Sample records for control catalysts final

  1. Exhaust emission control and diagnostics

    DOEpatents

    Mazur, Christopher John; Upadhyay, Devesh

    2006-11-14

    A diesel engine emission control system uses an upstream oxidation catalyst and a downstream SCR catalyst to reduce NOx in a lean exhaust gas environment. The engine and upstream oxidation catalyst are configured to provide approximately a 1:1 ratio of NO to NO2 entering the downstream catalyst. In this way, the downstream catalyst is insensitive to sulfur contamination, and also has improved overall catalyst NOx conversion efficiency. Degradation of the system is determined when the ratio provided is no longer near the desired 1:1 ratio. This condition is detected using measurements of engine operating conditions such as from a NOx sensor located downstream of the catalysts. Finally, control action to adjust an injected amount of reductant in the exhaust gas based on the actual NO to NO2 ratio upstream of the SCR catalyst and downstream of the oxidation catalyst.

  2. Bulk Preparation of Holey Graphene via Controlled Catalytic Oxidation

    NASA Technical Reports Server (NTRS)

    Connell, John (Inventor); Watson, Kent (Inventor); Ghose, Sayata (Inventor); Lin, Yi (Inventor)

    2015-01-01

    A scalable method allows preparation of bulk quantities of holey carbon allotropes with holes ranging from a few to over 100 nm in diameter. Carbon oxidation catalyst nanoparticles are first deposited onto a carbon allotrope surface in a facile, controllable, and solvent-free process. The catalyst-loaded carbons are then subjected to thermal treatment in air. The carbons in contact with the carbon oxidation catalyst nanoparticles are selectively oxidized into gaseous byproducts such as CO or CO.sub.2, leaving the surface with holes. The catalyst is then removed via refluxing in diluted nitric acid to obtain the final holey carbon allotropes. The average size of the holes correlates strongly with the size of the catalyst nanoparticles and is controlled by adjusting the catalyst precursor concentration. The temperature and time of the air oxidation step, and the catalyst removal treatment conditions, strongly affect the morphology of the holes.

  3. Nitrogen-doped graphene catalysts: High energy wet ball milling synthesis and characterizations of functional groups and particle size variation with time and speed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuang, Shiqiang; Nunna, Bharath Babu; Boscoboinik, Jorge Anibal

    Nitrogen-doped graphene (N-G) catalyst emerges as one of the promising non-platinum group metal (non-PGM) catalysts with the advantages of low cost, high oxygen reduction reaction (ORR) activity, stability, and selectivity to replace expensive PGM catalysts in electrochemical systems. This research investigated nanoscale high energy wet (NHEW) ball milling for the synthesis of N-G catalysts to make conventional problems such as sintering or localized overheating issues negligible. The successful synthesis of N-G catalysts with comparable catalytic performance to 10 wt% Pt/C by using this method has been published. This paper focuses on understanding the effect of grinding speed and grinding timemore » on the particle size and chemical state of N-G catalysts through the physical and chemical characterization. The research result shows that (1) the final particle size, nitrogen doping percentage, and nitrogen bonding composition of synthesized N-G catalysts are predictable and controllable by adjusting the grinding time, the grinding speed, and other relative experimental parameters; (2) the final particle size of N-G catalysts could be estimated from the derived relation between the cracking energy density and the particle size of ground material in the NHEW ball milling process with specified experimental parameters; and (3) the chemical composition of N-G catalysts synthesized by NHEW ball milling is controllable by adjusting the grinding time and grinding speed.« less

  4. Nitrogen-doped graphene catalysts: High energy wet ball milling synthesis and characterizations of functional groups and particle size variation with time and speed

    DOE PAGES

    Zhuang, Shiqiang; Nunna, Bharath Babu; Boscoboinik, Jorge Anibal; ...

    2017-07-26

    Nitrogen-doped graphene (N-G) catalyst emerges as one of the promising non-platinum group metal (non-PGM) catalysts with the advantages of low cost, high oxygen reduction reaction (ORR) activity, stability, and selectivity to replace expensive PGM catalysts in electrochemical systems. This research investigated nanoscale high energy wet (NHEW) ball milling for the synthesis of N-G catalysts to make conventional problems such as sintering or localized overheating issues negligible. The successful synthesis of N-G catalysts with comparable catalytic performance to 10 wt% Pt/C by using this method has been published. This paper focuses on understanding the effect of grinding speed and grinding timemore » on the particle size and chemical state of N-G catalysts through the physical and chemical characterization. The research result shows that (1) the final particle size, nitrogen doping percentage, and nitrogen bonding composition of synthesized N-G catalysts are predictable and controllable by adjusting the grinding time, the grinding speed, and other relative experimental parameters; (2) the final particle size of N-G catalysts could be estimated from the derived relation between the cracking energy density and the particle size of ground material in the NHEW ball milling process with specified experimental parameters; and (3) the chemical composition of N-G catalysts synthesized by NHEW ball milling is controllable by adjusting the grinding time and grinding speed.« less

  5. Monolith catalysts for closed-cycle carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Herz, Richard K.

    1994-01-01

    The general subject area of the project involved the development of solid catalysts that have high activity at low temperature for the oxidation of gases such as CO. The original application considered was CO oxidation in closed-cycle CO2 lasers. The scope of the project was subsequently extended to include oxidation of gases in addition to CO and applications such as air purification and exhaust gas emission control. The primary objective of the final phase grant was to develop design criteria for the formulation of new low-temperature oxidation catalysts utilizing Monte Carlo simulations of reaction over NASA-developed catalysts.

  6. Spontaneous and controlled-diameter synthesis of single-walled and few-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Inoue, Shuhei; Lojindarat, Supanat; Kawamoto, Takahiro; Matsumura, Yukihiko; Charinpanitkul, Tawatchai

    2018-05-01

    In this study, we explored the spontaneous and controlled-diameter growth of carbon nanotubes. We evaluated the effects of catalyst density, reduction time, and a number of catalyst coating on the substrate (for multi-walled carbon nanotubes) on the diameter of single-walled carbon nanotubes and the number of layers in few-walled carbon nanotubes. Increasing the catalyst density and reduction time increased the diameters of the carbon nanotubes, with the average diameter increasing from 1.05 nm to 1.86 nm for single-walled carbon nanotubes. Finally, we succeeded in synthesizing a significant double-walled carbon nanotube population of 24%.

  7. Synthesis and characterization of mesoporous hydrocracking catalysts

    NASA Astrophysics Data System (ADS)

    Munir, D.; Usman, M. R.

    2016-08-01

    Mesoporous catalysts have shown great prospective for catalytic reactions due to their high surface area that aids better distribution of impregnated metal. They have been found to contain more adsorption sites and controlled pore diameter. Hydrocracking, in the presence of mesoporous catalyst is considered more efficient and higher conversion of larger molecules is observed as compared to the cracking reactions in smaller microporous cavities of traditional zeolites. In the present study, a number of silica-alumina based mesoporous catalysts are synthesized in the laboratory. The concentration and type of surfactants and quantities of silica and alumina sources are the variables studied in the preparation of catalyst supports. The supports prepared are well characterized using SEM, EDX, and N2-BET techniques. Finally, the catalysts are tested in a high pressure autoclave reactor to study the activity and selectivity of the catalysts for the hydrocracking of a model mixture of plastics comprising of LDPE, HDPE, PP, and PS.

  8. Understanding low temperature oxidation activity of nanoarray-based monolithic catalysts: from performance observation to structural and chemical insights

    DOE PAGES

    Du, Shoucheng; Tang, Wenxiang; Guo, Yanbing; ...

    2016-12-30

    Monolithic catalysts have been widely used in automotive, chemical, and energy relevant industries. Nano-array based monolithic catalysts have been developed, demonstrating high catalyst utilization efficiency and good thermal/mechanical robustness. Compared with the conventional wash-coat based monolithic catalysts, they have shown advances in precise and optimum microstructure control and feasibility in correlating materials structure with properties. Recently, the nano-array based monolithic catalysts have been studied for low temperature oxidation of automotive engine exhaust and exhibited interesting and promising catalytic activities. Here, this review focuses on discussing the key catalyst structural parameters that affect the catalytic performance from the following aspects, (1)more » geometric shape and crystal planes, (2) guest atom doping and defects, (3) array size and size-assisted active species loading, and (4) the synergy effect of metal oxide in composite nano-arrays. Prior to the discussion, an overview of the current status of synthesis and development of the nano-array based monolithic catalysts is introduced. The performance of these materials in low temperature simulated engine exhaust oxidation is also demonstrated. Finally, we hope this review will elucidate the science and chemistry behind the good oxidation performance of the nanoarray- based monolithic catalysts, and serve as a timely and useful research guide for rational design and further improvement of the nano-array based monolithic catalysts for automobile emission control.« less

  9. Understanding low temperature oxidation activity of nanoarray-based monolithic catalysts: from performance observation to structural and chemical insights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Shoucheng; Tang, Wenxiang; Guo, Yanbing

    Monolithic catalysts have been widely used in automotive, chemical, and energy relevant industries. Nano-array based monolithic catalysts have been developed, demonstrating high catalyst utilization efficiency and good thermal/mechanical robustness. Compared with the conventional wash-coat based monolithic catalysts, they have shown advances in precise and optimum microstructure control and feasibility in correlating materials structure with properties. Recently, the nano-array based monolithic catalysts have been studied for low temperature oxidation of automotive engine exhaust and exhibited interesting and promising catalytic activities. Here, this review focuses on discussing the key catalyst structural parameters that affect the catalytic performance from the following aspects, (1)more » geometric shape and crystal planes, (2) guest atom doping and defects, (3) array size and size-assisted active species loading, and (4) the synergy effect of metal oxide in composite nano-arrays. Prior to the discussion, an overview of the current status of synthesis and development of the nano-array based monolithic catalysts is introduced. The performance of these materials in low temperature simulated engine exhaust oxidation is also demonstrated. Finally, we hope this review will elucidate the science and chemistry behind the good oxidation performance of the nanoarray- based monolithic catalysts, and serve as a timely and useful research guide for rational design and further improvement of the nano-array based monolithic catalysts for automobile emission control.« less

  10. Nano-array based monolithic catalysts: Concept, rational materials design and tunable catalytic performance

    DOE PAGES

    Ren, Zheng; Guo, Yanbing; Gao, Pu-Xian

    2015-03-20

    Monolithic catalysts, also known as structured catalysts, represent an important catalyst configuration widely used in automotive, chemical, and energy industries. However, several issues associated with washcoat based monolithic catalyst preparation are ever present, such as compromised materials utilization efficiency due to a less-than-ideal wash coating process, difficulty in precise and optimum microstructure control and lack of structure-property correlation. Here, in this mini-review, we introduce the concept of nano-array catalyst, a new type of monolithic catalyst featuring high catalyst utilization efficiency, good thermal/mechanical robustness, and catalytic performance tunability. A comprehensive overview is presented with detailed discussion of the strategies for nano-arraymore » catalyst preparation and rational catalytic activity adjustment enabled by the well-defined nano-array geometry. Specifically their scalable fabrication processes are reviewed in conjunction with discussion of their various catalytic oxidation reaction performances at low temperature. Finally, we hope this review will serve as a timely and useful research guide for rational design and utilization of the new type of monolithic catalysts.« less

  11. Strategies for the synthesis of supported gold palladium nanoparticles with controlled morphology and composition.

    PubMed

    Hutchings, Graham J; Kiely, Christopher J

    2013-08-20

    The discovery that supported gold nanoparticles are exceptionally effective catalysts for redox reactions has led to an explosion of interest in gold nanoparticles. In addition, incorporating a second metal as an alloy with gold can enhance the catalyst performance even more. The addition of small amounts of gold to palladium, in particular, and vice versa significantly enhances the activity of supported gold-palladium nanoparticles as redox catalysts through what researchers believe is an electronic effect. In this Account, we describe and discuss methodologies for the synthesis of supported gold-palladium nanoparticles and their use as heterogeneous catalysts. In general, three key challenges need to be addressed in the synthesis of bimetallic nanoparticles: (i) control of the particle morphology, (ii) control of the particle size distribution, and (iii) control of the nanoparticle composition. We describe three methodologies to address these challenges. First, we discuss the relatively simple method of coimpregnation. Impregnation allows control of particle morphology during alloy formation but does not control the particle compositions or the particle size distribution. Even so, we contend that this method is the best preparation method in the catalyst discovery phase of any project, since it permits the investigation of many different catalyst structures in one experiment, which may aid the identification of new catalysts. A second approach, sol-immobilization, allows enhanced control of the particle size distribution and the particle morphology, but control of the composition of individual nanoparticles is not possible. Finally, a modified impregnation method can allow the control of all three of these crucial parameters. We discuss the effect of the different methodologies on three redox reactions: benzyl alcohol oxidation, toluene oxidation, and the direct synthesis of hydrogen peroxide. We show that the coimpregnation method provides the best reaction selectivity for benzyl alcohol oxidation and the direct synthesis of hydrogen peroxide. However, because of the reaction mechanism, the sol-immobilzation method gives very active and selective catalysts for toluene oxidation. We discuss the possible nature of the preferred active structures of the supported nanoparticles for these reactions. This paper is based on the IACS Heinz Heinemann Award Lecture entitled "Catalysis using gold nanoparticles" which was given in Munich in July 2012.

  12. Templating Routes to Supported Oxide Catalysts by Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Notestein, Justin M.

    2016-09-08

    The rational design and understanding of supported oxide catalysts requires at least three advancements, in order of increasing complexity: the ability to quantify the number and nature of active sites in a catalytic material, the ability to place external controls on the number and structure of these active sites, and the ability to assemble these active sites so as to carry out more complex functions in tandem. As part of an individual investigator research program that is integrated with the Northwestern University Institute for Catalysis in Energy Processes (ICEP) as of 2015, significant advances were achieved in these three areas.more » First, phosphonic acids were utilized in the quantitative assessment of the number of active and geometrically-available sites in MO x-SiO 2 catalysts, including nanocrystalline composites, co-condensed materials, and grafted structures, for M=Ti, Zr, Hf, Nb, and Ta. That work built off progress in understanding supported Fe, Cu, and Co oxide catalysts from chelating and/or multinuclear precursors to maximize surface reactivity. Secondly, significant progress was made in the new area of using thin oxide overcoats containing ‘nanocavities’ from organic templates as a method to control the dispersion and thermal stability of subsequently deposited metal nanoparticles or other catalytic domains. Similar methods were used to control surface reactivity in SiO 2-Al 2O 3 acid catalysts and to control reactant selectivity in Al 2O 3-TiO 2 photocatalysts. Finally, knowledge gained from the first two areas has been combined to synthesize a tandem catalyst for hydrotreating reactions and an orthogonal tandem catalyst system where two subsequent reactions in a reaction network are independently controlled by light and heat. Overall, work carried out under this project significantly advanced the knowledge of synthesis-structure-function relationships in supported oxide catalysts for energy applications.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Rong; Hurlburt, Tyler J.; Sabyrov, Kairat

    Colloidal chemistry is used to control the size, shape, morphology, and composition of metal nanoparticles. Model catalysts as such are applied to catalytic transformations in the three types of catalysts: heterogeneous, homogeneous, and enzymatic. Real-time dynamics of oxidation state, coordination, and bonding of nanoparticle catalysts are put under the microscope using surface techniques such as sumfrequency generation vibrational spectroscopy and ambient pressure X-ray photoelectron spectroscopy under catalytically relevant conditions. It was demonstrated that catalytic behavior and trends are strongly tied to oxidation state, the coordination number and crystallographic orientation of metal sites, and bonding and orientation of surface adsorbates. Itmore » was also found that catalytic performance can be tuned by carefully designing and fabricating catalysts from the bottom up. Homogeneous and h eterogeneous catalysts, and likely enzymes, behave similarly at the molecular level. Finally, unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis.« less

  14. Bioleaching of metals from spent refinery petroleum catalyst using moderately thermophilic bacteria: effect of particle size.

    PubMed

    Srichandan, Haragobinda; Singh, Sradhanjali; Pathak, Ashish; Kim, Dong-Jin; Lee, Seoung-Won; Heyes, Graeme

    2014-01-01

    The present work investigated the leaching potential of moderately thermophilic bacteria in the recovery of metals from spent petroleum catalyst of varying particle sizes. The batch bioleaching experiments were conducted by employing a mixed consortium of moderate thermophilic bacteria at 45°C and by using five different particle sizes (from 45 to >2000 μm) of acetone-washed spent catalyst. The elemental mapping by FESEM confirmed the presence of Al, Ni, V and Mo along with sulfur in the spent catalyst. During bioleaching, Ni (92-97%) and V (81-91%) were leached in higher concentrations, whereas leaching yields of Al (23-38%) were found to be lowest in all particle sizes investigated. Decreasing the particle size from >2000 μm to 45-106 μm caused an increase in leaching yields of metals during initial hours. However, the final metals leaching yields were almost independent of particle sizes of catalyst. Leaching kinetics was observed to follow the diffusion-controlled model showing the linearity more close than the chemical control. The results of the present study suggested that bioleaching using moderate thermophilic bacteria was highly effective in removing the metals from spent catalyst. Moreover, bioleaching can be conducted using spent catalyst of higher particle size (>2000 μm), thus saving the grinding cost and making process attractive for larger scale application.

  15. Controlling interfacial properties in supported metal oxide catalysts through metal–organic framework templating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abney, Carter W.; Patterson, Jacob T.; Gilhula, James C.

    Precise control over the chemical structure of hard-matter materials is a grand challenge of basic science and a prerequisite for the development of advanced catalyst systems. In this work we report the application of a sacrificial metal-organic framework (MOF) template for the synthesis of a porous supported metal oxide catalyst, demonstrating proof-of-concept for a highly generalizable approach to the preparation new catalyst materials. Application of 2,2’-bipyridine-5,5’-dicarboxylic acid as the organic strut in the Ce MOF precursor results in chelation of Cu 2+ and affords isolation of the metal oxide precursor. Following pyrolysis of the template, homogeneously dispersed CuO nanoparticles aremore » formed in the resulting porous CeO 2 support. By partially substituting non-chelating 1,1’-biphenyl-4,4’-dicarboxylic acid, the Cu 2+ loading and dispersion can be finely tuned, allowing precise control over the CuO/CeO 2 interface in the final catalyst system. Characterization by x-ray diffraction, x-ray absorption fine structure spectroscopy, and in situ IR spectroscopy/mass spectrometry confirm control over interface formation to be a function of template composition, constituting the first report of a MOF template being used to control interfacial properties in a supported metal oxide. Using CO oxidation as a model reaction, the system with the greatest number of interfaces possessed the lowest activation energy and better activity under differential conditions, but required higher temperature for catalytic onset and displayed inferior efficiency at 100 °C than systems with higher Cu-loading. This finding is attributable to greater CO adsorption in the more heavily-loaded systems, and indicates catalyst performance for these supported oxide systems to be a function of at least two parameters: size of adsorption site and extent of interface. In conclusion, optimization of catalyst materials thus requires precise control over synthesis parameters, such as is demonstrated by this MOF-templating method.« less

  16. Innovative Sol-Gel Routes for the Bottom-up Preparation of Heterogeneous Catalysts.

    PubMed

    Debecker, Damien P

    2017-12-11

    Heterogeneous catalysts can be prepared by different methods offering various levels of control on the final properties of the solid. In this account, we exemplify bottom-up preparation routes that are based on the sol-gel chemistry and allow to tailor some decisive properties of solid catalysts. First, an emulsion templating strategy is shown to lead to macrocellular self-standing monoliths with a macroscopic 3D structure. The latter can be used as catalyst or catalyst supports in flow chemistry, without requiring any subsequent shaping step. Second, the aerosol-assisted sol-gel process allows for the one-step and continuous production of porous mixed oxides. Tailored textural properties can be obtained together with an excellent control on composition and homogeneity. Third, the application of non-hydrolytic sol-gel routes, in the absence of water, leads to mixed oxides with outstanding textural properties and with peculiar surface chemistry. In all cases, the resulting catalytic performance can be correlated with the specificities of the preparation routes presented. This is exemplified in catalytic reactions in the fields of biomass conversion, petro chemistry, enantioselective organic synthesis, and air pollution mitigation. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The preparation and characterization of novel Pt/C electrocatalysts with controlled porosity and cluster size

    DOE PAGES

    Coker, Eric N.; Steen, William A.; Miller, Jeffrey T.; ...

    2007-05-23

    Small platinum clusters have been prepared in zeolite hosts through ion exchange and controlled calcination/reduction processes. In order to enable electrochemical application, the pores of the Pt-zeolite were filled with electrically conductive carbon via infiltration with carbon precursors, polymerization, and pyrolysis. The zeolite host was then removed by acid washing, to leave a Pt/C electrocatalyst possessing quasi-zeolitic porosity and Pt clusters of well-controlled size. The electrocatalysts were characterized by TEM, XRD, EXAFS, nitrogen adsorption and electrochemical techniques. Depending on the synthesis conditions, average Pt cluster sizes in the Pt/C catalysts ranged from 1.3 to 2.0 nm. The presence of orderedmore » porosity/structure in the catalysts was evident in TEM images as lattice fringes, and in XRD as a low-angle diffraction peak with d-spacing similar to the parent zeolite. The catalysts possess micro- and meso-porosity, with pore size distributions that depend upon synthesis variables. Finally, electroactive surface areas as high as 112 m 2 g Pt -1 have been achieved in Pt/C electrocatalysts which show oxygen reduction performance comparable to standard industrial catalysts.« less

  18. Final Technical Report: Metal—Organic Surface Catalyst for Low-temperature Methane Oxidation: Bi-functional Union of Metal—Organic Complex and Chemically Complementary Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tait, Steven L.

    Stabilization and chemical control of transition metal centers is a critical problem in the advancement of heterogeneous catalysts to next-generation catalysts that exhibit high levels of selectivity, while maintaining strong activity and facile catalyst recycling. Supported metal nanoparticle catalysts typically suffer from having a wide range of metal sites with different coordination numbers and varying chemistry. This project is exploring new possibilities in catalysis by combining features of homogeneous catalysts with those of heterogeneous catalysts to develop new, bi-functional systems. The systems are more complex than traditional heterogeneous catalysts in that they utilize sequential active sites to accomplish the desiredmore » overall reaction. The interaction of metal—organic catalysts with surface supports and their interactions with reactants to enable the catalysis of critical reactions at lower temperatures are at the focus of this study. Our work targets key fundamental chemistry problems. How do the metal—organic complexes interact with the surface? Can those metal center sites be tuned for selectivity and activity as they are in the homogeneous system by ligand design? What steps are necessary to enable a cooperative chemistry to occur and open opportunities for bi-functional catalyst systems? Study of these systems will develop the concept of bringing together the advantages of heterogeneous catalysis with those of homogeneous catalysis, and take this a step further by pursuing the objective of a bi-functional system. The use of metal-organic complexes in surface catalysts is therefore of interest to create well-defined and highly regular single-site centers. While these are not likely to be stable in the high temperature environments (> 300 °C) typical of industrial heterogeneous catalysts, they could be applied in moderate temperature reactions (100-300 °C), made feasible by lowering reaction temperatures by better catalyst control. They also serve as easily tuned model systems for exploring the chemistry of single-site transition metals and tandem catalysts that could then be developed into a zeolite or other stable support structures. In this final technical report, three major advances our described that further these goals. The first is a study demonstrating the ability to tune the oxidation state of V single-site centers on a surface by design of the surrounding ligand field. The synthesis of the single-site centers was developed in a previous reporting period of this project and this new advance shows a distinct new ability of the systems to have a designed oxidation state of the metal center. Second, we demonstrate metal complexation at surfaces using vibrational spectroscopy and also show a metal replacement reaction on Ag surfaces. Third, we demonstrate a surface-catalyzed dehydrocyclization reaction important for metal-organic catalyst design at surfaces.« less

  19. Molecular catalysis science: Perspective on unifying the fields of catalysis

    DOE PAGES

    Ye, Rong; Hurlburt, Tyler J.; Sabyrov, Kairat; ...

    2016-04-25

    Colloidal chemistry is used to control the size, shape, morphology, and composition of metal nanoparticles. Model catalysts as such are applied to catalytic transformations in the three types of catalysts: heterogeneous, homogeneous, and enzymatic. Real-time dynamics of oxidation state, coordination, and bonding of nanoparticle catalysts are put under the microscope using surface techniques such as sumfrequency generation vibrational spectroscopy and ambient pressure X-ray photoelectron spectroscopy under catalytically relevant conditions. It was demonstrated that catalytic behavior and trends are strongly tied to oxidation state, the coordination number and crystallographic orientation of metal sites, and bonding and orientation of surface adsorbates. Itmore » was also found that catalytic performance can be tuned by carefully designing and fabricating catalysts from the bottom up. Homogeneous and h eterogeneous catalysts, and likely enzymes, behave similarly at the molecular level. Finally, unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis.« less

  20. Metal-organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations.

    PubMed

    Chughtai, Adeel H; Ahmad, Nazir; Younus, Hussein A; Laypkov, A; Verpoort, Francis

    2015-10-07

    Novel catalytic materials are highly demanded to perform a variety of catalytic organic reactions. MOFs combine the benefits of heterogeneous catalysis like easy post reaction separation, catalyst reusability, high stability and homogeneous catalysis such as high efficiency, selectivity, controllability and mild reaction conditions. The possible organization of active centers like metallic nodes, organic linkers, and their chemical synthetic functionalization on the nanoscale shows potential to build up MOFs particularly modified for catalytic challenges. In this review, we have summarized the recent research progress in heterogeneous catalysis by MOFs and their catalytic behavior in various organic reactions, highlighting the key features of MOFs as catalysts based on the active sites in the framework. Examples of their post functionalization, inclusion of active guest species and metal nanoparticles have been discussed. Finally, the use of MOFs as catalysts for asymmetric heterogeneous catalysis and stability of MOFs has been presented as separate sections.

  1. Improved capacitance characteristics of electrospun ACFs by pore size control and vanadium catalyst.

    PubMed

    Im, Ji Sun; Woo, Sang-Wook; Jung, Min-Jung; Lee, Young-Seak

    2008-11-01

    Nano-sized carbon fibers were prepared by using electrospinning, and their electrochemical properties were investigated as a possible electrode material for use as an electric double-layer capacitor (EDLC). To improve the electrode capacitance of EDLC, we implemented a three-step optimization. First, metal catalyst was introduced into the carbon fibers due to the excellent conductivity of metal. Vanadium pentoxide was used because it could be converted to vanadium for improved conductivity as the pore structure develops during the carbonization step. Vanadium catalyst was well dispersed in the carbon fibers, improving the capacitance of the electrode. Second, pore-size development was manipulated to obtain small mesopore sizes ranging from 2 to 5 nm. Through chemical activation, carbon fibers with controlled pore sizes were prepared with a high specific surface and pore volume, and their pore structure was investigated by using a BET apparatus. Finally, polyacrylonitrile was used as a carbon precursor to enrich for nitrogen content in the final product because nitrogen is known to improve electrode capacitance. Ultimately, the electrospun activated carbon fibers containing vanadium show improved functionality in charge/discharge, cyclic voltammetry, and specific capacitance compared with other samples because of an optimal combination of vanadium, nitrogen, and fixed pore structures.

  2. Development of a dedicated ethanol ultra-low emission vehicle (ULEV): Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodge, L.; Bourn, G.; Callahan, T.

    The objective of this project was to develop a commercially competitive vehicle powered by ethanol (or an ethanol blend) that can meet California`s ultra-low emission vehicle (ULEV) standards and equivalent corporate average fuel economy (CAFE) energy efficiency for a light-duty passenger car application. The definition of commercially competitive is independent of fuel cost, but does include technical requirements for competitive power, performance, refueling times, vehicle range, driveability, fuel handling safety, and overall emissions performance. This report summarizes the fourth and final phase of this project, and also the overall project. The focus of this report is the technology used tomore » develop a dedicated ethanol-fueled ULEV, and the emissions results documenting ULV performance. Some of the details for the control system and hardware changes are presented in two appendices that are SAE papers. The demonstrator vehicle has a number of advanced technological features, but it is currently configured with standard original equipment manufacturer (OEM) under-engine catalysts. Close-coupled catalysts would improve emissions results further, but no close-coupled catalysts were available for this testing. Recently, close-coupled catalysts were obtained, but installation and testing will be performed in the future. This report also briefly summarizes work in several other related areas that supported the demonstrator vehicle work.« less

  3. A novel solid state photocatalyst for living radical polymerization under UV irradiation

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; McKenzie, Thomas G.; Ren, Jing M.; Tan, Shereen; Nam, Eunhyung; Qiao, Greg G.

    2016-02-01

    This study presents the development of a novel solid state photocatalyst for the photoinduced controlled radical polymerization of methacrylates under mild UV irradiation (λmax ≈ 365 nm) in the absence of conventional photoinitiators, metal-catalysts or dye sensitizers. The photocatalyst design was based on our previous finding that organic amines can act in a synergistic photochemical reaction with thiocarbonylthio compounds to afford well controlled polymethacrylates under UV irradiation. Therefore, in the current contribution an amine-rich polymer was covalently grafted onto a solid substrate, thus creating a heterogeneous catalyst that would allow for facile removal, recovery and recyclability when employed for such photopolymerization reactions. Importantly, the polymethacrylates synthesized using the solid state photocatalyst (ssPC) show similarly excellent chemical and structural integrity as those catalysed by free amines. Moreover, the ssPC could be readily recovered and re-used, with multiple cycles of polymerization showing minimal effect on the integrity of the catalyst. Finally, the ssPC was employed in various photo-“click” reactions, permitting high yielding conjugations under photochemical control.

  4. Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically aligned carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Wenbo; Li, Jinjing; Polsen, Erik S.

    A lack of synthetic control and reproducibility during vertically aligned carbon nanotube (CNT) synthesis has stifled many promising applications of organic nanomaterials. Oxygen-containing species are particularly precarious in that they have both beneficial and deleterious effects and are notoriously difficult to control. In this paper, we demonstrated diatomic oxygen's ability, independent of water, to tune oxide-supported catalyst thin film dewetting and influence nanoscale (diameter and wall number) and macro-scale (alignment and density) properties for as-grown vertically aligned CNTs. In particular, single- or few-walled CNT forests were achieved at very low oxygen loading, with single-to-multi-walled CNT diameters ranging from 4.8 ±more » 1.3 nm to 6.4 ± 1.1 nm over 0–800 ppm O 2, and an expected variation in alignment, where both were related to the annealed catalyst morphology. Morphological differences were not the result of subsurface diffusion, but instead occurred via Ostwald ripening under several hundred ppm O 2, and this effect was mitigated by high H 2 concentrations and not due to water vapor (as confirmed in O 2-free water addition experiments), supporting the importance of O 2 specifically. Further characterization of the interface between the Fe catalyst and Al 2O 3 support revealed that either oxygen-deficit metal oxide or oxygen-adsorption on metals could be functional mechanisms for the observed catalyst nanoparticle evolution. Finally, taken as a whole, our results suggest that the impacts of O 2 and H 2 on the catalyst evolution have been underappreciated and underleveraged in CNT synthesis, and these could present a route toward facile manipulation of CNT forest morphology through control of the reactive gaseous atmosphere alone.« less

  5. Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically aligned carbon nanotubes

    DOE PAGES

    Shi, Wenbo; Li, Jinjing; Polsen, Erik S.; ...

    2017-04-11

    A lack of synthetic control and reproducibility during vertically aligned carbon nanotube (CNT) synthesis has stifled many promising applications of organic nanomaterials. Oxygen-containing species are particularly precarious in that they have both beneficial and deleterious effects and are notoriously difficult to control. In this paper, we demonstrated diatomic oxygen's ability, independent of water, to tune oxide-supported catalyst thin film dewetting and influence nanoscale (diameter and wall number) and macro-scale (alignment and density) properties for as-grown vertically aligned CNTs. In particular, single- or few-walled CNT forests were achieved at very low oxygen loading, with single-to-multi-walled CNT diameters ranging from 4.8 ±more » 1.3 nm to 6.4 ± 1.1 nm over 0–800 ppm O 2, and an expected variation in alignment, where both were related to the annealed catalyst morphology. Morphological differences were not the result of subsurface diffusion, but instead occurred via Ostwald ripening under several hundred ppm O 2, and this effect was mitigated by high H 2 concentrations and not due to water vapor (as confirmed in O 2-free water addition experiments), supporting the importance of O 2 specifically. Further characterization of the interface between the Fe catalyst and Al 2O 3 support revealed that either oxygen-deficit metal oxide or oxygen-adsorption on metals could be functional mechanisms for the observed catalyst nanoparticle evolution. Finally, taken as a whole, our results suggest that the impacts of O 2 and H 2 on the catalyst evolution have been underappreciated and underleveraged in CNT synthesis, and these could present a route toward facile manipulation of CNT forest morphology through control of the reactive gaseous atmosphere alone.« less

  6. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts

    DOE PAGES

    Hunt, Sean T.; Milina, Maria; Alba-Rubio, Ana C.; ...

    2016-05-20

    Here, we demonstrated the self-assembly of transition metal carbide nanoparticles coated with atomically thin noble metal monolayers by carburizing mixtures of noble metal salts and transition metal oxides encapsulated in removable silica templates. This approach allows for control of the final core-shell architecture, including particle size, monolayer coverage, and heterometallic composition. Carbon-supported Ti 0.1W 0.9C nanoparticles coated with Pt or bimetallic PtRu monolayers exhibited enhanced resistance to sintering and CO poisoning, achieving an order of magnitude increase in specific activity over commercial catalysts for methanol electrooxidation after 10,000 cycles. These core-shell materials provide a new direction to reduce the loading,more » enhance the activity, and increase the stability of noble metal catalysts.« less

  7. Highly efficient transition metal and nitrogen co-doped carbide-derived carbon electrocatalysts for anion exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Ratso, Sander; Kruusenberg, Ivar; Käärik, Maike; Kook, Mati; Puust, Laurits; Saar, Rando; Leis, Jaan; Tammeveski, Kaido

    2018-01-01

    The search for an efficient electrocatalyst for oxygen reduction reaction (ORR) to replace platinum in fuel cell cathode materials is one of the hottest topics in electrocatalysis. Among the many non-noble metal catalysts, metal/nitrogen/carbon composites made by pyrolysis of cheap materials are the most promising with control over the porosity and final structure of the catalyst a crucial point. In this work we show a method of producing a highly active ORR catalyst in alkaline media with a controllable porous structure using titanium carbide derived carbon as a base structure and dicyandiamide along with FeCl3 or CoCl2 as the dopants. The resulting transition metal-nitrogen co-doped carbide derived carbon (M/N/CDC) catalyst is highly efficient for ORR electrocatalysis with the activity in 0.1 M KOH approaching that of commercial 46.1 wt.% Pt/C. The catalyst materials are also investigated by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy to characterise the changes in morphology and composition causing the raise in electrochemical activity. MEA performance of M/N/CDC cathode materials in H2/O2 alkaline membrane fuel cell is tested with the highest power density reached being 80 mW cm-2 compared to 90 mW cm-2 for Pt/C.

  8. Particle size dependence of CO tolerance of anode PtRu catalysts for polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Yamanaka, Toshiro; Takeguchi, Tatsuya; Wang, Guoxiong; Muhamad, Ernee Noryana; Ueda, Wataru

    An anode catalyst for a polymer electrolyte fuel cell must be CO-tolerant, that is, it must have the function of hydrogen oxidation in the presence of CO, because hydrogen fuel gas generated by the steam reforming process of natural gas contains a small amount of CO. In the present study, PtRu/C catalysts were prepared with control of the degree of Pt-Ru alloying and the size of PtRu particles. This control has become possible by a new method of heat treatment at the final step in the preparation of catalysts. The CO tolerances of PtRu/C catalysts with the same degree of Pt-Ru alloying and with different average sizes of PtRu particles were thus compared. Polarization curves were obtained with pure H 2 and CO/H 2 (CO concentrations of 500-2040 ppm). It was found that the CO tolerance of highly dispersed PtRu/C (high dispersion (HD)) with small PtRu particles was much higher than that of poorly dispersed PtRu/C (low dispersion (LD)) with large metal particles. The CO tolerance of PtRu/C (HD) was higher than that of any commercial PtRu/C. The high CO tolerance of PtRu/C (HD) is thought to be due to efficient concerted functions of Pt, Ru, and their alloy.

  9. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Volume 1. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-10-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO.) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO. to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europemore » on gas-, oil-, and low-sulfur coal- fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: 1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels. 2) performance of the technology and effects on the balance-of- plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. 3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacturer under typical high-sulfur coal-fired utility operating conditions. These uncertainties were explored by operating nine small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. In addition, the test facility operating experience provided a basis for an economic study investigating the implementation of SCR technology.« less

  10. Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines.

    PubMed

    Guan, Bin; Zhan, Reggie; Lin, He; Huang, Zhen

    2015-05-01

    The increasingly stringent emission regulations, such as US 2010, Tier 2 Bin 5 and beyond, off-road Tier 4 final, and Euro V/5 for particulate matter (PM) reduction applications, will mandate the use of the diesel particulate filters (DPFs) technology, which is proven to be the only way that can effectively control the particulate emissions. This paper covers a comprehensive overview of the state-of-the-art DPF technologies, including the advanced filter substrate materials, the novel catalyst formulations, the highly sophisticated regeneration control strategies, the DPF uncontrolled regenerations and their control methodologies, the DPF soot loading prediction, and the soot sensor for the PM on-board diagnostics (OBD) legislations. Furthermore, the progress of the highly optimized hybrid approaches, which involves the integration of diesel oxidation catalyst (DOC) + (DPF, NOx reduction catalyst), the selective catalytic reduction (SCR) catalyst coated on DPF, as well as DPF in the high-pressure exhaust gas recirculation (EGR) loop systems, is well discussed. Besides, the impacts of the quality of fuel and lubricant on the DPF performance and the maintenance and retrofit of DPF are fully elaborated. Meanwhile, the high efficiency gasoline particulate filter (GPF) technology is being required to effectively reduce the PM and particulate number (PN) emissions from the gasoline direct injection (GDI) engines to comply with the future increasingly stricter emissions regulations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Chemical Conversions of Biomass-Derived Platform Chemicals over Copper-Silica Nanocomposite Catalysts.

    PubMed

    Upare, Pravin P; Hwang, Young Kyu; Lee, Jong-Min; Hwang, Dong Won; Chang, Jong-San

    2015-07-20

    Biomass and biomass-derived carbohydrates have a high extent of functionality, unlike petroleum, which has limited functionality. In biorefinery applications, the development of methods to control the extent of functionality in final products intended for use as fuels and chemicals is a challenge. In the chemical industry, heterogeneous catalysis is an important tool for the defunctionalization of functionalized feedstocks and biomass-derived platform chemicals to produce value-added chemicals. Herein, we review the recent progress in this field, mainly of vapor phase chemical conversion of biomass-derived C4 -C6 carboxylic acids and esters using copper-silica nanocomposite catalysts. We also demonstrate that these nanocomposite catalysts very efficiently convert biomass-derived platform chemicals into cyclic compounds, such as lactones and hydrofurans, with high selectivities and yields. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synthesis of Helical Carbon Fibers and Related Materials: A Review on the Past and Recent Developments

    PubMed Central

    Raghubanshi, Himanshu; Dikio, Ezekiel Dixon

    2015-01-01

    Helical carbon fibers (HCFs) have been widely studied due to their unique helical morphology and superior properties, which make them efficient materials for several potential applications. This review summarizes the past and current advancement on the synthesis of HCFs. The review focuses and discusses synthesis strategies and effect of experimental parameters on the growth of HCFs. The effect of preparation method of catalyst, catalyst nature, catalyst composition, catalyst size, catalyst initial and final shape, reaction temperature, reaction time, carbon source, impurities, and electromagnetic field on the growth of HCFs is reviewed. We also discuss the growth mechanism for HCFs and the synthesis of HCFs related materials. Finally, we conclude with a brief summary and an outlook on the challenges and future prospects of HCFs. PMID:28347045

  13. Ultrafast Light-Driven Substrate Expulsion from the Active Site of a Photoswitchable Catalyst.

    PubMed

    Pescher, Manuel D; van Wilderen, Luuk J G W; Grützner, Susanne; Slavov, Chavdar; Wachtveitl, Josef; Hecht, Stefan; Bredenbeck, Jens

    2017-09-25

    The photoswitchable piperidine general base catalyst is a prototype structure for light control of catalysis. Its azobenzene moiety moves sterically shielding groups to either protect or expose the active site, thereby changing the basicity and hydrogen-bonding affinity of the compound. The reversible switching dynamics of the catalyst is probed in the infrared spectral range by monitoring hydrogen bond (HB) formation between its active site and methanol (MeOH) as HB donor. Steady-state infrared (IR) and ultrafast IR and UV/Vis spectroscopies are used to uncover ultrafast expulsion of MeOH from the active site within a few picoseconds. Thus, the force generated by the azobenzene moiety even in the final phase of its isomerization is sufficient to break a strong HB within 3 ps and to shut down access to the active site. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Final Technical Report for GO15052 Intematix: Combinatorial Synthesis and High Throughput Screening of Effective Catalysts for Chemical Hydrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melman, Jonathan

    The objectives of this project are: to discover cost-effective catalysts for release of hydrogen from chemical hydrogen storage systems; and to discover cost-effective catalysts for the regeneration of spent chemical hydrogen storage materials.

  15. Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst

    DOE PAGES

    Du, Lei; Luo, Langli; Feng, Zhenxing; ...

    2017-07-05

    Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhancing reaction kinetics but are limited by their scarcity. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides are their low electronic conductivity and durability. The carbon encapsulating transition metal nanoparticles are expected to address these challenges. However, the relationship between precursor compositions and catalyst properties, and the intrinsic functions of each component has been rarely studied. In this paper,more » we report a highly durable (no degradation after 20,000 cycles) and highly active (360 mV overpotential at 10 mA cm –2 GEO) OER catalyst derived from bimetallic metal–organic frameworks (MOFs) precursors. This catalyst consists of NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells. The electron–donation/deviation from Fe and tuned lattice and electronic structures of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity, whereas N concentration contributes negligibly. Finally, we further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by the chemical state of precursors.« less

  16. Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Lei; Luo, Langli; Feng, Zhenxing

    Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhancing reaction kinetics but are limited by their scarcity. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides are their low electronic conductivity and durability. The carbon encapsulating transition metal nanoparticles are expected to address these challenges. However, the relationship between precursor compositions and catalyst properties, and the intrinsic functions of each component has been rarely studied. In this paper,more » we report a highly durable (no degradation after 20,000 cycles) and highly active (360 mV overpotential at 10 mA cm –2 GEO) OER catalyst derived from bimetallic metal–organic frameworks (MOFs) precursors. This catalyst consists of NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells. The electron–donation/deviation from Fe and tuned lattice and electronic structures of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity, whereas N concentration contributes negligibly. Finally, we further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by the chemical state of precursors.« less

  17. Method of treating intermetallic alloy hydrogenation/oxidation catalysts for improved impurity poisoning resistance, regeneration and increased activity

    DOEpatents

    Wright, Randy B.

    1992-01-01

    Alternate, successive high temperature oxidation and reduction treatments, in either order, of intermetallic alloy hydrogenation and intermetallic alloy oxidation catalysts unexpectedly improves the impurity poisoning resistance, regeneration capacity and/or activity of the catalysts. The particular alloy, and the final high temperature treatment given alloy (oxidation or reduction) will be chosen to correspond to the function of the catalyst (oxidation or hydrogenation).

  18. The Influence of the Anionic Counter-Ion on the Activity of Ammonium Substituted Hoveyda-Type Olefin Metathesis Catalysts in Aqueous Media

    NASA Astrophysics Data System (ADS)

    Gułajski, Łukasz; Grela, Karol

    Polar olefin metathesis catalysts, bearing an ammonium group are presented. The electron withdrawing ammonium group not only activates the catalysts electronically, but at the same time makes the catalysts more hydrophilic. Catalysts can be therefore efficiently used not only in traditional media, such as methylene chloride and toluene, but also in technical-grade alcohols, alcohol— water mixtures and in neat water. Finally, in this overview the influence of the anionic counter-ion on the activity of ammonium substituted Hoveyda-type olefin metathesis catalysts in aqueous media is presented.

  19. Environmental transmission electron microscopy for catalyst materials using a spherical aberration corrector.

    PubMed

    Takeda, Seiji; Kuwauchi, Yasufumi; Yoshida, Hideto

    2015-04-01

    Atomic resolution has been obtained using environmental transmission electron microscopy (ETEM) by installing a spherical aberration corrector (Cs-corrector) on the objective lens. Simultaneously, the technology for controlling the environment around a specimen in ETEM has advanced significantly in the past decade. Quantification methodology has recently been established for deriving relevant experimental data in catalyst materials from substantial and systematic ETEM observation at the atomic scale. With this background, this paper summarizes aspects of the evolutional microscopy technique: necessary conditions for atomic resolution in ETEM; reduction of the scattering of electrons by the medium surrounding a specimen; and an environmental cell for structural imaging of a crystalline specimen. The high spatial resolution of a Cs-corrected ETEM is demonstrated for different observation conditions. After statistical analysis combined with numerical image analysis of ETEM data is briefly described, the recent applications of the Cs-corrected ETEM to catalyst materials are reviewed. For gold nanoparticulate catalysts, the structural information on the reaction sites and adsorption sites are deduced. For Pt nanoparticulate catalysts, ETEM studies elucidate the correlation between the catalytic activity and the morphology of the nanoparticles. These studies also reveal oxidation and reduction on the topmost Pt surface layer at the atomic scale. Finally, current issues and the future perspectives of Cs-corrected ETEM are summarized, including the reproducibility of ETEM observation data, the control of environments, the critical evaluation of electron irradiation effects, the full implementation of transmission electron microscopy technology in ETEM, and the safety issues for an ETEM laboratory. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Bimetallic Nanoparticles as Efficient Catalysts: Facile and Green Microwave Synthesis

    PubMed Central

    Blosi, Magda; Ortelli, Simona; Costa, Anna Luisa; Dondi, Michele; Lolli, Alice; Andreoli, Sara; Benito, Patricia; Albonetti, Stefania

    2016-01-01

    This work deals with the development of a green and versatile synthesis of stable mono- and bi-metallic colloids by means of microwave heating and exploiting ecofriendly reagents: water as the solvent, glucose as a mild and non-toxic reducer and polyvinylpirrolidone (PVP) as the chelating agent. Particle size-control, total reaction yield and long-term stability of colloids were achieved with this method of preparation. All of the materials were tested as effective catalysts in the reduction of p-nitrophenol in the presence of NaBH4 as the probe reaction. A synergistic positive effect of the bimetallic phase was assessed for Au/Cu and Pd/Au alloy nanoparticles, the latter showing the highest catalytic performance. Moreover, monoand bi-metallic colloids were used to prepare TiO2- and CeO2-supported catalysts for the liquid phase oxidation of 5-hydroxymethylfufural (HMF) to 2,5-furandicarboxylic acid (FDCA). The use of Au/Cu and Au/Pd bimetallic catalysts led to an increase in FDCA selectivity. Finally, preformed Pd/Cu nanoparticles were incorporated into the structure of MCM-41-silica. The resulting Pd/Cu MCM-41 catalysts were tested in the hydrodechlorination of CF3OCFClCF2Cl to CF3OCF=CF2. The effect of Cu on the hydrogenating properties of Pd was demonstrated. PMID:28773672

  1. Method of treating intermetallic alloy hydrogenation/oxidation catalysts for improved impurity poisoning resistance, regeneration and increased activity

    DOEpatents

    Wright, R.B.

    1992-01-14

    Alternate, successive high temperature oxidation and reduction treatments, in either order, of intermetallic alloy hydrogenation and intermetallic alloy oxidation catalysts unexpectedly improves the impurity poisoning resistance, regeneration capacity and/or activity of the catalysts. The particular alloy, and the final high temperature treatment given alloy (oxidation or reduction) will be chosen to correspond to the function of the catalyst (oxidation or hydrogenation). 23 figs.

  2. Cyclic alkyl amino carbene (CAAC) ruthenium complexes as remarkably active catalysts for ethenolysis

    DOE PAGES

    Marx, Vanessa M.; Sullivan, Alexandra H.; Melaimi, Mohand; ...

    2014-12-17

    In this paper, an expanded family of ruthenium-based metathesis catalysts bearing cyclic alkyl amino carbene (CAAC) ligands was prepared. These catalysts exhibited exceptional activity in the ethenolysis of the seed-oil derivative methyl oleate. In many cases, catalyst turnover numbers (TONs) of more than 100,000 were achieved, at a catalyst loading of only 3 ppm. Remarkably, the most active catalyst system was able to achieve a TON of 340 000, at a catalyst loading of only 1 ppm. Finally, this is the first time a series of metathesis catalysts has exhibited such high performance in cross-metathesis reactions employing ethylene gas, withmore » activities sufficient to render ethenolysis applicable to the industrial-scale production of linear α-olefins (LAOs) and other terminal-olefin products.« less

  3. Rational Design of N- S- Fe- Doped Nanoporous Carbon Catalysts from Covalent Triazine Framework for High Efficient ORR.

    PubMed

    Zhu, Yuanzhi; Chen, Xifan; Liu, Jing; Zhang, Junfeng; Xu, Danyun; Peng, Wenchao; Li, Yang; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2018-05-15

    Porous organic polymers (POFs) are promising precursors for developing high performance transition metal-nitrogen-carbon (M-N/C) catalysts towards ORR. But the rational design of POFs precursors remain a great challenge, because of the elusive structural association between the sacrificial POFs and the final M-N/C catalysts. Based on covalent triazine frameworks (CTFs), we developed a series of sulfur-doped Fe-N/C catalysts by selecting six different aromatic nitriles as building blocks. A new mixed solvent of molten FeCl3 and S was used for CTF polymerization, which benefit the formation of Fe-Nx site and make the subsequent pyrolysis process more convenient. Comprehensive study on these CTF-derived catalysts shows their ORR activities are not directly dependent on the theoretical N/C ratio of the building block, but closely correlated to the ratios of the nitrile group to benzene ring (Nnitrile/Nbenzene) and geometries of the building blocks. The high ratios of the Nnitrile/Nbenzene are crucial for ORR activity of the final catalysts due to the formation of more N-doped microporous and Fe-Nx sites in pyrolysis possess. The optimized catalyst shows high ORR performances in acid and superior ORR activity to the Pt/C catalysts under alkaline conditions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Shape Fixing via Salt Recrystallization: A Morphology-Controlled Approach To Convert Nanostructured Polymer to Carbon Nanomaterial as a Highly Active Catalyst for Oxygen Reduction Reaction.

    PubMed

    Ding, Wei; Li, Li; Xiong, Kun; Wang, Yao; Li, Wei; Nie, Yao; Chen, Siguo; Qi, Xueqiang; Wei, Zidong

    2015-04-29

    Herein, we report a "shape fixing via salt recrystallization" method to efficiently synthesize nitrogen-doped carbon material with a large number of active sites exposed to the three-phase zones, for use as an ORR catalyst. Self-assembled polyaniline with a 3D network structure was fixed and fully sealed inside NaCl via recrystallization of NaCl solution. During pyrolysis, the NaCl crystal functions as a fully sealed nanoreactor, which facilitates nitrogen incorporation and graphitization. The gasification in such a closed nanoreactor creates a large number of pores in the resultant samples. The 3D network structure, which is conducive to mass transport and high utilization of active sites, was found to have been accurately transferred to the final N-doped carbon materials, after dissolution of the NaCl. Use of the invented cathode catalyst in a proton exchange membrane fuel cell produces a peak power of 600 mW cm(-2), making this among the best nonprecious metal catalysts for the ORR reported so far. Furthermore, N-doped carbon materials with a nanotube or nanoshell morphology can be realized by the invented method.

  5. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hanguang; Hwang, Sooyeon; Wang, Maoyu

    It remains a grand challenge to replace platinum group metal (PGM) catalysts with earth-abundant materials for the oxygen reduction reaction (ORR) in acidic media, which is crucial for large-scale deployment of proton exchange membrane fuel cells (PEMFCs). We report a high-performance atomic Fe catalyst derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. Although the ZIF was identified as a promising precursor, the new synthetic chemistry enables the creation of well-dispersed atomic Fe sites embedded into porous carbon without the formation of aggregates. The size of catalyst particles is tunablemore » through synthesizing Fe-doped ZIF nanocrystal precursors in a wide range from 20 to 1000 nm followed by one-step thermal activation. Similar to Pt nanoparticles, the unique size control without altering chemical properties afforded by this approach is able to increase the number of PGM-free active sites. The best ORR activity is measured with the catalyst at a size of 50 nm. Further size reduction to 20 nm leads to significant particle agglomeration, thus decreasing the activity. In using the homogeneous atomic Fe model catalysts, we elucidated the active site formation process through correlating measured ORR activity with the change of chemical bonds in precursors during thermal activation up to 1100 °C. The critical temperature to form active sites is 800 °C, which is associated with a new Fe species with a reduced oxidation number (from Fe 3+ to Fe 2+) likely bonded with pyridinic N (FeN 4) embedded into the carbon planes. Further increasing the temperature leads to continuously enhanced activity, linked to the rise of graphitic N and Fe–N species. The new atomic Fe catalyst has achieved respectable ORR activity in challenging acidic media (0.5 M H 2SO 4), showing a half-wave potential of 0.85 V vs RHE and leaving only a 30 mV gap with Pt/C (60 μg Pt/cm 2). Finally, enhanced stability is attained with the same catalyst, which loses only 20 mV after 10 000 potential cycles (0.6–1.0 V) in O 2 saturated acid. The high-performance atomic Fe PGM-free catalyst holds great promise as a replacement for Pt in future PEMFCs.« less

  6. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    DOE PAGES

    Zhang, Hanguang; Hwang, Sooyeon; Wang, Maoyu; ...

    2017-09-13

    It remains a grand challenge to replace platinum group metal (PGM) catalysts with earth-abundant materials for the oxygen reduction reaction (ORR) in acidic media, which is crucial for large-scale deployment of proton exchange membrane fuel cells (PEMFCs). We report a high-performance atomic Fe catalyst derived from chemically Fe-doped zeolitic imidazolate frameworks (ZIFs) by directly bonding Fe ions to imidazolate ligands within 3D frameworks. Although the ZIF was identified as a promising precursor, the new synthetic chemistry enables the creation of well-dispersed atomic Fe sites embedded into porous carbon without the formation of aggregates. The size of catalyst particles is tunablemore » through synthesizing Fe-doped ZIF nanocrystal precursors in a wide range from 20 to 1000 nm followed by one-step thermal activation. Similar to Pt nanoparticles, the unique size control without altering chemical properties afforded by this approach is able to increase the number of PGM-free active sites. The best ORR activity is measured with the catalyst at a size of 50 nm. Further size reduction to 20 nm leads to significant particle agglomeration, thus decreasing the activity. In using the homogeneous atomic Fe model catalysts, we elucidated the active site formation process through correlating measured ORR activity with the change of chemical bonds in precursors during thermal activation up to 1100 °C. The critical temperature to form active sites is 800 °C, which is associated with a new Fe species with a reduced oxidation number (from Fe 3+ to Fe 2+) likely bonded with pyridinic N (FeN 4) embedded into the carbon planes. Further increasing the temperature leads to continuously enhanced activity, linked to the rise of graphitic N and Fe–N species. The new atomic Fe catalyst has achieved respectable ORR activity in challenging acidic media (0.5 M H 2SO 4), showing a half-wave potential of 0.85 V vs RHE and leaving only a 30 mV gap with Pt/C (60 μg Pt/cm 2). Finally, enhanced stability is attained with the same catalyst, which loses only 20 mV after 10 000 potential cycles (0.6–1.0 V) in O 2 saturated acid. The high-performance atomic Fe PGM-free catalyst holds great promise as a replacement for Pt in future PEMFCs.« less

  7. A trifunctional mesoporous silica-based, highly active catalyst for one-pot, three-step cascade reactions.

    PubMed

    Biradar, Ankush V; Patil, Vijayshinha S; Chandra, Prakash; Doke, Dhananjay S; Asefa, Tewodros

    2015-05-18

    We report the synthesis of a trifunctional catalyst containing amine, sulphonic acid and Pd nanoparticle catalytic groups anchored on the pore walls of SBA-15. The catalyst efficiently catalyzes one-pot three-step cascade reactions comprising deacetylation, Henry reaction and hydrogenation, giving up to ∼100% conversion and 92% selectivity to the final product.

  8. Platinum and palladium nano-structured catalysts for polymer electrolyte fuel cells and direct methanol fuel cells.

    PubMed

    Long, Nguyen Viet; Thi, Cao Minh; Yong, Yang; Nogami, Masayuki; Ohtaki, Michitaka

    2013-07-01

    In this review, we present the synthesis and characterization of Pt, Pd, Pt based bimetallic and multi-metallic nanoparticles with mixture, alloy and core-shell structure for nano-catalysis, energy conversion, and fuel cells. Here, Pt and Pd nanoparticles with modified nanostructures can be controllably synthesized via chemistry and physics for their uses as electro-catalysts. The cheap base metal catalysts can be studied in the relationship of crystal structure, size, morphology, shape, and composition for new catalysts with low cost. Thus, Pt based alloy and core-shell catalysts can be prepared with the thin Pt and Pt-Pd shell, which are proposed in low and high temperature proton exchange membrane fuel cells (PEMFCs), and direct methanol fuel cells (DMFCs). We also present the survey of the preparation of Pt and Pd based catalysts for the better catalytic activity, high durability, and stability. The structural transformations, quantum-size effects, and characterization of Pt and Pd based catalysts in the size ranges of 30 nm (1-30 nm) are presented in electro-catalysis. In the size range of 10 nm (1-10 nm), the pure Pt catalyst shows very large surface area for electro-catalysis. To achieve homogeneous size distribution, the shaped synthesis of the polyhedral Pt nanoparticles is presented. The new concept of shaping specific shapes and morphologies in the entire nano-scale from nano to micro, such as polyhedral, cube, octahedra, tetrahedra, bar, rod, and others of the nanoparticles is proposed, especially for noble and cheap metals. The uniform Pt based nanosystems of surface structure, internal structure, shape, and morphology in the nanosized ranges are very crucial to next fuel cells. Finally, the modifications of Pt and Pd based catalysts of alloy, core-shell, and mixture structures lead to find high catalytic activity, durability, and stability for nano-catalysis, energy conversion, fuel cells, especially the next large-scale commercialization of next PEMFCs, and DMFCs.

  9. Preliminary report on a catalyst derived from induced cells of Rhodococcus rhodochrous strain DAP 96253 that delays the ripening of selected climacteric fruit: bananas, avocados, and peaches.

    PubMed

    Pierce, G E; Drago, G K; Ganguly, S; Tucker, T-A M; Hooker, J W; Jones, S; Crow, S A

    2011-09-01

    Despite the use of refrigeration, improved packaging, adsorbents, and ethylene receptor blockers, on average, nearly 40% of all fruits and vegetables harvested in the US are not consumed. Many plant products, especially fruit, continue to ripen after harvesting, and as they do so, become increasingly susceptible to mechanical injury, resulting in increased rot. Other plant products during transportation and storage are susceptible to chill injury (CI). There is a real need for products that can delay ripening or mitigate the effects of CI, yet still permit full ripeness and quality to be achieved. Preliminary results are discussed where catalyst derived from cells of Rhodococcus rhodochrous DAP 96253, grown under conditions that induced high levels of nitrile hydratase, were able to extend the ripening and thus the shelf-life of selected climacteric fruits (banana, avocado, and peach). A catalyst, when placed in proximity to, but not touching, the test fruit delayed the ripening but did not alter the final ripeness of the fruit tested. Organoleptic evaluations conducted with control peaches and with peaches exposed to, but not in contact with, the catalyst showed that the catalyst-treated peaches achieved full, natural levels of ripeness with respect to aroma, flavor, sweetness, and juice content. Furthermore, the results of delayed ripening were achieved at ambient temperatures (without the need for refrigeration).

  10. Durability testing at 5 atmospheres of advanced catalysts and catalyst supports for gas turbine engine combustors

    NASA Technical Reports Server (NTRS)

    Olson, B. A.; Lee, H. C.; Osgerby, I. T.; Heck, R. M.; Hess, H.

    1980-01-01

    The durability of CATCOM catalysts and catalyst supports was experimentally demonstrated in a combustion environment under simulated gas turbine engine combustor operating conditions. A test of 1000 hours duration was completed with one catalyst using no. 2 diesel fuel and operating at catalytically-supported thermal combustion conditions. The performance of the catalyst was determined by monitoring emissions throughout the test, and by examining the physical condition of the catalyst core at the conclusion of the test. Tests were performed periodically to determine changes in catalytic activity of the catalyst core. Detailed parametric studies were also run at the beginning and end of the durability test, using no. 2 fuel oil. Initial and final emissions for the 1000 hours test respectively were: unburned hydrocarbons (C3 vppm):0, 146, carbon monoxide (vppm):30, 2420; nitrogen oxides (vppm):5.7, 5.6.

  11. DEVELOPMENT OF TRANSITION METAL OXIDE-ZEOLITE CATALYSTS TO CONTROL CHLORINATED VOC AIR EMISSIONS

    EPA Science Inventory

    The paper discusses the development of transition metal oxide (TMO)-zeolite oxidation catalysts to control chlorinated volatile organic compound (CVOC) air emissions. esearch has been initiated to enhance the utility of these catalysts by the development of a sorption-catalyst sy...

  12. Promoted Iron Nanocrystals Obtained via Ligand Exchange as Active and Selective Catalysts for Synthesis Gas Conversion

    PubMed Central

    2017-01-01

    Colloidal synthesis routes have been recently used to fabricate heterogeneous catalysts with more controllable and homogeneous properties. Herein a method was developed to modify the surface composition of colloidal nanocrystal catalysts and to purposely introduce specific atoms via ligands and change the catalyst reactivity. Organic ligands adsorbed on the surface of iron oxide catalysts were exchanged with inorganic species such as Na2S, not only to provide an active surface but also to introduce controlled amounts of Na and S acting as promoters for the catalytic process. The catalyst composition was optimized for the Fischer–Tropsch direct conversion of synthesis gas into lower olefins. At industrially relevant conditions, these nanocrystal-based catalysts with controlled composition were more active, selective, and stable than catalysts with similar composition but synthesized using conventional methods, possibly due to their homogeneity of properties and synergic interaction of iron and promoters. PMID:28824820

  13. High-throughput continuous flow synthesis of nickel nanoparticles for the catalytic hydrodeoxygenation of guaiacol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Emily J.; Habas, Susan E.; Wang, Lu

    2016-11-07

    The translation of batch chemistries to high-throughput continuous flow methods dresses scaling, automation, and reproducibility concerns associated with the implementation of colloidally prepared nanoparticle (NP) catalysts for industrial catalytic processes. Nickel NPs were synthesized by the high-temperature amine reduction of a Ni2+ precursor using a continuous millifluidic (mF) flow method, achieving yields greater than 60%. The resulting Ni NP catalysts were compared against catalysts prepared in a batch reaction under conditions analogous to the continuous flow conditions with respect to total reaction volume, time, and temperature and by traditional incipient wetness (IW) impregnation for the hydrodeoxygenation (HDO) of guaiacol undermore » ex situ catalytic fast pyrolysis conditions. Compared to the IW method, the colloidally prepared NPs displayed increased morphological control and narrowed size distributions, and the NPs prepared by both methods showed similar size, shape, and crystallinity. The Ni NP catalyst synthesized by the continuous flow method exhibited similar H-adsorption site densities, site-time yields, and selectivities towards deoxygenated products as compared to the analogous batch reaction, and outperformed the IW catalyst with respect to higher selectivity to lower oxygen content products and a 6.9-fold slower deactivation rate. These results demonstrate the utility of synthesizing colloidal Ni NP catalysts using continuous flow methods while maintaining the catalytic properties displayed by the batch equivalent. Finally, this methodology can be extended to other catalytically relevant base metals for the high-throughput synthesis of metal NPs for the catalytic production of biofuels.« less

  14. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    NASA Astrophysics Data System (ADS)

    Albayati, Talib M.; Doyle, Aidan M.

    2015-02-01

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption-desorption porosimetry (Brunauer-Emmett-Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96-99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction.

  15. Alkaline Ammonia Electrolysis on Electrodeposited Platinum for Controllable Hydrogen Production.

    PubMed

    Gwak, Jieun; Choun, Myounghoon; Lee, Jaeyoung

    2016-02-19

    Ammonia is beginning to attract a great deal of attention as an alternative energy source carrier, because clean hydrogen can be produced through electrolytic processes without the emission of COx . In this study, we deposited various shapes of Pt catalysts under potentiostatic mode; the electrocatalytic oxidation behavior of ammonia using these catalysts was studied in alkaline media. The electrodeposited Pt was characterized by both qualitative and quantitative analysis. To discover the optimal structure and the effect of ammonia concentration, the bulk pH value, reaction temperature, and applied current of ammonia oxidation were investigated using potential sweep and galvanostatic methods. Finally, ammonia electrolysis was conducted using a zero-gap cell, producing highly pure hydrogen with an energy efficiency over 80 %. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Flower-like Na2O nanotip synthesis via femtosecond laser ablation of glass

    PubMed Central

    2012-01-01

    The current state-of-the-art in nanotip synthesis relies on techniques that utilize elaborate precursor chemicals, catalysts, or vacuum conditions, and any combination thereof. To realize their ultimate potential, synthesized nanotips require simpler fabrication techniques that allow for control over their final nano-morphology. We present a unique, dry, catalyst-free, and ambient condition method for creating densely clustered, flower-like, sodium oxide (Na2O) nanotips with controllable tip widths. Femtosecond laser ablation of a soda-lime glass substrate at a megahertz repetition rate, with nitrogen flow, was employed to generate nanotips with base and head widths as small as 100 and 20 nm respectively, and lengths as long as 10 μm. Control of the nanotip widths was demonstrated via laser dwell time with longer dwell times producing denser clusters of thinner nanotips. Energy dispersive X-ray analysis reveals that nanotip composition is Na2O. A new formation mechanism is proposed, involving an electrostatic effect between ionized nitrogen and polar Na2O. The synthesized nanotips may potentially be used in antibacterial and hydrogen storage applications. PMID:22809176

  17. Controlled growth of vertically aligned carbon nanotubes on metal substrates

    NASA Astrophysics Data System (ADS)

    Gao, Zhaoli

    Carbon nanotube (CNT) is a fascinating material with extraordinary electrical thermal and mechanical properties. Growing vertically aligned CNT (VACNT) arrays on metal substrates is an important step in bringing CNT into practical applications such as thermal interface materials (TIMs) and microelectrodes. However, the growth process is challenging due to the difficulties in preventing catalyst diffusion and controlling catalyst dewetting on metal substrates with physical surface heterogeneity. In this work, the catalyst diffusion mechanism and catalyst dewetting theory were studied for the controlled growth of VACNTs on metal substrates. The diffusion time of the catalyst, the diffusion coefficients for the catalyst in the substrate materials and the number density of catalyst nanoparticles after dewetting are identified as the key parameters, based on which three strategies are developed. Firstly, a fast-heating catalyst pretreatment strategy was used, aiming at preserving the amount of catalyst prior to CNT growth by reducing the catalyst diffusion time. The catalyst lifetime is extended from half an hour to one hour on a patterned Al thin film and a VACNT height of 106 mum, about twenty fold of that reported in the literature, was attained. Secondly, a diffusion barrier layer strategy is employed for a reduction of catalyst diffusion into the substrate materials. Enhancement of VACNT growth on Cu substrates was achieved by adopting a conformal Al2O 3 diffusion barrier layer fabricated by a specially designed atomic layer deposition (ALD) system. Lastly, a novel catalyst glancing angle deposition (GLAD) strategy is performed to manipulate the morphology of a relatively thick catalyst on metal substrates with physical surface heterogeneity, aiming to obtain uniform and dense catalyst nanoparticles after dewetting in the pretreatment process for enhanced VACNT growth. We are able to control the VACNT growth conditions on metal substrates in terms of their distribution, heights and alignments. Catalyst loss is controlled by the catalyst diffusion time and catalyst diffusion coefficients. A shorter catalyst diffusion time and smaller diffusion coefficient enhance VACNT growth on metals due to reduced catalyst loss during the pretreatment process. The dewetting behaviors of the thin film catalysts are influenced by the physical surface heterogeneity of the substrates which leads to non-uniform growth of VACNTs. The GLAD process facilitates the deposition of a relatively thick catalyst layer for the creation of dense and uniform catalyst nanoparticles. Applications of VACNT-metal structures in TIMs and microelectrodes are demonstrated. The VACNT-TIMs fabricated on Al alloy substrates have a typical thermal contact resistivity of 17.1 mm2˙K/W and their effective application in high-brightness LED thermal management was demonstrated. Electrochemical characterization was carried out on VACNT microelectrodes for the development of high resolution retinal prostheses and a satisfactory electrochemical property was again demonstrated.

  18. Catalyst inks and method of application for direct methanol fuel cells

    DOEpatents

    Zelenay, Piotr; Davey, John; Ren, Xiaoming; Gottesfeld, Shimshon; Thomas, Sharon C.

    2004-02-24

    Inks are formulated for forming anode and cathode catalyst layers and applied to anode and cathode sides of a membrane for a direct methanol fuel cell. The inks comprise a Pt catalyst for the cathode and a Pt--Ru catalyst for the anode, purified water in an amount 4 to 20 times that of the catalyst by weight, and a perfluorosulfonic acid ionomer in an amount effective to provide an ionomer content in the anode and cathode surfaces of 20% to 80% by volume. The inks are prepared in a two-step process while cooling and agitating the solutions. The final solution is placed in a cooler and continuously agitated while spraying the solution over the anode or cathode surface of the membrane as determined by the catalyst content.

  19. Depolymerization of cellulose into high-value chemicals by using synergy of zinc chloride hydrate and sulfate ion promoted titania catalyst.

    PubMed

    Wei, Weiqi; Wu, Shubin

    2017-10-01

    Experiments for cellulose depolymerization by synergy of zinc chloride hydrate (ZnCl 2 ·RH 2 O) and sulfated titania catalyst (SO 4 2- /TiO 2 ) were investigated in this study. The results showed the introduction of sulfate into the TiO 2 significantly enhanced the catalyst acid amount, especially for Brønsted acid site, which is beneficial for subsequent cellulose depolymerization. ZnCl 2 ·RH 2 O hydrate, only a narrow composition range of water, specifically 3.0≤R≤4.0, can dissolve cellulose, which finally resulted the cellulose with low crystallinity and weak intrachain and interchain hydrogen bond network. Coupling of ZnCl 2 ·RH 2 O hydrate and SO 4 2- /TiO 2 catalyst as a mixed reaction system promoted cellulose depolymerization, and the products can be adjusted by the control of reaction conditions, the low temperature (80-100°C) seemed beneficial for glucose formation (maximal yield 50.5%), and the high temperature (120-140°C) favored to produce levulinic acid (maximal yield 43.1%). Besides, the addition of organic co-solvent making HMF as the main product (maximal yield 38.3%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Hydrazine Catalyst Production: Sustaining S-405 Technology

    NASA Technical Reports Server (NTRS)

    Wucherer, E. J.; Cook, Timothy; Stiefel, Mark; Humphries, Randy, Jr.; Parker, Janet

    2003-01-01

    The development of the iridium-based Shell 405 catalyst for spontaneous decomposition of hydrazine was one of the key enabling technologies for today's spacecraft and launch vehicles. To ensure that this crucial technology was not lost when Shell elected to exit the business, Aerojet, supported by NASA, has developed a dedicated catalyst production facility that will supply catalyst for future spacecraft and launch vehicle requirements. We have undertaken a program to transfer catalyst production from Shell Chemical USA (Houston, TX) to Aerojet's Redmond, WA location. This technology transition was aided by Aerojet's 30 years of catalyst manufacturing experience and NASA diligence and support in sustaining essential technologies. The facility has produced and tested S-405 catalyst to existing Shell 405 specifications and standards. Our presentation will describe the technology transition effort including development of the manufacturing facility, capture of the manufacturing process, test equipment validation, initial batch build and final testing.

  1. Spectroscopic insights into the nature of active sites in iron–nitrogen–carbon electrocatalysts for oxygen reduction in acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Qingying; Ramaswamy, Nagappan; Tylus, Urszula

    Developing efficient and inexpensive catalysts for the sluggish oxygen reduction reaction (ORR) constitutes one of the grand challenges in the fabrication of commercially viable fuel cell devices and metal–air batteries for future energy applications. Despite recent achievements in designing advanced Pt-based and Pt-free catalysts, current progress primarily involves an empirical approach of trial-and-error combination of precursors and synthesis conditions, which limits further progress. Rational design of catalyst materials requires proper understanding of the mechanistic origin of the ORR and the underlying surface properties under operating conditions that govern catalytic activity. Herein, several different groups of iron-based catalysts synthesized via differentmore » methods and/or precursors were systematically studied by combining multiple spectroscopic techniques under ex situ and in situ conditions in an effort to obtain a comprehensive understanding of the synthesis-products correlations, nature of active sites, and the reaction mechanisms. These catalysts include original macrocycles, macrocycle-pyrolyzed catalysts, and Fe-N–C catalysts synthesized from individual Fe, N, and C precursors including polymer-based catalysts, metal organic framework (MOF)-based catalysts, and sacrificial support method (SSM)-based catalysts. The latter group of catalysts is most promising as not only they exhibit exceptional ORR activity and/or durability, but also the final products are controllable. We show that the high activity observed for most pyrolyzed Fe-based catalysts can mainly be attributed to a single active site: non-planar Fe–N 4 moiety embedded in distorted carbon matrix characterized by a high potential for the Fe 2+/3+ redox transition in acidic electrolyte/environment. The high intrinsic ORR activity, or turnover frequency (TOF), of this site is shown to be accounted for by redox catalysis mechanism that highlights the dominant role of the site-blocking effect. Moreover, a highly active MOF-based catalyst without Fe–N moieties was developed, and the active sites were identified as nitrogen-doped carbon fibers with embedded iron particles that are not directly involved in the oxygen reduction pathway. The high ORR activity and durability of catalysts involving this second site, as demonstrated in fuel cell, are attributed to the high density of active sites and the elimination or reduction of Fenton-type processes. The latter are initiated by hydrogen peroxide but are known to be accelerated by iron ions exposed to the surface, resulting in the formation of damaging free-radicals.« less

  2. Mechanistic insights into heterogeneous methane activation

    DOE PAGES

    Latimer, Allegra A.; Aljama, Hassan; Kakekhani, Arvin; ...

    2017-01-11

    While natural gas is an abundant chemical fuel, its low volumetric energy density has prompted a search for catalysts able to transform methane into more useful chemicals. This search has often been aided through the use of transition state (TS) scaling relationships, which estimate methane activation TS energies as a linear function of a more easily calculated descriptor, such as final state energy, thus avoiding tedious TS energy calculations. It has been shown that methane can be activated via a radical or surface-stabilized pathway, both of which possess a unique TS scaling relationship. Herein, we present a simple model tomore » aid in the prediction of methane activation barriers on heterogeneous catalysts. Analogous to the universal radical TS scaling relationship introduced in a previous publication, we show that a universal TS scaling relationship that transcends catalysts classes also seems to exist for surface-stabilized methane activation if the relevant final state energy is used. We demonstrate that this scaling relationship holds for several reducible and irreducible oxides, promoted metals, and sulfides. By combining the universal scaling relationships for both radical and surface-stabilized methane activation pathways, we show that catalyst reactivity must be considered in addition to catalyst geometry to obtain an accurate estimation for the TS energy. Here, this model can yield fast and accurate predictions of methane activation barriers on a wide range of catalysts, thus accelerating the discovery of more active catalysts for methane conversion.« less

  3. Mechanistic insights into heterogeneous methane activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latimer, Allegra A.; Aljama, Hassan; Kakekhani, Arvin

    While natural gas is an abundant chemical fuel, its low volumetric energy density has prompted a search for catalysts able to transform methane into more useful chemicals. This search has often been aided through the use of transition state (TS) scaling relationships, which estimate methane activation TS energies as a linear function of a more easily calculated descriptor, such as final state energy, thus avoiding tedious TS energy calculations. It has been shown that methane can be activated via a radical or surface-stabilized pathway, both of which possess a unique TS scaling relationship. Herein, we present a simple model tomore » aid in the prediction of methane activation barriers on heterogeneous catalysts. Analogous to the universal radical TS scaling relationship introduced in a previous publication, we show that a universal TS scaling relationship that transcends catalysts classes also seems to exist for surface-stabilized methane activation if the relevant final state energy is used. We demonstrate that this scaling relationship holds for several reducible and irreducible oxides, promoted metals, and sulfides. By combining the universal scaling relationships for both radical and surface-stabilized methane activation pathways, we show that catalyst reactivity must be considered in addition to catalyst geometry to obtain an accurate estimation for the TS energy. Here, this model can yield fast and accurate predictions of methane activation barriers on a wide range of catalysts, thus accelerating the discovery of more active catalysts for methane conversion.« less

  4. Impact of initial catalyst form on the 3D structure and performance of ball-milled Ni-catalyzed MgH 2 for hydrogen storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    House, Stephen D.; Vajo, John J.; Ren, Chai

    Although it has been shown that the hydrogen storage kinetics of metal hydrides can be significantly improved by the addition of transition metal-based catalysts, relatively little attention has been paid to the impact that the form in which these catalysts are introduced during synthesis has on the resulting structure and how this alters performance. Two mixtures of MgH 2 doped with Ni were prepared via high-energy ball-milling under identical conditions, one using a pure Ni nanopowder catalyst and the other using anhydrous NiCl 2. The resulting Ni catalyst particles of the NiCl 2-doped material were 10-100 times smaller, as wellmore » as more uniform in size and shape. Electron tomography revealed that the additive form also altered its incorporation and 3D spatial distribution, with Ni particles limited to the outer surface in the NiCl 2-doped case. The significantly lower desorption performance measured in the NiCl 2-doped material is attributed to regions of MgCl 2 acting as barriers between the MgH 2 and Ni, hindering the ability of the latter to effectively catalyze the reactions. Finally, this work demonstrates the hazards in assuming different catalyst forms produce similar final structures and highlights the potential of catalyst form as a synthesis tool for optimizing the material structure and performance.« less

  5. Impact of initial catalyst form on the 3D structure and performance of ball-milled Ni-catalyzed MgH 2 for hydrogen storage

    DOE PAGES

    House, Stephen D.; Vajo, John J.; Ren, Chai; ...

    2017-02-24

    Although it has been shown that the hydrogen storage kinetics of metal hydrides can be significantly improved by the addition of transition metal-based catalysts, relatively little attention has been paid to the impact that the form in which these catalysts are introduced during synthesis has on the resulting structure and how this alters performance. Two mixtures of MgH 2 doped with Ni were prepared via high-energy ball-milling under identical conditions, one using a pure Ni nanopowder catalyst and the other using anhydrous NiCl 2. The resulting Ni catalyst particles of the NiCl 2-doped material were 10-100 times smaller, as wellmore » as more uniform in size and shape. Electron tomography revealed that the additive form also altered its incorporation and 3D spatial distribution, with Ni particles limited to the outer surface in the NiCl 2-doped case. The significantly lower desorption performance measured in the NiCl 2-doped material is attributed to regions of MgCl 2 acting as barriers between the MgH 2 and Ni, hindering the ability of the latter to effectively catalyze the reactions. Finally, this work demonstrates the hazards in assuming different catalyst forms produce similar final structures and highlights the potential of catalyst form as a synthesis tool for optimizing the material structure and performance.« less

  6. Heterogeneous electro-Fenton catalyst for 1-butylpyridinium chloride degradation.

    PubMed

    Meijide, Jessica; Pazos, Marta; Sanromán, Maria Ángeles

    2017-10-15

    The application of the electro-Fenton process for organic compound mineralisation has been widely reported over the past years. However, operational problems related to the use of soluble iron salt as a homogeneous catalyst involve the development of novel catalysts that are able to operate in a wide pH range. For this purpose, polyvinyl alcohol-alginate beads, containing goethite as iron, were synthesised and evaluated as heterogeneous electro-Fenton catalyst for 1-butylpyridinium chloride mineralisation. The influence of catalyst dosage and pH solution on ionic liquid degradation was analysed, achieving almost total oxidation after 60 min under optimal conditions (2 g/L catalyst concentration and pH 3). The results showed good catalyst stability and reusability, although its effectiveness decreases slightly after three successive cycles. Furthermore, a plausible mineralisation pathway was proposed based on the oxidation byproducts determined by chromatographic techniques. Finally, the Microtox® test revealed notable detoxification after treatment which demonstrates high catalyst ability for pyridinium-based ionic liquid degradation by the electro-Fenton process.

  7. Peptide-templated noble metal catalysts: syntheses and applications

    PubMed Central

    Wang, Wei; Anderson, Caleb F.; Wang, Zongyuan; Wu, Wei

    2017-01-01

    Noble metal catalysts have been widely used in many applications because of their high activity and selectivity. However, a controllable preparation of noble metal catalysts still remains as a significant challenge. To overcome this challenge, peptide templates can play a critical role in the controllable syntheses of catalysts owing to their flexible binding with specific metallic surfaces and self-assembly characteristics. By employing peptide templates, the size, shape, facet, structure, and composition of obtained catalysts can all be specifically controlled under the mild synthesis conditions. In addition, catalysts with spherical, nanofiber, and nanofilm structures can all be produced by associating with the self-assembly characteristics of peptide templates. Furthermore, the peptide-templated noble metal catalysts also reveal significantly enhanced catalytic behaviours compared with conventional catalysts because the electron conductivity, metal dispersion, and reactive site exposure can all be improved. In this review, we summarize the research progresses in the syntheses of peptide-templated noble metal catalysts. The applications of the peptide-templated catalysts in organic reactions, photocatalysis, and electrocatalysis are discussed, and the relationship between structure and activity of these catalysts are addressed. Future opportunities, including new catalytic materials designed by using biological principles, are indicated to achieve selective, eco-friendly, and energy neutral synthesis approaches. PMID:28507701

  8. Final Report of a CRADA Between Pacific Northwest National Laboratory and the Ford Motor Company (CRADA No. PNNL/265): “Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials, and Development of Zeolite-Based Hydrocarbon Adsorber Materials”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Feng; Kwak, Ja Hun; Lee, Jong H.

    2013-02-14

    Reducing NOx emissions and particulate matter (PM) are primary concerns for diesel vehicles required to meet current LEV II and future LEV III emission standards which require 90+% NOx conversion. Currently, urea SCR as the NOx reductant and a Catalyzed Diesel Particulate Filter (CDPF) are being used for emission control system components by Ford Motor Company for 2010 and beyond diesel vehicles. Because the use of this technology for vehicle applications is new, the relative lack of experience makes it especially challenging to satisfy durability requirements. Of particular concern is being able to realistically simulate actual field aging of themore » catalyst systems under laboratory conditions. This is necessary both as a rapid assessment tool for verifying improved performance and certifiability of new catalyst formulations, and to develop a good understanding of deactivation mechanisms that can be used to develop improved catalyst materials. In addition to NOx and PM, the hydrocarbon (HC) emission standards are expected to become much more stringent during the next few years. Meanwhile, the engine-out HC emissions are expected to increase and/or be more difficult to remove. Since HC can be removed only when the catalyst becomes warm enough for its oxidation, three-way catalyst (TWC) and diesel oxidation catalyst (DOC) formulations often contain proprietary zeolite materials to hold the HC produced during the cold start period until the catalyst reaches its operating temperature (e.g., >200°C). Unfortunately, much of trapped HC tends to be released before the catalyst reaches the operating temperature. Among materials effective for trapping HC during the catalyst warm-up period, siliceous zeolites are commonly used because of their high surface area and high stability under typical operating conditions. However, there has been little research on the physical properties of these materials related to the adsorption and release of various hydrocarbon species found in the engine exhaust. For these reasons, automakers and engine manufacturers have difficulty improving their catalytic converters for meeting the stringent HC emission standards. In this collaborative program, scientists and engineers in the Institute for Integrated Catalysis at Pacific Northwest National Laboratory and at Ford Motor Company have investigated laboratory- and engine-aged SCR catalysts, containing mainly base metal zeolites. These studies are leading to a better understanding of various aging factors that impact the long-term performance of SCR catalysts and improve the correlation between laboratory and engine aging, saving experimental time and cost. We have also studied materials effective for the temporary storage of HC species during the cold-start period. In particular, we have examined the adsorption and desorption of various HC species produced during the combustion with different fuels (e.g., gasoline, E85, diesel) over potential HC adsorber materials, and measured the kinetic parameters to update Ford’s HC adsorption model. Since this CRADA has now been completed, in this final report we will provide brief summaries of most of the work carried out on this CRADA over the last several years.« less

  9. SUPERCRITICAL-PHASE ALKYLATION REACTION ON SOLID ACID CATALYSTS: MECHANISTIC STUDY AND CATALYST DEVELOPMENT. (R824729)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  10. Noble Metal Aerogels—Synthesis, Characterization, and Application as Electrocatalysts

    PubMed Central

    2015-01-01

    Conspectus Metallic and catalytically active materials with high surface area and large porosity are a long-desired goal in both industry and academia. In this Account, we summarize the strategies for making a variety of self-supported noble metal aerogels consisting of extended metal backbone nanonetworks. We discuss their outstanding physical and chemical properties, including their three-dimensional network structure, the simple control over their composition, their large specific surface area, and their hierarchical porosity. Additionally, we show some initial results on their excellent performance as electrocatalysts combining both high catalytic activity and high durability for fuel cell reactions such as ethanol oxidation and the oxygen reduction reaction (ORR). Finally, we give some hints on the future challenges in the research area of metal aerogels. We believe that metal aerogels are a new, promising class of electrocatalysts for polymer electrolyte fuel cells (PEFCs) and will also open great opportunities for other electrochemical energy systems, catalysis, and sensors. The commercialization of PEFCs encounters three critical obstacles, viz., high cost, insufficient activity, and inadequate long-term durability. Besides others, the sluggish kinetics of the ORR and alcohol oxidation and insufficient catalyst stability are important reasons for these obstacles. Various approaches have been taken to overcome these obstacles, e.g., by controlling the catalyst particle size in an optimized range, forming multimetallic catalysts, controlling the surface compositions, shaping the catalysts into nanocrystals, and designing supportless catalysts with extended surfaces such as nanostructured thin films, nanotubes, and porous nanostructures. These efforts have produced plenty of excellent electrocatalysts, but the development of multisynergetic functional catalysts exhibiting low cost, high activity, and high durability still faces great challenges. In this Account, we demonstrate that the sol–gel process represents a powerful “bottom-up” strategy for creating nanostructured materials that tackles the problems mentioned above. Aerogels are unique solid materials with ultralow densities, large open pores, and ultimately high inner surface areas. They magnify the specific properties of nanomaterials to the macroscale via self-assembly, which endow them with superior properties. Despite numerous investigations of metal oxide aerogels, the investigation of metal aerogels is in the early stage. Recently, aerogels including Fe, Co, Ni, Sn, and Cu have been obtained by nanosmelting of hybrid polymer–metal oxide aerogels. We report here exclusively on mono-, bi- and multimetallic noble metal aerogels consisting of Ag, Au, Pt, and Pd and their application as electrocatalysts. PMID:25611348

  11. Apparatus and Process for Controlled Nanomanufacturing Using Catalyst Retaining Structures

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien (Inventor)

    2013-01-01

    An apparatus and method for the controlled fabrication of nanostructures using catalyst retaining structures is disclosed. The apparatus includes one or more modified force microscopes having a nanotube attached to the tip portion of the microscopes. An electric current is passed from the nanotube to a catalyst layer of a substrate, thereby causing a localized chemical reaction to occur in a resist layer adjacent the catalyst layer. The region of the resist layer where the chemical reaction occurred is etched, thereby exposing a catalyst particle or particles in the catalyst layer surrounded by a wall of unetched resist material. Subsequent chemical vapor deposition causes growth of a nanostructure to occur upward through the wall of unetched resist material having controlled characteristics of height and diameter and, for parallel systems, number density.

  12. Stereoselectivity of supported alkene metathesis catalysts: a goal and a tool to characterize active sites.

    PubMed

    Copéret, Christophe

    2011-01-05

    Stereoselectivity in alkene metathesis is a challenge and can be used as a tool to study active sites under working conditions. This review describes the stereochemical relevance and problems in alkene metathesis (kinetic vs. thermodynamic issues), the use of (E/Z) ratio at low conversions as a tool to characterize active sites of heterogeneous catalysts and finally to propose strategies to improve catalysts based on the current state of the art.

  13. Conceptual process design and techno-economic assessment of ex situ catalytic fast pyrolysis of biomass: A fixed bed reactor implementation scenario for future feasibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Abhijit; Schaidle, Joshua A.; Humbird, David

    Ex situ catalytic fast pyrolysis of biomass is a promising route for the production of fungible liquid biofuels. There is significant ongoing research on the design and development of catalysts for this process. However, there are a limited number of studies investigating process configurations and their effects on biorefinery economics. Herein we present a conceptual process design with techno-economic assessment; it includes the production of upgraded bio-oil via fixed bed ex situ catalytic fast pyrolysis followed by final hydroprocessing to hydrocarbon fuel blendstocks. This study builds upon previous work using fluidized bed systems, as detailed in a recent design reportmore » led by the National Renewable Energy Laboratory (NREL/TP-5100-62455); overall yields are assumed to be similar, and are based on enabling future feasibility. Assuming similar yields provides a basis for easy comparison and for studying the impacts of areas of focus in this study, namely, fixed bed reactor configurations and their catalyst development requirements, and the impacts of an inline hot gas filter. A comparison with the fluidized bed system shows that there is potential for higher capital costs and lower catalyst costs in the fixed bed system, leading to comparable overall costs. The key catalyst requirement is to enable the effective transformation of highly oxygenated biomass into hydrocarbons products with properties suitable for blending into current fuels. Potential catalyst materials are discussed, along with their suitability for deoxygenation, hydrogenation and C–C coupling chemistry. This chemistry is necessary during pyrolysis vapor upgrading for improved bio-oil quality, which enables efficient downstream hydroprocessing; C–C coupling helps increase the proportion of diesel/jet fuel range product. One potential benefit of fixed bed upgrading over fluidized bed upgrading is catalyst flexibility, providing greater control over chemistry and product composition. Since this study is based on future projections, the impacts of uncertainties in the underlying assumptions are quantified via sensitivity analysis. As a result, this analysis indicates that catalyst researchers should prioritize by: carbon efficiency > catalyst cost > catalyst lifetime, after initially testing for basic operational feasibility.« less

  14. Conceptual process design and techno-economic assessment of ex situ catalytic fast pyrolysis of biomass: A fixed bed reactor implementation scenario for future feasibility

    DOE PAGES

    Dutta, Abhijit; Schaidle, Joshua A.; Humbird, David; ...

    2015-10-06

    Ex situ catalytic fast pyrolysis of biomass is a promising route for the production of fungible liquid biofuels. There is significant ongoing research on the design and development of catalysts for this process. However, there are a limited number of studies investigating process configurations and their effects on biorefinery economics. Herein we present a conceptual process design with techno-economic assessment; it includes the production of upgraded bio-oil via fixed bed ex situ catalytic fast pyrolysis followed by final hydroprocessing to hydrocarbon fuel blendstocks. This study builds upon previous work using fluidized bed systems, as detailed in a recent design reportmore » led by the National Renewable Energy Laboratory (NREL/TP-5100-62455); overall yields are assumed to be similar, and are based on enabling future feasibility. Assuming similar yields provides a basis for easy comparison and for studying the impacts of areas of focus in this study, namely, fixed bed reactor configurations and their catalyst development requirements, and the impacts of an inline hot gas filter. A comparison with the fluidized bed system shows that there is potential for higher capital costs and lower catalyst costs in the fixed bed system, leading to comparable overall costs. The key catalyst requirement is to enable the effective transformation of highly oxygenated biomass into hydrocarbons products with properties suitable for blending into current fuels. Potential catalyst materials are discussed, along with their suitability for deoxygenation, hydrogenation and C–C coupling chemistry. This chemistry is necessary during pyrolysis vapor upgrading for improved bio-oil quality, which enables efficient downstream hydroprocessing; C–C coupling helps increase the proportion of diesel/jet fuel range product. One potential benefit of fixed bed upgrading over fluidized bed upgrading is catalyst flexibility, providing greater control over chemistry and product composition. Since this study is based on future projections, the impacts of uncertainties in the underlying assumptions are quantified via sensitivity analysis. As a result, this analysis indicates that catalyst researchers should prioritize by: carbon efficiency > catalyst cost > catalyst lifetime, after initially testing for basic operational feasibility.« less

  15. Triangle pore arrays fabricated on Si (111) substrate by sphere lithography combined with metal-assisted chemical etching and anisotropic chemical etching

    NASA Astrophysics Data System (ADS)

    Asoh, Hidetaka; Fujihara, Kosuke; Ono, Sachiko

    2012-07-01

    The morphological change of silicon macropore arrays formed by metal-assisted chemical etching using shape-controlled Au thin film arrays was investigated during anisotropic chemical etching in tetramethylammonium hydroxide (TMAH) aqueous solution. After the deposition of Au as the etching catalyst on (111) silicon through a honeycomb mask prepared by sphere lithography, the specimens were etched in a mixed solution of HF and H2O2 at room temperature, resulting in the formation of ordered macropores in silicon along the [111] direction, which is not achievable by conventional chemical etching without a catalyst. In the anisotropic etching in TMAH, the macropores changed from being circular to being hexagonal and finally to being triangular, owing to the difference in etching rate between the crystal planes.

  16. Development of Molecular Catalysts to Bridge the Gap between Heterogeneous and Homogeneous Catalysts

    NASA Astrophysics Data System (ADS)

    Ye, Rong

    Catalysts, heterogeneous, homogeneous, and enzymatic, are comprised of nanometer-sized inorganic and/or organic components. They share molecular factors including charge, coordination, interatomic distance, bonding, and orientation of catalytically active atoms. By controlling the governing catalytic components and molecular factors, catalytic processes of a multichannel and multiproduct nature could be run in all three catalytic platforms to create unique end-products. Unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis. Recyclable catalysts, especially those that display selective reactivity, are vital for the development of sustainable chemical processes. Among available catalyst platforms, heterogeneous catalysts are particularly well-disposed toward separation from the reaction mixture via filtration methods, which renders them readily recyclable. Furthermore, heterogeneous catalysts offer numerous handles - some without homogeneous analogues - for performance and selectivity optimization. These handles include nanoparticle size, pore profile of porous supports, surface ligands and interface with oxide supports, and flow rate through a solid catalyst bed. Despite these available handles, however, conventional heterogeneous catalysts are themselves often structurally heterogeneous compared to homogeneous catalysts, which complicates efforts to optimize and expand the scope of their reactivity and selectivity. Ongoing efforts are aimed to address the above challenge by heterogenizing homogeneous catalysts, which can be defined as the modification of homogeneous catalysts to render them in a separable (solid) phase from the starting materials and products. Specifically, we grow the small nanoclusters in dendrimers, a class of uniform polymers with the connectivity of fractal trees and generally radial symmetry. Thanks to their dense multivalency, shape persistence and structural uniformity, dendrimers have proven to be versatile scaffolds for the synthesis and stabilization of small nanoclusters. Then these dendrimer-encapsulated metal clusters (DEMCs) are adsorbed onto mesoporous silica. Through this method, we have achieved selective transformations that had been challenging to accomplish in a heterogeneous setting, e.g. pi-bond activation and aldol reactions. Extensive investigation into the catalytic systems under reaction conditions allowed us to correlate the structural features (e.g. oxidation states) of the catalysts and their activity. Moreover, we have demonstrated that supported DEMCs are also excellent catalysts for typical heterogeneous reactions, including hydrogenation and alkane isomerization. Critically, these investigations also confirmed that the supported DEMCs are heterogeneous and stable against leaching. Catalysts optimization is achieved through the modulation of various parameters. The clusters are oxidized (e.g., with PhICl2) or reduced (e.g., with H2) in situ. Changing the dendrimer properties (e.g., generation, terminal functional groups) is analogous to ligand modification in homogeneous catalysts, which affect both catalytic activity and selectivity. Similarly, pore size of the support is another factor in determining product distribution. In a flow reactor, the flow rate is adjusted to control the residence time of the starting material and intermediates, and thus the final product selectivity. Our approach to heterogeneous catalysis affords various advantages: (1) the catalyst system can tap into the reactivity typical to homogeneous catalysts, which conventional heterogeneous catalysts could not achieve; (2) unlike most homogeneous catalysts with comparable performance, the heterogenized homogeneous catalysts can be recycled; (3) improved activity or selectivity compared to conventional homogeneous catalysts is possible because of uniquely heterogeneous parameters for optimization. While localized surface plasmon resonance (LSPR) provides a powerful platform for nanoparticle catalysis, our studies suggest that in some cases interband transitions should be considered as an alternative mechanism of light-driven nanoparticle catalysis. The benefits already demonstrated by plasmonic nanostructures as catalysts provided the impetus for examining complementary activation modes based on the metal nanoparticle itself. Leveraging these transitions has the potential to provide a means to highly active catalysis modes that would otherwise be challenging to access. For example, for the preparation of highly active metal catalysts on a subnanosized scale is challenging, thus limiting their exploitation and study in catalysis. Our work suggests a novel and facile strategy for the formation of highly active gold nanocluster catalysts by light illumination of the interband transitions in the presence of the appropriate substrate.

  17. System and method for controlling an engine based on ammonia storage in multiple selective catalytic reduction catalysts

    DOEpatents

    Sun, MIn; Perry, Kevin L.

    2015-11-20

    A system according to the principles of the present disclosure includes a storage estimation module and an air/fuel ratio control module. The storage estimation module estimates a first amount of ammonia stored in a first selective catalytic reduction (SCR) catalyst and estimates a second amount of ammonia stored in a second SCR catalyst. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the first amount, the second amount, and a temperature of a substrate disposed in the second SCR catalyst.

  18. Hydrothermal Synthesis of Platinum-Group-Metal-Free Catalysts: Structural Elucidation and Oxygen Reduction Catalysis

    DOE PAGES

    Gokhale, Rohan; Tsui, Lok-Kun; Roach, Kristin; ...

    2017-12-07

    In this paper, a hydrothermal approach to generate a platinum-group-metal-free (PGM-free) Fe-N-C catalyst for the oxygen reduction reaction (ORR) is introduced. The process involves partial carbonization by hydrothermal means followed by thermal treatment to obtain the final catalysts. Detailed X-ray scattering analysis of the glucose-imidazole catalysts (termed as GLU-IMID-C catalysts), obtained for the first time with the use of CarbonXS GUI program, reveals the presence of face-centered cubic (FCC) iron nanoparticles embedded in partially graphitic carbon in all catalyst variations. We also report the physical characterization of these catalysts by using X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller surface area analysis, and transmissionmore » electron microscopy. The electrocatalytic behavior of the catalysts towards oxygen reduction is studied separately in acidic and alkaline electrolytes by rotating ring disk electrode measurements. The catalysts exhibit high ORR activity in acidic (0.5 M H 2SO 4) and alkaline (0.1 M KOH) electrolytes. Lastly, a precursor structure-performance relationship of these catalysts and their performance trends in both electrolytes has been discussed in this work.« less

  19. Hydrothermal Synthesis of Platinum-Group-Metal-Free Catalysts: Structural Elucidation and Oxygen Reduction Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gokhale, Rohan; Tsui, Lok-Kun; Roach, Kristin

    In this paper, a hydrothermal approach to generate a platinum-group-metal-free (PGM-free) Fe-N-C catalyst for the oxygen reduction reaction (ORR) is introduced. The process involves partial carbonization by hydrothermal means followed by thermal treatment to obtain the final catalysts. Detailed X-ray scattering analysis of the glucose-imidazole catalysts (termed as GLU-IMID-C catalysts), obtained for the first time with the use of CarbonXS GUI program, reveals the presence of face-centered cubic (FCC) iron nanoparticles embedded in partially graphitic carbon in all catalyst variations. We also report the physical characterization of these catalysts by using X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller surface area analysis, and transmissionmore » electron microscopy. The electrocatalytic behavior of the catalysts towards oxygen reduction is studied separately in acidic and alkaline electrolytes by rotating ring disk electrode measurements. The catalysts exhibit high ORR activity in acidic (0.5 M H 2SO 4) and alkaline (0.1 M KOH) electrolytes. Lastly, a precursor structure-performance relationship of these catalysts and their performance trends in both electrolytes has been discussed in this work.« less

  20. 21 CFR 173.395 - Trifluoromethane sulfonic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... levels not to exceed 0.2 percent of the reaction mixture to catalyze the directed esterification. (c) The esterification reaction is quenched with steam and water and the catalyst is removed with the aqueous phase. Final traces of catalyst are removed by washing batches of the product three times with an aqueous...

  1. 21 CFR 173.395 - Trifluoromethane sulfonic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... levels not to exceed 0.2 percent of the reaction mixture to catalyze the directed esterification. (c) The esterification reaction is quenched with steam and water and the catalyst is removed with the aqueous phase. Final traces of catalyst are removed by washing batches of the product three times with an aqueous...

  2. 21 CFR 173.395 - Trifluoromethane sulfonic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... levels not to exceed 0.2 percent of the reaction mixture to catalyze the directed esterification. (c) The esterification reaction is quenched with steam and water and the catalyst is removed with the aqueous phase. Final traces of catalyst are removed by washing batches of the product three times with an aqueous...

  3. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Final technical report, October 1990--December 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osseo-Asare, K.; Boakye, E.; Vittal, M.

    1995-04-01

    This report described the synthesis of Molybdenum Sulfides in microemulsions by acidification of ammonium tetrathiomolybdate. Molybdenum Sulfides have been shown to be potential coal liquefaction catalysts. The importance of particle size, temperature effects, and coal surface chemistry to impregnation are discussed.

  4. Bio-oil hydrodeoxygenation catalysts produced using strong electrostatic adsorption

    USDA-ARS?s Scientific Manuscript database

    We synthesized hydrothermally stable metal catalysts with controlled particle size and distribution, with the goal of determining which catalyst(s) can selectively catalyze the production of aromatics from bio-oil (from pyrolysis of biomass). Both precious and base transition metal catalysts (Ru, Pt...

  5. Automated synthesis of a 96 product-sized library of triazole derivatives using a solid phase supported copper catalyst.

    PubMed

    Jlalia, Ibtissem; Beauvineau, Claire; Beauvière, Sophie; Onen, Esra; Aufort, Marie; Beauvineau, Aymeric; Khaba, Eihab; Herscovici, Jean; Meganem, Faouzi; Girard, Christian

    2010-04-28

    This article deal with the parallel synthesis of a 96 product-sized library using a polymer-based copper catalyst that we developed which can be easily separated from the products by simple filtration. This gave us the opportunity to use this catalyst in an automated chemical synthesis station (Chemspeed ASW-2000). Studies and results about the preparation of the catalyst, its use in different solvent systems, its recycling capabilities and its scope and limitations in the synthesis of this library will be addressed. The synthesis of the triazole library and the very good results obtained will finally be discussed.

  6. Novel anode catalyst for direct methanol fuel cells.

    PubMed

    Basri, S; Kamarudin, S K; Daud, W R W; Yaakob, Z; Kadhum, A A H

    2014-01-01

    PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs) but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni) and iron (Fe). Multiwalled carbon nanotubes (MWCNTs) are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV) is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA) tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR). The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2-5 nm) PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g(-1) catalyst.

  7. Novel Anode Catalyst for Direct Methanol Fuel Cells

    PubMed Central

    Basri, S.; Kamarudin, S. K.; Daud, W. R. W.; Yaakob, Z.; Kadhum, A. A. H.

    2014-01-01

    PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs) but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni) and iron (Fe). Multiwalled carbon nanotubes (MWCNTs) are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV) is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA) tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR). The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2–5 nm) PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g−1 catalyst. PMID:24883406

  8. Supported Dendrimer-Encapsulated Metal Clusters: Toward Heterogenizing Homogeneous Catalysts

    DOE PAGES

    Ye, Rong; Zhukhovitskiy, Aleksandr V.; Deraedt, Christophe V.; ...

    2017-07-13

    Recyclable catalysts, especially those that display selective reactivity, are vital for the development of sustainable chemical processes. Among available catalyst platforms, heterogeneous catalysts are particularly well-disposed toward separation from the reaction mixture via filtration methods, which renders them readily recyclable. Furthermore, heterogeneous catalysts offer numerous handles—some without homogeneous analogues—for performance and selectivity optimization. These handles include nanoparticle size, pore profile of porous supports, surface ligands and interface with oxide supports, and flow rate through a solid catalyst bed. Despite these available handles, however, conventional heterogeneous catalysts are themselves often structurally heterogeneous compared to homogeneous catalysts, which complicates efforts to optimizemore » and expand the scope of their reactivity and selectivity. Ongoing efforts in our laboratories are aimed to address the above challenge by heterogenizing homogeneous catalysts, which can be defined as the modification of homogeneous catalysts to render them in a separable (solid) phase from the starting materials and products. Specifically, we grow the small nanoclusters in dendrimers, a class of uniform polymers with the connectivity of fractal trees and generally radial symmetry. Thanks to their dense multivalency, shape persistence, and structural uniformity, dendrimers have proven to be versatile scaffolds for the synthesis and stabilization of small nanoclusters. Then these dendrimer-encapsulated metal clusters (DEMCs) are adsorbed onto mesoporous silica. Through this method, we have achieved selective transformations that had been challenging to accomplish in a heterogeneous setting, e.g., π-bond activation and aldol reactions. Extensive investigation into the catalytic systems under reaction conditions allowed us to correlate the structural features (e.g., oxidation states) of the catalysts and their activity. Moreover, we have demonstrated that supported DEMCs are also excellent catalysts for typical heterogeneous reactions, including hydrogenation and alkane isomerization. Critically, these investigations also confirmed that the supported DEMCs are heterogeneous and stable against leaching. Catalysts optimization is achieved through the modulation of various parameters. The clusters are oxidized (e.g., with PhICl 2) or reduced (e.g., with H 2) in situ. Changing the dendrimer properties (e.g., generation, terminal functional groups) is analogous to ligand modification in homogeneous catalysts, which affect both catalytic activity and selectivity. Similarly, pore size of the support is another factor in determining product distribution. In a flow reactor, the flow rate is adjusted to control the residence time of the starting material and intermediates, and thus the final product selectivity. Our approach to heterogeneous catalysis affords various advantages: (1) the catalyst system can tap into the reactivity typical to homogeneous catalysts, which conventional heterogeneous catalysts could not achieve; (2) unlike most homogeneous catalysts with comparable performance, the heterogenized homogeneous catalysts can be recycled; (3) improved activity or selectivity compared to conventional homogeneous catalysts is possible because of uniquely heterogeneous parameters for optimization. Here in this Account, we will briefly introduce metal clusters and describe the synthesis and characterizations of supported DEMCs. We will present the catalysis studies of supported DEMCs in both the batch and flow modes. Lastly, we will summarize the current state of heterogenizing homogeneous catalysis and provide future directions for this area of research.« less

  9. The catalytic behavior of precisely synthesized Pt–Pd bimetallic catalysts for use as diesel oxidation catalysts

    DOE PAGES

    Wong, Andrew P.; Kyriakidou, Eleni A.; Toops, Todd J.; ...

    2016-04-17

    The demands of stricter diesel engine emission regulations have created challenges for current exhaust systems. With advances in low-temperature internal combustion engines and their operations, advances must also be made in vehicle exhaust catalysts. Most current diesel oxidation catalysts use heavy amounts of precious group metals (PGMs) for hydrocarbon (HC), CO, and NO oxidation. These catalysts are expensive and are most often synthesized with poor bimetallic interaction and dispersion. In this paper, the goal was to study the effect of aging on diesel emission abatement of Pt–Pd bimetallic nanoparticles precisely prepared with different morphologies: well dispersed core–shell vs. well dispersedmore » homogeneously alloyed vs. poorly dispersed, poorly alloyed particles. Alumina and silica supports were studied. Particle morphology and dispersion were analyzed before and after hydrothermal treatments by XRD, EDX, and STEM. Reactivity as a function of aging was measured in simulated diesel engine exhaust. While carefully controlled bimetallic catalyst nanoparticle structure has a profound influence on initial or low temperature catalytic activity, the differences in behavior disappear with higher temperature aging as thermodynamic equilibrium is achieved. The metallic character of Pt-rich alumina-supported catalysts is such that behavior rather closely follows the Pt–Pd metal phase diagram. Nanoparticles disparately composed as well-dispersed core–shell (via seq-SEA), well-dispersed homogeneously alloyed (via co-SEA), and poorly dispersed, poorly alloyed (via co-DI) end up as well alloyed, large particles of almost the same size and activity. With Pd-rich systems, the oxidation of Pd also figures into the equilibrium, such that Pd-rich oxide phases appear in the high temperature forms along with alloyed metal cores. Finally, the small differences in activity after high temperature aging can be attributed to the synthesis methods, sequential SEA and co-DI which give rise, after aging, to a bimetallic surface enriched in Pd.« less

  10. Molecular water oxidation mechanisms followed by transition metals: state of the art.

    PubMed

    Sala, Xavier; Maji, Somnath; Bofill, Roger; García-Antón, Jordi; Escriche, Lluís; Llobet, Antoni

    2014-02-18

    One clean alternative to fossil fuels would be to split water using sunlight. However, to achieve this goal, researchers still need to fully understand and control several key chemical reactions. One of them is the catalytic oxidation of water to molecular oxygen, which also occurs at the oxygen evolving center of photosystem II in green plants and algae. Despite its importance for biology and renewable energy, the mechanism of this reaction is not fully understood. Transition metal water oxidation catalysts in homogeneous media offer a superb platform for researchers to investigate and extract the crucial information to describe the different steps involved in this complex reaction accurately. The mechanistic information extracted at a molecular level allows researchers to understand both the factors that govern this reaction and the ones that derail the system to cause decomposition. As a result, rugged and efficient water oxidation catalysts with potential technological applications can be developed. In this Account, we discuss the current mechanistic understanding of the water oxidation reaction catalyzed by transition metals in the homogeneous phase, based on work developed in our laboratories and complemented by research from other groups. Rather than reviewing all of the catalysts described to date, we focus systematically on the several key elements and their rationale from molecules studied in homogeneous media. We organize these catalysts based on how the crucial oxygen-oxygen bond step takes place, whether via a water nucleophilic attack or via the interaction of two M-O units, rather than based on the nuclearity of the water oxidation catalysts. Furthermore we have used DFT methodology to characterize key intermediates and transition states. The combination of both theory and experiments has allowed us to get a complete view of the water oxidation cycle for the different catalysts studied. Finally, we also describe the various deactivation pathways for these catalysts.

  11. Takovite-aluminosilicate-Cr materials prepared by adsorption of Cr3+ from industrial effluents as catalysts for hydrocarbon oxidation reactions.

    PubMed

    Ciuffi, Katia J; de Faria, Emerson H; Marçal, Liziane; Rocha, Lucas A; Calefi, Paulo S; Nassar, Eduardo J; Pepe, Iuri; da Rocha, Zênis N; Vicente, Miguel A; Trujillano, Raquel; Gil, Antonio; Korili, Sophia A

    2012-05-01

    The catalytic efficiency of takovite-aluminosilicate-chromium catalysts obtained by adsorption of Cr(3+) ions from aqueous solutions by a takovite-aluminosilicate nanocomposite adsorbent is reported. The adsorbent was synthesized by the coprecipitation method. The catalytic activity of the final Cr-catalysts depended on the amount of adsorbed chromium. (Z)-cyclooctene conversion up to 90% with total selectivity for the epoxide was achieved when the oxidation was carried out with hydrogen peroxide, at room temperature. After five consecutive runs, the catalysts maintained high activity, although after the sixth reuse, the epoxide yields strongly decreased to 35%. The catalysts were also efficient for cyclohexane oxidation, reaching up to 18% conversion, with cyclohexanone/cyclohexanol selectivity close to 1.2. On the whole, their use as catalysts gives a very interesting application for the solids obtained by adsorption of a contaminant cation such as Cr(3+).

  12. Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH 3 with V 2O 5-WO 3/TiO 2 catalysts

    DOE PAGES

    He, Yuanyuan; Ford, Michael E.; Zhu, Minghui; ...

    2016-04-14

    We compared the molecular structures, surface acidity and catalytic activity for NO/NH 3/O 2 SCR of V 2O 5-WO 3/TiO 2 catalysts for two different synthesis methods: co-precipitation of aqueous vanadium and tungsten oxide precursors with TiO(OH) 2 and by incipient wetness impregnation of the aqueous precursors on a reference crystalline TiO 2 support (P25; primarily anatase phase). Bulk analysis by XRD showed that co-precipitation results in small and/or poorly ordered TiO 2(anatase) particles and that VO x and WO x do not form solid solutions with the bulk titania lattice. Surface analysis of the co-precipitated catalyst by High Sensitivity-Lowmore » Energy Ion Scattering (HS-LEIS) confirms that the VO x and WO x are surface segregated for the co-precipitated catalysts. In situ Raman and IR spectroscopy revealed that the vanadium and tungsten oxide components are present as surface mono-oxo O = VO 3 and O = WO 4 sites on the TiO 2 supports. Co-precipitation was shown for the first time to also form new mono-oxo surface VO 4 and WO 4 sites that appear to be anchored at surface defects of the TiO 2 support. IR analysis of chemisorbed ammonia showed the presence of both surface NH 3 * on Lewis acid sites and surface NH 4 +* on Brønsted acid sites. TPSR spectroscopy demonstrated that the specific SCR kinetics was controlled by the redox surface VO 4 species and that the surface kinetics was independent of TiO 2 synthesis method or presence of surface WO 5 sites. SCR reaction studies revealed that the surface WO5 sites possess minimal activity below ~325 °C and their primary function is to increase the adsorption capacity of ammonia. A relationship between the SCR activity and surface acidity was not found. The SCR reaction is controlled by the surface VO 4 sites that initiate the reaction at ~200 °C. The co-precipitated catalysts were always more active than the corresponding impregnated catalysts. Finally, we ascribe the higher activity of the co-precipitated catalysts to the presence of the new surface WO x sites associated surface defects on the TiO 2 support that increase the ammonia adsorption capacity.« less

  13. Selective Hydrodeoxygenation of Vegetable Oils and Waste Cooking Oils to Green Diesel Using a Silica-Supported Ir-ReOx Bimetallic Catalyst.

    PubMed

    Liu, Sibao; Simonetti, Trent; Zheng, Weiqing; Saha, Basudeb

    2018-05-09

    High yields of diesel-range alkanes are prepared by hydrodeoxygenation of vegetable oils and waste cooking oils over ReO x -modified Ir/SiO 2 catalysts under mild reaction conditions. The catalyst containing a Re/Ir molar ratio of 3 exhibits the best performance, achieving 79-85 wt % yield of diesel-range alkanes at 453 K and 2 MPa H 2 . The yield is nearly quantitative for the theoretical possible long-chain alkanes on the basis of weight of the converted oils. The catalyst retains comparable activity upon regeneration through calcination. Control experiments using probe molecules as model substrates suggest that C=C bonds of unsaturated triglycerides and free fatty acids are first hydrogenated to their corresponding saturated intermediates, which are then converted to aldehyde intermediates through hydrogenolysis of acyl C-O bonds and subsequently hydrogenated to fatty alcohols. Finally, long-chain alkanes without any carbon loss are formed by direct hydrogenolysis of the fatty alcohols. Small amounts of alkanes with one carbon fewer are also formed by decarbonylation of the aldehyde intermediates. A synergy between Ir and partially reduced ReO x sites is discussed to elucidate the high activity of Ir-ReO x /SiO 2. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Dehydration of glycerol over niobia-supported silicotungstic acid catalysts.

    PubMed

    Lee, Young Yi; Ok, Hye Jeong; Moon, Dong Ju; Kim, Jong Ho; Park, Nam Cook; Kim, Young Chul

    2013-01-01

    Liquid-phase dehydration of glycerol to acrolein over nanosized niobia-supported silicotungstic acid catalysts was performed to investigate the effect of the silicotungstic acid loading on the catalytic performance of the catalysts. The catalysts were prepared by following an impregnation method with different HSiW loadings in the range of 10-50 wt%. The prepared catalysts were characterized by N2 physisorption, XRD, FT-IR, TPD of ammonia, and TGA. Dehydration of glycerol was conducted in an autoclave reactor under the conditions of controlled reaction temperatures under corresponding pressure. Increasing HSiW loading rapidly increased the acidity of HSiW/Nb205 catalyst and rate of glycerol conversion, but acrolein selectivity decreased due to enhanced deactivation of the catalyst by carbon deposit. Consequently, it was confirmed that catalytic activity for the dehydration of glycerol to acrolein was dependant on the acidity of catalyst and can be controlled by HSiW loading.

  15. DOE-GO-14154-1 OHIO FINAL report Velocys 30Sept08

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terry J. Mazanec

    2008-09-30

    The overall goal of the OHIO project was to develop a commercially viable high intensity process to produce ethylene by controlled catalytic reaction of ethane with oxygen in a microchannel reactor. Microchannel technology provides a breakthrough solution to the challenges identified in earlier development work on catalytic ethane oxidation. Heat and mass transfer limitations at the catalyst surface create destructively high temperatures that are responsible for increased production of waste products (CO, CO2, and CH4). The OHIO project focused on microscale energy and mass transfer management, designed to alleviate these transport limitations, thereby improving catalyst selectivity and saving energy-rich feedstock.more » The OHIO project evaluated ethane oxidation in small scale microchannel laboratory reactors including catalyst test units, and full commercial length single- and multi-channel reactors. Small scale catalyst and single channel results met target values for ethylene yields, demonstrating that the microchannel concept improves mass and heat transport compared to conventional reactors and results in improved ethylene yield. Earlier economic sensitivity studies of ethane oxidation processes suggested that only modest improvements were necessary to provide a system that provides significant feedstock, energy, and capital benefits compared to conventional steam ethane cracking. The key benefit derived from the OHIO process is energy savings. Ethylene production consumes more energy than any other U.S. chemical process.1 The OHIO process offers improved feedstock utilization and substantial energy savings due to a novel reaction pathway and the unique abilities of microchannel process technology to control the reaction temperature and other critical process parameters. Based on projected economic benefits of the process, the potential energy savings could reach 150 trillion Btu/yr by the year 2020, which is the equivalent of over 25 million barrels of oil.« less

  16. Ordered Pt 3Co Intermetallic Nanoparticles Derived from Metal–Organic Frameworks for Oxygen Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiao Xia; Hwang, Sooyeon; Pan, Yung-Tin

    Highly ordered Pt alloy structures are proved effective to improve their catalytic activity and stability for the oxygen reduction reaction (ORR) for proton exchange membrane fuel cells. Here, we report a new approach to preparing ordered Pt 3Co intermetallic nanoparticles through a facile thermal treatment of Pt nanoparticles supported on Co-doped metal-organic framework (MOF)-derived carbon. In particular, the atomically dispersed Co sites, which are originally embedded into MOF-derived carbon, diffuse into Pt nanocrystals and form ordered Pt 3Co structures. It is very crucial for the formation of the ordered Pt 3Co to carefully control the doping content of Co intomore » the MOFs and the heating temperatures for Co diffusion. The optimal Pt 3Co nanoparticle catalyst has achieved significantly enhanced activity and stability, exhibiting a half-wave potential up to 0.92 V vs. RHE and only losing 12 mV after 30,000 potential cycling between 0.6 and 1.0 V. The highly ordered intermetallic structure was retained after the accelerated stress tests evidenced by atomic-scale elemental mapping. Fuel cell tests further verified the high intrinsic activity of the ordered Pt 3Co catalysts. Unlike the direct use of MOF-derived carbon supports for depositing Pt, we utilized MOF-derived carbon containing atomically dispersed Co sites as Co sources to prepare ordered Pt 3Co intermetallic catalysts. Finally, the new synthesis approach provides an effective strategy to develop active and stable Pt alloy catalysts by leveraging the unique properties of MOFs such as 3D structures, high surface areas, and controlled nitrogen doping.« less

  17. Ordered Pt 3Co Intermetallic Nanoparticles Derived from Metal–Organic Frameworks for Oxygen Reduction

    DOE PAGES

    Wang, Xiao Xia; Hwang, Sooyeon; Pan, Yung-Tin; ...

    2018-06-06

    Highly ordered Pt alloy structures are proved effective to improve their catalytic activity and stability for the oxygen reduction reaction (ORR) for proton exchange membrane fuel cells. Here, we report a new approach to preparing ordered Pt 3Co intermetallic nanoparticles through a facile thermal treatment of Pt nanoparticles supported on Co-doped metal-organic framework (MOF)-derived carbon. In particular, the atomically dispersed Co sites, which are originally embedded into MOF-derived carbon, diffuse into Pt nanocrystals and form ordered Pt 3Co structures. It is very crucial for the formation of the ordered Pt 3Co to carefully control the doping content of Co intomore » the MOFs and the heating temperatures for Co diffusion. The optimal Pt 3Co nanoparticle catalyst has achieved significantly enhanced activity and stability, exhibiting a half-wave potential up to 0.92 V vs. RHE and only losing 12 mV after 30,000 potential cycling between 0.6 and 1.0 V. The highly ordered intermetallic structure was retained after the accelerated stress tests evidenced by atomic-scale elemental mapping. Fuel cell tests further verified the high intrinsic activity of the ordered Pt 3Co catalysts. Unlike the direct use of MOF-derived carbon supports for depositing Pt, we utilized MOF-derived carbon containing atomically dispersed Co sites as Co sources to prepare ordered Pt 3Co intermetallic catalysts. Finally, the new synthesis approach provides an effective strategy to develop active and stable Pt alloy catalysts by leveraging the unique properties of MOFs such as 3D structures, high surface areas, and controlled nitrogen doping.« less

  18. Redox Switchable Coordination Catalysis: An Advanced Tool for Catalyst Control and Tailored Polyolefin Synthesis

    DTIC Science & Technology

    2017-06-18

    olefins at a much slower rate than its non -reduced analogue which can be harnessed to control polyolefin comonomer incorporation percentages and thus its...opportunities for mechanistic understanding, catalyst control , and polyolefin synthesis that are impossible using heterogeneous 1. REPORT DATE (DD-MM...Advanced Tool for Catalyst Control and Tailored Polyolefin Synthesis The views, opinions and/or findings contained in this report are those of the

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Rong; Zhukhovitskiy, Aleksandr V.; Deraedt, Christophe V.

    Recyclable catalysts, especially those that display selective reactivity, are vital for the development of sustainable chemical processes. Among available catalyst platforms, heterogeneous catalysts are particularly well-disposed toward separation from the reaction mixture via filtration methods, which renders them readily recyclable. Furthermore, heterogeneous catalysts offer numerous handles—some without homogeneous analogues—for performance and selectivity optimization. These handles include nanoparticle size, pore profile of porous supports, surface ligands and interface with oxide supports, and flow rate through a solid catalyst bed. Despite these available handles, however, conventional heterogeneous catalysts are themselves often structurally heterogeneous compared to homogeneous catalysts, which complicates efforts to optimizemore » and expand the scope of their reactivity and selectivity. Ongoing efforts in our laboratories are aimed to address the above challenge by heterogenizing homogeneous catalysts, which can be defined as the modification of homogeneous catalysts to render them in a separable (solid) phase from the starting materials and products. Specifically, we grow the small nanoclusters in dendrimers, a class of uniform polymers with the connectivity of fractal trees and generally radial symmetry. Thanks to their dense multivalency, shape persistence, and structural uniformity, dendrimers have proven to be versatile scaffolds for the synthesis and stabilization of small nanoclusters. Then these dendrimer-encapsulated metal clusters (DEMCs) are adsorbed onto mesoporous silica. Through this method, we have achieved selective transformations that had been challenging to accomplish in a heterogeneous setting, e.g., π-bond activation and aldol reactions. Extensive investigation into the catalytic systems under reaction conditions allowed us to correlate the structural features (e.g., oxidation states) of the catalysts and their activity. Moreover, we have demonstrated that supported DEMCs are also excellent catalysts for typical heterogeneous reactions, including hydrogenation and alkane isomerization. Critically, these investigations also confirmed that the supported DEMCs are heterogeneous and stable against leaching. Catalysts optimization is achieved through the modulation of various parameters. The clusters are oxidized (e.g., with PhICl 2) or reduced (e.g., with H 2) in situ. Changing the dendrimer properties (e.g., generation, terminal functional groups) is analogous to ligand modification in homogeneous catalysts, which affect both catalytic activity and selectivity. Similarly, pore size of the support is another factor in determining product distribution. In a flow reactor, the flow rate is adjusted to control the residence time of the starting material and intermediates, and thus the final product selectivity. Our approach to heterogeneous catalysis affords various advantages: (1) the catalyst system can tap into the reactivity typical to homogeneous catalysts, which conventional heterogeneous catalysts could not achieve; (2) unlike most homogeneous catalysts with comparable performance, the heterogenized homogeneous catalysts can be recycled; (3) improved activity or selectivity compared to conventional homogeneous catalysts is possible because of uniquely heterogeneous parameters for optimization. Here in this Account, we will briefly introduce metal clusters and describe the synthesis and characterizations of supported DEMCs. We will present the catalysis studies of supported DEMCs in both the batch and flow modes. Lastly, we will summarize the current state of heterogenizing homogeneous catalysis and provide future directions for this area of research.« less

  20. 21 CFR 173.395 - Trifluoromethane sulfonic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... acid) may safely be used in the production of cocoa butter substitute from palm oil (1-palmitoyl-2.... Final traces of catalyst are removed by washing batches of the product three times with an aqueous solution of 0.5 percent sodium bicarbonate. (d) No residual catalyst may remain in the product at a...

  1. Low energy electron catalyst: the electronic origin of catalytic strategies.

    PubMed

    Davis, Daly; Sajeev, Y

    2016-10-12

    Using a low energy electron (LEE) as a catalyst, the electronic origin of the catalytic strategies corresponding to substrate selectivity, reaction specificity and reaction rate enhancement is investigated for a reversible unimolecular elementary reaction. An electronic energy complementarity between the catalyst and the substrate molecule is the origin of substrate selectivity and reaction specificity. The electronic energy complementarity is induced by tuning the electronic energy of the catalyst. The energy complementarity maximizes the binding forces between the catalyst and the molecule. Consequently, a new electronically metastable high-energy reactant state and a corresponding new low barrier reaction path are resonantly created for a specific reaction of the substrate through the formation of a catalyst-substrate transient adduct. The LEE catalysis also reveals a fundamental structure-energy correspondence in the formation of the catalyst-substrate transient adduct. Since the energy complementarities corresponding to the substrate molecules of the forward and the backward steps of the reversible reactions are not the same due to their structural differences, the LEE catalyst exhibits a unique one-way catalytic strategy, i.e., the LEE catalyst favors the reversible reaction more effectively in one direction. A characteristic stronger binding of the catalyst to the transition state of the reaction than in the initial reactant state and the final product state is the molecular origin of barrier lowering.

  2. Synthesis and Stabilization of Supported Metal Catalysts by Atomic Layer Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Junling; Elam, Jeffrey W.; Stair, Peter C.

    2013-03-12

    Supported metal nanoparticles are among the most important cata-lysts for many practical reactions, including petroleum refining, automobile exhaust treatment, and Fischer–Tropsch synthesis. The catalytic performance strongly depends on the size, composition, and structure of the metal nanoparticles, as well as the underlying support. Scientists have used conventional synthesis methods including impregnation, ion exchange, and deposition–precipitation to control and tune these factors, to establish structure–performance relationships, and to develop better catalysts. Meanwhile, chemists have improved the stability of metal nanoparticles against sintering by the application of protective layers, such as polymers and oxides that encapsulate the metal particle. This often leadsmore » to decreased catalytic activity due to a lack of precise control over the thickness of the protective layer. A promising method of catalyst synthesis is atomic layer deposition (ALD). ALD is a variation on chemical vapor deposition in which metals, oxides, and other materials are deposited on surfaces by a sequence of self-limiting reactions. The self-limiting character of these reactions makes it possible to achieve uniform deposits on high-surface-area porous solids. Therefore, design and synthesis of advanced catalysts on the nanoscale becomes possible through precise control over the structure and composition of the underlying support, the catalytic active sites, and the protective layer. In this Account, we describe our advances in the synthesis and stabilization of supported metal catalysts by ALD. After a short introduction to the technique of ALD, we show several strategies for metal catalyst synthesis by ALD that take advantage of its self-limiting feature. Monometallic and bimetallic catalysts with precise control over the metal particle size, composition, and structure were achieved by combining ALD sequences, surface treatments, and deposition temperature control. Next, we describe ALD oxide overcoats applied with atomically precise thickness control that stabilize metal catalysts while preserving their catalytic function. We also discuss strategies for generation and control over the porosity of the overcoats that allow the embedded metal particles to remain accessible by reactants, and the details for ALD alumina overcoats on metal catalysts. Moreover, using methanol decomposition and oxidative dehydrogenation of ethane as probe reactions, we demonstrate that selectively blocking low coordination metal sites by oxide overcoats can provide another strategy to enhance both the durability and selectivity of metal catalysts.« less

  3. Study of exhaust emissions from 1978-1980 model year three way catalyst vehicles in Los Angeles. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, L.L.; Jones, A.D.

    This report presents and summarizes exhaust emission data and other information obtained as a result of the testing and inspection of 350 in-use passenger cars. The test fleet was made up of 1978, 1979 and 1980 automobiles manufactured by Ford, General Motors, Mazda, Saab, Toyota, Volkswagen/Audi and Volvo. Each vehicle was equipped with a three way catalyst control system. They were obtained randomly from private owners in the Los Angeles and Orange County areas. The testing was completed December, 1979. Each vehicle was tested only in as-received condition. The test sequence consisted of the 1975 Federal Test Procedure (exhaust emissionsmore » only), a Highway Fuel Economy test, a Two-Speed Idle test, a Federal Three Mode test, and a Loaded Two Mode test. After the initial test sequence, each vehicle was subjected to a thorough underhood inspection.« less

  4. Literally Green Chemical Synthesis of Artemisinin from Plant Extracts.

    PubMed

    Triemer, Susann; Gilmore, Kerry; Vu, Giang T; Seeberger, Peter H; Seidel-Morgenstern, Andreas

    2018-05-04

    Active pharmaceutical ingredients are either extracted from biological sources-where they are synthesized in complex, dynamic environments-or prepared in stepwise chemical syntheses by reacting pure reagents and catalysts under controlled conditions. A combination of these two approaches, where plant extracts containing reagents and catalysts are utilized in intensified chemical syntheses, creates expedient and sustainable processes. We illustrate this principle by reacting crude plant extract, oxygen, acid, and light to produce artemisinin, a key active pharmaceutical ingredient of the most powerful antimalarial drugs. The traditionally discarded extract of Artemisia annua plants contains dihydroartemisinic acid-the final biosynthetic precursor-as well as chlorophyll, which acts as a photosensitizer. Efficient irradiation with visible light in a continuous-flow setup produces artemisinin in high yield, and the artificial biosynthetic process outperforms syntheses with pure reagents. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. CO 2 Hydrogenation Catalysts with Deprotonated Picolinamide Ligands

    DOE PAGES

    Kanega, Ryoichi; Onishi, Naoya; Szalda, David J.; ...

    2017-08-21

    In an effort to design concepts for highly active catalysts for the hydrogenation of CO 2 to formate in basic water, we have prepared in this paper several catalysts with picolinic acid, picolinamide, and its derivatives, and we investigated their catalytic activity. The CO 2 hydrogenation catalyst having a 4-hydroxy-N-methylpicolinamidate ligand exhibited excellent activity even under ambient conditions (0.1 MPa, 25 °C) in basic water, exhibiting a TON of 14700, a TOF of 167 h –1, and producing a 0.64 M formate concentration. Finally, its high catalytic activity originates from strong electron donation by the anionic amide moiety in additionmore » to the phenolic O – functionality.« less

  6. Nucleation Control for Large, Single Crystalline Domains of Monolayer Hexagonal Boron Nitride via Si-Doped Fe Catalysts

    PubMed Central

    2015-01-01

    The scalable chemical vapor deposition of monolayer hexagonal boron nitride (h-BN) single crystals, with lateral dimensions of ∼0.3 mm, and of continuous h-BN monolayer films with large domain sizes (>25 μm) is demonstrated via an admixture of Si to Fe catalyst films. A simple thin-film Fe/SiO2/Si catalyst system is used to show that controlled Si diffusion into the Fe catalyst allows exclusive nucleation of monolayer h-BN with very low nucleation densities upon exposure to undiluted borazine. Our systematic in situ and ex situ characterization of this catalyst system establishes a basis for further rational catalyst design for compound 2D materials. PMID:25664483

  7. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF MOBILE SOURCE EMISSIONS CONTROL DEVICES/CLEAN DIESEL TECHNOLOGIES FUEL BORNE CATALYST WITH CLEANAIR SYSTEM'S DIESEL OXIDATION CATALYST

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Fuel-Borne Catalyst with CleanAir System's Diesel Oxidation Catalyst manufactured by Clean Diesel Technologies, Inc. The technology is a fuel-borne catalyst used in ultra low sulfur d...

  8. Kinetically controlled synthesis of Au102(SPh)44 nanoclusters and catalytic application

    NASA Astrophysics Data System (ADS)

    Chen, Yongdong; Wang, Jin; Liu, Chao; Li, Zhimin; Li, Gao

    2016-05-01

    We here explore a kinetically controlled synthetic protocol for preparing solvent-solvable Au102(SPh)44 nanoclusters which are isolated from polydispersed gold nanoclusters by solvent extraction and size exclusion chromatography (SEC). The as-obtained Au102(SPh)44 nanoclusters are determined by matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometry, in conjunction with UV-vis spectroscopy and thermogravimetric analysis (TGA). However, Au99(SPh)42, instead of Au102(SPh)44, is yielded when the polydispersed gold nanoclusters are etched in the presence of excess thiophenol under thermal conditions (e.g., 80 °C). Interestingly, the Au102(SPh)44 nanoclusters also can convert to Au99(SPh)42 with equivalent thiophenol ligands, evidenced by the analyses of UV-vis and MALDI mass spectrometry. Finally, the TiO2-supported Au102(SPh)44 nanocluster catalyst is investigated in the selective oxidation of sulfides into sulfoxides by the PhIO oxidant and gives rise to high catalytic activity (e.g., 80-99% conversion of R-S-R' sulfides with 96-99% selectivity for R-S(&z.dbd;O)-R' sulfoxides). The Au102(SPh)44/TiO2 catalyst also shows excellent recyclability in the sulfoxidation process.We here explore a kinetically controlled synthetic protocol for preparing solvent-solvable Au102(SPh)44 nanoclusters which are isolated from polydispersed gold nanoclusters by solvent extraction and size exclusion chromatography (SEC). The as-obtained Au102(SPh)44 nanoclusters are determined by matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometry, in conjunction with UV-vis spectroscopy and thermogravimetric analysis (TGA). However, Au99(SPh)42, instead of Au102(SPh)44, is yielded when the polydispersed gold nanoclusters are etched in the presence of excess thiophenol under thermal conditions (e.g., 80 °C). Interestingly, the Au102(SPh)44 nanoclusters also can convert to Au99(SPh)42 with equivalent thiophenol ligands, evidenced by the analyses of UV-vis and MALDI mass spectrometry. Finally, the TiO2-supported Au102(SPh)44 nanocluster catalyst is investigated in the selective oxidation of sulfides into sulfoxides by the PhIO oxidant and gives rise to high catalytic activity (e.g., 80-99% conversion of R-S-R' sulfides with 96-99% selectivity for R-S(&z.dbd;O)-R' sulfoxides). The Au102(SPh)44/TiO2 catalyst also shows excellent recyclability in the sulfoxidation process. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08338a

  9. Method for making polysilsesquioxanes and organohydridosilanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loy, Douglas A.; Rahimian, Kamyar

    2001-01-01

    A method for disproportionation of an oligohydridosiloxane to produce a polysilsesquioxane compound and an organohydridosilane compound when contacted with a basic catalyst. The basic catalyst can be a tetraalkylammonium hydroxide, an alkali metal hydroxide, and an alkali earth hydroxide. These basic catalysts are generally dissolved in an organic solvent for delivery. The hydroxide catalysts are attractive because many readily decompose by heating above 150.degree. C., thus being easily removed from the final materials. The oligohydridosiloxane is contacted with the basic catalyst under conditions effective to catalytically convert the oligohydridosiloxane into a polysilsesquioxane compound and an organohydridosilane compound. The reaction canmore » occur in either an inert or oxidative atmosphere and can occur without heating, at room temperature. Both polysilsesquioxane foams and gels of the formula (RSiO.sub.1.5).sub.n can be produced.« less

  10. Method for generating hydrogen for fuel cells

    DOEpatents

    Ahmed, Shabbir; Lee, Sheldon H. D.; Carter, John David; Krumpelt, Michael

    2004-03-30

    A method of producing a H.sub.2 rich gas stream includes supplying an O.sub.2 rich gas, steam, and fuel to an inner reforming zone of a fuel processor that includes a partial oxidation catalyst and a steam reforming catalyst or a combined partial oxidation and stream reforming catalyst. The method also includes contacting the O.sub.2 rich gas, steam, and fuel with the partial oxidation catalyst and the steam reforming catalyst or the combined partial oxidation and stream reforming catalyst in the inner reforming zone to generate a hot reformate stream. The method still further includes cooling the hot reformate stream in a cooling zone to produce a cooled reformate stream. Additionally, the method includes removing sulfur-containing compounds from the cooled reformate stream by contacting the cooled reformate stream with a sulfur removal agent. The method still further includes contacting the cooled reformate stream with a catalyst that converts water and carbon monoxide to carbon dioxide and H.sub.2 in a water-gas-shift zone to produce a final reformate stream in the fuel processor.

  11. Fuel processor and method for generating hydrogen for fuel cells

    DOEpatents

    Ahmed, Shabbir [Naperville, IL; Lee, Sheldon H. D. [Willowbrook, IL; Carter, John David [Bolingbrook, IL; Krumpelt, Michael [Naperville, IL; Myers, Deborah J [Lisle, IL

    2009-07-21

    A method of producing a H.sub.2 rich gas stream includes supplying an O.sub.2 rich gas, steam, and fuel to an inner reforming zone of a fuel processor that includes a partial oxidation catalyst and a steam reforming catalyst or a combined partial oxidation and stream reforming catalyst. The method also includes contacting the O.sub.2 rich gas, steam, and fuel with the partial oxidation catalyst and the steam reforming catalyst or the combined partial oxidation and stream reforming catalyst in the inner reforming zone to generate a hot reformate stream. The method still further includes cooling the hot reformate stream in a cooling zone to produce a cooled reformate stream. Additionally, the method includes removing sulfur-containing compounds from the cooled reformate stream by contacting the cooled reformate stream with a sulfur removal agent. The method still further includes contacting the cooled reformate stream with a catalyst that converts water and carbon monoxide to carbon dioxide and H.sub.2 in a water-gas-shift zone to produce a final reformate stream in the fuel processor.

  12. System and method for determining an ammonia generation rate in a three-way catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Min; Perry, Kevin L; Kim, Chang H

    A system according to the principles of the present disclosure includes a rate determination module, a storage level determination module, and an air/fuel ratio control module. The rate determination module determines an ammonia generation rate in a three-way catalyst based on a reaction efficiency and a reactant level. The storage level determination module determines an ammonia storage level in a selective catalytic reduction (SCR) catalyst positioned downstream from the three-way catalyst based on the ammonia generation rate. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the ammonia storage level.

  13. Nanocarbon/oxide composite catalysts for bifunctional oxygen reduction and evolution in reversible alkaline fuel cells: A mini review

    NASA Astrophysics Data System (ADS)

    Chen, Mengjie; Wang, Lei; Yang, Haipeng; Zhao, Shuai; Xu, Hui; Wu, Gang

    2018-01-01

    A reversible fuel cell (RFC), which integrates a fuel cell with an electrolyzer, is similar to a rechargeable battery. This technology lies on high-performance bifunctional catalysts for the oxygen reduction reaction (ORR) in the fuel cell mode and the oxygen evolution reaction (OER) in the electrolyzer mode. Current catalysts are platinum group metals (PGM) such as Pt and Ir, which are expensive and scarce. Therefore, it is highly desirable to develop PGM-free catalysts for large-scale application of RFCs. In this mini review, we discussed the most promising nanocarbon/oxide composite catalysts for ORR/OER bifunctional catalysis in alkaline media, which is mainly based on our recent progress. Starting with the effectiveness of selected oxides and nanocarbons in terms of their activity and stability, we outlined synthetic methods and the resulting structures and morphologies of catalysts to provide a correlation between synthesis, structure, and property. A special emphasis is put on understanding of the possible synergistic effect between oxide and nanocarbon for enhanced performance. Finally, a few nanocomposite catalysts are discussed as typical examples to elucidate the rules of designing highly active and durable bifunctional catalysts for RFC applications.

  14. Poisoning of a Silica-Supported Cobalt Catalyst due to Presence of Sulfur Impurities in Syngas during Fischer–Tropsch Synthesis: Effects of Chelating Agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bambal, Ashish S.; Guggilla, Vidya S.; Kugler, Edwin L.

    2014-04-09

    The effects of sulfur impurities on the performance of cobalt-based Fischer–Tropsch catalysts are evaluated under industrially relevant operating conditions of temperature, pressure, and impurity levels. Chelating agents (CAs) were used to modify the SiO 2 support, and the performances of the CA-modified catalysts are compared with conventional Co/SiO 2 catalysts. For both the Co/SiO 2 and CA-modified catalysts, the presence of sulfur in the inlet syngas results in a notable drop in the CO conversion, an undesired shift in the hydrocarbon selectivity toward short-chain hydrocarbons, more olefins in the products, and lower product yields. In the post-poisoning stage, i.e., aftermore » termination of sulfur introduction in the inlet syngas, the CA-modified catalysts recover activity and selectivity (to some extent at least), whereas such trends are not observed for the base-case, i.e., unmodified Co/SiO 2 catalyst. Finally, the improved performance of the CA-modified catalysts in the presence of sulfur is attributed to higher densities of active sites.« less

  15. Subnanometer and nanometer catalysts, method for preparing size-selected catalysts

    DOEpatents

    Vajda, Stefan , Pellin, Michael J.; Elam, Jeffrey W [Elmhurst, IL; Marshall, Christopher L [Naperville, IL; Winans, Randall A [Downers Grove, IL; Meiwes-Broer, Karl-Heinz [Roggentin, GR

    2012-04-03

    Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes. Invented size-selected cluster deposition provides a unique tool to tune material properties by atom-by-atom fashion, which can be stabilized by protective overcoats.

  16. Subnanometer and nanometer catalysts, method for preparing size-selected catalysts

    DOEpatents

    Vajda, Stefan [Lisle, IL; Pellin, Michael J [Naperville, IL; Elam, Jeffrey W [Elmhurst, IL; Marshall, Christopher L [Naperville, IL; Winans, Randall A [Downers Grove, IL; Meiwes-Broer, Karl-Heinz [Roggentin, GR

    2012-03-27

    Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes. Invented size-selected cluster deposition provides a unique tool to tune material properties by atom-by-atom fashion, which can be stabilized by protective overcoats.

  17. Progress in the Development of Oxygen Reduction Reaction Catalysts for Low-Temperature Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongguo; Lv, Haifeng; Kang, Yijin

    2016-04-06

    In this paper, we present a brief summary on the most recent progress in the design of catalysts for electrochemical reduction of oxygen. The main challenge in the wide spread of fuel cell technology is to lower the content of, or even eliminate, Pt and other precious metals in catalysts without sacrificing their performance. Pt-based nanosized catalysts with novel and refined architectures continue to dominate in catalytic performance, and formation of Pt-skin-like surfaces is key to achieving the highest values in activity. Moreover, durability has also been improved in Pt-based systems with addition of Au, which plays an important rolemore » in stabilizing the Pt topmost layers against dissolution. However, various carbon-based materials without precious metal have shown improvement in activity and durability and have been explored to serve as catalyst supports. Finally, understanding how the doped elements interact with each other and/or carbon is challenging and necessary in the design of robust fuel cell catalysts.« less

  18. Study on the mechanism of a manganese-based catalyst for catalytic NOX flue gas denitration

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wen, Xin; Lei, Zhang; Gao, Long; Sha, Xiangling; Ma, Zhenhua; He, Huibin; Wang, Yusu; Jia, Yang; Li, Yonghui

    2018-04-01

    Manganese-based bimetallic catalysts were prepared with self-made pyrolysis coke as carrier and its denitration performance of low-temperature SCR (selective catalyst reduction) was studied. The effects of different metal species, calcination temperature, calcination time and the metal load quantity on the denitration performance of the catalyst were studied by orthogonal test. The denitration mechanism of the catalyst was analyzed by XRD (X-ray diffraction), SEM (scanning electron microscope), BET test and transient test. The experiments show that: * The denitration efficiency of Mn-based bimetallic catalysts mainly relates to the metal type, the metal load quantity and the catalyst adjuvant type. * The optimal catalyst preparation conditions are as follows: the load quantity of monometallic MnO2 is 10%, calcined at 300°C for 4h, and then loaded with 8% CeO2, calcined at 350°Cfor 3h. * The denitration mechanism of manganese-based bimetallic oxide catalysts is stated as: NH3 is firstly adsorbed by B acid center Mn-OH which nears Mn4+==O to form NH4+, NH4+ was then attacked by the gas phase NO to form N2, H2O and Mn3+-OH. Finally, Mn3+-OH was oxidized by O2 to regenerate Mn4+.

  19. TiO2 Nanotube-Carbon (TNT-C) as Support for Pt-based Catalyst for High Methanol Oxidation Reaction in Direct Methanol Fuel Cell.

    PubMed

    Abdullah, M; Kamarudin, S K; Shyuan, L K

    2016-12-01

    In this study, TiO 2 nanotubes (TNTs) were synthesized via a hydrothermal method using highly concentrated NaOH solutions varying from 6 to 12 M at 180 °C for 48 h. The effects of the NaOH concentration and the TNT crystal structure on the performance for methanol oxidation were investigated to determine the best catalyst support for Pt-based catalysts. The results showed that TNTs produced with 10 M NaOH exhibited a length and a diameter of 550 and 70 nm, respectively; these TNTs showed the best nanotube structure and were further used as catalyst supports for a Pt-based catalyst in a direct methanol fuel cell. The synthesized TNT and Pt-based catalysts were analysed by FESEM, TEM, BET, EDX, XRD and FTIR. The electrochemical performance of the catalysts was investigated using cyclic voltammetry (CV) and chronoamperometric (CA) analysis to further understand the methanol oxidation in the direct methanol fuel cell (DMFC). Finally, the result proves that Pt-Ru/TNT-C catalyst shows high performance in methanol oxidation as the highest current density achieved at 3.3 mA/cm 2 (normalised by electrochemically active surface area) and high catalyst tolerance towards poisoning species was established.

  20. Controlled surface segregation leads to efficient coke-resistant nickel/platinum bimetallic catalysts for the dry reforming of methane

    DOE PAGES

    Li, Lidong; Zhou, Lu; Ould-Chikh, Samy; ...

    2015-02-03

    Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanningmore » transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core–shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. As a result, these catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.« less

  1. Heterogeneous Pd catalysts as emulsifiers in Pickering emulsions for integrated multistep synthesis in flow chemistry.

    PubMed

    Hiebler, Katharina; Lichtenegger, Georg J; Maier, Manuel C; Park, Eun Sung; Gonzales-Groom, Renie; Binks, Bernard P; Gruber-Woelfler, Heidrun

    2018-01-01

    Within the "compartmentalised smart factory" approach of the ONE-FLOW project the implementation of different catalysts in "compartments" provided by Pickering emulsions and their application in continuous flow is targeted. We present here the development of heterogeneous Pd catalysts that are ready to be used in combination with biocatalysts for catalytic cascade synthesis of active pharmaceutical ingredients (APIs). In particular, we focus on the application of the catalytic systems for Suzuki-Miyaura cross-coupling reactions, which is the key step in the synthesis of the targeted APIs valsartan and sacubitril. An immobilised enzyme will accomplish the final product formation via hydrolysis. In order to create a large interfacial area for the catalytic reactions and to keep the reagents separated until required, the catalyst particles are used to stabilise Pickering emulsions of oil and water. A set of Ce-Sn-Pd oxides with the molecular formula Ce 0.99- x Sn x Pd 0.01 O 2-δ ( x = 0-0.99) has been prepared utilising a simple single-step solution combustion method. The high applicability of the catalysts for different functional groups and their minimal leaching behaviour is demonstrated with various Suzuki-Miyaura cross-coupling reactions in batch as well as in continuous flow employing the so-called "plug & play reactor". Finally, we demonstrate the use of these particles as the sole emulsifier of oil-water emulsions for a range of oils.

  2. Radio-Frequency-Based NH3-Selective Catalytic Reduction Catalyst Control: Studies on Temperature Dependency and Humidity Influences

    PubMed Central

    Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf

    2017-01-01

    The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF) catalyst state determination offers the only approach for directly measuring the NH3 loading on selective catalytic reduction (SCR) catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH3 storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13) was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH3 storage control, the influence of the storage degree on the catalyst performance, i.e., on NOx conversion and NH3 slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH3 storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals. PMID:28704929

  3. Radio-Frequency-Based NH₃-Selective Catalytic Reduction Catalyst Control: Studies on Temperature Dependency and Humidity Influences.

    PubMed

    Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf

    2017-07-12

    The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF) catalyst state determination offers the only approach for directly measuring the NH₃ loading on selective catalytic reduction (SCR) catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH₃ storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13) was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH₃ storage control, the influence of the storage degree on the catalyst performance, i.e., on NO x conversion and NH₃ slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH₃ storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals.

  4. System and method for controlling hydrogen elimination during carbon nanotube synthesis from hydrocarbons

    DOEpatents

    Reilly, Peter T. A.

    2010-03-23

    A system and method for producing carbon nanotubes by chemical vapor deposition includes a catalyst support having first and second surfaces. The catalyst support is capable of hydrogen transport from the first to the second surface. A catalyst is provided on the first surface of the catalyst support. The catalyst is selected to catalyze the chemical vapor deposition formation of carbon nanotubes. A fuel source is provided for supplying fuel to the catalyst.

  5. 40 CFR 57.302 - Performance level of interim constant controls.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... limitation shall take into account unavoidable catalyst deterioration in sulfuric acid plants, but may prescribe the frequency of catalyst screening or replacement. The NSO shall also prohibit the smelter owner... completely fill all available catalyst bed stages with sufficient catalyst; (iii) Inability of the gas pre...

  6. Productions of sunflower oil biodiesel and used cooking oil through heterogeneous catalysts compared to conventional homogeneous catalysts

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Zapata, C. A.; Blanco Martínez, D.; Collazos, C. A.; Castellanos Acuña, H. E.; Cuervo, J. A.; Fernandez, C. P.

    2017-01-01

    This document compares homogeneous and heterogeneous catalysts used by production of biodiesel of sunflower oil and cooking oil used in frying. For this, NaOH was used as a catalyst homogeneous, and K2CO3 and Na2CO3 supported in gamma-alumina (K2CO3/γ Al2O3 y Na2CO3 /γ-Al2O3) were synthesized as heterogeneous catalysts, which were characterized by X-ray diffraction. The transesterification tests were carried out for the sunflower oil and used cooking oil, in a reflux system, to different molar relations methanol/oil, depending on the type of oil and characterization of the same. The reflux system is performed at a temperature of 55-60°C for one hour. Finally, biofuel was characterized and the yield of the reaction was calculated.

  7. Multifunctional Au-Fe3O4@MOF core-shell nanocomposite catalysts with controllable reactivity and magnetic recyclability

    NASA Astrophysics Data System (ADS)

    Ke, Fei; Wang, Luhuan; Zhu, Junfa

    2014-12-01

    The recovery and reuse of expensive catalysts are important in both heterogeneous and homogeneous catalysis due to economic and environmental reasons. This work reports a novel multifunctional magnetic core-shell gold catalyst which can be easily prepared and shows remarkable catalytic properties in the reduction of 4-nitrophenol. The novel Au-Fe3O4@metal-organic framework (MOF) catalyst consists of a superparamagnetic Au-Fe3O4 core and a porous MOF shell with controllable thickness. Small Au nanoparticles (NPs) of 3-5 nm are mainly sandwiched between the Fe3O4 core and the porous MOF shell. Catalytic studies show that the core-shell structured Au-Fe3O4@MOF catalyst has a much higher catalytic activity than other reported Au-based catalysts toward the reduction of 4-nitrophenol. Moreover, this catalyst can be easily recycled due to the presence of the superparamagnetic core. Therefore, compared to conventional catalysts used in the reduction of 4-nitrophenol, this porous MOF-based magnetic catalyst is green, cheap and promising for industrial applications.The recovery and reuse of expensive catalysts are important in both heterogeneous and homogeneous catalysis due to economic and environmental reasons. This work reports a novel multifunctional magnetic core-shell gold catalyst which can be easily prepared and shows remarkable catalytic properties in the reduction of 4-nitrophenol. The novel Au-Fe3O4@metal-organic framework (MOF) catalyst consists of a superparamagnetic Au-Fe3O4 core and a porous MOF shell with controllable thickness. Small Au nanoparticles (NPs) of 3-5 nm are mainly sandwiched between the Fe3O4 core and the porous MOF shell. Catalytic studies show that the core-shell structured Au-Fe3O4@MOF catalyst has a much higher catalytic activity than other reported Au-based catalysts toward the reduction of 4-nitrophenol. Moreover, this catalyst can be easily recycled due to the presence of the superparamagnetic core. Therefore, compared to conventional catalysts used in the reduction of 4-nitrophenol, this porous MOF-based magnetic catalyst is green, cheap and promising for industrial applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05421k

  8. Controlling diameter distribution of catalyst nanoparticles in arc discharge.

    PubMed

    Li, Jian; Volotskova, Olga; Shashurin, Alexey; Keidar, Michael

    2011-11-01

    It is demonstrated that the diameter distribution of catalyst nanoparticles in arc discharge can be controlled by a magnetic field. The magnetic field affects the arc shape, shortens the diffusing time of the catalyst nanoparticles through the nucleation zone, and consequentially reduces the average diameters of nanoparticles. The average diameter is reduced from about 7.5 nm without magnetic field to about 5 nm is the case of a magnetic field. Decrease of the catalyst nanoparticle diameter with magnetic field correlates well with decrease in the single-wall carbon nanotube and their bundles diameters.

  9. Controlling Catalyst Bulk Reservoir Effects for Monolayer Hexagonal Boron Nitride CVD.

    PubMed

    Caneva, Sabina; Weatherup, Robert S; Bayer, Bernhard C; Blume, Raoul; Cabrero-Vilatela, Andrea; Braeuninger-Weimer, Philipp; Martin, Marie-Blandine; Wang, Ruizhi; Baehtz, Carsten; Schloegl, Robert; Meyer, Jannik C; Hofmann, Stephan

    2016-02-10

    Highly controlled Fe-catalyzed growth of monolayer hexagonal boron nitride (h-BN) films is demonstrated by the dissolution of nitrogen into the catalyst bulk via NH3 exposure prior to the actual growth step. This "pre-filling" of the catalyst bulk reservoir allows us to control and limit the uptake of B and N species during borazine exposure and thereby to control the incubation time and h-BN growth kinetics while also limiting the contribution of uncontrolled precipitation-driven h-BN growth during cooling. Using in situ X-ray diffraction and in situ X-ray photoelectron spectroscopy combined with systematic growth calibrations, we develop an understanding and framework for engineering the catalyst bulk reservoir to optimize the growth process, which is also relevant to other 2D materials and their heterostructures.

  10. Investigating catalyst coated membrane equilibration time for polymer electrolyte membrane fuel cell manufacturing

    NASA Astrophysics Data System (ADS)

    Cote, Philippe

    Mercedes-Benz Canada Inc., Fuel Cell Division, manufactures polymer electrolyte membrane fuel cell stacks for use in vehicles. The manufacturing line is being optimized for efficiency and quality control, in order to uphold the high standards of Mercedes-Benz Inc. vehicles. In an operating polymer electrolyte membrane fuel cell, the catalyst coated membrane facilitates the electrochemical reaction that generates electricity. This research examines the equilibration of catalyst coated membrane rolls to controlled temperature and humidity conditions, before they are used in the manufacturing of polymer electrolyte membrane fuel cells. Equilibration involves allowing the water content in the catalyst coated membrane to stabilize at the controlled conditions, in order to reduce mechanical stress in the material for better manufacturability. Initial equilibration measurements were conducted on discrete catalyst coated membrane samples using novel electronic conductivity measurements of the catalyst layer, and compared to ionic conductivity measurements of the membrane. Electronic conductivity measurements are easier to implement in the manufacturing environment than the more complex ionic conductivity measurements. When testing discrete catalyst coated membrane samples in an environmental chamber, the equilibration trends for the measured ionic and electronic conductivity signals were similar enough to permit us to adapt the electronic conductivity measurements for catalyst coated membrane in roll form. Equilibration measurements of catalyst coated membrane rolls were optimized to achieve a robust and repeatable procedure which could be used in the manufacturing environment at Mercedes-Benz Canada Inc., Fuel Cell Division.

  11. Olefin polymerization from single site catalysts confined within porous media

    NASA Astrophysics Data System (ADS)

    Kasi, Rajeswari M.

    Single Site Catalysts (SSCs) have been utilized for olefin polymerization. Altering the metal-ligand architecture in the SSCs, polyolefin properties can be enhanced in a rational manner. This influence of the ligands in the SSC on the property of polyolefins prepared can be referred to as the primary ligand influence. Extending this understanding and subsequent control of the metal-ligand framework to the interaction of SSCs within organic and inorganic supports is vital for the synthesis of polyolefins with tailored properties. The motivation behind this thesis was to explore the support influence on the reactivity of the SSC tethered to a support matrix during ethylene homo and copolymerization. In order to address this question of the support influence on the final polyolefin properties, synthetic routes to covalently bind SSCs on different matrices have been explored. Two distinct supported SSCs have been used to prepare branched polyethylenes. Branched polyethylenes can be prepared by either copolymerization (ethylene and alpha-olefin) or oligomerization/copolymerization processes (ethylene and in situ generated alpha-olefin). Synthetic routes to prepare precursor catalysts to Constrained Geometry Catalysts (CGCs) by silyl elimination chemistry have been developed (Chapter 2). Efficient synthetic protocols to assemble CGCs on aminomethylpolysytrene matrices (Chapter 3) and amine-functionalized mesoporous silica (Chapter 4) are also reported. These supported catalysts, with appropriate cocatalysts have been used to prepare ethylene homo and copolymers, the polymer thermal properties and microstructures were analyzed by various analytical techniques. Branched polyethylenes (LLDPE) can be prepared by copolymerization chemistry. It has been observed is that the influence of the support is seen in the production of lower crystalline forms of high density polyethylene (HDPE, 20--50% crystalline), while homogeneous polymerization of analogous soluble CGCs afford HDPE of higher percent crystallinity (greater than 60% crystalline). High-density polyethylene with crystallinity of 40--60% can be prepared by using cocatalysts tethered to AMPS or silica in conjunction with analogous soluble, homogeneous CGCs (Chapter 6). Preparative methods to assemble piano stool complexes on hydroxy polystyrenes have been designed. These supported catalysts in conjunction with cocatalysts act as both oligomerization and copolymerization catalysts and allow the preparation of branched polyethylenes from ethylene only feed (Chapter 7).

  12. Effect of plasma treatments to graphite nanofibers supports on electrochemical behaviors of metal catalyst electrodes.

    PubMed

    Lee, Hochun; Jung, Yongju; Kim, Seok

    2012-02-01

    In the present work, we had studied the graphite nanofibers as catalyst supports after a plasma treatment for studying the effect of surface modification. By controlling the plasma intensity, a surface functional group concentration was changed. The nanoparticle size, loading efficiency, and catalytic activity were studied, after Pt-Ru deposition by a chemical reduction. Pt-Ru catalysts deposited on the plasma-treated GNFs showed the smaller size, 3.58 nm than the pristine GNFs. The catalyst loading contents were enhanced with plasma power and duration time increase, meaning an enhanced catalyst deposition efficiency. Accordingly, cyclic voltammetry result showed that the specific current density was increased proportionally till 200 W and then the value was decreased. Enhanced activity of 40 (mA mg(-1)-catalyst) was accomplished at 200 W and 180 sec duration time. Consequently, it was found that the improved electroactivity was originated from the change of size or morphology of catalysts by controlling the plasma intensity.

  13. Generation of reactive oxygen species and oxidative stress in Escherichia coli and Staphylococcus aureus by a novel semiconductor catalyst

    NASA Astrophysics Data System (ADS)

    Chow, K. L.; Mak, N. K.; Wong, M. H.; Zhou, X. F.; Liang, Y.

    2011-03-01

    The objective of this study was to investigate antimicrobial mechanisms of a new catalytic material (charge transfer auto oxidation-reduction type catalyst, CT catalyst) that may have great potential for application in water/wastewater treatment. Generation of reactive oxygen species (ROS) in bacteria-free solution, induction of ROS and oxidative damage in bacteria (including E. coli and S. aureus) were examined for the CT catalyst. The results showed that significantly higher ( p < 0.05, via t-test) amount of hydroxyl radicals was generated by the CT catalyst compared with the control, particularly after 6 h of contact time that more than twice of the amount of the control was produced. The generation of ROS in the bacteria was greater under higher pH and temperature levels, which closely related with the oxidative damage in cells. The results indicated that CT catalyst induced oxidative damage in the bacteria might serve as an important mechanism interpreting the anti-microbial function of the CT catalyst.

  14. RADIATION SHIELDING COMPOSITION

    DOEpatents

    Dunegan, H.L.

    1963-01-29

    A light weight radiation shielding composition is described whose mechanical and radiological properties can be varied within wide limits. The composition of this shielding material consists of four basic ingredients: powder of either Pb or W, a plastic resin, a resin plasticizer, and a polymerization catalyst to promote an interaction of the plasticizer with the plastic resin. Air may be mixed into the above ingredients in order to control the density of the final composition. For equivalent gamma attenuation, the shielding composition weighs one-third to one-half as much as conventional Pb shielding. (AEC)

  15. Controllable Construction of Core-Shell Polymer@Zeolitic Imidazolate Frameworks Fiber Derived Heteroatom-Doped Carbon Nanofiber Network for Efficient Oxygen Electrocatalysis.

    PubMed

    Zhao, Yingxuan; Lai, Qingxue; Zhu, Junjie; Zhong, Jia; Tang, Zeming; Luo, Yan; Liang, Yanyu

    2018-05-01

    Designing rational nanostructures of metal-organic frameworks based carbon materials to promote the bifunctional catalytic activity of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is highly desired but still remains a great challenge. Herein, an in situ growth method to achieve 1D structure-controllable zeolitic imidazolate frameworks (ZIFs)/polyacrylonitrile (PAN) core/shell fiber (PAN@ZIFs) is developed. Subsequent pyrolysis of this precursor can obtain a heteroatom-doped carbon nanofiber network as an efficient bifunctional oxygen electrocatalyst. The electrocatalytic performance of derived carbon nanofiber is dominated by the structures of PAN@ZIFs fiber, which is facilely regulated by efficiently controlling the nucleation and growth process of ZIFs on the surface of polymer fiber as well as optimizing the components of ZIFs. Benefiting from the core-shell structures with appropriate dopants and porosity, as-prepared catalysts show brilliant bifunctional ORR/OER catalytic activity and durability. Finally, the rechargeable Zn-air battery assembled from the optimized catalyst (CNF@Zn/CoNC) displays a peak power density of 140.1 mW cm -2 , energy density of 878.9 Wh kg Zn -1 , and excellent cyclic stability over 150 h, giving a promising performance in realistic application. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Enhancement of Electrode Stability Using Platinum-Cobalt Nanocrystals on a Novel Composite SiCTiC Support.

    PubMed

    Millán, María; Zamora, Héctor; Rodrigo, Manuel A; Lobato, Justo

    2017-02-22

    PtCo alloy catalysts for high temperature PEMFCs (protonic exchange membrane fuel cells) were synthesized on a novel noncarbonaceous support (SiCTiC) using the impregnation method with NaBH 4 as the reducing agent at different synthesis temperatures to evaluate the effect of this variable on their physicochemical and electrochemical properties. The catalysts were characterized by inductively coupled plasma optical emission spectrometry, scanning electron microscopy-energy dispersive X-ray spectroscopy, X-ray diffraction, transmission electron microscope-energy dispersive X-ray,and temperature-programmed reduction. In addition, the electrochemical characterization (i.e., cyclic voltammetry, oxygen reduction reaction, and chronoamperometry) was carried out with a rotating disk electrode. For the cyclic voltammetry investigation, 400 cycles were performed in hot phosphoric acid and a half-cell to evaluate the stability of the synthesized catalysts. The catalyst synthesized on SiCTiC exhibited excellent durability compared to the catalyst synthesized on a Vulcan support. In addition, all synthesized catalysts exhibited better catalytic activity than that of the PtCo/C catalysts. The best results were observed for the catalyst synthesized at 80 °C due to its shorter Pt-Pt nearest-neighbor and higher alloy degree. Finally, a preliminary stability test was conducted in an HT-PEMFC, and promising results in terms of stability and performance were observed.

  17. The Effect of K and Acidity of NiW-Loaded HY Zeolite Catalyst for Selective Ring Opening of 1-Methylnaphthalene.

    PubMed

    Lee, You-Jin; Kim, Eun-Sang; Kim, Jeong-Rang; Kim, Joo-Wan; Kim, Tae-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Lee, Chang-Ha; Jeong, Soon-Yong

    2016-05-01

    Bi-functional catalysts were prepared using HY zeolites with various SiO2/Al2O3 ratios for acidic function, NiW for metallic function, and K for acidity control. 1-Methylnaphthalene was selected as a model compound for multi-ring aromatics in heavy oil, and its selective ring opening reaction was investigated using the prepared bi-functional catalysts with different levels of acidity in a fixed bed reactor system. In NiW/HY catalysts without K addition, the acidity decreased with the SiO2/Al2O3 mole ratio of the HY zeolite. Ni1.1W1.1/HY(12) catalyst showed the highest acidity but slightly lower yields for the selective ring opening than Ni1.1W1.1/HY(30) catalyst. The acidity of the catalyst seemed to play an important role as the active site for the selective ring opening of 1-methylnaphthalene but there should be some optimum catalyst acidity for the reaction. Catalyst acidity could be controlled between Ni1.1W1.1/HY(12) and Ni1.1W1.1/HY(30) by adding a moderate amount of K to Ni1.1W1.1/HY(12) catalyst. K0.3Ni1.1W1.1/HY(12) catalyst should have the optimum acidity for the selective ring opening. The addition of a moderate amount of K to the NiW/HY catalyst must improve the catalytic performance due to the optimization of catalyst acidity.

  18. Catalyst system for the polymerization of alkenes to polyolefins

    DOEpatents

    Miller, Stephen A.; Bercaw, John E.

    2002-01-01

    The invention provides metallocene catalyst systems for the controlled polymerization of alkenes to a wide variety of polyolefins and olefin coplymers. Catalyst systems are provided that specifically produce isotactic, syndiotactic and steroblock polyolefins. The type of polymer produced can be controlled by varying the catalyst system, specifically by varying the ligand substituents. Such catalyst systems are particularly useful for the polymerization of polypropylene to give elastomeric polypropylenes. The invention also provides novel elastomeric polypropylene polymers characterized by dyad (m) tacticities of about 55% to about 65%, pentad (mmmm) tacticities of about 25% to about 35%, molecular weights (M.sub.w)in the range of about 50,000 to about 2,000,000, and have mmrm+rrmr peak is less than about 5%.

  19. Catalyst system for the polymerization of alkenes to polyolefins

    DOEpatents

    Miller, Stephen A.; Bercaw, John E.

    2004-02-17

    The invention provides metallocene catalyst systems for the controlled polymerization of alkenes to a wide variety of polyolefins and olefin coplymers. Catalyst systems are provided that specifically produce isotactic, syndiotactic and steroblock polyolefins. The type of polymer produced can be controlled by varying the catalyst system, specifically by varying the ligand substituents. Such catalyst systems are particularly useful for the polymerization of polypropylene to give elastomeric polypropylenes. The invention also provides novel elastomeric polypropylene polymers characterized by dyad (m) tacticities of about 55% to about 65%, pentad (mmmm) tacticities of about 25% to about 35%, molecular weights (M.sub.W) in the range of about 50,000 to about 2,000,000, and have mmrm+rrmr peak is less than about 5%.

  20. Catalytic Transfer Hydrogenation of Furfural to 2-Methylfuran and 2-Methyltetrahydrofuran over Bimetallic Copper-Palladium Catalysts.

    PubMed

    Chang, Xin; Liu, An-Feng; Cai, Bo; Luo, Jin-Yue; Pan, Hui; Huang, Yao-Bing

    2016-12-08

    The catalytic transfer hydrogenation of furfural to the fuel additives 2-methylfuran (2-MF) and 2-methyltetrahydrofuran (2-MTHF) was investigated over various bimetallic catalysts in the presence of the hydrogen donor 2-propanol. Of all the as-prepared catalysts, bimetallic Cu-Pd catalysts showed the highest catalytic activities towards the formation of 2-MF and 2-MTHF with a total yield of up to 83.9 % yield at 220 °C in 4 h. By modifying the Pd ratios in the Cu-Pd catalyst, 2-MF or 2-MTHF could be obtained selectively as the prevailing product. The other reaction conditions also had a great influence on the product distribution. Mechanistic studies by reaction monitoring and intermediate conversion revealed that the reaction proceeded mainly through the hydrogenation of furfural to furfuryl alcohol, which was followed by deoxygenation to 2-MF in parallel to deoxygenation/ring hydrogenation to 2-MTHF. Finally, the catalyst showed a high reactivity and stability in five catalyst recycling runs, which represents a significant step forward toward the catalytic transfer hydrogenation of furfural. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Study on the NO removal efficiency of the lignite pyrolysis coke catalyst by selective catalytic oxidation method

    PubMed Central

    Wen, Xin; Ma, Zhenhua; Zhang, Lei; Sha, Xiangling; He, Huibin; Zeng, Tianyou; Wang, Yusu; Chen, Jihao

    2017-01-01

    Selective catalytic oxidation (SCO) method is commonly used in wet denitration technology; NO after the catalytic oxidation can be removed with SO2 together by wet method. Among the SCO denitration catalysts, pyrolysis coke is favored by the advantages of low cost and high catalytic activity. In this paper, SCO method combined with pyrolysis coke catalyst was used to remove NO from flue gas. The effects of different SCO operating conditions and different pyrolysis coke catalyst made under different process conditions were studied. Besides, the specific surface area of the catalyst and functional groups were analyzed with surface area analyzer and Beohm titration. The results are: (1) The optimum operating conditions of SCO is as follows: the reaction temperature is 150°C and the oxygen content is 6%. (2) The optimum pyrolysis coke catalyst preparation processes are as follows: the pyrolysis final temperature is 750°C, and the heating rate is 44°C / min. (3) The characterization analysis can be obtained: In the denitration reaction, the basic functional groups and the phenolic hydroxyl groups of the catalyst play a major role while the specific surface area not. PMID:28793346

  2. Carbon and Mo transformations during the synthesis of mesoporous Mo2C/carbon catalysts by carbothermal hydrogen reduction

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Liu, Shida; Liu, Bing; Montes, Vicente; Hill, Josephine M.; Smith, Kevin J.

    2018-02-01

    The synthesis of mesoporous Mo2C/carbon catalysts by carbothermal hydrogen reduction is reported. Petroleum coke (petcoke) was activated with KOH at 800 °C to obtain high surface area microporous activated petcoke (APC; 2000 m2/g). The APC was wet impregnated with ammonium heptamolybdate (AHM: 10 wt% Mo), dried and reduced in H2 at temperatures from 400 to 800 °C, to yield Mo2C/APC catalysts. Increased reduction temperature increased the Mo2C yield and the mesoporous volume of the Mo2C/APC. At a reduction temperature of 750 °C the mesopore volume of the catalyst doubled compared to the APC support and accounted for 37% of the total pore volume. Maintaining the final CHR temperature for 90 min further increased the Mo2C yield and mesoporosity of the catalyst. The role of Mo2C in the catalytic hydrogenation of the APC and mesopore generation is demonstrated. The activity of the Mo2C/carbon catalysts in the hydrodeoxygenation of 4-methyl phenol increased with increased CHR temperature and catalyst mesoporosity.

  3. Synthesis of high-quality diesel with furfural and 2-methylfuran from hemicellulose.

    PubMed

    Li, Guangyi; Li, Ning; Wang, Zhiqiang; Li, Changzhi; Wang, Aiqin; Wang, Xiaodong; Cong, Yu; Zhang, Tao

    2012-10-01

    Hydroxyalkylation-alkylation (HAA) coupled with hydrodeoxygenation is a promising route for the synthesis of renewable high-quality diesel or jet fuel. In this work, a series of solid-acid catalysts were firstly used for HAA between lignocellulose-derived furan and carbonyl compounds. Among the investigated catalysts, Nafion-212 resin demonstrated the highest activity and stability. Owing to the high activity of the reactants and the advantage in industrial integration, the HAA of 2-methylfuran (2-MF) and furfural can be considered as a prospective route in future applications. Catalyst loading, reaction temperature, and time had evident effects on the HAA of 2-MF and furfural over Nafion-212 resin. Finally, the HAA product of 2-MF and furfural was hydrogenated over a Pd/C catalyst and hydrodeoxygenated over Pt-loaded solid-acid catalysts. Pt/zirconium phosphate (Pt/ZrP) was found to be the best catalyst for hydrodeoxygenation. Over the 4 % Pt/ZrP catalyst, a 94 % carbon yield of diesel and 75 % carbon yield of C15 hydrocarbons (with 6-butylundecane as the major component) was achieved. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Highly Efficient Selective Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol over Gold Supported on Zinc Oxide Materials

    DOE PAGES

    Chen, Hangning; Cullen, David A.; Larese, J. Z.

    2015-11-30

    We used Au/ZnO catalysts for liquid-phase selective hydrogenation of cinnamaldehyde to cinnamyl alcohol and compared with Au/Fe 2O 3 catalysts. To investigate the influence of the support on the hydrogenation activity and selectivity, three different Au/ZnO catalysts were synthesized, including Au/rod-tetrapod ZnO, Au/porous ZnO, and Au/ZnO-CP prepared using a coprecipitation method. Moreover, the influence of calcination temperature was also systematically investigated in this study. The characterization of Au/ZnO catalysts was performed using ICP, N 2 adsorption/desorption isotherms, X-ray diffraction, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy. Among all the supported Au catalysts prepared in this study, Au/ZnO-CP exhibits bothmore » the highest hydrogenation activity and selectivity. Using a 1.5% Au/ZnO-CP catalyst, 100% selectivity could be achieved with 94.9% conversion. Finally, we find that the Au particle (size and shape), the ZnO support (size and surface texture) and the interaction between Au and ZnO are three important parameters for achieving a highly efficient Au/ZnO catalyst.« less

  5. Colloidal polymer particles as catalyst carriers and phase transfer agents in multiphasic hydroformylation reactions.

    PubMed

    Peral, D; Stehl, D; Bibouche, B; Yu, H; Mardoukh, J; Schomäcker, R; Klitzing, R von; Vogt, D

    2018-03-01

    Colloidal particles have been used to covalently bind ligands for the heterogenization of homogeneous catalysts. The replacement of the covalent bonds by electrostatic interactions between particles and the catalyst could preserve the selectivity of a truly homogeneous catalytic process. Functionalized polymer particles with trimethylammonium moieties, dispersed in water, with a hydrophobic core and a hydrophilic shell have been synthesized by emulsion polymerization and have been thoroughly characterized. The ability of the particles with different monomer compositions to act as catalyst carriers has been studied. Finally, the colloidal dispersions have been applied as phase transfer agents in the multiphasic rhodium-catalyzed hydroformylation of 1-octene. The hydrodynamic radius of the particles has been shown to be around 100 nm, and a core-shell structure could be observed by atomic force microscopy. The polymer particles were proven to act as carriers for the water-soluble hydroformylation catalyst, due to electrostatic interaction between the functionalized particles bearing ammonium groups and the sulfonated ligands of the catalyst. The particles were stable under the hydroformylation conditions and the aqueous catalyst phase could be recycled three times. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Stable metal-organic frameworks as a host platform for catalysis and biomimetics.

    PubMed

    Qin, Jun-Sheng; Yuan, Shuai; Lollar, Christina; Pang, Jiandong; Alsalme, Ali; Zhou, Hong-Cai

    2018-04-24

    Recent years have witnessed the exploration and synthesis of an increasing number of metal-organic frameworks (MOFs). The utilization of stable MOFs as a platform for catalysis and biomimetics is discussed. This Feature Article will provide insights into the rational design and synthesis of three types of stable MOF catalysts on the basis of structural features of MOFs, that is, (i) MOF catalysts with catalytic sites on metal nodes, (ii) MOF catalysts with catalytic sites immobilized in organic struts, and (iii) MOF catalysts with catalytic centres encapsulated in the pores. Then, MOFs used in biomimetics including biomimetic mineralization, biosensors and biomimetic replication are introduced. Finally, a discussion on the challenges that must be addressed for successful implementation of MOFs in catalysis and biomimetics is presented.

  7. Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction

    DOE PAGES

    Gong, Yongji; Fei, Huilong; Zou, Xiaolong; ...

    2015-02-02

    Here, we show that nanoribbons of boron- and nitrogen-substituted graphene can be used as efficient electrocatalysts for the oxygen reduction reaction (ORR). Optimally doped graphene nanoribbons made into three-dimensional porous constructs exhibit the highest onset and half-wave potentials among the reported metal-free catalysts for this reaction and show superior performance compared to commercial Pt/C catalyst. Moreover, this catalyst possesses high kinetic current density and four-electron transfer pathway with low hydrogen peroxide yield during the reaction. Finally, first-principles calculations suggest that such excellent electrocatalytic properties originate from the abundant edges of boron- and nitrogen-codoped graphene nanoribbons, which significantly reduce the energymore » barriers of the rate-determining steps of the ORR reaction.« less

  8. Hybrid Nanomaterials with Single-Site Catalysts by Spatially Controllable Immobilization of Nickel Complexes via Photoclick Chemistry for Alkene Epoxidation.

    PubMed

    Ghosh, Dwaipayan; Febriansyah, Benny; Gupta, Disha; Ng, Leonard Kia-Sheun; Xi, Shibo; Du, Yonghua; Baikie, Tom; Dong, ZhiLi; Soo, Han Sen

    2018-05-22

    Catalyst deactivation is a persistent problem not only for the scientific community but also in industry. Isolated single-site heterogeneous catalysts have shown great promise to overcome these problems. Here, a versatile anchoring strategy for molecular complex immobilization on a broad range of semiconducting or insulating metal oxide ( e. g., titanium dioxide, mesoporous silica, cerium oxide, and tungsten oxide) nanoparticles to synthesize isolated single-site catalysts has been studied systematically. An oxidatively stable anchoring group, maleimide, is shown to form covalent linkages with surface hydroxyl functionalities of metal oxide nanoparticles by photoclick chemistry. The nanocomposites have been thoroughly characterized by techniques including UV-visible diffuse reflectance spectroscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, infrared spectroscopy, and X-ray absorption spectroscopy (XAS). The IR spectroscopic studies confirm the covalent linkages between the maleimide group and surface hydroxyl functionalities of the oxide nanoparticles. The hybrid nanomaterials function as highly efficient catalysts for essentially quantitative oxidations of terminal and internal alkenes and show molecular catalyst product selectivities even in more eco-friendly solvents. XAS studies verify the robustness of the catalysts after several catalytic cycles. We have applied the photoclick anchoring methodology to precisely control the deposition of a luminescent variant of our catalyst on the metal oxide nanoparticles. Overall, we demonstrate a general approach to use irradiation to anchor molecular complexes on oxide nanoparticles to create recyclable, hybrid, single-site catalysts that function with high selectivity in a broad range of solvents. We have achieved a facile, spatially and temporally controllable photoclick method that can potentially be extended to other ligands, catalysts, functional molecules, and surfaces.

  9. Vanadium and tungsten release from V-based selective catalytic reduction diesel aftertreatment

    NASA Astrophysics Data System (ADS)

    Liu, Z. Gerald; Ottinger, Nathan A.; Cremeens, Christopher M.

    2015-03-01

    Vanadium-based selective catalytic reduction (V-SCR) catalysts are currently used for the reduction of nitrogen oxides (NOx) in worldwide diesel applications including Euro IV, V, and VI as well as U.S. nonroad Tier 4 Final. Although V-SCR catalysts are attractive because of their high NOx conversion, low cost, resistance to sulfur poisoning, and ability to reduce hydrocarbon emissions, there is concern that V-SCR washcoat material (e.g., vanadium and tungsten) and its derivatives may be released into the atmosphere, potentially harming human health and the environment. In this study, vanadium and tungsten release measurements are made with both a reactor- and engine-based approach in order to determine the potential release of these metals from diesel exhaust aftertreatment systems that contain a V-SCR catalyst. Results for a commercially available V-SCR reveal that both V and W release begin at 500 °C, and both reactor- and engine-based methods are capable of measuring qualitatively similar release. Emissions with the engine-based method are higher at all temperatures evaluated, likely due to this method's ability to capture particle-phase and vapor-phase emissions which become particle-bound after their evolution from the catalyst surface. Certification relevant data (NRTC and NRSC) from a nonroad engine is used to understand probable emissions from V-SCR aftertreatment architectures. Finally, results from a V-SCR catalyst formulated for improved thermal durability illustrate that it is possible to increase the maximum temperature for V-SCR catalysts. This comprehensive understanding of the temperature dependence of vanadium and tungsten volatility can be used to further analyze the full impact of diesel aftertreatment on exhaust emissions and their impact on human health and environmental toxicity.

  10. Heterogeneous Pd catalysts as emulsifiers in Pickering emulsions for integrated multistep synthesis in flow chemistry

    PubMed Central

    Hiebler, Katharina; Lichtenegger, Georg J; Maier, Manuel C; Park, Eun Sung; Gonzales-Groom, Renie

    2018-01-01

    Within the “compartmentalised smart factory” approach of the ONE-FLOW project the implementation of different catalysts in “compartments” provided by Pickering emulsions and their application in continuous flow is targeted. We present here the development of heterogeneous Pd catalysts that are ready to be used in combination with biocatalysts for catalytic cascade synthesis of active pharmaceutical ingredients (APIs). In particular, we focus on the application of the catalytic systems for Suzuki–Miyaura cross-coupling reactions, which is the key step in the synthesis of the targeted APIs valsartan and sacubitril. An immobilised enzyme will accomplish the final product formation via hydrolysis. In order to create a large interfacial area for the catalytic reactions and to keep the reagents separated until required, the catalyst particles are used to stabilise Pickering emulsions of oil and water. A set of Ce–Sn–Pd oxides with the molecular formula Ce0.99− xSnxPd0.01O2−δ (x = 0–0.99) has been prepared utilising a simple single-step solution combustion method. The high applicability of the catalysts for different functional groups and their minimal leaching behaviour is demonstrated with various Suzuki–Miyaura cross-coupling reactions in batch as well as in continuous flow employing the so-called “plug & play reactor”. Finally, we demonstrate the use of these particles as the sole emulsifier of oil–water emulsions for a range of oils. PMID:29623127

  11. Recent Advances in Catalyst Accelerated Stress Tests for Polymer Electrolyte Membrane Fuel Cells

    DOE PAGES

    Stariha, Sarah; Macauley, Natalia; Sneed, Brian T.; ...

    2018-03-15

    The U.S. Department of Energy (DOE) set the 2020 durability target for polymer electrolyte membrane fuel cell transportation applications at 5000 hours. Since it is impractical to test every fuel cell for this length of time, there is ever increasing interest in developing accelerated stress tests (ASTs) that can accurately simulate the material component degradation in the membrane electrode assembly (MEA) observed under automotive operating conditions, but over a much shorter time frame. In this study, a square-wave catalyst AST was examined that shows a 5X time acceleration factor over the triangle-wave catalyst AST and a 25X time acceleration factormore » over the modified wet drive-cycle catalyst durability protocol, significantly decreasing the testing time. These acceleration factors were correlated to the platinum (Pt) particle size increase and associated decrease in electrochemical surface area (ECSA). This square-wave AST has been adopted by the DOE as a standard protocol to evaluate catalyst durability. We also compare three catalyst-durability protocols using state-of-the-art platinum-cobalt catalysts supported on high surface area carbon (SOA Pt-Co/HSAC) in the cathode catalyst layer. The results for each of the three tests showed both catalyst particle size increase and transition metal leaching. Moreover the acceleration factors for the alloy catalysts were smaller due to Co leaching being the predominant mechanism of voltage decay in ~5 nm PtCo/C catalysts. Finally, an extremely harsh carbon corrosion AST was run using the same SOA Pt-Co/HSAC catalyst. This showed minimal change in particle size and a low percentage Co loss from the cathode catalyst particles, despite a significant loss in catalyst layer thickness and cell performance. The carbon corrosion rates during these various ASTs were directly measured by monitoring the CO 2 emission from the cathode, further confirming the ability of the square-wave AST to evaluate the electro-catalyst independently of the support.« less

  12. Recent Advances in Catalyst Accelerated Stress Tests for Polymer Electrolyte Membrane Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stariha, Sarah; Macauley, Natalia; Sneed, Brian T.

    The U.S. Department of Energy (DOE) set the 2020 durability target for polymer electrolyte membrane fuel cell transportation applications at 5000 hours. Since it is impractical to test every fuel cell for this length of time, there is ever increasing interest in developing accelerated stress tests (ASTs) that can accurately simulate the material component degradation in the membrane electrode assembly (MEA) observed under automotive operating conditions, but over a much shorter time frame. In this study, a square-wave catalyst AST was examined that shows a 5X time acceleration factor over the triangle-wave catalyst AST and a 25X time acceleration factormore » over the modified wet drive-cycle catalyst durability protocol, significantly decreasing the testing time. These acceleration factors were correlated to the platinum (Pt) particle size increase and associated decrease in electrochemical surface area (ECSA). This square-wave AST has been adopted by the DOE as a standard protocol to evaluate catalyst durability. We also compare three catalyst-durability protocols using state-of-the-art platinum-cobalt catalysts supported on high surface area carbon (SOA Pt-Co/HSAC) in the cathode catalyst layer. The results for each of the three tests showed both catalyst particle size increase and transition metal leaching. Moreover the acceleration factors for the alloy catalysts were smaller due to Co leaching being the predominant mechanism of voltage decay in ~5 nm PtCo/C catalysts. Finally, an extremely harsh carbon corrosion AST was run using the same SOA Pt-Co/HSAC catalyst. This showed minimal change in particle size and a low percentage Co loss from the cathode catalyst particles, despite a significant loss in catalyst layer thickness and cell performance. The carbon corrosion rates during these various ASTs were directly measured by monitoring the CO 2 emission from the cathode, further confirming the ability of the square-wave AST to evaluate the electro-catalyst independently of the support.« less

  13. A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide

    PubMed Central

    Anthonysamy, Shahreen Binti Izwan; Afandi, Syahidah Binti; Khavarian, Mehrnoush

    2018-01-01

    Various types of carbon-based and non-carbon-based catalyst supports for nitric oxide (NO) removal through selective catalytic reduction (SCR) with ammonia are examined in this review. A number of carbon-based materials, such as carbon nanotubes (CNTs), activated carbon (AC), and graphene (GR) and non-carbon-based materials, such as Zeolite Socony Mobil–5 (ZSM-5), TiO2, and Al2O3 supported materials, were identified as the most up-to-date and recently used catalysts for the removal of NO gas. The main focus of this review is the study of catalyst preparation methods, as this is highly correlated to the behaviour of NO removal. The general mechanisms involved in the system, the Langmuir–Hinshelwood or Eley–Riedeal mechanism, are also discussed. Characterisation analysis affecting the surface and chemical structure of the catalyst is also detailed in this work. Finally, a few major conclusions are drawn and future directions for work on the advancement of the SCR-NH3 catalyst are suggested. PMID:29600136

  14. A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide.

    PubMed

    Anthonysamy, Shahreen Binti Izwan; Afandi, Syahidah Binti; Khavarian, Mehrnoush; Mohamed, Abdul Rahman Bin

    2018-01-01

    Various types of carbon-based and non-carbon-based catalyst supports for nitric oxide (NO) removal through selective catalytic reduction (SCR) with ammonia are examined in this review. A number of carbon-based materials, such as carbon nanotubes (CNTs), activated carbon (AC), and graphene (GR) and non-carbon-based materials, such as Zeolite Socony Mobil-5 (ZSM-5), TiO 2 , and Al 2 O 3 supported materials, were identified as the most up-to-date and recently used catalysts for the removal of NO gas. The main focus of this review is the study of catalyst preparation methods, as this is highly correlated to the behaviour of NO removal. The general mechanisms involved in the system, the Langmuir-Hinshelwood or Eley-Riedeal mechanism, are also discussed. Characterisation analysis affecting the surface and chemical structure of the catalyst is also detailed in this work. Finally, a few major conclusions are drawn and future directions for work on the advancement of the SCR-NH 3 catalyst are suggested.

  15. One-pot deposition of palladium on hybrid TiO2 nanoparticles and catalytic applications in hydrogenation.

    PubMed

    Mehri, Afef; Kochkar, Hafedh; Daniele, Stéphane; Mendez, Violaine; Ghorbel, Abdelhamid; Berhault, Gilles

    2012-03-01

    One-pot deposition of Pd onto TiO(2) has been achieved through directly contacting palladium(II) salt with nanosized functionalized TiO(2) support initially obtained by sol-gel process using titanium isopropoxide and citric acid. Citrate groups act as functional moieties able to directly reduce the Pd salt avoiding any further reducing treatment. Various palladium salts (Na(2)PdCl(4) and Pd(NH(3))(4)Cl(2)·H(2)O) and titanium to citrate (Ti/CA) ratios (20, 50, and 100) were used in order to study the effect of the nature of the precursor and of the citrate content on the final Pd particle size and catalytic properties of the as-obtained Pd/TiO(2) systems. Characterization was performed using N(2) adsorption-desorption isotherms, ICP-AES, FTIR, XRD, XPS, and TEM. The as-obtained hybrid Pd/TiO(2) catalysts were tested in the selective hydrogenation (HYD) of an α,β-unsaturated aldehyde, i.e. cinnamaldehyde. Citrate-free Pd/TiO(2)-based catalysts present lower selectivity into saturated alcohol. However, citrate-functionalized Pd/TiO(2) catalyst seems to control the selectivity, the particle size and dispersion of Pd NPs leading to high intrinsic activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    NASA Astrophysics Data System (ADS)

    Islam, A. E.; Nikolaev, P.; Amama, P. B.; Zakharov, D.; Sargent, G.; Saber, S.; Huffman, D.; Erford, M.; Semiatin, S. L.; Stach, E. A.; Maruyama, B.

    2015-09-01

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only in the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. With the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.

  17. Spectroscopic investigation of nitrogen-functionalized carbon materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Kevin N.; Christensen, Steven T.; Nordlund, Dennis

    2016-04-07

    Carbon materials are used in a diverse set of applications ranging from pharmaceuticals to catalysis. Nitrogen modification of carbon powders has shown to be an effective method for enhancing both surface and bulk properties of as-received material for a number of applications. Unfortunately, control of the nitrogen modification process is challenging and can limit the effectiveness and reproducibility of N-doped materials. Additionally, the assignment of functional groups to specific moieties on the surface of nitrogen-modified carbon materials is not straightforward. Herein, we complete an in-depth analysis of functional groups present at the surface of ion-implanted Vulcan and Graphitic Vulcan throughmore » the use of X-ray photoelectron spectroscopy (XPS) and near edge X-ray adsorption fine structure spectroscopy (NEXAFS). Our results show that regardless of the initial starting materials used, nitrogen ion implantation conditions can be tuned to increase the amount of nitrogen incorporation and to obtain both similar and reproducible final distributions of nitrogen functional groups. The development of a well-controlled/reproducible nitrogen implantation pathway opens the door for carbon supported catalyst architectures to have improved numbers of nucleation sites, decreased particle size, and enhanced catalyst-support interactions.« less

  18. Bimetallic Catalysts.

    ERIC Educational Resources Information Center

    Sinfelt, John H.

    1985-01-01

    Chemical reaction rates can be controlled by varying composition of miniscule clusters of metal atoms. These bimetallic catalysts have had major impact on petroleum refining, where work has involved heterogeneous catalysis (reacting molecules in a phase separate from catalyst.) Experimentation involving hydrocarbon reactions, catalytic…

  19. Investigation of NO(x) Removal from Small Engine Exhaust

    NASA Technical Reports Server (NTRS)

    Akyurtlu, Ates; Akyurtlu, Jale F.

    1999-01-01

    Contribution of emissions from small engines to the air pollution is significant. Due to differences in operating conditions and economics, the pollution control systems designed for automobiles will be neither suitable nor economically feasible for use on small engines. The objective of this project was to find a catalyst for the removal of NOx from the exhaust of small engines which use a rich air to fuel ratio. The desired catalyst should be inexpensive so that the cost of the pollution control unit will be only a small fraction of the total equipment cost. The high cost of noble metals makes them too expensive for use as NOx catalyst for small engines. Catalytic reduction of NO can also be accomplished by base-metal oxide catalysts. The main disadvantage of base-metal catalysts is their deactivation by poisons and high temperatures. Requirements for the length of the life of the small engine exhaust catalysts are much less than those for automobile exhaust catalysts. Since there is no oxygen in the exhaust gases, reduction selectivity is not a problem. Also, the reducing exhaust gases might help prevent the harmful interactions of the catalyst with the support. For these reasons only the supported metal oxide catalysts were investigated in this project.

  20. Investigation of NOx Removal from Small Engine Exhaust

    NASA Technical Reports Server (NTRS)

    Akyurtlu, Ates; Akyurtlu, Jale F.

    1999-01-01

    Contribution of emissions from small engines to the air pollution is significant. Due to differences in operating conditions and economics, the pollution control systems designed for automobiles will be neither suitable nor economically feasible for use on small engines. The objective of this project was to find a catalyst for the removal of NOx from the exhaust of small engines which use a rich air to fuel ratio. The desired catalyst should be inexpensive so that the cost of the pollution control unit will be only a small fraction of the total equipment cost. The high cost of noble metals makes them too expensive for use as NOx catalyst for small engines. Catalytic reduction of Nitrogen Oxide (NO) can also be accomplished by base-metal oxide catalysts. The main disadvantage of base-metal catalysts is their deactivation by poisons and high temperatures. Requirements for the length of the life of the small engine exhaust catalysts are much less than those for automobile exhaust catalysts. Since there is no oxygen in the exhaust gases, reduction selectivity is not a problem. Also, the reducing exhaust gases might help prevent the harmful interactions of the catalyst with the support. For these reasons only the supported metal oxide catalysts were investigated in this project.

  1. Minimizing Isolate Catalyst Motion in Metal-Assisted Chemical Etching for Deep Trenching of Silicon Nanohole Array.

    PubMed

    Kong, Lingyu; Zhao, Yunshan; Dasgupta, Binayak; Ren, Yi; Hippalgaonkar, Kedar; Li, Xiuling; Chim, Wai Kin; Chiam, Sing Yang

    2017-06-21

    The instability of isolate catalysts during metal-assisted chemical etching is a major hindrance to achieve high aspect ratio structures in the vertical and directional etching of silicon (Si). In this work, we discussed and showed how isolate catalyst motion can be influenced and controlled by the semiconductor doping type and the oxidant concentration ratio. We propose that the triggering event in deviating isolate catalyst motion is brought about by unequal etch rates across the isolate catalyst. This triggering event is indirectly affected by the oxidant concentration ratio through the etching rates. While the triggering events are stochastic, the doping concentration of silicon offers a good control in minimizing isolate catalyst motion. The doping concentration affects the porosity at the etching front, and this directly affects the van der Waals (vdWs) forces between the metal catalyst and Si during etching. A reduction in the vdWs forces resulted in a lower bending torque that can prevent the straying of the isolate catalyst from its directional etching, in the event of unequal etch rates. The key understandings in isolate catalyst motion derived from this work allowed us to demonstrate the fabrication of large area and uniformly ordered sub-500 nm nanoholes array with an unprecedented high aspect ratio of ∼12.

  2. Particulate Emissions Control using Advanced Filter Systems: Final Report for Argonne National Laboratory, Corning Inc. and Hyundai Motor Company CRADA Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seong, Hee Je; Choi, Seungmok

    2015-10-09

    This is a 3-way CRADA project working together with Corning, Inc. and Hyundai Motor Co. (HMC). The project is to understand particulate emissions from gasoline direct-injection engines (GDI) and their physico-chemical properties. In addition, this project focuses on providing fundamental information about filtration and regeneration mechanisms occurring in gasoline particulate filter (GPF) systems. For the work, Corning provides most advanced filter substrates for GPF applications and HMC provides three-way catalyst (TWC) coating services of these filter by way of a catalyst coating company. Then, Argonne National Laboratory characterizes fundamental behaviors of filtration and regeneration processes as well as evaluated TWCmore » functionality for the coated filters. To examine aging impacts on TWC and GPF performance, the research team evaluates gaseous and particulate emissions as well as back-pressure increase with ash loading by using an engine-oil injection system to accelerate ash loading in TWC-coated GPFs.« less

  3. Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces

    DOE PAGES

    Chen, Chen; Kang, Yijin; Huo, Ziyang; ...

    2014-02-27

    Control of structure at the atomic level can precisely and effectively tune catalytic properties of materials, enabling enhancement in both activity and durability. We synthesized a highly active and durable class of electrocatalysts by exploiting the structural evolution of platinum-nickel (Pt-Ni) bimetallic nanocrystals. The starting material, crystalline PtNi 3 polyhedra, transforms in solution by interior erosion into Pt 3Ni nanoframes with surfaces that offer three-dimensional molecular accessibility. The edges of the Pt-rich PtNi 3 polyhedra are maintained in the final Pt 3Ni nanoframes. Both the interior and exterior catalytic surfaces of this open-framework structure are composed of the nanosegregated Pt-skinmore » structure, which exhibits enhanced oxygen reduction reaction (ORR) activity. The Pt 3Ni nanoframe catalysts achieved a factor of 36 enhancement in mass activity and a factor of 22 enhancement in specific activity, respectively, for this reaction (relative to state-of-the-art platinum-carbon catalysts) during prolonged exposure to reaction conditions.« less

  4. Alkali- and Sulfur-Resistant Tungsten-Based Catalysts for NOx Emissions Control.

    PubMed

    Huang, Zhiwei; Li, Hao; Gao, Jiayi; Gu, Xiao; Zheng, Li; Hu, Pingping; Xin, Ying; Chen, Junxiao; Chen, Yaxin; Zhang, Zhaoliang; Chen, Jianmin; Tang, Xingfu

    2015-12-15

    The development of catalysts with simultaneous resistance to alkalis and sulfur poisoning is of great importance for efficiently controlling NOx emissions using the selective catalytic reduction of NOx with NH3 (SCR), because the conventional V2O5/WO3-TiO2 catalysts often suffer severe deactivation by alkalis. Here, we support V2O5 on a hexagonal WO3 (HWO) to develop a V2O5/HWO catalyst, which has exceptional resistance to alkali and sulfur poisoning in the SCR reactions. A 350 μmol g(-1) K(+) loading and the presence of 1,300 mg m(-3) SO2 do not almost influence the SCR activity of the V2O5/HWO catalyst, and under the same conditions, the conventional V2O5/WO3-TiO2 catalysts completely lost the SCR activity within 4 h. The strong resistance to alkali and sulfur poisoning of the V2O5/HWO catalysts mainly originates from the hexagonal structure of the HWO. The HWO allows the V2O5 to be highly dispersed on the external surfaces for catalyzing the SCR reactions and has the relatively smooth surfaces and the size-suitable tunnels specifically for alkalis' diffusion and trapping. This work provides a useful strategy to develop SCR catalysts with exceptional resistance to alkali and sulfur poisoning for controlling NOx emissions from the stationary source and the mobile source.

  5. External Catalyst Breakup Phenomena

    DTIC Science & Technology

    1975-09-01

    thruster exposure. a Erosion .by a pulsed liquid stream at high velocity. * Thermal shock from liquid quench cooldovn. 9 Erosion resulting from solid...the liquid velocity. During a cold start contact with hydrazine leading to liquid wetting can lead to very high internal pressures as a result ot the...compression and final dilation, suggest benefits from reducing this variable. A . Isolating the catalyst particles from one another so as to avoid high

  6. Oxidation Catalysts in the Dark and the Light

    DTIC Science & Technology

    2010-01-01

    TiO2 with added silver, chromium, vanadium, manganese, carbon, and/or sulfur (selected transition metal ions and selected non- metals ) are very...Ranjit, Koodali T.; Klabunde, Kenneth J.; “ Catalysis by Metal Oxides,” Surface and Nanomolecular Catalysis , ed. Ryan Richards, CRC Press, NY, Ch. 2, pgs...REPORT Oxidation Catalysts in the Dark and the Light--Final Report 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Extensive research on mixed metal oxide

  7. Composite catalysts supported on modified carbon substrates and methods of making the same

    DOEpatents

    Popov, Branko N [Columbia, SC; Subramanian, Nalini [Kennesaw, GA; Colon-Mercado, Hector R [Columbia, SC

    2009-11-17

    A method of producing a composite carbon catalyst is generally disclosed. The method includes oxidizing a carbon precursor (e.g., carbon black). Optionally, nitrogen functional groups can be added to the oxidized carbon precursor. Then, the oxidized carbon precursor is refluxed with a non-platinum transitional metal precursor in a solution. Finally, the solution is pyrolyzed at a temperature of at least about 500.degree. C.

  8. An efficient protocol for the synthesis of quinoxaline derivatives at room temperature using recyclable alumina-supported heteropolyoxometalates.

    PubMed

    Ruiz, Diego M; Autino, Juan C; Quaranta, Nancy; Vázquez, Patricia G; Romanelli, Gustavo P

    2012-01-01

    We report a suitable quinoxaline synthesis using molybdophosphovanadates supported on commercial alumina cylinders as catalysts. These catalysts were prepared by incipient wetness impregnation. The catalytic test was performed under different reaction conditions in order to know the performance of the synthesized catalysts. The method shows high yields of quinoxaline derivatives under heterogeneous conditions. Quinoxaline formation was obtained using benzyl, o-phenylenediamine, and toluene as reaction solvent at room temperature. The CuH(2)PMo(11)VO(40) supported on alumina showed higher activity in the tested reaction. Finally, various quinoxalines were prepared under mild conditions and with excellent yields.

  9. Plated nickel wire mesh makes superior catalyst bed

    NASA Technical Reports Server (NTRS)

    Sill, M.

    1965-01-01

    Porous nickel mesh screen catalyst bed produces gas evolution in hydrogen peroxide thrust chambers used for attitude control of space vehicles. The nickel wire mesh disks in the catalyst bed are plated in rugose form with a silver-gold coating.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stariha, Sarah; Macauley, Natalia; Sneed, Brian T.

    The U.S. Department of Energy (DOE) set the 2020 durability target for polymer electrolyte membrane fuel cell transportation applications at 5000 hours. Since it is impractical to test every fuel cell for this length of time, there is ever increasing interest in developing accelerated stress tests (ASTs) that can accurately simulate the material component degradation in the membrane electrode assembly (MEA) observed under automotive operating conditions, but over a much shorter time frame. In this study, a square-wave catalyst AST was examined that shows a 5X time acceleration factor over the triangle-wave catalyst AST and a 25X time acceleration factormore » over the modified wet drive-cycle catalyst durability protocol, significantly decreasing the testing time. These acceleration factors were correlated to the platinum (Pt) particle size increase and associated decrease in electrochemical surface area (ECSA). This square-wave AST has been adopted by the DOE as a standard protocol to evaluate catalyst durability. We also compare three catalyst-durability protocols using state-of-the-art platinum-cobalt catalysts supported on high surface area carbon (SOA Pt-Co/HSAC) in the cathode catalyst layer. The results for each of the three tests showed both catalyst particle size increase and transition metal leaching. Moreover the acceleration factors for the alloy catalysts were smaller due to Co leaching being the predominant mechanism of voltage decay in ~5 nm PtCo/C catalysts. Finally, an extremely harsh carbon corrosion AST was run using the same SOA Pt-Co/HSAC catalyst. This showed minimal change in particle size and a low percentage Co loss from the cathode catalyst particles, despite a significant loss in catalyst layer thickness and cell performance. The carbon corrosion rates during these various ASTs were directly measured by monitoring the CO 2 emission from the cathode, further confirming the ability of the square-wave AST to evaluate the electro-catalyst independently of the support.« less

  11. Nitrogen-doped microporous carbon: An efficient oxygen reduction catalyst for Zn-air batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Yuan; Wang, Meng-Ran; Lai, Yan-Qing; Li, Xiao-Yan

    2017-08-01

    N-doped microporous carbon as an exceptional metal-free catalyst from waste biomass (banana peel as representative) was obtained via fast catalysis carbonization, followed by N-doping modification. The method achieves a relatively high C conversion efficiency of ∼41.9%. The final carbon materials are doped by N (∼3 at.%) and possess high surface area (∼1097 m2 g-1) and abundant micropores. Compared to commercial Pt/C materials, the as-prepared carbon catalyst exhibits a comparable electrocatalytic activity and much better stability. Furthermore, the metal-free catalyst loaded Zn-air battery possesses higher discharge voltage and power density as compared with that of commercial Pt/C. This novel technique can also be readily applied to produce metal-free carbon catalysts from other typical waste biomass (e.g., orange peel, leaves) as the carbon sources. The method can be developed as a potentially general and effective industrial route to transform waste biomass into high value-added microporous carbon with superior functionalities.

  12. FINAL TECHNICAL REPORT Synthetic, Structural and Mechanistic Investigations of Olefin Polymerization Catalyzed by Early Transition Metal Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bercaw, John E.

    2014-05-23

    The goal of this project is to develop new catalysts and provide understanding of ligand effects on catalyst composition in order to guide development of superior catalyst systems for polymerization of olefins. Our group is designing and synthesizing new “LX2”,“pincer” type ligands and complexing early transition metals to afford precatalysts. In a collaboration with Hans Brintzinger from the University of Konstanz, we are also examining the structures of the components of catalyst systems obtained from reaction of zirconocene dichlorides with aluminum alkyls and aluminum hydrides. Such systems are currently used commercially to produce polyolefins, but the nature of the activemore » and dormant species as well as the mechanisms of their interconversions are not understood. New information on catalyst design and performance may lead to new types of polymers and/or new chemical transformations between hydrocarbons and transition metal centers, ultimately contributing to the development of catalytic reactions for the production of fuels, commodity and polymeric materials.« less

  13. Atmosphere Processing Module Automation and Catalyst Durability Analysis for Mars ISRU Pathfinder

    NASA Technical Reports Server (NTRS)

    Petersen, Elspeth M.

    2016-01-01

    The Mars In-Situ Resource Utilization Pathfinder was designed to create fuel using components found in the planet’s atmosphere and regolith for an ascension vehicle to return a potential sample return or crew return vehicle from Mars. The Atmosphere Processing Module (APM), a subunit of the pathfinder, uses cryocoolers to isolate and collect carbon dioxide from Mars simulant gas. The carbon dioxide is fed with hydrogen into a Sabatier reactor where methane is produced. The APM is currently undergoing the final stages of testing at Kennedy Space Center prior to process integration testing with the other subunits of the pathfinder. The automation software for the APM cryocoolers was tested and found to perform nominally. The catalyst used for the Sabatier reactor was investigated to determine the factors contributing to catalyst failure. The results from the catalyst testing require further analysis, but it appears that the rapid change in temperature during reactor start up or the elevated operating temperature is responsible for the changes observed in the catalyst.

  14. Study to improve the quality of a Mexican straight run gasoil over NiMo/γ-Al 2O 3 catalysts

    NASA Astrophysics Data System (ADS)

    Domínguez-Crespo, M. A.; Díaz-García, L.; Arce-Estrada, E. M.; Torres-Huerta, A. M.; Cortéz-De la Paz, M. T.

    2006-11-01

    Four NiMo catalyst supported on Al 2O 3 with different textural properties have been studied in the hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatization (HDA) of a Mexican straight run gasoil (SRGO). All reactions were carried out at three different temperatures 613, 633, and 653 K. Alumina supports were analysed by pyridine FTIR-TPD and nitrogen physisorption in order to determine their surface acidity and textural properties, respectively. TPR studies of the NiMo catalysts were analysed to correlate their hydrogenating properties. Metallic particles were characterized (after sulfidation) using transmission electron microscopy (TEM). Catalytic activities are discussed in relation to the physicochemical properties of NiMo catalysts. The importance of textural properties on coke deposition has been emphasized. The results of catalytic activity of these materials varied depending on dispersed MoS particles and pore distribution in final catalysts. The optimum pore diameter was found around 80 Å for HDS and HDN.

  15. Site-selective and stereoselective functionalization of non-activated tertiary C-H bonds

    NASA Astrophysics Data System (ADS)

    Liao, Kuangbiao; Pickel, Thomas C.; Boyarskikh, Vyacheslav; Bacsa, John; Musaev, Djamaladdin G.; Davies, Huw M. L.

    2017-11-01

    The synthesis of complex organic compounds usually relies on controlling the reactions of the functional groups. In recent years, it has become possible to carry out reactions directly on the C-H bonds, previously considered to be unreactive. One of the major challenges is to control the site-selectivity because most organic compounds have many similar C-H bonds. The most well developed procedures so far rely on the use of substrate control, in which the substrate has one inherently more reactive C-H bond or contains a directing group or the reaction is conducted intramolecularly so that a specific C-H bond is favoured. A more versatile but more challenging approach is to use catalysts to control which site in the substrate is functionalized. p450 enzymes exhibit C-H oxidation site-selectivity, in which the enzyme scaffold causes a specific C-H bond to be functionalized by placing it close to the iron-oxo haem complex. Several studies have aimed to emulate this enzymatic site-selectivity with designed transition-metal catalysts but it is difficult to achieve exceptionally high levels of site-selectivity. Recently, we reported a dirhodium catalyst for the site-selective functionalization of the most accessible non-activated (that is, not next to a functional group) secondary C-H bonds by means of rhodium-carbene-induced C-H insertion. Here we describe another dirhodium catalyst that has a very different reactivity profile. Instead of the secondary C-H bond, the new catalyst is capable of precise site-selectivity at the most accessible tertiary C-H bonds. Using this catalyst, we modify several natural products, including steroids and a vitamin E derivative, indicating the applicability of this method of synthesis to the late-stage functionalization of complex molecules. These studies show it is possible to achieve site-selectivity at different positions within a substrate simply by selecting the appropriate catalyst. We hope that this work will inspire the design of even more sophisticated catalysts, such that catalyst-controlled C-H functionalization becomes a broadly applied strategy for the synthesis of complex molecules.

  16. Hydrophobic and hydrophilic nanosheet catalysts with high catalytic activity and recycling stability through control of the outermost ligand

    NASA Astrophysics Data System (ADS)

    Ko, Younji; Kim, Donghee; Kwon, Cheong Hoon; Cho, Jinhan

    2018-04-01

    In this study, we introduce hydrophobic and hydrophilic graphene oxide nanosheet (GON) catalysts prepared by consecutive ligand replacement of hydrophobically stabilized magnetic and catalytic nanoparticles (NPs); it exhibits high catalytic activity, fast magnetic response, and good dispersion in both nonpolar and aqueous media, allowing high loading amount of magnetic and catalytic NPs onto GON sheets. More specifically, these GON catalysts showed a high product yield of 66-99% and notable recyclability (93% of the initial product yield after 10 reaction cycles) in a Suzuki-Miyaura reaction in nonpolar media, outperforming the performance of the conventional hydrophilic GON catalysts. Additional coating of a hydrophilic layer onto GON catalysts also showed the notable performance (product yield ∼99%) in catalytic reactions performed in aqueous media. Given that ligand-controlled catalytic NPs adsorbed onto 2D nanosheets can be used as hydrophobic and hydrophilic stabilizers as well as catalysts, our approach can provide a tool for developing and designing 2D-nanosheet catalysts with high performance in nonpolar and polar media.

  17. Novel Nano-Composite Catalysts for Renewable Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Devaguptapu, Surya Vamsi

    Spinel NiCo2O4 catalysts are considered the promising precious metal-free catalyst for oxygen reactions. Significant efforts are mainly explore optimal chemical doping and substituent to tune its electronic structures for enhanced performance. Here, we focuses on morphology control and determine the morphology-dependent activity for bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). In particular, three types of spinel NiCo2O4 were prepared using temple-free, SiO 2 hard template, and Pluronic-123 soft template hydrothermal methods, showing significantly different morphologies, respectively. In particular, template-free method yield dense structures. Sold-template method assists the formation of porous and hollow structures. Importantly, the soft template is effective to prepare a unique nanoflower morphology containing abundant rose petal (needle) like structures. The effect of the utilization of templates, both soft and hard as well as a template free synthesis on the morphology as well as the activity and stability of the final catalyst is investigated. Compared to others, the nanoflower-like NiCo2O4 exhibited the highest bifunctional catalytic activity simultaneously for ORR and OER, likely due to the facile absorption of oxygen molecules on increased surface areas with efficient mass transfer. The nanoflower NiCo2O 4 also exhibited an onset and half-wave potentials of 0.94 and 0.82 V for the ORR in alkaline media. Although it is still inferior to state of the art Pt, the new type of spinel NiCo2O4 catalyst represents the best activity compared to reported carbon-free oxides. Meanwhile, OER activity and stability were achieved with an onset potential of 1.48 V generating a current density of 14 mA/cm2 at 1.6 V. The OER activity does not declined after 10,000 potential cycles demonstrating excellent stability, which is superior to the benchmark of Ir for the OER. This work provides an effective solution to enhance catalytic activity and stability of oxides by engineering their morphology and nanostructures. The high performance bifunctional oxide catalyst is carbon free and can eventually overcome the stability issue for reversible fuel cell and metal-air battery applications. In addition, we have synthesized highly active transition metal doped Carbon Nano Tubes of very small thickness called Graphene Tubes which when integrated with metal oxides can lead to enhanced activity and durability for ORR and OER with current density as high as 25mAcm-2 at 1.6V vs RHE for OER and an onset potential of 1.0V vs RHE during ORR. Finally, we conclude by giving a brief description of the Hydrogen Economy and the role that ammonia decomposition can play in achieving the potential of hydrogen economy. We detail the synthesis procedures of some highly active transition metal nitride- alkali metal imide composites and study their activity for ammonia decomposition. The catalysts show conversion efficiencies as high as 95%.

  18. The physical chemistry and materials science behind sinter-resistant catalysts.

    PubMed

    Dai, Yunqian; Lu, Ping; Cao, Zhenming; Campbell, Charles T; Xia, Younan

    2018-06-18

    Catalyst sintering, a main cause of the loss of catalytic activity and/or selectivity at high reaction temperatures, is a major concern and grand challenge in the general area of heterogeneous catalysis. Although all heterogeneous catalysts are inevitably subjected to sintering during their operation, the immediate and drastic consequences can be mitigated by carefully engineering the catalytic particles and their interactions with the supports. In this tutorial review, we highlight recent progress in understanding the physical chemistry and materials science involved in sintering, including the discussion of advanced techniques, such as in situ microscopy and spectroscopy, for investigating the sintering process and its rate. We also discuss strategies for the design and rational fabrication of sinter-resistant catalysts. Finally, we showcase recent success in improving the thermal stability and thus sinter resistance of supported catalytic systems.

  19. Ultrasonically treated multi-walled carbon nanotubes (MWCNTs) as PtRu catalyst supports for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Yang, Chunwei; Hu, Xinguo; Wang, Dianlong; Dai, Changsong; Zhang, Liang; Jin, Haibo; Agathopoulos, Simeon

    In the quest of fabricating supported catalysts, experimental results of transmission electron microscopy, Raman and infrared spectroscopy indicate that ultrasonic treatment effectively functionalizes multi-walled carbon nanotubes (MWCNTs), endowing them with groups that can act as nucleation sites which can favor well-dispersed depositions of PtRu clusters on their surface. Ultrasonic treatment seems to be superior than functionalization via regular refluxing. This is confirmed by the determination of the electrochemistry active surface area (ECA) and the CO-tolerance performance of the PtRu catalysts, measured by adsorbed CO-stripping voltammetry in 0.5 M sulfuric acid solution, and the real surface area of the PtRu catalysts, evaluated by Brunauer-Emmett-Teller (BET) measurements. Finally, the effectiveness for methanol oxidation is assessed by cyclic voltammetry (CV) in a sulfuric acid and methanol electrolyte.

  20. Recent Advances in the Application of Magnetic Nanoparticles as a Support for Homogeneous Catalysts

    PubMed Central

    Govan, Joseph; Gun’ko, Yurii K.

    2014-01-01

    Magnetic nanoparticles are a highly valuable substrate for the attachment of homogeneous inorganic and organic containing catalysts. This review deals with the very recent main advances in the development of various nanocatalytic systems by the immobilisation of homogeneous catalysts onto magnetic nanoparticles. We discuss magnetic core shell nanostructures (e.g., silica or polymer coated magnetic nanoparticles) as substrates for catalyst immobilisation. Then we consider magnetic nanoparticles bound to inorganic catalytic mesoporous structures as well as metal organic frameworks. Binding of catalytically active small organic molecules and polymers are also reviewed. After that we briefly deliberate on the binding of enzymes to magnetic nanocomposites and the corresponding enzymatic catalysis. Finally, we draw conclusions and present a future outlook for the further development of new catalytic systems which are immobilised onto magnetic nanoparticles. PMID:28344220

  1. Direct in Situ Measurement of Charge Transfer Processes During Photoelectrochemical Water Oxidation on Catalyzed Hematite

    DOE PAGES

    Qiu, Jingjing; Hajibabaei, Hamed; Nellist, Michael R.; ...

    2017-08-17

    Electrocatalysts improve the efficiency of light-absorbing semiconductor photoanodes driving the oxygen evolution reaction, but the precise function(s) of the electrocatalysts remains unclear. We directly measure, for the first time, the interface carrier transport properties of a prototypical visible-light-absorbing semiconductor, α-Fe 2O 3, in contact with one of the fastest known water oxidation catalysts, Ni 0.8Fe 0.2O x, by directly measuring/controlling the current and/or voltage at the Ni 0.8Fe 0.2O x catalyst layer using a second working electrode. The measurements demonstrate that the majority of photogenerated holes in α-Fe 2O 3 directly transfer to the catalyst film over a wide rangemore » of conditions and that the Ni 0.8Fe 0.2O x is oxidized by photoholes to an operating potential sufficient to drive water oxidation at rates that match the photocurrent generated by the α-Fe 2O 3. The Ni 0.8Fe 0.2O x therefore acts as both a hole-collecting contact and a catalyst for the photoelectrochemical water oxidation process. Separate measurements show that the illuminated junction photovoltage across the α-Fe 2O 3|Ni 0.8Fe 0.2O x interface is significantly decreased by the oxidation of Ni 2+ to Ni 3+ and the associated increase in the Ni 0.8Fe 0.2O x electrical conductivity. Finally, in sum, the results illustrate the underlying operative charge-transfer and photovoltage generation mechanisms of catalyzed photoelectrodes, thus guiding their continued improvement.« less

  2. Direct evidence of atomic-scale structural fluctuations in catalyst nanoparticles.

    PubMed

    Lin, Pin Ann; Gomez-Ballesteros, Jose L; Burgos, Juan C; Balbuena, Perla B; Natarajan, Bharath; Sharma, Renu

    2017-05-01

    Rational catalyst design requires an atomic scale mechanistic understanding of the chemical pathways involved in the catalytic process. A heterogeneous catalyst typically works by adsorbing reactants onto its surface, where the energies for specific bonds to dissociate and/or combine with other species (to form desired intermediate or final products) are lower. Here, using the catalytic growth of single-walled carbon nanotubes (SWCNTs) as a prototype reaction, we show that the chemical pathway may in-fact involve the entire catalyst particle, and can proceed via the fluctuations in the formation and decomposition of metastable phases in the particle interior. We record in situ and at atomic resolution, the dynamic phase transformations occurring in a Cobalt catalyst nanoparticle during SWCNT growth, using a state-of-the-art environmental transmission electron microscope (ETEM). The fluctuations in catalyst carbon content are quantified by the automated, atomic-scale structural analysis of the time-resolved ETEM images and correlated with the SWCNT growth rate. We find the fluctuations in the carbon concentration in the catalyst nanoparticle and the fluctuations in nanotube growth rates to be of complementary character. These findings are successfully explained by reactive molecular dynamics (RMD) simulations that track the spatial and temporal evolution of the distribution of carbon atoms within and on the surface of the catalyst particle. We anticipate that our approach combining real-time, atomic-resolution image analysis and molecular dynamics simulations will facilitate catalyst design, improving reaction efficiencies and selectivity towards the growth of desired structure.

  3. [Catalytic combustion of soot on combined oxide catalysts].

    PubMed

    He, Xu-wen; Yu, Jun-jie; Kang, Shou-fang; Hao, Zheng-ping; Hu, Chun

    2005-01-01

    Combined oxide catalysts are prepared for catalytic combustion of soot and regeneration from diesel emissions. Thermo-gravimetric analysis(TGA) and temperature programmed oxidation(TPO)are used to evaluate the activity of catalysts under the influence of composition,atomic ration, H2O, calcinations temperature and mass ration between catalysts and soot. Results show that Cu-Mo-O had high activity among double metal oxide catalysts. Among multicomponent metal oxide catalysts, Cu-K-Mo-O had high activity when atomic ratio Cu: K: Mo = 1:1:2 and mass ration between catalysts and soot equals 5: 1. Under this condition, soot ignition temperature of Cu-K-Mo-O catalyst was 327 degrees C. H2O addition and calcinations temperature had little influence on it,which is one kind of compatible catalyst for soot control and catalytic regeneration from diesel emissions.

  4. Development of GREET Catalyst Module

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhichao; Dunn, Jennifer B.; Cronauer, Donald C.

    2014-09-01

    Catalysts are critical inputs for many pathways that convert biomass into biofuels. Energy consumption and greenhouse gas (GHG) emissions during the production of catalysts and chemical inputs influence the life-cycle energy consumption, and GHG emissions of biofuels and need to be considered in biofuel life-cycle analysis (LCA). In this report, we develop energy and material flows for the production of three different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5]) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™)more » catalyst module. They were selected because they are consumed in existing U.S. Department of Energy (DOE) analyses of biofuel processes. For example, a thermochemical ethanol production pathway (indirect gasification and mixed alcohol synthesis) developed by the National Renewable Energy Laboratory (NREL) uses olivine, DEPG, and tar reforming and alcohol synthesis catalysts (Dutta et al., 2011). ZSM-5 can be used in biofuel production pathways such as catalytic upgrading of sugars into hydrocarbons (Biddy and Jones, 2013). Other uses for these compounds and catalysts are certainly possible. In this report, we document the data sources and methodology we used to develop material and energy flows for the catalysts and compounds in the GREET catalyst module. In Section 2 we focus on compounds used in the model Dutta et al. (2011) developed. In Section 3, we report material and energy flows associated with ZSM-5 production. Finally, in Section 4, we report results.« less

  5. The Bosch Process-Performance of a Developmental Reactor and Experimental Evaluation of Alternative Catalysts

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Mansell, J. Matthew

    2010-01-01

    Bosch-based reactors have been in development at NASA since the 1960's. Traditional operation involves the reduction of carbon dioxide with hydrogen over a steel wool catalyst to produce water and solid carbon. While the system is capable of completely closing the loop on oxygen and hydrogen for Atmosphere Revitalization, steel wool requires a reaction temperature of 650C or higher for optimum performance. The single pass efficiency of the reaction over steel wool has been shown to be less than 10% resulting in a high recycle stream. Finally, the formation of solid carbon on steel wool ultimately fouls the catalyst necessitating catalyst resupply. These factors result in high mass, volume and power demands for a Bosch system. Interplanetary transportation and surface exploration missions of the moon, Mars, and near-earth objects will require higher levels of loop closure than current technology cannot provide. A Bosch system can provide the level of loop closure necessary for these long-term missions if mass, volume, and power can be kept low. The keys to improving the Bosch system lie in reactor and catalyst development. In 2009, the National Aeronautics and Space Administration refurbished a circa 1980's developmental Bosch reactor and built a sub-scale Bosch Catalyst Test Stand for the purpose of reactor and catalyst development. This paper describes the baseline performance of two commercially available steel wool catalysts as compared to performance reported in the 1960's and 80's. Additionally, the results of sub-scale testing of alternative Bosch catalysts, including nickel- and cobalt-based catalysts, are discussed.

  6. Effect of calcination temperature of a copper ferrite synthesized by a sol-gel method on its structural characteristics and performance as Fenton catalyst to remove gallic acid from water.

    PubMed

    López-Ramón, María V; Álvarez, Miguel A; Moreno-Castilla, Carlos; Fontecha-Cámara, María A; Yebra-Rodríguez, África; Bailón-García, Esther

    2018-02-01

    A copper ferrite synthesized by a sol-gel combustion method was calcined at different temperatures up to 800°C, determining changes in its structural characteristics and magnetic measurements and studying its catalytic performance in gallic acid removal by Fenton reaction. The main objective was to study the effect of the calcination temperature of copper ferrite on its crystalline phase formation and transformation, activity and metal ion leaching. The cubic-to-tetragonal transformation of the spinel occurred via its reaction with the CuO phase, displacing Fe 3+ ions in B (octahedral) sites out of the spinel structure by the following reaction: 2Fe 3+ B +3CuO→Fe 2 O 3 +3Cu 2+ B . The catalysts showed superparamagnetic or substantial superparamagnetic behaviour. At higher calcination temperatures, catalyst activity was lower, and Cu ion leaching was markedly decreased. There was no Fe ion leaching with any catalyst. The as-prepared catalyst showed better catalytic performance than a commercial copper ferrite. Leached Cu ions acted as homogeneous catalysts, and their contribution to the overall removal mechanism was examined. Cu 2 O present in the as-prepared catalysts made only a small contribution to their activity. Finally, the reutilization of various catalysts was studied by performing different catalytic cycles. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. 40 CFR 63.4363 - How do I establish the add-on control device operating limits during the performance test?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... performance test, you must monitor and record the temperature at the inlet to the catalyst bed and the temperature difference across the catalyst bed at least once every 15 minutes during each of the three test... temperature at the inlet to the catalyst bed and the average temperature difference across the catalyst bed...

  8. International Space Station Alpha trace contaminant control subassembly life test report

    NASA Technical Reports Server (NTRS)

    Tatara, J. D.; Perry, J. L.

    1995-01-01

    The Environmental Control and Life Support System (ECLSS) Life Test Program (ELTP) began with Trace Contaminant Control Subassembly (TCCS) Life Testing on November 9, 1992, at 0745. The purpose of the test, as stated in the NASA document 'Requirements for Trace Contaminant Control Subassembly High Temperature Catalytic Oxidizer Life Testing (Revision A)' was to 'provide for the long duration operation of the ECLSS TCCS HTCO (High Temperature Catalytic Oxidizer) at normal operating conditions... (and thus)... to determine the useful life of ECLSS hardware for use on long duration manned space missions.' Specifically, the test was designed to demonstrate thermal stability of the HTCO catalyst. The report details TCCS stability throughout the test. Graphs are included to aid in evaluating trends and subsystem anomalies. The report summarizes activities through the final day of testing, January 17, 1995 (test day 762).

  9. Final Technical/Scientific Report: Commodity Scale Thermostable Enzymatic Transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James J. Lalonde; Brian Davison

    2003-08-30

    The conversion of corn starch to high fructose corn-syrup sweetener is a commodity process, producing over 3 billion kg/y. In the last step of the process, an enzyme catalyst is used to convert glucose to the much sweeter sugar fructose. Due to incomplete conversion in the last step, the syrup must be purified using a chromatographic separation technique, which results in equal quantities of water being added to the syrup, and finally the water must be evaporated (up to 1 lb of water/lb of syrup). We have estimated the energy requirement in the evaporation step to be on the ordermore » of 13 billion BTU's/y. This process inefficiency could be eliminated if a thermostable form of glucose isomerase (GI), the enzyme catalyst used in the final step, was developed. Our chosen strategy was to develop an immobilized form of the enzyme in which the protein is first crystallized and then chemically cross-linked to form an insoluble particle. This so-called cross-linked enzyme crystal (CLE C(reg. sign)) technology had been shown to be a powerful method for enzyme stabilization for several other protein catalysts. In this work we have developed more than 30 CLEC preparations of glucose isomerase and tested them for activity and stability. We found these preparations to be highly active, with a 10-50 fold rate per gram of catalyst increase over existing commercial catalysts. The initial rates were also higher at higher temperatures as expected, however the efficiency of the CLEC GI preparations unexpectedly rapidly decreased to a low constant value with use at the higher temperatures. At this point, the source of this activity loss is unclear, however during this loss, the catalyst is found to form a solid mass indicating either breakage of the chemical cross-links or simple aggregation of the particles. It is likely that the increased mass transfer resistance due to this agglomeration is a major component of the activity loss. This research suggests that one potentially beneficial outcome could be the reconfiguration of catalyst columns using these highly active catalyst preparations with inerts to prevent agglomeration. As a result of this work, methods for the preparation of highly active immobilized glucose isomerase preparations were developed along with test methods that are predictive for the stability of these preparations. This research has been conducted as a team effort. The enzyme is produced using Genencor's glucose isomerase protein and the stabilized form has been prepared using Altus' CLEC technology. ORNL has provided bioprocess engineering and testing expertise, and Cargill, Inc. and Genencor have supplied critical technical consultation and economic assessment.« less

  10. Simple Copper Catalysts for the Aerobic Oxidation of Amines: Selectivity Control by the Counterion.

    PubMed

    Xu, Boran; Hartigan, Elizabeth M; Feula, Giancarlo; Huang, Zheng; Lumb, Jean-Philip; Arndtsen, Bruce A

    2016-12-19

    We describe the use of simple copper-salt catalysts in the selective aerobic oxidation of amines to nitriles or imines. These catalysts are marked by their exceptional efficiency, operate at ambient temperature and pressure, and allow the oxidation of amines without expensive ligands or additives. This study highlights the significant role counterions can play in controlling selectivity in catalytic aerobic oxidations. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Transient studies of low temperature catalysts for methane conversion. Final report, [September 1992--March 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, E.E.

    1996-09-30

    The objective of this project is to use transient techniques to study gas surface interactions during the oxidative conversion of methane. Two groups of catalysts were studied: a double oxide of vanadium and phosphate or VPO, and double oxides of Ni, Co and Rh and lanthana. The objective of the studies involving the VPO catalyst was to understand gas-surface interactions leading to the formation of formaldehyde. In the second group of catalysts, involving metallo-oxides, the main objective was to study the gas-surface interactions that determine the selectivity to C{sub 2} hydrocarbons or synthesis gas. Transient techniques were used to studymore » the methane-surface interactions and the role of lattice oxygen. The selection of the double oxides was made on the hypothesis that the metal oxide would provide an increase interaction with methane whereas the phosphate or lanthanide would provide the sites for oxygen adsorption. The hypothesis behind this selection of catalysts was that increasing the methane interaction with the catalysts would lower the reaction temperature and thus increase the selectivity to the desired products over the total oxidation reaction. In both groups of catalysts the role of Li as a modifier of the selectivity was also studied in detail.« less

  12. Unusual catalysts from molasses: synthesis, properties and application in obtaining biofuels from algae.

    PubMed

    Samorì, Chiara; Torri, Cristian; Fabbri, Daniele; Falini, Giuseppe; Faraloni, Cecilia; Galletti, Paola; Spera, Silvia; Tagliavini, Emilio; Torzillo, Giuseppe

    2012-08-01

    Acid catalysts were prepared by sulfonation of carbon materials obtained from the pyrolysis of sugar beet molasses, a cheap, viscous byproduct in the processing of sugar beets into sugar. Conditions for the pyrolysis of molasses (temperature and time) influenced catalyst performance; the best combination came from pyrolysis at low temperature (420 °C) for a relatively long time (8-15 h), which ensured better stability of the final material. The most effective molasses catalyst was highly active in the esterification of fatty acids with methanol (100 % yield after 3 h) and more active than common solid acidic catalysts in the transesterification of vegetable oils with 25-75 wt % of acid content (55-96 % yield after 8 h). A tandem process using a solid acid molasses catalyst and potassium hydroxide in methanol was developed to de-acidificate and transesterificate algal oils from Chlamydomonas reinhardtii, Nannochloropsis gaditana, and Phaeodactylum tricornutum, which contain high amounts of free fatty acids. The amount of catalyst required for the de-acidification step was influenced by the chemical composition of the algal oil, thus operational conditions were determined not only in relation to free fatty acids content in the oil, but according to the composition of the lipid extract of each algal species. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    DOE PAGES

    Islam, A. E.; Zakharov, D.; Stach, E. A.; ...

    2015-09-16

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only inmore » the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. As a result, with the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.« less

  14. PCDD/F adsorption and destruction in the flue gas streams of MWI and MSP via Cu and Fe catalysts supported on carbon.

    PubMed

    Chang, Shu Hao; Yeh, Jhy Wei; Chein, Hung Min; Hsu, Li Yeh; Chi, Kai Hsien; Chang, Moo Been

    2008-08-01

    Catalytic destruction has been applied to control polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/Fs) emissions from different facilities. The cost of carbon-based catalysts is considerably lower than that of the metal oxide or zeolite-based catalysts used in the selective catalytic reduction (SCR) system. In this study, destruction and adsorption efficiencies of PCDD/Fs achieved with Cu/C and Fe/C catalysts from flue gas streams of a metal smelting plant (MSP) and a large-scale municipal waste incinerator (MWI), respectively, are evaluated via the pilot-scale catalytic reactor system (PCRS). The results indicate that Cu and Fe catalysts supported on carbon surface are capable of decomposing and adsorbing PCDD/ Fs from gas streams. In the testing sources of MSP and MWI, the PCDD/F removal efficiencies achieved with Cu/C catalyst at 250 degrees C reach 96%, however, the destruction efficiencies are negative (-1,390% and -112%, respectively) due to significant PCDD/F formation on catalyst promoted by copper. In addition, Fe/C catalyst is of higher removal and destruction efficiencies compared with Cu/C catalyst in both testing sources. The removal efficiencies of PCDD/Fs achieved with Fe/C catalyst are 97 and 94% for MSP and MWI, respectively, whereas the destruction efficiencies are both higher than 70%. Decrease of PCDD/F destruction efficiency and increase of adsorption efficiency with increasing chlorination of dioxin congeners is also observed in the test via three-layer Fe/C catalyst. Furthermore, the mass of 2,3,7,8-PCDD/Fs retained on catalyst decreases on the order of first to third layer of catalyst. Each gram Fe/C catalyst in first layer adsorbs 10.9, 6.91, and 3.04 ng 2,3,7,8-PCDD/Fs in 100 min testing duration as the operating temperature is controlled at 150, 200, and 250 degrees C, respectively.

  15. Heterogeneous Catalysis: Understanding for Designing, and Designing for Applications.

    PubMed

    Corma, Avelino

    2016-05-17

    "… Despite the introduction of high-throughput and combinatorial methods that certainly can be useful in the process of catalysts optimization, it is recognized that the generation of fundamental knowledge at the molecular level is key for the development of new concepts and for reaching the final objective of solid catalysts by design …" Read more in the Editorial by Avelino Corma. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Graphene Nanowalls as Ingenious Material for Catalysts and Superconductors

    DTIC Science & Technology

    2011-03-12

    whole transferred graphene films by using ECOPIA Hall measurement system HMS-3000 with silver paint used as electrodes at the four corners of graphene ...introduced for 15 min during growth stage. On the right: (a) A picture of the transferred graphene on SiO2/Si wafer with silver paint as electrodes at...Final Report for AOARD Grant 104057 “ Graphene Nanowalls as Ingenious Material for Catalysts and Superconductors” March 12, 2011 Name of

  17. Tuning Product Selectivity for Aqueous CO2 Reduction with a Mn(bipyridine)-pyrene Catalyst Immobilized on a Carbon Nanotube Electrode

    PubMed Central

    2017-01-01

    The development of high-performance electrocatalytic systems for the controlled reduction of CO2 to value-added chemicals is a key goal in emerging renewable energy technologies. The lack of selective and scalable catalysts in aqueous solution currently hampers the implementation of such a process. Here, the assembly of a [MnBr(2,2′-bipyridine)(CO)3] complex anchored to a carbon nanotube electrode via a pyrene unit is reported. Immobilization of the molecular catalyst allows electrocatalytic reduction of CO2 under fully aqueous conditions with a catalytic onset overpotential of η = 360 mV, and controlled potential electrolysis generated more than 1000 turnovers at η = 550 mV. The product selectivity can be tuned by alteration of the catalyst loading on the nanotube surface. CO was observed as the main product at high catalyst loadings, whereas formate was the dominant CO2 reduction product at low catalyst loadings. Using UV–vis and surface-sensitive IR spectroelectrochemical techniques, two different intermediates were identified as responsible for the change in selectivity of the heterogenized Mn catalyst. The formation of a dimeric Mn0 species at higher surface loading was shown to preferentially lead to CO formation, whereas at lower surface loading the electrochemical generation of a monomeric Mn-hydride is suggested to greatly enhance the production of formate. These results emphasize the advantages of integrating molecular catalysts onto electrode surfaces for enhancing catalytic activity while allowing excellent control and a deeper understanding of the catalytic mechanisms. PMID:28885841

  18. Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis

    PubMed Central

    Raniszewski, Grzegorz; Wiak, Slawomir; Pietrzak, Lukasz; Szymanski, Lukasz; Kolacinski, Zbigniew

    2017-01-01

    One of the most common methods of carbon nanotubes (CNTs) synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that the quality of the final product depends on carbon–plasma jet parameters, it is possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are multiwall carbon nanotubes (MWCNTs). It was observed that the addition of catalysts significantly changes the plasma composition, effective ionization potential, the arc channel conductance, and in effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet temperature control system is presented. PMID:28336884

  19. Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis.

    PubMed

    Raniszewski, Grzegorz; Wiak, Slawomir; Pietrzak, Lukasz; Szymanski, Lukasz; Kolacinski, Zbigniew

    2017-02-23

    One of the most common methods of carbon nanotubes (CNTs) synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that the quality of the final product depends on carbon-plasma jet parameters, it is possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are multiwall carbon nanotubes (MWCNTs). It was observed that the addition of catalysts significantly changes the plasma composition, effective ionization potential, the arc channel conductance, and in effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet temperature control system is presented.

  20. Theoretical Heterogeneous Catalysis: Scaling Relationships and Computational Catalyst Design.

    PubMed

    Greeley, Jeffrey

    2016-06-07

    Scaling relationships are theoretical constructs that relate the binding energies of a wide variety of catalytic intermediates across a range of catalyst surfaces. Such relationships are ultimately derived from bond order conservation principles that were first introduced several decades ago. Through the growing power of computational surface science and catalysis, these concepts and their applications have recently begun to have a major impact in studies of catalytic reactivity and heterogeneous catalyst design. In this review, the detailed theory behind scaling relationships is discussed, and the existence of these relationships for catalytic materials ranging from pure metal to oxide surfaces, for numerous classes of molecules, and for a variety of catalytic surface structures is described. The use of the relationships to understand and elucidate reactivity trends across wide classes of catalytic surfaces and, in some cases, to predict optimal catalysts for certain chemical reactions, is explored. Finally, the observation that, in spite of the tremendous power of scaling relationships, their very existence places limits on the maximum rates that may be obtained for the catalyst classes in question is discussed, and promising strategies are explored to overcome these limitations to usher in a new era of theory-driven catalyst design.

  1. NiMg/Ceria-Zirconia Cylindrical Pellet Catalysts for Tri-reforming of Surrogate Biogas

    DOE PAGES

    Zhao, Xianhui; Walker, Devin; Maiti, Debtanu; ...

    2017-12-22

    Cylindrical NiMg/Ce 0.6Zr 0.4O 2 pellet catalysts with two different sizes (large: radius = 1.59 mm; and small: radius = 0.75 mm) were produced by extrusion of powder catalysts. The small catalyst pellets had a higher specific surface area, pore volume, average pore size, radial crush strength, and resistance to breakage than the large ones. Tri-reforming tests with surrogate biogas were conducted at 3 bar and 882 °C, with the feed molar ratios of CH 4: CO 2: air fixed at 1.0: 0.7: 0.95 and the H 2O/CH 4 molar feed ratio (0.35 – 1.16) varied. The small catalyst pelletsmore » exhibited lower internal mass transfer resistance and higher coking resistance, compared to the large ones. CO 2 conversion decreased and H 2/CO molar ratio increased with the increase of H 2O/CH 4 molar feed ratio, which are consistent with the trends predicted by thermodynamic equilibrium calculations. Finally, the results indicate that the NiMg/Ce 0.6Zr 0.4O 2 catalyst pellets are promising for commercial scale applications.« less

  2. Research progress on catalytic denitrification technology in chemical industry

    NASA Astrophysics Data System (ADS)

    Jin, Yezhi

    2017-12-01

    In recent years, due to the rising emission of NOx annually, attention has been aroused widely by people on more and more severe environmental problems. This paper first discusses applying NOx removal and control technologies and relating chemical principles. Of many technologies, selective reduction reaction (SCR) is the most widely used. Catalysts, the concentration of NOx at the entrance of SCR catalytic reactor, reaction temperature, NH3/NOx mole ratio and NH3 slip rate analyzed later contributes to the removal efficiency of NOx. Finally, the processing and configuration of SCR de-NOx system are briefly introduced.

  3. Brucine diol-copper-catalyzed asymmetric synthesis of endo-pyrrolidines: the mechanistic dichotomy of imino esters.

    PubMed

    Li, Jian-Yuan; Kim, Hun Young; Oh, Kyungsoo

    2015-03-06

    Enantio- and diastereodivergent approaches to pyrrolidines are described by using catalyst- and substrate-controlled reaction pathways. A concerted endo-selective [3 + 2]-cycloaddition pathway is developed for the reaction of methyl imino ester, whereas endo-pyrrolidines with an opposite absolute stereochemical outcome are prepared by using the stepwise reaction pathway of tert-butyl imino ester. The development of catalyst- and substrate-controlled stereodivergent approaches highlights the inherent substrate-catalyst interactions in the [3 + 2]-cycloaddition reactions of metalated azomethine ylides.

  4. Chiral copper(II) complex-catalyzed reactions of partially protected carbohydrates.

    PubMed

    Allen, C Liana; Miller, Scott J

    2013-12-20

    Catalyst-controlled regioselective functionalization of partially protected saccharide molecules is a highly important yet under-developed area of carbohydrate chemistry. Such reactions allow for the reduction of protecting group manipulation steps required in syntheses involving sugars. Herein, an approach to these processes using enantiopure copper-bis(oxazoline) catalysts to control couplings of electrophiles to various partially protected sugars is reported. In a number of cases, divergent regioselectivity was observed as a function of the enantiomer of catalyst that is used.

  5. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spivey, James J.

    The research summarized here has the goal of developing a fundamental understanding of how catalysts work. These materials are demonstrably essential to our daily life, from the cars we drive to the clothes we wear. Our Center advances the science behind how we prepare, analyze, and describe catalysts. This has been identified by one of the documents guiding Federal research objectives (Directing Matter and Energy: Five Challenges for Science and the Imagination): “Major challenges in heterogeneous catalysis are to more clearly define the nature of the active sites, to engineer at the molecular level catalysis with designed properties in threemore » dimensions, and to create new catalysts for new transformations.” This directly addresses this objective.« less

  6. Synthesis of a molecularly defined single-active site heterogeneous catalyst for selective oxidation of N-heterocycles.

    PubMed

    Zhang, Yujing; Pang, Shaofeng; Wei, Zhihong; Jiao, Haijun; Dai, Xingchao; Wang, Hongli; Shi, Feng

    2018-04-13

    Generally, a homogeneous catalyst exhibits good activity and defined active sites but it is difficult to recycle. Meanwhile, a heterogeneous catalyst can easily be reused but its active site is difficult to reveal. It is interesting to bridge the gap between homogeneous and heterogeneous catalysis via controllable construction of a heterogeneous catalyst containing defined active sites. Here, we report that a molecularly defined, single-active site heterogeneous catalyst has been designed and prepared via the oxidative polymerization of maleimide derivatives. These polymaleimide derivatives can be active catalysts for the selective oxidation of heterocyclic compounds to quinoline and indole via the recycling of -C=O and -C-OH groups, which was confirmed by tracing the reaction with GC-MS using maleimide as the catalyst and by FT-IR analysis with polymaleimide as the catalyst. These results might promote the development of heterogeneous catalysts with molecularly defined single active sites exhibiting a comparable activity to homogeneous catalysts.

  7. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test... efficiency. The thermal stress is imposed on the test catalyst by exposing it to quiescent heated air in an... that the catalyst being tested was not designed to reduce/oxidize. The engine manufacturer must specify...

  8. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test... efficiency. The thermal stress is imposed on the test catalyst by exposing it to quiescent heated air in an... that the catalyst being tested was not designed to reduce/oxidize. The engine manufacturer must specify...

  9. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test... efficiency. The thermal stress is imposed on the test catalyst by exposing it to quiescent heated air in an... that the catalyst being tested was not designed to reduce/oxidize. The engine manufacturer must specify...

  10. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test... efficiency. The thermal stress is imposed on the test catalyst by exposing it to quiescent heated air in an... that the catalyst being tested was not designed to reduce/oxidize. The engine manufacturer must specify...

  11. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test... efficiency. The thermal stress is imposed on the test catalyst by exposing it to quiescent heated air in an... that the catalyst being tested was not designed to reduce/oxidize. The engine manufacturer must specify...

  12. Metal–organic and covalent organic frameworks as single-site catalysts

    PubMed Central

    Rogge, S. M. J.; Bavykina, A.; Hajek, J.; Garcia, H.; Olivos-Suarez, A. I.; Sepúlveda-Escribano, A.; Vimont, A.; Clet, G.; Bazin, P.; Kapteijn, F.

    2017-01-01

    Heterogeneous single-site catalysts consist of isolated, well-defined, active sites that are spatially separated in a given solid and, ideally, structurally identical. In this review, the potential of metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) as platforms for the development of heterogeneous single-site catalysts is reviewed thoroughly. In the first part of this article, synthetic strategies and progress in the implementation of such sites in these two classes of materials are discussed. Because these solids are excellent playgrounds to allow a better understanding of catalytic functions, we highlight the most important recent advances in the modelling and spectroscopic characterization of single-site catalysts based on these materials. Finally, we discuss the potential of MOFs as materials in which several single-site catalytic functions can be combined within one framework along with their potential as powerful enzyme-mimicking materials. The review is wrapped up with our personal vision on future research directions. PMID:28338128

  13. Bio‐palladium: from metal recovery to catalytic applications

    PubMed Central

    De Corte, Simon; Hennebel, Tom; De Gusseme, Bart; Verstraete, Willy; Boon, Nico

    2012-01-01

    Summary While precious metals are available to a very limited extent, there is an increasing demand to use them as catalyst. This is also true for palladium (Pd) catalysts and their sustainable recycling and production are required. Since Pd catalysts exist nowadays mostly under the form of nanoparticles, these particles need to be produced in an environment‐friendly way. Biological synthesis of Pd nanoparticles (‘bio‐Pd’) is an innovative method for both metal recovery and nanocatalyst synthesis. This review will discuss the different bio‐Pd precipitating microorganisms, the applications of the catalyst (both for environmental purposes and in organic chemistry) and the state of the art of the reactors based on the bio‐Pd concept. In addition, some main challenges are discussed, which need to be overcome in order to create a sustainable nanocatalyst. Finally, some outlooks for bio‐Pd in environmental technology are presented. PMID:21554561

  14. Glycerol conversion into value added chemicals over bimetallic catalysts in supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Hidayati, Luthfiana N.; Sudiyarmanto, Adilina, Indri B.

    2017-01-01

    Development of alternative energy from biomass encourage the experiments and production of biodiesel lately. Biodiesel industries widely expand because biodiesel as substitute of fossil fuel recognized as promising renewable energy. Glycerol is a byproduct of biodiesel production, which is resulted 10% wt average every production. Meanwhile, carbon dioxide is a gas that is very abundant amount in the atmosphere. Glycerol and carbon dioxide can be regarded as waste, possibly will produce value-added chemical compounds through chemically treated. In this preliminary study, conversion of glycerol and carbon dioxide using bimetallic catalyst Ni-Sn with various catalyst supports : MgO, γ-Al2O3, and hydrotalcite. Catalysts which have been prepared, then physically characterized by XRD, surface area and porosity analysis, and thermal gravity analysis. Catalytic test performance using supercritical carbon dioxide conditions. Furthermore, the products were analyzed by GC. The final product mostly contained of propylene glycol and glycerol carbonate.

  15. Direct growth and patterning of multilayer graphene onto a targeted substrate without an external carbon source.

    PubMed

    Kang, Dongseok; Kim, Won-Jun; Lim, Jung Ah; Song, Yong-Won

    2012-07-25

    Using only a simple tube furnace, we demonstrate the synthesis of patterned graphene directly on a designed substrate without the need for an external carbon source. Carbon atoms are absorbed onto Ni evaporator sources as impurities, and incorporated into catalyst layers during the deposition. Heat treatment conditions were optimized so that the atoms diffused out along the grain boundaries to form nanocrystals at the catalyst-substrate interfaces. Graphene patterns were obtained under patterned catalysts, which restricted graphene formation to within patterned areas. The resultant multilayer graphene was characterized by Raman spectroscopy and transmission electron microscopy to verify the high crystallinity and two-dimensional nanomorphology. Finally, a metal-semiconductor diode with a catalyst-graphene contact structure were fabricated and characterized to assess the semiconducting properties of the graphene sheets with respect to the display of asymmetric current-voltage behavior.

  16. Sunlight-Driven Hydrogen Formation by Membrane-Supported Photoelectrochemical Water Splitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Nathan S.

    2014-03-26

    This report describes the significant advances in the development of the polymer-supported photoelectrochemical water-splitting system that was proposed under DOE grant number DE-FG02-05ER15754. We developed Si microwire-array photoelectrodes, demonstrated control over the material and light-absorption properties of the microwire-array photoelectrodes, developed inexpensive processes for synthesizing the arrays, and doped the arrays p-type for use as photocathodes. We also developed techniques for depositing metal-nanoparticle catalysts of the hydrogen-evolution reaction (HER) on the wire arrays, investigated the stability and catalytic performance of the nanoparticles, and demonstrated that Ni-Mo alloys are promising earth-abundant catalysts of the HER. We also developed methods that allowmore » reuse of the single-crystalline Si substrates used for microwire growth and methods of embedding the microwire photocathodes in plastic to enable large-scale processing and deployment of the technology. Furthermore we developed techniques for controlling the structure of WO3 films, and demonstrated that structural control can improve the quantum yield of photoanodes. Thus, by the conclusion of this project, we demonstrated significant advances in the development of all components of a sunlight-driven membrane-supported photoelectrochemical water-splitting system. This final report provides descriptions of some of the scientific accomplishments that were achieved under the support of this project and also provides references to the peer-reviewed publications that resulted from this effort.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lidong; Zhou, Lu; Ould-Chikh, Samy

    Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanningmore » transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core–shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. As a result, these catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lidong; Zhou, Lu; Ould-Chikh, Samy

    The surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. Moreover, the evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annularmore » dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core–shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. The catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.« less

  19. DOE Award No. DE-FC36-03GO13108 NOVEL NON-PRECIOUS METAL CATALYSTS FOR PEMFC: CATALYST SELECTION THROUGH MOLECULAR MODELING AND DURABILITY STUDIES Final Report (September 2003 – October 2008)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branko N. Popov

    2009-03-03

    The objective of this project is to develop novel non-precious metal electrocatalysts for oxygen reduction reaction (ORR), and demonstrate the potential of the catalysts to perform at least as good as conventional Pt catalysts currently in use in polymer electrolyte membrane fuel cell (PEMFC) with a cost at least 50 % less than a target of 0.2 g (Pt loading)/peak kW and with durability > 2,000 h operation with less than 10 % power degradation. A novel nitrogen-modified carbon-based catalyst was obtained by modifying carbon black with nitrogen-containing organic precursor in the absence of transition metal precursor. The catalyst showsmore » the onset potential of approximately 0.76 V (NHE) for ORR and the amount of H2O2 of approximately 3% at 0.5 V (NHE). Furthermore, a carbon composite catalyst was achieved through the high-temperature pyrolysis of the precursors of transition metal (Co and Fe) and nitrogen supported on the nitrogen-modified carbon-based catalyst, followed by chemical post-treatment. This catalyst showed an onset potential for ORR as high as 0.87 V (NHE), and generated less than 1 % of H2O2. The PEM fuel cell exhibited a current density of 2.3 A cm-2 at 0.2 V for a catalyst loading of 6.0 mg cm-2. No significant performance degradation was observed for 480 h continuous operation. The characterization studies indicated that the metal-nitrogen chelate complexes decompose at the temperatures above 800 oC. During the pyrolysis, the transition metals facilitate the incorporation of pyridinic and graphitic nitrogen groups into the carbon matrix, and the carbon surface modified with nitrogen is active for ORR. In order to elucidate the role of transition metal precursor played in the formation of active sites in the non-precious metal catalysts, a novel ruthenium-based chelate (RuNx) catalyst was synthesized by using RuCl3 and propylene diammine as the Ru and N precursors, respectively, followed by high-temperature pyrolysis. This catalyst exhibited comparable catalytic activity and selectivity for ORR as the Pt catalyst. A theoretical analysis is made of the four-electron reduction reaction of oxygen to water over the mixed anion and cation (202) surface of pentlandite structure Co9Se8, one of several selenide phases. Reversible potentials for forming adsorbed reaction intermediates in acid are predicted using adsorption energies calculated with the Vienna ab initio simulation program (VASP) and the known bulk solution values together in a linear Gibbs energy relationship. The effect of hydrophobic and structural properties of a single/dual-layer cathode gas diffusion layer on mass transport in PEM fuel cells was studied using an analytical expression. The simulations indicated that liquid water transport at the cathode is controlled by the fraction of hydrophilic surface and the average pore diameter in the cathode gas diffusion layer. The optimized hydrophobicity and pore geometry in a dual-layer cathode GDL leads to an effective water management, and enhances the oxygen diffusion kinetics.« less

  20. DOE Award No. DE-FC36-03GO13108 NOVEL NON-PRECIOUS METAL CATALYSTS FOR PEMFC: CATALYST SELECTION THROUGH MOLECULAR MODELING AND DURABILITY STUDIES Final Report (September 2003 – October 2008)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branko N. Popov

    2009-02-20

    The objective of this project is to develop novel non-precious metal electrocatalysts for oxygen reduction reaction (ORR), and demonstrate the potential of the catalysts to perform at least as good as conventional Pt catalysts currently in use in polymer electrolyte membrane fuel cell (PEMFC) with a cost at least 50 % less than a target of 0.2 g (Pt loading)/peak kW and with durability > 2,000 h operation with less than 10 % power degradation. A novel nitrogen-modified carbon-based catalyst was obtained by modifying carbon black with nitrogen-containing organic precursor in the absence of transition metal precursor. The catalyst showsmore » the onset potential of approximately 0.76 V (NHE) for ORR and the amount of H2O2 of approximately 3% at 0.5 V (NHE). Furthermore, a carbon composite catalyst was achieved through the high-temperature pyrolysis of the precursors of transition metal (Co and Fe) and nitrogen supported on the nitrogen-modified carbon-based catalyst, followed by chemical post-treatment. This catalyst showed an onset potential for ORR as high as 0.87 V (NHE), and generated less than 1 % of H2O2. The PEM fuel cell exhibited a current density of 2.3 A cm-2 at 0.2 V for a catalyst loading of 6.0 mg cm-2. No significant performance degradation was observed for 480 h continuous operation. The characterization studies indicated that the metal-nitrogen chelate complexes decompose at the temperatures above 800 oC. During the pyrolysis, the transition metals facilitate the incorporation of pyridinic and graphitic nitrogen groups into the carbon matrix, and the carbon surface modified with nitrogen is active for ORR. In order to elucidate the role of transition metal precursor played in the formation of active sites in the non-precious metal catalysts, a novel ruthenium-based chelate (RuNx) catalyst was synthesized by using RuCl3 and propylene diammine as the Ru and N precursors, respectively, followed by high-temperature pyrolysis. This catalyst exhibited comparable catalytic activity and selectivity for ORR as the Pt catalyst. A theoretical analysis is made of the four-electron reduction reaction of oxygen to water over the mixed anion and cation (202) surface of pentlandite structure Co9Se8, one of several selenide phases. Reversible potentials for forming adsorbed reaction intermediates in acid are predicted using adsorption energies calculated with the Vienna ab initio simulation program (VASP) and the known bulk solution values together in a linear Gibbs energy relationship. The effect of hydrophobic and structural properties of a single/dual-layer cathode gas diffusion layer on mass transport in PEM fuel cells was studied using an analytical expression. The simulations indicated that liquid water transport at the cathode is controlled by the fraction of hydrophilic surface and the average pore diameter in the cathode gas diffusion layer. The optimized hydrophobicity and pore geometry in a dual-layer cathode GDL leads to an effective water management, and enhances the oxygen diffusion kinetics.« less

  1. Film fabrication of Fe or Fe3O4 nanoparticles mixed with palmitic acid for vertically aligned carbon nanotube growth using Langmuir-Blodgett technique

    NASA Astrophysics Data System (ADS)

    Nakamura, Kentaro; Kuriyama, Naoki; Takagiwa, Shota; Sato, Taiga; Kushida, Masahito

    2016-03-01

    Vertically aligned carbon nanotubes (VA-CNTs) were studied as a new catalyst support for polymer electrolyte fuel cells (PEFCs). Controlling the number density and the diameter of VA-CNTs may be necessary to optimize PEFC performance. As the catalyst for CNT growth, we fabricated Fe or Fe3O4 nanoparticle (NP) films by the Langmuir-Blodgett (LB) technique. The catalyst Fe or Fe3O4 NPs were widely separated by mixing with filler molecules [palmitic acid (C16)]. The number density of VA-CNTs was controlled by varying the ratio of catalyst NPs to C16 filler molecules. The VA-CNTs were synthesized from the catalyst NP-C16 LB films by thermal chemical vapor deposition (CVD) using acetylene gas as the carbon source. The developing solvents used in the LB technique and the hydrogen reduction conditions of CVD were optimized to improve the VA-CNT growth rate. We demonstrate that the proposed method can independently control both the density and the diameter of VA-CNTs.

  2. Manipulating the Rate-Limiting Step in Water Oxidation Catalysis by Ruthenium Bipyridine–Dicarboxylate Complexes

    DOE PAGES

    Shaffer, David W.; Xie, Yan; Szalda, David J.; ...

    2016-11-01

    In order to gain a deeper mechanistic understanding of water oxidation by [(bda)Ru(L) 2] catalysts (bdaH 2 = [2,2'-bipyridine]-6,6'-dicarboxylic acid; L = pyridine-type ligand), a series of modified catalysts with one and two trifluoromethyl groups in the 4 position of the bda 2– ligand was synthesized and studied using stopped-flow kinetics. The additional $-$CF 3 groups increased the oxidation potentials for the catalysts and enhanced the rate of electrocatalytic water oxidation at low pH. Stopped-flow measurements of cerium(IV)-driven water oxidation at pH 1 revealed two distinct kinetic regimes depending on catalyst concentration. At relatively high catalyst concentration (ca. ≥10 –4more » M), the rate-determining step (RDS) was a proton-coupled oxidation of the catalyst by cerium(IV) with direct kinetic isotope effects (KIE > 1). At low catalyst concentration (ca. ≤10 –6 M), the RDS was a bimolecular step with k H/k D ≈ 0.8. The results support a catalytic mechanism involving coupling of two catalyst molecules. The rate constants for both RDSs were determined for all six catalysts studied. The presence of $-$CF 3 groups had inverse effects on the two steps, with the oxidation step being fastest for the unsubstituted complexes and the bimolecular step being faster for the most electron-deficient complexes. Finally, though the axial ligands studied here did not significantly affect the oxidation potentials of the catalysts, the nature of the ligand was found to be important not only in the bimolecular step but also in facilitating electron transfer from the metal center to the sacrificial oxidant.« less

  3. New catalysts for coal liquefaction and new nanocrystalline catalysts synthesis methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linehan, J.C.; Matson, D.W.; Darab, J.G.

    1994-09-01

    The use of coal as a source of transportation fuel is currently economically unfavorable due to an abundant world petroleum supply and the relatively high cost of coal liquefaction. Consequently, a reduction in the cost of coal liquefaction, for example by using less and/or less costly catalysts or lower liquefaction temperatures, must be accomplished if coal is to play an significant role as a source of liquid feedstock for the petrochemical industry. The authors and others have investigated the applicability of using inexpensive iron-based catalysts in place of more costly and environmentally hazardous metal catalysts for direct coal liquefaction. Iron-basedmore » catalysts can be effective in liquefying coal and in promoting carbon-carbon bond cleavage in model compounds. The authors have been involved in an ongoing effort to develop and optimize iron-based powders for use in coal liquefaction and related petrochemical applications. Research efforts in this area have been directed at three general areas. The authors have explored ways to optimize the effectiveness of catalyst precursor species through use of nanocrystalline materials and/or finely divided powders. In this effort, the authors have developed two new nanophase material production techniques, Modified Reverse Micelle (MRM) and the Rapid Thermal Decomposition of precursors in Solution (RTDS). A second effort has been aimed at optimizing the effectiveness of catalysts by variations in other factors. To this, the authors have investigated the effect that the crystalline phase has on the capacity of iron-based oxide and oxyhydroxide powders to be effectively converted to an active catalyst phase under liquefaction conditions. And finally, the authors have developed methods to produce active catalyst precursor powders in quantities sufficient for pilot-scale testing. Major results in these three areas are summarized.« less

  4. Fischer-Tropsch Synthesis: XANES Investigation of Hydrogen Chloride Poisoned Iron and Cobalt-Based Catalysts at the K-Edges of Cl, Fe, and Co

    DOE PAGES

    Pendyala, Venkat Ramana Rao; Jacobs, Gary; Ma, Wenping; ...

    2016-07-23

    The effect of co-fed hydrogen chloride (HCl) in syngas on the performance of iron and cobalt-based Fischer-Tropsch (FT) catalysts was investigated in our earlier studies [ACS Catal. 5 (2015) 3124-3136 and DOE final report 2011; Catal. Lett. 144 (2014) 1127-1133]. For an iron catalyst, lower HCl concentrations (< 2.0 ppmw of HCl)) in syngas did not significantly affect the activity, whereas rapid deactivation occurred at higher concentrations (~20 ppmw). With cobalt catalysts, even low concentrations of HCl (100 ppbw) caused catalyst deactivation, and the deactivation rate increased with increasing HCl concentration in the syngas. The deactivation of the catalysts ismore » explained by the chloride being adsorbed on the catalyst surface to (1) block the active sites and/or (2) electronically modify the sites. In this study, XANES spectroscopy was employed to investigate HCl poisoning mechanism on the iron and cobalt catalysts. Cl K-edge normalized XANES results indicate that Cl is indeed present on the catalyst following HCl poisoning and exhibits a structure similar to the family of compounds MCl; two main peaks are formed, with the second peak consisting of a main peak and a higher energy shoulder. At the Co K and Fe K edges, the white line was observed to be slightly increased relative to the same catalyst under clean conditions. There is then the additional possibility that Cl adsorption may act in part to intercept electron density from the FT metallic function (e.g.,cobalt or iron carbide). If so, this would result in less back-donation and therefore hinder the scission of molecules such as CO.« less

  5. Multitasking mesoporous nanomaterials for biorefinery applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandel, Kapil

    2013-01-01

    Mesoporous silica nanoparticles (MSNs) have attracted great interest for last two decades due to their unique and advantageous structural properties, such as high surface area, pore volume, stable mesostructure, tunable pore size and controllable particle morphology. The robust silica framework provides sites for organic modifications, making MSNs ideal platforms for adsorbents and supported organocatalysts. In addition, the pores of MSNs provide cavities/ channels for incorporation of metal and metal oxide nanoparticle catalysts. These supported metal nanoparticle catalysts benefit from confined local environments to enhance their activity and selectivity for various reactions. Biomass is considered as a sustainable feedstock with potentialmore » to replace diminishing fossil fuels for the production of biofuels. Among several strategies, one of the promising methods of biofuel production from biomass is to reduce the oxygen content of the feedstock in order to improve the energy density. This can be achieved by creating C-C bonds between biomass derived intermediates to increase the molecular weight of the final hydrocarbon molecules. In this context, pore size and organic functionality of MSNs are varied to obtain the ideal catalyst for a C-C bond forming reaction: the aldol condensation. The mechanistic aspects of this reaction in supported heterogeneous catalysts are explored. The modification of supported organocatalyst and the effect of solvent on the reaction are rationalized. The significance of two functional surfaces of MSNs is exploited by enzyme immobilization on the external surface and organo catalyst functionalization on the internal surface. Using this bifunctional catalyst, the tandem conversion of small chain alcohols into longer chain hydrocarbon molecules is demonstrated. The ability to incorporate metal and metal oxide nanoparticles in the pores and subsequent functionalization led to develop organic modified magnetic MSNs (OM-MSNs) for applications in microalgae biorefinery. Two different integrated biorefinery systems are highlighted. (i) OM-MSNs are used to harvest microalgae and selectively sequester free fatty acids (FFAs). (ii) OM-MSNs are shown to selectively sequester FFAs and convert them into diesel-range liquid hydrocarbon fuels. A similar MSN supported metal nanoparticle catalyst is demonstrated to transform FFAs into green diesel with even greater activity and selectivity. The incorporation of a different organic functional group into MSN provides a selective adsorbent for separation and purification of α-tocopherol from microalgae oil. The functional group with electron deficient aromatic rings demonstrated high sequestration capacity and selectivity of {alpha}-tocopherol.« less

  6. The production of high efficiency Ziegler-Natta catalyst with dual active sites nature using cyclohexyl chloride as promoter with super activity and produced superior polyethylene with controllable molecular weight distribution.

    PubMed

    Seifali Abbas-Abadi, Mehrdad

    2017-01-01

    In the previous studies, the several halocarbons (HC) were tested as promoters for a Ti-based Ziegler-Natta (ZN) catalyst at different polymerization conditions. The Results showed that chloro cyclohexane has the best operation in catalyst activity, polymer particle size growth, hydrogen responsibility and wax reduction too. For the first time in this study, the effect of Al/Ti ratio on the optimum HC/Ti ratio has been considered and the results showed that the optimum HC/Ti ratio depends on the Al/Ti ratio directly. In the optimum HC/Ti ratio, the catalyst activity and hydrogen responsibility ratio of the catalyst increase up to 125 and 55% respectively. The acceptable growth of polymer powder up to 46%, lower flow rate ratio (FRR) up to 19% and decrease of wax amount up to 12%, completed the promotion results. Furthermore, in the next part of this study and as key note, a little dose of halocarbon was used in the catalyst preparation to produce the special catalysts with dual active sites. In the catalyst preparation, the concentration of each active sites depends on the halocarbon amount and it can control the molecular weight distribution of the produced polyethylene; because each active sites have different response to hydrogen. The halocarbon based catalysts showed the remarkable effect on the catalyst activity, the molecular weight and especially molecular weight distribution (MWD). The flow rate ratio and MWD could be increased up to 77 and 88% respectively as the main result of halocarbon addition during the catalyst preparation.

  7. The production of high efficiency Ziegler–Natta catalyst with dual active sites nature using cyclohexyl chloride as promoter with super activity and produced superior polyethylene with controllable molecular weight distribution

    PubMed Central

    Seifali Abbas-Abadi, Mehrdad

    2017-01-01

    Abstract In the previous studies, the several halocarbons (HC) were tested as promoters for a Ti-based Ziegler–Natta (ZN) catalyst at different polymerization conditions. The Results showed that chloro cyclohexane has the best operation in catalyst activity, polymer particle size growth, hydrogen responsibility and wax reduction too. For the first time in this study, the effect of Al/Ti ratio on the optimum HC/Ti ratio has been considered and the results showed that the optimum HC/Ti ratio depends on the Al/Ti ratio directly. In the optimum HC/Ti ratio, the catalyst activity and hydrogen responsibility ratio of the catalyst increase up to 125 and 55% respectively. The acceptable growth of polymer powder up to 46%, lower flow rate ratio (FRR) up to 19% and decrease of wax amount up to 12%, completed the promotion results. Furthermore, in the next part of this study and as key note, a little dose of halocarbon was used in the catalyst preparation to produce the special catalysts with dual active sites. In the catalyst preparation, the concentration of each active sites depends on the halocarbon amount and it can control the molecular weight distribution of the produced polyethylene; because each active sites have different response to hydrogen. The halocarbon based catalysts showed the remarkable effect on the catalyst activity, the molecular weight and especially molecular weight distribution (MWD). The flow rate ratio and MWD could be increased up to 77 and 88% respectively as the main result of halocarbon addition during the catalyst preparation. PMID:29491824

  8. Chemical and phase evolution of amorphous molybdenum sulfide catalysts for electrochemical hydrogen production [Chemical and phase evolution of amorphous molybdenum sulfide catalysts for electrochemical hydrogen production directly observed using environmental transmission electron microscopy

    DOE PAGES

    Lee, Sang Chul; Benck, Jesse D.; Tsai, Charlie; ...

    2015-12-01

    Amorphous MoS x is a highly active, earth-abundant catalyst for the electrochemical hydrogen evolution reaction. Previous studies have revealed that this material initially has a composition of MoS 3, but after electrochemical activation, the surface is reduced to form an active phase resembling MoS 2 in composition and chemical state. However, structural changes in the Mo Sx catalyst and the mechanism of the activation process remain poorly understood. In this study, we employ transmission electron microscopy (TEM) to image amorphous MoS x catalysts activated under two hydrogen-rich conditions: ex situ in an electrochemical cell and in situ in an environmentalmore » TEM. For the first time, we directly observe the formation of crystalline domains in the MoS x catalyst after both activation procedures as well as spatially localized changes in the chemical state detected via electron energy loss spectroscopy. Using density functional theory calculations, we investigate the mechanisms for this phase transformation and find that the presence of hydrogen is critical for enabling the restructuring process. Our results suggest that the surface of the amorphous MoS x catalyst is dynamic: while the initial catalyst activation forms the primary active surface of amorphous MoS 2, continued transformation to the crystalline phase during electrochemical operation could contribute to catalyst deactivation. Finally, these results have important implications for the application of this highly active electrocatalyst for sustainable H 2 generation.« less

  9. Rational approach to polymer-supported catalysts: synergy between catalytic reaction mechanism and polymer design.

    PubMed

    Madhavan, Nandita; Jones, Christopher W; Weck, Marcus

    2008-09-01

    Supported catalysis is emerging as a cornerstone of transition metal catalysis, as environmental awareness necessitates "green" methodologies and transition metal resources become scarcer and more expensive. Although these supported systems are quite useful, especially in their capacity for transition metal catalyst recycling and recovery, higher activity and selectivity have been elusive compared with nonsupported catalysts. This Account describes recent developments in polymer-supported metal-salen complexes, which often surpass nonsupported analogues in catalytic activity and selectivity, demonstrating the effectiveness of a systematic, logical approach to designing supported catalysts from a detailed understanding of the catalytic reaction mechanism. Over the past few decades, a large number of transition metal complex catalysts have been supported on a variety of materials ranging from polymers to mesoporous silica. In particular, soluble polymer supports are advantageous because of the development of controlled and living polymerization methods that are tolerant to a wide variety of functional groups, including controlled radical polymerizations and ring-opening metathesis polymerization. These methods allow for tuning the density and structure of the catalyst sites along the polymer chain, thereby enabling the development of structure-property relationships between a catalyst and its polymer support. The fine-tuning of the catalyst-support interface, in combination with a detailed understanding of catalytic reaction mechanisms, not only permits the generation of reusable and recyclable polymer-supported catalysts but also facilitates the design and realization of supported catalysts that are significantly more active and selective than their nonsupported counterparts. These superior supported catalysts are accessible through the optimization of four basic variables in their design: (i) polymer backbone rigidity, (ii) the nature of the linker, (iii) catalyst site density, and (iv) the nature of the catalyst attachment. Herein, we describe the design of polymer supports tuned to enhance the catalytic activity or decrease, or even eliminate, decomposition pathways of salen-based transition metal catalysts that follow either a monometallic or a bimetallic reaction mechanism. These findings result in the creation of some of the most active and selective salen catalysts in the literature.

  10. Bifunctional catalysts for upgrading of biomass-derived oxygenates: A review

    DOE PAGES

    Robinson, Allison M.; Hensley, Jesse E.; Medlin, J. Will

    2016-06-21

    Deoxygenation is an important reaction in the conversion of biomass-derived oxygenates to fuels and chemicals. A key route for biomass refining involves the production of pyrolysis oil through rapid heating of the raw biomass feedstock. Pyrolysis oil as produced is highly oxygenated, so the feasibility of this approach depends in large part on the ability to selectively deoxygenate pyrolysis oil components to create a stream of high-value finished products. Identification of catalytic materials that are active and selective for deoxygenation of pyrolysis oil components has therefore represented a major research area. One catalyst is rarely capable of performing the differentmore » types of elementary reaction steps required to deoxygenate biomass-derived compounds. For this reason, considerable attention has been placed on bifunctional catalysts, where two different active materials are used to provide catalytic sites for diverse reaction steps. Here, we review recent trends in the development of catalysts, with a focus on catalysts for which a bifunctional effect has been proposed. We summarize recent studies of hydrodeoxygenation (HDO) of pyrolysis oil and model compounds for a range of materials, including supported metal and bimetallic catalysts as well as transition-metal oxides, sulfides, carbides, nitrides, and phosphides. Particular emphasis is placed on how catalyst structure can be related to performance via molecular-level mechanisms. Finally, these studies demonstrate the importance of catalyst bifunctionality, with each class of materials requiring hydrogenation and C-O scission sites to perform HDO at reasonable rates.« less

  11. The effect of electrospun nanofibers alignment on the synthesis of one-dimensional silicon carbide nanostructure

    NASA Astrophysics Data System (ADS)

    Hooshyar, Ali; Kokabi, Mehrdad

    2018-01-01

    One-dimensional silicon carbide (1D SiC) nanostructure has shown unusual properties such as extremely high strength, good flexibility, fracture toughness, wide band gap ( 3.2eV), large breakdown electric field strength (>2 MV cm-1, 10 times that of silicon), and inverse Hall-Petch effect. Because of these advantages, 1D SiC nanomaterial has gained extensive attention on the wide range of applications in microelectronics, optoelectronics, nanocomposites, and catalyst supports. Many methods have been used for the synthesis of 1D SiC nanostructures such as chemical vapor deposition, carbon nanotube-confined reaction, laser ablation, high-frequency induction heating, and arc discharge. However, these methods have also some shortcomings such as using catalyst, high-cost, low yield, irregular geometry and impurity. In this work, electrospinning was used to prepare aligned PVA/SiO2 composite nanofibers and the effect of fiber alignment on the production efficiency and quality of 1D SiC nanostructure was investigated. For this purpose, aligned electrospun nanofibers, as the desirable precursor, were put in a tube furnace and heated up to 1250°C under a controlled program in an inert atmosphere. Finally, the grown 1D SiC nanostructure product was characterized using SEM, XRD, and FTIR. The results confirmed the successful synthesis of pure crystalline1D β-SiC nanostructure with high yield, more regular, and metal catalyst-free.

  12. NANOSTRUCTURED METAL OXIDE CATALYSTS VIA BUILDING BLOCK SYNTHESES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig E. Barnes

    2013-03-05

    A broadly applicable methodology has been developed to prepare new single site catalysts on silica supports. This methodology requires of three critical components: a rigid building block that will be the main structural and compositional component of the support matrix; a family of linking reagents that will be used to insert active metals into the matrix as well as cross link building blocks into a three dimensional matrix; and a clean coupling reaction that will connect building blocks and linking agents together in a controlled fashion. The final piece of conceptual strategy at the center of this methodology involves dosingmore » the building block with known amounts of linking agents so that the targeted connectivity of a linking center to surrounding building blocks is obtained. Achieving targeted connectivities around catalytically active metals in these building block matrices is a critical element of the strategy by which single site catalysts are obtained. This methodology has been demonstrated with a model system involving only silicon and then with two metal-containing systems (titanium and vanadium). The effect that connectivity has on the reactivity of atomically dispersed titanium sites in silica building block matrices has been investigated in the selective oxidation of phenols to benezoquinones. 2-connected titanium sites are found to be five times as active (i.e. initial turnover frequencies) than 4-connected titanium sites (i.e. framework titanium sites).« less

  13. Light controllable catalytic activity of Au clusters decorated with photochromic molecules.

    PubMed

    Guo, Na; Yam, Kah Meng; Zhang, Chun

    2018-06-15

    By ab initio calculations, we show that when decorated with a photochromic molecule, the catalytic activity of an Au nanocluster can be reversibly controlled by light. The combination of a photochromic thiol-pentacarbonyl azobenzene (TPA) molecule and an Au 8 cluster is chosen as a model catalyst. The TPA molecule has two configurations (trans and cis) that can be reversibly converted to each other upon photo-excitation. Our calculations show that when the TPA takes the trans configuration, the combined system (trans-Au 8 ) is an excellent catalyst for CO oxidation. The reaction barrier of the catalyzed CO oxidation is less than 0.4 eV. While, the reaction barrier of CO oxidation catalyzed by cis-Au 8 is very high (>2.7 eV), indicating that the catalyst is inactive. These results pave the way for a new class of light controllable nanoscale catalysts.

  14. Light controllable catalytic activity of Au clusters decorated with photochromic molecules

    NASA Astrophysics Data System (ADS)

    Guo, Na; Meng Yam, Kah; Zhang, Chun

    2018-06-01

    By ab initio calculations, we show that when decorated with a photochromic molecule, the catalytic activity of an Au nanocluster can be reversibly controlled by light. The combination of a photochromic thiol-pentacarbonyl azobenzene (TPA) molecule and an Au8 cluster is chosen as a model catalyst. The TPA molecule has two configurations (trans and cis) that can be reversibly converted to each other upon photo-excitation. Our calculations show that when the TPA takes the trans configuration, the combined system (trans-Au8) is an excellent catalyst for CO oxidation. The reaction barrier of the catalyzed CO oxidation is less than 0.4 eV. While, the reaction barrier of CO oxidation catalyzed by cis-Au8 is very high (>2.7 eV), indicating that the catalyst is inactive. These results pave the way for a new class of light controllable nanoscale catalysts.

  15. Directing reaction pathways by catalyst active-site selection using self-assembled monolayers.

    PubMed

    Pang, Simon H; Schoenbaum, Carolyn A; Schwartz, Daniel K; Medlin, J Will

    2013-01-01

    One key route for controlling reaction selectivity in heterogeneous catalysis is to prepare catalysts that exhibit only specific types of sites required for desired product formation. Here we show that alkanethiolate self-assembled monolayers with varying surface densities can be used to tune selectivity to desired hydrogenation and hydrodeoxygenation products during the reaction of furfural on supported palladium catalysts. Vibrational spectroscopic studies demonstrate that the selectivity improvement is achieved by controlling the availability of specific sites for the hydrogenation of furfural on supported palladium catalysts through the selection of an appropriate alkanethiolate. Increasing self-assembled monolayer density by controlling the steric bulk of the organic tail ligand restricts adsorption on terrace sites and dramatically increases selectivity to desired products furfuryl alcohol and methylfuran. This technique of active-site selection simultaneously serves both to enhance selectivity and provide insight into the reaction mechanism.

  16. The even-handed approach: strategies for the deployment of racemic chiral catalysts.

    PubMed

    Evans, Louise A; Hodnett, Neil S; Lloyd-Jones, Guy C

    2012-02-13

    Asymmetric catalysis is predominantly associated with the use of enantiomerically pure chiral ligands and catalysts. Although racemic chiral catalysts have been employed quite extensively in polymerization, their utility in mainstream organic synthesis and catalyst development has arguably been rather overlooked. This Minireview collates various themes for the strategic application of racemic ligands and catalysts, ranging from the estimation of selectivity and determination of enantiomeric excess, through to control of regio- and stereochemical outcomes, and mechanistic studies. What emerges is a clear picture that, in isolation or in concert with enantiopure catalysts, the "even-handed" approach has much to offer. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Morphological effect of BiVO4 catalysts on degradation of aqueous paracetamol under visible light irradiation.

    PubMed

    Hu, Changying; Xu, Jie; Zhu, Yaqi; Chen, Acong; Bian, Zhaoyong; Wang, Hui

    2016-09-01

    Morphological effect of bismuth vanadate (BiVO4) on visible light-driven catalytic degradation of aqueous paracetamol was carefully investigated using four monoclinic BiVO4 catalysts. The catalysts with different morphologies were controllably prepared by a hydrothermal method without any additions. The prepared catalysts were fully characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis diffuse reflectance spectroscopy (DRS). Under the visible light irradiation, these catalysts with different morphology were investigated to degrade aqueous paracetamol contaminant. The degradation effects were evaluated based on the catalyst morphology, solution pH, initial paracetamol concentration, and catalyst dosage. Cube-like BiVO4 powders exhibited excellent photocatalytic performance. The optimal photocatalytic performance of the cube-like BiVO4 in degrading paracetamol was achieved.

  18. Hydrogen iodide decomposition

    DOEpatents

    O'Keefe, Dennis R.; Norman, John H.

    1983-01-01

    Liquid hydrogen iodide is decomposed to form hydrogen and iodine in the presence of water using a soluble catalyst. Decomposition is carried out at a temperature between about 350.degree. K. and about 525.degree. K. and at a corresponding pressure between about 25 and about 300 atmospheres in the presence of an aqueous solution which acts as a carrier for the homogeneous catalyst. Various halides of the platinum group metals, particularly Pd, Rh and Pt, are used, particularly the chlorides and iodides which exhibit good solubility. After separation of the H.sub.2, the stream from the decomposer is countercurrently extracted with nearly dry HI to remove I.sub.2. The wet phase contains most of the catalyst and is recycled directly to the decomposition step. The catalyst in the remaining almost dry HI-I.sub.2 phase is then extracted into a wet phase which is also recycled. The catalyst-free HI-I.sub.2 phase is finally distilled to separate the HI and I.sub.2. The HI is recycled to the reactor; the I.sub.2 is returned to a reactor operating in accordance with the Bunsen equation to create more HI.

  19. Non-Transition-Metal Catalytic System for N 2 Reduction to NH 3: A Density Functional Theory Study of Al-Doped Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Yong-Hui; Hu, Shuangli; Sheng, Xiaolan

    The prevalent catalysts for natural and artificial N 2 fixation are known to hinge upon transition-metal (TM) elements. In this paper, we demonstrate by density functional theory that Al-doped graphene is a potential non-TM catalyst to convert N 2 to NH 3 in the presence of relatively mild proton/electron sources. In the integrated structure of the catalyst, the Al atom serves as a binding site and catalytic center while the graphene framework serves as an electron buffer during the successive proton/electron additions to N 2 and its various downstream N xH y intermediates. The initial hydrogenation of N 2 canmore » readily take place via an internal H-transfer process with the assistance of a Li + ion as an additive. Finally, in view of the recurrence of H transfer in the first step of N 2 reduction observed in biological nitrogenases and other synthetic catalysts, this finding highlights the significance of heteroatom-assisted H transfer in the design of synthetic catalysts for N 2 fixation.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xianhui; Walker, Devin; Maiti, Debtanu

    Cylindrical NiMg/Ce 0.6Zr 0.4O 2 pellet catalysts with two different sizes (large: radius = 1.59 mm; and small: radius = 0.75 mm) were produced by extrusion of powder catalysts. The small catalyst pellets had a higher specific surface area, pore volume, average pore size, radial crush strength, and resistance to breakage than the large ones. Tri-reforming tests with surrogate biogas were conducted at 3 bar and 882 °C, with the feed molar ratios of CH 4: CO 2: air fixed at 1.0: 0.7: 0.95 and the H 2O/CH 4 molar feed ratio (0.35 – 1.16) varied. The small catalyst pelletsmore » exhibited lower internal mass transfer resistance and higher coking resistance, compared to the large ones. CO 2 conversion decreased and H 2/CO molar ratio increased with the increase of H 2O/CH 4 molar feed ratio, which are consistent with the trends predicted by thermodynamic equilibrium calculations. Finally, the results indicate that the NiMg/Ce 0.6Zr 0.4O 2 catalyst pellets are promising for commercial scale applications.« less

  1. Non-Transition-Metal Catalytic System for N 2 Reduction to NH 3: A Density Functional Theory Study of Al-Doped Graphene

    DOE PAGES

    Tian, Yong-Hui; Hu, Shuangli; Sheng, Xiaolan; ...

    2018-01-16

    The prevalent catalysts for natural and artificial N 2 fixation are known to hinge upon transition-metal (TM) elements. In this paper, we demonstrate by density functional theory that Al-doped graphene is a potential non-TM catalyst to convert N 2 to NH 3 in the presence of relatively mild proton/electron sources. In the integrated structure of the catalyst, the Al atom serves as a binding site and catalytic center while the graphene framework serves as an electron buffer during the successive proton/electron additions to N 2 and its various downstream N xH y intermediates. The initial hydrogenation of N 2 canmore » readily take place via an internal H-transfer process with the assistance of a Li + ion as an additive. Finally, in view of the recurrence of H transfer in the first step of N 2 reduction observed in biological nitrogenases and other synthetic catalysts, this finding highlights the significance of heteroatom-assisted H transfer in the design of synthetic catalysts for N 2 fixation.« less

  2. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF MOBILE SOURCE EMISSIONS CONTROL DEVICES: CLEAN DIESEL TECHNOLOGIES FUEL-BORNE CATALYST WITH MITSUI/PUREARTH CATALYZED WIRE MESH FILTER

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Fuel-Borne Catalyst with Mitsui/PUREarth Catalyzed Wire Mesh Filter manufactured by Clean Diesel Technologies, Inc. The technology is a platinum/cerium fuel-borne catalyst in commerci...

  3. Surface profile control of FeNiPt/Pt core/shell nanowires for oxygen reduction reaction

    DOE PAGES

    Zhu, Huiyuan; Zhang, Sen; Su, Dong; ...

    2015-03-18

    The ever-increasing energy demand requires renewable energy schemes with low environmental impacts. Electrochemical energy conversion devices, such as fuel cells, combine fuel oxidization and oxygen reduction reactions and have been studied extensively for renewable energy applications. However, their energy conversion efficiency is often limited by kinetically sluggish chemical conversion reactions, especially oxygen reduction reaction (ORR). [1-5] To date, extensive efforts have been put into developing efficient ORR catalysts with controls on catalyst sizes, compositions, shapes and structures. [6-12] Recently, Pt-based catalysts with core/shell and one-dimensional nanowire (NW) morphologies were found to be promising to further enhance ORR catalysis.more » With the core/shell structure, the ORR catalysis of a nanoparticle (NP) catalyst can be tuned by both electronic and geometric effects at the core/shell interface. [10,13,14] With the NW structure, the catalyst interaction with the conductive support can be enhanced to facilitate electron transfer between the support and the NW catalyst and to promote ORR. [11,15,16]« less

  4. hcp-Co nanowires grown on metallic foams as catalysts for the Fischer-Tropsch synthesis.

    PubMed

    Soulantica, Katerina; Harmel, Justine; Peres, Laurent; Estrader, Marta; Berliet, Adrien; Maury, Sylvie; Fécant, Antoine; Chaudret, Bruno; Serp, Philippe

    2018-06-12

    The possibility to control the structural characteristics of the active phase of supported catalysts offers the opportunity to improve catalyst performance, especially in structure sensitive catalytic reactions. In parallel, heat management is of critical importance for the catalytic performance in highly endo- or exothermic reactions. The Fisher-Tropsch synthesis (FTS) is a structure sensitive exothermic reaction, which enables catalytic transformation of syngas to high quality liquid fuels. We have elaborated monolithic cobalt based heterogeneous catalysts through a wet chemistry approach that allows control over nanocrystal shape and crystallographic phase, while at the same time enables heat management. Copper and nickel foams have been employed as supports for the epitaxial growth of hcp-Co nanowires, directly from a solution containing a coordination compound of cobalt and stabilizing ligands. The Co/Cufoam catalyst has been tested for the Fischer-Tropsch synthesis in fixed bed reactor, showing stability, and significantly superior activity and selectivity towards C5+ compared to a Co/SiO2-Al2O3 reference catalyst under the same conditions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Tannic acid- and natural organic matter-coated magnetite as green Fenton-like catalysts for the removal of water pollutants

    NASA Astrophysics Data System (ADS)

    Nadejde, C.; Neamtu, M.; Hodoroaba, V.-D.; Schneider, R. J.; Paul, A.; Ababei, G.; Panne, U.

    2015-12-01

    The use of magnetic materials as heterogeneous catalysts has attracted increasing attention in the last years since they proved to be promising candidates for water treatment. In the present study, two types of surface-modified magnetite (Fe3O4) nanoparticles, coated with non-hazardous naturally occurring agents—either tannic acid (TA) or dissolved natural organic matter—were evaluated as magnetic heterogeneous catalysts. Chemical synthesis (co-precipitation) was chosen to yield the nanocatalysts due to its well-established simplicity and efficiency. Subsequently, the properties of the final products were fully assessed by various characterization techniques. The catalytic activity in heterogeneous oxidation of aqueous solutions containing a model pollutant, Bisphenol A (BPA), was comparatively studied. The effect of operational parameters (catalyst loading, H2O2 dosage, and UV light irradiation) on the degradation performance of the oxidation process was investigated. The optimum experimental parameters were found to be 1.0 g/L of catalysts and 10 mM H2O2, under UV irradiation. The highest mineralization rates were observed for Fe3O4-TA catalyst. More than 80 % of BPA was removed after 30 min of reaction time under the specified experimental conditions. The obtained results showed that the two catalysts studied here are suitable candidates for the removal of pollutants in wastewaters by means of heterogeneous reaction using a green sustainable treatment method.

  6. Nitrogen-Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiao Xia; Cullen, David A.; Pan, Yung-Tin

    Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt-free and Fe-free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). In this paper, a high-performance nitrogen-coordinated single Co atom catalyst is derived from Co-doped metal-organic frameworks (MOFs) through a one-step thermal activation. Aberration-corrected electron microscopy combined with X-ray absorption spectroscopy virtually verifies the CoN 4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, anmore » atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half-wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe-based catalysts and 60 mV lower than Pt/C -60 μg Pt cm -2). Fuel cell tests confirm that catalyst activity and stability can translate to high-performance cathodes in PEMFCs. Finally, the remarkably enhanced ORR performance is attributed to the presence of well-dispersed CoN 4 active sites embedded in 3D porous MOF-derived carbon particles, omitting any inactive Co aggregates.« less

  7. Nitrogen-Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells

    DOE PAGES

    Wang, Xiao Xia; Cullen, David A.; Pan, Yung-Tin; ...

    2018-01-24

    Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt-free and Fe-free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). In this paper, a high-performance nitrogen-coordinated single Co atom catalyst is derived from Co-doped metal-organic frameworks (MOFs) through a one-step thermal activation. Aberration-corrected electron microscopy combined with X-ray absorption spectroscopy virtually verifies the CoN 4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, anmore » atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half-wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe-based catalysts and 60 mV lower than Pt/C -60 μg Pt cm -2). Fuel cell tests confirm that catalyst activity and stability can translate to high-performance cathodes in PEMFCs. Finally, the remarkably enhanced ORR performance is attributed to the presence of well-dispersed CoN 4 active sites embedded in 3D porous MOF-derived carbon particles, omitting any inactive Co aggregates.« less

  8. Lean NO x reduction over Ag/alumina catalysts via ethanol-SCR using ethanol/gasoline blends

    DOE PAGES

    Gunnarsson, Fredrik; Pihl, Josh A.; Toops, Todd J.; ...

    2016-09-04

    This paper focuses on the activity for lean NO x reduction over sol-gel synthesized silver alumina (Ag/Al 2O 3) catalysts, with and without platinum doping, using ethanol (EtOH), EtOH/C 3H 6 and EtOH/gasoline blends as reducing agents. The effect of ethanol concentration, both by varying the hydrocarbon-to-NO x ratio and by alternating the gasoline concentration in the EtOH/gasoline mixture, is investigated. High activity for NO x reduction is demonstrated for powder catalysts for EtOH and EtOH/C 3H 6 as well as for monolith coated catalysts (EtOH and EtOH/gasoline). The results show that pure Ag/Al 2O 3 catalysts display higher NOmore » x reduction and lower light-off temperature as compared to the platinum doped samples. The 4 wt.% Ag/Al 2O 3 catalyst displays 100% reduction in the range 340–425 °C, with up to 37% selectivity towards NH 3. These results are also supported by DRIFTS (Diffuse reflection infrared Fourier transform spectroscopy) experiments. Finally, the high ammonia formation could, in combination with an NH 3-SCR catalyst, be utilized to construct a NO x reduction system with lower fuel penalty cf. stand alone HC-SCR. In addition, it would result in an overall decrease in CO 2 emissions.« less

  9. A highly-active and poison-tolerant Pt12 sub-nanocluster catalyst for the reductive amination of aldehydes with amines.

    PubMed

    Takahashi, Masaki; Imaoka, Takane; Hongo, Yushi; Yamamoto, Kimihisa

    2013-12-07

    A one-atom controlled platinum sub-nanocluster (under 1 nm) was synthesized using a phenylazomethine dendrimer template. This sub-nanocluster (SNC) catalyst exhibits a remarkable catalytic activity during reductive amination compared to the standard platinum nanoparticles of 2.2 ± 0.8 nm under mild conditions and a low catalyst loading. In addition, this catalyst has a remarkable poison-tolerance to amines without adding protic acid.

  10. Surface-Initiated Polymerization with Poly(n-hexylisocyanate) to Covalently Functionalize Silica Nanoparticles.

    PubMed

    Vatansever, Fatma; Hamblin, Michael R

    2017-02-01

    New methods are needed for covalent functionalization of nanoparticles-surface with organic polymer coronas to generate polymeric nanocomposite in a controlled manner. Here we report the use of a surface-initiated polymerization approach, mediated by titanium (IV) catalysis, to grow poly( n -hexylisocyanate) chains from silica surface. Two pathways were used to generate the interfacing in these nano-hybrids. In the first one, the nanoparticles was "seeded" with SiCl4, followed by reaction with 1,6-hexanediol to form hydroxyl groups attached directly to the surface via O-Si-O bonding. In the second pathway, the nanoparticles were initially exposed to a 9:1 mixture of trimethyl silyl chloride and chlorodimethyl octenyl silane which was then followed by hydroboration of the double bonds, to afford hydroxyl groups with a spatially controlled density and surface-attachment via O-Si-C bonding. These functionalized surfaces were then activated with the titanium tetrachloride catalyst. In our approach, thus surface tethered catalyst provided the sites for n -hexyl isocyanate monomer insertion, to "build up" the surface-grown polymer layers from the "bottom-up". A final end-capping, to seal off the chain ends, was done via acetyl chloride. Compounds were characterized by FT-IR, 1H-NMR, GC-MS, GPC, and thermogravimetric analyses.

  11. Surface-Initiated Polymerization with Poly(n-hexylisocyanate) to Covalently Functionalize Silica Nanoparticles

    PubMed Central

    Vatansever, Fatma; Hamblin, Michael R.

    2017-01-01

    New methods are needed for covalent functionalization of nanoparticles-surface with organic polymer coronas to generate polymeric nanocomposite in a controlled manner. Here we report the use of a surface-initiated polymerization approach, mediated by titanium (IV) catalysis, to grow poly(n-hexylisocyanate) chains from silica surface. Two pathways were used to generate the interfacing in these nano-hybrids. In the first one, the nanoparticles was “seeded” with SiCl4, followed by reaction with 1,6-hexanediol to form hydroxyl groups attached directly to the surface via O-Si-O bonding. In the second pathway, the nanoparticles were initially exposed to a 9:1 mixture of trimethyl silyl chloride and chlorodimethyl octenyl silane which was then followed by hydroboration of the double bonds, to afford hydroxyl groups with a spatially controlled density and surface-attachment via O-Si-C bonding. These functionalized surfaces were then activated with the titanium tetrachloride catalyst. In our approach, thus surface tethered catalyst provided the sites for n-hexyl isocyanate monomer insertion, to “build up” the surface-grown polymer layers from the “bottom-up”. A final end-capping, to seal off the chain ends, was done via acetyl chloride. Compounds were characterized by FT-IR, 1H-NMR, GC-MS, GPC, and thermogravimetric analyses. PMID:28989336

  12. Kinetically controlled synthesis of Au102(SPh)44 nanoclusters and catalytic application.

    PubMed

    Chen, Yongdong; Wang, Jin; Liu, Chao; Li, Zhimin; Li, Gao

    2016-05-21

    We here explore a kinetically controlled synthetic protocol for preparing solvent-solvable Au102(SPh)44 nanoclusters which are isolated from polydispersed gold nanoclusters by solvent extraction and size exclusion chromatography (SEC). The as-obtained Au102(SPh)44 nanoclusters are determined by matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometry, in conjunction with UV-vis spectroscopy and thermogravimetric analysis (TGA). However, Au99(SPh)42, instead of Au102(SPh)44, is yielded when the polydispersed gold nanoclusters are etched in the presence of excess thiophenol under thermal conditions (e.g., 80 °C). Interestingly, the Au102(SPh)44 nanoclusters also can convert to Au99(SPh)42 with equivalent thiophenol ligands, evidenced by the analyses of UV-vis and MALDI mass spectrometry. Finally, the TiO2-supported Au102(SPh)44 nanocluster catalyst is investigated in the selective oxidation of sulfides into sulfoxides by the PhIO oxidant and gives rise to high catalytic activity (e.g., 80-99% conversion of R-S-R' sulfides with 96-99% selectivity for R-S([double bond, length as m-dash]O)-R' sulfoxides). The Au102(SPh)44/TiO2 catalyst also shows excellent recyclability in the sulfoxidation process.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Shunmin; Tian, Chengcheng; Zhu, Xiang

    Transition-metal-catalyzed cyanation of aryl halides is a common route to benzonitriles, which are integral to many industrial procedures. However, traditional homogeneous catalysts for such processes are expensive and suffer poor recyclability, so a heterogeneous analogue is highly desired. A novel spatial modulation approach has been developed in this paper to fabricate a heterogeneous Pd-metalated nanoporous polymer, which catalyzes the cyanation of aryl halides without need for ligands. Finally, the catalyst displays high activity in the synthesis of benzonitriles, including high product yields, excellent stability and recycling, and broad functional-group tolerance.

  14. Investigation of the In-Situ Oxidation of Methanol in Fuel Cells.

    DTIC Science & Technology

    1981-09-01

    ability of the catalyst to tolerate carbon monoxide. Finally, a performance curve was obtained for the anodic oxidation of methanol : CH3OH ... CH3OH + H20 •» C02 + 3H2 In present methanol -air fuel cell power plants , the steam reforming process is usually carried out in a unit which is...KCY YIO"(CS (Continue on reverse ride it neeessnry and identity ay block number) Fuel Cell Platinum Catalysts Methanol Direct Oxidation Internal

  15. Synthesis of high surface area nanomaterials and their application in catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhary, Umesh

    2016-05-01

    The dissertation is organized in 4 chapters. Chapter 1 highlights the motivations behind our research along with a general introduction on ceria and carbon catalysts. Chapter 2 reports the investigations on Copper-Ceria catalysts for the selective hydrogenation of fatty acids into fatty alcohols. Chapter 3 discusses the development of nitrogen containing mesoporous carbon. The chapter also reports the catalytic investigations for aldol condensation and nitrobenzene hydrogenation reactions. Finally, Chapter 4 is a general conclusion summarizing this dissertation.

  16. Enhancing H2 evolution performance of an immobilised cobalt catalyst by rational ligand design† †Electronic supplementary information (ESI) available: Additional figures and tables, synthetic procedures, experimental details for NMR and UV-vis spectroscopy, electrochemistry and photocatalytic experiments. See DOI: 10.1039/c4sc03946g

    PubMed Central

    Willkomm, Janina; Muresan, Nicoleta M.

    2015-01-01

    The catalyst [CoIIIBr((DO)(DOH)(4-BnPO3H2)(2-CH2py)pn)]Br, CoP3, has been synthesised to improve the stability and activity of cobalt catalysts immobilised on metal oxide surfaces. The CoP3 catalyst contains an equatorial diimine–dioxime ligand, (DOH)2pn = N2,N2′-propanediyl-bis(2,3-butanedione-2-imine-3-oxime), with a benzylphosphonic acid (4-BnPO3H2) group and a methylpyridine (2-CH2py) ligand covalently linked to the bridgehead of the pseudo-macrocyclic diimine–dioxime ligand. The phosphonic acid functionality provides a robust anchoring group for immobilisation on metal oxides, whereas the pyridine is coordinated to the Co ion to enhance the catalytic activity of the catalyst. Electrochemical investigations in solution confirm that CoP3 shows electrocatalytic activity for the reduction of aqueous protons between pH 3 and 7. The metal oxide anchor provides the catalyst with a high affinity for mesostructured Sn-doped In2O3 electrodes (mesoITO; loading of approximately 22 nmol cm–2) and the electrostability of the attached CoP3 was confirmed by cyclic voltammetry. Finally, immobilisation of the catalyst on ruthenium-dye sensitised TiO2 nanoparticles in aqueous solutions in the presence of a hole scavenger establishes the activity of the catalyst in this photocatalytic scheme. The advantages of the elaborate catalyst design in CoP3 in terms of stability and catalytic activity are shown by direct comparison with previously reported phosphonated Co catalysts. We therefore demonstrate that rational ligand design is a viable route for improving the performance of immobilised molecular catalysts. PMID:29142677

  17. Solvent-resistant nanofiltration for product purification and catalyst recovery in click chemistry reactions.

    PubMed

    Cano-Odena, Angels; Vandezande, Pieter; Fournier, David; Van Camp, Wim; Du Prez, Filip E; Vankelecom, Ivo F J

    2010-01-18

    The quickly developing field of "click" chemistry would undoubtedly benefit from the availability of an easy and efficient technology for product purification to reduce the potential health risks associated with the presence of copper in the final product. Therefore, solvent-resistant nanofiltration (SRNF) membranes have been developed to selectively separate "clicked" polymers from the copper catalyst and solvent. By using these solvent-stable cross-linked polyimide membranes in diafiltration, up to 98 % of the initially present copper could be removed through the membrane together with the DMF solvent, the polymer product being almost completely retained. This paper also presents the first SRNF application in which the catalyst permeates through the membrane and the reaction product is retained.

  18. Carbon deposition in the Bosch process with ruthenium and ruthenium-iron alloy catalysts. M.S. Thesis. Final Report, Jan. 1981 - Jul. 1982

    NASA Technical Reports Server (NTRS)

    Manning, M. P.; Reid, R. C.; Sophonpanich, C.

    1982-01-01

    The effectiveness of ruthenium and the alloys 50Ru50Fe and 33Ru67Fe as alternatives to iron, nickel, and cobalt catalysts in recovering oxygen from metabolic carbon dioxide was investigated. Carbon deposition boundaries over the unsupported alloys are reported. Experiments were also carried out over 50Ru50Fe and 97Ru3Fe3 catalysts supported on gamma-alumina to determine their performance in the synthesis of low molecular weight olefins. High production of ethylene and propylene would be beneficial for an improvement of an overall Bosch process, as a gas phase containing high olefin content would enhance carbon deposition in a Bosch reactor.

  19. The lattice of trumping majorization for 4D probability vectors and 2D catalysts.

    PubMed

    Bosyk, Gustavo M; Freytes, Hector; Bellomo, Guido; Sergioli, Giuseppe

    2018-02-27

    The transformation of an initial bipartite pure state into a target one by means of local operations and classical communication and entangled-assisted by a catalyst defines a partial order between probability vectors. This partial order, so-called trumping majorization, is based on tensor products and the majorization relation. Here, we aim to study order properties of trumping majorization. We show that the trumping majorization partial order is indeed a lattice for four dimensional probability vectors and two dimensional catalysts. In addition, we show that the subadditivity and supermodularity of the Shannon entropy on the majorization lattice are inherited by the trumping majorization lattice. Finally, we provide a suitable definition of distance for four dimensional probability vectors.

  20. Final Report - Advanced Cathode Catalysts and Supports for PEM Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debe, Mark

    2012-09-28

    The principal objectives of the program were development of a durable, low cost, high performance cathode electrode (catalyst and support), that is fully integrated into a fuel cell membrane electrode assembly with gas diffusion media, fabricated by high volume capable processes, and is able to meet or exceed the 2015 DOE targets. Work completed in this contract was an extension of the developments under three preceding cooperative agreements/grants Nos. DE-FC-02-97EE50473, DE-FC-99EE50582 and DE-FC36- 02AL67621 which investigated catalyzed membrane electrode assemblies for PEM fuel cells based on a fundamentally new, nanostructured thin film catalyst and support system, and demonstrated the feasibilitymore » for high volume manufacturability.« less

  1. High-Flux, High Performance H2O2 Catalyst Bed for ISTAR

    NASA Technical Reports Server (NTRS)

    Ponzo, J.

    2005-01-01

    On NASA's ISTAR RBCC program packaging and performance requirements exceeded traditional H2O2 catalyst bed capabilities. Aerojet refined a high performance, monolithic 90% H202 catalyst bed previously developed and demonstrated. This approach to catalyst bed design and fabrication was an enabling technology to the ISTAR tri-fluid engine. The catalyst bed demonstrated 55 starts at throughputs greater than 0.60 lbm/s/sq in for a duration of over 900 seconds in a physical envelope approximately 114 of traditional designs. The catalyst bed uses photoetched plates of metal bonded into a single piece monolithic structure. The precise control of the geometry and complete mixing results in repeatable, quick starting, high performing catalyst bed. Three different beds were designed and tested, with the best performing bed used for tri-fluid engine testing.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunnarsson, Fredrik; Pihl, Josh A.; Toops, Todd J.

    This paper focuses on the activity for lean NO x reduction over sol-gel synthesized silver alumina (Ag/Al 2O 3) catalysts, with and without platinum doping, using ethanol (EtOH), EtOH/C 3H 6 and EtOH/gasoline blends as reducing agents. The effect of ethanol concentration, both by varying the hydrocarbon-to-NO x ratio and by alternating the gasoline concentration in the EtOH/gasoline mixture, is investigated. High activity for NO x reduction is demonstrated for powder catalysts for EtOH and EtOH/C 3H 6 as well as for monolith coated catalysts (EtOH and EtOH/gasoline). The results show that pure Ag/Al 2O 3 catalysts display higher NOmore » x reduction and lower light-off temperature as compared to the platinum doped samples. The 4 wt.% Ag/Al 2O 3 catalyst displays 100% reduction in the range 340–425 °C, with up to 37% selectivity towards NH 3. These results are also supported by DRIFTS (Diffuse reflection infrared Fourier transform spectroscopy) experiments. Finally, the high ammonia formation could, in combination with an NH 3-SCR catalyst, be utilized to construct a NO x reduction system with lower fuel penalty cf. stand alone HC-SCR. In addition, it would result in an overall decrease in CO 2 emissions.« less

  3. Robust and Porous β-Diketiminate-Functionalized Metal–Organic Frameworks for Earth-Abundant-Metal-Catalyzed C–H Amination and Hydrogenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thacker, Nathan C.; Lin, Zekai; Zhang, Teng

    We have designed a strategy for postsynthesis installation of the β-diketiminate (NacNac) functionality in a metal–organic framework (MOF) of UiO-topology. Metalation of the NacNac-MOF (I) with earth-abundant metal salts afforded the desired MOF-supported NacNac-M complexes (M = Fe, Cu, and Co) with coordination environments established by detailed EXAFS studies. The NacNac-Fe-MOF catalyst, I•Fe(Me), efficiently catalyzed the challenging intramolecular sp 3 C–H amination of a series of alkyl azides to afford α-substituted pyrrolidines. The NacNac-Cu-MOF catalyst, I•Cu(THF), was effective in promoting the intermolecular sp 3 C–H amination of cyclohexene using unprotected anilines to provide access to secondary amines in excellent selectivity.more » Finally, the NacNac-Co-MOF catalyst, I•Co(H), was used to catalyze alkene hydrogenation with turnover numbers (TONs) as high as 700 000. All of the NacNac-M-MOF catalysts were more effective than their analogous homogeneous catalysts and could be recycled and reused without a noticeable decrease in yield. The NacNac-MOFs thus provide a novel platform for engineering recyclable earth-abundant-element-based single-site solid catalysts for many important organic transformations.« less

  4. Melamine-Schiff base/manganese complex with denritic structure: An efficient catalyst for oxidation of alcohols and one-pot synthesis of nitriles.

    PubMed

    Kazemnejadi, Milad; Nikookar, Mahsa; Mohammadi, Mohammad; Shakeri, Alireza; Esmaeilpour, Mohsen

    2018-05-18

    Efficient and selective oxidation of alcohol to the corresponding carbonyl and/or nitrile was carried out by a new water-soluble melamine-based dendritic Mn(III) complex (Melamine-Mn (III)-Schiff base complex) in the presence of 2,4,6-trichloro-1,3,5-triazine (TCT) and O 2 at room temperature. Also, the oxidation of amine to the corresponding nitrile with high selectivity and conversion was performed at room temperature using the current method and high amounts of turnover frequencies (TOFs) were obtained for reactions. This system was also applicable for direct preparation of oxime through oxidation of alcohol. The catalyst was characterized by Fourier-transform infrared (FTIR), ultraviolet-visible (UV-Vis), thermogravimetric analysis (TGA), energy-dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), CHN and inductively coupled plasma (ICP) analyses. Also, oxidation/reduction behavior of the catalyst was studied by cyclic voltammetry (CV). Moreover, chemoselectivity of the catalyst was discussed with various combinations. The water-soluble catalyst could be recycled from the reaction mixture and reused for several times with a very low losing in efficiency. The recovered catalyst was also investigated with various analyses. Finally, gram scale preparation of nitrile was evaluated by present method. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Baumot BA-B Diesel Particulate Filter with Pre-Catalyst (ETV Mobile Source Emissions Control Devices) Verification Report

    EPA Science Inventory

    The Baumot BA-B Diesel Particulate Filter with Pre-Catalyst is a diesel engine retrofit device for light, medium, and heavy heavy-duty diesel on-highway engines for use with commercial ultra-low-sulfur diesel (ULSD) fuel. The BA-B particulate filter is composed of a pre-catalyst ...

  6. Supported transition metal catalysts for para- to ortho-hydrogen conversion

    NASA Technical Reports Server (NTRS)

    Brooks, Christopher J.; Wang, Wei; Eyman, Darrell P.

    1994-01-01

    The main goal of this study was to develop and improve on existing catalysts for the conversion of ortho- to para-hydrogen. Starting with a commercially available Air Products nickel silicate, which had a beta value of 20, we were trying to synthesize catalysts that would be an improvement to AP. This was accomplished by preparing silicates with various metals as well as different preparation methods. We also prepared supported ruthenium catalysts by various techniques using several metal precursors to improve present technology. What was also found was that the activation conditions prior to catalytic testing was highly important for both the silicates and the supported ruthenium catalysts. While not the initial focus of the research, we made some interesting observations into the adsorption of H2 on ruthenium. This helped us to get a better understanding of how ortho- to para-H2 conversion takes place, and what features in a catalyst are important to optimize activity. Reactor design was the final area in which some interesting conclusions were drawn. As discussed earlier, the reactor catalyst bed must be constructed using straight 1/8 feet OD stainless steel tubing. It was determined that the use of 1/4 feet OD tubing caused two problems. First, the radius from the center of the bed to the wall was too great for thermal equilibrium. Since the reaction of ortho- to para-H2 is exothermic, the catalyst bed center was warmer than the edges. Second, the catalyst bed was too shallow using a 1/4 feet tube. This caused reactant blow-by which was thought to decrease the measured activity when the flow rate was increased. The 1/8 feet tube corrected both of these concerns.

  7. Catalyst and process development for synthesis gas conversion to isobutylene. Final report, September 1, 1990--January 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony, R.G.; Akgerman, A.

    1994-05-06

    Previous work on isosynthesis (conversion of synthesis gas to isobutane and isobutylene) was performed at very low conversions or extreme process conditions. The objectives of this research were (1) determine the optimum process conditions for isosynthesis; (2) determine the optimum catalyst preparation method and catalyst composition/properties for isosynthesis; (3) determine the kinetics for the best catalyst; (4) develop reactor models for trickle bed, slurry, and fixed bed reactors; and (5) simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for isosynthesis. More improvement in catalyst activity and selectivity is needed beforemore » isosynthesis can become a commercially feasible (stand-alone) process. Catalysts prepared by the precipitation method show the most promise for future development as compared with those prepared hydrothermally, by calcining zirconyl nitrate, or by a modified sol-gel method. For current catalysts the high temperatures (>673 K) required for activity also cause the production of methane (because of thermodynamics). A catalyst with higher activity at lower temperatures would magnify the unique selectivity of zirconia for isobutylene. Perhaps with a more active catalyst and acidification, oxygenate production could be limited at lower temperatures. Pressures above 50 atm cause an undesirable shift in product distribution toward heavier hydrocarbons. A model was developed that can predict carbon monoxide conversion an product distribution. The rate equation for carbon monoxide conversion contains only a rate constant and an adsorption equilibrium constant. The product distribution was predicted using a simple ratio of the rate of CO conversion. This report is divided into Introduction, Experimental, and Results and Discussion sections.« less

  8. Surface chemistry characterization of hydrodesulfurization and methanol synthesis model nanocatalysts

    NASA Astrophysics Data System (ADS)

    Komarneni, Mallikharjuna Rao

    Surface science investigations of model catalysts have contributed significantly to heterogeneous catalysis over the past several decades. The unique properties of nanomaterials are being exploited in catalysis for the development of highly active and selective catalysts. Surface science investigations of model catalysts such as inorganic fullerene-like (IF) nanoparticles (NP), inorganic nanotubes (INT), and the oxide-supported nanoclusters are included in this dissertation. Thermal desorption spectroscopy and molecular beam scattering were respectively utilized to study the adsorption kinetics and dynamics of gas phase molecules on catalyst surfaces. In addition, ambient pressure kinetics experiments were performed to characterize the catalytic activity of hydrodesulfurization (HDS) nanocatalysts. The nanocatalysts were characterized with a variety of techniques, including Auger electron spectroscopy, x-ray photoelectron spectroscopy, electron microscopy, and x-ray diffraction. The adsorption kinetics studies of thiophene on novel HDS catalysts provided the first evidence for the presence of different adsorption sites on INT-WS2. Additionally, the adsorption sites on IF-MoS2 NP and silica-supported Mo clusters (Mo/silica) were characterized. Furthermore, the C-S bond activation energy of thiophene on Mo/silica was determined. These studies finally led to the fabrication of Ni/Co coated INT-WS2, which showed good catalytic activity towards HDS of thiophene. The studies of methanol synthesis catalysts include the adsorption kinetics and dynamics studies of CO and CO2 on Cu/silica and silica-supported EBL-fabricated Cu/CuOx nanoclusters. The adsorption dynamics of CO on Cu/silica are modeled within the frame work of the capture zone model (CZM), and the active sites of the silica-supported Au/Cu catalysts are successfully mapped. Studies on EBL model catalysts identify the rims of the CuOx nanoclusters as catalytically active sites. This observation has implications for new methanol catalyst design.

  9. pH matters: The influence of the catalyst ink on the oxygen reduction activity determined in thin film rotating disk electrode measurements

    NASA Astrophysics Data System (ADS)

    Inaba, Masanori; Quinson, Jonathan; Arenz, Matthias

    2017-06-01

    We investigated the influence of the ink properties of proton exchange membrane fuel cell (PEMFC) catalysts on the oxygen reduction reaction (ORR) activity determined in thin film rotating disk electrode (TF-RDE) measurements. It was found that the adaption of a previously reported ink recipe to home-made catalysts does not lead to satisfying results, although reported work could be reproduced using commercial catalyst samples. It is demonstrated that the pH of the catalyst ink, which has not been addressed in previous TF-RDE studies, is an important parameter that needs to be carefully controlled to determine the intrinsic ORR activity of high surface area catalysts.

  10. Transitioning Rationally Designed Catalytic Materials to Real 'Working' Catalysts Produced at Commercial Scale: Nanoparticle Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaidle, Joshua A.; Habas, Susan E.; Baddour, Frederick G.

    Catalyst design, from idea to commercialization, requires multi-disciplinary scientific and engineering research and development over 10-20 year time periods. Historically, the identification of new or improved catalyst materials has largely been an empirical trial-and-error process. However, advances in computational capabilities (new tools and increased processing power) coupled with new synthetic techniques have started to yield rationally-designed catalysts with controlled nano-structures and tailored properties. This technological advancement represents an opportunity to accelerate the catalyst development timeline and to deliver new materials that outperform existing industrial catalysts or enable new applications, once a number of unique challenges associated with the scale-up ofmore » nano-structured materials are overcome.« less

  11. Radio-Frequency-Controlled Urea Dosing for NH₃-SCR Catalysts: NH₃ Storage Influence to Catalyst Performance under Transient Conditions.

    PubMed

    Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf

    2017-11-28

    Current developments in exhaust gas aftertreatment led to a huge mistrust in diesel driven passenger cars due to their NO x emissions being too high. The selective catalytic reduction (SCR) with ammonia (NH₃) as reducing agent is the only approach today with the capability to meet upcoming emission limits. Therefore, the radio-frequency-based (RF) catalyst state determination to monitor the NH₃ loading on SCR catalysts has a huge potential in emission reduction. Recent work on this topic proved the basic capability of this technique under realistic conditions on an engine test bench. In these studies, an RF system calibration for the serial type SCR catalyst Cu-SSZ-13 was developed and different approaches for a temperature dependent NH₃ storage were determined. This paper continues this work and uses a fully calibrated RF-SCR system under transient conditions to compare different directly measured and controlled NH₃ storage levels, and NH₃ target curves. It could be clearly demonstrated that the right NH₃ target curve, together with a direct control on the desired level by the RF system, is able to operate the SCR system with the maximum possible NO x conversion efficiency and without NH₃ slip.

  12. Innovative PCDD/F-containing gas stream generating system applied in catalytic decomposition of gaseous dioxins over V2O5-WO3/TiO2-based catalysts.

    PubMed

    Yang, Chia Cheng; Chang, Shu Hao; Hong, Bao Zhen; Chi, Kai Hsien; Chang, Moo Been

    2008-10-01

    Development of effective PCDD/F (polychlorinated dibenzo-p-dioxin and dibenzofuran) control technologies is essential for environmental engineers and researchers. In this study, a PCDD/F-containing gas stream generating system was developed to investigate the efficiency and effectiveness of innovative PCDD/F control technologies. The system designed and constructed can stably generate the gas stream with the PCDD/F concentration ranging from 1.0 to 100ng TEQ Nm(-3) while reproducibility test indicates that the PCDD/F recovery efficiencies are between 93% and 112%. This new PCDD/F-containing gas stream generating device is first applied in the investigation of the catalytic PCDD/F control technology. The catalytic decomposition of PCDD/Fs was evaluated with two types of commercial V(2)O(5)-WO(3)/TiO(2)-based catalysts (catalyst A and catalyst B) at controlled temperature, water vapor content, and space velocity. 84% and 91% PCDD/F destruction efficiencies are achieved with catalysts A and B, respectively, at 280 degrees C with the space velocity of 5000h(-1). The results also indicate that the presence of water vapor inhibits PCDD/F decomposition due to its competition with PCDD/F molecules for adsorption on the active vanadia sites for both catalysts. In addition, this study combined integral reaction and Mars-Van Krevelen model to calculate the activation energies of OCDD and OCDF decomposition. The activation energies of OCDD and OCDF decomposition via catalysis are calculated as 24.8kJmol(-1) and 25.2kJmol(-1), respectively.

  13. Laser Synthesis of Supported Catalysts for Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    VanderWal, Randall L.; Ticich, Thomas M.; Sherry, Leif J.; Hall, Lee J.; Schubert, Kathy (Technical Monitor)

    2003-01-01

    Four methods of laser assisted catalyst generation for carbon nanotube (CNT) synthesis have been tested. These include pulsed laser transfer (PLT), photolytic deposition (PLD), photothermal deposition (PTD) and laser ablation deposition (LABD). Results from each method are compared based on CNT yield, morphology and structure. Under the conditions tested, the PLT was the easiest method to implement, required the least time and also yielded the best pattemation. The photolytic and photothermal methods required organometallics, extended processing time and partial vacuums. The latter two requirements also held for the ablation deposition approach. In addition to control of the substrate position, controlled deposition duration was necessary to achieve an active catalyst layer. Although all methods were tested on both metal and quartz substrates, only the quartz substrates proved to be inactive towards the deposited catalyst particles.

  14. Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts

    NASA Astrophysics Data System (ADS)

    Tonga, Gulen Yesilbag; Jeong, Youngdo; Duncan, Bradley; Mizuhara, Tsukasa; Mout, Rubul; Das, Riddha; Kim, Sung Tae; Yeh, Yi-Cheun; Yan, Bo; Hou, Singyuk; Rotello, Vincent M.

    2015-07-01

    Bioorthogonal catalysis broadens the functional possibilities of intracellular chemistry. Effective delivery and regulation of synthetic catalytic systems in cells are challenging due to the complex intracellular environment and catalyst instability. Here, we report the fabrication of protein-sized bioorthogonal nanozymes through the encapsulation of hydrophobic transition metal catalysts into the monolayer of water-soluble gold nanoparticles. The activity of these catalysts can be reversibly controlled by binding a supramolecular cucurbit[7]uril ‘gate-keeper’ onto the monolayer surface, providing a biomimetic control mechanism that mimics the allosteric regulation of enzymes. The potential of this gated nanozyme for use in imaging and therapeutic applications was demonstrated through triggered cleavage of allylcarbamates for pro-fluorophore activation and propargyl groups for prodrug activation inside living cells.

  15. Evaluation of Silica-Supported Metal and Metal Phosphide Nanoparticle Catalysts for the Hydrodeoxygenation of Guaiacol Under Ex Situ Catalytic Fast Pyrolysis Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, Michael B.; Baddour, Frederick G.; Habas, Susan E.

    A series of metal and metal phosphide catalysts were investigated for the hydrodeoxygenation of guaiacol under ex situ catalytic fast pyrolysis (CFP) conditions (350 °C, 0.5 MPa, 12 H 2:1 guaiacol, weight hourly space velocity 5 h $-$1). Ligand-capped Ni, Pt, Rh, Ni 2P, and Rh 2P nanoparticles (NPs) were prepared using solution-phase synthesis techniques and dispersed on a silica support. For the metal phosphide NP-catalysts, a synthetic route that relies on the decomposition of a single molecular precursor was employed. The reactivity of the NP-catalysts was compared to a series of reference materials including Ni/SiO 2 and Pt/SiO 2more » prepared using incipient wetness (IW) impregnation and a commercial (com) Pt/SiO 2 catalyst. The NP-Ni/SiO 2 catalyst exhibited the largest reduction in the oxygen mol% of the organic phase and outperformed the IW-Ni/SiO 2 material. Although it was less active for guaiacol conversion than NP-Ni/SiO 2, NP-Rh2P/SiO 2 demonstrated the largest production of completely deoxygenated products and the highest selectivity to anisole, benzene, and cyclohexane, suggesting that it is a promising catalyst for deoxygenation of aryl-OH bonds. Finally, the com-Pt/SiO 2 and IW-Pt/SiO 2 catalyst exhibited the highest normalized rate of guaiacol conversion per m 2 and per gram of active phase, respectively, but did not produce any completely deoxygenated products.« less

  16. Evaluation of Silica-Supported Metal and Metal Phosphide Nanoparticle Catalysts for the Hydrodeoxygenation of Guaiacol Under Ex Situ Catalytic Fast Pyrolysis Conditions

    DOE PAGES

    Griffin, Michael B.; Baddour, Frederick G.; Habas, Susan E.; ...

    2015-09-30

    A series of metal and metal phosphide catalysts were investigated for the hydrodeoxygenation of guaiacol under ex situ catalytic fast pyrolysis (CFP) conditions (350 °C, 0.5 MPa, 12 H 2:1 guaiacol, weight hourly space velocity 5 h $-$1). Ligand-capped Ni, Pt, Rh, Ni 2P, and Rh 2P nanoparticles (NPs) were prepared using solution-phase synthesis techniques and dispersed on a silica support. For the metal phosphide NP-catalysts, a synthetic route that relies on the decomposition of a single molecular precursor was employed. The reactivity of the NP-catalysts was compared to a series of reference materials including Ni/SiO 2 and Pt/SiO 2more » prepared using incipient wetness (IW) impregnation and a commercial (com) Pt/SiO 2 catalyst. The NP-Ni/SiO 2 catalyst exhibited the largest reduction in the oxygen mol% of the organic phase and outperformed the IW-Ni/SiO 2 material. Although it was less active for guaiacol conversion than NP-Ni/SiO 2, NP-Rh2P/SiO 2 demonstrated the largest production of completely deoxygenated products and the highest selectivity to anisole, benzene, and cyclohexane, suggesting that it is a promising catalyst for deoxygenation of aryl-OH bonds. Finally, the com-Pt/SiO 2 and IW-Pt/SiO 2 catalyst exhibited the highest normalized rate of guaiacol conversion per m 2 and per gram of active phase, respectively, but did not produce any completely deoxygenated products.« less

  17. Organocatalyzed atom transfer radical polymerization driven by visible light.

    PubMed

    Theriot, Jordan C; Lim, Chern-Hooi; Yang, Haishen; Ryan, Matthew D; Musgrave, Charles B; Miyake, Garret M

    2016-05-27

    Atom transfer radical polymerization (ATRP) has become one of the most implemented methods for polymer synthesis, owing to impressive control over polymer composition and associated properties. However, contamination of the polymer by the metal catalyst remains a major limitation. Organic ATRP photoredox catalysts have been sought to address this difficult challenge but have not achieved the precision performance of metal catalysts. Here, we introduce diaryl dihydrophenazines, identified through computationally directed discovery, as a class of strongly reducing photoredox catalysts. These catalysts achieve high initiator efficiencies through activation by visible light to synthesize polymers with tunable molecular weights and low dispersities. Copyright © 2016, American Association for the Advancement of Science.

  18. Late-stage chemoselective functional-group manipulation of bioactive natural products with super-electrophilic silylium ions

    NASA Astrophysics Data System (ADS)

    Bender, Trandon A.; Payne, Philippa R.; Gagné, Michel R.

    2018-01-01

    The selective (and controllable) modification of complex molecules with disparate functional groups (for example, natural products) is a long-standing challenge that has been addressed using catalysts tuned to perform singular transformations (for example, C-H hydroxylation). A method whereby reactions with diverse functional groups within a single natural product are feasible depending on which catalyst or reagent is chosen would widen the possible structures one could obtain. Fluoroarylborane catalysts can heterolytically split Si-H bonds to yield an oxophilic silylium (R3Si+) equivalent along with a reducing (H-) equivalent. Together, these reactive intermediates enable the reduction of multiple functional groups. Exogenous phosphine Lewis bases further modify the catalyst speciation and attenuate aggressive silylium ions for the selective modification of complex natural products. Manipulation of the catalyst, silane reagent and the reaction conditions provides experimental control over which site is modified (and how). Applying this catalytic method to complex bioactive compounds (natural products or drugs) provides a powerful tool for studying structure-activity relationships.

  19. Principles and Methods for the Rational Design of Core-Shell Nanoparticle Catalysts with Ultralow Noble Metal Loadings.

    PubMed

    Hunt, Sean T; Román-Leshkov, Yuriy

    2018-05-15

    Conspecuts Commercial and emerging renewable energy technologies are underpinned by precious metal catalysts, which enable the transformation of reactants into useful products. However, the noble metals (NMs) comprise the least abundant elements in the lithosphere, making them prohibitively scarce and expensive for future global-scale technologies. As such, intense research efforts have been devoted to eliminating or substantially reducing the loadings of NMs in various catalytic applications. These efforts have resulted in a plethora of heterogeneous NM catalyst morphologies beyond the traditional supported spherical nanoparticle. In many of these new architectures, such as shaped, high index, and bimetallic particles, less than 20% of the loaded NMs are available to perform catalytic turnovers. The majority of NM atoms are subsurface, providing only a secondary catalytic role through geometric and ligand effects with the active surface NM atoms. A handful of architectures can approach 100% NM utilization, but severe drawbacks limit general applicability. For example, in addition to problems with stability and leaching, single atom and ultrasmall cluster catalysts have extreme metal-support interactions, discretized d-bands, and a lack of adjacent NM surface sites. While monolayer thin films do not possess these features, they exhibit such low surface areas that they are not commercially relevant, serving predominantly as model catalysts. This Account champions core-shell nanoparticles (CS NPs) as a vehicle to design highly active, stable, and low-cost materials with high NM utilization for both thermo- and electrocatalysis. The unique benefits of the many emerging NM architectures could be preserved while their fundamental limitations could be overcome through reformulation via a core-shell morphology. However, the commercial realization of CS NPs remains challenging, requiring concerted advances in theory and manufacturing. We begin by formulating seven constraints governing proper core material design, which naturally point to early transition metal ceramics as suitable core candidates. Two constraints prove extremely challenging. The first relates to the core modifying the shell work function and d-band. To properly investigate materials that could satisfy this constraint, we discuss our development of a new heat, quench, and exfoliation (HQE) density functional theory (DFT) technique to model heterometallic interfaces. This technique is used to predict how transition metal carbides can favorably tune the catalytic properties of various NM monolayer shell configurations. The second challenging constraint relates to the scalable manufacturing of CS NP architectures with independent synthetic control of the thickness and composition of the shell and the size and composition of the core. We discuss our development of a synthetic method that enables high temperature self-assembly of tunable CS NP configurations. Finally, we discuss how these principles and methods were used to design catalysts for a variety of applications. These include the design of a thermally stable sub-monolayer CS catalyst, a highly active methanol electrooxidation catalyst, CO-tolerant Pt catalysts, and a hydrogen evolution catalyst that is less expensive than state-of-the-art NM-free catalysts. Such core-shell architectures offer the promise of ultralow precious metal loadings while ceramic cores hold the promise of thermodynamic stability and access to unique catalytic activity/tunability.

  20. Rigid zeolite containing polyurethane foams

    DOEpatents

    Frost, Charles B.

    1985-01-01

    A closed cell rigid polyurethane foam has been prepared which contains up to about 60% by weight of molecular sieves capable of sorbing molecules with effective critical diameters of up to about 10 .ANG.. The molecular sieve component of the foam can be preloaded with catalysts or with reactive compounds that can be released upon activation of the foam to control and complete crosslinking after the foam is formed. The foam can also be loaded with water or other flame-retarding agents, after completion. Up to about 50% of the weight of the isocyanate component of the foam can be replaced by polyimide resin precursors for incorporation into the final polymeric network.

  1. Rigid zeolite containing polyurethane foams

    DOEpatents

    Frost, C.B.

    1984-05-18

    A closed cell rigid polyurethane foam has been prepared which contains up to about 60% by weight of molecular sieves capable of sorbing molecules with effective critical diameters of up to about 10 A. The molecular sieve component of the foam can be preloaded with catalysts or with reactive compounds that can be released upon activation of the foam to control and complete crosslinking after the foam is formed. The foam can also be loaded with water or other flame-retarding agents, after completion. Up to about 50% of the weight of the isocyanate component of the foam can be replaced by polyimide resin precursors for incorporation into the final polymeric network.

  2. Chemical Fixation of CO2 in Coal Combustion Products and Recycling through Biosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Henry Copeland; Paul Pier; Samantha Whitehead

    2001-09-30

    This Annual Technical Progress Report presents the principle results in enhanced growth of algae using coal combustion products as a catalyst to increase bicarbonate levels in solution. A co-current reactor is present that increases the gas phase to bicarbonate transfer rate by a factor of five to nine. The bicarbonate concentration at a given pH is approximately double that obtained using a control column of similar construction. Algae growth experiments were performed under laboratory conditions to obtain baseline production rates and to perfect experimental methods. The final product of this initial phase in algae production is presented.

  3. Recent Progress in Photocatalysis Mediated by Colloidal II-VI Nanocrystals

    PubMed Central

    Wilker, Molly B; Schnitzenbaumer, Kyle J; Dukovic, Gordana

    2012-01-01

    The use of photoexcited electrons and holes in semiconductor nanocrystals as reduction and oxidation reagents is an intriguing way of harvesting photon energy to drive chemical reactions. This review focuses on recent research efforts to understand and control the photocatalytic processes mediated by colloidal II-VI nanocrystalline materials, such as cadmium and zinc chalcogenides. First, we highlight how nanocrystal properties govern the rates and efficiencies of charge-transfer processes relevant to photocatalysis. We then describe the use of nanocrystal catalyst heterostructures for fuel-forming reactions, most commonly H2 generation. Finally, we review the use of nanocrystal photocatalysis as a synthetic tool for metal–semiconductor nano-heterostructures. PMID:24115781

  4. Plastic catalytic pyrolysis to fuels as tertiary polymer recycling method: effect of process conditions.

    PubMed

    Gulab, Hussain; Jan, Muhammad Rasul; Shah, Jasmin; Manos, George

    2010-01-01

    This paper presents results regarding the effect of various process conditions on the performance of a zeolite catalyst in pyrolysis of high density polyethylene. The results show that polymer catalytic degradation can be operated at relatively low catalyst content reducing the cost of a potential industrial process. As the polymer to catalyst mass ratio increases, the system becomes less active, but high temperatures compensate for this activity loss resulting in high conversion values at usual batch times and even higher yields of liquid products due to less overcracking. The results also show that high flow rate of carrier gas causes evaporation of liquid products falsifying results, as it was obvious from liquid yield results at different reaction times as well as the corresponding boiling point distributions. Furthermore, results are presented regarding temperature effects on liquid selectivity. Similar values resulted from different final reactor temperatures, which are attributed to the batch operation of the experimental equipment. Since polymer and catalyst both undergo the same temperature profile, which is the same up to a specific time independent of the final temperature. Obviously, this common temperature step determines the selectivity to specific products. However, selectivity to specific products is affected by the temperature, as shown in the corresponding boiling point distributions, with higher temperatures showing an increased selectivity to middle boiling point components (C(8)-C(9)) and lower temperatures increased selectivity to heavy components (C(14)-C(18)).

  5. Sol-gel 3-glycidoxypropyltriethoxysilane finishing on different fabrics: The role of precursor concentration and catalyst on the textile performances and cytotoxic activity.

    PubMed

    Plutino, M R; Colleoni, C; Donelli, I; Freddi, G; Guido, E; Maschi, O; Mezzi, A; Rosace, G

    2017-11-15

    In this paper, the influence of 3-glycidoxypropyltriethoxysilane (GPTES) based organic-inorganic coatings on the properties of treated textile fabrics was studied. All experimental results were deeply analyzed and thereafter correlated with the employed silica precursor concentration and with the presence of the BF 3 OEt 2 (Boron trifluoride diethyl etherate), used as epoxy ring opening catalyst. SEM analysis, FT-IR spectroscopy, X-ray Photoelectron Spectroscopy (XPS), thermogravimetric analysis (TGA) and washing fastness tests of the sol-gel treated cotton fabric samples were firstly exploited in order to characterize the morphological and structural features of the achieved coatings. Finally, the influence of the resulting nanohybrid coatings was explored in terms of abrasion resistance, tensile strength and elongation properties of treated cotton, polyester and silk fabrics. The catalyst amounts seem to strongly improve the formation of coatings, but still they do not influence the wear resistance of treated textile fabrics to the same extent. Indeed, it was found that increasing catalyst/GPTES ratio leads to a more cross linked inorganic 3D-network. GPTES itself was not found to affect the bulk properties of the selected textile and the resulting coatings were not so rigid to hardly modify the mechanical properties of the treated samples. Finally, it is worth mentioning that in all case the obtained 3-glycidoxypropyltriethoxysilane-based chemical finishing have shown no cytotoxic effects on human skin cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Enhanced Oxidation Catalysts for Water Reclamation

    NASA Technical Reports Server (NTRS)

    Jolly, Clifford D.

    1999-01-01

    This effort seeks to develop and test high-performance, long operating life, physically stable catalysts for use in spacecraft water reclamation systems. The primary goals are to a) reduce the quantity of expendable water filters used to purify water aboard spacecraft, b) to extend the life of the oxidation catalysts used for eliminating organic contaminants in the water reclamation systems, and c) reduce the weight/volume of the catalytic oxidation systems (e.g. VRA) used. This effort is targeted toward later space station utilization and will consist of developing flight-qualifiable catalysts and long-term ground tests of the catalyst prior to their utilization in flight. Fixed -bed catalytic reactors containing 5% platinum on granular activated carbon have been subjected to long-term dynamic column tests to measure catalyst stability vs throughput. The data generated so far indicate that an order of magnitude improvement can be obtained with the treated catalysts vs the control catalyst, at only a minor loss (approx 10%) in the initial catalytic activity.

  7. HCOOH-induced Controlled-release Hydrolysis of Microalgae (Scenedesmus) to Lactic Acid over Sn-Beta Catalyst.

    PubMed

    Zan, Yifan; Sun, Yuanyuan; Kong, Lingzhao; Miao, Gai; Bao, Liwei; Wang, Hao; Li, Shenggang; Sun, Yuhan

    2018-06-12

    Formic acid induced controlled-release hydrolysis of sugar-rich microalgae (Scenedesmus) over the Sn-Beta catalyst was found to be a highly efficient process for producing lactic acid as a platform chemical. One-pot reaction with a very high lactic acid yield of 83.0% was realized in a batch reactor using water as the solvent. Under the attack of formic acid, the cell wall of Scenedesmus was disintegrated, and hydrolysis of the starch inside the cell was strengthened in a controlled-release mode, resulting in a stable and relatively low glucose concentration. Subsequently, the Sn-Beta catalyst was employed for the efficient conversion of glucose into lactic acid with stable catalytic performance through isomerization, retro-aldol and de-/rehydration reactions. Thus, the hydrolysis of polysaccharides and the catalytic conversion of the monosaccharide into lactic acid was realized by the synergy between an organic Brønsted acid and a heterogeneous Lewis acid catalyst. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A thermoresponsive nanorattle containing two different catalysts for controllable one-pot tandem catalysis

    NASA Astrophysics Data System (ADS)

    Niu, Chengrong; Hu, Jie; Li, Yinfeng; Leng, Jinghang; Li, Songjun

    2018-03-01

    In the present work, a thermoresponsive nanorattle with a Ag nanoparticle (NP) core (one catalyst in the nanorattle), and a poly(N-isopropylacrylamide) shell was developed. An imidazole group was grafted on the polymer shell by copolymerization as the other catalyst. Owing to the catalytic activities of the imidazole group and Ag NP with regards to hydrolysis and reduction, respectively, this nanorattle exhibited tandem-reaction catalytic abilities. In addition, because of the shrinkage of the poly(N-isopropylacrylamide) shell at high temperatures, the tandem reaction could be controlled to stop at the first reaction step. That is to say, only the hydrolysis reaction was catalyzed by the imidazole group being grafted on the surface of the shell. The reduction step in the tandem reaction catalyzed by the Ag particle, however, was switched off by the shrinkage of the poly(N-isopropylacrylamide) shell. This protocol opens up an opportunity to develop controllable catalysts for complicated chemical processes.

  9. Development of Metal-impregnated Single Walled Carbon Nanotubes for Toxic Gas Contaminant Control in Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Pisharody, Suresh A.; Fisher, John W.; Wignarajah, K.

    2002-01-01

    The success of physico-chemical waste processing and resource recovery technologies for life support application depends partly on the ability of gas clean-up systems to efficiently remove trace contaminants generated during the process with minimal use of expendables. Carbon nanotubes promise superior performance over conventional approaches to gas clean-up due to their ability to direct the selective uptake of gaseous species based on their controlled pore size, high surface area, ordered chemical structure that allows functionalization and their effectiveness also as catalyst support materials for toxic gas conversion. We present results and findings from a preliminary study on the effectiveness of metal impregnated single walled nanotubes as catalyst/catalyst support materials for toxic gas contaminate control. The study included the purification of single walled nanotubes, the catalyst impregnation of the purified nanotubes, the experimental characterization of the surface properties of purified single walled nanotubes and the characterization of physisorption and chemisorption of uptake molecules.

  10. The effect of the surface composition of Ru-Pt bimetallic catalysts for methanol oxidation

    DOE PAGES

    Garrick, Taylor R.; Diao, Weijian; Tengco, John M.; ...

    2016-02-23

    Here, a series of Ru-Pt bimetallic catalysts prepared by the electroless deposition of controlled and variable amounts of Ru on the Pt surface of a commercially-available 20 wt% Pt/C catalyst has been characterized and evaluated for the oxidation of methanol. The activity of each Ru-Pt catalyst was determined as a function of surface composition via cyclic voltammetry. For the Ru-Pt bimetallic catalysts, activity passed through a maximum at approximately 50% monodisperse Ru surface coverage. However, due to the monolayer coverage of Ru on Pt, the amount of metal in the catalyst is minimized compared to a bulk 1:1 atomic ratiomore » of Ru:Pt seen in commercial bimetallic catalysts. Chemisorption and temperature programmed reduction experiments confirmed that the surface had characteristics of a true bimetallic catalyst. On a mass of Pt basis, the activity of this composition for methanol oxidation was 7 times higher than pure Pt and 3.5 times higher than a commercial catalyst with a 1:1 Pt:Ru bulk atomic ratio.« less

  11. Membrane catalyst layer for fuel cells

    DOEpatents

    Wilson, Mahlon S.

    1993-01-01

    A gas reaction fuel cell incorporates a thin catalyst layer between a solid polymer electrolyte (SPE) membrane and a porous electrode backing. The catalyst layer is preferably less than about 10 .mu.m in thickness with a carbon supported platinum catalyst loading less than about 0.35 mgPt/cm.sup.2. The film is formed as an ink that is spread and cured on a film release blank. The cured film is then transferred to the SPE membrane and hot pressed into the surface to form a catalyst layer having a controlled thickness and catalyst distribution. Alternatively, the catalyst layer is formed by applying a Na.sup.+ form of a perfluorosulfonate ionomer directly to the membrane, drying the film at a high temperature, and then converting the film back to the protonated form of the ionomer. The layer has adequate gas permeability so that cell performance is not affected and has a density and particle distribution effective to optimize proton access to the catalyst and electronic continuity for electron flow from the half-cell reaction occurring at the catalyst.

  12. Chloroform Hydrodechlorination over Palladium–Gold Catalysts: A First-Principles DFT Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Lang; Yao, Xiaoqian; Khan, Ahmad

    2016-04-20

    Hydrodechlorination is a promising method for treating toxic chlorocarbon compounds. Pd is among the most effective catalysts for chloroform hydrodechlorination, and experiments have shown that the Pd–Au alloy catalyst yields superior catalytic performance over pure Pd. In this paper, we examine the chloroform hydrodechlorination mechanism over Pd(1 1 1) and Pd ML/Au(1 1 1) surfaces using periodic, self-consistent density functional theory calculations (DFT, GGA–PW91) and maximum rate analysis. We suggest that the reaction occurs on both surfaces through complete dechlorination of chloroform followed by hydrogenation of CH* to methane, and that the initial dechlorination step is likely the rate-limiting step.more » Finally, on Pd(1 1 1), the chloroform dechlorination barrier is 0.24 eV higher than the desorption barrier, whereas on Pd ML/Au(1 1 1), the chloroform dechlorination barrier is 0.07 eV lower than the desorption barrier, which can explain the higher hydrodechlorination activity of the Pd–Au alloy catalyst.« less

  13. Preparation of Fe3O4/SiO2-guanidine organobase catalyst for 1,5-diphenylpenta-2,4-dien-1-one synthesis

    NASA Astrophysics Data System (ADS)

    Cahyana, A. H.; Fitria, D.; Ardiansah, B.; Rahayu, D. U. C.

    2017-04-01

    A novel heterogeneous organobase catalyst of Fe3O4/SiO2-guanidine was prepared in three stages. First, Fe3O4 nanoparticle was obtained by co-precipitation method using seaweed Sargassum Sp. as natural reductant. Fe3O4 was then coated by SiO2 using TEOS as silica source, resulting Fe3O4/SiO2. Finally, Fe3O4/SiO2-Guanidine was obtained by modifying Fe3O4/SiO2 with guanidine in the suitable reaction condition. This organobase catalyst was characterized by Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), and Particle Size Analyzer (PSA). The material was then used as a highly active catalyst in aldol condensation reaction between acetophenone and cinnamaldehyde to produce 1,5-diphenylpenta-2,4-dien-1-one. The structure elucidation of the organic product was confirmed by UV-Vis, FTIR, and LC-MS.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gewirth, Andrew A.; Kenis, Paul J.; Nuzzo, Ralph G.

    In this research, we prosecuted a comprehensive plan of research directed at developing new catalysts and new understandings relevant to the operation of low temperature hydrogen-oxygen fuel cells. The focal point of this work was one centered on the Oxygen Reduction Reaction (ORR), the electrochemical process that most fundamentally limits the technological utility of these environmentally benign energy conversion devices. Over the period of grant support, we developed new ORR catalysts, based on Cu dimers and multimers. In this area, we developed substantial new insight into design rules required to establish better ORR materials, inspired by the three-Cu active sitemore » in laccase which has the highest ORR onset potential of any material known. We also developed new methods of characterization for the ORR on conventional (metal-based) catalysts. Finally, we developed a new platform to study the rate of proton transfer relevant to proton coupled electron transfer (PCET) reactions, of which the ORR is an exemplar. Other aspects of work involved theory and prototype catalyst testing.« less

  15. Hydrodeoxygenation of phenol over zirconia supported Pd bimetallic catalysts. The effect of second metal on catalyst performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resende, Karen A.; Teles, Camila A.; Jacobs, Gary

    Here, this work investigated the effect of the addition of a second metal (Cu, Ag, Zn, Sn) on the performance of Pd/ZrO 2 catalyst for HDO of phenol at 573 K in the gas phase. The incorporation of dopants resulted in the formation of Pd–X (Cu, Ag, Zn) alloys, which reduced the reaction rate for HDO and increased the selectivity to hydrogenation products (cyclohexanone and cyclohexanol). The lower activity of the bimetallic catalysts was due to the segregation of the second metal on the surface of the Pd particle. For PdSn/ZrO 2, alloying was also observed but tin oxide wasmore » still present on the surface after reduction at 773 K. For Pd and PdSn/ZrO 2, the oxophilic sites represented by Zr and Sn cations promotes the hydrogenation of the carbonyl group of the keto-tautomer intermediate formed, producing benzene as the main product. All catalysts significantly deactivated during the reaction but the deactivation degree depended on the type of the metal. Pd/ZrO 2 and PdZn/ZrO 2 and PdAg/ZrO 2 exhibited approximately the same deactivation degree. However, the loss of activity was less pronounced for PdSn/ZrO2 catalyst. Finally, Pd dispersion significantly decreased during the reaction, indicating that the sintering of Pd particles is one of the causes for catalyst deactivation.« less

  16. Hydrodeoxygenation of phenol over zirconia supported Pd bimetallic catalysts. The effect of second metal on catalyst performance

    DOE PAGES

    Resende, Karen A.; Teles, Camila A.; Jacobs, Gary; ...

    2018-03-21

    Here, this work investigated the effect of the addition of a second metal (Cu, Ag, Zn, Sn) on the performance of Pd/ZrO 2 catalyst for HDO of phenol at 573 K in the gas phase. The incorporation of dopants resulted in the formation of Pd–X (Cu, Ag, Zn) alloys, which reduced the reaction rate for HDO and increased the selectivity to hydrogenation products (cyclohexanone and cyclohexanol). The lower activity of the bimetallic catalysts was due to the segregation of the second metal on the surface of the Pd particle. For PdSn/ZrO 2, alloying was also observed but tin oxide wasmore » still present on the surface after reduction at 773 K. For Pd and PdSn/ZrO 2, the oxophilic sites represented by Zr and Sn cations promotes the hydrogenation of the carbonyl group of the keto-tautomer intermediate formed, producing benzene as the main product. All catalysts significantly deactivated during the reaction but the deactivation degree depended on the type of the metal. Pd/ZrO 2 and PdZn/ZrO 2 and PdAg/ZrO 2 exhibited approximately the same deactivation degree. However, the loss of activity was less pronounced for PdSn/ZrO2 catalyst. Finally, Pd dispersion significantly decreased during the reaction, indicating that the sintering of Pd particles is one of the causes for catalyst deactivation.« less

  17. Understanding the electrocatalytic activity of Pt xSn y in direct ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Song, Shuqin; Andreadis, George; Liu, Hong; Tsiakaras, Panagiotis

    In the present work, the activity of Pt xSn y/C catalysts towards ethanol, acetaldehyde and acetic acid electrooxidation reactions is investigated for each one separately by means of cyclic voltammetry. To this purpose, a series of Pt xSn y/C catalysts with different atomic ratio (x: y = 2:1, 3:2, 1:1) and small particle size (∼3 nm) are fast synthesized by using the pulse microwave assisted polyol method. The catalysts are well dispersed over the carbon support based on the physicochemical characterization by means of XRD and TEM. Concerning the ethanol electrooxidation, it is found that the Sn addition strongly enhances Pt's electrocatalytic activity and the contributing effect of Sn depends on: (i) the Sn content and (ii) the operating temperature. More precisely, at lower temperatures, Sn-rich catalysts exhibit better ethanol electrooxidation performance while at higher temperatures Sn-poor catalysts give better performance. In the case of acetaldehyde electrooxidation, Pt 1Sn 1/C catalyst exhibits the highest activity at all the investigated temperatures; due to the role of Sn, which could effectively remove C 2 species and inhibit the poison formation by supplying oxygen-containing species. Finally, it is found that the Pt xSn y/C catalysts are almost inactive (little current was measured) towards the acetic acid electrooxidation. The above findings indicate that Sn cannot substantially promote the electrooxidation of acetic acid to C 1 species.

  18. Two-Stage Conversion of High Free Fatty Acid Jatropha curcas Oil to Biodiesel Using Brønsted Acidic Ionic Liquid and KOH as Catalysts

    PubMed Central

    Das, Subrata; Thakur, Ashim Jyoti; Deka, Dhanapati

    2014-01-01

    Biodiesel was produced from high free fatty acid (FFA) Jatropha curcas oil (JCO) by two-stage process in which esterification was performed by Brønsted acidic ionic liquid 1-(1-butylsulfonic)-3-methylimidazolium chloride ([BSMIM]Cl) followed by KOH catalyzed transesterification. Maximum FFA conversion of 93.9% was achieved and it reduced from 8.15 wt% to 0.49 wt% under the optimum reaction conditions of methanol oil molar ratio 12 : 1 and 10 wt% of ionic liquid catalyst at 70°C in 6 h. The ionic liquid catalyst was reusable up to four times of consecutive runs under the optimum reaction conditions. At the second stage, the esterified JCO was transesterified by using 1.3 wt% KOH and methanol oil molar ratio of 6 : 1 in 20 min at 64°C. The yield of the final biodiesel was found to be 98.6% as analyzed by NMR spectroscopy. Chemical composition of the final biodiesel was also determined by GC-MS analysis. PMID:24987726

  19. Final report for project "Next-Generation Semiconductors for Solar Photoelectrolysis"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalifah, Peter

    2016-09-15

    In this paper, effective methods have been developed for preparing high-quality LaTiO 2N films on conductive La 5Ti 5O 17 substrates that can serve as photoanodes for photoelectrochemical water oxidation. One paper has been written by the post-doc who completed this comprehensive, interdisciplinary study, and it is presently being finalized for submission. Our approach to this system integrates expertise that we have developed in single crystal growth, thin film growth, and thin film post-processing. Through this work, LTON films have been fully optimized for light harvesting, as their band gap is optimally matched with the incident solar spectrum and themore » film thicknesses have been optimized based on the absolute absorption coefficients that we have measured for this system. The next step is to optimize the co-catalyst functionalization and the solution conditions to maximize the catalytic activity for water oxidation. Since the preliminary tests described here were done without a water oxidation co-catalyst, and since good water oxidation catalysts have previously been identified based on studies of powder samples, this next step is highly likely to be successful.« less

  20. Direct Synthetic Control over the Size, Composition, and Photocatalytic Activity of Octahedral Copper Oxide Materials: Correlation Between Surface Structure and Catalytic Functionality.

    PubMed

    Nguyen, Michelle A; Bedford, Nicholas M; Ren, Yang; Zahran, Elsayed M; Goodin, Robert C; Chagani, Fatima F; Bachas, Leonidas G; Knecht, Marc R

    2015-06-24

    We report a synthetic approach to form octahedral Cu2O microcrystals with a tunable edge length and demonstrate their use as catalysts for the photodegradation of aromatic organic compounds. In this particular study, the effects of the Cu(2+) and reductant concentrations and stoichiometric ratios were carefully examined to identify their roles in controlling the final material composition and size under sustainable reaction conditions. Varying the ratio and concentrations of Cu(2+) and reductant added during the synthesis determined the final morphology and composition of the structures. Octahedral particles were prepared at selected Cu(2+):glucose ratios that demonstrated a range of photocatalytic reactivity. The results indicate that material composition, surface area, and substrate charge effects play important roles in controlling the overall reaction rate. In addition, analysis of the post-reacted materials revealed photocorrosion was inhibited and that surface etching had preferentially occurred at the particle edges during the reaction, suggesting that the reaction predominately occurred at these interfaces. Such results advance the understanding of how size and composition affect the surface interface and catalytic functionality of materials.

  1. Stability of High-Performance Pt-Based Catalysts for Oxygen Reduction Reactions.

    PubMed

    Lin, Rui; Cai, Xin; Zeng, Hao; Yu, Zhuoping

    2018-04-01

    Due to their environmental sustainability and high efficiency, proton-exchange-membrane fuel cells (PEMFCs) are expected to be an essential type of energy source for electric vehicles, energy generation, and the space industry in the coming decades. Here, the recent developments regarding shape-controlled nanostructure catalysts are reviewed, with a focus on the stability of high-performance Pt-based catalysts and related mechanisms. The catalysts, which possess great activity, are still far from meeting the requirements of their applications, due to stability issues, especially in membrane electrode assemblies (MEAs). Thus, solutions toward the comprehensive performance of Pt-based catalysts are discussed here. The research trends and related theories that can promote the application of Pt-based catalysts are also provided. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Metal-organic frameworks derived platinum-cobalt bimetallic nanoparticles in nitrogen-doped hollow porous carbon capsules as a highly active and durable catalyst for oxygen reduction reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ying, Jie; Li, Jing; Jiang, Gaopeng

    Pt-based nanomaterials are regarded as the most efficient electrocatalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). However, widespread adoption of PEMFCs requires solutions to major challenges encountered with ORR catalysts, namely high cost, sluggish kinetics, and low durability. In this paper, a new efficient method utilizing Co-based metal-organic frameworks is developed to produce PtCo bimetallic nanoparticles embedded in unique nitrogen-doped hollow porous carbon capsules. The obtained catalyst demonstrates an outstanding ORR performance, with a mass activity that is 5.5 and 13.5 times greater than that of commercial Pt/C and Pt black, respectively. Most importantly,more » the product exhibits dramatically improved durability in terms of both electrochemically active surface area (ECAS) and mass activity compared to commercial Pt/C and Pt black catalysts. Finally, the remarkable ORR performance demonstrated here can be attributed to the structural features of the catalyst (its alloy structure, high dispersion and fine particle size) and the carbon support (its nitrogen dopant, large surface area and hollow porous structure).« less

  3. Multisource Synergistic Electrocatalytic Oxidation Effect of Strongly Coupled PdM (M = Sn, Pb)/N-doped Graphene Nanocomposite on Small Organic Molecules

    PubMed Central

    Wu, Peng; Huang, Yiyin; Kang, Longtian; Wu, Maoxiang; Wang, Yaobing

    2015-01-01

    A series of palladium-based catalysts of metal alloying (Sn, Pb) and/or (N-doped) graphene support with regular enhanced electrocatalytic activity were investigated. The peak current density (118.05 mA cm−2) of PdSn/NG is higher than the sum current density (45.63 + 47.59 mA cm−2) of Pd/NG and PdSn/G. It reveals a synergistic electrocatalytic oxidation effect in PdSn/N-doped graphene Nanocomposite. Extend experiments show this multisource synergetic catalytic effect of metal alloying and N-doped graphene support in one catalyst on small organic molecule (methanol, ethanol and Ethylene glycol) oxidation is universal in PdM(M = Sn, Pb)/NG catalysts. Further, The high dispersion of small nanoparticles, the altered electron structure and Pd(0)/Pd(II) ratio of Pd in catalysts induced by strong coupled the metal alloying and N-doped graphene are responsible for the multisource synergistic catalytic effect in PdM(M = Sn, Pb) /NG catalysts. Finally, the catalytic durability and stability are also greatly improved. PMID:26434949

  4. Metal-organic frameworks derived platinum-cobalt bimetallic nanoparticles in nitrogen-doped hollow porous carbon capsules as a highly active and durable catalyst for oxygen reduction reaction

    DOE PAGES

    Ying, Jie; Li, Jing; Jiang, Gaopeng; ...

    2017-11-29

    Pt-based nanomaterials are regarded as the most efficient electrocatalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). However, widespread adoption of PEMFCs requires solutions to major challenges encountered with ORR catalysts, namely high cost, sluggish kinetics, and low durability. In this paper, a new efficient method utilizing Co-based metal-organic frameworks is developed to produce PtCo bimetallic nanoparticles embedded in unique nitrogen-doped hollow porous carbon capsules. The obtained catalyst demonstrates an outstanding ORR performance, with a mass activity that is 5.5 and 13.5 times greater than that of commercial Pt/C and Pt black, respectively. Most importantly,more » the product exhibits dramatically improved durability in terms of both electrochemically active surface area (ECAS) and mass activity compared to commercial Pt/C and Pt black catalysts. Finally, the remarkable ORR performance demonstrated here can be attributed to the structural features of the catalyst (its alloy structure, high dispersion and fine particle size) and the carbon support (its nitrogen dopant, large surface area and hollow porous structure).« less

  5. Optimization of information content in a mass spectrometry based flow-chemistry system by investigating different ionization approaches.

    PubMed

    Martha, Cornelius T; Hoogendoorn, Jan-Carel; Irth, Hubertus; Niessen, Wilfried M A

    2011-05-15

    Current development in catalyst discovery includes combinatorial synthesis methods for the rapid generation of compound libraries combined with high-throughput performance-screening methods to determine the associated activities. Of these novel methodologies, mass spectrometry (MS) based flow chemistry methods are especially attractive due to the ability to combine sensitive detection of the formed reaction product with identification of introduced catalyst complexes. Recently, such a mass spectrometry based continuous-flow reaction detection system was utilized to screen silver-adducted ferrocenyl bidentate catalyst complexes for activity in a multicomponent synthesis of a substituted 2-imidazoline. Here, we determine the merits of different ionization approaches by studying the combination of sensitive detection of product formation in the continuous-flow system with the ability to simultaneous characterize the introduced [ferrocenyl bidentate+Ag](+) catalyst complexes. To this end, we study the ionization characteristics of electrospray ionization (ESI), atmospheric-pressure chemical ionization (APCI), no-discharge APCI, dual ESI/APCI, and dual APCI/no-discharge APCI. Finally, we investigated the application potential of the different ionization approaches by the investigation of ferrocenyl bidentate catalyst complex responses in different solvents. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Catalytic biomass conversion methods, catalysts, and methods of making the same

    DOEpatents

    Delgass, William Nicholas; Agrawal, Rakesh; Ribeiro, Fabio Henrique; Saha, Basudeb; Yohe, Sara Lynn; Abu-Omar, Mahdi M; Parsell, Trenton; Dietrich, Paul James; Klein, Ian Michael

    2017-10-10

    Described herein are processes for one-step delignification and hydrodeoxygenation of lignin fraction a biomass feedstock. The lignin feedstock is derived from by-products of paper production and biorefineries. Additionally described is a process for converting biomass-derived oxygenates to lower oxygen-content compounds and/or hydrocarbons in the liquid or vapor phase in a reactor system containing hydrogen and a catalyst comprised of a hydrogenation function and/or an oxophilic function and/or an acid function. Finally, also described herein is a process for converting biomass-derived oxygenates to lower oxygen-content compounds and/or hydrocarbons in the liquid or vapor phase in a reactor system containing hydrogen and a catalyst comprised of a hydrogenation function and/or an oxophilic function and/or an acid function.

  7. Systems and methods for controlling diesel engine emissions

    DOEpatents

    Webb, Cynthia Chaffin; Weber, Phillip Anthony; Khair, Magdi K.

    2004-06-01

    Systems and methods for controlling diesel engine emissions, including, for example, oxides of nitrogen emissions, particulate matter emissions, and the like. The emission control system according to this invention is provided in the exhaust passageway of a diesel engine and includes a catalyst-based particulate filter; and first and second lean NO.sub.x trap systems coupled to the catalyst-based particulate filter. The first and second lean NO.sub.x trap systems are arranged in a parallel flow configuration with each other. Each of the first and second lean NO.sub.x trap systems include a carbon monoxide generating catalyst device, a sulfur trap device, a lean NO.sub.x device, a supplemental fuel injector device, and a plurality of flow diverter devices.

  8. Hierarchical Inorganic Assemblies for Artificial Photosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Wooyul; Edri, Eran; Frei, Heinz

    Artificial photosynthesis is an attractive approach for renewable fuel generation because it offers the prospect of a technology suitable for deployment on highly abundant, non-arable land. Recent leaps forward in the development of efficient and durable light absorbers and catalysts for oxygen evolution and the growing attention to catalysts for carbon dioxide activation brings into focus the tasks of hierarchically integrating the components into assemblies for closing of the photosynthetic cycle. A particular challenge is the efficient coupling of the multi-electron processes of CO 2 reduction and H 2O oxidation. Among the most important requirements for a complete integrated systemmore » are catalytic rates that match the solar flux, efficient charge transport between the various components, and scalability of the photosynthetic assembly on the unprecedented scale of terawatts in order to have impact on fuel consumption. To address these challenges, we have developed in this paper a heterogeneous inorganic materials approach with molecularly precise control of light absorption and charge transport pathways. Oxo-bridged heterobinuclear units with metal-to-metal charge-transfer transitions absorbing deep in the visible act as single photon, single charge transfer pumps for driving multi-electron catalysts. A photodeposition method has been introduced for the spatially directed assembly of nanoparticle catalysts for selective coupling to the donor or acceptor metal of the light absorber. For CO 2 reduction, a Cu oxide cluster is coupled to the Zr center of a ZrOCo light absorber, while coupling of an Ir nanoparticle catalyst for water oxidation to the Co donor affords closing of the photosynthetic cycle of CO 2 conversion by H 2O to CO and O 2. Optical, vibrational, and X-ray spectroscopy provide detailed structural knowledge of the polynuclear assemblies. Time resolved visible and rapid-scan FT-IR studies reveal charge transfer mechanisms and transient surface intermediates under photocatalytic conditions for guiding performance improvements. Separation of the water oxidation and carbon dioxide reduction half reactions by a membrane is essential for efficient photoreduction of CO 2 by H 2O to liquid fuel products. A concept of a macroscale artificial photosystem consisting of arrays of Co oxide–silica core–shell nanotubes is introduced in which each tube operates as a complete, independent photosynthetic unit with built-in membrane separation. The ultrathin amorphous silica shell with embedded molecular wires functions as a proton conducting, molecule impermeable membrane. Photoelectrochemical and transient optical measurements confirm tight control of charge transport through the membrane by the orbital energetics of the wire molecules. Finally, hierarchical arrangement of the components is accomplished by a combination of photodeposition, controlled anchoring, and atomic layer deposition methods.« less

  9. The potential of model studies for the understanding of catalyst poisoning and temperature effects in polymer electrolyte fuel cell reactions

    NASA Astrophysics Data System (ADS)

    Behm, R. J.; Jusys, Z.

    In this contribution we demonstrate the potential of model studies for the understanding of electrocatalytic reactions in low-temperature polymer electrolyte fuel cells (PEFCs) operated by H 2-rich anode feed gas, in particular of the role of temperature effects and catalyst poisoning. Reviewing previous work from our laboratory and, for better comparison, focussing on carbon-supported Pt catalysts, the important role of using fuel cell relevant reaction and mass transport conditions will be outlined. The latter conditions include continuous reaction, elevated temperatures, realistic supported catalyst materials and controlled mass transport. The data show the importance of combining electrochemical techniques such as rotating disc electrode (RDE), wall-jet and flow cell measurements, and on-line differential electrochemical mass spectrometry (DEMS) under controlled mass transport conditions.

  10. A Dual-Catalysis Approach to Enantioselective [2+2] Photocycloadditions Using Visible Light

    PubMed Central

    Du, Juana; Skubi, Kazimer L.; Schultz, Danielle M.; Yoon, Tehshik P.

    2015-01-01

    In contrast to the wealth of catalytic systems that are available to control the stereochemistry of thermally promoted cycloadditions, few similarly effective methods exist for the stereocontrol of photochemical cycloadditions. A major unsolved challenge in the design of enantioselective catalytic photocycloaddition reactions has been the difficulty of controlling racemic background reactions that occur by direct photoexcitation of substrates while unbound to catalyst. Here we describe a strategy for eliminating the racemic background reaction in asymmetric [2+2] photocycloadditions of α,β-unsaturated ketones to the corresponding cyclobutanes by employing a dual-catalyst system consisting of a visible light-absorbing transition metal photocatalyst and a stereocontrolling Lewis acid co-catalyst. The independence of these two catalysts enables broader scope, greater stereochemical flexibility, and better efficiency than previously reported methods for enantioselective photochemical cycloadditions. PMID:24763585

  11. Synthesis of MoS2 and MoO2 for their applications in H2 generation and lithium ion batteries: a review.

    PubMed

    Zhao, Yufei; Zhang, Yuxia; Yang, Zhiyu; Yan, Yiming; Sun, Kening

    2013-08-01

    Scientists increasingly witness the applications of MoS 2 and MoO 2 in the field of energy conversion and energy storage. On the one hand, MoS 2 and MoO 2 have been widely utilized as promising catalysts for electrocatalytic or photocatalytic hydrogen evolution in aqueous solution. On the other hand, MoS 2 and MoO 2 have also been verified as efficient electrode material for lithium ion batteries. In this review, the synthesis, structure and properties of MoS 2 and MoO 2 are briefly summarized according to their applications for H 2 generation and lithium ion batteries. Firstly, we overview the recent advancements in the morphology control of MoS 2 and MoO 2 and their applications as electrocatalysts for hydrogen evolution reactions. Secondly, we focus on the photo-induced water splitting for H 2 generation, in which MoS 2 acts as an important co-catalyst when combined with other semiconductor catalysts. The newly reported research results of the significant functions of MoS 2 nanocomposites in photo-induced water splitting are presented. Thirdly, we introduce the advantages of MoS 2 and MoO 2 for their enhanced cyclic performance and high capacity as electrode materials of lithium ion batteries. Recent key achievements in MoS 2 - and MoO 2 -based lithium ion batteries are highlighted. Finally, we discuss the future scope and the important challenges emerging from these fascinating materials.

  12. Permanganate with a double-edge role in photodegradation of sulfamethoxazole: Kinetic, reaction mechanism and toxicity.

    PubMed

    Gong, Han; Chu, Wei

    2018-01-01

    In this study, the double-edge role of permanganate in sulfamethoxazole (SMX) photodegradation with a recyclable catalyst was revealed for the first time. The role of the catalyst under different UV wavelength, the role of permanganate in the treatment process, the effects of permanganate dosage and solution pH on the removal efficiency were investigated. Moreover, the transformation products, TOC reduction and the toxicity of the treated final product to Chlorella vulgaris and Artemia salina were determined. Sole permanganate showed no effect in SMX degradation, while its introduction to the photocatalytic process doubled the reaction rate at the optimal dosage. It is interesting to find that the reaction rate showed a fluctuation trend in terms of permanganate dosage due to the summation of positive effect of permanganate oxidation and the negative effect of the formed MnO 2 at the surface of the catalyst, as well as the light attenuation due to overdosed permanganate. The determined intermediates, the higher inorganic ions release and TOC reduction provided a clue on a higher mineralization compared to SMX degradation in the same process without permanganate. Permanganate above 1 μM may pose a threat to the algae growth, therefore a good monitoring and control of residual permanganate dosage should be incorporated into the process design. A good toxicity reduction to A. salina was observed in the treated effluent; a longer detention is suggested for the complete removal of toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A Single-Site Platinum CO Oxidation Catalyst in Zeolite KLTL: Microscopic and Spectroscopic Determination of the Locations of the Platinum Atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kistler, Joseph D.; Chotigkrai, Nutchapon; Xu, Pinghong

    2014-07-01

    A stable site-isolated mononuclear platinum catalyst with a well-defined structure is presented. Platinum complexes supported in zeolite KLTL were synthesized from [Pt(NH 3) 4](NO 3) 2, oxidized at 633 K, and used to catalyze CO oxidation. Finally, IR and X-ray absorption spectra and electron micrographs determine the structures and locations of the platinum complexes in the zeolite pores, demonstrate the platinum-support bonding, and show that the platinum remained site isolated after oxidation and catalysis.

  14. Transfer-free, lithography-free and fast growth of patterned CVD graphene directly on insulators by using sacrificial metal catalyst.

    PubMed

    Dong, Yibo; Xie, Yiyang; Xu, Chen; Fu, Yafei; Fan, Xing; Li, Xuejian; Wang, Le; Xiong, Fangzhu; Guo, Weiling; Pan, Guanzhong; Wang, Qiuhua; Qian, Fengsong; Sun, Jie

    2018-06-14

    Chemical vapor deposited graphene suffers from two problems: transfer from metal catalysts to insulators, and photoresist induced degradation during patterning. Both result in macroscopic and microscopic damages such as holes, tears, doping, and contamination, translated into property and yield dropping. We attempt to solve the problems simultaneously. A nickel thin film is evaporated on SiO 2 as a sacrificial catalyst, on which surface graphene is grown. A polymer (PMMA) support is spin-coated on the graphene. During the Ni wet etching process, the etchant can permeate the polymer, making the etching efficient. The PMMA/graphene layer is fixed on the substrate by controlling the surface morphology of Ni film during the graphene growth. After etching, the graphene naturally adheres to the insulating substrate. By using this method, transfer-free, lithography-free and fast growth of graphene realized. The whole experiment has good repeatability and controllability. Compared with graphene transfer between substrates, here, no mechanical manipulation is required, leading to minimal damage. Due to the presence of Ni, the graphene quality is intrinsically better than catalyst-free growth. The Ni thickness and growth temperature are controlled to limit the number of layers of graphene. The technology can be extended to grow other two-dimensional materials with other catalysts.

  15. Radio-Frequency-Controlled Urea Dosing for NH3-SCR Catalysts: NH3 Storage Influence to Catalyst Performance under Transient Conditions

    PubMed Central

    Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf

    2017-01-01

    Current developments in exhaust gas aftertreatment led to a huge mistrust in diesel driven passenger cars due to their NOx emissions being too high. The selective catalytic reduction (SCR) with ammonia (NH3) as reducing agent is the only approach today with the capability to meet upcoming emission limits. Therefore, the radio-frequency-based (RF) catalyst state determination to monitor the NH3 loading on SCR catalysts has a huge potential in emission reduction. Recent work on this topic proved the basic capability of this technique under realistic conditions on an engine test bench. In these studies, an RF system calibration for the serial type SCR catalyst Cu-SSZ-13 was developed and different approaches for a temperature dependent NH3 storage were determined. This paper continues this work and uses a fully calibrated RF-SCR system under transient conditions to compare different directly measured and controlled NH3 storage levels, and NH3 target curves. It could be clearly demonstrated that the right NH3 target curve, together with a direct control on the desired level by the RF system, is able to operate the SCR system with the maximum possible NOx conversion efficiency and without NH3 slip. PMID:29182589

  16. Re-manufacture of cobalt-manganese-bromide as a liquid catalyst from spent catalyst containing cobalt generated from petrochemical processes via hydrometallurgy.

    PubMed

    Joo, Sung-Ho; Shin, Dong Ju; Oh, Chang Hyun; Wang, Jei-Pil; Shin, Shun Myung

    2016-11-15

    Cobalt and manganese have been the subject of individual separation studies because their fields of application are different. However, this study shows that high-value products can be manufactured in the form of a cobalt-manganese-bromide (CMB) liquid catalyst by simultaneously recovering cobalt and manganese. Na-bis-(2,4,4-tri-methyl-pentyl)phosphinic acid was employed in order to manufacture the CMB liquid catalyst from the spent catalyst generated from petroleum chemistry processes. The pH-isotherm, degree of saponification of solvent and separation factor values were investigated. ΔpH50 and separation factor values show that Co and Mn can be separated from impurities such as Mg and Ca. Further, the extraction stages and organic/aqueous ratio isotherms were investigated using counter-current simulation extraction batch tests. To prepare CMB from a loaded organic phase obtained in a stripping study using hydrogen bromide, the Co and Mn were completely stripped and concentrated by a factor of 6 using a 2M hydrogen bromide solution. When compared with manufactured and commercial CMB, the CMB liquid catalyst could be produced by supplying a shortage of Mn in the form of manganese bromide. Finally, the method of manufacture of CMB was subjected to a real pilot plant test. Copyright © 2016. Published by Elsevier B.V.

  17. Role of Sn in the regeneration of Pt/γ-Al 2O 3 light alkane dehydrogenation catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Hien N.; Sattler, Jesper J. H. B.; Weckhuysen, Bert M.

    Alumina-supported Pt is one of the major industrial catalysts for light alkane dehydrogenation. This catalyst loses activity during reaction, with coke formation often considered as the reason for deactivation. As we show in this study, the amount and nature of carbon deposits do not directly correlate with the loss of activity. Rather, it is the transformation of subnanometer Pt species into larger Pt nanoparticles that appears to be responsible for the loss of catalytic activity. Surprisingly, a portion of the Sn remains atomically dispersed on the alumina surface in the spent catalyst and helps in the redispersion of the Pt.more » In the absence of Sn on the alumina support, the larger Pt nanoparticles formed during reaction are not redispersed during oxidative regeneration. It is known that Sn is added as a promoter in the industrial catalyst to help in achieving high propene selectivity and to minimize coke formation. This work shows that an important role of Sn is to help in the regeneration of Pt, by providing nucleation sites on the alumina surface. Finally aberration-corrected scanning transmission electron microscopy helps to provide unique insights into the operating characteristics of an industrially important catalyst by demonstrating the role of promoter elements, such as Sn, in the oxidative regeneration of Pt on γ-Al 2O 3.« less

  18. Role of Sn in the regeneration of Pt/γ-Al 2O 3 light alkane dehydrogenation catalysts

    DOE PAGES

    Pham, Hien N.; Sattler, Jesper J. H. B.; Weckhuysen, Bert M.; ...

    2016-02-23

    Alumina-supported Pt is one of the major industrial catalysts for light alkane dehydrogenation. This catalyst loses activity during reaction, with coke formation often considered as the reason for deactivation. As we show in this study, the amount and nature of carbon deposits do not directly correlate with the loss of activity. Rather, it is the transformation of subnanometer Pt species into larger Pt nanoparticles that appears to be responsible for the loss of catalytic activity. Surprisingly, a portion of the Sn remains atomically dispersed on the alumina surface in the spent catalyst and helps in the redispersion of the Pt.more » In the absence of Sn on the alumina support, the larger Pt nanoparticles formed during reaction are not redispersed during oxidative regeneration. It is known that Sn is added as a promoter in the industrial catalyst to help in achieving high propene selectivity and to minimize coke formation. This work shows that an important role of Sn is to help in the regeneration of Pt, by providing nucleation sites on the alumina surface. Finally aberration-corrected scanning transmission electron microscopy helps to provide unique insights into the operating characteristics of an industrially important catalyst by demonstrating the role of promoter elements, such as Sn, in the oxidative regeneration of Pt on γ-Al 2O 3.« less

  19. Synthesis of flower-like molybdenum sulfide/graphene hybrid as an efficient oxygen reduction electrocatalyst for anion exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Arunchander, A.; Peera, S. Gouse; Sahu, A. K.

    2017-06-01

    Nanostructured transition metal chalcogenides (TMCs) have significant interest towards electrochemical devices such as fuel cells, metal-ion batteries, due to their unique physical and electrochemical properties. Herein, we report a facile hydrothermal synthesis of flower-like nanostructured molybdenum sulphide and its incorporation on to graphene as a potential oxygen reduction reaction catalyst in alkaline medium. The phase purity and morphological evolution of MoS2 is systematically studied through X-ray diffraction and scanning electron microscopic techniques. The electronic states of metal and non-metallic species are deeply studied by X-ray photoelectron spectroscopy. The effect of annealing temperatures and TMC concentrations are also investigated by electrochemical techniques such as cyclic and linear sweep voltammograms. The optimised electrocatalyst (MoS2/G-500) delivers significant ORR activity with onset and half-wave potentials of 0.91 and 0.80 V (vs. RHE), respectively. Superior durability compared to state-of-art Pt/C catalyst is ascertained by repeating potential cycles for about 5000 times and also by chronoamperometric technique. Finally, the hybrid catalyst is evaluated in AEMFC as cathode catalyst which delivers peak power density of about 29 mW cm-2 under ambient temperature and pressure. The present findings emphasis that MoS2/G catalyst is promising as cost-effective and alternative to noble metal-based catalysts for fuel cell applications.

  20. Why Does Alkylation of the N–H Functionality within M/NH Bifunctional Noyori-Type Catalysts Lead to Turnover?

    DOE PAGES

    Dub, Pavel; Gordon, John Cameron; Scott, Brian Lindley

    2017-01-25

    Molecular metal/NH bifunctional Noyori-type catalysts are remarkable in that they are among the most efficient artificial catalysts developed to date for the hydrogenation of carbonyl functionalities (loadings up to ~10 –5 mol %). In addition, these catalysts typically exhibit high C$=$O/C$=$C chemo- and enantioselectivities. This unique set of properties is traditionally associated with the operation of an unconventional mechanism for homogeneous catalysts in which the chelating ligand plays a key role in facilitating the catalytic reaction and enabling the aforementioned selectivities by delivering/accepting a proton (H +) via its N–H bond cleavage/formation. A recently revised mechanism of the Noyori hydrogenationmore » reaction (Dub, P. A. et al. J. Am. Chem. Soc. 2014, 136, 3505) suggests that the N–H bond is not cleaved but serves to stabilize the turnover-determining transition states (TDTSs) via strong N–H···O hydrogen-bonding interactions (HBIs). Here, the present paper shows that this is consistent with the largely ignored experimental fact that alkylation of the N–H functionality within M/NH bifunctional Noyori-type catalysts leads to detrimental catalytic activity. Finally, the purpose of this work is to demonstrate that decreasing the strength of this HBI, ultimately to the limit of its complete absence, are conditions under which the same alkylation may lead to beneficial catalytic activity.« less

  1. Novel self-healing materials chemistries for targeted applications

    NASA Astrophysics Data System (ADS)

    Wilson, Gerald O.

    Self-healing materials of the type developed by White and co-workers [1] were designed to autonomically heal themselves when damaged, thereby extending the lifetime of various applications in which such material systems are employed. The system was based on urea-formaldehyde microcapsules containing dicyclopentadiene (DCPD) and Grubbs' catalyst particles embedded together in an epoxy matrix. When a crack propagates through the material, it ruptures the microcapsules, releasing DCPD into the crack plane, where it comes in contact and reacts with the catalyst to initiate a ring opening metathesis polymerization (ROMP), bonding the crack and restoring structural continuity. The present work builds on this concept in several ways. Firstly, it expands the scope and versatility of the ROMP self-healing chemistry by incorporation into epoxy vinyl ester matrices. Major technical challenges in this application include protection of the catalyst from deactivation by aggressive curing agents, and optimization of the concentration of healing agents in the matrix. Secondly, new ruthenium catalysts are evaluated for application in ROMP-based self-healing materials. The use of alternative derivatives of Grubbs' catalyst gave rise to self-healing systems with improved healing efficiencies and thermal properties. Evaluation of the stability of these new catalysts to primary amine curing agents used in the curing of common epoxy matrices also led to the discovery and characterization of new ruthenium catalysts which exhibited ROMP initiation kinetics superior to those of first and second generation Grubbs' catalysts. Finally, free radical polymerization was evaluated for application in the development of bio-compatible self-healing materials. [1] White, S. R.; Sottos, N. R.; Geubelle, P. R.; Moore, J. S.; Kessler, M. R.; Sriram, S. R.; Brown, E. N.; Viswanathan, S. Nature 2001, 409, 794.

  2. Design of Heterogeneous Hoveyda-Grubbs Second-Generation Catalyst-Lipase Conjugates.

    PubMed

    Neville, Anthony; Iniesta, Javier; Palomo, Jose M

    2016-12-06

    Heterogeneous catalysts have been synthesi zed by the conjugation of Hoveyda-Grubbs second-generation catalyst with a lipase. The catalytic properties of the organometallic compound in solution were firstly optimized, evaluating the activity of Ru in the ring-closing metathesis of diethyldiallymalonate at 25 °C at different solvents and in the presence of different additives. The best result was found using tetrahydrofuran as a solvent. Some additives such as phenylboronic acid or polyetheneglycol slightly improved the activity of the Ru catalyst whereas others, such as pyridine or dipeptides affected it negatively. The organometallic compound immobilized on functionalized-surface materials activated with boronic acid or epoxy groups (around 50-60 µg per mg support) and showed 50% conversion at 24 h in the ring-closing metathesis. Cross-linked enzyme aggregates (CLEA's) of the Hoveyda-Grubbs second-generation catalyst with Candida antarctica lipase (CAL-B) were prepared, although low Ru catalyst was found to be translated in low conversion. Therefore, a sol-gel preparation of the Hoveyda-Grubbs second-generation and CAL-B was performed. This catalyst exhibited good activity in the metathesis of diethyldiallymalonate in toluene and in aqueous media. Finally, a new sustainable approach was used by the conjugation lipase-Grubbs in solid phase in aqueous media. Two strategies were used: one using lipase previously covalently immobilized on an epoxy-Sepharose support (hydrophilic matrix) and then conjugated with grubbs; and in the second, the free lipase was incubated with organometallic in aqueous solution and then immobilized on epoxy-Sepharose. The different catalysts showed excellent conversion values in the ring-closing metathesis of diethyldiallymalonate in aqueous media at 25 °C.

  3. Advanced Catalysts for the Ambient Temperature Oxidation of Carbon Monoxide and Formaldehyde

    NASA Technical Reports Server (NTRS)

    Nalette, Tim; Eldridge, Christopher; Yu, Ping; Alpetkin, Gokhan; Graf, John

    2010-01-01

    The primary applications for ambient temperature carbon monoxide (CO) oxidation catalysts include emergency breathing masks and confined volume life support systems, such as those employed on the Shuttle. While Hopcalite is typically used in emergency breathing masks for terrestrial applications, in the 1970s, NASA selected a 2% platinum (Pt) on carbon for use on the Shuttle since it is more active and also more tolerant to water vapor. In the last 10-15 years there have been significant advances in ambient temperature CO oxidation catalysts. Langley Research Center developed a monolithic catalyst for ambient temperature CO oxidation operating under stoichiometric conditions for closed loop carbon dioxide (CO2) laser applications which is also advertised as having the potential to oxidize formaldehyde (HCHO) at ambient temperatures. In the last decade it has been discovered that appropriate sized nano-particles of gold are highly active for CO oxidation, even at sub-ambient temperatures, and as a result there has been a wealth of data reported in the literature relating to ambient/low temperature CO oxidation. In the shorter term missions where CO concentrations are typically controlled via ambient temperature oxidation catalysts, formaldehyde is also a contaminant of concern, and requires specially treated carbons such as Calgon Formasorb as untreated activated carbon has effectively no HCHO capacity. This paper examines the activity of some of the newer ambient temperature CO and formaldehyde (HCHO) oxidation catalysts, and measures the performance of the catalysts relative to the NASA baseline Ambient Temperature Catalytic Oxidizer (ATCO) catalyst at conditions of interest for closed loop trace contaminant control systems.

  4. Poisoning of a silica supported cobalt catalyst due to the presence of sulfur impurities in syngas during Fischer-Tropsch synthesis: Effect of chelating agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bambal, A.S.; Gardner, T.H.; Kugler, E.L.

    2012-01-01

    Sulfur compounds that are generally found in syngas derived from coal and biomass are a poison to Fischer-Tropsch (FT) catalysts. The presence of sulfur impurities in the ppm range can limit the life of a FT catalyst to a few hours or a few days. In this study, FT synthesis was carried out in a fixed-bed reactor at 230 °C, 20 bar, and 13,500 Ncm3/h/gcat for 72 h using syngas with H2/CO = 2.0. Cobalt-based catalysts were subjected to poisoning by 10 and 50 ppm sulfur in the syngas. The performance of FT catalyst was compared in context of syngasmore » conversion, product selectivities and yields, during the poisoning as well as post-poisoning stages. At both the impurity concentrations, the sulfur was noted to cause permanent loss in the activity, possibly by adsorbing irreversibly on the surface. The sulfur poison affects the hydrogenation and the chain-propagation ability of the catalysts, and shifts the product selectivity towards short-chain hydrocarbons with higher percentages of olefins. Additional diffusion limitations caused due to sulfur poisoning are thought to alter the product selectivity. The shifts in product selectivities suggest that the sulfur decreases the ability of the catalyst to form C-C bonds to produce longer-chain hydrocarbons. The selective blocking of sulfur is thought to affect the hydrogenation ability on the catalyst, resulting in more olefins in the product after sulfur poisoning. The sulfur poisoning on the cobalt catalyst is expected to cause an increase in the number of sites responsible for WGS or to influence the Boudouard reaction, resulting in a higher CO2 selectivity. Both the sites responsible for CO adsorptions as well as the sites for chain growth are poisoned during the poisoning. Additionally, the performance of a base-case cobalt catalyst is compared with that of catalysts modified by chelating agents (CAs). The superior performance of CA-modified catalysts during sulfur poisoning is attributed to the presence of smaller crystallite sizes and higher dispersions of cobalt on the support. Finally, the sulfur deactivation data is modeled by a simple kinetic expression to determine the deactivation constant, deactivation rates and half-life of the FT catalyst.« less

  5. Catalyst-induced growth of carbon nanotubes on tips of cantilevers and nanowires

    DOEpatents

    Lee, James Weifu; Lowndes, Douglas H.; Merkulov, Vladimir I.; Eres, Gyula; Wei, Yayi; Greenbaum, Elias; Lee, Ida

    2004-06-29

    A method is described for catalyst-induced growth of carbon nanotubes, nanofibers, and other nanostructures on the tips of nanowires, cantilevers, conductive micro/nanometer structures, wafers and the like. The method can be used for production of carbon nanotube-anchored cantilevers that can significantly improve the performance of scaning probe microscopy (AFM, EFM etc). The invention can also be used in many other processes of micro and/or nanofabrication with carbon nanotubes/fibers. Key elements of this invention include: (1) Proper selection of a metal catalyst and programmable pulsed electrolytic deposition of the desired specific catalyst precisely at the tip of a substrate, (2) Catalyst-induced growth of carbon nanotubes/fibers at the catalyst-deposited tips, (3) Control of carbon nanotube/fiber growth pattern by manipulation of tip shape and growth conditions, and (4) Automation for mass production.

  6. Method of preparing size-selected metal clusters

    DOEpatents

    Elam, Jeffrey W.; Pellin, Michael J.; Stair, Peter C.

    2010-05-11

    The invention provides a method for depositing catalytic clusters on a surface, the method comprising confining the surface to a controlled atmosphere; contacting the surface with catalyst containing vapor for a first period of time; removing the vapor from the controlled atmosphere; and contacting the surface with a reducing agent for a second period of time so as to produce catalyst-containing nucleation sites.

  7. Role of Precursor-Conversion Chemistry in the Crystal-Phase Control of Catalytically Grown Colloidal Semiconductor Quantum Wires.

    PubMed

    Wang, Fudong; Buhro, William E

    2017-12-26

    Crystal-phase control is one of the most challenging problems in nanowire growth. We demonstrate that, in the solution-phase catalyzed growth of colloidal cadmium telluride (CdTe) quantum wires (QWs), the crystal phase can be controlled by manipulating the reaction chemistry of the Cd precursors and tri-n-octylphosphine telluride (TOPTe) to favor the production of either a CdTe solute or Te, which consequently determines the composition and (liquid or solid) state of the Bi x Cd y Te z catalyst nanoparticles. Growth of single-phase (e.g., wurtzite) QWs is achieved only from solid catalysts (y ≪ z) that enable the solution-solid-solid growth of the QWs, whereas the liquid catalysts (y ≈ z) fulfill the solution-liquid-solid growth of the polytypic QWs. Factors that affect the precursor-conversion chemistry are systematically accounted for, which are correlated with a kinetic study of the composition and state of the catalyst nanoparticles to understand the mechanism. This work reveals the role of the precursor-reaction chemistry in the crystal-phase control of catalytically grown colloidal QWs, opening the possibility of growing phase-pure QWs of other compositions.

  8. Design and Preparation of Supported Au Catalyst with Enhanced Catalytic Activities by Rationally Positioning Au Nanoparticles on Anatase.

    PubMed

    Wang, Liang; Wang, Hong; Rice, Andrew E; Zhang, Wei; Li, Xiaokun; Chen, Mingshu; Meng, Xiangju; Lewis, James P; Xiao, Feng-Shou

    2015-06-18

    A synergistic effect between individual components is crucial for increasing the activity of metal/metal oxide catalysts. The greatest challenge is how to control the synergistic effect to obtain enhanced catalytic performance. Through density functional theory calculations of model Au/TiO2 catalysts, it is suggested that there is strong interaction between Au nanoparticles and Ti species at the edge/corner sites of anatase, which is favorable for the formation of stable oxygen vacancies. Motivated by this theoretical analysis, we have rationally prepared Au nanoparticles attached to edge/corner sites of anatase support (Au/TiO2-EC), confirmed by their HR-TEM images. As expected, this strong interaction is well characterized by Raman, UV-visible, and XPS techniques. Very interestingly, compared with conventional Au catalysts, Au/TiO2-EC exhibits superior catalytic activity in the oxidations using O2. Our approach to controlling Au nanoparticle positioning on anatase to obtain enhanced catalytic activity offers an efficient strategy for developing more novel supported metal catalysts.

  9. Bimetallic Pt-Au Nanocatalysts on ZnO/Al2O3/Monolith for Air Pollution Control.

    PubMed

    Kim, Ki-Joong; Ahn, Ho-Geun

    2015-08-01

    The catalytic activity of a monolithic catalyst with nanosized Pt and Au particles on ZnO/Al2O3 (Pt-Au/ZnO/Al2O3/M) prepared by a wash-coat method was examined, specifically for toluene oxidation. Scanning electron microscopy image showed clearly the formation of a ZnO/Al2O3 layer on the monolith. Nanosized Pt-Au particles on ZnO/Al2O3/M with different sizes could be found in the Pt-Au/ZnO/Al2O3/M catalyst. The conversion of toluene decreased with increasing toluene concentration and was also largely affected by the feed flow rate. The Pt-Au/ZnO/Al2O3/M catalysts prepared in this work have almost the same activity (molecules of toluene per second) compared with a powder Pt-Au/ZnO/Al2O3 catalyst with the same loadings of Pt and Au components; thus this catalyst could be used in controlling air pollution with very low concentrations and high flow rate.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Partridge Jr, William P.; Choi, Jae-Soon

    By directly resolving spatial and temporal species distributions within operating honeycomb monolith catalysts, spatially resolved capillary inlet mass spectrometry (SpaciMS) provides a uniquely enabling perspective for advancing automotive catalysis. Specifically, the ability to follow the spatiotemporal evolution of reactions throughout the catalyst is a significant advantage over inlet-and-effluent-limited analysis. Intracatalyst resolution elucidates numerous catalyst details including the network and sequence of reactions, clarifying reaction pathways; the relative rates of different reactions and impacts of operating conditions and catalyst state; and reaction dynamics and intermediate species that exist only within the catalyst. These details provide a better understanding of how themore » catalyst functions and have basic and practical benefits; e.g., catalyst system design; strategies for on-road catalyst state assessment, control, and on-board diagnostics; and creating robust and accurate predictive catalyst models. Moreover, such spatiotemporally distributed data provide for critical model assessment, and identification of improvement opportunities that might not be apparent from effluent assessment; i.e., while an incorrectly formulated model may provide correct effluent predictions, one that can accurately predict the spatiotemporal evolution of reactions along the catalyst channels will be more robust, accurate, and reliable. In such ways, intracatalyst diagnostics comprehensively enable improved design and development tools, and faster and lower-cost development of more efficient and durable automotive catalyst systems. Beyond these direct contributions, SpaciMS has spawned and been applied to enable other analytical techniques for resolving transient distributed intracatalyst performance. This chapter focuses on SpaciMS applications and associated catalyst insights and improvements, with specific sections related to lean NOx traps, selective catalytic reduction catalysts, oxidation catalysts, and particulate filters. The objective is to promote broader use and development of intracatalyst analytical methods, and thereby expand the insights resulting from this detailed perspective for advancing automotive catalyst technologies.« less

  11. Vibration measurements of automobile catalyst

    NASA Astrophysics Data System (ADS)

    Aatola, Seppo

    1994-09-01

    Vibration of catalyst cell, which is inside the casing of the catalyst, is difficult to measure with usual measuring instrumentation. When catalyst is in use, there is hot exhaust gas flow though the catalyst cell and temperature of the cell is approximately +900 degree(s)C. Therefore non-contact Laser- Doppler-Vibrometer was used to measure vibration velocity of the catalyst cell. The laser beam was directed towards the cell through pipe which was put through and welded to the casing of the catalyst. The outer end of the pipe was screw down with a tempered class to prevent exhaust gas flow from the pipe. The inner end of the pipe was open and few millimeters away from the measuring point. Catalyst was attached to the engine with two ways, rigidly close to the engine and flexible under the engine. The engine was running in test bench under controlled conditions. Vibration measurements were carried out during constant running speeds of the engine. Vibration signals were captured and analyzed with FFT-analyzer. Vibration of catalyst cell was strongest at running speed of 5000 rpm, from 10 to 20 g (1 g equals 9.81 ms-2), when catalyst was attached rigidly close to the engine. At running speed of 3000 rpm, vibration of catalyst cell was from 2 to 3 g in most cases, when catalyst was attached either rigidly or flexible to the engine. It is estimated that in real life, i.e. when catalyst is attached to car with same engine, vibration of catalyst cell at running speed of 5000 rpm is somewhere between 1 and 10 g. At running speed of 3000 rpm, which may be more often used when driving car (car speed approximately 100 kmh-1), vibration of catalyst cell is probably few g's.

  12. The Dependence of CNT Aerogel Synthesis on Sulfur-driven Catalyst Nucleation Processes and a Critical Catalyst Particle Mass Concentration.

    PubMed

    Hoecker, Christian; Smail, Fiona; Pick, Martin; Weller, Lee; Boies, Adam M

    2017-11-06

    The floating catalyst chemical vapor deposition (FC-CVD) process permits macro-scale assembly of nanoscale materials, enabling continuous production of carbon nanotube (CNT) aerogels. Despite the intensive research in the field, fundamental uncertainties remain regarding how catalyst particle dynamics within the system influence the CNT aerogel formation, thus limiting effective scale-up. While aerogel formation in FC-CVD reactors requires a catalyst (typically iron, Fe) and a promotor (typically sulfur, S), their synergistic roles are not fully understood. This paper presents a paradigm shift in the understanding of the role of S in the process with new experimental studies identifying that S lowers the nucleation barrier of the catalyst nanoparticles. Furthermore, CNT aerogel formation requires a critical threshold of Fe x C y  > 160 mg/m 3 , but is surprisingly independent of the initial catalyst diameter or number concentration. The robustness of the critical catalyst mass concentration principle is proved further by producing CNTs using alternative catalyst systems; Fe nanoparticles from a plasma spark generator and cobaltocene and nickelocene precursors. This finding provides evidence that low-cost and high throughput CNT aerogel routes may be achieved by decoupled and enhanced catalyst production and control, opening up new possibilities for large-scale CNT synthesis.

  13. Method for producing catalysts from coal

    DOEpatents

    Farcasiu, M.; Derbyshire, F.; Kaufman, P.B.; Jagtoyen, M.

    1998-02-24

    A method for producing catalysts from coal is provided comprising mixing an aqueous alkali solution with the coal, heating the aqueous mixture to treat the coal, drying the now-heated aqueous mixture, reheating the mixture to form carbonized material, cooling the mixture, removing excess alkali from the carbonized material, and recovering the carbonized material, wherein the entire process is carried out in controlled atmospheres, and the carbonized material is a hydrocracking or hydrodehalogenation catalyst for liquid phase reactions. The invention also provides for a one-step method for producing catalysts from coal comprising mixing an aqueous alkali solution with the coal to create a mixture, heating the aqueous mixture from an ambient temperature to a predetermined temperature at a predetermined rate, cooling the mixture, and washing the mixture to remove excess alkali from the treated and carbonized material, wherein the entire process is carried out in a controlled atmosphere. 1 fig.

  14. Controllable synthesis of Co3O4 nanocrystals as efficient catalysts for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Li, Baoying; Zhang, Yihe; Du, Ruifeng; Liu, Lei; Yu, Xuelian

    2018-03-01

    The electrochemical oxygen reduction reaction (ORR) has received great attention due to its importance in fuel cells and metal-air batteries. Here, we present a simple approach to prepare non-noble metal catalyst-Co3O4 nanocrystals (NCs). The particle size and shape were simply controlled by different types and concentrations of metal precursor. Furthermore, different sizes and shapes of Co3O4 NCs are explored as electrocatalysts for ORR, and it has been observed that particles with a similar shape, and smaller particle size led to greater catalytic current densities because of the greater surface area. For particles with a comparable size, the shape or crystalline structure governed the activity of the electrocatalytic reactions. Most importantly, the 9 nm-Co3O4 were demonstrated to act as low-cost catalysts for the ORR with a similar performance to that of Pt catalysts.

  15. Biodiesel fuel production from waste cooking oil using radiation-grafted fibrous catalysts

    NASA Astrophysics Data System (ADS)

    Ueki, Yuji; Saiki, Seiichi; Hoshina, Hiroyuki; Seko, Noriaki

    2018-02-01

    Waste cooking oil, which can be used as a raw material for biodiesel fuel (BDF), contains two kinds of oil components: triglycerides (TGs) and free fatty acids (FFAs). Therefore, both alkaline-type and acid-type catalysts are needed to produce BDF from waste cooking oil. In this study, an alkaline-type grafted fibrous catalyst bearing OH- ions was synthesized by radiation-induced emulsion grafting of 4-chloromethylstyrene onto a polyethylene-coated polypropylene (PE/PP) nonwoven fabric, amination with trimethylamine, and further treatment with NaOH. Furthermore, an acid-type catalyst bearing H+ ions was synthesized by radiation-induced emulsion grafting of ethyl p-styrenesulfonate onto a PE/PP nonwoven fabric, saponification with NaOH, and protonation with HNO3. The OH- and H+ densities of the grafted fibrous catalysts were controlled by the grafting yield. The maximum OH- and H+ densities of the catalysts were 3.6 mmol-OH-/g-catalyst and 3.4 mmol-H+/g-catalyst, respectively. The performances of the catalysts were evaluated in the batchwise transesterification of TGs and ethanol, and the batchwise esterification of FFAs and ethanol. In both cases, TGs and FFAs were gradually converted into BDF. The mixed oil and four actual waste cooking oils, which contained both TGs and FFAs, were completely converted into BDF by sequential catalytic reactions with the acid-type grafted fibrous catalyst and then the alkaline-type grafted fibrous catalyst.

  16. Low-temperature CO oxidation over a ternary oxide catalyst with high resistance to hydrocarbon inhibition

    DOE PAGES

    Binder, Andrew J.; Toops, Todd J.; Unocic, Raymond R.; ...

    2015-09-11

    Platinum group metal (PGM) catalysts are the current standard for control of pollutants in automotive exhaust streams. Aside from their high cost, PGM catalysts struggle with CO oxidation at low temperatures (<200 °C) due to inhibition by hydrocarbons in exhaust streams. Here we present a ternary mixed oxide catalyst composed of copper oxide, cobalt oxide, and ceria (dubbed CCC) that outperforms synthesized and commercial PGM catalysts for CO oxidation in simulated exhaust streams while showing no signs of inhibition by propene. Diffuse reflectance IR (DRIFTS) and light-off data both indicate low interaction between propene and the CO oxidation active sitemore » on this catalyst, and a separation of adsorption sites is proposed as the cause of this inhibition resistance. In conclusion, this catalyst shows great potential as a low-cost component for low temperature exhaust streams that are expected to be a characteristic of future automotive systems.« less

  17. Method of synthesizing bulk transition metal carbide, nitride and phosphide catalysts

    DOEpatents

    Choi, Jae Soon; Armstrong, Beth L; Schwartz, Viviane

    2015-04-21

    A method for synthesizing catalyst beads of bulk transmission metal carbides, nitrides and phosphides is provided. The method includes providing an aqueous suspension of transition metal oxide particles in a gel forming base, dropping the suspension into an aqueous solution to form a gel bead matrix, heating the bead to remove the binder, and carburizing, nitriding or phosphiding the bead to form a transition metal carbide, nitride, or phosphide catalyst bead. The method can be tuned for control of porosity, mechanical strength, and dopant content of the beads. The produced catalyst beads are catalytically active, mechanically robust, and suitable for packed-bed reactor applications. The produced catalyst beads are suitable for biomass conversion, petrochemistry, petroleum refining, electrocatalysis, and other applications.

  18. Investigation of low temperature carbon monoxide oxidation catalysts. [for Spacelab atmosphere control

    NASA Technical Reports Server (NTRS)

    Jagow, R. B.; Katan, T.; Ray, C. D.; Lamparter, R. A.

    1977-01-01

    Carbon monoxide generation rates related to the use of commerical equipment in Spacelab, added to the normal metabolic and subsystem loads, will produce carbon monoxide levels in excess of the maximum allowable concentration. In connection with the sensitivity of carbon monoxide oxidation catalysts to poisoning at room temperature, catalysts for an oxidation of carbon monoxide at low temperatures have been investigated. It was found that platinum and palladium are the only effective room temperature catalysts which are effective at 333 K. Hopcalite was ineffective at ambient temperatures, but converted CO with 100 percent efficiency at 333 K. Poisoning tests showed the noble metal catalysts to be very sensitive, and Hopcalite to be very resistant to poisoning.

  19. Catalyst design with atomic layer deposition

    DOE PAGES

    O'Neill, Brandon J.; Jackson, David H. K.; Lee, Jechan; ...

    2015-02-06

    Atomic layer deposition (ALD) has emerged as an interesting tool for the atomically precise design and synthesis of catalytic materials. Herein, we discuss examples in which the atomic precision has been used to elucidate reaction mechanisms and catalyst structure-property relationships by creating materials with a controlled distribution of size, composition, and active site. We highlight ways ALD has been utilized to design catalysts with improved activity, selectivity, and stability under a variety of conditions (e.g., high temperature, gas and liquid phase, and corrosive environments). In addition, due to the flexibility and control of structure and composition, ALD can create myriadmore » catalytic structures (e.g., high surface area oxides, metal nanoparticles, bimetallic nanoparticles, bifunctional catalysts, controlled microenvironments, etc.) that consequently possess applicability for a wide range of chemical reactions (e.g., CO 2 conversion, electrocatalysis, photocatalytic and thermal water splitting, methane conversion, ethane and propane dehydrogenation, and biomass conversion). Lastly, the outlook for ALD-derived catalytic materials is discussed, with emphasis on the pending challenges as well as areas of significant potential for building scientific insight and achieving practical impacts.« less

  20. Catalyst design with atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Neill, Brandon J.; Jackson, David H. K.; Lee, Jechan

    Atomic layer deposition (ALD) has emerged as an interesting tool for the atomically precise design and synthesis of catalytic materials. Herein, we discuss examples in which the atomic precision has been used to elucidate reaction mechanisms and catalyst structure-property relationships by creating materials with a controlled distribution of size, composition, and active site. We highlight ways ALD has been utilized to design catalysts with improved activity, selectivity, and stability under a variety of conditions (e.g., high temperature, gas and liquid phase, and corrosive environments). In addition, due to the flexibility and control of structure and composition, ALD can create myriadmore » catalytic structures (e.g., high surface area oxides, metal nanoparticles, bimetallic nanoparticles, bifunctional catalysts, controlled microenvironments, etc.) that consequently possess applicability for a wide range of chemical reactions (e.g., CO 2 conversion, electrocatalysis, photocatalytic and thermal water splitting, methane conversion, ethane and propane dehydrogenation, and biomass conversion). Lastly, the outlook for ALD-derived catalytic materials is discussed, with emphasis on the pending challenges as well as areas of significant potential for building scientific insight and achieving practical impacts.« less

  1. Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes

    PubMed Central

    2017-01-01

    The recent advances in the development of heterogeneous catalysts and processes for the direct hydrogenation of CO2 to formate/formic acid, methanol, and dimethyl ether are thoroughly reviewed, with special emphasis on thermodynamics and catalyst design considerations. After introducing the main motivation for the development of such processes, we first summarize the most important aspects of CO2 capture and green routes to produce H2. Once the scene in terms of feedstocks is introduced, we carefully summarize the state of the art in the development of heterogeneous catalysts for these important hydrogenation reactions. Finally, in an attempt to give an order of magnitude regarding CO2 valorization, we critically assess economical aspects of the production of methanol and DME and outline future research and development directions. PMID:28656757

  2. Mechanistic details for cobalt catalyzed photochemical hydrogen production in aqueous solution: Efficiencies of the photochemical and non-photochemical steps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan, Bing; Baine, Teera; Ma, Xuan Anh N.

    2013-04-17

    The use of sunlight to drive chemical reactions that lead to the reduction of water to produce hydrogen is a potential avenue of solar energy utilization. There are many individual steps that take place in this process. This paper reports the investigation of a particular system that involves light absorbing molecules, electron donating agents and a catalyst for water reduction to hydrogen. We evaluated the efficiency of the light induced formation of a strong electron donor, the use of this donor to reduce the catalyst and finally the efficiency of the catalyst to produce hydrogen from water. From this, themore » sources of loss of efficiency could be clearly identified and used in the design of better systems to produce hydrogen from water.« less

  3. Functionalized Natural Carbon-Supported Nanoparticles as Excellent Catalysts for Hydrocarbon Production.

    PubMed

    Sun, Jian; Guo, Lisheng; Ma, Qingxiang; Gao, Xinhua; Yamane, Noriyuki; Xu, Hengyong; Tsubaki, Noritatsu

    2017-02-01

    We report a one-pot and eco-friendly synthesis of carbon-supported cobalt nanoparticles, achieved by carbonization of waste biomass (rice bran) with a cobalt source. The functionalized biomass provides carbon microspheres as excellent catalyst support, forming a unique interface between hydrophobic and hydrophilic groups. The latter, involving hydroxyl and amino groups, can catch much more active cobalt nanoparticles on surface for Fischer-Tropsch synthesis than chemical carbon. The loading amount of cobalt on the final catalyst is much higher than that prepared with a chemical carbon source, such as glucose. The proposed concept of using a functionalized natural carbon source shows great potential compared with conventional carbon sources, and will be meaningful for other fields concerning carbon support, such as heterogeneous catalysis or electrochemical fields. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Exploration Of `Click' Chemistry For Microelectronic Applications

    NASA Astrophysics Data System (ADS)

    Musa, Osama M.; Sridhar, Laxmisha M.

    The ‘Click’ chemistry was explored for low temperature snap cure and for possible use as an adhesion promoter in electronic applications. Several azide and alkyne resins were synthesized and their curing potential was evaluated with a special emphasis on exploring Cu(I) catalyst effect. The preliminary curing study in the absence of catalysts showed a strong dependence of cure temperatures on the electronic nature of alkynes. The cure temperatures showed a tendency to increase with decreasing electronegativity of the substituent on alkynes. The capability of Cu(I) catalysts to accelerate the ‘Click’ chemistry was demonstrated for the first time in bulk phase. Using several Cu(I) catalysts, the cure temperatures could be lowered by as much as 40-100°C compared to the control, depending on the nature of catalyst and the catalyst loading. We discovered a novel synergistic effect between Cu(I) and silver filler in lowering the cure temperatures. Using this combination, lower cure temperatures could be obtained than using either alone. Among several resins screened, one resin system has shown promise for 80°C snap-cure in which the aforementioned synergistic effect is operative. Solution phase ‘Click’ chemistry was employed for the synthesis of a hybrid triazole-epoxy resin system. This system was found to cure without added amine curative. The triazole group here serves as a linker as well as an internal adhesion promoter. To address the incompatibility and volatility issues, which arose during evaluation, a controlled oligomerization method has been developed using controlled heating of azides and alkynes in solution phase.

  5. Effects of properties of manganese oxide-impregnated catalysts and flue gas condition on multipollutant control of Hg0 and NO.

    PubMed

    Chiu, Chun-Hsiang; Hsi, Hsing-Cheng; Lin, Hong-Ping; Chang, Tien-Chin

    2015-06-30

    This research investigated the effects of manganese oxide (MnOx) impregnation on the physical/chemical properties and multi pollutant control effectiveness of Hg(0) and NO using a V2O5-WO3/TiO2-SiO2 selective catalytic reduction (SCR) catalyst. Raw and MnOx-treated SCR samples were bean-shaped nanoparticles with sizes within 10-30 nm. Impregnating MnOx of ≤ 5 wt% caused limited changes in physical properties of the catalyst. The decrease in surface area when the impregnated MnOx amount was 10 wt% may stem from the pore blockage and particle growth or aggregation of the catalyst. Mn(4+) was the main valence state of impregnated MnOx. Apparent crystallinity of MnOx was not observed based on X-ray diffraction. MnOx impregnation enhanced the Hg(0) oxidation and NO/SO2 removal of SCR catalyst. The 5 and 10% MnOx-impregnated samples had the greatest multi pollutant control potentials for Hg(0) oxidation and NO removal; however, the increasing SO2 removal that may be mainly due to SO2-SO3 conversion should be cautioned. HCl and O2 greatly promoted Hg(0) oxidation. SO2 enhanced Hg(0) oxidation at ≤ 200 ppm while NO and NH3 consistently inhibited Hg(0) oxidation. Elevating flue gas temperature enhanced Hg(0) oxidation. Overall, MnOx-impregnated catalysts show stable and consistent multi pollutant removal effectiveness under the test conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Synthesis, characterization, and activity of Co/Fe alumina/silica supported Ft catalysts and the study of promoter effect of ruthenium

    NASA Astrophysics Data System (ADS)

    Esumike, Sunday Azubike

    The alumina and hybrid alumina-silica FT catalyst were prepared by one-step solgel/oil-drop methods using metal-nitrate-solutions (method-I), and nanoparticle-metaloxides (method-2). The nanoparticle-metal-oxides did not participate in solubility equilibria in contrast to metal nitrate in method-1 causing no metal ion seepage; therefore, method-2 yields higher XRF metal loading efficiency than method-1. The thermal analysis confirmed that the metal loading by method-1 and method-2 involved two different pathways. Method-1 involves solubility equilibria in the conversion of metal-nitrate to metal- hydroxide and finally to metal-oxide, while in method-2 nanoparticle-metal-oxide remained intact during sol-gel-oil-drop and calcination steps. The alumina supported catalysts were dominated by gamma-alumina PXRD peaks in alumina catalysts while amorphous alumino-silicate phase was the bulk of hybrid alumina-silica catalysts. The presence of cobalt oxides (CoO, Co3O4) and iron oxides (FeO, Fe2O3) phases are confirmed in the catalysts prepared by method-1 and method-2. The PXRD analysis indicated weak peak intensities in catalysts with 5 wt. % total metal loading. PXRD pattern confirmed alloy formation in the bimetallic catalysts (CoFe2O4) on alumina support phase gamma-A12 O3. The surface area and pore diameter of hybrid alumina-silica granules (301 - 372 m2/g and 7.3 nm) showed better values than the alumina granules (251 - 256 m2/g and 6.5 nm). The support pore diameter of both types of granules is within the mesoporous range (1 - 50 nm). The morphology of all the catalysts is preserved upon metal loading and heat treatments. The surface characteristics of the sol-gel-oil-drop method prepared catalysts indicate there was no significant pore blockage of the support below 10 wt % total metal loading. The CO conversion of the FT catalysts was measured to screen catalytic active metals and determine the optimum temperatures of the FT reaction for the alumina catalysts. The alumina FT catalysts showed an optimum reaction temperature of 250 °C. Hydrocarbon production and CO conversion of alumina and hybrid alumina-silica FT catalysts were investigated. Among monometallic alumina catalysts, Co(5%) showed a higher CO conversion. The incorporation of Fe to Co increased CO conversion and hydrocarbon production. Increased Fe content in the bimetallic catalysts prepared by combined method-1&2, decreased CO conversion and hydrocarbon production, and increased CO 2 production. The bimetallic nano-Co(2.5%)nano-Fe(2.5%) prepared by method-2 alone showed higher CO conversion comparable to the Co(4%)nano-Fe(l %). Hybrid alumina-silica FT catalysts showed a higher CO conversion than the alumina FT catalysts due to better surface characteristics. The monometallic catalysts showed higher selectivity to C1-C4 hydrocarbon than bimetallic. The bimetallic alumina FT catalysts prepared by method-2 showed slightly higher C5+ selectivity compared to the higher Co catalysts prepared by combined method- I &2. The Ru promotion showed a significant effect on the CO conversion and 11 product distribution of the monometallic catalysts. There was no significant effect on the CO conversion on the (Co-Fe) bimetallic catalysts, but hydrocarbon production slightly increased when promoted by 0.5 wt.% Ru.

  7. Catalytic wet-oxidation of a mixed liquid waste: COD and AOX abatement.

    PubMed

    Goi, D; de Leitenburg, C; Trovarelli, A; Dolcetti, G

    2004-12-01

    A series of catalytic wet oxidation (CWO) reactions, at temperatures of 430-500 K and in a batch bench-top pressure vessel were carried out utilizing a strong wastewater composed of landfill leachate and heavily organic halogen polluted industrial wastewater. A CeO2-SiO2 mixed oxide catalyst with large surface area to assure optimal oxidation performance was prepared. The catalytic process was examined during batch reactions controlling Chemical Oxygen Demand (COD) and Adsorbable Organic Halogen (AOX) parameters, resulting AOX abatement to achieve better effect. Color and pH were also controlled during batch tests. A simple first order-two stage reaction behavior was supposed and verified with the considered parameters. Finally an OUR test was carried out to evaluate biodegradability changes of wastewater as a result of the catalytic reaction.

  8. Single-atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Sun, Shuhui; Zhang, Gaixia; Gauquelin, Nicolas; Chen, Ning; Zhou, Jigang; Yang, Songlan; Chen, Weifeng; Meng, Xiangbo; Geng, Dongsheng; Banis, Mohammad N.; Li, Ruying; Ye, Siyu; Knights, Shanna; Botton, Gianluigi A.; Sham, Tsun-Kong; Sun, Xueliang

    2013-05-01

    Platinum-nanoparticle-based catalysts are widely used in many important chemical processes and automobile industries. Downsizing catalyst nanoparticles to single atoms is highly desirable to maximize their use efficiency, however, very challenging. Here we report a practical synthesis for isolated single Pt atoms anchored to graphene nanosheet using the atomic layer deposition (ALD) technique. ALD offers the capability of precise control of catalyst size span from single atom, subnanometer cluster to nanoparticle. The single-atom catalysts exhibit significantly improved catalytic activity (up to 10 times) over that of the state-of-the-art commercial Pt/C catalyst. X-ray absorption fine structure (XAFS) analyses reveal that the low-coordination and partially unoccupied densities of states of 5d orbital of Pt atoms are responsible for the excellent performance. This work is anticipated to form the basis for the exploration of a next generation of highly efficient single-atom catalysts for various applications.

  9. Single-atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition

    PubMed Central

    Sun, Shuhui; Zhang, Gaixia; Gauquelin, Nicolas; Chen, Ning; Zhou, Jigang; Yang, Songlan; Chen, Weifeng; Meng, Xiangbo; Geng, Dongsheng; Banis, Mohammad N.; Li, Ruying; Ye, Siyu; Knights, Shanna; Botton, Gianluigi A.; Sham, Tsun-Kong; Sun, Xueliang

    2013-01-01

    Platinum-nanoparticle-based catalysts are widely used in many important chemical processes and automobile industries. Downsizing catalyst nanoparticles to single atoms is highly desirable to maximize their use efficiency, however, very challenging. Here we report a practical synthesis for isolated single Pt atoms anchored to graphene nanosheet using the atomic layer deposition (ALD) technique. ALD offers the capability of precise control of catalyst size span from single atom, subnanometer cluster to nanoparticle. The single-atom catalysts exhibit significantly improved catalytic activity (up to 10 times) over that of the state-of-the-art commercial Pt/C catalyst. X-ray absorption fine structure (XAFS) analyses reveal that the low-coordination and partially unoccupied densities of states of 5d orbital of Pt atoms are responsible for the excellent performance. This work is anticipated to form the basis for the exploration of a next generation of highly efficient single-atom catalysts for various applications.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binder, Andrew J.; Toops, Todd J.; Unocic, Raymond R.

    Platinum group metal (PGM) catalysts are the current standard for control of pollutants in automotive exhaust streams. Aside from their high cost, PGM catalysts struggle with CO oxidation at low temperatures (<200 °C) due to inhibition by hydrocarbons in exhaust streams. Here we present a ternary mixed oxide catalyst composed of copper oxide, cobalt oxide, and ceria (dubbed CCC) that outperforms synthesized and commercial PGM catalysts for CO oxidation in simulated exhaust streams while showing no signs of inhibition by propene. Diffuse reflectance IR (DRIFTS) and light-off data both indicate low interaction between propene and the CO oxidation active sitemore » on this catalyst, and a separation of adsorption sites is proposed as the cause of this inhibition resistance. In conclusion, this catalyst shows great potential as a low-cost component for low temperature exhaust streams that are expected to be a characteristic of future automotive systems.« less

  11. Visible light active 2D C3N4-CdS hetero-junction photocatalyst for effective removal of azo dye by photodegradation

    NASA Astrophysics Data System (ADS)

    Ghosh Chaudhuri, Rajib; Chaturvedi, Ashwin; Iype, Eldhose

    2018-03-01

    A hetero-junction two dimensional photocatalyst that consists of organic semiconductor carbon nitride (C3N4) and inorganic semiconductor CdS, which acts as the light harvesting units and heterogeneous catalyst, was developed for the degradation of azo dye methyl orange (MO). Both materials are visible light active semiconductor. So the effective band gap of this heterojunction materials does not significantly change the visible light activity, but the injection of electrons from excited C3N4 to CdS increases the stability of hole-electron pair and that ultimately enhances the photocatalytic activity. This heterojunction catalyst finally can remove 97% of dyes and that is comparatively higher than individual pure materials. Finally, by using DFT analysis the band structure and the level diagrams of this photocatalyst are also analyzed.

  12. Disproportionation of rosin on an industrial Pd/C catalyst: reaction pathway and kinetic model discrimination.

    PubMed

    Souto, Juan Carlos; Yustos, Pedro; Ladero, Miguel; Garcia-Ochoa, Felix

    2011-02-01

    In this work, a phenomenological study of the isomerisation and disproportionation of rosin acids using an industrial 5% Pd on charcoal catalyst from 200 to 240°C is carried out. Medium composition is determined by elemental microanalysis, GC-MS and GC-FID. Dehydrogenated and hydrogenated acid species molar amounts in the final product show that dehydrogenation is the main reaction. Moreover, both hydrogen and non-hydrogen concentration considering kinetic models are fitted to experimental data using a multivariable non-linear technique. Statistical discrimination among the proposed kinetic models lead to the conclusion hydrogen considering models fit much better to experimental results. The final kinetic model involves first-order isomerisation reactions of neoabietic and palustric acids to abietic acid, first-order dehydrogenation and hydrogenation of this latter acid, and hydrogenation of pimaric acids. Hydrogenation reactions are partial first-order regarding the acid and hydrogen. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Uniform Pt/Pd Bimetallic Nanocrystals Demonstrate Platinum Effect on Palladium Methane Combustion Activity and Stability

    DOE PAGES

    Goodman, Emmett D.; Dai, Sheng; Yang, An-Chih; ...

    2017-05-18

    Bimetallic catalytic materials are in widespread use for numerous reactions, as the properties of a monometallic catalyst are often improved upon addition of a second metal. In studies with bimetallic catalysts, it remains challenging to establish clear structure–property relationships using traditional impregnation techniques, due to the presence of multiple coexisting active phases of different sizes, shapes, and compositions. Here, a convenient approach to prepare small and uniform Pt/Pd bimetallic nanocrystals with tailorable composition is demonstrated, despite the metals being immiscible in the bulk. By depositing this set of controlled nanocrystals onto a high-surface-area alumina support, we systematically investigate the effectmore » of adding platinum to palladium catalysts for methane combustion. At low temperatures and in the absence of steam, all bimetallic catalysts show activity nearly identical with that of Pt/Al 2O 3, with much lower rates in comparison to that of the Pd/Al 2O 3 sample. BUt, unlike Pd/Al 2O 3, which experiences severe low-temperature steam poisoning, all Pt/Pd bimetallic catalysts maintain combustion activity on exposure to excess steam. These features are due to the influence of Pt on the Pd oxidation state, which prevents the formation of a bulk-type PdO phase. Despite lower initial combustion rates, hydrothermal aging of the Pd-rich bimetallic catalyst induces segregation of a PdO phase in close contact to a Pd/Pt alloy phase, forming more active and highly stable sites for methane combustion. Altogether, this work unambiguously clarifies the activity and stability attributes of Pt/Pd phases which often coexist in traditionally synthesized bimetallic catalysts and demonstrates how well-controlled bimetallic catalysts elucidate structure–property relationships.« less

  14. Uniform Pt/Pd Bimetallic Nanocrystals Demonstrate Platinum Effect on Palladium Methane Combustion Activity and Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodman, Emmett D.; Dai, Sheng; Yang, An-Chih

    Bimetallic catalytic materials are in widespread use for numerous reactions, as the properties of a monometallic catalyst are often improved upon addition of a second metal. In studies with bimetallic catalysts, it remains challenging to establish clear structure–property relationships using traditional impregnation techniques, due to the presence of multiple coexisting active phases of different sizes, shapes, and compositions. Here, a convenient approach to prepare small and uniform Pt/Pd bimetallic nanocrystals with tailorable composition is demonstrated, despite the metals being immiscible in the bulk. By depositing this set of controlled nanocrystals onto a high-surface-area alumina support, we systematically investigate the effectmore » of adding platinum to palladium catalysts for methane combustion. At low temperatures and in the absence of steam, all bimetallic catalysts show activity nearly identical with that of Pt/Al 2O 3, with much lower rates in comparison to that of the Pd/Al 2O 3 sample. BUt, unlike Pd/Al 2O 3, which experiences severe low-temperature steam poisoning, all Pt/Pd bimetallic catalysts maintain combustion activity on exposure to excess steam. These features are due to the influence of Pt on the Pd oxidation state, which prevents the formation of a bulk-type PdO phase. Despite lower initial combustion rates, hydrothermal aging of the Pd-rich bimetallic catalyst induces segregation of a PdO phase in close contact to a Pd/Pt alloy phase, forming more active and highly stable sites for methane combustion. Altogether, this work unambiguously clarifies the activity and stability attributes of Pt/Pd phases which often coexist in traditionally synthesized bimetallic catalysts and demonstrates how well-controlled bimetallic catalysts elucidate structure–property relationships.« less

  15. An investigation into the effects of different existing states of aluminum isopropoxide on copper-based catalysts for direct synthesis of dimethyl ether from syngas

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Wang, Peng; Bian, Zhongkai; Huang, Wei

    2018-01-01

    Aluminum isopropoxide (AIP) is a vital raw material to produce high surface area alumina catalyst, which is used for catalytic applications, such as hydrocracking, Fischer-Tropsch and STD (syngas to dimethyl ether) reactions. However, the different existing states have an effect on hydrolysis and condensation in the process of precursor preparation. The Cu/Zn/Al slurry catalysts were prepared by aluminum isopropoxide, which were liquid state, crystalline state and solid state, utilizing a complete liquid phase preparation technology. In the dimethyl ether (DME) synthesis reaction, the aluminum resource of crystalline state was prepared for slurry catalyst, which presented high CO conversion and DME selectivity of 54.32% and 69.74%, respectively. Characterization results indicated that different forms of AIP have the variant coordination numbers of Al-O and polymerization degrees, and the catalyst prepared by crystalline state consists amount of tetra-coordinated Al and few hexa-coordinated Al, which can exert different hydrolysis and condensation process compared with other aluminum sources, and finally it contributes to the strong interaction between active site copper species and Zn/Al species, confirming more Cu+ is responsible for the synthesis of DME in the slurry reactor.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dub, Pavel; Gordon, John Cameron; Scott, Brian Lindley

    Molecular metal/NH bifunctional Noyori-type catalysts are remarkable in that they are among the most efficient artificial catalysts developed to date for the hydrogenation of carbonyl functionalities (loadings up to ~10 –5 mol %). In addition, these catalysts typically exhibit high C$=$O/C$=$C chemo- and enantioselectivities. This unique set of properties is traditionally associated with the operation of an unconventional mechanism for homogeneous catalysts in which the chelating ligand plays a key role in facilitating the catalytic reaction and enabling the aforementioned selectivities by delivering/accepting a proton (H +) via its N–H bond cleavage/formation. A recently revised mechanism of the Noyori hydrogenationmore » reaction (Dub, P. A. et al. J. Am. Chem. Soc. 2014, 136, 3505) suggests that the N–H bond is not cleaved but serves to stabilize the turnover-determining transition states (TDTSs) via strong N–H···O hydrogen-bonding interactions (HBIs). Here, the present paper shows that this is consistent with the largely ignored experimental fact that alkylation of the N–H functionality within M/NH bifunctional Noyori-type catalysts leads to detrimental catalytic activity. Finally, the purpose of this work is to demonstrate that decreasing the strength of this HBI, ultimately to the limit of its complete absence, are conditions under which the same alkylation may lead to beneficial catalytic activity.« less

  17. Gram-level synthesis of core-shell structured catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Luo, Mingchuan; Wei, Lingli; Wang, Fanghui; Han, Kefei; Zhu, Hong

    2014-12-01

    Over the past decade, Pt based core-shell structured alloys have been studied extensively as oxygen reduction reaction (ORR) catalysts for proton exchange membrane fuel cells (PEMFCs) because of their distinctive electrochemical performance and low Pt loading. In this paper, a facile route based on microwave-assisted polyol method and chemical dealloying process is proposed to synthesize carbon supported core-shell structured nanoparticles (NPs) in gram-level for ORR electrocatalysis in PEMFCs. The obtained samples are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), inductively coupled plasma atomic emission spectroscopy (ICP-AES), and X-ray photoelectron spectroscopy (XPS). These physical characterization indicate that the final synthesized NPs are highly dispersed on the carbon support, and in a core-shell structure with CuPt alloy as the core and Pt as the shell. Electrochemical measurements, conducted by cyclic voltammetry (CV) and rotating disk electrode (RDE) tests, show the core-shell structured catalyst exhibit a 3× increase in mass activity and a 2× increase in specific activity over the commercial Pt/C catalyst, respectively. These results demonstrate that this route can be a reliable way to synthesize low-Pt catalyst in large-scale for PEMFCs.

  18. Reforming and oxidative dehydrogenation of ethane with CO 2 as a soft oxidant over bimetallic catalysts

    DOE PAGES

    Myint, MyatNoeZin; Yan, Binhang; Wan, Jie; ...

    2016-02-26

    An efficient mitigation of abundantly available CO 2 is critical for sustainable environmental impact as well as for novel industrial applications. Using ethane, CO 2 can be catalytically converted into a useful feedstock (synthesis gas) and a value-added monomer (ethylene) via the dry reforming pathway through the C–C bond scission and the oxidative dehydrogenation pathway through the C–H bond scission, respectively. Results from the current flow-reactor study show that the precious metal bimetallic CoPt/CeO 2 catalyst undergoes the reforming reaction to produce syngas with enhanced activity and stability compared to the parent monometallic catalysts. In this paper, in order tomore » replace Pt, the activities of non-precious CoMo/CeO 2 and NiMo/CeO 2 are investigated and the results indicate that NiMo/CeO 2 is nearly as active as CoPt/CeO 2 for the reforming pathway. Furthermore, FeNi/CeO 2 is identified as a promising catalyst for the oxidative dehydrogenation to produce ethylene. Finally, density functional theory (DFT) calculations are performed to further understand the different pathways of the CoPt/CeO 2 and FeNi/CeO 2 catalysts.« less

  19. High-pressure vapor-phase hydrodeoxygenation of lignin-derived oxygenates to hydrocarbons by a PtMo bimetallic catalyst: Product selectivity, reaction pathway, and structural characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yohe, Sara L.; Choudhari, Harshavardhan J.; Mehta, Dhairya D.

    2016-12-01

    High-pressure, vapor-phase, hydrodeoxygenation (HDO) reactions of dihydroeugenol (2-methoxy-4-propylphenol), as well as other phenolic, lignin-derived compounds, were investigated over a bimetallic platinum and molybdenum catalyst supported on multi-walled carbon nanotubes (5%Pt2.5%Mo/MWCNT). Hydrocarbons were obtained in 100% yield from dihydroeugenol, including 98% yield of the hydrocarbon propylcyclohexane. The final hydrocarbon distribution was shown to be a strong function of hydrogen partial pressure. Kinetic analysis showed three main dihydroeugenol reaction pathways: HDO, hydrogenation, and alkylation. The major pathway occurred via Pt catalyzed hydrogenation of the aromatic ring and methoxy group cleavage to form 4-propylcyclohexanol, then Mo catalyzed removal of the hydroxyl group bymore » dehydration to form propylcyclohexene, followed by hydrogenation of propylcyclohexene on either the Pt or Mo to form the propylcyclohexane. Transalkylation by the methoxy group occurred as a minor side reaction. Catalyst characterization techniques including chemisorption, scanning transmission electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy were employed to characterize the catalyst structure. Catalyst components identified were Pt particles, bimetallic PtMo particles, a Mo carbide-like phase, and Mo oxide phases.« less

  20. Reforming and oxidative dehydrogenation of ethane with CO 2 as a soft oxidant over bimetallic catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myint, MyatNoeZin; Yan, Binhang; Wan, Jie

    An efficient mitigation of abundantly available CO 2 is critical for sustainable environmental impact as well as for novel industrial applications. Using ethane, CO 2 can be catalytically converted into a useful feedstock (synthesis gas) and a value-added monomer (ethylene) via the dry reforming pathway through the C–C bond scission and the oxidative dehydrogenation pathway through the C–H bond scission, respectively. Results from the current flow-reactor study show that the precious metal bimetallic CoPt/CeO 2 catalyst undergoes the reforming reaction to produce syngas with enhanced activity and stability compared to the parent monometallic catalysts. In this paper, in order tomore » replace Pt, the activities of non-precious CoMo/CeO 2 and NiMo/CeO 2 are investigated and the results indicate that NiMo/CeO 2 is nearly as active as CoPt/CeO 2 for the reforming pathway. Furthermore, FeNi/CeO 2 is identified as a promising catalyst for the oxidative dehydrogenation to produce ethylene. Finally, density functional theory (DFT) calculations are performed to further understand the different pathways of the CoPt/CeO 2 and FeNi/CeO 2 catalysts.« less

  1. Crab-shell induced synthesis of ordered macroporous carbon nanofiber arrays coupled with MnCo2O4 nanoparticles as bifunctional oxygen catalysts for rechargeable Zn-air batteries.

    PubMed

    Bin, Duan; Guo, Ziyang; Tamirat, Andebet Gedamu; Ma, Yuanyuan; Wang, Yonggang; Xia, Yongyao

    2017-08-10

    The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are traditionally carried out using noble metals (such as Pt) and metal oxides (such as RuO 2 and IrO 2 ) as catalysts, respectively. Nevertheless, several key issues such as high cost, poor stability, and detrimental environmental effects limit the catalytic activity of these noble metal- and metal oxide-based catalysts. Herein, we have designed and synthesized macroporous carbon nanofiber arrays by using a natural crab shell template. Subsequently, spinel MnCo 2 O 4 nanoparticles were embedded into the nitrogen-doped macroporous carbon nanofiber arrays (NMCNAs) by a hydrothermal method. Accompanied by the good conductivity, large surface area and doping of nitrogen, the as-prepared MnCo 2 O 4 /NMCNA exhibited remarkable catalytic performance and outstanding stability for both ORR and OER in alkaline media. The macroporous superstructures play vital role in reducing the ion transport resistance and facilitating the diffusion of gaseous products (O 2 ). Finally, rechargeable Zn-air batteries using the MnCo 2 O 4 /NMCNA catalyst displayed appreciably lower overpotentials, higher power density and better stability than commercial Pt/C, thus raising the prospect of functional low-cost, non-precious-metal bifunctional catalysts in metal-air batteries.

  2. Magnetically Recyclable Cufe2o4 Nanoparticles as an Efficient and Reusable Catalyst for the Green Synthesis of 2,4,6,8,10,12-Hexabenzyl-2,4,6,8,10,12-hexaazaisowurtzitane as CL-20 Explosive Precursor

    NASA Astrophysics Data System (ADS)

    Azizkhani, Vahid; Montazeri, Faezeh; Molashahi, Ebrahim; Ramazani, Ali

    2017-07-01

    Magnetic nanoparticles of copper ferrite (CuFe2O4 MNPs) have been simply prepared and applied as an efficient recyclable and reusable catalyst for the green synthesis of 2,4,6,8,10,12-hexabenzyl-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.05,9.03,11]dodecane (HBIW). The structure of the synthesized pure HBIW (recrystallization from ethanol) was confirmed by using various spectral techniques like infrared (IR), 1H-NMR, 13C-NMR and some of its physical properties. The prepared catalyst was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR). In addition, CuFe2O4 MNPs could be reused up to seven runs without any significant loss of activity. Finally, the remarkable advantages of this method are the simple experimental procedure, shorter reaction times, simple workup, and green aspects by avoiding toxic catalysts and high yield of product.

  3. Dynamic restructuring drives catalytic activity on nanoporous gold–silver alloy catalysts

    DOE PAGES

    Zugic, Branko; Wang, Lucun; Heine, Christian; ...

    2016-12-19

    Bimetallic, nanostructured materials hold promise for improving catalyst activity and selectivity, yet little is known about the dynamic compositional and structural changes that these systems undergo during pretreatment that leads to efficient catalyst function. Here we use ozone-activated silver–gold alloys in the form of nanoporous gold as a case study to demonstrate the dynamic behaviour of bimetallic systems during activation to produce a functioning catalyst. We show that it is these dynamic changes that give rise to the observed catalytic activity. Advanced in situ electron microscopy and X-ray photoelectron spectroscopy are used to demonstrate that major restructuring and compositional changesmore » occur along the path to catalytic function for selective alcohol oxidation. Transient kinetic measurements correlate the restructuring to three types of oxygen on the surface. The direct influence of changes in surface silver concentration and restructuring at the nanoscale on oxidation activity is demonstrated. Finally, our results demonstrate that characterization of these dynamic changes is necessary to unlock the full potential of bimetallic catalytic materials.« less

  4. Dynamic restructuring drives catalytic activity on nanoporous gold–silver alloy catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zugic, Branko; Wang, Lucun; Heine, Christian

    Bimetallic, nanostructured materials hold promise for improving catalyst activity and selectivity, yet little is known about the dynamic compositional and structural changes that these systems undergo during pretreatment that leads to efficient catalyst function. Here we use ozone-activated silver–gold alloys in the form of nanoporous gold as a case study to demonstrate the dynamic behaviour of bimetallic systems during activation to produce a functioning catalyst. We show that it is these dynamic changes that give rise to the observed catalytic activity. Advanced in situ electron microscopy and X-ray photoelectron spectroscopy are used to demonstrate that major restructuring and compositional changesmore » occur along the path to catalytic function for selective alcohol oxidation. Transient kinetic measurements correlate the restructuring to three types of oxygen on the surface. The direct influence of changes in surface silver concentration and restructuring at the nanoscale on oxidation activity is demonstrated. Finally, our results demonstrate that characterization of these dynamic changes is necessary to unlock the full potential of bimetallic catalytic materials.« less

  5. Highly active Pt/MoC and Pt/TiC catalysts for the low-temperature water-gas shift reaction: Effects of the carbide metal/carbon ratio on the catalyst performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, José A.; Ramírez, Pedro J.; Gutierrez, Ramón A.

    We present that Pt/MoC and Pt/TiC(001) are excellent catalysts for the low-temperature water-gas shift (WGS, CO + H 2O → H 2 + CO 2) reaction. They exhibit high-activity, stability and selectivity. The highest catalytic activities are seen for small coverages of Pt on the carbide substrates. Synergistic effects at the metal-carbide interface produce an enhancement in chemical activity with respect to pure Pt, MoC and TiC. A clear correlation is found between the ability of the Pt/MoC and Pt/TiC(001) surfaces to partially dissociate water and their catalytic activity for the WGS reaction. Finally, an overall comparison of the resultsmore » for Pt/MoC and Pt/Mo 2C(001) indicates that the metal/carbon ratio in the carbide support can have a strong influence in the stability and selectivity of WGS catalysts and is a parameter that must be taken into consideration when designing these systems.« less

  6. The synthesis of Cu/Fe/Fe3O4 catalyst through the aqueous solution ball milling method assisted by high-frequency electromagnetic field

    NASA Astrophysics Data System (ADS)

    Yingzhe, Zhang; Yuxing, He; Qingdong, Qin; Fuchun, Wang; Wankun, Wang; Yongmei, Luo

    2018-06-01

    In this paper, nano-magnetic Cu/Fe/Fe3O4 catalyst was prepared by a new aqueous solution ball milling method assisted by high-frequency electromagnetic field at room temperature. The products were characterized by means of X-ray diffraction (XRD), high-resolution transmission electron microscope (HRTEM), selected area electron diffraction (SAED), and vibrating sample magnetometer (VSM). Microwave induced catalytic degradation of methylene blue (MB) was carried out in the presence of Cu/Fe/Fe3O4. The concentration of methylene blue was determined by UV-Vis spectrophotometry. The solid catalyst showed high catalytic activity of degrade MB and considerable saturation magnetization, lower remanence and coercivity. It indicate that the catalyst can be effectively separated for reuse by simply applying an external magnetic field and it can greatly promote their potential industrial application to eliminate organic pollutants from waste-water. Finally, we found that it is the non-thermal effect of microwave that activated the catalytic activity of Cu/Fe/Fe3O4 to degrade MB.

  7. High-temperature catalytically assisted combustion. Final report, 1 August 1981-31 July 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bracco, F.V.; Royce, B.S.H.; Santavicca, D.A.

    1983-07-31

    Results of research on a two-dimensional, transient catalytic combustion model and on a high temperature perovskite catalyst are presented. A recently developed two-dimensional, transient model was used to study the ignition of carbon monoxide/air mixtures in a platinum-coated catalytic honeycomb. Comparisons between calculated and measured steady-state substrate temperature profiles and exhaust-gas compositions show good agreement. A platinum-doped perovskite catalyst proposed will exhibit low-temperature light off and high-temperature stability. Preliminary tests using a perovskite powder with 1 wt.% platinium are encouraging, showing very little change in surface activity when used with propane fuel. Variations in catalytic activity from sample to samplemore » were also found, and after extensive testing the cause of these variations could not be identified. However, preliminary tests using Fourier-transform infrared photoacoustic spectroscopy do indicate differences in the various catalyst samples that may be related to the difference in catalytic activity. The use of bench-top-oven and differential-scanning-calorimetry techniques for screening catalysts in terms of relative activity and aging characteristics were also demonstrated.« less

  8. Novel windows for "solar commodities": a device for CO2 reduction using plasmonic catalyst activation.

    PubMed

    Navarrete, Alexander; Muñoz, Sergio; Sanz-Moral, Luis M; Brandner, Juergen J; Pfeifer, Peter; Martín, Ángel; Dittmeyer, Roland; Cocero, María J

    2015-01-01

    A novel plasmonic reactor concept is proposed and tested to work as a visible energy harvesting device while allowing reactions to transform CO2 to be carried out. Particularly the reverse water gas shift (RWGS) reaction has been tested as a means to introduce renewable energy into the economy. The development of the new reactor concept involved the synthesis of a new composite capable of plasmonic activation with light, the development of an impregnation method to create a single catalyst reactor entity, and finally the assembly of a reaction system to test the reaction. The composite developed was based on a Cu/ZnO catalyst dispersed into transparent aerogels. This allows efficient light transmission and a high surface area for the catalyst. An effective yet simple impregnation method was developed that allowed introduction of the composites into glass microchannels. The activation of the reaction was made using LEDs that covered all the sides of the reactor allowing a high power delivery. The results of the reaction show a stable process capable of low temperature transformations.

  9. [Biosynthesis of indigo and indirubin by whole-cell catalyst designed by combination of protein engineering and metabolic engineering].

    PubMed

    Li, Yang; Zhu, Junge; Wang, Jianjun; Xia, Huanzhang; Wu, Sheng

    2016-01-01

    The phenylacetone monooxygenase, isolated from Thermobifida fusca, mainly catalyzes Baeyer-Villiger oxidation reaction towards aromatic compounds. Met446 plays a vital role in catalytic promiscuity, based on the structure and function of phenylacetone monooxygenase. Mutation in Met446 locus can offer enzyme new catalytic feature to activate C-H bond, oxidizing indole to finally generate indigo and indirubin, but the yield was only 1.89 mg/L. In order to further improve the biosynthesis efficiency of the whole-cell catalyst, metabolic engineering was applied to change glucose metabolism pathway of Escherichia coli. Blocking glucose isomerase gene pgi led to pentose phosphate pathway instead of the glycolytic pathway to become the major metabolic pathways of glucose, which provided more cofactor NADPH needed in enzymatic oxidation of indole. Engineering the host E. coli led to synthesis of indigo and indirubin efficiency further increased to 25 mg/L. Combination of protein and metabolic engineering to design efficient whole-cell catalysts not only improves the synthesis of indigo and indirubin, but also provides a novel strategy for whole-cell catalyst development.

  10. Highly active Pt/MoC and Pt/TiC catalysts for the low-temperature water-gas shift reaction: Effects of the carbide metal/carbon ratio on the catalyst performance

    DOE PAGES

    Rodriguez, José A.; Ramírez, Pedro J.; Gutierrez, Ramón A.

    2016-09-20

    We present that Pt/MoC and Pt/TiC(001) are excellent catalysts for the low-temperature water-gas shift (WGS, CO + H 2O → H 2 + CO 2) reaction. They exhibit high-activity, stability and selectivity. The highest catalytic activities are seen for small coverages of Pt on the carbide substrates. Synergistic effects at the metal-carbide interface produce an enhancement in chemical activity with respect to pure Pt, MoC and TiC. A clear correlation is found between the ability of the Pt/MoC and Pt/TiC(001) surfaces to partially dissociate water and their catalytic activity for the WGS reaction. Finally, an overall comparison of the resultsmore » for Pt/MoC and Pt/Mo 2C(001) indicates that the metal/carbon ratio in the carbide support can have a strong influence in the stability and selectivity of WGS catalysts and is a parameter that must be taken into consideration when designing these systems.« less

  11. Selective catalyst reduction light-off strategy

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2011-10-18

    An emissions control system includes a temperature determination module and an emissions control module. The temperature determination module determines a first temperature of a heater element of a diesel particulate filter (DPF) assembly in an exhaust system and determines a second temperature of a catalyst of the DPF assembly. The emissions control module selectively activates the heater element, selectively initiates a predefined combustion process in an engine based upon the first temperature, and selectively starts a reductant injection process based upon the second temperature.

  12. Massachusetts Lowell low speed wind tunnel (LSWT) test section

    NASA Astrophysics Data System (ADS)

    Anderson, Erik William

    The alumina and hybrid alumina-silica FT catalyst were prepared by one-step solgel/oil-drop methods using metal-nitrate-solutions (method-I), and nanoparticle-metaloxides (method-2). The nanoparticle-metal-oxides did not participate in solubility equilibria in contrast to metal nitrate in method-1 causing no metal ion seepage; therefore, method-2 yields higher XRF metal loading efficiency than method-1. The thermal analysis confirmed that the metal loading by method-1 and method-2 involved two different pathways. Method-1 involves solubility equilibria in the conversion of metal-nitrate to metal- hydroxide and finally to metal-oxide, while in method-2 nanoparticle-metal-oxide remained intact during sol-gel-oil-drop and calcination steps. The alumina supported catalysts were dominated by gamma-alumina PXRD peaks in alumina catalysts while amorphous alumino-silicate phase was the bulk of hybrid alumina-silica catalysts. The presence of cobalt oxides (CoO, Co3O4) and iron oxides (FeO, Fe2O3) phases are confirmed in the catalysts prepared by method-1 and method-2. The PXRD analysis indicated weak peak intensities in catalysts with 5 wt. % total metal loading. PXRD pattern confirmed alloy formation in the bimetallic catalysts (CoFe2O4) on alumina support phase gamma-A12 O3. The surface area and pore diameter of hybrid alumina-silica granules (301 - 372 m2/g and 7.3 nm) showed better values than the alumina granules (251 - 256 m2/g and 6.5 nm). The support pore diameter of both types of granules is within the mesoporous range (1 - 50 nm). The morphology of all the catalysts is preserved upon metal loading and heat treatments. The surface characteristics of the sol-gel-oil-drop method prepared catalysts indicate there was no significant pore blockage of the support below 10 wt % total metal loading. The CO conversion of the FT catalysts was measured to screen catalytic active metals and determine the optimum temperatures of the FT reaction for the alumina catalysts. The alumina FT catalysts showed an optimum reaction temperature of 250 °C. Hydrocarbon production and CO conversion of alumina and hybrid alumina-silica FT catalysts were investigated. Among monometallic alumina catalysts, Co(5%) showed a higher CO conversion. The incorporation of Fe to Co increased CO conversion and hydrocarbon production. Increased Fe content in the bimetallic catalysts prepared by combined method-1&2, decreased CO conversion and hydrocarbon production, and increased CO 2 production. The bimetallic nano-Co(2.5%)nano-Fe(2.5%) prepared by method-2 alone showed higher CO conversion comparable to the Co(4%)nano-Fe(l %). Hybrid alumina-silica FT catalysts showed a higher CO conversion than the alumina FT catalysts due to better surface characteristics. The monometallic catalysts showed higher selectivity to C1-C4 hydrocarbon than bimetallic. The bimetallic alumina FT catalysts prepared by method-2 showed slightly higher C5+ selectivity compared to the higher Co catalysts prepared by combined method- I &2. The Ru promotion showed a significant effect on the CO conversion and 11 product distribution of the monometallic catalysts. There was no significant effect on the CO conversion on the (Co-Fe) bimetallic catalysts, but hydrocarbon production slightly increased when promoted by 0.5 wt.% Ru.

  13. A Novel Catalyst Deposition Technique for the Growth of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance; Cassell, A.; Stevens, R.; Nguyen, C.; Meyyappan, M.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    This viewgraph presentation provides information on the development of a technique at NASA's Ames Research Center by which carbon nanotubes (NT) can be grown. The project had several goals which included: 1) scaleability, 2) ability to control single wall nanotube (SWNT) and multiwall nanotube (MWNT) formation, 3) ability to control the density of nanotubes as they grow, 4) ability to apply standard masking techniques for NT patterning. Information regarding the growth technique includes its use of a catalyst deposition process. SWNTs of varying thicknesses can be grown by changing the catalyst composition. Demonstrations are given of various methods of masking including the use of transmission electron microscopic (TEM) grids.

  14. CATALYTIC COMBUSTION OF ATMOSPHERIC CONTAMINANTS IN SPACE VEHICLE ATMOSPHERES.

    DTIC Science & Technology

    preheater were devised which allowed precise temperature control. Hopcalite , palladium supported on alumina, vanadium pentoxide, and silver permanganate...were the catalysts considered. Palladium was found to be more effective catalyst than Hopcalite for oxidizing methane. Palladium was also effective in

  15. Perspective: Size selected clusters for catalysis and electrochemistry

    NASA Astrophysics Data System (ADS)

    Halder, Avik; Curtiss, Larry A.; Fortunelli, Alessandro; Vajda, Stefan

    2018-03-01

    Size-selected clusters containing a handful of atoms may possess noble catalytic properties different from nano-sized or bulk catalysts. Size- and composition-selected clusters can also serve as models of the catalytic active site, where an addition or removal of a single atom can have a dramatic effect on their activity and selectivity. In this perspective, we provide an overview of studies performed under both ultra-high vacuum and realistic reaction conditions aimed at the interrogation, characterization, and understanding of the performance of supported size-selected clusters in heterogeneous and electrochemical reactions, which address the effects of cluster size, cluster composition, cluster-support interactions, and reaction conditions, the key parameters for the understanding and control of catalyst functionality. Computational modeling based on density functional theory sampling of local minima and energy barriers or ab initio molecular dynamics simulations is an integral part of this research by providing fundamental understanding of the catalytic processes at the atomic level, as well as by predicting new materials compositions which can be validated in experiments. Finally, we discuss approaches which aim at the scale up of the production of well-defined clusters for use in real world applications.

  16. Controlling Proton Delivery through Catalyst Structural Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenas, Allan Jay P.; Ginovska, Bojana; Kumar, Neeraj

    The fastest synthetic molecular catalysts for production and oxidation of H2 emulate components of the active site of natural hydrogenases. The role of controlled structural dynamics is recognized as a critical component in the catalytic performance of many enzymes, including hydrogenases, but is largely neglected in the design of synthetic molecular cata-lysts. In this work, the impact of controlling structural dynamics on the rate of production of H2 was studied for a series of [Ni(PPh2NC6H4-R2)2]2+ catalysts including R = n-hexyl, n-decyl, n-tetradecyl, n-octadecyl, phenyl, or cyclohexyl. A strong correlation was observed between the ligand structural dynamics and the rates ofmore » electrocatalytic hydrogen production in acetonitrile, acetonitrile-water, and protic ionic liquid-water mixtures. Specifically, the turnover frequencies correlate inversely with the rates of ring inversion of the amine-containing ligand, as this dynamic process dictates the positioning of the proton relay in the second coordination sphere and therefore governs protonation at either catalytically productive or non-productive sites. This study demonstrates that the dynamic processes involved in proton delivery can be controlled through modifications of the outer coordination sphere of the catalyst, similar to the role of the protein architecture in many enzymes. The present work provides new mechanistic insight into the large rate enhancements observed in aqueous protic ionic liquid media for the [Ni(PPh2NR2)]2+ family of catalysts. The incorporation of controlled structural dynamics as a design parameter to modulate proton delivery in molecular catalysts has enabled H2 production rates that are up to three orders of magnitude faster than the [Ni(PPh2NPh2)]2+complex. The observed turnover frequencies are up to 106 s-1 in acetonitrile-water, and over 107 s-1 in protic ionic liquid-water mixtures, with a minimal increase in overpotential. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, and was performed in part using the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory, a DOE national scientific user facility located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE.« less

  17. Computational Chemistry-Based Identification of Ultra-Low Temperature Water-Gas-Shift Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manos Mavrikakis

    2008-08-31

    The current work seeks to identify novel, catalytically-active, stable, poison-resistant LWGS catalysts that retain the superior activity typical of conventional Cu catalysts but can be operated at similar or lower temperatures. A database for the Binding Energies (BEs) of the LWGS relevant species, namely CO, O and OH on the most-stable, close-packed facets of a set of 17 catalytically relevant transition metals was established. This BE data and a database of previously established segregation energies was utilized to predict the stability of bimetallic NSAs that could be synthesized by combinations of the 17 parent transition metals. NSAs that were potentiallymore » stable both in vacuo and under the influence of strong-binding WGS intermediates were then selected for adsorption studies. A set of 40 NSAs were identified that satisfied all three screener criteria and the binding energies of CO, O and OH were calculated on a set of 66, 43 and 79 NSA candidates respectively. Several NSAs were found that bound intermediates weaker than the monometallic catalysts and were thus potentially poison-resistant. Finally, kinetic studies were performed and resulted in the discovery of a specific NSA-based bimetallic catalyst Cu/Pt that is potentially a promising LWGS catalyst. This stable Cu/Pt subsurface alloy is expected to provide facile H{sub 2}O activation and remain relatively resistant from the poisoning by CO, S and formate intermediates.« less

  18. Degradation of cationic red GTL by catalytic wet air oxidation over Mo-Zn-Al-O catalyst under room temperature and atmospheric pressure.

    PubMed

    Xu, Yin; Li, Xiaoyi; Cheng, Xiang; Sun, Dezhi; Wang, Xueye

    2012-03-06

    To overcome the drawback of catalytic wet air oxidation (CWAO) with high temperature and high pressure, the catalytic activity of Mo-Zn-Al-O catalyst for degradation of cationic red GTL under room temperature and atmospheric pressure was investigated. Mo-Zn-Al-O catalyst was prepared by coprecipitation and impregnation. XRD, TG-DTG, and XPS were used to characterize the resulting sample. Central composition design using response surface methodology was employed to optimize correlation of factors on the decolorization of cationic red GTL. The results show that the optimal conditions of pH value, initial concentration of dye and catalyst dosage were found to be 4.0, 85 mg/L and 2.72 g/L, respectively, for maximum decolorization of 80.1% and TOC removal of 50.9%. Furthermore, the reaction on the Mo-Zn-Al-O catalyst and degradation mechanism of cationic red GTL was studied by Electron spin resonance (ESR) and GC-MS technique. The possible reaction mechanism was that the Mo-Zn-Al-O catalyst can efficiently react with adsorbed oxygen/H(2)O to produce ·OH and (1)O(2) and finally induce the degradation of cationic red GTL. GC-MS analysis of the degradation products indicates that cationic red GTL was initiated by the cleavage of -N ═ N- and the intermediates were further oxidized by ·OH or (1)O(2).

  19. Direct and continuous strain control of catalysts with tunable battery electrode materials

    DOE PAGES

    Wang, Haotian; Xu, Shicheng; Tsai, Charlie; ...

    2016-11-24

    We report a method for using battery electrode materials to directly and continuously control the lattice strain of platinum (Pt) catalyst and thus tune its catalytic activity for the oxygen reduction reaction (ORR). Whereas the common approach of using metal overlayers introduces ligand effects in addition to strain, by electrochemically switching between the charging and discharging status of battery electrodes the change in volume can be precisely controlled to induce either compressive or tensile strain on supported catalysts. Lattice compression and tension induced by the lithium cobalt oxide substrate of ~5% were directly observed in individual Pt nanoparticles with aberration-correctedmore » transmission electron microscopy. As a result, we observed 90% enhancement or 40% suppression in Pt ORR activity under compression or tension, respectively, which is consistent with theoretical predictions.« less

  20. Upgrading of Intermediate Bio-Oil Produced by Catalytic Pyrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdullah, Zia; Chadwell, Brad; Taha, Rachid

    2015-06-30

    The objectives of this project were to (1) develop a process to upgrade catalytic pyrolysis bio-oil, (2) investigate new upgrading catalysts suited for upgrading catalytic pyrolysis bio-oil, (3) demonstrate upgrading system operation for more than 1,000 hours using a single catalyst charge, and (4) produce a final upgraded product that can be blended to 30 percent by weight with petroleum fuels or that is compatible with existing petroleum refining operations. This project has, to the best of our knowledge, for the first time enabled a commercially viable bio-oil hydrotreatment process to produce renewable blend stock for transportation fuels.

  1. A convenient method for preparation of 2-amino-4,6-diphenylnicotinonitrile using HBF4 as an efficient catalyst via an anomeric based oxidation: A joint experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Zolfigol, Mohammad Ali; Kiafar, Mahya; Yarie, Meysam; Taherpour, Avat(Arman); Fellowes, Thomas; Nicole Hancok, Amber; Yari, Ako

    2017-06-01

    Experimental and computational studies in the synthesis of 2-amino-4,6-diphenylnicotinonitrile using HBF4 as an oxidizing promoter catalyst under mild and solvent free conditions were carried out. The suggested anomeric based oxidation (ABO) mechanism is supported by experimental and theoretical evidence. The theoretical study shows that the intermediate isomers with 5R- and 5S- chiral positions have suitable structures for the aromatization through an anomeric based oxidation in the final step of the mechanistic pathway.

  2. Catalytic Synthesis of Oxygenates: Mechanisms, Catalysts and Controlling Characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klier, Kamil; Herman, Richard G

    2005-11-30

    This research focused on catalytic synthesis of unsymmetrical ethers as a part of a larger program involving oxygenated products in general, including alcohols, ethers, esters, carboxylic acids and their derivatives that link together environmentally compliant fuels, monomers, and high-value chemicals. The catalysts studied here were solid acids possessing strong Brnsted acid functionalities. The design of these catalysts involved anchoring the acid groups onto inorganic oxides, e.g. surface-grafted acid groups on zirconia, and a new class of mesoporous solid acids, i.e. propylsulfonic acid-derivatized SBA-15. The former catalysts consisted of a high surface concentration of sulfate groups on stable zirconia catalysts. Themore » latter catalyst consists of high surface area, large pore propylsulfonic acid-derivatized silicas, specifically SBA-15. In both cases, the catalyst design and synthesis yielded high concentrations of acid sites in close proximity to one another. These materials have been well-characterization in terms of physical and chemical properties, as well as in regard to surface and bulk characteristics. Both types of catalysts were shown to exhibit high catalytic performance with respect to both activity and selectivity for the bifunctional coupling of alcohols to form ethers, which proceeds via an efficient SN2 reaction mechanism on the proximal acid sites. This commonality of the dual-site SN2 reaction mechanism over acid catalysts provides for maximum reaction rates and control of selectivity by reaction conditions, i.e. pressure, temperature, and reactant concentrations. This research provides the scientific groundwork for synthesis of ethers for energy applications. The synthesized environmentally acceptable ethers, in part derived from natural gas via alcohol intermediates, exhibit high cetane properties, e.g. methylisobutylether with cetane No. of 53 and dimethylether with cetane No. of 55-60, or high octane properties, e.g. diisopropylether with blending octane No. of 105, and can replace aromatics in liquid fuels.« less

  3. Ultrathin Pt xSn 1–x Nanowires for Methanol and Ethanol Oxidation Reactions: Tuning Performance by Varying Chemical Composition

    DOE PAGES

    Li, Luyao; Liu, Haiqing; Qin, Chao; ...

    2018-02-28

    Pt-based alloys denote promising catalysts for the methanol oxidation reaction (MOR) and the ethanol oxidation reaction (EOR), due to their enhanced activity toward alcohol-oxidation reactions and reduced cost as compared with Pt alone. Among all of these binary systems, PtSn has been reported to exhibit superior methanol/ethanol oxidation activity. In this paper, we deliberatively tailor chemical composition, reduce size, and optimize morphology of the catalyst in an effort to understand structure–property correlations that can be used to improve upon the electrocatalytic activity of these systems. Previous work performed by our group suggested that Pt-based catalysts, possessing an ultrathin one-dimensional (1D)more » structure, dramatically promote both cathodic and anodic reactions with respect to their zero-dimensional (0D) counterparts. Herein, a novel set of ultrathin binary Pt–Sn 1D nanowire (NW) catalysts with rationally controlled chemical compositions, i.e., Pt 9Sn 1, Pt 8Sn 2, and Pt 7Sn 3, has been synthesized using a facile, room-temperature, wet-solution-based method. The crystallinity and chemical composition of these as-prepared samples were initially characterized using XRD, XPS, and EDX. Results revealed that this synthetic protocol could successfully generate PtSn alloys with purposely tunable chemical compositions. TEM and HRTEM verified the structural integrity of our ultrathin 1D NW morphology for our Pt 9Sn 1, Pt 8Sn 2, and Pt 7Sn 3 samples. The effects of varying Sn content within these alloy samples toward the electro-oxidation reaction of methanol and ethanol were probed using cyclic voltammetry (CV) in acidic media. Finally, within this series, we find that the optimized chemical composition for both the MOR and the EOR is Pt 7Sn 3.« less

  4. Ultrathin Pt xSn 1–x Nanowires for Methanol and Ethanol Oxidation Reactions: Tuning Performance by Varying Chemical Composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Luyao; Liu, Haiqing; Qin, Chao

    Pt-based alloys denote promising catalysts for the methanol oxidation reaction (MOR) and the ethanol oxidation reaction (EOR), due to their enhanced activity toward alcohol-oxidation reactions and reduced cost as compared with Pt alone. Among all of these binary systems, PtSn has been reported to exhibit superior methanol/ethanol oxidation activity. In this paper, we deliberatively tailor chemical composition, reduce size, and optimize morphology of the catalyst in an effort to understand structure–property correlations that can be used to improve upon the electrocatalytic activity of these systems. Previous work performed by our group suggested that Pt-based catalysts, possessing an ultrathin one-dimensional (1D)more » structure, dramatically promote both cathodic and anodic reactions with respect to their zero-dimensional (0D) counterparts. Herein, a novel set of ultrathin binary Pt–Sn 1D nanowire (NW) catalysts with rationally controlled chemical compositions, i.e., Pt 9Sn 1, Pt 8Sn 2, and Pt 7Sn 3, has been synthesized using a facile, room-temperature, wet-solution-based method. The crystallinity and chemical composition of these as-prepared samples were initially characterized using XRD, XPS, and EDX. Results revealed that this synthetic protocol could successfully generate PtSn alloys with purposely tunable chemical compositions. TEM and HRTEM verified the structural integrity of our ultrathin 1D NW morphology for our Pt 9Sn 1, Pt 8Sn 2, and Pt 7Sn 3 samples. The effects of varying Sn content within these alloy samples toward the electro-oxidation reaction of methanol and ethanol were probed using cyclic voltammetry (CV) in acidic media. Finally, within this series, we find that the optimized chemical composition for both the MOR and the EOR is Pt 7Sn 3.« less

  5. Stereodivergent Aminocatalytic Synthesis of Z- and E-Trisubstituted Double Bonds from Alkynals.

    PubMed

    Marzo, Leyre; Luis-Barrera, Javier; Mas-Ballesté, Rubén; Ruano, José Luis García; Alemán, José

    2016-11-07

    A highly diastereoselective synthesis of trisubstituted Z- or E-enals, which are important intermediates in organic synthesis, as well as being present in natural products, is described using different alkynals and nucleophiles as starting materials. Diastereocontrol is mainly governed by the appropriate catalyst. Therefore, those reactions controlled by steric effects, such as the Jørgensen-Hayashi's catalyst, give access to E isomers, and those catalysts that facilitate hydrogen bonding, such as tetrazol-pyrrolidine Ley's catalyst, allow the synthesis of Z isomers. A stereochemical model based on DFT calculations is proposed. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Ship-in-a-bottle catalysts

    DOEpatents

    Haw, James F.; Song, Weiguo

    2006-07-18

    In accordance with the present invention there is provided a novel catalyst system in which the catalytic structure is tailormade at the nanometer scale using the invention's novel ship-in-a-bottle synthesis techniques. The invention describes modified forms of solid catalysts for use in heterogeneous catalysis that have a microporous structure defined by nanocages. Examples include zeolites, SAPOs, and analogous materials that have the controlled pore dimensions and hydrothermal stability required for many industrial processes. The invention provides for modification of these catalysts using reagents that are small enough to pass through the windows used to access the cages. The small reagents are then reacted to form larger molecules in the cages.

  7. Preparation and characterization of bi-metallic nanoparticle catalyst having better anti-coking properties using reverse micelle technique

    NASA Astrophysics Data System (ADS)

    Zacharia, Thomas

    Energy needs are rising on an exponential basis. The mammoth energy sources like coal, natural gas and petroleum are the cause of pollution. The large outcry for an alternate energy source which is environmentally friendly and energy efficient is heard during the past few years. This is where “Clean-Fuel” like hydrogen gained its ground. Hydrogen is mainly produced by steam methane reforming (SMR). An alternate sustainable process which can reduce the cost as well as eliminate the waste products is Tri-reforming. In both these reforming processes nickel is used as catalyst. However as the process goes on the catalyst gets deactivated due to coking on the catalytic surface. This goal of this thesis work was to develop a bi-metallic catalyst which has better anti-coking properties compared to the conventional nickel catalyst. Tin was used to dope nickel. It was found that Ni3Sn complex around a core of Ni is coking resistant compared to pure nickel catalyst. Reverse micelle synthesis of catalyst preparation was used to control the size and shape of catalytic particles. These studies will benefit researches on hydrogen production and catalyst manufactures who work on different bi-metallic combinations.

  8. Singled-walled carbon nanotubes produced by induction thermal plasma: Cytotoxicity evaluation of the feedstock materials and the final product for a potential bone application

    NASA Astrophysics Data System (ADS)

    Alinejad, Yasaman

    One of the most challenging issues that the technologies related to nanomaterials face is the impact they have on human health and environment. It is therefore of great importance to investigate the toxicological impacts of these technologies prior to their widespread utilization in different fields of application. Therefore, in this study, the cytotoxicity of the materials present throughout the process of single-walled carbon nanotubes (SWCNTs) synthesis by induction thermal plasma (from the feedstock materials to the final product) was evaluated. First of all, the influence of the induction thermal plasma process on the physico-chemical and cytotoxic properties of feedstock materials (i.e. commercial Co, Ni, Y2O3, Mo catalysts and carbon black) was investigated. The strongest cytotoxicity was observed for commercial Co compared to other catalysts. Although the thermal plasma process affected the properties of all catalysts, only the cytotoxicity of Ni was increased. Comparing the properties and cytotoxicity of the plasma treated Ni particles with commercial Ni nanoparticles revealed that the particles with similar surface area had different cytotoxicities. Plus, the observed cytotoxicity of the catalysts was not mainly due to the release of ions. In order to evaluate the capacity of the RF induction thermal plasma process to produce high quality SWCNTs using non-toxic catalysts, the effects of the type and quantity of three catalyst mixtures (Ni-Y2O 3, Ni-Co-Y2O3, and Ni-Mo-Y2O3 ) on SWCNTs synthesis were examined. Thermodynamic calculations, in gas and particularly in liquid solution phases, were also performed. The results showed that catalyst type affected the quality of the SWCNT final product and similar quality SWCNTs was produced when the same amount of Co was replaced by Ni. Then, to investigate the cytotoxicity of the SWCNTs produced with the three catalyst mixtures, their effect was evaluated on the behavior of murine MC3T3-E1 preosteoblasts. Either SWCNTs were added on the attached cells or cells were seeded on the SWCNT-covered culture plates. SWCNTs which were added on the attached cells reduced cell viability drastically in a dose-dependent manner. However, the viability of the cells seeded on SWCNTs was only slightly decreased at 24 h, even on those produced with Ni-Co-Y2O3 . Moreover, cells could proliferate within 48 h. Thus, except mechanical membrane disturbance, thermal plasma grown SWCNTs seemed to induce no severe cytotoxicity on MC3T3-E1 preosteoblasts. Consequently, SWCNTs were purified and their influence on the viability and proliferation of MC3T3-E1 preosteoblasts was determined. The impact of SWCNTs on Smad activation and cell differentiation induced by BMP-2 and BMP-9 was also studied. SWCNTs pre-treatment accelerated the Smad1/5/8 activation induced by both BMP-2 and BMP-9. It did not reduce the viability of preosteoblasts but slightly affected their proliferation at 48 h. Furthermore, after 72 h incubation with BMP-2 or BMP-9, preosteoblasts pre-treated with SWCNTs for 24 h could express genes encoding osteogenic markers such as osterix and osteocalcin and showed high alkaline phosphatase activity. Interestingly, BMP-9 favored the differentiation of preosteoblasts pre-treated with SWCNTs more remarkably than BMP-2. Therefore, combination of BMP-9 with SWCNTs seems to be a promising avenue for bone regeneration. Keywords: Carbon nanotubes, metallic nanoparticles, induction thermal plasma, cytotoxicity, cell proliferation, mitochondrial enzymatic activity, lactate dehydrogenase, osteogenesis.

  9. Design, Synthesis and Mechanistic Evaluation of Iron-Based Catalysis for Synthesis Gas Conversion to Fuels and Chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akio Ishikawa; Manuel Ojeda; Nan Yao

    2007-03-31

    This project extends previously discovered Fe-based catalysts to hydrogen-poor synthesis gas streams derived from coal and biomass sources. These catalysts have shown unprecedented Fischer-Tropsch synthesis rates and selectivities for synthesis gas derived from methane. During the first reporting period, we certified a microreactor, installed required analytical equipment, and reproduced synthetic protocols and catalytic results previously reported. During the second reporting period, we prepared several Fe-based compositions for Fischer-Tropsch Synthesis and tested the effects of product recycle under both subcritical and supercritical conditions. During the third and fourth reporting periods, we improved the catalysts preparation method, which led to Fe-based materialsmore » with the highest FTS reaction rates and selectivities so far reported, a finding that allowed their operation at lower temperatures and pressures with high selectivity to desired products (C{sub 5+}, olefins). During the fifth and sixth reporting period, we studied the effects of different promoters on catalytic performance, specifically how their sequence of addition dramatically influenced the performance of these materials in the Fischer-Tropsch synthesis. We also continued our studies of the kinetic behavior of these materials during the sixth reporting period. Specifically, the effects of H{sub 2}, CO, and CO{sub 2} on the rates and selectivities of Fischer-Tropsch Synthesis reactions led us to propose a new sequence of elementary steps on Fe and Co Fischer-Tropsch catalysts. Finally, we also started a study of the use of colloidal precipitation methods for the synthesis small Co clusters using recently developed methods to explore possible further improvements in FTS rates and selectivities. We found that colloidal synthesis makes possible the preparation of small cobalt particles, although large amount of cobalt silicate species, which are difficult to reduce, were formed. During this seventh reporting period, we have explored several methods to modify the silanol groups on SiO{sub 2} by using either a homogeneous deposition-precipitation method or surface titration of Si-OH on SiO{sub 2} with zirconium (IV) ethoxide to prevent the formation of unreducible and unreactive CoO{sub x} species during synthesis and FTS catalysis. We have synthesized monometallic Co/ZrO{sub 2}/SiO{sub 2} catalysts with different Co loadings (11-20 wt%) by incipient wetness impregnation methods and characterized the prepared Co supported catalysts by H{sub 2} temperature-programmed reduction (H{sub 2}-TPR) and H{sub 2}-chemisorption. We have measured the catalytic performance in FTS reactions and shown that although the hydroxyl groups on the SiO{sub 2} surface are difficult to be fully titrated by ZrO{sub 2}, modification of ZrO{sub 2} on SiO{sub 2} surface can improve the Co clusters dispersion and lead to a larger number of exposed Co surface atoms after reduction and during FTS reactions. During this seventh reporting period, we have also advanced our development of the reaction mechanism proposed in the previous reporting period. Specifically, we have shown that our novel proposal for the pathways involved in CO activation on Fe and Co catalysts is consistent with state-of-the-art theoretical calculations carried out in collaboration with Prof. Manos Mavrikakis (University of Wisconsin-Madison). Finally, we have also worked on the preparation of several manuscripts describing our findings about the preparation, activation and mechanism of the FTS with Fe-based catalysts and we have started redacting the final report for this project.« less

  10. A PdAg bimetallic nanocatalyst for selective reductive amination of nitroarenes.

    PubMed

    Li, Linsen; Niu, Zhiqiang; Cai, Shuangfei; Zhi, Yun; Li, Hao; Rong, Hongpan; Liu, Lichen; Liu, Lei; He, Wei; Li, Yadong

    2013-08-07

    Herein we have identified an optimal catalyst, Pd1Ag1.7, for the tandem reductive amination between nitroarenes and aldehydes (selectivity > 93%). Key to the success is the ability to control the compositions of the investigational Pd1-xAgx (x = 0-1) catalysts, as well as the clear composition dependent activity/selectivity trend observed in this study. This catalyst features a wide substrate scope, excellent recyclability, activity and selectivity under ambient conditions.

  11. Controlling the charge state of supported nanoparticles in catalysis: lessons from model systems.

    PubMed

    Pacchioni, Gianfranco; Freund, Hans-Joachim

    2018-04-26

    Model systems are very important to identify the working principles of real catalysts, and to develop concepts that can be used in the design of new catalytic materials. In this review we report examples of the use of model systems to better understand and control the occurrence of charge transfer at the interface between supported metal nanoparticles and oxide surfaces. In the first part of this article we concentrate on the nature of the support, and on the basic difference in metal/oxide bonding going from a wide-gap non-reducible oxide material to reducible oxide semiconductors. The roles of oxide nanostructuring, bulk and surface defectiveness, and doping with hetero-atoms are also addressed, as they are all aspects that severely affect the metal/oxide interaction. Particular attention is given to the experimental measures of the occurrence of charge transfer at the metal/oxide interface. In this respect, systems based on oxide ultrathin films are particularly important as they allow the use of scanning probe spectroscopies which, often in combination with other measurements and with first principles theoretical simulations, allow full characterization of small supported nanoparticles and their charge state. In a few selected cases, a precise count of the electrons transferred between the oxide and the supported nanoparticle has been possible. Charge transfer can occur through thin, two-dimensional oxide layers also thanks to their structural flexibility. The flow of charge through the oxide film and the formation of charged adsorbates are accompanied in fact by a substantial polaronic relaxation of the film surface which can be rationalized based on electrostatic arguments. In the final part of this review the relationships between model systems and real catalysts are addressed by discussing some examples of how lessons learned from model systems have helped in rationalizing the behavior of real catalysts under working conditions.

  12. Hydroisomerization of n-hexadecane: remarkable selectivity of mesoporous silica post-synthetically modified with aluminum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabyrov, Kairat; Musselwhite, Nathan; Melaet, Gérôme

    As the impact of acids on catalytically driven chemical transformations is tremendous, fundamental understanding of catalytically relevant factors is essential for the design of more efficient solid acid catalysts. In this work, we employed a post-synthetic doping method to synthesize a highly selective hydroisomerization catalyst and to demonstrate the effect of acid strength and density, catalyst microstructure, and platinum nanoparticle size on the reaction rate and selectivity. Aluminum doped mesoporous silica catalyzed gas-phase n-hexadecane isomerization with remarkably high selectivity to monobranched isomers (~95%), producing a substantially higher amount of isomers than traditional zeolite catalysts. Mildly acidic sites generated by post-syntheticmore » aluminum grafting were found to be the main reason for its high selectivity. The flexibility of the post-synthetic doping method enabled us to systematically explore the effect of the acid site density on the reaction rate and selectivity, which has been extremely difficult to achieve with zeolite catalysts. We found that a higher density of Brønsted acid sites leads to higher cracking of n-hexadecane presumably due to an increased surface residence time. Furthermore, regardless of pore size and microstructure, hydroisomerization turnover frequency linearly increased as a function of Brønsted acid site density. In addition to strength and density of acid sites, platinum nanoparticle size affected catalytic activity and selectivity. The smallest platinum nanoparticles produced the most effective bifunctional catalyst presumably because of higher percolation into aluminum doped mesoporous silica, generating more 'intimate' metallic and acidic sites. Finally, the aluminum doped silica catalyst was shown to retain its remarkable selectivity towards isomers even at increased reaction conversions.« less

  13. Hydroisomerization of n-hexadecane: remarkable selectivity of mesoporous silica post-synthetically modified with aluminum

    DOE PAGES

    Sabyrov, Kairat; Musselwhite, Nathan; Melaet, Gérôme; ...

    2017-01-01

    As the impact of acids on catalytically driven chemical transformations is tremendous, fundamental understanding of catalytically relevant factors is essential for the design of more efficient solid acid catalysts. In this work, we employed a post-synthetic doping method to synthesize a highly selective hydroisomerization catalyst and to demonstrate the effect of acid strength and density, catalyst microstructure, and platinum nanoparticle size on the reaction rate and selectivity. Aluminum doped mesoporous silica catalyzed gas-phase n-hexadecane isomerization with remarkably high selectivity to monobranched isomers (~95%), producing a substantially higher amount of isomers than traditional zeolite catalysts. Mildly acidic sites generated by post-syntheticmore » aluminum grafting were found to be the main reason for its high selectivity. The flexibility of the post-synthetic doping method enabled us to systematically explore the effect of the acid site density on the reaction rate and selectivity, which has been extremely difficult to achieve with zeolite catalysts. We found that a higher density of Brønsted acid sites leads to higher cracking of n-hexadecane presumably due to an increased surface residence time. Furthermore, regardless of pore size and microstructure, hydroisomerization turnover frequency linearly increased as a function of Brønsted acid site density. In addition to strength and density of acid sites, platinum nanoparticle size affected catalytic activity and selectivity. The smallest platinum nanoparticles produced the most effective bifunctional catalyst presumably because of higher percolation into aluminum doped mesoporous silica, generating more 'intimate' metallic and acidic sites. Finally, the aluminum doped silica catalyst was shown to retain its remarkable selectivity towards isomers even at increased reaction conversions.« less

  14. Modeling of cobalt-based catalyst use during CSS for low-temperature heavy oil upgrading

    NASA Astrophysics Data System (ADS)

    Kadyrov, R.; Sitnov, S.; Gareev, B.; Batalin, G.

    2018-05-01

    One of the methods, which is actively used on deposits of heavy oils of the Upper Kungurian (Ufimian) sandstones of the Republic of Tatarstan, is cyclic steam simulation (CSS). This method consists of 3 stages: injection, soaking, and production. Steam is injected into a well at a temperature of 300 to 340° C for a period of weeks to months. Then, the well is allowed to sit for days to weeks to allow heat to soak into the formation. Finally, the hot oil is pumped out of the well for a period of weeks or months. Once the production rate falls off, the well is put through another cycle. The injection of the catalyst solution before the injection of steam opens the possibility for upgrading the heavy oil in the process of aquathermolysis directly in the reservoir. In this paper, the possibility of using a catalyst precursor based on cobalt for upgrading the hydrocarbons of this field in the process of their extraction is represented. SARA analysis on oil saturated sandstones shows an increase in the proportion of saturated hydrocarbons by 11.1% due to the hydrogenation of aromatic hydrocarbons and their derivatives, the content of resins and asphaltenes are remained practically unchanged. A new method for estimating the adsorption of a catalyst based on taking into account the change in the concentration of the base metal before and after simulation of catalyst injection in the thermobaric conditions of the reservoir is proposed. During the study of catalyst adsorption in the rock, when simulating the CSS process, it is found that almost 28% of the cobalt, which is the main element of the catalyst precursor, is retained in the rock.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The objective of Task I is to prepare and evaluate catalysts and to develop efficient reactor systems for the selective conversion of hydrogen-lean synthesis gas to alcohol fuel extenders and octane enhancers. In Task 1, during this reporting period, we encountered and solved a problem in the analysis of the reaction products containing a small amount of heavy components. Subsequently, we continued with the major thrusts of the program. We analyzed the results from our preliminary studies on the packed-bed membrane reactor using the BASF methanol synthesis catalyst. We developed a quantitative model to describe the performance of the reactor.more » The effect of varying permeances and the effect of catalyst aging are being incorporated into the model. Secondly, we resumed our more- detailed parametric studies on selected non-sulfide Mo-based catalysts. Finally, we continue with the analysis of data from the kinetic study of a sulfided carbon-supported potassium-doped molybdenum-cobalt catalyst in the Rotoberty reactor. We have completed catalyst screening at UCC. The complete characterization of selected catalysts has been started. In Task 2, the fuel blends of alcohol and unleaded test gas 96 (UTG 96) have been made and tests have been completed. The testing includes knock resistance tests and emissions tests. Emissions tests were conducted when the engine was optimized for the particular blend being tested (i.e. where the engine produced the most power when running on the blend in question). The data shows that the presence of alcohol in the fuel increases the fuel`s ability to resist knock. Because of this, when the engine was optimized for use with alcohol blends, the engine produced more power and lower emission rates.« less

  16. Alkali promoted molybdenum (IV) sulfide based catalysts, development and characterization for alcohol synthesis from carbon monoxide and hydrogen

    NASA Astrophysics Data System (ADS)

    Molina, Belinda Delilah

    For more than a century transition metal sulfides (TMS) have been the anchor of hydro-processing fuels and upgrading bitumen and coal in refineries worldwide. As oil supplies dwindle and environmental laws become more stringent, there is a greater need for cleaner alternative fuels and/or synthetic fuels. The depletion of oil reserves and a rapidly increasing energy demand worldwide, together with the interest to reduce dependence on foreign oil makes alcohol production for fuels and chemicals via the Fischer Tropsch synthesis (FTS) very attractive. The original Fischer-Tropsch (FT) reaction is the heart of all gas-to-liquid technologies; it creates higher alcohols and hydrocarbons from CO/H2 using a metal catalyst. This research focuses on the development of alkali promoted MoS2-based catalysts to investigate an optimal synthesis for their assistance in the production of long chain alcohols (via FTS) for their use as synthetic transportation liquid fuels. Properties of catalytic material are strongly affected by every step of the preparation together with the quality of the raw materials. The choice of a laboratory method for preparing a given catalyst depends on the physical and chemical characteristics desired in the final composition. Characterization methods of K0.3/Cs0.3-MoS2 and K0.3 /Cs0.3-Co0.5MoS2 catalysts have been carried out through Scanning Electron Microscopy (SEM), BET porosity and surface analysis, Transmission Electron Microscopy (TEM) and X-Ray Diffraction (XRD). Various characterization methods have been deployed to correlate FTS products versus crystal and morphological properties of these heterogeneous catalysts. A lab scale gas to liquid system has been developed to evaluate its efficiency in testing FT catalysts for their production of alcohols.

  17. An experimental study on thermo-catalytic pyrolysis of plastic waste using a continuous pyrolyser.

    PubMed

    Auxilio, Anthony R; Choo, Wei-Lit; Kohli, Isha; Chakravartula Srivatsa, Srikanth; Bhattacharya, Sankar

    2017-09-01

    A bench scale, two-stage, thermo-catalytic reactor equipped with a continuous feeding system was used to pyrolyse pure and waste plastics. Experiments using five zeolitic and clay-based catalysts of different forms (pellet and powders) and different plastic feedstocks - virgin HDPE, HDPE w1aste and mixed plastic waste (MPW) were compared to the control experiments - pyrolysis without catalyst. Results indicated that the two pelletized catalysts were the most promising for the conditions employed. Of these two, one with higher acidity and surface area was highly selective for the gasoline fraction (C 5 -C 11 ) giving 80% from the total medium distillate conversion using virgin HDPE as feedstock. It also produced the least amount of olefins (17% for virgin HDPE, 4% for HDPE waste and 2% for MPW) and coke (<1% for virgin HDPE, 3% for HDPE waste and 5% for MPW), and the highest aromatics content (22% for virgin HDPE from un-distilled medium distillate, 5% for HDPE and 13% for MPW both from distilled medium distillate). The second pelletized catalyst exhibited high selectivity for the diesel fraction (C 12 -C 25 ) giving 63% from the total medium distillate conversion using virgin HDPE as feedstock. The amount of coke deposited on the catalyst surface depended mainly on the mesopore volume, with less coke deposited as the mesopore volume increased. The variation in catalyst selectivity with acidity strength due to Lewis sites on the catalyst surface controls selectivity towards carbon chain length. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Design and Development of an Acoustic Levitation System for Use in CVD Growth of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Qasem, Amal ali

    The most widely used methods for growth of carbon nanotubes (CNTs) arc discharge, laser ablation, and chemical vapor deposition (CVD). Some of these methods have difficulties, such as controlling the quality and straightness of the nanotube in the synthesis of CNTs from substrates. Also, the enhanced plasma chemical vapor deposition method with the catalyst on a substrate produces straighter, larger diameter nanotubes by the tip growth method, but they are short. The difficulty in the floating catalyst method is that the nanotubes stay in the growth furnace for short times limiting growth to about one mm length; this method also leaves many catalyst impurities. One factor that limits CNT growth in these methods is the difficulty of getting enough carbon atoms to the growth catalyst to grow long nanotubes. The motivation of this work is that longer, higher quality nanotubes could be grown by increasing growth time and by increasing carbon atom movement to catalyst. The goal of this project is to use acoustic levitation to assist chemical vapor deposition growth by trapping and vibrating the growing CNTs for better properties. Our levitation system consists of a piezoelectric transducer attached to an aluminum horn and quartz rod extending into the growth furnace. The most important elements of our methods to achieve the acoustic levitation are as follows. 1. Using COMSOL Multi-physic Simulation software to determine the length of quartz rod needed to excite standing waves for levitation in the tube furnace. 2. Determining the resonance frequency of different transducers and horns. 3. Using ultrasound measurement to determine the time of flight, velocity of sound and sound wavelength of different horns. 4. Making Aluminum horns with the appropriate lengths. 5. Using ultrasound measurement to determine the changing of quartz rod velocity of sound and length in the furnace. 6. Mounting the transducer to booster horn and aluminum cylindrical horn above a reflector to produce the standing waves. The levitation of small Styrofoam balls was successful by using this system and verified wavelengths of standing wave and position of levitation. We could not levitate powders, most likely due to electrostatic charging, air currents, but most importantly insufficient power to drive transducer. In addition, we built a CVD growth furnace with ultrasound transducer- horn- quartz rod and reflector. The reflector support also included a sense piezoelectric element for determining standing wave strength. This reflector support was mounted on a linear translation stage to control the quartz rod-reflector separation to produce standing waves. To remove the contaminated unwanted CNTs, we built a separate tube furnace tube filled with a molecular sieve to burn the CNT's in air. Finally, we made catalyst-coated, ceramic microparticles for levitation and used these to verify CNT growth. Future efforts research would be to levitate these micro particles at room temperature then in the high temperature furnace for growth of carbon nanotubes.

  19. Automotive sulfate emission data.

    PubMed Central

    Somers, J H

    1975-01-01

    This paper discusses automotive sulfate emission results obtained by the Office of Mobile Source Air Pollution Control of EPA, General Motors, Ford, Chrysler, and Esso. This work has been directed towards obtaining sulfate emission factors for cars with and without catalyst. While the EPA and Chrysler investigations have found significant sulfate formation in noncatalyst cars, GM, Ford, and Esso have found only trace levels from noncatalyst cars. All of these investigators agree that much higher quantities of sulfate are emitted from catalyst cars. The work done to date shows pelleted catalysts to have much lower sulfate emissions over the low speed-EPA Federal Test Procedures than monolith catalysts. This is probably due to temporary storage of sulfates on the catalyst due to chemical interaction with the alumina pellets. The sulfate compounds are, to a large degree, emitted later under higher speed conditions which result in higher catalyst temperatures which decompose the alumina salt. Future work will be directed towards further elucidation of this storage mechanism as well as determining in detail how factors such as air injection rate and catalyst location affect sulfate emissions. PMID:50932

  20. A new approach of probe sonication assisted ionic liquid conversion of glucose, cellulose and biomass into 5-hydroxymethylfurfural.

    PubMed

    Sarwono, Ariyanti; Man, Zakaria; Muhammad, Nawshad; Khan, Amir Sada; Hamzah, Wan Suzaini Wan; Rahim, Asyraf Hanim Abdul; Ullah, Zahoor; Wilfred, Cecilia Devi

    2017-07-01

    5-Hydroxymethylfurfural (HMF) has been identified as a promising biomass-derived platform chemical. In this study, one pot production of HMF was studied in ionic liquid (IL) under probe sonication technique. Compared with the conventional heating technique, the use of probe ultrasonic irradiation reduced the reaction time from hours to minutes. Glucose, cellulose and local bamboo, treated with ultrasonic, produced HMF in the yields of 43%, 31% and 13% respectively, within less than 10min. The influence of various parameters such as acoustic power, reaction time, catalysts and glucose loading were studied. About 40% HMF yield at glucose conversion above 90% could be obtained with 2% of catalyst in 3min. Negligible amount of soluble by-product was detected, and humin formation could be controlled by adjusting the different process parameters. Upon extraction of HMF, the mixture of ionic liquid and catalyst could be reused and exhibited no significant reduction of HMF yield over five successive runs. The purity of regenerated [C 4 C 1 im]Cl and HMF was confirmed by NMR spectroscopy, indicating neither changes in the chemical structure nor presence of any major contaminants during the conversion under ultrasonic treatment. 13 C NMR suggests that [C 4 C 1 im]Cl/CrCl 3 catalyses mutarotation of α-glucopyranose to β-glucopyranose leading to isomerization and finally conversion to HMF. The experimental results demonstrate that the use of probe sonication technique for conversion to HMF provides a positive process benefit. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically aligned carbon nanotubes.

    PubMed

    Shi, Wenbo; Li, Jinjing; Polsen, Erik S; Oliver, C Ryan; Zhao, Yikun; Meshot, Eric R; Barclay, Michael; Fairbrother, D Howard; Hart, A John; Plata, Desiree L

    2017-04-20

    A lack of synthetic control and reproducibility during vertically aligned carbon nanotube (CNT) synthesis has stifled many promising applications of organic nanomaterials. Oxygen-containing species are particularly precarious in that they have both beneficial and deleterious effects and are notoriously difficult to control. Here, we demonstrated diatomic oxygen's ability, independent of water, to tune oxide-supported catalyst thin film dewetting and influence nanoscale (diameter and wall number) and macro-scale (alignment and density) properties for as-grown vertically aligned CNTs. In particular, single- or few-walled CNT forests were achieved at very low oxygen loading, with single-to-multi-walled CNT diameters ranging from 4.8 ± 1.3 nm to 6.4 ± 1.1 nm over 0-800 ppm O 2 , and an expected variation in alignment, where both were related to the annealed catalyst morphology. Morphological differences were not the result of subsurface diffusion, but instead occurred via Ostwald ripening under several hundred ppm O 2 , and this effect was mitigated by high H 2 concentrations and not due to water vapor (as confirmed in O 2 -free water addition experiments), supporting the importance of O 2 specifically. Further characterization of the interface between the Fe catalyst and Al 2 O 3 support revealed that either oxygen-deficit metal oxide or oxygen-adsorption on metals could be functional mechanisms for the observed catalyst nanoparticle evolution. Taken as a whole, our results suggest that the impacts of O 2 and H 2 on the catalyst evolution have been underappreciated and underleveraged in CNT synthesis, and these could present a route toward facile manipulation of CNT forest morphology through control of the reactive gaseous atmosphere alone.

  2. A systems evaluation on the effectiveness of a catalyst retrofit program in China.

    PubMed

    Jones, M; Wilson, R; Norbeck, J M; Han, W; Hurley, R; Schuetzle, D

    2001-09-01

    A low-cost, rare-earth oxide (REO) catalyst has been recommended as part of China's retrofit program for Chinese carbureted vehicles. This study evaluated: (1) the emission reduction efficiency of the REO catalyst during chassis dynamometer testing on the FTP cycle; (2) the effect that fuel properties had on tailpipe emissions and catalyst efficiency; (3) the importance of vehicle premaintenance as part of a retrofit protocol; and (4) the emission reductions obtained following implementation of the program. Results also show that current in-use Chinese noncatalyst, carbureted vehicles operate excessively rich, resulting in extremely high emissions of CO, gaseous toxic compounds, and other non-methane hydrocarbon species (NMHC). Preretrofit maintenance alone has the potential to reduce these emissions by approximately 50%. Dynamometer emission tests showed emissions reductions of >95% for hydrocarbons, CO, and gaseous toxics after retrofit of the REO catalyst. In particular, the relative unit health risk associated with the decrease in emissions of airborne toxic compounds using unleaded Chinese fuel was reduced from 6.33 to 0.30. (Use of low-sulfur California Phase II gasoline rather than current in-use Chinese fuel reduced emissions further.) Following implementation of the program, a follow-up study showed that in-use emissions benefits were considerably less than anticipated, primarily because of poor quality control at the retrofit service centers, a less aggressive preretrofit maintenance procedure, and unauthorized modification to the recommended retrofit control system. Overall results indicate that a carefully controlled retrofit program using REO catalyst technology can reduce emissions significantly. However, well-defined implementation guidelines, and strict adherence to these guidelines are needed to achieve maximum benefits.

  3. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hanguang; Hwang, Sooyeon; Wang, Maoyu

    To significantly reduce the cost of proton exchange membrane (PEM) fuel cells, current Pt must be replaced by platinum-metal-group (PGM)-free catalysts for the oxygen reduction reaction (ORR) in acid. We report here a new class of high-performance atomic iron dispersed carbon catalysts through controlled chemical doping of iron ions into zinc-zeolitic imidazolate framework (ZIF), a type of metal-organic framework (MOF). The novel synthetic chemistry enables accurate size control of Fe-doped ZIF catalyst particles with a wide range from 20 to 1000 nm without changing chemical properties, which provides a great opportunity to increase the density of active sites that ismore » determined by the particle size. We elucidated the active site formation mechanism by correlating the chemical and structural changes with thermal activation process for the conversion from Fe-N4 complex containing hydrocarbon networks in ZIF to highly active FeNx sites embedded into carbon. A temperature of 800oC was identified as the critical point to start forming pyridinic nitrogen doping at the edge of the graphitized carbon planes. Further increasing heating temperature to 1100oC leads to increase of graphitic nitrogen, generating possible synergistic effect with FeNx sites to promote ORR activity. The best performing catalyst, which has well-defined particle size around 50 nm and abundance of atomic FeNx sites embedded into carbon structures, achieve a new performance milestone for the ORR in acid including a half-wave potential of 0.85 V vs RHE and only 20 mV loss after 10,000 cycles in O2 saturated H2SO4 electrolyte. The new class PGM-free catalyst with approaching activity to Pt holds great promise for future PEM fuel cells.« less

  4. The mechanism of enantioselective ketone reduction with Noyori and Noyori–Ikariya bifunctional catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dub, Pavel A.; Gordon, John C.

    2016-03-21

    The catalytic hydrogenation of prochiral ketones with second and third-row transition metal complexes bearing chelating chiral ligands containing at least one N–H functionality has achieved unparalleled performance, delivering, in the best cases, chiral alcohols with up to 99.9% ee using extremely small catalyst loadings (~10 -5 mol%). Hence the efficacy of this reaction has closely approached that of natural enzymatic systems and the reaction itself has become one of the most efficient artificial catalytic reactions developed to date. This paper describes the current level of understanding of the mechanism of enantioselective hydrogenation and transfer hydrogenation of aromatic ketones with pioneeringmore » prototypes of bifunctional catalysts, the Noyori and Noyori–Ikariya complexes. Finally, analysis presented herein expands the concept of “metal–ligand cooperation”, redefines the term “cooperative ligand” and introduces “H –/H + outer-sphere hydrogenation” as a novel paradigm in outer-sphere hydrogenation.« less

  5. Response to Comment on “Active sites for CO 2 hydrogenation to methanol on Cu/ZnO catalysts”

    DOE PAGES

    Kattel, Shyam; Ramírez, Pedro J.; Chen, Jingguang G.; ...

    2017-09-01

    In their Comment on our recent paper, Nakamura et al. argue that our x-ray photoelectron spectroscopy (XPS) analysis was affected by the presence of formate species on the catalyst surface. This argument is not valid because the reactant gases were evacuated at temperatures from 525 to 575 kelvin, conditions under which formate is not stable on the catalyst surface. An analysis of the XPS results obtained after exposing zinc oxide/copper (111) [ZnO/Cu(111)] surfaces to hydrogen (H 2) and mixtures of carbon dioxide (CO 2)/H 2 show an absence of carbon (C) 1s signal, no asymmetries in the oxygen (O) 1smore » peak, and a Zn:O intensity close to 1:1. Thus and finally, the most active phase of these catalysts contained a ZnO-Cu interface.« less

  6. Water-gas-shift over metal-free nanocrystalline ceria: An experimental and theoretical study

    DOE PAGES

    Guild, Curtis J.; Vovchok, Dimitriy; Kriz, David A.; ...

    2017-01-23

    A tandem experimental and theoretical investigation of a mesoporous ceria catalyst reveals the properties of the metal oxide are conducive for activity typically ascribed to metals, suggesting reduced Ce 3+ and oxygen vacancies are responsible for the inherent bi-functionality of CO oxidation and dissociation of water required for facilitating the production of H 2. The degree of reduction of the ceria, specifically the (1 0 0) face, is found to significantly influence the binding of reagents, suggesting reduced surfaces harbor the necessary reactive sites. The metal-free catalysis of the reaction is significant for catalyst design considerations, and the suite ofmore » in situ analyses provides a comprehensive study of the dynamic nature of the high surface area catalyst system. Finally, this study postulates feasible improvements in catalytic activity may redirect the purpose of the water-gas shift reaction from CO purification to primary hydrogen production.« less

  7. Water-gas-shift over metal-free nanocrystalline ceria: An experimental and theoretical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guild, Curtis J.; Vovchok, Dimitriy; Kriz, David A.

    A tandem experimental and theoretical investigation of a mesoporous ceria catalyst reveals the properties of the metal oxide are conducive for activity typically ascribed to metals, suggesting reduced Ce 3+ and oxygen vacancies are responsible for the inherent bi-functionality of CO oxidation and dissociation of water required for facilitating the production of H 2. The degree of reduction of the ceria, specifically the (1 0 0) face, is found to significantly influence the binding of reagents, suggesting reduced surfaces harbor the necessary reactive sites. The metal-free catalysis of the reaction is significant for catalyst design considerations, and the suite ofmore » in situ analyses provides a comprehensive study of the dynamic nature of the high surface area catalyst system. Finally, this study postulates feasible improvements in catalytic activity may redirect the purpose of the water-gas shift reaction from CO purification to primary hydrogen production.« less

  8. Synthesis and properties of a novel catalyst for the combustion of methane. Final report, January 1986-December 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, R.F.

    1990-10-17

    The objective of the research, which was funded by the Physical Sciences Department of the Gas Research Institute, was to understand how to design precious metal catalysts for methane combustion. These catalyst must be stable in the combustion environment and exhibit high rates of oxidation. The authors have found that palladium on alumina does not lose active surface area in air below 900C. Whereas, platinum vaporizes above 600C. The rate of methane oxidation per exposed metal atom depends on the metal used, platinum or palladium, and whether the metal is completely oxidized or covered with adsorbed oxygen during reaction. Themore » percentage of metal oxidized depends on the size, morphology and crystallinity of the metal particles. The relative rates of methane oxidation are: dispersed PtO2: dispersed PdO: crystalline Pt: crystalline Pd = 1:6:16:100.« less

  9. Hydrogenated 5-carbon compound and method of making

    DOEpatents

    Elliott, Douglas C.; Frye, John G.

    1999-01-01

    The present invention is based upon the surprising discovery that a 5-carbon compound selected from the group of 4-oxopentanoic acid, at least one lactone of 4-oxopentanoic acid, and combinations thereof, may be hydrogenated with a bimetallic catalyst of a noble metal in combination with a second metal and preserve the pendant methyl group. It was further unexpectedly discovered that the same conditions of bimetallic catalyst in the presence of hydrogen are useful for catalyzing the different intermediate reactions for example angelicalactone to gamma-valerolactone and gamma-valerolactone to 1,4-pentanediol. Finally, it was surprising that levulinic acid could be converted to 2-methyltetrahydrofuran with heating in the presence of the bimetallic catalyst and hydrogen in a single process vessel. The method of the present invention unexpectedly produced a fuel or fuel component having 2-methyltetrahydrofuran either in a yield greater than 4.5 mol % or in combination with alcohols.

  10. Hydrogenated 5-carbon compound and method of making

    DOEpatents

    Elliott, D.C.; Frye, J.G.

    1999-03-16

    The present invention is based upon the surprising discovery that a 5-carbon compound selected from the group of 4-oxopentanoic acid, at least one lactone of 4-oxopentanoic acid, and combinations thereof, may be hydrogenated with a bimetallic catalyst of a noble metal in combination with a second metal and preserve the pendant methyl group. It was further unexpectedly discovered that the same conditions of bimetallic catalyst in the presence of hydrogen are useful for catalyzing the different intermediate reactions, for example, angelicalactone to gamma-valerolactone and gamma-valerolactone to 1,4-pentanediol. Finally, it was surprising that levulinic acid could be converted to 2-methyltetrahydrofuran with heating in the presence of the bimetallic catalyst and hydrogen in a single process vessel. The method of the present invention unexpectedly produced a fuel or fuel component having 2-methyltetrahydrofuran either in a yield greater than 4.5 mol % or in combination with alcohols. 8 figs.

  11. Production of edible carbohydrates from formaldehyde in a spacecraft. pH variations in the calcium hydroxide catalyzed formose reaction. Final Report, 1 Jul. 1973 - 30 Jun. 1974. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Weiss, A. H.; Kohler, J. T.; John, T.

    1974-01-01

    The study of the calcium hydroxide catalyzed condensation of formaldehyde was extended to a batch reactor system. Decreases in pH were observed, often in the acid regime, when using this basic catalyst. This observation was shown to be similar to results obtained by others using less basic catalysts in the batch mode. The relative rates of these reactions are different in a batch reactor than in a continuous stirred tank reactor. This difference in relative rates is due to the fact that at any degree of advancement in the batch system, the products have a history of previous products, pH, and dissolved catalyst. The relative rate differences can be expected to yield a different nature of product sugars for the two types of reactors.

  12. Polymer-based chromophore-catalyst assemblies for solar energy conversion

    NASA Astrophysics Data System (ADS)

    Leem, Gyu; Sherman, Benjamin D.; Schanze, Kirk S.

    2017-12-01

    The synthesis of polymer-based assemblies for light harvesting has been motivated by the multi-chromophore antennas that play a role in natural photosynthesis for the potential use in solar conversion technologies. This review describes a general strategy for using polymer-based chromophore-catalyst assemblies for solar-driven water oxidation at a photoanode in a dye-sensitized photoelectrochemical cell (DSPEC). This report begins with a summary of the synthetic methods and fundamental photophysical studies of light harvesting polychormophores in solution which show these materials can transport excited state energy to an acceptor where charge-separation can occur. In addition, studies describing light harvesting polychromophores containing an anchoring moiety (ionic carboxylate) for covalent bounding to wide band gap mesoporous semiconductor surfaces are summarized to understand the photophysical mechanisms of directional energy flow at the interface. Finally, the performance of polychromophore/catalyst assembly-based photoanodes capable of light-driven water splitting to oxygen and hydrogen in a DSPEC are summarized.

  13. Polymer-based chromophore-catalyst assemblies for solar energy conversion.

    PubMed

    Leem, Gyu; Sherman, Benjamin D; Schanze, Kirk S

    2017-01-01

    The synthesis of polymer-based assemblies for light harvesting has been motivated by the multi-chromophore antennas that play a role in natural photosynthesis for the potential use in solar conversion technologies. This review describes a general strategy for using polymer-based chromophore-catalyst assemblies for solar-driven water oxidation at a photoanode in a dye-sensitized photoelectrochemical cell (DSPEC). This report begins with a summary of the synthetic methods and fundamental photophysical studies of light harvesting polychormophores in solution which show these materials can transport excited state energy to an acceptor where charge-separation can occur. In addition, studies describing light harvesting polychromophores containing an anchoring moiety (ionic carboxylate) for covalent bounding to wide band gap mesoporous semiconductor surfaces are summarized to understand the photophysical mechanisms of directional energy flow at the interface. Finally, the performance of polychromophore/catalyst assembly-based photoanodes capable of light-driven water splitting to oxygen and hydrogen in a DSPEC are summarized.

  14. Computational studies on the reactivity of alkyl halides over (Al2O3)n nanoclusters: an approach towards room temperature dehydrohalogenation

    NASA Astrophysics Data System (ADS)

    Biswas, Santu; Pramanik, Anup; Sarkar, Pranab

    2016-05-01

    The role of alumina nanoclusters as a catalyst on the reactivity of alkyl halides has been explored. The thermochemical data obtained from Density Functional Theory (DFT) calculations and the analyses of the transition structures reveal that, between the two competing reactions, elimination (via E2) versus dissociative addition (via SN2), elimination is the kinetically controlled one and thus at room temperature, olefin is the major product. The results are in excellent agreement with the recent experimental observation where more than 97% of ethylene is formed at room temperature with the reaction of ethyl fluoride over an alumina surface, although the dissociative addition product is being thermodynamically more stable. We have tried to rationalize the fact by using alumina clusters of different sizes as well as different alkyl halides having β-H for elimination. It has been shown that, during the elimination (E2) pathway, the transition structure is oriented in such a way that the eliminating halogen and the β-H are in the interacting position with the three-centered Al and two-centered O atoms, respectively, where the Lewis acid/base interaction is the main guiding factor. We have also shown a possible pathway for regenerating the catalyst. Finally, the possibility of the reactions has been tested in the presence of H2O to mimic the same on the hydrated alumina surface.The role of alumina nanoclusters as a catalyst on the reactivity of alkyl halides has been explored. The thermochemical data obtained from Density Functional Theory (DFT) calculations and the analyses of the transition structures reveal that, between the two competing reactions, elimination (via E2) versus dissociative addition (via SN2), elimination is the kinetically controlled one and thus at room temperature, olefin is the major product. The results are in excellent agreement with the recent experimental observation where more than 97% of ethylene is formed at room temperature with the reaction of ethyl fluoride over an alumina surface, although the dissociative addition product is being thermodynamically more stable. We have tried to rationalize the fact by using alumina clusters of different sizes as well as different alkyl halides having β-H for elimination. It has been shown that, during the elimination (E2) pathway, the transition structure is oriented in such a way that the eliminating halogen and the β-H are in the interacting position with the three-centered Al and two-centered O atoms, respectively, where the Lewis acid/base interaction is the main guiding factor. We have also shown a possible pathway for regenerating the catalyst. Finally, the possibility of the reactions has been tested in the presence of H2O to mimic the same on the hydrated alumina surface. Electronic supplementary information (ESI) available. See DOI: 10.1039/C6NR00841K

  15. NOVEL CATALYSTS FOR LEAN-NOX REDUCTION BY METHANE. (R825430)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  16. A sequential vesicle pool model with a single release sensor and a Ca(2+)-dependent priming catalyst effectively explains Ca(2+)-dependent properties of neurosecretion.

    PubMed

    Walter, Alexander M; Pinheiro, Paulo S; Verhage, Matthijs; Sørensen, Jakob B

    2013-01-01

    Neurotransmitter release depends on the fusion of secretory vesicles with the plasma membrane and the release of their contents. The final fusion step displays higher-order Ca(2+) dependence, but also upstream steps depend on Ca(2+). After deletion of the Ca(2+) sensor for fast release - synaptotagmin-1 - slower Ca(2+)-dependent release components persist. These findings have provoked working models involving parallel releasable vesicle pools (Parallel Pool Models, PPM) driven by alternative Ca(2+) sensors for release, but no slow release sensor acting on a parallel vesicle pool has been identified. We here propose a Sequential Pool Model (SPM), assuming a novel Ca(2+)-dependent action: a Ca(2+)-dependent catalyst that accelerates both forward and reverse priming reactions. While both models account for fast fusion from the Readily-Releasable Pool (RRP) under control of synaptotagmin-1, the origins of slow release differ. In the SPM the slow release component is attributed to the Ca(2+)-dependent refilling of the RRP from a Non-Releasable upstream Pool (NRP), whereas the PPM attributes slow release to a separate slowly-releasable vesicle pool. Using numerical integration we compared model predictions to data from mouse chromaffin cells. Like the PPM, the SPM explains biphasic release, Ca(2+)-dependence and pool sizes in mouse chromaffin cells. In addition, the SPM accounts for the rapid recovery of the fast component after strong stimulation, where the PPM fails. The SPM also predicts the simultaneous changes in release rate and amplitude seen when mutating the SNARE-complex. Finally, it can account for the loss of fast- and the persistence of slow release in the synaptotagmin-1 knockout by assuming that the RRP is depleted, leading to slow and Ca(2+)-dependent fusion from the NRP. We conclude that the elusive 'alternative Ca(2+) sensor' for slow release might be the upstream priming catalyst, and that a sequential model effectively explains Ca(2+)-dependent properties of secretion without assuming parallel pools or sensors.

  17. A Sequential Vesicle Pool Model with a Single Release Sensor and a Ca2+-Dependent Priming Catalyst Effectively Explains Ca2+-Dependent Properties of Neurosecretion

    PubMed Central

    Walter, Alexander M.; Pinheiro, Paulo S.; Verhage, Matthijs; Sørensen, Jakob B.

    2013-01-01

    Neurotransmitter release depends on the fusion of secretory vesicles with the plasma membrane and the release of their contents. The final fusion step displays higher-order Ca2+ dependence, but also upstream steps depend on Ca2+. After deletion of the Ca2+ sensor for fast release – synaptotagmin-1 – slower Ca2+-dependent release components persist. These findings have provoked working models involving parallel releasable vesicle pools (Parallel Pool Models, PPM) driven by alternative Ca2+ sensors for release, but no slow release sensor acting on a parallel vesicle pool has been identified. We here propose a Sequential Pool Model (SPM), assuming a novel Ca2+-dependent action: a Ca2+-dependent catalyst that accelerates both forward and reverse priming reactions. While both models account for fast fusion from the Readily-Releasable Pool (RRP) under control of synaptotagmin-1, the origins of slow release differ. In the SPM the slow release component is attributed to the Ca2+-dependent refilling of the RRP from a Non-Releasable upstream Pool (NRP), whereas the PPM attributes slow release to a separate slowly-releasable vesicle pool. Using numerical integration we compared model predictions to data from mouse chromaffin cells. Like the PPM, the SPM explains biphasic release, Ca2+-dependence and pool sizes in mouse chromaffin cells. In addition, the SPM accounts for the rapid recovery of the fast component after strong stimulation, where the PPM fails. The SPM also predicts the simultaneous changes in release rate and amplitude seen when mutating the SNARE-complex. Finally, it can account for the loss of fast- and the persistence of slow release in the synaptotagmin-1 knockout by assuming that the RRP is depleted, leading to slow and Ca2+-dependent fusion from the NRP. We conclude that the elusive ‘alternative Ca2+ sensor’ for slow release might be the upstream priming catalyst, and that a sequential model effectively explains Ca2+-dependent properties of secretion without assuming parallel pools or sensors. PMID:24339761

  18. Chemical signal activation of an organocatalyst enables control over soft material formation.

    PubMed

    Trausel, Fanny; Maity, Chandan; Poolman, Jos M; Kouwenberg, D S J; Versluis, Frank; van Esch, Jan H; Eelkema, Rienk

    2017-10-12

    Cells can react to their environment by changing the activity of enzymes in response to specific chemical signals. Artificial catalysts capable of being activated by chemical signals are rare, but of interest for creating autonomously responsive materials. We present an organocatalyst that is activated by a chemical signal, enabling temporal control over reaction rates and the formation of materials. Using self-immolative chemistry, we design a deactivated aniline organocatalyst that is activated by the chemical signal hydrogen peroxide and catalyses hydrazone formation. Upon activation of the catalyst, the rate of hydrazone formation increases 10-fold almost instantly. The responsive organocatalyst enables temporal control over the formation of gels featuring hydrazone bonds. The generic design should enable the use of a large range of triggers and organocatalysts, and appears a promising method for the introduction of signal response in materials, constituting a first step towards achieving communication between artificial chemical systems.Enzymes regulated by chemical signals are common in biology, but few such artificial catalysts exist. Here, the authors design an aniline catalyst that, when activated by a chemical trigger, catalyses formation of hydrazone-based gels, demonstrating signal response in a soft material.

  19. Diameter and Geometry Control of Vertically Aligned SWNTs through Catalyst Manipulation

    NASA Astrophysics Data System (ADS)

    Xiang, Rong; Einarsson, Erik; Okawa, Jun; Murakami, Yoichi; Maruyama, Shigeo

    2009-03-01

    We present our recent progress on manipulating our liquid-based catalyst loading process, which possesses greater potential than conventional deposition in terms of cost and scalability, to control the diameter and morphology of single-walled carbon nanotubes (SWNTs). We demonstrate that the diameter of aligned SWNTs synthesized by alcohol catalytic CVD can be tailored over a wide range by modifying the catalyst recipe. SWNT arrays with an average diameter as small as 1.2 nm were obtained by this method. Additionally, owing to the alignment of the array, the continuous change of the SWNT diameter during a single CVD process can be clearly observed and quantitatively characterized. We have also developed a versatile wet chemistry method to localize the growth of SWNTs to desired regions via surface modification. By functionalizing the silicon surface using a classic self-assembled monolayer, the catalyst can be selectively dip-coated onto hydrophilic areas of the substrate. This technique was successful in producing both random and aligned SWNTs with various patterns. The precise control of the diameter and morphology of SWNTs, achieved by simple and scalable liquid-based surface chemistry, could greatly facilitate the application of SWNTs as the building blocks of future nano-devices.

  20. Final Report of a CRADA Between Pacific Northwest National Laboratory and Cummins, Incorporated (CRADA No.PNNL/283): “Enhanced High and Low Temperature Performance of NO x Reduction Catalyst Materials”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Feng; Szanyi, Janos; Wang, Yilin

    The NO x Storage-Reduction (NSR, also known as lean-NO x trap – LNT), is based upon the concept of storing NO x as nitrates over storage components, typically barium species, during a lean-burn operation cycle and then reducing the stored nitrates to N 2 during fuel-rich conditions over a precious metal catalyst [1]. NO x Selective Catalytic Reduction (SCR), on the other hand, is accomplished by deliberately introducing reductant urea into the engine exhaust to reduce NO x with the aid of a Cu(Fe)/zeolite catalyst [2]. These two technologies have been recognized as the most promising approaches for meeting stringentmore » NO x emission standards for diesel vehicles within the Environmental Protection Agency’s (EPA’s) 2007/2010 mandated limits. For NSR, problems arising from either or both thermal and SO 2 deactivation must be addressed to meet durability standards. For SCR, SO 2 deactivation is less of an issue, but hydrothermal deactivation of the zeolite catalysts must be addressed. With continuing R&D efforts in advanced powertrains, highly novel operating modes for internal combustion engines (ICEs) are being researched in order to meet the very stringent new demands for fuel efficiency (e.g., U.S. ‘‘CAFE’’ standards for average miles/gallon are scheduled to increase dramatically over the next 10–15 years). These new ICE engine operation modes, while highly fuel-efficient, result in much lower exhaust temperatures than current engines; temperatures so low that it is hard to imagine how the current catalytic emission control technologies will be able to function. For example, while steady-state operation of the NO x reduction technology at 150 °C may be required, current ‘‘light-off’’ temperatures for CHA-based zeolite catalysts are closer to 200 °C. Therefore, understanding low-temperature limitations in NO x reduction has become one of the most daunting challenges in R&D on new catalyst materials and processes that can effectively eliminate emissions at these quite low exhaust temperatures. This project has two clear focuses: (1) development of potassium-based high-temperature NSR materials, and studying their key causes of deactivation and methods of regeneration. By comparing results obtained on ‘Simple Model’ Pt-K/Al 2O 3 with ‘Enhanced Model’ Pt-K/ MgAlO x and Pt-K/TiO 2 materials, we have developed an understanding of the role of various additives on the deactivation and regeneration processes. Studies have also been performed on the real commercial samples being used in a Dodge Ram truck with a Cummins diesel emission control system. However, the results about these ‘commercial samples’ will not be covered in this report. Following a brief description of our experimental approach, we will present a few highlights from some of the work performed in this CRADA with more details about these results provided in publications/reports/presentations lists presented at the end of the report. (2) for the Cu and Fe/Chabazite SCR catalysts, since these are so newly developed and references from open literature and industry are nearly absent, our work started from zeolite synthesis and catalyst synthesis methodology development, before research on their low- and high-temperature performance, deactivation, regeneration, etc. was conducted. Again, most work reported here is based on our “model” catalysts synthesized in-house. Work done on the ‘commercial samples’ will not be covered in this report.« less

  1. When Is Ligand p Ka a Good Descriptor for Catalyst Energetics? In Search of Optimal CO2 Hydration Catalysts.

    PubMed

    Kim, Jeong Yun; Kulik, Heather J

    2018-05-10

    We present a detailed study of nearly 70 Zn molecular catalysts for CO 2 hydration from four diverse ligand classes ranging from well-studied carbonic anhydrase mimics (e.g., cyclen) to new structures we obtain by leveraging diverse hits from large organic libraries. Using microkinetic analysis and establishing linear free energy relationships, we confirm that turnover is sensitive to the relative thermodynamic stability of reactive hydroxyl and bound bicarbonate moieties. We observe a wide range of thermodynamic stabilities for these intermediates, showing up to 6 kcal/mol improvement over well-studied cyclen catalysts. We observe a good correlation between the p K a of the Zn-OH 2 moiety and the resulting relative stability of hydroxyl moieties over bicarbonate, which may be rationalized by the dominant effect of the difference in higher Zn-OH bond order in comparison to weaker bonding in bicarbonate and water. A direct relationship is identified between isolated organic ligand p K a and the p K a of a bound water molecule on the catalyst. Thus, organic ligand p K a , which is intuitive, easy to compute or tabulate, and much less sensitive to electronic structure method choice than whole-catalyst properties, is a good quantitative descriptor for predicting the effect of through-bond electronic effects on relative CO 2 hydration energetics. We expect this to be applicable to other reactions where is it essential to stabilize turnover-determining hydroxyl species with respect to more weakly bound moieties. Finally, we note exceptions for rigid ligands (e.g., porphyrins) that are observed to preferentially stabilize hydroxyl over bicarbonate without reducing p K a values as substantially. We expect the strategy outlined here, to (i) curate diverse ligands from large organic libraries and (ii) identify when ligand-only properties can determine catalyst energetics, to be broadly useful for both experimental and computational catalyst design.

  2. Spatially-controlled NiCo2O4@MnO2 core–shell nanoarray with hollow NiCo2O4 cores and MnO2 flake shells: an efficient catalyst for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Xue, Hairong; Yu, Hongjie; Li, Yinghao; Deng, Kai; Xu, You; Li, Xiaonian; Wang, Hongjing; Wang, Liang

    2018-07-01

    Control of structures and components of the nanoarray catalysts is very important for electrochemical energy conversion. Herein, unique NiCo2O4@MnO2 core–shell nanoarray with hollow NiCo2O4 Cores and MnO2 flake shells is in situ fabricated on carbon textile via a two-step hydrothermal treatment followed by a subsequent annealing. The as-made nanoarray is highly active and durable catalyst for oxygen evolution reaction in alkaline media attribute to the synergetic effect derived from spatially separated nanoarray with favorable NiCo2O4 and MnO2 compositions.

  3. Catalytic dehydrogenation of amine borane complexes

    NASA Technical Reports Server (NTRS)

    Mohajeri, Nahid (Inventor); Tabatabaie-Raissi, Ali (Inventor)

    2007-01-01

    A method of generating hydrogen includes the steps of providing an amine borane (AB) complex, at least one hydrogen generation catalyst, and a solvent, and mixing these components. Hydrogen is generated. The hydrogen produced is high purity hydrogen suitable for PEM fuel cells. A hydrolytic in-situ hydrogen generator includes a first compartment that contains an amine borane (AB) complex, a second container including at least one hydrogen generation catalyst, wherein the first or second compartment includes water or other hydroxyl group containing solvent. A connecting network permits mixing contents in the first compartment with contents in the second compartment, wherein high purity hydrogen is generated upon mixing. At least one flow controller is provided for controlling a flow rate of the catalyst or AB complex.

  4. Catalytic dehydrogenation of amine borane complexes

    NASA Technical Reports Server (NTRS)

    Tabatabaie-Raissi, Ali (Inventor); Mohajeri, Nahid (Inventor); Bokerman, Gary (Inventor)

    2009-01-01

    A method of generating hydrogen includes the steps of providing an amine borane (AB) complex, at least one hydrogen generation catalyst, and a solvent, and mixing these components Hydrogen is generated. The hydrogen produced is high purity hydrogen suitable for PEM fuel cells. A hydrolytic in-situ hydrogen generator includes a first compartment that contains an amine borane (AB) complex, a second container including at least one hydrogen generation catalyst, wherein the first or second compartment includes water or other hydroxyl group containing solvent. A connecting network permits mixing contents in the first compartment with contents in the second compartment, wherein high purity hydrogen is generated upon mixing. At least one flow controller is provided for controlling a flow rate of the catalyst or AB complex.

  5. Rational Design of an Electron-Reservoir Pt(II) Complex for Efficient Photocatalytic Hydrogen Production from Water.

    PubMed

    Whang, Dong Ryeol; Park, Soo Young

    2015-10-12

    Herein we report a Pt(II) complex containing a 4,4'-bis[4-(triphenylsilyl)phenyl]-2,2'-bipyridine ligand as a molecular catalyst for water splitting. Systematic studies of the electrochemical and electronic properties of this catalyst, in comparison with two control complexes, reveal electron-reservoir characteristics upon two-electron reduction. A turnover number of 510,000 was recorded by employing this complex as a water reduction catalyst in combination with a state-of-the-art photosensitizer and N,N-dimethylaniline as a sacrificial electron donor, which represents a large improvement over the control complexes that do not contain the tetraphenylsilyl ligand substitution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Monopropellant engine investigation for space shuttle reaction control system, volume 1

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The results are presented of an investigation to determine the capability of a monopropellant hydrazine thruster to meet the requirements specified for the space shuttle reaction control system (RCS). Of those requirements, the major concern was whether the 100,000 seconds life could be achieved at thrust levels within the specified range. Although burn times in excess of 200,000 seconds have been demonstrated at low thrust levels, the corresponding total impulse values have been substantially lower than that required for the space shuttle RCS. Two other areas of concern, involving the catalyst, were: (1) the effects of the relatively high vehicle vibration levels on catalyst attrition and (2) the effect of exposure of the catalyst to air during atmospheric reentry of the vehicle.

  7. Spatially-controlled NiCo2O4@MnO2 core-shell nanoarray with hollow NiCo2O4 cores and MnO2 flake shells: an efficient catalyst for oxygen evolution reaction.

    PubMed

    Xue, Hairong; Yu, Hongjie; Li, Yinghao; Deng, Kai; Xu, You; Li, Xiaonian; Wang, Hongjing; Wang, Liang

    2018-07-13

    Control of structures and components of the nanoarray catalysts is very important for electrochemical energy conversion. Herein, unique NiCo 2 O 4 @MnO 2 core-shell nanoarray with hollow NiCo 2 O 4 Cores and MnO 2 flake shells is in situ fabricated on carbon textile via a two-step hydrothermal treatment followed by a subsequent annealing. The as-made nanoarray is highly active and durable catalyst for oxygen evolution reaction in alkaline media attribute to the synergetic effect derived from spatially separated nanoarray with favorable NiCo 2 O 4 and MnO 2 compositions.

  8. Catalytic Organometallic Reactions of Ammonia

    PubMed Central

    Klinkenberg, Jessica L.

    2012-01-01

    Until recently, ammonia had rarely succumbed to catalytic transformations with homogeneous catalysts, and the development of such reactions that are selective for the formation of single products under mild conditions has encountered numerous challenges. However, recently developed catalysts have allowed several classes of reactions to create products with nitrogen-containing functional groups from ammonia. These reactions include hydroaminomethylation, reductive amination, alkylation, allylic substitution, hydroamination, and cross-coupling. This Minireview describes examples of these processes and the factors that control catalyst activity and selectivity. PMID:20857466

  9. Apparatus for Screening Multiple Oxygen-Reduction Catalysts

    NASA Technical Reports Server (NTRS)

    Whitacre, Jay; Narayanan, Sekharipuram

    2009-01-01

    An apparatus that includes an array of multiple electrodes has been invented as a means of simultaneously testing multiple materials for their utility as oxygen-reduction catalysts in fuel cells. The apparatus ensures comparability of test results by exposing all the catalyst-material specimens to the same electrolytic test solution at the same potential. Heretofore, it has been possible to test only one specimen at a time, using a precise rotating disk electrode that provides a controlled flux of solution to the surface of the specimen.

  10. Varied morphology carbon nanotubes and method for their manufacture

    DOEpatents

    Li, Wenzhi; Wen, Jian Guo; Ren, Zhi Feng

    2007-01-02

    The present invention describes the preparation of carbon nanotubes of varied morphology, catalyst materials for their synthesis. The present invention also describes reactor apparatus and methods of optimizing and controlling process parameters for the manufacture carbon nanotubes with pre-determined morphologies in relatively high purity and in high yields. In particular, the present invention provides methods for the preparation of non-aligned carbon nanotubes with controllable morphologies, catalyst materials and methods for their manufacture.

  11. The catalyst layer and its dimensionality - A look into its ingredients and how to characterize their effects

    NASA Astrophysics Data System (ADS)

    Zamel, Nada

    2016-03-01

    Development of polymer electrolyte membrane (PEM) fuel cells throughout the years is established through its component optimization. This is especially true of its catalyst layer, where structuring of the layer has led to many breakthroughs. The catalyst layer acts as the heart of the cell, where it controls the half-cell reactions and their products. The complex nature of various transport phenomena simultaneously taking place in the layer requires the layer to be heterogeneous in structure. Hence, a delicate balance of the layer's ingredients, coupled with the understanding of the ingredients' interaction, is required. State-of-the-art catalyst layers are composed of a catalyst, its support, a solvent and a binder. Changes in the morphology, structure or material of any of these components ultimately affects the layer's activity and durability. In this review paper, we provide an overview of the various works tailored to understand how each component in the catalyst's ink affects the stability and life-time of the layer.

  12. The influences of microwave irradiation and polyol precursor pH on Cu/AC catalyst and its CO oxidation performance

    NASA Astrophysics Data System (ADS)

    Chuang, Kui-Hao; Shih, Kaimin; Wey, Ming-Yen

    2012-10-01

    This study evaluated the effects of microwave irradiation parameters and the pH of the polyol precursor on the morphological features and catalytic performances of Cu/activated carbon (AC) catalysts. Experimental results of carbon monoxide (CO) oxidation indicated that the highest catalytic activity is achieved when the Cu/AC catalyst is prepared with microwave irradiation at 700 W for 60 s. Scanning electron microscopy revealed the presence of beneficial small copper aciculae on the Cu/AC catalyst under such a microwave irradiation scheme. Further investigation of operational parameters found that the performance of Cu/AC catalysts is enhanced by adopting a pH = 12 polyol precursor solution. With the observation that small cube copper ( 16 nm) aggregates form when a pH = 12 polyol precursor solution is used, this study also demonstrated the importance of controlling the morphology of metal nanoparticles on Cu/AC catalysts when using the microwave-assisted polyol method.

  13. Stable metal–organic framework-supported niobium catalysts

    DOE PAGES

    Ahn, Sol; Thornburg, Nicholas E.; Li, Zhanyong; ...

    2016-10-31

    In this study by developing structurally well-defined, supported oxide catalysts remains a significant challenge. Here, we report the grafting of Nb(V) oxide sites onto the nodes of the Zr-based metal organic framework (MOF) NU-1000 as a stable, well-defined catalyst support. Nb(V) oxide was deposited with loadings up to 1.6 mmol/g via two post-synthetic methods: atomic layer deposition in a MOF (AIM), and solution-phase grafting in a MOF (SIM). Difference envelope density (DED) measurements indicated that the two synthetic methods resulted in different local structures of the Nb(V) ions within NU-1000. Despite their high Nb(V) loadings, which were equivalent to >60%more » surface coverage, nearly all Nb(V) sites of the MOF-supported catalysts were active sites for alkene epoxidation, as confirmed by phenylphosphonic acid titration. The MOF-supported catalysts were more selective than the control Nb-ZrO 2 catalyst for cyclohexene epoxidation with aqueous H 2O 2, and were far more active on a gravimetric basis.« less

  14. Molecular metal-Nx centres in porous carbon for electrocatalytic hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Liang, Hai-Wei; Brüller, Sebastian; Dong, Renhao; Zhang, Jian; Feng, Xinliang; Müllen, Klaus

    2015-08-01

    Replacement of precious platinum with efficient and low-cost catalysts for electrocatalytic hydrogen evolution at low overpotentials holds tremendous promise for clean energy devices. Here we report a novel type of robust cobalt-nitrogen/carbon catalyst for the hydrogen evolution reaction (HER) that is prepared by the pyrolysis of cobalt-N4 macrocycles or cobalt/o-phenylenediamine composites and using silica colloids as a hard template. We identify the well-dispersed molecular CoNx sites on the carbon support as the active sites responsible for the HER. The CoNx/C catalyst exhibits extremely high turnover frequencies per cobalt site in acids, for example, 0.39 and 6.5 s-1 at an overpotential of 100 and 200 mV, respectively, which are higher than those reported for other scalable non-precious metal HER catalysts. Our results suggest the great promise of developing new families of non-precious metal HER catalysts based on the controlled conversion of homogeneous metal complexes into solid-state carbon catalysts via economically scalable protocols.

  15. Effect of Particle Size Upon Pt/SiO 2 Catalytic Cracking of n-Dodecane Under Supercritical Conditions: in situ SAXS and XANES Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sungwon; Lee, Sungsik; Kumbhalkar, Mrunmayi

    The endothermic cracking and dehydrogenation of n-dodecane is investigated over well-defined nanometer size platinum catalysts supported on SiO 2 to study the particle size effects in the catalytic cracking reaction, with simultaneous in situ monitoring of the particle size and oxidation state of the working catalysts by in situ SAXS (small angle X-ray scattering) and XAS (X-ray absorption spectroscopy). The selectivity toward olefins products was found dominant in the 1 nm size platinum catalysts, whereas paraffins are dominant in the 2 nm catalysts. This reveals a strong correlation between catalytic performance and catalyst size as well as the stability ofmore » the nanoparticles in supercritical condition of n-dodecane. The presented results suggest that controlling the size and geometric structure of platinum nanocatalysts could lead to a fundamentally new level of understanding of nanoscale materials by monitoring the catalysts in realistic reaction conditions.« less

  16. Directing Reaction Pathways through Controlled Reactant Binding at Pd-TiO2 Interfaces.

    PubMed

    Zhang, Jing; Wang, Bingwen; Nikolla, Eranda; Medlin, J Will

    2017-06-01

    Recent efforts to design selective catalysts for multi-step reactions, such as hydrodeoxygenation (HDO), have emphasized the preparation of active sites at the interface between two materials having different properties. However, achieving precise control over interfacial properties, and thus reaction selectivity, has remained a challenge. Here, we encapsulated Pd nanoparticles (NPs) with TiO 2 films of regulated porosity to gain a new level of control over catalyst performance, resulting in essentially 100 % HDO selectivity for two biomass-derived alcohols. This catalyst also showed exceptional reaction specificity in HDO of furfural and m-cresol. In addition to improving HDO activity by maximizing the interfacial contact between the metal and metal oxide sites, encapsulation by the nanoporous oxide film provided a significant selectivity boost by restricting the accessible conformations of aromatics on the surface. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Morphology control of layer-structured gallium selenide nanowires.

    PubMed

    Peng, Hailin; Meister, Stefan; Chan, Candace K; Zhang, Xiao Feng; Cui, Yi

    2007-01-01

    Layer-structured group III chalcogenides have highly anisotropic properties and are attractive materials for stable photocathodes and battery electrodes. We report the controlled synthesis and characterization of layer-structured GaSe nanowires via a catalyst-assisted vapor-liquid-solid (VLS) growth mechanism during GaSe powder evaporation. GaSe nanowires consist of Se-Ga-Ga-Se layers stacked together via van der Waals interactions to form belt-shaped nanowires with a growth direction along the [11-20], width along the [1-100], and height along the [0001] direction. Nanobelts exhibit a variety of morphologies including straight, zigzag, and saw-tooth shapes. These morphologies are realized by controlling the growth temperature and time so that the actual catalysts have a chemical composition of Au, Au-Ga alloy, or Ga. The participation of Ga in the VLS catalyst is important for achieving different morphologies of GaSe. In addition, GaSe nanotubes are also prepared by a slow growth process.

  18. Combinatorial electrochemical synthesis and screening of Pt-WO3 catalysts for electro-oxidation of methanol

    NASA Astrophysics Data System (ADS)

    Jayaraman, Shrisudersan; Baeck, Sung-Hyeon; Jaramillo, Thomas F.; Kleiman-Shwarsctein, Alan; McFarland, Eric W.

    2005-06-01

    An automated system for high-throughput electrochemical synthesis and screening of fuel cell electro-oxidation catalysts is described. This system consists of an electrode probe that contains counter and reference electrodes that can be positioned inside an array of electrochemical cells created within a polypropylene block. The electrode probe is attached to an automated of X-Y-Z motion system. An externally controlled potentiostat is used to apply the electrochemical potential to the catalyst substrate. The motion and electrochemical control are integrated using a user-friendly software interface. During automated synthesis the deposition potential and/or current may be controlled by a pulse program triggered by the software using a data acquisition board. The screening includes automated experiments to obtain cyclic voltammograms. As an example, a platinum-tungsten oxide (Pt-WO3) library was synthesized and characterized for reactivity towards methanol electro-oxidation.

  19. Selective hydrodechlorination of 1,2-dichloroethane catalyzed by trace Pd decorated Ag/Al2O3 catalysts prepared by galvanic replacement

    NASA Astrophysics Data System (ADS)

    Sun, Jingya; Han, Yuxiang; Fu, Heyun; Wan, Haiqin; Xu, Zhaoyi; Zheng, Shourong

    2018-01-01

    Ag catalysts decorated by trace Pd supported on γ-Al2O3 with different structure and chemical properties were prepared using a combined impregnation and galvanic replacement method. For comparison, monometallic Ag/γ-Al2O3 and Pd/γ-Al2O3 catalysts were prepared using the impregnation method. Gas-phase catalytic hydrodechlorination of 1,2-dichloroethane to ethylene was investigated on those catalysts. The structures and chemical compositions of bimetallic Pd-Ag particles in the catalysts were controlled by adjusting Pd replacement amount. The as-prepared catalysts were characterized by X-ray diffraction, transmission electron microscopy, UV-vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, and in-situ FTIR spectroscopy of CO adsorption. The results demonstrated that contiguous Pd sites dominated in the monometallic Pd/γ-Al2O3 catalyst, while Pd atoms were separately decorated on the surface of Ag particles in the bimetallic Pd-Ag/γ-Al2O3 catalysts when Pd replacement amount was below 0.30 wt.%. At Pd replacement amount of 0.30 wt.%, Pd ensembles with contiguous Pd sites developed in the bimetallic catalyst. Thus, monometallic Pd/γ-Al2O3 catalyst displayed negligible ethylene selectivity toward the catalytic hydrodechlorination of 1,2-dichloroethane, while bimetallic Pd-Ag/γ-Al2O3 catalyst with a Pd replacement amount of 0.13 wt.% exhibited 94.6% of ethylene selectivity. Furthermore, selectivity to incompletely dechlorinated byproduct chloroethylene decreased with Pd replacement amount, due to the enhanced decoration effect of Pd on large Ag ensembles. Findings in this work provide a promising bimetallic catalyst prepared by galvanic replacement for the selective catalytic hydrodechlorination of 1,2-dichloroethane.

  20. Attrition Resistant Iron-Based Fischer-Tropsch Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jothimurugesan, K.; Goodwin, J.G.; Spivey, J.J.

    1997-03-26

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRS) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H{sub 2} ratio synthesis gases derived from modem coal gasifiers. This is because in addition to reasonable F-T activity, the FT catalysts also possess high water gas shift (WGS) activity. However, a serious problem withmore » the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity.« less

  1. Attrition Resistant Iron-Based Fischer-Tropsch Catalysts.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jothimurugesan, K.; Goodwin, J.S.; Spivey, J.J.

    1997-09-22

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO and H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H{sub 2} ratio synthesis gases derived from modern coal gasifiers. This is because in addition to reasonable F-T activity, the F-T catalysts also possess high water gas shift (WGS) activity. However, a seriousmore » problem with the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity.« less

  2. CO Sensing Performance of a Micro Thermoelectric Gas Sensor with AuPtPd/SnO₂ Catalyst and Effects of a Double Catalyst Structure with Pt/α-Al₂O₃.

    PubMed

    Goto, Tomoyo; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2015-12-15

    The CO sensing properties of a micro thermoelectric gas sensor (micro-TGS) with a double AuPtPd/SnO₂ and Pt/α-Al₂O₃ catalyst were investigated. While several nanometer sized Pt and Pd particles were uniformly dispersed on SnO₂, the Au particles were aggregated as particles measuring >10 nm in diameter. In situ diffuse reflectance Fourier transform Infrared spectroscopy (DRIFT) analysis of the catalyst showed a CO adsorption peak on Pt and Pd, but no clear peak corresponding to the interaction between CO and Au was detected. Up to 200 °C, CO combustion was more temperature dependent than that of H₂, while H₂ combustion was activated by repeated exposure to H₂ gas during the periodic gas test. Selective CO sensing of the micro-TGS against H₂ was attempted using a double catalyst structure with 0.3-30 wt% Pt/α-Al₂O₃ as a counterpart combustion catalyst. The sensor output of the micro-TGS decreased with increasing Pt content in the Pt/α-Al₂O₃ catalyst, by cancelling out the combustion heat from the AuPtPd/SnO₂ catalyst. In addition, the AuPtPd/SnO₂ and 0.3 wt% Pt/α-Al₂O₃ double catalyst sensor showed good and selective CO detection. We therefore demonstrated that our micro-TGS with double catalyst structure is useful for controlling the gas selectivity of CO against H₂.

  3. Attrition resistant catalysts for slurry-phase Fischer-Tropsch process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Jothimurugesan

    1999-11-01

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T because they are relatively inexpensive and possess reasonable activity for F-T synthesis (FTS). Their most advantages trait is their high water-gas shift (WGS) activity compared to their competitor, namely cobalt. This enables Fe F-T catalysts to process lowmore » H{sub 2}/CO ratio synthesis gas without an external shift reaction step. However, a serious problem with the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, make the separation of catalyst from the oil/wax product very difficult if not impossible, an d result in a steady loss of catalyst from the reactor. The objectives of this research were to develop a better understanding of the parameters affecting attrition of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance.« less

  4. Magnetic nanoparticles entrapped in siliceous mesocellular foam: a new catalyst support.

    PubMed

    Lee, Su Seong; Riduan, Siti Nurhanna; Erathodiyil, Nandanan; Lim, Jaehong; Cheong, Jian Liang; Cha, Junhoe; Han, Yu; Ying, Jackie Y

    2012-06-11

    γ-Fe(2)O(3) nanoparticles were formed inside the cage-like pores of mesocellular foam (MCF). These magnetic nanoparticles showed a uniform size distribution that could be easily controlled by the MCF pore size, as well as by the hydrocarbon chain length used for MCF surface modification. Throughout the entrapment process, the pore structure and surface area of the MCF remained intact. The resulting magnetic MCF facilitated the immobilization of biocatalysts, homogeneous catalysts, and nanoclusters. Moreover, the MCF allowed for facile catalyst recovery by using a simple magnet. The supported catalysts exhibited excellent catalytic efficiencies that were comparable to their homogeneous counterparts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Ambient-temperature co-oxidation catalysts

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T.; Schryer, David R.; Brown, Kenneth G.; Kielin, Erik J.

    1991-01-01

    Oxidation catalysts which operate at ambient temperature were developed for the recombination of carbon monoxide (CO) and oxygen (O2) dissociation products which are formed during carbon dioxide (CO2) laser operation. Recombination of these products to regenerate CO2 allows continuous operation of CO2 lasers in a closed cycle mode. Development of these catalyst materials provides enabling technology for the operation of such lasers from space platforms or in ground based facilities without constant gas consumption required for continuous open cycle operation. Such catalysts also have other applications in various areas outside the laser community for removal of CO from other closed environments such as indoor air and as an ambient temperature catalytic converter for control of auto emissions.

  6. CO{sub 2} Reuse in Petrochemical Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jason Trembly; Brian Turk; Maruthi Pavani

    2010-12-31

    To address public concerns regarding the consequences of climate change from anthropogenic carbon dioxide (CO{sub 2}) emissions, the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) is actively funding a CO{sub 2} management program to develop technologies capable of mitigating CO{sub 2} emissions from power plant and industrial facilities. Over the past decade, this program has focused on reducing the costs of carbon capture and storage technologies. Recently, DOE/NETL launched an alternative CO{sub 2} mitigation program focused on beneficial CO{sub 2} reuse to support the development of technologies that mitigate emissions by converting CO{sub 2} into valuable chemicals andmore » fuels. RTI, with DOE/NETL support, has been developing an innovative beneficial CO{sub 2} reuse process for converting CO{sub 2} into substitute natural gas (SNG) by using by-product hydrogen (H{sub 2)-containing fuel gas from petrochemical facilities. This process leveraged commercial reactor technology currently used in fluid catalytic crackers in petroleum refining and a novel nickel (Ni)-based catalyst developed by RTI. The goal was to generate an SNG product that meets the pipeline specifications for natural gas, making the SNG product completely compatible with the existing natural gas infrastructure. RTI's technology development efforts focused on demonstrating the technical feasibility of this novel CO{sub 2} reuse process and obtaining the necessary engineering information to design a pilot demonstration unit for converting about 4 tons per day (tons/day) of CO{sub 2} into SNG at a suitable host site. This final report describes the results of the Phase I catalyst and process development efforts. The methanation activity of several commercial fixed-bed catalysts was evaluated under fluidized-bed conditions in a bench-scale reactor to identify catalyst performance targets. RTI developed two fluidizable Ni-based catalyst formulations (Cat-1 and Cat-3) that demonstrated equal or better performance than that of commercial methanation catalysts. The Cat-1 and Cat-3 formulations were successfully scaled up using commercial manufacturing equipment at the Sud-Chemie Inc. pilot-plant facility in Louisville, KY. Pilot transport reactor testing with RTI's Cat-1 formulation at Kellog Brown & Root's Technology Center demonstrated the ability of the process to achieve high single-pass CO{sub 2} conversion. Using information acquired from bench- and pilot-scale testing, a basic engineering design package was prepared for a 4-ton/day CO{sub 2} pilot demonstration unit, including process and instrumentation diagrams, equipment list, control philosophy, and preliminary cost estimate.« less

  7. Improved Anode for a Direct Methanol Fuel Cell

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas; Narayanan, Sekharipuram

    2005-01-01

    A modified chemical composition has been devised to improve the performance of the anode of a direct methanol fuel cell. The main feature of the modified composition is the incorporation of hydrous ruthenium oxide into the anode structure. This modification can reduce the internal electrical resistance of the cell and increase the degree of utilization of the anode catalyst. As a result, a higher anode current density can be sustained with a smaller amount of anode catalyst. These improvements can translate into a smaller fuel-cell system and higher efficiency of conversion. Some background information is helpful for understanding the benefit afforded by the addition of hydrous ruthenium oxide. The anode of a direct methanol fuel cell sustains the electro-oxidation of methanol to carbon dioxide in the reaction CH3OH + H2O--->CO2 + 6H(+) + 6e(-). An electrocatalyst is needed to enable this reaction to occur. The catalyst that offers the highest activity is an alloy of approximately equal numbers of atoms of the noble metals platinum and ruthenium. The anode is made of a composite material that includes high-surface-area Pt/Ru alloy particles and a proton-conducting ionomeric material. This composite is usually deposited onto a polymer-electrolyte (proton-conducting) membrane and onto an anode gas-diffusion/current-collector sheet that is subsequently bonded to the proton-conducting membrane by hot pressing. Heretofore, the areal density of noble-metal catalyst typically needed for high performance has been about 8 mg/cm2. However, not all of the catalyst has been utilized in the catalyzed electro-oxidation reaction. Increasing the degree of utilization of the catalyst would make it possible to improve the performance of the cell for a given catalyst loading and/or reduce the catalyst loading (thereby reducing the cost of the cell). The use of carbon and possibly other electronic conductors in the catalyst layer has been proposed for increasing the utilization of the catalyst by increasing electrical connectivity between catalyst particles. However, the relatively low density of carbon results in thick catalyst layers that impede the mass transport of methanol to the catalytic sites. Also, the electrical conductivity of carbon is less than 1/300th of typical metals. Furthermore, the polymer-electrolyte membrane material is acidic and most metals are not chemically stable in contact with it. Finally, a material that conducts electrons (but not protons) does not contribute to the needed transport of protons produced in the electro-oxidation reaction.

  8. WATER-SOLUBLE ORGANOMETALLIC CATALYSTS FROM CARBOHYDRATES. 1. DIARYLPHOSPHINITE-RH COMPLEXES. (R826120)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  9. IMMOBILIZATION OF THE COPPER CATALYST IN ATOM TRANSFER RADICAL POLYMERIZATION. (R826735)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  10. Series-Bosch Technology for Oxygen Recovery During Lunar or Martian Surface Missions

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Mansell, J. Matthew; Rabenberg, Ellen; Stanley, Christine M.; Edmunson, Jennifer; Alleman, James E.; Chen, Kevin; Dumez, Sam

    2014-01-01

    Long-duration surface missions to the Moon or Mars will require life support systems that maximize resource recovery to minimize resupply from Earth. To address this need, NASA previously proposed a Series-Bosch (S-Bosch) oxygen recovery system, based on the Bosch process, which can theoretically recover 100% of the oxygen from metabolic carbon dioxide. Bosch processes have the added benefits of the potential to recover oxygen from atmospheric carbon dioxide and the use of regolith materials as catalysts, thereby eliminating the need for catalyst resupply from Earth. In 2012, NASA completed an initial design for an S-Bosch development test stand that incorporates two catalytic reactors in series including a Reverse Water-Gas Shift (RWGS) Reactor and a Carbon Formation Reactor (CFR). In 2013, fabrication of system components, with the exception of a CFR, and assembly of the test stand was initiated. Stand-alone testing of the RWGS reactor was completed to compare performance with design models. Continued testing of Lunar and Martian regolith simulants provided sufficient data to design a CFR intended to utilize these materials as catalysts. Finally, a study was conducted to explore the possibility of producing bricks from spent regolith catalysts. The results of initial demonstration testing of the RWGS reactor, results of continued catalyst performance testing of regolith simulants, and results of brick material properties testing are reported. Additionally, design considerations for a regolith-based CFR are discussed.

  11. Series-Bosch Technology for Oxygen Recovery During Lunar or Martian Surface Missions

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Mansell, James M.; Stanley, Christine; Edmunson, Jennifer; Dumez, Samuel; Chen, Kevin; Alleman, James E.

    2014-01-01

    Long-duration surface missions to the Moon or Mars will require life support systems that maximize resource recovery to minimize resupply from Earth. To address this need, NASA previously proposed a Series-Bosch (S-Bosch) oxygen recovery system, based on the Bosch process, which can theoretically recover 100% of the oxygen from metabolic carbon dioxide. Bosch processes have the added benefits of the potential to recover oxygen from atmospheric carbon dioxide and the use of regolith materials as catalysts, thereby eliminating the need for catalyst resupply from Earth. In 2012, NASA completed an initial design for an S-Bosch development test stand that incorporates two catalytic reactors in series including a Reverse Water-Gas Shift (RWGS) Reactor and a Carbon Formation Reactor (CFR). In 2013, fabrication of system components, with the exception of a CFR, and assembly of the test stand was initiated. Stand-alone testing of the RWGS reactor was completed to compare performance with design models. Continued testing of Lunar and Martian regolith simulants provided sufficient data to design a CFR intended to utilize these materials as catalysts. Finally, a study was conducted to explore the possibility of producing bricks from spend regolith catalysts. The results of initial demonstration testing of the RWGS reactor, results of continued catalyst performance testing of regolith simulants, and results of brick material properties testing are reported. Additionally, design considerations for a regolith-based CFR are discussed.

  12. Recovery of Active and Efficient Photocatalytic H 2 Production for CdSe Quantum Dots

    DOE PAGES

    Burke, Rebeckah; Cogan, Nicole M. Briglio; Oi, Aidan; ...

    2018-05-07

    Recently, colloidal semiconductor quantum dots (QDs) have shown great promise as photocatalysts for the production of chemical fuels by sunlight. Here, the efficiency of photocatalytic hydrogen (H 2) production for integrated systems of large diameter (4.4 nm) CdSe QDs as light harvesting nanoparticles with varying concentrations of nickel-dihydrolipoic acid (Ni-DHLA) small molecule catalysts was measured. While exhibiting excellent robustness and longevity, the efficiency of H 2 production for equimolar catalyst and QDs was relatively poor. However, the efficiency was found to increase substantially with increasing Ni-DHLA:QD molar ratios Surprisingly, this high activity was only observed with the use of 3-mercaptopropionicmore » acid (MPA) ligands, while CdSe QDs capped with dihydrolipoic acid (DHLA) exhibited poor performance in comparison, indicating that the QD capping ligand has a substantial impact on the catalytic performance. Finally, ultrafast transient absorption spectroscopic measurements of the electron transfer (ET) dynamics show fast ET to the catalyst. Importantly, an increase in ET efficiency is observed as the catalyst concentration is increased. Together, these results suggest that for these large QDs, tailoring the QD surface environment for facile ET and increasing catalyst concentrations increases the probability of ET from QDs to Ni-DHLA, overcoming the relatively small driving force for ET and decreased surface electron density for large diameter QDs.« less

  13. Development and Long-Term Stability of a Novel Microbial Fuel Cell BOD Sensor with MnO2 Catalyst

    PubMed Central

    Kharkwal, Shailesh; Tan, Yi Chao; Lu, Min; Ng, How Yong

    2017-01-01

    A novel microbial fuel cell (MFC)-based biosensor was designed for continuous monitoring of biochemical oxygen demand (BOD) in real wastewater. To lower the material cost, manganese dioxide (MnO2) was tested as an innovative cathode catalyst for oxygen reduction in a single chamber air-cathode MFC, and two different crystalline structures obtained during synthesis of MnO2 (namely β- and γ-MnO2) were compared. The BOD sensor was studied in a comprehensive way, using both sodium acetate solution and real domestic wastewater (DWW). The optimal performance of the sensor was obtained with a β-MnO2 catalyst, with R2 values of 0.99 and 0.98 using sodium acetate solution and DWW, respectively. The BOD values predicted by the β-MnO2 biosensor for DWW were in agreement with the BOD5 values, determined according to standard methods, with slight variations in the range from 3% to 12%. Finally, the long-term stability of the BOD biosensor was evaluated over 1.5 years. To the best of our knowledge, this is the first report of an MFC BOD sensor using an MnO2 catalyst at the cathode; the feasibility of using a low-cost catalyst in an MFC for online measurement of BOD in real wastewater broadens the scope of applications for such devices. PMID:28134838

  14. Production of hydrogen using nanocrystalline protein-templated catalysts on m13 phage.

    PubMed

    Neltner, Brian; Peddie, Brian; Xu, Alex; Doenlen, William; Durand, Keith; Yun, Dong Soo; Speakman, Scott; Peterson, Andrew; Belcher, Angela

    2010-06-22

    For decades, ethanol has been in use as a fuel for the storage of solar energy in an energy-dense, liquid form. Over the past decade, the ability to reform ethanol into hydrogen gas suitable for a fuel cell has drawn interest as a way to increase the efficiency of both vehicles and stand-alone power generators. Here we report the use of extremely small nanocrystalline materials to enhance the performance of 1% Rh/10% Ni@CeO(2) catalysts in the oxidative steam reforming of ethanol with a ratio of 1.7:1:10:11 (air/EtOH/water/argon) into hydrogen gas, achieving 100% conversion of ethanol at only 300 degrees C with 60% H(2) in the product stream and less than 0.5% CO. Additionally, nanocrystalline 10% Ni@CeO(2) was shown to achieve 100% conversion of ethanol at 400 degrees C with 73% H(2), 2% CO, and 2% CH(4) in the product stream. Finally, we demonstrate the use of biological templating on M13 to improve the resistance of this catalyst to deactivation over 52 h tests at high flow rates (120 000 h(-1) GHSV) at 450 degrees C. This study suggests that the use of highly nanocrystalline, biotemplated catalysts to improve activity and stability is a promising route to significant gains over traditional catalyst manufacture methods.

  15. Recovery of Active and Efficient Photocatalytic H 2 Production for CdSe Quantum Dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Rebeckah; Cogan, Nicole M. Briglio; Oi, Aidan

    Recently, colloidal semiconductor quantum dots (QDs) have shown great promise as photocatalysts for the production of chemical fuels by sunlight. Here, the efficiency of photocatalytic hydrogen (H 2) production for integrated systems of large diameter (4.4 nm) CdSe QDs as light harvesting nanoparticles with varying concentrations of nickel-dihydrolipoic acid (Ni-DHLA) small molecule catalysts was measured. While exhibiting excellent robustness and longevity, the efficiency of H 2 production for equimolar catalyst and QDs was relatively poor. However, the efficiency was found to increase substantially with increasing Ni-DHLA:QD molar ratios Surprisingly, this high activity was only observed with the use of 3-mercaptopropionicmore » acid (MPA) ligands, while CdSe QDs capped with dihydrolipoic acid (DHLA) exhibited poor performance in comparison, indicating that the QD capping ligand has a substantial impact on the catalytic performance. Finally, ultrafast transient absorption spectroscopic measurements of the electron transfer (ET) dynamics show fast ET to the catalyst. Importantly, an increase in ET efficiency is observed as the catalyst concentration is increased. Together, these results suggest that for these large QDs, tailoring the QD surface environment for facile ET and increasing catalyst concentrations increases the probability of ET from QDs to Ni-DHLA, overcoming the relatively small driving force for ET and decreased surface electron density for large diameter QDs.« less

  16. Laser printing of nanoparticle toner enables digital control of micropatterned carbon nanotube growth.

    PubMed

    Polsen, Erik S; Stevens, Adam G; Hart, A John

    2013-05-01

    Commercialization of materials utilizing patterned carbon nanotube (CNT) forests, such as hierarchical composite structures, dry adhesives, and contact probe arrays, will require catalyst patterning techniques that do not rely on cleanroom photolithography. We demonstrate the large scale patterning of CNT growth catalyst via adaptation of a laser-based electrostatic printing process that uses magnetic ink character recognition (MICR) toner. The MICR toner contains iron oxide nanoparticles that serve as the catalyst for CNT growth, which are printed onto a flexible polymer (polyimide) and then transferred to a rigid substrate (silicon or alumina) under heat and mechanical pressure. Then, the substrate is processed for CNT growth under an atmospheric pressure chemical vapor deposition (CVD) recipe. This process enables digital control of patterned CNT growth via the laser intensity, which controls the CNT density; and via the grayscale level, which controls the pixelation of the image into arrays of micropillars. Moreover, virtually any pattern can be designed using standard software (e.g., MS Word, AutoCAD, etc.) and printed on demand. Using a standard office printer, we realize isolated CNT microstructures as small as 140 μm and isolated catalyst ″pixels″ as small as 70 μm (one grayscale dot) and determine that individual toner microparticles result in features of approximately 5-10 μm . We demonstrate that grayscale CNT patterns can function as dry adhesives and that large-area catalyst patterns can be printed directly onto metal foils or transferred to ceramic plates. Laser printing therefore shows promise to enable high-speed micropatterning of nanoparticle-containing thin films under ambient conditions, possibly for a wide variety of nanostructures by engineering of toners containing nanoparticles of desired composition, size, and shape.

  17. Catalytic Production of Ethanol from Biomass-Derived Synthesis Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trewyn, Brian G.; Smith, Ryan G.

    2016-06-01

    Heterogeneous catalysts have been developed for the conversion of biomass-derived synthetic gas (syngas) to ethanol. The objectives of this project were to develop a clean synthesis gas from biomass and develop robust catalysts with high selectivity and lifetime for C 2 oxygenate production from biomass-derived syngas and surrogate syngas. During the timeframe for this project, we have made research progress on the four tasks: (1) Produce clean bio-oil generated from biomass, such as corn stover or switchgrass, by using fast pyrolysis system, (2) Produce clean, high pressure synthetic gas (syngas: carbon monoxide, CO, and hydrogen, H 2) from bio-oil generatedmore » from biomass by gasification, (3) Develop and characterize mesoporous mixed oxide-supported metal catalysts for the selective production of ethanol and other alcohols, such as butanol, from synthesis gas, and (4) Design and build a laboratory scale synthesis gas to ethanol reactor system evaluation of the process. In this final report, detailed explanations of the research challenges associated with this project are given. Progress of the syngas production from various biomass feedstocks and catalyst synthesis for upgrading the syngas to C 2-oxygenates is included. Reaction properties of the catalyst systems under different reaction conditions and different reactor set-ups are also presented and discussed. Specifically, the development and application of mesoporous silica and mesoporous carbon supports with rhodium nanoparticle catalysts and rhodium nanoparticle with manganese catalysts are described along with the significant material characterizations we completed. In addition to the synthesis and characterization, we described the activity and selectivity of catalysts in our micro-tubular reactor (small scale) and fixed bed reactor (larger scale). After years of hard work, we are proud of the work done on this project, and do believe that this work will provide a solid foundation for the future production of syngas from biomass and the development of heterogeneous catalysts for the syngas to C 2-oxygenate process and for the commercialization of this process. Potential future directions for this research are also discussed within the report.« less

  18. Development of low-loading, carbon monoxide tolerant PEM fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Haug, Andrew Thomas

    This work discusses the problems of, and potential solutions to, high catalyst cost of and carbon monoxide (CO) poisoning of the proton-exchange membrane fuel cell (PEMFC). As this is a comprehensive work, background on fuel cells and specifically PEMFCs is first presented. A discussion of the current status of PEMFCs is presented showing ongoing work for stationary, transportation, portable and military applications. This leads into two of the more significant problems preventing widespread commercialization of PEMFC technology: poisoning of the catalyst by CO and the cost of the catalyst. A thorough examination of CO poisoning of the PEMFC anode is presented from how CO comes to be present in the feed stream of the PEMFC anode to how it then poisons the PEMFC anode. The first work presented here describes the development of a novel CO tolerant anode (the Ruthenium filter). It shows that by placing a layer of carbon-supported Ruthenium catalyst between the Pt catalyst and the anode flow field to form a filter, tolerance to CO will be increased relative to a Pt:Ru alloy when oxygen is added to the anode fuel stream. Secondly, after an introduction to catalyst preparation techniques used today and a brief discussion of catalyst-cost in PEMFCs, it is shown how sputter-deposition technology may be used to create more kinetically active PEMFC catalyst electrodes versus standard ink-based techniques. The technologies of the Ru filter and sputter-deposition are then combined to create a low-loading, CO tolerant anode for the PEMFC. In the final work, the effect of the airbleed on CO oxidation is then modeled. In the concluding chapter, it is shown how the work presented can lead the PEMFC closer to large-scale commercialization. The Appendix A provides a detailed method by which PEMFC MEAs were manufactured using catalyst inks. This method served as the basis for all original works presented. Appendix B--F provide further background and information on the mathematical model developed, including a printout of the Fortran code used to generate the model results.

  19. Pt skin on AuCu intermetallic substrate: a strategy to maximize Pt utilization for fuel cells.

    PubMed

    Wang, Gongwei; Huang, Bing; Xiao, Li; Ren, Zhandong; Chen, Hao; Wang, Deli; Abruña, Héctor D; Lu, Juntao; Zhuang, Lin

    2014-07-09

    The dependence on Pt catalysts has been a major issue of proton-exchange membrane (PEM) fuel cells. Strategies to maximize the Pt utilization in catalysts include two main approaches: to put Pt atoms only at the catalyst surface and to further enhance the surface-specific catalytic activity (SA) of Pt. Thus far there has been no practical design that combines these two features into one single catalyst. Here we report a combined computational and experimental study on the design and implementation of Pt-skin catalysts with significantly improved SA toward the oxygen reduction reaction (ORR). Through screening, using density functional theory (DFT) calculations, a Pt-skin structure on AuCu(111) substrate, consisting of 1.5 monolayers of Pt, is found to have an appropriately weakened oxygen affinity, in comparison to that on Pt(111), which would be ideal for ORR catalysis. Such a structure is then realized by substituting the Cu atoms in three surface layers of AuCu intermetallic nanoparticles (AuCu iNPs) with Pt. The resulting Pt-skinned catalyst (denoted as Pt(S)AuCu iNPs) has been characterized in depth using synchrotron XRD, XPS, HRTEM, and HAADF-STEM/EDX, such that the Pt-skin structure is unambiguously identified. The thickness of the Pt skin was determined to be less than two atomic layers. Finally the catalytic activity of Pt(S)AuCu iNPs toward the ORR was measured via rotating disk electrode (RDE) voltammetry through which it was established that the SA was more than 2 times that of a commercial Pt/C catalyst. Taking into account the ultralow Pt loading in Pt(S)AuCu iNPs, the mass-specific catalytic activity (MA) was determined to be 0.56 A/mg(Pt)@0.9 V, a value that is well beyond the DOE 2017 target for ORR catalysts (0.44 A/mg(Pt)@0.9 V). These findings provide a strategic design and a realizable approach to high-performance and Pt-efficient catalysts for fuel cells.

  20. Selective phenol methylation to 2,6-dimethylphenol in a fluidized bed of iron-chromium mixed oxide catalyst with o-cresol circulation.

    PubMed

    Zukowski, Witold; Berkowicz, Gabriela; Baron, Jerzy; Kandefer, Stanisław; Jamanek, Dariusz; Szarlik, Stefan; Wielgosz, Zbigniew; Zielecka, Maria

    2014-01-01

    2,6-dimethylphenol (2,6-DMP) is a product of phenol methylation, especially important for the plastics industry. The process of phenol methylation in the gas phase is strongly exothermic. In order to ensure good temperature equalization in the catalyst bed, the process was carried out using a catalyst in the form of a fluidized bed - in particular, the commercial iron-chromium catalyst TZC-3/1. Synthesis of 2,6-dimethylphenol from phenol and methanol in fluidized bed of iron-chromium catalyst was carried out and the fluidization of the catalyst was examined. Stable state of fluidized bed of iron-chromium catalyst was achieved. The measured velocities allowed to determine the minimum flow of reactants, ensuring introduction of the catalyst bed in the reactor into the state of fluidization. Due to a high content of o-cresol in products of 2,6-dimethylphenol synthesis, circulation in the technological node was proposed. A series of syntheses with variable amount of o-cresol in the feedstock allowed to determine the parameters of stationary states. A stable work of technological node with o-cresol circulation is possible in the temperature range of350-380°C, and o-cresolin/phenolin molar ratio of more than 0.48. Synthesis of 2,6-DMP over the iron-chromium catalyst is characterized by more than 90% degree of phenol conversion. Moreover, the O-alkylation did not occur (which was confirmed by GC-MS analysis). By applying o-cresol circulation in the 2,6-DMP process, selectivity of more than 85% degree of 2,6-DMP was achieved. The participation levels of by-products: 2,4-DMP and 2,4,6-TMP were low. In the optimal conditions based on the highest yield of 2,6-DMP achieved in the technological node applying o-cresol circulation, there are 2%mol. of 2,4-DMP and 6%mol. of 2,4,6-TMP in the final mixture, whereas 2,4,6-TMP can be useful as a chain stopper and polymer's molar mass regulator during the polymerization of 2,6-DMP.

  1. Catalyst and Process Design for the Continuous Manufacture of Rare Sugar Alcohols by Epimerization-Hydrogenation of Aldoses.

    PubMed

    Lari, Giacomo M; Gröninger, Olivier G; Li, Qiang; Mondelli, Cecilia; López, Núria; Pérez-Ramírez, Javier

    2016-12-20

    Sugar alcohols are applied in the food, pharmaceutical, polymer, and fuel industries and are commonly obtained by reduction of the corresponding saccharides. In view of the rarity of some sugar substrates, epimerization of a readily available monosaccharide has been proposed as a solution, but an efficient catalytic system has not yet been identified. Herein, a molybdenum heteropolyacid-based catalyst is developed to transform glucose, arabinose, and xylose into less-abundant mannose, ribose, and lyxose, respectively. Adsorption of molybdic acid onto activated carbon followed by ion exchange to the cesium form limits leaching of the active phase, which greatly improves the catalyst stability over 24 h on stream. The hydrogenation of mixtures of epimers is studied over ruthenium catalysts, and it is found that the precursor to the desired polyol is advantageously converted with faster kinetics. This is explained by density functional theory on the basis of its more favorable adsorption on the metal surface and the lower energy barrier for the addition of a hydrogen atom to the primary carbon atom. Finally, different designs for a continuous process for the conversion of glucose into mannitol are studied, and it is uncovered that two reactors in series with one containing the epimerization catalyst and the other containing a mixture of the epimerization and hydrogenation catalysts increases the mannitol/sorbitol ratio to 1.5 from 1 for a single mixed-bed reactor. This opens a prospective route to the efficient valorization of renewables to added-value chemicals. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Catalysts and process developments for two-stage liquefaction. Final technical report, October 1, 1989--September 30, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cronauer, D.C.; Swanson, A.J.; Sajkowski, D.J.

    1992-12-31

    Research in this project centered upon developing and evaluating catalysts and process improvements for coal liquefaction in the two-stage, close-coupled catalytic process. The major results are summarized here and they are described in more detail under each Task. In tasks for coal pretreatment and beneficiation, it was shown for coal handling that drying of both lignite or subbituminous coals using warm air, vacuum oven or exposing to air for long time was detrimental to subsequent liquefaction. Both laboratory and bench-scale beneficiations indicated that in order to achieve increased liquefaction yield for Illinois No. 6 bituminous coal, size separation with inmore » sink-float technique should be used. For subbituminous coal, the best beneficiation was aqueous SO{sub 2} treatment, which reduced mineral matter. In the case of lignite, the fines should be rejected prior to aqueous SO{sub 2} treatment and sink-float gravity separation. In liquefying coals with supported catalysts in both first and second stages, coal conversion was highest (93%) with Illinois No. 6 coal, which also had the highest total liquid yield of 80%, however, the product contained unacceptably high level of resid (30%). Both low rank coals gave lower conversion (85--87%) and liquid yields (57--59%), but lighter products (no resid). The analysis of spent first stage catalysts indicated significant sodium and calcium deposits causing severe deactivation. The second stage catalysts were in better condition showing high surface areas and low coke and metal deposits. The use of dispersed catalyst in the first stage would combat the severe deactivation.« less

  3. High-throughput screening of nanoparticle catalysts made by flame spray pyrolysis as hydrocarbon/NO oxidation catalysts.

    PubMed

    Weidenhof, B; Reiser, M; Stöwe, K; Maier, W F; Kim, M; Azurdia, J; Gulari, E; Seker, E; Barks, A; Laine, R M

    2009-07-08

    We describe here the use of liquid-feed flame spray pyrolysis (LF-FSP) to produce high surface area, nonporous, mixed-metal oxide nanopowders that were subsequently subjected to high-throughput screening to assess a set of materials for deNO(x) catalysis and hydrocarbon combustion. We were able to easily screen some 40 LF-FSP produced materials. LF-FSP produces nanopowders that very often consist of kinetic rather than thermodynamic phases. Such materials are difficult to access or are completely inaccessible via traditional catalyst preparation methods. Indeed, our studies identified a set of Ce(1-x)Zr(x)O(2) and Al(2)O(3)-Ce(1-x)Zr(x)O(2) nanopowders that offer surprisingly good activities for both NO(x) reduction and propane/propene oxidation both in high-throughput screening and in continuous flow catalytic studies. All of these catalysts offer activities comparable to traditional Pt/Al(2)O(3) catalysts but without Pt. Thus, although Pt-free, they are quite active for several extremely important emission control reactions, especially considering that these are only first generation materials. Indeed, efforts to dope the active catalysts with Pt actually led to lower catalytic activities. Thus the potential exists to completely change the materials used in emission control devices, especially for high-temperature reactions as these materials have already been exposed to 1500 degrees C; however, much research must be done before this potential is verified.

  4. Diffusion-regulated phase-transfer catalysis for atom transfer radical polymerization of methyl methacrylate in an aqueous/organic biphasic system.

    PubMed

    Ding, Mingqiang; Jiang, Xiaowu; Peng, Jinying; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2015-03-01

    A concept based on diffusion-regulated phase-transfer catalysis (DRPTC) in an aqueous-organic biphasic system with copper-mediated initiators for continuous activator regeneration is successfully developed for atom transfer radical polymerization (ICAR ATRP) (termed DRPTC-based ICAR ATRP here), using methyl methacrylate (MMA) as a model monomer, ethyl α-bromophenylacetate (EBrPA) as an initiator, and tris(2-pyridylmethyl)amine (TPMA) as a ligand. In this system, the monomer and initiating species in toluene (organic phase) and the catalyst complexes in water (aqueous phase) are simply mixed under stirring at room temperature. The trace catalyst complexes transfer into the organic phase via diffusion to trigger ICAR ATRP of MMA with ppm level catalyst content once the system is heated to the polymerization temperature (75 °C). It is found that well-defined PMMA with controlled molecular weights and narrow molecular weight distributions can be obtained easily. Furthermore, the polymerization can be conducted in the presence of limited amounts of air without using tedious degassed procedures. After cooling to room temperature, the upper organic phase is decanted and the lower aqueous phase is reused for another 10 recycling turnovers with ultra low loss of catalyst and ligand loading. At the same time, all the recycled catalyst complexes retain nearly perfect catalytic activity and controllability, indicating a facile and economical strategy for catalyst removal and recycling. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers: Innovative Clean Coal Technology (ICCT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-05-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the amonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japanmore » and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO, and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal. The demonstration will be performed at Gulf Power Company's Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project will be funded by the US Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), and the Electric Power Research Institute.« less

  6. [Towards computer-aided catalyst design: Three effective core potential studies of C-H activation]. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-31

    Research in the initial grant period focused on computational studies relevant to the selective activation of methane, the prime component of natural gas. Reaction coordinates for methane activation by experimental models were delineated, as well as the bonding and structure of complexes that effect this important reaction. This research, highlighted in the following sections, also provided the impetus for further development, and application of methods for modeling metal-containing catalysts. Sections of the report describe the following: methane activation by multiple-bonded transition metal complexes; computational lanthanide chemistry; and methane activation by non-imido, multiple-bonded ligands.

  7. Pd-Metalated Conjugated Nanoporous Polycarbazoles for Additive-Free Cyanation of Aryl Halides: Boosting Catalytic Efficiency through Spatial Modulation

    DOE PAGES

    Ding, Shunmin; Tian, Chengcheng; Zhu, Xiang; ...

    2017-03-23

    Transition-metal-catalyzed cyanation of aryl halides is a common route to benzonitriles, which are integral to many industrial procedures. However, traditional homogeneous catalysts for such processes are expensive and suffer poor recyclability, so a heterogeneous analogue is highly desired. A novel spatial modulation approach has been developed in this paper to fabricate a heterogeneous Pd-metalated nanoporous polymer, which catalyzes the cyanation of aryl halides without need for ligands. Finally, the catalyst displays high activity in the synthesis of benzonitriles, including high product yields, excellent stability and recycling, and broad functional-group tolerance.

  8. Computational predictions of stereochemistry in asymmetric thiazolium- and triazolium-catalyzed benzoin condensations.

    PubMed

    Dudding, Travis; Houk, Kendall N

    2004-04-20

    The catalytic asymmetric thiazolium- and triazolium-catalyzed benzoin condensations of aldehydes and ketones were studied with computational methods. Transition-state geometries were optimized by using Morokuma's IMOMO [integrated MO (molecular orbital) + MO method] variation of ONIOM (n-layered integrated molecular orbital method) with a combination of B3LYP/6-31G(d) and AM1 levels of theory, and final transition-state energies were computed with single-point B3LYP/6-31G(d) calculations. Correlations between experiment and theory were found, and the origins of stereoselection were identified. Thiazolium catalysts were predicted to be less selective then triazolium catalysts, a trend also found experimentally.

  9. Preparation of amorphous sulfide sieves

    DOEpatents

    Siadati, Mohammad H.; Alonso, Gabriel; Chianelli, Russell R.

    2006-11-07

    The present invention involves methods and compositions for synthesizing catalysts/porous materials. In some embodiments, the resulting materials are amorphous sulfide sieves that can be mass-produced for a variety of uses. In some embodiments, methods of the invention concern any suitable precursor (such as thiomolybdate salt) that is exposed to a high pressure pre-compaction, if need be. For instance, in some cases the final bulk shape (but highly porous) may be same as the original bulk shape. The compacted/uncompacted precursor is then subjected to an open-flow hot isostatic pressing, which causes the precursor to decompose and convert to a highly porous material/catalyst.

  10. EVALUATION OF SCR CATALYSTS FOR COMBINED CONTROL OF NOX AND MERCURY

    EPA Science Inventory

    The report documents two-task, bench- and pilot-scale research on the effect of selective catalytic reduction (SCR) catalysts on mercury speciation in Illinois and Powder River Basin (PRB) coal combustion flue gases. In task I, a bench-scale reactor was used to study the oxidatio...

  11. 40 CFR 60.107 - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in the gases discharged to the atmosphere from any fluid catalytic cracking unit catalyst regenerator... concurrent with a startup, shutdown, or malfunction of the fluid catalytic cracking unit or control system... cracking unit catalyst regenerator for which the owner or operator seeks to comply with § 60.104(b)(1) is...

  12. 40 CFR 60.107 - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in the gases discharged to the atmosphere from any fluid catalytic cracking unit catalyst regenerator... concurrent with a startup, shutdown, or malfunction of the fluid catalytic cracking unit or control system... cracking unit catalyst regenerator for which the owner or operator seeks to comply with § 60.104(b)(1) is...

  13. Dependence of crystal size on the catalytic performance of a porous coordination polymer.

    PubMed

    Kiyonaga, Tomokazu; Higuchi, Masakazu; Kajiwara, Takashi; Takashima, Yohei; Duan, Jingui; Nagashima, Kazuro; Kitagawa, Susumu

    2015-02-14

    Submicrosized MOF-76(Yb) exhibits a higher catalytic performance for esterification than microsized MOF-76(Yb). Control of the crystal size of porous heterogeneous catalysts, such as PCP/MOFs, offers a promising approach to fabricating high-performance catalysts based on accessibility to the internal catalytic sites.

  14. Growth of vertically aligned carbon nanofibers by low-pressure inductively coupled plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Caughman, J. B. O.; Baylor, L. R.; Guillorn, M. A.; Merkulov, V. I.; Lowndes, D. H.; Allard, L. F.

    2003-08-01

    Vertically aligned carbon nanofibers (VACNFs) have been grown using a low-pressure, plasma-enhanced, chemical vapor deposition process. The nanofibers are grown from a nickel catalyst that can be patterned to form arrays of individual, isolated VACNFs. The fibers are grown at pressures below 100 mTorr, using an inductively coupled plasma source with a radio-frequency bias on the sample substrate to allow for independent control of the ion energies. Plasma conditions are related to growth results by comparing optical emission from the plasma to the physical structure of the nanofibers. We find that the ratio of etching species in the plasma to depositing species is critical to the final shape of the carbon structures that are formed.

  15. Bio-functionalization of conductive textile materials with redox enzymes

    NASA Astrophysics Data System (ADS)

    Kahoush, M.; Behary, N.; Cayla, A.; Nierstrasz, V.

    2017-10-01

    In recent years, immobilization of oxidoreductase enzymes on electrically conductive materials has played an important role in the development of sustainable bio-technologies. Immobilization process allows the re-use of these bio-catalysts in their final applications. In this study, different methods of immobilizing redox enzymes on conductive textile materials were used to produce bio-functionalized electrodes. These electrodes can be used for bio-processes and bio-sensing in eco-designed applications in domains such as medicine and pollution control. However, the main challenge facing the stability and durability of these electrodes is the maintenance of the enzymatic activity after the immobilization. Hence, preventing the enzyme’s denaturation and leaching is a critical factor for the success of the immobilization processes.

  16. Enhancement of oxygen reduction reaction activities by Pt nanoclusters decorated on ordered mesoporous porphyrinic carbons

    DOE PAGES

    Sun-Mi Hwang; Choi, YongMan; Kim, Min Gyu; ...

    2016-03-08

    The high cost of Pt-based membrane electrode assemblies (MEAs) is a critical hurdle for the commercialization of polymer electrolyte fuel cells (PEFCs). Recently, non-precious metal-based catalysts (NPMCs) have demonstrated much enhanced activity but their oxygen reduction reaction (ORR) activity is still inferior to that of Pt-based catalysts resulting in a much thicker electrode in the MEA. For the reduction of mass transport and ohmic overpotential we adopted a new concept of catalyst that combines an ultra-low amount of Pt nanoclusters with metal–nitrogen (M–Nx) doped ordered mesoporous porphyrinic carbon (FeCo–OMPC(L)). The 5 wt% Pt/FeCo–OMPC(L) showed a 2-fold enhancement in activities comparedmore » to a higher loading of Pt. Our experimental results supported by first-principles calculations indicate that a trace amount of Pt nanoclusters on FeCo–OMPC(L) significantly enhances the ORR activity due to their electronic effect as well as geometric effect from the reduced active sites. Finally, in terms of fuel cell commercialization, this class of catalysts is a promising candidate due to the limited use of Pt in the MEA.« less

  17. InP Nanoflag Growth from a Nanowire Template by in Situ Catalyst Manipulation.

    PubMed

    Kelrich, Alexander; Sorias, Ofir; Calahorra, Yonatan; Kauffmann, Yaron; Gladstone, Ran; Cohen, Shimon; Orenstein, Meir; Ritter, Dan

    2016-04-13

    Quasi-two-dimensional semiconductor materials are desirable for electronic, photonic, and energy conversion applications as well as fundamental science. We report on the synthesis of indium phosphide flag-like nanostructures by epitaxial growth on a nanowire template at 95% yield. The technique is based on in situ catalyst unpinning from the top of the nanowire and its induced migration along the nanowire sidewall. Investigation of the mechanism responsible for catalyst movement shows that its final position is determined by the structural defect density along the nanowire. The crystal structure of the "flagpole" nanowire is epitaxially transferred to the nanoflag. Pure wurtzite InP nanomembranes with just a single stacking fault originating from the defect in the flagpole that pinned the catalyst were obtained. Optical characterization shows efficient highly polarized photoluminescence at room temperature from a single nanoflag with up to 90% degree of linear polarization. Electric field intensity enhancement of the incident light was calculated to be 57, concentrated at the nanoflag tip. The presented growth method is general and thus can be employed for achieving similar nanostructures in other III-V semiconductor material systems with potential applications in active nanophotonics.

  18. Current advances and trends in electro-Fenton process using heterogeneous catalysts - A review.

    PubMed

    Poza-Nogueiras, Verónica; Rosales, Emilio; Pazos, Marta; Sanromán, M Ángeles

    2018-06-01

    Over the last decades, advanced oxidation processes have often been used alone, or combined with other techniques, for remediation of ground and surface water pollutants. The application of heterogeneous catalysis to electrochemical advanced oxidation processes is especially useful due to its efficiency and environmental safety. Among those processes, electro-Fenton stands out as the one in which heterogeneous catalysis has been broadly applied. Thus, this review has introduced an up-to-date collation of the current knowledge of the heterogeneous electro-Fenton process, highlighting recent advances in the use of different catalysts such as iron minerals (pyrite, magnetite or goethite), prepared catalysts by the load of metals in inorganic and organic materials, nanoparticles, and the inclusion of catalysts on the cathode. The effects of physical-chemical parameters as well as the mechanisms involved are critically assessed. Finally, although the utilization of this process to remediation of wastewater overwhelmingly outnumber other utilities, several applications have been described in the context of regeneration of adsorbent or the remediation of soils as clear examples of the feasibility of the electro-Fenton process to solve different environmental problems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Enhancement of plasma generation in catalyst pores with different shapes

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Ru; Neyts, Erik C.; Bogaerts, Annemie

    2018-05-01

    Plasma generation inside catalyst pores is of utmost importance for plasma catalysis, as the existence of plasma species inside the pores affects the active surface area of the catalyst available to the plasma species for catalytic reactions. In this paper, the electric field enhancement, and thus the plasma production inside catalyst pores with different pore shapes is studied with a two-dimensional fluid model. The results indicate that the electric field will be significantly enhanced near tip-like structures. In a conical pore with small opening, the strongest electric field appears at the opening and bottom corners of the pore, giving rise to a prominent ionization rate throughout the pore. For a cylindrical pore, the electric field is only enhanced at the bottom corners of the pore, with lower absolute value, and thus the ionization rate inside the pore is only slightly enhanced. Finally, in a conical pore with large opening, the electric field is characterized by a maximum at the bottom of the pore, yielding a similar behavior for the ionization rate. These results demonstrate that the shape of the pore has a significantly influence on the electric field enhancement, and thus modifies the plasma properties.

  20. Design of active and stable Co-Mo-S x chalcogels as pH-universal catalyst for the hydrogen evolution reaction

    DOE PAGES

    Staszak-Jirkovský, Jakub; Malliakas, Christos D.; Lopes, Pietro P.; ...

    2015-11-30

    Three of the fundamental catalytic limitations that have plagued the electrochemical production of hydrogen for decades still remain: low efficiency, short lifetime of catalysts and a lack of low-cost materials. Here, we address these three challenges by establishing and exploring an intimate functional link between the reactivity and stability of crystalline (CoS 2 and MoS 2) and amorphous (CoS x and MoS x) hydrogen evolution catalysts. We propose that Co 2+ and Mo 4+ centers promote the initial discharge of water (alkaline solutions) or hydronium ions (acid solutions). We establish that although CoS x materials are more active than MoSmore » x they are also less stable, suggesting that the active sites are defects formed after dissolution of Co and Mo cations. Finally, by combining the higher activity of CoS x building blocks with the higher stability of MoS x units into a compact and robust CoMoS x structure, we are able to design a low-cost alternative to noble metal catalysts for efficient electrocatalytic production of hydrogen in both alkaline and acidic environments.« less

  1. A simple way to prepare Au@polypyrrole/Fe3O4 hollow capsules with high stability and their application in catalytic reduction of methylene blue dye

    NASA Astrophysics Data System (ADS)

    Yao, Tongjie; Cui, Tieyu; Wang, Hao; Xu, Linxu; Cui, Fang; Wu, Jie

    2014-06-01

    Metal nanoparticles are promising catalysts for dye degradation in treating wastewater despite the challenges of recycling and stability. In this study, we have introduced a simple way to prepare Au@polypyrrole (PPy)/Fe3O4 catalysts with Au nanoparticles embedded in a PPy/Fe3O4 capsule shell. The PPy/Fe3O4 capsule shell used as a support was constructed in one-step, which not only dramatically simplified the preparation process, but also easily controlled the magnetic properties of the catalysts through adjusting the dosage of FeCl2.4H2O. The component Au nanoparticles could catalyze the reduction of methylene blue dye with NaBH4 as a reducing agent and the reaction rate constant was calculated through the pseudo-first-order reaction equation. The Fe3O4 nanoparticles permitted quick recycling of the catalysts with a magnet due to their room-temperature superparamagnetic properties; therefore, the catalysts exhibited good reusability. In addition to catalytic activity and reusability, stability is also an important property for catalysts. Because both Au and Fe3O4 nanoparticles were wrapped in the PPy shell, compared with precursor polystyrene/Au composites and bare Fe3O4 nanoparticles, the stability of Au@PPy/Fe3O4 hollow capsules was greatly enhanced. Since the current method is simple and flexible to create recyclable catalysts with high stability, it would promote the practicability of metal nanoparticle catalysts in industrial polluted water treatment.Metal nanoparticles are promising catalysts for dye degradation in treating wastewater despite the challenges of recycling and stability. In this study, we have introduced a simple way to prepare Au@polypyrrole (PPy)/Fe3O4 catalysts with Au nanoparticles embedded in a PPy/Fe3O4 capsule shell. The PPy/Fe3O4 capsule shell used as a support was constructed in one-step, which not only dramatically simplified the preparation process, but also easily controlled the magnetic properties of the catalysts through adjusting the dosage of FeCl2.4H2O. The component Au nanoparticles could catalyze the reduction of methylene blue dye with NaBH4 as a reducing agent and the reaction rate constant was calculated through the pseudo-first-order reaction equation. The Fe3O4 nanoparticles permitted quick recycling of the catalysts with a magnet due to their room-temperature superparamagnetic properties; therefore, the catalysts exhibited good reusability. In addition to catalytic activity and reusability, stability is also an important property for catalysts. Because both Au and Fe3O4 nanoparticles were wrapped in the PPy shell, compared with precursor polystyrene/Au composites and bare Fe3O4 nanoparticles, the stability of Au@PPy/Fe3O4 hollow capsules was greatly enhanced. Since the current method is simple and flexible to create recyclable catalysts with high stability, it would promote the practicability of metal nanoparticle catalysts in industrial polluted water treatment. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00023d

  2. Dispersed metal cluster catalysts by design. Synthesis, characterization, structure, and performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arslan, Ilke; Dixon, David A.; Gates, Bruce C.

    2015-09-30

    To understand the class of metal cluster catalysts better and to lay a foundation for the prediction of properties leading to improved catalysts, we have synthesized metal catalysts with well-defined structures and varied the cluster structures and compositions systematically—including the ligands bonded to the metals. These ligands include supports and bulky organics that are being tuned to control both the electron transfer to or from the metal and the accessibility of reactants to influence catalytic properties. We have developed novel syntheses to prepare these well-defined catalysts with atomic-scale control the environment by choice and placement of ligands and applied state-of-themore » art spectroscopic, microscopic, and computational methods to determine their structures, reactivities, and catalytic properties. The ligands range from nearly flat MgO surfaces to enveloping zeolites to bulky calixarenes to provide controlled coverages of the metal clusters, while also enforcing unprecedented degrees of coordinative unsaturation at the metal site—thereby facilitating bonding and catalysis events at exposed metal atoms. With this wide range of ligand properties and our arsenal of characterization tools, we worked to achieve a deep, fundamental understanding of how to synthesize robust supported and ligand-modified metal clusters with controlled catalytic properties, thereby bridging the gap between active site structure and function in unsupported and supported metal catalysts. We used methods of organometallic and inorganic chemistry combined with surface chemistry for the precise synthesis of metal clusters and nanoparticles, characterizing them at various stages of preparation and under various conditions (including catalytic reaction conditions) and determining their structures and reactivities and how their catalytic properties depend on their compositions and structures. Key characterization methods included IR, NMR, and EXAFS spectroscopies to identify ligands on the metals and their reactions; EXAFS spectroscopy and high-resolution STEM to determine cluster framework structures and changes resulting from reactant treatment and locations of metal atoms on support surfaces; X-ray diffraction crystallography to determine full structures of cluster-ligand combinations in the absence of a support, and TEM with tomographic methods to observe individual metal atoms and determine three-dimensional structures of catalysts. Electronic structure calculations were used to verify and interpret spectra and extend the understanding of reactivity beyond what is measurable experimentally.« less

  3. Hydrogen production by aqueous phase reforming of light oxygenated hydrocarbons

    NASA Astrophysics Data System (ADS)

    Shabaker, John William

    Aqueous phase reforming (APR) of renewable oxygenated hydrocarbons (e.g., methanol, ethylene glycol, glycerol, sorbitol, glucose) is a promising new technology for the catalytic production of high-purity hydrogen for fuel cells and chemical processing. Supported Pt catalysts are effective catalysts for stable and rapid H2 production at temperatures near 500 K (H 2 turnover frequencies near 10 min-1). Inexpensive Raney Ni-based catalysts have been developed using a combination of fundamental and high-throughput studies that have similar catalytic properties as Pt-based materials. Promotion of Raney Ni with Sn by controlled surface reaction of organometallic tin compounds is necessary to control formation of thermodynamically-favorable alkane byproducts. Detailed characterization by Mossbauer spectroscopy, electron microscopy, adsorption studies, and x-ray photoelectron spectroscopy (XPS/ESCA) has shown that NiSn alloys are formed during heat treatment, and may be responsible for enhanced stability and selectivity for hydrogen production. Detailed kinetic studies led to the development of a kinetic mechanism for the APR reaction on Pt and NiSn catalysts, in which the oxygenate decomposes through C--H and O--H cleavage, followed by C--C cleavage and water gas shift of the CO intermediate. The rate limiting step on Pt surfaces is the initial dehydrogenation, while C--C cleavage appears rate limiting over NiSn catalysts. Tin promotion of Raney Ni catalysts suppresses C--O bond scission reactions that lead to alkane formation without inhibiting fast C--C and C--H cleavage steps that are necessary for high rates of reforming. A window of operating temperature, pressure, and reactor residence time has been identified for use of the inexpensive NiSn catalysts as a Pt substitute. Concentrated feed stocks and aggressive pretreatments have been found to counteract catalyst deactivation by sintering in the hydrothermal APR environment and allow stable, long-term production of H2 over Raney-NiSn materials.

  4. In-line localized monitoring of catalyst activity in selective catalytic NO.sub.x reduction systems

    DOEpatents

    Muzio, Lawrence J [Laguna Niguel, CA; Smith, Randall A [Huntington Beach, CA

    2009-12-22

    Localized catalyst activity in an SCR unit for controlling emissions from a boiler, power plant, or any facility that generates NO.sub.x-containing flue gases is monitored by one or more modules that operate on-line without disrupting the normal operation of the facility. Each module is positioned over a designated lateral area of one of the catalyst beds in the SCR unit, and supplies ammonia, urea, or other suitable reductant to the catalyst in the designated area at a rate that produces an excess of the reductant over NO.sub.x on a molar basis through the designated area. Sampling probes upstream and downstream of the designated area draw samples of the gas stream for NO.sub.x analysis, and the catalyst activity is determined from the difference in NO.sub.x levels between the two probes.

  5. Molecular catalysis science: Perspective on unifying the fields of catalysis.

    PubMed

    Ye, Rong; Hurlburt, Tyler J; Sabyrov, Kairat; Alayoglu, Selim; Somorjai, Gabor A

    2016-05-10

    Colloidal chemistry is used to control the size, shape, morphology, and composition of metal nanoparticles. Model catalysts as such are applied to catalytic transformations in the three types of catalysts: heterogeneous, homogeneous, and enzymatic. Real-time dynamics of oxidation state, coordination, and bonding of nanoparticle catalysts are put under the microscope using surface techniques such as sum-frequency generation vibrational spectroscopy and ambient pressure X-ray photoelectron spectroscopy under catalytically relevant conditions. It was demonstrated that catalytic behavior and trends are strongly tied to oxidation state, the coordination number and crystallographic orientation of metal sites, and bonding and orientation of surface adsorbates. It was also found that catalytic performance can be tuned by carefully designing and fabricating catalysts from the bottom up. Homogeneous and heterogeneous catalysts, and likely enzymes, behave similarly at the molecular level. Unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis.

  6. Molecular catalysis science: Perspective on unifying the fields of catalysis

    PubMed Central

    Ye, Rong; Hurlburt, Tyler J.; Sabyrov, Kairat; Alayoglu, Selim; Somorjai, Gabor A.

    2016-01-01

    Colloidal chemistry is used to control the size, shape, morphology, and composition of metal nanoparticles. Model catalysts as such are applied to catalytic transformations in the three types of catalysts: heterogeneous, homogeneous, and enzymatic. Real-time dynamics of oxidation state, coordination, and bonding of nanoparticle catalysts are put under the microscope using surface techniques such as sum-frequency generation vibrational spectroscopy and ambient pressure X-ray photoelectron spectroscopy under catalytically relevant conditions. It was demonstrated that catalytic behavior and trends are strongly tied to oxidation state, the coordination number and crystallographic orientation of metal sites, and bonding and orientation of surface adsorbates. It was also found that catalytic performance can be tuned by carefully designing and fabricating catalysts from the bottom up. Homogeneous and heterogeneous catalysts, and likely enzymes, behave similarly at the molecular level. Unifying the fields of catalysis is the key to achieving the goal of 100% selectivity in catalysis. PMID:27114536

  7. Ambient temperature NO oxidation over Cr-based amorphous mixed oxide catalysts: effects from the second oxide components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Aiyong; Lin, Bo; Zhang, Hanlei

    2017-01-01

    Three series of Cr-based mixed oxides (Cr-Co, Cr-Fe, and Cr-Ni oxides) with high specific surface areas and amorphous textures were synthesized using a novel sol-gel method. These mixed oxides, in comparison to their pure metal oxide (CrOx, Co3O4, FeOx and NiO) counterparts, display enhanced performance for catalytic oxidation of low-concentration NO at room temperature. The best performing catalysts achieve 100% NO conversion for ~30 h of operation at a high space velocity of 45,000 ml g-1 h-1. The amorphous structure was found to be critical for these catalysts to maintain high activity and durability. Control of Cr/M (M=Co, Fe andmore » Ni) molar ratio, nitrate precursor decomposition temperature and catalyst calcination temperature was key to the synthesis of these highly active catalysts.« less

  8. CO-oxidation catalysts: Low-temperature CO oxidation over Noble-Metal Reducible Oxide (NMRO) catalysts

    NASA Technical Reports Server (NTRS)

    Herz, Richard K.

    1990-01-01

    Oxidation of CO to CO2 is an important reaction technologically and environmentally and a complex and interesting reaction scientifically. In most cases, the reaction is carried out in order to remove CO as an environmental hazard. A major application of heterogeneous catalysts is catalytic oxidation of CO in the exhaust of combustion devices. The reaction over catalysts in exhaust gas is fast and often mass-transfer-limited since exhaust gases are hot and O2/CO ratios are high. The main challenges to catalyst designers are to control thermal sintering and chemical poisoning of the active materials. The effect of the noble metal on the oxide is discussed, followed by the effect of the oxide on the noble metal, the interaction of the noble metal and oxide to form unique catalytic sites, and the possible ways in which the CO oxidation reaction is catalyzed by the NMRO materials.

  9. Torrefaction reduction of coke formation on catalysts used in esterification and cracking of biofuels from pyrolysed lignocellulosic feedstocks

    DOEpatents

    Kastner, James R; Mani, Sudhagar; Hilten, Roger; Das, Keshav C

    2015-11-04

    A bio-oil production process involving torrefaction pretreatment, catalytic esterification, pyrolysis, and secondary catalytic processing significantly reduces yields of reactor char, catalyst coke, and catalyst tar relative to the best-case conditions using non-torrefied feedstock. The reduction in coke as a result of torrefaction was 28.5% relative to the respective control for slow pyrolysis bio-oil upgrading. In fast pyrolysis bio-oil processing, the greatest reduction in coke was 34.9%. Torrefaction at 275.degree. C. reduced levels of acid products including acetic acid and formic acid in the bio-oil, which reduced catalyst coking and increased catalyst effectiveness and aromatic hydrocarbon yields in the upgraded oils. The process of bio-oil generation further comprises a catalytic esterification of acids and aldehydes to generate such as ethyl levulinate from lignified biomass feedstock.

  10. The first chiral diene-based metal-organic frameworks for highly enantioselective carbon-carbon bond formation reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawano, Takahiro; Ji, Pengfei; McIsaac, Alexandra R.

    2016-02-01

    We have designed the first chiral diene-based metal–organic framework (MOF), E₂-MOF, and postsynthetically metalated E₂-MOF with Rh(I) complexes to afford highly active and enantioselective single-site solid catalysts for C–C bond formation reactions. Treatment of E₂-MOF with [RhCl(C₂H₄)₂]₂ led to a highly enantioselective catalyst for 1,4-additions of arylboronic acids to α,β-unsaturated ketones, whereas treatment of E₂-MOF with Rh(acac)(C₂H₄)₂ afforded a highly efficient catalyst for the asymmetric 1,2-additions of arylboronic acids to aldimines. Interestingly, E₂-MOF·Rh(acac) showed higher activity and enantioselectivity than the homogeneous control catalyst, likely due to the formation of a true single-site catalyst in the MOF. E₂-MOF·Rh(acac) was also successfullymore » recycled and reused at least seven times without loss of yield and enantioselectivity.« less

  11. Reticulation of Aqueous Polyurethane Systems Controlled by DSC Method

    PubMed Central

    Cakic, Suzana; Lacnjevac, Caslav; Rajkovic, Milos B.; Raskovic, Ljiljana; Stamenkovic, Jakov

    2006-01-01

    The DSC method has been employed to monitor the kinetics of reticulation of aqueous polyurethane systems without catalysts, and with the commercial catalyst of zirconium (CAT®XC-6212) and the highly selective manganese catalyst, the complex Mn(III)-diacetylacetonemaleinate (MAM). Among the polyol components, the acrylic emulsions were used for reticulation in this research, and as suitable reticulation agents the water emulsible aliphatic polyisocyanates based on hexamethylendoisocyanate with the different contents of NCO-groups were employed. On the basis of DSC analysis, applying the methods of Kissinger, Freeman-Carroll and Crane-Ellerstein the pseudo kinetic parameters of the reticulation reaction of aqueous systems were determined. The temperature of the examination ranged from 50°C to 450°C with the heat rate of 0.5°C/min. The reduction of the activation energy and the increase of the standard deviation indicate the catalytic action of the selective catalysts of zirconium and manganese. The impact of the catalysts on the reduction of the activation energy is the strongest when using the catalysts of manganese and applying all the three afore-said methods. The least aberrations among the stated methods in defining the kinetic parameters were obtained by using the manganese catalyst.

  12. Selective Ring Opening of 1-Methylnaphthalene Over NiW-Supported Catalyst Using Dealuminated Beta Zeolite.

    PubMed

    Kim, Eun-Sang; Lee, You-Jin; Kim, Jeong-Rang; Kim, Joo-Wan; Kim, Tae-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Lee, Chang-Ha; Jeong, Soon-Yong

    2016-02-01

    Nanoporous Beta zeolite was dealuminated by weak acid treatment for reducing the acidity. Bi-functional catalysts were prepared using commercial Beta zeolites and the dealuminated zeolites for acidic function, NiW for metallic function. 1-Methylnaphthalene was selected as a model compound for multi-ring aromatics in heavy oil, and its selective ring opening reaction has been investigated using the prepared bi-functional catalysts with different acidity in fixed bed reaction system. The dealuminated Beta zeolites, which crystal structure and nanoporosity were maintained, showed the higher SiO2/Al2O3 ratio and smaller acidity than their original zeolite. NiW-supported catalyst using the dealuminated Beta zeolite with SiO2/Al203 mole ratio of 55 showed the highest performance for the selective ring opening. The acidity of catalyst seemed to play an important role as active sites for the selective ring opening of 1-methylnaphthalene but there should be some optimum catalyst acidity for the reaction. The acidity of Beta zeolite could be controlled by the acid treatment and the catalyst with the optimum acidity for the selective ring opening could be prepared.

  13. Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells.

    PubMed

    Huang, Jianjian; Zhu, Nengwu; Yang, Tingting; Zhang, Taiping; Wu, Pingxiao; Dang, Zhi

    2015-10-15

    Comparing with the precious metal catalysts, non-precious metal catalysts were preferred to use in microbial fuel cells (MFCs) due to the low cost and high oxygen reduction reaction (ORR) efficiency. In this study, the transmission electron microscope and X-ray diffraction as well as Raman investigation revealed that the prepared nanoscale NiO was attached on the surface of CNT. Cyclic voltammogram and rotating ring-disk electrode tests showed that the NiO/CNT composite catalyst had an apparent oxygen reduction peak and 3.5 electron transfer pathway was acquired under oxygen atmosphere. The catalyst performance was highly dependent on the percentage of NiO in the CNT nanocomposites. When 77% NiO/CNT nano-sized composite was applied as cathode catalyst in membrane free single-chamber air cathode MFC, a maximum power density of 670 mW/m(2) and 0.772 V of OCV was obtained. Moreover, the MFC with pure NiO (control) could not achieve more than 0.1 V. All findings suggested that NiO/CNT could be a potential cathode catalyst for ORR in MFCs. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Analysis of cellular adhesion on superhydrophobic and superhydrophilic vertically aligned carbon nanotube scaffolds.

    PubMed

    Machado, M M; Lobo, A O; Marciano, F R; Corat, E J; Corat, M A F

    2015-03-01

    We analyzed GFP cells after 24h cultivated on superhydrophilic vertically aligned carbon nanotube scaffolds. We produced two different densities of VACNT scaffolds on Ti using Ni or Fe catalysts. A simple and fast oxygen plasma treatment promoted the superhydrophilicity of them. We used five different substrates, such as: as-grown VACNT produced using Ni as catalyst (Ni), as-grown VACNT produced using Fe as catalyst (Fe), VACNT-O produced using Ni as catalyst (NiO), VACNT-O produced using Fe as catalyst (FeO) and Ti (control). The 4',6-diamidino-2-phenylindole reagent nuclei stained the adherent cells cultivated on five different analyzed scaffolds. We used fluorescence microscopy for image collect, ImageJ® to count adhered cell and GraphPad Prism 5® for statistical analysis. We demonstrated in crescent order: Fe, Ni, NiO, FeO and Ti scaffolds that had an improved cellular adhesion. Oxygen treatment associated to high VACNT density (group FeO) presented significantly superior cell adhesion up to 24h. However, they do not show significant differences compared with Ti substrates (control). We demonstrated that all the analyzed substrates were nontoxic. Also, we proposed that the density and hydrophilicity influenced the cell adhesion behavior. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Sol-Gel Process for Making Pt-Ru Fuel-Cell Catalysts

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Valdez, Thomas; Kumta, Prashant; Kim, Y.

    2005-01-01

    A sol-gel process has been developed as a superior alternative to a prior process for making platinum-ruthenium alloy catalysts for electro-oxidation of methanol in fuel cells. The starting materials in the prior process are chloride salts of platinum and ruthenium. The process involves multiple steps, is time-consuming, and yields a Pt-Ru product that has relatively low specific surface area and contains some chloride residue. Low specific surface area translates to incomplete utilization of the catalytic activity that might otherwise be available, while chloride residue further reduces catalytic activity ("poisons" the catalyst). In contrast, the sol-gel process involves fewer steps and less time, does not leave chloride residue, and yields a product of greater specific area and, hence, greater catalytic activity. In this sol-gel process (see figure), the starting materials are platinum(II) acetylacetonate [Pt(C5H7O2)2, also denoted Pt-acac] and ruthenium(III) acetylacetonate [Ru(C5H7O2)3, also denoted Ru-acac]. First, Pt-acac and Ru-acac are dissolved in acetone at the desired concentrations (typically, 0.00338 moles of each salt per 100 mL of acetone) at a temperature of 50 C. A solution of 25 percent tetramethylammonium hydroxide [(CH3)4NOH, also denoted TMAH] in methanol is added to the Pt-acac/Ruacac/ acetone solution to act as a high-molecular-weight hydrolyzing agent. The addition of the TMAH counteracts the undesired tendency of Pt-acac and Ru-acac to precipitate as separate phases during the subsequent evaporation of the solvent, thereby helping to yield a desired homogeneous amorphous gel. The solution is stirred for 10 minutes, then the solvent is evaporated until the solution becomes viscous, eventually transforming into a gel. The viscous gel is dried in air at a temperature of 170 C for about 10 hours. The dried gel is crushed to make a powder that is the immediate precursor of the final catalytic product. The precursor powder is converted to the final product in a controlled-atmosphere heat treatment. Desirably, the final product is a phase-pure (Pt phase only) Pt-Ru powder with a high specific surface area. The conditions of the controlled- atmosphere heat are critical for obtaining the aforementioned desired properties. A typical heat treatment that yields best results for a catalytic alloy of equimolar amounts of Pt and Ru consists of at least two cycles of heating to a temperature of 300 C and holding at 300 C for several hours, all carried out in an atmosphere of 1 percent O2 and 99 percent N2. The resulting powder consists of crystallites with typical linear dimensions of <10 nm. Tests have shown that the powder is highly effective in catalyzing the electro-oxidation of methanol.

  16. Density controlled carbon nanotube array electrodes

    DOEpatents

    Ren, Zhifeng F [Newton, MA; Tu, Yi [Belmont, MA

    2008-12-16

    CNT materials comprising aligned carbon nanotubes (CNTs) with pre-determined site densities, catalyst substrate materials for obtaining them and methods for forming aligned CNTs with controllable densities on such catalyst substrate materials are described. The fabrication of films comprising site-density controlled vertically aligned CNT arrays of the invention with variable field emission characteristics, whereby the field emission properties of the films are controlled by independently varying the length of CNTs in the aligned array within the film or by independently varying inter-tubule spacing of the CNTs within the array (site density) are disclosed. The fabrication of microelectrode arrays (MEAs) formed utilizing the carbon nanotube material of the invention is also described.

  17. On the Preparation and Testing of Fuel Cell Catalysts Using the Thin Film Rotating Disk Electrode Method.

    PubMed

    Inaba, Masanori; Quinson, Jonathan; Bucher, Jan Rudolf; Arenz, Matthias

    2018-03-16

    We present a step-by-step tutorial to prepare proton exchange membrane fuel cell (PEMFC) catalysts, consisting of Pt nanoparticles (NPs) supported on a high surface area carbon, and to test their performance in thin film rotating disk electrode (TF-RDE) measurements. The TF-RDE methodology is widely used for catalyst screening; nevertheless, the measured performance sometimes considerably differs among research groups. These uncertainties impede the advancement of new catalyst materials and, consequently, several authors discussed possible best practice methods and the importance of benchmarking. The visual tutorial highlights possible pitfalls in the TF-RDE testing of Pt/C catalysts. A synthesis and testing protocol to assess standard Pt/C catalysts is introduced that can be used together with polycrystalline Pt disks as benchmark catalysts. In particular, this study highlights how the properties of the catalyst film on the glassy carbon (GC) electrode influence the measured performance in TF-RDE testing. To obtain thin, homogeneous catalyst films, not only the catalyst preparation, but also the ink deposition and drying procedures are essential. It is demonstrated that an adjustment of the ink's pH might be necessary, and how simple control measurements can be used to check film quality. Once reproducible TF-RDE measurements are obtained, determining the Pt loading on the catalyst support (expressed as Pt wt%) and the electrochemical surface area is necessary to normalize the determined reaction rates to either surface area or Pt mass. For the surface area determination, so-called CO stripping, or the determination of the hydrogen underpotential deposition (Hupd) charge, are standard. For the determination of the Pt loading, a straightforward and cheap procedure using digestion in aqua regia with subsequent conversion of Pt(IV) to Pt(II) and UV-vis measurements is introduced.

  18. On the Preparation and Testing of Fuel Cell Catalysts Using the Thin Film Rotating Disk Electrode Method

    PubMed Central

    Inaba, Masanori; Quinson, Jonathan; Bucher, Jan Rudolf; Arenz, Matthias

    2018-01-01

    We present a step-by-step tutorial to prepare proton exchange membrane fuel cell (PEMFC) catalysts, consisting of Pt nanoparticles (NPs) supported on a high surface area carbon, and to test their performance in thin film rotating disk electrode (TF-RDE) measurements. The TF-RDE methodology is widely used for catalyst screening; nevertheless, the measured performance sometimes considerably differs among research groups. These uncertainties impede the advancement of new catalyst materials and, consequently, several authors discussed possible best practice methods and the importance of benchmarking. The visual tutorial highlights possible pitfalls in the TF-RDE testing of Pt/C catalysts. A synthesis and testing protocol to assess standard Pt/C catalysts is introduced that can be used together with polycrystalline Pt disks as benchmark catalysts. In particular, this study highlights how the properties of the catalyst film on the glassy carbon (GC) electrode influence the measured performance in TF-RDE testing. To obtain thin, homogeneous catalyst films, not only the catalyst preparation, but also the ink deposition and drying procedures are essential. It is demonstrated that an adjustment of the ink's pH might be necessary, and how simple control measurements can be used to check film quality. Once reproducible TF-RDE measurements are obtained, determining the Pt loading on the catalyst support (expressed as Pt wt%) and the electrochemical surface area is necessary to normalize the determined reaction rates to either surface area or Pt mass. For the surface area determination, so-called CO stripping, or the determination of the hydrogen underpotential deposition (Hupd) charge, are standard. For the determination of the Pt loading, a straightforward and cheap procedure using digestion in aqua regia with subsequent conversion of Pt(IV) to Pt(II) and UV-vis measurements is introduced. PMID:29608166

  19. An Exploration of Geometric and Electronic Effects in Metal Nanoparticle Catalysts

    NASA Astrophysics Data System (ADS)

    Childers, David

    The goal of this thesis is to investigate the influence geometric and electronic effects on metal nanoparticle catalysis. There are three main methods which alter a catalyst's properties: changing support material, changing nanoparticle size and alloying a second metal. This work will focus on the latter two methods using Pt-group metals and alloys. Platinum and palladium were chosen as the active metals due to a large amount of industry significance and prior literature to draw upon. Neopentane conversion and propane dehydrogenation were the two probe reactions used to evaluate these catalysts mainly due to their relative simplicity and ease of operation on a laboratory scale. The effect of particle size was studied with Pt and Pd monometallic catalysts using neopentane hydrogenolysis/isomerization as the probe reaction. Particle size studies have been done previously using this reaction so there is literature data to compare this study's results. This data will also be used as comparison for the bimetallic studies conducted later so that particle size effects can be accounted for when attempting to determine the effect of alloying a second metal. Bimetallic catalysts have several different possible structures depending on a number of factors from the identity of the two metals to the synthesis procedure. Homogeneous, core-shell and intermetallic alloys are the three structures evaluated in this work. Determining the surface composition of a homogeneous alloy can be difficult especially if both metals adsorb CO. PtPd homogeneous alloys were used to evaluate the ability of EXAFS to give information about surface composition using CO adsorption. These catalysts were also tested using neopentane conversion to evaluate changes in catalytic performance. Core-shell catalysts can also exhibit unique properties although it is not clear whether the identity of the core metal is relevant or if surface changes are most important to changing catalytic behavior. PdAu catalysts were synthesized with varying Pd loadings to determine if the Au-rich core would continue to influence neopentane conversion performance with increasing Pd layers on the surface of the nanoparticle. Finally, intermetallic alloys have produced some very interesting literature results and can drastically alter catalyst surface structure. PdZn showed the potential to improve neopentane isomerization selectivity past that of Pt based on calculated electronic properties. Two PdZn catalysts with different loadings were synthesized to evaluate the electronic and geometric effects using both neopentane conversion and propane dehydrogenation.

  20. REMOVAL OF CATALYST IN ATOM TRANSFER RADICAL POLYMERIZATION USING ION EXCHANGE RESINS. (R826735)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

Top