. However, speciation studies on the ground water containing the highest concentration of arsenic in this study (450 ppb) demonstrate that the arsenic occurs primarily in its reduced form (As(III)). In agreement with previous studies, we conclude that relatively reducing ground waters have the highest potential for high arsenic concentrations due to greater mobility of As(III) relative to its oxidized counterpart (As(V)). In light of this conclusion, additional studies are being undertaken to determine how seasonal variations in ground-water redox affect arsenic mobility
Richards, Laura A; Magnone, Daniel; Sovann, Chansopheaktra; Kong, Chivuth; Uhlemann, Sebastian; Kuras, Oliver; van Dongen, Bart E; Ballentine, Christopher J; Polya, David A
2017-07-15
Arsenic contamination of groundwaters in South and Southeast Asia is a major threat to public health. In order to better understand the geochemical controls on the mobility of arsenic in a heavily arsenic-affected aquifer in northern Kandal Province, Cambodia, key changes in inorganic aqueous geochemistry have been monitored at high vertical and lateral resolution along dominant groundwater flow paths along two distinct transects. The two transects are characterized by differing geochemical, hydrological and lithological conditions. Arsenic concentrations in groundwater are highly heterogenous, and are broadly positively associated with iron and negatively associated with sulfate and dissolved oxygen. The observed correlations are generally consistent with arsenic mobilization by reductive-dissolution of iron (hydr)oxides. Key redox zones, as identified using groupings of the PHREEQC model equilibrium electron activity of major redox couples (notably ammonium/nitrite; ammonium/nitrate; nitrite/nitrate; dissolved oxygen/water) have been identified and vary with depth, site and season. Mineral saturation is also characterized. Seasonal changes in groundwater chemistry were observed in areas which were (i) sandy and of high permeability; (ii) in close proximity to rivers; and/or (iii) in close proximity to ponds. Such changes are attributed to monsoonal-driven surface-groundwater interactions and are consistent with the separate provenance of recharge sources as identified using stable isotope mixing models. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
This report documents the activities performed and the results obtained for the arsenic removal treatment technology demonstration project at Spring Brook Mobile Home Park (SBMHP) in Wales, Maine. The objectives of the project were to evaluate: 1) the effectiveness of an arsenic...
Bhattacharyya, Rupa; Chatterjee, Debashis; Nath, Bibhash; Jana, Joydev; Jacks, Gunnar; Vahter, Marie
2003-11-01
The widespread occurrence of high inorganic arsenic in natural waters is attributed to human carcinogen and is identified as a major global public health issue. The scale of the problem in terms of population exposure (36 million) and geographical area coverage (173 x 10(3) Km2) to high arsenic contaminated groundwater (50-3200 microgL(-1)) compared to the National drinking water standard (50 microgL(-1)) and WHO recommended provisional limit (10 microgL(-1)) is greatest in the Holocene alluvium and deltaic aquifers of the Bengal Delta Plain (Bangladesh and West Bengal, India). This large-scale 'natural' high arsenic groundwater poses a great threat to human health via drinking water. Mobilization, metabolism and mitigation issues of high arsenic groundwater are complex and need holistic approach for sustainable development of the resource. Mobilization depends on the redox geochemistry of arsenic that plays a vital role in the release and subsequent transport of arsenic in groundwater. Metabolism narrates the biological response vis-à-vis clinical manifestations of arsenic due to various chemical and biological factors. Mitigation includes alternative source for safe drinking water supply. Drinking water quality regulatory standards as well as guidelines are yet to cover risk assessments for such metal toxicity. Lowering of the ingested inorganic arsenic level and introduction of newer treatment options (implementation of laterite, the natural material) to ensure safe water supply (arsenic free and/or low arsenic within permissible limit) are the urgent need to safe guard the mass arsenic poisoning and internal arsenic related health problems.
NASA Astrophysics Data System (ADS)
Horvath, A. S.; Baldisimo, J. G.; Moreau, J. W.
2010-12-01
Arsenic contamination of groundwater poses a serious environmental and human health problem in many regions around the world. Historical groundwater chemistry data for a Western-Central Victorian gold mine (Australia) revealed a strong inverse correlation between dissolved thiocyanate and iron(II), supporting the interpretation that oxidation of thiocyanate, a major groundwater contaminant by-product of cyanide-based gold leaching, was coupled to reductive dissolution of iron ox(yhydrox)ides in tailings dam sediments. Microbial growth was observed in this study in a selective medium using SCN- as the sole carbon and nitrogen source. The potential for use of SCN- as a tracer of mining contamination in groundwater was evaluated in the context of biological SCN- oxidation potential in the aquifer. Geochemical data also revealed a high positive correlation between dissolved arsenic and manganese, indicating that sorption on manganese-oxides most likely controls arsenic mobility at this site. Samples of groundwater and sediments along a roughly straight SW-NE traverse away from a large mine tailings storage facility, and parallel to the major groundwater flow direction, were analysed for major ions and trace metals. Groundwater from wells approaching the tailings along this traverse showed a nearly five-fold increase (roughly 25-125 ppb) in dissolved arsenic concentrations relative to aqueous Mn(II) concentrations. Thus, equivalent amounts of dissolved manganese released a five-fold difference in the amount of adsorbed arsenic. The interpretation that reductive dissolution of As-bearing MnO2 at the mine site has been mediated by groundwater (or aquifer) microorganisms is consistent with our recovery of synthetic birnessite-reducing enrichment cultures that were inoculated with As-contaminated groundwaters.
Arsenic solid-phase speciation and reversible binding in long-term contaminated soils.
Rahman, M S; Clark, M W; Yee, L H; Comarmond, M J; Payne, T E; Kappen, P; Mokhber-Shahin, L
2017-02-01
Historic arsenic contamination of soils occurs throughout the world from mining, industrial and agricultural activities. In Australia, the control of cattle ticks using arsenicals from the late 19th to mid 20th century has led to some 1600 contaminated sites in northern New South Wales. The effect of aging in As-mobility in two dip-site soil types, ferralitic and sandy soils, are investigated utilizing isotopic exchange techniques, and synchrotron X-ray adsorption spectroscopy (XAS). Findings show that historic soil arsenic is highly bound to the soils with >90% irreversibly bound. However, freshly added As (either added to historically loaded soils or pristine soils) has a significantly higher degree of As-accessibility. XAS data indicates that historic soil arsenic is dominated as Ca- (svenekite, & weilite), Al-(mansfieldite), and Fe- (scorodite) like mineral precipitates, whereas freshly added As is dominated by mineral adsorption surfaces, particularly the iron oxy-hydroxides (goethite and hematite), but also gibbsite and kaolin surfaces. SEM data further confirmed the presence of scorodite and mansfieldite formation in the historic contaminated soils. These data suggest that aging of historic soil-As has allowed neoformational mineral recrystallisation from surface sorption processes, which greatly reduces As-mobility and accessibility. Copyright © 2016 Elsevier Ltd. All rights reserved.
Environmental Fate and Exposure Assessment for Arsenic in Groundwater
2008-08-01
The Devens study suggests that MNA may be an effective remedial option for sites where naturally-occurring arsenic has been mobilized due to...The Devens study suggests that MNA may be an effective remedial option for sites where naturally-occurring arsenic has been mobilized due to...per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing
Drouhot, Séverine; Raoul, Francis; Crini, Nadia; Tougard, Christelle; Prudent, Anne-Sophie; Druart, Coline; Rieffel, Dominique; Lambert, Jean-Claude; Tête, Nicolas; Giraudoux, Patrick; Scheifler, Renaud
2014-02-01
Partial remediation actions at a former gold mine in Southern France led to a mosaic of contaminated and rehabilitated zones. In this study, the distribution of arsenic and its potential adverse effects on small mammals were investigated. The effectiveness of remediation for reducing the transfer of this element into wildlife was also discussed. Arsenic levels were measured in the soil and in the stomach contents, livers, kidneys, and lungs of four small mammal species (the wood mouse (Apodemus sylvaticus), the Algerian mouse (Mus spretus), the common vole (Microtus arvalis), and the greater white-toothed shrew (Crocidura russula)). The animals were caught at the former extraction site, in zones with three different levels of remediation treatments, and at a control site. Arsenic concentrations in the soil were highly spatially heterogeneous (ranging from 29 to 18,900 μg g(-1)). Despite the decrease in arsenic concentrations in the remediated soils, both wood mice and Algerian mice experienced higher oral exposure to arsenic in remediated zones than in the control area. The accumulated arsenic in their organs showed higher intra-zonal variability than the arsenic distribution in the soil, suggesting that, in addition to remediation processes, other variables can help explain arsenic transfer to wildlife, such as the habitat and diet preferences of the animals or their mobility. A weak but significant correlation between arsenic concentration and body condition was observed, and weak relationships between the liver/kidney/lung mass and arsenic levels were also detected, suggesting possible histological alterations. © 2013.
Schaller, Jörg; Planer-Friedrich, Britta
2017-05-01
Organic sediments in aquatic ecosystems are well known sinks for nutrients, silicon, and metal(loid)s. Organic matter-consuming organisms like invertebrate shredders, grazers, and bioturbators significantly affect element fixation or remobilization by changing redox conditions or binding properties of organic sediments. Little is known about the effect of filter feeders, like the zebra mussel Dreissena polymorpha, an invasive organism in North American and European freshwater ecosystems. A laboratory batch experiment exposing D. polymorpha (∼1200 organisms per m 2 ) to organic sediment from a site contaminated with arsenic, copper, lead, and uranium revealed a significant uptake and accumulation of arsenic, copper, iron, and especially uranium both into the soft body tissues and the seashell. This is in line with previous observations of metal(loid) accumulation from biomonitoring studies. Regarding its environmental impact, D. polymorpha significantly contributed to mobilization of silicon, iron, phosphorus, arsenic, and copper and to immobilization of uranium (p < 0.001), probably driven by redox conditions, microbial activity within the gut system, or active control of element homeostasis. No net mobilization or immobilization was observed for zinc and lead, because of their low mobility at the prevailing pH of 7.5-8.5. The present results suggest that D. polymorpha can both ameliorate (nutrient mobilization, immobilization of toxicants mobile under oxic conditions) or aggravate negative effects (mobilization of toxicants mobile under reducing conditions) in ecosystems. Relating the results of the present study to observed population densities in natural freshwater ecosystems suggests a significant influence of D. polymorpha on element cycling and needs to be considered in future studies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Arsenic release during managed aquifer recharge (MAR)
NASA Astrophysics Data System (ADS)
Pichler, T.; Lazareva, O.; Druschel, G.
2013-12-01
The mobilization and addition of geogenic trace metals to groundwater is typically caused by anthropogenic perturbations of the physicochemical conditions in the aquifer. This can add dangerously high levels of toxins to groundwater, thus compromising its use as a source of drinking water. In several regions world-wide, aquifer storage and recovery (ASR), a form of managed aquifer recharge (MAR), faces the problem of arsenic release due to the injection of oxygenated storage water. To better understand this process we coupled geochemical reactive transport modeling to bench-scale leaching experiments to investigate and verify the mobilization of geogenic arsenic (As) under a range of redox conditions from an arsenic-rich pyrite bearing limestone aquifer in Central Florida. Modeling and experimental observations showed similar results and confirmed the following: (1) native groundwater and aquifer matrix, including pyrite, were in chemical equilibrium, thus preventing the release of As due to pyrite dissolution under ambient conditions; (2) mixing of oxygen-rich surface water with oxygen-depleted native groundwater changed the redox conditions and promoted the dissolution of pyrite, and (3) the behavior of As along a flow path was controlled by a complex series of interconnected reactions. This included the oxidative dissolution of pyrite and simultaneous sorption of As onto neo-formed hydrous ferric oxides (HFO), followed by the reductive dissolution of HFO and secondary release of adsorbed As under reducing conditions. Arsenic contamination of drinking water in these systems is thus controlled by the re-equilibration of the system to more reducing conditions rather than a purely oxidative process.
Sutton, Nora B; van der Kraan, Geert M; van Loosdrecht, Mark C M; Muyzer, Gerard; Bruining, Johannes; Schotting, Ruud J
2009-04-01
While millions of people drink arsenic-contaminated tube well water across Bangladesh, there is no recent scientific explanation which is able to either comprehensively explain arsenic mobilization or to predict the spatial distribution of affected wells. Rather, mitigation strategies have focused on the sinking of deep tube wells into the currently arsenic-free Pleistocene aquifer. In this study, Bangladesh shallow tube wells identified as contaminated and uncontaminated, as well as deep tube wells, were analyzed for geochemical and in situ microbiological composition. Whereas arsenic was detected in all Holocene aquifer wells, no arsenic was found in wells accessing the Pleistocene aquifer. Bacterial genera, including Comamonadaceae, Acidovorax, Acinetobacter, and Hydrogenophaga, associated with tolerance of high arsenic concentrations, rather than dissimilatory Fe(III) or As(V) reduction, were identified in shallow tube wells, indicating that mobilization may not occur at depth, but is rather due to drawdown of surface contaminated water. Deep tube wells contained microbes indicative of aerobic conditions, including the genera Aquabacterium, Limnobacter, and Roseomonas. It is concluded that through drawdown of arsenic or organic matter, further utilization of the Pleistocene aquifer could result in contamination similar to that observed in the Holocene aquifer.
Anguita, Javiera M; Rojas, Claudia; Pastén, Pablo A; Vargas, Ignacio T
2018-02-01
Biological arsenic oxidation has been suggested as a key biogeochemical process that controls the mobilization and fate of this metalloid in aqueous environments. To the best of our knowledge, only four aerobic chemolithoautotrophic arsenite-oxidizing (CAO) bacteria have been shown to grow via direct arsenic oxidation and to have the essential genes for chemolithoautotrophic arsenite oxidation. In this study, a new CAO bacterium was isolated from a high Andean watershed evidencing natural dissolved arsenic attenuation. The bacterial isolate, designated TS-1, is closely related to the Ancylobacter genus, in the Alphaproteobacteria class. Results showed that TS-1 has genes for arsenite oxidation and carbon fixation. The dependence of bacterial growth from arsenite oxidation was demonstrated. In addition, a mathematical model was suggested and the kinetic parameters were obtained by simultaneously fitting the biomass growth, arsenite depletion curves, and arsenate production. This research increases the knowledge of chemolithoautotrophic arsenic oxidizing microorganisms and its potential role as a driver for natural arsenic attenuation.
Arsenic mobilization in the Brahmaputra plains of Assam: groundwater and sedimentary controls.
Sailo, Lalsangzela; Mahanta, Chandan
2014-10-01
Arsenic (As) mobilization to the groundwater of Brahmaputra floodplains was investigated in Titabor, Jorhat District, located in the North Eastern part of India. The groundwater and the aquifer geochemistry were characterized in the study area. The range of As concentration in the groundwater varies from 10 to 440 μg/l with mean concentration 210 μg/l. The groundwaters are characterized by high dissolved Fe, Mn, and HCO₃(-) and low concentrations of NO₃(-) and SO₄(2-) indicating the reduced conditions prevailing in the groundwater. In order to understand the actual mobilization processes in the area, six core drilling surrounding the two target tube wells (T1 and T2) with high As concentration (three drill-cores surrounds each tube well closely) was done. The sediment was analyzed its chemical, mineralogical, and elemental compositions. A selective sequential extraction suggested that most of the As in the sediment is bound to Fe oxides fractions (32 to 50%) and the competition for adsorption site by anions (PO₄(3-)) also accounts to significant fractions of the total arsenic extracted. High variability in the extraction as well as properties of the sediment was observed due to the heterogeneity of the sediment samples with different chemical properties. The SEM and EDX results indicate the presence of Fe, Mn coating along with As for most of the sample, and the presence of As associated minerals were calculated using PHREEQC. The mobilization of As into the groundwater was anticipated to be largely controlled by the reductive dissolution of Fe oxides and partly by the competitive anions viz. PO₄(3-).
Zhang, Changqing; Ferrari, Ricardo; Beezhold, Kevin; Stearns-Reider, Kristen; D’Amore, Antonio; Haschak, Martin; Stolz, Donna; Robbins, Paul D.; Barchowsky, Aaron; Ambrosio, Fabrisia
2016-01-01
Arsenic is a global health hazard that impacts over 140 million individuals worldwide. Epidemiological studies reveal prominent muscle dysfunction and mobility declines following arsenic exposure; yet, mechanisms underlying such declines are unknown. The objective of this study was to test the novel hypothesis that arsenic drives a maladaptive fibroblast phenotype to promote pathogenic myomatrix remodeling and compromise the muscle stem (satellite) cell (MuSC) niche. Mice were exposed to environmentally relevant levels of arsenic in drinking water before receiving a local muscle injury. Arsenic-exposed muscles displayed pathogenic matrix remodeling, defective myofiber regeneration and impaired functional recovery, relative to controls. When naïve human MuSCs were seeded onto three-dimensional decellularized muscle constructs derived from arsenic-exposed muscles, cells displayed an increased fibrogenic conversion and decreased myogenicity, compared with cells seeded onto control constructs. Consistent with myomatrix alterations, fibroblasts isolated from arsenic-exposed muscle displayed sustained expression of matrix remodeling genes, the majority of which were mediated by NF-κB. Inhibition of NF-κB during arsenic exposure preserved normal myofiber structure and functional recovery after injury, suggesting that NF-κB signaling serves as an important mechanism of action for the deleterious effects of arsenic on tissue healing. Taken together, the results from this study implicate myomatrix biophysical and/or biochemical characteristics as culprits in arsenic-induced MuSC dysfunction and impaired muscle regeneration. It is anticipated that these findings may aid in the development of strategies to prevent or revert the effects of arsenic on tissue healing and, more broadly, provide insight into the influence of the native myomatrix on stem cell behavior. PMID:26537186
Effect of Coexisting Ions on Adsorption of Arsenic by Metal Oxides
NASA Astrophysics Data System (ADS)
Meng, Xiaoguang; Shi, Qiantao; Christodoulatos, Christos
2017-04-01
Iron hydroxides and nano TiO2 are commonly used adsorbents for removal of arsenic in water. Iron hydroxides also play an important role in controlling the fate and transport of arsenic in groundwater. Co-existing anions, such as phosphate, silicate, and bicarbonate could significantly affect the adsorption capacity of the adsorbents for arsenate and arsenite and increase their mobility in groundwater aquifers. Arsenate and arsenite interactions at the solid-water interface were investigated using electrophoretic mobility (EM) measurements, Fourier transform infrared (FTIR) spectroscopy, and extended X-ray absorption fine structure (EXAFS) spectroscopy. Electrochemical scanning tunneling microscopy (ECSTM) and in-situ flow cell ATR-FTIR were applied to investigate the interactions between As(III), As(V) and carbonate in water and at the solid-water interface. The experimental results suggested that arsenate and arsenite formed inner-sphere complexes with the hydroxide groups on the adsorbents. Arsenite and carbonate could form ternary surface complexes with the hydroxyl groups on iron hydroxide.
Li, Yuan; Guo, Huaming; Hao, Chunbo
2014-12-01
Indigenous microbes play crucial roles in arsenic mobilization in high arsenic groundwater systems. Databases concerning the presence and the activity of microbial communities are very useful in evaluating the potential of microbe-mediated arsenic mobilization in shallow aquifers hosting high arsenic groundwater. This study characterized microbial communities in groundwaters at different depths with different arsenic concentrations by DGGE and one sediment by 16S rRNA gene clone library, and evaluated arsenic mobilization in microcosm batches with the presence of indigenous bacteria. DGGE fingerprints revealed that the community structure changed substantially with depth at the same location. It indicated that a relatively higher bacterial diversity was present in the groundwater sample with lower arsenic concentration. Sequence analysis of 16S rRNA gene demonstrated that the sediment bacteria mainly belonged to Pseudomonas, Dietzia and Rhodococcus, which have been widely found in aquifer systems. Additionally, NO3(-)-reducing bacteria Pseudomonas sp. was the largest group, followed by Fe(III)-reducing, SO4(2-)-reducing and As(V)-reducing bacteria in the sediment sample. These anaerobic bacteria used the specific oxyanions as electron acceptor and played a significant role in reductive dissolution of Fe oxide minerals, reduction of As(V), and release of arsenic from sediments into groundwater. Microcosm experiments, using intact aquifer sediments, showed that arsenic release and Fe(III) reduction were microbially mediated in the presence of indigenous bacteria. High arsenic concentration was also observed in the batch without amendment of organic carbon, demonstrating that the natural organic matter in sediments was the potential electron donor for microbially mediated arsenic release from these aquifer sediments.
Chang, Jin-Soo
2015-11-01
The potential arsenite bioteansformation activity of arsenic was investigated by examining bacterial arsenic arsenite-oxidizing gene such as aoxS, aoxR, aoxA, aoxB, aoxC, and aoxD in high arsenic-contaminated drinking water produced from the surface water of floating houses. There is a biogeochemical cycle of activity involving arsenite oxidase aox system and the ars (arsenic resistance system) gene operon and aoxR leader gene activity in Alcaligenes faecalis SRR-11 and aoxS leader gene activity in Achromobacter xylosoxidans TSL-66. Batch experiments showed that SRR-11 and TSL-66 completely oxidized 1 mM of As (III) to As (V) within 35-40 h. The leaders of aoxS and aoxR are important for gene activity, and their effects in arsenic bioremediation and mobility in natural water has a significant ecological role because it allows arsenite oxidase in bacteria to control the biogeochemical cycle of arsenic-contaminated drinking water produced from surface water of floating houses. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of transient wave forcing on the behavior of arsenic in a sandy nearshore aquifer
NASA Astrophysics Data System (ADS)
Rakhimbekova, S.; O'Carroll, D. M.; Robinson, C. E.
2016-12-01
Waves cause large quantities of coastal water to recirculate across the groundwater-coastal water interface in addition to inducing complex groundwater flows in the nearshore aquifer. Due to the distinct chemical composition of recirculating coastal water compared with discharging terrestrial groundwater, wave-induced recirculations and flows can alter geochemical gradients in the nearshore aquifer which may subsequently affect the mobilization and transport of reactive pollutants (e.g., arsenic). The impact of seasonal geochemical and hydrological variability on the occurrence and mobility of arsenic near the groundwater-surface water interface has been shown previously in riverine settings, however, the impact of high frequency geochemical variations (e.g., varying wave conditions) on arsenic mobility in groundwater-surface water environments is unclear. The objective of the study was to assess the impact of intensified wave conditions on the behavior of arsenic in a nearshore aquifer to determine the factors regulating its mobility and transport to receiving coastal waters. Field investigations were conducted at a permeable beach on the Great Lakes during a period of intensified wave conditions (wave event). High spatial resolution pore water sampling captured the geochemical conditions in the nearshore aquifer prior to the wave event, immediately after the wave event and over a recovery period of 3 weeks following the wave event. Shifts in pH and redox potential (ORP) gradients in response to varying wave conditions caused shifts in the iron and arsenic distributions in the aquifer. Sediment analysis was combined with the pore water distributions to assess the release of sediment-bound arsenic in response to the varying wave conditions. Insight into the effect of transient forcing on arsenic mobility and transport in groundwater-surface water environments is important for evaluating the potential risks associated with this toxic metalloid. The findings of this study also have significant implications for the fate of other reactive constituents (heavy metals, nutrients) discharging through nearshore aquifers to coastal waters.
Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan
NASA Astrophysics Data System (ADS)
Liao, Vivian Hsiu-Chuan; Chu, Yu-Ju; Su, Yu-Chen; Hsiao, Sung-Yun; Wei, Chia-Cheng; Liu, Chen-Wuing; Liao, Chung-Min; Shen, Wei-Chiang; Chang, Fi-John
2011-04-01
Drinking highly arsenic-contaminated groundwater is a likely cause of blackfoot disease in Taiwan, but microorganisms that potentially control arsenic mobility in the subsurface remain unstudied. The objective of this study was to investigate the relevant arsenite-oxidizing and arsenate-reducing microbial community that exists in highly arsenic-contaminated groundwater in Taiwan. We cultured and identified arsenic-transforming bacteria, analyzed arsenic resistance and transformation, and determined the presence of genetic markers for arsenic transformation. In total, 11 arsenic-transforming bacterial strains with different colony morphologies and varying arsenic transformation abilities were isolated, including 10 facultative anaerobic arsenate-reducing bacteria and one strictly aerobic arsenite-oxidizing bacterium. All of the isolates exhibited high levels of arsenic resistance with minimum inhibitory concentrations of arsenic ranging from 2 to 200 mM. Strain AR-11 was able to rapidly oxidize arsenite to arsenate at concentrations relevant to environmental groundwater samples without the addition of any electron donors or acceptors. We provide evidence that arsenic-reduction activity may be conferred by the ars operon(s) that were not amplified by the designed primers currently in use. The 16S rRNA sequence analysis grouped the isolates into the following genera: Pseudomonas, Bacillus, Psychrobacter, Vibrio, Citrobacter, Enterobacter, and Bosea. Among these genera, we present the first report of the genus Psychrobacter being involved in arsenic reduction. Our results further support the hypothesis that bacteria capable of either oxidizing arsenite or reducing arsenate coexist and are ubiquitous in arsenic-contaminated groundwater.
Onireti, Olaronke O; Lin, Chuxia; Qin, Junhao
2017-03-01
A batch experiment was conducted to examine the combined effects of three common low-molecular-weight organic acids (LMWOAs) on the mobilization of arsenic and lead in different types of multi-contaminated soils. The capacity of individual LMWOAs (at a same molar concentration) to mobilize soil-borne As and Pb varied significantly. The combination of the organic acids did not make a marked "additive" effect on the mobilization of the investigated three elements. An "antagonistic" effect on element mobilization was clear in the treatments involving oxalic acid for some soils. The acid strength of a LMWOA did not play an important role in controlling the mobilization of elements. While the mobilization of As and Pb was closely associated with the dissolution of soil-borne Fe, soil properties such as original soil pH, organic matter contents and the total amount of the element relative to the total Fe markedly complicated the mobility of that element. Aging led to continual consumption of proton introduced from addition of LMWOAs and consequently caused dramatic changes in solution-borne Fe, which in turn resulted in change in As and Pb in the soil solution though different elements behaved differently. Copyright © 2016 Elsevier Ltd. All rights reserved.
Héry, Marina; Rizoulis, Athanasios; Sanguin, Hervé; Cooke, David A; Pancost, Richard D; Polya, David A; Lloyd, Jonathan R
2015-06-01
Microbially mediated arsenic release from Holocene and Pleistocene Cambodian aquifer sediments was investigated using microcosm experiments and substrate amendments. In the Holocene sediment, the metabolically active bacteria, including arsenate-respiring bacteria, were determined by DNA stable-isotope probing. After incubation with (13) C-acetate and (13) C-lactate, active bacterial community in the Holocene sediment was dominated by different Geobacter spp.-related 16S rRNA sequences. Substrate addition also resulted in the enrichment of sequences related to the arsenate-respiring Sulfurospirillum spp. (13) C-acetate selected for ArrA related to Geobacter spp. whereas (13) C-lactate selected for ArrA which were not closely related to any cultivated organism. Incubation of the Pleistocene sediment with lactate favoured a 16S rRNA-phylotype related to the sulphate-reducing Desulfovibrio oxamicus DSM1925, whereas the ArrA sequences clustered with environmental sequences distinct from those identified in the Holocene sediment. Whereas limited As(III) release was observed in Pleistocene sediment after lactate addition, no arsenic mobilization occurred from Holocene sediments, probably because of the initial reduced state of As, as determined by X-ray Absorption Near Edge Structure. Our findings demonstrate that in the presence of reactive organic carbon, As(III) mobilization can occur in Pleistocene sediments, having implications for future strategies that aim to reduce arsenic contamination in drinking waters by using aquifers containing Pleistocene sediments. © 2014 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
Biotic and abiotic reduction of arsenic (V) and iron (III) influences the partioning of arsenic (As) between the solid and aqueous phases in soils, sediments and wastes. In this study, laboratory experiments on arsenic adsorbed on granular ferric hydroxide (GFH) was performed to ...
ARSENIC MOBILITY FROM IRON OXIDE SOLIDS PRODUCED DURING WATER TREATMENT
The Arsenic Rule under the Safe Drinking Water Act will require certain drinking water suppliers to add to or modify their existing treatment in order to comply with the new 10 ppb arsenic standard. One of the treatment options is co-precipitation of arsenic with iron. This tre...
MNA As A Remedy For Arsenic Mobilized By Anthropogenic Inputs Of Organic Carbon
The potential application of monitored natural attenuation (MNA) as a remedy for ground water contaminated with arsenic (As) is examined for a subset of contaminated sites, specifically those where naturally occurring As has been mobilized due to localized anthropogenic organic c...
Well characteristics influencing arsenic concentrations in ground water.
Erickson, Melinda L; Barnes, Randal J
2005-10-01
Naturally occurring arsenic contamination is common in ground water in the upper Midwest. Arsenic is most likely to be present in glacial drift and shallow bedrock wells that lie within the footprint of northwest provenance Late Wisconsinan glacial drift. Elevated arsenic is more common in domestic wells and in monitoring wells than it is in public water system wells. Arsenic contamination is also more prevalent in domestic wells with short screens set in proximity to an upper confining unit, such as glacial till. Public water system wells have distinctly different well-construction practices and well characteristics when compared to domestic and monitoring wells. Construction practices such as exploiting a thick, coarse aquifer and installing a long well screen yield good water quantity for public water system wells. Coincidentally, these construction practices also often yield low arsenic water. Coarse aquifer materials have less surface area for adsorbing arsenic, and thus less arsenic available for potential mobilization. Wells with long screens set at a distance from an upper confining unit are at lower risk of exposure to geochemical conditions conducive to arsenic mobilization via reductive mechanisms such as reductive dissolution of metal hydroxides and reductive desorption of arsenic.
NASA Astrophysics Data System (ADS)
Avancha, S.; Boye, K.
2014-12-01
In the Mekong delta in Cambodia, naturally occurring arsenic (originating from erosion in the Himalaya Mountains) in paddy soils is mobilized during the seasonal flooding. As a consequence, rice grown on the flooded soils may take up arsenic and expose people eating the rice to this carcinogenic substance. Microbial activity will enhance or decrease the mobilization of arsenic depending on their metabolic pathways. Among the microbes naturally residing in the soil are denitrifying bacteria, sulfate reducers, metal reducers (Fe, Mn), arsenic reducers, methanogens, and fermenters, whose activity varies based on the presence of oxygen. The purpose of the experiment was to assess how different amendments affect the microbial activity and the arsenic mobilization during the transition from aerobic to anaerobic metabolism after flooding of naturally contaminated Cambodian soil. In a batch experiment, we investigated how the relative metabolic rate of naturally occurring microbes could vary with different types of organic carbon. The experiment was designed to measure the effects of various sources of carbon (dried rice straw, charred rice straw, manure, and glucose) on the microbial activity and arsenic release in an arsenic-contaminated paddy soil from Cambodia under flooded conditions. All amendments were added based on the carbon content in order to add 0.036 g of carbon per vial. The soil was flooded with a 10mM TRIS buffer solution at pH 7.04 in airtight 25mL serum vials and kept at 25 °C. We prepared 14 replicates per treatment to sample both gas and solution. On each sampling point, the solution replicates were sampled destructively. The gas replicates continued on and were sampled for both gas and solution on the final day of the experiment. We measured pH, total arsenic, methane, carbon dioxide, and nitrous oxide at 8 hours, 1.5 days, 3.33 days, and 6.33 days from the start of the experiment.
Shan, Jilei; Sáez, A Eduardo; Ela, Wendell P
2010-02-01
Many water treatment technologies for arsenic removal that are used today produce arsenic-bearing residuals which are disposed in non-hazardous landfills. Previous works have established that many of these residuals will release arsenic to a much greater extent than predicted by standard regulatory leaching tests (e.g. the toxicity characteristic leaching procedure, TCLP) and, consequently, require stabilization to ensure benign behavior after disposal. In this work, a four-step sequential extraction method was developed in an effort to determine the proportion of arsenic in various phases in untreated as well as stabilized iron-based solid matrices. The solids synthesized using various potential stabilization techniques included: amorphous arsenic-iron sludge (ASL), reduced ASL via reaction with zero valent iron (RASL), amorphous ferrous arsenate (PFA), a mixture of PFA and SL (M1), crystalline ferrous arsenate (HPFA), and a mixture of HPFA and SL (M2). The overall arsenic mobility of the tested samples increased in the following order: ASL > RASL > PFA > M1 > HPFA > M2.
Novak, Martin; Erbanova, Lucie; Fottova, Daniela; Voldrichova, Petra; Prechova, Eva; Blaha, Vladimir; Veselovsky, Frantisek; Krachler, Michael
2010-08-01
The 40-year long period of heavy industrialization in Central Europe (1950-1990) was accompanied by burning of arsenic-rich lignite in thermal power plants, and accumulation of anthropogenic arsenic in forest soils. There are fears that retreating acidification may lead to arsenic mobilization into drinking water, caused by competitive ligand exchange. We present monthly arsenic concentrations in surface runoff from 12 headwater catchments in the Czech Republic for a period of 13 years (1996-2008). The studied area was characterized by a north-south gradient of decreasing pollution. Acidification, caused mainly by SOx and NOx emissions from power plants, has been retreating since 1987. Between 1996 and 2003, maximum arsenic concentrations in runoff did not change, and were < 1 ppb in the rural south and < 2 ppb in the industrial north. During the subsequent two years, 2004-2005, maximum arsenic concentrations in runoff increased, reaching 60% of the drinking water limit (10 ppb). Starting in 2006, maximum arsenic concentrations returned to lower values at most sites. We discuss three possible causes of the recent arsenic concentration maximum in runoff. We rule out retreating acidification and a pulse of high industrial emission rates as possible controls. The pH of runoff has not changed since 1996, and is still too low (<6.5) at most sites for an As-OH(-) ligand exchange to become significant. Elevated arsenic concentrations in runoff in 2004-2005 may reflect climate change through changing hydrological conditions at some, but not all sites. Dry conditions may result in elevated production of DOC and sulfur oxidation in the soil. Subsequent wet conditions may be accompanied by acidification leading to faster dissolution of arsenic-bearing sulfides, dissolution of arsenic-bearing Fe-oxyhydroxides, and elevated transport of arsenic sorbed on organic matter. Anaerobic domains exist in normally well-aerated upland soils for hours-to-days following precipitation events. 2010 Elsevier B.V. All rights reserved.
Arsenic Transport and Transformation Associated with MSMA Application on a Golf Course Green
Feng, Min; Schrlau, Jill E.; Snyder, Raymond; Snyder, George H.; Chen, Ming; Cisar, John L.; Cai, Yong
2008-01-01
The impact of extensively used arsenic-containing herbicides on groundwater beneath golf courses has become a topic of interest. Although currently used organoarsenicals are less toxic, their application into the environment may produce the more toxic inorganic arsenicals. The objective of this work was to understand the behavior of arsenic species in percolate water from monosodium methanearsonate (MSMA) applied golf course greens, as well as to determine the influences of root-zone media for United State Golf Association (USGA) putting green construction on arsenic retention and species conversion. The field test was established at the Fort Lauderdale Research and Education Center (FLREC), University of Florida. Percolate water was collected after MSMA application for speciation and total arsenic analyses. The results showed that the substrate composition significantly influenced arsenic mobility and arsenic species transformation in the percolate water. In comparison to uncoated sands (S) and uncoated sands and peat (S + P), naturally coated sands and peat (NS + P) showed a higher capacity of preventing arsenic from leaching into percolate water, implying that the coatings of sands with clay reduce arsenic leaching. Arsenic species transformation occurred in soil, resulting in co-occurrence of four arsenic species, arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) in percolate water. The results indicated that substrate composition can significantly affect both arsenic retention in soil and arsenic speciation in percolate water. The clay coatings on the soil particles and the addition of peat in the soil changed the arsenic bioavailability, which in turn controlled the microorganism-mediated arsenic transformation. To better explain and understand arsenic transformation and transport after applying MSMA in golf green, a conceptual model was proposed. PMID:15853401
Environmental microbes can speciate and cycle arsenic.
Rhine, E Danielle; Garcia-Dominguez, Elizabeth; Phelps, Craig D; Young, L Y
2005-12-15
Naturally occurring arsenic is found predominantly as arsenate [As(V)] or arsenite [As(III)], and can be readily oxidized or reduced by microorganisms. Given the health risks associated with arsenic in groundwater and the interest in arsenic-active microorganisms, we hypothesized that environmental microorganisms could mediate a redox cycling of arsenic that is linked to their metabolism. This hypothesis was tested using an As(V) respiring reducer (strain Y5) and an aerobic chemoautotrophic As(II) oxidizer (strain OL1 ) both isolated from a Superfund site, Onondaga Lake, in Syracuse, NY. Strains were grown separately and together in sealed serum bottles, and the oxic/anoxic condition was the only parameter changed. Initially, under anoxic conditions when both isolates were grown together, 2 mM As(V) was stoichiometrically reduced to As(III) within 14 days. Following complete reduction, sterile ambient air was added and within 24 h As(III) was completely oxidized to As(V). The anoxic-oxic cycle was repeated, and sterile controls showed no abiotic transformation within the 28-day incubation period. These results demonstrate that microorganisms can cycle arsenic in response to dynamic environmental conditions, thereby affecting the speciation, and hence mobility and toxicity of arsenic in the environment.
Chen, Xiaoming; Zeng, Xian-Chun; Wang, Jianing; Deng, Yamin; Ma, Teng; Guoji E; Mu, Yao; Yang, Ye; Li, Hao; Wang, Yanxin
2017-02-01
It was shown that groundwater in Jianghan Plain was severely contaminated by arsenic; however, little is known about the mechanism by which the mineral arsenic was mobilized and released into groundwater from the high-arsenic sediments in this area. Here, we collected sediment samples from the depths of 5-230m in Jianghan Plain. Although all of the samples contain high contents of total arsenic, the soluble arsenic was only detectable in few of the shallow sediments, but was readily detectable in all of the deep sediments at the depths of 190-230m. Analysis of the genes of arsenate-respiring reductases indicated that they were not present in all of the shallow sediments from the depths of 5-185m, but were detectable in all of the deep sediments from the depths of 190-230m; all of the identified reductase genes are new or new-type, and they display unique diversity. Microcosm assay indicated that the microbial communities from the deep sediments were able to reduce As(V) into As(III) using lactate, formate, pyruvate or acetate as an electron donor under anaerobic condition. Arsenic release assay demonstrated that these microbial communalities efficiently catalyzed the mobilization and release of the mineral arsenic into aqueous phase. We also isolated a novel cultivable dissimilatory As(V)-respiring bacterium Aeromonas sp. JH155 from the sediments. It is able to completely reduce 2.0mM As(V) into As(III) in 72h, and efficiently promote the reduction and release of the mineral arsenic into aqueous phase. Analysis of the 16S rRNA genes indicated that the deep sediments contain diversities of microbial communities, which were shaped by the environmental factors, such as As, SO 4 2- , NO 3 - , Fe and pH value. These data suggest that the microorganisms in the deep sediments in Jianghan Plain played key roles in the mobilization and release of insoluble arsenic into the groundwater. Copyright © 2016 Elsevier B.V. All rights reserved.
Earth Abides Arsenic Biotransformations
NASA Astrophysics Data System (ADS)
Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.
2014-05-01
Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology is described. The article provides a comprehensive overview of molecular mechanisms of arsenic redox and methylation cycles as well as other arsenic biotransformations. It also discusses the implications of arsenic biotransformation in environmental remediation and food safety, with particular emphasis on groundwater arsenic contamination and arsenic accumulation in rice.
Mineralogy and arsenic mobility in arsenic-rich Brazilian soils and sediments
de Mello, J.W.V.; Roy, W.R.; Talbott, J.L.; Stucki, J.W.
2006-01-01
Background. Soils and sediments in certain mining regions of Brazil contain an unusually large amount of arsenic (As), which raises concerns that mining could promote increased As mobility, and thereby increase the risks of contaminating water supplies. Objectives. The purpose of t his study was to identify the most important factors governing As mobility in sediments and soils near three gold-mining sites in the State of Minas Gerais, Brazil. Methods. Surface and sub-surface soil samples were collected at those sites and characterized by chemical and mineralogical analyses. Oxalate (Feo) and citrate-bicarbonate-dithionite (Fed) iron contents were determined by atomic absorption spectroscopy (AAS). Arsenic mobilization was measured after incubating the samples in a 2.5 mM CaCl2 solution under anaerobic conditions for 1, 28, 56, 84, or 112 days. The solution concentrations of As, Fe, and Mn were then measured by inductively coupled plasma-mass spectrometry (ICP-MS) and AAS, respectively. Results and Discussion. Results indicated that As mobilization is largely independent of both the total As and the Feo/Fed ratio of the solid phase. Soluble As is roughly controlled by the Fe (hydr)oxide content of the soil, but a closer examination of the data revealed the importance of other highly weathered clay minerals and organic matter. Large amounts of organic matter and a low iron oxide content should favor As leaching from soils and sediments. Under reducing conditions, As is mobilized by the reductive dissolution of Fe and/or Mn oxides. However, released As may be readsorbed depending on the sorptive properties of the soil. Gibbsite is particularly effective in adsorbing or readsorbing As, as is the remaining unreduced fraction of the iron (hydr)oxides. Conclusion and Outlook. In general, low soluble As is rel ated to the presence of gibbsite, a large amount of iron oxides, and a lack of organic matter in the solid phase. This has environmental significance because gibbsite is thermodynamically more stable than Fe oxides under anaerobic conditions, such as those found in waterlogged soils and lake sediments. ?? 2006 ecomed publishers (Verlagsgruppe Hu??thig Jehle Rehm GmbH), D-86899 Landsberg and Tokyo.
Lin, Tzu-Yu; Wei, Chia-Cheng; Huang, Chi-Wei; Chang, Chun-Han; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan
2016-03-23
Arsenic (As) is a human carcinogen, and arsenic contamination in groundwater is a worldwide public health concern. Arsenic-affected areas are found in many places but are reported mostly in agricultural farmlands, yet the interaction of fertilizers, microorganisms, and arsenic mobilization in arsenic-contaminated aquifers remains uncharacterized. This study investigates the effects of fertilizers and bacteria on the mobilization of arsenic in two arsenic-contaminated aquifers. We performed microcosm experiments using arsenic-contaminated sediments and amended with inorganic nitrogenous or phosphorus fertilizers for 1 and 4 months under aerobic and anaerobic conditions. The results show that microcosms amended with 100 mg/L phosphorus fertilizers (dipotassium phosphate), but not nitrogenous fertilizers (ammonium sulfate), significantly increase aqueous As(III) release in arsenic-contaminated sediments under anaerobic condition. We also show that concentrations of iron, manganese, potassium, sodium, calcium, and magnesium are increased in the aqueous phase and that the addition of dipotassium phosphate causes a further increase in aqueous iron, potassium, and sodium, suggesting that multiple metal elements may take part in the arsenic release process. Furthermore, microbial analysis indicates that the dominant microbial phylum is shifted from α-proteobacteria to β- and γ-proteobacteria when the As(III) is increased and phosphate is added in the aquifer. Our results provide evidence that both phosphorus fertilizers and microorganisms can mediate the release of arsenic to groundwater in arsenic-contaminated sediments under anaerobic condition. Our study suggests that agricultural activity such as the use of fertilizers and monitoring phosphate concentration in groundwater should be taken into consideration for the management of arsenic in groundwater.
Colloidal mobilization of arsenic from mining-affected soils by surface runoff.
Gomez-Gonzalez, Miguel Angel; Voegelin, Andreas; Garcia-Guinea, Javier; Bolea, Eduardo; Laborda, Francisco; Garrido, Fernando
2016-02-01
Scorodite-rich wastes left as a legacy of mining and smelting operations pose a threat to environmental health. Colloids formed by the weathering of processing wastes may control the release of arsenic (As) into surface waters. At a former mine site in Madrid (Spain), we investigated the mobilization of colloidal As by surface runoff from weathered processing wastes and from sediments in the bed of a draining creek and a downstream sedimentation-pond. Colloids mobilized by surface runoff during simulated rain events were characterized for their composition, structure and mode of As uptake using asymmetric flow field-flow fractionation coupled to inductively plasma mass spectrometry (AF4-ICP-MS) and X-ray absorption spectroscopy (XAS) at the As and Fe K-edges. Colloidal scorodite mobilized in surface runoff from the waste pile is acting as a mobile As carrier. In surface runoff from the river bed and the sedimentation pond, ferrihydrite was identified as the dominant As-bearing colloidal phase. The results from this study suggest that mobilization of As-bearing colloids by surface runoff may play an important role in the dispersion of As from metallurgical wastes deposited above ground and needs to be considered in risk assessment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Shan, Jilei; Sáez, A. Eduardo; Ela, Wendell P.
2013-01-01
Many water treatment technologies for arsenic removal that are used today produce arsenic-bearing residuals which are disposed in non-hazardous landfills. Previous works have established that many of these residuals will release arsenic to a much greater extent than predicted by standard regulatory leaching tests (e.g. the toxicity characteristic leaching procedure, TCLP) and, consequently, require stabilization to ensure benign behavior after disposal. In this work, a four-step sequential extraction method was developed in an effort to determine the proportion of arsenic in various phases in untreated as well as stabilized iron-based solid matrices. The solids synthesized using various potential stabilization techniques included: amorphous arsenic-iron sludge (ASL), reduced ASL via reaction with zero valent iron (RASL), amorphous ferrous arsenate (PFA), a mixture of PFA and SL (M1), crystalline ferrous arsenate (HPFA), and a mixture of HPFA and SL (M2). The overall arsenic mobility of the tested samples increased in the following order: ASL > RASL > PFA > M1 > HPFA > M2. PMID:23459695
Gawel, James E; Asplund, Jessica A; Burdick, Sarah; Miller, Michelle; Peterson, Shawna M; Tollefson, Amanda; Ziegler, Kara
2014-02-15
The American Smelting and Refining Company (ASARCO) smelter in Ruston, Washington, contaminated the south-central Puget Sound region with heavy metals, including arsenic and lead. Arsenic and lead distribution in surface sediments of 26 lakes is significantly correlated with atmospheric model predictions of contaminant deposition spatially, with concentrations reaching 208 mg/kg As and 1,375 mg/kg Pb. The temporal distribution of these metals in sediment cores is consistent with the years of operation of the ASARCO smelter. In several lakes arsenic and lead levels are highest at the surface, suggesting ongoing inputs or redistribution of contaminants. Moreover, this study finds that arsenic is highly mobile in these urban lakes, with maximum dissolved arsenic concentrations proportional to surface sediment levels and reaching almost 90 μg/L As. With 83% of the lakes in the deposition zone having surface sediments exceeding published "probable effects concentrations" for arsenic and lead, this study provides evidence for possible ongoing environmental health concerns. Copyright © 2013 Elsevier B.V. All rights reserved.
This report documents activities performed for and results obtained from the arsenic removal treatment technology demonstration project at the Hot Springs Mobile Home Park (HSMHP) in Willard, UT. The objectives of the project were to evaluate the effectiveness of Adsorbsia™ GTO™...
Anthropogenic sources of carbon from landfill or waste leachate can promote reductive dissolution of in situ arsenic (As) and enhance the mobility of As in groundwater. Groundwater from residential-supply wells in a fractured crystalline-rock aquifer adjacent to a Superfund site ...
THE SIGNIFICANCE OF ARSENIC-BOUND SOLIDS IN DRINKING WATER DISTRIBUTION SYSTEMS
Sorption, co-precipitation, and oxidation-reduction reactions of arsenic at the sorbent-water interface are importent factors affecting the fate and transport of arsenic in aqueous systems. Numerous studies have concluded that arsenite (As(III) is more soluble and mobile than ar...
Advantages of low pH and limited oxygenation in arsenite removal from water by zero-valent iron.
Klas, Sivan; Kirk, Donald W
2013-05-15
The removal of toxic arsenic species from contaminated waters by zero-valent iron (ZVI) has drawn considerable attention in recent years. In this approach, arsenic ions are mainly removed by adsorption to the iron corrosion products. Reduction to zero-valent arsenic on the ZVI surface is possible in the absence of competing oxidants and can reduce arsenic mobility and sludge formation. However, associated removal rates are relatively low. In the current study, simultaneous high reduction and removal rates of arsenite (H3AsO3), the more toxic and mobile environmentally occurring arsenic species, was demonstrated by reacting it with ZVI under limited aeration and relatively low pH. 90% of the removed arsenic was attached to the ZVI particles and 60% of which was in the elemental state. Under the same non-acidic conditions, only 40-60% of the removed arsenic was attached to the ZVI with no change in arsenic oxidation state. Under anaerobic conditions, reduction occurred but total arsenic removal rate was significantly lower and ZVI demand was higher. The effective arsenite removal under acidic oxygen-limited conditions was explained by formation of Fe(II)-solid intermediate on the ZVI surface that provided high surface area and reducing power. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rathi, Bhasker; Siade, Adam J.; Donn, Michael J.; Helm, Lauren; Morris, Ryan; Davis, James A.; Berg, Michael; Prommer, Henning
2017-12-01
Coal seam gas production involves generation and management of large amounts of co-produced water. One of the most suitable methods of management is injection into deep aquifers. Field injection trials may be used to support the predictions of anticipated hydrological and geochemical impacts of injection. The present work employs reactive transport modeling (RTM) for a comprehensive analysis of data collected from a trial where arsenic mobilization was observed. Arsenic sorption behavior was studied through laboratory experiments, accompanied by the development of a surface complexation model (SCM). A field-scale RTM that incorporated the laboratory-derived SCM was used to simulate the data collected during the field injection trial and then to predict the long-term fate of arsenic. We propose a new practical procedure which integrates laboratory and field-scale models using a Monte Carlo type uncertainty analysis and alleviates a significant proportion of the computational effort required for predictive uncertainty quantification. The results illustrate that both arsenic desorption under alkaline conditions and pyrite oxidation have likely contributed to the arsenic mobilization that was observed during the field trial. The predictive simulations show that arsenic concentrations would likely remain very low if the potential for pyrite oxidation is minimized through complete deoxygenation of the injectant. The proposed modeling and predictive uncertainty quantification method can be implemented for a wide range of groundwater studies that investigate the risks of metal(loid) or radionuclide contamination.
MOBILITY OF ARSENIC CONTAINING IRON OXIDES IN ENVIRONMENTAL SYSTEMS
The Arsenic Rule, which became effective on February 22, 2002, is going to require public treatment facilities to remove arsenic (As) from drinking water supplies if As exceeds the new ten parts per billion (ppb) drinking water maximum contaminant level (MCL). The date by which ...
Sariñana-Ruiz, Yareli A; Vazquez-Arenas, Jorge; Sosa-Rodríguez, Fabiola S; Labastida, Israel; Armienta, Ma Aurora; Aragón-Piña, Antonio; Escobedo-Bretado, Miguel A; González-Valdez, Laura S; Ponce-Peña, Patricia; Ramírez-Aldaba, Hugo; Lara, René H
2017-07-01
Total, bioaccessible and mobile concentrations of arsenic and fluorine are determined in polluted surface soil within the Comarca Lagunera region using standardized protocols to obtain a full description of the environmental behavior for these elements. The composition of mineral phases associated with them is evaluated with microscopic and spectroscopic techniques. Mineralogical characterizations indicate that ultra-fine particles (<1-5 μm) including mimetite-vanadite (Pb 5 (AsO 4 ) 3 Cl, Pb 5 (AsO 4 , VO 4 ) 3 Cl)-like, lead arseniate (Pb 3 (AsO 4 ) 2 )-like and complex arsenic-bearing compounds are main arsenic-bearing phases, while fluorite (CaF 2 ) is the only fluorine-bearing phase. Total fluorine and arsenic concentrations in surface soil range from 89.75 to 926.63 and 2.7-78.6 mg kg -1 , respectively, exceeding in many points a typical baseline value for fluorine (321 mg kg -1 ), and trigger level criterion for arsenic soil remediation (20 mg kg -1 ); whereas fluoride and arsenic concentrations in groundwater vary from 0.24 to 1.8 mg L -1 and 0.12-0.650 mg L -1 , respectively. The main bioaccessible percentages of soil in the gastric phase (SBRC-G) are estimated for arsenic from 1 to 63%, and this parameter in the intestinal phase (SBRC-I) fluorine from 2 to 46%, suggesting human health risks for this region. While a negligible/low mobility is found in soil for arsenic (0.1-11%), an important mobility is determined for fluorine (2-39%), indicating environmental risk related to potential fluorine release. The environmental and health risks connected to arsenic and fluorine are discussed based on experimental data. Copyright © 2017 Elsevier Ltd. All rights reserved.
This report documents the activities performed for and the results obtained from the first six months of the arsenic removal treatment technology demonstration project at the Chateau Estates Mobile Home Park at Springfield, OH. The objectives of the project are to evaluate the ef...
This report documents the activities performed and the results obtained from the first six months of the arsenic removal treatment technology demonstration project at the Big Sauk Lake Mobile Home Park (BSLMHP) in Sauk Centre, MN. The objectives of the project are to evaluate the...
This report documents the activities performed during and the results obtained from the first six months of the arsenic removal treatment technology demonstration project at the Spring Brook Mobile Home Park in Wales, ME. The objectives of the project are to evaluate the effectiv...
This report documents the activities performed for and the results obtained from the first six months of the arsenic removal treatment technology demonstration project at the Chateau Estates Mobile Home Park at Springfield, OH. The objectives of the project are to evaluate the ef...
Seasonal Influences on Ground-Surface Water Interactions in an Arsenic-Affected Aquifer in Cambodia
NASA Astrophysics Data System (ADS)
Richards, L. A.; Magnone, D.; Van Dongen, B.; Bryant, C.; Boyce, A.; Ballentine, C. J.; Polya, D. A.
2015-12-01
Millions of people in South and Southeast Asia consume drinking water daily which contains dangerous levels of arsenic exceeding health-based recommendations [1]. A key control on arsenic mobilization in aquifers in these areas has been controversially identified as the interaction of 'labile' organic matter contained in surface waters with groundwaters and sediments at depth [2-4], which may trigger the release of arsenic from the solid- to aqueous-phase via reductive dissolution of iron-(hyr)oxide minerals [5]. In a field site in Kandal Province, Cambodia, which is an arsenic-affected area typical to others in the region, there are strong seasonal patterns in groundwater flow direction, which are closely related to monsoonal rains [6] and may contribute to arsenic release in this aquifer. The aim of this study is to explore the implications of the high susceptibility of this aquifer system to seasonal changes on potential ground-surface water interactions. The main objectives are to (i) identify key zones where there are likely ground-surface water interactions, (ii) assess the seasonal impact of such interactions and (iii) quantify the influence of interactions using geochemical parameters (such as As, Fe, NO3, NH4, 14C, 3T/3He, δ18O, δ2H). Identifying the zones, magnitude and seasonal influence of ground-surface water interactions elucidates new information regarding potential locations/pathways of arsenic mobilization and/or transport in affected aquifers and may be important for water management strategies in affected areas. This research is supported by NERC (NE/J023833/1) to DP, BvD and CJB and a NERC PhD studentship (NE/L501591/1) to DM. References: [1] World Health Organization, 2008. [2] Charlet & Polya (2006), Elements, 2, 91-96. [3] Harvey et al. (2002), Science, 298, 1602-1606. [4] Lawson et al. (2013), Env. Sci. Technol. 47, 7085 - 7094. [5] Islam et al. (2004), Nature, 430, 68-71. [6] Benner et al. (2008) Appl. Geochem. 23(11), 3072 - 3087.
The solubility and mobility of arsenic in ground water are influenced by a variety of processes in the northeastern US subjective to geogenic and anthropogenic sources. This presentation will discuss the speciation of arsenic in sediment profiles resulting from ground water disc...
Photodegradation of roxarsone in poultry litter leachates
Bednar, A.J.; Garbarino, J.R.; Ferrer, I.; Rutherford, D.W.; Wershaw, R. L.; Ranville, J.F.; Wildeman, T.R.
2003-01-01
Arsenic compounds have been used extensively in agriculture in the US for applications ranging from cotton herbicides to animal feed supplements. Roxarsone (3-nitro-4-hydroxyphenylarsonic acid), in particular, is used widely in poultry production to control coccidial intestinal parasites. It is excreted unchanged in the manure and introduced into the environment when litter is applied to farmland as fertilizer. Although the toxicity of roxarsone is less than that of inorganic arsenic, roxarsone can degrade, biotically and abiotically, to produce more toxic inorganic forms of arsenic, such as arsenite and arsenate. Experiments were conducted on aqueous litter leachates to test the stability of roxarsone under different conditions. Laboratory experiments have shown that arsenite can be cleaved photolytically from the roxarsone moiety at pH 4-8 and that the degradation rate increases with increasing pH. Furthermore, the rate of photodegradation increases with nitrate and natural organic matter concentration, reactants that are commonly found in poultry-litter-water leachates. Additional photochemical reactions rapidly oxidize the cleaved arsenite to arsenate. The formation of arsenate is not entirely undesirable, because it is less mobile in soil systems and less toxic than arsenite. A possible mechanism for the degradation of roxarsone in poultry litter leachates is proposed. The results suggest that poultry litter storage and field application practices could affect the degradation of roxarsone and subsequent mobilization of inorganic arsenic species. ?? 2002 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, T.; Kampalath, R.; Jay, J.
2009-12-01
The presence of arsenic in the groundwater has led to the largest environmental poisoning in history. Although it is a worldwide issue that affects numerous countries, including Taiwan, Bangladesh, India, China, Mexico, Peru, Australia, and the United States, the issue is of greatest concern in the West Bengal region. In the Ganges Delta, as many as 2 million people are diagnosed with arsenicosis each year. The World Health Organization (WHO) estimates 200,000 to 270,000 arsenic-induced cancer-related deaths in Bangladesh alone. More than 100 million people in the country consume groundwater that exceeds the WHO limit as 50% of the 8 million wells contain groundwater with more than 10 μg/L. Despite the tragic public health implications of this problem, we do not yet have a complete answer to the question of why dissolved arsenic concentrations are so high in the groundwater of the Ganges Delta. Since 1999, we have been intensively studying a field site in Munshiganj, Bangladesh with extremely high levels of arsenic in groundwater (up to 1.2 mg/L). Sediment cores were collected from two locations at the field site: 1) the rice paddy and 2) edge of a nearby irrigation pond. Recharge from irrigation ponds have recently been hypothesized to be an important site of arsenic mobilization. Recent work has proposed mineral dissolution under phosphorus-limited conditions as an important mechanism for arsenic mobilization. Using microcosms with paddy and pond sediment, we are comparing arsenic release via this mechanism with that resulting from reduction of iron hydroxides at our site. Concurrently, we are looking at enhanced solubility of As in the presence of polysulfides as the effects of elemental sulfur on As solubility have not been well researched. We hypothesize that the presence of elemental sulfur, and consequent formation of polysulfides, will substantially increase the solubility of orpiment in sulfidic water and that sorption of these complexes will significantly affect the mobility of these species of As in groundwater. We have shown substantial (order of magnitude) increases in metal solubility in bottle in the presence of elemental sulfur and sulfide compared to bottles in the presence of the same concentration of sulfide alone. This is presumably attributable to metal-polysulfide complexation. Further experiments measuring solubility over a range of pH and sulfide levels are necessary to model the data and determine complexation constants. By elucidating As mobilization mechanisms at an experimental rice paddy, this work could ultimately lead to solutions that minimize As exposure in critical populations.
Cavalca, Lucia; Corsini, Anna; Bachate, Sachin Prabhakar; Andreoni, Vincenza
2013-10-01
In the present study, six arsenic-resistant strains previously isolated were tested for their plant growth promoting characteristics and heavy metal resistance, in order to choose one model strain as an inoculum for sunflower plants in pot experiments. The aim was to investigate the effect of arsenic-resistant strain on sunflower growth and on arsenic uptake from arsenic contaminated soil. Based on plant growth promoting characteristics and heavy metal resistance, Alcaligenes sp. strain Dhal-L was chosen as an inoculum. Beside the ability to reduce arsenate to arsenite via an Ars operon, the strain exhibited 1-amino-cyclopropane-1-carboxylic acid deaminase activity and it was also able to produce siderophore and indole acetic acid. Pot experiments were conducted with an agricultural soil contaminated with arsenic (214 mg kg⁻¹). A real time PCR method was set up based on the quantification of ACR3(2) type of arsenite efflux pump carried by Alcaligenes sp. strain Dhal-L, in order to monitor presence and colonisation of the strain in the bulk and rhizospheric soil. As a result of strain inoculation, arsenic uptake by plants was increased by 53 %, whereas ACR3(2) gene copy number in rhizospheric soil was 100 times higher in inoculated than in control pots, indicating the colonisation of strain. The results indicated that the presence of arsenate reducing strains in the rhizosphere of sunflower influences arsenic mobilization and promotes arsenic uptake by plant.
Arsenic, microbes and contaminated aquifers
Oremland, Ronald S.; Stolz, John F.
2005-01-01
The health of tens of millions of people world-wide is at risk from drinking arsenic-contaminated well water. In most cases this arsenic occurs naturally within the sub-surface aquifers, rather than being derived from identifiable point sources of pollution. The mobilization of arsenic into the aqueous phase is the first crucial step in a process that eventually leads to human arsenicosis. Increasing evidence suggests that this is a microbiological phenomenon.
Investigation of biomethylation of arsenic and tellurium during composting.
Diaz-Bone, Roland A; Raabe, Maren; Awissus, Simone; Keuter, Bianca; Menzel, Bernd; Küppers, Klaus; Widmann, Renatus; Hirner, Alfred V
2011-05-30
Though the process of composting features a high microbiological activity, its potential to methylate metals and metalloids has been little investigated so far in spite of the high impact of this process on metal(loid) toxicity and mobility. Here, we studied the biotransformation of arsenic, tellurium, antimony, tin and germanium during composting. Time resolved investigation revealed a highly dynamic process during self-heated composting with markedly differing time patterns for arsenic and tellurium species. Extraordinary high concentrations of up to 150 mg kg(-1) methylated arsenic species as well as conversion rates up to 50% for arsenic and 5% for tellurium were observed. In contrast, little to no conversion was observed for antimony, tin and germanium. In addition to experiments with metal(loid) salts, composting of arsenic hyperaccumulating ferns Pteris vittata and P. cretica grown on As-amended soils was studied. Arsenic accumulated in the fronds was efficiently methylated resulting in up to 8 mg kg(-1) methylated arsenic species. Overall, these studies indicate that metal(loid)s can undergo intensive biomethylation during composting. Due to the high mobility of methylated species this process needs to be considered in organic waste treatment of metal(loid) contaminated waste materials. Copyright © 2010 Elsevier B.V. All rights reserved.
(Note: This entry is no longer valid; the paper was rewritten and submitted to a different journal.) This paper highlights some methods that can be used at a local scale to assess whether waste disposal activities are responsible for enhanced arsenic mobility through redox-contro...
This report documents the activities performed and the results obtained from the one-year arsenic removal treatment technology demonstration project at the Big Sauk Lake Mobile Home Park (BSLMHP) in Sauk Centre, MN. The objectives of the project are to evaluate (1) the effective...
Microbial transformations of arsenic: Mobilization from glauconitic sediments to water
Mumford, Adam C.; Barringer, Julia L.; Benzel, William M.; Reilly, Pamela A.; Young, L.Y.
2012-01-01
In the Inner Coastal Plain of New Jersey, arsenic (As) is released from glauconitic sediment to carbon- and nutrient-rich shallow groundwater. This As-rich groundwater discharges to a major area stream. We hypothesize that microbes play an active role in the mobilization of As from glauconitic subsurface sediments into groundwater in the Inner Coastal Plain of New Jersey. We have examined the potential impact of microbial activity on the mobilization of arsenic from subsurface sediments into the groundwater at a site on Crosswicks Creek in southern New Jersey. The As contents of sediments 33–90 cm below the streambed were found to range from 15 to 26.4 mg/kg, with siderite forming at depth. Groundwater beneath the streambed contains As at concentrations up to 89 μg/L. Microcosms developed from site sediments released 23 μg/L of As, and active microbial reduction of As(V) was observed in microcosms developed from site groundwater. DNA extracted from site sediments was amplified with primers for the 16S rRNA gene and the arsenate respiratory reductase gene, arrA, and indicated the presence of a diverse anaerobic microbial community, as well as the presence of potential arsenic-reducing bacteria. In addition, high iron (Fe) concentrations in groundwater and the presence of iron-reducing microbial genera suggests that Fe reduction in minerals may provide an additional mechanism for release of associated As, while arsenic-reducing microorganisms may serve to enhance the mobility of As in groundwater at this site.
Root, Robert A.; Fathordoobadi, Sahar; Alday, Fernando; Ela, Wendell; Chorover, Jon
2013-01-01
During treatment for potable use, water utilities generate arsenic-bearing ferric wastes that are subsequently dispatched to landfills. The biogeochemical weathering of these residuals in mature landfills affects the potential mobilization of sorbed arsenic species via desorption from solids subjected to phase transformations driven by abundant organic matter and bacterial activity. Such processes are not simulated with the Toxicity Characteristic Leaching Procedure (TCLP) currently used to characterize hazard. To examine the effect of sulfate on As retention in landfill leachate, columns of As(V) loaded amorphous ferric hydroxide were reacted biotically at two leachate sulfate concentrations (0.064 mM and 2.1 mM). After 300 d, ferric sorbents were reductively dissolved. Arsenic released to porewaters was partially co-precipitated in mixed-valent secondary iron phases whose speciation was dependent on sulfate concentration. As and Fe XAS showed that, in the low sulfate column, 75–81% of As(V) was reduced to As(III), and 53–68% of the Fe(III) sorbent was transformed, dominantly to siderite and green rust. In the high sulfate column, Fe(III) solids were reduced principally to FeS(am), whereas As(V) was reduced to a polymeric sulfide with local atomic structure of realgar. Multi-energy micro-X-ray fluorescence (ME-μXRF) imaging at Fe and As K-edges showed that As formed surface complexes with ferrihydrite > siderite > green rust in the low sulfate column; while discrete realgar-like phases formed in the high sulfate systems. Results indicate that landfill sulfur chemistry exerts strong control over the potential mobilization of As from ferric sorbent residuals by controlling secondary As and Fe sulfide co-precipitate formation. PMID:24102155
Wei, Meng; Chen, Jiajun; Wang, Xingwei
2016-08-01
Testing of sequential soil washing in triplicate using typical chelating agent (Na2EDTA), organic acid (oxalic acid) and inorganic weak acid (phosphoric acid) was conducted to remediate soil contaminated by heavy metals close to a mining area. The aim of the testing was to improve removal efficiency and reduce mobility of heavy metals. The sequential extraction procedure and further speciation analysis of heavy metals demonstrated that the primary components of arsenic and cadmium in the soil were residual As (O-As) and exchangeable fraction, which accounted for 60% and 70% of total arsenic and cadmium, respectively. It was determined that soil washing agents and their washing order were critical to removal efficiencies of metal fractions, metal bioavailability and potential mobility due to different levels of dissolution of residual fractions and inter-transformation of metal fractions. The optimal soil washing option for arsenic and cadmium was identified as phosphoric-oxalic acid-Na2EDTA sequence (POE) based on the high removal efficiency (41.9% for arsenic and 89.6% for cadmium) and the minimal harmful effects of the mobility and bioavailability of the remaining heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Targeting Low-arsenic Groundwater with Mobile-phone Technology in Araihazar, Bangladesh
Trevisani, M.; Immel, J.; Jakariya, Md.; Osman, N.; Cheng, Z.; Gelman, A.; Ahmed, K.M.
2006-01-01
The Bangladesh Arsenic Mitigation and Water Supply Program (BAMWSP) has compiled field-kit measurements of the arsenic content of groundwater for nearly five million wells. By comparing the spatial distribution of arsenic inferred from these field-kit measurements with geo-referenced laboratory data in a portion of Araihazar upazila, it is shown here that the BAMWSP data could be used for targeting safe aquifers for the installation of community wells in many villages of Bangladesh. Recent experiences with mobile-phone technology to access and update the BAMWSP data in the field are also described. It is shown that the technology, without guaranteeing success, could optimize interventions by guiding the choice of the drilling method that is likely to reach a safe aquifer and identifying those villages where exploratory drilling is needed. PMID:17366770
This document is a eight page summary of the final report on arsenic demonstration project at the Chateau Estates Mobile Home Park in Springfield, OH. The objectives of the project are to evaluate the effectiveness of AdEdge Technologies’ AD-33 media in removing arsenic to meet t...
Arsenic chemistry in soils and sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fendorf, S.; Nico, P.; Kocar, B.D.
2009-10-15
Arsenic is a naturally occurring trace element that poses a threat to human and ecosystem health, particularly when incorporated into food or water supplies. The greatest risk imposed by arsenic to human health results from contamination of drinking water, for which the World Health Organization recommends a maximum limit of 10 {micro}g L{sup -1}. Continued ingestion of drinking water having hazardous levels of arsenic can lead to arsenicosis and cancers of the bladder, skin, lungs and kidneys. Unfortunately, arsenic tainted drinking waters are a global threat and presently having a devastating impact on human health within Asia. Nearly 100 millionmore » people, for example, are presently consuming drinking water having arsenic concentrations exceeding the World Health Organization's recommended limit (Ahmed et al., 2006). Arsenic contamination of the environment often results from human activities such as mining or pesticide application, but recently natural sources of arsenic have demonstrated a devastating impact on water quality. Arsenic becomes problematic from a health perspective principally when it partitions into the aqueous rather than the solid phase. Dissolved concentrations, and the resulting mobility, of arsenic within soils and sediments are the combined result of biogeochemical processes linked to hydrologic factors. Processes favoring the partitioning of As into the aqueous phase, potentially leading to hazardous concentrations, vary extensively but can broadly be grouped into four categories: (1) ion displacement, (2) desorption (or limited sorption) at pH values > 8.5, (3) reduction of arsenate to arsenite, and (4) mineral dissolution, particularly reductive dissolution of Fe and Mn (hydr)oxides. Although various processes may liberate arsenic from solids, a transition from aerobic to anaerobic conditions, and commensurate arsenic and iron/manganese reduction, appears to be a dominant, but not exclusive, means by which high concentrations of dissolved arsenic are generated. Within the subsequent sections of this chapter, we explore and describe the biological and chemical processes that control the partitioning of arsenic between the solid and aqueous phase.« less
The environmental geochemistry of Arsenic – An overview
Bowell, Robert J.; Alpers, Charles N.; Jamieson, Heather E.; Nordstrom, D. Kirk; Majzlan, Juraj
2014-01-01
Arsenic is one of the most prevalent toxic elements in the environment. The toxicity, mobility, and fate of arsenic in the environment are determined by a complex series of controls dependent on mineralogy, chemical speciation, and biological processes. The element was first described by Theophrastus in 300 B.C. and named arsenikon (also arrhenicon; Caley and Richards 1956) referring to its “potent” nature, although it was originally considered an alternative form of sulfur (Boyle and Jonasson 1973). Arsenikon is believed to be derived from the earlier Persian, zarnik (online etymology dictionary, http://www.etymonline.com/index.php?term=arsenic). It was not until the thirteenth century that an alchemist, Albertus Magnus, was able to isolate the element from orpiment, an arsenic sulfide (As2S3). The complex chemistry required to do this led to arsenic being considered a “bastard metal” or what we now call a “metalloid,” having properties of both metals and non-metals. As a chemical element, arsenic is widely distributed in nature and can be concentrated in many different ways. In the Earth’s crust, arsenic is concentrated by magmatic and hydrothermal processes and has been used as a “pathfinder” for metallic ore deposits, particularly gold, tin, copper, and tungsten (Boyle and Jonasson 1973; Cohen and Bowell 2014). It has for centuries been considered a potent toxin, is a common poison in actual and fictional crimes, and has led to significant impacts on human health in many areas of the world (Cullen 2008; Wharton 2010).
NASA Astrophysics Data System (ADS)
Schaller, Jörg; Wang, Jiajia; Planer-Friedrich, Britta
2017-04-01
More than 600 million tons of rice straw are produced each year as byproduct of rice grain production. As an increasing application, besides e.g. composting or fodder for animals, the straw remains on the field for decomposition and nutrient supply. A central concern during rice cultivation is accumulation of arsenic, but it is currently unclear how the application of rice straw or derived ash or biochar to paddy soils will influence arsenic uptake by the next generation of rice plants. Consequently, we assessed the element mobilization via soil microcosm incubations with straw or derived ash or biochar or without those amendments under flooding (40 days) and subsequent drainage (14 days). We focused on elements potentially influencing the uptake of arsenic by the next generation of rice plants (e.g. silicon, phosphorus, iron), or which are nutrients but toxic themselves at higher levels (sulfur, sulfide, iron, iron(II), manganese, copper, and zinc). We found significant differences in the release of arsenic, iron(II), sulfide, total sulfur, DOC, manganese, copper, and zinc . For example highest pore water Mn and As concentrations were found for soil amended with straw, whereas the straw amendment reduced S mobilization, possibly due to sulfate reduction by straw decomposing microbes. For P, we found highest pore water concentrations for straw, followed by biochar, ash and control. In summary, application of rice straw or derived ash or biochar strongly affect the element availability in paddy soil.
NASA Astrophysics Data System (ADS)
Gurung, J. K.; Upreti, B. N.; Kansakar, D. R.
2007-12-01
Arsenic contamination at levels above the WHO guideline (10 ìg/l) in groundwater is a worldwide problem due to its detrimental effects on health and now known to be a problem also in the Terai Basin of Nepal, posing a serious threat to more than 10 million people. The distribution of arsenic in the basin, however, is patchy. The study emphasizes on the three different types of research into an interdisciplinary package that can be immediately useful to government agencies in Nepal trying to deal with groundwater contamination. They are: hydrogeological assessment of water sources and flow, geochemical analysis of groundwater, and assessment of practical public policy. Basic geochemical analysis gives the abundance and distribution of arsenic along with other physico-chemical parameters of groundwater, whereas, the hydrogeological assessment as an integral part of this study that assist in determining process of mobilization or attenuation of arsenic. Arsenic levels and other key parameters mainly pH, electrical conductivity, chemical oxygen demand, iron, and biological parameter as E-coli were observed at the various locations with different transmissivity values. The study suggests that the flushing rate of an aquifer plays an important role in arsenic content. High flushing rates of an aquifer lead to low levels of arsenic, however the mechanism of this process is still under study. Transmissivity the property of an aquifer that measures the rate at which ground water moves horizontally through a unit is the main factor for controlling flushing. Concentration maps overlaying the base transmissivity map reveals relation of groundwater movement and arsenic concentration. Understanding the relationship between groundwater movement and arsenic content helps planners protect uncontaminated aquifers from future contamination. Also assessment of public policy related to groundwater has identified important changes needed in the existing policy.
Geomicrobial interactions with arsenic and antimony
Oremland, Ronald S.
2015-01-01
Although arsenic and antimony are generally toxic to life, some microorganisms exist that can metabolize certain forms of these elements. Some can use arsenite or stibnite as potential or sole energy sources, whereas others can use aresenate and antimonite (as was discovered only recently) as terminal electron acceptors. Still other microbes can metabolize arsenic and antimony compounds to detoxify them. These reactions are important from a geomicrobial standpoint because they indicate that a number of microbes contribute to arsenic and antimony mobilization or immobilization in the environment and play a role in arsenic and antimony cycles. Recent reviews include five on prokaryotes and arsenic metabolism, a review with an arsenic perspective on biomining, and a series on environmental antimony, including one about antimony and its interaction with microbiota.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye Zhuang; Christopher Martin; John Pavlish
2009-03-31
This project consisted of pilot-scale combustion testing with a representative Illinois basin coal to explore the multi-interactions of SO{sub 3}, mercury, selenium and arsenic. The parameters investigated for SO{sub 3} and mercury interactions included different flue gas conditions, i.e., temperature, moisture content, and particulate alkali content, both with and without activated carbon injection for mercury control. Measurements were also made to track the transformation of selenium and arsenic partitioning as a function of flue gas temperature through the system. The results from the mercury-SO{sub 3} testing support the concept that SO{sub 3} vapor is the predominant factor that impedes efficientmore » mercury removal with activated carbon in an Illinois coal flue gas, while H{sub 2}SO{sub 4} aerosol has less impact on activated carbon injection performance. Injection of a suitably mobile and reactive additives such as sodium- or calcium-based sorbents was the most effective strategy tested to mitigate the effect of SO{sub 3}. Transformation measurements indicate a significant fraction of selenium was associated with the vapor phase at the electrostatic precipitator inlet temperature. Arsenic was primarily particulate-bound and should be captured effectively with existing particulate control technology.« less
Worldwide occurrences of arsenic in ground water
Nordstrom, D. Kirk
2002-01-01
Numerous aquifers worldwide carry soluble arsenic at concentrations greater than the World Health Organization--and U.S. Environmental Protection Agency--recommended drinking water standard of 10 mg per liter. Sources include both natural (black shales, young sediments with low flushing rates, gold mineralization, and geothermal environments) and anthropogenic (mining activities, livestock feed additives, pesticides, and arsenic trioxide wastes and stockpiles). Increased solubility and mobility of arsenic is promoted by high pH (>8.5), competing oxyanions, and reducing conditions. In this Policy Forum, Nordstrom argues that human health risks from arsenic in ground water can be minimized by incorporating hydrogeochemical knowledge into water management decisions and by more careful monitoring for arsenic in geologically high-risk areas.
Arsenic accumulation in irrigated agricultural soils in Northern Greece.
Casentini, B; Hug, S J; Nikolaidis, N P
2011-10-15
The accumulation of arsenic in soils and food crops due to the use of arsenic contaminated groundwater for irrigation has created worldwide concern. In the Chalkidiki prefecture in Northern Greece, groundwater As reach levels above 1000μg/L within the Nea Triglia geothermal area. While this groundwater is no longer used for drinking, it represents the sole source for irrigation. This paper provides a first assessment of the spatial extent of As accumulation and of As mobility during rainfall and irrigation periods. Arsenic content in sampled soils ranged from 20 to 513mg/kg inside to 5-66mg/kg outside the geothermal area. Around irrigation sprinklers, high As concentrations extended horizontally to distances of at least 1.5m, and to 50cm in depth. During simulated rain events in soil columns (pH=5, 0μg As/L), accumulated As was quite mobile, resulting in porewater As concentrations of 500-1500μg/L and exposing plant roots to high As(V) concentrations. In experiments with irrigation water (pH=7.5, 1500μg As/L), As was strongly retained (50.5-99.5%) by the majority of the soils. Uncontaminated soils (<30mg As/kg) kept soil porewater As concentrations to below 50μg/L. An estimated retardation factor R(f)=434 for weakly contaminated soil (<100mg/kg) indicates good ability to reduce As mobility. Highly contaminated soils (>500mg/kg) could not retain any of the added As. Invoked mechanisms affecting As mobility in those soils were adsorption on solid phases such as Fe/Mn-phases and As co-precipitation with Ca. Low As accumulation was found in collected olives (0.3-25μg/kg in flesh and 0.3-5.6μg/kg in pits). However, soil arsenic concentrations are frequently elevated to far above recommended levels and arsenic uptake in faster growing plants has to be assessed. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Postma, Dieke; Pham, Thi Kim Trang; Sø, Helle Ugilt; Hoang, Van Hoan; , Mai Lan, Vi; Nguyen, Thi Thai; Larsen, Flemming; Pham, Hung Viet; Jakobsen, Rasmus
2016-12-01
Aquifers on the Red River flood plain with burial ages ranging from 500 to 6000 years show, with increasing age, the following changes in solute concentrations; a decrease in arsenic, increase in Fe(II) and decreases in both pH, Ca and bicarbonate. These changes were interpreted in terms of a reaction network comprising the kinetics of organic carbon degradation, the reduction kinetics of As containing Fe-oxides, the sorption of arsenic, the kinetics of siderite precipitation and dissolution, as well as of the dissolution of CaCO3. The arsenic released from the Fe-oxide is preferentially partitioned into the water phase, and partially sorbed, while the released Fe(II) is precipitated as siderite. The reaction network involved in arsenic mobilization was analyzed by 1-D reactive transport modeling. The results reveal complex interactions between the kinetics of organic matter degradation and the kinetics and thermodynamic energy released by Fe-oxide reduction. The energy released by Fe-oxide reduction is strongly pH dependent and both methanogenesis and carbonate precipitation and dissolution have important influences on the pH. Overall it is the rate of organic carbon degradation that determines the total electron flow. However, the kinetics of Fe-oxide reduction determines the distribution of this flow of electrons between methanogenesis, which is by far the main pathway, and Fe-oxide reduction. Modeling the groundwater arsenic content over a 6000 year period in a 20 m thick aquifer shows an increase in As during the first 1200 years where it reaches a maximum of about 600 μg/L. During this initial period the release of arsenic from Fe-oxides actually decreases but the adsorption of arsenic onto the sediment delays the build-up in the groundwater arsenic concentration. After 1200 years the groundwater arsenic content slowly decreases controlled both by desorption and continued further, but diminishing, release from Fe-oxide being reduced. After 6000 years the arsenic content has decreased to 33 μg/L. The modeling enables a quantitative description of how the aquifer properties, the reactivity of organic carbon and Fe-oxides, the number of sorption sites and the buffering mechanisms change over a 6000 year period and how the combined effect of these interacting processes controls the groundwater arsenic content.
Trang, Pham Thi Kim; Sø, Helle Ugilt; Van Hoan, Hoang; Lan, Vi Mai; Thai, Nguyen Thi; Larsen, Flemming; Viet, Pham Hung; Jakobsen, Rasmus
2016-01-01
Aquifers on the Red River flood plain with burial ages ranging from 500 to 6000 years show, with increasing age, the following changes in solute concentrations; a decrease in arsenic, increase in Fe(II) and decreases in both pH, Ca and bicarbonate. These changes were interpreted in terms of a reaction network comprising the kinetics of organic carbon degradation, the reduction kinetics of As containing Fe-oxides, the sorption of arsenic, the kinetics of siderite precipitation and dissolution, as well as of the dissolution of CaCO3. The arsenic released from the Fe-oxide is preferentially partitioned into the water phase, and partially sorbed, while the released Fe(II) is precipitated as siderite. The reaction network involved in arsenic mobilization was analyzed by 1-D reactive transport modeling. The results reveal complex interactions between the kinetics of organic matter degradation and the kinetics and thermodynamic energy released by Fe-oxide reduction. The energy released by Fe-oxide reduction is strongly pH dependent and both methanogenesis and carbonate precipitation and dissolution have important influences on the pH. Overall it is the rate of organic carbon degradation that determines the total electron flow. However, the kinetics of Fe-oxide reduction determines the distribution of this flow of electrons between methanogenesis, which is by far the main pathway, and Fe-oxide reduction. Modeling the groundwater arsenic content over a 6000 year period in a 20 m thick aquifer shows an increase in As during the first 1200 years where it reaches a maximum of about 600 μg/L. During this initial period the release of arsenic from Fe-oxides actually decreases but the adsorption of arsenic onto the sediment delays the build-up in the groundwater arsenic concentration. After 1200 years the groundwater arsenic content slowly decreases controlled both by desorption and continued further, but diminishing, release from Fe-oxide being reduced. After 6000 years the arsenic content has decreased to 33 μg/L. The modeling enables a quantitative description of how the aquifer properties, the reactivity of organic carbon and Fe-oxides, the number of sorption sites and the buffering mechanisms change over a 6000 year period and how the combined effect of these interacting processes controls the groundwater arsenic content. PMID:27867210
Arsenic in rocks and stream sediments of the central Appalachian Basin, Kentucky
Tuttle, Michele L.W.; Goldhaber, Martin B.; Ruppert, Leslie F.; Hower, James C.
2002-01-01
Arsenic (As) enrichment in coal and stream sediments has been documented in the southern Appalachian basin (see Goldhaber and others, submitted) and is attributed to interaction of rocks and coal with metamorphic fluids generated during the Allegheny Orogeny (late Paleozoic). Similarly derived fluids are expected to affect the coal and in the Kentucky Appalachian Basin to the north as well. In addition, similar processes may have influenced the Devonian oil shale on the western margin of the basin. The major goals of this study are to determine the effect such fluids had on rocks in the Kentucky Appalachian basin (fig. 1), and to understand the geochemical processes that control trace-metal source, residence, and mobility within the basin. This report includes data presented in a poster at the USGS workshop on arsenic (February 21 and 22, 2001), new NURE stream sediment data3 , and field data from a trip in April 2001. Although data for major and minor elements and all detectable trace metals are reported in the Appendices, the narrative of this report primarily focuses on arsenic.
Wallis, Ilka; Prommer, Henning; Pichler, Thomas; Post, Vincent; Norton, Stuart B; Annable, Michael D; Simmons, Craig T
2011-08-15
Aquifer storage and recovery (ASR) is an aquifer recharge technique in which water is injected in an aquifer during periods of surplus and withdrawn from the same well during periods of deficit. It is a critical component of the long-term water supply plan in various regions, including Florida, USA. Here, the viability of ASR as a safe and cost-effective water resource is currently being tested at a number of sites due to elevated arsenic concentrations detected during groundwater recovery. In this study, we developed a process-based reactive transport model of the coupled physical and geochemical mechanisms controlling the fate of arsenic during ASR. We analyzed multicycle hydrochemical data from a well-documented affected southwest Floridan site and evaluated a conceptual/numerical model in which (i) arsenic is initially released during pyrite oxidation triggered by the injection of oxygenated water (ii) then largely complexes to neo-formed hydrous ferric oxides before (iii) being remobilized during recovery as a result of both dissolution of hydrous ferric oxides and displacement from sorption sites by competing anions.
Arsenic control during aquifer storage recovery cycle tests in the Floridan Aquifer.
Mirecki, June E; Bennett, Michael W; López-Baláez, Marie C
2013-01-01
Implementation of aquifer storage recovery (ASR) for water resource management in Florida is impeded by arsenic mobilization. Arsenic, released by pyrite oxidation during the recharge phase, sometimes results in groundwater concentrations that exceed the 10 µg/L criterion defined in the Safe Drinking Water Act. ASR was proposed as a major storage component for the Comprehensive Everglades Restoration Plan (CERP), in which excess surface water is stored during the wet season, and then distributed during the dry season for ecosystem restoration. To evaluate ASR system performance for CERP goals, three cycle tests were conducted, with extensive water-quality monitoring in the Upper Floridan Aquifer (UFA) at the Kissimmee River ASR (KRASR) pilot system. During each cycle test, redox evolution from sub-oxic to sulfate-reducing conditions occurs in the UFA storage zone, as indicated by decreasing Fe(2+) /H2 S mass ratios. Arsenic, released by pyrite oxidation during recharge, is sequestered during storage and recovery by co-precipitation with iron sulfide. Mineral saturation indices indicate that amorphous iron oxide (a sorption surface for arsenic) is stable only during oxic and sub-oxic conditions of the recharge phase, but iron sulfide (which co-precipitates arsenic) is stable during the sulfate-reducing conditions of the storage and recovery phases. Resultant arsenic concentrations in recovered water are below the 10 µg/L regulatory criterion during cycle tests 2 and 3. The arsenic sequestration process is appropriate for other ASR systems that recharge treated surface water into a sulfate-reducing aquifer. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.
Bhowmick, Subhamoy; Nath, Bibhash; Halder, Dipti; Biswas, Ashis; Majumder, Santanu; Mondal, Priyanka; Chakraborty, Sudipta; Nriagu, Jerome; Bhattacharya, Prosun; Iglesias, Monica; Roman-Ross, Gabriela; Guha Mazumder, Debendranath; Bundschuh, Jochen; Chatterjee, Debashis
2013-11-15
A comparative hydrogeochemical study was carried out in West Bengal, India covering three physiographic regions, Debagram and Chakdaha located in the Bhagirathi-Hooghly alluvial plain and Baruipur in the delta front, to demonstrate the control of geogenic and anthropogenic influences on groundwater arsenic (As) mobilization. Groundwater samples (n = 90) from tube wells were analyzed for different physico-chemical parameters. The low redox potential (Eh = -185 to -86 mV) and dominant As(III) and Fe(II) concentrations are indicative of anoxic nature of the aquifer. The shallow (<100 m) and deeper (>100 m) aquifers of Bhagirathi-Hooghly alluvial plains as well as shallow aquifers of delta front are characterized by Ca(2+)HCO3(-) type water, whereas Na(+) and Cl(-) enrichment is found in the deeper aquifer of delta front. The equilibrium of groundwater with respect to carbonate minerals and their precipitation/dissolution seems to be controlling the overall groundwater chemistry. The low SO4(2-) and high DOC, PO4(3-) and HCO3(-) concentrations in groundwater signify ongoing microbial mediated redox processes favoring As mobilization in the aquifer. The As release is influenced by both geogenic (i.e. geomorphology) and anthropogenic (i.e. unsewered sanitation) processes. Multiple geochemical processes, e.g., Fe-oxyhydroxides reduction and carbonate dissolution, are responsible for high As occurrence in groundwaters. Copyright © 2012 Elsevier B.V. All rights reserved.
Arsenic speciation and sorption in natural environments
Campbell, Kate M.; Nordstrom, D. Kirk
2014-01-01
Aqueous arsenic speciation, or the chemical forms in which arsenic exists in water, is a challenging, interesting, and complicated aspect of environmental arsenic geochemistry. Arsenic has the ability to form a wide range of chemical bonds with carbon, oxygen, hydrogen, and sulfur, resulting in a large variety of compounds that exhibit a host of chemical and biochemical properties. Besides the intriguing chemical diversity, arsenic also has the rare capacity to capture our imaginations in a way that few elements can duplicate: it invokes images of foul play that range from sinister to comedic (e.g., “inheritance powder” and arsenic-spiked elderberry wine). However, the emergence of serious large-scale human health problems from chronic arsenic exposure in drinking water has placed a high priority on understanding environmental arsenic mobility, toxicity, and bioavailability, and chemical speciation is key to these important questions. Ultimately, the purpose of arsenic speciation research is to predict future occurrences, mitigate contamination, and provide successful management of water resources.
Garelick, Hemda; Jones, Huw; Dybowska, Agnieszka; Valsami-Jones, Eugenia
2008-01-01
Arsenic is a widely dispersed element in the Earth's crust and exists at an average concentration of approximately 5 mg/kg. There are many possible routes of human exposure to arsenic from both natural and anthropogenic sources. Arsenic occurs as a constituent in more than 200 minerals, although it primarily exists as arsenopyrite and as a constituent in several other sulfide minerals. The introduction of arsenic into drinking water can occur as a result of its natural geological presence in local bedrock. Arsenic-containing bedrock formations of this sort are known in Bangladesh, West Bengal (India), and regions of China, and many cases of endemic contamination by arsenic with serious consequences to human health are known from these areas. Significant natural contamination of surface waters and soil can arise when arsenic-rich geothermal fluids come into contact with surface waters. When humans are implicated in causing or exacerbating arsenic pollution, the cause can almost always be traced to mining or mining-related activities. Arsenic exists in many oxidation states, with arsenic (III) and (V) being the most common forms. Similar to many metalloids, the prevalence of particular species of arsenic depends greatly on the pH and redox conditions of the matrix in which it exists. Speciation is also important in determining the toxicity of arsenic. Arsenic minerals exist in the environment principally as sulfides, oxides, and phosphates. In igneous rocks, only those of volcanic origin are implicated in high aqueous arsenic concentrations. Sedimentary rocks tend not to bear high arsenic loads, and common matrices such as sands and sandstones contain lower concentrations owing to the dominance of quartz and feldspars. Groundwater contamination by arsenic arises from sources of arsenopyrite, base metal sulfides, realgar and orpiment, arsenic-rich pyrite, and iron oxyhydroxide. Mechanisms by which arsenic is released from minerals are varied and are accounted for by many (bio)geochemical processes: oxidation of arsenic-bearing sulfides, desorption from oxides and hydroxides, reductive dissolution, evaporative concentration, leaching from sulfides by carbonate, and microbial mobilization. Arsenic enrichment also takes place in geothermally active areas; surface waters are more susceptible than groundwater to contamination in the vicinity of such geothermal systems, and evidence suggests that increased use of geothermal power may elevate risks of arsenic exposure in affected areas. Past and current mining activities continue to provide sources of environmental contamination by arsenic. Because gold- and arsenic-bearing minerals coexist, there is a hazard of mobilizing arsenic during gold mining activities. The Ashanti region of central Ghana currently faces this as a real risk. Historical arsenic contamination exists in Cornwall, UK; an example of a recent arsenic pollution event is that of Ron Phibun town in southern Thailand, where arsenic-related human health effects have been reported. Other important sources of arsenic exposure include coal burning in Slovakia, Turkey, and the Guizhou Province of China; use of arsenic as pesticides in Australia, New Zealand, and the US; and consumption of contaminated foodstuffs (China) and exposure to wood preserving arsenicals (Europe and North America).
Arsenic in ground water in selected parts of southwestern Ohio, 2002-03
Thomas, Mary Ann; Schumann, Thomas L.; Pletsch, Bruce A.
2005-01-01
Arsenic concentrations were measured in 57 domestic wells in Preble, Miami, and Shelby Counties, in southwestern Ohio. The median arsenic concentration was 7.1 ?g/L (micrograms per liter), and the maximum was 67.6 ?g/L. Thirty-seven percent of samples had arsenic concentrations greater than the U.S. Environmental Protection Agency drinking-water standard of 10 ?g/L. Elevated arsenic concentrations (>10 ?g/L) were detected over the entire range of depths sampled (42 to 221 feet) and in each of three aquifer types, Silurian carbonate bedrock, glacial buried-valley deposits, and glacial till with interbedded sand and gravel. One factor common in all samples with elevated arsenic concentrations was that iron concentrations were greater than 1,000 ?g/L. The observed correlations of arsenic with iron and alkalinity are consistent with the hypothesis that arsenic was released from iron oxides under reducing conditions (by reductive dissolution or reductive desorption). Comparisons among the three aquifer types revealed some differences in arsenic occurrence. For buried-valley deposits, the median arsenic concentration was 4.6 ?g/L, and the maximum was 67.6 ?g/L. There was no correlation between arsenic concentrations and depth; the highest concentrations were at intermediate depths (about 100 feet). Half of the buried-valley samples were estimated to be methanic. Most of the samples with elevated arsenic concentrations also had elevated concentrations of dissolved organic carbon and ammonia. For carbonate bedrock, the median arsenic concentration was 8.0 ?g/L, and the maximum was 30.7 ?g/L. Arsenic concentrations increased with depth. Elevated arsenic concentrations were detected in iron- or sulfate-reducing samples. Arsenic was significantly correled with molybdenum, strontium, fluoride, and silica, which are components of naturally ocurring minerals. For glacial till with interbedded sand and gravel, half of the samples had elevated arsenic concentrations. The median was 11.4 ?g/L, and the maximum was 27.6 ?g/L. At shallow depths (<100 feet), this aquifer type had higher arsenic and iron concentrations than carbonate bedrock. It is not known whether these observed differences among aquifer types are related to variations in (1) arsenic content of the aquifer material, (2) organic carbon content of the aquifer material, (3) mechanisms of arsenic mobilization (or uptake), or (4) rates of arsenic mobilization (or uptake). A followup study that includes solid-phase analyses and geochemical modeling was begun in 2004 in northwestern Preble County.
ARSENIC TRANSPORT AND FATE IN SULFIDIC ENVIRONMENTS: AS(III) - FES INTERACTIONS
Arsenic mobility in groundwater and retention in aquifer materials at contaminated sites is often linked to redox processes, especially iron and sulfur cycling at redox boundaries. Important processes include adsorption or co-precipitation reactions of arsenate, arsenite, or th...
Arsenic in the soils of Zimapán, Mexico.
Ongley, Lois K; Sherman, Leslie; Armienta, Aurora; Concilio, Amy; Salinas, Carrie Ferguson
2007-02-01
Arsenic concentrations of 73 soil samples collected in the semi-arid Zimapán Valley range from 4 to 14 700 mg As kg(-1). Soil arsenic concentrations decrease with distance from mines and tailings and slag heaps and exceed 400 mg kg(-1) only within 500 m of these arsenic sources. Soil arsenic concentrations correlate positively with Cu, Pb, and Zn concentrations, suggesting a strong association with ore minerals known to exist in the region. Some As was associated with Fe and Mn oxyhydroxides, this association is less for contaminated than for uncontaminated samples. Very little As was found in the mobile water-soluble or exchangeable fractions. The soils are not arsenic contaminated at depths greater than 100 cm below the surface. Although much of the arsenic in the soils is associated with relatively immobile solid phases, this represents a long-term source of arsenic to the environment.
Field and laboratory arsenic speciation methods and their application to natural-water analysis
Bednar, A.J.; Garbarino, J.R.; Burkhardt, M.R.; Ranville, J.F.; Wildeman, T.R.
2004-01-01
The toxic and carcinogenic properties of inorganic and organic arsenic species make their determination in natural water vitally important. Determination of individual inorganic and organic arsenic species is critical because the toxicology, mobility, and adsorptivity vary substantially. Several methods for the speciation of arsenic in groundwater, surface-water, and acid mine drainage sample matrices using field and laboratory techniques are presented. The methods provide quantitative determination of arsenite [As(III)], arsenate [As(V)], monomethylarsonate (MMA), dimethylarsinate (DMA), and roxarsone in 2-8min at detection limits of less than 1??g arsenic per liter (??g AsL-1). All the methods use anion exchange chromatography to separate the arsenic species and inductively coupled plasma-mass spectrometry as an arsenic-specific detector. Different methods were needed because some sample matrices did not have all arsenic species present or were incompatible with particular high-performance liquid chromatography (HPLC) mobile phases. The bias and variability of the methods were evaluated using total arsenic, As(III), As(V), DMA, and MMA results from more than 100 surface-water, groundwater, and acid mine drainage samples, and reference materials. Concentrations in test samples were as much as 13,000??g AsL-1 for As(III) and 3700??g AsL-1 for As(V). Methylated arsenic species were less than 100??g AsL-1 and were found only in certain surface-water samples, and roxarsone was not detected in any of the water samples tested. The distribution of inorganic arsenic species in the test samples ranged from 0% to 90% As(III). Laboratory-speciation method variability for As(III), As(V), MMA, and DMA in reagent water at 0.5??g AsL-1 was 8-13% (n=7). Field-speciation method variability for As(III) and As(V) at 1??g AsL-1 in reagent water was 3-4% (n=3). ?? 2003 Elsevier Ltd. All rights reserved.
ARSENIC SPECIES THAT CAUSE RELEASE OF IRON FROM FERRITIN AND GENERATION OF ACTIVATED OXYGEN
ABSTRACT
The in vitro effects of four different species of arsenic { arsenate, arsenite, monomethylarsonic acid and dimethylarsinic acid) in mobilizing iron from horse spleen ferritin under aerobic and anaerobic conditions were investigated. Dimethylarsinicacid {DMA(V...
Williams, Paul N; Zhang, Hao; Davison, William; Meharg, Andrew A; Hossain, Mahmud; Norton, Gareth J; Brammer, Hugh; Islam, M Rafiqul
2011-07-15
Agroecological zones within Bangladesh with low levels of arsenic in groundwater and soils produce rice that is high in arsenic with respect to other producing regions of the globe. Little is known about arsenic cycling in these soils and the labile fractions relevant for plant uptake when flooded. Soil porewater dynamics of field soils (n = 39) were recreated under standardized laboratory conditions to investigate the mobility and interplay of arsenic, Fe, Si, C, and other elements, in relation to rice grain element composition, using the dynamic sampling technique diffusive gradients in thin films (DGT). Based on a simple model using only labile DGT measured arsenic and dissolved organic carbon (DOC), concentrations of arsenic in Aman (Monsoon season) rice grain were predicted reliably. DOC was the strongest determinant of arsenic solid-solution phase partitioning, while arsenic release to the soil porewater was shown to be decoupled from that of Fe. This study demonstrates the dual importance of organic matter (OM), in terms of enhancing arsenic release from soils, while reducing bioavailability by sequestering arsenic in solution.
Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic.
Meagher, Richard B; Heaton, Andrew C P
2005-12-01
Plants have many natural properties that make them ideally suited to clean up polluted soil, water, and air, in a process called phytoremediation. We are in the early stages of testing genetic engineering-based phytoremediation strategies for elemental pollutants like mercury and arsenic using the model plant Arabidopsis. The long-term goal is to develop and test vigorous, field-adapted plant species that can prevent elemental pollutants from entering the food-chain by extracting them to aboveground tissues, where they can be managed. To achieve this goal for arsenic and mercury, and pave the way for the remediation of other challenging elemental pollutants like lead or radionucleides, research and development on native hyperaccumulators and engineered model plants needs to proceed in at least eight focus areas: (1) Plant tolerance to toxic elementals is essential if plant roots are to penetrate and extract pollutants efficiently from heterogeneous contaminated soils. Only the roots of mercury- and arsenic-tolerant plants efficiently contact substrates heavily contaminated with these elements. (2) Plants alter their rhizosphere by secreting various enzymes and small molecules, and by adjusting pH in order to enhance extraction of both essential nutrients and toxic elements. Acidification favors greater mobility and uptake of mercury and arsenic. (3) Short distance transport systems for nutrients in roots and root hairs requires numerous endogenous transporters. It is likely that root plasma membrane transporters for iron, copper, zinc, and phosphate take up ionic mercuric ions and arsenate. (4) The electrochemical state and chemical speciation of elemental pollutants can enhance their mobility from roots up to shoots. Initial data suggest that elemental and ionic mercury and the oxyanion arsenate will be the most mobile species of these two toxic elements. (5) The long-distance transport of nutrients requires efficient xylem loading in roots, movement through the xylem up to leaves, and efficient xylem unloading aboveground. These systems can be enhanced for the movement of arsenic and mercury. (6) Aboveground control over the electrochemical state and chemical speciation of elemental pollutants will maximize their storage in leaves, stems, and vascular tissues. Our research suggests ionic Hg(II) and arsenite will be the best chemical species to trap aboveground. (7) Chemical sinks can increase the storage capacity for essential nutrients like iron, zinc, copper, sulfate, and phosphate. Organic acids and thiol-rich chelators are among the important chemical sinks that could trap maximal levels of mercury and arsenic aboveground. (8) Physical sinks such as subcellular vacuoles, epidermal trichome cells, and dead vascular elements have shown the evolutionary capacity to store large quantities of a few toxic pollutants aboveground in various native hyperaccumulators. Specific plant transporters may already recognize gluthione conjugates of Hg(II) or arsenite and pump them into vacuole.
Multiple doping of silicon-germanium alloys for thermoelectric applications
NASA Technical Reports Server (NTRS)
Fleurial, Jean-Pierre; Vining, Cronin B.; Borshchevsky, Alex
1989-01-01
It is shown that heavy doping of n-type Si/Ge alloys with phosphorus and arsenic (V-V doping interaction) by diffusion leads to a significant enhancement of their carrier concentration and possible improvement of the thermoelectric figure of merit. High carrier concentrations were achieved by arsenic doping alone, but for a same doping level higher carrier mobilities and lower resistivities are obtained through phosphorus doping. By combining the two dopants with the proper diffusion treatments, it was possible to optimize the different properties, obtaining high carrier concentration, good carrier mobility and low electrical resistivity. Similar experiments, using the III-V doping interaction, were conducted on boron-doped p-type samples and showed the possibility of overcompensating the samples by diffusing arsenic, in order to get n-type behavior.
Vašíčková, Jana; Maňáková, Blanka; Šudoma, Marek; Hofman, Jakub
2016-11-05
Sludge coming from remediation of groundwater contaminated by industry is usually managed as hazardous waste despite it might be considered for further processing as a source of nutrients. The ecotoxicity of phosphorus rich sludge contaminated with arsenic was evaluated after mixing with soil and cultivation with Sinapis alba, and supplementation into composting and vermicomposting processes. The Enchytraeus crypticus and Folsomia candida reproduction tests and the Lactuca sativa root growth test were used. Invertebrate bioassays reacted sensitively to arsenic presence in soil-sludge mixtures. The root elongation of L. sativa was not sensitive and showed variable results. In general, the relationship between invertebrate tests results and arsenic mobile concentration was indicated in majority endpoints. Nevertheless, significant portion of the results still cannot be satisfactorily explained by As chemistry data. Composted and vermicomposted sludge mixtures showed surprisingly high toxicity on all three tested organisms despite the decrease in arsenic mobility, probably due to toxic metabolites of bacteria and earthworms produced during these processes. The results from the study indicated the inability of chemical methods to predict the effects of complex mixtures on living organisms with respect to ecotoxicity bioassays. Copyright © 2016 Elsevier B.V. All rights reserved.
Stueckle, Todd A.; Lu, Yongju; Davis, Mary E.; Wang, Liying; Jiang, Bing-Hua; Holaskova, Ida; Schafer, Rosana; Barnett, John B.; Rojanasakul, Yon
2012-01-01
Chronic arsenic exposure remains a human health risk; however a clear mode of action to understand gene signaling-driven arsenic carcinogenesis is currently lacking. This study chronically exposed human lung epithelial BEAS-2B cells to low-dose arsenic trioxide to elucidate cancer promoting gene signaling networks associated with arsenic-transformed (B-As) cells. Following a six month exposure, exposed cells were assessed for enhanced cell proliferation, colony formation, invasion ability and in vivo tumor formation compared to control cell lines. Collected mRNA was subjected to whole genome expression microarray profiling followed by in silico Ingenuity Pathway Analysis (IPA) to identify lung carcinogenesis modes of action. B-As cells displayed significant increases in proliferation, colony formation and invasion ability compared to BEAS-2B cells. B-As injections into nude mice resulted in development of primary and secondary metastatic tumors. Arsenic exposure resulted in widespread up-regulation of genes associated with mitochondrial metabolism and increased reactive oxygen species protection suggesting mitochondrial dysfunction. Carcinogenic initiation via reactive oxygen species and epigenetic mechanisms was further supported by altered DNA repair, histone, and ROS-sensitive signaling. NF-κB, MAPK and NCOR1 signaling disrupted PPARα/δ-mediated lipid homeostasis. A ‘pro-cancer’ gene signaling network identified increased survival, proliferation, inflammation, metabolism, anti-apoptosis and mobility signaling. IPA-ranked signaling networks identified altered p21, EF1α, Akt, MAPK, and NF-κB signaling networks promoting genetic disorder, altered cell cycle, cancer and changes in nucleic acid and energy metabolism. In conclusion, transformed B-As cells with their whole genome expression profile provide an in vitro arsenic model for future lung cancer signaling research and data for chronic arsenic exposure risk assessment. PMID:22521957
NASA Astrophysics Data System (ADS)
Sathe, Sandip S.; Mahanta, Chandan; Mishra, Pushpanjali
2018-06-01
In the dynamic cycling of oxic and anoxic aqueous alluvial aquifer environments, varying Arsenic (As) concentrations are controlled by both abiotic and biotic factors. Studies have shown a significant form of toxic As (III) being released through the reductive dissolution of iron-oxy/hydroxide minerals and microbial reduction mechanisms, which leads to a serious health concern. The present study was performed in order to assess the abiotic and biotic factors influencing As release into the alluvial aquifer groundwater in Brahmaputra floodplain, India. The groundwater chemistry, characterization of the sediments, isolation, identification and characterization of prominent As releasing indigenous bacterium were conducted. The measured solid and liquid phases of total As concentration were ranged between 0.02 and 17.2 mg kg-1 and 8 to 353 μg L-1, respectively. The morphology and mineralogy showed the presence of detrital and authigenic mineral assemblages whereas primary and secondary As bearing Realgar and Claudetite minerals were identified, respectively. Furthermore, significant non-labile As fraction was found associated with the amorphous oxides of Fe, Mn and Al. The observed groundwater chemistry and sediment color, deduced a sub-oxic reducing aquifer conditions in As-contaminated regions. In addition, 16S rDNA sequencing results of the isolated bacterium showed the prominent Pseudomonas aeruginosa responsible for the mobilization of As, reducing condition, biomineralization and causing grey color to the sediments at the shallower and deeper aquifers in the study area. These findings suggest that microbial metabolic activities are equally responsible in iron-oxy/hydroxide reductive dissolution, controlling As mobilization in dynamic fluvial flood plains.
NASA Astrophysics Data System (ADS)
Rakhimbekova, S.; O'Carroll, D. M.; Robinson, C. E.
2017-12-01
Groundwater-coastal water interactions play an important role in controlling the behavior of inorganic chemicals in nearshore aquifers and the subsequent flux of these chemicals to receiving coastal waters. Previous studies have shown that dynamic groundwater flows and water exchange across the sediment-water interface can set up strong geochemical gradients and an important reaction zone in a nearshore aquifer that affect the fate of reactive chemicals. There is limited understanding of the impact of transient coastal forcing such as wave conditions on groundwater dynamics and geochemistry in a nearshore aquifer. The goal of this study was to assess the impact of intensified wave conditions on the behavior of arsenic in a nearshore aquifer and to determine the hydrological and geochemical factors controlling its fate and ultimate delivery to receiving coastal waters. Field investigations were conducted over the period of intensified wave conditions on a freshwater beach on Lake Erie, Canada. High spatial resolution aqueous and sediment sampling was conducted to characterize the subsurface distribution of inorganic species in the nearshore aquifer. Numerical groundwater flow and transport simulations were conducted to evaluate wave-induced perturbations in the flow dynamics including characterizing changes in the groundwater flow recirculations in the nearshore aquifer. The combination of field data and numerical simulations reveal that varying wave conditions alter groundwater flows and set up geochemical transition zones within the aquifer resulting in the release and sequestration of arsenic. Interactions between oxic surface water, mildly reducing shallow groundwater, and reducing sulfur- and iron-rich deep groundwater promote dynamic iron, sulfur and manganese cycling which control the mobility of arsenic in the aquifer. The findings of this study have potential implications for the fate and transport of other reactive chemicals (e.g. phosphorus, mercury) in nearshore marine and freshwater aquifers exposed to transient coastal forcing. Understanding the fate of chemicals and the dynamics of the reaction zone in nearshore aquifers is critical for evaluating the importance of groundwater as a pathway for delivering pollutants to coastal waters.
Arsenic in the groundwater: Occurrence, toxicological activities, and remedies.
Jha, S K; Mishra, V K; Damodaran, T; Sharma, D K; Kumar, Parveen
2017-04-03
Arsenic (As) contamination in groundwater has become a geo-environmental as well as a toxicological problem across the globe affecting more than 100-million people in nearly 21 countries with its associated disease "arsenicosis." Arsenic poisoning may lead to fatal skin and internal cancers. In present review, an attempt has been made to generate awareness among the readers about various sources of occurrence of arsenic, its geochemistry and speciation, mobilization, metabolism, genotoxicity, and toxicological exposure on humans. The article also emphasizes the possible remedies for combating the problem. The knowledge of these facts may help to work on some workable remedial measure.
AN INVESTIGATION OF ARSENIC MOBILITY FROM IRON OXIDE SOLIDS PRODUCED DURING DRINKING WATER TREATMENT
The Arsenic Rule under the Safe Drinking Water Act will require certain drinking water suppliers to add to or modify their existing treatment in order to comply with the regulations. One of the treatment options is iron co-precipitation. This treatment is attractive because ars...
Microbial As(III) Oxidation in Water Treatment Plant Filters
Arsenic exists in two oxidation states in water - arsenite [As(III)] and arsenate [As(V)]. As(III) is relatively mobile in water and difficult to remove by arsenic-removal treatment processes. Source waters that contain As(III) must add a strong oxidant such as free chlorine or p...
Managed Aquifer Recharge (MAR) is one water reuse technique with the potential to meet growing water demands. However, MAR sites have encountered arsenic remobilization resulting from recharge operations. To combat this challenge, it is important to identify the mechanism of arse...
ARSENIC GEOCHEMICAL BEHAVIOR DURING GROUND WATER-SURFACE WATER INTERACTIONS AT A CONTAMINATED SITE
Research results will be presented that address arsenic mobilization and cycling mechanisms at a Superfund site in eastern Massachusetts. The site is located in the headwaters of the Aberjona Watershed. In order to support assessments of the risk posed by off-site migration of ar...
Vaxevanidou, K; Christou, C; Kremmydas, G F; Georgakopoulos, D G; Papassiopi, N
2015-03-01
In this study two different treatment options were investigated for the release of arsenic from a contaminated soil sample. The first option was based on the "bioaugmentation" principle and involved addition of a pure Fe(III)-reducing culture, i.e. Desulfuromonas palmitatis. The second option consisted in the "biostimulation" of indigenous bacteria and involved simple addition of nutrients. Due to the strong association of As with soil ferric oxides, the reductive dissolution of soil oxides by D. palmitatis lead to 45 % arsenic release in solution (2.15 mM). When only nutrients were supplied to the soil, the same amounts of Fe and As were dissolved with slower rates and most aqueous As was found to be in the trivalent state, indicating the presence of arsenate reducing species. The arsenate reducing microorganisms were enriched with successive cultures, using Na2HAsO4 as electron acceptor. The phylogenetic analysis revealed that the enriched microbial consortium contained Desulfosporosinus species, which are known arsenate reducers.
Effect of pH, competitive anions and NOM on the leaching of arsenic from solid residuals.
Ghosh, Amlan; Sáez, A Eduardo; Ela, Wendell
2006-06-15
Implementation of the new arsenic MCL in 2006 will lead to the generation of an estimated 6 million pounds of arsenic-bearing solid residuals (ABSRs) every year, which will be disposed predominantly in non-hazardous landfills. The Toxicity Characteristic Leaching Procedure (TCLP) is typically used to assess whether a waste is hazardous and most solid residuals pass the TCLP. However, recent research shows the TCLP significantly underestimates arsenic mobilization in landfills. A variety of compositional dissimilarities between landfill leachates and the TCLP extractant solution likely play a role. Among the abiotic factors likely to play a key role in arsenic remobilization/leaching from solid sorbents are pH, and the concentrations of natural organic matter (NOM) and anions like phosphate, bicarbonate, sulfate and silicate. This study evaluates the desorption of arsenic from actual treatment sorbents, activated alumina (AA) and granular ferric hydroxide (GFH), which are representative of those predicted for use in arsenic removal processes, and as a function of the specific range of pH and concentrations of the competitive anions and NOM found in landfills. The influence of pH is much more significant than that of competing anions or NOM. An increase in one unit of pH may increase the fraction of arsenic leached by 3-4 times. NOM and phosphate replace arsenic from sorbent surface sites up to three orders of magnitude more than bicarbonate, sulfate and silicate, on a per mole basis. Effects of anions are neither additive nor purely competitive. Leaching tests, which compare the fraction of arsenic mobilized by the TCLP vis-a-vis an actual or more realistic synthetic landfill leachate, indicate that higher pH, and greater concentrations of anions and NOM are all factors, but of varying significance, in causing higher extraction in landfill and synthetic leachates than the TCLP.
Verplanck, P.L.; Mueller, S.H.; Goldfarb, R.J.; Nordstrom, D. Kirk; Youcha, E.K.
2008-01-01
Ester Dome, an upland area near Fairbanks, Alaska, was chosen for a detailed hydrogeochemical study because of the previously reported elevated arsenic in groundwater, and the presence of a large set of wells amenable to detailed sampling. Ester Dome lies within the Fairbanks mining district, where gold-bearing quartz veins, typically containing 2-3??vol.% sulfide minerals (arsenopyrite, stibnite, and pyrite), have been mined both underground and in open cuts. Gold-bearing veins on Ester Dome occur in shear zones and the sulfide minerals in these veins have been crushed to fine-grained material by syn- or post-mineralization movement. Groundwater at Ester Dome is circumneutral, Ca-HCO3 to Ca-SO4 type, and ranges from dilute (specific conductance of 48????S/cm) to more concentrated (specific conductance as high as 2070????S/cm). In general, solute concentrations increase down hydrologic gradient. Redox species indicate that the groundwaters range from oxic to sub-oxic (low dissolved oxygen, Fe(III) reduction, no SO4 reduction). Waters with the highest Fe concentrations, as high as 10.7??mg/L, are the most anoxic. Dissolved As concentrations range from < 1 to 1160????g/L, with a median value of 146????g/L. Arsenic concentrations are not correlated with specific conductance or Fe concentrations, suggesting that neither groundwater residence time, nor reductive dissolution of iron oxyhydroxides, control the arsenic chemistry. Furthermore, As concentrations do not covary with other constituents that form anions and oxyanions in solution (e.g., HCO3, Mo, F, or U) such that desorption of arsenic from clays or oxides also does not control arsenic mobility. Oxidation of arsenopyrite and dissolution of scorodite, in the near-surface environment appears to be the primary control of dissolved As in this upland area. More specifically, the elevated As concentrations are spatially associated with sulfidized shear zones and localities of gold-bearing quartz veins. Consistent with this interpretation, elevated dissolved Sb concentrations (as high as 59????g/L), also correlated with occurrences of hypogene sulfide minerals, were measured in samples with high dissolved As concentrations.
Linking geochemical processes in mud volcanoes with arsenic mobilization driven by organic matter.
Liu, Chia-Chuan; Kar, Sandeep; Jean, Jiin-Shuh; Wang, Chung-Ho; Lee, Yao-Chang; Sracek, Ondra; Li, Zhaohui; Bundschuh, Jochen; Yang, Huai-Jen; Chen, Chien-Yen
2013-11-15
The present study deals with geochemical characterization of mud fluids and sediments collected from Kunshuiping (KSP), Liyushan (LYS), Wushanting (WST), Sinyangnyuhu (SYNH), Hsiaokunshui (HKS) and Yenshuikeng (YSK) mud volcanoes in southwestern Taiwan. Chemical constituents (cations, anions, trace elements, organic carbon, humic acid, and stable isotopes) in both fluids and mud were analyzed to investigate the geochemical processes and spatial variability among the mud volcanoes under consideration. Analytical results suggested that the anoxic mud volcanic fluids are highly saline, implying connate water as the probable source. The isotopic signature indicated that δ(18)O-rich fluids may be associated with silicate and carbonate mineral released through water-rock interaction, along with dehydration of clay minerals. Considerable amounts of arsenic in mud irrespective of fluid composition suggested possible release through biogeochemical processes in the subsurface environment. Sequential extraction of As from the mud indicated that As was mostly present in organic and sulphidic phases, and adsorbed on amorphous Mn oxyhydroxides. Volcanic mud and fluids are rich in organic matter (in terms of organic carbon), and the presence of humic acid in mud has implications for the binding of arsenic. Functional groups of humic acid also showed variable sources of organic matter among the mud volcanoes being examined. Because arsenate concentration in the mud fluids was found to be independent from geochemical factors, it was considered that organic matter may induce arsenic mobilization through an adsorption/desorption mechanism with humic substances under reducing conditions. Organic matter therefore plays a significant role in the mobility of arsenic in mud volcanoes. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bor,; #269; inová rAdková, AnekA
The legacy of copper (Cu) mining at Špania Dolina-Piesky and Lubietová-Svätodušná (central Slovakia) is waste rock and soil, surface waters, and groundwaters contaminated with antimony (Sb), arsenic (As), Cu, and other metals. Copper ore is hosted in chalcopyrite (CuFeS2) and sulfosalt solid-solution tetrahedrite-tennantite {Cu6[Cu4(Fe,Zn)2]Sb4S13–Cu6[Cu4(Fe,Zn)2]As4S13} that show wide-spread oxidation characteristic by olive-green color secondary minerals. Tetrahedrite-tennantite can be a significant source of As and Sb contamination. Synchrotron-based μ-XRD, μ-XRF, and μ-XANES combined with electron microprobe analyses have been used to determine the mineralogy, chemical composition, element distribution, and Sb speciation in tetrahedrite-tennantite oxidation products in waste rock. Our results show thatmore » the mobility of Sb is limited by the formation of oxidation products such as tripuhyite and roméite group mineral containing 36.54 wt% Sb for samples where the primary mineral chemical composition is close to tetrahedrite end-member. Antimony K-edge μ-XANES spectra of these oxidation products indicate that the predominant Sb oxidation state is 5+. Arsenic and Cu are also hosted by amorphous phases containing 6.23 wt% Sb on average and these are intergrown with tripuhyite and roméite. Antimony in this environment is not very mobile, meaning it is not easily released from solid phases to water, especially compared to As, Cu, and S. For samples where the primary sulfosalt is close to tennantite composition, the oxidation products associated with tennantite relicts contain 2.43 wt% Sb and are amorphous. The variable solubility of the secondary minerals that have been identified is expected to influence mobility of Sb and As in near-surface environment.« less
NASA Astrophysics Data System (ADS)
Mladenov, N.; Kulkarni, H. V.; McKnight, D. M.; Zheng, Y.; Kirk, M. F.
2016-12-01
It was demonstrated more than two decades ago that the electron shuttling ability of fulvic acids (FA) accelerates iron (Fe) reduction. However, the environmental relevance of this mechanism for arsenic-laden groundwater environments has thus far only been hypothesized. Here we show that FAs isolated from high and low arsenic groundwater aquifers in the Bengal Basin can act to shuttle electrons between bacteria and Fe(III). Bangladesh groundwater FAs were reduced by Geobacter metallireducens and were subsequently capable of abiotically reducing Fe(III) to Fe(II). Moreover, all four Bangladesh groundwater FAs investigated in the study had higher Fe(III) to Fe(II) conversion rates compared to anthraquinone disulfonate, an oxidized quinone, and Suwannee River Fulvic Acid, a commercially-available FA isolated from a terrestrially-dominated surface water source. Until now, microbially-mediated reductive dissolution of Fe (oxy)hydroxides, driven by the availability of labile organic matter, was widely accepted as the main control on arsenic mobilization in reducing aquifers. Our evidence for the electron shuttling ability of Bangladesh FAs implicates electron shuttling as another important control on elevated As concentrations in groundwater of the Bengal Basin.
Arsenic in Illinois ground water : community and private supplies
Warner, Kelly L.; Martin, Angel; Arnold, Terri L.
2003-01-01
Assessing the distribution of arsenic in ground water from community-water supplies, private supplies, or monitoring wells is part of the process of determining the risk of arsenic contamination of drinking water in Illinois. Lifestyle, genetic, and environmental factors make certain members of the population more susceptible to adverse health effects from repeated exposure to drinking water with high arsenic concentrations (Ryker, 2001). In addition, such factors may have geographic distribution patterns that complicate the analysis of the relation between arsenic in drinking water and health effects. For example, arsenic may not be the only constituent affecting the quality of drinking water in a region (Ryker, 2001); however, determining the extent and distribution of arsenic in ground water is a starting place to assess the potential risk for persons drinking from a community or private supply. Understanding the potential sources and pathways that mobilize arsenic in ground water is a necessary step in protecting the drinking-water supply in Illinois.
This report documents the activities performed and the results obtained for the arsenic removal treatment technology demonstration project at Charette Mobile Home Park (CMHP) in Dummerston, Vermont. The objectives of the project were to evaluate: (1) the effectiveness of an Aqua...
This report documents the activities performed during and the results obtained from the first six months (from June 22, 2005 through December 22, 2005) of the arsenic removal treatment technology demonstration project at Charette Mobile Home Park (CMHP) in Dummerston, Vermont. T...
Majumder, Santanu; Nath, Bibhash; Sarkar, Simita; Chatterjee, Debashis; Roman-Ross, Gabriela; Hidalgo, Manuela
2014-01-15
Dissolved organic carbon (DOC) and Fe mineral phases are known to influence the mobility of arsenic (As) in groundwater. Arsenic can be associated with colloidal particles containing organic matter and Fe. Currently, no data is available on the dissolved phase/colloidal association of As in groundwater of alluvial aquifers in West Bengal, India. This study investigated the fractional distribution of As (and other metals/metalloids) among the particulate, colloidal and dissolved phases in groundwater to decipher controlling behavior of organic and inorganic colloids on As mobility. The result shows that 83-94% of As remained in the 'truly dissolved' phases (i.e., <0.05 μm size). Strong positive correlation between Fe and As (r(2) between 0.65 and 0.94) is mainly observed in the larger (i.e., >0.05 μm size) colloidal particles, which indicates the close association of As with larger Fe-rich inorganic colloids. In smaller (i.e., <0.05 μm size) colloidal particles strong positive correlation is observed between As and DOC (r(2)=0.85), which highlights the close association of As with smaller organic colloids. As(III) is mainly associated with larger inorganic colloids, whereas, As(V) is associated with smaller organic/organometallic colloids. Scanning Electron Microscopy and Energy Dispersive X-ray spectroscopy confirm the association of As with DOC and Fe mineral phases suggesting the formation of dissolved organo-Fe complexes and colloidal organo-Fe oxide phases. Attenuated total reflectance-Fourier transform infrared spectroscopy further confirms the formation of As-Fe-NOM organometallic colloids, however, a detailed study of these types of colloids in natural waters is necessary to underpin their controlling behavior. © 2013 Elsevier B.V. All rights reserved.
Arsenic Mobilization Influenced By Iron Reduction And Sulfidogenesis Under Dynamic Flow
NASA Astrophysics Data System (ADS)
Kocar, B. D.; Stewart, B. D.; Herbel, M.; Fendorf, S.
2004-12-01
Sulfidogenesis and iron reduction are ubiquitous processes that occur in a variety of anoxic subsurface and surface environments, which profoundly impact the cycling of arsenic. Of the iron (hydr)oxides, ferrihydrite possesses one of the highest capacities to retain arsenic, and is globally distributed within soils and sediments. Upon dissimilatory iron reduction, ferrihydrite may transform to lower surface area minerals, such as goethite and magnetite, which decreases arsenic retention, thus enhancing its transport. Here we examine how arsenic retained on ferrihydrite is mobilized under dynamic flow in the presence of Sulfurosprillum barnesii strain SES-3, a bacteria capable of reducing both As(V) and Fe(III). Ferrihydrite coated sands, loaded with 150 mg kg-1 As(V), were inoculated with S. barnesii, packed into a column and reacted with a synthetic groundwater solution. Within several days after initiation of flow, the concentration of arsenic in the column effluent increased dramatically coincident with the mineralogical transformation of ferrihydrite and As(V) reduction to As(III). Following the initial pulse of arsenic, effluent concentration then declined to less than 10 μ M. Thus, arsenic release into the aqueous phase is contingent upon the incongruent reduction of As(V) and Fe(III) as mediated by biological activity. Reaction of abiotically or biotically generated dissolved sulfide with iron (hydr)oxides may have a dramatic influence on the fate of arsenic within surface and subsurface environments. Accordingly, we examined the reaction of dissolved bisulfide and iron (hydr)oxide complexed with arsenic in both batch and column systems. Low ratios of sulfide to iron in batch reaction systems result in the formation of elemental sulfur and concomitant arsenic release from the iron (hydr)oxide surface. High sulfide to iron ratios, in contrast, appear to favor the formation of iron and arsenic sulfides. Our findings demonstrate that iron (hydr)oxides may quench reactions between sulfide and constituents sorbed to iron (hydr)oxide surfaces, forming elemental sulfur as opposed to sulfide-arsenic complexes. In addition, reductive transformation of iron (hydr)oxide by dissolved sulfide may release sorbed constituents. Hence, moderate to low concentrations of dissolved sulfide in association with iron (hydr)oxides may inhibit sequestration of important contaminants that are attenuated by Fe(III) and/or S(-II) bearing phases.
Mansouri, Tahereh; Golchin, Ahmad; Kouhestani, Hossein
2017-08-13
Soil pollution by arsenic increases the potential risk of arsenic entrance into the food chain. The usefulness of maleic anhydride- styrene- acrylic acid copolymer on the mobility and phytoavailability of arsenic was evaluated. Treatments were the concentrations of acrylic copolymer (0, 0.05, 0.10, and 0.20% w/w) and the concentrations of soil total arsenic (0, 6, 12, 24, 48, and 96 mg kg -1 ). Sodium arsenate was added in appropriate amounts to subsamples of an uncontaminated soil to give contaminated soils with different levels of arsenic. The contaminated soils were subjected to a greenhouse experiment using corn as the test crop. The results showed that contamination of soil by arsenic increased the concentrations of soil available arsenic, root and aerial parts arsenic. By the use of acrylic copolymer, the concentration of available arsenic in the soil and the accumulation of arsenic in the root and aerial parts of the corn plant decreased but the dry weights of the root and aerial parts increased significantly. When the concentration of soil total arsenic was 96 mg kg -1 , the application of copolymer at the concentration of 0.20% w/w reduced the concentrations of arsenic in soil, root, and aerial parts by 62.53, 43.65, and 37.00% respectively, indicating that application of acrylic copolymer immobilized arsenic in soils.
Barringer, Julia L.; Reilly, Pamela A.; Eberl, Dennis D.; Mumford, Adam C.; Benzel, William M.; Szabo, Zoltan; Shourds, Jennifer L.; Young, Lily Y.
2013-01-01
With a history of agriculture in the New Jersey Coastal Plain, anthropogenic inputs of As, such as residues from former pesticide applications in soils, can amplify any geogenic As in runoff. Such inputs contribute to an increased total As load to a stream at high stages of flow. As a result of yet another anthropogenic influence, microbes that reduce and mobilize As beneath the streambeds are stimulated by inputs of dissolved organic carbon (DOC). Although DOC is naturally occurring, anthropogenic contributions from wastewater inputs may deliver increased levels of DOC to subsurface soils and ultimately groundwater. Arsenic concentrations may increase with the increases in pH of groundwater and stream water in developed areas receiving wastewater inputs, as As mobilization caused by pH-controlled sorption and desorption reactions are likely to occur in waters of neutral or alkaline pH (for example, Nimick and others, 1998; Barringer and others, 2007b). Because of the difference in As content of the geologic materials in the two sub-provinces of the Coastal Plain, the amount of As that is mobile in groundwater and stream water is, potentially, substantially greater in the Inner Coastal Plain than in the Outer Coastal Plain. In turn, streams within the Inner and Outer Coastal Plain can receive substantially more As in groundwater discharge from developed areas than from environments where DOC appears to be of natural origin.
Száková, J; Tlustos, P; Goessler, W; Frková, Z; Najmanová, J
2009-12-30
The effect of soil extraction procedures and/or sample pretreatment (drying, freezing of the soil sample) on the extractability of arsenic and its compounds was tested. In the first part, five extraction procedures were compared with following order of extractable arsenic portions: 2M HNO(3)>0.43 M CH(3)COOH>or=0.05 M EDTA>or=Mehlich III (0.2M CH(3)COOH+0.25 M NH(4)NO(3)+0.013 M HNO(3)+0.015 M NH(4)F+0.001 M EDTA) extraction>water). Additionally, two methods of soil solution sampling were compared, centrifugation of saturated soil and the use of suction cups. The results showed that different sample pretreatments including soil solution sampling could lead to different absolute values of mobile arsenic content in soils. However, the interpretation of the data can lead to similar conclusions as apparent from the comparison of the soil solution sampling methods (r=0.79). For determination of arsenic compounds mild extraction procedures (0.05 M (NH(4))(2)SO(4), 0.01 M CaCl(2), and water) and soil solution sampling using suction cups were compared. Regarding the real soil conditions the extraction of fresh samples and/or in situ collection of soil solution are preferred among the sample pretreatments and/or soil extraction procedures. However, chemical stabilization of the solutions should be allowed and included in the analytical procedures for determination of individual arsenic compounds.
Arsenic and selenium in microbial metabolism
Stolz, John F.; Basu, Partha; Santini, Joanne M.; Oremland, Ronald S.
2006-01-01
Arsenic and selenium are readily metabolized by prokaryotes, participating in a full range of metabolic functions including assimilation, methylation, detoxification, and anaerobic respiration. Arsenic speciation and mobility is affected by microbes through oxidation/reduction reactions as part of resistance and respiratory processes. A robust arsenic cycle has been demonstrated in diverse environments. Respiratory arsenate reductases, arsenic methyltransferases, and new components in arsenic resistance have been recently described. The requirement for selenium stems primarily from its incorporation into selenocysteine and its function in selenoenzymes. Selenium oxyanions can serve as an electron acceptor in anaerobic respiration, forming distinct nanoparticles of elemental selenium that may be enriched in (76)Se. The biogenesis of selenoproteins has been elucidated, and selenium methyltransferases and a respiratory selenate reductase have also been described. This review highlights recent advances in ecology, biochemistry, and molecular biology and provides a prelude to the impact of genomics studies.
Speciation of volatile arsenic at geothermal features in Yellowstone National Park
Planer-Friedrich, B.; Lehr, C.; Matschullat, J.; Merkel, B.J.; Nordstrom, D. Kirk; Sandstrom, M.W.
2006-01-01
Geothermal features in the Yellowstone National Park contain up to several milligram per liter of aqueous arsenic. Part of this arsenic is volatilized and released into the atmosphere. Total volatile arsenic concentrations of 0.5-200 mg/m3 at the surface of the hot springs were found to exceed the previously assumed nanogram per cubic meter range of background concentrations by orders of magnitude. Speciation of the volatile arsenic was performed using solid-phase micro-extraction fibers with analysis by GC-MS. The arsenic species most frequently identified in the samples is (CH3)2AsCl, followed by (CH3)3As, (CH3)2AsSCH3, and CH3AsCl2 in decreasing order of frequency. This report contains the first documented occurrence of chloro- and thioarsines in a natural environment. Toxicity, mobility, and degradation products are unknown. ?? 2006 Elsevier Inc. All rights reserved.
Lico, M.S.; Welch, A.H.; Hughes, J.L.
1986-01-01
The U.S. Geological Survey collected an extensive amount of hydrogeologic data from the shallow alluvial aquifer at two study sites near Fallon, Nevada, from 1984 though 1985. These data were collected as part of a study to determine the geochemical controls on the mobility of arsenic and other trace elements in shallow groundwater systems. The main study area is approximately 7 miles south of Fallon. A subsidiary study area is about 8 miles east of Fallon. The data collected include lithologic logs and water level altitudes for the augered sampling wells and piezometers, and determinations of arsenic and selenium content, grain size, porosity, hydraulic conductivity, and mineralogy for sediment samples from cores. (USGS)
Kim, Christopher S; Stack, David H; Rytuba, James J
2012-07-01
As a result of extensive gold and silver mining in the Mojave Desert, southern California, mine wastes and tailings containing highly elevated arsenic (As) concentrations remain exposed at a number of former mining sites. Decades of weathering and erosion have contributed to the mobilization of As-enriched tailings, which now contaminate surrounding communities. Fluvial transport plays an intermittent yet important and relatively undocumented role in the migration and dispersal of As-contaminated mine wastes in semi-arid climates. Assessing the contribution of fluvial systems to tailings mobilization is critical in order to assess the distribution and long-term exposure potential of tailings in a mining-impacted environment. Extensive sampling, chemical analysis, and geospatial mapping of dry streambed (wash) sediments, tailings piles, alluvial fans, and rainwater runoff at multiple mine sites have aided the development of a conceptual model to explain the fluvial migration of mine wastes in semi-arid climates. Intense and episodic precipitation events mobilize mine wastes downstream and downslope as a series of discrete pulses, causing dispersion both down and lateral to washes with exponential decay behavior as distance from the source increases. Accordingly a quantitative model of arsenic concentrations in wash sediments, represented as a series of overlapping exponential power-law decay curves, results in the acceptable reproducibility of observed arsenic concentration patterns. Such a model can be transferable to other abandoned mine lands as a predictive tool for monitoring the fate and transport of arsenic and related contaminants in similar settings. Effective remediation of contaminated mine wastes in a semi-arid environment requires addressing concurrent changes in the amounts of potential tailings released through fluvial processes and the transport capacity of a wash.
Kim, Christopher S.; Slack, David H.; Rytuba, James J.
2012-01-01
As a result of extensive gold and silver mining in the Mojave Desert, southern California, mine wastes and tailings containing highly elevated arsenic (As) concentrations remain exposed at a number of former mining sites. Decades of weathering and erosion have contributed to the mobilization of As-enriched tailings, which now contaminate surrounding communities. Fluvial transport plays an intermittent yet important and relatively undocumented role in the migration and dispersal of As-contaminated mine wastes in semi-arid climates. Assessing the contribution of fluvial systems to tailings mobilization is critical in order to assess the distribution and long-term exposure potential of tailings in a mining-impacted environment. Extensive sampling, chemical analysis, and geospatial mapping of dry streambed (wash) sediments, tailings piles, alluvial fans, and rainwater runoff at multiple mine sites have aided the development of a conceptual model to explain the fluvial migration of mine wastes in semi-arid climates. Intense and episodic precipitation events mobilize mine wastes downstream and downslope as a series of discrete pulses, causing dispersion both down and lateral to washes with exponential decay behavior as distance from the source increases. Accordingly a quantitative model of arsenic concentrations in wash sediments, represented as a series of overlapping exponential power-law decay curves, results in the acceptable reproducibility of observed arsenic concentration patterns. Such a model can be transferable to other abandoned mine lands as a predictive tool for monitoring the fate and transport of arsenic and related contaminants in similar settings. Effective remediation of contaminated mine wastes in a semi-arid environment requires addressing concurrent changes in the amounts of potential tailings released through fluvial processes and the transport capacity of a wash.
Lukasz, Drewniak; Liwia, Rajpert; Aleksandra, Mantur; Aleksandra, Sklodowska
2014-01-01
The aim of this study was characterization of the isolated dissimilatory arsenate reducing bacteria in the context of their potential for arsenic removal from primary arsenic minerals through reductive dissolution. Four strains, Shewanella sp. OM1, Pseudomonas sp. OM2, Aeromonas sp. OM4, and Serratia sp. OM17, capable of anaerobic growth with As (V) reduction, were isolated from microbial mats from an ancient gold mine. All of the isolated strains: (i) produced siderophores that promote dissolution of minerals, (ii) were resistant to dissolved arsenic compounds, (iii) were able to use the dissolved arsenates as the terminal electron acceptor, and (iii) were able to use copper minerals containing arsenic minerals (e.g., enargite) as a respiratory substrate. Based on the results obtained in this study, we postulate that arsenic can be released from some As-bearing polymetallic minerals (such as copper ore concentrates or middlings) under reductive conditions by dissimilatory arsenate reducers in indirect processes. PMID:24724102
Kumari, Nisha; Jagadevan, Sheeja
2016-11-01
Arsenic (As) contamination in water is a cause of major concern to human population worldwide, especially in Bangladesh and West Bengal, India. Arsenite (As(III)) and arsenate (As(V)) are the two common forms in which arsenic exists in soil and groundwater, the former being more mobile and toxic. A large number of arsenic metabolising microorganisms play a crucial role in microbial transformation of arsenic between its different states, thus playing a key role in remediation of arsenic contaminated water. This review focuses on advances in biochemical, molecular and genomic developments in the field of arsenic metabolising bacteria - covering recent developments in the understanding of structure of arsenate reductase and arsenite oxidase enzymes, their gene and operon structures and their mechanism of action. The genetic and molecular studies of these microbes and their proteins may lead to evolution of successful strategies for effective implementation of bioremediation programs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lukasz, Drewniak; Liwia, Rajpert; Aleksandra, Mantur; Aleksandra, Sklodowska
2014-01-01
The aim of this study was characterization of the isolated dissimilatory arsenate reducing bacteria in the context of their potential for arsenic removal from primary arsenic minerals through reductive dissolution. Four strains, Shewanella sp. OM1, Pseudomonas sp. OM2, Aeromonas sp. OM4, and Serratia sp. OM17, capable of anaerobic growth with As (V) reduction, were isolated from microbial mats from an ancient gold mine. All of the isolated strains: (i) produced siderophores that promote dissolution of minerals, (ii) were resistant to dissolved arsenic compounds, (iii) were able to use the dissolved arsenates as the terminal electron acceptor, and (iii) were able to use copper minerals containing arsenic minerals (e.g., enargite) as a respiratory substrate. Based on the results obtained in this study, we postulate that arsenic can be released from some As-bearing polymetallic minerals (such as copper ore concentrates or middlings) under reductive conditions by dissimilatory arsenate reducers in indirect processes.
Sequestration of arsenic in ombrotrophic peatlands
NASA Astrophysics Data System (ADS)
Rothwell, James; Hudson-Edwards, Karen; Taylor, Kevin; Polya, David; Evans, Martin; Allott, Tim
2014-05-01
Peatlands can be important stores of arsenic but we are lacking spectroscopic evidence of the sequestration pathways of this toxic metalloid in peatland environments. This study reports on the solid-phase speciation of anthropogenically-derived arsenic in atmospherically contaminated peat from the Peak District National Park (UK). Surface and sub-surface peat samples were analysed by synchrotron X-ray absorption spectroscopy on B18 beamline at Diamond Light Source (UK). The results suggest that there are contrasting arsenic sequestration mechanisms in the peat. The bulk arsenic speciation results, in combination with strong arsenic-iron correlations at the surface, suggest that iron (hydr)oxides are key phases for the immobilisation of arsenic at the peat surface. In contrast, the deeper peat samples are dominated by arsenic sulphides (arsenopyrite, realgar and orpiment). Given that these peats receive inputs solely from the atmosphere, the presence of these sulphide phases suggests an in-situ authigenic formation. Redox oscillations in the peat due to a fluctuating water table and an abundant store of legacy sulphur from historic acid rain inputs may favour the precipitation of arsenic sequestering sulphides in sub-surface horizons. Oxidation-induced loss of these arsenic sequestering sulphur species by water table drawdown has important implications for the mobility of arsenic and the quality of waters draining peatlands.
Schwer Iii, Donald R; McNear, David H
2011-01-01
Soils adjacent to chromated copper arsenate (CCA)-treated fence posts along a fence line transecting different soil series, parent material, drainage classes, and slope were used to determine which soil properties had the most influence on As spatial distribution and speciation. Metal distribution was evaluated at macroscopic (total metal concentration contour maps) and microscopic scales (micro-synchrotron X-ray fluorescence maps), As speciation was determined using extended X-ray absorption fine structure spectroscopy, and redox status and a myriad of other basic soil properties were elucidated. All geochemical parameters measured point to a condition in which the mobilization of As becomes more favorable moving down the topographic gradient, likely resulting through competition (Meh-P, SOM), neutral or slightly basic pH, and redox conditions that are favorable for As mobilization (higher Fe(II) and total-Fe concentrations in water extracts). On the landscape scale, with hundreds of kilometers of fence, the arsenic loading into the soil can be substantial (∼8-12 kg km). Although a significant amount of the As is stable, extended use of CCA-treated wood has resulted in elevated As concentrations in the local environment, increasing the risk of exposure and ecosystem perturbation. Therefore, a move toward arsenic-free alternatives in agricultural applications for which it is currently permitted should be considered. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Water-quality characteristics for selected streams in Lawrence County, South Dakota, 1988-92
Williamson, Joyce E.; Hayes, Timothy Scott
2000-01-01
During the 1980?s, significant economic development and population growth began to occur in Lawrence County in the northern part of the Black Hills of western South Dakota. Rising gold prices and heap-leach extraction methods allowed the economic recovery of marginal gold ore deposits, resulting in development of several large-scale, open-pit gold mines in Lawrence County. There was increasing local concern regarding potential impacts on the hydrologic system, especially relating to the quantity and quality of water in the numerous streams and springs of Lawrence County. In order to characterize the water quality of selected streams within Lawrence County, samples were collected from 1988 through 1992 at different times of the year and under variable hydrologic conditions. During the time of this study, the Black Hills area was experiencing a drought; thus, most samples were collected during low-flow conditions.Streamflow and water-quality characteristics in Lawrence County are affected by both geologic conditions and precipitation patterns. Most streams that cross outcrops of the Madison Limestone and Minnelusa Formation lose all or large part of their streamflow to aquifer recharge. Streams that are predominantly spring fed have relatively stable streamflow, varying slightly with dry and wet precipitation cycles.Most streams in Lawrence County generally have calcium magnesium bicarbonate type waters. The sites from the mineralized area of central Lawrence County vary slightly from other streams in Lawrence County by having higher concentrations of sodium, less bicarbonate, and more sulfate. False Bottom Creek near Central City has more sulfate than bicarbonate. Nitrogen, phosphorous, and cyanide concentrations were at or near the laboratory reporting limits for most sites and did not exceed any of the water-quality standards. Nitrite plus nitrate concentrations at Annie Creek near Lead, Whitetail Creek at Lead, Squaw Creek near Spearfish, and Spearfish Creek below Robison Gulch were somewhat higher than at other sites. Mining activity, agricultural activity, and domestic development are possible sources of nitrogen to the streams. Increased mining activities were identified as the probable cause of increased nitrogen concentrations in Annie Creek.In the mineralized area of the northern Black Hills, detectable concentrations of trace elements are common in stream water, occasionally exceeding beneficial-use and aquatic-life criteria. In addition, many basins have been disturbed by both historical and recent mining operations and cleanup activities. The maximum dissolved arsenic concentration at Annie Creek near Lead (48 micrograms per liter) approached the current arsenic drinking-water standard. Concentrations at or greater than 5 micrograms per liter were found in samples from Annie Creek near Lead, Spearfish Creek above Spearfish, Whitetail Creek at Lead, and False Bottom Creek near Spearfish. Bear Butte Creek near Deadwood had one sample with a dissolved copper concentration that exceeded acute and chronic aquatic-life criteria. Bear Butte Creek near Deadwood had several manganese concentrations that exceeded the secondary maximum contaminant level of 50 micrograms per liter.Bed-sediment and water-quality data from selected sites in small drainage basins were used to determine if factors such as pH, arsenic concentrations in bed sediments, and calcite saturation control dissolved arsenic concentrations. Arsenic solubility is controlled by adsorption, mainly on ferrihydrite. In addition, adsorption/desorption of arsenic is controlled by the pH of the stream, with high arsenic concentrations appearing only at higher pH conditions (above 8). There are significant arsenic sources available to almost all the small streams of the northern Black Hills mining area, but arsenic is less mobile in streams that are not influenced to the higher pH values by calcite. Streams where arsenic is more mobile have lower iron concentrations i
NASA Astrophysics Data System (ADS)
Lawson, Michael; Polya, David A.; Boyce, Adrian J.; Bryant, Charlotte; Ballentine, Christopher J.
2016-04-01
Biogeochemical processes that utilize dissolved organic carbon are widely thought to be responsible for the liberation of arsenic from sediments to shallow groundwater in south and southeast Asia. The accumulation of this known carcinogen to hazardously high concentrations has occurred in the primary source of drinking water in large parts of densely populated countries in this region. Both surface and sedimentary sources of organic matter have been suggested to contribute dissolved organic carbon in these aquifers. However, identification of the source of organic carbon responsible for driving arsenic release remains enigmatic and even controversial. Here, we provide the most extensive interrogation to date of the isotopic signature of ground and surface waters at a known arsenic hotspot in Cambodia. We present tritium and radiocarbon data that demonstrates that recharge through ponds and/or clay windows can transport young, surface derived organic matter into groundwater to depths of 44 m under natural flow conditions. Young organic matter dominates the dissolved organic carbon pool in groundwater that is in close proximity to these surface water sources and we suggest this is likely a regional relationship. In locations distal to surface water contact, dissolved organic carbon represents a mixture of both young surface and older sedimentary derived organic matter. Ground-surface water interaction therefore strongly influences the average dissolved organic carbon age and how this is distributed spatially across the field site. Arsenic mobilization rates appear to be controlled by the age of dissolved organic matter present in these groundwaters. Arsenic concentrations in shallow groundwaters (<20 m) increase by 1 μg/l for every year increase in dissolved organic carbon age compared to only 0.25 μg/l for every year increase in dissolved organic carbon age in deeper (>20 m) groundwaters. We suggest that, while the rate of arsenic release is greatest in shallow aquifer sediments, arsenic release also occurs in deeper aquifer sediments and as such remains an important process in controlling the spatial distribution of arsenic in the groundwaters of SE Asia. Our findings suggest that any anthropogenic activities that alter the source of groundwater recharge or the timescales over which recharge takes place may also drive changes in the natural composition of dissolved organic carbon in these groundwaters. Such changes have the potential to influence both the spatial and temporal evolution of the current groundwater arsenic hazard in this region.
Nicolli, Hugo B; Bundschuh, Jochen; García, Jorge W; Falcón, Carlos M; Jean, Jiin-Shuh
2010-11-01
In oxidizing aquifers, arsenic (As) mobilization from sediments into groundwater is controlled by pH-dependent As desorption from and dissolution of mineral phases. If climate is dry, then the process of evaporative concentration contributes further to the total concentration of dissolved As. In this paper the principal As mobility controls under these conditions have been demonstrated for Salí River alluvial basin in NW Argentina (Tucumán Province; 7000 km(2)), which is representative for other basins or areas of the predominantly semi-arid Chaco-Pampean plain (1,000,000 km(2)) which is one of the world's largest regions affected by high As concentrations in groundwater. Detailed hydrogeochemical studies have been performed in the Salí River basin where 85 groundwater samples from shallow aquifers (42 samples), deep samples (26 samples) and artesian aquifers (17 samples) have been collected. Arsenic concentrations range from 11.4 to 1660 μg L(-1) leaving 100% of the investigated waters above the provisional WHO guideline value of 10 μg L(-1). A strong positive correlation among As, F, and V in shallow groundwaters was found. The correlations among those trace elements and U, B and Mo have less significance. High pH (up to 9.2) and high bicarbonate (HCO(3)) concentrations favour leaching from pyroclastic materials, including volcanic glass which is present to 20-25% in the loess-type aquifer sediments and yield higher trace element concentrations in groundwater from shallow aquifers compared to deep and artesian aquifers. The significant increase in minor and trace element concentrations and salinity in shallow aquifers is related to strong evaporation under semi-arid climatic conditions. Sorption of As and associated minor and trace elements (F, U, B, Mo and V) onto the surface of Fe-, Al- and Mn-oxides and oxi-hydroxides, restricts the mobilization of these elements into groundwater. Nevertheless, this does not hold in the case of the shallow unconfined groundwaters with high pH and high concentrations of potential competitors for adsorption sites (HCO(3), V, P, etc.). Under these geochemical conditions, desorption of the above mentioned anions and oxyanions occurs as a key process for As mobilization, resulting in an increase of minor and trace element concentrations. These geochemical processes that control the concentrations of dissolved As and other trace elements and which determine the groundwater quality especially in the shallow aquifers, are comparable to other areas with high As concentrations in groundwater of oxidizing aquifers and semi-arid or arid climate, which are found in many parts of the world, such as the western sectors of the USA, Mexico, northern Chile, Turkey, Mongolia, central and northern China, and central and northwestern Argentina. Copyright © 2010 Elsevier Ltd. All rights reserved.
Campbell, K.M.; Root, R.; O'Day, P. A.; Hering, J.G.
2008-01-01
Arsenic (As) geochemistry and sorption behavior were measured in As- and iron (Fe)-rich sediments of Haiwee Reservoir by deploying undoped (clear) polyacrylamide gels and hydrous ferric oxide (HFO)-doped gels in a gel probe equilibrium sampler, which is a novel technique for directly measuring the effects of porewater composition on As adsorption to Fe oxides phases in situ. Arsenic is deposited at the sediment surface as As(V) and is reduced to As(III) in the upper layers of the sediment (0-8 cm), but the reduction of As(V) does not cause mobilization into the porewater. Dissolved As and Fe concentrations increased at depth in the sediment column driven by the reductive dissolution of amorphous Fe(III) oxyhydroxides and conversion to a mixed Fe(II, III) green rust-type phase. Adsorption of As and phosphorous (P) onto HFO-doped gels was inhibited at intermediate depths (10-20 cm), possibly due to dissolved organic or inorganic carbon, indicating that dissolved As concentrations were at least partially controlled by porewater composition rather than surface site availability. In sediments that had been recently exposed to air, the region of sorption inhibition was not observed, suggesting that prior exposure to air affected the extent of reductive dissolution, porewater chemistry, and As adsorption behavior. Arsenic adsorption onto the HFO-doped gels increased at depths >20 cm, and the extent of adsorption was most likely controlled by the competitive effects of dissolved phosphate. Sediment As adsorption capacity appeared to be controlled by changes in porewater composition and competitive effects at shallower depths, and by reductive dissolution and availability of sorption sites at greater burial depths. ?? 2008 American Chemical Society.
Tokar, Erik J.; Diwan, Bhalchandra A.; Waalkes, Michael P.
2012-01-01
Inorganic arsenic, an early life carcinogen in humans and mice, can initiate lesions promotable by other agents in later life. The biomethylation product of arsenic, dimethylarsinic acid (DMA), is a multi-site tumor promoter. Thus, pregnant CD1 mice were given drinking water (0 or 85 ppm arsenic) from gestation day 8 to 18 and after weaning male offspring received DMA (0 or 200 ppm; drinking water) for up to 2 years. No renal tumors occurred in controls or DMA alone treated mice while gestational arsenic exposure plus later DMA induced a significant renal tumor incidence of 17% (primarily renal cell carcinoma). Arsenic plus DMA or arsenic alone also increased renal hyperplasia over control but DMA alone did not. Arsenic alone, DMA alone and arsenic plus DMA all induced urinary bladder hyperplasia (33–35%) versus control (2%). Compared to control (6%), arsenic alone tripled hepatocellular carcinoma (20%), and arsenic plus DMA doubled this rate again (43%), but DMA alone had no effect. DMA alone, arsenic alone, and arsenic plus DMA increased lung adenocarcinomas and adrenal adenomas versus control. Overall, DMA in adulthood promoted tumors/lesions initiated by prenatal arsenic in the kidney and liver, but acted independently in the urinary bladder, lung and adrenal. PMID:22230260
Testing of the Kinetico Inc. and Alean Chemicals Para-FloTM PF60 Model AA08AS with Actiguard AAFS50 arsenic adsorption media filter system was conducted at the Orchard Hills Mobile Home Park (MHP) Water Treatment Plant (WTP) in Carroll Township, Pennsylvania. The source water,...
ARSENIC LEACHING FROM IRON RICH MINERAL PROCESSING WASTE: INFLUENCE OF PH AND REDOX POTENTIAL
This paper presents the effect of pH and redox potential on the potential mobility of arsenic (As) from a contaminated mineral processing waste. The selected waste contained about 0.47 g kg-1 of As and 66.2 g kg-1 of iron (Fe). The characteristic of the wast...
Martínez-Villegas, Nadia; Briones-Gallardo, Roberto; Ramos-Leal, José A; Avalos-Borja, Miguel; Castañón-Sandoval, Alan D; Razo-Flores, Elías; Villalobos, Mario
2013-05-01
An As-contaminated perched aquifer under an urban area affected by mining was studied over a year to determine the contamination source species and the mechanism of As mobilization. Results show that the dissolution of calcium arsenates in residues disposed on an inactive smelter has caused high levels of As pollution in the adjoining downgradient 6-km perched aquifer, reaching up to 158 mg/L of dissolved As, and releasing a total of ca. 7.5 tons of As in a year. Furthermore, free calcium ion availability was found to control As mobility in the aquifer through the diagenetic precipitation of calcium arsenates (Ca5H2(AsO4)4·cH2O) preventing further mobilization of As. Results shown here represent a model for understanding a highly underreported mechanism of retention of arsenate species likely to dominate in calcium-rich environments, such as those in calcareous sediments and soils, where the commonly reported mechanism of adsorption to iron(III) oxyhydroxides is not the dominant process. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hydrological control of As concentrations in Bangladesh groundwater
NASA Astrophysics Data System (ADS)
Stute, M.; Zheng, Y.; Schlosser, P.; Horneman, A.; Dhar, R. K.; Datta, S.; Hoque, M. A.; Seddique, A. A.; Shamsudduha, M.; Ahmed, K. M.; van Geen, A.
2007-09-01
The elevated arsenic (As) content of groundwater from wells across Bangladesh and several other South Asian countries is estimated to slowly poison at least 100 million people. The heterogeneous distribution of dissolved arsenic in the subsurface complicates understanding of its release from the sediment matrix into the groundwater, as well as the design of mitigation strategies. Using the tritium-helium (3H/3He) groundwater dating technique, we show that there is a linear correlation between groundwater age at depths <20 m and dissolved As concentration, with an average slope of 19 μg L-1 yr-1 (monitoring wells only). We propose that either the kinetics of As mobilization or the removal of As by groundwater flushing is the mechanism underlying this relationship. In either case, the spatial variability of As concentrations in the top 20 m of the shallow aquifers can to a large extent be attributed to groundwater age controlled by the hydrogeological heterogeneity in the local groundwater flow system.
Influence of organic substrates on the kinetics of bacterial As(III) oxidation
NASA Astrophysics Data System (ADS)
Lescure, T.; Joulian, C.; Bauda, P.; Hénault, C.; Battaglia-Brunet, F.
2012-04-01
Soil microflora plays a major role on the behavior of metals and metalloids. Arsenic speciation, in particular, is related to the activity of bacteria able to oxidize, reduce or methylate this element, and determines mobility, bioavailability and toxicity of As. Arsenite (AsIII) is more toxic and more mobile than arsenate (AsV). Bacterial As(III)-oxidation tends to reduce the toxicity of arsenic in soils and the risk of transfer toward underlying aquifers, that would affect the quality of water resources. Previous results suggest that organic matter may affect kinetics or efficiency of bacterial As(III)-oxidation in presence of oxygen, thus in conventional physico-chemical conditions of a surface soil. Different hypothesis can be proposed to explain the influence of organic matter on As(III) oxidation. Arsenic is a potential energy source for bacteria. The presence of easily biodegradable organic matter may inhibit the As(III) oxidation process because bacteria would first metabolize these more energetic substrates. A second hypothesis would be that, in presence of organic matter, the Ars system involved in bacterial resistance to arsenic would be more active and would compete with the Aio system of arsenite oxidation, decreasing the global As(III) oxidation rate. In addition, organic matter influences the solubility of iron oxides which often act as the main pitfalls of arsenic in soils. The concentration and nature of organic matter could therefore have a significant influence on the bioavailability of arsenic and hence on its environmental impact. The influence of organic matter on biological As(III) oxidation has not yet been determined in natural soils. In this context, soil amendment with organic matter during operations of phytostabilization or, considering diffuse pollutions, through agricultural practices, may affect the mobility and bio-availability of the toxic metalloid. The objective of the present project is to quantify the influence of organic matter on the bacterial speciation of arsenic in contaminated soils. Moreover, the biogeochemical consequences of this phenomenon on the mobility and ecotoxicity of this metalloid will be studied. The first task of this program is the precise and systematic investigation of the influence of different types and concentrations of organic matters on the activity of As(III)-oxidizing pure strains. Influence of aspartate, succinate (simple substrates) and yeast extract (complex substrate) on As(III)-oxidation kinetics has been studied. For each experiment, the bacterial growth and the expression of genes involved in the speciation of arsenic, i.e. aio and ars genes, has been monitored. A direct perspective of this work will be to perform experiments with humic and fulvic acids (complex organic matter commonly found in soils), and with water-extracted organic matter from polluted soils. Then the As(III)-oxidation activity of bacterial communities extracted from contaminated soils will be followed. These assays should allow the screening of conditions which will be applied in subsequent experiments with several real contaminated soils, including a former mining site, impacted industrial sites, and a forest soil heavily contaminated after arsenical ammunitions storage. This work is co-funded by BRGM and ADEME (convention TEZ 11-16).
Farooq, S H; Chandrasekharam, D; Berner, Z; Norra, S; Stüben, D
2010-11-01
In the wake of the idea that surface derived dissolved organic carbon (DOC) plays an important role in the mobilization of arsenic (As) from sediments to groundwater and may provide a vital tool in understanding the mechanism of As contamination (mobilization/fixation) in Bengal delta; a study has been carried out. Agricultural fields that mainly cultivate rice (paddy fields) leave significantly large quantities of organic matter/organic carbon on the surface of Bengal delta which during monsoon starts decomposing and produces DOC. The DOC thus produced percolates down with rain water and mobilizes As from the sediments. Investigations on sediment samples collected from a paddy field clearly indicate that As coming on to the surface along with the irrigation water accumulates itself in the top few meters of sediment profile. The column experiments carried out on a 9 m deep sediment profile demonstrates that DOC has a strong potential to mobilize As from the paddy fields and the water recharging the aquifer through such agricultural fields contain As well above the WHO limit thus contaminating the shallow groundwater. Experiment also demonstrates that decay of organic matter induces reducing condition in the sediments. Progressively increasing reducing conditions not only prevent the adsorption of As on mineral surfaces but also cause mobilization of previously sorbed arsenic. There seems to be a cyclic pattern where As from deeper levels comes to the surface with irrigational water, accumulates itself in the sediments, and ultimately moves down to the shallow groundwater. The extensive and continual exploitation of intermediate/deep groundwater accelerates this cyclic process and helps in the movement of shallow contaminated groundwater to the deeper levels. Copyright © 2010 Elsevier Ltd. All rights reserved.
Wang, Suiling; Mulligan, Catherine N
2013-02-01
Natural organic acids may play an important role in influencing the mobility of toxic contaminants in the environment. The mobilization of arsenic (As) and heavy metals from an oxidized Pb-Zn mine tailings sample in the presence of three low-molecular-weight organic acids, aspartic acid, cysteine, and succinic acid, was investigated at a mass ratio of 10 mg organic additive/g mine tailings in this study. The effect of pH was also evaluated. The mine tailings sample, containing elevated levels of As (2,180 mg/kg), copper (Cu, 1,100 mg/kg), lead (Pb, 12,860 mg/kg), and zinc (Zn, 5,075 mg/kg), was collected from Bathurst, New Brunswick, Canada. It was found that the organic additives inhibited As and heavy metal mobilization under acidic conditions (at pH 3 or 5), but enhanced it under neutral to alkaline conditions (at pH above 7) through forming aqueous organic complexes. At pH 11, As, Cu, Pb, and Zn were mobilized mostly by the organic additives, 45, 46, 1,660, and 128 mg/kg by aspartic acid, 31, 28, 1,040, and 112 mg/kg by succinic acid, and 53, 38, 2,020, and 150 mg/kg by cysteine, respectively, whereas those by distilled water were 6, 16, 260, and 52 mg/kg, respectively. It was also found that the mobilization of As and the heavy metals was closely correlated, and both were closely correlated to Fe mobilization. Arsenic mobilization by the three LMWOAs was found to be consistent with the order of the stability of Fe-, Cu-, Pb-, and Zn-organic ligand complexes. The organic acids might be used potentially in the natural attenuation and remediation of As and heavy metal-contaminated sites.
Arsenic incorporation into FeS 2 pyrite and its influence on dissolution: A DFT study
NASA Astrophysics Data System (ADS)
Blanchard, Marc; Alfredsson, Maria; Brodholt, John; Wright, Kate; Catlow, C. Richard A.
2007-02-01
FeS 2 pyrite can incorporate large amounts of arsenic (up to ca. 10 wt%) and hence has a strong impact on the mobility of this toxic metalloid. Focussing on the lowest arsenic concentrations for which the incorporation occurs in solid solution, the substitution mechanisms involved have been investigated by assuming simple incorporation reactions in both oxidising and reducing conditions. The solution energies were calculated by Density Functional Theory (DFT) calculations and we predict that the formation of AsS dianion groups is the most energetically favourable mechanism. The results also suggest that the presence of arsenic will accelerate the dissolution and thus the generation of acid drainage, when the crystal dissolves in oxidising conditions.
Arsenic contamination in the Kanker district of central-east India: geology and health effects.
Pandey, P K; Sharma, R; Roy, M; Roy, S; Pandey, M
2006-10-01
This paper identifies newer areas of arsenic contamination in the District Kanker, which adjoins the District Rajnandgaon where high contamination has been reported earlier. A correlation with the mobile phase episodes of arsenic contamination has been identified, which further hinges on the complex geology of the area. Arsenic concentrations in both surface and groundwater, aquatic organisms (snail and water weeds) soil and vegetation of Kanker district and its adjoining area have been reported here. The region has been found to contain an elevated level of arsenic. All segments of the ecoysystem are contaminated with arsenic at varying degrees. The levels of arsenic vary constantly depending on the season and location. An analysis of groundwater from 89 locations in the Kanker district has shown high values of arsenic, iron and manganese (mean: 144, 914 and 371 microg L(-1), respectively). The surface water of the region shows elevated levels of arsenic, which is influenced by the geological mineralised zonation. The most prevalent species in the groundwater is As(III), whereas the surface water of the rivers shows a significant contamination with the As(V) species. The analysis shows a bio-concentration of the toxic metals arsenic, nickel, copper and chromium. Higher arsenic concentrations (groundwater concentrations greater than 50 microg L(-1)) are associated with sedimentary deposits derived from volcanic rocks, hence mineral leaching appears to be the source of arsenic contamination. Higher levels of arsenic and manganese in the Kanker district have been found to cause impacts on the flora and fauna. A case study of episodic arsenical diarrhoea is presented.
Glacial sediment causing regional-scale elevated arsenic in drinking water.
Erickson, Melinda L; Barnes, Randal J
2005-01-01
In the upper Midwest, USA, elevated arsenic concentrations in public drinking water systems are associated with the lateral extent of northwest provenance late Wisconsin-aged drift. Twelve percent of public water systems located within the footprint of this drift (212 of 1764) exceed 10 microg/L arsenic, which is the U.S. EPA's drinking water standard. Outside of the footprint, only 2.4% of public water systems (52 of 2182) exceed 10 microg/L arsenic. Both glacial drift aquifers and shallow bedrock aquifers overlain by northwest provenance late Wisconsin-aged sediment are affected by arsenic contamination. Evidence suggests that the distinct physical characteristics of northwest provenance late Wisconsin-aged drift--its fine-grained matrix and entrained organic carbon that fosters biological activity--cause the geochemical conditions necessary to mobilize arsenic via reductive mechanisms such as reductive desorption and reductive dissolution of metal oxides. This study highlights an important and often unrecognized phenomenon: high-arsenic sediment is not necessary to cause arsenic-impacted ground water--when "impacted" is now defined as >10 microg/L. This analysis also demonstrates the scientific and economic value of using existing large but imperfect statewide data sets to observe and characterize regional-scale environmental problems.
Assessment of Arsenic Contamination of Groundwater and Health Problems in Bangladesh
Khalequzzaman, Md.; Faruque, Fazlay S.; Mitra, Amal K.
2005-01-01
Excessive amounts of arsenic (As) in the groundwater in Bangladesh and neighboring states in India are a major public health problem. About 30% of the private wells in Bangladesh exhibit high concentrations of arsenic. Over half the country, 269 out of 464 administrative units, is affected. Similar problems exist in many other parts of the world, including the Unites States. This paper presents an assessment of the health hazards caused by arsenic contamination in the drinking water in Bangladesh. Four competing hypotheses, each addressing the sources, reaction mechanisms, pathways, and sinks of arsenic in groundwater, were analyzed in the context of the geologic history and land-use practices in the Bengal Basin. None of the hypotheses alone can explain the observed variability in arsenic concentration in time and space; each appears to have some validity on a local scale. Thus, it is likely that several bio-geochemical processes are active among the region’s various geologic environments, and that each contributes to the mobilization and release of arsenic. Additional research efforts will be needed to understand the relationships between underlying biogeochemical factors and the mechanisms for arsenic release in various geologic settings. PMID:16705819
Gillispie, Elizabeth C; Andujar, Erika; Polizzotto, Matthew L
2016-08-10
Over 150 million people in South and Southeast Asia consume unsafe drinking water from arsenic-rich Holocene aquifers. Although use of As-free water from Pleistocene aquifers is a potential mitigation strategy, such aquifers are vulnerable to geogenic As pollution, placing millions more people at potential risk. The goal of this research was to define chemical controls on abiotic and biotic release of geogenic As to groundwater. Batch incubations of sediments with natural chemical variability from a Pleistocene aquifer in Cambodia were conducted to evaluate how interactions among arsenic, manganese and iron oxides, and dissolved and sedimentary organic carbon influenced As mobilization from sediments. The addition of labile dissolved organic carbon produced the highest concentrations of dissolved As after >7 months, as compared to sediment samples incubated with sodium azide or without added carbon, and the extent of As release was positively correlated with the percent of initial extractable Mn released from the sediments. The mode of As release was impacted by the source of DOC supplied to the sediments, with biological processes responsible for 81% to 85% of the total As release following incubations with lactate and acetate but only up to 43% to 61% of the total As release following incubations with humic and fulvic acids. Overall, cycling of key redox-active elements and organic-carbon reactivity govern the potential for geogenic As release to groundwater, and results here may be used to formulate better predictions of the arsenic pollution potential of aquifers in South and Southeast Asia.
Yang, Wen-Tao; Wang, Ying-Jie; Zhou, Hang; Yi, Kai-Xin; Zeng, Min; Peng, Pei-Qin; Liao, Bo-Han
2015-02-01
Speciation and bioavailability of arsenic in the rhizosphere and non-rhizosphere soils at different growth stages (tillering stage, jointing stage, booting stage, filling stage and maturing stage) of rice (Oryza sativa L.) were studied using toxicity characteristic leaching procedure (TCLP) and arsenic speciation analysis. Pot experiments were conducted and the soil samples were taken from a certain paddy soil in Hunan Province contaminated by mining industry. The results showed that: (1) With the extension of rice growth period, pH values and TCLP extractable arsenic levels in the rhizosphere and non-rhizosphere soils increased gradually. Soil pH and TCLP extractable arsenic levels in non-rhizosphere soils were higher than those in the rhizosphere soils at the same growth stage. (2) At the different growth stages of rice, contents of exchangeable arsenic (AE-As) in rhizosphere and non-rhizosphere soils were lower than those before the rice planting, and increased gradually with the extension of the rice growing period. Contents of Al-bound arsenic (Al-As), Fe-bound arsenic (Fe-As) and Ca-bound arsenic (Ca-As) increased gradually after rice planting, but not significantly. Residual arsenic (O-As) and total arsenic (T-As) decreased gradually after rice planting, by 37.30% and 14.69% in the rhizosphere soils and by 31.38% and 8.67% in the non-rhizosphere soils, respectively. (3) At the different growth stages of rice, contents of various forms of arsenic in the soils were in the following order: residual arsenic (O-As) > Fe-bound arsenic ( Fe-As) > Al-bound arsenic (Al-As) > Ca-bound arsenic (Ca-As) > exchangeable arsenic (AE-As). In the pH range of 5.0- 5.8, significant positive linear correlations were found between most forms of arsenic or TCLP extractable arsenic levels and pH values, while the Ca-bound arsenic was poorly correlated with pH values in the rhizosphere soils.
Arsenic in soils from the Asarco lead smelter in East Helena, Montana was characterized by X-ray absorption spectroscopy (XAS). Arsenic oxidation state and mineralogy were analyzed as a function of depth and surface distribution using bulk and microprobe XAS. These results were c...
Stan T. Lebow; Daniel Foster
2005-01-01
A study was conducted to evaluate environmental accumulation and mobility of total copper, chromium, and arsenic adjacent to a chromated-copper-arsenate-(CCA-C-) treated wetland boardwalk. The study was considered a severe test because it included a large volume of treated wood in a site with high annual rainfall. Soil and sediment samples were collected before...
Sea Level Rise Induced Arsenic Release from Historically Contaminated Coastal Soils.
LeMonte, Joshua J; Stuckey, Jason W; Sanchez, Joshua Z; Tappero, Ryan; Rinklebe, Jörg; Sparks, Donald L
2017-06-06
Climate change-induced perturbations in the hydrologic regime are expected to impact biogeochemical processes, including contaminant mobility and cycling. Elevated levels of geogenic and anthropogenic arsenic are found along many coasts around the world, most notably in south and southeast Asia but also in the United States, particularly along the Mid-Atlantic coast. The mechanism by and the extent to which arsenic may be released in contaminated coastal soils due to sea level rise are unknown. Here we show a series of data from a coastal arsenic-contaminated soil exposed to sea and river waters in biogeochemical microcosm reactors across field-validated redox conditions. We find that reducing conditions lead to arsenic release from historically contaminated coastal soils through reductive dissolution of arsenic-bearing mineral oxides in both sea and river water inundations, with less arsenic release from seawater scenarios than river water due to inhibition of oxide dissolution. For the first time, we systematically display gradation of solid phase soil-arsenic speciation across defined redox windows from reducing to oxidizing conditions in natural waters by combining biogeochemical microcosm experiments and X-ray absorption spectroscopy. Our results demonstrate the threat of sea level rise stands to impact arsenic release from contaminated coastal soils by changing redox conditions.
Sea Level Rise Induced Arsenic Release from Historically Contaminated Coastal Soils
LeMonte, Joshua J.; Stuckey, Jason W.; Sanchez, Joshua Z.; ...
2017-05-04
Climate change-induced perturbations in the hydrologic regime are expected to impact biogeochemical processes, including contaminant mobility and cycling. Elevated levels of geogenic and anthropogenic arsenic are found along many coasts around the world, most notably in south and southeast Asia but also in the United States, particularly along the Mid-Atlantic coast. The mechanism by and the extent to which arsenic may be released in contaminated coastal soils due to sea level rise are unknown. Here we show a series of data from a coastal arsenic-contaminated soil exposed to sea and river waters in biogeochemical microcosm reactors across field-validated redox conditions.more » We find that reducing conditions lead to arsenic release from historically contaminated coastal soils through reductive dissolution of arsenic-bearing mineral oxides in both sea and river water inundations, with less arsenic release from seawater scenarios than river water due to inhibition of oxide dissolution. For the first time, we systematically display gradation of solid phase soil-arsenic speciation across defined redox windows from reducing to oxidizing conditions in natural waters by combining biogeochemical microcosm experiments and X-ray absorption spectroscopy. Here, our results demonstrate the threat of sea level rise stands to impact arsenic release from contaminated coastal soils by changing redox conditions.« less
Sea Level Rise Induced Arsenic Release from Historically Contaminated Coastal Soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeMonte, Joshua J.; Stuckey, Jason W.; Sanchez, Joshua Z.
Climate change-induced perturbations in the hydrologic regime are expected to impact biogeochemical processes, including contaminant mobility and cycling. Elevated levels of geogenic and anthropogenic arsenic are found along many coasts around the world, most notably in south and southeast Asia but also in the United States, particularly along the Mid-Atlantic coast. The mechanism by and the extent to which arsenic may be released in contaminated coastal soils due to sea level rise are unknown. Here we show a series of data from a coastal arsenic-contaminated soil exposed to sea and river waters in biogeochemical microcosm reactors across field-validated redox conditions.more » We find that reducing conditions lead to arsenic release from historically contaminated coastal soils through reductive dissolution of arsenic-bearing mineral oxides in both sea and river water inundations, with less arsenic release from seawater scenarios than river water due to inhibition of oxide dissolution. For the first time, we systematically display gradation of solid phase soil-arsenic speciation across defined redox windows from reducing to oxidizing conditions in natural waters by combining biogeochemical microcosm experiments and X-ray absorption spectroscopy. Here, our results demonstrate the threat of sea level rise stands to impact arsenic release from contaminated coastal soils by changing redox conditions.« less
Bausinger, Tobias; Bonnaire, Eric; Preuss, Johannes
2007-09-01
The destruction of arsenical shells from the 1914/18 war in the vicinity of Verdun (France) during the 1920s resulted in a locally limited but severe soil contamination by arsenic and heavy metals. At the study site, the main part of the contaminant inventory occurs in the upper 20 cm of the topsoil which is essentially composed of combustion residues. Besides, some Cu (cmax.=16,877 mg/kg) and Pb (cmax.=26,398 mg/kg) in this layer, As (cmax.=175,907 mg/kg) and Zn (cmax.=133,237 mg/kg) were detected in very high concentrations. The mobilities of Cu, Mn, Pb and Zn in the soil system were derived from ammonium nitrate eluates. They are strongly influenced by the soil pH and can be described by quadratic regression curves from which threshold pH values were calculated. Below these values more than 10% of the element content was available as mobile species. Within the examined pH range, this method could not be adopted for arsenic, because the mobility of As was only slightly controlled by the soil pH. In the heavily contaminated topsoil, Cu and Pb were fixed by the moderately acidic soil pH which varied from 4.8 to 5.8. No migration to the underlying horizons occurred. A different behavior was observed for As and Zn. The calculated threshold pH of Zn was 5.5, so certain amount of this element was transferred to the subsoil and the leachate (cmax.=350 microg/l). However, a major dispersion of Zn was prevented by a rise of the soil pH in the carbonate-containing subsoil. Elevated concentrations of As were found in all soil horizons up to a depth of 2 m and also in the leachate (cmax.=2377 microg/l). Contrary to Cu, Pb and Zn the mobility of As evidently was less affected by the subsoil. Regarding organic contaminants, nitroaromatic explosives were detected only in minor concentrations in the soil (cmax.=14.7 mg/kg) and the leachate (cmax.=13.5 microg/l). No aromatic organoarsenicals were detected in the soil and the leachate samples. The main hazard of the site is the severe arsenic contamination and the transfer of this carcinogen by leachate, surface runoff and probably by wind. Nevertheless, some studies on the effects of the contaminant inventory on the local vegetation revealed that ammonium nitrate elutable zinc is responsible for the spatial distribution of some tolerant plant species and not arsenic. Previously undetected buried munitions from the former delaboration facility can be an other source of environmental contaminants. This is supported by elevated concentrations of chlorate (cmax.=71 mg/l) and perchlorate (cmax.=0.8 mg/l) detected in the leachate samples. This is the second report about environmental contamination related to post-war ammunition destruction activities along the 1914/18 Western Front.
Trophic Transfer of Arsenic from an Aquatic Insect to Terrestrial Insect Predators.
Mogren, Christina L; Walton, William E; Parker, David R; Trumble, John T
2013-01-01
The movement of energy and nutrients from aquatic to terrestrial ecosystems can be substantial, and emergent aquatic insects can serve as biovectors not only for nutrients, but also for contaminants present in the aquatic environment. The terrestrial predators Tenodera aridifolia sinensis (Mantodea: Mantidae) and Tidarren haemorrhoidale (Araneae: Theridiidae) and the aquatic predator Buenoa scimitra (Hemiptera: Notonectidae) were chosen to evaluate the efficacy of arsenic transfer between aquatic and terrestrial environments. Culex tarsalis larvae were reared in either control water or water containing 1000 µg l(-1) arsenic. Adults that emerged from the control and arsenic treatments were fed to the terrestrial predators, and fourth instar larvae were fed to the aquatic predator reared in control or arsenic contaminated water. Tenodera a. sinensis fed arsenic-treated Cx. tarsalis accumulated 658±130 ng g(-1) of arsenic. There was no significant difference between control and arsenic-fed T. haemorrhoidale (range 142-290 ng g(-1)). Buenoa scimitra accumulated 5120±406 ng g(-1) of arsenic when exposed to arsenic-fed Cx. tarsalis and reared in water containing 1000 µg l(-1) arsenic. There was no significant difference between controls or arsenic-fed B. scimitra that were not exposed to water-borne arsenic, indicating that for this species environmental exposure was more important in accumulation than strictly dietary arsenic. These results indicate that transfer to terrestrial predators may play an important role in arsenic cycling, which would be particularly true during periods of mass emergence of potential insect biovectors. Trophic transfer within the aquatic environment may still occur with secondary predation, or in predators with different feeding strategies.
Nworie, Obinna Elijah; Qin, Junhao; Lin, Chuxia
2017-08-21
A batch experiment was conducted to examine the effects of six low-molecular-weight organic acids on the mobilization of arsenic and trace metals from a range of contaminated soils. The results showed that the organic acids behaved differently when reacting with soil-borne As and trace metals. Oxalic acid and acetic acid had the strongest and weakest capacity to mobilize the investigated elements, respectively. The solubilisation of iron oxides by the organic acids appears to play a critical role in mobilizing other trace metals and As. Apart from acidification and complexation, reductive dissolution played a dominant role in the dissolution of iron oxides in the presence of oxalic acid, while acidification tended to be more important for dissolving iron oxides in the presence of other organic acids. The unique capacity of oxalic acid to solubilize iron oxides tended to affect the mobilization of other elements in different ways. For Cu, Mn, and Zn, acidification-driven mobilization was likely to be dominant while complexation might play a major role in Pb mobilization. The formation of soluble Fe and Pb oxalate complexes could effectively prevent arsenate or arsenite from combining with these metals to form solid phases of Fe or Pb arsenate or arsenite.
Arsenic speciation in arsenic-rich Brazilian soils from gold mining sites under anaerobic incubation
De Mello, J. W. V.; Talbott, J.L.; Scott, J.; Roy, W.R.; Stucki, J.W.
2007-01-01
Background. Arsenic speciation in environmental samples is essential for studying toxicity, mobility and bio-transformation of As in aquatic and terrestrial environments. Although the inorganic species As(III) and As(V) have been considered dominant in soils and sediments, organisms are able to metabolize inorganic forms of arsenic into organo-arsenic compounds. Arsenosugars and methylated As compounds can be found in terrestrial organisms, but they generally occur only as minor constituents. We investigated the dynamics of arsenic species under anaerobic conditions in soils surrounding gold mining areas from Minas Gerais State, Brazil to elucidate the arsenic biogeochemical cycle and water contamination mechanisms. Methods. Surface soil samples were collected at those sites, namely Paracatu Formation, Banded Iron Formation and Riacho dos Machados Sequence, and incubated in CaCl2 2.5 mmol L-1 suspensions under anaerobic conditions for 1, 28, 56 and 112 days. After that, suspensions were centrifuged and supernatants analyzed for soluble As species by IC-ICPMS and HPLC-ICPMS. Results. Easily exchangeable As was mainly arsenite, except when reducible manganese was present. Arsenate was mainly responsible for the increase in soluble arsenic due to the reductive dissolution of either iron or manganese in samples from the Paracatu Formation and Riacho dos Machados Sequence. On the other hand, organic species of As dominated in samples from the Banded Iron Formation during anaerobic incubation. Discussion. Results are contrary to the expectation that, in anaerobic environments, As release due to the reductive dissolution of Fe is followed by As(V) reduction to As(III). The occurrence of organo-arsenic species was also found to be significant to the dynamics of soluble arsenic, mainly in soils from the Banded Iron Formation (BIF), under our experimental conditions. Conclusions. In general, As(V) and organic As were the dominant species in solution, which is surprising under anaerobic conditions in terrestrial environments. The unexpected occurrence of organic species of As was attributed to enrollment of ternary organic complexes or living organisms such as algae or cyanobacteria. Perspectives. These findings are believed to be useful for remediation strategies in mine-affected regions, as the organic As species are in general considered to be less toxic than inorganic ones and even As(V) is considered less mobile and toxic than As(III). ?? 2007 ecomed publishers (Verlagsgruppe Hu??thig Jehle Rehm GmbH).
Chang, Jin-Soo; Yoon, In-Ho; Kim, Kyoung-Woong
2018-01-01
ArsH encodes an oxidoreductase, an NAD(P)H-dependent mononucleotide reductase, with an unknown function, frequently within an ars operon, and is widely distributed in bacteria. Novel arsenite-oxidizing bacteria have been isolated from arsenic-contaminated groundwater and surface soil in Vietnam. We found that ArsH gene activity, with arsenite oxidase in the periplasm; it revealed arsenic oxidation potential of the arsH system. Batch experiment results revealed Citrobacter freundii strain VTan4 (DQ481466) and Pseudomonas putida strain VTw33 (DQ481482) completely oxidized 1 mM of arsenite to arsenate within 30-50 h. High concentrations of arsenic were detected in groundwater and surrounding soil obtained from Vinh Tru village in Ha Nam province (groundwater: 11.0 μg/L to 37.0 μg/L; and soil: 2.5 mg/kg, 390.1 mg/kg), respectively. An arsH gene encoding an organoarsenical oxidase protein was observed in arsenite-oxidizing Citrobacter freundii strain VTan4 (DQ481466), whereas arsB, arsH, and arsH were detected in Pseudomonas putida strain VTw33 (DQ481482). arsH gene in bacteria was first reported from Vietnam for resistance and arsenite oxidase. We proposed that residues, Ser 43, Arg 45, Ser 48, and Tyr 49 are required for arsenic binding and activation of arsH. The ars-mediated biotransformation strongly influenced potential arsenite oxidase enzyme of the operon encoding a homogeneous arsH. Results suggest that the further study of arsenite-oxidizing bacteria may lead to a better understanding of arsenite oxidase responses, such as those of arsH, that may be applied to control biochemical properties; for example, speciation, detoxification, bioremediation, biotransformation, and mobilization of arsenic in contaminated groundwater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Characterization of arsenic resistant bacteria from arsenic rich groundwater of West Bengal, India.
Sarkar, Angana; Kazy, Sufia K; Sar, Pinaki
2013-03-01
Sixty-four arsenic (As) resistant bacteria isolated from an arsenic rich groundwater sample of West Bengal were characterized to investigate their potential role in subsurface arsenic mobilization. Among the isolated strains predominance of genera Agrobacterium/Rhizobium, Ochrobactrum and Achromobacter which could grow chemolitrophically and utilize arsenic as electron donor were detected. Higher tolerance to As(3+) [maximum tolerable concentration (MTC): ≥10 mM], As(5+) (MTC: ≥100 mM) and other heavy metals like Cu(2+), Cr(2+), Ni(2+) etc. (MTC: ≥10 mM), presence of arsenate reductase and siderophore was frequently observed among the isolates. Ability to produce arsenite oxidase and phosphatase enzyme was detected in 50 and 34 % of the isolates, respectively. Although no direct correlation among taxonomic identity of bacterial strains and their metabolic abilities as mentioned above was apparent, several isolates affiliated to genera Ochrobactrum, Achromobacter and unclassified Rhizobiaceae members were found to be highly resistant to As(3+) and As(5+) and positive for all the test properties. Arsenate reductase activity was found to be conferred by arsC gene, which in many strains was coupled with arsenite efflux gene arsB as well. Phylogenetic incongruence between the 16S rRNA and ars genes lineages indicated possible incidence of horizontal gene transfer for ars genes. Based on the results we propose that under the prevailing low nutrient condition inhabitant bacteria capable of using inorganic electron donors play a synergistic role wherein siderophores and phosphatase activities facilitate the release of sediment bound As(5+), which is subsequently reduced by arsenate reductase resulting into the mobilization of As(3+) in groundwater.
Effect of sulfide on As(III) and As(V) sequestration by ferrihydrite.
Zhao, Zhixi; Wang, Shaofeng; Jia, Yongfeng
2017-10-01
The sulfide-induced change in arsenic speciation is often coupled to iron geochemical processes, including redox reaction, adsorption/desorption and precipitation/dissolution. Knowledge about how sulfide influenced the coupled geochemistry of iron and arsenic was not explored well up to now. In this work, retention and mobilization of As(III) and As(V) on ferrihydrite in sulfide-rich environment was studied. The initial oxidation states of arsenic and the contact order of sulfide notably influenced arsenic sequestration on ferrihydrite. For As(III) systems, pre-sulfidation of As(III) decreased arsenic sequestration mostly. The arsenic adsorption capacity decreased about 50% in comparison with the system without sulfide addition. For As(V) systems, pre-sulfidation of ferrihydrite decreased 30% sequestration of arsenic on ferrihydrite. Reduction of ferrihydrite by sulfide in As(V) system was higher than that in As(III) system. Geochemical modeling calculations identified formation of thioarsenite in the pre-sulfidation of As(III) system. Formation of arsenic thioanions enhanced As solubility in the pre-sulfidation of As(III) system. The high concentration of sulfide and Fe(II) in pre-sulfidation of ferrihydrite system contributed to saturation of FeS. This supplied new solid phase to immobilize soluble arsenic in aqueous phase. X-ray absorption near edge spectroscopy (XANES) of sulfur K-edge, arsenic K-edge and iron L-edge analysis gave the consistent evidence for the sulfidation reaction of arsenic and ferrihydrite under specific geochemical settings. Copyright © 2017 Elsevier Ltd. All rights reserved.
KEIMOWITZ, A. R.; MAILLOUX, B. J.; COLE, P.; STUTE, M.; SIMPSON, H. J.; CHILLRUD, S. N.
2011-01-01
Landfills have the potential to mobilize arsenic via induction of reducing conditions in groundwater and subsequent desorption from or dissolution of arsenic-bearing iron phases. Laboratory incubation experiments were conducted with materials from a landfill where such processes are occurring. These experiments explored the potential for induced sulfate reduction to immobilize dissolved arsenic in situ. The native microbial community at this site reduced sulfate in the presence of added acetate. Acetate respiration and sulfate reduction were observed concurrent with dissolved iron concentrations initially increasing from 0.6 μM (0.03 mg L−1) to a maximum of 111 μM (6.1 mg L−1) and subsequently decreasing to 0.74 μM (0.04 mg L−1). Dissolved arsenic concentrations initially covaried with iron but subsequently increased again as sulfide accumulated, consistent with the formation of soluble thioarsenite complexes. Dissolved arsenic concentrations subsequently decreased again from a maximum of 2 μM (148 μg L−1) to 0.3 μM (22 μg L−1), consistent with formation of sulfide mineral phases or increased arsenic sorption at higher pH values. Disequilibrium processes may also explain this second arsenic peak. The maximum iron and arsenic concentrations observed in the lab represent conditions most equivalent to the in situ conditions. These findings indicate that enhanced sulfate reduction merits further study as a potential in situ groundwater arsenic remediation strategy at landfills and other sites with elevated arsenic in reducing groundwater. PMID:17969686
Toxic Compounds in Our Food: Arsenic Uptake By Rice and Potential Mitigation By Silicon
NASA Astrophysics Data System (ADS)
Seyfferth, A.; Gill, R.; Penido, E.
2014-12-01
Arsenic is a ubiquitous element in soils worldwide and has the potential to negatively impact human and ecosystem health under certain biogeochemical conditions. While arsenic is relatively immobile in most oxidized soils due to a high affinity for soil solids, arsenic becomes mobilized under reduced soil conditions due to the reductive dissolution of iron(III) oxides thereby releasing soil-bound arsenic. Since arsenic is a well-known carcinogen, this plant-soil process has the potential to negatively impact the lives of billions of rice consumers worldwide upon plant uptake and grain storage of released arsenic. Moreover, arsenic uptake by rice is excacerbated by the use of As-laden groundwater for rice irrigation. One proposed strategy to decrease arsenic uptake by rice plants is via an increase in dissolved silicon in paddy soil solution (pore-water), since silicic acid and arsenous acid share an uptake pathway. However, several soil processes that influence arsenic cycling may be affected by silicon including desorption from bulk soil, formation and mineralogy of iron(III) oxide plaque, and adsorption/desorption onto/from iron plaque; the effect of silicon on these soil processes will ultimately dictate the effectiveness of altered dissolved silicon in decreasing arsenic uptake at the root, which in turn dictates the concentration of arsenic found in grains. Furthermore, the source of silicon may impact carbon cycling and, in particular, methane emissions. Here, impacts of altered dissolved silicon on processes that affect rhizospheric biogeochemical cycling of arsenic and subsequent plant-uptake, and how it influences other biogeochemical cycles such as carbon and iron are investigated. We show that silicon can decrease arsenic uptake and grain storage under certain conditions, and that altered silicon affects the type of iron (III) oxide that comprises iron plaque.
Dong, Bing; Song, Yu; Fan, Wenjia; Zhu, Ying
2010-11-01
To study the homogeneity and stability of arsenic in quality controlling cosmetic samples. Arsenic was determined by atomic fluorescence spectrophotometric method. The t-test and F-test were used to evaluate the significant difference of the within-bottle and between-bottle results with three batches. The RSDs of arsenic obtained in different time were compared with the relative expanding uncertainties to evaluate the stability. Average and variance of within-bottle and between-bottle results of arsenic were not different significantly. The RSDs of Arsenic were less than the relative expanding uncertainties. Quality controlling cosmetic samples containing arsenic were considered homogeneous and stable.
Lewchalermvong, Kittima; Rangkadilok, Nuchanart; Nookabkaew, Sumontha; Suriyo, Tawit; Satayavivad, Jutamaad
2018-03-28
Despite its nutritional values, rice also contains arsenic. There has been increasing concern about health implications associated with exposure to arsenic through rice consumption. The present study evaluated arsenic accumulation and its speciation in selected organs of Wistar rats after 28 day repeated oral administrations of polished or unpolished rice and their control arsenic compounds (sodium arsenite or dimethylarsinic acid; DMA). Only the treatment of sodium arsenite (2 μg/kg body weight), significantly increased total arsenic concentrations in blood when compared to the distilled water control group. In all groups, total arsenic concentrations were highest in kidney (1.54-1.90 mg/kg) followed by liver (0.85-1.52 mg/kg), and the predominant arsenic form in these organs was DMA. However, there was no significant difference in arsenic accumulation in the measured organs among the control and rice-treated groups. Therefore, the repeated 28 day administration of arsenic-contaminated rice did not cause significant arsenic accumulation in the animal organs.
Arsenic mobilization and immobilization in paddy soils
NASA Astrophysics Data System (ADS)
Kappler, A.; Hohmann, C.; Zhu, Y. G.; Morin, G.
2010-05-01
Arsenic is oftentimes of geogenic origin and in many cases bound to iron(III) minerals. Iron(III)-reducing bacteria can harvest energy by coupling the oxidation of organic or inorganic electron donors to the reduction of Fe(III). This process leads either to dissolution of Fe(III)-containing minerals and thus to a release of the arsenic into the environment or to secondary Fe-mineral formation and immobilisation of arsenic. Additionally, aerobic and anaerobic iron(II)-oxidizing bacteria have the potential to co-precipitate or sorb arsenic during iron(II) oxidation at neutral pH that is usually followed by iron(III) mineral precipitation. We are currently investigating arsenic immobilization by Fe(III)-reducing bacteria and arsenic co-precipitation and immobilization by anaerobic iron(II)-oxidizing bacteria in batch, microcosm and rice pot experiments. Co-precipitation batch experiments with pure cultures of nitrate-dependent Fe(II)-oxidizing bacteria are used to quantify the amount of arsenic that can be immobilized during microbial iron mineral precipitation, to identify the minerals formed and to analyze the arsenic binding environment in the precipitates. Microcosm and rice pot experiments are set-up with arsenic-contaminated rice paddy soil. The microorganisms (either the native microbial population or the soil amended with the nitrate-dependent iron(II)-oxidizing Acidovorax sp. strain BoFeN1) are stimulated either with iron(II), nitrate, or oxygen. Dissolved and solid-phase arsenic and iron are quantified. Iron and arsenic speciation and redox state in batch and microcosm experiments are determined by LC-ICP-MS and synchrotron-based methods (EXAFS, XANES).
Trophic Transfer of Arsenic from an Aquatic Insect to Terrestrial Insect Predators
Mogren, Christina L.; Walton, William E.; Parker, David R.; Trumble, John T.
2013-01-01
The movement of energy and nutrients from aquatic to terrestrial ecosystems can be substantial, and emergent aquatic insects can serve as biovectors not only for nutrients, but also for contaminants present in the aquatic environment. The terrestrial predators Tenodera aridifolia sinensis (Mantodea: Mantidae) and Tidarren haemorrhoidale (Araneae: Theridiidae) and the aquatic predator Buenoa scimitra (Hemiptera: Notonectidae) were chosen to evaluate the efficacy of arsenic transfer between aquatic and terrestrial environments. Culex tarsalis larvae were reared in either control water or water containing 1000 µg l−1 arsenic. Adults that emerged from the control and arsenic treatments were fed to the terrestrial predators, and fourth instar larvae were fed to the aquatic predator reared in control or arsenic contaminated water. Tenodera a. sinensis fed arsenic-treated Cx. tarsalis accumulated 658±130 ng g−1 of arsenic. There was no significant difference between control and arsenic-fed T. haemorrhoidale (range 142–290 ng g−1). Buenoa scimitra accumulated 5120±406 ng g−1 of arsenic when exposed to arsenic-fed Cx. tarsalis and reared in water containing 1000 µg l−1 arsenic. There was no significant difference between controls or arsenic-fed B. scimitra that were not exposed to water-borne arsenic, indicating that for this species environmental exposure was more important in accumulation than strictly dietary arsenic. These results indicate that transfer to terrestrial predators may play an important role in arsenic cycling, which would be particularly true during periods of mass emergence of potential insect biovectors. Trophic transfer within the aquatic environment may still occur with secondary predation, or in predators with different feeding strategies. PMID:23826344
Arsenic mobilization in spent nZVI waste residue: Effect of Pantoea sp. IMH.
Ye, Li; Liu, Wenjing; Shi, Qiantao; Jing, Chuanyong
2017-11-01
Nanoscale zero-valent iron (nZVI) is an effective arsenic (As) scavenger. However, spent nZVI may pose a higher environmental risk than our initial thought in the presence of As-reducing bacteria. Therefore, our motivation was to explore the As redox transformation and release in spent nZVI waste residue in contact with Pantoea sp. IMH, an arsC gene container adopting the As detoxification pathway. Our incubation results showed that IMH preferentially reduce soluble As(V), not solid-bound As(V), and was innocent in elevating total dissolved As concentrations. μ-XRF and As μ-XANES spectra clearly revealed the heterogeneity and complexity of the inoculated and control samples. Nevertheless, the surface As local coordination was not affected by the presence of IMH as evidenced by similar As-Fe atomic distance (3.32-3.36 Å) and coordination number (1.9) in control and inoculated samples. The Fe XANES results suggested that magnetite in nZVI residue was partly transformed to ferrihydrite, and the IMH activity slowed down the nZVI aging process. IMH distorted Fe local coordination without change its As adsorption capacity as suggested by Mössbauer spectroscopy. Arsenic retention is not inevitably enhanced by in situ formed secondary Fe minerals, but depends on the relative As affinity between the primary and secondary iron minerals. Copyright © 2017 Elsevier Ltd. All rights reserved.
In-situ arsenic removal during groundwater recharge through unsaturated alluvium
O'Leary, David; Izbicki, John; T.J. Kim,; Clark Ajawani,; Suarez, Donald; Barnes, Thomas; Thomas Kulp,; Burgess, Matthew K.; Tseng, Iwen
2015-01-01
OBJECTIVES The purpose of this study was to determine the feasibility and sustainability of in-situ removal of arsenic from water infiltrated through unsaturated alluvium. BACKGROUND Arsenic is naturally present in aquifers throughout the southwestern United States and elsewhere. In January 2006, the U.S. Environmental Protection Agency (EPA) lowered the Maximum Contaminant Level (MCL) for arsenic from 50 to 10 micrograms per liter (g/L). This raised concerns about naturally-occurring arsenic in groundwater. Although commercially available systems using sorbent iron or aluminum oxide resins are available to treat high-arsenic water, these systems are expensive to build and operate, and may generate hazardous waste. Iron and aluminum oxides occur naturally on the surfaces of mineral grains that compose alluvial aquifers. In areas where alluvial deposits are unsaturated, these oxides may sorb arsenic in the same manner as commercial resins, potentially providing an effective low-cost alternative to commercially engineered treatment systems. APPROACH The Antelope Valley within the Mojave Desert of southern California contains a shallow water-table aquifer with arsenic concentrations of 5 g/L, and a deeper aquifer with arsenic concentrations of 30 g/L. Water was pumped from the deep aquifer into a pond and infiltrated through an 80 m-thick unsaturated zone as part of field-scale and laboratory experiments to treat high-arsenic groundwater and recharge the shallow water table aquifer at the site. The field-scale recharge experiment included the following steps: 1) construction of a recharge pond 2) test drilling for sample collection and instrument installation adjacent to the pond 3) monitoring downward migration of water infiltrated from the pond 4) monitoring changes in selected trace-element concentrations as water infiltrated through the unsaturated zone Data from instruments within the borehole adjacent to the pond were supplemented with borehole and surface geophysical data to evaluate the lateral spreading of water as it moved downward through the unsaturated zone. Three laboratory studies were undertaken. Sequential extraction was used to evaluate the abundance of iron, aluminum, and manganese oxides and selected trace elements on operationally defined sites on the surfaces of mineral grains collected before and after infiltration from the pond. Secondly, radio-labeled arsenic-73 microcosm experiments evaluated the potential for incorporation of arsenic sorbed to exchange sites on mineral grains into less reactive crystalline mineral structures with time. Finally, column studies evaluated arsenic sorption and the pH dependence of sorption for selected unsaturated zone materials.RESULTS/CONCLUSIONS Between December 2010 and July 2012, more than 120,000 cubic meters (m3 ) (about 97 acre-feet) of high-arsenic groundwater was pumped from the deep aquifer into a 0.11 hectare (about 0.27 acres) pond and infiltrated though an 80-meter (about 260 feet) thick unsaturated zone to recharge a water-table aquifer. Arsenic concentrations were lowered from 30 to 2 g/L as water infiltrated though the unsaturated zone at the site. Some uranium, possibly associated with past agricultural land use at the site, was mobilized to concentrations as high as 66 g/L within the unsaturated zone during the experiment. Uranium was resorbed and the high uranium concentrations did not reach the water table at the site. Concentrations of other trace elements, including antimony, chromium, vanadium, and selenium were low throughout the study. Infiltration rates from the pond were as high as 0.4 meters per day (1.1 feet per day, ft/d), and the wetting front moved downward about 25 centimeters per day (cm/d) (0.8 ft/d) to a depth of about 50 m (about 165 feet). Clay layers at that depth slowed the downward movement of the wetting front to about 5 cm/d (0.16 ft/d). Lateral movement of the wetting front was monitored using sequential direct-current (DC) surface and sequential electromagnetic (EM) and DC borehole resistivity. Most lateral movement occurred on a clay layer about 50 m (about 165 feet) below land surface. Infiltrated water reached the water table in January 2013. At the water table, the “wetted footprint” of water infiltrated from the pond, indicated by surface resistivity data, was about 13 hectares (about 32 acres). On the basis of data collected at the site, there is enough sorbent material to operate this pond and treat groundwater having an arsenic concentration of 30 g/L to 2 g/L for about 500 years. Toxicity Characteristic Leaching Procedure (TCLP) data showed arsenic concentrations to be below hazardous levels beneath the pond after the experiment. Pond maintenance may be required to keep infiltration rates high, and prevent accumulation of organic material on the pond bottom, although organic material on the pond bottom may increase removal of other trace elements in infiltrated water including chromium, selenium, and vanadium. Laboratory results are consistent with the field data and show sorption of arsenic in 10 cm (0.3 feet) columns to about 2 g/L over a pH range of 6 to 8, and at influent arsenic concentrations as high as 300 g/L, without breakthrough in 50 pore volumes. Column results suggest that the insitu treatment may remove arsenic in a range of hydrogeologic settings, and would not necessarily be restricted to alkaline alluvial aquifers common throughout the southwestern United States. Radiolabeled arsenic-73 experiments show that although arsenic is initially weakly sorbed (and potentially mobile), with time arsenic is incorporated into amorphous materials. One year after sorption onto surface exchange sites, most sorbed arsenic is incorporated into crystalline oxide minerals on the surfaces of primary mineral grains and is less mobile. Results of the study suggest that long-term land use restrictions on sites used for in-situ treatment of arsenic may not be needed to control water applied to surface materials. This minimizes some regulatory concerns about future land use at sites used for in-situ arsenic treatment. However, future land uses that may alter reduction-oxidation conditions in the subsurface should be avoided, such as infiltration of stormwater recharge or recharge with other water having high organic carbon concentrations (including unsewered residential land use, dairy or other confined animal operations).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromstad, Mackenzie J.; Wrye, Lori A.; Jamieson, Heather E.
Approximately 20,000 tonnes of arsenic (As)-bearing emissions from roasting gold (Au)-bearing arsenopyrite ore were aerially released from 1949 to 1999 at Giant Mine, near Yellowknife, Canada. Soil samples collected within 4 km of the former roaster from sites undisturbed by mining or other human activity contain up to 7700 mg/kg total As. Total As concentrations are highest within a few cm of the surface, and particularly enriched in soil pockets on rock outcrops. Scanning electron microscopy and synchrotron microanalysis show that roaster-derived arsenic trioxide (As2O3) has persisted in shallow soils in the area. Roaster-generated maghemite and hematite are also present.more » These anthropogenic forms of As are much more common in near-surface soils than natural As-bearing minerals. Comparison of the proportions of As, Sb, and Au concentrations in outcrop soil samples and historic As2O3-rich dust captured by emission controls suggest most of the roaster-derived As in soils at Giant was likely deposited before 1964. Topographic restriction by rock outcrops and a dry, cold climate likely contribute to the persistence of As2O3 in outcrop soils.« less
NASA Astrophysics Data System (ADS)
Galloway, Jennifer; Palmer, Michael; Swindles, Graeme T.; Sanei, Hamed; Jamieson, Heather E.; Parsons, Michael; Macumber, Andrew L.; Patterson, Tim; Falck, Hendrik
2017-04-01
Gold mines in the Yellowknife region of the Northwest Territories, Canada, operated from 1938 to 2003 and released approximately 20,000 tonnes of arsenic trioxide to the environment through stack emissions. This release resulted in highly elevated arsenic concentrations in lake surface waters and sediments relative to Canadian drinking water standards and guidelines for the protection of aquatic life. High northern latitudes are experiencing substantial impacts, including changes in bio-physico-chemical processes, due to climate change. Determining the affect of warming climate on contamination is complicated by the fact that little is known of climate change controls on As mobility and bioavailability. Further, while the role of dissolved organic matter in As cycling is relatively well characterized in soils and wetland sediments, few studies have investigated the role of solid organic matter in lacustrine systems. We use a meta-analytical approach to better understand controls on sedimentary arsenic distribution in lakes within a 50 km2 area of historic mineral processing activities. Arsenic concentrations in near surface sediments of the 100 lakes studied range from 5 mg/kg to over 10,000 mg/kg (median 81 mg/kg). Distance from the historical Giant Mine roaster stack and the amount of labile organic matter (S1 carbon as determined by Rock Eval pyrolysis) in lake sediments are the variables most strongly correlated with sedimentary As concentrations (Spearman's rank correlation As:distance from historic roaster rs=-0.57, p<0.05; As:S1 rs=0.55, p<0.05). The S1 fraction, volatile hydrocarbons derived from readily degradable geolipids and pigments predominantly originating from authochthonous organic matter, represents a small portion of the overall total organic carbon in the sedimentary material analyzed (median 2.33 wt.%). However, this fraction of organic matter has large potential to influence element concentrations in lake sediments through coating of pre-existing solid-phase As-mineral complexes, direct As-organic matter interactions, and promotion of microbial-mediated reduction and precipitation of As-bearing minerals.
Yang, Lijun; Hu, Qiaoru; Guo, Wei; Liu, Yumin; Song, Xiaohua; Zhang, Pengcheng
2011-05-01
A method for the simultaneous determination of 7 arsenic species was developed with high performance liquid chromatography and inductively coupled plasma mass spectrometry (HPLC-ICP-MS). The sample was extracted with artificial gastric juice. The HPLC separation was performed on an anion analytical column utilizing a gradient elution program of ammonium carbonate and water as the mobile phase. Identification and quantification were achieved by ICP-MS. Good linearities of 7 arsenic species were observed in the range from 1 microg/kg to 50 microg/kg with the correlation coefficients greater than 0.999. The average recoveries of 7 arsenic species spiked at the three levels of 1, 2 and 10 microg/kg ranged from 84.3% to 106.6% with the relative standard deviations of 1.4%-4.2%. The quantification limits of 7 arsenic species were 1 microg/kg. The method was proved to be good reproducibility, high sensitivity and simple preprocessing. This method is suitable for the simultaneous determination of 7 arsenic species in chicken muscle and chicken liver.
Reid, J.C.; Haven, W.T.; Eudy, D.D.; Milosh, R.M.; Stafford, E.G.
2010-01-01
Naturally occurring arsenic-contaminated groundwater is present within the Eastern Slate Belt (ESB) of North Carolina. Long-term, integrated geologic and geo-chemical investigations havedetermined the presence of arsenic by analyzing precipitates from first and second order streams under base flow conditions. When groundwater discharges into streams, arsenic and other metals are precipitated from solution, due to redox changes between the subsurface and surface environments. Analyses (As, base metals, Fe and Mn) were determined following chemical extraction ofnaturally occurring manganese-iron oxide-coatings, which had precipitated from solution onto stream-bed cobbles. Additionally, artificial redox fronts were produced by placing ceramic tilesin streambeds to collect and analyze oxide precipitates. Thermochemical plots from these data, as well as information from respective stream water measurements (pH and Eh), water sampling, and rock chemical analyses indicate mobile arsenic in predicted stability fields. Initial results show that naturally occurring arsenic-contaminated groundwater is present within the study area. However, the resulting oxidation and pre-cipitation within streams appreciably removes thiscontaminant from surface water solution.
Assessment of arsenic exposures and controls in gallium arsenide production.
Sheehy, J W; Jones, J H
1993-02-01
The electronics industry is expanding the use of gallium arsenide in the production of optoelectronic devices and integrated circuits. Workers in the electronics industry using gallium arsenide are exposed to hazardous substances such as arsenic, arsine, and various acids. Arsenic requires stringent controls to minimize exposures (the current OSHA PEL for arsenic is 10 micrograms/m3 and the NIOSH REL is 2 micrograms/m3 ceiling). Inorganic arsenic is strongly implicated in respiratory tract and skin cancer. For these reasons, NIOSH researchers conducted a study of control systems for facilities using gallium arsenide. Seven walk-through surveys were performed to identify locations for detailed study which appeared to have effective controls; three facilities were chosen for in-depth evaluation. The controls were evaluated by industrial hygiene sampling. Including personal breathing zone and area air sampling for arsenic and arsine; wipe samples for arsenic also were collected. Work practices and the use of personal protective equipment were documented. This paper reports on the controls and the arsenic exposure results from the evaluation of the following gallium arsenide processes: Liquid Encapsulated Czochralski (LEC) and Horizontal Bridgeman (HB) crystal growing, LEC cleaning operations, ingot grinding/wafer sawing, and epitaxy. Results at one plant showed that in all processes except epitaxy, average arsenic exposures were at or above the OSHA action level of 5 micrograms/m3. While cleaning the LEC crystal pullers, the average potential arsenic exposure of the cleaning operators was 100 times the OSHA PEL. At the other two plants, personal exposures for arsenic were well controlled in LEC, LEC cleaning, grinding/sawing, and epitaxy operations.
Oden, Jeannette H.; Szabo, Zoltan
2016-03-21
Associated geochemical conditions conducive for mobility of arsenic and radionuclides and their spatial and vertical extent in the Gulf Coast aquifer system in Houston are important aspects to the areal management of the municipal groundwater supplies in Houston. Ongoing research is seeking to define chemical or geological factors that are the optimal indicators for elevated concentrations of these naturally occurring constituents.
Transcriptomic Response of Purple Willow (Salix purpurea) to Arsenic Stress
Yanitch, Aymeric; Brereton, Nicholas J. B.; Gonzalez, Emmanuel; Labrecque, Michel; Joly, Simon; Pitre, Frederic E.
2017-01-01
Arsenic (As) is a toxic element for plants and one of the most common anthropogenic pollutants found at contaminated sites. Despite its severe effects on plant metabolism, several species can accumulate substantial amounts of arsenic and endure the associated stress. However, the genetic mechanisms involved in arsenic tolerance remains obscure in many model plant species used for land decontamination (phytoremediation), including willows. The present study assesses the potential of Salix purpurea cv. ‘Fish Creek’ for arsenic phytoextraction and reveals the genetic responses behind arsenic tolerance, phytoextraction and metabolism. Four weeks of hydroponic exposure to 0, 5, 30 and 100 mg/L revealed that plants were able to tolerate up to 5 mg/L arsenic. Concentrations of 0 and 5 mg/L of arsenic treatment were then used to compare alterations in gene expression of roots, stems and leaves using RNA sequencing. Differential gene expression revealed transcripts encoding proteins putatively involved in entry of arsenic into the roots, storage in vacuoles and potential transport through the plant as well as primary and secondary (indirect) toxicity tolerance mechanisms. A major role for tannin as a compound used to relieve cellular toxicity is implicated as well as unexpected expression of the cadmium transporter CAX2, providing a potential means for internal arsenic mobility. These insights into the underpinning genetics of a successful phytoremediating species present novel opportunities for selection of dedicated arsenic tolerant crops as well as the potential to integrate such tolerances into a wider Salix ideotype alongside traits including biomass yield, biomass quality, low agricultural inputs and phytochemical production. PMID:28702037
Craw, D
2005-02-01
Eroded roots of hot spring systems in Northland, New Zealand consist of mineralised rocks containing sulfide minerals. Marcasite and cinnabar are the dominant sulfides with subordinate pyrite. Deep weathering and leached soil formation has occurred in a warm temperate to subtropical climate with up to 3 m/year rainfall. Decomposition of the iron sulfides in natural and anthropogenic rock exposures yields acid rock drainage with pH typically between 2 and 4, and locally down to pH 1. Soils and weathered rocks developed on basement greywacke have negligible acid neutralisation capacity. Natural rainforest soils have pH between 4 and 5 on unmineralised greywacke, and pH is as low as 3.5 in soils on mineralised rocks. Roads with aggregate made from mineralised rocks have pH near 3, and quarries from which the rock was extracted can have pH down to 1. Mineralised rocks are enriched in arsenic and mercury, both of which are environmentally available as solid solution impurities in iron sulfides and phosphate minerals. Base metals (Cu, Pb, Zn) are present at low levels in soils, at or below typical basement rock background. Decomposition of the iron sulfides releases the solid solution arsenic and mercury into the acid rock drainage solutions. Phosphate minerals release their impurities only under strongly acid conditions (pH<1). Arsenic and mercury are adsorbed on to iron oxyhydroxides in soils, concentrated in the C horizon, with up to 4000 ppm arsenic and 100 ppm mercury. Waters emanating from acid rock drainage areas have arsenic and mercury below drinking water limits. Leaching experiments and theoretical predictions indicate that both arsenic and mercury are least mobile in acid soils, at pH of c. 3-4. This optimum pH range for fixation of arsenic and mercury on iron oxyhydroxides in soils is similar to natural pH at the field site of this study. However, neutralisation of acid soils developed on mineralised rocks is likely to decrease adsorption and enhance mobility of arsenic and mercury. Hence, development of farmland by clearing forest and adding agricultural lime may mobilise arsenic and mercury from underlying soils on mineralised rocks. In addition, arsenic and mercury release into runoff water will be enhanced where sediment is washed off mineralised road aggregate (pH 3) on to farm land (pH>6). The naturally acid forest soils, or even lower pH of natural acid rock drainage, are the most desirable environmental conditions to restrict dissolution of arsenic and mercury from soils. This approach is only valid where mineralised soils have low base metal concentrations.
Chen, Po-Chiang; Shen, Guozhen; Chen, Haitian; Ha, Young-geun; Wu, Chao; Sukcharoenchoke, Saowalak; Fu, Yue; Liu, Jun; Facchetti, Antonio; Marks, Tobin J; Thompson, Mark E; Zhou, Chongwu
2009-11-24
We report high-performance arsenic (As)-doped indium oxide (In(2)O(3)) nanowires for transparent electronics, including their implementation in transparent thin-film transistors (TTFTs) and transparent active-matrix organic light-emitting diode (AMOLED) displays. The As-doped In(2)O(3) nanowires were synthesized using a laser ablation process and then fabricated into TTFTs with indium-tin oxide (ITO) as the source, drain, and gate electrodes. The nanowire TTFTs on glass substrates exhibit very high device mobilities (approximately 1490 cm(2) V(-1) s(-1)), current on/off ratios (5.7 x 10(6)), steep subthreshold slopes (88 mV/dec), and a saturation current of 60 microA for a single nanowire. By using a self-assembled nanodielectric (SAND) as the gate dielectric, the device mobilities and saturation current can be further improved up to 2560 cm(2) V(-1) s(-1) and 160 microA, respectively. All devices exhibit good optical transparency (approximately 81% on average) in the visible spectral range. In addition, the nanowire TTFTs were utilized to control green OLEDs with varied intensities. Furthermore, a fully integrated seven-segment AMOLED display was fabricated with a good transparency of 40% and with each pixel controlled by two nanowire transistors. This work demonstrates that the performance enhancement possible by combining nanowire doping and self-assembled nanodielectrics enables silicon-free electronic circuitry for low power consumption, optically transparent, high-frequency devices assembled near room temperature.
Arsenic species separation by IELC-ICP/OES: Arsenocholine behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubio, R.; Peralta, I.; Alberti, J.
1993-01-01
In the literature an increasing interest is observed in developing methods to determine arsenobetaine, arsenocholine and related compounds in sea food and in reference materials. The separation conditions and quantification of As(III), As(V), monomethylarsenate (MMA), dimethylarsinate (DMA), arsenobetaine (AsBet) and arsenocholine (AsChol) are studied by Liquid Chromatography (LC) coupled directly to an Inductively Coupled Plasma Optical Emission Spectroscopy (ICP/OES) system. The separation conditions are optimized to improve the resolution of the six arsenic species. Arsenocholine shows a particular pattern of behavior when phosphate is used as eluent: two peaks are observed in the chromatogram, thus a systematic study assaying differentmore » pH and concentration of phosphate is carried out to improve resolution and analysis time when the six arsenic compounds are analyzed in a mixture. Boric acid as mobile phase avoids the splitting of the arsenocholine peak and leads to a good separation of the six arsenic compounds. Detection limits are established for the six arsenic species.« less
Arsenic Detoxification by Geobacter Species.
Dang, Yan; Walker, David J F; Vautour, Kaitlin E; Dixon, Steven; Holmes, Dawn E
2017-02-15
Insight into the mechanisms for arsenic detoxification by Geobacter species is expected to improve the understanding of global cycling of arsenic in iron-rich subsurface sedimentary environments. Analysis of 14 different Geobacter genomes showed that all of these species have genes coding for an arsenic detoxification system (ars operon), and several have genes required for arsenic respiration (arr operon) and methylation (arsM). Genes encoding four arsenic repressor-like proteins were detected in the genome of G. sulfurreducens; however, only one (ArsR1) regulated transcription of the ars operon. Elimination of arsR1 from the G. sulfurreducens chromosome resulted in enhanced transcription of genes coding for the arsenic efflux pump (Acr3) and arsenate reductase (ArsC). When the gene coding for Acr3 was deleted, cells were not able to grow in the presence of either the oxidized or reduced form of arsenic, while arsC deletion mutants could grow in the presence of arsenite but not arsenate. These studies shed light on how Geobacter influences arsenic mobility in anoxic sediments and may help us develop methods to remediate arsenic contamination in the subsurface. This study examines arsenic transformation mechanisms utilized by Geobacter, a genus of iron-reducing bacteria that are predominant in many anoxic iron-rich subsurface environments. Geobacter species play a major role in microbially mediated arsenic release from metal hydroxides in the subsurface. This release raises arsenic concentrations in drinking water to levels that are high enough to cause major health problems. Therefore, information obtained from studies of Geobacter should shed light on arsenic cycling in iron-rich subsurface sedimentary environments, which may help reduce arsenic-associated illnesses. These studies should also help in the development of biosensors that can be used to detect arsenic contaminants in anoxic subsurface environments. We examined 14 different Geobacter genomes and found that all of these species possess genes coding for an arsenic detoxification system (ars operon), and some also have genes required for arsenic respiration (arr operon) and arsenic methylation (arsM). Copyright © 2017 American Society for Microbiology.
Arsenic Detoxification by Geobacter Species
Walker, David J. F.; Vautour, Kaitlin E.; Dixon, Steven
2016-01-01
ABSTRACT Insight into the mechanisms for arsenic detoxification by Geobacter species is expected to improve the understanding of global cycling of arsenic in iron-rich subsurface sedimentary environments. Analysis of 14 different Geobacter genomes showed that all of these species have genes coding for an arsenic detoxification system (ars operon), and several have genes required for arsenic respiration (arr operon) and methylation (arsM). Genes encoding four arsenic repressor-like proteins were detected in the genome of G. sulfurreducens; however, only one (ArsR1) regulated transcription of the ars operon. Elimination of arsR1 from the G. sulfurreducens chromosome resulted in enhanced transcription of genes coding for the arsenic efflux pump (Acr3) and arsenate reductase (ArsC). When the gene coding for Acr3 was deleted, cells were not able to grow in the presence of either the oxidized or reduced form of arsenic, while arsC deletion mutants could grow in the presence of arsenite but not arsenate. These studies shed light on how Geobacter influences arsenic mobility in anoxic sediments and may help us develop methods to remediate arsenic contamination in the subsurface. IMPORTANCE This study examines arsenic transformation mechanisms utilized by Geobacter, a genus of iron-reducing bacteria that are predominant in many anoxic iron-rich subsurface environments. Geobacter species play a major role in microbially mediated arsenic release from metal hydroxides in the subsurface. This release raises arsenic concentrations in drinking water to levels that are high enough to cause major health problems. Therefore, information obtained from studies of Geobacter should shed light on arsenic cycling in iron-rich subsurface sedimentary environments, which may help reduce arsenic-associated illnesses. These studies should also help in the development of biosensors that can be used to detect arsenic contaminants in anoxic subsurface environments. We examined 14 different Geobacter genomes and found that all of these species possess genes coding for an arsenic detoxification system (ars operon), and some also have genes required for arsenic respiration (arr operon) and arsenic methylation (arsM). PMID:27940542
Microbial arsenic reduction in polluted and unpolluted soils from Attica, Greece.
Vaxevanidou, K; Giannikou, S; Papassiopi, N
2012-11-30
Indigenous soil microorganisms often affect the mobility of heavy metals and metalloids by altering their oxidation state. Under anaerobic conditions, the microbial transformation is usually reduction and may cause the mobilization of contaminants, as happens in the case of arsenic, which is much more stable in the pentavalent state compared to the reduced trivalent form. The aim of this work was to investigate the occurrence of such a microbial activity in representative Greek soils. Five soil samples, with As levels varying between 14 and 259 mg/kg, were examined. The samples were artificially contaminated, by adding 750 mg of As(V) per kg of soil. Initial sorption of As(V) ranged between 70 and 85%. Microbial reduction of arsenic was observed in three of the examined soils, without any obvious correlation with pre-existing levels of contamination. Reduction reached high percentages, i.e. up to 99%, and was accompanied by the corresponding release of reduced As in the aqueous solution. A simultaneous iron reducing activity was also observed in four of the five soil samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Biogeochemistry of Arsenic in Groundwater Flow Systems: The Case of Southern Louisiana
NASA Astrophysics Data System (ADS)
Johannesson, K. H.; Yang, N.; Datta, S.
2017-12-01
Arsenic (As) is a highly toxic and carcinogenic metalloid that can cause serious health effects, including increased risk of cancers, infant mortality, and reduced intellectual and motor function in children to populations chronically exposed to As. Recent estimates suggest that more than 140 million people worldwide are drinking As-contaminated groundwater (i.e., As ≥ 10 µg kg-1), and the most severely affected region is the Ganges-Brahmaputra-Meghna delta in Bangladesh and India (i.e., Bengal Basin). Arsenic appears to be mobilized to Bengal Basin groundwaters by reductive dissolution of Fe oxides in aquifer sediments with the source of the labile organic matter occurring in the aquifer sediments. Studies within the lower Mississippi River delta of southern Louisiana (USA) also reveal high As concentrations (up to 640 µg kg-1) in shallow groundwaters. It is not known what affects, if any, the elevated groundwater As has had on local communities. The regional extent of high As shallow groundwaters is controlled, in part, by the distribution of Holocene sediments, deltaic deposits, and organic-rich sediments, similar to the Bengal Basin. Field and laboratory studies suggest that As is largely of geogenic origin, and further that microbial reduction of Fe(III)/Mn(IV) oxides/oxyhydroxides within the sediments contributes the bulk of the As to the groundwaters. Incubation studies are supported by biogeochemical reactive transport modeling, which also indicates reductive dissolution of metal oxides/oxyhydroxides as the likely source of As to these groundwaters. Finally, reactive transport modeling of As in shallow groundwaters suggests that sorption to aquifer mineral surfaces limits the transport of As after mobilization, which may explain, in part, the heterogeneous distribution of As in groundwaters of southern Louisiana and, perhaps, the Bengal Basin.
Rock-Bound Arsenic Influences Ground Water and Sediment Chemistry Throughout New England
Robinson, Gilpin R.; Ayotte, Joseph D.
2007-01-01
The information in this report was presented at the Northeastern Region Geological Society of America meeting held March 11-14, 2007, in Durham, New Hampshire. In the New England crystalline bedrock aquifer, concentrations of arsenic that exceed the drinking water standard of 10 ?g/L occur most frequently in ground water from wells sited in specific metamorphic and igneous rock units. Geochemical investigations indicate that these geologic units typically have moderately elevated whole-rock concentrations of arsenic compared to other rocks in the region. The distribution of ground water wells with As > 5 ?g/L has a strong spatial correlation with specific bedrock units where average whole-rock concentrations of arsenic exceed 1.1 mg/kg and where geologic and geochemical factors produce high pH ground water. Arsenic concentrations in stream sediments collected from small drainages reflect the regional distribution of this natural arsenic source and have a strong correlation with both rock chemistry and the distribution of bedrock units with elevated arsenic chemistry. The distribution of ground water wells with As > 5 ?g/L has a strong spatial correlation with the distribution of stream sediments where concentrations of arsenic exceed 6 mg/kg. Stream sediment chemistry also has a weak correlation with the distribution of agricultural lands where arsenical pesticides were used on apple, blueberry, and potato crops. Elevated arsenic concentrations in bedrock wells, however, do not correlate with agricultural areas where arsenical pesticides were used. These results indicate that both stream sediment chemistry and the solubility and mobility of arsenic in ground water in bedrock are influenced by host-rock arsenic concentrations. Stream sediment chemistry and the distribution of geologic units have been found to be useful parameters to predict the areas of greatest concern for elevated arsenic in ground water and to estimate the likely levels of human exposure to elevated arsenic in drinking water in New England. However, the extreme local variability of arsenic concentrations in ground water from these rock sources indicate that arsenic concentrations in ground water are affected by other factors in addition to arsenic concentrations in rock.
Yousuf, A K M; Misbahuddin, Mir; Rahman, Md Sayedur
2011-06-01
Melanosis and leucomelanosis with or without keratosis are the earliest symptoms of arsenicosis. Uneven distribution of arsenical melanosis and leucomelanosis in skin led us to investigate the possibility of preferential secretion of arsenic and three constituents of sweat; cholesterol, vitamin E, and zinc. Twenty-four-hour skin secretion was collected from skin lesions and unaffected sites of 20 patients. Skin secretions were collected from 20 people exposed to arsenic-contaminated drinking water and 20 healthy, unexposed individuals. The secretion of arsenic from the skin of healthy controls (mean ± SE; unit: μg/in.(2) of skin/24 h; chest: 0.6 ± 0.2; back: 0.3 ± 0.1; abdomen: 0.5 ± 0.2) was increased several folds in arsenic-exposed controls (chest: 8.4 ± 1.8; back: 8.3 ± 1.9; abdomen: 6.7 ± 1.8) and patients (chest: 9.2 ± 1.3; back: 7.8 ± 1.3; abdomen: 5.2 ± 1.0). There was no difference in the skin lesions and unaffected sites in patients. However, the secretion of cholesterol was significantly lower in the chest of patients (190 ± 36) and healthy controls (686 ± 100) (p < 0.001). Secretions of vitamin E were low in healthy controls (chest: 8.5 ± 3.1; back: 5.2 ± 1.7; and abdomen: 8.7 ± 2.4), higher in arsenic-exposed controls (chest: 30.2 ± 8.1; back: 16.3 ± 8.9; and abdomen: 24.8 ± 9.3), and highest in patients [chest: 91.4 ± 14.9 (p < 0.0001 vs. control); back: 72.4 ± 13.2 (p < 0.001 vs. control); and abdomen: 46.8 ± 12.9]. Chronic intake of arsenic led to several folds higher secretion of zinc both in patients and in arsenic-exposed controls. One molecule of arsenic appears to be co-secreted with two molecules of zinc. Arsenic skin lesions showed no alteration in secretion of arsenic, although the secretion of cholesterol, vitamin E, and zinc was changed. Potential implications are discussed.
Quantifying reactive transport processes governing arsenic mobility in a Bengal Delta aquifer
NASA Astrophysics Data System (ADS)
Rawson, Joey; Neidhardt, Harald; Siade, Adam; Berg, Michael; Prommer, Henning
2017-04-01
Over the last few decades significant progress has been made to characterize the extent and severity of groundwater arsenic pollution in S/SE Asia, and to understand the underlying geochemical processes. However, comparably little effort has been made to merge the findings from this research into quantitative frameworks that allow for a process-based quantitative analysis of observed arsenic behavior and predictions of its future fate. Therefore, this study developed and tested field-scale numerical modelling approaches to represent the primary and secondary geochemical processes associated with the reductive dissolution of Fe-oxy(hydr)oxides and the concomitant release of sorbed arsenic. We employed data from an in situ field experiment in the Bengal Delta Plain, which investigated the influence of labile organic matter (sucrose) on the mobility of Fe, Mn, and As. The data collected during the field experiment were used to guide our model development and to constrain the model parameterisation. Our results show that sucrose oxidation coupled to the reductive dissolution of Fe-oxy(hydr)oxides was accompanied by multiple secondary geochemical reactions that are not easily and uniquely identifiable and quantifiable. Those secondary reactions can explain the disparity between the observed Fe and As behavior. Our modelling results suggest that a significant fraction of the released As is scavenged through (co-)precipitation with newly formed Fe-minerals, specifically magnetite, rather than through sorption to pre-existing and freshly precipitated iron minerals.
Arsenic Remediation Enhancement Through Chemical Additions to Pump and Treat Operations
NASA Astrophysics Data System (ADS)
Wovkulich, K.; Mailloux, B. J.; Stute, M.; Simpson, H. J.; Keimowitz, A. R.; Powell, A.; Lacko, A.; Chillrud, S. N.
2008-12-01
Arsenic is a contaminant found at more than 500 US Superfund sites. Since pump and treat technologies are widely used for remediation of contaminated groundwater, increasing the efficiency of contaminant removal at such sites should allow limited financial resources to clean up more sites. The Vineland Chemical Company Superfund site is extensively contaminated with arsenic after waste arsenic salts were stored and disposed of improperly for much of the company's 44 year manufacturing lifetime. Despite approximately eight years of pump and treat remediation, arsenic concentrations in the recovery wells can still be greater than 1000 ppb. The arsenic concentrations in the groundwater remain high because of slow desorption of arsenic from contaminated aquifer solids. Extrapolation of laboratory column experiments suggest that continuing the current groundwater remediation practice based on flushing ambient groundwater through the system may require on the order of hundreds of years to clean the site. However, chemical additions of phosphate or oxalic acid into the aquifer could decrease the remediation time scale substantially. Laboratory results from a soil column experiment using input of 10 mM oxalic acid suggest that site clean up of groundwater could be decreased to as little as four years. Pilot scale forced gradient field experiments will help establish whether chemical additions can be effective for increasing arsenic mobilization from aquifer solids and thus substantially decrease pump and treat clean up time.
Yan, Weile; Vasic, Relja; Frenkel, Anatoly I; Koel, Bruce E
2012-07-03
While a high efficiency of contaminant removal by nanoscale zerovalent iron (nZVI) has often been reported for several contaminants of great concern, including aqueous arsenic species, the transformations and translocation of contaminants at and within the nanoparticles are not clearly understood. By analysis using in situ time-dependent X-ray absorption spectroscopy (XAS) of the arsenic core level for nZVI in anoxic As(III) solutions, we have observed that As(III) species underwent two stages of transformation upon adsorption at the nZVI surface. The first stage corresponds to breaking of As-O bonds at the particle surface, and the second stage involves further reduction and diffusion of arsenic across the thin oxide layer enclosing the nanoparticles, which results in arsenic forming an intermetallic phase with the Fe(0) core. Extended X-ray absorption fine-structure (EXAFS) data from experiments conducted at different iron/arsenic ratios indicate that the reduced arsenic species tend to be enriched at the surface of the Fe(0) core region and had limited mobility into the interior of the metal core within the experimental time frame (up to 22 h). Therefore, there was an accumulation of partially reduced arsenic at the Fe(0)/oxide interface when a relatively large arsenic content was present in the solid phase. These results illuminate the role of intraparticle diffusion and reduction in affecting the chemical state and spatial distribution of arsenic in nZVI materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Person, Rachel J.; Olive Ngalame, Ntube N.; Makia, Ngome L.
Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomousmore » growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer. - Highlights: • Chronic arsenic exposure transforms a human peripheral lung epithelia cell line. • Cells acquire characteristics in common with human lung adenocarcinoma cells. • These transformed cells provide a valuable model for arsenic-induced lung cancer.« less
Hasanzadeh, Mohammad; Farajbakhsh, Farzad; Shadjou, Nasrin; Jouyban, Abolghasem
2015-01-01
Over the last decade, numerous removal methods using solid-supported magnetic nanocomposites have been employed in order to remove arsenic from aqueous solution. In this report, removal of arsenic from aqueous solution by an organo silica, namely, magnetic mobile crystalline material-41 (MCM-41) functionalized by chlorosulphonic acid (MMCM-41-SO3H), was investigated using atomic absorption spectroscopy. The synthesized magnetic mesoporous materials have satisfactory As (V) adsorption capacity. Linearity for arsenic was observed in the concentration range of 5-100 ppb. In addition, the coefficient of determination (R2) was more than 0.999 and the limit of detection (LOD) was 0.061 ppb. Considering these results, MMCM-41-SO3H has a great potential for the removal of As (V) contaminants and potentially for the application in large-scale wastewater treatment plants.
Fang, Yong; Pan, Yushi; Li, Peng; Xue, Mei; Pei, Fei; Yang, Wenjian; Ma, Ning; Hu, Qiuhui
2016-12-15
An analytical method using reversed phase chromatography-inductively coupled plasma mass spectrometry for arsenic and mercury speciation analysis was described. The effect of ion-pairing reagent on simultaneous separation of four arsenic (arsenite, arsenate, monomethlyarsonate and dimethylarsinate) and three mercury species (inorganic mercury (Hg(II)), methylmecury and ethylmercury) was investigated. Parameters including concentrations and pH of the mobile phase were optimized. The separation and re-equilibration time was attained within 20min. Meanwhile, a sequential extraction method for arsenic and mercury in rice was tested. Subsequently, 1% HNO3 microwave-assisted extraction was chosen. Calibration curves based on peak area measurements were linear with correlation coefficient greater than 0.9958 for each species in the range studied. The detection limits of the species were in the range of 0.84-2.41μg/L for arsenic and 0.01-0.04μg/L for mercury, respectively. The proposed method was then successfully applied for the simultaneous determination of arsenic and mercury species in rice flour standard material and two kinds of rice from local markets. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
George, Christine Marie; Inauen, Jennifer; Perin, Jamie; Tighe, Jennifer; Hasan, Khaled; Zheng, Yan
2017-01-01
More than 100 million people globally are estimated to be exposed to arsenic in drinking water that exceeds the World Health Organization guideline of 10 µg/L. In an effort to develop and test a low-cost sustainable approach for water arsenic testing in Bangladesh, we conducted a randomized controlled trial which found arsenic educational…
Kumar, Naresh; Couture, Raoul-Marie; Millot, Romain; Battaglia-Brunet, Fabienne; Rose, Jérôme
2016-07-19
We assessed the potential of zerovalent-iron- (Fe(0)) based permeable reactive barrier (PRB) systems for arsenic (As) remediation in the presence or absence of microbial sulfate reduction. We conducted long-term (200 day) flow-through column experiments to investigate the mechanisms of As transformation and mobility in aquifer sediment (in particular, the PRB downstream linkage). Changes in As speciation in the aqueous phase were monitored continuously. Speciation in the solid phase was determined at the end of the experiment using X-ray absorption near-edge structure (XANES) spectroscopy analysis. We identified thio-As species in solution and AsS in solid phase, which suggests that the As(V) was reduced to As(III) and precipitated as AsS under sulfate-reducing conditions and remained as As(V) under abiotic conditions, even with low redox potential and high Fe(II) content (4.5 mM). Our results suggest that the microbial sulfate reduction plays a key role in the mobilization of As from Fe-rich aquifer sediment under anoxic conditions. Furthermore, they illustrate that the upstream-downstream linkage of PRB affects the speciation and mobility of As in downstream aquifer sediment, where up to 47% of total As initially present in the sediment was leached out in the form of mobile thio-As species.
Hinwood, Andrea L; Sim, Malcolm R; Jolley, Damien; de Klerk, Nick; Bastone, Elisa B; Gerostamoulos, Jim; Drummer, Olaf H
2003-01-01
Surface soil and groundwater in Australia have been found to contain high concentrations of arsenic. The relative importance of long-term human exposure to these sources has not been established. Several studies have investigated long-term exposure to environmental arsenic concentrations using hair and toenails as the measure of exposure. Few have compared the difference in these measures of environmental sources of exposure. In this study we aimed to investigate risk factors for elevated hair and toenail arsenic concentrations in populations exposed to a range of environmental arsenic concentrations in both drinking water and soil as well as in a control population with low arsenic concentrations in both drinking water and soil. In this study, we recruited 153 participants from areas with elevated arsenic concentrations in drinking water and residential soil, as well as a control population with no anticipated arsenic exposures. The median drinking water arsenic concentrations in the exposed population were 43.8 micro g/L (range, 16.0-73 micro g/L) and median soil arsenic concentrations were 92.0 mg/kg (range, 9.1-9,900 mg/kg). In the control group, the median drinking water arsenic concentration was below the limit of detection, and the median soil arsenic concentration was 3.3 mg/kg. Participants were categorized based on household drinking water and residential soil arsenic concentrations. The geometric mean hair arsenic concentrations were 5.52 mg/kg for the drinking water exposure group and 3.31 mg/kg for the soil exposure group. The geometric mean toenail arsenic concentrations were 21.7 mg/kg for the drinking water exposure group and 32.1 mg/kg for the high-soil exposure group. Toenail arsenic concentrations were more strongly correlated with both drinking water and soil arsenic concentrations; however, there is a strong likelihood of significant external contamination. Measures of residential exposure were better predictors of hair and toenail arsenic concentrations than were local environmental concentrations. PMID:12573904
Ou, Ling; Gannon, Travis W; Polizzotto, Matthew L
2017-11-01
Monosodium methyl arsenate (MSMA), a common arsenical herbicide, is a major contributor of anthropogenic arsenic (As) to the environment. Uncertainty about controls on MSMA fate and the rates and products of MSMA species transformation limits effective MSMA regulation and management. The main objectives of this research were to quantify the kinetics and mechanistic drivers of MSMA species transformation and removal from solution by soil. Laboratory MSMA incubation studies with two soils and varying soil organic carbon (SOC) levels were conducted. Arsenic removal from solution was more extensive and faster in sandy clay loam incubations than sand incubations, but for both systems, As removal was biphasic, with initially fast removal governed by sorption, followed by slower As removal limited by species transformation. Dimethylarsinic acid was the dominant product of species transformation at first, but inorganic As(V) was the ultimate transformation product by experiment ends. SOC decreased As removal and enhanced As species transformation, and SOC content had linear relationships with As removal rates (R 2 = 0.59-0.95) for each soil and reaction phase. These results reveal the importance of edaphic conditions on inorganic As production and overall mobility of As following MSMA use, and such information should be considered in MSMA management and regulatory decisions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bacteria diversity and arsenic mobilization in rock biofilm from an ancient gold and arsenic mine.
Tomczyk-Żak, Karolina; Kaczanowski, Szymon; Drewniak, Łukasz; Dmoch, Łukasz; Sklodowska, Aleksandra; Zielenkiewicz, Urszula
2013-09-01
In this paper we characterize the biofilm community from an ancient Złoty Stok gold and arsenic mine. Bacterial diversity was examined using a culture-independent technique based on 16S rRNA gene amplification, cloning and sequencing. We show that unexpectedly the microbial diversity of this community was extremely high (more than 190 OTUs detected), with the most numerous members from Rhizobiales (α-Proteobacteria). Although the level of rock biofilm diversity was similar to the microbial mat community we have previously characterized in the same adit, its taxonomic composition was completely different. Detailed analysis of functional arrA and aioA genes, chemical properties of siderophores found in pore water as well as the biofilm chemical composition suggest that the biofilm community contributes to arsenic pollution of surrounding water in a biogeochemical cycle similar to the one observed in bacterial mats. To interpret our results concerning the biological arsenic cycle, we applied the theory of ecological pyramids of Charles Elton. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nicholas, S. L.; Gowan, A. S.; Knaeble, A. R.; Erickson, M. L.; Woodruff, L. G.; Marcus, M.; Toner, B. M.
2014-12-01
Western Minnesota, USA, is a regional locus of drinking-water wells with high arsenic (As) (As>10µgL-1). Arsenic concentrations vary widely among neighboring wells with otherwise similar water chemistry [1,2]. As(III) should be the most mobile As species in Minnesota well waters (median Eh in As affected wells is -50mV). This As is geogenic, sourced from glacial deposits derived from Cretaceous sedimentary bedrock (dolostone, limestone, shale). Our hypothesis is that As speciation in the solid phase is the important factor controlling the introduction of As to groundwater—more significant in this region than absolute As concentrations or landscape variability. Our previous research used micro-X-ray absorption spectroscopy (µXAS) speciation mapping [3] on archived glacial tills (stored dry at room temperature in air). µXAS results from this material showed that As in a reduced chemical state within the till aquitard is spatially correlated with iron sulfide at the micron scale. Conversley, As in aquifer sediments was mainly oxidized As(V). At the aquifer-aquitard contact As was observed as a mixture of both reduced and oxidized forms. This suggests that the aquifer-aquitard contact is a geochemically active zone in which reduced As species present within glacial till are converted to As(V) through complex redox processes, and subsequently release into aquifer sediments. Our current research applies the same methods to describe As speciation in samples collected from fresh cores of glacial sediment and frozen under argon in the field. Preliminary results are similar to our previous work in that As is, in general, more reduced in aquitard sediments, and more oxidized at the contact and in aquifer sediments. Arsenic(III) was preserved as a minor consitutent in ambient archived cores but is a more significant constituent in fresh, anaerobically preserved cores. Results will be presented comparing anaerobic samples with ambient-air aliquots of the same sample to document changes in the relative abundance of As species depending on sample preservation. This work was supported by LBNL-ALS, ANL-APS, USGS-MNWSC, MGS, and CURA. [1]Berndt & Soule (1999) Minnesota Arsenic Research Study: Report on Geochemistry. [2] Erickson & Barnes (2005) Water Research 39 4029-4039. [3] Toner et al. (2014) Env. Chem. 11 4-9.
40 CFR 61.183 - Emission monitoring.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Inorganic Arsenic Emissions From Arsenic Trioxide and Metallic Arsenic Production Facilities § 61.183 Emission monitoring. (a... arsenic trioxide and metallic arsenic process emission stream that exits from a control device. (b) The...
40 CFR 61.183 - Emission monitoring.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Inorganic Arsenic Emissions From Arsenic Trioxide and Metallic Arsenic Production Facilities § 61.183 Emission monitoring. (a... arsenic trioxide and metallic arsenic process emission stream that exits from a control device. (b) The...
NASA Astrophysics Data System (ADS)
Alauddin, M.; Bhattacharjee, M.; Zakaria, A. B.; Rahman, M. M.; Seraji, M. S.
2008-05-01
Arsenic contamination of groundwater in Gangetic plain of Bihar, West Bengal in India and Bengal delta plain Bangladesh is shaping up as the greatest environmental health disaster in the current century. About 450 million combined population in these regions are at risk of developing adverse health effects due to arsenic contamination in groundwater. For an effective and sustainable mitigation, it is essential that we improve our understanding of fundamental processes of arsenic mobilization in sediments, biogeochemistry of arsenic in aquifer sediments and weigh a wide range of options for arsenic safe water for the vast population. In this paper, aspects of arsenic removal technology from groundwater in affected areas, sustainable development of household water filtration systems, deep aquifer water as potential arsenic safe water will be presented. In addition, sustainable development of water purification systems such as pond sand filtration (PSF), river sand filtration (RSF), rain water harvesting (RWH), dug well and their acceptability by the community will be discussed. A recent development of indigenous technology by local masons involves searching safe water through bore hole sediment color. The viability of this option in certain areas of Bangladesh will be discussed. Also, one of the household filtration systems approved by the government and locally known as SONO filter was recognized recently by the National Academy of Engineering -Grainger Challenge Prize for sustainability. Over 30, 000 of this unit were deployed in arsenic affected areas of Bangladesh. The affordability, ease of maintenance, social acceptability and environmental friendliness of all options will be addressed in the presentation.
Yu, Huan-Yun; Wang, Xiangqin; Li, Fangbai; Li, Bin; Liu, Chuanping; Wang, Qi; Lei, Jing
2017-05-01
Iron (Fe)-based solids can reduce arsenic (As) mobility and bioavailability in soils, which has been well recognized. However, to our knowledge, there are few studies on As uptake at different growth stages of rice under Fe compound amendments. In addition, the formation of Fe plaques at different growth stages of rice has also been rarely reported. Therefore, the present study was undertaken to investigate As mobility and bioavailability in paddy soil under Fe compound amendments throughout the whole growth stage of rice plants. Amendments of poorly crystalline Fe oxides (PC-Fe), FeCl 2 +NaNO 3 and FeCl 2 reduced grain As by 54% ± 3.0%, 52% ± 3.0% and 46% ± 17%, respectively, compared with that of the non-amended control. The filling stage was suggested to be the key stage to take measures to reduce As uptake. At this stage, all soil amendments significantly reduced As accumulation in rice plants. At the maturation stage, PC-Fe amendment significantly reduced mobile pools and increased immobile pools of soil As. Besides, PC-Fe treatment promoted the transformation of Fe fractions from dissolved Fe to adsorbed, poorly crystalline and free Fe oxides. Moreover, significant positive correlations between soil Fe fractions and As fractions were found. Accordingly, we hypothesized that Fe compound amendments might affect the concentration distribution of Fe fractions first and then affect As fractionation in soil and its bioavailability to rice plants indirectly. The formation of Fe plaques varied with growth stages and different treatments. Significantly negative correlations between mobile pools of As and Fe or As in Fe plaques indicated that Fe plaques could immobilize mobile As in soils and thus affect As bioavailability. Overall, the effect of the soil amendments on reduction of As uptake varied with growth stages and different treatments, and further research on the key stage for reducing As uptake is still required. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hassan, Zahid; Sultana, Munawar; van Breukelen, Boris M; Khan, Sirajul I; Röling, Wilfred F M
2015-04-01
Subsurface removal of arsenic by injection with oxygenated groundwater has been proposed as a viable technology for obtaining 'safe' drinking water in Bangladesh. While the oxidation of ferrous iron to solid ferric iron minerals, to which arsenic adsorbs, is assumed to be driven by abiotic reactions, metal-cycling microorganisms may potentially affect arsenic removal. A cultivation-independent survey covering 24 drinking water wells in several geographical regions in Bangladesh was conducted to obtain information on microbial community structure and diversity in general, and on specific functional groups capable of the oxidation or reduction of arsenic or iron. Each functional group, targeted by either group-specific 16S rRNA or functional gene amplification, occurred in at least 79% of investigated samples. Putative arsenate reducers and iron-oxidizing Gallionellaceae were present at low diversity, while more variation in potentially arsenite-oxidizing microorganisms and iron-reducing Desulfuromonadales was revealed within and between samples. Relations between community composition on the one hand and hydrochemistry on the other hand were in general not evident, apart from an impact of salinity on iron-cycling microorganisms. Our data suggest widespread potential for a positive contribution of arsenite and iron oxidizers to arsenic removal upon injection with oxygenated water, but also indicate a potential risk for arsenic re-mobilization by anaerobic arsenate and iron reducers once injection is halted. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The occurrence and dominant controls on arsenic in the Newark and Gettysburg Basins.
Blake, Johanna M; Peters, Stephen C
2015-02-01
Elevated arsenic (As) concentrations in groundwater and rocks have been found in crystalline and sedimentary aquifers from New England to Pennsylvania, USA. The arsenic geochemistry and water-rock interactions of the Northern Appalachian Mountains and the Newark Basin have been researched at length, however, little is known about arsenic in the Gettysburg Basin. Both the Newark and Gettysburg Basins were formed during the breakup of Pangea, sediment deposition occurred during the Triassic and lithologies are of similar depositional environment. We compile and review the work done in the Newark Basin and collect new samples in the Gettysburg Basin for comparison. The Gettysburg Basin has 18%-39% of rock samples with arsenic concentrations greater than the crustal average of 2 mg/kg, while the Newark Basin has 73% to 95% of rock samples above the crustal average. The strongest controls on arsenic in rocks of the Gettysburg Basin are the relationship between arsenic and iron and silicon concentrations while the strongest controls in the Newark Basin are the relationship between arsenic and iron and organic carbon concentrations. The groundwater arsenic concentrations follow similarly with 8-39% of water samples from the Gettysburg Basin above 10 μg/L and 24-54% of water samples from the Newark Basin above 10 μg/L. The strongest controls on arsenic in water of the Gettysburg Basin are pH, alkalinity and silicon, while the strongest controls in the Newark Basin are pH and alkalinity. Copyright © 2014 Elsevier B.V. All rights reserved.
Paul, Dhiraj; Kazy, Sufia K; Gupta, Ashok K; Pal, Taraknath; Sar, Pinaki
2015-01-01
Arsenic (As) mobilization in alluvial aquifers is caused by a complex interplay of hydro-geo-microbiological activities. Nevertheless, diversity and biogeochemical significance of indigenous bacteria in Bengal Delta Plain are not well documented. We have deciphered bacterial community compositions and metabolic properties in As contaminated groundwater of West Bengal to define their role in As mobilization. Groundwater samples showed characteristic high As, low organic carbon and reducing property. Culture-independent and -dependent analyses revealed presence of diverse, yet near consistent community composition mostly represented by genera Pseudomonas, Flavobacterium, Brevundimonas, Polaromonas, Rhodococcus, Methyloversatilis and Methylotenera. Along with As-resistance and -reductase activities, abilities to metabolize a wide range carbon substrates including long chain and polyaromatic hydrocarbons and HCO3, As3+ as electron donor and As5+/Fe3+ as terminal electron acceptor during anaerobic growth were frequently observed within the cultivable bacteria. Genes encoding cytosolic As5+ reductase (arsC) and As3+ efflux/transporter [arsB and acr3(2)] were found to be more abundant than the dissimilatory As5+ reductase gene arrA. The observed metabolic characteristics showed a good agreement with the same derived from phylogenetic lineages of constituent populations. Selected bacterial strains incubated anaerobically over 300 days using natural orange sand of Pleistocene aquifer showed release of soluble As mostly as As3+ along with several other elements (Al, Fe, Mn, K, etc.). Together with the production of oxalic acid within the biotic microcosms, change in sediment composition and mineralogy indicated dissolution of orange sand coupled with As/Fe reduction. Presence of arsC gene, As5+ reductase activity and oxalic acid production by the bacteria were found to be closely related to their ability to mobilize sediment bound As. Overall observations suggest that indigenous bacteria in oligotrophic groundwater possess adequate catabolic ability to mobilize As by a cascade of reactions, mostly linked to bacterial necessity for essential nutrients and detoxification.
Paul, Dhiraj; Kazy, Sufia K.; Gupta, Ashok K.; Pal, Taraknath; Sar, Pinaki
2015-01-01
Arsenic (As) mobilization in alluvial aquifers is caused by a complex interplay of hydro-geo-microbiological activities. Nevertheless, diversity and biogeochemical significance of indigenous bacteria in Bengal Delta Plain are not well documented. We have deciphered bacterial community compositions and metabolic properties in As contaminated groundwater of West Bengal to define their role in As mobilization. Groundwater samples showed characteristic high As, low organic carbon and reducing property. Culture-independent and -dependent analyses revealed presence of diverse, yet near consistent community composition mostly represented by genera Pseudomonas, Flavobacterium, Brevundimonas, Polaromonas, Rhodococcus, Methyloversatilis and Methylotenera. Along with As-resistance and -reductase activities, abilities to metabolize a wide range carbon substrates including long chain and polyaromatic hydrocarbons and HCO3, As3+ as electron donor and As5+/Fe3+ as terminal electron acceptor during anaerobic growth were frequently observed within the cultivable bacteria. Genes encoding cytosolic As5+ reductase (arsC) and As3+ efflux/transporter [arsB and acr3(2)] were found to be more abundant than the dissimilatory As5+ reductase gene arrA. The observed metabolic characteristics showed a good agreement with the same derived from phylogenetic lineages of constituent populations. Selected bacterial strains incubated anaerobically over 300 days using natural orange sand of Pleistocene aquifer showed release of soluble As mostly as As3+ along with several other elements (Al, Fe, Mn, K, etc.). Together with the production of oxalic acid within the biotic microcosms, change in sediment composition and mineralogy indicated dissolution of orange sand coupled with As/Fe reduction. Presence of arsC gene, As5+ reductase activity and oxalic acid production by the bacteria were found to be closely related to their ability to mobilize sediment bound As. Overall observations suggest that indigenous bacteria in oligotrophic groundwater possess adequate catabolic ability to mobilize As by a cascade of reactions, mostly linked to bacterial necessity for essential nutrients and detoxification. PMID:25799109
Keune, Katrien; Mass, Jennifer; Mehta, Apurva; ...
2016-04-21
Yellow orpiment (As 2S 3) and red–orange realgar (As 4S 4) photo-degrade and the nineteenth-century pigment emerald green (Cu(C 2H 3O 2) 2·3Cu(AsO 2) 2) degrades into arsenic oxides. Because of their solubility in water, arsenic oxides readily migrate and are found throughout the multi-layered paint system. The widespread arsenic migration has consequences for conservation, and this paper provides better insight into the extent of the problem. Five paint samples containing orpiment, realgar or emerald green pigments deriving from paintings by De Heem (17th C), Van Gogh (19th C), Rousseau (19th C), an unknown 17th C northern European artist andmore » an Austrian painted cupboard (19th C) were investigated using SEM/EDX, imaging ATR-FTIR and arsenic (As) K–edge μ-XANES to obtain the spatial distribution and chemical speciation of arsenic in the paint system. In all of the samples investigated arsenic had migrated throughout the multi-layered paint structure of the art object, from support to varnish. Furthermore, As 5+-species were found throughout the entire paint sample. We hypothesize that arsenic trioxide is first formed, dissolves in water, further oxidizes to arsenic pentaoxide, and then reacts with lead, calcium and other ions and is deposited in the paint system as insoluble arsenates. Since the degradation of arsenic pigments such as orpiment, realgar and emerald green occurs through a highly mobile intermediate stage, it not only affects the regions rich in arsenic pigments, but also the entire object, including substrate and top varnish layers. Furthermore, because of this widespread potential for damage, preventing degradation of arsenic pigments should be prioritized and conservators should minimize exposure of objects containing arsenic pigments to strong light, large fluctuations in relative humidity and water-based cleaning agents.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keune, Katrien; Mass, Jennifer; Mehta, Apurva
Yellow orpiment (As 2S 3) and red–orange realgar (As 4S 4) photo-degrade and the nineteenth-century pigment emerald green (Cu(C 2H 3O 2) 2·3Cu(AsO 2) 2) degrades into arsenic oxides. Because of their solubility in water, arsenic oxides readily migrate and are found throughout the multi-layered paint system. The widespread arsenic migration has consequences for conservation, and this paper provides better insight into the extent of the problem. Five paint samples containing orpiment, realgar or emerald green pigments deriving from paintings by De Heem (17th C), Van Gogh (19th C), Rousseau (19th C), an unknown 17th C northern European artist andmore » an Austrian painted cupboard (19th C) were investigated using SEM/EDX, imaging ATR-FTIR and arsenic (As) K–edge μ-XANES to obtain the spatial distribution and chemical speciation of arsenic in the paint system. In all of the samples investigated arsenic had migrated throughout the multi-layered paint structure of the art object, from support to varnish. Furthermore, As 5+-species were found throughout the entire paint sample. We hypothesize that arsenic trioxide is first formed, dissolves in water, further oxidizes to arsenic pentaoxide, and then reacts with lead, calcium and other ions and is deposited in the paint system as insoluble arsenates. Since the degradation of arsenic pigments such as orpiment, realgar and emerald green occurs through a highly mobile intermediate stage, it not only affects the regions rich in arsenic pigments, but also the entire object, including substrate and top varnish layers. Furthermore, because of this widespread potential for damage, preventing degradation of arsenic pigments should be prioritized and conservators should minimize exposure of objects containing arsenic pigments to strong light, large fluctuations in relative humidity and water-based cleaning agents.« less
Silva, Veronica; Loredo, Jorge; Fernández-Martínez, Rodolfo; Larios, Raquel; Ordóñez, Almudena; Gómez, Belén; Rucandio, Isabel
2014-10-01
Tailings from abandoned mercury mines represent an important pollution source by metals and metalloids. Mercury mining in Asturias (north-western Spain) has been carried out since Roman times until the 1970s. Specific and non-specific arsenic minerals are present in the paragenesis of the Hg ore deposit. As a result of intensive mining operations, waste materials contain high concentrations of As, which can be geochemically dispersed throughout surrounding areas. Arsenic accumulation, mobility and availability in soils and sediments are strongly affected by the association of As with solid phases and granular size composition. The objective of this study was to examine phase associations of As in the fine grain size subsamples of mine wastes (La Soterraña mine site) and stream sediments heavily affected by acid mine drainage (Los Rueldos mine site). An arsenic-selective sequential procedure, which categorizes As content into seven phase associations, was applied. In spite of a higher As accumulation in the finest particle-size subsamples, As fractionation did not seem to depend on grain size since similar distribution profiles were obtained for the studied granulometric fractions. The presence of As was relatively low in the most mobile forms in both sites. As was predominantly linked to short-range ordered Fe oxyhydroxides, coprecipitated with Fe and partially with Al oxyhydroxides and associated with structural material in mine waste samples. As incorporated into short-range ordered Fe oxyhydroxides was the predominant fraction at sediment samples, representing more than 80% of total As.
[The regulation mechanism of protein kinase Cδ on arsenic liver injury caused by coal-burning].
Hu, Yong; Zhang, Ai-hua; Yao, Mao-lin; Tang, Xu-dong; Huang, Xiao-xin
2013-09-01
To investigate the effects of mRNA transcriptional and protein expressions of protein kinase Cδ (PKCδ) on the development of arsenic liver injury caused by coal-burning. Population study:133 arsenic exposures were selected as arsenic exposure groups including the ward non-patient group (25 cases) , no obvious hepatopathy group (38 cases) , mild (43 cases) and moderate to severe hepatopathy group (27 cases) from the area with endemic arsenism in Guizhou province. Another 34 healthy residents were selected as the control group in non-arsenic pollution village. The urine and peripheral blood were collected from the subjects. The arsenic contents in urine and mRNA expressions of PKCδ in peripheral blood were detected. Animal experiment study:thirty wistar rats were randomly by random number table divided into control group, drinking water arsenic poisoning group and coal-burning arsenic poisoning group (i.e., low, medium and high arsenic contaminated grain group) by random number table method, including 6 rats in each group. The control group was fed normally for 3 months, drinking water arsenic poisoning group and coal-burning arsenic poisoning groups were fed respectively with 10 mg/kg As2O3 solution and different concentrations (25, 50 and 100 mg/kg) of arsenic-containing feed which was persisted 3 months. The arsenic contents in urine, mRNA expression levels of PKCδ in peripheral blood and liver tissue and the protein expression levels of phosphorylated protein kinase Cδ(pPKCδ) in liver tissue were detected. The median(quartile) of arsenic contents in urine were 25.58 (18.62-40.73), 56.66 (38.93-76.77), 64.90 (39.55- 98.37) and 75.47 (41.30-109.70) µg/g Cr respectively for the non-patient group, no obvious hepatopathy group, mild and moderate to severe hepatopathy group. The levels were higher than that in the control group (23.34 (17.84-37.45) µg/g Cr) (P < 0.05), except for the ward non-patient group. The arsenic contents in rat urine were 2223.61 (472.98-3976.73), 701.16 (194.01-1300.27), 1060.94 (246.33-2585.47) and 3101.11 (1919.97-5407.07) µg/g Cr, respectively for the drinking water arsenic poisoning group, the low, medium and high dosage arsenic grain contamination groups, all higher than that in the control group (94.32 (22.65-195.25) µg/g Cr) (P < 0.05) . The protein expressions of pPKCδ in liver tissue were 324.83 ± 25.06, 278.50 ± 30.57, 308.83 ± 34.67 and 326.33 ± 35.09, which were significantly higher than that in the control group (240.17 ± 28.07) (P < 0.05) . The protein expression levels of pPKCδ in liver cell membrane were 0.49 ± 0.06,0.33 ± 0.05,0.37 ± 0.06 and 0.50 ± 0.08, which were significantly higher than that in the control group (0.28 ± 0.04) (P < 0.05) . The protein expression levels of pPKCδ in liver cell cytoplasm were 0.38 ± 0.06,0.31 ± 0.05, 0.35 ± 0.05 and 0.36 ± 0.05, which were significantly higher than that in the control group (0.24 ± 0.05) (P < 0.05). The arsenic may regulate protein expressions of pPKCδ and induce its membrane translocation, and cause the development of arsenic liver injury caused by coal-burning.
Rana, Tanmoy; Bera, Asit Kumar; Mondal, Dipak Kumar; Das, Subhashree; Bhattacharya, Debasis; Samanta, Srikanta; Pan, Diganta; Das, Subrata Kumar
2014-07-01
Arsenicosis caused due to drinking of arsenic contaminated ground water is a major environmental health hazard throughout the world. We evaluated the ecotoxicological effect of arsenic on chicken and duck in an arsenic endemic zone. The concentration of arsenic was higher in chicken and duck feed and their by-products than that in the respective samples of control area. Arsenic concentration in the eggs of both chicken and duck was higher than that in the respective samples of control area. Thus, we concluded that arsenic enters into food chain through the intake of contaminated eggs. Furthermore, adverse health effect of arsenic on avian population is due to the alteration in haematobiochemical indices. © The Author(s) 2012.
Thomas, Mary Ann
2003-01-01
Ground-water-quality data collected as part of 12 U.S. Geological Survey National Water-Quality Assessment studies during 1996-2001 were analyzed to (1) document arsenic occurrence in four types of gla-cial deposits that occur in large areas of the Midwest, (2) identify hydrogeologic or geochemical factors asso-ciated with elevated arsenic concentrations, and (3) search for clues as to arsenic source(s) or mechanism(s) of mobilization that could be useful for designing future studies. Arsenic and other water-quality constituents were sampled in 342 monitor and domestic wells in parts of Illinois Indiana Ohio Michigan and Wisconsin. Arsenic was detected (at a concentration >1 ?g/L) in one-third of the samples. The maximum concentration was 84 ?g/L, and the median was less than 1 ?g/L. Eight percent of samples had arsenic concentrations that exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level (MCL) of 10?g/L. Samples were from four aquifer types?confined valley fill, unconfined valley fill, outwash plain, and till with sand lenses. Highest arsenic concentrations were found in reducing waters from valley-fill depos-its. In confined valley fill, all waters were reducing and old (recharged before 1953), and almost half of sam-ples had arsenic concentrations greater than the MCL. In unconfined valley fill, redox conditions and ages were varied, and elevated arsenic concentrations were sporadic. In both types of valley fill, elevated arsenic concentrations are linked to the underlying bedrock on the basis of spatial relations and geochemical correla-tions. In shallow (150 ft), all deep wells were from a distinctive aquifer type (confined valley fill). It is not known whether wells at similar depths in other aquifer types would produce waters with simi-larly high arsenic concentrations. Correlations of arsenic with fluoride, strontium, and barium suggest that arsenic might be related to epi-genetic (Mississippi Valley-type) sulfide deposits in Paleozoic bedrock. Arsenic is typically released from sulfides by oxidation, but in the current study, the highest arsenic concentrations in glacial deposits were detected in reducing waters. Therefore, a link between epigenetic sulfides and elevated arsenic concentrations in glacial deposits would probably require a multi-step process.
Metal fractionation in marine sediments acidified by enrichment of CO2: A risk assessment.
de Orte, Manoela Romanó; Bonnail, Estefanía; Sarmiento, Aguasanta M; Bautista-Chamizo, Esther; Basallote, M Dolores; Riba, Inmaculada; DelValls, Ángel; Nieto, José Miguel
2018-06-01
Carbon-capture and storage is considered to be a potential mitigation option for climate change. However, accidental leaks of CO 2 can occur, resulting in changes in ocean chemistry such as acidification and metal mobilization. Laboratory experiments were performed to provide data on the effects of CO 2 -related acidification on the chemical fractionation of metal(loid)s in marine-contaminated sediments using sequential extraction procedures. The results showed that sediments from Huelva estuary registered concentrations of arsenic, copper, lead, and zinc that surpass the probable biological effect level established by international protocols. Zinc had the greatest proportion in the most mobile fraction of the sediment. Metals in this fraction represent an environmental risk because they are weakly bound to sediment, and therefore more likely to migrate to the water column. Indeed, the concentration of this metal was lower in the most acidified scenarios when compared to control pH, indicating probable zinc mobilization from the sediment to the seawater. Copyright © 2018 Elsevier Ltd. All rights reserved.
Microbial heterotrophy coupled to Fe-S-As cycling in a shallow-sea hydrothermal system
NASA Astrophysics Data System (ADS)
Lu, G.; Amend, J.
2013-12-01
To date, there are only a few known heterotrophic arsenite oxidizers and arsenate reducers. They utilize organic compounds as their carbon source and/or as important electron donors in the transfer arsenic in high temperature environments. Arsenic in hydrothermal vent systems can be immobilized at low temperatures through (ad)sorption on iron oxide and other iron-bearing minerals. Interactions with sulfur species can also affect the redox state of arsenic species. A better understanding of microbially-catalyzed reactions involving carbon, arsenic, iron and sulfur would provide constraints on the mobility of arsenic in a wide variety of natural and engineered systems. The aim of this study is to establish links between microbial distribution and in situ Fe-S-As cycling processes in a shallow-sea hydrothermal vent system. We investigated three shallow-sea hydrothermal vents, Champagne Hot Spring (CHS), Soufriere Spring (SOU) and Portsmouth Spring (PM), located off the western coast of Dominica, Lesser Antilles. CHS and SOU are characterized by moderate temperatures (46oC and 55oC, respectively), and PM is substantially hotter (~90-111 oC). Two sediment cores (one close to and one far from the thermal source) were collected from CHS and from SOU. Porewaters in both background cores had low concentrations of arsenic (mostly As3+, to a lesser extent As5+, DMA, MMA) and ferrous iron. The arsenic concentrations (predominantly As3+) in the CHS high temperature core were 30-90 nM, tracking with dissolved iron. Similar to CHS, the arsenic concentration in the SOU high temperature core was dominated by As3+ and controlled by ferrous iron. However, the arsenic concentration at SOU is comparatively higher, up to 1.9 mM. At the hotter and deeper PM site, highly elevated arsenic levels (1-2.5 mM) were measured, values that are among the highest arsenic concentrations ever reported in a marine hydrothermal system. Several autotrophic and heterotrophic media at two pHs (5.5 and 8.0) were designed to target microbial reductive and oxidative metabolisms of arsenic, iron and sulfur. Incubations were carried out at four temperatures (30, 50, 70, 90 oC), covering the mesophilic to hyperthermophilic range. Sediment and biofilm samples from all three sites were used as inocula in enrichments targeting heterotrophic arsenite oxidation and arsenate reduction. From these enrichments, multiple pure strains were isolated at 30, 50 and 70 oC. From the 50oC enrichments on oxic, heterotrophic media inoculated with both SOU sediment and biofilm, we isolated aerobic thermophilic sulfate reducers producing high concentration of sulfide. The produced sulfide transforms ferrihydrite to an amorphous arsenic-metal-sulfide mineral. The current culturing results not only expand the diversity of arsenic oxidizing, arsenate reducing, and aerobic sulfate reducing organisms, but also show that the microbes influence in situ Fe-S-As transformation. More molecular and physiological tests are underway to better characterize the microbe-mineral interactions in laboratory enrichments and natural environments to determine the biological effects on the cycling of As-Fe-S in shallow-sea hydrothermal systems.
Understanding Arsenic Dynamics in Agronomic Systems to Predict and Prevent Uptake by Crop Plants
This review is on arsenic in agronomic systems, and covers processes that influence the entry of arsenic into the human food supply. The scope is from sources of arsenic (natural and anthropogenic) in soils, biogeochemical and rhizosphere processes that control arsenic speciatio...
The mouse arsenic (+3 oxidation state) methyltransferase (As3mt) gene encodes a ~ 43 kDa protein that catalyzes conversion of inorganic arsenic into methylated products. Heterologous expression of AS3MT or its silencing by RNA interference controls arsenic methylation phenotypes...
Jones, Gregg W; Pichler, Thomas
2007-02-01
Elevated arsenic concentrations are common in water recovered from aquifer storage and recovery (ASR) systems in west-central Florida that store surface water. Investigations of the Suwannee Limestone of the Upper Floridan aquifer, the storage zone for ASR systems, have shown that arsenic is highest in pyrite in zones of high moldic porosity. Geochemical modeling was employed to examine pyrite stability in limestone during simulated injections of surface water into wells open only to the Suwannee Limestone with known mineralogy and water chemistry. The goal was to determine if aquifer redox conditions could be altered to the degree of pyrite instability. Increasing amounts of injection water were added to native storage-zone water, and resulting reaction paths were plotted on pyrite stability diagrams. Native storage-zone water plotted within the pyrite stability field, indicating that conditions were sufficiently reducing to allow for pyrite stability. Thus, arsenic is immobilized in pyrite, and its groundwater concentration should be low. This was corroborated by analysis of water samples, none of which had arsenic concentrations above 0.036 microg/L. During simulation, however, as injection/native storage-zone water ratios increased, conditions became less reducing and pyrite became unstable. The result would be release of arsenic from limestone into storage-zone water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu,S.; Jing, C.; Meng, X.
2008-01-01
The mechanism of arsenic re-mobilization in spent adsorbents under reducing conditions was studied using X-ray absorption spectroscopy and surface complexation model calculations. X-ray absorption near edge structure (XANES) spectroscopy demonstrated that As(V) was partially reduced to As(III) in spent granular ferric hydroxide (GFH), titanium dioxide (TiO2), activated alumina (AA) and modified activated alumina (MAA) adsorbents after 2 years of anaerobic incubation. As(V) was completely reduced to As(III) in spent granular ferric oxide (GFO) under 2-year incubation. The extended X-ray absorption fine structure (EXAFS) spectroscopy analysis showed that As(III) formed bidentate binuclear surface complexes on GFO as evidenced by an averagemore » As(III)-O bond distance of 1.78 Angstroms and As(III)-Fe distance of 3.34 Angstroms . The release of As from the spent GFO and TiO2 was simulated using the charge distribution multi-site complexation (CD-MUSIC) model. The observed redox ranges for As release and sulfate mobility were described by model calculations.« less
Speciation And Uptake of Arsenic Accumulated By Corn Seedlings Using XAS And DRC-ICP-MS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, J.G.; Martinez-Martinez, A.; Peralta-Videa, J.R.
ICP-MS was used to investigate the uptake of As(III) and As(V) from hydroponics growth media by corn seedlings. It was found that arsenic uptake by the plant roots for the arsenic(V) and arsenic(III) treatments were 95 and 112 ppm, respectively. However, in the shoots of the arsenic (V) treatments had 18 ppm whereas arsenic(III) treatments had 12 ppm. XANES studies showed that As for both treatments arsenic was present as a mixture of an As(III) sulfur complex and an As(V) oxygen complex. The XANES data was corroborated by the EXAFS studies showing the presence of both oxygen and sulfur ligandsmore » coordinated to the arsenic. Iron concentrations were found to increase by 4 fold in the As(V) contaminated growth media and 7 fold in the As(III) treatment compared to the control iron concentration of 500 ppm. Whereas, the total iron concentration in the shoots was found to decrease by approximately the same amount for both treatments from 360 ppm in the control to approximately 125 ppm in both arsenic treatments. Phosphorus concentrations were found to decrease in both the roots and shoots compared to the control plants. The total sulfur in the roots was found to increase in the arsenic(III) and arsenic(V) treatments to 560 ppm and 800 ppm, respectively, compared to the control plants 358 ppm. In addition, the total sulfur in shoots of the plants was found to remain relatively constant at approximately 1080 ppm. The potassium concentrations in the plants were found to increase in the roots and decrease in the shoots.« less
PCM Thermal Control of Nickel-Hydrogen Batteries
1993-06-01
Iridium , Global Star, etc - The new satellite mobile telephone systems under development call for constellations of LEO satellites. A thermal problem unique...C6H4CI2 -16.7 88 2 4,6-dimethylindan C11H14 -16.7 88 3 2,2-dimethylpropane C5H12 -16.6 45 4 arsenic trichloride AsCl3 -16 56 5 quinoline C9H7N -15.6 84 6...discharge are: 0 SPACE-BASED RADAR - SBR is expected to have a surge power lasting about 9 minutes. 0 IRIDIUM - The high traffic associated with
Tang, Lin; Feng, Haopeng; Tang, Jing; Zeng, Guangming; Deng, Yaocheng; Wang, Jiajia; Liu, Yani; Zhou, Yaoyu
2017-06-15
High concentration of arsenic in acid wastewater and polluted river sediment caused by metallurgical industry has presented a great environmental challenge for decades. Nanoscale zero valent iron (nZVI) can detoxify arsenic-bearing wastewater and groundwater, but the low adsorption capacity and rapid passivation restrict its large-scale application. This study proposed a highly efficient arsenic treatment nanotechnology, using the core-shell Fe@Fe 2 O 3 nanobunches (NBZI) for removal of arsenic in acid wastewater with cyclic stability and transformation of arsenic speciation in sediment. The adsorption capacity of As(III) by NBZI was 60 times as high as that of nanoscale zero valent iron (nZVI) at neutral pH. Characterization of the prepared materials after reaction revealed that the contents of As(III) and As(V) were 65% and 35% under aerobic conditions, respectively, which is the evidence of oxidation included in the reaction process apart from adsorption and co-precipitation. The presence of oxygen was proved to improve the adsorption ability of the prepared NBZI towards As(III) with the removal efficiency increasing from 68% to 92%. In order to further enhance the performance of NBZI-2 in the absence of oxygen, a new Fenton-Like system of NBZI/H 2 O 2 to remove arsenic under the anoxic condition was also proposed. Furthermore, the removal efficiency of arsenic in acid wastewater remained to be 78% after 9 times of cycling. Meanwhile, most of the mobile fraction of arsenic in river sediment was transformed into residues after NBZI treatment for 20 days. The reaction mechanism between NBZI and arsenic was discussed in detail at last, indicating great potential of NBZI for the treatment of arsenic in wastewater and sediment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Huang, Ze-Chun; Chen, Tong-Bin; Lei, Mei; Liu, Ying-Ru; Hu, Tian-Dou
2008-07-15
The arsenic (As) hyperaccumulators, Pteris vittata and Pteris cretica and an As-tolerant plant Boehmeria nivea, were selected to compare the toxicity, uptake, and transportation of inorganic arsenate (As(V)) and its methylated counterpart dimethylarsinic acid (DMA). The XANES method was used to elucidate the effect of As species transformation on As toxicity and accumulation characteristics. Significantly higher toxicity and lower accumulation of DMAthan inorganic As(V) was shown in the As hyperaccumulators and the As-tolerant plant. Reduction of As(V) was commonly found in the plants. Arsenic complexation with thiols, which have less mobility in plants and usually occur in As-tolerant plants, was also found in rhizoids of P. cretica. Plants with greater ability to form As-thiolate have lower ability for upward transport of As. Demethylation of DMA occurred in the three plants. The DMA component decreased from the rhizoids to the fronds in both hyperaccumulators, while this tendency is reverse in B. nivea.
NASA Astrophysics Data System (ADS)
Harte, Philip T.; Ayotte, Joseph D.; Hoffman, Andrew; Révész, Kinga M.; Belaval, Marcel; Lamb, Steven; Böhlke, J. K.
2012-09-01
Anthropogenic sources of carbon from landfill or waste leachate can promote reductive dissolution of in situ arsenic (As) and enhance the mobility of As in groundwater. Groundwater from residential-supply wells in a fractured crystalline-rock aquifer adjacent to a Superfund site in Raymond, New Hampshire, USA, showed evidence of locally enhanced As mobilization in relatively reducing (mixed oxic-anoxic to anoxic) conditions as determined by redox classification and other lines of evidence. Redox classification was determined from geochemical indicators based on threshold concentrations of dissolved oxygen (DO), nitrate (NO{3/-}), iron (Fe2+), manganese (Mn2+), and sulfate (SO{4/2-}). Redox conditions were evaluated also based on methane (CH4), excess nitrogen gas (N2) from denitrification, the oxidation state of dissolved As speciation (As(III) and As(V)), and several stable isotope ratios. Samples from the residential-supply wells primarily exhibit mixed redox conditions, as most have long open boreholes (typically 50-100 m) that receive water from multiple discrete fractures with contrasting groundwater chemistry and redox conditions. The methods employed in this study can be used at other sites to gauge redox conditions and the potential for As mobilization in complex fractured crystalline-rock aquifers where multiple lines of evidence are likely needed to understand As occurrence, mobility, and transport.
Harte, Philip T.; Ayotte, Joseph D.; Hoffman, Andrew; Revesz, Kinga M.; Belaval, Marcel; Lamb, Steven; Böhlke, J.K.
2012-01-01
Anthropogenic sources of carbon from landfill or waste leachate can promote reductive dissolution of in situ arsenic (As) and enhance the mobility of As in groundwater. Groundwater from residential-supply wells in a fractured crystalline-rock aquifer adjacent to a Superfund site in Raymond, New Hampshire, USA, showed evidence of locally enhanced As mobilization in relatively reducing (mixed oxic-anoxic to anoxic) conditions as determined by redox classification and other lines of evidence. Redox classification was determined from geochemical indicators based on threshold concentrations of dissolved oxygen (DO), nitrate (NO3-), iron (Fe2+), manganese (Mn2+), and sulfate (SO42-). Redox conditions were evaluated also based on methane (CH4), excess nitrogen gas (N2) from denitrification, the oxidation state of dissolved As speciation (As(III) and As(V)), and several stable isotope ratios. Samples from the residential-supply wells primarily exhibit mixed redox conditions, as most have long open boreholes (typically 50–100 m) that receive water from multiple discrete fractures with contrasting groundwater chemistry and redox conditions. The methods employed in this study can be used at other sites to gauge redox conditions and the potential for As mobilization in complex fractured crystalline-rock aquifers where multiple lines of evidence are likely needed to understand As occurrence, mobility, and transport.
Fedotov, Petr S; Ermolin, Mikhail S; Ivaneev, Alexandr I; Fedyunina, Natalia N; Karandashev, Vasily K; Tatsy, Yury G
2016-03-01
Continuous-flow (dynamic) leaching in a rotating coiled column has been applied to studies on the mobility of Zn, Cd, Cu, Pb, Ni, Sb, As, S, and other potentially toxic elements in atmospherically deposited dust samples collected near a large copper smelter (Chelyabinsk region, Russia). Water and simulated "acid rain" (pH 4) were used as eluents. The technique enables not only the fast and efficient leaching of elements but as well time-resolved studies on the mobilization of heavy metals, sulphur, and arsenic in environmentally relevant forms to be made. It is shown that up to 1.5, 4.1, 1.9, 11.1, and 46.1% of Pb, As, Cu, Zn, and S, correspondingly, can be easily mobilized by water. Taking into consideration that the total concentrations of these elements in the samples under investigation are surprisingly high and vary in the range from 2.7 g/kg (for arsenic) to 15.5 g/kg (for sulphur), the environmental impact of the dust may be dramatic. The simulated acid rain results in somewhat higher recoveries of elements, except Cu and Pb. The proposed approach and the data obtained can very useful for the risk assessment related to the mobility of potentially toxic elements and their inclusion in the biogeochemical cycle. Copyright © 2015 Elsevier Ltd. All rights reserved.
Li, Zhigang; Perry, Ann E.; Spencer, Steven K.; Gandolfi, A. Jay; Karagas, Margaret R.
2013-01-01
Background: Chronic high arsenic exposure is associated with squamous cell carcinoma (SCC) of the skin, and inorganic arsenic (iAs) metabolites may play an important role in this association. However, little is known about the carcinogenicity of arsenic at levels commonly observed in the United States. Objective: We estimated associations between total urinary arsenic and arsenic species and SCC in a U.S. population. Methods: We conducted a population-based case–control SCC study (470 cases, 447 controls) in a U.S. region with moderate arsenic exposure through private well water and diet. We measured urinary iAs, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA), and summed these arsenic species (ΣAs). Because seafood contains arsenolipids and arsenosugars that metabolize into DMA through alternate pathways, participants who reported seafood consumption within 2 days before urine collection were excluded from the analyses. Results: In adjusted logistic regression analyses (323 cases, 319 controls), the SCC odds ratio (OR) was 1.37 for each ln-transformed microgram per liter increase in ln-transformed ΣAs concentration [ln(ΣAs)] (95% CI: 1.04, 1.80). Urinary ln(MMA) and ln(DMA) also were positively associated with SCC (OR = 1.34; 95% CI: 1.04, 1.71 and OR = 1.34; 95% CI: 1.03, 1.74, respectively). A similar trend was observed for ln(iAs) (OR = 1.20; 95% CI: 0.97, 1.49). Percent iAs, MMA, and DMA were not associated with SCC. Conclusions: These results suggest that arsenic exposure at levels common in the United States relates to SCC and that arsenic metabolism ability does not modify the association. Citation: Gilbert-Diamond D, Li Z, Perry AE, Spencer SK, Gandolfi AJ, Karagas MR. 2013. A population-based case–control study of urinary arsenic species and squamous cell carcinoma in New Hampshire, USA. Environ Health Perspect 121:1154–1160; http://dx.doi.org/10.1289/ehp.1206178 PMID:23872349
Vascular Hyperpermeability Response in Animals Systemically Exposed to Arsenic.
Chen, Shih-Chieh; Chang, Chao-Yuah; Lin, Ming-Lu
2018-01-01
The mechanisms underlying cardiovascular diseases induced by chronic exposure to arsenic remain unclarified. The objectives of this study were to investigate whether increased vascular leakage is induced by inflammatory mustard oil in mice systemically exposed to various doses of arsenic and whether an increased vascular leakage response is still present in arsenic-fed mice after arsenic discontinuation for 2 or 6 months. ICR mice were fed water or various doses of sodium arsenite (10, 15, or 20 mg/kg/day; 5 days/week) for 8 weeks. In separate experiments, the mice were treated with sodium arsenite (20 mg/kg) for 2 or 8 weeks, followed by arsenic discontinuation for 2 or 6 months. Vascular permeability to inflammatory mustard oil was quantified using Evans blue (EB) techniques. Both arsenic-exposed and water-fed (control) mice displayed similar basal levels of EB leakage in the ears brushed with mineral oil, a vehicle of mustard oil. The levels of EB leakage induced by mustard oil in the arsenic groups fed with sodium arsenite (10 or 15 mg/kg) were similar to those of water-fed mice. However, increased levels of EB leakage in response to mustard oil stimulation were significantly higher in mice treated with sodium arsenite (20 mg/kg; high dose) than in arsenic-fed (10 or 15 mg/kg; low and middle doses) or control mice. After arsenic discontinuation for 2 or 6 months, mustard oil-induced vascular EB leakage in arsenic-fed (20 mg/kg) mice was similar to that in control mice. Dramatic increases in mustard oil-induced vascular leakage were only present in mice systemically exposed to the high arsenic dose, indicating the synergistic effects of the high arsenic dose and mustard oil.
Arsenic Exposure, Diabetes Prevalence, and Diabetes Control in the Strong Heart Study
Gribble, Matthew O.; Howard, Barbara V.; Umans, Jason G.; Shara, Nawar M.; Francesconi, Kevin A.; Goessler, Walter; Crainiceanu, Ciprian M.; Silbergeld, Ellen K.; Guallar, Eliseo; Navas-Acien, Ana
2012-01-01
This study evaluated the association of arsenic exposure, as measured in urine, with diabetes prevalence, glycated hemoglobin, and insulin resistance in American Indian adults from Arizona, Oklahoma, and North and South Dakota (1989–1991). We studied 3,925 men and women 45–74 years of age with available urine arsenic measures. Diabetes was defined as a fasting glucose level of 126 mg/dL or higher, a 2-hour glucose level of 200 mg/dL or higher, a hemoglobin A1c (HbA1c) of 6.5% or higher, or diabetes treatment. Median urine arsenic concentration was 14.1 µg/L (interquartile range, 7.9–24.2). Diabetes prevalence was 49.4%. After adjustment for sociodemographic factors, diabetes risk factors, and urine creatinine, the prevalence ratio of diabetes comparing the 75th versus 25th percentiles of total arsenic concentrations was 1.14 (95% confidence interval: 1.08, 1.21). The association between arsenic and diabetes was restricted to participants with poor diabetes control (HbA1c ≥8%). Arsenic was positively associated with HbA1c levels in participants with diabetes. Arsenic was not associated with HbA1c or with insulin resistance (assessed by homeostatic model assessment to quantify insulin resistance) in participants without diabetes. Urine arsenic was associated with diabetes control in a population from rural communities in the United States with a high burden of diabetes. Prospective studies that evaluate the direction of the relation between poor diabetes control and arsenic exposure are needed. PMID:23097256
Slotnick, Melissa J.; AvRuskin, Gillian A.; Schottenfeld, David; Jacquez, Geoffrey M.; Wilson, Mark L.; Goovaerts, Pierre; Franzblau, Alfred; Nriagu, Jerome O.
2014-01-01
Objective Arsenic in drinking water has been linked with the risk of urinary bladder cancer, but the dose–response relationships for arsenic exposures below 100 µg/L remain equivocal. We conducted a population-based case–control study in southeastern Michigan, USA, where approximately 230,000 people were exposed to arsenic concentrations between 10 and 100 µg/L. Methods This study included 411 bladder cancer cases diagnosed between 2000 and 2004, and 566 controls recruited during the same period. Individual lifetime exposure profiles were reconstructed, and residential water source histories, water consumption practices, and water arsenic measurements or modeled estimates were determined at all residences. Arsenic exposure was estimated for 99% of participants’ person-years. Results Overall, an increase in bladder cancer risk was not found for time-weighted average lifetime arsenic exposure >10 µg/L when compared with a reference group exposed to <1 µg/L (odds ratio (OR) = 1.10; 95% confidence interval (CI): 0.65, 1.86). Among ever-smokers, risks from arsenic exposure >10 µg/L were similarly not elevated when compared to the reference group (OR = 0.94; 95% CI: 0.50, 1.78). Conclusions We did not find persuasive evidence of an association between low-level arsenic exposure and bladder cancer. Selecting the appropriate exposure metric needs to be thoughtfully considered when investigating risk from low-level arsenic exposure. PMID:20084543
[Analysis of Arsenic Compounds in Blood and Urine by HPLC-ICP-MS].
Lin, L; Zhang, S J; Xu, W C; Luo, R X; Ma, D; Shen, M
2018-02-01
To establish an analysis method for the detection of 6 arsenic compounds [AsC, AsB, As(Ⅲ), DMA, MMA and As(V)] in blood and urine by high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS), and apply it to real cases. Triton was used to damage cells, and then EDTA·2Na·2H2O was used to complex arsenic compounds in cells, and sonication and protein deposition by acetonitrile were performed for sample pretreatment. With the mobile phase consisted of ammonium carbonate and ultrapure water, gradient elution was performed for obtaining the arsenic compounds in samples, which were analysed by ICP-MS with Hamilton PRP-X100 column. The limits of detection in blood were 1.66-10 ng/mL, while the lower limits of quantitation in blood ranged from 5 to 30 ng/mL. The limits of detection in urine were 0.5-10 ng/mL, while the lower limits of quantitation in urine were 5-30 ng/mL. The relative standard deviation of inter-day and intra-day precisions was less than 10%. This method had been successfully applied to 3 cases. This study has established an analysis method for detecting 6 common arsenic compounds in blood and urine, which can be used to detect the arsenic compounds in the blood and urine from arsenic poisoning cases as well as the patients under arsenic treatment. Copyright© by the Editorial Department of Journal of Forensic Medicine.
Toenails as a biomarker of inorganic arsenic intake from drinking water and foods.
Slotnick, Melissa J; Meliker, Jaymie R; AvRuskin, Gillian A; Ghosh, Debashis; Nriagu, Jerome O
2007-01-15
Toenails were used recently in epidemiological and environmental health studies as a means of assessing exposure to arsenic from drinking water. While positive correlations between toenail and drinking-water arsenic concentrations were reported in the literature, a significant percentage of the variation in toenail arsenic concentration remains unexplained by drinking-water concentration alone. Here, the influence of water consumption at home and work, food intake, and drinking-water concentration on toenail arsenic concentration was investigated using data from a case-control study being conducted in 11 counties of Michigan. The results from 440 controls are presented. Log-transformed drinking-water arsenic concentration at home was a significant predictor (p < .05) of toenail arsenic concentration (R2 = .32). When arsenic intake from consumption of tap water and beverages made from tap water (microg/L arsenic x L/d = microg/d) was used as a predictor variable, the correlation was markedly increased for individuals with >1 microg/L arsenic (R2 = .48). Increased intake of seafood and intake of arsenic from water at work were independently and significantly associated with increased toenail arsenic concentration. However, when added to intake at home, work drinking-water exposure and food intake had little influence on the overall correlation. These results suggest that arsenic exposure from drinking-water consumption is an important determinant of toenail arsenic concentration, and therefore should be considered when validating and applying toenails as a biomarker of arsenic exposure.
Barringer, Julia L.; Reilly, Pamela A.; Bradley, Paul M.
2013-01-01
Arsenic (As) is a metalloid element (atomic number 33) with one naturally occurring isotope of atomic mass 75, and four oxidation states (-3, 0, +3, and +5) (Smedley and Kinniburgh, 2002). In the aqueous environment, the +3 and +5 oxidation states are most prevalent, as the oxyanions arsenite (H3AsO3 or H2AsO3- at pH ~9-11) and arsenate (H2AsO4- and HAsO42- at pH ~4-10) (Smedley and Kinniburgh, 2002). In soils, arsine gases (containing As3-) may be generated by fungi and other organisms (Woolson, 1977). The different forms of As have different toxicities, with arsine gas being the most toxic form. Of the inorganic oxyanions, arsenite is considered more toxic than arsenate, and the organic (methylated) arsenic forms are considered least toxic (for a detailed discussion of toxicity issues, the reader is referred to Mandal and Suzuki (2002)). Arsenic is a global health concern due to its toxicity and the fact that it occurs at unhealthful levels in water supplies, particularly groundwater, in more than 70 countries (Ravenscroft et al., 2009) on six continents.
Erban, Laura E; Gorelick, Steven M; Zebker, Howard A; Fendorf, Scott
2013-08-20
Deep aquifers in South and Southeast Asia are increasingly exploited as presumed sources of pathogen- and arsenic-free water, although little is known of the processes that may compromise their long-term viability. We analyze a large area (>1,000 km(2)) of the Mekong Delta, Vietnam, in which arsenic is found pervasively in deep, Pliocene-Miocene-age aquifers, where nearly 900 wells at depths of 200-500 m are contaminated. There, intensive groundwater extraction is causing land subsidence of up to 3 cm/y as measured using satellite-based radar images from 2007 to 2010 and consistent with transient 3D aquifer simulations showing similar subsidence rates and total subsidence of up to 27 cm since 1988. We propose a previously unrecognized mechanism in which deep groundwater extraction is causing interbedded clays to compact and expel water containing dissolved arsenic or arsenic-mobilizing solutes (e.g., dissolved organic carbon and competing ions) to deep aquifers over decades. The implication for the broader Mekong Delta region, and potentially others like it across Asia, is that deep, untreated groundwater will not necessarily remain a safe source of drinking water.
Erban, Laura E.; Gorelick, Steven M.; Zebker, Howard A.; Fendorf, Scott
2013-01-01
Deep aquifers in South and Southeast Asia are increasingly exploited as presumed sources of pathogen- and arsenic-free water, although little is known of the processes that may compromise their long-term viability. We analyze a large area (>1,000 km2) of the Mekong Delta, Vietnam, in which arsenic is found pervasively in deep, Pliocene–Miocene-age aquifers, where nearly 900 wells at depths of 200–500 m are contaminated. There, intensive groundwater extraction is causing land subsidence of up to 3 cm/y as measured using satellite-based radar images from 2007 to 2010 and consistent with transient 3D aquifer simulations showing similar subsidence rates and total subsidence of up to 27 cm since 1988. We propose a previously unrecognized mechanism in which deep groundwater extraction is causing interbedded clays to compact and expel water containing dissolved arsenic or arsenic-mobilizing solutes (e.g., dissolved organic carbon and competing ions) to deep aquifers over decades. The implication for the broader Mekong Delta region, and potentially others like it across Asia, is that deep, untreated groundwater will not necessarily remain a safe source of drinking water. PMID:23918360
Sun, Jing; Bostick, Benjamin C.; Mailloux, Brian J.; Ross, James M.; Chillrud, Steven N.
2016-01-01
Oxalic acid enhances arsenic (As) mobilization by dissolving As host minerals and competing for sorption sites. Oxalic acid amendments thus could potentially improve the efficiency of widely used pump-and-treat (P&T) remediation. This study investigates the effectiveness of oxalic acid on As mobilization from contaminated sediments with different As input sources and redox conditions, and examines whether residual sediment As after oxalic acid treatment can still be reductively mobilized. Batch extraction, column, and microcosm experiments were performed in the laboratory using sediments from the Dover Municipal Landfill and the Vineland Chemical Company Superfund sites. Oxalic acid mobilized As from both Dover and Vineland sediments, although the efficiency rates were different. The residual As in both Dover and Vineland sediments after oxalic acid treatment was less vulnerable to microbial reduction than before the treatment. Oxalic acid could thus improve the efficiency of P&T. X-ray absorption spectroscopy analysis indicated that the Vineland sediment samples still contained reactive Fe(III) minerals after oxalic acid treatment, and thus released more As into solution under reducing conditions than the Dover samples. Therefore, the efficacy of P&T must consider sediment Fe mineralogy when evaluating its overall potential for remediating groundwater As. PMID:26970042
Robinson, G.R.; Larkin, S.P.; Boughton, C.J.; Reed, B.W.; Sibrell, P.L.
2007-01-01
Lead arsenate pesticides were widely used in apple orchards from 1925 to 1955. Soils from historic orchards in four counties in Virginia and West Virginia contained elevated concentrations of As and Pb, consistent with an arsenical pesticide source. Arsenic concentrations in approximately 50% of the orchard site soils and approximately 1% of reference site soils exceed the USEPA Preliminary Remediation Goal (PRG) screening guideline of 22 mg kg-1 for As in residential soi, defined on the basis of combined chronic exposure risk. Approximately 5% of orchard site soils exceed the USEPA PRG for Pb of 400 mg kg-1 in residential soil; no reference site soils sampled exceed this value. A variety of statistical methods were used to characterize the occurrence, distribution, and dispersion of arsenical pesticide residues in soils, stream sediments, and ground waters relative to landscape features and likely background conditions. Concentrations of Zn, Pb, and Cu were most strongly associated with high developed land density and population density, whereas elevated concentrations of As were weakly correlated with high orchard density, consistent with a pesticide residue source. Arsenic concentrations in ground water wells in the region are generally <0.005 mg L-1. There was no spatial association between As concentrations in ground water and proximity to orchards. Arsenic had limited mobility into ground water from surface soils contaminated with arsenical pesticide residues at concentrations typically found in orchards. ?? ASA, CSSA, SSSA.
Quantifying Inorganic Arsenic and Other Water-Soluble Arsenic Species in Human Milk by HPLC/ICPMS.
Stiboller, Michael; Raber, Georg; Gjengedal, Elin Lovise Folven; Eggesbø, Merete; Francesconi, Kevin A
2017-06-06
Because the toxicity of arsenic depends on its chemical form, risk assessments of arsenic exposure must consider the type of arsenic compound, and hence they require sensitive and robust methods for their determination. Furthermore, the assessment should include studies on the most vulnerable people within a population, such as newborns and infants, and thus there is a need to quantify arsenic species in human milk. Herein we report a method for the determination of arsenic species at low concentrations in human milk by HPLC/ICPMS. Comparison of single and triple quadrupole mass analysers showed comparable performance, although the triple quadrupole instrument more efficiently overcame the problem of ArCl + interference, from the natural chloride present in milk, without the need for gradient elution HPLC conditions. The method incorporates a protein precipitation step with trifluoroacetic acid followed by addition of dichloromethane or dibromomethane to remove the lipids. The aqueous phase was subjected to anion-exchange and cation-exchange/mixed mode chromatography with aqueous ammonium bicarbonate and pyridine buffer solutions as mobile phases, respectively. For method validation, a human milk sample was spiked with defined amounts of dimethylarsinate, arsenobetaine, and arsenate. The method showed good recoveries (99-103%) with detection limits (in milk) in the range of 10 ng As kg -1 . The method was further tested by analyzing two Norwegian human milk samples where arsenobetaine, dimethylarsinate, and a currently unknown As species were found, but iAs was not detected.
Zhang, J S; Stanforth, R S; Pehkonen, S O
2007-02-01
Arsenate and methylated arsenicals, such as dimethylarsinate (DMA) and monomethylarsonate (MMA), are being found with increasing frequency in natural water systems. The mobility and bioavailability of these arsenic species in the environment are strongly influenced by their interactions with mineral surface, especially iron and aluminum oxides. Goethite (alpha-FeOOH), one of the most abundant ferric (hydr)oxides in natural systems, has a high retention capacity for arsenic species. Unfortunately, the sorption mechanism for the species is not completely understood, which limits our ability to model their behavior in natural systems. The purpose of this study is to investigate the effect of replacing a hydroxyl group with a methyl group on the adsorption behaviors of arsenic (V) species using adsorption edges, the influence of the background electrolyte on arsenic adsorption, and their effect on the zeta potential of goethite. The affinity of the three species to the goethite surface decreases in the order of AsO4=MMA>DMA. The uptake of DMA and MMA is independent of the concentration of background electrolyte, indicating that both species form inner-sphere complexes on the goethite surface and the most charge of adsorbed DMA and MMA locates at the surface plane. Arsenate uptake increases with increasing concentrations of background electrolyte at pH above 4, possibly due to that the charge of adsorbed arsenate is distributed between the surface plane and another electrostatic plane. DMA and lower concentrations of MMA have small effect on the zeta potential, whereas the zeta potential of goethite decreases in the presence of arsenate. The small effect on zeta potential of DMA or MMA adsorption suggests that the sorption sites for the anions is not important in controlling the surface charge. This observation is inconsistent with most adsorption models that postulate a singly coordinated hydroxyls contributing to both the adsorption and the surface charge, but supports the thesis that the charge on the goethite surface comes primarily from protonation of the triply bound oxygen atoms on the surface.
NASA Astrophysics Data System (ADS)
Kulp, T. R.; Jean, J.
2009-12-01
Blackfoot Disease (BFD) is a peripheral vascular disease that is endemic to the Chianan Plain area on the southwestern coast of Taiwan. The disease has been linked to long term ingestion of arsenic-contaminated groundwater derived from deep (>100 m) wells that were drilled in the region during the early 1900’s. Victims of BFD typically exhibit symptoms that include ulceration and gangrene in the extremities, which are unique compared to cases of arsenic toxicosis arising in other As-impacted areas. While the exact etiology of BFD is still a subject of some debate, many workers suggest that elevated arsenic in combination with high concentrations of dissolved fluorescent humic compounds in the region’s groundwater are primary causative factors. Despite considerable research over the past 30 years into the occurrence and distribution of As in the region’s groundwater, few studies have been conducted to investigate the geochemical and microbiological processes that influence the element’s speciation and mobility in this aquifer. We measured the concentration and speciation of As associated with sediments and groundwater from wells drilled in the BFD endemic area and conducted sediment microcosm bioassays to investigate the potential for reductive desorption and mobilization of As from the aquifer sediments by endogenous populations of As(V)-reducing bacteria. Samples from 100 -120 m depth were characterized by the highest As concentrations in sediment (1.4 mg/kg) and water (175.4 μg/L). Sediment-adsorbed As was present primarily as As(V) (>87%), whereas ground water samples contained no measurable aqueous As(V). Instead, arsenic in the groundwater samples was present in organo-arsenic complexes and was detectable by hydride generation - atomic absorption spectrophotometry only after oxidative treatments to convert all As to As(V). Biological As(V) reduction was observed in live slurries of aquifer sediment from 120 and 140 m sediment depth. Microbial As(V) reduction in these sediments was not stimulated by amendment with lactate, or when hydrogen was supplied as a possible electron donor. However, As(V)-reduction was stimulated by the addition of the reduced humics analogue AHQDS, demonstrating that reduced humic substances in the aquifer can serve as electron donors for biological As(V) reduction. These findings suggest that the population of As(V) reducing bacteria in the aquifer are well suited to use endogenous organic compounds as heterotrophic electron donors and that this process is not electron-donor limited at in-situ conditions. The potential for reduced humic compounds to serve as electron donors for microbiological As(V) reduction may have considerable environmental significance with respect to the mobilization of adsorbed As from sediments in aquifers that are rich in dissolved organic matter. Further work should focus on identifying the precise nature of arsenic-organic matter interaction in the aquifer and the predominant As species that is associated with these compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinmaus, Craig, E-mail: craigs@berkeley.ed; School of Public Health, University of California, Berkeley, CA; Yuan Yan
2010-09-01
In humans, ingested inorganic arsenic is metabolized to monomethylarsenic (MMA) then to dimethylarsenic (DMA), although in most people this process is not complete. Previous studies have identified associations between the proportion of urinary MMA (%MMA) and increased risks of several arsenic-related diseases, although none of these reported on lung cancer. In this study, urinary arsenic metabolites were assessed in 45 lung cancer cases and 75 controls from arsenic-exposed areas in Cordoba, Argentina. Folate has also been linked to arsenic-disease susceptibility, thus an exploratory assessment of associations between single nucleotide polymorphisms in folate metabolizing genes, arsenic methylation, and lung cancer wasmore » also conducted. In analyses limited to subjects with metabolite concentrations above detection limits, the mean %MMA was higher in cases than in controls (17.5% versus 14.3%, p = 0.01). The lung cancer odds ratio for subjects with %MMA in the upper tertile compared to those in the lowest tertile was 3.09 (95% CI, 1.08-8.81). Although the study size was too small for a definitive conclusion, there was an indication that lung cancer risks might be highest in those with a high %MMA who also carried cystathionine {beta}-synthase (CBS) rs234709 and rs4920037 variant alleles. This study is the first to report an association between individual differences in arsenic metabolism and lung cancer, a leading cause of arsenic-related mortality. These results add to the increasing body of evidence that variation in arsenic metabolism plays an important role in arsenic-disease susceptibility.« less
Gilbert-Diamond, Diane; Li, Zhigang; Perry, Ann E; Spencer, Steven K; Gandolfi, A Jay; Karagas, Margaret R
2013-10-01
Chronic high arsenic exposure is associated with squamous cell carcinoma (SCC) of the skin, and inorganic arsenic (iAs) metabolites may play an important role in this association. However, little is known about the carcinogenicity of arsenic at levels commonly observed in the United States. We estimated associations between total urinary arsenic and arsenic species and SCC in a U.S. population. We conducted a population-based case-control SCC study (470 cases, 447 controls) in a U.S. region with moderate arsenic exposure through private well water and diet. We measured urinary iAs, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA), and summed these arsenic species (ΣAs). Because seafood contains arsenolipids and arsenosugars that metabolize into DMA through alternate pathways, participants who reported seafood consumption within 2 days before urine collection were excluded from the analyses. In adjusted logistic regression analyses (323 cases, 319 controls), the SCC odds ratio (OR) was 1.37 for each ln-transformed microgram per liter increase in ln-transformed ΣAs concentration [ln(ΣAs)] (95% CI: 1.04, 1.80). Urinary ln(MMA) and ln(DMA) also were positively associated with SCC (OR = 1.34; 95% CI: 1.04, 1.71 and OR = 1.34; 95% CI: 1.03, 1.74, respectively). A similar trend was observed for ln(iAs) (OR = 1.20; 95% CI: 0.97, 1.49). Percent iAs, MMA, and DMA were not associated with SCC. These results suggest that arsenic exposure at levels common in the United States relates to SCC and that arsenic metabolism ability does not modify the association.
Hong, Young-seoub; Ye, Byeong-jin; Kim, Yu-mi; Kim, Byoung-gwon; Kang, Gyeong-hui; Kim, Jeong-jin; Song, Ki-hoon; Kim, Young-hun
2017-01-01
Recent epidemiological studies have reported adverse health effects, including skin cancer, due to low concentrations of arsenic via drinking water. We conducted a study to assess whether low arsenic contaminated ground water affected health of the residents who consumed it. For precise biomonitoring results, the inorganic (trivalent arsenite (As III) and pentavalent arsenate (As V)) and organic forms (monomethylarsonate (MMA) and dimethylarsinate (DMA)) of arsenic were separately quantified by combining high-performance liquid chromatography and inductively coupled plasma mass spectroscopy from urine samples. In conclusion, urinary As III, As V, MMA, and hair arsenic concentrations were significantly higher in residents who consumed arsenic contaminated ground water than control participants who consumed tap water. But, most health screening results did not show a statistically significant difference between exposed and control subjects. We presume that the elevated arsenic concentrations may not be sufficient to cause detectable health effects. Consumption of arsenic contaminated ground water could result in elevated urinary organic and inorganic arsenic concentrations. We recommend immediate discontinuation of ground water supply in this area for the safety of the residents. PMID:29186890
NASA Astrophysics Data System (ADS)
Shuai, P.; Myers, K.; Knappett, P.; Cardenas, M. B.
2017-12-01
River stage fluctuations, induced by ocean tides and rainfall, enhance the exchange between oxic river water and reducing groundwater. When mixing occurs within riverbank aquifers high in dissolved iron (Fe) and arsenic (As), the timing and extent of mixing likely control the accumulation and mobility of arsenic (As) within the hyporheic zone. Here we analyzed the impact of tidal and seasonal water level fluctuations on the formation of a Permeable Natural Reactive Barrier (PNRB) within an aquifer adjacent to the Meghna River, Bangladesh and its impact on As mobility. We found that the periodicity and amplitude of river stage fluctuations strongly control the spatial and temporal distribution of the PNRB, comprised of rapidly precipitated iron oxides, in this riverbank along a relatively straight reach of the Meghna River. The PNRB forms much faster and with higher concentration of Fe-oxide under semi-diurnal (12 hr) tidal fluctuations compared to simulations run assuming only neap-spring tides (14 day). As tidal amplitude increases, a larger contact area between oxic river water and reducing groundwater results which in turn leads to the horizontal expansion of the PNRB into the riverbank. Seasonal fluctuations expand the PNRB up to 60 m horizontally and 5 m vertically. In contrast neap-spring tidal fluctuations result in a smaller PNRB that is 10 and 3 m in the horizontal and vertical dimensions. The predicted changes in the spatial distribution of iron oxides within the riverbank would trap and release As at different times of the year. The PNRB could act as a secondary source of As to drinking water aquifers under sustained groundwater pumping scenarios near the river.
Hu, Qingsong; Liu, Yuling; Gu, Xueyuan; Zhao, Yaping
2017-08-01
Arsenic pollution poses severe threat to human health, therefore dealing with the problem of arsenic contamination in water bodies is extremely important. The adsorption behaviors of different arsenic species, such as arsenate (As(V)), p-arsanilic acid (p-ASA), roxarsone (ROX), dimethylarsenate (DMA) from water using mesoporous bimetal oxide magnetic manganese ferrite nanoparticles (MnFe 2 O 4 ) have been detailedly investigated. The adsorbent was synthesized via a facile co-precipitation approach and recovered conveniently owing to its strong magnetic properties. The obtained MnFe 2 O 4 with large surface area and abundant hydroxyly functional groups exhibited excellent adsorption performance for As(V) and p-ASA, in contrast to ROX and DMA with the maximum adsorption capacities of As(V), p-ASA, ROX and DMA of 68.25 mg g -1 , 59.45 mg g -1 , 51.49 mg g -1 , and 35.77 mg g -1 , respectively. The Langmuir model and the pseudo-second-order kinetic model correlated satisfactorily with the adsorption thermodynamics and kinetics, and thermodynamic parameters depicted the spontaneous endothermic nature for the adsorption of different arsenic species. The adsorption mechanism of different arsenic species onto MnFe 2 O 4 nanoparticles at various pH values could be explained by surface complexation and molecular structural variations. Attenuated Total internal Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) further proved that arsenic species were bonded to the surface of MnFe 2 O 4 through the formation of an inner-sphere complex between the arsenic acid moiety and surface metal centers. The results would help to know the interaction of arsenic species with iron-manganese minerals and the mobility of arsenic species in natural environments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Arsenic Treatment Technology Demonstrations
EPA’s research for the new Arsenic Rule focused on the development and evaluation of innovative methods and cost-effective technologies for improving the assessment and control of arsenic contamination.
Reactive Transport Modeling of Subsurface Arsenic Removal Systems in Rural Bangladesh
NASA Astrophysics Data System (ADS)
Bakker, M.; Rahman, M. M.; van Breukelen, B. M.; Ahmed, K. M.
2014-12-01
Elevated concentrations of arsenic (As) in the groundwater of the shallow aquifers of Bangladesh are a major public health concern. Subsurface Arsenic Removal (SAR) is a relatively new treatment option that can potentially be a cost effective method for arsenic removal for community-based drinking water supplies. The basic idea of SAR is to extract water, aerate it, and re-inject it, after which groundwater with reduced arsenic concentrations may be extracted. The main process for As reduction is sorption to Hydrous Ferric Oxides (HFO) that forms after injection of the aerated water. The purpose of this poster is to investigate the major geochemical processes responsible for the (im)mobilization of As during SAR operation. SAR was applied at a test site in Muradnagar upazila in Comilla district about 100 km southeast of Dhaka in Bangladesh. Multiple extraction/aeration/re-injection cycles were performed and water samples were analyzed. A PHREEQC reactive transport model (RTM) was used in a radial flow setting to try to reproduce the measurements. Kinetic oxidation/dissolution reactions, cation exchange, and surface complexation were simulated. The simulation of different reactions enables the possibility to discern the reaction parameters involved in the im(mobilization) of As. The model fit has reasonable agreement with the observed data for major ions and trace elements. The model suggests an increasing sorption capacity due to the gradual development of HFO precipitates resulting from the injection phases. Modeled breakthrough curves of As, Fe(II), and Mn, match the measured increase of As, Fe(II), and Mn removal with successive cycles. The model illustrates that the pH of groundwater during SAR operation has a great impact on As sorption in the subsurface. The surface complexation modeling suggests that competitive displacement of As by H4SiO4 is an important factor limiting As removal during SAR operation.
Thornburg, Katie; Sahai, Nita
2004-10-01
Elevated levels of groundwater arsenic (approximately 100 microg L(-1) = 1.3 x 10(-6) M) are found in the Fox River Valley, eastern Wisconsin. The goals of this study were to identifythe sources of As contamination and to determine the reactions responsible for As mobilization and retardation in areas lacking a discrete zone of As-enriched sulfides, shown previouslyto cause elevated arsenic in groundwater. Detailed mineralogical and chemical analyses were conducted on samples from the Sinnipee Group dolomite and St. Peter sandstone in eastern Wisconsin. Solution chemistry was monitored in batch reactions of dolomite, quartz, and sulfide mineral fractions with a 0.01 M CsCl solution at pH 7 for 3 weeks in air. Results indicate that arsenic is present in isomorphous substitution with pyrite/marcasite (FeS2), which occurs as disseminated veins, grains, and nodules in the dolomite and sandstone. The released As subsequently sorbs on the ferric oxyhydroxides formed or coprecipitates in a scorodite-like phase. Significantly, oxidative dissolution of the disseminated As-rich FeS2 grains and nodules is sufficient to explain the elevated As levels observed in eastern Wisconsin groundwater. Although complete uptake of As is observed in the batch experiments, persistent elevated As levels with spatial and temporal variations in regional groundwaters are attributed to differences in the type of sulfide occurrence (discrete horizon vs dispersed grains, veins, and nodules), variations in the dissolved oxygen content of the groundwater, and variable (limited) buildup of reacted surface layers on sulfide grains in the natural flow-through system. Discrete nanoparticulate As phases, As surface precipitates on sulfides, and sorbed As on dolomite and quartz are eliminated as major sources, and sorption of arsenic on dolomite and quartz is deemed less important than association with ferric oxyhydroxides for retardation in the regional system.
NASA Astrophysics Data System (ADS)
Dalla Libera, Nico; Fabbri, Paolo; Mason, Leonardo; Piccinini, Leonardo; Pola, Marco
2017-04-01
Arsenic groundwater contamination affects worldwide shallower groundwater bodies. Starting from the actual knowledges around arsenic origin into groundwater, we know that the major part of dissolved arsenic is naturally occurring through the dissolution of As-bearing minerals and ores. Several studies on the shallow aquifers of both the regional Venetian Plain (NE Italy) and the local Drainage Basin to the Venice Lagoon (DBVL) show local high arsenic concentration related to peculiar geochemical conditions, which drive arsenic mobilization. The uncertainty of arsenic spatial distribution makes difficult both the evaluation of the processes involved in arsenic mobilization and the stakeholders' decision about environmental management. Considering the latter aspect, the present study treats the problem of the Natural Background Level (NBL) definition as the threshold discriminating the natural contamination from the anthropogenic pollution. Actually, the UE's Directive 2006/118/EC suggests the procedures and criteria to set up the water quality standards guaranteeing a healthy status and reversing any contamination trends. In addition, the UE's BRIDGE project proposes some criteria, based on the 90th percentile of the contaminant's concentrations dataset, to estimate the NBL. Nevertheless, these methods provides just a statistical NBL for the whole area without considering the spatial variation of the contaminant's concentration. In this sense, we would reinforce the NBL concept using a geostatistical approach, which is able to give some detailed information about the distribution of arsenic concentrations and unveiling zones with high concentrations referred to the Italian drinking water standard (IDWS = 10 µg/liter). Once obtained the spatial information about arsenic distribution, we can apply the 90th percentile methods to estimate some Local NBL referring to every zones with arsenic higher than IDWS. The indicator kriging method was considered because it estimates the spatial distribution of the exceedance probabilities respect some pre-defined thresholds. This approach is largely mentioned in literature to face similar environmental problems. To test the validity of the procedure, we used the dataset from "A.Li.Na" project (founded by the Regional Environmental Agency) that defined regional NBLs of As, Fe, Mn and NH4+ into DBVL's groundwater. Primarily, we defined two thresholds corresponding respectively to the IDWS and the median of the data over the IDWS. These values were decided basing on the dataset's statistical structure and the quality criteria of the GWD 2006/118/EC. Subsequently, we evaluated the spatial distribution of the probability to exceed the defined thresholds using the Indicator kriging. The results highlight different zones with high exceedance probability ranging from 75% to 95% respect both the IDWS and the median value. Considering the geological setting of the DBVL, these probability values correspond with the occurrence of both organic matter and reducing conditions. In conclusion, the spatial prediction of the exceedance probability could be useful to define the areas in which estimate the local NBLs, enhancing the procedure of NBL definition. In that way, the NBL estimation could be more realistic because it considers the spatial distribution of the studied contaminant, distinguishing areas with high natural concentrations from polluted ones.
Milton, Abul H; Shahidullah, S M; Smith, Wayne; Hossain, Kazi S; Hasan, Ziaul; Ahmed, Kazi T
2010-07-01
The role of nutritional factors in arsenic metabolism and toxicity is yet to be fully elucidated. A low protein diet results in decreased excretion of DMA and increased tissue retention of arsenic in experimental studies. Malnourished women carry a higher risk of adverse pregnancy outcomes. Chronic exposure to high arsenic (>50 microg/L) through drinking water also increases the risk of adverse pregnancy outcomes. The synergistic effects (if any) of malnutrition and chronic arsenic exposure may worsen the adverse pregnancy outcomes. This population based case control study reports the association between chronic arsenic exposure and nutritional status among the rural women in Bangladesh. 348 cases (BMI < 18.5) and 360 controls (BMI 18.5-24.99) were recruited from a baseline survey conducted among 2,341 women. An excess risk for malnutrition was observed among the participants chronically exposed to higher concentrations of arsenic in drinking water after adjusting for potential confounders such as participant's age, religion, education, monthly household income and history of oral contraceptive pills. Women exposed to arsenic >50 microg/L were at 1.9 times (Odds Ratio = 1.9, 95% CI = 1.1-3.6) increased risk of malnutrition compared to unexposed. The findings of this study suggest that chronic arsenic exposure is likely to contribute to poor nutritional status among women of 20-45 years.
Hydrologically Controlled Arsenic Release in Deltaic Wetlands and Coastal Riparian Zones
NASA Astrophysics Data System (ADS)
Stuckey, J.; LeMonte, J. J.; Yu, X.; Schaefer, M.; Kocar, B. D.; Benner, S. G.; Rinklebe, J.; Tappero, R.; Michael, H. A.; Fendorf, S. E.; Sparks, D. L.
2016-12-01
Wetland and riparian zone hydrology exerts critical controls on the biogeochemical cycling of metal contaminants including arsenic. The role of wetlands in driving geogenic arsenic release to groundwater has been debated in the deltas of South and Southeast Asia where the largest impacted human population resides. In addition, groundwater in coastal areas worldwide, such as those in South and Southeast Asia and the Mid-Atlantic of the U.S., is at risk to largely unexplored biogeochemical and hydrologic impacts of projected sea level rise. First, we present data from fresh-sediment incubations, in situ model sediment incubations and a controlled field experiment with manipulated wetland hydrology and organic carbon inputs in the minimally disturbed upper Mekong Delta. Here we show that arsenic release is limited to near-surface sediments of permanently saturated wetlands where both organic carbon and arsenic-bearing solids are sufficiently reactive for microbial oxidation of organic carbon and reduction of arsenic-bearing iron oxides. In contrast, within the deeper aquifer or seasonally saturated sediments, reductive dissolution of iron oxides is observed only when either more reactive exogenous forms of iron oxides or organic carbon are added, revealing a potential thermodynamic restriction to microbial metabolism. Second, in order to assess the potential impacts of sea level rise on arsenic release to groundwater, we determined the changes in arsenic speciation and partitioning in sediment collected from an anthropogenically contaminated coastal riparian zone under controlled Eh regimes in both seawater and freshwater systems. Here we show greater arsenic release under anoxic/suboxic conditions in the freshwater system than in the seawater system, potentially due to high salinity induced microbial inhibition. Collectively, our work shows that shifting hydrologic conditions in deltaic wetlands and tidally influenced zones impacts the extent of arsenic release to groundwater. Land and water management decisions that increase the duration of wetland inundation may promote arsenic release to groundwater.
[Inventories of atmospheric arsenic emissions from coal combustion in China, 2005].
Tian, He-Zhong; Qu, Yi-Ping
2009-04-15
Anthropogenic arsenic (As) emitted from coal combustion is one of key trace elements leading to negative air pollution and national economy loss. It is of great significance to estimate the atmospheric arsenic emission for proposing relevant laws or regulations and selecting proper pollution control technologies. The inventories of atmospheric arsenic emissions from coal combustion in China were evaluated by adopting the emission factor method based on fuel consumption. Arsenic emission sources were firstly classified into several categories by economic sectors, combustion types and pollution control technologies. Then, according to provincial coal consumption and averaged arsenic concentration in the feed fuel, the inventories of atmospheric arsenic emission from coal combustion in China in 2005 were established. Coal outputand consumption in China in 2005 were 2,119.8 and 2,099.8 Mt, respectively. The total emissions of arsenic released into the atmosphere in 2005 in China were estimated at about 1,564.4 t, and Shandong ranked the largest province with 144.4 t arsenic release, followed by Hunan (141.1 t), Hebei (108.5 t), Henan (77.7 t), and Jiangsu (77.0 t), which were mainly concentrated in the eastern and central provinces of China. The arsenic emissions were largely emitted by industry sector (818.8 t) and thermal power generation sector (303.4 t), contributing 52.3% and 19.4% of the totals, respectively. About 375.5 t arsenic was estimated to be released into the atmosphere in the form of gas phase in China in 2005, with a share of 24% of the totals. In general, arsenic pollution control from coal combustion should be highlighted for the power and industry sectors in the whole country. However, arsenic poisoning caused by residential coal burning should also be paid great attention in some areas such as Xinjiang, Gansu, Qinghai and Guishou.
NASA Astrophysics Data System (ADS)
Schaller, Jörg; Planer-Friedrich, Britta
2017-04-01
Organic sediments in aquatic ecosystems are well known sinks for nutrients, silicon, and metal(loid)s. Organic matter-decomposing organisms like invertebrate shredders, grazers, bioturbators, and filter feeder are key-species for the carbon and energy turnover within the decomposer community. We could show that invertebrate shredders and grazer affect element fixation or remobilization by changing binding properties of organic sediments and the attached biofilm. Bioturbators affect element fixation or remobilization by changing redox conditions within the uppermost sediment layer. Last but not least filter feeders, like the zebra mussel Dreissena polymorpha, an invasive organism in North American and European freshwater ecosystems significantly contributed to element mobilization of silicon, iron, phosphorus, arsenic, and copper and to immobilization of uranium (p<0.001), probably driven by redox conditions, microbial activity within the gut system, or active control of element homeostasis. Except of the filter feeder D. polymorpha, the invertebrates are able to minimize the accumulation of non-nutrient elements due to specific strategies, which is an important strategy for species living in systems tending to element accumulation. However, D. polymorpha revealed a significant uptake and accumulation of arsenic, copper, iron, and especially uranium both into the soft body tissues and the seashell. This accumulation by D. polymorpha is in line with previous observations of metal(loid) accumulation from biomonitoring studies. In summary, higher trophic level strongly contributes to element fixation or remobilization in aquatic systems.
Arsenic exposure and intestinal microbiota in children from Sirajdikhan, Bangladesh.
Dong, Xiaoxi; Shulzhenko, Natalia; Lemaitre, Julien; Greer, Renee L; Peremyslova, Kate; Quamruzzaman, Quazi; Rahman, Mahmudar; Hasan, Omar Sharif Ibn; Joya, Sakila Afroz; Golam, Mostofa; Christiani, David C; Morgun, Andriy; Kile, Molly L
2017-01-01
Arsenic has antimicrobial properties at high doses yet few studies have examined its effect on gut microbiota. This warrants investigation since arsenic exposure increases the risk of many diseases in which gut microbiota have been shown to play a role. We examined the association between arsenic exposure from drinking water and the composition of intestinal microbiota in children exposed to low and high arsenic levels during prenatal development and early life. 16S rRNA gene sequencing revealed that children with high arsenic exposure had a higher abundance of Proteobacteria in their stool compared to matched controls with low arsenic exposure. Furthermore, whole metagenome shotgun sequencing identified 332 bacterial SEED functions that were enriched in the high exposure group. A separate model showed that these genes, which included genes involved in virulence and multidrug resistance, were positively correlated with arsenic concentration within the group of children in the high arsenic group. We performed reference free genome assembly, and identified strains of E.coli as contributors to the arsenic enriched SEED functions. Further genome annotation of the E.coli genome revealed two strains containing two different arsenic resistance operons that are not present in the gut microbiome of a recently described European human cohort (Metagenomics of the Human Intestinal Tract, MetaHIT). We then performed quantification by qPCR of two arsenic resistant genes (ArsB, ArsC). We observed that the expression of these two operons was higher among the children with high arsenic exposure compared to matched controls. This preliminary study indicates that arsenic exposure early in life was associated with altered gut microbiota in Bangladeshi children. The enrichment of E.coli arsenic resistance genes in the high exposure group provides an insight into the possible mechanisms of how this toxic compound could affect gut microbiota.
NASA Astrophysics Data System (ADS)
McClure, R. J.; Deng, Y.; Loeppert, R.; Herbert, B. E.; Carrillo, R.; Gonzalez, C.
2009-12-01
Mining for silver, lead, zinc, and copper in Zimapan, Hidalgo State, Mexico has been ongoing since 1576. High concentrations of heavy metals have been found in several mine tailing heaps in the Zimapan area, with concentrations of arsenic observed as high as 28,690 mg/kg and levels of Pb as high as 2772 mg/kg. Unsecured tailings heaps and associated acid mine drainage has presented tremendous problems to revegetation, water quality, and dust emission control in the Zimapan area. Although acid mine drainage problems related to weathering of sulfide minerals have been extensively studied and are well known, the weathering products of sulfides in areas with a significant presence of carbonate minerals and their effect on the mobility of heavy metals warrant further study. Carbonate minerals are expected to neutralize sulfuric acid produced from weathering of sulfide minerals, however, in the Zimapan area localized areas of pH as low as 1.8 were observed within carbonate mineral-rich tailing heaps. The objectives of this study are to characterize (1) the heavy metal-containing sulfide minerals in the initial tailing materials, (2) the intermediate oxidation products of sulfide minerals within the carbonate-rich tailings, (3) chemical species of heavy metals within pH gradients between 1.8 and 8.2, the approximate natural pH of limestone, and (4) the mobility of soluble and colloidal heavy metals and arsenic within the carbonate-rich tailings. Representative mine tailings and their intermediate oxidation products have been sampled from the Zimapan area. Mineralogical characterization will be conducted with X-ray diffraction, infrared spectroscopy, electron microscopes and microprobes, and chemical methods. Chemical species will be extracted by selective dissolution methods. Preliminary results have identified calcite as the dominant mineral in the tailing heaps with a pH of 7, suggesting non-equilibrium with the acidic weathering products. Other minerals identified in the tailings include gypsum, quartz, pyrite, mica, talc, amphiboles, and feldspars. Oxidation products identified include copiapite as well as various iron oxides. Future results are expected to reveal most of the heavy metals to be adsorbed by or coprecipitate with iron oxides, with most of the oxidized arsenic staying in the soluble form. The mobility of the colloidal form of the oxides and associated heavy metals within the carbonate mineral-rich tailings need additional study.
Attenuation of arsenic neurotoxicity by curcumin in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Rajesh S.; Sankhwar, Madhu Lata; Shukla, Rajendra K.
2009-11-01
In view of continued exposure to arsenic and associated human health risk including neurotoxicity, neuroprotective efficacy of curcumin, a polyphenolic antioxidant, has been investigated in rats. A significant decrease in locomotor activity, grip strength (26%) and rota-rod performance (82%) was observed in rats treated with arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) as compared to controls. The arsenic treated rats also exhibited a decrease in the binding of striatal dopamine receptors (32%) and tyrosine hydroxylase (TH) immunoreactivity (19%) in striatum. Increased arsenic levels in corpus striatum (6.5 fold), frontal cortex (6.3 fold) and hippocampus (7.0 fold) associatedmore » with enhanced oxidative stress in these brain regions, as evident by an increase in lipid perioxidation, protein carbonyl and a decrease in the levels of glutathione and activity of superoxide dismutase, catalase and glutathione peroxidase with differential effects were observed in arsenic treated rats compared to controls. Simultaneous treatment with arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) and curcumin (100 mg/kg body weight, p.o., 28 days) caused an increase in locomotor activity and grip strength and improved the rota-rod performance in comparison to arsenic treated rats. Binding of striatal dopamine receptors and TH expression increased while arsenic levels and oxidative stress decreased in these brain regions in co-treated rats as compared to those treated with arsenic alone. No significant effect on any of these parameters was observed in rats treated with curcumin (100 mg/kg body weight, p.o., 28 days) alone compared to controls. A significant protection in behavioral, neurochemical and immunohistochemical parameters in rats simultaneously treated with arsenic and curcumin suggest the neuroprotective efficacy of curcumin.« less
Determining Changes in Groundwater Quality during Managed Aquifer Recharge
NASA Astrophysics Data System (ADS)
Gambhir, T.; Houlihan, M.; Fakhreddine, S.; Dadakis, J.; Fendorf, S. E.
2016-12-01
Managed aquifer recharge (MAR) is becoming an increasingly prevalent technology for improving the sustainability of freshwater supply. However, recharge water can alter the geochemical conditions of the aquifer, mobilizing contaminants native to the aquifer sediments. Geochemical alterations on deep (>300 m) injection of highly treated recycled wastewater for MAR has received limited attention. We aim to determine how residual disinfectants used in water treatment processes, specifically the strong oxidants chloramine and hydrogen peroxide, affect metal mobilization within deep injection wells of the Orange County Water District. Furthermore, as the treated recharge water has very low ionic strength (44.6 mg L-1 total dissolved solids), we tested how differing concentrations of magnesium chloride and calcium chloride affected metal mobilization within deep aquifers. Continuous flow experiments were conducted on columns dry packed with sediments from a deep injection MAR site in Orange County, CA. The effluent was analyzed for shifts in water quality, including aqueous concentrations of arsenic, uranium, and chromium. Interaction between the sediment and oxic recharge solution causes naturally-occurring arsenopyrite to repartition onto iron oxides. The stability of arsenic on the newly precipitated iron oxides is dependent on pH changes during recharge.
Kumarathilaka, Prasanna; Seneweera, Saman; Meharg, Andrew; Bundschuh, Jochen
2018-04-21
Rice is the main staple carbohydrate source for billions of people worldwide. Natural geogenic and anthropogenic sources has led to high arsenic (As) concentrations in rice grains. This is because As is highly bioavailable to rice roots under conditions in which rice is cultivated. A multifaceted and interdisciplinary understanding, both of short-term and long-term effects, are required to identify spatial and temporal changes in As contamination levels in paddy soil-water systems. During flooding, soil pore waters are elevated in inorganic As compared to dryland cultivation systems, as anaerobism results in poorly mobile As(V), being reduced to highly mobile As(III). The formation of iron (Fe) plaque on roots, availability of metal (hydro)oxides (Fe and Mn), organic matter, clay mineralogy and competing ions and compounds (PO 4 3- and Si(OH) 4 ) are all known to influence As(V) and As(III) mobility in paddy soil-water environments. Microorganisms play a key role in As transformation through oxidation/reduction, and methylation/volatilization reactions, but transformation kinetics are poorly understood. Scientific-based optimization of all biogeochemical parameters may help to significantly reduce the bioavailability of inorganic As. Copyright © 2018 Elsevier Ltd. All rights reserved.
Villa-Lojo, M C; Alonso-Rodríguez, E; López-Mahía, P; Muniategui-Lorenzo, S; Prada-Rodríguez, D
2002-06-10
A high performance liquid chromatography-microwave digestion-hydride generation-atomic absorption spectrometry (HPLC-MW-HG-AAS) coupled method is described for As(III), As(V), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB) and arsenocholine (AsC) determination. A Hamilton PRP-X100 anion-exchange column is used for carrying out the arsenic species separation. As mobile phase 17 mM phosphate buffer (pH 6.0) is used for As(III), As(V), MMA and DMA separation, and ultrapure water (pH 6.0) for AsB and AsC separation. Prior to injection into the HPLC system AsB and AsC are isolated from the other arsenic species using a Waters Accell Plus QMA cartridge. A microwave digestion with K(2)S(2)O(8) as oxidizing agent is used for enhancing the efficiency of conversion of AsB and AsC into arsenate. Detection limits achieved were between 0.3 and 1.1 ng for all species. The method was applied to arsenic speciation in fish samples.
Vitayavirasak, Banjong; Rakwong, Kittiya; Chatchawej, Warangkana
2005-01-01
Risk behavior and environmental sources of exposure to arsenic for 10-year-old schoolchildren were studied in a high exposure area and a low exposure area of Ron Phibun Subdistrict, Ron Phibun District, Nakhon Si Thammarat Province and compared to those in a control area. Arsenic concentrations of surface soil, ambient air and drinking water to which subjects in the high exposure group, the low exposure group and the control group were exposed, were significantly different (p < 0.05). Similarly, urinary concentrations of total arsenic and the sum of inorganic arsenic and its metabolites were significantly higher in the study groups than the control group. The arsenic content of locally grown agricultural produce was small with the exception of freshwater snails (Sinotaia ingallsiana). Drinking water and surface soil were found to be the main sources of exposure. The exposure was mediated by the subjects' risk behavior, such as playing with soil and no hand-washing before eating. The estimated cancer risk from arsenic for the schoolchildren in the study area was between 10(-5)-10(-6) which meant that their risk of developing cancer was probable. Measures to reduce the cancer risk are recommended.
Function of Serum Complement in Drinking Water Arsenic Toxicity
Islam, Laila N.; Zahid, M. Shamim Hasan; Nabi, A. H. M. Nurun; Hossain, Mahmud
2012-01-01
Serum complement function was evaluated in 125 affected subjects suffering from drinking water arsenic toxicity. Their mean duration of exposure was 7.4 ± 5.3 yrs, and the levels of arsenic in drinking water and urine samples were 216 ± 211 and 223 ± 302 μg/L, respectively. The mean bactericidal activity of complement from the arsenic patients was 92% and that in the unexposed controls was 99% (P < 0.01), but heat-inactivated serum showed slightly elevated activity than in controls. In patients, the mean complement C3 was 1.56 g/L, and C4 was 0.29 g/L compared to 1.68 g/L and 0.25 g/L, respectively, in the controls. The mean IgG in the arsenic patients was 24.3 g/L that was highly significantly elevated (P < 0.001). Arsenic patients showed a significant direct correlation between C3 and bactericidal activity (P = 0.014). Elevated levels of C4 indicated underutilization and possibly impaired activity of the classical complement pathway. We conclude reduced function of serum complement in drinking water arsenic toxicity. PMID:22545044
MICROBIAL MOBILIZATION OF ARSENIC FROM SEDIMENTS OF THE ABERJONA WATERSHED. (R823222)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Managed aquifer recharge (MAR) has a potential for addressing deficits in water supplies worldwide. It is also widely used for preventing saltwater intrusion, maintaining the groundwater table, and augmenting ecological stream flows among many beneficial environmental application...
Application Of Synchrotron Techniques To Investigate In-Situ Arsenic Speciation
The speciation, or chemical form of elements governs their fate, toxicity, mobility, and bioavailability in contaminated soils, sediments and water as well as food chain transfer mechanisms. To assess these chemical properties and to accurately gauge contaminant impact on human h...
Role of linoleic acid in arsenical palmar keratosis.
Ahmed, Tarafder S; Misbahuddin, Mir
2016-03-01
Chronic arsenic exposure can lead to palmoplantar keratosis. In the stratum corneum of skin, linoleic acid is of the utmost importance to the inflammation, keratinization, and regeneration processes. The aims of this study were: (i) to present quantitative information on the linoleic acid fraction of intercorneocyte lipids, and (ii) to elucidate the role of linoleic acid in the pathophysiology of arsenical keratosis. Lipid extracts were collected from keratotic lesions in seven patients, seven arsenic-exposed subjects, and seven non-exposed control subjects. Linoleic acid levels of the specimens were estimated by reverse-phase high-performance liquid chromatography (RP-HPLC). There was a significant (P < 0.001) increase in mean ± standard error (SE) linoleic acid levels in arsenical keratosis patients (palm: 25.66 ± 4.95 μg/cm(2); dorsum: 28.25 ± 6.20 μg/cm(2)) compared with arsenic-exposed (palm: 2.75 ± 0.85 μg/cm(2); dorsum: 1.96 ± 0.64 μg/cm(2)) and non-exposed (palm: 1.52 ± 0.61 μg/cm(2); dorsum: 1.28 ± 0.39 μg/cm(2)) control subjects. There was no significant difference (P = 0.556) in linoleic acid concentration in the non-affected skin of the dorsum of the hand (28.25 ± 6.20 μg/cm(2)) compared with that in the palmar sites (25.66 ± 4.95 μg/cm(2)) in the patient group. The change in linoleic acid levels in the arsenic-exposed control group did not differ from that in non-exposed controls (P = 1.000). Linoleic acid concentration is elevated in arsenical keratosis; this finding warrants further investigation to ascertain whether linoleic acid plays a direct role in the pathophysiology of arsenical keratosis. © 2015 The International Society of Dermatology.
Arsenic methylation and lung and bladder cancer in a case-control study in northern Chile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melak, Dawit; Ferreccio, Catterina; Kalman, David
2014-01-15
In humans, ingested inorganic arsenic is metabolized to monomethylarsenic (MMA) then to dimethylarsenic (DMA), although this process is not complete in most people. The trivalent form of MMA is highly toxic in vitro and previous studies have identified associations between the proportion of urinary arsenic as MMA (%MMA) and several arsenic-related diseases. To date, however, relatively little is known about its role in lung cancer, the most common cause of arsenic-related death, or about its impacts on people drinking water with lower arsenic concentrations (e.g., < 200 μg/L). In this study, urinary arsenic metabolites were measured in 94 lung andmore » 117 bladder cancer cases and 347 population-based controls from areas in northern Chile with a wide range of drinking water arsenic concentrations. Lung cancer odds ratios adjusted for age, sex, and smoking by increasing tertiles of %MMA were 1.00, 1.91 (95% confidence interval (CI), 0.99–3.67), and 3.26 (1.76–6.04) (p-trend < 0.001). Corresponding odds ratios for bladder cancer were 1.00, 1.81 (1.06–3.11), and 2.02 (1.15–3.54) (p-trend < 0.001). In analyses confined to subjects only with arsenic water concentrations < 200 μg/L (median = 60 μg/L), lung and bladder cancer odds ratios for subjects in the upper tertile of %MMA compared to subjects in the lower two tertiles were 2.48 (1.08–5.68) and 2.37 (1.01–5.57), respectively. Overall, these findings provide evidence that inter-individual differences in arsenic metabolism may be an important risk factor for arsenic-related lung cancer, and may play a role in cancer risks among people exposed to relatively low arsenic water concentrations. - Highlights: • Urine arsenic metabolites were measured in cancer cases and controls from Chile. • Higher urine %MMA values were associated with increased lung and bladder cancer. • %MMA-cancer associations were seen at drinking water arsenic levels < 200 μg/L.« less
Jiang, Shoufang; Su, Jing; Yao, Sanqiao; Zhang, Yanshu; Cao, Fuyuan; Wang, Fei; Wang, Huihui; Li, Jun; Xi, Shuhua
2014-01-01
Fluoride and arsenic are two common inorganic contaminants in drinking water that are associated with impairment in child development and retarded intelligence. The present study was conducted to explore the effects on spatial learning, memory, glutamate levels, and group I metabotropic glutamate receptors (mGluRs) expression in the hippocampus and cortex after subchronic exposure to fluoride, arsenic, and a fluoride and arsenic combination in rats. Weaned male Sprague-Dawley rats were assigned to four groups. The control rats drank tap water. Rats in the three exposure groups drank water with sodium fluoride (120 mg/L), sodium arsenite (70 mg/L), and a sodium fluoride (120 mg/L) and sodium arsenite (70 mg/L) combination for 3 months. Spatial learning and memory was measured in Morris water maze. mGluR1 and mGluR5 mRNA and protein expression in the hippocampus and cortex was detected using RT-PCR and Western blot, respectively. Compared with controls, learning and memory ability declined in rats that were exposed to fluoride and arsenic both alone and combined. Combined fluoride and arsenic exposure did not have a more pronounced effect on spatial learning and memory compared with arsenic and fluoride exposure alone. Compared with controls, glutamate levels decreased in the hippocampus and cortex of rats exposed to fluoride and combined fluoride and arsenic, and in cortex of arsenic-exposed rats. mGluR5 mRNA and protein expressions in the hippocampus and mGluR5 protein expression in the cortex decreased in rats exposed to arsenic alone. Interestingly, compared with fluoride and arsenic exposure alone, fluoride and arsenic combination decreased mGluR5 mRNA expression in the cortex and protein expression in the hippocampus, suggesting a synergistic effect of fluoride and arsenic. These data indicate that fluoride and arsenic, either alone or combined, can decrease learning and memory ability in rats. The mechanism may be associated with changes of glutamate level and mGluR5 expression in cortex and hippocampus. PMID:24759735
Michailidi, Christina; Hayashi, Masamichi; Datta, Sayantan; Sen, Tanusree; Zenner, Kaitlyn; Oladeru, Oluwadamilola; Brait, Mariana; Izumchenko, Evgeny; Baras, Alexander; VandenBussche, Christopher; Argos, Maria; Bivalacqua, Trinity J; Ahsan, Habibul; Hahn, Noah M.; Netto, George J.; Sidransky, David; Hoque, Mohammad O.
2015-01-01
Exposure to toxicants leads to cumulative molecular changes that overtime increase a subject’s risk of developing urothelial carcinoma (UC). To assess the impact of arsenic exposure at a time progressive manner, we developed and characterized a cell culture model and tested a panel of miRNAs in urine samples from arsenic exposed subjects, UC patients and controls. To prepare an in vitro model, we chronically exposed an immortalized normal human bladder cell line (HUC1) to arsenic. Growth of the HUC1 cells was increased in a time dependent manner after arsenic treatment and cellular morphology was changed. In soft agar assay, colonies were observed only in arsenic treated cells and the number of colonies gradually increased with longer periods of treatment. Similarly, invaded cells in invasion assay were observed only in arsenic treated cells. Withdrawal of arsenic treatment for 2.5 months did not reverse the tumorigenic properties of arsenic treated cells. Western blot analysis demonstrated decreased PTEN and increased AKT and mTOR in arsenic treated HUC1 cells. Levels of miR-200a, miR-200b, and miR-200c were down-regulated in arsenic exposed HUC1 cells by quantitative RT-PCR. Furthermore, in human urine, miR-200c and miR-205 were inversely associated with arsenic exposure (P=0.005 and 0.009, respectively). Expression of miR-205 discriminated cancer cases from controls with high sensitivity and specificity (AUC=0.845). Our study suggests that exposure to arsenic rapidly induces a multifaceted dedifferentiation program and miR-205 has potential to be used as a marker of arsenic exposure as well as a maker of early UC detection. PMID:25586904
Liu, Qingqing; Peng, Hanyong; Lu, Xiufen; Zuidhof, Martin J.; Li, Xing-Fang; Le, X. Chris
2016-01-01
Background: Chicken meat has the highest per capita consumption among all meat types in North America. The practice of feeding 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone, Rox) to chickens lasted for more than 60 years. However, the fate of Rox and arsenic metabolites remaining in chicken are poorly understood. Objectives: We aimed to determine the elimination of Rox and metabolites from chickens and quantify the remaining arsenic species in chicken meat, providing necessary information for meaningful exposure assessment. Methods: We have conducted a 35-day feeding experiment involving 1,600 chickens, of which half were control and the other half were fed a Rox-supplemented diet for the first 28 days and then a Rox-free diet for the final 7 days. We quantified the concentrations of individual arsenic species in the breast meat of 229 chickens. Results: Rox, arsenobetaine, arsenite, monomethylarsonic acid, dimethylarsinic acid, and a new arsenic metabolite, were detected in breast meat from chickens fed Rox. The concentrations of arsenic species, except arsenobetaine, were significantly higher in the Rox-fed than in the control chickens. The half-lives of elimination of these arsenic species were 0.4–1 day. Seven days after termination of Rox feeding, the concentrations of arsenite (3.1 μg/kg), Rox (0.4 μg/kg), and a new arsenic metabolite (0.8 μg/kg) were significantly higher in the Rox-fed chickens than in the control. Conclusion: Feeding of Rox to chickens increased the concentrations of five arsenic species in breast meat. Although most arsenic species were excreted rapidly when the feeding of Rox stopped, arsenic species remaining in the Rox-fed chickens were higher than the background levels. Citation: Liu Q, Peng H, Lu X, Zuidhof MJ, Li XF, Le XC. 2016. Arsenic species in chicken breast: temporal variations of metabolites, elimination kinetics, and residual concentrations. Environ Health Perspect 124:1174–1181; http://dx.doi.org/10.1289/ehp.1510530 PMID:26992196
Liu, Qingqing; Peng, Hanyong; Lu, Xiufen; Zuidhof, Martin J; Li, Xing-Fang; Le, X Chris
2016-08-01
Chicken meat has the highest per capita consumption among all meat types in North America. The practice of feeding 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone, Rox) to chickens lasted for more than 60 years. However, the fate of Rox and arsenic metabolites remaining in chicken are poorly understood. We aimed to determine the elimination of Rox and metabolites from chickens and quantify the remaining arsenic species in chicken meat, providing necessary information for meaningful exposure assessment. We have conducted a 35-day feeding experiment involving 1,600 chickens, of which half were control and the other half were fed a Rox-supplemented diet for the first 28 days and then a Rox-free diet for the final 7 days. We quantified the concentrations of individual arsenic species in the breast meat of 229 chickens. Rox, arsenobetaine, arsenite, monomethylarsonic acid, dimethylarsinic acid, and a new arsenic metabolite, were detected in breast meat from chickens fed Rox. The concentrations of arsenic species, except arsenobetaine, were significantly higher in the Rox-fed than in the control chickens. The half-lives of elimination of these arsenic species were 0.4-1 day. Seven days after termination of Rox feeding, the concentrations of arsenite (3.1 μg/kg), Rox (0.4 μg/kg), and a new arsenic metabolite (0.8 μg/kg) were significantly higher in the Rox-fed chickens than in the control. Feeding of Rox to chickens increased the concentrations of five arsenic species in breast meat. Although most arsenic species were excreted rapidly when the feeding of Rox stopped, arsenic species remaining in the Rox-fed chickens were higher than the background levels. Liu Q, Peng H, Lu X, Zuidhof MJ, Li XF, Le XC. 2016. Arsenic species in chicken breast: temporal variations of metabolites, elimination kinetics, and residual concentrations. Environ Health Perspect 124:1174-1181; http://dx.doi.org/10.1289/ehp.1510530.
Barbafieri, Meri; Pedron, Francesca; Petruzzelli, Gianniantonio; Rosellini, Irene; Franchi, Elisabetta; Bagatin, Roberto; Vocciante, Marco
2017-12-01
The removal of contaminants from an earthy matrix by phytoremediation requires the selection of appropriate plant species and a suitable strategy to be effective. In order to set up an assisted phytoremediation intervention related to a disused industrial site affected by an arsenic and lead complex contamination, an extensive experimental investigation on micro and mesocosm scale has been conducted. Particular attention was given to the choice of plant species: using crop plants (Lupinus albus, Helianthus annuus and Brassica juncea) a series of parallel test campaigns have been realized to investigate different scenarios for the reclamation. With regard to the arsenic contamination, which is certainly the most worrying, the possibility of employing a hyper-accumulator species (Pteris vittata) has also been investigated, highlighting advantages and difficulties associated with such an approach. The application of various mobilizing agents in different concentrations was tested, in order to maximize the extraction efficiency of plants in respect of both contaminants, showing the necessity of a chemically assisted approach to promote their uptake and translocation in the shoots. Phosphate addition appears to produce the desired results, positively affecting As phyto-extraction for both hyper-accumulator and crop plants, while minimizing its toxic effects at the investigated concentrations. With regard to Pb, although tests with EDDS have been encouraging, EDTA should be preferred at present due to lower uncertainties about its effectiveness. The performed tests also improved the addition of mobilizing agents, allowing the simultaneous removal of the two metals despite their great diversity (which in general discourages such approach), with significant saving of time and an obvious improvement of the overall process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Đorđievski, Stefan; Ishiyama, Daizo; Ogawa, Yasumasa; Stevanović, Zoran
2018-06-22
Bor, Krivelj, and Bela Rivers belong to the watershed of Timok River, which is a tributary of transboundary Danube River. These rivers receive metal-rich acidic wastewater from metallurgical facilities and acid mine drainage (AMD) from mine wastes around Bor copper mines. The aim of this study was to determine the mobility and natural attenuation of metals and arsenic in rivers from Bor copper mines to Danube River during the year 2015. The results showed that metallurgical facilities had the largest impact on Bor River by discharging about 400 t of Cu per year through highly acidic wastewater (pH = 2.6). The highest measured concentrations of Cu in river water and sediments were 40 mg L -1 and 1.6%, respectively. Dissolution of calcite from limestone bedrock and a high concentration of bicarbonate ions in natural river water (about 250 mg L -1 ) enhanced the neutralization of acidic river water and subsequent chemical precipitation of metals and arsenic. Decreases in the concentrations of Al, Fe, Cu, As, and Pb in river water were mainly due to precipitation on the river bed. On the other hand, dilution played an important role in the decreases in concentrations of Mn, Ni, Zn, and Cd. Chemically precipitated materials and flotation tailings containing Fe-rich minerals (fayalite, magnetite, and pyrite) were transported toward Danube River during the periods of high discharge. This study showed that processes of natural attenuation in catchments with limestone bedrock play an important role in reducing concentrations of metals and arsenic in AMD-bearing river water.
Gagnon, Fabien; Lampron-Goulet, Eric; Normandin, Louise; Langlois, Marie-France
2016-01-01
Chronic exposure to inorganic arsenic leads to an increased risk of cancer. A biological measurement was conducted in 153 private well owners and their families consuming water contaminated by inorganic arsenic at concentrations that straddle 10 μg/L. The relationship between the external dose indicators (concentration of inorganic arsenic in wells and daily well water inorganic arsenic intake) and the internal doses (urinary arsenic--sum of As(III), DMA, and MMA, adjusted for creatinine--and total arsenic in toenails) was evaluated using multiple linear regressions, controlling for age, gender, dietary sources of arsenic, and number of cigarettes smoked. It showed that urinary arsenic was associated with concentration of inorganic arsenic in wells (p < .001) and daily well water inorganic arsenic intake (p < .001) in adults, and with daily well water inorganic arsenic intake (p = .017) and rice consumption (p = .022) in children (n = 43). The authors' study reinforces the drinking-water quality guidelines for inorganic arsenic.
Zhang, Zhennan; Yin, Naiyi; Cai, Xiaolin; Wang, Zhenzhou; Cui, Yanshan
2016-09-01
A mesophilic, Gram-negative, arsenite[As(III)]-oxidizing and arsenate[As(V)]-reducing bacterial strain, Pseudomonas sp. HN-2, was isolated from an As-contaminated soil. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that the strain was closely related to Pseudomonas stutzeri. Under aerobic conditions, this strain oxidized 92.0% (61.4μmol/L) of arsenite to arsenate within 3hr of incubation. Reduction of As(V) to As(III) occurred in anoxic conditions. Pseudomonas sp. HN-2 is among the first soil bacteria shown to be capable of both aerobic As(III) oxidation and anoxic As(V) reduction. The strain, as an efficient As(III) oxidizer and As(V) reducer in Pseudomonas, has the potential to impact arsenic mobility in both anoxic and aerobic environments, and has potential application in As remediation processes. Copyright © 2016. Published by Elsevier B.V.
Arsenic Contaminated Groundwater and Its Treatment Options in Bangladesh
Jiang, Jia-Qian; Ashekuzzaman, S. M.; Jiang, Anlun; Sharifuzzaman, S. M.; Chowdhury, Sayedur Rahman
2012-01-01
Arsenic (As) causes health concerns due to its significant toxicity and worldwide presence in drinking water and groundwater. The major sources of As pollution may be natural process such as dissolution of As-containing minerals and anthropogenic activities such as percolation of water from mines, etc. The maximum contaminant level for total As in potable water has been established as 10 µg/L. Among the countries facing As contamination problems, Bangladesh is the most affected. Up to 77 million people in Bangladesh have been exposed to toxic levels of arsenic from drinking water. Therefore, it has become an urgent need to provide As-free drinking water in rural households throughout Bangladesh. This paper provides a comprehensive overview on the recent data on arsenic contamination status, its sources and reasons of mobilization and the exposure pathways in Bangladesh. Very little literature has focused on the removal of As from groundwaters in developing countries and thus this paper aims to review the As removal technologies and be a useful resource for researchers or policy makers to help identify and investigate useful treatment options. While a number of technological developments in arsenic removal have taken place, we must consider variations in sources and quality characteristics of As polluted water and differences in the socio-economic and literacy conditions of people, and then aim at improving effectiveness in arsenic removal, reducing the cost of the system, making the technology user friendly, overcoming maintenance problems and resolving sludge management issues. PMID:23343979
Arsenic contaminated groundwater and its treatment options in Bangladesh.
Jiang, Jia-Qian; Ashekuzzaman, S M; Jiang, Anlun; Sharifuzzaman, S M; Chowdhury, Sayedur Rahman
2012-12-20
Arsenic (As) causes health concerns due to its significant toxicity and worldwide presence in drinking water and groundwater. The major sources of As pollution may be natural process such as dissolution of As-containing minerals and anthropogenic activities such as percolation of water from mines, etc. The maximum contaminant level for total As in potable water has been established as 10 µg/L. Among the countries facing As contamination problems, Bangladesh is the most affected. Up to 77 million people in Bangladesh have been exposed to toxic levels of arsenic from drinking water. Therefore, it has become an urgent need to provide As-free drinking water in rural households throughout Bangladesh. This paper provides a comprehensive overview on the recent data on arsenic contamination status, its sources and reasons of mobilization and the exposure pathways in Bangladesh. Very little literature has focused on the removal of As from groundwaters in developing countries and thus this paper aims to review the As removal technologies and be a useful resource for researchers or policy makers to help identify and investigate useful treatment options. While a number of technological developments in arsenic removal have taken place, we must consider variations in sources and quality characteristics of As polluted water and differences in the socio-economic and literacy conditions of people, and then aim at improving effectiveness in arsenic removal, reducing the cost of the system, making the technology user friendly, overcoming maintenance problems and resolving sludge management issues.
Tuck, L.K.; Dutton, D.M.; Nimick, D.A.
1997-01-01
Geothermal waters in Yellowstone National Park contribute large quantities of arsenic to the headwaters of the Madison River. Water in some Quaternary and Tertiary valley-fill deposits along the Madison and upper Missouri Rivers also is locally enriched in arsenic. Arsenic in surface and ground water in these valleys is an important public- health concern because arsenic concentrations frequently exceed the State of Montana water- quality human health standard of 18 micrograms per liter as well as the U.S. Environmental Protection Agency Maximum Contaminant Level of 50 micrograms per liter. This report presents hydrologic and water-quality data for the Madison and upper Missouri Rivers and selected tributaries, irrigation supply canals or ditches, drains, springs and seeps, for Lake Helena, and for ground water in adjacent areas. Hydrologic and water-quality data were collected and compiled to provide information to more fully understand the extent, magnitude, and source of arsenic in surface and ground water along the Madison and upper Missouri Rivers; to assess, to the extent possible, the mechanisms that control arsenic concentrations; and to assess the effect of irrigation on arsenic concentrations. Hydrologic and arsenic- concentration data were collected by the U.S. Geological Survey and other agencies for 104 surface-water sites and 273 ground-water sites during this and previous studies. The quality of analytical results for arsenic concentrations was evaluated by quality-control samples that were submitted from the field and analyzed in the laboratory with routing samples. Quality-control samples consisted of replicates, standard reference samples, interlaboratory comparison samples, and field blanks.
Trace element partitioning during the retorting of Julia Creek oil shale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patterson, J.H.; Dale, L.S.; Chapman, J.f.
1987-05-01
A bulk sample of oil shale from the Julia Creek deposit in Queensland was retorted under Fischer assay conditions at temperatures ranging from 250 to 550 /sup 0/C. The distributions of the trace elements detected in the shale oil and retort water were determined at each temperature. Oil distillation commenced at 300 /sup 0/C and was essentially complete at 500 /sup 0/C. A number of trace elements were progressively mobilized with increasing retort temperature up to 450 /sup 0/C. The following trace elements partitioned mainly to the oil: vanadium, arsenic, selenium, iron, nickel, titanium, copper, cobalt, and aluminum. Elements thatmore » also partitioned to the retort waters included arsenic, selenium, chlorine, and bromine. Element mobilization is considered to be caused by the volatilization of organometallic compounds, sulfide minerals, and sodium halides present in the oil shale. The results have important implications for shale oil refining and for the disposal of retort waters. 22 references, 5 tables.« less
Yao, Mao-lin; Zhang, Ai-hua; Yu, Chun; Xu, Yu-yan; Hu, Yong; Xiao, Ting-ting; Wang, Lei
2013-09-01
To establish coal arsenic poisoning rat model by feeding the rats with the corn powder baked by high arsenic coal as the main raw material. Fifty Wistar rats, healthy, were randomly divided into 5 groups according to the figures of their weights, including control group, drinking arsenic poisoning water group, low, medium and high arsenic contaminated grain group, 10 rats for each.Rats in control group and drinking arsenic poisoning water group were fed with standard feed without any arsenic containing. Rats in water group would drink 100 mg/L As2O3 solution and the rats in arsenic grain groups would be fed with the arsenic contaminated grain at the dose of 25, 50 and 100 mg/kg, respectively. The duration would last for 3 months.General situation and weight were observed. At the same time, the arsenic contents of urine, hair, liver and kidney of the rats in each group were detected, as well as the histopathology changes of liver and kidney, and the ultra structure of liver was observed. The arsenic contents of urine (median(min-max)) of the rats in the arsenic water group, low, medium and high arsenic grain groups were separately 3055.59 (722.43-6389.05), 635.96(367.85-1551.31), 1453.84 (593.27-5302.94) and 3101.11 (666.64-6858.61) µg/g Cr; while the arsenic contents of hair of the rats in the above groups were separately (23.07 ± 10.38), (8.87 ± 3.31), (12.43 ± 6.65) and (25.68 ± 7.16) µg/g; the arsenic contents of liver of the rats in the above groups were separately (5.68 ± 3.13), (2.64 ± 1.52), (3.89 ± 1.76) and (5.34 ± 2.78) µg/g; and the arsenic contents of kidney were separately (6.90 ± 1.94), (3.48 ± 1.96), (5.03 ± 2.08) and (7.02 ± 1.62) µg/g; which were all significantly higher than those in the control group (86.70 (49.71-106.104) µg/g Cr,(1.28 ± 0.37) µg/g, (1.01 ± 0.34) µg/g and (1.82 ± 1.09) µg/g, respectively). The difference showed significance (P < 0.05). Under electron microscope detection, we observed the reduction of mitochondrial, the blurred mitochondrial cristae, some disappeared ridges, the reduced rough endoplasmic reticulum, and irregular uneven nuclear in the liver cells of rats in arsenic contaminated grain group. The contents of aspartate transaminase (AST) and total bile acid (TBA) in medium and high arsenic contaminated grain group were respectively (196.17 ± 46.18), (212.40 ± 35.14) U/L and (11.74 ± 4.07), (19.19 ± 4.68)µmol/L, which were higher than it in the control group (separately (143.10 ± 29.13) U/L and (6.23 ± 2.95)µmol/L). The contents of glutathione-S-transferases(GST), γ-glutamyltranspeptidase (GGT)and blood urea nitrogen (BUN)in high arsenic contaminated grain group were separately (196.21 ± 47.38)U/L, (1.71 ± 0.66)U/L, (9.54 ± 1.95)mmol/L, which were higher than that in the control group ((134.93 ± 24.80 )U/L, (0.75 ± 0.36)U/L, (7.67 ± 1.02)mmol/L, respectively). The contents of cholinesterase (CHE) in low, medium and high arsenic contaminated grain group were separately (259.90 ± 52.71)U/L, (263.44 ± 66.06)U/L and (244.90 ± 36.14)U/L, the contents of total protein(TP) in rats of high arsenic contaminated grain group were (62.64 ± 5.50)g/L, which was all lower than that in the control group ((448.33 ± 59.67)U/L, (69.38 ± 4.24)g/L, respectively). The contents of TBA in high arsenic contaminated grain group ( (19.19 ± 4.68) µmol/L) was higher than that in drinking water arsenic poisoning group ((15.15 ± 2.64)µmol/L). The differences of the above indexes were all significant (P < 0.05). The results showed the arsenic poisoning rat model produced by coal-burning were successfully established.
Terol, Amanda; Marcinkowska, Monika; Ardini, Francisco; Grotti, Marco
2016-01-01
A new method for the speciation analysis of arsenic in food using narrow-bore high-performance liquid-chromatography inductively coupled plasma mass spectrometry (HPLC-ICP-MS) has been developed. Fast separation of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid was carried out in 7 min using an anion-exchange narrow-bore Nucleosil 100 SB column and 12 mM ammonium dihydrogen phosphate of pH 5.2 as the mobile phase, at a flow rate of 0.3 mL min(-1). A PFA-ST micronebulizer jointed to a cyclonic spray chamber was used for HPLC-ICP-MS coupling. Compared with standard-bore HPLC-ICP-MS, the new method has provided higher sensitivity, reduced mobile-phase consumption, a lower matrix plasma load and a shorter analysis time. The achieved instrumental limits of detection were in the 0.3 - 0.4 ng As mL(-1) range, and the precision was better than 3%. The arsenic compounds were efficiently (>80%) extracted from various food samples using a 1:5 methanol/water solution, with additional ultrasonic treatment for rice products. The applicability of this method was demonstrated by the analysis of several samples, such as seafood (fish, mussels, shrimps, edible algae) and rice-based products (Jasmine and Arborio rice, spaghetti, flour, crackers), including three certified reference materials.
Arsenic Movement From Sediment to Water: Microbes and Mobilization in a Contaminated Lake
NASA Astrophysics Data System (ADS)
Keimowitz, A. R.; Mailloux, B. J.; Chillrud, S. N.; Ross, J.; Wovkulich, K.; McNamara, P.; Alexandrova, E.; Thompson, L.
2008-12-01
Union Lake (Millville, NJ), a reservoir downstream from the Vineland Chemical Company Superfund site, has bottom sediments that are highly contaminated with arsenic (>1 g/kg). Offsite As transport was investigated. Because the lake is a result of damming, it is perched above the water table and therefore As transport may occur via downward movement of porewaters and/or groundwaters. Preliminary evidence for this was found in the form of iron flocculates enriched in As which were found in surface seeps downgradient of the dam. The possibility of As remobilization and/or off-site transport by seasonal anoxia of lake bottom- waters was also explored. Although historically, appreciable As was found in the water column of the lake (up to approximately 200 micrograms/L), As releases over the summers of 2007 and 2008 were negligible to modest with a maximum [As] of 23 micrograms/L. Arsenic mobilization from the contaminated sediments into surface waters of the reservoir are limited in part due to incomplete eutrophication and frequent overturning (approximately 1x/month in summer 2007) of this shallow lake, therefore conditions which promoted greater As release were explored in the laboratory. Field and laboratory samples were examined for changes in the microbial community using a variety of genetic techniques; these changes in microbial community were both a result of, and influenced, seasonal lake cycles.
DNA repair gene XPD and susceptibility to arsenic-induced hyperkeratosis.
Ahsan, Habibul; Chen, Yu; Wang, Qiao; Slavkovich, Vesna; Graziano, Joseph H; Santella, Regina M
2003-07-20
Chronic exposure to inorganic arsenic is known to cause non-melanocytic skin and internal cancers in humans. An estimated 50-70 million people in Bangladesh have been chronically exposed to arsenic from drinking water and are at risk of skin and other cancers. We undertook the first study to examine whether genetic susceptibility, as determined by the codon 751 SNP (A-->C) of the DNA repair gene XPD, influences the risk of arsenic-induced hyperkeratotic skin lesions, precursors of skin cancer, in a case-control study of 29 hyperkeratosis cases and 105 healthy controls from the same community in an area of Bangladesh. As expected, there was a monotonic increase in risk of hyperkeratosis in relation to urinary arsenic measures but the XPD genotype was not independently associated with the risk. However, the increase in hyperkeratosis risk in relation to urinary arsenic measures genotype was borderline significant for urinary total arsenic (P for trend=0.06) and statistically significant for urinary creatinine adjusted arsenic (P for trend=0.01) among subjects with the XPD A allele (AA) but not among subjects with the other XPD genotypes. Among AA carriers, the risk for the highest arsenic exposed group compared with the lowest was more than 7-fold for urinary total arsenic and about 11-fold for urinary creatinine adjusted arsenic. In conclusion, our findings suggest that the DNA repair gene XPD may influence the risk of arsenic-induced premalignant hyperkeratotic skin lesions. Future larger studies are needed to confirm this novel finding and investigate how combinations of different candidate genes and/or other host and environmental factors may influence the risk of arsenic induced skin and other cancers.
Arsenic exposure and intestinal microbiota in children from Sirajdikhan, Bangladesh
Dong, Xiaoxi; Shulzhenko, Natalia; Lemaitre, Julien; Greer, Renee L.; Peremyslova, Kate; Quamruzzaman, Quazi; Rahman, Mahmudar; Hasan, Omar Sharif Ibn; Joya, Sakila Afroz; Golam, Mostofa; Christiani, David C.; Morgun, Andriy
2017-01-01
Background Arsenic has antimicrobial properties at high doses yet few studies have examined its effect on gut microbiota. This warrants investigation since arsenic exposure increases the risk of many diseases in which gut microbiota have been shown to play a role. We examined the association between arsenic exposure from drinking water and the composition of intestinal microbiota in children exposed to low and high arsenic levels during prenatal development and early life. Results 16S rRNA gene sequencing revealed that children with high arsenic exposure had a higher abundance of Proteobacteria in their stool compared to matched controls with low arsenic exposure. Furthermore, whole metagenome shotgun sequencing identified 332 bacterial SEED functions that were enriched in the high exposure group. A separate model showed that these genes, which included genes involved in virulence and multidrug resistance, were positively correlated with arsenic concentration within the group of children in the high arsenic group. We performed reference free genome assembly, and identified strains of E.coli as contributors to the arsenic enriched SEED functions. Further genome annotation of the E.coli genome revealed two strains containing two different arsenic resistance operons that are not present in the gut microbiome of a recently described European human cohort (Metagenomics of the Human Intestinal Tract, MetaHIT). We then performed quantification by qPCR of two arsenic resistant genes (ArsB, ArsC). We observed that the expression of these two operons was higher among the children with high arsenic exposure compared to matched controls. Conclusions This preliminary study indicates that arsenic exposure early in life was associated with altered gut microbiota in Bangladeshi children. The enrichment of E.coli arsenic resistance genes in the high exposure group provides an insight into the possible mechanisms of how this toxic compound could affect gut microbiota. PMID:29211769
Mobilization of soil-borne arsenic by three common organic acids: Dosage and time effects.
Onireti, Olaronke O; Lin, Chuxia
2016-03-01
A batch experiment was conducted to investigate the mobilization of soil-borne arsenic by three common low-molecular-weight organic acids with a focus on dosage and time effects. The results show that oxalic acid behaved differently from citric acid and malic acid in terms of mobilizing As that was bound to iron compounds. At an equivalent molar concentration, reactions between oxalic acid and soil-borne Fe were kinetically more favourable, as compared to those between either citric acid or malic acid and the soil-borne Fe. It was found that reductive dissolution of soil-borne Fe played a more important role in liberating As, as compared to non-reductive reactions. Prior to the 7th day of the experiment, As mobility increased with increasing dose of oxalic acid while there was no significant difference (P > 0.05) in mobilized As among the treatments with different doses of citric acid or malic acid. The dosage effect on soil-borne As mobilization in the citric acid and malic acid treatments became clear only after the 7th day of the experiment. Soluble Ca present in the soils could cause re-immobilization of As by competing with solution-borne Fe for available organic ligands to form practically insoluble organic compounds of calcium (i.e. calcium oxalate). This resulted in transformation of highly soluble organic complexes of iron (i.e. iron oxalate complexes) into slightly soluble organic compounds of iron (i.e. iron oxalate) or free ferric ion, which then reacted with the solution-borne arsenate ions to form practically insoluble iron arsenates in the latter part of the experiment. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilgen, Anastasia G.; Rychagov, Sergey N.; Trainor, Thomas P.
The use of geothermal fluids for the production of electricity poses a risk of contaminating surface waters when spent fluids are discharged into (near) surface environments. Arsenic (As) in particular is a common component in geothermal fluids and leads to a degradation of water quality when present in mobile and bioavailable forms. We have examined changes in arsenic speciation caused by quick transition from high temperature reducing conditions to surface conditions, retention mechanisms, and the extent of transport associated with the release of spent geothermal fluids at the Dachny geothermal fields (Mutnovsky geothermal region), Kamchatka, Russia -- a high temperaturemore » field used for electricity production. In the spent fluids, the arsenic concentration reaches 9 ppm, while in natural hot springs expressed in the vicinity of the field, the As concentration is typically below 10 ppb. The aqueous phase arsenic speciation was determined using Liquid Chromatography (LC) coupled to an Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The arsenic speciation in the bottom sediments (< 65 {mu}m fraction) of the local surface waters was analyzed using X-ray Absorption Spectroscopy (XAS). Arsenic in the geothermal source fluids is predominantly found as As(III), while a mixture of As(III)/As(V) is found in the water and sediment of the Falshivaia River downstream from the power plant. The extent of elevated arsenic concentrations in water is limited by adsorption to the bottom sediment and dilution, as determined using Cl{sup -} from the deep well fluids as a tracer. Analysis of the Extended X-ray Absorption Fine Structure (EXAFS) spectra shows that sediment phase arsenic is associated with both Al- and Fe-rich phases with a bi-dentate corner sharing local geometry. The geothermal waste fluids released in the surface water create a localized area of arsenic contamination. The extent of transport of dissolved As is limited to {approx}7 km downstream from the source, while As associated with bottom sediment travels {approx}3 km farther.« less
Zhu, Yu-Peng; Xi, Shu-Hua; Li, Ming-Yan; Ding, Ting-Ting; Liu, Nan; Cao, Fu-Yuan; Zeng, Yang; Liu, Xiao-Jing; Tong, Jun-Wang; Jiang, Shou-Fang
2017-03-01
Fluoride and arsenic are inorganic contaminants that occur in the natural environment. Chronic fluoride and/or arsenic exposure can induce developmental neurotoxicity and negatively influence intelligence in children, although the underlying molecular mechanisms are poorly understood. This study explored the effects of fluoride and arsenic exposure in drinking water on spatial learning, memory and key protein expression in the ERK/CREB signaling pathway in hippocampal and cerebral cortex tissue in rat offspring. Pregnant rats were divided into four groups. Control rats drank tap water, while rats in the three exposure groups drank water with sodium fluoride (100mg/L), sodium arsenite (75mg/L), and a sodium fluoride (100mg/L) and sodium arsenite (75mg/L) combination during gestation and lactation. After weaning, rat pups drank the same solution as their mothers. Spatial learning and memory ability of pups at postnatal day 21 (PND21) and postnatal day 42 (PND42) were measured using a Morris water maze. ERK, phospho-ERK (p-ERK), CREB and phospho-CREB (p-CREB) protein expression in the hippocampus and cerebral cortex was detected using Western blot. Compared with the control pups, escape latencies increased in PND42 pups exposed to arsenic and co-exposed to fluoride and arsenic, and the short-term and long-term spatial memory ability declined in pups exposed to fluoride and arsenic, both alone and in combination. Compared with controls, ERK and p-ERK levels decreased in the hippocampus and cerebral cortex in pups exposed to combined fluoride and arsenic. CREB protein expression in the cerebral cortex decreased in pups exposed to fluoride, arsenic, and the fluoride and arsenic combination. p-CREB protein expression in both the hippocampus and cerebral cortex was decreased in pups exposed to fluoride and arsenic in combination compared to the control group. There were negative correlation between the proteins expression and escape latency periods in pups. These data indicate that exposure to fluoride and arsenic in early life stage changes ERK, p-ERK, CREB and p-CREB protein expression in the hippocampus and cerebral cortex of rat offspring at PND21 and PND 42, which may contribute to impaired neurodevelopment following exposure. Copyright © 2017 Elsevier B.V. All rights reserved.
Wovkulich, Karen; Mailloux, Brian J.; Lacko, Allison; Keimowitz, Alison R.; Stute, Martin; Simpson, H. James; Chillrud, Steven N.
2010-01-01
Arsenic is a prevalent contaminant at US Superfund sites where remediation by pump and treat systems is often complicated by slow desorption of As from Fe and Al (hydr)oxides in aquifer solids. Chemical amendments that either compete with As for sorption sites or dissolve Fe and Al (hydr)oxides can increase As mobility and improve pump and treat remediation efficiency. The goal of this work was to determine optimal amendments for improving pump and treat at As contaminated sites such as the Vineland Chemical Co. Superfund site in southern New Jersey. Extraction and column experiments were performed using As contaminated aquifer solids (81 ± 1 mg/kg), site groundwater, and either phosphate (NaH2PO4·H2O) or oxalic acid (C2H2O4·2H2O). In extraction experiments, phosphate mobilized between 11% and 94% of As from the aquifer solids depending on phosphate concentration and extraction time (1 mM-1 M; 1–24 h) and oxalic acid mobilized between 38 and 102% depending on oxalic acid concentration and extraction time (1–400 mM; 1–24 h). In column experiments, phosphate additions induced more As mobilization in the first few pore volumes but oxalic acid was more effective at mobilizing As overall and at lower amendment concentrations. At the end of the laboratory column experiments, 48% of As had been mobilized from the aquifer sediments with 100 mM phosphate and 88% had been mobilized with 10 mM oxalic acid compared with 5% with ambient groundwater alone. Furthermore, simple extrapolations based on pore volumes suggest that chemical treatments could lower the time necessary for clean up at the Vineland site from 600 a with ambient groundwater alone to potentially as little as 4 a with 10 mM oxalic acid. PMID:21076621
Review of Coagulation Technology for Removal of Arsenic: Case of Chile
2006-01-01
Coagulation technology has been used since 1970 in northern Chile for removing arsenic from drinking-water. This experience suggests that coagulation is an effective technology for the removal of arsenic. It is currently possible to reduce arsenic from 400 μg/L to 10 μg/L at a rate of 500 L/sec, assuming pH, oxidizing and coagulation agents are strictly controlled. The Chilean experience with the removal of arsenic demonstrates that the water matrix dictates the selection of the arsenic-removal process. This paper presents a summary of the process, concepts, and operational considerations for the use of coagulation technology for removal of arsenic in Chile. PMID:17366767
GEOCHEMICAL MODELING OF ARSENIC SPECIATION AND MOBILIZATION: IMPLICATIONS FOR BIOREMEDIATION
Geochemical modeling techniques were used to examine the biogeochemical linkages between Fe, S, and As in shallow alluvial aquifers. We modeled: 1) the adsorption and desorption of As on the surface of hydrous ferric oxides (HFO’s) in stream beds under aerobic conditions; 2) red...
KINETICS OF ARSENATE REDUCTION BY DISSOLVED SULFIDE. (R825399)
Arsenic toxicity and mobility in soil and aquatic environments depends on its
speciation, with reducing environments generally leading to more hazardous
conditions with respect to this element. Aqueous sulfide (H2S or
HS-) is a strong reductan...
FIELD EVALUATION OF ARSENIC TRANSPORT: SPECIATION IN SEDIMENT MATERIAL
Fort Devens was established in 1917 as Camp Devens, a temporary training camp for soldiers from the New England area for WWI. Throughout its history, Fort Devens served as a training and induction center for military personnel, and as a unit mobilization and demobilization site....
Differences in Urinary Arsenic Metabolites between Diabetic and Non-Diabetic Subjects in Bangladesh
Nizam, Saika; Kato, Masashi; Yatsuya, Hiroshi; Khalequzzaman, Md.; Ohnuma, Shoko; Naito, Hisao; Nakajima, Tamie
2013-01-01
Ingestion of inorganic arsenic (iAs) is considered to be related to the development of diabetes mellitus. In order to clarify the possible differences in the metabolism in diabetics, we measured urinary iAs metabolites in diabetic cases and non-diabetic control subjects in Faridpur, an arsenic-contaminated area in Bangladesh. Physician-diagnosed type 2 diabetic cases (140 persons) and non-diabetic controls (180 persons) were recruited. Drinking water and spot urine samples were collected. Mean concentrations of total arsenic in drinking water did not differ between cases (85.1 μg/L) and controls (85.8 μg/L). The percentage of urinary iAs (iAs%) was significantly lower in cases (8.6%) than in controls (10.4%), while that of dimethylarsinic acid (DMA%) was higher in cases (82.6%) than in controls (79.9%). This may have been due to the higher secondary methylation index (SMI) in the former (11.6) rather than the latter (10.0). Adjusting for matching factors (sex and unions), and the additional other covariates (age and water arsenic) significantly attenuated the differences in iAs%, SMI, and DMA%, respectively, though the difference in monomethylarsonic acid% was newly significant in the latter adjustment. Our study did not suggest any significant differences in urinary arsenic metabolites between diabetic and non-diabetic subjects. PMID:23481591
Galloway, Jennifer M; Swindles, Graeme T; Jamieson, Heather E; Palmer, Michael; Parsons, Michael B; Sanei, Hamed; Macumber, Andrew L; Timothy Patterson, R; Falck, Hendrik
2018-05-01
Climate change is profoundly affecting seasonality, biological productivity, and hydrology in high northern latitudes. In sensitive subarctic environments exploitation of mineral resources led to contamination and it is not known how cumulative effects of resource extraction and climate warming will impact ecosystems. Gold mines near Yellowknife, Northwest Territories, subarctic Canada, operated from 1938 to 2004 and released >20,000t of arsenic trioxide (As 2 O 3 ) to the environment through stack emissions. This release resulted in elevated arsenic concentrations in lake surface waters and sediments relative to Canadian drinking water standards and guidelines for the protection of aquatic life. A meta-analytical approach is used to better understand controls on As distribution in lake sediments within a 30-km radius of historic mineral processing activities. Arsenic concentrations in the near-surface sediments range from 5mg·kg -1 to over 10,000mg·kg -1 (median 81mg·kg -1 ; n=105). Distance and direction from the historic roaster stack are significantly (p<0.05) related to sedimentary As concentration, with highest As concentrations in sediments within 11km and lakes located downwind. Synchrotron-based μXRF and μXRD confirm the persistence of As 2 O 3 in near surface sediments of two lakes. Labile organic matter (S1) is significantly (p<0.05) related to As and S concentrations in sediments and this relationship is greatest in lakes within 11km from the mine. These relations are interpreted to reflect labile organic matter acting as a substrate for microbial growth and mediation of authigenic precipitation of As-sulphides in lakes close to the historic mine where As concentrations are highest. Continued climate warming is expected to lead to increased biological productivity and changes in organic geochemistry of lake sediments that are likely to play an important role in the mobility and fate of As in aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of Solution Properties on Arsenic Adsorption by Drinking Water Treatment Residuals
NASA Astrophysics Data System (ADS)
Nagar, R.; Sarkar, D.; Datta, R.; Sharma, S.
2005-05-01
Arsenic (As) is a ubiquitous element in the environment. Higher levels of As in soils may result from various anthropogenic sources such as use of arsenical pesticides, fertilizers, wood preservatives, smelter wastes, and coal combustion. This is of great environmental and human health concern due to the high toxicity and proven carcinogenicity of several arsenical species. Thus there is a need for developing cost effective technologies capable of lowering bioavailable As concentrations in soils to environmentally acceptable levels. In-situ immobilization of metals using inexpensive amendments such as minerals (apatite, zeolite, or clay minerals) or waste by-products (steel shot, beringite, and iron-rich biosolids) to reduce bioavailability is an inexpensive alternative to the more expensive ex-situ remediation methods. One such emerging in-situ technique is the application of drinking water treatment residuals (WTRs). WTRs can be classified as a byproduct of drinking water treatment plants and are generally composed of amorphous Fe/Al oxides, activated C and cationic polymers. WTRs possess amorphous structure and generally have high positive charge. Because As is chemically similar to phosphorus, the oxyanions As (V) and As (III) may have the potential of being retained by the WTRs. Thus, it is hypothesized that WTRs retain As irreversibly, thereby reducing As biavailability. As mobility of arsenic is controlled by adsorption reactions, knowledge of adsorption of As by WTRs is of primary relevance. Although the overall rate of adsorption is dependent on numerous factors, review of the literature indicates that competing ions in solution play an important role in the overall retention of As; however, little work has been conducted to identify which ions provide the most competition. As arsenic adsorption appears to be influenced by the variable pH-dependent charges developed on the soil particle surfaces, the effect of pH is also of critical importance. Hence, the purpose of the present study is to investigate the effect of solution properties, such as pH, ionic strength and competing ions on the adsorption of As by WTRs and WTR amended soils. Three types of WTRs are being used, namely Fe- WTR, Al- WTR and Ca-WTR. Effect of pH is being studied by varying the pH values between 3 and 9. The solid/solution ratio has been fixed at 1:5 and a 24 h equilibration has been chosen based on the results of earlier adsorption experiments. Furthermore, As adsorption will be studied in presence of potentially competing ions such as phosphate, sulfate, and selenate. Keywords: Adsorption, water treatment residuals, oxyanions, in-situ remediation, Arsenic
Establishment of Groundwater Arsenic Potential Distribution and Discrimination in Taiwan
NASA Astrophysics Data System (ADS)
Tsai, Kuo Sheng; Chen, Yu Ying; Chung Liu, Chih; Lin, Chien Wen
2016-04-01
According to the last 10 years groundwater monitoring data in Taiwan, Arsenic concentration increase rapidly in some areas, similar to Bengal and India, the main source of Arsenic-polluted groundwater is geological sediments, through reducing reactions. There are many researches indicate that high concentration of Arsenic in groundwater poses the risk to water safety, for example, the farm lands irrigation water contains Arsenic cause the concentration of Arsenic increase in soil and crops. Based on the management of water usage instead of remediation in the situation of insufficient water. Taiwan EPA has been developed the procedures of Arsenic contamination potential area establishment and source discriminated process. Taiwan EPA use the procedures to determine the management of using groundwater, and the proposing usage of Arsenic groundwater accordance with different objects. Agencies could cooperate with the water quality standard or water needs, studying appropriate water purification methods and the groundwater depth, water consumption, thus achieve the goal of water safety and environmental protection, as a reference of policy to control total Arsenic concentration in groundwater. Keywords: Arsenic; Distribution; Discrimination; Pollution potential area of Arsenic; Origin evaluation of groundwater Arsenic
Arsenic Methylation and Lung and Bladder Cancer in a Case-control Study in Northern Chile
Melak, Dawit; Ferreccio, Catterina; Kalman, David; Parra, Roxana; Acevedo, Johanna; Pérez, Liliana; Cortés, Sandra; Smith, Allan H; Yuan, Yan; Liaw, Jane; Steinmaus, Craig
2014-01-01
In humans, ingested inorganic arsenic is metabolized to monomethylarsenic (MMA) then to dimethylarsenic (DMA), although this process is not complete in most people. The trivalent form of MMA is highly toxic in vitro and previous studies have identified associations between the proportion of urinary arsenic as MMA (%MMA) and several arsenic-related diseases. To date, however, relatively little is known about its role in lung cancer, the most common cause of arsenic-related death, or about its impacts on people drinking water with lower arsenic concentrations (e.g., <200 μg/L). In this study, urinary arsenic metabolites were measured in 94 lung and 117 bladder cancer cases and 347 population-based controls from areas in northern Chile with a wide range of drinking water arsenic concentrations. Lung cancer odds ratios adjusted for age, sex, and smoking by increasing tertiles of %MMA were 1.00, 1.91 (95% confidence interval (CI), 0.99–3.67), and 3.26 (1.76–6.04) (p-trend <0.001). Corresponding odds ratios for bladder cancer were 1.00, 1.81 (1.06–3.11), and 2.02 (1.15–3.54) (p-trend <0.001). In analyses confined to subjects only with arsenic water concentrations <200 μg/L (median=60 μg/L), lung and bladder cancer odds ratios for subjects in the upper tertile of %MMA compared to subjects in the lower two tertiles were 2.48 (1.08–5.68) and 2.37 (1.01–5.57), respectively. Overall, these findings provide evidence that inter-individual differences in arsenic metabolism may be an important risk factor for arsenic-related lung cancer, and may play a role in cancer risks among people exposed to relatively low arsenic water concentrations. PMID:24296302
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, Pranay; Yadav, Rajesh S.; Department of Crimnology and Forensic Science, Harisingh Gour University, Sagar 470 003
Earlier, we found that arsenic induced cholinergic deficits in rat brain could be protected by curcumin. In continuation to this, the present study is focused to unravel the molecular mechanisms associated with the protective efficacy of curcumin in arsenic induced cholinergic deficits. Exposure to arsenic (20 mg/kg body weight, p.o) for 28 days in rats resulted to decrease the expression of CHRM2 receptor gene associated with mitochondrial dysfunctions as evident by decrease in the mitochondrial membrane potential, activity of mitochondrial complexes and enhanced apoptosis both in the frontal cortex and hippocampus in comparison to controls. The ultrastructural images of arsenicmore » exposed rats, assessed by transmission electron microscope, exhibited loss of myelin sheath and distorted cristae in the mitochondria both in the frontal cortex and hippocampus as compared to controls. Simultaneous treatment with arsenic (20 mg/kg body weight, p.o) and curcumin (100 mg/kg body weight, p.o) for 28 days in rats was found to protect arsenic induced changes in the mitochondrial membrane potential and activity of mitochondrial complexes both in frontal cortex and hippocampus. Alterations in the expression of pro- and anti-apoptotic proteins and ultrastructural damage in the frontal cortex and hippocampus following arsenic exposure were also protected in rats simultaneously treated with arsenic and curcumin. The data of the present study reveal that curcumin could protect arsenic induced cholinergic deficits by modulating the expression of pro- and anti-apoptotic proteins in the brain. More interestingly, arsenic induced functional and ultrastructural changes in the brain mitochondria were also protected by curcumin. - Highlights: • Neuroprotective mechanism of curcumin in arsenic induced cholinergic deficits studied • Curcumin protected arsenic induced enhanced expression of stress markers in rat brain • Arsenic compromised mitochondrial electron transport chain protected by curcumin • Functional and structural changes in mitochondria by arsenic protected by curcumin.« less
Arsenic speciation in rice and risk assessment of inorganic arsenic in Taiwan population.
Chen, Hsiu-Ling; Lee, Ching-Chang; Huang, Winn-Jung; Huang, Han-Ting; Wu, Yi-Chen; Hsu, Ya-Chen; Kao, Yi-Ting
2016-03-01
This study assessed the total arsenic content and arsenic speciation in rice to determine the health risks associated with rice consumption in various age-gender subgroups in Taiwan. The average total arsenic levels in white rice and brown rice were 116.6 ± 39.2 and 215.5 ± 63.5 ng/g weight (n = 51 and 13), respectively. The cumulative cancer risk among males was 10.4/100,000. The highest fraction of inorganic/total arsenic content in white rice ranged from 76.9 to 88.2 % and from 81.0 to 96.5 % in brown rice. The current study found different arsenic speciation of rice in southern Taiwan, where the famous blackfoot disease has been reported compared with arsenic speciation from other Taiwan areas. Therefore, rice and other grains should be further monitored in southern Taiwan to evaluate whether arsenic contamination is well controlled in this area.
Biogeochemical dynamics of pollutants in Insitu groundwater remediation systems
NASA Astrophysics Data System (ADS)
Kumar, N.; Millot, R.; Rose, J.; Négrel, P.; Battaglia-Brunnet, F.; Diels, L.
2010-12-01
Insitu (bio) remediation of groundwater contaminants has been area of potential research interest in last few decades as the nature of contaminant encountered has also changed drastically. This gives tough challenge to researchers in finding a common solution for all contaminants together in one plume. Redox processes play significant role in pollutant dynamics and mobility in such systems. Arsenic particularly in reduced environments can get transformed into its reduced form (As3+), which is apparently more mobile and highly toxic. Also parallel sulfate reduction can lead to sulfide production and formation of thioarsenic species. On the other hand heavy metals (Zn, Fe, and Cd) in similar conditions will favour more stable metal sulfide precipitation. In the present work, we tested Zero Valent Iron (ZVI) in handling such issues and found promising results. Although it has been well known for contaminants like arsenic and chlorinated compounds but not much explored for heavy metals. Its high available surface area supports precipitation and co -precipitation of contaminants and its highly oxidizing nature and water born hydrogen production helps in stimulation of microbial activities in sediment and groundwater. These sulfate and Iron reducing bacteria can further fix heavy metals as stable metal sulfides by using hydrogen as potential electron donor. In the present study flow through columns (biotic and control) were set up in laboratory to understand the behaviour of contaminants in subsurface environments, also the impact of microbiology on performance of ZVI was studied. These glass columns (30 x 4cm) with intermediate sampling points were monitored over constant temperature (20°C) and continuous groundwater (up)flow at ~1ml/hr throughout the experiment. Simulated groundwater was prepared in laboratory containing sulfate, metals (Zn,Cd) and arsenic (AsV). While chemical and microbial parameters were followed regularly over time, solid phase has been characterized at the end of experiment using synchrotron and other microscopic techniques (SEM, µXRF). Stable isotope signatures have been proved as a critical tool in understanding the redox and microbial processes. We monitored ∂34S, ∂66Zn and ∂56Fe isotope evolution with time to understand the relationship between biogeochemical process and isotope fractionation. We observed Δ34S biotic - abiotic ~6‰ and ∂56Fe variation up to 1.5‰ in our study. ZVI was very efficient in metal removal and also in enhancing sulfate reduction in column sediment. Arsenic reduction and thiarsenic species were also detected in biotic columns showing a positive correlation with sulfide production and Fe speciation. Latest results will be presented with integration of different processes. This multidisciplinary approach will help in deep understanding of contaminants behaviour and also to constrain the efficiency and longitivity of treatment system for different contaminants. “This is contribution of the AquaTrain MRTN (Contract No. MRTN-CT-2006-035420) funded under the European Commission sixth framework programme (2002-2006) Marie Curie Actions, Human Resources & Mobility Activity Area- Research Training Networks”
Potential negative consequences of adding phosphorus-based fertilizers to immobilize lead in soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilgour, Douglas W.; Moseley, Rebecca A.; Savage, Kaye S
2008-09-01
A study of the potential negative consequences of adding phosphate (P)-based fertilizers as amendments to immobilize lead (Pb) in contaminated soils was conducted. Lead-contaminated firing range soils also contained elevated concentrations of antimony (Sb), a common Pb hardening agent, and some arsenic (As) of unknown (possibly background) origin. After amending the soils with triple superphosphate, a relatively soluble P source, column leaching experiments revealed elevated concentrations of Sb, As, and Pb in the leachate, reflecting an initial spike in soluble Pb and a particularly dramatic increase in Sb and As mobility. Minimal As, Sb, and Pb leaching was observed duringmore » column tests performed on non-amended control soils. In vitro extractions tests were performed to assess changes in Pb, As, and Sb bioaccessibility on P amendment. Lead bioaccessibility was systematically lowered with increasing P dosage, but there was much less of an effect on As and Sb bioaccessibility than on mobility. Our results indicate that although P amendments may aid in lowering the bioaccessibility of soil-bound Pb, it may also produce an initial increase in Pb mobility and a significant release of Sb and As from the soil, dramatically increasing their mobility and to a lesser extent their bioavailability.« less
NASA Astrophysics Data System (ADS)
Richards, Laura A.; Magnone, Daniel; Boyce, Adrian J.; Casanueva-Marenco, Maria J.; van Dongen, Bart E.; Ballentine, Christopher J.; Polya, David A.
2018-02-01
Chronic exposure to arsenic (As) through the consumption of contaminated groundwaters is a major threat to public health in South and Southeast Asia. The source of As-affected groundwaters is important to the fundamental understanding of the controls on As mobilization and subsequent transport throughout shallow aquifers. Using the stable isotopes of hydrogen and oxygen, the source of groundwater and the interactions between various water bodies were investigated in Cambodia's Kandal Province, an area which is heavily affected by As and typical of many circum-Himalayan shallow aquifers. Two-point mixing models based on δD and δ18O allowed the relative extent of evaporation of groundwater sources to be estimated and allowed various water bodies to be broadly distinguished within the aquifer system. Model limitations are discussed, including the spatial and temporal variation in end member compositions. The conservative tracer Cl/Br is used to further discriminate between groundwater bodies. The stable isotopic signatures of groundwaters containing high As and/or high dissolved organic carbon plot both near the local meteoric water line and near more evaporative lines. The varying degrees of evaporation of high As groundwater sources are indicative of differing recharge contributions (and thus indirectly inferred associated organic matter contributions). The presence of high As groundwaters with recharge derived from both local precipitation and relatively evaporated surface water sources, such as ponds or flooded wetlands, are consistent with (but do not provide direct evidence for) models of a potential dual role of surface-derived and sedimentary organic matter in As mobilization.
Wan, Xiaoming; Lei, Mei; Chen, Tongbin; Yang, Junxing
2017-02-01
Intercropping technology provides income for owners of contaminated soil without increasing environmental risk. Therefore, intercropping of arsenic (As) hyperaccumulator Pteris vittata L. with economic crops is now widely utilized in slightly or moderately As-contaminated farmlands. However, the mechanisms for As mobilization and absorption within the intercropping system are still unclear. To clarify As mobilization and absorption within an intercropping system, portable X-ray fluorescence spectrometry and sequential extraction were utilized to detect the spatial distribution and speciation of As in an intercropped system of P. vittata and cash crop mulberry (Morus alba L.). Compared with the P. vittata monoculture, P. vittata intercropping had higher As concentration, which may have been caused by the efficient exploitation of a greater As source in soil. Compared with the M. alba monoculture, M. alba intercropping had lower As concentration, which may have been caused by the As depletion by P. vittata roots. Spatial distribution of As in the soil indicated a "valley" around the P. vittata roots in both monocultured and intercropped systems, implying that As was depleted around the P. vittata roots. Continuous As extraction confirmed that both P. vittata monoculture and P. vittata and M. alba intercropping can efficiently control the risk of As soil contamination. Moreover, the properties of M. alba leaves were further studied. Mulberry leaves in the intercropping system satisfied the national feed standards. Therefore, intercropping presents a safe utilization mode for As-contaminated soil and can increase the income from silkworm-rearing M. alba leaves, without extra environmental risk. Copyright © 2016. Published by Elsevier B.V.
Arsenic in Bangladesh Groundwater: from Science to Mitigation
NASA Astrophysics Data System (ADS)
van Geen, A.; Ahmed, K. M.; Graziano, J. H.
2004-12-01
A large proportion of the populations of Bangladesh and other South Asian countries is at risk of contracting cancers and other debilitating diseases due to exposure to high concentrations of naturally occurring arsenic in groundwater supplied by millions of tube wells. Starting in January 2000, and in partnership with several Bangladeshi institutions, an interdisciplinary team of health, earth, and social scientists from Columbia University has focused its efforts to address this crisis on a 25 km2 region in Araihazar upazila, about 20 km northeast of Dhaka. The project started with the recording of the position and depth of ~6600 wells in the area, the collection of groundwater samples from these wells, and laboratory analyses for arsenic and a suite of other constituents. This was followed by the recruitment of 12,000 adult inhabitants of the area for a long-term cohort study of the effects of arsenic exposure, as well as cross-sectional studies of their children. This presentation will focus on (1) the extreme degree of spatial variability of arsenic concentrations in Bangladesh groundwater, (2) the notion that spatial variability hampers mitigation in the sense that it complicates predictions but also offers an opportunity for mitigation because many households live within walking or drilling distance of safe water, and (3) the implication of recent advances in our understanding of the mechanisms of arsenic mobilization for potential temporal changes in groundwater arsenic. In addition, (4) a unique data set documenting the response of 6500 households to 4 years of mitigation in Araihazar, supported by documented reductions in exposure to arsenic based on urine analyses, will be presented. The presentation will conclude with (5) a proposal for scaling up mitigation efforts to the rest of the country by targeting safe aquifers with information transmitted to the village level from a central data base using cellular phones.
Saalfield, Samantha L; Bostick, Benjamin C
2009-12-01
Biologically mediated redox processes have been shown to affect the mobility of iron oxide-bound arsenic in reducing aquifers. This work investigates how dissimilatory sulfate reduction and secondary iron reduction affect sulfur, iron, and arsenic speciation. Incubation experiments were conducted with As(III/V)-bearing ferrihydrite in carbonate-buffered artificial groundwater enriched with lactate (10 mM) and sulfate (0.08-10 mM) and inoculated with Desulfovibrio vulgaris (ATCC 7757, formerly D. desulfuricans), which reduces sulfate but not iron or arsenic. Sulfidization of ferrihydrite led to formation of magnetite, elemental sulfur, and trace iron sulfides. Observed reaction rates imply that the majority of sulfide is recycled to sulfate, promoting microbial sulfate reduction in low-sulfate systems. Despite dramatic changes in Fe and S speciation, and minimal formation of Fe or As sulfides, most As remained in the solid phase. Arsenic was not solubilized in As(V)-loaded incubations, which experienced slow As reduction by sulfide, whereas As(III)-loaded incubations showed limited and transient As release associated with iron remineralization. This suggests that As(III) production is critical to As release under reducing conditions, with sulfate reduction alone unlikely to release As. These data also suggest that bacterial reduction of As(V) is necessary for As sequestration in sulfides, even where sulfate reduction is active.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Speciation, Characterization, And Mobility Of As, Se and Hg In Flue Gas Desulphurization Residues
Flue gas from coal combustion contains significant amounts of volatile toxic trace elements such as arsenic (As), selenium (Se) and mercury (Hg). The capture of these elements in the flue gas desulphurization (FGD) scrubber unit has resulted in generation of a metal-laden residue...
Speciation, Characterization, And Mobility Of As, Se, and Hg In Flue Gas Desulphurization Residues
Flue gas from coal combustion contains significant amounts of volatile elements, such as arsenic (As), selenium (Se) and mercury (Hg), which could lead to serious environmental health risks. The capture of these toxic elements in the scrubber with a flue gas desulphurization (FGD...
Urinary 8-hydroxydeoxyguanosine and urothelial carcinoma risk in low arsenic exposure area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, C.-J.; Huang, C.-J.; Pu, Y.-S.
2008-01-01
Arsenic is a well-documented human carcinogen and is known to cause oxidative stress in cultured cells and animals. A hospital-based case-control study was conducted to evaluate the relationship among the levels of urinary 8-hydroxydeoxyguanosine (8-OHdG), the arsenic profile, and urothelial carcinoma (UC). Urinary 8-OHdG was measured by using high-sensitivity enzyme-linked immunosorbent assay (ELISA) kits. The urinary species of inorganic arsenic and their metabolites were analyzed by high-performance liquid chromatography (HPLC) and hydride generator-atomic absorption spectrometry (HG-AAS). This study showed that the mean urinary concentration of total arsenics was significantly higher, at 37.67 {+-} 2.98 {mu}g/g creatinine, for UC patients thanmore » for healthy controls of 21.10 {+-} 0.79 {mu}g/g creatinine (p < 0.01). Urinary 8-OHdG levels correlated with urinary total arsenic concentrations (r = 0.19, p < 0.01). There were significantly higher 8-OHdG levels, of 7.48 {+-} 0.97 ng/mg creatinine in UC patients, compared to healthy controls of 5.95 {+-} 0.21 ng/mg creatinine. Furthermore, female UC patients had higher 8-OHdG levels of 9.22 {+-} 0.75 than those of males at 5.76 {+-} 0.25 ng/mg creatinine (p < 0.01). Multiple linear regression analyses revealed that high urinary 8-OHdG levels were associated with increased total arsenic concentrations, inorganic arsenite, monomethylarsonic acid (MMA), and dimethylarsenate (DMA) as well as the primary methylation index (PMI) even after adjusting for age, gender, and UC status. The results suggest that oxidative DNA damage was associated with arsenic exposure, even at low urinary level of arsenic.« less
Zhang, Jing; Koch, Iris; Gibson, Laura A; Loughery, Jennifer R; Martyniuk, Christopher J; Button, Mark; Caumette, Guilhem; Reimer, Kenneth J; Cullen, William R; Langlois, Valerie S
2015-12-01
Arsenic compounds are widespread environmental contaminants and exposure elicits serious health issues, including early developmental anomalies. Depending on the oxidation state, the intermediates of arsenic metabolism interfere with a range of subcellular events, but the fundamental molecular events that lead to speciation-dependent arsenic toxicity are not fully elucidated. This study therefore assesses the impact of arsenic exposure on early development by measuring speciation and gene expression profiles in the developing Western clawed frog (Silurana tropicalis) larvae following the environmental relevant 0.5 and 1 ppm arsenate exposure. Using HPLC-ICP-MS, arsenate, dimethylarsenic acid, arsenobetaine, arsenocholine, and tetramethylarsonium ion were detected. Microarray and pathway analyses were utilized to characterize the comprehensive transcriptomic responses to arsenic exposure. Clustering analysis of expression data showed distinct gene expression patterns in arsenate treated groups when compared with the control. Pathway enrichment revealed common biological themes enriched in both treatments, including cell signal transduction, cell survival, and developmental pathways. Moreover, the 0.5 ppm exposure led to the enrichment of pathways and biological processes involved in arsenic intake or efflux, as well as histone remodeling. These compensatory responses are hypothesized to be responsible for maintaining an in-body arsenic level comparable to control animals. With no appreciable changes observed in malformation and mortality between control and exposed larvae, this is the first study to suggest that the underlying transcriptomic regulations related to signal transduction, cell survival, developmental pathways, and histone remodeling may contribute to maintaining ongoing development while coping with the potential arsenic toxicity in S. tropicalis during early development. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Release of Particulate Iron Sulfide during Shale-Fluid Interaction.
Kreisserman, Yevgeny; Emmanuel, Simon
2018-01-16
During hydraulic fracturing, a technique often used to extract hydrocarbons from shales, large volumes of water are injected into the subsurface. Although the injected fluid typically contains various reagents, it can become further contaminated by interaction with minerals present in the rocks. Pyrite, which is common in organic-rich shales, is a potential source of toxic elements, including arsenic and lead, and it is generally thought that for these elements to become mobilized, pyrite must first dissolve. Here, we use atomic force microscopy and environmental scanning electron microscopy to show that during fluid-rock interaction, the dissolution of carbonate minerals in Eagle Ford shale leads to the physical detachment, and mobilization, of embedded pyrite grains. In experiments carried out over a range of pH, salinity, and temperature we found that in all cases pyrite particles became detached from the shale surfaces. On average, the amount of pyrite detached was equivalent to 6.5 × 10 -11 mol m -2 s -1 , which is over an order of magnitude greater than the rate of pyrite oxidation expected under similar conditions. This result suggests that mechanical detachment of pyrite grains could be an important pathway for the mobilization of arsenic in hydraulic fracturing operations and in groundwater systems containing shales.
Mladenov, Natalie; Zheng, Yan; Simone, Bailey; Bilinski, Theresa M; McKnight, Diane M; Nemergut, Diana; Radloff, Kathleen A; Rahman, M Moshiur; Ahmed, Kazi Matin
2015-09-15
In some high arsenic (As) groundwater systems, correlations are observed between dissolved organic matter (DOM) and As concentrations, but in other systems, such relationships are absent. The role of labile DOM as the main driver of microbial reductive dissolution is not sufficient to explain the variation in DOM-As relationships. Other processes that may also influence As mobility include complexation of As by dissolved humic substances, and competitive sorption and electron shuttling reactions mediated by humics. To evaluate such humic DOM influences, we characterized the optical properties of filtered surface water (n = 10) and groundwater (n = 24) samples spanning an age gradient in Araihazar, Bangladesh. Further, we analyzed large volume fulvic acid (FA) isolates (n = 6) for optical properties, C and N content, and (13)C NMR spectroscopic distribution. Old groundwater (>30 years old) contained primarily sediment-derived DOM and had significantly higher (p < 0.001) dissolved As concentration than groundwater that was younger than 5 years old. Younger groundwater had DOM spectroscopic signatures similar to surface water DOM and characteristic of a sewage pollution influence. Associations between dissolved As, iron (Fe), and FA concentration and fluorescence properties of isolated FA in this field study suggest that aromatic, terrestrially derived FAs promote As-Fe-FA complexation reactions that may enhance As mobility.
Andrew, Angeline S; Jewell, David A; Mason, Rebecca A; Whitfield, Michael L; Moore, Jason H; Karagas, Margaret R
2008-04-01
Arsenic exposure impairs development and can lead to cancer, cardiovascular disease, and diabetes. The mechanism underlying these effects remains unknown. Primarily because of geologic sources of contamination, drinking-water arsenic levels are above the current recommended maximum contaminant level of 10 microg/L in the northeastern, western, and north central regions of the United States. We investigated the effects of arsenic exposure, defined by internal biomarkers at levels relevant to the United States and similarly exposed populations, on gene expression. We conducted separate Affymetrix microarray-based genomewide analyses of expression patterns. Peripheral blood lymphocyte samples from 21 controls interviewed (1999-2002) as part of a case-control study in New Hampshire were selected based on high- versus low-level arsenic exposure levels. The biologic functions of the transcripts that showed statistically significant abundance differences between high- and low-arsenic exposure groups included an overrepresentation of genes involved in defense response, immune function, cell growth, apoptosis, regulation of cell cycle, T-cell receptor signaling pathway, and diabetes. Notably, the high-arsenic exposure group exhibited higher levels of several killer cell immunoglobulin-like receptors that inhibit natural killer cell activity. These findings define biologic changes that occur with chronic arsenic exposure in humans and provide leads and potential targets for understanding and monitoring the pathogenesis of arsenic-induced diseases.
Arsenic in ground-water under oxidizing conditions, south-west United States
Robertson, F.N.
1989-01-01
Concentrations of dissolved arsenic in ground-water in alluvial basins of Arizona commonly exceed 50 ??g L-1 and reach values as large as 1,300 ??g L-1. Arsenic speciation analyses show that arsenic occurs in the fully oxidized state of plus 5 (As+5), most likely in the form of HAsO4???2, under existing oxidizing and pH conditions. Arsenic in source areas presumably is oxidized to soluble As before transport into the basin or, if after transport, before burial. Probable sources of arsenic are the sulphide and arsenide deposits in the mineralized areas of the mountains surrounding the basins. Arsenic content of alluvial material ranged from 2 to 88 ppm. Occurrence and removal of arsenic in ground-water are related to the pH and the redox condition of the ground-water, the oxidation state of arsenic, and sorption or exchange. Within basins, dissolved arsenic correlates (P<0.01) with dissolved molybdenum, selenium, vanadium, and fluoride and with pH, suggesting sorption of negative ions. The sorption hypothesis is further supported by enrichment of teachable arsenic in the basin-fill sediments by about tenfold relative to the crustal abundance and by as much as a thousandfold relative to concentrations found in ground-water. Silicate hydrolysis reactions, as defined within the alluvial basins, under closed conditions cause increases in pH basinward and would promote desorption. Within the region, large concentrations of arsenic are commonly associated with the central parts of basins whose chemistries evolve under closed conditions. Arsenic does not correlate with dissolved iron (r = 0.09) but may be partly controlled by iron in the solid phase. High solid-phase arsenic contents were found in red clay beds. Large concentrations of arsenic also were found in water associated with red clay beds. Basins that contain the larger concentrations are bounded primarily by basalt and andesite, suggesting that the iron content as well as the arsenic content of the basin fill may play a role in the occurrence of arsenic in ground-water. Under oxidizing conditions in Arizona, arsenic in ground-water appears to be controlled in part by sorption or desorption of HAsO4???2 on active ferric oxyhydroxide surfaces. ?? 1989 Sciences and Technology Letters.
Arsenic- and selenium-induced changes in spectral reflectance and morphology of soybean plants
Milton, N.M.; Ager, C.M.; Eiswerth, B.A.; Power, M.S.
1989-01-01
Soybean (Glycine max) plants were grown in hydroponic solutions treated with high concentrations of either arsenic or selenium. Spectral reflectance changes in arsenic-dosed plants included a shift to shorter wavelengths in the long-wavelength edge of the chlorophyll absorption band centered at 680 nm (the red edge) and higher reflectance in the 550-650 nm region. These results are consistent with vegetation reflectance anomalies observed in previous greenhouse experiments and in airborne radiometer studies. The selenium-dosed plants contrast, exhibited a shift to longer wavelengths of the red edge and lower reflectance between 550 nm and 650 wh when compared with control plants. Morphological effects of arsenic uptake included lower overall biomass, stunted and discolored roots, and smaller leaves oriented more vertically than leaves of control plants. Selenium-dosed plants also displayed morphological changes, but root and leaf biomass were less affected than were those of arsenic-dosed plants when compared to control plants. ?? 1989.
Predicting arsenic bioavailability to hyperaccumulator Pteris vittata in arsenic-contaminated soils.
Gonzaga, Maria Isidória Silva; Ma, Lena Q; Pacheco, Edson Patto; dos Santos, Wallace Melo
2012-12-01
Using chemical extraction to evaluate plant arsenic availability in contaminated soils is important to estimate the time frame for site cleanup during phytoremediation. It is also of great value to assess As mobility in soil and its risk in environmental contamination. In this study, four conventional chemical extraction methods (water, ammonium sulfate, ammonium phosphate, and Mehlich III) and a new root-exudate based method were used to evaluate As extractability and to correlate it with As accumulation in P. vittata growing in five As-contaminated soils under greenhouse condition. The relationship between different soil properties, and As extractability and plant As accumulation was also investigated. Arsenic extractability was 4.6%, 7.0%, 18%, 21%, and 46% for water, ammonium sulfate, organic acids, ammonium phosphate, and Mehlich III, respectively. Root exudate (organic acids) solution was suitable for assessing As bioavailability (81%) in the soils while Mehlich III (31%) overestimated the amount of As taken up by plants. Soil organic matter, P and Mg concentrations were positively correlated to plant As accumulation whereas Ca concentration was negatively correlated. Further investigation is needed on the effect of Ca and Mg on As uptake by P. vittata. Moreover, additional As contaminated soils with different properties should be tested.
Arsenic uptake by common marsh fern Thelypteris palustris and its potential for phytoremediation.
Anderson, LaShunda; Walsh, Maud M
2007-07-01
Hydroponic and soil cultivations of Thelypteris palustris, the common marsh fern, were used to investigate its potential for use in phytoremediation of arsenic (As) contaminated water or soil. ICP-MS analyses indicate that both roots and fronds accumulated arsenic in levels up to 100 times the concentration of treatment solutions of 250 microg/L and 500 mug/L arsenic, but values varied widely and there was no significant difference in concentrations in fronds between the control (no arsenic) and treatments. Plants exposed to 500 microg/L exhibited necrosis in their fronds, suggesting that Thelypteris palustris is not a good candidate for phyotoremediation of arsenic-contaminated sites.
Environmental arsenic exposure and serum matrix metalloproteinase-9.
Burgess, Jefferey L; Kurzius-Spencer, Margaret; O'Rourke, Mary Kay; Littau, Sally R; Roberge, Jason; Meza-Montenegro, Maria Mercedes; Gutiérrez-Millán, Luis Enrique; Harris, Robin B
2013-03-01
The objective of this study was to evaluate the relationship between environmental arsenic exposure and serum matrix metalloproteinase (MMP)-9, a biomarker associated with cardiovascular disease and cancer. In a cross-sectional study of residents of Arizona, USA (n=215) and Sonora, Mexico (n=163), drinking water was assayed for total arsenic, and daily drinking water arsenic intake was estimated. Urine was speciated for arsenic, and concentrations were adjusted for specific gravity. Serum was analyzed for MMP-9 using ELISA. Mixed model linear regression was used to assess the relation among drinking water arsenic concentration, drinking water arsenic intake, urinary arsenic sum of species (the sum of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid), and MMP-9, controlling for autocorrelation within households. Drinking water arsenic concentration and intake were positively associated with MMP-9, both in crude analysis and after adjustment for gender, country/ethnicity, age, body mass index, current smoking, and diabetes. Urinary arsenic sum of species was positively associated with MMP-9 in multivariable analysis only. Using Akaike's Information Criterion, arsenic concentration in drinking water provided a better fitting model of MMP-9 than either urinary arsenic or drinking water arsenic intake. In conclusion, arsenic exposure evaluated using all three exposure metrics was positively associated with MMP-9.
Environmental arsenic exposure and serum matrix metalloproteinase-9
Burgess, Jefferey L.; Kurzius-Spencer, Margaret; O’Rourke, Mary Kay; Littau, Sally R.; Roberge, Jason; Meza-Montenegro, Maria Mercedes; Gutiérrez-Millán, Luis Enrique; Harris, Robin B.
2014-01-01
The objective of this study was to evaluate the relationship between environmental arsenic exposure and serum matrix metalloproteinase (MMP)-9, a biomarker associated with cardiovascular disease and cancer. In a cross-sectional study of residents of Arizona, USA (n=215) and Sonora, Mexico (n=163), drinking water was assayed for total arsenic, and daily drinking water arsenic intake estimated. Urine was speciated for arsenic and concentrations were adjusted for specific gravity. Serum was analyzed for MMP-9 using ELISA. Mixed model linear regression was used to assess the relation among drinking water arsenic concentration, drinking water arsenic intake, urinary arsenic sum of species (the sum of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid), and MMP-9, controlling for autocorrelation within households. Drinking water arsenic concentration and intake were positively associated with MMP-9, both in crude analysis and after adjustment for gender, country/ethnicity, age, body mass index, current smoking and diabetes. Urinary arsenic sum of species was positively associated with MMP-9 in multivariable analysis only. Using Akaike’s Information Criterion, arsenic concentration in drinking water provided a better fitting model of MMP-9, than either urinary arsenic or drinking water arsenic intake. In conclusion, arsenic exposure was positively associated with MMP-9 using all three exposure metrics evaluated. PMID:23232971
Rahbar, Mohammad H.; Samms-Vaughan, Maureen; Ardjomand-Hessabi, Manouchehr; Loveland, Katherine A.; Dickerson, Aisha S.; Chen, Zhongxue; Bressler, Jan; Shakespeare-Pellington, Sydonnie; Grove, Megan L.; Bloom, Kari; Wirth, Julie; Pearson, Deborah A.; Boerwinkle, Eric
2012-01-01
Arsenic is a toxic metal with harmful effects on human health, particularly on cognitive function. Autism Spectrum Disorders (ASDs) are lifelong neurodevelopmental and behavioral disorders manifesting in infancy or early childhood. We used data from 130 children between 2-8 years (65 pairs of ASD cases with age- and sex-matched control), to compare the mean total blood arsenic concentrations in children with and without ASDs in Kingston, Jamaica. Based on univariable analysis, we observed a significant difference between ASD cases and controls (4.03μg/L for cases vs. 4.48μg/L for controls, P < 0.01). In the final multivariable General Linear Model (GLM), after controlling for car ownership, maternal age, parental education levels, source of drinking water, consumption of “yam, sweet potato, or dasheen”, “carrot or pumpkin”, “callaloo, broccoli, or pak choi”, cabbage, avocado, and the frequency of seafood consumption per week, we did not find a significant association between blood arsenic concentrations and ASD status (4.36μg/L for cases vs. 4.65μg/L for controls, P = 0.23). Likewise, in a separate final multivariable GLM, we found that source of drinking water, eating avocado, and eating “callaloo, broccoli, or pak choi” were significantly associated with higher blood arsenic concentrations (all three P < 0.05). Based on our findings, we recommend assessment of arsenic levels in water, fruits, and vegetables, as well as increased awareness among the Jamaican population regarding potential risks for various exposures to arsenic. PMID:22819887
A Case control study of cardiovascular disease and arsenic exposure in Inner Mongolia, China
Background: Millions of people are at risk from the adverse effects of waterborne arsenic. Although the cardiovascular effects of high exposures to arsenic have been well documented, few individual level prospective studies have assessed cardiovascular risk at moderate exposures....
Cardiovascular disease and arsenic exposure in Inner Mongolia, China: a case control study
BACKGROUND: Millions of people are at risk from the adverse effects of arsenic exposure through drinking water. Increasingly, non-cancer effects such as cardiovascular disease have been associated with drinking water arsenic exposures. However, most studies have been conducted in...
Positive selection of AS3MT to arsenic water in Andean populations
Eichstaedt, Christina A.; Antao, Tiago; Cardona, Alexia; Pagani, Luca; Kivisild, Toomas; Mormina, Maru
2016-01-01
Arsenic is a carcinogen associated with skin lesions and cardiovascular diseases. The Colla population from the Puna region in Northwest Argentinean is exposed to levels of arsenic in drinking water exceeding the recommended maximum by a factor of 20. Yet, they thrive in this challenging environment since thousands of years and therefore we hypothesize strong selection signatures in genes involved in arsenic metabolism. We analyzed genome-wide genotype data for 730,000 loci in 25 Collas, considering 24 individuals of the neighbouring Calchaquíes and 24 Wichí from the Gran Chaco region in the Argentine province of Salta as control groups. We identified a strong signal of positive selection in the main arsenic methyltransferase AS3MT gene, which has been previously associated with lower concentrations of the most toxic product of arsenic metabolism monomethylarsonic acid. This study confirms recent studies reporting selection signals in the AS3MT gene albeit using different samples, tests and control populations. PMID:26366667
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beeston, Michael Philip; University of Exeter in Cornwall; Tuen van Elteren, Johannes
A methodology is presented to study the physico-chemical processes in old tailings ponds using an array of analytical-physical chemistry approaches. A case study was conducted on the sorption/desorption behaviour of arsenic in tailings pond 2406, at the King Edward Mine (KEM) in Cornwall, UK. The tailings pond was in operation from approximately 1907 to 1921. The methodology involves two principal stages: (1) sequential extraction followed by subsequent arsenic species determination to characterise the material with regards to the association of arsenic with soil phases and identification of As (III/V) in the easily accessible soil phase; (2) batch contacting/equilibrating the tailingsmore » pond material with As(III/V), followed by a similar procedure as in stage 1 to establish the material's As(III/V) phase distribution kinetics/thermodynamics. By extrapolating the data from present day samples we infer past and future elemental mobility. From this study it is concluded that adsorption and desorption from tailings material is a rapid process for the most unstable soil phases (non-specific and specific) and a slow process for the more stable phases (poorly crystalline and well crystalline). The hypothetical application of this conclusion to the tailings from dam 2406 is that, during the initial phases of the dam's creation (ca. 100 years ago), when arsenic was both in solution and bound to mineralogical components, arsenic must have dispersed into the environment as a result of slow As(V) adsorption/phase distribution processes. Aging of the tailings material sees the movement of the arsenic to the more stable soil phases, producing a situation that is seen at present day.« less
Assessment of global industrial-age anthropogenic arsenic contamination.
Han, Fengxiang X; Su, Yi; Monts, David L; Plodinec, M John; Banin, Amos; Triplett, Glover E
2003-09-01
Arsenic, a carcinogenic trace element, threatens not only the health of millions of humans and other living organisms, but also global sustainability. We present here, for the first time, the global industrial-age cumulative anthropogenic arsenic production and its potential accumulation and risks in the environment. In 2000, the world cumulative industrial-age anthropogenic arsenic production was 4.53 million tonnes. The world-wide coal and petroleum industries accounted for 46% of global annual gross arsenic production, and their overall contribution to industrial-age gross arsenic production was 27% in 2000. Global industrial-age anthropogenic As sources (as As cumulative production) follow the order: As mining production>As generated from coal>As generated from petroleum. The potential industrial-age anthropogenic arsenic input in world arable surface in 2000 was 2.18 mg arsenic kg(-1), which is 1.2 times that in the lithosphere. The development of substitute materials for arsenic applications in the agricultural and forestry industries and controls of arsenic emissions from the coal industry may be possible strategies to significantly decrease arsenic pollution sources and dissipation rates into the environment.
Cheng, Heyong; Shen, Lihuan; Liu, Jinhua; Xu, Zigang; Wang, Yuanchao
2018-04-01
Nanoliter high-performance liquid chromatography shows low consumption of solvents and samples, offering one of the best choices for arsenic speciation in precious samples in combination with inuctively coupled plasma mass spectrometry. A systematic investigation on coupling nanoliter high-performance liquid chromatography to inductively coupled plasma mass spectrometry from instrument design to injected sample volume and mobile phase was performed in this study. Nanoflow mobile phase was delivered by flow splitting using a conventional high-pressure pump with reuse of mobile phase waste. Dead volume was minimized to 60 nL for the sheathless interface based on the previously developed nanonebulizer. Capillary columns for nanoliter high-performance liquid chromatography were found to be sensitive to sample loading volume. An apparent difference was also found between the mobile phases for nanoliter and conventional high-performance liquid chromatography. Baseline separation of arsenite, arsenate, monomethylarsenic, and dimethylarsenic was achieved within 11 min on a 15 cm C 18 capillary column and within 12 min on a 25 cm strong anion exchange column. Detection limits of 0.9-1.8 μg/L were obtained with precisions variable in the range of 1.6-4.2%. A good agreement between determined and certified values of a certified reference material of human urine (GBW 09115) validated its accuracy along with good recoveries (87-102%). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gomez-Gonzalez, Miguel A; Villalobos, Mario; Marco, Jose Francisco; Garcia-Guinea, Javier; Bolea, Eduardo; Laborda, Francisco; Garrido, Fernando
2018-04-01
Mine wastes from abandoned exploitations are sources of high concentrations of hazardous metal(oid)s. Although these contaminants can be attenuated by sorbing to secondary minerals, in this work we identified a mechanism for long-distance dispersion of arsenic and metals through their association to mobile colloids. We characterize the colloids and their sorbed contaminants using spectrometric and physicochemical fractionation techniques. Mechanical action through erosion may release and transport high concentrations of colloid-associated metal(oid)s towards nearby stream waters, promoting their dispersion from the contamination source. Poorly crystalline ferrihydrite acts as the principal As-sorbing mineral, but in this study we find that this nanomineral does not mobilize As independently, rather, it is transported as surface coatings bound to mineral particles, perhaps through electrostatic biding interactions due to opposing surface charges at acidic to circumneutral pH values. This association is very stable and effective in carrying along metal(oid)s in concentrations above regulatory levels. The unlimited source of toxic elements in mine residues causes ongoing, decades-long mobilization of toxic elements into stream waters. The ferrihydrite-clay colloidal composites and their high mobility limit the attenuating role that iron oxides alone show through adsorption of metal(oid)s and their immobilization in situ. This may have important implications for the potential bioavailability of these contaminants, as well as for the use of this water for human consumption. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ferreccio, Catterina; Smith, Allan H; Durán, Viviana; Barlaro, Teresa; Benítez, Hugo; Valdés, Rodrigo; Aguirre, Juan José; Moore, Lee E; Acevedo, Johanna; Vásquez, María Isabel; Pérez, Liliana; Yuan, Yan; Liaw, Jane; Cantor, Kenneth P; Steinmaus, Craig
2013-09-01
Millions of people worldwide are exposed to arsenic in drinking water. The International Agency for Research on Cancer has concluded that ingested arsenic causes lung, bladder, and skin cancer. However, a similar conclusion was not made for kidney cancer because of a lack of research with individual data on exposure and dose-response. With its unusual geology, high exposures, and good information on past arsenic water concentrations, northern Chile is one of the best places in the world to investigate the carcinogenicity of arsenic. We performed a case-control study in 2007-2010 of 122 kidney cancer cases and 640 population-based controls with individual data on exposure and potential confounders. Cases included 76 renal cell, 24 transitional cell renal pelvis and ureter, and 22 other kidney cancers. For renal pelvis and ureter cancers, the adjusted odds ratios by average arsenic intakes of <400, 400-1,000, and >1,000 µg/day (median water concentrations of 60, 300, and 860 µg/L) were 1.00, 5.71 (95% confidence interval: 1.65, 19.82), and 11.09 (95% confidence interval: 3.60, 34.16) (Ptrend < 0.001), respectively. Odds ratios were not elevated for renal cell cancer. With these new findings, including evidence of dose-response, we believe there is now sufficient evidence in humans that drinking-water arsenic causes renal pelvis and ureter cancer.
Top down arsenic uncertainty measurement in water and sediments from Guarapiranga dam (Brazil)
NASA Astrophysics Data System (ADS)
Faustino, M. G.; Lange, C. N.; Monteiro, L. R.; Furusawa, H. A.; Marques, J. R.; Stellato, T. B.; Soares, S. M. V.; da Silva, T. B. S. C.; da Silva, D. B.; Cotrim, M. E. B.; Pires, M. A. F.
2018-03-01
Total arsenic measurements assessment regarding legal threshold demands more than average and standard deviation approach. In this way, analytical measurement uncertainty evaluation was conducted in order to comply with legal requirements and to allow the balance of arsenic in both water and sediment compartments. A top-down approach for measurement uncertainties was applied to evaluate arsenic concentrations in water and sediments from Guarapiranga dam (São Paulo, Brazil). Laboratory quality control and arsenic interlaboratory tests data were used in this approach to estimate the uncertainties associated with the methodology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-09-26
The North Dakota Arsenic Trioxide site consists of twenty townships in Richland, Ransom, and Sargent counties in southeastern North Dakota. Ground water use includes residential consumption, irrigation, and livestock watering. The contamination, limited to ground water, appears to have two sources; naturally occurring arsenic contained in shales native to the area; and an estimated 330,000 pounds of arsenic-laced bait used to control grasshopper infestations in the 1930s and 1940s. The primary contaminant of concern is arsenic trioxide.
Ferreccio, Catterina; Yuan, Yan; Calle, Jacqueline; Benítez, Hugo; Parra, Roxana L; Acevedo, Johanna; Smith, Allan H; Liaw, Jane; Steinmaus, Craig
2013-11-01
Millions of people worldwide are exposed to arsenic in drinking water, and many are likely coexposed to other agents that could substantially increase their risks of arsenic-related cancer. We performed a case-control study of multiple chemical exposures in 538 lung and bladder cancer cases and 640 controls in northern Chile, an area with formerly high drinking water arsenic concentrations. Detailed information was collected on lifetime arsenic exposure, smoking, secondhand smoke, and other known or suspected carcinogens, including asbestos, silica, and wood dust. Very high lung and bladder cancer odds ratios (ORs), and evidence of greater than additive effects, were seen in people exposed to arsenic concentrations >335 µg/L and who were tobacco smokers (OR = 16, 95% confidence interval = 6.5-40 for lung cancer; and OR = 23 [8.2-66] for bladder cancer; Rothman Synergy Indices = 4.0 [1.7-9.4] and 2.0 [0.92-4.5], respectively). Evidence of greater than additive effects were also seen in people coexposed to arsenic and secondhand tobacco smoke and several other known or suspected carcinogens, including asbestos, silica, and wood dust. These findings suggest that people coexposed to arsenic and other known or suspected carcinogens have very high risks of lung or bladder cancer.
Farmer, J G; Johnson, L R
1990-01-01
An analytical speciation method, capable of separating inorganic arsenic (As (V), As (III] and its methylated metabolites (MMAA, DMAA) from common, inert, dietary organoarsenicals, was applied to the determination of arsenic in urine from a variety of workers occupationally exposed to inorganic arsenic compounds. Mean urinary arsenic (As (V) + As (III) + MMAA + DMAA) concentrations ranged from 4.4 micrograms/g creatinine for controls to less than 10 micrograms/g for those in the electronics industry, 47.9 micrograms/g for timber treatment workers applying arsenical wood preservatives, 79.4 micrograms/g for a group of glassworkers using arsenic trioxide, and 245 micrograms/g for chemical workers engaged in manufacturing and handling inorganic arsenicals. The maximum recorded concentration was 956 micrograms/g. For the most exposed groups, the ranges in the average urinary arsenic speciation pattern were 1-6% As (V), 11-14% As (III), 14-18% MMAA, and 63-70% DMAA. The highly raised urinary arsenic concentrations for the chemical workers, in particular, and some glassworkers are shown to correspond to possible atmospheric concentrations in the workplace and intakes in excess of, or close to, recommended and statutory limits and those associated with inorganic arsenic related diseases. PMID:2357455
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, Yi-Chen; Lien, Li-Ming; School of Medicine, Taipei Medical University, Taipei, Taiwan
2011-08-15
Individual susceptibility to arsenic-induced carotid atherosclerosis might be associated with genetic variations in arsenic metabolism. The purpose of this study is to explore the interaction effect on risk of carotid atherosclerosis between arsenic exposure and risk genotypes of purine nucleoside phosphorylase (PNP), arsenic (+3) methyltransferase (As3MT), and glutathione S-transferase omega 1 (GSTO1) and omega 2 (GSTO2). A community-based case-control study was conducted in northeastern Taiwan to investigate the arsenic metabolic-related genetic susceptibility to carotid atherosclerosis. In total, 863 subjects, who had been genotyped and for whom the severity of carotid atherosclerosis had been determined, were included in the present study.more » Individual well water was collected and arsenic concentration determined using hydride generation combined with flame atomic absorption spectrometry. The result showed that a significant dose-response trend (P=0.04) of carotid atherosclerosis risk associated with increasing arsenic concentration. Non-significant association between genetic polymorphisms of PNP Gly51Ser, Pro57Pro, As3MT Met287Thr, GSTO1 Ala140Asp, and GSTO2 A-183G and the risk for development of carotid atherosclerosis were observed. However, the significant interaction effect on carotid atherosclerosis risk was found for arsenic exposure (>50 {mu}g/l) and the haplotypes of PNP (p=0.0115). A marked elevated risk of carotid atherosclerosis was observed in subjects with arsenic exposure of >50 {mu}g/l in drinking water and those who carried the PNP A-T haplotype and at least either of the As3MT risk polymorphism or GSTO risk haplotypes (OR, 6.43; 95% CI, 1.79-23.19). In conclusion, arsenic metabolic genes, PNP, As3MT, and GSTO, may exacerbate the formation of atherosclerosis in individuals with high levels of arsenic concentration in well water (>50 {mu}g/l). - Highlights: {yields}Arsenic metabolic genes might be associated with carotid atherosclerosis. {yields} A case-control study was conducted to investigate the arsenic metabolic-related genetic susceptibility to carotid atherosclerosis. {yields} Arsenic metabolic genes, PNP, As3MT, and GSTO, may exacerbate atherosclerosis risk in individuals with high levels of arsenic in well water.« less
2013-01-01
Background Arsenic is widely distributed in the environment and has been found to be associated with the various health related problems including skin lesions, cancer, cardiovascular and immunological disorders. The fruit extract of Emblica officinalis (amla) has been shown to have anti-oxidative and immunomodulatory properties. In view of increasing health risk of arsenic, the present study has been carried out to investigate the protective effect of amla against arsenic induced oxidative stress and apoptosis in thymocytes of mice. Methods Mice were exposed to arsenic (sodium arsenite 3 mg/kg body weight p.o.) or amla (500 mg/kg body weight p.o.) or simultaneously with arsenic and amla for 28 days. The antioxidant enzyme assays were carried out using spectrophotometer and generation of ROS, apoptotic parameters, change in cell cycle were carried out using flow cytometer following the standard protocols. Results Arsenic exposure to mice caused a significant increase in the lipid peroxidation, ROS production and decreased cell viability, levels of reduced glutathione, the activity of superoxide dismutase, catalase, cytochrome c oxidase and mitochondrial membrane potential in the thymus as compared to controls. Increased activity of caspase-3 linked with apoptosis assessed by the cell cycle analysis and annexin V/PI binding was also observed in mice exposed to arsenic as compared to controls. Co-treatment with arsenic and amla decreased the levels of lipid peroxidation, ROS production, activity of caspase-3, apoptosis and increased cell viability, levels of antioxidant enzymes, cytochrome c oxidase and mitochondrial membrane potential as compared to mice treated with arsenic alone. Conclusions The results of the present study exhibits that arsenic induced oxidative stress and apoptosis significantly protected by co-treatment with amla that could be due to its strong antioxidant potential. PMID:23889914
Neuroprotective efficacy of curcumin in arsenic induced cholinergic dysfunctions in rats.
Yadav, Rajesh S; Chandravanshi, Lalit P; Shukla, Rajendra K; Sankhwar, Madhu L; Ansari, Reyaz W; Shukla, Pradeep K; Pant, Aditya B; Khanna, Vinay K
2011-12-01
Our recent studies have shown that curcumin protects arsenic induced neurotoxicity by modulating oxidative stress, neurotransmitter levels and dopaminergic system in rats. As chronic exposure to arsenic has been associated with cognitive deficits in humans, the present study has been carried out to implore the neuroprotective potential of curcumin in arsenic induced cholinergic dysfunctions in rats. Rats treated with arsenic (sodium arsenite, 20mg/kg body weight, p.o., 28 days) exhibited a significant decrease in the learning activity, assessed by passive avoidance response associated with decreased binding of (3)H-QNB, known to label muscarinic-cholinergic receptors in hippocampus (54%) and frontal cortex (27%) as compared to controls. Decrease in the activity of acetylcholinesterase in hippocampus (46%) and frontal cortex (33%), staining of Nissl body, immunoreactivity of choline acetyltransferase (ChAT) and expression of ChAT protein in hippocampal region was also observed in arsenic treated rats as compared to controls. Simultaneous treatment with arsenic and curcumin (100mg/kg body weight, p.o., 28 days) increased learning and memory performance associated with increased binding of (3)H-QNB in hippocampus (54%), frontal cortex (25%) and activity of acetylcholinesterase in hippocampus (41%) and frontal cortex (29%) as compared to arsenic treated rats. Increase in the expression of ChAT protein, immunoreactivity of ChAT and staining of Nissl body in hippocampal region was also observed in rats simultaneously treated with arsenic and curcumin as compared to those treated with arsenic alone. The results of the present study suggest that curcumin significantly modulates arsenic induced cholinergic dysfunctions in brain and also exhibits neuroprotective efficacy of curcumin. Copyright © 2011 Elsevier Inc. All rights reserved.
DETERMINATION ROXARSONE AND ITS ...
Roxarsone (3-nitro-4-hydroxyphenyl-arsonic acid) is one of the most widely used growthpromoting and disease-controlling feed additives in the United States. Most broiler chickens are fed roxarsone to promote weight gain and control parasites. Most of the roxarsone is believed to be excreted unchanged, and the resulting arsenic-containing waste is commonly recycled as fertilizer. Once in the environment, roxarsone can easily degrade into much more mobile and toxic arsenic (As) species. While HPLC coupled to ICP-MS has been used for the determination of As species including roxarsone degradation products, it is limited in its resolution. Capillary electrophoresis (CE) has the advantages of simple hardware and high efficiency. When coupled with ICP-MS for detection, CE-ICP-MS can provide a sensitive, highly selective method for the determination of roxarsone and its transformation products. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spec
Khaska, Mahmoud; Le Gal La Salle, Corinne; Verdoux, Patrick; Boutin, René
2015-01-01
Arsenic contamination of stream waters and groundwater is a real issue in Au-As mine environments. At the Salsigne Au-As mine, southern France, arsenic contamination persists after closure and remediation of the site. In this study, natural and anthropogenic arsenic inputs in surface water and groundwater are identified based on (87)Sr/(86)Sr, and δ(18)O and δ(2)H isotopic composition of water. In the wet season, downstream of the remediated zone, the arsenic contents in stream water and alluvial aquifer groundwater are high, with values in the order of 36 μg/L and 40 μg/L respectively, while upstream natural background average concentrations are around 4 μg/L. Locally down-gradient of the reclaimed area, arsenic concentrations in stream water showed 2 peaks, one during an important rainy event (101 mm) in the wet season in May, and a longer one over the dry period, reaching 120 and 110 μg/L respectively. The temporal variations in arsenic content in stream water can be explained i) during the dry season, by release of arsenic stored in the alluvial sediments through increased contribution from base flow and decreased stream flow and ii) during major rainy events, by mobilization of arsenic associated with important surface runoff. The (87)Sr/(86)Sr ratios associated with increasing arsenic content in stream waters downstream of the reclaimed area are significantly lower than that of the natural Sr inherited from Variscan formations. These low (87)Sr/(86)Sr ratios are likely to be associated with the decontaminating water treatment processes, used in the past and still at present, where CaO, produced from marine limestone and therefore showing a low (87)Sr/(86)Sr ratios, is used to precipitate Ca3(AsO4)2. The low Sr isotope signatures will then impact on the Sr isotope ratio of (1) the Ca-arsenate stored in tailing dams, (2) effluent currently produced by water treatment process and (3) groundwater draining from the overall site. Furthermore, Δ(2)H shows that the low (87)Sr/(86)Sr ratio, arsenic rich water is characterized by an evaporated signature suggesting a potential influence of water impacted by evaporation during storage in decantation lagoons. This study shows the suitability of Sr and stable isotopes of water as tracers to differentiate natural and anthropogenic sources of arsenic release or other trace elements from mining context where CaO is used for water treatment. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Khaska, Mahmoud; Le Gal La Salle, Corinne; Verdoux, Patrick; Boutin, René
2015-06-01
Arsenic contamination of stream waters and groundwater is a real issue in Au-As mine environments. At the Salsigne Au-As mine, southern France, arsenic contamination persists after closure and remediation of the site. In this study, natural and anthropogenic arsenic inputs in surface water and groundwater are identified based on 87Sr/86Sr, and δ18O and δ2H isotopic composition of water. In the wet season, downstream of the remediated zone, the arsenic contents in stream water and alluvial aquifer groundwater are high, with values in the order of 36 μg/L and 40 μg/L respectively, while upstream natural background average concentrations are around 4 μg/L. Locally down-gradient of the reclaimed area, arsenic concentrations in stream water showed 2 peaks, one during an important rainy event (101 mm) in the wet season in May, and a longer one over the dry period, reaching 120 and 110 μg/L respectively. The temporal variations in arsenic content in stream water can be explained i) during the dry season, by release of arsenic stored in the alluvial sediments through increased contribution from base flow and decreased stream flow and ii) during major rainy events, by mobilization of arsenic associated with important surface runoff. The 87Sr/86Sr ratios associated with increasing arsenic content in stream waters downstream of the reclaimed area are significantly lower than that of the natural Sr inherited from Variscan formations. These low 87Sr/86Sr ratios are likely to be associated with the decontaminating water treatment processes, used in the past and still at present, where CaO, produced from marine limestone and therefore showing a low 87Sr/86Sr ratios, is used to precipitate Ca3(AsO4)2. The low Sr isotope signatures will then impact on the Sr isotope ratio of (1) the Ca-arsenate stored in tailing dams, (2) effluent currently produced by water treatment process and (3) groundwater draining from the overall site. Furthermore, Δ2H shows that the low 87Sr/86Sr ratio, arsenic rich water is characterized by an evaporated signature suggesting a potential influence of water impacted by evaporation during storage in decantation lagoons. This study shows the suitability of Sr and stable isotopes of water as tracers to differentiate natural and anthropogenic sources of arsenic release or other trace elements from mining context where CaO is used for water treatment.
Quéméneur, Marianne; Cébron, Aurélie; Billard, Patrick; Battaglia-Brunet, Fabienne; Garrido, Francis; Leyval, Corinne; Joulian, Catherine
2010-07-01
Denaturing gradient gel electrophoresis (DGGE) and quantitative real-time PCR (qPCR) were successfully developed to monitor functional aoxB genes as markers of aerobic arsenite oxidizers. DGGE profiles showed a shift in the structure of the aoxB-carrying bacterial population, composed of members of the Alpha-, Beta- and Gammaproteobacteria, depending on arsenic (As) and E(h) levels in Upper Isle River Basin waters. The highest aoxB gene densities were found in the most As-polluted oxic surface waters but without any significant correlation with environmental factors. Arsenite oxidizers seem to play a key role in As mobility in As-impacted waters.
Li, Shiyu; Yang, Changliang; Peng, Changhui; Li, Haixia; Liu, Bin; Chen, Chuan; Chen, Bingyu; Bai, Jinyue; Lin, Chen
2018-06-15
The adsorption/desorption of arsenic (As) at the sediment-water interface in lakes is the key to understanding whether As can enter the ecosystem and participate in material circulation. In this study, the concentrations of As(III), total arsenic [As(T)], sulfide, iron (Fe), and dissolved organic carbon (DOC) in overlying water were observed after the initial sulfate (SO 4 2- ) concentrations were increased by four gradients in the presence and absence of microbial systems. The results indicate that increased SO 4 2- concentrations in overlying water triggered As desorption from sediments. Approximately 10% of the desorbed As was desorbed directly as arsenite or arsenate by competitive adsorption sites on the iron salt surface; 21% was due to the reduction of iron (hydr)oxides; and 69% was due to microbial activity, as compared with a system with no microbial activity. The intensity of microbial activity was controlled by the SO 4 2- and DOC concentrations in the overlying water. In anaerobic systems, which had SO 4 2- and DOC concentrations higher than 47 and 7 mg/L, respectively, microbial activity was promoted by SO 4 2- and DOC; As(III) was desorbed under these indoor simulation conditions. When either the SO 4 2- or DOC concentration was lower than its respective threshold of 47 or 7 mg/L, or when either of these indices was below its concentration limit, it was difficult for microorganisms to use SO 4 2- and DOC to enhance their own activities. Therefore, conditions were insufficient for As desorption. The migration of As in lake sediments was dominated by microbial activity, which was co-limited by SO 4 2- and DOC. The concentrations of SO 4 2- and DOC in the overlying water are thus important for the prevention and control of As pollution in lakes. We recommend controlling SO 4 2- and DOC concentrations as a method for controlling As inner-source pollution in lake water. Copyright © 2018 Elsevier Inc. All rights reserved.
Arsenic exposure in pregnant mice disrupts placental vasculogenesis and causes spontaneous abortion.
He, Wenjie; Greenwell, Robert J; Brooks, Diane M; Calderón-Garcidueñas, Lilian; Beall, Howard D; Coffin, J Douglas
2007-09-01
Arsenic is an abundant toxicant in ground water and soil around areas with extractive industries. Human epidemiological studies have shown that arsenic exposure is linked to developmental defects and miscarriage. The placenta is known to utilize vasculogenesis to develop its circulation. The hypothesis tested here states the following: arsenic exposure causes placental dysmorphogenesis and defective placental vasculogenesis resulting in placental insufficiency and subsequent spontaneous abortion. To test this hypothesis, pregnant mice were exposed to sodium arsenite (AsIII) through drinking water from conception through weanling stages. Neonatal assessment of birth rates, pup weights, and litter sizes in arsenic exposed and control mothers revealed that AsIII-exposed mothers had only 40% the fecundity of controls. Preterm analysis at E12.5 revealed a loss of fecundity at E12.5 from either 20 ppm or greater exposures to AsIII. There was no loss of fecundity at E7.5 suggesting that spontaneous abortion occurs during placentation. Histomorphometry on E12.5 placentae from arsenic-exposed mice revealed placental dysplasia especially in the vasculature. These results suggest that arsenic toxicity is causative for mammalian spontaneous abortion by virtue of aberrant placental vasculogenesis and placental insufficiency.
Sequential extractions can provide analytical constraints on the identification of mineral phases that control arsenic speciation in sediments. Model solids were used in this study to evaluate different solutions designed to extract arsenic from relatively labile solid phases. ...
Evaluating leaf and canopy reflectance of stressed rice plants to monitor arsenic contamination
USDA-ARS?s Scientific Manuscript database
Arsenic contamination is a serious problem in rice cultivated soils of many developing countries. Hence, it is critical to monitor and control arsenic uptake in rice plants to avoid adverse effects on human health. This study evaluated the feasibility of using reflectance spectroscopy to monitor ars...
The fate of arsenic discharged from contaminated ground water to a small, shallow lake at a hazardous waste site is controlled, in part, by the rate of ferrous iron oxidation-precipitation and arsenic sorption occurring near the lake chemocline. Laboratory experiments were condu...
Arsenic Recovery by Stinging Nettle From Lead-Arsenate Contaminated Orchard Soils
USDA-ARS?s Scientific Manuscript database
Soil contamination with arsenic (As) is common in orchards with a history of lead-arsenate pesticide application. This problem is prevalent in the U.S. Northeast where lead-arsenate foliar sprays were used to control codling moth (Cydia pomonella) in apple orchards. Arsenic is not easily biodegrad...
Romero, Francisco Martín; Canet, Carles; Alfonso, Pura; Zambrana, Rubén N; Soto, Nayelli
2014-05-15
The surface water contamination by potentially toxic elements (PTE) leached from mine tailings is a major environmental concern. However, the formation of insoluble solid phases can control the mobility of PTE, with subsequent decrease of the risk that tailings suppose to the environment. We characterized the tailings from a tin inactive mine in Llallagua, Bolivia in order to assess the risk for surface water quality. These tailings contain high concentrations of PTE, with up to 94,344 mg/kg Fe, 9,135 mg/kg Sn, 4,606 mg/kg As, 1,362 mg/kg Cu, 1,220 mg/kg Zn, 955 mg/kg Pb and 151 mg/kg Cd. Oxidation of sulfide minerals in these tailings generates acid leachates (pH=2.5-3.5), rich in SO4(2-) and dissolved PTE, thereby releasing contaminants to the surface waters. Nevertheless, the concentrations of dissolved Sn, As and Pb in acid leachates are low (Sn<0.01 mg/L; As=0.25-2.55 mg/L; Pb<0.05 mg/L). This indicates that, for the most part, Sn, As and Pb are being retained by the solid phases in the impoundment, so that these elements are not reaching the surface waters. Fe-bearing cassiterite-an insoluble and weathering-resistant oxide mineral-is abundant in the studied tailing deposits; it should be the main solid phase controlling Sn and As mobility in the impoundment. Additionally, jarosite and plumbojarosite, identified among the secondary minerals, could also play an important role controlling the mobility of As and Pb. Taking into account (a) the low solubility constants of cassiterite (Ksp=10(-64.2)), jarosite (Ksp=10(-11)) and plumbojarosite (Ksp=10(-28.66)), and (b) the stability of these minerals under acidic conditions, we can conclude that they control the long-term fate of Sn, As and Pb in the studied tailings. Copyright © 2014 Elsevier B.V. All rights reserved.
Gao, S.; Goldberg, S.; Herbel, M.J.; Chalmers, A.T.; Fujii, R.; Tanji, K.K.
2006-01-01
Elevated concentrations of arsenic (As) in shallow groundwater in Tulare Basin pose an environmental risk because of the carcinogenic properties of As and the potential for its migration to deep aquifers that could serve as a future drinking water source. Adsorption and desorption are hypothesized to be the major processes controlling As solubility in oxidized surface sediments where arsenate [As(V)] is dominant. This study examined the relationship between sorption processes and arsenic solubility in shallow sediments from the dry Tulare Lake bed by determining sorption isotherms, pH effect on solubility, and desorption-readsorption behavior (hysteresis), and by using a surface complexation model to describe sorption. The sediments showed a high capacity to adsorb As(V). Estimates of the maximum adsorption capacity were 92 mg As kg- 1 at pH 7.5 and 70 mg As kg- 1 at pH 8.5 obtained using the Langmuir adsorption isotherm. Soluble arsenic [> 97% As(V)] did not increase dramatically until above pH 10. In the native pH range (7.5-8.5), soluble As concentrations were close to the lowest, indicating that As was strongly retained on the sediment. A surface complexation model, the constant capacitance model, was able to provide a simultaneous fit to both adsorption isotherms (pH 7.5 and 8.5) and the adsorption envelope (pH effect on soluble As), although the data ranges are one order of magnitude different. A hysteresis phenomenon between As adsorbed on the sediment and As in solution phase was observed in the desorption-readsorption processes and differs from conventional hysteresis observed in adsorption-desorption processes. The cause is most likely due to modification of adsorbent surfaces in sediment samples upon extensive extractions (or desorption). The significance of the hysteresis phenomenon in affecting As solubility and mobility may be better understood by further microscopic studies of As interaction mechanisms with sediments subjected to extensive leaching in natural environments. ?? 2006 Elsevier B.V. All rights reserved.
Guo, Huaming; Jia, Yongfeng; Wanty, Richard B.; Jiang, Yuxiao; Zhao, Weiguang; Xiu, Wei; Shen, Jiaxing; Li, Yuan; Cao, Yongsheng; Wu, Yang; Zhang, Di; Wei, Chao; Zhang, Yilong; Cao, Wengeng; Foster, Andrea L.
2016-01-01
Although As concentrations have been investigated in shallow groundwater from the Hetao basin, China, less is known about U and As distributions in deep groundwater, which would help to better understand their origins and fate controls. Two hundred and ninety-nine groundwater samples, 122 sediment samples, and 14 rock samples were taken from the northwest portion of the Hetao basin, and analyzed for geochemical parameters. Results showed contrasting distributions of groundwater U and As, with high U and low As concentrations in the alluvial fans along the basin margins, and low U and high As concentrations downgradient in the flat plain. The probable sources of both As and U in groundwater were ultimately traced to the bedrocks in the local mountains (the Langshan Mountains). Chemical weathering of U-bearing rocks (schist, phyllite, and carbonate veins) released and mobilized U as UO2(CO3)22 − and UO2(CO3)34 − species in the alluvial fans under oxic conditions and suboxic conditions where reductions of Mn and NO3− were favorable (OSO), resulting in high groundwater U concentrations. Conversely, the recent weathering of As-bearing rocks (schist, phyllite, and sulfides) led to the formation of As-bearing Fe(III) (hydr)oxides in sediments, resulting in low groundwater As concentrations. Arsenic mobilization and U immobilization occurred in suboxic conditions where reduction of Fe(III) oxides was favorable and reducing conditions (SOR). Reduction of As-bearing Fe(III) (hydr)oxides, which were formed during palaeo-weathering and transported and deposited as Quaternary aquifer sediments, was believed to release As into groundwater. Reduction of U(VI) to U(IV) would lead to the formation of uraninite, and therefore remove U from groundwater. We conclude that the contrasting distributions of groundwater As and U present a challenge to ensuring safe drinking water in analogous areas, especially with high background values of U and As.
Fate of low arsenic concentrations during full-scale aeration and rapid filtration.
Gude, J C J; Rietveld, L C; van Halem, D
2016-01-01
In the Netherlands, groundwater treatment commonly consists of aeration, with subsequent sand filtration without using chemical oxidants like chlorine. With arsenic (As) concentrations well below the actual guidelines of 10 μg As/L, groundwater treatment plants have been exclusively designed for the removal of iron (Fe), manganese and ammonium. The aim of this study was to investigate the As removal capacity at three of these groundwater treatment plants (10-26 μg As/L) in order to identify operational parameters that can contribute to lowering the filtrate As concentration to <1 μg/L. For this purpose a sampling campaign and experiments with supernatant water and hydrous ferric oxide (HFO) flocs were executed to identify the key mechanisms controlling As removal. Results showed that after aeration, As largely remained mobile in the supernatant water; even during extended residence times only 20-48% removal was achieved (with 1.4-4.2 mg/L precipitated Fe(II)). Speciation showed that the mobile As was in the reduced As(III) form, whereas, As(V) was readily adsorbed to the formed HFO flocs. In the filter bed, the remaining As(III) completely oxidized within 2 min of residence time and As removal efficiencies increased to 48-90%. Filter grain coating analysis showed the presence of manganese at all three treatment plants. It is hypothesized that these manganese oxides are responsible for the accelerated As(III) oxidation in the filter bed, leading to an increased removal capacity. In addition, pH adjustment from 7.8 to 7.0 has been found to improve the capacity for As(V) uptake by the HFO flocs in the filter bed. The overall conclusion is, that during groundwater treatment, the filter bed is crucial for rapid As(III) removal, indicating the importance to control the oxidation sequence of Fe and As for improved As removal efficiencies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Witt, Emitt C.; Shi, Honglan; Karstensen, Krista A.; Wang, Jianmin; Adams, Craig D.
2008-01-01
In October 2005, nearly one month after Hurricanes Katrina and Rita, a team of scientists from the U.S. Geological Survey and the Missouri University of Science and Technology deployed to southern Louisiana to collect perishable environmental data resulting from the impacts of these storms. Perishable samples collected for this investigation are subject to destruction or ruin by removal, mixing, or natural decay; therefore, collection is time-critical following the depositional event. A total of 238 samples of sediment, soil, and vegetation were collected to characterize chemical quality. For this analysis, 157 of the 238 samples were used to characterize trace element, iron, total organic carbon, pesticide, and polychlorinated biphenyl concentrations of deposited sediment and associated shallow soils. In decreasing order, the largest variability in trace element concentration was detected for lead, vanadium, chromium, copper, arsenic, cadmium, and mercury. Lead was determined to be the trace element of most concern because of the large concentrations present in the samples ranging from 4.50 to 551 milligrams per kilogram (mg/kg). Sequential extraction analysis of lead indicate that 39.1 percent of the total lead concentration in post-hurricane sediment is associated with the iron-manganese oxide fraction. This fraction is considered extremely mobile under reducing environmental conditions, thereby making lead a potential health hazard. The presence of lead in post-hurricane sediments likely is from redistribution of pre-hurricane contaminated soils and sediments from Lake Pontchartrain and the flood control canals of New Orleans. Arsenic concentrations ranged from 0.84 to 49.1 mg/kg. Although Arsenic concentrations generally were small and consistent with other research results, all samples exceeded the U.S. Environmental Protection Agency’s Human Health Medium-Specific Screening Level of 0.39 mg/kg. Mercury concentrations ranged from 0.02 to 1.30 mg/kg. Comparing the mean mercury concentration present in post-hurricane samples with regional background data from the U.S. Geological Survey National Geochemical Dataset, indicates that mercury concentrations in post-hurricane sediment generally are larger. Sequential extraction analysis of 51 samples for arsenic indicate that 54.5 percent of the total arsenic concentration is contained in the extremely mobile iron-manganese oxide fraction. Pesticide and polychlorinated biphenyl Arochlor concentrations in post-hurricane samples were small. Prometon was the most frequently detected pesticide with concentrations ranging from 2.4 to 193 micrograms per kilogram (µg/kg). Methoxychlor was present in 22 samples with a concentration ranging from 3.5 to 3,510 µg/kg. Although methoxychlor had the largest detected pesticide concentration, it was well below the U.S. Environmental Protection Agency’s High-Priority Screening Level for residential soils. Arochlor congeners were not detected for any sample above the minimum detection level of 7.9 µg/kg.
Determination of the oxidation states of metals and metalloids: An analytical review
NASA Astrophysics Data System (ADS)
Vodyanitskii, Yu. N.
2013-12-01
The hazard of many heavy metals/metalloids in the soil depends on their oxidation state. The problem of determining the oxidation state has been solved due to the use of synchrotron radiation methods with the analysis of the X-ray absorption near-edge structure (XANES). The determination of the oxidation state is of special importance for some hazardous heavy elements (arsenic, antimony, selenium, chromium, uranium, and vanadium). The mobility and hazard of each of these elements depend on its oxidation state. The mobilities are higher at lower oxidation states of As, Cr, V, and Se and at higher oxidation states of Sb and U. The determination of the oxidation state of arsenic has allowed revealing its fixation features in the rhizosphere of hydrophytes. The known oxidation states of chromium and uranium are used for the retention of these elements on geochemical barriers. Different oxidation states have been established for vanadium displacing iron in goethite. The determination of the oxidation state of manganese in the rhizosphere and the photosynthetic apparatus of plants is of special importance for agricultural chemists.
Kuo, Chin-Chi; Spratlen, Miranda; Thayer, Kristina A.; Mendez, Michelle A.; Hamman, Richard F.; Dabelea, Dana; Adgate, John L.; Knowler, William C.; Bell, Ronny A.; Miller, Frederick W.; Liese, Angela D.; Zhang, Chongben; Douillet, Christelle; Drobná, Zuzana; Mayer-Davis, Elizabeth J.; Styblo, Miroslav
2017-01-01
OBJECTIVE Little is known about arsenic and diabetes in youth. We examined the association of arsenic with type 1 and type 2 diabetes in the SEARCH for Diabetes in Youth Case-Control (SEARCH-CC) study. Because one-carbon metabolism can influence arsenic metabolism, we also evaluated the potential interaction of folate and vitamin B12 with arsenic metabolism on the odds of diabetes. RESEARCH DESIGN AND METHODS Six hundred eighty-eight participants <22 years of age (429 with type 1 diabetes, 85 with type 2 diabetes, and 174 control participants) were evaluated. Arsenic species (inorganic arsenic [iAs], monomethylated arsenic [MMA], dimethylated arsenic [DMA]), and one-carbon metabolism biomarkers (folate and vitamin B12) were measured in plasma. We used the sum of iAs, MMA, and DMA (∑As) and the individual species as biomarkers of arsenic concentrations and the relative proportions of the species over their sum (iAs%, MMA%, DMA%) as biomarkers of arsenic metabolism. RESULTS Median ∑As, iAs%, MMA%, and DMA% were 83.1 ng/L, 63.4%, 10.3%, and 25.2%, respectively. ∑As was not associated with either type of diabetes. The fully adjusted odds ratios (95% CI), rescaled to compare a difference in levels corresponding to the interquartile range of iAs%, MMA%, and DMA%, were 0.68 (0.50–0.91), 1.33 (1.02–1.74), and 1.28 (1.01–1.63), respectively, for type 1 diabetes and 0.82 (0.48–1.39), 1.09 (0.65–1.82), and 1.17 (0.77–1.77), respectively, for type 2 diabetes. In interaction analysis, the odds ratio of type 1 diabetes by MMA% was 1.80 (1.25–2.58) and 0.98 (0.70–1.38) for participants with plasma folate levels above and below the median (P for interaction = 0.02), respectively. CONCLUSIONS Low iAs% versus high MMA% and DMA% was associated with a higher odds of type 1 diabetes, with a potential interaction by folate levels. These data support further research on the role of arsenic metabolism in type 1 diabetes, including the interplay with one-carbon metabolism biomarkers. PMID:27810988
Grau-Pérez, Maria; Kuo, Chin-Chi; Spratlen, Miranda; Thayer, Kristina A; Mendez, Michelle A; Hamman, Richard F; Dabelea, Dana; Adgate, John L; Knowler, William C; Bell, Ronny A; Miller, Frederick W; Liese, Angela D; Zhang, Chongben; Douillet, Christelle; Drobná, Zuzana; Mayer-Davis, Elizabeth J; Styblo, Miroslav; Navas-Acien, Ana
2017-01-01
Little is known about arsenic and diabetes in youth. We examined the association of arsenic with type 1 and type 2 diabetes in the SEARCH for Diabetes in Youth Case-Control (SEARCH-CC) study. Because one-carbon metabolism can influence arsenic metabolism, we also evaluated the potential interaction of folate and vitamin B12 with arsenic metabolism on the odds of diabetes. Six hundred eighty-eight participants <22 years of age (429 with type 1 diabetes, 85 with type 2 diabetes, and 174 control participants) were evaluated. Arsenic species (inorganic arsenic [iAs], monomethylated arsenic [MMA], dimethylated arsenic [DMA]), and one-carbon metabolism biomarkers (folate and vitamin B12) were measured in plasma. We used the sum of iAs, MMA, and DMA (∑As) and the individual species as biomarkers of arsenic concentrations and the relative proportions of the species over their sum (iAs%, MMA%, DMA%) as biomarkers of arsenic metabolism. Median ∑As, iAs%, MMA%, and DMA% were 83.1 ng/L, 63.4%, 10.3%, and 25.2%, respectively. ∑As was not associated with either type of diabetes. The fully adjusted odds ratios (95% CI), rescaled to compare a difference in levels corresponding to the interquartile range of iAs%, MMA%, and DMA%, were 0.68 (0.50-0.91), 1.33 (1.02-1.74), and 1.28 (1.01-1.63), respectively, for type 1 diabetes and 0.82 (0.48-1.39), 1.09 (0.65-1.82), and 1.17 (0.77-1.77), respectively, for type 2 diabetes. In interaction analysis, the odds ratio of type 1 diabetes by MMA% was 1.80 (1.25-2.58) and 0.98 (0.70-1.38) for participants with plasma folate levels above and below the median (P for interaction = 0.02), respectively. Low iAs% versus high MMA% and DMA% was associated with a higher odds of type 1 diabetes, with a potential interaction by folate levels. These data support further research on the role of arsenic metabolism in type 1 diabetes, including the interplay with one-carbon metabolism biomarkers. © 2017 by the American Diabetes Association.
Yáñez, Jorge; Mansilla, Héctor D; Santander, I Paola; Fierro, Vladimir; Cornejo, Lorena; Barnes, Ramón M; Amarasiriwardena, Dulasiri
2015-01-01
Ethnic groups from the Atacama Desert (known as Atacameños) have been exposed to natural arsenic pollution for over 5000 years. This work presents an integral study that characterizes arsenic species in water used for human consumption. It also describes the metabolism and arsenic elimination through urine in a chronically exposed population in northern Chile. In this region, water contained total arsenic concentrations up to 1250 μg L(-1), which was almost exclusively As(V). It is also important that this water was ingested directly from natural water sources without any treatment. The ingested arsenic was extensively methylated. In urine 93% of the arsenic was found as methylated arsenic species, such as monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)]. The original ingested inorganic species [As(V)], represent less than 1% of the total urinary arsenic. Methylation activity among individuals can be assessed by measuring primary [inorganic As/methylated As] and secondary methylation [MMA/DMA] indexes. Both methylation indexes were 0.06, indicating a high biological converting capability of As(V) into MMA and then MMA into DMA, compared with the control population and other arsenic exposed populations previously reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coronado-Gonzalez, Jose Antonio; Razo, Luz Maria del; Garcia-Vargas, Gonzalo
Inorganic arsenic exposure in drinking water has been recently related to diabetes mellitus. To evaluate this relationship the authors conducted in 2003, a case-control study in an arseniasis-endemic region from Coahuila, a northern state of Mexico with a high incidence of diabetes. The present analysis includes 200 cases and 200 controls. Cases were obtained from a previous cross-sectional study conducted in that region. Diagnosis of diabetes was established following the American Diabetes Association criteria, with two fasting glucose values {>=}126 mg/100 ml ({>=}7.0 mmol/l) or a history of diabetes treated with insulin or oral hypoglycemic agents. The next subject studied,more » subsequent to the identification of a case in the cross-sectional study was taken as control. Inorganic arsenic exposure was measured through total arsenic concentrations in urine, measured by hydride-generation atomic absorption spectrophotometry. Subjects with intermediate total arsenic concentration in urine (63.5-104 {mu}g/g creatinine) had two-fold higher risk of having diabetes (odds ratio=2.16; 95% confidence interval: 1.23, 3.79), but the risk was almost three times greater in subjects with higher concentrations of total arsenic in urine (odds ratio=2.84; 95% confidence interval: 1.64, 4.92). This data provides additional evidence that inorganic arsenic exposure may be diabetogenic.« less
The Effect of Chronic Arsenic Exposure in Zebrafish
Hallauer, Janell; Geng, Xiangrong; Yang, Hung-Chi; Shen, Jian; Tsai, Kan-Jen
2016-01-01
Abstract Arsenic is a prevalent environmental toxin and a Group one human carcinogenic agent. Chronic arsenic exposure has been associated with many human diseases. The aim of this study is to evaluate zebrafish as an animal model to assess arsenic toxicity in elevated long-term arsenic exposure. With prolonged exposure (6 months) to various concentrations of arsenic from 50 ppb to 300 ppb, effects of arsenic accumulation in zebrafish tissues, and phenotypes were investigated. Results showed that there are no significant changes of arsenic retention in zebrafish tissues, and zebrafish did not exhibit any visible tumor formation under arsenic exposure conditions. However, the zebrafish demonstrate a dysfunction in their neurological system, which is reflected by a reduction of locomotive activity. Moreover, elevated levels of the superoxide dismutase (SOD2) protein were detected in the eye and liver, suggesting increased oxidative stress. In addition, the progenies of arsenic-treated parents displayed a smaller biomass (four-fold reduction in body weight) compared with those from their parental controls. This result indicates that arsenic may induce genetic or epigenetic changes that are then passed on to the next generation. Overall, this study demonstrates that zebrafish is a convenient vertebrate model with advantages in the evaluation of arsenic-associated neurological disorders as well as its influences on the offspring. PMID:27140519
In vitro assessment on the impact of soil arsenic in the eight rice varieties of West Bengal, India.
Bhattacharya, Piyal; Samal, Alok C; Majumdar, Jayjit; Banerjee, Satabdi; Santra, Subhas C
2013-11-15
Rice is an efficient accumulator of arsenic and thus irrigation with arsenic-contaminated groundwater and soil may induce human health hazard via water-soil-plant-human pathway. A greenhouse pot experiment was conducted on three high yielding, one hybrid and four local rice varieties to investigate the uptake, distribution and phytotoxicity of arsenic in rice plant. 5, 10, 20, 30 and 40 mg kg(-1) dry weights arsenic dosing was applied in pot soil and the results were compared with the control samples. All the studied high yielding and hybrid varieties (Ratna, IET 4094, IR 50 and Gangakaveri) were found to be higher accumulator of arsenic as compared to all but one local rice variety, Kerala Sundari. In these five rice varieties accumulation of arsenic in grain exceeded the WHO permissible limit (1.0 mg kg(-1)) at 20 mg kg(-1) arsenic dosing. Irrespective of variety, arsenic accumulation in different parts of rice plant was found to increase with increasing arsenic doses, but not at the same rate. A consistent negative correlation was established between soil arsenic and chlorophyll contents while carbohydrate accumulation depicted consistent positive correlation with increasing arsenic toxicity in rice plant. Copyright © 2012 Elsevier B.V. All rights reserved.
Krishnamohan, Manonmanii; Qi, Lixia; Lam, Paul K S; Moore, Michael R; Ng, Jack C
2007-10-01
Arsenicals are proven carcinogens in humans and it imposes significant health impacts on both humans and animals. Recently monomethylarsonous acid (MMA(III)), the toxic metabolite of arsenic has been identified in human urine and believed to be more acutely toxic than arsenite and arsenate. Arsenic also affects the activity of a number of haem biosynthesis enzymes. As a part of 2-year arsenic carcinogenicity study, young female C57BL/6J mice were given drinking water containing 0, 100, 250 and 500 microg/L arsenic as MMA(III)ad libitum. 24 h urine samples were collected at 0, 1, 2, 4, 8 weeks and every 8 weeks for up to 104 weeks. Urinary arsenic speciation and porphyrins were measured using HPLC-ICP-MS and HPLC with fluorescence detection respectively. DMA(V) was a major urinary metabolite detected. Significant dose-response relationship was observed between control and treatment groups after 1, 4, 24, 32, 48, 56, 88, 96 and 104 weeks. The level of uroporphyrin in 250 and 500 microg As/L group is significantly different from the control group after 4, 8, 16, 32, 56, 72, 80, 96 and 104 weeks. Coproporphyrin I level in 500 microAs/L group is significantly different from control group after 8, 24, 32, 40, 56, 72, 80, 88 and 104 weeks. After 4 weeks the level of coproporphyrin III concentration significantly increased in all the treatment groups compared to the control except week 16 and 48. Our results show urinary DMA(V) and porphyrin profile can be used as an early warning biomarker for chronic MMA(III) exposure before the onset of cancer.
The fate of arsenic discharged from contaminated ground water to a pond at a hazardous waste site is controlled, in part, by the rate of ferrous iron oxidation-precipitation and arsenic sorption. Laboratory experiments were conducted using site-derived water to assess the impact...
Code of Federal Regulations, 2011 CFR
2011-07-01
... be required to convert Arsenic III to Arsenic V. 5 To obtain high removals, iron to arsenic ratio... Exchange 6=Lime Softening (not BAT for systems Corrosion... corrosion control treatment requirements for lead and copper in §§ 141.81 and 141.82 to avoid an...
USDA-ARS?s Scientific Manuscript database
Background: Arsenic induces neural tube defects in several animal models, but its potential to cause neural tube defects in humans is unknown. Our objective was to investigate the associations between maternal arsenic exposure, periconceptional folic acid supplementation, and risk of posterior neura...
Palacios, Javier; Roman, Domingo; Cifuentes, Fredi
2012-08-01
Populations chronically exposed to arsenic in drinking water often have increased prevalence of diabetes mellitus. The purpose of this study was to compare the glucose homeostasis of male and female rats exposed to low levels of heavy metals in drinking water. Treated groups were Sprague-Dawley male and female rats exposed to drinking water from Antofagasta city, with total arsenic of 30 ppb and lead of 53 ppb for 3 months; control groups were exposed to purified water by reverse osmosis. The two treated groups in both males and females showed arsenic and lead in the hair of rats. The δ-aminolevulinic acid dehydratase was used as a sensitive biomarker of arsenic toxicity and lead. The activity of δ-aminolevulinic acid dehydratase was reduced only in treated male rats, compared to the control group. Treated males showed a significantly sustained increase in blood glucose and plasma insulin levels during oral glucose tolerance test compared to control group. The oral glucose tolerance test and the homeostasis model assessment of insulin resistance demonstrated that male rats were insulin resistant, and females remained sensitive to insulin after treatment. The total cholesterol and LDL cholesterol increased in treated male rats vs. the control, and triglyceride increased in treated female rats vs. the control. The activity of intestinal Na+/glucose cotransporter in male rats increased compared to female rats, suggesting a significant increase in intestinal glucose absorption. The findings indicate that exposure to low levels of arsenic and lead in drinking water could cause gender differences in insulin resistance.
The source of naturally occurring arsenic in a coastal sand aquifer of eastern Australia.
O'Shea, Bethany; Jankowski, Jerzy; Sammut, Jesmond
2007-07-01
The discovery of dissolved arsenic in a coastal aquifer used extensively for human consumption has led to widespread concern for its potential occurrence in other sandy coastal environments in eastern Australia. The development of an aquifer specific geomorphic model (herein) suggests that arsenic is regionally derived from erosion of arsenic-rich stibnite (Sb(2)S(3)) mineralisation present in the hinterland. Fluvial processes have transported the eroded material over time to deposit an aquifer lithology elevated in arsenic. Minor arsenic contribution to groundwater is derived from mineralised bedrock below the unconsolidated aquifer. An association with arsenic and pyrite has been observed in the aquifer in small discrete arsenian pyrite clusters rather than actual acid sulfate soil horizons. This association is likely to influence arsenic distribution in the aquifer, but is not the dominant control on arsenic occurrence. Arsenic association with marine clays is considered a function of their increased adsorptive capacity for arsenic and not solely on the influence of sea level inundation of the aquifer sediments during the Quaternary Period. These findings have implications for, but are not limited to, coastal aquifers. Rather, any aquifer containing sediments derived from mineralised provenances may be at risk of natural arsenic contamination. Groundwater resource surveys should thus incorporate a review of the aquifer source provenance when assessing the likely risk of natural arsenic occurrence in an aquifer.
Understanding Arsenic Dynamics in Agronomic Systems to ...
This review is on arsenic in agronomic systems, and covers processes that influence the entry of arsenic into the human food supply. The scope is from sources of arsenic (natural and anthropogenic) in soils, biogeochemical and rhizosphere processes that control arsenic speciation and availability, through to mechanisms of uptake by crop plants and potential mitigation strategies. This review makes a case for taking steps to prevent or limit crop uptake of arsenic, wherever possible, and to work toward a long-term solution to the presence of arsenic in agronomic systems. The past two decades have seen important advances in our understanding of how biogeochemical and physiological processes influence human exposure to soil arsenic, and thus must now prompt an informed reconsideration and unification of regulations to protect the quality of agricultural and residential soils. Consumption of staple foods such as rice, beverages such as apple juice, or vegetables grown in historically arsenic-contaminated soils is now recognized as a tangible route of arsenic exposure that, in many cases, is more significant than exposure from drinking water. Understanding the sources of arsenic to crop plants and the factors that influence them is key to reducing exposure now and preventing exposure in future. In addition to the abundant natural sources of arsenic, there are a large number of industrial and agricultural sources of arsenic to the soil; from mining wastes, coal fly
Sarker, Rim Sabrina Jahan; Ahsan, Nazmul; Hossain, Khaled; Ghosh, Paritosh Kumar; Ahsan, Chowdhury Rafiqul; Akhand, Anwarul Azim
2012-07-01
In this study, we evaluated the protective effects of water Hyacinth Root Powder (HRP) on arsenic-mediated toxic effects in mice. Swiss albino mice, used in this study, were divided into four different groups (for each group n=5). The control group was supplied with normal feed and water, Arsenic group (As-group) was supplied with normal feed plus arsenic (sodium arsenite)-containing water, and arsenic+hyacinth group (As+Hy group) was supplied with feed supplemented with HRP plus arsenic water. The remaining Hy-group was supplied with feed supplemented with HRP plus normal water. Oral administration of arsenic reduced the normal growth of the mice as evidenced by weight loss. Interestingly, tip of the tails of these mice developed wound that caused gradual reduction of the tail length. Supplementation of HRP in feed significantly prevented mice growth retardation and tail wounding in As+Hy group mice. However, the growth pattern in Hy-group mice was observed to be almost similar to that of the control group indicating that HRP itself has no toxic or negative effect in mice. Ingested arsenic also distorted the shape of the blood cells and elevated the serum enzymes such as lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and serum glutamic pyruvic transaminase (SGPT). Importantly, elevation of these enzymes and distortion of blood cell shape were partially reduced in mice belong to As+Hy group, indicating HRP-mediated reduction of arsenic toxicity. Therefore, the preventive effect of hyacinth root on arsenic-poisoned mice suggested the future application of hyacinth to reduce arsenic toxicity in animal and human.
Sarker, Rim Sabrina Jahan; Ahsan, Nazmul; Hossain, Khaled; Ghosh, Paritosh Kumar; Ahsan, Chowdhury Rafiqul; Akhand, Anwarul Azim
2012-01-01
Background In this study, we evaluated the protective effects of water Hyacinth Root Powder (HRP) on arsenic-mediated toxic effects in mice. Methods Swiss albino mice, used in this study, were divided into four different groups (for each group n=5). The control group was supplied with normal feed and water, Arsenic group (As-group) was supplied with normal feed plus arsenic (sodium arsenite)-containing water, and arsenic+hyacinth group (As+Hy group) was supplied with feed supplemented with HRP plus arsenic water. The remaining Hy-group was supplied with feed supplemented with HRP plus normal water. Results Oral administration of arsenic reduced the normal growth of the mice as evidenced by weight loss. Interestingly, tip of the tails of these mice developed wound that caused gradual reduction of the tail length. Supplementation of HRP in feed significantly prevented mice growth retardation and tail wounding in As+Hy group mice. However, the growth pattern in Hy-group mice was observed to be almost similar to that of the control group indicating that HRP itself has no toxic or negative effect in mice. Ingested arsenic also distorted the shape of the blood cells and elevated the serum enzymes such as lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and serum glutamic pyruvic transaminase (SGPT). Importantly, elevation of these enzymes and distortion of blood cell shape were partially reduced in mice belong to As+Hy group, indicating HRP-mediated reduction of arsenic toxicity. Conclusion Therefore, the preventive effect of hyacinth root on arsenic-poisoned mice suggested the future application of hyacinth to reduce arsenic toxicity in animal and human. PMID:23407303
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, M.-M.; Graduate Institute of Medicine, College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan; Chiou, H.-Y.
2006-10-01
Arsenic-contaminated well water has been shown to increase the risk of atherosclerosis. Because of involving S-adenosylmethionine, homocysteine may modify the risk by interfering with the biomethylation of ingested arsenic. In this study, we assessed the effect of plasma homocysteine level and urinary monomethylarsonic acid (MMA{sup V}) on the risk of atherosclerosis associated with arsenic. In total, 163 patients with carotid atherosclerosis and 163 controls were studied. Lifetime cumulative arsenic exposure from well water for study subjects was measured as index of arsenic exposure. Homocysteine level was determined by high-performance liquid chromatography (HPLC). Proportion of MMA{sup V} (MMA%) was calculated bymore » dividing with total arsenic species in urine, including arsenite, arsenate, MMA{sup V}, and dimethylarsinic acid (DMA{sup V}). Results of multiple linear regression analysis show a positive correlation of plasma homocysteine levels to the cumulative arsenic exposure after controlling for atherosclerosis status and nutritional factors (P < 0.05). This correlation, however, did not change substantially the effect of arsenic exposure on the risk of atherosclerosis as analyzed in a subsequent logistic regression model. Logistic regression analyses also show that elevated plasma homocysteine levels did not confer an independent risk for developing atherosclerosis in the study population. However, the risk of having atherosclerosis was increased to 5.4-fold (95% CI, 2.0-15.0) for the study subjects with high MMA% ({>=}16.5%) and high homocysteine levels ({>=}12.7 {mu}mol/l) as compared to those with low MMA% (<9.9%) and low homocysteine levels (<12.7 {mu}mol/l). Elevated homocysteinemia may exacerbate the formation of atherosclerosis related to arsenic exposure in individuals with high levels of MMA% in urine.« less
Arsenic associations in sediments from shallow aquifers of northwestern Hetao Basin, Inner Mongolia
Deng, Y.; Wang, Y.; Ma, T.; Yang, H.; He, J.
2011-01-01
Understanding the mechanism of arsenic mobilization from sediments to groundwater is important for water quality management in areas of endemic arsenic poisoning, such as the Hetao Basin in Inner Mongolia, northern China. Aquifer geochemistry was characterized at three field sites (SH, HF, TYS) in Hangjinhouqi County of northwestern Hetao Basin. The results of bulk geochemistry analysis of sediment samples indicated that total As concentrations have a range of 6. 8-58. 5 mg/kg, with a median of 14. 4 mg/kg. The highest As concentrations were found at 15-25 m depth. In the meanwhile, the range of As concentration in the sediments from background borehole is 3-21. 8 mg/kg, with a median value of 9 mg/kg. The As sediments concentrations with depth from the SH borehole were correlated with the contents of Fe, Sb, B, V, total C and total S. Generally, the abundance of elements varied with grain size, with higher concentrations in finer fractions of the sediments. Distinct lithology profile and different geochemical characteristics of aquifer sediments indicate the sediments are associated with different sources and diverse sedimentary environments. Up to one third of arsenic in the sediments could be extracted by ammonium oxalate, suggesting that Fe oxyhydroxides may be the major sink of As in the aquifer. Sequential extraction results indicate that arsenic occurs as strongly adsorbed on and/or co-precipitated with amorphous Fe oxyhydroxides in sediments accounting for 35 and 20%, respectively, of the total contents of arsenic. The release of As into groundwater may occur by desorption from the mineral surface driven by reductive dissolution of the Fe oxide minerals. Furthermore, small proportions of As associated with iron sulfides occur in the reductive sediments. ?? 2011 Springer-Verlag.
Rieuwerts, J S; Mighanetara, K; Braungardt, C B; Rollinson, G K; Pirrie, D; Azizi, F
2014-02-15
Mining generates large amounts of waste which may contain potentially toxic elements (PTE), which, if released into the wider environment, can cause air, water and soil pollution long after mining operations have ceased. The fate and toxicological impact of PTEs are determined by their partitioning and speciation and in this study, the concentrations and mineralogy of arsenic in mine wastes and stream sediments in a former metal mining area of the UK are investigated. Pseudo-total (aqua-regia extractable) arsenic concentrations in all samples from the mining area exceeded background and guideline values by 1-5 orders of magnitude, with a maximum concentration in mine wastes of 1.8×10(5)mgkg(-1) As and concentrations in stream sediments of up to 2.5×10(4)mgkg(-1) As, raising concerns over potential environmental impacts. Mineralogical analysis of the wastes and sediments was undertaken by scanning electron microscopy (SEM) and automated SEM-EDS based quantitative evaluation (QEMSCAN®). The main arsenic mineral in the mine waste was scorodite and this was significantly correlated with pseudo-total As concentrations and significantly inversely correlated with potentially mobile arsenic, as estimated from the sum of exchangeable, reducible and oxidisable arsenic fractions obtained from a sequential extraction procedure; these findings correspond with the low solubility of scorodite in acidic mine wastes. The work presented shows that the study area remains grossly polluted by historical mining and processing and illustrates the value of combining mineralogical data with acid and sequential extractions to increase our understanding of potential environmental threats. Copyright © 2013 Elsevier B.V. All rights reserved.
Hinkle, S.R.; Kauffman, L.J.; Thomas, M.A.; Brown, C.J.; McCarthy, K.A.; Eberts, S.M.; Rosen, Michael R.; Katz, B.G.
2009-01-01
Flow-model particle-tracking results and geochemical data from seven study areas across the United States were analyzed using three statistical methods to test the hypothesis that these variables can successfully be used to assess public supply well vulnerability to arsenic and uranium. Principal components analysis indicated that arsenic and uranium concentrations were associated with particle-tracking variables that simulate time of travel and water fluxes through aquifer systems and also through specific redox and pH zones within aquifers. Time-of-travel variables are important because many geochemical reactions are kinetically limited, and geochemical zonation can account for different modes of mobilization and fate. Spearman correlation analysis established statistical significance for correlations of arsenic and uranium concentrations with variables derived using the particle-tracking routines. Correlations between uranium concentrations and particle-tracking variables were generally strongest for variables computed for distinct redox zones. Classification tree analysis on arsenic concentrations yielded a quantitative categorical model using time-of-travel variables and solid-phase-arsenic concentrations. The classification tree model accuracy on the learning data subset was 70%, and on the testing data subset, 79%, demonstrating one application in which particle-tracking variables can be used predictively in a quantitative screening-level assessment of public supply well vulnerability. Ground-water management actions that are based on avoidance of young ground water, reflecting the premise that young ground water is more vulnerable to anthropogenic contaminants than is old ground water, may inadvertently lead to increased vulnerability to natural contaminants due to the tendency for concentrations of many natural contaminants to increase with increasing ground-water residence time.
Sripaoraya, Kwanyuen; Siriwong, Wattasit; Pavittranon, Sumol; Chapman, Robert S
2017-01-01
Background There are inconsistent findings on associations between low-to-moderate level of arsenic in water and diabetes risk from previous epidemiological reports. In Ron Phibun subdistrict, Nakhon Si Thammarat Province, Thailand, a low level of arsenic exposure among population was observed and increased diabetes mellitus (DM) rate was identified. Objectives We aimed to investigate the association between determinants (including low-level water arsenic exposure) of DM type 2 risk among residents of three villages of Ron Phibun subdistrict, Nakhon Si Thammarat Province. Materials and methods Secondary data from two previous community based-studies, conducted in 2000 and 2008, were utilized. Data on independent variables relating to arsenic exposure and sociodemographic characteristics were taken from questionnaires and worksheets for health-risk screening. Water samples collected during household visit were sent for analysis of arsenic level at certified laboratories. Diabetes cases (N=185) were those who had been diagnosed with DM type 2. Two groups of controls, one unmatched to cases (n=200) and one pair matched on age and gender (n=200), were selected for analysis as unmatched and matched case–control studies, respectively. A multiple imputation technique was used to impute missing values of independent variables. Multivariable logistic regression models, with independent variables for arsenic exposure and sociodemographic characteristics, were constructed. The unmatched and matched data sets were analyzed using unconditional and conditional logistic analyses, respectively. Results Older age, body mass index (BMI), having a history of illness in siblings and parents, and drinking were associated with increased DM type 2 risk. We found no convincing association between DM type 2 risk and water arsenic concentration in either study. Conclusion We did not observe meaningful association between diabetes risk and the low-to-moderate arsenic levels observed in this study. Further research is needed to confirm this finding in the study area and elsewhere in Thailand. PMID:28442938
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Songbo; Wu, Jie; Li, Yuanyuan
To investigate the differences in urinary arsenic metabolism patterns of individuals exposed to a high concentration of inorganic arsenic (iAs) in drinking water, an epidemiological investigation was conducted with 155 individuals living in a village where the arsenic concentration in the drinking water was 969 μg/L. Blood and urine samples were collected from 66 individuals including 51 cases with skin lesions and 15 controls without skin lesions. The results showed that monomethylated arsenic (MMA), the percentage of MMA (%MMA) and the ratio of MMA to iAs (MMA/iAs) were significantly increased in patients with skin lesions as compared to controls, whilemore » dimethylated arsenic (DMA), the percentage of DMA (%DMA) and the ratio of DMA to MMA (DMA/MMA) were significantly reduced. The percent DMA of individuals with the Ala/Asp genotype of glutathione S-transferase omega 1 (GSTO1) was significantly lower than those with Ala/Ala. The percent MMA of individuals with the A2B/A2B genotype of arsenic (+ 3 oxidation state) methyltransferase (AS3MT) was significantly lower than those with AB/A2B. The iAs and total arsenic (tAs) content in the urine of a Tibetan population were significantly higher than that of Han and Hui ethnicities, whereas MMA/iAs was significantly lower than that of Han and Hui ethnicities. Our results showed that when exposed to the same arsenic environment, different individuals exhibited different urinary arsenic metabolism patterns. Gender and ethnicity affect these differences and above polymorphisms may be effectors too. - Highlights: • We first survey a village with high iAs content in the drinking water (969 μg/L). • 90 villagers suffered typical skin lesions with a morbidity rate of 58%. • Cases exhibited higher %MMA and MMA/iAs, and lower %DMA and DMA/MMA than controls. • Gender and ethnicity affect the differences of iAs methylation metabolism levels. • GSTO1 and AS3MT gene polymorphisms may be factors too.« less
SLC39A2 and FSIP1 polymorphisms as potential modifiers of arsenic-related bladder cancer
Andrew, Angeline S.; Nelson, Heather H.; Li, Zhongze; Punshon, Tracy; Schned, Alan; Marsit, Carmen J.; Morris, J. Steven; Moore, Jason H.; Tyler, Anna L.; Gilbert-Diamond, Diane; Guerinot, Mary-Lou; Kelsey, Karl T.
2012-01-01
Arsenic is a carcinogen that contaminates drinking water worldwide. Accumulating evidence suggests that both exposure and genetic factors may influence susceptibility to arsenic-induced malignancies. We sought to identify novel susceptibility loci for arsenic-related bladder cancer in a US population with low to moderate drinking water levels of arsenic. We first screened a subset of bladder cancer cases using a panel of approximately 10,000 non-synonymous single nucleotide polymorphisms (SNPs). Top ranking hits on the SNP array then were considered for further analysis in our population-based case–control study (n = 832 cases and 1,191 controls). SNPs in the fibrous sheath interacting protein 1 (FSIP1) gene (rs10152640) and the solute carrier family 39, member 2 (SLC39A2) in the ZIP gene family of metal transporters (rs2234636) were detected as potential hits in the initial scan and validated in the full case–control study. The adjusted odds ratio (OR) for the FSIP1 polymorphism was 2.57 [95% confidence interval (CI) 1.13, 5.85] for heterozygote variants (AG) and 12.20 (95% CI 2.51, 59.30) for homozygote variants (GG) compared to homozygote wild types (AA) in the high arsenic group (greater than the 90th percentile), and unrelated in the low arsenic group (equal to or below the 90th percentile) (P for interaction = 0.002). For the SLC39A2 polymorphism, the adjusted ORs were 2.96 (95% CI 1.23, 7.15) and 2.91 (95% CI 1.00, 8.52) for heterozygote (TC) and homozygote (CC) variants compared to homozygote wild types (TT), respectively, and close to one in the low arsenic group (P for interaction = 0.03). Our findings suggest novel variants that may influence risk of arsenic-associated bladder cancer and those who may be at greatest risk from this widespread exposure. PMID:21947419
SLC39A2 and FSIP1 polymorphisms as potential modifiers of arsenic-related bladder cancer.
Karagas, Margaret R; Andrew, Angeline S; Nelson, Heather H; Li, Zhongze; Punshon, Tracy; Schned, Alan; Marsit, Carmen J; Morris, J Steven; Moore, Jason H; Tyler, Anna L; Gilbert-Diamond, Diane; Guerinot, Mary-Lou; Kelsey, Karl T
2012-03-01
Arsenic is a carcinogen that contaminates drinking water worldwide. Accumulating evidence suggests that both exposure and genetic factors may influence susceptibility to arsenic-induced malignancies. We sought to identify novel susceptibility loci for arsenic-related bladder cancer in a US population with low to moderate drinking water levels of arsenic. We first screened a subset of bladder cancer cases using a panel of approximately 10,000 non-synonymous single nucleotide polymorphisms (SNPs). Top ranking hits on the SNP array then were considered for further analysis in our population-based case-control study (n = 832 cases and 1,191 controls). SNPs in the fibrous sheath interacting protein 1 (FSIP1) gene (rs10152640) and the solute carrier family 39, member 2 (SLC39A2) in the ZIP gene family of metal transporters (rs2234636) were detected as potential hits in the initial scan and validated in the full case-control study. The adjusted odds ratio (OR) for the FSIP1 polymorphism was 2.57 [95% confidence interval (CI) 1.13, 5.85] for heterozygote variants (AG) and 12.20 (95% CI 2.51, 59.30) for homozygote variants (GG) compared to homozygote wild types (AA) in the high arsenic group (greater than the 90th percentile), and unrelated in the low arsenic group (equal to or below the 90th percentile) (P for interaction = 0.002). For the SLC39A2 polymorphism, the adjusted ORs were 2.96 (95% CI 1.23, 7.15) and 2.91 (95% CI 1.00, 8.52) for heterozygote (TC) and homozygote (CC) variants compared to homozygote wild types (TT), respectively, and close to one in the low arsenic group (P for interaction = 0.03). Our findings suggest novel variants that may influence risk of arsenic-associated bladder cancer and those who may be at greatest risk from this widespread exposure.
Fujino, Yoshihisa; Guo, Xiaojuan; Shirane, Kiyoyumi; Liu, Jun; Wu, Kegong; Miyatake, Munetoshi; Tanabe, Kimiko; Kusuda, Tetsuya; Yoshimura, Takesumi
2006-09-01
It remains unclear whether chronic ingestion of arsenic in drinking water affects the peripheral nervous system. We examined the effects of arsenic exposure on nerve conduction velocity using electromyography. A cross-sectional study was conducted of a population living in an arsenic-affected village in Hetao Plain, Inner Mongolia, China. A total of 134 (93.7%) of 143 inhabitants took part in the study, and 36 (76.6%) of 47 inhabitants in a low-arsenic exposed village were recruited as a control group. Of the participants, 109 inhabitants in the arsenic-affected village and 32 in the low-arsenic exposed village aged > or =18 years were used for the analyses. An expert physician performed skin examinations, and median nerve conduction velocity was examined by electromyography. Arsenic levels in tube-well water and urine were measured. A mean level of arsenic in tube-well water in the arsenic-affected village was 158.3 microg/L, while that in the low-arsenic exposed village was 5.3 microg/L. No significant differences in the means of the motor nerve conduction velocity (MCV) and sensory nerve conduction velocity (SCV) were observed in relation to arsenic levels in tube wells, urine, and the duration of tube-well use. Further, no differences in mean MCV or SCV were found between the subjects with and without arsenic dermatosis, with mean SCV of 52.8 m/s (SD 6.3) in those without and 54.6 m/s (5.2) in subjects with arsenic dermatosis (p=0.206). These findings suggest that chronic arsenic poisoning from drinking water is unlikely to affect nerve conduction velocity, at least within the range of arsenic in drinking water examined in the present study.
Tarozzi, Alessandro; Pfaff, Alexander; Balasubramanya, Soumya; Ahmed, Kazi Matin; van Geen, Alexander
2013-01-01
We conducted a randomized controlled trial in rural Bangladesh to examine how household drinking-water choices were affected by two different messages about risk from naturally occurring groundwater arsenic. Households in both randomized treatment arms were informed about the arsenic level in their well and whether that level was above or below the Bangladesh standard for arsenic. Households in one group of villages were encouraged to seek water from wells below the national standard. Households in the second group of villages received additional information explaining that lower-arsenic well water is always safer and these households were encouraged to seek water from wells with lower levels of arsenic, irrespective of the national standard. A simple model of household drinking-water choice indicates that the effect of the emphasis message is theoretically ambiguous. Empirically, we find that the richer message had a negative, but insignificant, effect on well-switching rates, but the estimates are sufficiently precise that we can rule out large positive effects. The main policy implication of this finding is that a one-time oral message conveying richer information on arsenic risks, while inexpensive and easily scalable, is unlikely to be successful in reducing exposure relative to the status-quo policy. PMID:23997355
Mazumder, Debendra Nath Guha; Ghosh, Aloke; Majumdar, Kunal Kanti; Ghosh, Nilima; Saha, Chandan; Mazumder, Rathindra Nath Guha
2010-04-01
The global health impact and disease burden due to chronic arsenic toxicity has not been well studied in West Bengal. To ascertain these, a scientific epidemiological study was carried out in a district of the state. Epidemiological study was carried out by house-to-house survey of arsenic affected villages in the district of Nadia. A stratified multi-stage design has been adopted for this survey for the selection of the participants. A total number of 2297 households of 37 arsenic affected villages in all the 17 blocks were surveyed in the district. Out of 10469 participants examined, prevalence rate of arsenicosis was found to be 15.43%. Out of 0.84 million people suspected to be exposed to arsenic, 0.14 million people are estimated to be suffering from arsenicosis in the district. Highest level of arsenic in drinking water sources was found to be 1362 μg/l, and in 23% cases it was above 100 μg/l. Majority of the population living in the arsenic affected villages were of low socio-economic condition, inadequate education and were farmers or doing physical labour. Chronic lung disease was found in 207 (12.81%) subjects among cases and 69 (0.78%) in controls. Peripheral neuropathy was found in 257 (15.9%) cases and 136 (1.5%) controls. Large number of people in the district of Nadia are showing arsenical skin lesion. However, insufficient education, poverty, lack of awareness and ineffective health care support are major factors causing immense plight to severely arsenic affected people.
Ye, Hengpeng; Yang, Zeyu; Wu, Xiang; Wang, Jingwen; Du, Dongyun; Cai, Jian; Lv, Kangle; Chen, Huiyun; Mei, Jingkun; Chen, Mengqi; Du, Hong
2017-01-01
Representative biomarkers (e.g., n-alkanes), diversity and microbial community in the aquifers contaminated by high concentration of arsenic (As) in different sediment depth (0–30 m) in Jianghan Plain, Hubei, China, were analyzed to investigate the potential mechanism of As enrichment in groundwater. The concentration of As was abundant in top soil and sand, but not in clay. The analysis of the distribution of n-alkanes, CPI values, and wax to total n-alkane ratio (Wax(n)%) indicated that the organic matter (OM) from fresh terrestrial plants were abundant in the shallow sediment. However, n-alkanes have suffered from significant biodegradation from the depth of 16 m to 30 m. The deposition of fresh terrestrial derived organic matters may facilitate the release of As from sediment to groundwater in the sediment of 0–16 m. However, the petroleum derived organic matters may do the favor to the release of As in the deeper section of borehole (16 m to 30 m). The 16S rRNA gene sequences identification indicated that Acidobacteria, Actinomycetes and Hydrogenophaga are abundant in the sediments with high arsenic. Therefore, microbes and organic matters from different sources may play important roles in arsenic mobilization in the aquifers of the study area. PMID:28165031
Sharifi, Reza; Moore, Farid; Keshavarzi, Behnam
2016-04-01
Arsenic (As) and antimony (Sb) concentrations in water and sediments were determined along flow paths in the Sarouq River, Zarshuran and Agh Darreh streams. The results indicate high As and Sb concentrations in water and sediment samples. Raman spectroscopy shows hematite (α-Fe2O3), goethite [α-FeO(OH)] and lepidocrocite [γ-FeO(OH)] in sediment samples. Calculated saturation indices (SI) indicate oversaturation with respect to amorphous Fe(OH)3 for all samples, but undersaturation with respect to Al and Mn mineral and amorphous phases. Therefore, ferric oxides and hydroxides are assumed to be principal mineral phases for arsenic and antimony attenuation by adsorption/co-precipitation processes. The considerable difference between As and Sb concentration in sediment is due to strong adsorption of As(V) into the solid phase. Also, lower affinity of Sb(V) for mineral surfaces suggests a greater potential for aqueous transport. The adsorption of arsenic and antimony was examined using the Freundlich adsorption isotherm to determine their distribution model in water-sediment system and its compatibility with the existing theoretical model. The results showed that the adsorption behavior of both elements complies with the Freundlich adsorption isotherm. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mechanisms of Arsenic Mobilization and Attenuation in Subsurface Sediments
NASA Astrophysics Data System (ADS)
O'Day, P. A.; Illera, V.; Root, R.; Choi, S.; Vlassopoulos, D.
2007-12-01
This talk will review molecular mechanisms of As mobilization and attenuation in subsurface sediments using examples from recent field studies that represent a range in oxidation-redox (redox) potential. As a ubiquitous trace element in sediments, As speciation and fate is linked to the abundance and biogeochemical behavior of the generally more abundant redox-active elements Fe, S, and Mn. All four elements are subject to oxidation, reduction, and pH-dependent processes such as sorption, desorption, precipitation, and dissolution, and which may include both biotic and abiotic reaction steps. We have used spectroscopic interrogation and geochemical modeling to characterize As speciation in subsurface sediments in several contrasting environments, including high and low S and Fe settings. Aquifers most at risk for contamination by As include those that are rich in organic matter and nutrients, stimulating high rates of microbial reduction and creating anoxic conditions, but limited in labile or available S and/or Fe that remove As by precipitation or adsorption. In subsurface sediments with low labile S and Fe, laboratory experiments and spectroscopic studies suggest that sediment Mn minerals are important in the oxidation of sorbed As(III) to As(V), but that they have a limited oxidation capacity. Arsenic attenuation and mobilization in the subsurface are affected by seasonal variations when hydraulic conditions are influenced by surface infiltration, which may induce transitions from oxidized to reduced conditions (or vice versa) in porewater.
Kucukkurt, Ismail; Ince, Sinan; Demirel, Hasan Huseyin; Turkmen, Ruhi; Akbel, Erten; Celik, Yasemin
2015-12-01
The aim of the present study was to investigate the possible protective effects of boron, an antioxidant agent, against arsenic-induced oxidative stress in male and female rats. In total, 42 Wistar albino male and female rats were divided into three equal groups: The animals in the control group were given normal drinking water, the second group was given drinking water with 100 mg/L arsenic, and the third group was orally administered drinking water with 100 mg/kg boron together with arsenic. At the end of the 28-day experiment, arsenic increased lipid peroxidation and damage in the tissues of rats. However, boron treatment reversed this arsenic-induced lipid peroxidation and activities of antioxidant enzymes in rats. Moreover, boron exhibited a protective action against arsenic-induced histopathological changes in the tissues of rats. In conclusion, boron was found to be effective in protecting rats against arsenic-induced lipid peroxidation by enhancing antioxidant defense mechanisms. © 2015 Wiley Periodicals, Inc.
Arsenic in groundwater in eastern New England: Occurrence, controls, and human health implications
Ayotte, J.D.; Montgomery, D.L.; Flanagan, S.M.; Robinson, K.W.
2003-01-01
In eastern New England, high concentrations (greater than 10 ??g/L) of arsenic occur in groundwater. Privately supplied drinking water from bedrock aquifers often has arsenic concentrations at levels of concern to human health, whereas drinking water from unconsolidated aquifers is least affected by arsenic contamination. Water from wells in metasedimentary bedrock units, primarily in Maine and New Hampshire, has the highest arsenic concentrations - nearly 30% of wells in these aquifers produce water with arsenic concentrations greater than 10 ??g/L. Arsenic was also found at concentrations of 3-40 mg/kg in whole rock samples in these formations, suggesting a possible geologic source. Arsenic is most common in groundwater with high pH. High pH is related to groundwater age and possibly the presence of calcite in bedrock. Ion exchange in areas formerly inundated by seawater also may increase pH. Wells sampled twice during periods of 1-10 months have similar arsenic concentrations (slope = 0.89; r-squared = 0.97). On the basis of water-use information for the aquifers studied, about 103 000 people with private wells could have water supplies with arsenic at levels of concern (greater than 10 ??g/L) for human health.
Li, Jiang-Shan; Beiyuan, Jingzi; Tsang, Daniel C W; Wang, Lei; Poon, Chi Sun; Li, Xiang-Dong; Fendorf, Scott
2017-09-01
Geogenic sources of arsenic (As) have aroused extensive environmental concerns in many countries. This study evaluated the vertical profiles, leaching characteristics, and surface characteristics of As-containing soils in Hong Kong. The results indicated that elevated levels of As (486-1985 mg kg -1 ) were mostly encountered in deeper layer (15-20 m below ground). Despite high concentrations, geogenic As displayed a high degree of chemical stability in the natural geochemical conditions, and there was minimal leaching of As in various leaching tests representing leachability, mobility, phytoavailability, and bioaccessibility. Microscopic/spectroscopic investigations suggested that As in the soils was predominantly present as As(V) in a coordination environment with Fe oxides. Sequential extraction indicated that the majority of As were strongly bound with crystalline Fe/Al oxides and residual phase. Yet, uncertainties may remain with potential As exposure through accidental ingestion and abiotic/biotic transformation due to changes in geochemical conditions. Hence, the effectiveness of stabilization/solidification (S/S) treatment was evaluated. Although the leached concentrations of As from the S/S treated soils increased to varying extent in different batch leaching tests due to the increase in alkalinity, the mobility of As was considered very low based on semi-dynamic leaching test. This suggested that As immobilization in the S/S treated soils was predominantly dependent on physical encapsulation by interlocking framework of hydration products, which could also prevent potential exposure and allow controlled utilization of S/S treated soils as monolithic materials. These results illustrate the importance of holistic assessment and treatment/management of As-containing soils for enabling flexible future land use. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Chao-Yuan; Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan; Su, Chien-Tien
2012-08-01
8-Hydroxydeoxyguanosine (8-OHdG) is one of the most reliable and abundant markers of DNA damage. The study was designed to explore the relationship between urinary 8-OHdG and renal cell carcinoma (RCC) and to investigate whether individuals with a high level of 8-OHdG would have a modified odds ratio (OR) of arsenic-related RCC. This case–control study was conducted with 132 RCC patients and 245 age- and sex-matched controls from a hospital-based pool between November 2006 and May 2009. Pathological verification of RCC was completed by image-guided biopsy or surgical resection of renal tumors. Urinary 8-OHdG levels were determined using liquid chromatography withmore » tandem mass spectrometry (LC–MS/MS). Concentrations of urinary arsenic species, including inorganic arsenic, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), were determined by a high performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Level of urinary 8-OHdG was significantly associated with the OR of RCC in a dose–response relationship after multivariate adjustment. Urinary 8-OHdG was significantly related to urinary total arsenic. The greatest OR (3.50) was seen in the individuals with high urinary 8-OHdG and high urinary total arsenic. A trend test indicated that the OR of RCC was increased with one of these factors and was further increased with both (p = 0.002). In conclusion, higher urinary 8-OHdG was a strong predictor of the RCC. High levels of 8-OHdG combined with urinary total arsenic might be indicative of arsenic-induced RCC. -- Highlights: ► Urinary 8-OHdG was significantly related to urinary total arsenic. ► Higher urinary 8-OHdG was a strong predictor of RCC risk. ► Urinary 8-OHdG may modify arsenic related RCC risk.« less
Quéméneur, Marianne; Cébron, Aurélie; Billard, Patrick; Battaglia-Brunet, Fabienne; Garrido, Francis; Leyval, Corinne; Joulian, Catherine
2010-01-01
Denaturing gradient gel electrophoresis (DGGE) and quantitative real-time PCR (qPCR) were successfully developed to monitor functional aoxB genes as markers of aerobic arsenite oxidizers. DGGE profiles showed a shift in the structure of the aoxB-carrying bacterial population, composed of members of the Alpha-, Beta- and Gammaproteobacteria, depending on arsenic (As) and Eh levels in Upper Isle River Basin waters. The highest aoxB gene densities were found in the most As-polluted oxic surface waters but without any significant correlation with environmental factors. Arsenite oxidizers seem to play a key role in As mobility in As-impacted waters. PMID:20453153
Arsenic Groundwater Contamination in Bengal: a Coupled Geochemical and Geophysical Study
NASA Astrophysics Data System (ADS)
Charlet, L.; Ansari, A. A.; Dietrich, M.; Latscha, A.; LeBeux, A.; Chatterjee, D.; Mallik, S. B.
2001-05-01
Arsenic contamination in drinking water is a problem of great concern in Ganges delta region, and could be one of the largest natural calamity in the world. In the present study, a contamination plume located in the Lalpur area (Chakdaha Block, Nadia District, West Bengal, India) was studied. A coupled geochemical and geophysical approach was employed to understand the mechanism of arsenic mobilisation from the sediments to groundwater, as a first step towards a global explanation of the phenomenon for other contaminated areas in the Ganges delta. The groundwater As concentration, in the 10 km x 10 km studied area, ranges from 10 to 500 ppb. In situ chemical speciation of arsenic was carried out and various geochemical parameters were measured in representative contaminated wells to interpret the mobilization mechanism in terms of redox kinetics. Through geophysical investigations, subsurface lithology, sediment depositional and geomorphological characteristics were determined and correlated with the arsenic contamination processes. From a geomorphological viewpoint, the contaminated area is located in an abandoned paleochannel of the Hooghly river, interpreted as the active site of deposition of fine sediments which were preserved as clay pockets at certain depths. These clay pockets are rich in organic matter, which may be the driving force for redox potential change and thus, may have driven the mobilisation of arsenic in groundwater. The clay pockets rich in organic matter presumably represent the major reservoir where arsenic is sitting and getting released due to redox mechanism. They are sampled at present. A piezometric depression cone characterized by a radial groundwater flow is located underneath the highly populated Lalpur area. The arsenic plume appears to migrate from the Hooghly river towards the cone of depression following the water flowpath, and this shall be verified in forthcoming field campaigns. As (III) constitutes 42 % of the total As concentration. It is several times more toxic than As (V). The As (III) / As (V) and S (-II) / S (VI) ratios are not at equilibrium with the Eh measured in groundwater. The groundwater is at equilibrium with Ba(II) and Fe(II) arsenate minerals, barite and siderite. The reactive transport modeling of the data is explored.
The management of arsenic wastes: problems and prospects.
Leist, M; Casey, R J; Caridi, D
2000-08-28
Arsenic has found widespread use in agriculture and industry to control a variety of insect and fungicidal pests. Most of these uses have been discontinued, but residues from such activities, together with the ongoing generation of arsenic wastes from the smelting of various ores, have left a legacy of a large number of arsenic-contaminated sites. The treatment and/or removal of arsenic is hindered by the fact that arsenic has a variety of valence states. Arsenic is most effectively removed or stabilized when it is present in the pentavalent arsenate form. For the removal of arsenic from wastewater, coagulation, normally using iron, is the preferred option. The solidification/stabilization of arsenic is not such a clear-cut process. Factors such as the waste's interaction with the additives (e.g. iron or lime), as well as any effect on the cement matrix, all impact on the efficacy of the fixation. Currently, differentiation between available solidification/stabilization processes is speculative, partly due to the large number of differing leaching tests that have been utilized. Differences in the leaching fluid, liquid-to-solid ratio, and agitation time and method all impact significantly on the arsenic leachate concentrations. This paper reviews options available for dealing with arsenic wastes, both solid and aqueous through an investigation of the methods available for the removal of arsenic from wastewater as well as possible solidification/stabilization options for a variety of waste streams.
Arsenic in soils from the Asarco Lead Smelter in East Helena, Montana was characterized by X-ray absorption spectroscopy (XAS). As oxidation state and geochemical speciation were analyzed as a function of depth (two sampling sites) and surface distribution. These results were c...
Ground-water and soil contamination near two pesticide-burial sites in Minnesota
Stark, J.R.; Strudell, J.D.; Bloomgren, P.A.; Eger, P.
1987-01-01
In general, concentrations of lead and arsenic in soil and groundwater were below background concentrations for the areas. Concentrations of organic pesticides generally were below analytical-detection limits. The limited solubility of the chemicals and the tendency of the contaminants to be sorbed on soil particles probably combined to restrict mobilization of the chemicals.
Pesch, Beate; Ranft, Ulrich; Jakubis, Pavel; Nieuwenhuijsen, Mark J; Hergemöller, Andre; Unfried, Klaus; Jakubis, Marian; Miskovic, Peter; Keegan, Tom
2002-05-01
To investigate the risk of arsenic exposure from a coal-burning power plant in Slovakia on nonmelanoma skin cancer (NMSC) development, a 1996-1999 population-based case-control study was conducted with 264 cases and 286 controls. Exposure assessment was based on residential history and annual emissions (Asres1, Asres2) and on nutritional habits and arsenic content in food (Asnut1, Asnut2). Asres1 was assessed as a function of the distance of places of residence to the plant. Asres2 additionally considered workplace locations. Asnut1 was used to calculate arsenic uptake by weighting food frequencies with arsenic concentrations and annual consumption of food items. Asnut2 additionally considered consumption of local products. Age- and gender-adjusted risk estimates for NMSC in the highest exposure category (90th vs. 30th percentile) were 1.90 (95% confidence interval (CI): 1.39, 2.60) for Asres1, 1.90 (95% CI: 1.38, 2.62) for Asres2, 1.19 (95% CI: 0.64, 2.12) for Asnut1, and 1.83 (95% CI: 0.98, 3.43) for Asnut2. No interaction was found between arsenic exposure and dietary and residential data. Other plant emissions could have confounded the distance-based exposure variables. Consumption of contaminated vegetables and fruits could be confounded by the protective effects of such a diet. Nevertheless, the authors found an excess NMSC risk for environmental arsenic exposure.
Bunzl, K; Trautmannsheimer, M; Schramel, P; Reifenhäuser, W
2001-01-01
To anticipate a possible hazard resulting from the plant uptake of metals from slag-contaminated soils, it is useful to study whether vegetables exist that are able to mobilize a given metal in the slag to a larger proportion than in an uncontaminated control soil. For this purpose, we studied the soil to plant transfer of arsenic, copper, lead, thallium, and zinc by the vegetables bean (Phaseolus vulgaris L. 'dwarf bean Modus'), kohlrabi (Brassica oleracea var. gongylodes L.), mangold (Beta vulgaris var. macrorhiza ), lettuce (Lactuca sativa L. 'American gathering brown'), carrot (Daucus carota L. 'Rotin', 'Sperlings's'), and celery [Apium graveiolus var. dulce (Mill.) Pers.] from a control soil (Ap horizon of a Entisol) and from a contaminated soil (1:1 soil-slag mixtures). Two types of slags were used: an iron-rich residue from pyrite (FeS2) roasting and a residue from coal firing. The metal concentrations in the slags, soils, and plants were used to calculate for each metal and soil-slag mixture the plant-soil fractional concentration ratio (CRfractional,slag), that is, the concentration ratio of the metal that results only from the slag in the soil. With the exception of TI, the resulting values obtained for this quantity for As, Cu, Pb, and Zn and for all vegetables were significantly smaller than the corresponding plant-soil concentration ratios (CRcontrol soil) for the uncontaminated soil. The results demonstrate quantitatively that the ability of a plant to accumulate a given metal as observed for a control soil might not exist for a soil-slag mixture, and vice versa.
Arsenic mineral dissolution and possible mobilization in mineral-microbe-groundwater environment.
Islam, A B M R; Maity, Jyoti Prakash; Bundschuh, Jochen; Chen, Chien-Yen; Bhowmik, Bejon Kumar; Tazaki, Kazue
2013-11-15
Arsenic (As) is widely distributed in the nature as ores or minerals. It has been attracted much attention for the global public health issue, especially for groundwater As contamination. The aim of this study was to elucidate the characteristics of microbes in groundwater where As-minerals were dissolved. An ex situ experiment was conducted with 7 standard As-minerals in bacteria-free groundwater and stored in experimental vessels for 1 year without supplementary nutrients. The pH (6.7-8.4) and EhS.H.E. (24-548 mV) changed between initial (0 day) and final stages (365 days) of experiment. The dissolution of As was detected higher from arsenolite (4240 ± 8.69 mg/L) and native arsenic (4538 ± 9.02 mg/L), whereas moderately dissolved from orpiment (653 ± 3.56 mg/L) and realgar (319 ± 2.56 mg/L) in compare to arsenopyrite (85 ± 1.25mg/L) and tennantite (3 ± 0.06 mg/L). Optical microscopic, scanning electron microscopic observations and flurometric enumeration revealed the abundance of As-resistant bacillus, coccus and filamentous types of microorganisms on the surface of most of As-mineral. 4'-6-Diamidino-2-phenylindole (DAPI)-stained epifluorescence micrograph confirmed the presence of DNA and carboxyfluorescein diacetate (CFDA) staining method revealed the enzymatically active bacteria on the surface of As-minerals such as in realgar (As4S4). Therefore, the microbes enable to survive and mobilize the As in groundwater by dissolution/bioweathering of As-minerals. Copyright © 2012. Published by Elsevier B.V.
Farias, Pedro; Espírito Santo, Christophe; Branco, Rita; Francisco, Romeu; Santos, Susana; Hansen, Lars; Sorensen, Soren
2015-01-01
Microorganisms are responsible for multiple antibiotic resistances that have been associated with resistance/tolerance to heavy metals, with consequences to public health. Many genes conferring these resistances are located on mobile genetic elements, easily exchanged among phylogenetically distant bacteria. The objective of the present work was to isolate arsenic-, antimonite-, and antibiotic-resistant strains and to determine the existence of plasmids harboring antibiotic/arsenic/antimonite resistance traits in phenotypically resistant strains, in a nonanthropogenically impacted environment. The hydrothermal Lucky Strike field in the Azores archipelago (North Atlantic, between 11°N and 38°N), at the Mid-Atlantic Ridge, protected under the OSPAR Convention, was sampled as a metal-rich pristine environment. A total of 35 strains from 8 different species were isolated in the presence of arsenate, arsenite, and antimonite. ACR3 and arsB genes were amplified from the sediment's total DNA, and 4 isolates also carried ACR3 genes. Phenotypic multiple resistances were found in all strains, and 7 strains had recoverable plasmids. Purified plasmids were sequenced by Illumina and assembled by EDENA V3, and contig annotation was performed using the “Rapid Annotation using the Subsystems Technology” server. Determinants of resistance to copper, zinc, cadmium, cobalt, and chromium as well as to the antibiotics β-lactams and fluoroquinolones were found in the 3 sequenced plasmids. Genes coding for heavy metal resistance and antibiotic resistance in the same mobile element were found, suggesting the possibility of horizontal gene transfer and distribution of theses resistances in the bacterial population. PMID:25636836
Rahman, Mohammad Mahmudur; Sengupta, Mrinal Kumar; Ahamed, Sad; Chowdhury, Uttam Kumar; Lodh, Dilip; Hossain, Amir; Das, Bhaskar; Roy, Niladri; Saha, Kshitish Chandra; Palit, Shyamal Kanti; Chakraborti, Dipankar
2005-01-01
An in-depth study was carried out in Rajapur, an arsenic-affected village in West Bengal, India, to determine the degree of groundwater contamination with arsenic and the impact of this contamination on residents. The flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS) method was used to measure arsenic concentrations in water and biological samples. Dermatologists recorded the dermatological features of arsenicosis. Out of a total of 336 hand-pumped tube-wells in Rajapur, 91% (307/336) contained arsenic at concentrations > 10 microg/l, and 63% (213/336) contained arsenic at > 50 microg/l. The type of arsenic in groundwater, the variation in concentrations of arsenic as the depth of tube-wells changed, and the iron concentration in the wells were also measured. Altogether 825 of 3500 residents were examined for skin lesions; of these, 149 had lesions caused by exposure to arsenic. Of the 420 biological samples collected and analysed, 92.6% (389) contained arsenic at concentrations that were above normal. Thus many villagers might be subclinically affected. Although five arsenic-filtering devices had been installed in Rajapur, it appears that villagers are still exposed to raised concentrations of arsenic in their drinking-water. Detailed village-level studies of arsenic-affected areas in West Bengal are required in order to understand the magnitude of contamination and its effects on people. Villagers are ill-informed about the dangers of drinking arsenic-contaminated water. The contamination could be brought under control by increasing community awareness of the dangers and implementing proper watershed management techniques that involve local people. PMID:15682249
Liu, Wen-ju; Zhu, Yong-guan; Hu, Ying; Zhao, Quan-li
2008-04-01
A compartmented soil-glass bead culture system was used to investigate characteristics of arsenic accumulation in iron plaque and in mature rice plants irrigated using water with arsenic in greenhouse. Arsenic was supplied as a solution of Na3AsO4 * 12H2O at the following stages: tillering, stem elongation, booting, flowering and grain filling. The whole plant was separated into four parts and As concentrations were analyzed in DCB (dithionite-citrate-bicarbonate)-extraction, root, straw, rice husk and grain respectively. The results show that irrigation-water with arsenic has no significant effect on biomass of straw and grain. Arsenic concentrations are distributed in different components of mature rice with the ranking of iron plaque > root > straw > husk > grain. Arsenic in straw and grain just derive from soil in control, and derive from soil and irrigation-water in arsenic treatment. About 76.5% and 71.0% of total arsenic in rice straw are from soil for lines of YY-1 and 94D-64 respectively. There is no significant difference between two lines. However, about 33.6% of total arsenic in grain of YY-1 comes from irrigation-water with arsenic, and only 15.2% of total arsenic in grain of 94D1-64 is from irrigation-water with arsenic. There is a significant difference between YY-1 and 94D-64. Arsenic concentrations in rice grain are lower than the food safety limitation in China (0.7 mg x kg(-1)).
NASA Astrophysics Data System (ADS)
Gawel, J.; Barrett, P. M.; Hull, E.; Burkart, K.; McLean, J.; Hargrave, O.; Neumann, R.
2017-12-01
The former ASARCO copper smelter in Ruston, WA, now a Superfund site, contaminated a large area of the south-central Puget Sound region with arsenic over its almost 100-year history. Arsenic, a priority Superfund contaminant and carcinogen, is a legacy pollutant impacting aquatic ecosystems in urban lakes downwind of the ASARCO emissions stack. We investigated the impact of lake mixing regime on arsenic transfer from sediments into lake water and aquatic biota. We regularly collected water column and plankton samples from four study lakes for two years, and deployed sediment porewater peepers and sediment traps to estimate arsenic flux rates to and from the sediments. In lakes with strong seasonal stratification, high aqueous arsenic concentrations were limited to anoxic hypolimnetic waters while low arsenic concentrations were observed in oxic surface waters. However, in polymictic, shallow lakes, we observed elevated arsenic concentrations throughout the entire oxic water column. Sediment flux estimates support higher rates of arsenic release from sediments and vertical transport. Because high arsenic in oxic waters results in spatial overlap between arsenate, a phosphate analog, and lake biota, we observed enhanced trophic transfer of arsenic in polymictic, shallow study lakes, with higher arsenic accumulation (up to an order of magnitude) in both phytoplankton and zooplankton compared to stratified lakes. Chemical and physical mechanisms for higher steady-state arsenic concentrations will be explored. Our work demonstrates that physical mixing processes coupled with sediment/water redox status exert significant control over bioaccumulation, making shallow, periodically-mixed urban lakes uniquely vulnerable to environmental and human health risks from legacy arsenic contamination.
Humic acids enhance the microbially mediated release of sedimentary ferrous iron.
Chang, Chun-Han; Wei, Chia-Cheng; Lin, Li-Hung; Tu, Tzu-Hsuan; Liao, Vivian Hsiu-Chuan
2016-03-01
Iron (Fe) is an essential element for many organisms, but high concentrations of iron can be toxic. The complex relation between iron, arsenic (As), bacteria, and organic matter in sediments and groundwater is still an issue of environmental concern. The present study addresses the effects of humic acids and microorganisms on the mobilization of iron in sediments from an arsenic-affected area, and the microbial diversity was analyzed. The results showed that the addition of 50, 100, and 500 mg/L humic acids enhanced ferrous iron (Fe(II)) release in a time-dependent and dose-dependent fashion under anaerobic conditions. A significant increase in the soluble Fe(II) concentrations occurred in the aqueous phases of the samples during the first 2 weeks, and aqueous Fe(II) reached its maximum concentrations after 8 weeks at the following Fe(II) concentrations: 28.95 ± 1.16 mg/L (original non-sterilized sediments), 32.50 ± 0.71 mg/L (50 mg/L humic acid-amended, non-sterilized sediments), 37.50 ± 1.85 mg/L (100 mg/L humic acid-amended, non-sterilized sediments), and 39.00 ± 0.43 mg/L (500 mg/L humic acid-amended, non-sterilized sediments). These results suggest that humic acids can further enhance the microbially mediated release of sedimentary iron under anaerobic conditions. By contrast, very insignificant amounts of iron release were observed from sterilized sediments (the abiotic controls), even with the supplementation of humic acids under anaerobic incubation. In addition, the As(III) release was increased from 50 ± 10 μg/L (original non-sterilized sediments) to 110 ± 45 μg/L (100 mg/L humic acid-amended, non-sterilized sediments) after 8 weeks of anaerobic incubation. Furthermore, a microbial community analysis indicated that the predominant class was changed from Alphaproteobacteria to Deltaproteobacteria, and clearly increased populations of Geobacter sp., Paludibacter sp., and Methylophaga sp. were found after adding humic acids along with the increased release of iron and arsenic. Our findings provide evidence that humic acids can enhance the microbially mediated release of sedimentary ferrous iron in an arsenic-affected area. It is thus suggested that the control of anthropogenic humic acid use and entry into the environment is important for preventing the subsequent iron contamination in groundwater.
USDA-ARS?s Scientific Manuscript database
A novel dielectric barrier discharge reactor (DBDR) was utilized to trap/release arsenic coupled to hydride generation atomic fluorescence spectrometry (HGAFS). On the DBD principle, the precise and accurate control of trap/release procedures was fulfilled at ambient temperature, and an analytical m...
Frederick Green; Carol A. Clausen
2005-01-01
The voluntary withdrawal of chromated copper arsenate (CCA)-treated wood from most residential applications has increased the use of non-arsenical copper-based organic wood preservatives. Because the arsenic component of CCA controlled copper tolerant fungi, scientists have renewed interest in and concern about the decay capacity in the important copper-tolerant group...
Topical photodynamic therapy with 5-ALA in the treatment of arsenic-induced skin tumors
NASA Astrophysics Data System (ADS)
Karrer, Sigrid; Szeimies, Rolf-Markus; Landthaler, Michael
1995-03-01
A case of a 62-year-old woman suffering from psoriasis who was treated orally with arsenic 25 years ago is reported. The cumulative dose of arsenic trioxide was 800 mg. Since 10 years ago arsenic keratoses, basal cell carcinomas, Bowen's disease and invasive squamous cell carcinomas mainly on her hands and feet have developed, skin changes were clearly a sequence of arsenic therapy. Control of disease was poor, her right little finger had to be amputated. Topical photodynamic therapy with 5-aminolevulinic acid was performed on her right hand. Clinical and histological examinations 6 months after treatment showed an excellent cosmetic result with no signs of tumor residue.
The research of arsenic existence and action in rivers of Armenia.
NASA Astrophysics Data System (ADS)
Khachiyan, Diana
2010-05-01
In Armenia, to the negative processes connected with global climate changes in the scope of the whole Earth, put in local processes, which are consequences of very ungrateful ecological situation. Today Armenia does not have either strategy or plan of how to adapt to the changes of the environment. Industrial and domestic refuse waste waters of cities and settlements, located near rivers, frequently, without preliminary cleaning, throw out in the river water. In addition, waters of Armenian rivers that used for drinking, irrigation in agriculture, also used in technological processes and industry. For example, one of the factors which have huge destructive impact on the nature of Armenia is the mining and metallurgical field of the industry. In the process of enrichment different chemical compounds are used. Most of industries do not have private cleaning stations. Wastes of industries are concentrated in temporary tailing repositories and then toxic slush overflows out of the tailing repositories will get to rivers. Typical example of that is the river Vokchi. The aim of our research is to monitor arsenic concentrations in natural water of Armenia for the years 2007-2008. For the fulfillment of such work on high level, starting from the selection of tests and ending by working with findings, there is a need of contemporary apparatus, certified clear chemical reagent and materials. Center For Ecological Noosphere Studies of National Academy of Sciences RA is the participant of international project "South Caucasus rivers monitoring " by the program of NATO-OSCE "Science for peace". This appeared a reason to solve problems of accordance to international standards. Expeditionary group preliminary has defined some points of tests selection and selected specimens of river water by means of special apparatus. Chemical analysis of water specimens, which were selected on the above mentioned contaminated territories, fulfilled in analytical laboratory by using the method of electrotermical atomization of atomic absorption spectrometry. The advantage of this method is high accuracy and the possibility to determine different forms of heavy metals (strong mobile water soluble, mobile acid soluble etc.) Subsequently, dependence of changes diagrams of arsenic concentration (ppb) from the time of tests selection (months) from 13 points of rivers of Armenia has built. According to our monitoring, the dependence of changes of arsenic concentration in river water from industrial and domestic refuse objects was observed, also observed depending on year seasons. As known, arsenic toxicity depends on its concentration as in dissolved forms as in suspended condition. We have found that concentrations of dissolved forms of arsenic, practically equals to its total concentration. Basic priority of our research is an observation and understanding of arsenic ecological chemistry, physico-chemical forms of its existence in natural waters of Armenia. Poisoned soil, water and air, lost health of people - such is the price of the development of rough economy of Armenia; such is the price of profit of transnational corporations.
Aqueous and solid phase speciation of arsenic in a Bengali aquifer using IC-ICP-MS and EXAFS
NASA Astrophysics Data System (ADS)
Gault, A. G.; Davidson, L. E.; Lythgoe, P. R.; Charnock, J. M.; Chatterjee, D.; Abou-Shakra, F. R.; Walker, H. J.; Polya, D. A.
2003-04-01
Contamination of groundwater and drinking water supplies with arsenic has been reported in many parts of the world and constitutes a serious public health threat. Nowhere is this more apparent than in West Bengal and Bangladesh where arsenic concentrations exceed both World Health Organisation (WHO) and national limits in drinking water supplies leading to what has been described as the worst mass poisoning of a human population in history. Knowledge of both aqueous and solid phase speciation of arsenic in such hazardous arsenic-rich groundwaters is crucial to understanding the processes controlling arsenic release. We report here preliminary work involving the determination of dissolved arsenic speciation in West Bengali groundwaters and extended X-ray absorption fine structure (EXAFS) analysis of the associated sediment. Groundwater samples collected from Nadia district, West Bengal were analysed for arsenic speciation by ion chromatography-inductively coupled plasma-mass spectrometry (IC-ICP-MS) within 14 days of collection. Total arsenic concentrations exceeding 850 ug/L were determined; inorganic arsenic constituted the bulk of the dissolved arsenic burden with As(III) as the dominant form. Minor amounts of methylated arsenicals were also detected, however, their concentration did not exceed 5 ug/L. The local coordination environment of arsenic in sediment associated with such groundwaters was probed using K-edge As EXAFS. This revealed that arsenic exists predominantly in its oxidised form, As(V), most likely adsorbed as bidentate arsenate tetrahedra on metal (Fe and/or Al) oxide/hydroxide surfaces, although incorporation of arsenic into a metal oxide structure cannot be unequivocally ruled out. Arsenic was found to occur in several different coordination environments and this, together with the low concentration (< 5 ug/g) of arsenic in the sediment, prevented the unambiguous assignment of the second coordination sphere. The analysis of the trends of key groundwater constituents in our data suggest that arsenic is released due to the reductive dissolution of arsenic laden-hydrous ferric oxides, however, further work is required to fully evaluate the mode of arsenic release.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samadder, Asmita; Das, Jayeeta; Das, Sreemanti
Diabetes is a menacing problem, particularly to inhabitants of groundwater arsenic contaminated areas needing new medical approaches. This study examines if PLGA loaded nano-insulin (NIn), administered either intraperitoneally (i.p.) or through oral route, has a greater cost-effective anti-hyperglycemic potential than that of insulin in chronically arsenite-fed hyperglycemic mice. The particle size, morphology and zeta potential of nano-insulin were determined using dynamic light scattering method, scanning electronic and atomic force microscopies. The ability of the nano-insulin (NIn) to cross the blood–brain barrier (BBB) was also checked. Circular dichroic spectroscopic (CD) data of insulin and nano-insulin in presence or absence of arsenicmore » were compared. Several diabetic markers in different groups of experimental and control mice were assessed. The mitochondrial functioning through indices like cytochrome c, pyruvate-kinase, glucokinase, ATP/ADP ratio, mitochondrial membrane potential, cell membrane potential and calcium-ion level was also evaluated. Expressions of the relevant marker proteins and mRNAs like insulin, GLUT2, GLUT4, IRS1, IRS2, UCP2, PI3, PPARγ, CYP1A1, Bcl2, caspase3 and p38 for tracking-down the signaling cascade were also analyzed. Results revealed that i.p.-injected nano-encapsulated-insulin showed better results; NIn, due to its smaller size, faster mobility, site-specific release, could cross BBB and showed positive modulation in mitochondrial signaling cascades and other downstream signaling molecules in reducing arsenic-induced-hyperglycemia. CD data indicated that nano-insulin had less distorted secondary structure as compared with that of insulin in presence of arsenic. Thus, overall analyses revealed that PLGA nano-insulin showed better efficacy in combating arsenite-induced-hyperglycemia than that of insulin and therefore, has greater potentials for use in nano-encapsulated form. - Highlights: ► PLGA encapsulated nano-insulin attenuates arsenic-induced diabetes in mice. ► Encapsulated insulin acts effectively at nearly 10 fold lesser dose than insulin. ► Injection route is more effective than oral administration route. ► Nano-insulin can cross blood–brain barrier with added physiological implications. ► Nano-insulin acts mainly through regulation of mitochondrial signaling cascade.« less
NASA Astrophysics Data System (ADS)
Su, Xiaosi; Lu, Shuai; Yuan, Wenzhen; Woo, Nam Chil; Dai, Zhenxue; Dong, Weihong; Du, Shanghai; Zhang, Xinyue
2018-03-01
The spatial and temporal distribution of redox zones in an aquifer is important when designing groundwater supply systems. Redox zonation can have direct or indirect control of the biological and chemical reactions and mobility of pollutants. In this study, redox conditions are characterized by interpreting the hydrogeological conditions and water chemistry in groundwater during bank infiltration at a site in Shenyang, northeast China. The relevant redox processes and zonal differences in a shallow flow path and deeper flow path at the field scale were revealed by monitoring the redox parameters and chemistry of groundwater near the Liao River. The results show obvious horizontal and vertical components of redox zones during bank filtration. Variations in the horizontal extent of the redox zone were controlled by the different permeabilities of the riverbed sediments and aquifer with depth. Horizontally, the redox zone was situated within 17 m of the riverbank for the shallow flow path and within 200 m for the deep flow path. The vertical extent of the redox zone was affected by precipitation and seasonal river floods and extended to 10 m below the surface. During bank filtration, iron and manganese oxides or hydroxides were reductively dissolved, and arsenic that was adsorbed onto the medium surface or coprecipitated is released into the groundwater. This leads to increased arsenic content in groundwater, which poses a serious threat to water supply security.
Fate of Arsenic during Red River Water Infiltration into Aquifers beneath Hanoi, Vietnam
2016-01-01
Recharge of Red River water into arsenic-contaminated aquifers below Hanoi was investigated. The groundwater age at 40 m depth in the aquifer underlying the river was 1.3 ± 0.8 years, determined by tritium–helium dating. This corresponds to a vertical flow rate into the aquifer of 19 m/year. Electrical conductivity and partial pressure of CO2 (PCO2) indicate that water recharged from the river is present in both the sandy Holocene and gravelly Pleistocene aquifers and is also abstracted by the pumping station. Infiltrating river water becomes anoxic in the uppermost aquifer due to the oxidation of dissolved organic carbon. Further downward, sedimentary carbon oxidation causes the reduction of As-containing Fe-oxides. Because the release of arsenic by reduction of Fe-oxides is controlled by the reaction rate, arsenic entering the solution becomes highly diluted in the high water flux and contributes little to the groundwater arsenic concentration. Instead, the As concentration in the groundwater of up to 1 μM is due to equilibrium-controlled desorption of arsenic, adsorbed to the sediment before river water started to infiltrate due to municipal pumping. Calculations indicate that it will take several decades of river water infiltration to leach arsenic from the Holocene aquifer to below the World Health Organization limit of 10 μg/L. PMID:27958705
Ghosh, Asutosh
2013-08-01
Chronic arsenic poisoning is an important public health problem and most notable in West Bengal and Bangladesh. In this study different systemic manifestations in chronic arsenic poisoning were evaluated. A nonrandomized, controlled, cross-sectional, observational study was carried out in Arsenic Clinic, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, over a period of 1 year 4 months. Seventy-three cases diagnosed clinically, consuming water containing arsenic ≥50 μg/L and having hair and nail arsenic level >0.6 μg/L, were included. Special investigations included routine parameters and organ-specific tests. Arsenic levels in the drinking water, hair, and nail were measured in all. Twenty-five nonsmoker healthy controls were evaluated. Murshidabad and districts adjacent to Kolkata, West Bengal, were mostly affected. Middle-aged males were the common sufferers. Skin involvement was the commonest manifestation (100%), followed by hepatomegaly [23 (31.5%)] with or without transaminitis [7 (9.58%)]/portal hypertension [9 (12.33%)]. Restrictive abnormality in spirometry [11 (15.06%)], bronchiectasis [4 (5.47%)], interstitial fibrosis [2 (2.73%)], bronchogenic carcinoma [2 (2.73%)], oromucosal plaque [7 (9.58%)], nail hypertrophy [10 (13.69%)], alopecia [8 (10.95%)], neuropathy [5 (6.84%)], and Electrocardiography abnormalities [5 (6.84%)] were also observed. Mucocutaneous and nail lesions, hepatomegaly, and restrictive change in spirometry were the common and significant findings. Other manifestations were characteristic but insignificant.
Fate of Arsenic during Red River Water Infiltration into Aquifers beneath Hanoi, Vietnam.
Postma, Dieke; Mai, Nguyen Thi Hoa; Lan, Vi Mai; Trang, Pham Thi Kim; Sø, Helle Ugilt; Nhan, Pham Quy; Larsen, Flemming; Viet, Pham Hung; Jakobsen, Rasmus
2017-01-17
Recharge of Red River water into arsenic-contaminated aquifers below Hanoi was investigated. The groundwater age at 40 m depth in the aquifer underlying the river was 1.3 ± 0.8 years, determined by tritium-helium dating. This corresponds to a vertical flow rate into the aquifer of 19 m/year. Electrical conductivity and partial pressure of CO 2 (P CO 2 ) indicate that water recharged from the river is present in both the sandy Holocene and gravelly Pleistocene aquifers and is also abstracted by the pumping station. Infiltrating river water becomes anoxic in the uppermost aquifer due to the oxidation of dissolved organic carbon. Further downward, sedimentary carbon oxidation causes the reduction of As-containing Fe-oxides. Because the release of arsenic by reduction of Fe-oxides is controlled by the reaction rate, arsenic entering the solution becomes highly diluted in the high water flux and contributes little to the groundwater arsenic concentration. Instead, the As concentration in the groundwater of up to 1 μM is due to equilibrium-controlled desorption of arsenic, adsorbed to the sediment before river water started to infiltrate due to municipal pumping. Calculations indicate that it will take several decades of river water infiltration to leach arsenic from the Holocene aquifer to below the World Health Organization limit of 10 μg/L.
Rivera-Núñez, Zorimar; Meliker, Jaymie R; Meeker, John D; Slotnick, Melissa J; Nriagu, Jerome O
2012-01-01
The large disparity between arsenic concentrations in drinking water and urine remains unexplained. This study aims to evaluate predictors of urinary arsenic in a population exposed to low concentrations (≤50 μg/l) of arsenic in drinking water. Urine and drinking water samples were collected from a subsample (n=343) of a population enrolled in a bladder cancer case-control study in southeastern Michigan. Total arsenic in water and arsenic species in urine were determined using ICP-MS: arsenobetaine (AsB), arsenite (As[III]), arsenate (As[V]), methylarsenic acid (MMA[V]), and dimethylarsenic acid (DMA[V]). The sum of As[III], As[V], MMA[V], and DMA[V] was denoted as SumAs. Dietary information was obtained through a self-reported food intake questionnaire. Log(10)-transformed drinking water arsenic concentration at home was a significant (P<0.0001) predictor of SumAs (R(2)=0.18). Associations improved (R(2)=0.29, P<0.0001) when individuals with less than 1 μg/l of arsenic in drinking water were removed and further improved when analyses were applied to individuals who consumed amounts of home drinking water above the median volume (R(2)=0.40, P<0.0001). A separate analysis indicated that AsB and DMA[V] were significantly correlated with fish and shellfish consumption, which may suggest that seafood intake influences DMA[V] excretion. The Spearman correlation between arsenic concentration in toenails and SumAs was 0.36 and between arsenic concentration in toenails and arsenic concentration in water was 0.42. Results show that arsenic exposure from drinking water consumption is an important determinant of urinary arsenic concentrations, even in a population exposed to relatively low levels of arsenic in drinking water, and suggest that seafood intake may influence urinary DMA[V] concentrations.
Crop Uptake of Arsenic from Flooded Paddy Fields in the Mekong Delta
NASA Astrophysics Data System (ADS)
Mohr, K.; Boye, K.
2014-12-01
Arsenic is found naturally in the soils in the Mekong delta in Vietnam and Cambodia. It originates from erosion in the Himalayas. When similar levels of arsenic are present in well aerated soil, it is not dangerous, because it is strongly bound to soil particles and not readily plant available. Arsenic is released when the soil is saturated with water, and therefore contaminates crops grown in flooded fields. This results in people being exposed to unsafe levels of arsenic from their food, such as rice and lotus, which are normally grown under flooded conditions. Rice is a staple food in these regions, so the transfer of arsenic from soil, to water, and ultimately into the grain, poses a threat to human health. We have conducted a limited, preliminary field survey of arsenic levels in soil, flood water, and crops from distinctly different paddy fields in the lower Mekong delta in Vietnam and Cambodia. The purpose of the study was to identify soils and crops (or specific plant parts) that are especially prone to arsenic transfer from soil to crop, and vice versa (i.e. arsenic uptake is prevented in spite of being present in the soil). In addition to arsenic concentration in soil, plant and water, we are examining other elements, such as carbon, nitrogen, sulfur and iron, which give us clues about what chemical and microbial processes that control the overall arsenic uptake.
Mitigating arsenic contamination in rice plants with an aquatic fern, Marsilea minuta.
Hassi, Ummehani; Hossain, Md Tawhid; Huq, S M Imamul
2017-10-10
Dangers of arsenic contamination are well known in human civilization. The threat increases when arsenic is accumulated in food and livestock through irrigated crops or animal food. Hence, it is important to mitigate the effects of arsenic as much as possible. This paper discusses a process for reducing the level of arsenic in different parts of rice plants with an aquatic fern, Marsilea minuta L. A pot experiment was done to study the possibility of using Marsilea minuta as a phytoremediator of arsenic. Rice and Marsilea minuta were allowed to grow together in soils. As a control, Marsilea minuta was also cultured alone in the presence and absence of arsenic (applied at 1 mg/L as irrigation water). We did not find any significant change in the growth of rice due to the association of Marsilea minuta, though it showed a reduction of approximately 58.64% arsenic accumulation in the roots of rice grown with the association of fern compared to that grown without fern. We measured a bioaccumulation factor (BF) of > 5.34, indicating that Marsilea minuta could be a good phytoremediator of arsenic in rice fields.
Mohanta, Ranjan Kumar; Garg, Anil Kumar; Dass, Ram Sharan
2015-01-01
Arsenic (As) exerts oxidative stress with depletion of body selenium in monogastric animals. But in ruminants this fact is not yet verified. Vitamin E is an effective dietary antioxidant. Thus, in this experiment, the protective effect of vitamin E against arsenic toxicity induced by sodium arsenite (60mg As/kg diet) was investigated in goat kids. For this, 21 male kids were divided into three equal groups and fed either basal diet as such (control), or supplemented with 60mg As/kg diet and 60mg As/kg diet+250IU vitamin E/kg diet for 180 days. Vitamin E supplementation alleviated the toxic effects caused by arsenic on serum alanine aminotransferase and aspartate aminotransferase and lipid peroxidation. It also prevented the depletion of reduced glutathione content and reduction in activity of catalase, superoxide dismutase and glutathione-s-transferase in erythrocytes resulted from arsenic intoxication. The elevated levels of arsenic and reduced levels of selenium in the serum and tissues in arsenic treated animals were attenuated by vitamin E supplementation, though not completely. However, serum cortisol level was not affected by arsenic. It was concluded that arsenic exerts cortisol independent stressor mechanism and supplementation of vitamin E at a level of 250IU/kg diet was partially effective in reducing tissue accumulation of arsenic in the body and protect the kids from oxidative stress induced by arsenic. Copyright © 2014 Elsevier GmbH. All rights reserved.
Evaluating Leaf and Canopy Reflectance of Stressed Rice Plants to Monitor Arsenic Contamination.
Bandaru, Varaprasad; Daughtry, Craig S; Codling, Eton E; Hansen, David J; White-Hansen, Susan; Green, Carrie E
2016-06-18
Arsenic contamination is a serious problem in rice cultivated soils of many developing countries. Hence, it is critical to monitor and control arsenic uptake in rice plants to avoid adverse effects on human health. This study evaluated the feasibility of using reflectance spectroscopy to monitor arsenic in rice plants. Four arsenic levels were induced in hydroponically grown rice plants with application of 0, 5, 10 and 20 µmol·L(-1) sodium arsenate. Reflectance spectra of upper fully expanded leaves were acquired over visible and infrared (NIR) wavelengths. Additionally, canopy reflectance for the four arsenic levels was simulated using SAIL (Scattering by Arbitrarily Inclined Leaves) model for various soil moisture conditions and leaf area indices (LAI). Further, sensitivity of various vegetative indices (VIs) to arsenic levels was assessed. Results suggest that plants accumulate high arsenic amounts causing plant stress and changes in reflectance characteristics. All leaf spectra based VIs related strongly with arsenic with coefficient of determination (r²) greater than 0.6 while at canopy scale, background reflectance and LAI confounded with spectral signals of arsenic affecting the VIs' performance. Among studied VIs, combined index, transformed chlorophyll absorption reflectance index (TCARI)/optimized soil adjusted vegetation index (OSAVI) exhibited higher sensitivity to arsenic levels and better resistance to soil backgrounds and LAI followed by red edge based VIs (modified chlorophyll absorption reflectance index (MCARI) and TCARI) suggesting that these VIs could prove to be valuable aids for monitoring arsenic in rice fields.
Gruber, Joann F; Karagas, Margaret R; Gilbert-Diamond, Diane; Bagley, Pamela J; Zens, M Scot; Sayarath, Vicki; Punshon, Tracy; Morris, J Steven; Cottingham, Kathryn L
2012-06-29
Dietary factors such as folate, vitamin B12, protein, and methionine are important for the excretion of arsenic via one-carbon metabolism in undernourished populations exposed to high levels of arsenic via drinking water. However, the effects of dietary factors on toenail arsenic concentrations in well-nourished populations exposed to relatively low levels of water arsenic are unknown. As part of a population-based case-control study of skin and bladder cancer from the USA, we evaluated relationships between consumption of dietary factors and arsenic concentrations in toenail clippings. Consumption of each dietary factor was determined from a validated food frequency questionnaire. We used general linear models to examine the associations between toenail arsenic and each dietary factor, taking into account potentially confounding effects. As expected, we found an inverse association between ln-transformed toenail arsenic and consumption of vitamin B12 (excluding supplements) and animal protein. Unexpectedly, there were also inverse associations with numerous dietary lipids (e.g., total fat, total animal fat, total vegetable fat, total monounsaturated fat, total polyunsaturated fat, and total saturated fat). Finally, increased toenail arsenic concentrations were associated with increased consumption of long chain n-3 fatty acids. In a relatively well-nourished population exposed to relatively low levels of arsenic via water, consumption of certain dietary lipids may decrease toenail arsenic concentration, while long chain n-3 fatty acids may increase toenail arsenic concentration, possibly due to their association with arsenolipids in fish tissue.
Associations between toenail arsenic concentration and dietary factors in a New Hampshire population
2012-01-01
Background Dietary factors such as folate, vitamin B12, protein, and methionine are important for the excretion of arsenic via one-carbon metabolism in undernourished populations exposed to high levels of arsenic via drinking water. However, the effects of dietary factors on toenail arsenic concentrations in well-nourished populations exposed to relatively low levels of water arsenic are unknown. Methods As part of a population-based case–control study of skin and bladder cancer from the USA, we evaluated relationships between consumption of dietary factors and arsenic concentrations in toenail clippings. Consumption of each dietary factor was determined from a validated food frequency questionnaire. We used general linear models to examine the associations between toenail arsenic and each dietary factor, taking into account potentially confounding effects. Results As expected, we found an inverse association between ln-transformed toenail arsenic and consumption of vitamin B12 (excluding supplements) and animal protein. Unexpectedly, there were also inverse associations with numerous dietary lipids (e.g., total fat, total animal fat, total vegetable fat, total monounsaturated fat, total polyunsaturated fat, and total saturated fat). Finally, increased toenail arsenic concentrations were associated with increased consumption of long chain n-3 fatty acids. Conclusion In a relatively well-nourished population exposed to relatively low levels of arsenic via water, consumption of certain dietary lipids may decrease toenail arsenic concentration, while long chain n-3 fatty acids may increase toenail arsenic concentration, possibly due to their association with arsenolipids in fish tissue. PMID:22747713
The Arsenite Oxidation Potential of Native Microbial Communities from Arsenic-Rich Freshwaters.
Fazi, Stefano; Crognale, Simona; Casentini, Barbara; Amalfitano, Stefano; Lotti, Francesca; Rossetti, Simona
2016-07-01
Microorganisms play an important role in speciation and mobility of arsenic in the environment, by mediating redox transformations of both inorganic and organic species. Since arsenite [As(III)] is more toxic than arsenate [As(V)] to the biota, the microbial driven processes of As(V) reduction and As(III) oxidation may play a prominent role in mediating the environmental impact of arsenic contamination. However, little is known about the ecology and dynamics of As(III)-oxidizing populations within native microbial communities exposed to natural high levels of As. In this study, two techniques for single cell quantification (i.e., flow cytometry, CARD-FISH) were used to analyze the structure of aquatic microbial communities across a gradient of arsenic (As) contamination in different freshwater environments (i.e., groundwaters, surface and thermal waters). Moreover, we followed the structural evolution of these communities and their capacity to oxidize arsenite, when experimentally exposed to high As(III) concentrations in experimental microcosms. Betaproteobacteria and Deltaproteobacteria were the main groups retrieved in groundwaters and surface waters, while Beta and Gammaproteobacteria dominated the bacteria community in thermal waters. At the end of microcosm incubations, the communities were able to oxidize up to 95 % of arsenite, with an increase of Alphaproteobacteria in most of the experimental conditions. Finally, heterotrophic As(III)-oxidizing strains (one Alphaproteobacteria and two Gammaproteobacteria) were isolated from As rich waters. Our findings underlined that native microbial communities from different arsenic-contaminated freshwaters can efficiently perform arsenite oxidation, thus contributing to reduce the overall As toxicity to the aquatic biota.
Bacterial respiration of arsenic and selenium
Stolz, J.F.; Oremland, R.S.
1999-01-01
Oxyanions of arsenic and selenium can be used in microbial anaerobic respiration as terminal electron acceptors. The detection of arsenate and selenate respiring bacteria in numerous pristine and contaminated environments and their rapid appearance in enrichment culture suggest that they are widespread and metabolically active in nature. Although the bacterial species that have been isolated and characterized are still few in number, they are scattered throughout the bacterial domain and include Gram- positive bacteria, beta, gamma and epsilon Proteobacteria and the sole member of a deeply branching lineage of the bacteria, Chrysiogenes arsenatus. The oxidation of a number of organic substrates (i.e. acetate, lactate, pyruvate, glycerol, ethanol) or hydrogen can be coupled to the reduction of arsenate and selenate, but the actual donor used varies from species to species. Both periplasmic and membrane-associated arsenate and selenate reductases have been characterized. Although the number of subunits and molecular masses differs, they all contain molybdenum. The extent of the environmental impact on the transformation and mobilization of arsenic and selenium by microbial dissimilatory processes is only now being fully appreciated.
Shankar, Shiv; Shanker, Uma; Shikha
2014-01-01
Arsenic contamination of groundwater in different parts of the world is an outcome of natural and/or anthropogenic sources, leading to adverse effects on human health and ecosystem. Millions of people from different countries are heavily dependent on groundwater containing elevated level of As for drinking purposes. As contamination of groundwater, poses a serious risk to human health. Excessive and prolonged exposure of inorganic As with drinking water is causing arsenicosis, a deteriorating and disabling disease characterized by skin lesions and pigmentation of the skin, patches on palm of the hands and soles of the feet. Arsenic poisoning culminates into potentially fatal diseases like skin and internal cancers. This paper reviews sources, speciation, and mobility of As and global overview of groundwater As contamination. The paper also critically reviews the As led human health risks, its uptake, metabolism, and toxicity mechanisms. The paper provides an overview of the state-of-the-art knowledge on the alternative As free drinking water and various technologies (oxidation, coagulation flocculation, adsorption, and microbial) for mitigation of the problem of As contamination of groundwater.
Shikha
2014-01-01
Arsenic contamination of groundwater in different parts of the world is an outcome of natural and/or anthropogenic sources, leading to adverse effects on human health and ecosystem. Millions of people from different countries are heavily dependent on groundwater containing elevated level of As for drinking purposes. As contamination of groundwater, poses a serious risk to human health. Excessive and prolonged exposure of inorganic As with drinking water is causing arsenicosis, a deteriorating and disabling disease characterized by skin lesions and pigmentation of the skin, patches on palm of the hands and soles of the feet. Arsenic poisoning culminates into potentially fatal diseases like skin and internal cancers. This paper reviews sources, speciation, and mobility of As and global overview of groundwater As contamination. The paper also critically reviews the As led human health risks, its uptake, metabolism, and toxicity mechanisms. The paper provides an overview of the state-of-the-art knowledge on the alternative As free drinking water and various technologies (oxidation, coagulation flocculation, adsorption, and microbial) for mitigation of the problem of As contamination of groundwater. PMID:25374935
Arsenic animal-feed additives have been extensively used in the United States for their growth- promoting and disease-controlling properties. In particular most broiler chickens are fed roxarsone(3- nitro-4-hydroxyphenylarsonic acid) to control coccidiosis. Disposal of the result...
Behavioral Determinants of Switching to Arsenic-Safe Water Wells.
George, Christine Marie; Inauen, Jennifer; Perin, Jamie; Tighe, Jennifer; Hasan, Khaled; Zheng, Yan
2017-02-01
More than 100 million people globally are estimated to be exposed to arsenic in drinking water that exceeds the World Health Organization guideline of 10 µg/L. In an effort to develop and test a low-cost sustainable approach for water arsenic testing in Bangladesh, we conducted a randomized controlled trial which found arsenic educational interventions when combined with fee-based water arsenic testing programs led to nearly all households buying an arsenic test for their drinking water sources (93%) compared with only 53% when fee-based arsenic testing alone was offered. The aim of the present study was to build on the findings of this trial by investigating prospectively the psychological factors that were most strongly associated with switching to arsenic-safe wells in response to these interventions. Our theoretical framework was the RANAS (risk, attitude, norm, ability, and self-regulation) model of behavior change. In the multivariate logistic regression model of 285 baseline unsafe well users, switching to an arsenic-safe water source was significantly associated with increased instrumental attitude (odds ratio [OR] = 9.12; 95% confidence interval [CI] = [1.85, 45.00]), descriptive norm (OR = 34.02; 95% CI = [6.11, 189.45]), coping planning (OR = 11.59; 95% CI = [3.82, 35.19]), and commitment (OR = 10.78; 95% CI = [2.33, 49.99]). In addition, each additional minute from the nearest arsenic-safe drinking water source reduced the odds of switching to an arsenic-safe well by more than 10% (OR = 0.89; 95% CI = [0.87, 0.92]). Future arsenic mitigation programs should target these behavioral determinants of switching to arsenic-safe water sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, W.-F.; Sun, C.-W.; Cheng, T.-J.
2009-04-15
To understand whether human paraoxonase 1 (PON1) would modulate the risk for arsenic-related atherosclerosis, we studied 196 residents from an arseniasis-endemic area in Southwestern Taiwan and 291 age- and sex-matched residents from a nearby control area where arsenic exposure was found low. Carotid atherosclerosis was defined by a carotid artery intima-media wall thickness (IMT) of > 1.0 mm. Prevalence of carotid atherosclerosis was increased in the arseniasis-endemic area as compared to the control area after adjustment for conventional risk factors (OR = 2.20, p < 0.01). The prevalence was positively associated with cumulative arsenic exposure (mg/L-year) in a dose-dependent manner.more » Multiple logistic regression analysis showed that in the endemic group, low serum PON1 activity was an independent risk factor for atherosclerosis (OR = 4.18 low vs. high, p < 0.05). For those of low PON1 activity and high cumulative arsenic exposure, the odds ratio for the prevalence of atherosclerosis was further increased up to 5.68 (p < 0.05). No significant association was found between atherosclerosis and four polymorphisms of the PON gene cluster (PON1 - 108C/T, PON1 Q192R, PON2 A148G, PON2 C311S). However, genetic frequencies of certain alleles including PON1 Q192, PON2 G148 and PON2 C311 were found increased in the endemic group as compared to the controls and a general Chinese population, indicating a possible survival selection in the endemic group after a long arsenic exposure history. Our results showed a significant joint effect between arsenic exposure and serum PON1 activity on carotid atherosclerosis, suggesting that subjects of low PON1 activity may be more susceptible to arsenic-related cardiovascular disease.« less
Hornhardt, Sabine; Gomolka, Maria; Walsh, Linda; Jung, Thomas
2006-08-30
In the field of radiation protection the combined exposure to radiation and other toxic agents is recognised as an important research area. To elucidate the basic mechanisms of simultaneous exposure, the interaction of the carcinogens and environmental toxicants cadmium and two arsenic compounds, arsenite and arsenic trioxide, in combination with gamma-radiation in human lymphoblastoid cells (TK6) were investigated. Gamma-radiation induced significant genotoxic effects such as micronuclei formation, DNA damage and apoptosis, whereas arsenic and cadmium had no significant effect on these indicators of cellular damage at non-toxic concentrations. However, in combination with gamma-radiation arsenic trioxide induced a more than additive apoptotic rate compared to the sum of the single effects. Here, the level of apoptotic cells was increased, in a dose-dependent way, up to two-fold compared to the irradiated control cells. Arsenite did not induce a significant additive effect at any of the concentrations or radiation doses tested. On the other hand, arsenic trioxide was less effective than arsenite in the induction of DNA protein cross-links. These data indicate that the two arsenic compounds interact through different pathways in the cell. Cadmium sulphate, like arsenite, had no significant effect on apoptosis in combination with gamma-radiation at low concentrations and, at high concentrations, even reduced the radiation-induced apoptosis. An additive effect on micronuclei induction was observed with 1muM cadmium sulphate with an increase of up to 80% compared to the irradiated control cells. Toxic concentrations of cadmium and arsenic trioxide seemed to reduce micronuclei induction. The results presented here indicate that relatively low concentrations of arsenic and cadmium, close to those occuring in nature, may interfere with radiation effects. Differences in action of the two arsenic compounds were identified.
Pierce, Brandon L; Tong, Lin; Argos, Maria; Gao, Jianjun; Farzana, Jasmine; Roy, Shantanu; Paul-Brutus, Rachelle; Rahaman, Ronald; Rakibuz-Zaman, Muhammad; Parvez, Faruque; Ahmed, Alauddin; Quasem, Iftekhar; Hore, Samar K; Alam, Shafiul; Islam, Tariqul; Harjes, Judith; Sarwar, Golam; Slavkovich, Vesna; Gamble, Mary V; Chen, Yu; Yunus, Mohammad; Rahman, Mahfuzar; Baron, John A; Graziano, Joseph H; Ahsan, Habibul
2013-12-01
Arsenic exposure through drinking water is a serious global health issue. Observational studies suggest that individuals who metabolize arsenic efficiently are at lower risk for toxicities such as arsenical skin lesions. Using two single nucleotide polymorphisms(SNPs) in the 10q24.32 region (near AS3MT) that show independent associations with metabolism efficiency, Mendelian randomization can be used to assess whether the association between metabolism efficiency and skin lesions is likely to be causal. Using data on 2060 arsenic-exposed Bangladeshi individuals, we estimated associations for two 10q24.32 SNPs with relative concentrations of three urinary arsenic species (representing metabolism efficiency): inorganic arsenic (iAs), monomethylarsonic acid(MMA) and dimethylarsinic acid (DMA). SNP-based predictions of iAs%, MMA% and DMA% were tested for association with skin lesion status among 2483 cases and 2857 controls. Causal odds ratios for skin lesions were 0.90 (95% confidence interval[CI]: 0.87, 0.95), 1.19 (CI: 1.10, 1.28) and 1.23 (CI: 1.12, 1.36)for a one standard deviation increase in DMA%, MMA% and iAs%,respectively. We demonstrated genotype-arsenic interaction, with metabolism-related variants showing stronger associations with skin lesion risk among individuals with high arsenic exposure (synergy index: 1.37; CI: 1.11, 1.62). We provide strong evidence for a causal relationship between arsenic metabolism efficiency and skin lesion risk. Mendelian randomization can be used to assess the causal role of arsenic exposure and metabolism in a wide array of health conditions.exposure and metabolism in a wide array of health conditions.Developing interventions that increase arsenic metabolism efficiency are likely to reduce the impact of arsenic exposure on health.
Seow, Wei Jie; Pan, Wen-Chi; Kile, Molly L; Tong, Lin; Baccarelli, Andrea A; Quamruzzaman, Quazi; Rahman, Mahmuder; Mostofa, Golam; Rakibuz-Zaman, Muhammad; Kibriya, Muhammad; Ahsan, Habibul; Lin, Xihong; Christiani, David C
2015-07-01
Single-nucleotide polymorphisms (SNPs) in inflammation, one-carbon metabolism, and skin cancer genes might influence susceptibility to arsenic-induced skin lesions. A case-control study was conducted in Pabna, Bangladesh (2001-2003), and the drinking-water arsenic concentration was measured for each participant. A panel of 25 candidate SNPs was analyzed in 540 cases and 400 controls. Logistic regression was used to estimate the association between each SNP and the potential for gene-environment interactions in the skin lesion risk, with adjustments for relevant covariates. Replication testing was conducted in an independent Bangladesh population with 488 cases and 2,794 controls. In the discovery population, genetic variants in the one-carbon metabolism genes phosphatidylethanolamine N-methyltransferase (rs2278952, P for interaction = .004; rs897453, P for interaction = .05) and dihydrofolate reductase (rs1650697, P for interaction = .02), the inflammation gene interleukin 10 (rs3024496, P for interaction =.04), and the skin cancer genes inositol polyphosphate-5-phosphatase (INPP5A; rs1133400, P for interaction = .03) and xeroderma pigmentosum complementation group C (rs2228000, P for interaction = .01) significantly modified the association between arsenic and skin lesions after adjustments for multiple comparisons. The significant gene-environment interaction between a SNP in the INPP5A gene (rs1133400) and water arsenic with respect to the skin lesion risk was successfully replicated in an independent population (P for interaction = .03). Minor allele carriers of the skin cancer gene INPP5A modified the odds of arsenic-induced skin lesions in both main and replicative populations. Genetic variation in INPP5A appears to have a role in susceptibility to arsenic toxicity. © 2015 American Cancer Society.
Girgis, Erian H; Mahoney, John P; Khalil, Rafaat H; Soliman, Magdi R
2010-07-01
Studies conducted in our lab have indicated that thalidomide cytotoxicity in the KG-1a human acute myelogenous leukemia (AML) cell line was enhanced by combining it with arsenic trioxide. The current investigation was conducted in order to evaluate the effect of thalidomide either alone or in combination with arsenic trioxide on the release of tumor necrosis factor-α (TNF-α) and vascular endothelial growth factor (VEGF) from this cell line in an attempt to clarify its possible cytotoxic mechanism(s). Human AML cell line KG-1a was used in this study. The cells were cultured for 48 h in the presence or absence of thalidomide (5 mg/l), and or arsenic trioxide (4 μM). The levels of TNF-α and VEGF in the supernatant were determined by ELISA. Results obtained indicate that the levels of TNF-α in the supernatant of KG-1a cell cultures incubated with thalidomide, arsenic trioxide, or combination were statistically lower than those observed in the supernatant of control cells (2.89, 5.07, 4.15 and 16.88 pg/ml, respectively). However, the levels of VEGF in the supernatant of thalidomide-treated cells were statistically higher than those in the supernatant of control cells (69.61 vs. 11.48 pg/l). Arsenic trioxide, whether alone or in combination with thalidomide, did not produce any statistically significant difference in the levels of VEGF as compared to the control or thalidomide-treated cell supernatant. These findings indicate that thalidomide and the arsenic trioxide inhibition of TNF-α production by KG-1a cells may play an important role in their cytotoxic effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Chi-Jung; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; Huang, Chao-Yuan
Inter-individual variation in the metabolism of xenobiotics, caused by factors such as cigarette smoking or inorganic arsenic exposure, is hypothesized to be a susceptibility factor for urothelial carcinoma (UC). Therefore, our study aimed to evaluate the role of gene–environment interaction in the carcinogenesis of UC. A hospital-based case–control study was conducted. Urinary arsenic profiles were measured using high-performance liquid chromatography–hydride generator-atomic absorption spectrometry. Genotyping was performed using a polymerase chain reaction-restriction fragment length polymorphism technique. Information about cigarette smoking exposure was acquired from a lifestyle questionnaire. Multivariate logistic regression was applied to estimate the UC risk associated with certain riskmore » factors. We found that UC patients had higher urinary levels of total arsenic, higher percentages of inorganic arsenic (InAs%) and monomethylarsonic acid (MMA%) and lower percentages of dimethylarsinic acid (DMA%) compared to controls. Subjects carrying the GSTM1 null genotype had significantly increased UC risk. However, no association was observed between gene polymorphisms of CYP1A1, EPHX1, SULT1A1 and GSTT1 and UC risk after adjustment for age and sex. Significant gene–environment interactions among urinary arsenic profile, cigarette smoking, and GSTM1 wild/null polymorphism and UC risk were observed after adjustment for potential risk factors. Overall, gene–environment interactions simultaneously played an important role in UC carcinogenesis. In the future, large-scale studies should be conducted using tag-SNPs of xenobiotic-metabolism-related enzymes for gene determination. -- Highlights: ► Subjects with GSTM1 null genotype had significantly increased UC risk. ► UC patients had poor arsenic metabolic ability compared to controls. ► GSTM1 null genotype may modify arsenic related UC risk.« less
Tsai, Min-Ling; Yen, Cheng-Chieh; Lu, Fung-Jou; Ting, Hung-Chih; Chang, Horng-Rong
2016-09-01
In a previous study, treatment at higher concentrations of arsenic trioxide or co-exposure to arsenic trioxide and humic acid was found to be inhibited cell growth of cervical cancer cells (SiHa cells) by reactive oxygen species generation. However, treatment at lower concentrations slightly increased cell viability. Here, we investigate the enhancement of progression effects of environmentally relevant concentration of humic acid and arsenic trioxide in SiHa cell lines in vitro and in vivo by measuring cell proliferation, migration, invasion, and the carcinogenesis-related protein (MMP-2, MMP-9, and VEGF-A) expressions. SiHa cells treated with low concentrations of humic acid and arsenic trioxide alone or in co-exposure significantly increased reactive oxygen species, glutathione levels, cell proliferation, scratch wound-healing activities, migration abilities, and MMP-2 expression as compared to the untreated control. In vivo the tumor volume of either single drug (humic acid or arsenic trioxide) or combined drug-treated group was significantly larger than that of the control for an additional 45 days after tumor cell injection on the back of NOD/SCID mice. Levels of MMP-2, MMP-9, and VEGF-A, also significantly increased compared to the control. Histopathologic effects of all tumor cells appeared round in cell shape with high mitosis, focal hyperkeratosis and epidermal hyperplasia in the skin, and some tumor growth in the muscle were observed. Our results may indicate that exposure to low concentrations of arsenic trioxide and humic acid is associated with the progression of cervical cancer. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1121-1132, 2016. © 2015 Wiley Periodicals, Inc.
Effects of phosphate and thiosulphate on arsenic accumulation in the species Brassica juncea.
Grifoni, Martina; Schiavon, Michela; Pezzarossa, Beatrice; Petruzzelli, Gianniantonio; Malagoli, Mario
2015-02-01
Arsenic (As) is recognized as a toxic pollutant in soils of many countries. Since phosphorus (P) and sulphur (S) can influence arsenic mobility and bioavailability, as well as the plant tolerance to As, phytoremediation techniques employed to clean-up As-contaminated areas should consider the interaction between As and these two nutrients. In this study, the bioavailability and accumulation of arsenate in the species Brassica juncea were compared between soil system and hydroponics in relation to P and S concentration of the growth substrate. In one case, plants were grown in pots filled with soil containing 878 mg As kg(-1). The addition of P to soil resulted in increased As desorption and significantly higher As accumulation in plants, with no effect on growth. The absence of toxic effects on plants was likely due to high S in soil, which could efficiently mitigate metal toxicity. In the hydroponic experiment, plants were grown with different combinations of As (0 or 100 μM) and P (56 or 112 μM). S at 400 μM was also added to the nutrient solution of control (-As) and As-treated plants, either individually or in combination with P. The addition of P reduced As uptake by plants, while high S resulted in higher As accumulation and lower P content. These results suggest that S can influence the interaction between P and As for the uptake by plants. The combined increase of P and S in the nutrient solution did not lead to higher accumulation of As, but enhanced As translocation from the root to the shoot. This aspect is of relevance for the phytoremediation of As-contaminated sites.
Edmundson, Matthew Charles; Horsfall, Louise
2015-01-01
Arsenic is a widespread contaminant of both land and water around the world. Current methods of decontamination such as phytoremediation and chemical adsorbents can be resource and time intensive, and may not be suitable for some areas such as remote communities where cost and transportation are major issues. Bacterial decontamination, with strict controls preventing environmental release, may offer a cost-effective alternative or provide a financial incentive when used in combination with other remediation techniques. In this study, we have produced Escherichia coli strains containing arsenic-resistance genes from a number of sources, overexpressing them and testing their effects on arsenic resistance. While the lab E. coli strain JM109 (the “wild-type”) is resistant up to 20 mM sodium arsenate, the strain containing our plasmid pEC20 is resistant up to 80 mM. When combined with our construct pArsRBCC arsenic-containing nanoparticles were observed at the cell surface; the elements of pEC20 and pArsRBCC were therefore combined in a modular construct, pArs, in order to evaluate the roles and synergistic effects of the components of the original plasmids in arsenic resistance and nanoparticle formation. We have also investigated introducing the lac operator in order to more tightly control expression from pArs. We demonstrate that our strains are able to reduce toxic forms of arsenic into stable, insoluble metallic As(0), providing one way to remove arsenate contamination, and which may also be of benefit for other heavy metals. PMID:26539432
Yang, Silin; Zhao, Ning; Zhou, Dequn; Wei, Rong; Yang, Bin; Pan, Bo
2016-04-01
The concentration and chemical speciation of arsenic (As) in different environmental matrixes (water, sediment, agricultural soils, and non-agricultural soils) were investigated in the Nanpan River area, the upstream of Pearl River, China. The results did not show any obvious transport of As along the flow direction of the river (from upstream to downstream). Total As concentrations in sediment were significantly different from those in agricultural soil. According to the comparison to quality standards, the As in sediments of the studied area have potential ecological risks and a minority of the sampling sites of agricultural soils in the studied area were polluted with As. As speciations were analyzed using sequential extraction and the percentage of non-residual fraction in sediment predominated over residual fraction. We thus believe that As in the studied area was with low mobility and bioavailability in sediment, agricultural soils, and non-agricultural soils. However, the bioavailability and mobility of As in sediment were higher than in both agricultural and non-agricultural soils, and thus, special attention should be paid for the risk assessment of As in the river in future studies.
Wei, Meng; Chen, Jiajun
2016-11-01
A multi-step soil washing test using a typical chelating agent (Na 2 EDTA), organic acid (oxalic acid), and inorganic weak acid (phosphoric acid) was conducted to remediate soil contaminated with heavy metals near an arsenic mining area. The aim of the test was to improve the heavy metal removal efficiency and investigate its influence on metal fractionation and the spectroscopy characteristics of contaminated soil. The results indicated that the orders of the multi-step washing were critical for the removal efficiencies of the metal fractions, bioavailability, and potential mobility due to the different dissolution levels of mineral fractions and the inter-transformation of metal fractions by XRD and FT-IR spectral analyses. The optimal soil washing options were identified as the Na 2 EDTA-phosphoric-oxalic acid (EPO) and phosphoric-oxalic acid-Na 2 EDTA (POE) sequences because of their high removal efficiencies (approximately 45 % for arsenic and 88 % for cadmium) and the minimal harmful effects that were determined by the mobility and bioavailability of the remaining heavy metals based on the metal stability (I R ) and modified redistribution index ([Formula: see text]).
Arsenic exposure and risk of preeclampsia in a Mexican mestizo population.
Sandoval-Carrillo, Ada; Méndez-Hernández, Edna M; Antuna-Salcido, Elizabeth I; Salas-Pacheco, Sergio M; Vázquez-Alaniz, Fernando; Téllez-Valencia, Alfredo; Aguilar-Durán, Marisela; Barraza-Salas, Marcelo; Castellanos-Juárez, Francisco X; La Llave-León, Osmel; Salas-Pacheco, José M
2016-07-11
Exposure to arsenic in drinking water has been associated with various complications of pregnancy including fetal loss, low birth weight, anemia, gestational diabetes and spontaneous abortion. However, to date, there are no studies evaluating its possible association with preeclampsia. This case-control study involved 104 preeclamptic and 202 healthy pregnant women. The concentrations of arsenic in drinking water and urine were measured using a Microwave Plasma-Atomic Emission Spectrometer. We found relatively low levels of arsenic in household tap water (range of 2.48-76.02 μg/L) and in the urine of the participants (7.1 μg/L vs 6.78 μg/L in cases and controls, respectively). The analysis between groups showed for the first time that at these lower levels of exposure there is no association with preeclampsia.
Deciphering factors controlling groundwater arsenic spatial variability in Bangladesh
NASA Astrophysics Data System (ADS)
Tan, Z.; Yang, Q.; Zheng, C.; Zheng, Y.
2017-12-01
Elevated concentrations of geogenic arsenic in groundwater have been found in many countries to exceed 10 μg/L, the WHO's guideline value for drinking water. A common yet unexplained characteristic of groundwater arsenic spatial distribution is the extensive variability at various spatial scales. This study investigates factors influencing the spatial variability of groundwater arsenic in Bangladesh to improve the accuracy of models predicting arsenic exceedance rate spatially. A novel boosted regression tree method is used to establish a weak-learning ensemble model, which is compared to a linear model using a conventional stepwise logistic regression method. The boosted regression tree models offer the advantage of parametric interaction when big datasets are analyzed in comparison to the logistic regression. The point data set (n=3,538) of groundwater hydrochemistry with 19 parameters was obtained by the British Geological Survey in 2001. The spatial data sets of geological parameters (n=13) were from the Consortium for Spatial Information, Technical University of Denmark, University of East Anglia and the FAO, while the soil parameters (n=42) were from the Harmonized World Soil Database. The aforementioned parameters were regressed to categorical groundwater arsenic concentrations below or above three thresholds: 5 μg/L, 10 μg/L and 50 μg/L to identify respective controlling factors. Boosted regression tree method outperformed logistic regression methods in all three threshold levels in terms of accuracy, specificity and sensitivity, resulting in an improvement of spatial distribution map of probability of groundwater arsenic exceeding all three thresholds when compared to disjunctive-kriging interpolated spatial arsenic map using the same groundwater arsenic dataset. Boosted regression tree models also show that the most important controlling factors of groundwater arsenic distribution include groundwater iron content and well depth for all three thresholds. The probability of a well with iron content higher than 5mg/L to contain greater than 5 μg/L, 10 μg/L and 50 μg/L As is estimated to be more than 91%, 85% and 51%, respectively, while the probability of a well from depth more than 160m to contain more than 5 μg/L, 10 μg/L and 50 μg/L As is estimated to be less than 38%, 25% and 14%, respectively.
Lee, Sangmi; Ward, Todd J; Jima, Dereje D; Parsons, Cameron; Kathariou, Sophia
2017-11-01
In the foodborne pathogen Listeria monocytogenes , arsenic resistance is encountered primarily in serotype 4b clones considered to have enhanced virulence and is associated with an arsenic resistance gene cluster within a 35-kb chromosomal region, Listeria genomic island 2 (LGI2). LGI2 was first identified in strain Scott A and includes genes putatively involved in arsenic and cadmium resistance, DNA integration, conjugation, and pathogenicity. However, the genomic localization and sequence content of LGI2 remain poorly characterized. Here we investigated 85 arsenic-resistant L. monocytogenes strains, mostly of serotype 4b. All but one of the 70 serotype 4b strains belonged to clonal complex 1 (CC1), CC2, and CC4, three major clones associated with enhanced virulence. PCR analysis suggested that 53 strains (62.4%) harbored an island highly similar to LGI2 of Scott A, frequently (42/53) in the same location as Scott A ( LMOf2365_2257 homolog). Random-primed PCR and whole-genome sequencing revealed seven novel insertion sites, mostly internal to chromosomal coding sequences, among strains harboring LGI2 outside the LMOf2365_2257 homolog. Interestingly, many CC1 strains harbored a noticeably diversified LGI2 (LGI2-1) in a unique location ( LMOf2365_0902 homolog) and with a novel additional gene. With few exceptions, the tested LGI2 genes were not detected in arsenic-resistant strains of serogroup 1/2, which instead often harbored a Tn 554 -associated arsenic resistance determinant not encountered in serotype 4b. These findings indicate that in L. monocytogenes , LGI2 has a propensity for certain serotype 4b clones, exhibits content diversity, and is highly promiscuous, suggesting an ability to mobilize various accessory genes into diverse chromosomal loci. IMPORTANCE Listeria monocytogenes is widely distributed in the environment and causes listeriosis, a foodborne disease with high mortality and morbidity. Arsenic and other heavy metals can powerfully shape the populations of human pathogens with pronounced environmental lifestyles such as L. monocytogenes Arsenic resistance is encountered primarily in certain serotype 4b clones considered to have enhanced virulence and is associated with a large chromosomal island, Listeria genomic island 2 (LGI2). LGI2 also harbors a cadmium resistance cassette and genes putatively involved in DNA integration, conjugation, and pathogenicity. Our findings indicate that LGI2 exhibits pronounced content plasticity and is capable of transferring various accessory genes into diverse chromosomal locations. LGI2 may serve as a paradigm on how exposure to a potent environmental toxicant such as arsenic may have dynamically selected for arsenic-resistant subpopulations in certain clones of L. monocytogenes which also contribute significantly to disease. Copyright © 2017 American Society for Microbiology.
Izbicki, John A.; Stamos, Christina L.; Metzger, Loren F.; Halford, Keith J.; Kulp, Thomas R.; Bennett, George L.
2008-01-01
Between 1974 and 2001 water from as many as one-third of wells in the Eastern San Joaquin Ground Water Subbasin, about 80 miles east of San Francisco, had arsenic concentrations greater than the U.S. Environmental Protection Agency Maximum Contaminant Level (MCL) for arsenic of 10 micrograms per liter (ug/L). Water from some wells had arsenic concentrations greater than 60 ug/L. The sources of arsenic in the study area include (1) weathering of arsenic bearing minerals, (2) desorption of arsenic associated with iron and manganese oxide coatings on the surfaces of mineral grains at pH's greater than 7.6, and (3) release of arsenic through reductive dissolution of iron and manganese oxide coatings in the absence of oxygen. Reductive dissolution is responsible for arsenic concentrations greater than the MCL. The distribution of arsenic varied areally and with depth. Concentrations were lower near ground-water recharge areas along the foothills of the Sierra Nevada; whereas, concentrations were higher in deeper wells at the downgradient end of long flow paths near the margin of the San Joaquin Delta (fig. 1). Management opportunities to control high arsenic concentrations are present because water from the surface discharge of wells is a mixture of water from the different depths penetrated by wells. On the basis of well-bore flow and depth-dependent water-quality data collected as part of this study, the screened interval of a public-supply well having arsenic concentrations that occasionally exceed the MCL was modified to reduce arsenic concentrations in the surface discharge of the well. Arsenic concentrations from the modified well were about 7 ug/L. Simulations of ground-water flow to the well showed that although upward movement of high-arsenic water from depth within the aquifer occurred, arsenic concentrations from the well are expected to remain below the MCL.
Potential impact of acid precipitation on arsenic and selenium.
Mushak, P
1985-01-01
The potential impact of acidic precipitation on the environmental mobility of the metalloids arsenic (As) and selenium (Se) has not been given much attention and is poorly understood. As with other elements, the interest here is the potential effect of environmental acidification on environmental behavior in ways that are relevant to human exposure to these metalloids. Available information on acid precipitation and the environmental behavior of these metalloids do, however, permit some preliminary conclusions to be drawn. Both As and Se appear to be mobilized from household plumbing into tap water by the corrosive action of soft, mildly acidic water, while surface water catchment systems in areas impacted by acidic deposition may contain elevated soluble As levels. Acidification of aquatic ecosystems that are drinking water sources may pose the prospect of enhanced release of As from sediment to water as well as reduction in water levels of Se. Acidification of ground waters, where As appears to be especially mobile, is of particular concern in this regard. The potential impact of acidic deposition on As and Se in soils cannot readily be assessed with respect to human exposure, but it would appear that the behavior of these metalloids in poorly buffered, poorly immobilizing soils, e.g., sandy soils of low metal hydrous oxide content, would be most affected. The effect is opposite for the two elements; lowered pH would appear to enhance As mobility and to reduce Se availability. Altered acidity of both soil and aquatic systems poses a risk for altered biotransformation processes involving both As and Se, thereby affecting the relative amounts of different chemical forms varying in their toxicity to humans as well as influencing biogeochemical cycling. PMID:4076075
Potential impact of acid precipitation on arsenic and selenium.
Mushak, P
1985-11-01
The potential impact of acidic precipitation on the environmental mobility of the metalloids arsenic (As) and selenium (Se) has not been given much attention and is poorly understood. As with other elements, the interest here is the potential effect of environmental acidification on environmental behavior in ways that are relevant to human exposure to these metalloids. Available information on acid precipitation and the environmental behavior of these metalloids do, however, permit some preliminary conclusions to be drawn. Both As and Se appear to be mobilized from household plumbing into tap water by the corrosive action of soft, mildly acidic water, while surface water catchment systems in areas impacted by acidic deposition may contain elevated soluble As levels. Acidification of aquatic ecosystems that are drinking water sources may pose the prospect of enhanced release of As from sediment to water as well as reduction in water levels of Se. Acidification of ground waters, where As appears to be especially mobile, is of particular concern in this regard. The potential impact of acidic deposition on As and Se in soils cannot readily be assessed with respect to human exposure, but it would appear that the behavior of these metalloids in poorly buffered, poorly immobilizing soils, e.g., sandy soils of low metal hydrous oxide content, would be most affected. The effect is opposite for the two elements; lowered pH would appear to enhance As mobility and to reduce Se availability. Altered acidity of both soil and aquatic systems poses a risk for altered biotransformation processes involving both As and Se, thereby affecting the relative amounts of different chemical forms varying in their toxicity to humans as well as influencing biogeochemical cycling.
Regulation of arsenic mobility on basaltic glass surfaces by speciation and pH.
Sigfusson, Bergur; Meharg, Andrew A; Gislason, Sigurdur R
2008-12-01
The importance of geothermal energy as a source for electricity generation and district heating has increased over recent decades. Arsenic can be a significant constituent of the geothermal fluids pumped to the surface during power generation. Dissolved As exists in different oxidation states, mainly as As(III) and As(V), and the charge of individual species varies with pH. Basaltic glass is one of the most important rock types in many high-temperature geothermal fields. Static batch and dynamic column experiments were combined to generate and validate sorption coefficients for As(III) and As(V) in contact with basaltic glass at pH 3-10. Validation was carried out by two empirical kinetic models and a surface complexation model (SCM). The SCM provided a better fit to the experimental column data than kinetic models at high pH values. However, in certain circumstances, an adequate estimation of As transport in the column could not be attained without incorporation of kinetic reactions. The varying mobility with pH was due to the combined effects of the variable charge of the basaltic glass with the pH point of zero charge at 6.8 and the individual As species as pH shifted, respectively. The mobility of As(III) decreased with increasing pH. The opposite was true for As(V), being nearly immobile at pH 3 to being highly mobile at pH 10. Incorporation of appropriate sorption constants, based on the measured pH and Eh of geothermal fluids, into regional groundwater-flow models should allow prediction of the As(III) and As(V) transport from geothermal systems to adjacent drinking water sources and ecosystems.
Caporale, Antonio G; Adamo, Paola; Azam, Shah M G G; Rao, Maria A; Pigna, Massimo
2018-02-01
Carrot (Daucus carota L.) is a widely consumed root vegetable, whose growth and safety might be threatened by growing-medium arsenic (As) contamination. By this work, we evaluated the effects of humic acids from Leonardite and NPK mineral fertilisation on As mobility and availability to carrot plants grown for 60 days in a volcanic soil irrigated with As-contaminated water - representing the most common scenario occurring in As-affected Italian areas. As expected, the irrigation with As-contaminated water caused a serious toxic effect on plant growth and photosynthetic rate; the highest rate of As also inhibited soil enzymatic activity. In contrast, the organic and mineral fertilisation alleviated, at least partially, the toxicity of As, essentially by stimulating plant growth and promoting nutrient uptake. The mobility of As in the volcanic soil and thus its phytoavailability were differently affected by the organic and mineral fertilisers; the application of humic acids mitigated the availability of the contaminant, likely by its partial immobilisation on humic acid sorption sites - thus raising up the intrinsic anionic sorption capacity of the volcanic soil; the mineral fertilisation enhanced the mobility of As in soil, probably due to competition of P for the anionic sorption sites of the soil variable-charge minerals, very affine to available P. These findings hence suggest that a proper soil management of As-polluted volcanic soils and amendment by stable organic matter might mitigate the environmental risk of these soils, thus minimising the availability of As to biota. Copyright © 2017 Elsevier Ltd. All rights reserved.
Methodology for assessing thioarsenic formation potential in sulfidic landfill environments.
Zhang, Jianye; Kim, Hwidong; Townsend, Timothy
2014-07-01
Arsenic leaching and speciation in landfills, especially those with arsenic bearing waste and drywall disposal (such as construction and demolition (C&D) debris landfills), may be affected by high levels of sulfide through the formation of thioarsenic anions. A methodology using ion chromatography (IC) with a conductivity detector was developed for the assessment of thioarsenic formation potential in sulfidic landfill environments. Monothioarsenate (H2AsSO3(-)) and dithioarsenate (H2AsS2O2(-)) were confirmed in the IC fractions of thioarsenate synthesis mixture, consistent with previous literature results. However, the observation of AsSx(-) (x=5-8) in the supposed trithioarsenate (H2AsS3O(-)) and tetrathioarsenate (H2AsS4(-)) IC fractions suggested the presence of new arsenic polysulfide complexes. All thioarsenate anions, particularly trithioarsenate and tetrathioarsenate, were unstable upon air exposure. The method developed for thioarsenate analysis was validated and successfully used to analyze several landfill leachate samples. Thioarsenate anions were detected in the leachate of all of the C&D debris landfills tested, which accounted for approximately 8.5% of the total aqueous As in the leachate. Compared to arsenite or arsenate, thioarsenates have been reported in literature to have lower adsorption on iron oxide minerals. The presence of thioarsenates in C&D debris landfill leachate poses new concerns when evaluating the impact of arsenic mobilization in such environments. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Johnston, E. C.; Pollock, M.; Cathcart, E. M.; AlBashaireh, A.; O'shea, B. M.
2016-12-01
The Santiago Peak Volcanics (SPV) of Southern CA and Northern Baja CA, Mexico are remnants of a Cretaceous subaerial volcanic arc system that underwent greenschist facies metamorphism contemporaneous with volcanism. Observed SPV exposed at the surface of Black Mountain Open Space Park (San Diego, CA) exhibit anomalous arsenic (As) enrichment (100 - 480,000 ppm) up to five orders of magnitude greater than average for igneous rocks (1.5 ppm). We hypothesize that these rocks underwent localized syn-volcanic hydrothermal alteration along a highly fractured zone that today trends between N10°W and N20°W, leading to anomalous As enrichment on the spatial scale of tens of meters. We suspect that such As has been further mobilized by modern water-rock interactions. Using standard geochemical techniques (e.g. XRD, XRF, EDX) and mass balance analyses, we aim to (1) summarize the extent of As enrichment in altered SPV, and (2) present an integrated view of the interactions between ancient hydrothermal volcanic arc processes, surficial weathering, and observed As anomalies. Alteration textures of samples range from partially altered phenocrysts (i.e. minimally altered) to massive hydrothermal replacement, in which virtually all primary phases are altered to new hydrothermal minerals such as epidote, Fe-rich chlorite, and sericite (i.e. highly altered). Highly altered rocks contain average As concentrations (mean = 37,680 +/- 15,396 ppm, n = 23) >10,000 times that of minimally altered SPV (mean = 26 +/- 6 ppm As, n = 19). In some rocks, As-rich iron oxide and gypsum containing up to 900 ppm As are present as surficial rinds, suggesting modern day remobilization of As from hydrothermal host minerals, like arsenopyrite. These findings indicate that such As is highly soluble and, therefore, may be further mobilized by physical and chemical weathering. No other trace metals (e.g. Pb, Cu, Ag, Au) are consistently enriched above upper-crustal averages, and As does not always occur with sulfur. The results of this study could aid in pinpointing other regions at risk for anomalous As, particularly in ancient volcanic arc systems, in addition to informing future research on subsequent impacts to ecosystem and public health.
Hettick, Bryan E; Cañas-Carrell, Jaclyn E; French, Amanda D; Klein, David M
2015-08-19
Arsenic is a naturally occurring element with a long history of toxicity. Sites of contamination are found worldwide as a result of both natural processes and anthropogenic activities. The broad scope of arsenic toxicity to humans and its unique interaction with the environment have led to extensive research into its physicochemical properties and toxic behavior in biological systems. The purpose of this review is to compile the results of recent studies concerning the metalloid and consider the chemical and physical properties of arsenic in the broad context of human toxicity and phytoremediation. Areas of focus include arsenic's mechanisms of human toxicity, interaction with plant systems, potential methods of remediation, and protocols for the determination of metals in experimentation. This assessment of the literature indicates that controlling contamination of water sources and plants through effective remediation and management is essential to successfully addressing the problems of arsenic toxicity and contamination.
Effects of Extreme Events on Arsenic Cycling in Salt Marshes
NASA Astrophysics Data System (ADS)
Northrup, Kristy; Capooci, Margaret; Seyfferth, Angelia L.
2018-03-01
Extreme events such as storm surges, intense precipitation, and supermoons cause anomalous and large fluctuations in water level in tidal salt marshes, which impacts the sediment biogeochemistry that dictates arsenic (As) cycling. In addition to changes in water level, which impacts soil redox potential, these extreme events may also change salinity due to freshwater inputs from precipitation or saltwater inputs due to surge. It is currently unknown how As mobility in tidal salt marshes will be impacted by extreme events, as fluctuations in salinity and redox potential may act synergistically to mobilize As. To investigate impacts of extreme events on As cycling in tidal salt marshes, we conducted a combined laboratory and field investigation. We monitored pore water and soil samples before, during, and after two extreme events: a supermoon lunar eclipse followed by a storm surge and precipitation induced by Hurricane Joaquin in fall 2015 at the St. Jones Reserve in Dover, Delaware, a representative tidal salt marsh in the Mid-Atlantic United States. We also conducted soil incubations of marsh sediments in batch and in flow-through experiments in which redox potential and/or salinity were manipulated. Field investigations showed that pore water As was inversely proportional to redox potential. During the extreme events, a distinct pulse of As was observed in the pore water with maximum salinity. Combined field and laboratory investigations revealed that this As pulse is likely due to rapid changes in salinity. These results have implications for As mobility in the face of extreme weather variability.
Beiyuan, Jingzi; Awad, Yasser M; Beckers, Felix; Tsang, Daniel C W; Ok, Yong Sik; Rinklebe, Jörg
2017-07-01
Biochar has been adopted to control the mobility and phytoavailability of trace elements (TEs) in soils. To date, no attempt has been made to determine the mobility and phytoavailability of arsenic (As) and lead (Pb) in a contaminated soil with biochars as amendments under predefined redox potentials (E H ). Thus, in this study, a soil contaminated with As and Pb (2047 and 1677 mg kg -1 , respectively) was pre-incubated for 105 days with three amendments (pine sawdust biomass (BM) and two biochars produced from the same feedstock at 300 °C (BC300) and 550 °C (BC550)). The aged samples were then exposed to dynamic E H conditions to evaluate the mobility and phytoavailability of As and Pb after immobilization. The BM amendment significantly decreased and the BC300 slightly reduced the mobility and phytoavailability of As and Pb, which may be related to the oxygen-containing functional groups on the surface of BM and BC300. In contrast, BC550 increased the mobility of As at -300 to -100 mV and 100 mV, enhanced the phytoavailability of As under oxidizing condition (>100 mV), but reduced the phytoavailability of Pb, which might be caused by the properties of amendments and redox chemistry of the TEs. The effectiveness of BM and biochars for the stabilization of As and Pb varied under dynamic E H conditions, which indicates that detailed investigations should be conducted before the applications of biochar as soil amendment under variable environmental conditions, especially for contaminated paddy soils. Copyright © 2017 Elsevier Ltd. All rights reserved.
Andrew, Angeline S; Karagas, Margaret R; Hamilton, Joshua W
2003-04-10
Arsenic is well established as a human carcinogen, but its precise mechanism of action remains unknown. Arsenic does not directly damage DNA, but may act as a carcinogen through inhibition of DNA repair mechanisms, leading indirectly to increased mutations from other DNA damaging agents. The molecular mechanism underlying arsenic inhibition of nucleotide excision repair after UV irradiation (Hartwig et al., Carcinogenesis 1997;18:399-405) is unknown, but could be due to decreased expression of critical genes involved in nucleotide excision repair of damaged DNA. This hypothesis was tested by analyzing expression of repair genes and arsenic exposure in a subset of 16 individuals enrolled in a population based case-control study investigating arsenic exposure and cancer risk in New Hampshire. Toenail arsenic levels were inversely correlated with expression of critical members of the nucleotide excision repair complex, ERCC1 (r(2) = 0.82, p < 0.0001), XPF (r(2) = 0.56, p < 0.002), and XPB (r(2) = 0.75, p < 0.0001). The internal dose marker, toenail arsenic level, was more strongly associated with changes in expression of these genes than drinking water arsenic concentration. Our findings, based on human exposure to arsenic in a US population, show an association between biomarkers of arsenic exposure and expression of DNA repair genes. Although our findings need verification in a larger study group, they are consistent with the hypothesis that inhibition of DNA repair capacity is a potential mechanism for the co-carcinogenic activity of arsenic. Copyright 2003 Wiley-Liss, Inc.
Hinhumpatch, Pantip; Navasumrit, Panida; Chaisatra, Krittinee; Promvijit, Jeerawan; Mahidol, Chulabhorn; Ruchirawat, Mathuros
2013-12-15
The present study aimed to assess arsenic exposure and its effect on oxidative DNA damage and repair in young children exposed in utero and continued to live in arsenic-contaminated areas. To address the need for biological specimens that can be acquired with minimal discomfort to children, we used non-invasive urinary and salivary-based assays for assessing arsenic exposure and early biological effects that have potentially serious health implications. Levels of arsenic in nails showed the greatest magnitude of difference between exposed and control groups, followed by arsenic concentrations in saliva and urine. Arsenic levels in saliva showed significant positive correlations with other biomarkers of arsenic exposure, including arsenic accumulation in nails (r=0.56, P<0.001) and arsenic concentration in urine (r=0.50, P<0.05). Exposed children had a significant reduction in arsenic methylation capacity indicated by decreased primary methylation index and secondary methylation index in both urine and saliva samples. Levels of salivary 8-OHdG in exposed children were significantly higher (~4-fold, P<0.01), whereas levels of urinary 8-OHdG excretion and salivary hOGG1 expression were significantly lower in exposed children (~3-fold, P<0.05), suggesting a defect in hOGG1 that resulted in ineffective cleavage of 8-OHdG. Multiple regression analysis results showed that levels of inorganic arsenic (iAs) in saliva and urine had a significant positive association with salivary 8-OHdG and a significant negative association with salivary hOGG1 expression. © 2013.
Rahaman, Sefaur; Sinha, Ashim Chandra; Mukhopadhyay, Dibyendu
2011-01-01
The arsenic contamination in soil-water-plant systems is a major concern of where, the groundwater is being contaminated with arsenic (above 0.01 mg/L) in the Indian subcontinent. The study was conducted with organic matter to find out the reducing effect on arsenic load to rice (cv. Khitish). It was observed that intermittent ponding reduced arsenic uptake (23.33% in root, 13.84% in shoot and 19.84% in leaf) at panicle initiation stage, instead of continuous ponding. A decreasing trend of arsenic accumulation (root > straw > husk > whole grain > milled grain) was observed in different plant parts at harvest. Combined applications of lathyrus + vermicompost + poultry manure reduced arsenic transport in plant parts (root, straw, husk, whole grains and milled grain) which was significantly at par (p > 0.05) with chopped rice straw (5 tons/ha) + lathyrus green manuring (5 tons/ha) in comparison to control and corresponding soils. A significant negative correlation of arsenic with phosphorus (grain P with arsenic in different parts R2= 0.627-0.726 at p > 0.01) was observed. Similarly, soil arsenic had a negative correlation with soil available phosphorus (R2 = 0.822 at p > 0.001) followed by soil nitrogen (R2 = 0.762 at p > 0.01) and soil potassium (R2 = 0.626 at p > 0.01). Hence, effective management of contaminated irrigation water along with organic matter could reduce the arsenic build up to plants and soil.
Komorowicz, Izabela; Barałkiewicz, Danuta
2016-09-01
Arsenic is a ubiquitous element which may be found in surface water, groundwater, and drinking water. In higher concentrations, this element is considered genotoxic and carcinogenic; thus, its level must be strictly controlled. We investigated the concentration of total arsenic and arsenic species: As(III), As(V), MMA, DMA, and AsB in drinking water, surface water, wastewater, and snow collected from the provinces of Wielkopolska, Kujawy-Pomerania, and Lower Silesia (Poland). The total arsenic was analyzed by inductively coupled plasma mass spectrometry (ICP-MS), and arsenic species were analyzed with use of high-performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC/ICP-MS). Obtained results revealed that maximum total arsenic concentration determined in drinking water samples was equal to 1.01 μg L(-1). The highest concentration of total arsenic in surface water, equal to 3778 μg L(-1) was determined in Trująca Stream situated in the area affected by geogenic arsenic contamination. Total arsenic concentration in wastewater samples was comparable to those determined in drinking water samples. However, significantly higher arsenic concentration, equal to 83.1 ± 5.9 μg L(-1), was found in a snow sample collected in Legnica. As(V) was present in all of the investigated samples, and in most of them, it was the sole species observed. However, in snow sample collected in Legnica, more than 97 % of the determined concentration, amounting to 81 ± 11 μg L(-1), was in the form of As(III), the most toxic arsenic species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, J.C.; Wang, J.P.; Zheng, B.S.
2005-08-07
Coal from some areas in Guizhou Province contains elevated levels of arsenic. This has caused arsenicosis in individuals who use arsenic-contaminated coal for the purposes of heating, cooking and drying of food in poorly ventilated dwellings. The population at risk has been estimated to be approximately 200,000 people. We analyzed the porphyrin excretion profile using a HPLC method in urine samples collected from 113 villagers who lived in Xing Ren district, a coal-borne arsenicosis endemic area and from 30 villagers from Xing Yi where arsenicosis is not prevalent. Urinary porphyrins were higher in the arsenic exposed group than those inmore » the control group. The correlation between urinary arsenic and porphyrin concentrations demonstrated the effect of arsenic on heme biosynthesis resulting in increased porphyrin excretion. Both uroporphyrin and coproporphyrin III showed significant increases in the excretion profile of the younger age ({lt} 20 years) arsenic-exposed group, suggesting that porphyrins could be used as early warning biomarkers of chronic arsenic exposure in humans. Greater increases of urinary arsenic and porphyrins in women, children and older age groups who spend much of their time indoors suggest that they might be at a higher risk. Whether elevated porphyrins could predict adverse health effects associated with both cancer and non-cancer end-points in chronically arsenic-exposed populations need further investigation.« less
Zhao, Panpan; Guo, Ying; Zhang, Wen; Chai, Hongliang; Xing, Houjuan; Xing, Mingwei
2017-01-01
Arsenic, a naturally occurring heavy metal pollutant, is one of the functioning risk factors for neurological toxicity in humans. However, little is known about the effects of arsenic on the nervous system of Gallus Gallus. To investigate whether arsenic induce neurotoxicity and influence the oxidative stress and heat shock proteins (Hsps) response in chickens, seventy-two 1-day-old male Hy-line chickens were treated with different doses of arsenic trioxide (As 2 O 3 ). The histological changes, antioxidant enzyme activity, and the expressions of Hsps were detected. Results showed slightly histology changes were obvious in the brain tissues exposure to arsenic. The activities of Glutathione peroxidase (GSH-Px) and catalase (CAT) were decreased compared to the control, whereas the malondialdehyde (MDA) content was increased gradually along with increase in diet-arsenic. The mRNA levels of Hsps and protein expressions of Hsp60 and Hsp70 were up-regulated. These results suggested that sub-chronic exposure to arsenic induced neurotoxicity in chickens. Arsenic exposure disturbed the balance of oxidants and antioxidants. Increased heat shock response tried to protect chicken brain tissues from tissues damage caused by oxidative stress. The mechanisms of neurotoxicity induced by arsenic include oxidative stress and heat shock protein response in chicken brain tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hosen, Saeed Mohammed Imran; Das, Dipesh; Kobi, Rupkanowar; Chowdhury, Dil Umme Salma; Alam, Md Jibran; Rudra, Bashudev; Bakar, Muhammad Abu; Islam, Saiful; Rahman, Zillur; Al-Forkan, Mohammad
2016-10-14
In the present study, we investigated the arsenic accumulation in different parts of rice irrigated with arsenic contaminated water. Besides, we also evaluated the protective effects of Corchorus olitorius leaves against arsenic contaminated rice induced toxicities in animal model. A pot experiment was conducted with arsenic amended irrigation water (0.0, 25.0, 50.0 and 75.0 mg/L As) to investigate the arsenic accumulation in different parts of rice. In order to evaluate the protective effects of Corchorus olitorius leaves, twenty Wistar albino rats were divided into four different groups. The control group (Group-I) was supplied with normal laboratory pellets while groups II, III, and IV received normal laboratory pellets supplemented with arsenic contaminated rice, C. olitorius leaf powder (4 %), arsenic contaminated rice plus C. olitorius leaf powder (4 %) respectively. Different haematological parameters and serum indices were analyzed to evaluate the protective effects of Corchorus olitorius leaves against arsenic intoxication. To gather more supportive evidences of Corchorus olitorius potentiality against arsenic intoxication, histopathological analysis of liver, kidney, spleen and heart tissues was also performed. From the pot experiment, we have found a significant (p ≤ 0.05) increase of arsenic accumulation in different parts of rice with the increase of arsenic concentrations in irrigation water and the trend of accumulation was found as root > straw > husk > grain. Another part of the experiment revealed that supplementation of C. olitorius leaves with arsenic contaminated rice significantly (p < 0.05) restored the altered haematological parameters and other serum indices towards the normal values. Arsenic deposition pattern on different organs and histological studies on the ultrastructural changes of liver, kidneys, spleen and heart also supported the protective roles of Corchorus olitorius leaves against arsenic contaminated rice induced toxicities. Arsenic accumulation in different parts of rice increased dose-dependently. Hence, for irrigation purpose arsenic contaminated water cannot be used. Furthermore, arsenic contaminated rice induced several toxicities in animal model, most of which could be minimized with the food supplementation of Corchorus olitorius leaves. Therefore, Corchorus olitorius can be used as a potential food supplement to the affected people of arsenic prone zone to ensure the food security.
Metallothionein blocks oxidative DNA damage induced by acute inorganic arsenic exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Wei, E-mail: qu@niehs.nih.gov; Waalkes, Michael P.
We studied how protein metallothionein (MT) impacts arsenic-induced oxidative DNA damage (ODD) using cells that poorly express MT (MT-I/II double knockout embryonic cells; called MT-null cells) and wild-type (WT) MT competent cells. Arsenic (as NaAsO{sub 2}) was less cytolethal over 24 h in WT cells (LC{sub 50} = 11.0 ± 1.3 μM; mean ± SEM) than in MT-null cells (LC{sub 50} = 5.6 ± 1.2 μM). ODD was measured by the immuno-spin trapping method. Arsenic (1 or 5 μM; 24 h) induced much less ODD in WT cells (121% and 141% of control, respectively) than in MT-null cells (202% andmore » 260%). In WT cells arsenic caused concentration-dependent increases in MT expression (transcript and protein), and in the metal-responsive transcription factor-1 (MTF-1), which is required to induce the MT gene. In contrast, basal MT levels were not detectable in MT-null cells and unaltered by arsenic exposure. Transfection of MT-I gene into the MT-null cells markedly reduced arsenic-induced ODD levels. The transport genes, Abcc1 and Abcc2 were increased by arsenic in WT cells but either showed no or very limited increases in MT-null cells. Arsenic caused increases in oxidant stress defense genes HO-1 and GSTα2 in both WT and MT-null cells, but to much higher levels in WT cells. WT cells appear more adept at activating metal transport systems and oxidant response genes, although the role of MT in these responses is unclear. Overall, MT protects against arsenic-induced ODD in MT competent cells by potential sequestration of scavenging oxidant radicals and/or arsenic. - Highlights: • Metallothionein blocks arsenic toxicity. • Metallothionein reduces arsenic-induced DNA damage. • Metallothionein may bind arsenic or radicals produced by arsenic.« less
Removal of Arsenic from Drinking Water by Adsorption and Coagulation
NASA Astrophysics Data System (ADS)
Zhang, M.; Sugita, H.; Hara, J.; Takahashi, S.
2013-12-01
Removal of arsenic from drinking water has been an important issue worldwide, which has attracted greater attentions in recent years especially for supplying safe drinking water in developing countries. Although many kinds of treatment approaches that are available or applicable both in principle and practice, such as adsorption, coagulation, membrane filtration, ion exchange, biological process, electrocoagulation and so on, the first 2 approaches (i.e., adsorption and coagulation) are most promising due to the low-cost, high-efficiency, simplicity of treating systems, and thus can be practically used in developing countries. In this study, a literature survey on water quality in Bangladesh was performed to understand the ranges of arsenic concentration and pH of groundwater in Bangladesh. A series of tests were then organized and performed to investigate the effects of arsenic concentration, arsenic forms, pH, chemical compositions of the materials used for adsorption and coagulation, particle size distribution and treatment time on quality of treated water. The experimental results obtained in the study illustrated that both adsorption and coagulation can be used to effectively reduce the concentrations of either arsenic (V) or arsenic (III) from the contaminated water. Coagulation of arsenic with a magnesium-based material developed in this study can be very effective to remove arsenic, especially arsenic (V), from contaminated water with a concentration of 10 ppm to an undetectable level of 0.002 ppm by ICP analyses. Compared to arsenic (III), arsenic (V) is easier to be removed. The materials used for adsorption and coagulation in this study can remove arsenic (V) up to 9 mg/g and 6 mg/g, and arsenic (III) up to 4 mg/g and 3 mg/g, respectively, depending on test conditions and compositions of the materials being used. The control of pH during treatment can be a challenging technical issue for developing both adsorbent and coagulant. Keywords: Water Treatment, Arsenic, Adsorption, Coagulation, Drinking Water, Bangladesh
Levels of plasma selenium and urinary total arsenic interact to affect the risk for prostate cancer.
Hsueh, Yu-Mei; Su, Chien-Tien; Shiue, Horng-Sheng; Chen, Wei-Jen; Pu, Yeong-Shiau; Lin, Ying-Chin; Tsai, Cheng-Shiuan; Huang, Chao-Yuan
2017-09-01
This study investigated whether plasma selenium levels modified the risk for prostate cancer (PC) related to arsenic exposure. We conducted a case-control study that included 318 PC patients and 318 age-matched, healthy control subjects. Urinary arsenic profiles were examined using HPLC-HG-AAS and plasma selenium levels were measured by ICP-MS. We found that plasma selenium levels displayed a significant dose-dependent inverse association with PC. The odds ratio (OR) and 95% confidence interval (CI) for PC was 0.07 (0.04-0.13) among participants with a plasma selenium level >28.06 μg/dL vs. ≤19.13 μg/dL. A multivariate analysis showed that participants with a urinary total arsenic concentration >29.28 μg/L had a significantly higher OR (1.75, 1.06-2.89) for PC than participants with ≤29.89 μg/L. The combined presence of a low plasma selenium level and a high urinary total arsenic concentration exponentially increased the OR for PC, and additively interacted with PSA at levels ≥20 ng/mL. This is the first epidemiological study to examine the combined effects of plasma selenium and urinary total arsenic levels on the OR for PC. Our data suggest a low plasma selenium level coupled with a high urinary total arsenic concentration creates a significant risk for aggressive PC. Copyright © 2017 Elsevier Ltd. All rights reserved.
Banerjee, P; Biswas, S J; Belon, P; Khuda-Bukhsh, A R
2007-09-01
Groundwater arsenic contamination has become a menacing global problem. No drug is available until now to combat chronic arsenic poisoning. To examine if a potentized homeopathic remedy, Arsenicum Album-200, can effectively combat chronic arsenic toxicity induced by repeated injections of Arsenic trioxide in mice, the following experimental design was adopted. Mice (Mus musculus) were injected subcutaneously with 0.016% arsenic trioxide at the rate of 1 ml/100 g body weight, at an interval of 7 days until they were killed at day 30, 60, 90 or 120 and were divided into three groups: (i) one receiving a daily dose of Arsenicum Album-200 through oral administration, (ii) one receiving the same dose of diluted succussed alcohol (Alcohol-200) and (iii) another receiving neither drug, nor succussed alcohol. The remedy or the placebo, as the case may be, was fed from the next day onwards after injection until the day before the next injection, and the cycle was repeated until the mice were killed. Two other control groups were also maintained: one receiving only normal diet, and the other receiving normal diet and succussed alcohol. Several toxicity assays, such as cytogenetical (chromosome aberrations, micronuclei, mitotic index, sperm head anomaly) and biochemical (acid and alkaline phosphatases, lipid peroxidation), were periodically made. Compared with controls, the drug fed mice showed reduced toxicity at statistically significant levels in respect of all the parameters studied, thereby indicating protective potentials of the homeopathic drug against chronic arsenic poisoning.
Arsenic Exposure to Killifish During Embryogenesis Alters Muscle Development
Gaworecki, Kristen M.; Chapman, Robert W.; Neely, Marion G.; D’Amico, Angela R.; Bain, Lisa J.
2012-01-01
Epidemiological studies have correlated arsenic exposure in drinking water with adverse developmental outcomes such as stillbirths, spontaneous abortions, neonatal mortality, low birth weight, delays in the use of musculature, and altered locomotor activity. Killifish (Fundulus heteroclitus) were used as a model to help to determine the mechanisms by which arsenic could impact development. Killifish embryos were exposed to three different sodium arsenite concentrations and were collected at 32 h post-fertilization (hpf), 42 hpf, 168 hpf, or < 24 h post-hatch. A killifish oligo microarray was developed and used to examine gene expression changes between control and 25-ppm arsenic-exposed hatchlings. With artificial neural network analysis of the transcriptomic data, accurate prediction of each group (control vs. arsenic-exposed embryos) was obtained using a small subset of only 332 genes. The genes differentially expressed include those involved in cell cycle, development, ubiquitination, and the musculature. Several of the genes involved in cell cycle regulation and muscle formation, such as fetuin B, cyclin D–binding protein 1, and CapZ, were differentially expressed in the embryos in a time- and dose-dependent manner. Examining muscle structure in the hatchlings showed that arsenic exposure during embryogenesis significantly reduces the average muscle fiber size, which is coupled with a significant 2.1- and 1.6-fold upregulation of skeletal myosin light and heavy chains, respectively. These findings collectively indicate that arsenic exposure during embryogenesis can initiate molecular changes that appear to lead to aberrant muscle formation. PMID:22058191
Immobilization and Natural Attenuation of Arsenic in Surface and Subsurface Sediments
NASA Astrophysics Data System (ADS)
O'Day, P. A.; Illera, V.; Choi, S.; Vlassopoulos, D.
2008-12-01
Understanding of molecular-scale biogeochemical processes that control the mobilization and distribution of As and other oxyanions can be used to develop remediation strategies that take advantage of natural geochemical and hydrologic gradients. Arsenic and other toxic oxyanions can be mobilized at low bulk sediment concentrations (ppm range) and thus, treatment technologies are challenged by low contaminant concentrations, widespread sources, variable pH and Eh conditions, and inaccessibility of subsurface environments. In situ chemical amendments to soils and sediments can be used to decrease the mobility and bioaccessibility of As and oxyanions through sorption to, or precipitation with, stabilizing phases. At a site near San Francisco Bay (CA, USA), treatment of As-contaminated soils with sulfate-cement amendments has effectively immobilized As. Laboratory experiments with field soils and spectroscopic characterizations showed that in high pH cement-type treatments, As is precipitated in ettringite-type phases (Ca-Al sulfates), whereas in low pH ferrous sulfate treatments, As is associated with an iron-arsenate phase (angellelite). The presence of As-associated ettringite-type phases in field sediments amended more than a decade ago indicates long-term stability of these neophases, as long as environmental conditions are relatively constant. At sites of subsurface contamination, monitored natural attenuation (MNA) as a remediation approach for As is gaining interest and acceptance. Successful implementation of MNA requires a mechanistic understanding of As sequestration processes and of the subsurface conditions that may enhance or reduce long-term effectiveness. At a former military site (MA, USA), naturally occurring As was mobilized from sediments as a result of reducing conditions from addition of organic carbon as a biodegradation treatment of chlorinated solvents. Elevated As concentrations were not detected further than about 30 m downgradient of the injection, indicating that As sequestration was also occurring by natural processes in the aquifer. Laboratory experiments with aquifer sediments and spectroscopic characterization of reaction products were used to quantify the extent of As(III) sorption and abiotic oxidation to As(V), probably by Mn(III,IV) present in sediment minerals. Interrogation by XANES spectroscopy and analysis of uptake data indicated that sediments have a limited abiotic oxidation capacity for As(III), which did not exceed 30% of the total amount of As sorbed and was estimated at 0.025 to 0.4 mmol/kg sediment. Results indicate that pH-controlled sorption is the primary mechanism for As uptake and sediment capacity for oxidative sorption is limited. As such, MNA may be temporarily effective at this site, depending on the size of the contaminant plume and the rate of groundwater flow.
Characterization of arsenite-oxidizing bacteria to decipher their role in arsenic bioremediation.
Biswas, Rimi; Sarkar, Angana
2018-06-11
High arsenic groundwater contamination causes serious health risks in many developing countries, particularly in India and Bangladesh. The arsenic fluxes in aquifers are primarily controlled by bacterial populations through biogeochemical cycle. In this present study, two gram-positive rod-shaped bacteria were isolated from shallow aquifers of Bhojpur district in Bihar during the early winter season, able to withstand arsenite (As 3+ ) concentration upto 70 mM and 1000 mM of arsenate (As 5+ ) concentration. They showed high resistance to heavy metals up to 30 mM and utilized some complex sugars along with different carbon sources. Growth at wide range of temperature, pH and salinity were observed. Both these isolates showed high efficiency in converting As 3+ into less toxic concentrations of As 5+ respectively from arsenic enriched culture media. Along with superior arsenic transformation and arsenic resistance abilities, the isolates showed a wide variety of metabolic capacity in terms of utilizing a variety of carbon sources under aerobic conditions, respectively. This study reports the potential As 3+ -oxidizing bacteria that can play an important role in subsurface arsenic transformation that will aid in designing future bioremediation strategy for the arsenic affected areas.
Hydrogeochemical and mineralogical investigations of arsenic- and humic substance-enriched aquifers
NASA Astrophysics Data System (ADS)
Liu, Chen-Wuing; Lai, Chih-Chieh; Chen, Yen-Yu; Lu, Kuang-Liang
2013-08-01
This study investigated the hydrogeochemical and mineralogical characteristics of arsenic-contaminated and humic-substance-enriched aquifers in the Chianan Plain, Taiwan, which is an endemic area for blackfoot disease (BFD). Factorial analysis (FA) was used to evaluate the hydrochemical characteristics of 83 groundwater samples in the Chianan Plain, and 462 geological core samples obtained from 9 drilling wells were collected to analyze their arsenic and iron contents. The major mineral phases and chemical components were determined using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy and energy dispersive spectrometry (SEM-EDS). Partition of arsenic among various hosting solids in sediments was determined by sequential extraction. The results of FA showed that the hydrochemical characteristics of the groundwater samples could be grouped by 4 factors: salinization, arsenic, sulfide, and iron. Arsenic was positively correlated with alkalinity, dissolved organic/inorganic carbon, and fluorescence intensity [humic acids, (HAs)]. As(V) has a higher chelating affinity with HAs than does As(III), resulting in higher As(V) concentrations distributed throughout the reducing environment. High levels and correlations of As and HAs may cause BFD in the Chianan Plain. No correlation was found between the measured and calculated redox potentials of the various redox couples. The As(III)/As(V) was under a chemical non-equilibrium condition. The vertical distribution of the sedimentary As (solid phase) typically increased with depth, but the aqueous As concentrations were higher in the second aquifer (depth of 80-120 m). Arsenic content (solid phase) was higher in the clay/silt sediments and marine formations. The major minerals identified by XPS and SEM-EDS were goethite, hematite, magnetite, pyrite, and siderite, agreeing with the SI values calculated by PHREEQC. Arsenic content was strongly correlated with sulfur (weight%; R2 = 0.76, p < 0.05), but was weakly correlated with iron (weight%). However, a moderate correlation (R2 = 0.44-0.75; p < 0.001) between As(s) and Fe(s) in the sediments was found in the transitions in the marine and non-marine formations, especially in the fine grains. The chelation of humic complex, competition for sorption sites of organic carbon, reduction dissolution of Fe oxides are mainly responsible for the groundwater As mobility in the Chianan Plain, especially for the marine sequence.
Specific histone modification responds to arsenic-induced oxidative stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Lu
To explore whether specific histone modifications are associated with arsenic-induced oxidative damage, we recruited 138 arsenic-exposed and arsenicosis subjects from Jiaole Village, Xinren County of Guizhou province, China where the residents were exposed to arsenic from indoor coal burning. 77 villagers from Shang Batian Village that were not exposed to high arsenic coal served as the control group. The concentrations of urine and hair arsenic in the arsenic-exposure group were 2.4-fold and 2.1-fold (all P < 0.001) higher, respectively, than those of the control group. Global histone modifications in human peripheral lymphocytes (PBLCs) were examined by ELISA. The results showedmore » that altered global levels of H3K18ac, H3K9me2, and H3K36me3 correlated with both urinary and hair-arsenic levels of the subjects. Notably, H3K36me3 and H3K18ac modifications were associated with urinary 8-OHdG (H3K36me3: β = 0.16; P = 0.042, H3K18ac: β = − 0.24; P = 0.001). We also found that the modifications of H3K18ac and H3K36me3 were enriched in the promoters of oxidative stress response (OSR) genes in human embryonic kidney (HEK) cells and HaCaT cells, providing evidence that H3K18ac and H3K36me3 modifications mediate transcriptional regulation of OSR genes in response to NaAsO{sub 2} treatment. Particularly, we found that reduced H3K18ac modification correlated with suppressed expression of OSR genes in HEK cells with long term arsenic treatment and in PBLCs of all the subjects. Taken together, we reveal a critical role for specific histone modification in response to arsenic-induced oxidative damage. - Highlights: • H3K18ac, H3K9me2 and H3K36me3 were associated with arsenic exposed levels. • H3K18ac and H3K36me3 were correlated with oxidative damage induced by arsenic. • H3K18ac and H3K36me3 might involve in transcriptional regulation of OSR genes. • Dysregulation of H3K18ac and H3K36me3 might be biomarkers of arsenic toxicity.« less
Goel, Ashish; Christudoss, Pamela; George, Renu; Ramakrishna, Banumathi; Amirtharaj, G Jayakumar; Keshava, Shyamkumar N; Ramachandran, Anup; Balasubramanian, K A; Mackie, Ian; Fleming, Jude J; Elias, Elwyn; Eapen, Chundamannil E
2016-05-01
Idiopathic noncirrhotic intrahepatic portal hypertension (NCIPH), a chronic microangiopathy of the liver caused by arsenicosis from use of contaminated groundwater, was reported from Asia. This study aimed to see, if in the twenty-first century, arsenicosis was present in NCIPH patients at our hospital and, if present, to look for groundwater contamination by arsenic in their residential locality. Twenty-seven liver biopsy proven NCIPH patients, 25 portal hypertensive controls with hepatitis B or C related cirrhosis and 25 healthy controls, matched for residential locality, were studied. Eighty-four percent to 96 % of study subjects belonged to middle or lower socioeconomic category. Arsenicosis was looked for by estimation of arsenic levels in finger/toe nails and by skin examination. Arsenic levels in nails and in ground water (in NCIPH patients with arsenicosis) was estimated by mass spectrometry. Nail arsenic levels were raised in five (10 %) portal hypertensive study subjects [two NCIPH patients (both had skin arsenicosis) and three portal hypertensive controls]. All of these five patients were residents of West Bengal or Bangladesh. Skin arsenicosis was noted in three NCIPH patients (11 %) compared to none of disease/healthy controls. Ground water from residential locality of one NCIPH patient with arsenicosis (from Bangladesh) showed extremely high level of arsenic (79.5 μg/L). Arsenicosis and microangiopathy of liver, possibly caused by environmental contamination continues in parts of Asia. Further studies are needed to understand the mechanisms of such 'poverty-linked thrombophilia'.
Arsenic and breast cancer: a systematic review of epidemiologic studies.
Khanjani, Narges; Jafarnejad, Abu-Bakr; Tavakkoli, Leila
2017-09-26
Arsenic is one of the heavy metals known to be a cause of cancer and many other serious human health problems. The International Agency for Research on Cancer (IARC), has classified arsenic as a Group 1 carcinogen. Studies were performed in different populations to investigate the association between arsenic and breast cancer and the present paper attempts to review these studies. Accessible electronic resources including, PubMed, Web of Knowledge, Science Direct and Scopus and Google Scholar were searched, with relevant phrases up to October 30, 2016. All articles were reviewed by two people separately and among them, original epidemiologic studies that investigated the association between breast cancer and exposure to arsenic were included. Eventually seven articles were selected from 126 retrieved articles. Although three studies (one case-control and two ecological) were not able to show a significant affect, others provide some evidence of a relation between arsenic and breast cancer in specific subgroups. Exposure to arsenic may increase the risk of breast cancer. The strength of this relation can vary due to regional and individual differences.
Probing for the Activities of Arsenic and Selenium Metabolizing Microbes
NASA Astrophysics Data System (ADS)
Stolz, J. F.
2007-12-01
Microbial activities can directly impact the mobility and toxicity of arsenic and selenium in the environment. Arsenic is cycled through oxidation/reduction and methylation/demethylation reactions as part of resistance and respiratory processes. The requirement for selenium is primarily for incorporation into selenocysteine and its function in selenoenzymes. Selenium oxyanions can also serve as an electron acceptor in anaerobic respiration. Both culture and culture-independent methods have been developed to detect the presence and activity of organisms capable of arsenic and selenium transformations. Enrichment media have been successful at cultivating arsenate respiring bacteria from a variety of environments, however, both electron donor and the concentration of arsenic can exert strong selective pressure. Thus, the organisms in the enrichment culture may not be the dominant organisms in the environment. Culture-independent methods, including immunological approaches (e.g., polyclonal antibodies to ArrA) and PCR-based technologies, have also had mixed success. PCR-primers designed to amplify portions of genes involved in resistance (e.g., arsC, acr3), respiration (e.g., arrA), and oxidation (e.g., aoxB) have been useful in several environments. Applications include T-RFLP, rt-PCR, and DGGE analyses. Nevertheless, these primers do not work with certain organisms suggesting the existence of additional enzymes and pathways. Although the biosynthetic pathway (and the proteins involved) for selenocysteine has been described in detail, much less is known about selenium methylation, assimilation and respiration. Only one respiratory selenate reductase has been characterized and its close sequence identity with chlorate and perchlorate reductases has complicated efforts to design a functional probe. Thus many aspects of the biogeochemical cycle of selenium remains to be explored.
Export of arsenic from forested catchments under easing atmospheric pollution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucie Erbanova; Martin Novak; Daniela Fottova
Massive lignite burning in Central European power plants peaked in the 1980s. Dissolved arsenic in runoff from upland forest ecosystems is one of the ecotoxicological risks resulting from power plant emissions. Maxima in As concentrations in runoff from four forest catchments have increased 2-5 times between 1995 and 2006, and approach the drinking water limit (10 {mu}g L{sup -1}). To assess the fate of anthropogenic As, we constructed input/output mass balances for three polluted and one relatively unpolluted forest catchment in the Czech Republic, and evaluated the pool size of soil As. The observation period was 11 years, and themore » sites spanned a 6-fold As pollution gradient. Two of the polluted sites exhibit large net As export via runoff solutes (mean of 4-5 g As ha{sup -1} yr{sup -1} for the 11-year period; up to 28 g As ha{sup -1} yr{sup -1} in 2005). This contrasts with previous studies which concluded that forest catchments are a net sink for atmogenic arsenic both at times of increasing and decreasing pollution. The amount of exported As is not correlated with the total As soil pool size, which is over 78% geogenic in origin, but correlates closely with water fluxes via runoff. Net arsenic release is caused by an interplay of hydrological conditions and retreating acidification which may mobilize arsenic by competitive ligand exchange. The effects of droughts and other aspects of climate change on subsequent As release from soil were not investigated. Between-site comparisons indicate that most pollutant As may be released from humus. 24 refs., 7 figs., 1 tab.« less
Lopez, Adeline R; Funk, David H; Buchwalter, David B
2017-05-01
Arsenic is an important environmental pollutant whose speciation and mobility in freshwater food webs is complex. Few studies have characterized uptake and efflux rates of arsenic in aquatic benthic invertebrates. Further, we lack a fundamental understanding of how pH influences uptake kinetics in these organisms or how this key environmental variable could alter dietary exposure for primary consumers. Here we used a radiotracer approach to characterize arsenate accumulation dynamics in benthic invertebrates, the influence of pH on uptake in a subset of these organisms, and the influence of pH on uptake of arsenate by periphyton - an important food source at the base of aquatic food webs. Uptake rate constants (K u ) from aqueous exposure were modest, ranging from ∼0.001 L g -1 d -1 in three species of mayfly to 0.06 L g -1 d -1 in Psephenus herricki. Efflux rate constants ranged from ∼0.03 d -1 in Corbicula fluminea to ∼0.3 d -1 in the mayfly Isonychia sp, and were generally high. Arsenate uptake decreased with increasing pH, which may be a function of increased adsorption at lower pHs. A similar but much stronger correlation was observed for periphyton where K u decreased from ∼3.0 L g -1 d -1 at 6.5 pH to ∼0.7 L g -1 d -1 at 8.5 pH, suggesting that site specific pH could significantly alter arsenic exposure, particularly for primary consumers. Together, these findings shed light on the complexity of arsenic bioavailability and help explain observed differences reported in the literature. Copyright © 2016 Elsevier Ltd. All rights reserved.
Case reports: arsenic pollution in Thailand, Bangladesh, and Hungary.
Jones, Huw; Visoottiviseth, Pornsawan; Bux, M Khoda; Födényi, Rita; Kováts, Nora; Borbély, Gábor; Galbács, Zoltán
2008-01-01
Although arsenic contamination in the three countries described herein differs, a number of common themes emerge. In each country, the presence of arsenic is both long term and of geological origin. Moreover, in each of these countries, arsenic was only recently discovered to be a potential public health problem, having been first formally recognized in the 1980s or 1990s. In Bangledesh, exposure of the public to arsenic arose as a result of the search for microbially safe drinking water; this search resulted in the sinking of tube wells into aquifers. In Hungary, the natural bedrock geology was responsible for contamination of aquifer water. The genesis of arsenic contamination in Thailand arose primarily from small-scale alluvial mining activities, which mobilized geologically bound arsenic. Because of the complex chemistry of arsenic, and variability in where it is found and how it is bound, multiple mitigation methods must be considered for mitigating episodes of environmental contamination. The Ron Phibun region of Thailand has a 100-yr history of tin mining. A geological survey of the region was conducted in the mid-1990s by the Department of Mineral Resources and Department of Industry of Thailand, and was supported by the British Geological Society. Skin cancer in Thailand was first reported in 1987, in the southern part of the country; among other symptoms observed, there was evidence of IQ diminutions among the population. Arsenic water levels to 9,000 pg/L were reported; such levels are substantially above any guideline levels. A long-term plan to mitigate arsenic contamination was devised in 1998-2000. The plan involved removal of arsenic-contaminated land and improved management of mining wastes. However, at $22 million, the cost was deemed prohibitive for the regional Thai economy. An alternative solution of providing pipeline drinking water to the exposed population was also unsuccessful, either because arsenic contamination levels did not fall sufficiently, or because the quantity of water delivered to the population was inadequate. Membrane technology treatment, using reverse osmosis, was successful during the summer months, but membrane filter replacement costs prevented wide implementation. Less expensive options, such as the use of rainwater jars, were feasible in areas with adequate rainfall. Algae and phytoremediation and wetland treatment of surface waters were useful, but the waste disposal necessitated by such treatments reduces acceptance. The development and population growth in Bangladesh from 1980 to 2000 resulted in improved water quality, primarily because of the drilling of about 10 million tube wells. The unintended consequence of this action resulted in exposure of about 40 million people to toxic levels of arsenic, which was a natural contaminant of the aquifers. Numerous remediation strategies have been implemented to deal with this problem, including the use of dug wells, pond sand filters, household filters, rainwater harvesting, deep tube wells, chemical-based options, and construction of village piped water supplies. Varying levels of success, which is largely dependent on local resources and conditions, have been reported for the different mitigation methodologies. Although Hungary has already invested huge sums of money to reduce arsenic levels in the most contaminated counties, further investments are needed to comply with the strict European threshold value. The fact that arsenic contamination is a natural ongoing process creates a barrier to long-term success. At present, the most appropriate option for securing safe water for drinking and cooking is treatment of water at the tap. Both adsorption and membrane filtration are efficient methods to remove arsenic from drinking water. The presence of contaminants other than arsenic may also require dual or multiple removal processes. Decision makers, as is common, must consider not only removal efficiency but also operating and investment costs of an operation.
Sherwood, Cara L.; Liguori, Andrew E.; Olsen, Colin E.; Lantz, R. Clark; Burgess, Jefferey L.; Boitano, Scott
2013-01-01
Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb)] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE) cell model we found that both micromolar (3.9 μM) and submicromolar (0.8 μM) arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl) Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-). We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway. PMID:24349408
Sando, Steven K.; Vecchia, Aldo V.; Lorenz, David L.; Barnhart, Elliott P.
2014-01-01
A large-scale trend analysis was done on specific conductance, selected trace elements (arsenic, cadmium, copper, iron, lead, manganese, and zinc), and suspended-sediment data for 22 sites in the upper Clark Fork Basin for water years 1996–2010. Trend analysis was conducted by using two parametric methods: a time-series model (TSM) and multiple linear regression on time, streamflow, and season (MLR). Trend results for 1996–2010 indicate moderate to large decreases in flow-adjusted concentrations (FACs) and loads of copper (and other metallic elements) and suspended sediment in Silver Bow Creek upstream from Warm Springs. Deposition of metallic elements and suspended sediment within Warm Springs Ponds substantially reduces the downstream transport of those constituents. However, mobilization of copper and suspended sediment from floodplain tailings and stream banks in the Clark Fork reach from Galen to Deer Lodge is a large source of metallic elements and suspended sediment, which also affects downstream transport of those constituents. Copper and suspended-sediment loads mobilized from within this reach accounted for about 40 and 20 percent, respectively, of the loads for Clark Fork at Turah Bridge (site 20); whereas, streamflow contributed from within this reach only accounted for about 8 percent of the streamflow at Turah Bridge. Minor changes in FACs and loads of copper and suspended sediment are indicated for this reach during 1996–2010. Clark Fork reaches downstream from Deer Lodge are relatively smaller sources of metallic elements than the reach from Galen to Deer Lodge. In general, small decreases in loads and FACs of copper and suspended sediment are indicated for Clark Fork sites downstream from Deer Lodge during 1996–2010. Thus, although large decreases in FACs and loads of copper and suspended sediment are indicated for Silver Bow Creek upstream from Warm Springs, those large decreases are not translated to the more downstream reaches largely because of temporal stationarity in constituent transport relations in the Clark Fork reach from Galen to Deer Lodge. Unlike metallic elements, arsenic (a metalloid element) in streams in the upper Clark Fork Basin typically is mostly in dissolved phase, has less variability in concentrations, and has weaker direct relations with suspended-sediment concentrations and streamflow. Arsenic trend results for 1996–2010 indicate generally moderate decreases in FACs and loads in Silver Bow Creek upstream from Opportunity. In general, small temporal changes in loads and FACs of arsenic are indicated for Silver Bow Creek and Clark Fork reaches downstream from Opportunity during 1996–2010. Contribution of arsenic (from Warm Springs Ponds, the Mill-Willow bypass, and groundwater sources) in the Silver Bow Creek reach from Opportunity to Warm Springs is a relatively large source of arsenic. Arsenic loads originating from within this reach accounted for about 11 percent of the load for Clark Fork at Turah Bridge; whereas, streamflow contributed from within this reach only accounted for about 2 percent of the streamflow at Turah Bridge.
Jarošíková, Alice; Ettler, Vojtěch; Mihaljevič, Martin; Penížek, Vít; Matoušek, Tomáš; Culka, Adam; Drahota, Petr
2018-06-01
Dust emissions from copper smelters processing arsenic-bearing ores represent a risk to soil environments due to the high levels of As and other inorganic contaminants. Using an in situ experiment in four different forest and grassland soils (pH 3.2-8.0) we studied the transformation of As-rich (>50 wt% As) copper smelter dust over 24 months. Double polyamide bags with 1 g of flue dust were buried at different depths in soil pits and in 6-month intervals; then those bags, surrounding soil columns, and soil pore waters were collected and analysed. Dust dissolution was relatively fast during the first 6 months (5-34%), and mass losses attained 52% after 24 months. The key driving forces affecting dust dissolution were not only pH, but also the water percolation/retention in individual soils. Primary arsenolite (As 2 O 3 ) dissolution was responsible for high As release from the dust (to 72%) and substantial increase of As in the soil (to a 56 × increase; to 1500 mg kg -1 ). Despite high arsenolite solubility, this phase persisted in the dust after 2 years of exposure. Mineralogical investigation indicated that mimetite [Pb 5 (AsO 4 ) 3 (Cl,OH)], unidentified complex Ca-Pb-Fe-Zn arsenates, and Fe oxyhydroxides partly controlled the mobility of As and other metal(loid)s. Compared to As, other less abundant contaminants (Bi, Cu, Pb, Sb, Zn) were released into the soil to a lesser extent (8-40% of total). The relatively high mobility of As in the soil can be seen from decreases of bulk As concentrations after spring snowmelt, high water-extractable fractions with up to ∼50% of As(III) in extracts, and high As concentrations in soil pore waters. Results indicate that efficient controls of emissions from copper smelters and flue dust disposal sites are needed to prevent extensive contamination of nearby soils by persistent As. Copyright © 2018 Elsevier Ltd. All rights reserved.
Carbonate ions and arsenic dissolution by groundwater
Kim, M.-J.; Nriagu, J.; Haack, S.
2000-01-01
Samples of Marshall Sandstone, a major source of groundwater with elevated arsenic levels in southeast Michigan, were exposed to bicarbonate ion under controlled chemical conditions. In particular, effects of pH and redox conditions on arsenic release were evaluated. The release of arsenic from the aquifer rock was strongly related to the bicarbonate concentration in the leaching solution. The results obtained suggest that the carbonation of arsenic sulfide minerals, including orpiment (As2S3) and realgar (As2S2), is an important process in leaching arsenic into groundwater under anaerobic conditions. The arseno-carbonate complexes formed, believed to be As(CO3)2-, As(CO3)(OH)2-, and AsCO3+, are stable in groundwater. The reaction of ferrous ion with the thioarsenite from carbonation process can result in the formation of arsenopyrite which is a common mineral in arsenic-rich aquifers.Samples of Marshall Sandstone, a major source of groundwater with elevated arsenic levels in southeast Michigan, were exposed to bicarbonate ion under controlled chemical conditions. In particular, effects of pH and redox conditions on arsenic release were evaluated. The release of arsenic from the aquifer rock was strongly related to the bicarbonate concentration in the leaching solution. The results obtained suggest that the carbonation of arsenic sulfide minerals, including orpiment (As2S3) and realgar (As2S2), is an important process in leaching arsenic into groundwater under anaerobic conditions. The arseno-carbonate complexes formed, believed to be As(CO3)2-, As(CO3)(OH)2-, and AsCO3+, are stable in groundwater. The reaction of ferrous ion with the thioarsenite from carbonation process can result in the formation of arsenopyrite which is a common mineral in arsenic-rich aquifers.The role of bicarbonate in leaching arsenic into groundwater was investigated by conducting batch experiments using core samples of Marshall Sandstone from southeast Michigan and different bicarbonate solutions. The effects of pH and redox conditions on As dissolution were examined. Results showed that As was not leached significantly out of the Marshall Sandstone samples after 3 d using either deionized water or groundwater, but As was leached efficiently by sodium bicarbonate, potassium bicarbonate, and ferric chloride solutions. The leaching rate with sodium bicarbonate was about 25% higher than that with potassium bicarbonate. The data indicated that bicarbonate ion was involved primarily in As dissolution and that hydroxyl radical ion did not affect As dissolution to any significant degree. The amount of As leached was dependent upon the sodium bicarbonate concentration, increasing with reaction time for each concentration. Significant As leaching was found in the extreme pH ranges of <1.9 and 8.0-10.4. The resulting arseno-carbonate complexes formed were stable in groundwater.
Relationship between arsenic and selenium in workers occupationally exposed to inorganic arsenic.
Janasik, Beata; Zawisza, Anna; Malachowska, Beata; Fendler, Wojciech; Stanislawska, Magdalena; Kuras, Renata; Wasowicz, Wojciech
2017-07-01
The interaction between arsenic (As) and selenium (Se) has been one of the most extensively studied. The antagonism between As and Se suggests that low Se status plays an important role in aggravating arsenic toxicity in diseases development. The objective of this study was to assess the Se contents in biological samples of inorganic As exposed workers (n=61) and in non-exposed subjects (n=52). Median (Me) total arsenic concentration in urine of exposed workers was 21.83μg/g creat. (interquartile range (IQR) 15.49-39.77) and was significantly higher than in the control group - (Me 3.75μg/g creat. (IQR 2.52-9.26), p<0.0001). The median serum Se concentrations in the study group and the control were: 54.20μg/l (IQR 44.2-73.10μg/l) and 55.45μg/l (IQR 38.5-69.60μg/l) respectively and did not differ significantly between the groups. In the exposed group we observed significantly higher urine concentrations of selenosugar 1 (SeSug 1) and selenosugar 3 (SeSug3) than in the control group Me: 1.68μg/g creat. (IQR 1.25-2.97 vs Me: 1.07μg/g creat. (IQR 0.86-1.29μg/g), p<0.0001 for SeSug1; Me: 0.45μg/g creat. (IQR 0.26-0.69) vs Me: 0.28μg/g creat. (IQR 0.17-0.45μg/g), p=0.0021). In the multivariate model, after adjusting to cofounders (age, BMI, job seniority time, consumption of fish and seafood and smoking habits) the high rate of arsenic urine wash out (measured as a sum of iAs+MMA+DMA) was significantly associated with the high total selenium urine excretion (B=0.14 (95%CI (confidence interval) 0.05-0.23)). Combination of both arsenic and selenium status to assess the risk of arsenic-induced diseases requires more studies with regard to both the analysis of speciation, genetics and the influence of factors such as nutritional status. Copyright © 2017 Elsevier GmbH. All rights reserved.
Groundwater arsenic and fluoride in Rajnandgaon District, Chhattisgarh, northeastern India
NASA Astrophysics Data System (ADS)
Patel, Khageshwar Singh; Sahu, Bharat Lal; Dahariya, Nohar Singh; Bhatia, Amarpreet; Patel, Raj Kishore; Matini, Laurent; Sracek, Ondra; Bhattacharya, Prosun
2017-07-01
The groundwater of Ambagarh Chouki, Rajnandgaon, India, shows elevated levels of As and F-, frequently above the WHO guidelines. In this work, the concentrations of As, F-, Na+, Mg2+, Ca2+, Cl-, SO4 2-, HCO3 -, Fe, dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the groundwater of Ambagarh Chouki are described. The sources of dissolved components in the groundwater are investigated using the cluster and factor analysis. Five factors have been identified and linked to processes responsible for the formation of groundwater chemistry. High concentrations of dissolved As seems to be linked to high concentrations of DOC, suggesting reductive dissolution of ferric oxyhydroxides as arsenic mobilization process. Fluoride is found in shallow depth water, presumably as a consequence of evaporation of water and removal of Ca2+ by precipitation of carbonates.
40 CFR 503.47 - Recordkeeping.
Code of Federal Regulations, 2010 CFR
2010-07-01
... retain that information for five years. (b) The concentration of lead, arsenic, cadmium, chromium, and...) Values for the air pollution control device operating parameters. (h) The oxygen concentration and..., arsenic, cadmium, chromium, and nickel for each sewage sludge incinerator. (m) The risk specific...
40 CFR 503.47 - Recordkeeping.
Code of Federal Regulations, 2011 CFR
2011-07-01
... retain that information for five years. (b) The concentration of lead, arsenic, cadmium, chromium, and...) Values for the air pollution control device operating parameters. (h) The oxygen concentration and..., arsenic, cadmium, chromium, and nickel for each sewage sludge incinerator. (m) The risk specific...