Sample records for control cell death

  1. Fork head controls the timing and tissue selectivity of steroid-induced developmental cell death

    PubMed Central

    Cao, Chike; Liu, Yanling; Lehmann, Michael

    2007-01-01

    Cell death during Drosophila melanogaster metamorphosis is controlled by the steroid hormone 20-hydroxyecdysone (20E). Elements of the signaling pathway that triggers death are known, but it is not known why some tissues, and not others, die in response to a particular hormone pulse. We found that loss of the tissue-specific transcription factor Fork head (Fkh) is both required and sufficient to specify a death response to 20E in the larval salivary glands. Loss of fkh itself is a steroid-controlled event that is mediated by the 20E-induced BR-C gene, and that renders the key death regulators hid and reaper hormone responsive. These results implicate the D. melanogaster FOXA orthologue Fkh with a novel function as a competence factor for steroid-controlled cell death. They explain how a specific tissue is singled out for death, and why this tissue survives earlier hormone pulses. More generally, they suggest that cell identity factors like Fkh play a pivotal role in the normal control of developmental cell death. PMID:17339378

  2. Cell-cycle control in the face of damage--a matter of life or death.

    PubMed

    Clarke, Paul R; Allan, Lindsey A

    2009-03-01

    Cells respond to DNA damage or defects in the mitotic spindle by activating checkpoints that arrest the cell cycle. Alternatively, damaged cells can undergo cell death by the process of apoptosis. The correct balance between these pathways is important for the maintenance of genomic integrity while preventing unnecessary cell death. Although the molecular mechanisms of the cell cycle and apoptosis have been elucidated, the links between them have not been clear. Recent work, however, indicates that common components directly link the regulation of apoptosis with cell-cycle checkpoints operating during interphase, whereas in mitosis, the control of apoptosis is directly coupled to the cell-cycle machinery. These findings shed new light on how the balance between cell-cycle progression and cell death is controlled.

  3. Control of non-apoptotic nurse cell death by engulfment genes in Drosophila.

    PubMed

    Timmons, Allison K; Mondragon, Albert A; Meehan, Tracy L; McCall, Kimberly

    2017-04-03

    Programmed cell death occurs as a normal part of oocyte development in Drosophila. For each egg that is formed, 15 germline-derived nurse cells transfer their cytoplasmic contents into the oocyte and die. Disruption of apoptosis or autophagy only partially inhibits the death of the nurse cells, indicating that other mechanisms significantly contribute to nurse cell death. Recently, we demonstrated that the surrounding stretch follicle cells non-autonomously promote nurse cell death during late oogenesis and that phagocytosis genes including draper, ced-12, and the JNK pathway are crucial for this process. When phagocytosis genes are inhibited in the follicle cells, events specifically associated with death of the nurse cells are impaired. Death of the nurse cells is not completely blocked in draper mutants, suggesting that other engulfment receptors are involved. Indeed, we found that the integrin subunit, αPS3, is enriched on stretch follicle cells during late oogenesis and is required for elimination of the nurse cells. Moreover, double mutant analysis revealed that integrins act in parallel to draper. Death of nurse cells in the Drosophila ovary is a unique example of programmed cell death that is both non-apoptotic and non-cell autonomously controlled.

  4. Cell Death in C. elegans Development.

    PubMed

    Malin, Jennifer Zuckerman; Shaham, Shai

    2015-01-01

    Cell death is a common and important feature of animal development, and cell death defects underlie many human disease states. The nematode Caenorhabditis elegans has proven fertile ground for uncovering molecular and cellular processes controlling programmed cell death. A core pathway consisting of the conserved proteins EGL-1/BH3-only, CED-9/BCL2, CED-4/APAF1, and CED-3/caspase promotes most cell death in the nematode, and a conserved set of proteins ensures the engulfment and degradation of dying cells. Multiple regulatory pathways control cell death onset in C. elegans, and many reveal similarities with tumor formation pathways in mammals, supporting the idea that cell death plays key roles in malignant progression. Nonetheless, a number of observations suggest that our understanding of developmental cell death in C. elegans is incomplete. The interaction between dying and engulfing cells seems to be more complex than originally appreciated, and it appears that key aspects of cell death initiation are not fully understood. It has also become apparent that the conserved apoptotic pathway is dispensable for the demise of the C. elegans linker cell, leading to the discovery of a previously unexplored gene program promoting cell death. Here, we review studies that formed the foundation of cell death research in C. elegans and describe new observations that expand, and in some cases remodel, this edifice. We raise the possibility that, in some cells, more than one death program may be needed to ensure cell death fidelity. © 2015 Elsevier Inc. All rights reserved.

  5. Endoplasmic reticulum-resident E3 ubiquitin ligase Hrd1 controls B-cell immunity through degradation of the death receptor CD95/Fas

    PubMed Central

    Kong, Sinyi; Yang, Yi; Xu, Yuanming; Wang, Yajun; Zhang, Yusi; Melo-Cardenas, Johanna; Xu, Xiangping; Gao, Beixue; Thorp, Edward B.; Zhang, Donna D.; Zhang, Bin; Song, Jianxun; Zhang, Kezhong; Zhang, Jianning; Zhang, Jinping; Li, Huabin; Fang, Deyu

    2016-01-01

    Humoral immunity involves multiple checkpoints during B-cell development, maturation, and activation. The cell death receptor CD95/Fas-mediated apoptosis plays a critical role in eliminating the unwanted activation of B cells by self-reactive antigens and in maintaining B-cell homeostasis through activation-induced B-cell death (AICD). The molecular mechanisms controlling AICD remain largely undefined. Herein, we show that the E3 ubiquitin ligase Hrd1 protected B cells from activation-induced cell death by degrading the death receptor Fas. Hrd1-null B cells exhibited high Fas expression during activation and rapidly underwent Fas-mediated apoptosis, which could be largely inhibited by FasL neutralization. Fas mutation in Hrd1 KO mice abrogated the increase in B-cell AICD. We identified Hrd1 as the first E3 ubiquitin ligase of the death receptor Fas and Hrd1-mediated Fas destruction as a molecular mechanism in regulating B-cell immunity. PMID:27573825

  6. Endoplasmic reticulum-resident E3 ubiquitin ligase Hrd1 controls B-cell immunity through degradation of the death receptor CD95/Fas.

    PubMed

    Kong, Sinyi; Yang, Yi; Xu, Yuanming; Wang, Yajun; Zhang, Yusi; Melo-Cardenas, Johanna; Xu, Xiangping; Gao, Beixue; Thorp, Edward B; Zhang, Donna D; Zhang, Bin; Song, Jianxun; Zhang, Kezhong; Zhang, Jianning; Zhang, Jinping; Li, Huabin; Fang, Deyu

    2016-09-13

    Humoral immunity involves multiple checkpoints during B-cell development, maturation, and activation. The cell death receptor CD95/Fas-mediated apoptosis plays a critical role in eliminating the unwanted activation of B cells by self-reactive antigens and in maintaining B-cell homeostasis through activation-induced B-cell death (AICD). The molecular mechanisms controlling AICD remain largely undefined. Herein, we show that the E3 ubiquitin ligase Hrd1 protected B cells from activation-induced cell death by degrading the death receptor Fas. Hrd1-null B cells exhibited high Fas expression during activation and rapidly underwent Fas-mediated apoptosis, which could be largely inhibited by FasL neutralization. Fas mutation in Hrd1 KO mice abrogated the increase in B-cell AICD. We identified Hrd1 as the first E3 ubiquitin ligase of the death receptor Fas and Hrd1-mediated Fas destruction as a molecular mechanism in regulating B-cell immunity.

  7. Independent controls for neocortical neuron production and histogenetic cell death

    NASA Technical Reports Server (NTRS)

    Verney, C.; Takahashi, T.; Bhide, P. G.; Nowakowski, R. S.; Caviness, V. S. Jr

    2000-01-01

    We estimated the proportion of cells eliminated by histogenetic cell death during the first 2 postnatal weeks in areas 1, 3 and 40 of the mouse parietal neocortex. For each layer and for the subcortical white matter in each neocortical area, the number of dying cells per mm(2) was calculated and the proportionate cell death for each day of the 2-week interval was estimated. The data show that cell death proceeds essentially uniformly across the neocortical areas and layers and that it does not follow either the spatiotemporal gradient of cell cycle progression in the pseudostratified ventricular epithelium of the cerebral wall, the source of neocortical neurons, or the 'inside-out' neocortical neuronogenetic sequence. Therefore, we infer that the control mechanisms of neocortical histogenetic cell death are independent of mechanisms controlling neuronogenesis or neuronal migration but may be associated with the ingrowth, expansion and a system-wide matching of neuronal connectivity. Copyright 2000 S. Karger AG, Basel.

  8. Programmed Cell Death During Caenorhabditis elegans Development

    PubMed Central

    Conradt, Barbara; Wu, Yi-Chun; Xue, Ding

    2016-01-01

    Programmed cell death is an integral component of Caenorhabditis elegans development. Genetic and reverse genetic studies in C. elegans have led to the identification of many genes and conserved cell death pathways that are important for the specification of which cells should live or die, the activation of the suicide program, and the dismantling and removal of dying cells. Molecular, cell biological, and biochemical studies have revealed the underlying mechanisms that control these three phases of programmed cell death. In particular, the interplay of transcriptional regulatory cascades and networks involving multiple transcriptional regulators is crucial in activating the expression of the key death-inducing gene egl-1 and, in some cases, the ced-3 gene in cells destined to die. A protein interaction cascade involving EGL-1, CED-9, CED-4, and CED-3 results in the activation of the key cell death protease CED-3, which is tightly controlled by multiple positive and negative regulators. The activation of the CED-3 caspase then initiates the cell disassembly process by cleaving and activating or inactivating crucial CED-3 substrates; leading to activation of multiple cell death execution events, including nuclear DNA fragmentation, mitochondrial elimination, phosphatidylserine externalization, inactivation of survival signals, and clearance of apoptotic cells. Further studies of programmed cell death in C. elegans will continue to advance our understanding of how programmed cell death is regulated, activated, and executed in general. PMID:27516615

  9. PR01 Molecular Pathogenesis of Rickettsioses and Development of Anti-Rickettsial Treatment by Combinatorial Peptide-Based Libraries

    DTIC Science & Technology

    2006-02-01

    likely reflecting similar cell death rates in all monolayers at late time points. By the end of the experiment at 120 hours, all monolayers showed a...50-55% increase in permeability when compared to the controls. 2. Cell death rates in rickettsiae-infected SV-HCEC monolayers In order to...necrotic cell death. Quantification of cell death was performed by determining the percent of total cells staining positive for PI. Cell death rates did

  10. A Versatile Cell Death Screening Assay Using Dye-Stained Cells and Multivariate Image Analysis.

    PubMed

    Collins, Tony J; Ylanko, Jarkko; Geng, Fei; Andrews, David W

    2015-11-01

    A novel dye-based method for measuring cell death in image-based screens is presented. Unlike conventional high- and medium-throughput cell death assays that measure only one form of cell death accurately, using multivariate analysis of micrographs of cells stained with the inexpensive mix, red dye nonyl acridine orange, and a nuclear stain, it was possible to quantify cell death induced by a variety of different agonists even without a positive control. Surprisingly, using a single known cytotoxic agent as a positive control for training a multivariate classifier allowed accurate quantification of cytotoxicity for mechanistically unrelated compounds enabling generation of dose-response curves. Comparison with low throughput biochemical methods suggested that cell death was accurately distinguished from cell stress induced by low concentrations of the bioactive compounds Tunicamycin and Brefeldin A. High-throughput image-based format analyses of more than 300 kinase inhibitors correctly identified 11 as cytotoxic with only 1 false positive. The simplicity and robustness of this dye-based assay makes it particularly suited to live cell screening for toxic compounds.

  11. A Versatile Cell Death Screening Assay Using Dye-Stained Cells and Multivariate Image Analysis

    PubMed Central

    Collins, Tony J.; Ylanko, Jarkko; Geng, Fei

    2015-01-01

    Abstract A novel dye-based method for measuring cell death in image-based screens is presented. Unlike conventional high- and medium-throughput cell death assays that measure only one form of cell death accurately, using multivariate analysis of micrographs of cells stained with the inexpensive mix, red dye nonyl acridine orange, and a nuclear stain, it was possible to quantify cell death induced by a variety of different agonists even without a positive control. Surprisingly, using a single known cytotoxic agent as a positive control for training a multivariate classifier allowed accurate quantification of cytotoxicity for mechanistically unrelated compounds enabling generation of dose–response curves. Comparison with low throughput biochemical methods suggested that cell death was accurately distinguished from cell stress induced by low concentrations of the bioactive compounds Tunicamycin and Brefeldin A. High-throughput image-based format analyses of more than 300 kinase inhibitors correctly identified 11 as cytotoxic with only 1 false positive. The simplicity and robustness of this dye-based assay makes it particularly suited to live cell screening for toxic compounds. PMID:26422066

  12. Anti-apoptotic BCL-2 family proteins in acute neural injury

    PubMed Central

    Anilkumar, Ujval; Prehn, Jochen H. M.

    2014-01-01

    Cells under stress activate cell survival and cell death signaling pathways. Cell death signaling frequently converges on mitochondria, a process that is controlled by the activities of pro- and anti-apoptotic B-cell lymphoma 2 (BCL-2) proteins. In this review, we summarize current knowledge on the control of neuronal survival, development and injury by anti-apoptotic BCL-2 family proteins. We discuss overlapping and differential effects of the individual family members BCL-2, BCL-extra long (BCL-XL), myeloid cell leukemia 1 (MCL-1), and BCL2-like 2 (BCL-W) in the control of survival during development and pathophysiological processes such as trophic factor withdrawal, ischemic injury, excitotoxicity, oxidative stress and energy stress. Finally we discuss recent evidence that several anti-apoptotic BCL-2 proteins influence mitochondrial bioenergetics and control neuronal Ca2+ homeostasis independent of their classical role in cell death signaling. PMID:25324720

  13. Anti-apoptotic BCL-2 family proteins in acute neural injury.

    PubMed

    Anilkumar, Ujval; Prehn, Jochen H M

    2014-01-01

    Cells under stress activate cell survival and cell death signaling pathways. Cell death signaling frequently converges on mitochondria, a process that is controlled by the activities of pro- and anti-apoptotic B-cell lymphoma 2 (BCL-2) proteins. In this review, we summarize current knowledge on the control of neuronal survival, development and injury by anti-apoptotic BCL-2 family proteins. We discuss overlapping and differential effects of the individual family members BCL-2, BCL-extra long (BCL-XL), myeloid cell leukemia 1 (MCL-1), and BCL2-like 2 (BCL-W) in the control of survival during development and pathophysiological processes such as trophic factor withdrawal, ischemic injury, excitotoxicity, oxidative stress and energy stress. Finally we discuss recent evidence that several anti-apoptotic BCL-2 proteins influence mitochondrial bioenergetics and control neuronal Ca(2+) homeostasis independent of their classical role in cell death signaling.

  14. HSF-1 activates the ubiquitin proteasome system to promote non-apoptotic developmental cell death in C. elegans.

    PubMed

    Kinet, Maxime J; Malin, Jennifer A; Abraham, Mary C; Blum, Elyse S; Silverman, Melanie R; Lu, Yun; Shaham, Shai

    2016-03-08

    Apoptosis is a prominent metazoan cell death form. Yet, mutations in apoptosis regulators cause only minor defects in vertebrate development, suggesting that another developmental cell death mechanism exists. While some non-apoptotic programs have been molecularly characterized, none appear to control developmental cell culling. Linker-cell-type death (LCD) is a morphologically conserved non-apoptotic cell death process operating in Caenorhabditis elegans and vertebrate development, and is therefore a compelling candidate process complementing apoptosis. However, the details of LCD execution are not known. Here we delineate a molecular-genetic pathway governing LCD in C. elegans. Redundant activities of antagonistic Wnt signals, a temporal control pathway, and mitogen-activated protein kinase kinase signaling control heat shock factor 1 (HSF-1), a conserved stress-activated transcription factor. Rather than protecting cells, HSF-1 promotes their demise by activating components of the ubiquitin proteasome system, including the E2 ligase LET-70/UBE2D2 functioning with E3 components CUL-3, RBX-1, BTBD-2, and SIAH-1. Our studies uncover design similarities between LCD and developmental apoptosis, and provide testable predictions for analyzing LCD in vertebrates.

  15. Influence of simulated microgravity on the longevity of insect-cell culture

    NASA Technical Reports Server (NTRS)

    Cowger, N. L.; O'Connor, K. C.; Bivins, J. E.

    1997-01-01

    Simulated microgravity within the NASA High Aspect Rotating-Wall Vessel (HARV) provides a quiescent environment to culture fragile insect cells. In this vessel, the duration of stationary and death phase for cultures of Spodoptera frugiperda cells was greatly extended over that achieved in shaker-flask controls. For both HARV and control cultures, S. frugiperda cells grew to concentrations in excess of 1 x 10(7) viable cells ml-1 with viabilities greater than 90%. In the HARV, stationary phase was maintained 9-15 days in contrast to 4-5 days in the shaker flask. Furthermore, the rate of cell death was reduced in the HARV by a factor of 20-90 relative to the control culture and was characterized with a death rate constant of 0.01-0.02 day-1. Beginning in the stationary phase and continuing in the death phase, there was a significant decrease in population size in the HARV versus an increase in the shaker flask. This phenomenon could represent cell adaptation to simulated microgravity and/or a change in the ratio of apoptotic to necrotic cells. Differences observed in this research between the HARV and its control were attributed to a reduction in hydrodynamic forces in the microgravity vessel.

  16. Increasing RpoS expression causes cell death in Borrelia burgdorferi.

    PubMed

    Chen, Linxu; Xu, Qilong; Tu, Jiagang; Ge, Yihe; Liu, Jun; Liang, Fang Ting

    2013-01-01

    RpoS, one of the two alternative σ factors in Borrelia burgdorferi, is tightly controlled by multiple regulators and, in turn, determines expression of many critical virulence factors. Here we show that increasing RpoS expression causes cell death. The immediate effect of increasing RpoS expression was to promote bacterial division and as a consequence result in a rapid increase in cell number before causing bacterial death. No DNA fragmentation or degradation was observed during this induced cell death. Cryo-electron microscopy showed induced cells first formed blebs, which were eventually released from dying cells. Apparently blebbing initiated cell disintegration leading to cell death. These findings led us to hypothesize that increasing RpoS expression triggers intracellular programs and/or pathways that cause spirochete death. The potential biological significance of induced cell death may help B. burgdorferi regulate its population to maintain its life cycle in nature.

  17. Oxidant-Induced Cell Death and Nrf2-Dependent Antioxidative Response Are Controlled by Fra-1/AP-1

    PubMed Central

    Vaz, Michelle; Machireddy, Narsa; Irving, Ashley; Potteti, Haranatha R.; Chevalier, Karinne; Kalvakolanu, Dhananjaya

    2012-01-01

    AP-1 (Jun/Fos) transcription factors play key roles in various biological processes, including cell death. Here we report a novel role for Fra-1 in oxidant-induced cell death controlled by modulating antioxidant gene expression. Fra-1-deficient (Fra-1Δ/Δ) mouse embryonic fibroblasts (MEFs) and primary lung fibroblasts (PLFs) were remarkably resistant to H2O2- and diquat-induced cell death, compared to their wild-type (Fra-1+/+) counterparts. Fra-1 deficiency ablated oxidant-induced mitochondrion-dependent apoptosis. Fra-1Δ/Δ cells had elevated basal levels of antioxidant enzymes and intracellular glutathione (GSH), which were further stimulated by oxidants. Loss of Fra-1 led to an increased half-life of transcription factor Nrf2 and increased recruitment of this protein to the promoters of antioxidant genes and increased their expression. Depletion of intracellular GSH or RNA interference (RNAi)-mediated knockdown of Nqo1, Hmox1, and Nrf2 restored oxidant-induced cell death in Fra-1Δ/Δ cells. Thus, Fra-1 appears to increase susceptibility to oxidants and promotes cell death by attenuating Nrf2-driven antioxidant responses. PMID:22393254

  18. Tumor Necrosis Factor-α (TNFα)-induced Ceramide Generation via Ceramide Synthases Regulates Loss of Focal Adhesion Kinase (FAK) and Programmed Cell Death.

    PubMed

    Hernández-Corbacho, María José; Canals, Daniel; Adada, Mohamad M; Liu, Mengling; Senkal, Can E; Yi, Jae Kyo; Mao, Cungui; Luberto, Chiara; Hannun, Yusuf A; Obeid, Lina M

    2015-10-16

    Ceramide synthases (CerS1-CerS6), which catalyze the N-acylation of the (dihydro)sphingosine backbone to produce (dihydro)ceramide in both the de novo and the salvage or recycling pathway of ceramide generation, have been implicated in the control of programmed cell death. However, the regulation of the de novo pathway compared with the salvage pathway is not fully understood. In the current study, we have found that late accumulation of multiple ceramide and dihydroceramide species in MCF-7 cells treated with TNFα occurred by up-regulation of both pathways of ceramide synthesis. Nevertheless, fumonisin B1 but not myriocin was able to protect from TNFα-induced cell death, suggesting that ceramide synthase activity is crucial for the progression of cell death and that the pool of ceramide involved derives from the salvage pathway rather than de novo biosynthesis. Furthermore, compared with control cells, TNFα-treated cells exhibited reduced focal adhesion kinase and subsequent plasma membrane permeabilization, which was blocked exclusively by fumonisin B1. In addition, exogenously added C6-ceramide mimicked the effects of TNFα that lead to cell death, which were inhibited by fumonisin B1. Knockdown of individual ceramide synthases identified CerS6 and its product C16-ceramide as the ceramide synthase isoform essential for the regulation of cell death. In summary, our data suggest a novel role for CerS6/C16-ceramide as an upstream effector of the loss of focal adhesion protein and plasma membrane permeabilization, via the activation of caspase-7, and identify the salvage pathway as the critical mechanism of ceramide generation that controls cell death. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Molecular control of brain size: Regulators of neural stem cell life, death and beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, Bertrand; Hermanson, Ola, E-mail: ola.hermanson@ki.se

    2010-05-01

    The proper development of the brain and other organs depends on multiple parameters, including strictly controlled expansion of specific progenitor pools. The regulation of such expansion events includes enzymatic activities that govern the correct number of specific cells to be generated via an orchestrated control of cell proliferation, cell cycle exit, differentiation, cell death etc. Certain proteins in turn exert direct control of these enzymatic activities and thus progenitor pool expansion and organ size. The members of the Cip/Kip family (p21Cip1/p27Kip1/p57Kip2) are well-known regulators of cell cycle exit that interact with and inhibit the activity of cyclin-CDK complexes, whereas membersmore » of the p53/p63/p73 family are traditionally associated with regulation of cell death. It has however become clear that the roles for these proteins are not as clear-cut as initially thought. In this review, we discuss the roles for proteins of the Cip/Kip and p53/p63/p73 families in the regulation of cell cycle control, differentiation, and death of neural stem cells. We suggest that these proteins act as molecular interfaces, or 'pilots', to assure the correct assembly of protein complexes with enzymatic activities at the right place at the right time, thereby regulating essential decisions in multiple cellular events.« less

  20. Stem cell death and survival in heart regeneration and repair.

    PubMed

    Abdelwahid, Eltyeb; Kalvelyte, Audrone; Stulpinas, Aurimas; de Carvalho, Katherine Athayde Teixeira; Guarita-Souza, Luiz Cesar; Foldes, Gabor

    2016-03-01

    Cardiovascular diseases are major causes of mortality and morbidity. Cardiomyocyte apoptosis disrupts cardiac function and leads to cardiac decompensation and terminal heart failure. Delineating the regulatory signaling pathways that orchestrate cell survival in the heart has significant therapeutic implications. Cardiac tissue has limited capacity to regenerate and repair. Stem cell therapy is a successful approach for repairing and regenerating ischemic cardiac tissue; however, transplanted cells display very high death percentage, a problem that affects success of tissue regeneration. Stem cells display multipotency or pluripotency and undergo self-renewal, however these events are negatively influenced by upregulation of cell death machinery that induces the significant decrease in survival and differentiation signals upon cardiovascular injury. While efforts to identify cell types and molecular pathways that promote cardiac tissue regeneration have been productive, studies that focus on blocking the extensive cell death after transplantation are limited. The control of cell death includes multiple networks rather than one crucial pathway, which underlies the challenge of identifying the interaction between various cellular and biochemical components. This review is aimed at exploiting the molecular mechanisms by which stem cells resist death signals to develop into mature and healthy cardiac cells. Specifically, we focus on a number of factors that control death and survival of stem cells upon transplantation and ultimately affect cardiac regeneration. We also discuss potential survival enhancing strategies and how they could be meaningful in the design of targeted therapies that improve cardiac function.

  1. Stem cell death and survival in heart regeneration and repair

    PubMed Central

    Kalvelyte, Audrone; Stulpinas, Aurimas; de Carvalho, Katherine Athayde Teixeira; Guarita-Souza, Luiz Cesar; Foldes, Gabor

    2016-01-01

    Cardiovascular diseases are major causes of mortality and morbidity. Cardiomyocyte apoptosis disrupts cardiac function and leads to cardiac decompensation and terminal heart failure. Delineating the regulatory signaling pathways that orchestrate cell survival in the heart has significant therapeutic implications. Cardiac tissue has limited capacity to regenerate and repair. Stem cell therapy is a successful approach for repairing and regenerating ischemic cardiac tissue; however, transplanted cells display very high death percentage, a problem that affects success of tissue regeneration. Stem cells display multipotency or pluripotency and undergo self-renewal, however these events are negatively influenced by upregulation of cell death machinery that induces the significant decrease in survival and differentiation signals upon cardiovascular injury. While efforts to identify cell types and molecular pathways that promote cardiac tissue regeneration have been productive, studies that focus on blocking the extensive cell death after transplantation are limited. The control of cell death includes multiple networks rather than one crucial pathway, which underlies the challenge of identifying the interaction between various cellular and biochemical components. This review is aimed at exploiting the molecular mechanisms by which stem cells resist death signals to develop into mature and healthy cardiac cells. Specifically, we focus on a number of factors that control death and survival of stem cells upon transplantation and ultimately affect cardiac regeneration. We also discuss potential survival enhancing strategies and how they could be meaningful in the design of targeted therapies that improve cardiac function. PMID:26687129

  2. Transient Receptor Potential Vanilloid 1 Expression Mediates Capsaicin-Induced Cell Death.

    PubMed

    Ramírez-Barrantes, Ricardo; Córdova, Claudio; Gatica, Sebastian; Rodriguez, Belén; Lozano, Carlo; Marchant, Ivanny; Echeverria, Cesar; Simon, Felipe; Olivero, Pablo

    2018-01-01

    The transient receptor potential (TRP) ion channel family consists of a broad variety of non-selective cation channels that integrate environmental physicochemical signals for dynamic homeostatic control. Involved in a variety of cellular physiological processes, TRP channels are fundamental to the control of the cell life cycle. TRP channels from the vanilloid (TRPV) family have been directly implicated in cell death. TRPV1 is activated by pain-inducing stimuli, including inflammatory endovanilloids and pungent exovanilloids, such as capsaicin (CAP). TRPV1 activation by high doses of CAP (>10 μM) leads to necrosis, but also exhibits apoptotic characteristics. However, CAP dose-response studies are lacking in order to determine whether CAP-induced cell death occurs preferentially via necrosis or apoptosis. In addition, it is not known whether cytosolic Ca 2+ and mitochondrial dysfunction participates in CAP-induced TRPV1-mediated cell death. By using TRPV1-transfected HeLa cells, we investigated the underlying mechanisms involved in CAP-induced TRPV1-mediated cell death, the dependence of CAP dose, and the participation of mitochondrial dysfunction and cytosolic Ca 2+ increase. Together, our results contribute to elucidate the pathophysiological steps that follow after TRPV1 stimulation with CAP. Low concentrations of CAP (1 μM) induce cell death by a mechanism involving a TRPV1-mediated rapid and transient intracellular Ca 2+ increase that stimulates plasma membrane depolarization, thereby compromising plasma membrane integrity and ultimately leading to cell death. Meanwhile, higher doses of CAP induce cell death via a TRPV1-independent mechanism, involving a slow and persistent intracellular Ca 2+ increase that induces mitochondrial dysfunction, plasma membrane depolarization, plasma membrane loss of integrity, and ultimately, cell death.

  3. Accumulation of neutral mutations in growing cell colonies with competition.

    PubMed

    Sorace, Ron; Komarova, Natalia L

    2012-12-07

    Neutral mutations play an important role in many biological processes including cancer initiation and progression, the generation of drug resistance in bacterial and viral diseases as well as cancers, and the development of organs in multicellular organisms. In this paper we study how neutral mutants are accumulated in nonlinearly growing colonies of cells subject to growth constraints such as crowding or lack of resources. We investigate different types of growth control which range from "division-controlled" to "death-controlled" growth (and various mixtures of both). In division-controlled growth, the burden of handling overcrowding lies with the process of cell-divisions, the divisions slow down as the carrying capacity is approached. In death-controlled growth, it is death rate that increases to slow down expansion. We show that division-controlled growth minimizes the number of accumulated mutations, and death-controlled growth corresponds to the maximum number of mutants. We check that these results hold in both deterministic and stochastic settings. We further develop a general (deterministic) theory of neutral mutations and achieve an analytical understanding of the mutant accumulation in colonies of a given size in the absence of back-mutations. The long-term dynamics of mutants in the presence of back-mutations is also addressed. In particular, with equal forward- and back-mutation rates, if division-controlled and a death-controlled types are competing for space and nutrients, cells obeying division-controlled growth will dominate the population. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. KIRA1 and ORESARA1 terminate flower receptivity by promoting cell death in the stigma of Arabidopsis.

    PubMed

    Gao, Zhen; Daneva, Anna; Salanenka, Yuliya; Van Durme, Matthias; Huysmans, Marlies; Lin, Zongcheng; De Winter, Freya; Vanneste, Steffen; Karimi, Mansour; Van de Velde, Jan; Vandepoele, Klaas; Van de Walle, Davy; Dewettinck, Koen; Lambrecht, Bart N; Nowack, Moritz K

    2018-05-28

    Flowers have a species-specific functional life span that determines the time window in which pollination, fertilization and seed set can occur. The stigma tissue plays a key role in flower receptivity by intercepting pollen and initiating pollen tube growth toward the ovary. In this article, we show that a developmentally controlled cell death programme terminates the functional life span of stigma cells in Arabidopsis. We identified the leaf senescence regulator ORESARA1 (also known as ANAC092) and the previously uncharacterized KIRA1 (also known as ANAC074) as partially redundant transcription factors that modulate stigma longevity by controlling the expression of programmed cell death-associated genes. KIRA1 expression is sufficient to induce cell death and terminate floral receptivity, whereas lack of both KIRA1 and ORESARA1 substantially increases stigma life span. Surprisingly, the extension of stigma longevity is accompanied by only a moderate extension of flower receptivity, suggesting that additional processes participate in the control of the flower's receptive life span.

  5. What cell death does in development.

    PubMed

    Zakeri, Zahra; Penaloza, Carlos G; Smith, Kyle; Ye, Yixia; Lockshin, Richard A

    2015-01-01

    Cell death is prominent in gametogenesis and shapes and sculpts embryos. In non-mammalian embryos one sees little or no cell death prior to the maternal-zygotic transition, but, in mammalian embryos, characteristic deaths of one or two cells occur at the end of compaction and are apparently necessary for the separation of the trophoblast from the inner cell mass. Considerable sculpting of the embryo occurs by cell deaths during organogenesis, and appropriate cell numbers, especially in the CNS and in the immune system, are generated by massive overproduction of cells and selection of a few, with death of the rest. The timing, identity, and genetic control of specific cells that die have been well documented in Caenorhabditis, but in other embryos the stochastic nature of the deaths limit our ability to do more than identify the regions in which cells will die. Complete disruption of the cell death machinery can be lethal, but many mutations of the regulatory machinery yield only modest or no phenotypes, indicating substantial redundancy and compensation of regulatory mechanisms. Most of the deaths are apoptotic and are identified by techniques used to recognize apoptosis, but techniques identifying lysosomes (whether in dying or involuting cells or in the phagocytes that invade the tissue) also reveal patterns of cell death. Aberrant cell deaths that produce known phenotypes are typically localized, indicating that the mechanism of activating a programmed death in a specific region, rather than the mechanism of death, is aberrant. These results lead us to conclude that we need to know much more about the conversations among cells that lead cells to commit suicide.

  6. Protection of LLC-PK1 cells against hydrogen peroxide-induced cell death by modulation of ceramide level.

    PubMed

    Yoo, Jae-Myung; Lee, Youn-Sun; Choi, Heon-Kyo; Lee, Yong-Moon; Hong, Jin-Tae; Yun, Yeo-Pyo; Oh, Seikwan; Yoo, Hwan-Soo

    2005-03-01

    Oxidative stress has been reported to elevate ceramide level during cell death. The purpose of the present study was to modulate cell death in relation to cellular glutathione (GSH) level and GST (glutathione S-transferase) expression by regulating the sphingolipid metabolism. LLC-PK1 cells were treated with H2O2 in the absence of serum to induce cell death. Subsequent to exposure to H2O2, LLC-PK1 cells were treated with desipramine, sphingomyelinase inhibitor, and N-acetylcysteine (NAC), GSH substrate. Based on comparative visual observation with H2O2-treated control cells, it was observed that 0.5 microM of desipramine and 25 mM of NAC exhibited about 90 and 95% of cytoprotection, respectively, against H2O2-induced cell death. Desipramine and NAC lowered the release of LDH activity by 36 and 3%, respectively, when compared to 71% in H2O2-exposed cells. Cellular glutathione level in 500 microM H2O2-treated cells was reduced to 890 pmol as compared to control level of 1198 pmol per mg protein. GST P1-1 expression was decreased in H2O2-treated cells compared to healthy normal cells. In conclusion, it has been inferred that H2O2-induced cell death is closely related to cellular GSH level and GST P1-1 expression in LLC-PK1 cells and occurs via ceramide elevation by sphingomyelinase activation.

  7. Inducible nitric oxide synthase in T cells regulates T cell death and immune memory

    PubMed Central

    Vig, Monika; Srivastava, Smita; Kandpal, Usha; Sade, Hadassah; Lewis, Virginia; Sarin, Apurva; George, Anna; Bal, Vineeta; Durdik, Jeannine M.; Rath, Satyajit

    2004-01-01

    The progeny of T lymphocytes responding to immunization mostly die rapidly, leaving a few long-lived survivors functioning as immune memory. Thus, control of this choice of death versus survival is critical for immune memory. There are indications that reactive radicals may be involved in this death pathway. We now show that, in mice lacking inducible nitric oxide synthase (iNOS), higher frequencies of both CD4 and CD8 memory T cells persist in response to immunization, even when iNOS+/+ APCs are used for immunization. Postactivation T cell death by neglect is reduced in iNOS–/– T cells, and levels of the antiapoptotic proteins Bcl-2 and Bcl-xL are increased. Inhibitors of the iNOS-peroxynitrite pathway also enhance memory responses and block postactivation death by neglect in both mouse and human T cells. However, early primary immune responses are not enhanced, which suggests that altered survival, rather than enhanced activation, is responsible for the persistent immunity observed. Thus, in primary immune responses, iNOS in activated T cells autocrinely controls their susceptibility to death by neglect to determine the level of persisting CD4 and CD8 T cell memory, and modulation of this pathway can enhance the persistence of immune memory in response to vaccination. PMID:15199408

  8. Autophagy as a trigger for cell death: autophagic degradation of inhibitor of apoptosis dBruce controls DNA fragmentation during late oogenesis in Drosophila.

    PubMed

    Nezis, Ioannis P; Shravage, Bhupendra V; Sagona, Antonia P; Johansen, Terje; Baehrecke, Eric H; Stenmark, Harald

    2010-11-01

    Autophagy has been reported to contribute to cell death, but the underlying mechanisms remain largely unknown and controversial. We have: been studying oogenesis in Drosophila melanogaster as a model system to understand the interplay between autophagy and cell death. Using a novel autophagy reporter we found that autophagy occurs during developmental cell death of nurse cells in late oogenesis. Genetic inhibition: of autophagy-related genes atg1, atg13 and vps34 results in late-stage egg chambers containing persisting nurse cell nuclei without fragmented DNA and attenuation of caspase-3 cleavage. We found that Drosophila inhibitor of apoptosis dBruce is degraded by autophagy and this degradation promotes DNA fragmentation and subsequent nurse cell death. These studies demonstrate that autophagic degradation of an inhibitor: of apoptosis is a novel mechanism of triggering cell death.

  9. Death penalty for keratinocytes: apoptosis versus cornification.

    PubMed

    Lippens, S; Denecker, G; Ovaere, P; Vandenabeele, P; Declercq, W

    2005-11-01

    Homeostasis implies a balance between cell growth and cell death. This balance is essential for the development and maintenance of multicellular organisms. Homeostasis is controlled by several mechanisms including apoptosis, a process by which cells condemned to death are completely eliminated. However, in some cases, total destruction and removal of dead cells is not desirable, as when they fulfil a specific function such as formation of the skin barrier provided by corneocytes, also known as terminally differentiated keratinocytes. In this case, programmed cell death results in accumulation of functional cell corpses. Previously, this process has been associated with apoptotic cell death. In this overview, we discuss differences and similarities in the molecular regulation of epidermal programmed cell death and apoptosis. We conclude that despite earlier confusion, apoptosis and cornification occur through distinct molecular pathways, and that possibly antiapoptotic mechanisms are implicated in the terminal differentiation of keratinocytes.

  10. Mortality in well controlled HIV in the continuous antiretroviral therapy arms of the SMART and ESPRIT trials compared with the general population.

    PubMed

    Rodger, Alison J; Lodwick, Rebecca; Schechter, Mauro; Deeks, Steven; Amin, Janaki; Gilson, Richard; Paredes, Roger; Bakowska, Elzbieta; Engsig, Frederik N; Phillips, Andrew

    2013-03-27

    Due to the success of antiretroviral therapy (ART), it is relevant to ask whether death rates in optimally treated HIV are higher than the general population. The objective was to compare mortality rates in well controlled HIV-infected adults in the SMART and ESPRIT clinical trials with the general population. Non-IDUs aged 20-70 years from the continuous ART control arms of ESPRIT and SMART were included if the person had both low HIV plasma viral loads (≤400 copies/ml SMART, ≤500 copies/ml ESPRIT) and high CD4(+) T-cell counts (≥350 cells/μl) at any time in the past 6 months. Standardized mortality ratios (SMRs) were calculated by comparing death rates with the Human Mortality Database. Three thousand, two hundred and eighty individuals [665 (20%) women], median age 43 years, contributed 12,357 person-years of follow-up. Sixty-two deaths occurred during follow up. Commonest cause of death was cardiovascular disease (CVD) or sudden death (19, 31%), followed by non-AIDS malignancy (12, 19%). Only two deaths (3%) were AIDS-related. Mortality rate was increased compared with the general population with a CD4(+) cell count between 350 and 499 cells/μl [SMR 1.77, 95% confidence interval (CI) 1.17-2.55]. No evidence for increased mortality was seen with CD4(+) cell counts greater than 500 cells/μl (SMR 1.00, 95% CI 0.69-1.40). In HIV-infected individuals on ART, with a recent undetectable viral load, who maintained or had recovery of CD4(+) cell counts to at least 500 cells/μl, we identified no evidence for a raised risk of death compared with the general population.

  11. Modelling the balance between quiescence and cell death in normal and tumour cell populations.

    PubMed

    Spinelli, Lorenzo; Torricelli, Alessandro; Ubezio, Paolo; Basse, Britta

    2006-08-01

    When considering either human adult tissues (in vivo) or cell cultures (in vitro), cell number is regulated by the relationship between quiescent cells, proliferating cells, cell death and other controls of cell cycle duration. By formulating a mathematical description we see that even small alterations of this relationship may cause a non-growing population to start growing with doubling times characteristic of human tumours. Our model consists of two age structured partial differential equations for the proliferating and quiescent cell compartments. Model parameters are death rates from and transition rates between these compartments. The partial differential equations can be solved for the steady-age distributions, giving the distribution of the cells through the cell cycle, dependent on specific model parameter values. Appropriate formulas can then be derived for various population characteristic quantities such as labelling index, proliferation fraction, doubling time and potential doubling time of the cell population. Such characteristic quantities can be estimated experimentally, although with decreasing precision from in vitro, to in vivo experimental systems and to the clinic. The model can be used to investigate the effects of a single alteration of either quiescence or cell death control on the growth of the whole population and the non-trivial dependence of the doubling time and other observable quantities on particular underlying cell cycle scenarios of death and quiescence. The model indicates that tumour evolution in vivo is a sequence of steady-states, each characterised by particular death and quiescence rate functions. We suggest that a key passage of carcinogenesis is a loss of the communication between quiescence, death and cell cycle machineries, causing a defect in their precise, cell cycle dependent relationship.

  12. The deaths of a cell: how language and metaphor influence the science of cell death.

    PubMed

    Reynolds, Andrew S

    2014-12-01

    Multicellular development and tissue maintenance involve the regular elimination of damaged and healthy cells. The science of this genetically regulated cell death is particularly rich in metaphors: 'programmed cell death' or 'cell suicide' is considered an 'altruistic' act on the part of a cell for the benefit of the organism as a whole. It is also considered a form of 'social control' exerted by the body/organism over its component cells. This paper analyzes the various functions of these metaphors and critical discussion about them within the scientific community. Bodies such as the Nomenclature Committee on Cell Death (NCCD) have been charged with bringing order to the language of cell death to facilitate scientific progress. While the NCCD recommends adopting more objective biochemical terminology to describe the mechanisms of cell death, the metaphors in question retain an important function by highlighting the broader context within which cell death occurs. Scientific metaphors act as conceptual 'tools' which fulfill various roles, from highlighting a phenomenon as of particular interest, situating it in a particular context, or suggesting explanatory causal mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Neuroprotective effects of silymarin on ischemia-induced delayed neuronal cell death in rat hippocampus.

    PubMed

    Hirayama, Koki; Oshima, Hideki; Yamashita, Akiko; Sakatani, Kaoru; Yoshino, Atsuo; Katayama, Yoichi

    2016-09-01

    We examined the effects of silymarin, which was extracted from Silybum marianum, on delayed neuronal cell death in the rat hippocampus. Rats were divided into four groups: sham-operated rats (sham group), rats which underwent ischemic surgery (control group), rats which were treated with silymarin before and after ischemic surgery (pre group), and rats which were treated with silymarin after ischemic surgery only (post group). We performed the ischemic surgery by occluding the bilateral carotid arteries for 20min and sacrificed the rats one week after the surgery. Silymarin was administered orally at 200mg/kg body weight. Smaller numbers of delayed cell deaths were noted in the rat CA1 region of the pre- and post-groups, and no significant difference was observed between these groups. There were few apoptotic cell deaths in all groups. Compared to the control group, significantly fewer cell deaths by autophagy were found in the pre- and post-group. We concluded that silymarin exerts a preservation effect on delayed neuronal cell death in the rat hippocampus and this effect has nothing to do with the timing of administering of silymarin. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The cell cycle and acute kidney injury

    PubMed Central

    Price, Peter M.; Safirstein, Robert L.; Megyesi, Judit

    2009-01-01

    Acute kidney injury (AKI) activates pathways of cell death and cell proliferation. Although seemingly discrete and unrelated mechanisms, these pathways can now be shown to be connected and even to be controlled by similar pathways. The dependence of the severity of renal-cell injury on cell cycle pathways can be used to control and perhaps to prevent acute kidney injury. This review is written to address the correlation between cellular life and death in kidney tubules, especially in acute kidney injury. PMID:19536080

  15. Boron Nutrition of Tobacco BY-2 Cells. V. Oxidative Damage is the Major Cause of Cell Death Induced by Boron Deprivation

    PubMed Central

    Koshiba, Taichi; Kobayashi, Masaru; Matoh, Toru

    2009-01-01

    Boron (B) is an essential micronutrient for vascular plants. However, it remains unclear how B deficiency leads to various metabolic disorders and cell death. To understand this mechanism, we analyzed the physiological changes in suspension-cultured tobacco (Nicotiana tabacum) BY-2 cells upon B deprivation. When 3-day-old cells were transferred to B-free medium, cell death was detectable as early as 12 h after treatment. The B-deprived cells accumulated more reactive oxygen species and lipid peroxides than control cells, and showed a slight but significant decrease in the cellular ascorbate pool. Supplementing the media with lipophilic antioxidants effectively suppressed the death of B-deprived cells, suggesting that the oxidative damage is the immediate and major cause of cell death under B deficiency. Dead cells in B-free culture exhibited a characteristic morphology with a shrunken cytoplasm, which is often seen in cells undergoing programmed cell death (PCD). However, they did not display other hallmarks of PCD such as internucleosomal DNA fragmentation, decreased ascorbate peroxidase expression and protection from death by cycloheximide. These results suggest that the death of tobacco cells induced by B deprivation is not likely to be a typical PCD. PMID:19054807

  16. Sulforaphane reduction of testicular apoptotic cell death in diabetic mice is associated with the upregulation of Nrf2 expression and function.

    PubMed

    Wang, Yonggang; Zhang, Zhiguo; Guo, Weiying; Sun, Weixia; Miao, Xiao; Wu, Hao; Cong, Xianling; Wintergerst, Kupper A; Kong, Xiangbo; Cai, Lu

    2014-07-01

    Diabetes-induced testicular cell death is due predominantly to oxidative stress. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is an important transcription factor in controlling the antioxidative system and is inducible by sulforaphane (SFN). To test whether SFN prevents diabetes-induced testicular cell death, an insulin-defective stage of type 2 diabetes (IDS-T2DM) was induced in mice. This was accomplished by feeding them a high-fat diet (HFD) for 3 mo to induce insulin resistance and then giving one intraperitoneal injection of streptozotocin to induce hyperglycemia while age-matched control mice were fed a normal diet (ND). IDS-T2DM and ND-fed control mice were then further subdivided into those with or without 4-mo SFN treatment. IDS-T2DM induced significant increases in testicular cell death presumably through receptor and mitochondrial pathways, shown by increased ratio of Bax/Bcl2 expression and cleavage of caspase-3 and caspase-8 without significant change of endoplasmic reticulum stress. Diabetes also significantly increased testicular oxidative damage and inflammation. All of these diabetic effects were significantly prevented by SFN treatment with upregulated Nrf2 expression. These results suggest that IDS-T2DM induces testicular cell death presumably through caspase-8 activation and mitochondria-mediated cell death pathways and also by significantly downregulating testicular Nrf2 expression and function. SFN upregulates testicular Nrf2 expression and its target antioxidant expression, which was associated with significant protection of the testis from IDS-T2DM-induced germ cell death. Copyright © 2014 the American Physiological Society.

  17. Control of adult neurogenesis by programmed cell death in the mammalian brain.

    PubMed

    Ryu, Jae Ryun; Hong, Caroline Jeeyeon; Kim, Joo Yeon; Kim, Eun-Kyoung; Sun, Woong; Yu, Seong-Woon

    2016-04-21

    The presence of neural stem cells (NSCs) and the production of new neurons in the adult brain have received great attention from scientists and the public because of implications to brain plasticity and their potential use for treating currently incurable brain diseases. Adult neurogenesis is controlled at multiple levels, including proliferation, differentiation, migration, and programmed cell death (PCD). Among these, PCD is the last and most prominent process for regulating the final number of mature neurons integrated into neural circuits. PCD can be classified into apoptosis, necrosis, and autophagic cell death and emerging evidence suggests that all three may be important modes of cell death in neural stem/progenitor cells. However, the molecular mechanisms that regulate PCD and thereby impact the intricate balance between self-renewal, proliferation, and differentiation during adult neurogenesis are not well understood. In this comprehensive review, we focus on the extent, mechanism, and biological significance of PCD for the control of adult neurogenesis in the mammalian brain. The role of intrinsic and extrinsic factors in the regulation of PCD at the molecular and systems levels is also discussed. Adult neurogenesis is a dynamic process, and the signals for differentiation, proliferation, and death of neural progenitor/stem cells are closely interrelated. A better understanding of how adult neurogenesis is influenced by PCD will help lead to important insights relevant to brain health and diseases.

  18. Proteomics in biomanufacturing control: Protein dynamics of CHO-K1 cells and conditioned media during apoptosis and necrosis.

    PubMed

    Albrecht, Simone; Kaisermayer, Christian; Gallagher, Clair; Farrell, Amy; Lindeberg, Anna; Bones, Jonathan

    2018-06-01

    Cell viability has a critical impact on product quantity and quality during the biomanufacturing of therapeutic proteins. An advanced understanding of changes in the cellular and conditioned media proteomes upon cell stress and death is therefore needed for improved bioprocess control. Here, a high pH/low pH reversed phase data independent 2D-LC-MS E discovery proteomics platform was applied to study the cellular and conditioned media proteomes of CHO-K1 apoptosis and necrosis models where cell death was induced by staurosporine exposure or aeration shear in a benchtop bioreactor, respectively. Functional classification of gene ontology terms related to molecular functions, biological processes, and cellular components revealed both cell death independent and specific features. In addition, label free quantitation using the Hi3 approach resulted in a comprehensive shortlist of 23 potential cell viability marker proteins with highest abundance and a significant increase in the conditioned media upon induction of cell death, including proteins related to cellular stress response, signal mediation, cytoskeletal organization, cell differentiation, cell interaction as well as metabolic and proteolytic enzymes which are interesting candidates for translating into targeted analysis platforms for monitoring bioprocessing response and increasing process control. © 2018 Wiley Periodicals, Inc.

  19. Metabolic control of T-cell activation and death in SLE

    PubMed Central

    Fernandez, David; Perl, Andras

    2009-01-01

    Systemic lupus erythematosus (SLE) is characterized by abnormal T-cell activation and death, processes which are crucially dependent on the controlled production of reactive oxygen intermediates (ROI) and of ATP in mitochondria. The mitochondrial transmembrane potential (Δψm) has conclusively emerged as a critical checkpoint of ATP synthesis and cell death. Lupus T cells exhibit persistent elevation of Δψm or mitochondrial hyperpolarization (MHP) as well as depletion of ATP and glutathione which decrease activation-induced apoptosis and instead predispose T cells for necrosis, thus stimulating inflammation in SLE. NO-induced mitochondrial biogenesis in normal T cells accelerates the rapid phase and reduces the plateau of Ca2+ influx upon CD3/CD28 co-stimulation, thus mimicking the Ca2+ signaling profile of lupus T cells. Treatment of SLE patients with rapamycin improves disease activity, normalizes CD3/CD28-induced Ca2+ fluxing but fails to affect MHP, suggesting that altered Ca2+ fluxing is downstream or independent of mitochondrial dysfunction. Understanding the molecular basis and consequences of MHP is essential for controlling T-cell activation and death signaling in SLE. Lupus T cells exhibit mitochondrial dysfunctionMitochondrial hyperpolarization (MHP) and ATP depletion predispose lupus T cells to death by necrosis which is pro-inflammatoryMHP is caused by depletion of glutathione and exposure to nitric oxide (NO)NO-induced mitochondrial biogenesis regenerates the Ca2+ signaling profile of lupus T cellsRapamycin treatment normalizes Ca2+ fluxing but not MHP, suggesting that the mammalian target of rapamycin, acts as a sensor and effector of MHP in SLE PMID:18722557

  20. miR-Let7A Controls the Cell Death and Tight Junction Density of Brain Endothelial Cells under High Glucose Condition

    PubMed Central

    Song, Juhyun; Yoon, So Ra

    2017-01-01

    Hyperglycemia-induced stress in the brain of patients with diabetes triggers the disruption of blood-brain barrier (BBB), leading to diverse neurological diseases including stroke and dementia. Recently, the role of microRNA becomes an interest in the research for deciphering the mechanism of brain endothelial cell damage under hyperglycemia. Therefore, we investigated whether mircoRNA Let7A (miR-Let7A) controls the damage of brain endothelial (bEnd.3) cells against high glucose condition. Cell viability, cell death marker expressions (p-53, Bax, and cleaved poly ADP-ribose polymerase), the loss of tight junction proteins (ZO-1 and claudin-5), proinflammatory response (interleukin-6, tumor necrosis factor-α), inducible nitric oxide synthase, and nitrite production were confirmed using MTT, reverse transcription-PCR, quantitative-PCR, Western blotting, immunofluorescence, and Griess reagent assay. miR-Let7A overexpression significantly prevented cell death and loss of tight junction proteins and attenuated proinflammatory response and nitrite production in the bEnd.3 cells under high glucose condition. Taken together, we suggest that miR-Let7A may attenuate brain endothelial cell damage by controlling cell death signaling, loss of tight junction proteins, and proinflammatory response against high glucose stress. In the future, the manipulation of miR-Let7A may be a novel solution in controlling BBB disruption which leads to the central nervous system diseases. PMID:28680530

  1. miR-Let7A Controls the Cell Death and Tight Junction Density of Brain Endothelial Cells under High Glucose Condition.

    PubMed

    Song, Juhyun; Yoon, So Ra; Kim, Oh Yoen

    2017-01-01

    Hyperglycemia-induced stress in the brain of patients with diabetes triggers the disruption of blood-brain barrier (BBB), leading to diverse neurological diseases including stroke and dementia. Recently, the role of microRNA becomes an interest in the research for deciphering the mechanism of brain endothelial cell damage under hyperglycemia. Therefore, we investigated whether mircoRNA Let7A (miR-Let7A) controls the damage of brain endothelial (bEnd.3) cells against high glucose condition. Cell viability, cell death marker expressions (p-53, Bax, and cleaved poly ADP-ribose polymerase), the loss of tight junction proteins (ZO-1 and claudin-5), proinflammatory response (interleukin-6, tumor necrosis factor- α ), inducible nitric oxide synthase, and nitrite production were confirmed using MTT, reverse transcription-PCR, quantitative-PCR, Western blotting, immunofluorescence, and Griess reagent assay. miR-Let7A overexpression significantly prevented cell death and loss of tight junction proteins and attenuated proinflammatory response and nitrite production in the bEnd.3 cells under high glucose condition. Taken together, we suggest that miR-Let7A may attenuate brain endothelial cell damage by controlling cell death signaling, loss of tight junction proteins, and proinflammatory response against high glucose stress. In the future, the manipulation of miR-Let7A may be a novel solution in controlling BBB disruption which leads to the central nervous system diseases.

  2. [The improvement of mixed human serum-induced anaphylactic reaction death model in guinea pigs].

    PubMed

    Chen, Jiong-Yuan; Lai, Yue; Li, Dang-Ri; Yue, Xia; Wang, Hui-Jun

    2012-12-01

    To increase the death rate of fatal anaphylaxis in guinea pigs and the detectahie level of the tryptase of mast cell in hlood serum. Seventy-four guinea pigs were randomly divided into five groups: original model group, original model control group, improved model group, improved model control group, improved model with non-anaphylaxis group. Using mixed human serum as the allergen, the way of injection, sensitization and induction were improved. ELISA was used to detect the serum mast cell tryptase and total IgE in guinea pigs of each group. The death rate of fatal anaphylaxis in original model group was 54.2% with the different degree of hemopericardium. The severe pericardial tamponade appeared in 9 guinea pigs in original model group and original model control group. The death rate of fatal anaphylaxis in improved model group was 75% without pericardial tamponade. The concentration of the serum total IgE showed no statistically difference hetween original model group and original model control group (P > 0.05), hut the serum mast cell tryptase level was higher in the original model group than that in the original model control group (P > 0.05). The concentration of the serum total IgE and the serum mast cell tryptase level were significantly higher in improved model group than that in the improved model control group (P < 0.05). The death rate of the improved model significantly increases, which can provide effective animal model for the study of serum total IgE and mast cell tryptase.

  3. Bar represses dPax2 and decapentaplegic to regulate cell fate and morphogenetic cell death in Drosophila eye.

    PubMed

    Kang, Jongkyun; Yeom, Eunbyul; Lim, Janghoo; Choi, Kwang-Wook

    2014-01-01

    The coordinated regulation of cell fate and cell survival is crucial for normal pattern formation in developing organisms. In Drosophila compound eye development, crystalline arrays of hexagonal ommatidia are established by precise assembly of diverse cell types, including the photoreceptor cells, cone cells and interommatidial (IOM) pigment cells. The molecular basis for controlling the number of cone and IOM pigment cells during ommatidial pattern formation is not well understood. Here we present evidence that BarH1 and BarH2 homeobox genes are essential for eye patterning by inhibiting excess cone cell differentiation and promoting programmed death of IOM cells. Specifically, we show that loss of Bar from the undifferentiated retinal precursor cells leads to ectopic expression of Prospero and dPax2, two transcription factors essential for cone cell specification, resulting in excess cone cell differentiation. We also show that loss of Bar causes ectopic expression of the TGFβ homolog Decapentaplegic (Dpp) posterior to the morphogenetic furrow in the larval eye imaginal disc. The ectopic Dpp expression is not responsible for the formation of excess cone cells in Bar loss-of-function mutant eyes. Instead, it causes reduction in IOM cell death in the pupal stage by antagonizing the function of pro-apoptotic gene reaper. Taken together, this study suggests a novel regulatory mechanism in the control of developmental cell death in which the repression of Dpp by Bar in larval eye disc is essential for IOM cell death in pupal retina.

  4. Cell death and cell lysis are separable events during pyroptosis

    PubMed Central

    DiPeso, Lucian; Ji, Daisy X; Vance, Russell E; Price, Jordan V

    2017-01-01

    Although much insight has been gained into the mechanisms by which activation of the inflammasome can trigger pyroptosis in mammalian cells, the precise kinetics of the end stages of pyroptosis have not been well characterized. Using time-lapse fluorescent imaging to analyze the kinetics of pyroptosis in individual murine macrophages, we observed distinct stages of cell death and cell lysis. Our data demonstrate that cell membrane permeability resulting from gasdermin D pore formation is coincident with the cessation of cell movement, loss of mitochondrial activity, and cell swelling, events that can be uncoupled from cell lysis. We propose a model of pyroptosis in which cell death can occur independently of cell lysis. The uncoupling of cell death from cell lysis may allow for better control of cytosolic contents upon activation of the inflammasome. PMID:29147575

  5. Cathepsin-mediated Necrosis Controls the Adaptive Immune Response by Th2 (T helper type 2)-associated Adjuvants*

    PubMed Central

    Jacobson, Lee S.; Lima, Heriberto; Goldberg, Michael F.; Gocheva, Vasilena; Tsiperson, Vladislav; Sutterwala, Fayyaz S.; Joyce, Johanna A.; Gapp, Bianca V.; Blomen, Vincent A.; Chandran, Kartik; Brummelkamp, Thijn R.; Diaz-Griffero, Felipe; Brojatsch, Jürgen

    2013-01-01

    Immunologic adjuvants are critical components of vaccines, but it remains unclear how prototypical adjuvants enhance the adaptive immune response. Recent studies have shown that necrotic cells could trigger an immune response. Although most adjuvants have been shown to be cytotoxic, this activity has traditionally been considered a side effect. We set out to test the role of adjuvant-mediated cell death in immunity and found that alum, the most commonly used adjuvant worldwide, triggers a novel form of cell death in myeloid leukocytes characterized by cathepsin-dependent lysosome-disruption. We demonstrated that direct lysosome-permeabilization with a soluble peptide, Leu-Leu-OMe, mimics the alum-like form of necrotic cell death in terms of cathepsin dependence and cell-type specificity. Using a combination of a haploid genetic screen and cathepsin-deficient cells, we identified specific cathepsins that control lysosome-mediated necrosis. We identified cathepsin C as critical for Leu-Leu-OMe-induced cell death, whereas cathepsins B and S were required for alum-mediated necrosis. Consistent with a role of necrotic cell death in adjuvant effects, Leu-Leu-OMe replicated an alum-like immune response in vivo, characterized by dendritic cell activation, granulocyte recruitment, and production of Th2-associated antibodies. Strikingly, cathepsin C deficiency not only blocked Leu-Leu-OMe-mediated necrosis but also impaired Leu-Leu-OMe-enhanced immunity. Together our findings suggest that necrotic cell death is a powerful mediator of a Th2-associated immune response. PMID:23297415

  6. Single Cell Responses to Spatially-Controlled Photosensitized Production of Extracellular Singlet Oxygen

    PubMed Central

    Pedersen, Brian Wett; Sinks, Louise E.; Breitenbach, Thomas; Schack, Nickolass B.; Vinogradov, Sergei A.; Ogilby, Peter R.

    2011-01-01

    The response of individual HeLa cells to extracellularly produced singlet oxygen was examined. The spatial domain of singlet oxygen production was controlled using the combination of a membrane-impermeable Pd porphyrin-dendrimer, which served as a photosensitizer, and a focused laser, which served to localize the sensitized production of singlet oxygen. Cells in close proximity to the domain of singlet oxygen production showed morphological changes commonly associated with necrotic cell death. The elapsed post-irradiation “waiting period” before necrosis became apparent depended on (a) the distance between the cell membrane and the domain irradiated, (b) the incident laser fluence and, as such, the initial concentration of singlet oxygen produced, and (c) the lifetime of singlet oxygen. The data imply that singlet oxygen plays a key role in this process of light-induced cell death. The approach of using extracellularly-generated singlet oxygen to induce cell death can provide a solution to a problem that often limits mechanistic studies of intracellularly photosensitized cell death: it can be difficult to quantify the effective light dose, and hence singlet oxygen concentration, when using an intracellular photosensitizer. PMID:21668871

  7. 'Hints' in the killer protein gasdermin D: unveiling the secrets of gasdermins driving cell death.

    PubMed

    Qiu, Shiqiao; Liu, Jing; Xing, Feiyue

    2017-04-01

    Pyroptosis is a lytic form of cell death distinguished from apoptosis, ferroptosis, necrosis, necroptosis, NETosis, oncosis, pyronecrosis and autophagy. Proinflammatory caspases cleave a gasdermin D (GSDMD) protein to generate a 31 kDa N-terminal domain. The cleavage relieves the intramolecular inhibition on the gasdermin-N domain, which then moves to the plasma membrane to exhibit pore-forming activity. Thus, GSDMD acts as the final and direct executor of pyroptotic cell death. Owing to the selective targeting of the inner leaflet of the plasma membrane with the pore-forming that determines pyroptotic cell death, GSDMD could be a potential target to control cell death or extracellular bacterial infections. Intriguingly, other gasdermin family members also share similar N-terminal domains, but they present different cell death programs. Herein, we summarize features and functions of the novel player proteins in cell death, including GSDMD triggering pyroptosis, Gsdma3/GSDMA initiating autophagy/apoptosis and DFNA5 inducing apoptosis/secondary necrosis. The gasdermin N terminus appears to be a novel pore-forming protein. This provides novel insight into the underlying roles and mechanisms of lytic or nonlytic forms of programmed cell death, as well as their potential applications in inflammation-associated diseases.

  8. Topological control of life and death in non-proliferative epithelia.

    PubMed

    Martinand-Mari, Camille; Maury, Benoit; Rousset, François; Sahuquet, Alain; Mennessier, Gérard; Rochal, Sergei; Lorman, Vladimir; Mangeat, Paul; Baghdiguian, Stephen

    2009-01-01

    Programmed cell death is one of the most fascinating demonstrations of the plasticity of biological systems. It is classically described to act upstream of and govern major developmental patterning processes (e.g. inter-digitations in vertebrates, ommatidia in Drosophila). We show here the first evidence that massive apoptosis can also be controlled and coordinated by a pre-established pattern of a specific 'master cell' population. This new concept is supported by the development and validation of an original model of cell patterning. Ciona intestinalis eggs are surrounded by a three-layered follicular organization composed of 60 elongated floating extensions made of as many outer and inner cells, and indirectly spread through an extracellular matrix over 1200 test cells. Experimental and selective ablation of outer and inner cells results in the abrogation of apoptosis in respective remaining neighbouring test cells. In addition incubation of outer/inner follicular cell-depleted eggs with a soluble extract of apoptotic outer/inner cells partially restores apoptosis to apoptotic-defective test cells. The 60 inner follicular cells were thus identified as 'apoptotic master' cells which collectively are induction sites for programmed cell death of the underlying test cells. The position of apoptotic master cells is controlled by topological constraints exhibiting a tetrahedral symmetry, and each cell spreads over and can control the destiny of 20 smaller test cells, which leads to optimized apoptosis signalling.

  9. RSL3 and Erastin differentially regulate redox signaling to promote Smac mimetic-induced cell death

    PubMed Central

    Dächert, Jasmin; Schoeneberger, Hannah; Rohde, Katharina; Fulda, Simone

    2016-01-01

    Redox mechanisms play an important role in the control of various signaling pathways. Here, we report that Second mitochondrial activator of caspases (Smac) mimetic-induced cell death is regulated by redox signaling. We show that RSL3, a glutathione (GSH) peroxidase (GPX) 4 inhibitor, or Erastin, an inhibitor of the cystine/glutamate antiporter, cooperate with the Smac mimetic BV6 to induce reactive oxygen species (ROS)-dependent cell death in acute lymphoblastic leukemia (ALL) cells. Addition of the caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) fails to rescue ROS-induced cell death, demonstrating that RSL3/BV6- or Erastin/BV6-induced cell death occurs in a caspase-independent manner. Interestingly, the iron chelator Deferoxamine (DFO) significantly inhibits RSL3/BV6-induced cell death, whereas it is unable to rescue cell death by Erastin/BV6, showing that RSL3/BV6-, but not Erastin/BV6-mediated cell death depends on iron. ROS production is required for both RSL3/BV6- and Erastin/BV6-induced cell death, since the ROS scavenger α-tocopherol (α-Toc) rescues RSL3/BV6- and Erastin/BV6-induced cell death. By comparison, genetic or pharmacological inhibition of lipid peroxidation by GPX4 overexpression or ferrostatin (Fer)-1 significantly decreases RSL3/BV6-, but not Erastin/BV6-induced cell death, despite inhibition of lipid peroxidation upon exposure to RSL3/BV6 or Erastin/BV6. Of note, inhibition of lipid peroxidation by Fer-1 protects from RSL3/BV6-, but not from Erastin/BV6-stimulated ROS production, indicating that other forms of ROS besides lipophilic ROS occur during Erastin/BV6-induced cell death. Taken together, RSL3/BV6 and Erastin/BV6 differentially regulate redox signaling and cell death in ALL cells. While RSL3/BV6 cotreatment induces ferroptotic cell death, Erastin/BV6 stimulates oxidative cell death independently of iron. These findings have important implications for the therapeutic targeting of redox signaling to enhance Smac mimetic-induced cell death in ALL. PMID:27588473

  10. RSL3 and Erastin differentially regulate redox signaling to promote Smac mimetic-induced cell death.

    PubMed

    Dächert, Jasmin; Schoeneberger, Hannah; Rohde, Katharina; Fulda, Simone

    2016-09-27

    Redox mechanisms play an important role in the control of various signaling pathways. Here, we report that Second mitochondrial activator of caspases (Smac) mimetic-induced cell death is regulated by redox signaling. We show that RSL3, a glutathione (GSH) peroxidase (GPX) 4 inhibitor, or Erastin, an inhibitor of the cystine/glutamate antiporter, cooperate with the Smac mimetic BV6 to induce reactive oxygen species (ROS)-dependent cell death in acute lymphoblastic leukemia (ALL) cells. Addition of the caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) fails to rescue ROS-induced cell death, demonstrating that RSL3/BV6- or Erastin/BV6-induced cell death occurs in a caspase-independent manner. Interestingly, the iron chelator Deferoxamine (DFO) significantly inhibits RSL3/BV6-induced cell death, whereas it is unable to rescue cell death by Erastin/BV6, showing that RSL3/BV6-, but not Erastin/BV6-mediated cell death depends on iron. ROS production is required for both RSL3/BV6- and Erastin/BV6-induced cell death, since the ROS scavenger α-tocopherol (α-Toc) rescues RSL3/BV6- and Erastin/BV6-induced cell death. By comparison, genetic or pharmacological inhibition of lipid peroxidation by GPX4 overexpression or ferrostatin (Fer)-1 significantly decreases RSL3/BV6-, but not Erastin/BV6-induced cell death, despite inhibition of lipid peroxidation upon exposure to RSL3/BV6 or Erastin/BV6. Of note, inhibition of lipid peroxidation by Fer-1 protects from RSL3/BV6-, but not from Erastin/BV6-stimulated ROS production, indicating that other forms of ROS besides lipophilic ROS occur during Erastin/BV6-induced cell death. Taken together, RSL3/BV6 and Erastin/BV6 differentially regulate redox signaling and cell death in ALL cells. While RSL3/BV6 cotreatment induces ferroptotic cell death, Erastin/BV6 stimulates oxidative cell death independently of iron. These findings have important implications for the therapeutic targeting of redox signaling to enhance Smac mimetic-induced cell death in ALL.

  11. Nuclear localized protein-1 (Nulp1) increases cell death of human osteosarcoma cells and binds the X-linked inhibitor of apoptosis protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steen, Hakan; Lindholm, Dan; Minerva Institute for Medical Research, Biomedicum Helsinki, Helsinki

    2008-02-08

    Nuclear localized protein-1 (Nulp1) is a recently identified gene expressed in mouse and human tissues particularly during embryonic development. Nulp1 belongs to the family of basic helix-loop-helix (bHLH) proteins that are important in development. The precise function of Nulp1 in cells is however not known. We observed that overexpression of Nulp1 induces a large increase in cell death of human osteosarcoma Saos2 cells with DNA fragmentation. In mouse N2A neuroblastoma cells Nulp1 affected cell proliferation and sensitized cells towards death induced by staurosporine. Staining using a novel antibody localized Nulp1 mainly to the cell nucleus and to some extent tomore » the cytoplasm. Nulp1 binds the X-linked inhibitor of apoptosis protein (XIAP) and this interaction was increased during cell death. These results indicate that Nulp1 plays a role in cell death control and may influence tumor growth.« less

  12. Novel function of STAT1beta in B cells: induction of cell death by a mechanism different from that of STAT1alpha.

    PubMed

    Najjar, Imen; Schischmanoff, Pierre Olivier; Baran-Marszak, Fanny; Deglesne, Pierre-Antoine; Youlyouz-Marfak, Ibtissam; Pampin, Mathieu; Feuillard, Jean; Bornkamm, Georg W; Chelbi-Alix, Mounira K; Fagard, Remi

    2008-12-01

    Alternate splicing of STAT1 produces two isoforms: alpha, known as the active form, and beta, previously shown to act as a dominant-negative factor. Most studies have dealt with STAT1alpha, showing its involvement in cell growth control and cell death. To examine the specific function of either isoform in cell death, a naturally STAT1-deficient human B cell line was transfected to express STAT1alpha or STAT1beta. STAT1alpha, expressed alone, enhanced cell death, potentiated the fludarabine-induced apoptosis, and enhanced the nuclear location, the phosphorylation, and the transcriptional activity of p53. Unexpectedly, STAT1beta, expressed alone, induced cell death through a mechanism that was independent of the nuclear function of p53. Indeed, in STAT1beta-expressing B cells, p53 was strictly cytoplasmic where it formed clusters, and there was no induction of the transcriptional activity of p53. These data reveal a novel role of STAT1beta in programmed cell death, which is independent of p53.

  13. Cylindromatosis mediates neuronal cell death in vitro and in vivo.

    PubMed

    Ganjam, Goutham K; Terpolilli, Nicole Angela; Diemert, Sebastian; Eisenbach, Ina; Hoffmann, Lena; Reuther, Christina; Herden, Christiane; Roth, Joachim; Plesnila, Nikolaus; Culmsee, Carsten

    2018-01-19

    The tumor-suppressor cylindromatosis (CYLD) is a deubiquitinating enzyme and key regulator of cell proliferation and inflammation. A genome-wide siRNA screen linked CYLD to receptor interacting protein-1 (RIP1) kinase-mediated necroptosis; however, the exact mechanisms of CYLD-mediated cell death remain unknown. Therefore, we investigated the precise role of CYLD in models of neuronal cell death in vitro and evaluated whether CYLD deletion affects brain injury in vivo. In vitro, downregulation of CYLD increased RIP1 ubiquitination, prevented RIP1/RIP3 complex formation, and protected neuronal cells from oxidative death. Similar protective effects were achieved by siRNA silencing of RIP1 or RIP3 or by pharmacological inhibition of RIP1 with necrostatin-1. In vivo, CYLD knockout mice were protected from trauma-induced brain damage compared to wild-type littermate controls. These findings unravel the mechanisms of CYLD-mediated cell death signaling in damaged neurons in vitro and suggest a cell death-mediating role of CYLD in vivo.

  14. Cell death is induced by ciglitazone, a peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonist, independently of PPAR{gamma} in human glioma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung Woo; Kim, Dae Seong; Kim, Hye Ryung

    Highlights: Black-Right-Pointing-Pointer Greater than 30 {mu}M ciglitazone induces cell death in glioma cells. Black-Right-Pointing-Pointer Cell death by ciglitazone is independent of PPAR{gamma} in glioma cells. Black-Right-Pointing-Pointer CGZ induces cell death by the loss of MMP via decreased Akt. -- Abstract: Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) regulates multiple signaling pathways, and its agonists induce apoptosis in various cancer cells. However, their role in cell death is unclear. In this study, the relationship between ciglitazone (CGZ) and PPAR{gamma} in CGZ-induced cell death was examined. At concentrations of greater than 30 {mu}M, CGZ, a synthetic PPAR{gamma} agonist, activated caspase-3 and induced apoptosis inmore » T98G cells. Treatment of T98G cells with less than 30 {mu}M CGZ effectively induced cell death after pretreatment with 30 {mu}M of the PPAR{gamma} antagonist GW9662, although GW9662 alone did not induce cell death. This cell death was also observed when cells were co-treated with CGZ and GW9662, but was not observed when cells were treated with CGZ prior to GW9662. In cells in which PPAR{gamma} was down-regulated cells by siRNA, lower concentrations of CGZ (<30 {mu}M) were sufficient to induce cell death, although higher concentrations of CGZ ( Greater-Than-Or-Slanted-Equal-To 30 {mu}M) were required to induce cell death in control T98G cells, indicating that CGZ effectively induces cell death in T98G cells independently of PPAR{gamma}. Treatment with GW9662 followed by CGZ resulted in a down-regulation of Akt activity and the loss of mitochondrial membrane potential (MMP), which was accompanied by a decrease in Bcl-2 expression and an increase in Bid cleavage. These data suggest that CGZ is capable of inducing apoptotic cell death independently of PPAR{gamma} in glioma cells, by down-regulating Akt activity and inducing MMP collapse.« less

  15. Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late Drosophila melanogaster oogenesis.

    PubMed

    Nezis, Ioannis P; Shravage, Bhupendra V; Sagona, Antonia P; Lamark, Trond; Bjørkøy, Geir; Johansen, Terje; Rusten, Tor Erik; Brech, Andreas; Baehrecke, Eric H; Stenmark, Harald

    2010-08-23

    Autophagy is an evolutionarily conserved pathway responsible for degradation of cytoplasmic material via the lysosome. Although autophagy has been reported to contribute to cell death, the underlying mechanisms remain largely unknown. In this study, we show that autophagy controls DNA fragmentation during late oogenesis in Drosophila melanogaster. Inhibition of autophagy by genetically removing the function of the autophagy genes atg1, atg13, and vps34 resulted in late stage egg chambers that contained persisting nurse cell nuclei without fragmented DNA and attenuation of caspase-3 cleavage. The Drosophila inhibitor of apoptosis (IAP) dBruce was found to colocalize with the autophagic marker GFP-Atg8a and accumulated in autophagy mutants. Nurse cells lacking Atg1 or Vps34 in addition to dBruce contained persisting nurse cell nuclei with fragmented DNA. This indicates that autophagic degradation of dBruce controls DNA fragmentation in nurse cells. Our results reveal autophagic degradation of an IAP as a novel mechanism of triggering cell death and thereby provide a mechanistic link between autophagy and cell death.

  16. TGFbeta type II receptor signaling controls Schwann cell death and proliferation in developing nerves.

    PubMed

    D'Antonio, Maurizio; Droggiti, Anna; Feltri, M Laura; Roes, Jürgen; Wrabetz, Lawrence; Mirsky, Rhona; Jessen, Kristján R

    2006-08-16

    During development, Schwann cell numbers are precisely adjusted to match the number of axons. It is essentially unknown which growth factors or receptors carry out this important control in vivo. Here, we tested whether the type II transforming growth factor (TGF) beta receptor has a role in this process. We generated a conditional knock-out mouse in which the type II TGFbeta receptor is specifically ablated only in Schwann cells. Inactivation of the receptor, evident at least from embryonic day 18, resulted in suppressed Schwann cell death in normally developing and injured nerves. Notably, the mutants also showed a strong reduction in Schwann cell proliferation. Consequently, Schwann cell numbers in wild-type and mutant nerves remained similar. Lack of TGFbeta signaling did not appear to affect other processes in which TGFbeta had been implicated previously, including myelination and response of adult nerves to injury. This is the first in vivo evidence for a growth factor receptor involved in promoting Schwann cell division during development and the first genetic evidence for a receptor that controls normal developmental Schwann cell death.

  17. JNK Controls the Onset of Mitosis in Planarian Stem Cells and Triggers Apoptotic Cell Death Required for Regeneration and Remodeling

    PubMed Central

    Almuedo-Castillo, María; Crespo, Xenia; Seebeck, Florian; Bartscherer, Kerstin; Salò, Emili; Adell, Teresa

    2014-01-01

    Regeneration of lost tissues depends on the precise interpretation of molecular signals that control and coordinate the onset of proliferation, cellular differentiation and cell death. However, the nature of those molecular signals and the mechanisms that integrate the cellular responses remain largely unknown. The planarian flatworm is a unique model in which regeneration and tissue renewal can be comprehensively studied in vivo. The presence of a population of adult pluripotent stem cells combined with the ability to decode signaling after wounding enable planarians to regenerate a complete, correctly proportioned animal within a few days after any kind of amputation, and to adapt their size to nutritional changes without compromising functionality. Here, we demonstrate that the stress-activated c-jun–NH2–kinase (JNK) links wound-induced apoptosis to the stem cell response during planarian regeneration. We show that JNK modulates the expression of wound-related genes, triggers apoptosis and attenuates the onset of mitosis in stem cells specifically after tissue loss. Furthermore, in pre-existing body regions, JNK activity is required to establish a positive balance between cell death and stem cell proliferation to enable tissue renewal, remodeling and the maintenance of proportionality. During homeostatic degrowth, JNK RNAi blocks apoptosis, resulting in impaired organ remodeling and rescaling. Our findings indicate that JNK-dependent apoptotic cell death is crucial to coordinate tissue renewal and remodeling required to regenerate and to maintain a correctly proportioned animal. Hence, JNK might act as a hub, translating wound signals into apoptotic cell death, controlled stem cell proliferation and differentiation, all of which are required to coordinate regeneration and tissue renewal. PMID:24922054

  18. Ergosterol Peroxide Isolated from Ganoderma lucidum Abolishes MicroRNA miR-378-Mediated Tumor Cells on Chemoresistance

    PubMed Central

    Li, Xiang-Min; Yang, Weining; Jiao, Chun-Wei; Fang, Ling; Li, Sen-Zhu; Pan, Hong-Hui; Yee, Albert J.; Lee, Daniel Y.; Li, Chong; Zhang, Zhi; Guo, Jun; Yang, Burton B.

    2012-01-01

    Due to an altered expression of oncogenic factors and tumor suppressors, aggressive cancer cells have an intrinsic or acquired resistance to chemotherapeutic agents. This typically contributes to cancer recurrence after chemotherapy. microRNAs are short non-coding RNAs that are involved in both cell self-renewal and cancer development. Here we report that tumor cells transfected with miR-378 acquired properties of aggressive cancer cells. Overexpression of miR-378 enhanced both cell survival and colony formation, and contributed to multiple drug resistance. Higher concentrations of chemotherapeutic drugs were needed to induce death of miR-378-transfected cells than to induce death of control cells. We found that the biologically active component isolated from Ganoderma lucidum could overcome the drug-resistance conferred by miR-378. We purified and identified the biologically active component of Ganoderma lucidum as ergosterol peroxide. We demonstrated that ergosterol peroxide produced greater activity in inducing death of miR-378 cells than the GFP cells. Lower concentrations of ergosterol peroxide were needed to induce death of the miR-378-transfected cells than in the control cells. With further clinical development, ergosterol peroxide represents a promising new reagent that can overcome the drug-resistance of tumor cells. PMID:22952996

  19. Expression of animal anti-apoptotic gene Ced-9 enhances tolerance during Glycine max L.-Bradyrhizobium japonicum interaction under saline stress but reduces nodule formation.

    PubMed

    Robert, Germán; Muñoz, Nacira; Melchiorre, Mariana; Sánchez, Federico; Lascano, Ramiro

    2014-01-01

    The mechanisms by which the expression of animal cell death suppressors in economically important plants conferred enhanced stress tolerance are not fully understood. In the present work, the effect of expression of animal antiapoptotic gene Ced-9 in soybean hairy roots was evaluated under root hairs and hairy roots death-inducing stress conditions given by i) Bradyrhizobium japonicum inoculation in presence of 50 mM NaCl, and ii) severe salt stress (150 mM NaCl), for 30 min and 3 h, respectively. We have determined that root hairs death induced by inoculation in presence of 50 mM NaCl showed characteristics of ordered process, with increased ROS generation, MDA and ATP levels, whereas the cell death induced by 150 mM NaCl treatment showed non-ordered or necrotic-like characteristics. The expression of Ced-9 inhibited or at least delayed root hairs death under these treatments. Hairy roots expressing Ced-9 had better homeostasis maintenance, preventing potassium release; increasing the ATP levels and controlling the oxidative damage avoiding the increase of reactive oxygen species production. Even when our results demonstrate a positive effect of animal cell death suppressors in plant cell ionic and redox homeostasis under cell death-inducing conditions, its expression, contrary to expectations, drastically inhibited nodule formation even under control conditions.

  20. Glutathione in Cancer Cell Death

    PubMed Central

    Ortega, Angel L.; Mena, Salvador; Estrela, Jose M.

    2011-01-01

    Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH) in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH) is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy. PMID:24212662

  1. Apoptosis evaluation in epithelial cells exposed to different chemicals: relevance of floating cells.

    PubMed

    Turco, L; De Angelis, I; Stammati, A; Zucco, F

    2000-01-01

    The recent increase in understanding of cell death has promoted new approaches in toxicological studies, mainly those dealing with in vitro systems where the evaluation of cell death has been the most widely adopted end-point in measuring the effects of chemical toxicants. The aim of this study was to investigate the possibility of improving the traditional cytotoxicity test protocols in order to produce more specific information on the type of cell death induced by exposure to toxicants. In particular, we characterized the mode of cell death in an established epithelial cell line, HEp-2 cells, which is frequently used in cytotoxicity testing owing to its easy handling and standardization of culture conditions. Reference chemicals for apoptosis and necrosis were selected as controls, together with other molecules that have been shown, in preliminary studies, to induce various morphological and structural modifications in relation to cell death. The results obtained show that: (a) the floating fraction of treated cells gives the clearest picture of the necrotic/apoptotic distribution; (b) morphological analysis is crucial for characterization of apoptosis; (c) more than one cytotoxic end-point is necessary to clearly identify the type of cell death.

  2. Differential immunomodulatory activity of tumor cell death induced by cancer therapeutic toll-like receptor ligands.

    PubMed

    Klein, Johanna C; Wild, Clarissa A; Lang, Stephan; Brandau, Sven

    2016-06-01

    Synthetic toll-like receptor (TLR) ligands stimulate defined immune cell subsets and are currently tested as novel immunotherapeutic agents against cancer with, however, varying clinical efficacy. Recent data showed the expression of TLR receptors also on tumor cells. In this study we investigated immunological events associated with the induction of tumor cell death by poly(I:C) and imiquimod. A human head and neck squamous cell carcinoma (HNSCC) cell line was exposed to poly(I:C) and imiquimod, which were delivered exogenously via culture medium or via electroporation. Cell death and cell biological consequences thereof were analyzed. For in vivo analyses, a human xenograft and a syngeneic immunocompetent mouse model were used. Poly(I:C) induced cell death only if delivered by electroporation into the cytosol. Cell death induced by poly(I:C) resulted in cytokine release and activation of monocytes in vitro. Monocytes activated by the supernatant of cancer cells previously exposed to poly(I:C) recruited significantly more Th1 cells than monocytes exposed to control supernatants. If delivered exogenously, imiquimod also induced tumor cell death and some release of interleukin-6, but cell death was not associated with release of Th1 cytokines, interferons, monocyte activation and Th1 recruitment. Interestingly, intratumoral injection of poly(I:C) triggered tumor cell death in tumor-bearing mice and reduced tumor growth independent of TLR signaling on host cells. Imiquimod did not affect tumor size. Our data suggest that common cancer therapeutic RNA compounds can induce functionally diverse types of cell death in tumor cells with implications for the use of TLR ligands in cancer immunotherapy.

  3. ‘Hints' in the killer protein gasdermin D: unveiling the secrets of gasdermins driving cell death

    PubMed Central

    Qiu, Shiqiao; Liu, Jing; Xing, Feiyue

    2017-01-01

    Pyroptosis is a lytic form of cell death distinguished from apoptosis, ferroptosis, necrosis, necroptosis, NETosis, oncosis, pyronecrosis and autophagy. Proinflammatory caspases cleave a gasdermin D (GSDMD) protein to generate a 31 kDa N-terminal domain. The cleavage relieves the intramolecular inhibition on the gasdermin-N domain, which then moves to the plasma membrane to exhibit pore-forming activity. Thus, GSDMD acts as the final and direct executor of pyroptotic cell death. Owing to the selective targeting of the inner leaflet of the plasma membrane with the pore-forming that determines pyroptotic cell death, GSDMD could be a potential target to control cell death or extracellular bacterial infections. Intriguingly, other gasdermin family members also share similar N-terminal domains, but they present different cell death programs. Herein, we summarize features and functions of the novel player proteins in cell death, including GSDMD triggering pyroptosis, Gsdma3/GSDMA initiating autophagy/apoptosis and DFNA5 inducing apoptosis/secondary necrosis. The gasdermin N terminus appears to be a novel pore-forming protein. This provides novel insight into the underlying roles and mechanisms of lytic or nonlytic forms of programmed cell death, as well as their potential applications in inflammation-associated diseases. PMID:28362726

  4. Coherence-controlled holographic microscopy enabled recognition of necrosis as the mechanism of cancer cells death after exposure to cytopathic turbid emulsion

    NASA Astrophysics Data System (ADS)

    Collakova, Jana; Krizova, Aneta; Kollarova, Vera; Dostal, Zbynek; Slaba, Michala; Vesely, Pavel; Chmelik, Radim

    2015-11-01

    Coherence-controlled holographic microscopy (CCHM) in low-coherence mode possesses a pronounced coherence gate effect. This offers an option to investigate the details of cellular events leading to cell death caused by cytopathic turbid emulsions. CCHM capacity was first assessed in model situations that showed clear images obtained with low coherence of illumination but not with high coherence of illumination. Then, the form of death of human cancer cells induced by treatment with biologically active phospholipids (BAPs) preparation was investigated. The observed overall retraction of cell colony was apparently caused by the release of cell-to-substratum contacts. This was followed by the accumulation of granules decorating the nuclear membrane. Then, the occurrence of nuclear membrane indentations signaled the start of damage to the integrity of the cell nucleus. In the final stage, cells shrunk and disintegrated. This indicated that BAPs cause cell death by necrosis and not apoptosis. An intriguing option of checking the fate of cancer cells caused by the anticipated cooperative effect after adding another tested substance sodium dichloroacetate to turbid emulsion is discussed on grounds of pilot experiments. Such observations should reveal the impact and mechanism of action of the interacting drugs on cell behavior and fate that would otherwise remain hidden in turbid milieu.

  5. Upregulated miR-29b promotes neuronal cell death by inhibiting Bcl2L2 after ischemic brain injury.

    PubMed

    Shi, Guodong; Liu, Yang; Liu, Tielong; Yan, Wangjun; Liu, Xiaowei; Wang, Yuan; Shi, Jiangang; Jia, Lianshun

    2012-01-01

    It is increasingly clear that microRNAs (miRNAs) play an important role in controlling cell survival. However, the functional significance of miRNAs in ischemic brain injury remains poorly understood. In the present study, we assayed the expression levels of miR-29b after ischemic brain injury, and defined the target genes and biological functions of miR-29b. We found that the miR-29b levels were significantly increased in rat brain after transient middle cerebral artery occlusion and neurons after oxygen-glucose deprivation. Moreover, ectopic expression of miR-29b promoted neuronal cell death, whereas its repression decreased cell death. Furthermore, we verified that miR-29b directly targeted and inhibited Bcl2L2 gene expression, and then increased neuronal cell death. Importantly, Bcl2L2 overexpression rescued neuronal cell death induced by miR-29b. These results suggest an important role of miR-29b in regulating neuronal cell death, thus offering a new target for the development of therapeutic agents against ischemic brain injury.

  6. Multiple reaction monitoring targeted LC-MS analysis of potential cell death marker proteins for increased bioprocess control.

    PubMed

    Albrecht, Simone; Kaisermayer, Christian; Reinhart, David; Ambrose, Monica; Kunert, Renate; Lindeberg, Anna; Bones, Jonathan

    2018-05-01

    The monitoring of protein biomarkers for the early prediction of cell stress and death is a valuable tool for process characterization and efficient biomanufacturing control. A representative set of six proteins, namely GPDH, PRDX1, LGALS1, CFL1, TAGLN2 and MDH, which were identified in a previous CHO-K1 cell death model using discovery LC-MS E was translated into a targeted liquid chromatography multiple reaction monitoring mass spectrometry (LC-MRM-MS) platform and verified. The universality of the markers was confirmed in a cell growth model for which three Chinese hamster ovary host cell lines (CHO-K1, CHO-S, CHO-DG44) were grown in batch culture in two different types of basal media. LC-MRM-MS was also applied to spent media (n = 39) from four perfusion biomanufacturing series. Stable isotope-labelled peptide analogues and a stable isotope-labelled monoclonal antibody were used for improved protein quantitation and simultaneous monitoring of the workflow reproducibility. Significant increases in protein concentrations were observed for all viability marker proteins upon increased dead cell numbers and allowed for discrimination of spent media with dead cell densities below and above 1 × 10 6  dead cells/mL which highlights the potential of the selected viability marker proteins in bioprocess control. Graphical abstract Overview of the LC-MRM-MS workflow for the determination of proteomic markers in conditioned media from the bioreactor that correlate with CHO cell death.

  7. Cell death induced by Morarah and Khaltita in hepatoma cancer cells (Huh-7).

    PubMed

    Baig, Saeeda; Alamgir, Mohiuddin

    2009-10-01

    To compare the combined and isolated growth inhibitory effects of Morarah and Khaltita (herbs) on hepatoma cell lines (Huh-7), through induction of apoptosis or necrosis. Comparative controlled in-vitro study. The Molecular Biology Laboratory, The Aga Khan University, Karachi, from June to December 2006. The growth of hepatoma cell lines (Huh-7) was checked by adding Khaltita and Morarah to the cells before culture in a 24 well plate. Six wells were selected and labeled for each of the four variables (controls, Khaltita, Morarah and mixture). After 2 days, cells were studied under an inverted phase contrast microscope and fields were recorded. Approximately four fields per slide of higher intensity were selected randomly to determine the dead cell density, and the procedure was repeated 10 or more times. Frequency and percentages were calculated for dead or alive cells in controls, Morarah, Khaltita and their mixture. Chi-square was used to compare the qualitative variables. P-values < 0.05 were considered significant. Morarah and Khaltita were found to induce statistically significant (p < 0.001) cell death in hepatoma cell lines (Huh-7). At a magnification of 40x, the controls showed 1% dead cells compared to 91% in Morarah, 83% in Khaltita and 73% in combined mixture of Khaltita and Morarah. At magnification of 20x, the controls showed 4% dead cells compared to 44% in Morarah, 47% in Khaltita and 49% in the combined mixture of Khaltita and Morarah. Morarah and Khaltita induced cell death in cultured hepatoma cells (Huh-7).

  8. Oncolytic vesicular stomatitis virus induces apoptosis in U87 glioblastoma cells by a type II death receptor mechanism and induces cell death and tumor clearance in vivo.

    PubMed

    Cary, Zachary D; Willingham, Mark C; Lyles, Douglas S

    2011-06-01

    Vesicular stomatitis virus (VSV) is a potential oncolytic virus for treating glioblastoma multiforme (GBM), an aggressive brain tumor. Matrix (M) protein mutants of VSV have shown greater selectivity for killing GBM cells versus normal brain cells than VSV with wild-type M protein. The goal of this research was to determine the contribution of death receptor and mitochondrial pathways to apoptosis induced by an M protein mutant (M51R) VSV in U87 human GBM tumor cells. Compared to controls, U87 cells expressing a dominant negative form of Fas (dnFas) or overexpressing Bcl-X(L) had reduced caspase-3 activation following infection with M51R VSV, indicating that both the death receptor pathway and mitochondrial pathways are important for M51R VSV-induced apoptosis. Death receptor signaling has been classified as type I or type II, depending on whether signaling is independent (type I) or dependent on the mitochondrial pathway (type II). Bcl-X(L) overexpression inhibited caspase activation in response to a Fas-inducing antibody, similar to the inhibition in response to M51R VSV infection, indicating that U87 cells behave as type II cells. Inhibition of apoptosis in vitro delayed, but did not prevent, virus-induced cell death. Murine xenografts of U87 cells that overexpress Bcl-X(L) regressed with a time course similar to that of control cells following treatment with M51R VSV, and tumors were not detectable at 21 days postinoculation. Immunohistochemical analysis demonstrated similar levels of viral antigen expression but reduced activation of caspase-3 following virus treatment of Bcl-X(L)-overexpressing tumors compared to controls. Further, the pathological changes in tumors following treatment with virus were quite different in the presence versus the absence of Bcl-X(L) overexpression. These results demonstrate that M51R VSV efficiently induces oncolysis in GBM tumor cells despite deregulation of apoptotic pathways, underscoring its potential use as a treatment for GBM.

  9. Intracellular growth of Mycobacterium tuberculosis after macrophage cell death leads to serial killing of host cells

    PubMed Central

    Mahamed, Deeqa; Boulle, Mikael; Ganga, Yashica; Mc Arthur, Chanelle; Skroch, Steven; Oom, Lance; Catinas, Oana; Pillay, Kelly; Naicker, Myshnee; Rampersad, Sanisha; Mathonsi, Colisile; Hunter, Jessica; Wong, Emily B; Suleman, Moosa; Sreejit, Gopalkrishna; Pym, Alexander S; Lustig, Gila; Sigal, Alex

    2017-01-01

    A hallmark of pulmonary tuberculosis is the formation of macrophage-rich granulomas. These may restrict Mycobacterium tuberculosis (Mtb) growth, or progress to central necrosis and cavitation, facilitating pathogen growth. To determine factors leading to Mtb proliferation and host cell death, we used live cell imaging to track Mtb infection outcomes in individual primary human macrophages. Internalization of Mtb aggregates caused macrophage death, and phagocytosis of large aggregates was more cytotoxic than multiple small aggregates containing similar numbers of bacilli. Macrophage death did not result in clearance of Mtb. Rather, it led to accelerated intracellular Mtb growth regardless of prior activation or macrophage type. In contrast, bacillary replication was controlled in live phagocytes. Mtb grew as a clump in dead cells, and macrophages which internalized dead infected cells were very likely to die themselves, leading to a cell death cascade. This demonstrates how pathogen virulence can be achieved through numbers and aggregation states. DOI: http://dx.doi.org/10.7554/eLife.22028.001 PMID:28130921

  10. Regulation of cell division cycle progression by bcl-2 expression: a potential mechanism for inhibition of programmed cell death

    PubMed Central

    1996-01-01

    Expression of the bcl-2 gene has been shown to effectively confer resistance to programmed cell death under a variety of circumstances. However, despite a wealth of literature describing this phenomenon, very little is known about the mechanism of resistance. In the experiments described here, we show that bcl-2 gene expression can result in an inhibition of cell division cycle progression. These findings are based upon the analysis of cell cycle distribution, cell cycle kinetics, and relative phosphorylation of the retinoblastoma tumor suppressor protein, using primary tissues in vivo, ex vivo, and in vitro, as well as continuous cell lines. The effects of bcl-2 expression on cell cycle progression appear to be focused at the G1 to S phase transition, which is a critical control point in the decision between continued cell cycle progression or the induction programmed cell death. In all systems tested, bcl-2 expression resulted in a substantial 30-60% increase in the length of G1 phase; such an increase is very substantial in the context of other regulators of cell cycle progression. Based upon our findings, and the related findings of others, we propose a mechanism by which bcl-2 expression might exert its well known inhibition of programmed cell death by regulating the kinetics of cell cycle progression at a critical control point. PMID:8642331

  11. Ars Moriendi; the art of dying well - new insights into the molecular pathways of necroptotic cell death.

    PubMed

    Murphy, James M; Silke, John

    2014-02-01

    When our time comes to die most people would probably opt for a quick, peaceful and painless exit. But the manner and timing are rarely under our direct control. Hence the Ars moriendi, literally, "The Art of Dying", two texts written in Latin around the 15th century that offered advice on how to die well according to the Christian ideals of the time. In contrast, for individual cells, the death process is frequently under their control and several signaling pathways that cause cell death, including apoptosis, pyroptosis and necroptosis, have been described. Furthermore the manner in which cells die can have good or bad consequences for the organism. In this review we will discuss how cells die via the necroptotic signaling pathway, with emphasis on recent structural work and place this work in a biological context by discussing relevant studies with knock-out animals.

  12. Loss of BID Delays FASL-Induced Cell Death of Mouse Neutrophils and Aggravates DSS-Induced Weight Loss.

    PubMed

    Wicki, Simone; Gurzeler, Ursina; Corazza, Nadia; Genitsch, Vera; Wong, Wendy Wei-Lynn; Kaufmann, Thomas

    2018-02-28

    Neutrophils are key players in the early defense against invading pathogens. Due to their potent effector functions, programmed cell death of activated neutrophils has to be tightly controlled; however, its underlying mechanisms remain unclear. Fas ligand (FASL/CD95L) has been shown to induce neutrophil apoptosis, which is accelerated by the processing of the BH3-only protein BH3 interacting domain death agonist (BID) to trigger mitochondrial apoptotic events, and been attributed a regulatory role during viral and bacterial infections. Here, we show that, in accordance with previous works, mouse neutrophils underwent caspase-dependent apoptosis in response to FASL, and that this cell death was significantly delayed upon loss of BID. However, pan-caspase inhibition failed to protect mouse neutrophils from FASL-induced apoptosis and caused a switch to RIPK3-dependent necroptotic cell death. Intriguingly, such a switch was less evident in the absence of BID, particularly under inflammatory conditions. Delayed neutrophil apoptosis has been implicated in several auto-inflammatory diseases, including inflammatory bowel disease. We show that neutrophil and macrophage driven acute dextran sulfate sodium (DSS) induced colitis was slightly more aggravated in BID-deficient mice, based on significantly increased weight loss compared to wild-type controls. Taken together, our data support a central role for FASL > FAS and BID in mouse neutrophil cell death and further underline the anti-inflammatory role of BID.

  13. Loss of BID Delays FASL-Induced Cell Death of Mouse Neutrophils and Aggravates DSS-Induced Weight Loss

    PubMed Central

    Wicki, Simone; Gurzeler, Ursina; Corazza, Nadia; Genitsch, Vera

    2018-01-01

    Neutrophils are key players in the early defense against invading pathogens. Due to their potent effector functions, programmed cell death of activated neutrophils has to be tightly controlled; however, its underlying mechanisms remain unclear. Fas ligand (FASL/CD95L) has been shown to induce neutrophil apoptosis, which is accelerated by the processing of the BH3-only protein BH3 interacting domain death agonist (BID) to trigger mitochondrial apoptotic events, and been attributed a regulatory role during viral and bacterial infections. Here, we show that, in accordance with previous works, mouse neutrophils underwent caspase-dependent apoptosis in response to FASL, and that this cell death was significantly delayed upon loss of BID. However, pan-caspase inhibition failed to protect mouse neutrophils from FASL-induced apoptosis and caused a switch to RIPK3-dependent necroptotic cell death. Intriguingly, such a switch was less evident in the absence of BID, particularly under inflammatory conditions. Delayed neutrophil apoptosis has been implicated in several auto-inflammatory diseases, including inflammatory bowel disease. We show that neutrophil and macrophage driven acute dextran sulfate sodium (DSS) induced colitis was slightly more aggravated in BID-deficient mice, based on significantly increased weight loss compared to wild-type controls. Taken together, our data support a central role for FASL > FAS and BID in mouse neutrophil cell death and further underline the anti-inflammatory role of BID. PMID:29495595

  14. Bim controls IL-15 availability and limits engagement of multiple BH3-only proteins

    PubMed Central

    Kurtulus, S; Sholl, A; Toe, J; Tripathi, P; Raynor, J; Li, K-P; Pellegrini, M; Hildeman, D A

    2015-01-01

    During the effector CD8+ T-cell response, transcriptional differentiation programs are engaged that promote effector T cells with varying memory potential. Although these differentiation programs have been used to explain which cells die as effectors and which cells survive and become memory cells, it is unclear if the lack of cell death enhances memory. Here, we investigated effector CD8+ T-cell fate in mice whose death program has been largely disabled because of the loss of Bim. Interestingly, the absence of Bim resulted in a significant enhancement of effector CD8+ T cells with more memory potential. Bim-driven control of memory T-cell development required T-cell-specific, but not dendritic cell-specific, expression of Bim. Both total and T-cell-specific loss of Bim promoted skewing toward memory precursors, by enhancing the survival of memory precursors, and limiting the availability of IL-15. Decreased IL-15 availability in Bim-deficient mice facilitated the elimination of cells with less memory potential via the additional pro-apoptotic molecules Noxa and Puma. Combined, these data show that Bim controls memory development by limiting the survival of pre-memory effector cells. Further, by preventing the consumption of IL-15, Bim limits the role of Noxa and Puma in causing the death of effector cells with less memory potential. PMID:25124553

  15. Bim controls IL-15 availability and limits engagement of multiple BH3-only proteins.

    PubMed

    Kurtulus, S; Sholl, A; Toe, J; Tripathi, P; Raynor, J; Li, K-P; Pellegrini, M; Hildeman, D A

    2015-01-01

    During the effector CD8+ T-cell response, transcriptional differentiation programs are engaged that promote effector T cells with varying memory potential. Although these differentiation programs have been used to explain which cells die as effectors and which cells survive and become memory cells, it is unclear if the lack of cell death enhances memory. Here, we investigated effector CD8+ T-cell fate in mice whose death program has been largely disabled because of the loss of Bim. Interestingly, the absence of Bim resulted in a significant enhancement of effector CD8+ T cells with more memory potential. Bim-driven control of memory T-cell development required T-cell-specific, but not dendritic cell-specific, expression of Bim. Both total and T-cell-specific loss of Bim promoted skewing toward memory precursors, by enhancing the survival of memory precursors, and limiting the availability of IL-15. Decreased IL-15 availability in Bim-deficient mice facilitated the elimination of cells with less memory potential via the additional pro-apoptotic molecules Noxa and Puma. Combined, these data show that Bim controls memory development by limiting the survival of pre-memory effector cells. Further, by preventing the consumption of IL-15, Bim limits the role of Noxa and Puma in causing the death of effector cells with less memory potential.

  16. A Conserved Core of Programmed Cell Death Indicator Genes Discriminates Developmentally and Environmentally Induced Programmed Cell Death in Plants.

    PubMed

    Olvera-Carrillo, Yadira; Van Bel, Michiel; Van Hautegem, Tom; Fendrych, Matyáš; Huysmans, Marlies; Simaskova, Maria; van Durme, Matthias; Buscaill, Pierre; Rivas, Susana; Coll, Nuria S.; Coppens, Frederik; Maere, Steven; Nowack, Moritz K.

    2015-12-01

    A plethora of diverse programmed cell death (PCD) processes has been described in living organisms. In animals and plants, different forms of PCD play crucial roles in development, immunity, and responses to the environment. While the molecular control of some animal PCD forms such as apoptosis is known in great detail, we still know comparatively little about the regulation of the diverse types of plant PCD. In part, this deficiency in molecular understanding is caused by the lack of reliable reporters to detect PCD processes. Here, we addressed this issue by using a combination of bioinformatics approaches to identify commonly regulated genes during diverse plant PCD processes in Arabidopsis (Arabidopsis thaliana). Our results indicate that the transcriptional signatures of developmentally controlled cell death are largely distinct from the ones associated with environmentally induced cell death. Moreover, different cases of developmental PCD share a set of cell death-associated genes. Most of these genes are evolutionary conserved within the green plant lineage, arguing for an evolutionary conserved core machinery of developmental PCD. Based on this information, we established an array of specific promoter-reporter lines for developmental PCD in Arabidopsis. These PCD indicators represent a powerful resource that can be used in addition to established morphological and biochemical methods to detect and analyze PCD processes in vivo and in planta. © 2015 American Society of Plant Biologists. All Rights Reserved.

  17. Susceptibility of Mycobacterium tuberculosis-infected host cells to phospho-MLKL driven necroptosis is dependent on cell type and presence of TNFα.

    PubMed

    Butler, Rachel E; Krishnan, Nitya; Garcia-Jimenez, Waldo; Francis, Robert; Martyn, Abbe; Mendum, Tom; Felemban, Shaza; Locker, Nicolas; Salguero, Francisco J; Robertson, Brian; Stewart, Graham R

    2017-11-17

    An important feature of Mycobacterium tuberculosis pathogenesis is the ability to control cell death in infected host cells, including inhibition of apoptosis and stimulation of necrosis. Recently an alternative form of programmed cell death, necroptosis, has been described where necrotic cell death is induced by apoptotic stimuli under conditions where apoptotic execution is inhibited. We show for the first time that M. tuberculosis and TNFα synergise to induce necroptosis in murine fibroblasts via RIPK1-dependent mechanisms and characterized by phosphorylation of Ser345 of the MLKL necroptosis death effector. However, in murine macrophages M. tuberculosis and TNFα induce non-necroptotic cell death that is RIPK1-dependent but independent of MLKL phosphorylation. Instead, M. tuberculosis-infected macrophages undergo RIPK3-dependent cell death which occurs both in the presence and absence of TNFα and involves the production of mitochondrial ROS. Immunocytochemical staining for MLKL phosphorylation further demonstrated the occurrence of necroptosis in vivo in murine M. tuberculosis granulomas. Phosphorylated-MLKL immunoreactivity was observed associated with the cytoplasm and nucleus of fusiform cells in M. tuberculosis lesions but not in proximal macrophages. Thus whereas pMLKL-driven necroptosis does not appear to be a feature of M. tuberculosis-infected macrophage cell death, it may contribute to TNFα-induced cytotoxicity of the lung stroma and therefore contribute to necrotic cavitation and bacterial dissemination.

  18. Combined selenium and vitamin C deficiency causes cell death in guinea pig skeletal muscle.

    PubMed

    Hill, Kristina E; Motley, Amy K; May, James M; Burk, Raymond F

    2009-03-01

    Combined antioxidant deficiencies of selenium and vitamin E or vitamin E and vitamin C in guinea pigs result in clinical illness. We hypothesized that combined selenium and vitamin C deficiency would have clinical consequences because in vitro interactions of these antioxidant nutrients have been reported. Because guinea pigs are dependent on dietary vitamin C, weanling male guinea pigs were fed selenium-deficient or control diet for 15 weeks before imposing vitamin C deficiency. Four dietary groups were formed and studied 3 weeks later: controls, vitamin C deficient, selenium deficient, and doubly deficient. Deficiencies were confirmed by determinations of glutathione peroxidase activity and vitamin C concentration in liver and skeletal muscle. Plasma creatine phosphokinase activity and liver, kidney, heart, and quadriceps histopathology were determined. Doubly deficient animals had moderately severe skeletal muscle cell death as judged by histopathology and plasma creatine phosphokinase activity of 6630 +/- 4400 IU/L (control, 70 + or - 5; vitamin C deficient, 95 + or - 110; selenium deficient, 280 + or - 250). Liver, kidney, and heart histology was normal in all groups. Muscle alpha-tocopherol levels were not depressed in the doubly deficient group, but muscle F2 isoprostane concentrations were elevated in them and correlated with markers of cell death. We conclude that combining selenium and vitamin C deficiencies in the guinea pig causes cell death in skeletal muscle that is more severe than the injury caused by selenium deficiency. The elevation of muscle F2 isoprostanes is compatible with the cell death being caused by oxidative stress.

  19. Jasmonic Acid Signaling Modulates Ozone-Induced Hypersensitive Cell Death

    PubMed Central

    Rao, Mulpuri V.; Lee, Hyung-il; Creelman, Robert A.; Mullet, John E.; Davis, Keith R.

    2000-01-01

    Recent studies suggest that cross-talk between salicylic acid (SA)–, jasmonic acid (JA)–, and ethylene-dependent signaling pathways regulates plant responses to both abiotic and biotic stress factors. Earlier studies demonstrated that ozone (O3) exposure activates a hypersensitive response (HR)–like cell death pathway in the Arabidopsis ecotype Cvi-0. We now have confirmed the role of SA and JA signaling in influencing O3-induced cell death. Expression of salicylate hydroxylase (NahG) in Cvi-0 reduced O3-induced cell death. Methyl jasmonate (Me-JA) pretreatment of Cvi-0 decreased O3-induced H2O2 content and SA concentrations and completely abolished O3-induced cell death. Cvi-0 synthesized as much JA as did Col-0 in response to O3 exposure but exhibited much less sensitivity to exogenous Me-JA. Analyses of the responses to O3 of the JA-signaling mutants jar1 and fad3/7/8 also demonstrated an antagonistic relationship between JA- and SA-signaling pathways in controlling the magnitude of O3-induced HR-like cell death. PMID:11006337

  20. Jasmonic acid signaling modulates ozone-induced hypersensitive cell death.

    PubMed

    Rao, M V; Lee, H; Creelman, R A; Mullet, J E; Davis, K R

    2000-09-01

    Recent studies suggest that cross-talk between salicylic acid (SA)-, jasmonic acid (JA)-, and ethylene-dependent signaling pathways regulates plant responses to both abiotic and biotic stress factors. Earlier studies demonstrated that ozone (O(3)) exposure activates a hypersensitive response (HR)-like cell death pathway in the Arabidopsis ecotype Cvi-0. We now have confirmed the role of SA and JA signaling in influencing O(3)-induced cell death. Expression of salicylate hydroxylase (NahG) in Cvi-0 reduced O(3)-induced cell death. Methyl jasmonate (Me-JA) pretreatment of Cvi-0 decreased O(3)-induced H(2)O(2) content and SA concentrations and completely abolished O(3)-induced cell death. Cvi-0 synthesized as much JA as did Col-0 in response to O(3) exposure but exhibited much less sensitivity to exogenous Me-JA. Analyses of the responses to O(3) of the JA-signaling mutants jar1 and fad3/7/8 also demonstrated an antagonistic relationship between JA- and SA-signaling pathways in controlling the magnitude of O(3)-induced HR-like cell death.

  1. Signaling pathways that regulate life and cell death: evolution of apoptosis in the context of self-defense.

    PubMed

    Muñoz-Pinedo, Cristina

    2012-01-01

    Programmed Cell Death is essential for the life cycle of many organisms. Cell death in multicellular organisms can occur as a consequence of massive damage (necrosis) or in a controlled form, through engagement of diverse biochemical programs. The best well known form of programmed cell death is apoptosis. Apoptosis occurs in animals as a consequence of a variety of stimuli including stress and social signals and it plays essential roles in morphogenesis and immune defense. The machinery of apoptosis is well conserved among animals and it is composed of caspases (the proteases which execute cell death), adapter proteins (caspase activators), Bcl-2 family proteins and Inhibitor of Apoptosis Proteins (IAPs). We will describe in this chapter the main apoptotic pathways in animals: the extrinsic (death receptor-mediated), the intrinsic/mitochondrial and the Granzyme B pathway. Other forms of non-apoptotic Programmed Cell Death which occur in animals will also be discussed. We will summarize the current knowledge about apoptotic-like and other forms of cell death in other organisms such as plants and protists.Additionally, we will discuss the hypothesis that apoptosis originated as part of a host defense mechanism. We will explore the similarities between the protein complexes which mediate apoptosis (apoptosomes) and complexes involved in immunity: inflammasomes. Additional functions of apoptotic proteins related to immune function will be summarized, in an effort to explore the evolutionary origins of cell death.

  2. On the origin, evolution, and nature of programmed cell death: a timeline of four billion years.

    PubMed

    Ameisen, J C

    2002-04-01

    Programmed cell death is a genetically regulated process of cell suicide that is central to the development, homeostasis and integrity of multicellular organisms. Conversely, the dysregulation of mechanisms controlling cell suicide plays a role in the pathogenesis of a wide range of diseases. While great progress has been achieved in the unveiling of the molecular mechanisms of programmed cell death, a new level of complexity, with important therapeutic implications, has begun to emerge, suggesting (i) that several different self-destruction pathways may exist and operate in parallel in our cells, and (ii) that molecular effectors of cell suicide may also perform other functions unrelated to cell death induction and crucial to cell survival. In this review, I will argue that this new level of complexity, implying that there may be no such thing as a 'bona fide' genetic death program in our cells, might be better understood when considered in an evolutionary context. And a new view of the regulated cell suicide pathways emerges when one attempts to ask the question of when and how they may have become selected during evolution, at the level of ancestral single-celled organisms.

  3. Dendritic cells' death induced by contact sensitizers is controlled by Nrf2 and depends on glutathione levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Ali, Zeina

    Dendritic cells (DC) are known to play a major role during contact allergy induced by contact sensitizers (CS). Our previous studies showed that Nrf2 was induced in DC and controlled allergic skin inflammation in mice in response to chemicals. In this work, we raised the question of the role of Nrf2 in response to a stress provoked by chemical sensitizers in DC. We used two well-described chemical sensitizers, dinitrochlorobenzene (DNCB) and cinnamaldehyde (CinA), known to have different chemical reactivity and mechanism of action. First, we performed a RT-qPCR array showing that CinA was a higher inducer of immune and detoxificationmore » genes compared to DNCB. Interestingly, in the absence of Nrf2, gene expression was dramatically affected in response to DNCB but was slightly affected in response to CinA. These observations prompted us to study DC's cell death in response to both chemicals. DNCB and CinA increased apoptotic cells and decreased living cells in the absence of Nrf2. The characterization of DC apoptosis induced by both CS involved the mitochondrial-dependent caspase pathway and was regulated via Nrf2 in response to both chemicals. Oxidative stress induced by DNCB, and leading to cell death, was regulated by Nrf2. Unlike CinA, DNCB treatment provoked a significant reduction of intracellular GSH levels and up-regulated bcl-2 gene expression, under the control of Nrf2. This work underlies that chemical reactivity may control Nrf2-dependent gene expression leading to different cytoprotective mechanisms in DC. - Highlights: • Nrf2 controls cell death induced by contact sensitizers in dendritic cells. • DNCB reduced GSH levels and up-regulated bcl-2 gene expression unlike CinA. • Chemical reactivity controls Nrf2-dependent genes having protective effect in DC.« less

  4. A synthetic lethal screen identifies FAT1 as an antagonist of caspase-8 in extrinsic apoptosis

    PubMed Central

    Kranz, Dominique; Boutros, Michael

    2014-01-01

    The extrinsic apoptosis pathway is initiated by binding of death ligands to death receptors resulting in the formation of the death-inducing signaling complex (DISC). Activation of procaspase-8 within the DISC and its release from the signaling complex is required for processing executor caspases and commiting cell death. Here, we report that the atypical cadherin FAT1 interacts with caspase-8 preventing the association of caspase-8 with the DISC. We identified FAT1 in a genome-wide siRNA screen for synthetic lethal interactions with death receptor-mediated apoptosis. Knockdown of FAT1 sensitized established and patient-derived glioblastoma cell lines for apoptosis transduced by cell death ligands. Depletion of FAT1 resulted in enhanced procaspase-8 recruitment to the DISC and increased formation of caspase-8 containing secondary signaling complexes. In addition, FAT1 knockout cell lines generated by CRISPR/Cas9-mediated genome engineering were more susceptible for death receptor-mediated apoptosis. Our findings provide evidence for a mechanism to control caspase-8-dependent cell death by the atypical cadherin FAT1. These results contribute towards the understanding of effector caspase regulation in physiological conditions. PMID:24442637

  5. A synthetic lethal screen identifies FAT1 as an antagonist of caspase-8 in extrinsic apoptosis.

    PubMed

    Kranz, Dominique; Boutros, Michael

    2014-02-03

    The extrinsic apoptosis pathway is initiated by binding of death ligands to death receptors resulting in the formation of the death-inducing signaling complex (DISC). Activation of procaspase-8 within the DISC and its release from the signaling complex is required for processing executor caspases and commiting cell death. Here, we report that the atypical cadherin FAT1 interacts with caspase-8 preventing the association of caspase-8 with the DISC. We identified FAT1 in a genome-wide siRNA screen for synthetic lethal interactions with death receptor-mediated apoptosis. Knockdown of FAT1 sensitized established and patient-derived glioblastoma cell lines for apoptosis transduced by cell death ligands. Depletion of FAT1 resulted in enhanced procaspase-8 recruitment to the DISC and increased formation of caspase-8 containing secondary signaling complexes. In addition, FAT1 knockout cell lines generated by CRISPR/Cas9-mediated genome engineering were more susceptible for death receptor-mediated apoptosis. Our findings provide evidence for a mechanism to control caspase-8-dependent cell death by the atypical cadherin FAT1. These results contribute towards the understanding of effector caspase regulation in physiological conditions.

  6. Contribution of TMEM16F to pyroptotic cell death.

    PubMed

    Ousingsawat, Jiraporn; Wanitchakool, Podchanart; Schreiber, Rainer; Kunzelmann, Karl

    2018-02-20

    Pyroptosis is a highly inflammatory form of programmed cell death that is caused by infection with intracellular pathogens and activation of canonical or noncanonical inflammasomes. The purinergic receptor P2X 7 is activated by the noncanonical inflammasome and contributes essentially to pyroptotic cell death. The Ca 2+ activated phospholipid scramblase and ion channel TMEM16F has been shown earlier to control cellular effects downstream of purinergic P2X 7 receptors that ultimately lead to cell death. As pyroptotic cell death is accompanied by an increases in intracellular Ca 2+ , we asked whether TMEM16F is activated during pyroptosis. The N-terminal cleavage product of gasdermin D (GD-N) is an executioner of pyroptosis by forming large plasma membrane pores. Expression of GD-N enhanced basal Ca 2+ levels and induced cell death. We observed that GD-N induced cell death in HEK293 and HAP1 cells, which was depending on expression of endogenous TMEM16F. GD-N activated large whole cell currents that were suppressed by knockdown or inhibition of TMEM16F. The results suggest that whole cell currents induced by the pore forming domain of gasdermin-D, are at least in part due to activation of TMEM16F. Knockdown of other TMEM16 paralogues expressed in HAP1 cells suggest TMEM16F as a crucial element during pyroptosis and excluded a role of other TMEM16 proteins. Thus TMEM16F supports pyroptosis and other forms of inflammatory cell death such as ferroptosis. Its potent inhibition by tannic acid may be part of the anti-inflammatory effects of flavonoids.

  7. Synthesis and evaluation of a radiolabeled bis-zinc(II)-cyclen complex as a potential probe for in vivo imaging of cell death.

    PubMed

    Wang, Hongliang; Wu, Zhifang; Li, Sijin; Hu, Kongzhen; Tang, Ganghua

    2017-04-01

    The exposition of phosphatidylserine (PS) from the cell membrane is associated with most cell death programs (apoptosis, necrosis, autophagy, mitotic catastrophe, etc.), which makes PS an attractive target for overall cell death imaging. To this end, zinc(II) macrocycle coordination complexes with cyclic polyamine units as low-molecular-weight annexin mimics have a selective affinity for biomembrane surfaces enriched with PS, and are therefore useful for detection of cell death. In the present study, a 11 C-labeled zinc(II)-bis(cyclen) complex ( 11 C-CyclenZn2) was prepared and evaluated as a new positron emission tomography (PET) probe for cell death imaging. 11 C-CyclenZn2 was synthesized by methylation of its precursor, 4-methoxy-2,5-di-[10-methyl-1,4,7,10-tetraazacyclododecane-1,4,7-tricarboxylic acid tri-tert-butyl ester] phenol (Boc-Cyclen2) with 11 C-methyl triflate as a prosthetic group in acetone, deprotection by hydrolysis in aqueous HCl solution, and chelation with zinc nitrate. The cell death imaging capability of 11 C-CyclenZn2 was evaluated using in vitro cell uptake assays with camptothecin-treated PC-3 cells, biodistribution studies, and in vivo PET imaging in Kunming mice bearing S-180 fibrosarcoma. Starting from 11 C-methyl triflate, the total preparation time for 11 C-CyclenZn2 was ~40 min, with an uncorrected radiochemical yield of 12 ± 3% (based on 11 C-CH 3 OTf, n = 10), a radiochemical purity of greater than 95%, and the specific activity of 0.75-1.01 GBq/μmol. The cell death binding specificity of 11 C-CyclenZn2 was demonstrated by significantly different uptake rates in camptothecin-treated and control PC-3 cells in vitro. Inhibition experiments for 18 F-radiofluorinated Annexin V binding to apoptotic/necrotic cells illustrated the necessity of zinc ions for zinc(II)-bis(cyclen) complexation in binding cell death, and zinc(II)-bis(cyclen) complexe and Annexin V had not identical binding pattern with apoptosis/necrosis cells. Biodistribution studies of 11 C-CyclenZn2 revealed a fast clearance from blood, low uptake rates in brain and muscle tissue, and high uptake rates in liver and kidney, which provide the main metabolic route. PET imaging using 11 C-CyclenZn2 revealed that cyclophosphamide-treated mice (CP-treated group) exhibited a significant increase of uptake rate in the tumor at 60 min postinjection, compared with control mice (Control group). The results indicate that the ability of 11 C-CyclenZn2 to detect cell death is comparable to Annexin V, and it has potential as a PET tracer for noninvasive evaluation and monitoring of anti-tumor chemotherapy.

  8. Attacking Cancer’s Achilles Heel: Antagonism of Anti-Apoptotic BCL-2 Family Members

    PubMed Central

    Opferman, Joseph T.

    2015-01-01

    Malignant cells routinely violate cellular checkpoints that should initiate cell death in normal cells by triggering pro-apoptotic members of the BCL-2 family of proteins. To escape such death inducing signals, cancer cells often select for up regulation of anti-apoptotic BCL-2 family members including BCL-2, BCL-XL, BFL-1, BCL-W, and MCL-1. These family members prevent death by sequestering pro-apoptotic molecules. To counter this resistance mechanism, small molecule inhibitors of anti-apoptotic BCL-2 family members have been under development. These molecules have shown promise in pre-clinical and clinical testing to overcome apoptotic resistance, prompting cancer cells to undergo apoptosis. Alternatively, other strategies have taken advantage of the normal regulatory machinery controlling anti-apoptotic molecules and have used inhibitors of signaling pathways to down-modulate the expression of anti-apoptotic molecules thus tilting the balance in cancer cells to cell death. This review explores recent developments and strategies aimed at antagonizing anti-apoptotic BCL-2 family member action to promote the induction of cell death in cancer therapy. PMID:26293580

  9. Hippo signaling controls cell cycle and restricts cell plasticity in planarians

    PubMed Central

    de Sousa, Nídia; Rodríguez-Esteban, Gustavo; Rojo-Laguna, Jose Ignacio; Saló, Emili

    2018-01-01

    The Hippo pathway plays a key role in regulating cell turnover in adult tissues, and abnormalities in this pathway are consistently associated with human cancers. Hippo was initially implicated in the control of cell proliferation and death, and its inhibition is linked to the expansion of stem cells and progenitors, leading to larger organ size and tumor formation. To understand the mechanism by which Hippo directs cell renewal and promotes stemness, we studied its function in planarians. These stem cell–based organisms are ideal models for the analysis of the complex cellular events underlying tissue renewal in the whole organism. hippo RNA interference (RNAi) in planarians decreased apoptotic cell death, induced cell cycle arrest, and could promote the dedifferentiation of postmitotic cells. hippo RNAi resulted in extensive undifferentiated areas and overgrowths, with no effect on body size or cell number. We propose an essential role for hippo in controlling cell cycle, restricting cell plasticity, and thereby preventing tumoral transformation. PMID:29357350

  10. Hyaluronan Protects Bovine Articular Chondrocytes against Cell Death Induced by Bupivacaine under Supraphysiologic Temperatures

    PubMed Central

    Liu, Sen; Zhang, Qing-Song; Hester, William; O’Brien, Michael J.; Savoie, Felix H.; You, Zongbing

    2013-01-01

    Background Bupivacaine and supraphysiologic temperature can independently reduce cell viability of articular chondrocytes. In combination these two deleterious factors could further impair cell viability. Hypothesis Hyaluronan may protect chondrocytes from death induced by bupivacaine at supraphysiologic temperatures. Study Design Controlled laboratory study. Methods Bovine articular chondrocytes were treated with hyaluronan at physiologic (37°C) and supraphysiologic temperatures (45°C and 50°C) for one hour, and then exposed to bupivacaine for one hour at room temperature. Cell viability was assessed at three time points: immediately after treatment, six hours later, and twenty-four hours later using flow cytometry and fluorescence microscopy. The effects of hyaluronan on the levels of sulfated glycosaminoglycan in the chondrocytes were determined using Alcian blue staining. Results (1) Bupivacaine alone did not induce noticeable chondrocyte death at 37°C; (2) bupivacaine and temperature synergistically increased chondrocyte death, that is, when the chondrocytes were conditioned to 45°C and 50°C, 0.25% and 0.5% bupivacaine increased the cell death rate by 131% to 383% in comparison to the phosphate-buffered saline control group; and, (3) addition of hyaluronan reduced chondrocyte death rates to approximately 14% and 25% at 45°C and 50°C, respectively. Hyaluronan’s protective effects were still observed at six and twenty-four hours after bupivacaine treatment at 45°C. However, at 50°C, hyaluronan delayed but did not prevent the cell death caused by bupivacaine. One-hour treatment with hyaluronan significantly increased sulfated glycosaminoglycan levels in the chondrocytes. Conclusions Bupivacaine and supraphysiologic temperature synergistically increase chondrocyte death and hyaluronan may protect articular chondrocytes from death caused by bupivacaine. Clinical Relevance This study provides a rationale to perform pre-clinical and clinical studies to evaluate whether intra-articular injection of a mixture of bupivacaine and hyaluronan after arthroscopic surgery may protect against bupivacaine’s chondrotoxicity. PMID:22427617

  11. Cell Death Pathways in Mutant Rhodopsin Rat Models Identifies Genotype-Specific Targets Controlling Retinal Degeneration.

    PubMed

    Viringipurampeer, Ishaq A; Gregory-Evans, Cheryl Y; Metcalfe, Andrew L; Bashar, Emran; Moritz, Orson L; Gregory-Evans, Kevin

    2018-06-18

    Retinitis pigmentosa (RP) is a group of inherited neurological disorders characterized by rod photoreceptor cell death, followed by secondary cone cell death leading to progressive blindness. Currently, there are no viable treatment options for RP. Due to incomplete knowledge of the molecular signaling pathways associated with RP pathogenesis, designing therapeutic strategies remains a challenge. In particular, preventing secondary cone photoreceptor cell loss is a key goal in designing potential therapies. In this study, we identified the main drivers of rod cell death and secondary cone loss in the transgenic S334ter rhodopsin rat model, tested the efficacy of specific cell death inhibitors on retinal function, and compared the effect of combining drugs to target multiple pathways in the S334ter and P23H rhodopsin rat models. The primary driver of early rod cell death in the S334ter model was a caspase-dependent process, whereas cone cell death occurred though RIP3-dependent necroptosis. In comparison, rod cell death in the P23H model was via necroptotic signaling, whereas cone cell loss occurred through inflammasome activation. Combination therapy of four drugs worked better than the individual drugs in the P23H model but not in the S334ter model. These differences imply that treatment modalities need to be tailored for each genotype. Taken together, our data demonstrate that rationally designed genotype-specific drug combinations will be an important requisite to effectively target primary rod cell loss and more importantly secondary cone survival.

  12. Analysis of lymphocyte cell death and apoptosis in HIV-2-infected patients.

    PubMed

    Jaleco, A C; Covas, M J; Victorino, R M

    1994-11-01

    Recent evidence suggests that T cell apoptosis could be involved in the pathogenesis of HIV-1 infection. As the progression of HIV-2 associated disease appears to be slower than that of HIV-1, we investigated whether there were differences in the degree of T cell death and apoptosis in peripheral blood mononuclear cell (PBMC) cultures from patients with HIV-1 or HIV-2 infection. PBMC from healthy controls (n = 28) and patients infected with HIV-1 (n = 26: asymptomatic (ASY)/persistent generalized lymphadenopathy (PGL), n = 16; and AIDS-related complex (ARC)/AIDS n = 10) or HIV-2 (n = 30: ASY/PGL, n = 16; ARC/AIDS, n = 14) were cultured in the absence or presence of mitogens (PHA, PWM) or superantigen (SEB). After 48 h, cell death (CD) was assessed by trypan blue exclusion and in some patients programmed cell death (PCD) was quantified in flow cytometry by measuring the percentage of hypodiploid nuclei corresponding to fragmented DNA, after treating the cells with a propidium iodide hypotonic solution. HIV-1 and HIV-2 ARC/AIDS patients and ASY/PGL HIV-1+ patients had significant increases in cell death percentages compared with controls, both in unstimulated and stimulated lymphocyte cultures. However, HIV-2+ ASY/PGL patients did not exhibit significant increases of cell death in unstimulated cultures. In addition, the comparison between HIV-1 and HIV-2 infected subjects in similar stages of disease, showed no significant differences in CD in the ARC/AIDS patients, although ASY/PGL HIV-2 infected subjects had lower levels of CD than the HIV-1+ ASY/PGL (3.4% +/- 0.6 s.e.m. versus 6.8% +/- 1.1 s.e.m., P < 0.01). PCD was significantly increased both in ASY/PGL (14.3% +/- 2.2 s.e.m., n = 8, P < 0.005) and in ARC/AIDS (25.3% +/- 4.5 s.e.m., n = 9, P < 0.001) HIV-1+ patients compared with healthy controls (5.8% +/- 1.7 s.e.m., n = 11). This contrasts with HIV-2 infected subjects where the ASY/PGL patients (10.0% +/- 2.8 s.e.m., n = 6) did not differ significantly from healthy controls, although ARC/AIDS patients (27.2% +/- 4.2 s.e.m., n = 9, P < 0.001) had significantly increased levels of PCD. In conclusion, this is the first report describing the occurrence of spontaneous and activation-induced lymphocyte death by apoptosis in HIV-1 infected subjects.(ABSTRACT TRUNCATED AT 400 WORDS)

  13. Analysis of lymphocyte cell death and apoptosis in HIV-2-infected patients.

    PubMed Central

    Jaleco, A C; Covas, M J; Victorino, R M

    1994-01-01

    Recent evidence suggests that T cell apoptosis could be involved in the pathogenesis of HIV-1 infection. As the progression of HIV-2 associated disease appears to be slower than that of HIV-1, we investigated whether there were differences in the degree of T cell death and apoptosis in peripheral blood mononuclear cell (PBMC) cultures from patients with HIV-1 or HIV-2 infection. PBMC from healthy controls (n = 28) and patients infected with HIV-1 (n = 26: asymptomatic (ASY)/persistent generalized lymphadenopathy (PGL), n = 16; and AIDS-related complex (ARC)/AIDS n = 10) or HIV-2 (n = 30: ASY/PGL, n = 16; ARC/AIDS, n = 14) were cultured in the absence or presence of mitogens (PHA, PWM) or superantigen (SEB). After 48 h, cell death (CD) was assessed by trypan blue exclusion and in some patients programmed cell death (PCD) was quantified in flow cytometry by measuring the percentage of hypodiploid nuclei corresponding to fragmented DNA, after treating the cells with a propidium iodide hypotonic solution. HIV-1 and HIV-2 ARC/AIDS patients and ASY/PGL HIV-1+ patients had significant increases in cell death percentages compared with controls, both in unstimulated and stimulated lymphocyte cultures. However, HIV-2+ ASY/PGL patients did not exhibit significant increases of cell death in unstimulated cultures. In addition, the comparison between HIV-1 and HIV-2 infected subjects in similar stages of disease, showed no significant differences in CD in the ARC/AIDS patients, although ASY/PGL HIV-2 infected subjects had lower levels of CD than the HIV-1+ ASY/PGL (3.4% +/- 0.6 s.e.m. versus 6.8% +/- 1.1 s.e.m., P < 0.01). PCD was significantly increased both in ASY/PGL (14.3% +/- 2.2 s.e.m., n = 8, P < 0.005) and in ARC/AIDS (25.3% +/- 4.5 s.e.m., n = 9, P < 0.001) HIV-1+ patients compared with healthy controls (5.8% +/- 1.7 s.e.m., n = 11). This contrasts with HIV-2 infected subjects where the ASY/PGL patients (10.0% +/- 2.8 s.e.m., n = 6) did not differ significantly from healthy controls, although ARC/AIDS patients (27.2% +/- 4.2 s.e.m., n = 9, P < 0.001) had significantly increased levels of PCD. In conclusion, this is the first report describing the occurrence of spontaneous and activation-induced lymphocyte death by apoptosis in HIV-1 infected subjects.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:7955520

  14. The cell on the edge of life and death: Crosstalk between autophagy and apoptosis.

    PubMed

    Kasprowska-Liśkiewicz, Daniela

    2017-09-21

    Recently, the crosstalk between autophagy and apoptosis has attracted broader attention. Basal autophagy serves to maintain cell homeostasis, while the upregulation of this process is an element of stress response that enables the cell to survive under adverse conditions. Autophagy may also determine the fate of the cell through its interactions with cell death pathways. The protein networks that control the initiation and the execution phase of these two processes are highly interconnected. Several scenarios for the crosstalk between autophagy and apoptosis exist. In most cases, the activation of autophagy represents an attempt of the cell to cope with stress, and protects the cell from apoptosis or delays its initiation. Generally, the simultaneous activation of pro-survival and pro-death pathways is prevented by the mutual inhibitory crosstalk between autophagy and apoptosis. But in some circumstances, autophagy or the proteins of the core autophagic machinery may promote cellular demise through excessive self-digestion (so-called "autophagic cell death") or by stimulating the activation of other cell death pathways. It is controversial whether cells actually die via autophagy, which is why the term "autophagic cell death" has been under intense debate lately. This review summarizes the recent findings on the multilevel crosstalk between autophagy and apoptosis in aspects of common regulators, mutual inhibition of these processes, the stimulation of apoptosis by autophagy or autophagic proteins and finally the role of autophagy as a death-execution mechanism.

  15. Apoptosis: its role in pituitary development and neoplastic pituitary tissue.

    PubMed

    Guzzo, M F; Carvalho, L R S; Bronstein, M D

    2014-04-01

    Apoptosis, also known as programmed cell death, is a phenomenon in which different stimuli trigger cellular mechanisms that culminate in death, in the absence of inflammatory cell response. Two different activation pathways are known, the intrinsic pathway (or mitochondrial) and extrinsic (or death-receptor pathway), both pathways trigger enzymatic reactions that lead cells to break up and be phagocytized by neighboring cells. This process is a common occurrence in physiological and pathological states, participating in the control of cell proliferation, differentiation and remodeling of organs. In the early steps of pituitary gland formation, numerous apoptotic cells are detected in the separation of Rathke's pouch from the roof of oral ectoderm. In the distal part of the gland, which will form the adenohypophysis, the ratio of apoptosis was significantly lower. However, there is evidence that neoplastic pituitary cells undergo unbalance in genes that control apoptosis leading to uncontrolled cell growth. No direct evidence of apoptosis was found in the drugs used for tumors producing prolactin and growth hormone. In conclusion, an unbalancing in the apoptosis process is the boundary between development and tumor growth.

  16. The Sigma Receptor Ligand (+)-Pentazocine Prevents Apoptotic Retinal Ganglion Cell Death induced in vitro by Homocysteine and Glutamate

    PubMed Central

    Martin, Pamela Moore; Ola, Mohammad S.; Agarwal, Neeraj; Ganapathy, Vadivel; Smith, Sylvia B.

    2013-01-01

    Recent studies demonstrated that the excitotoxic amino acid homocysteine induces apoptotic death of retinal ganglion cells in vivo. In the present study, an in vitro rat retinal ganglion cell (RGC-5) culture system was used to analyze the toxicity of acute exposure to high levels of homocysteine, the mechanism of homocysteine-induced toxicity and the usefulness of σR1 ligands as neuroprotectants. When cultured RGC-5 cells were subjected to treatment with 1 mM D, L- homocysteine, a significant increase in cell death was detected by TUNEL analysis and analysis of activated caspase. When cells were treated with homocysteine- or glutamate in the presence of MK-801, an antagonist of the NMDA receptor, the cell death was inhibited significantly. In contrast, NBQX, an antagonist of the AMPA/Kainate receptor, and nifedipine, a calcium channel blocker, did not prevent the homocysteine- or glutamate-induced cell death. Semi-quantitative RT-PCR and immunocytochemical analysis demonstrated that RGC-5 cells exposed to homocysteine or glutamate express type 1 sigma receptor at levels similar to control cells. Treatment of RGC-5 cells with 3 µM or 10 µM concentrations of the σR1-specific ligand (+)-pentazocine inhibited significantly the apoptotic cell death induced by homocysteine or glutamate. The results suggest that homocysteine is toxic to ganglion cells in vitro, that the toxicity is mediated via NMDA receptor activation, and that the σR1-specific ligand (+)-pentazocine can block the RGC-5 cell death induced by homocysteine and glutamate. PMID:15046867

  17. Akt Regulates TNFα Synthesis Downstream of RIP1 Kinase Activation during Necroptosis

    PubMed Central

    McNamara, Colleen R.; Ahuja, Ruchita; Osafo-Addo, Awo D.; Barrows, Douglas; Kettenbach, Arminja; Skidan, Igor; Teng, Xin; Cuny, Gregory D.; Gerber, Scott; Degterev, Alexei

    2013-01-01

    Necroptosis is a regulated form of necrotic cell death that has been implicated in the pathogenesis of various diseases including intestinal inflammation and systemic inflammatory response syndrome (SIRS). In this work, we investigated the signaling mechanisms controlled by the necroptosis mediator receptor interacting protein-1 (RIP1) kinase. We show that Akt kinase activity is critical for necroptosis in L929 cells and plays a key role in TNFα production. During necroptosis, Akt is activated in a RIP1 dependent fashion through its phosphorylation on Thr308. In L929 cells, this activation requires independent signaling inputs from both growth factors and RIP1. Akt controls necroptosis through downstream targeting of mammalian Target of Rapamycin complex 1 (mTORC1). Akt activity, mediated in part through mTORC1, links RIP1 to JNK activation and autocrine production of TNFα. In other cell types, such as mouse lung fibroblasts and macrophages, Akt exhibited control over necroptosis-associated TNFα production without contributing to cell death. Overall, our results provide new insights into the mechanism of necroptosis and the role of Akt kinase in both cell death and inflammatory regulation. PMID:23469174

  18. Myeloid-derived suppressor activity is mediated by monocytic lineages maintained by continuous inhibition of extrinsic and intrinsic death pathways.

    PubMed

    Haverkamp, Jessica M; Smith, Amber M; Weinlich, Ricardo; Dillon, Christopher P; Qualls, Joseph E; Neale, Geoffrey; Koss, Brian; Kim, Young; Bronte, Vincenzo; Herold, Marco J; Green, Douglas R; Opferman, Joseph T; Murray, Peter J

    2014-12-18

    Nonresolving inflammation expands a heterogeneous population of myeloid suppressor cells capable of inhibiting T cell function. This heterogeneity has confounded the functional dissection of individual myeloid subpopulations and presents an obstacle for antitumor immunity and immunotherapy. Using genetic manipulation of cell death pathways, we found the monocytic suppressor-cell subset, but not the granulocytic subset, requires continuous c-FLIP expression to prevent caspase-8-dependent, RIPK3-independent cell death. Development of the granulocyte subset requires MCL-1-mediated control of the intrinsic mitochondrial death pathway. Monocytic suppressors tolerate the absence of MCL-1 provided cytokines increase expression of the MCL-1-related protein A1. Monocytic suppressors mediate T cell suppression, whereas their granulocytic counterparts lack suppressive function. The loss of the granulocytic subset via conditional MCL-1 deletion did not alter tumor incidence implicating the monocytic compartment as the functionally immunosuppressive subset in vivo. Thus, death pathway modulation defines the development, survival, and function of myeloid suppressor cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Necroptosis in cancer: An angel or a demon?

    PubMed

    Wang, Tianzhen; Jin, Yinji; Yang, Weiwei; Zhang, Lei; Jin, Xiaoming; Liu, Xi; He, Yan; Li, Xiaobo

    2017-06-01

    In the past few decades, apoptosis has been regarded as the only form of programmed cell death. However, the traditional view has been challenged by the identification of several forms of regulated necrosis, including necroptosis. Necroptosis is typified by a necrotic cell death morphology and is controlled by RIP1, RIP3, and mixed lineage kinase domain-like protein. The physiological role of necroptosis is to serve as a "fail-safe" form of cell death for cells that fail to undergo apoptosis during embryonic development and disease defense. Currently, established studies have indicated that necroptosis is involved in cancer initiation and progression. Although elevated necroptosis contributes to cancer cell death, extensive cell death also increases the risk of proliferation and metastasis of the surviving cells by inducing the generation reactive oxygen species, activation of inflammation, and suppression of the immune response. Thus, questions regarding the overall impact of necroptosis on cancer remain open. In this review, we introduce the basic knowledge regarding necroptosis, summarize its dual effects on cancer progression, and analyze its advantages and disadvantages in clinical applications.

  20. Constitutive Activation of PINK1 Protein Leads to Proteasome-mediated and Non-apoptotic Cell Death Independently of Mitochondrial Autophagy*

    PubMed Central

    Akabane, Shiori; Matsuzaki, Kohei; Yamashita, Shun-ichi; Arai, Kana; Okatsu, Kei; Kanki, Tomotake; Matsuda, Noriyuki; Oka, Toshihiko

    2016-01-01

    Phosphatase and tensin homolog-induced putative kinase 1 (PINK1), a Ser/Thr kinase, and PARKIN, a ubiquitin ligase, are causal genes for autosomal recessive early-onset parkinsonism. Multiple lines of evidence indicate that PINK1 and PARKIN cooperatively control the quality of the mitochondrial population via selective degradation of damaged mitochondria by autophagy. Here, we report that PINK1 and PARKIN induce cell death with a 12-h delay after mitochondrial depolarization, which differs from the time profile of selective autophagy of mitochondria. This type of cell death exhibited definite morphologic features such as plasma membrane rupture, was insensitive to a pan-caspase inhibitor, and did not involve mitochondrial permeability transition. Expression of a constitutively active form of PINK1 caused cell death in the presence of a pan-caspase inhibitor, irrespective of the mitochondrial membrane potential. PINK1-mediated cell death depended on the activities of PARKIN and proteasomes, but it was not affected by disruption of the genes required for autophagy. Furthermore, fluorescence and electron microscopic analyses revealed that mitochondria were still retained in the dead cells, indicating that PINK1-mediated cell death is not caused by mitochondrial loss. Our findings suggest that PINK1 and PARKIN play critical roles in selective cell death in which damaged mitochondria are retained, independent of mitochondrial autophagy. PMID:27302064

  1. Morphological classification of plant cell deaths.

    PubMed

    van Doorn, W G; Beers, E P; Dangl, J L; Franklin-Tong, V E; Gallois, P; Hara-Nishimura, I; Jones, A M; Kawai-Yamada, M; Lam, E; Mundy, J; Mur, L A J; Petersen, M; Smertenko, A; Taliansky, M; Van Breusegem, F; Wolpert, T; Woltering, E; Zhivotovsky, B; Bozhkov, P V

    2011-08-01

    Programmed cell death (PCD) is an integral part of plant development and of responses to abiotic stress or pathogens. Although the morphology of plant PCD is, in some cases, well characterised and molecular mechanisms controlling plant PCD are beginning to emerge, there is still confusion about the classification of PCD in plants. Here we suggest a classification based on morphological criteria. According to this classification, the use of the term 'apoptosis' is not justified in plants, but at least two classes of PCD can be distinguished: vacuolar cell death and necrosis. During vacuolar cell death, the cell contents are removed by a combination of autophagy-like process and release of hydrolases from collapsed lytic vacuoles. Necrosis is characterised by early rupture of the plasma membrane, shrinkage of the protoplast and absence of vacuolar cell death features. Vacuolar cell death is common during tissue and organ formation and elimination, whereas necrosis is typically found under abiotic stress. Some examples of plant PCD cannot be ascribed to either major class and are therefore classified as separate modalities. These are PCD associated with the hypersensitive response to biotrophic pathogens, which can express features of both necrosis and vacuolar cell death, PCD in starchy cereal endosperm and during self-incompatibility. The present classification is not static, but will be subject to further revision, especially when specific biochemical pathways are better defined.

  2. Live imaging of muscle histolysis in Drosophila metamorphosis.

    PubMed

    Kuleesha, Yadav; Puah, Wee Choo; Wasser, Martin

    2016-05-04

    The contribution of programmed cell death (PCD) to muscle wasting disorders remains a matter of debate. Drosophila melanogaster metamorphosis offers the opportunity to study muscle cell death in the context of development. Using live cell imaging of the abdomen, two groups of larval muscles can be observed, doomed muscles that undergo histolysis and persistent muscles that are remodelled and survive into adulthood. To identify and characterize genes that control the decision between survival and cell death of muscles, we developed a method comprising in vivo imaging, targeted gene perturbation and time-lapse image analysis. Our approach enabled us to study the cytological and temporal aspects of abnormal cell death phenotypes. In a previous genetic screen for genes controlling muscle size and cell death in metamorphosis, we identified gene perturbations that induced cell death of persistent or inhibit histolysis of doomed larval muscles. RNA interference (RNAi) of the genes encoding the helicase Rm62 and the lysosomal Cathepsin-L homolog Cysteine proteinase 1 (Cp1) caused premature cell death of persistent muscle in early and mid-pupation, respectively. Silencing of the transcriptional co-repressor Atrophin inhibited histolysis of doomed muscles. Overexpression of dominant-negative Target of Rapamycin (TOR) delayed the histolysis of a subset of doomed and induced ablation of all persistent muscles. RNAi of AMPKα, which encodes a subunit of the AMPK protein complex that senses AMP and promotes ATP formation, led to loss of attachment and a spherical morphology. None of the perturbations affected the survival of newly formed adult muscles, suggesting that the method is useful to find genes that are crucial for the survival of metabolically challenged muscles, like those undergoing atrophy. The ablation of persistent muscles did not affect eclosion of adult flies. Live imaging is a versatile approach to uncover gene functions that are required for the survival of muscle undergoing remodelling, yet are dispensable for other adult muscles. Our approach promises to identify molecular mechanisms that can explain the resilience of muscles to PCD.

  3. Necrotic enlargement of cone photoreceptor cells and the release of high-mobility group box-1 in retinitis pigmentosa

    PubMed Central

    Murakami, Y; Ikeda, Y; Nakatake, S; Tachibana, T; Fujiwara, K; Yoshida, N; Notomi, S; Nakao, S; Hisatomi, T; Miller, J W; Vavvas, DG; Sonoda, KH; Ishibashi, T

    2015-01-01

    Retinitis pigmentosa (RP) refers to a group of inherited retinal degenerations resulting form rod and cone photoreceptor cell death. The rod cell death due to deleterious genetic mutations has been shown to occur mainly through apoptosis, whereas the mechanisms and features of the secondary cone cell death have not been fully elucidated. Our previous study showed that the cone cell death in rd10 mice, an animal model of RP, involves necrotic features and is partly mediated by the receptor interacting protein kinase. However, the relevancy of necrotic cone cell death in human RP patients remains unknown. In the present study, we showed that dying cone cells in rd10 mice exhibited cellular enlargement, along with necrotic changes such as cellular swelling and mitochondrial rupture. In human eyes, live imaging of cone cells by adaptive optics scanning laser ophthalmoscopy revealed significantly increased percentages of enlarged cone cells in the RP patients compared with the control subjects. The vitreous of the RP patients contained significantly higher levels of high-mobility group box-1, which is released extracellularly associated with necrotic cell death. These findings suggest that necrotic enlargement of cone cells is involved in the process of cone degeneration, and that necrosis may be a novel target to prevent or delay the loss of cone-mediated central vision in RP. PMID:27551484

  4. Integrated metabolomic and transcriptomic profiling illustrates successive phases of increasing gene expression associated with chilling-related apple peel cell death

    USDA-ARS?s Scientific Manuscript database

    Superficial scald is a chilling-related storage disorder of apple caused by the death of peel epidermal and hypodermal cells and associated discoloration. It is controlled using postharvest antioxidant (diphenylamine; DPA) and ethylene action inhibitor (1-methylcyclopropene; 1-MCP), and/or controlle...

  5. Tributyltin-induced apoptosis requires glycolytic adenosine trisphosphate production.

    PubMed

    Stridh, H; Fava, E; Single, B; Nicotera, P; Orrenius, S; Leist, M

    1999-10-01

    The toxicity of tributyltin chloride (TBT) involves Ca(2+) overload, cytoskeletal damage, and mitochondrial failure leading to cell death by apoptosis or necrosis. Here, we examined whether the intracellular ATP level modulates the mode of cell death after exposure to TBT. When Jurkat cells were energized by the mitochondrial substrate, pyruvate, low concentrations of TBT (1-2 microM) triggered an immediate depletion of intracellular ATP followed by necrotic death. When ATP levels were maintained by the addition of glucose, the mode of cell death was typically apoptotic. Glycolytic ATP production was required for apoptosis at two distinct steps. First, maintenance of adequate ATP levels accelerated the decrease of mitochondrial membrane potential, and the release of the intermembrane proteins adenylate kinase and cytochrome c from mitochondria. A possible role of the adenine nucleotide exchanger in this first ATP-dependent step is suggested by experiments performed with the specific inhibitor, bongkrekic acid. This substance delayed cytochrome c release in a manner similar to that caused by ATP depletion. Second, caspase activation following cytochrome c release was only observed in ATP-containing cells. Bcl-2 had only a minor effect on TBT-triggered caspase activation or cell death. We conclude that intracellular ATP concentrations control the mode of cell death in TBT-treated Jurkat cells at both the mitochondrial and caspase activation levels.

  6. [Mechanism of protective effects of tumor necrosis factor receptor associated protein 1 on hypoxic cardiomyocytes of rats].

    PubMed

    Xiang, F; Zhang, D X; Ma, S Y; Huang, Y S

    2016-12-20

    Objective: To investigate the mechanism of protective effects of tumor necrosis factor receptor associated protein 1 (TRAP1) on hypoxic cardiomyocytes of rats. Methods: Primary cultured cardiomyocytes were obtained from neonatal Sprague-Dawley rats (aged 1 to 3 days) and then used in the following experiments. (1) Cells were divided into group TRAP1 and control group according to the random number table (the same grouping method below), and then the total protein of cells was extracted. Total protein of cells in group TRAP1 was added with mouse anti-rat TRAP1 monoclonal antibody, while that in control group was added with the same type of IgG from mouse. Co-immunoprecipitation and protein mass spectrography analysis were used to determine the possible proteins interacted with TRAP1. (2) Cells were divided into normoxia blank control group (NBC), normoxia+ TRAP1 interference control group (NTIC), normoxia+ TRAP1 interference group (NTI), normoxia+ TRAP1 over-expression control group (NTOC), and normoxia+ TRAP1 over-expression group (NTO), with 1 well in each group. Cells in group NBC were routinely cultured, while cells in the latter four groups were respectively added with TRAP1 RNA interference empty virus vector, TRAP1 RNA interference adenovirus vector, TRAP1 over-expression empty virus vector, and TRAP1 over-expression adenovirus vector. Another batch of cells were divided into group NBC, hypoxic blank control group (HBC), hypoxic+ TRAP1 interference control group (HTIC), hypoxic+ TRAP1 interference group (HTI), hypoxic+ TRAP1 over-expression control group (HTOC), and hypoxic+ TRAP1 over-expression group (HTO), with 1 well in each group. Cells in hypoxic groups were under hypoxic condition for 6 hours after being treated as those in the corresponding normoxia groups, respectively. The mRNA expression of cytochrome c oxidase subunit Ⅱ (COXⅡ) of cells in each group was detected by real time fluorescent quantitive reverse transcription polymerase chain reaction. Experiments were repeated for three times. (3) Cells were divided into group NBC, group HBC, group HTOC, group HTO, hypoxic+ TRAP1 over-expression+ COXⅡinterference control group (HTOCIC), and hypoxic+ TRAP1 over-expression+ COXⅡinterference group (HTOCI), with 3 wells in each group. Cells in the previous 4 groups were treated as those in experiment (2). Cells in group HTOCIC and HTOCI were respectively transfected with COXⅡ RNA interference empty virus vector and COXⅡ RNA interference adenovirus vector, and then both added with TRAP1 over-expression adenovirus vector. The proliferation activity of cells was determined by cell counting kit 8 and microplate reader, and the ratio of death cells was measured by propidium lodide and Hoechst 33342 staining. Another batch of cells were divided into group NBC, group HBC, group HTIC, group HTI, hypoxic+ TRAP1 interference+ COXⅡover-expression control group (HTICOC), and hypoxic+ TRAP1 interference+ COXⅡ over-expression group (HTICO), with 3 wells in each group. Cells in the previous 4 groups were treated as those in experiment (2). Cells in group HTICOC and HTICO were both transfected with TRAP1 RNA interference adenovirus vector, and then respectively added with COXⅡ over-expression empty virus vector and COXⅡ over-expression adenovirus vector. The proliferation activity of cells and the ratio of death cells were detected as before. Experiments were repeated for three times. Data were processed with one-way analysis of variance and LSD test. Results: (1) The expression of TRAP1 was found in cells of group TRAP1, while that was not found in cells of control group. The possible proteins interacted with TRAP1 were keratin, COXⅡ, and an unknown protein with predicted molecular weight 13×10 3 . (2) Compared with that in group NBC, the mRNA expression of COXⅡof cells had no significant change in group NTIC and group NTOC (with P values above 0.05), but significantly decreased in group NTI ( P <0.01), and significantly increased in group NTO ( P <0.01). Compared with that in group NBC, the mRNA expression of COXⅡof cells in group HBC was significantly decreased ( P <0.01). Compared with that in group HBC, the mRNA expression of COXⅡof cells had no significant change in group HTIC and group HTOC (with P values above 0.05), but significantly decreased in group HTI ( P <0.01), and significantly increased in group HTO ( P <0.01). (3) The proliferation activity of cells in group NBC, group HBC, group HTOC, group HTO, group HTOCIC, and group HTOCI was respectively 0.498±0.022, 0.303±0.018, 0.313±0.032, 0.456±0.031, 0.448±0.034, and 0.335±0.026, and the ratios of death cells in above groups were respectively (4.7±1.5)%, (24.7±3.1)%, (26.0±2.7)%, (13.3±2.5)%, (12.7±2.1)%, and (21.0±1.7)%. Compared with those in group NBC, the proliferation activity of cells in HBC was decreased, while the ratio of death cells was increased (with P values below 0.01). Compared with those in group HBC, the proliferation activity of cells and the ratio of death cells in group HTOC had no significant change (with P values above 0.05), while the proliferation activity of cells was increased and the ratio of death cells was decreased in group HTO (with P values below 0.01). Compared with those in group HTO, the proliferation activity of cells and the ratio of death cells in group HTOCIC had no significant change (with P values above 0.05), while the proliferation activity of cells was decreased and the ratio of death cells was increased in group HTOCI (with P values below 0.01). (4) The proliferation activity of cells in group NBC, group HBC, group HTIC, group HTI, group HTICOC, and group HTICO was respectively 0.444±0.025, 0.275±0.016, 0.283±0.021, 0.150±0.009, 0.135±0.011, and 0.237±0.017, and the ratios of death cells in above groups were respectively (3.7±0.6)%, (21.0±2.7)%, (20.3±3.1)%, (31.7±2.5)%, (33.3±3.2)%, and (19.3±1.5)%. Compared with those in group HBC, the proliferation activity of cells and the ratio of death cells in group HTIC had no significant change (with P values above 0.05). Compared with those in group HBC and group HTIC, the proliferation activity of cells was decreased and the ratio of death cells was significantly increased in group HTI (with P values below 0.01). Compared with those in group HTI, the proliferation activity of cells and the ratio of death cells in group HTICOC had no significant change (with P values above 0.05), while the proliferation activity of cells was increased and the ratio of death cells was significantly decreased in group HTICO (with P values below 0.01). Conclusions: TRAP1 can up-regulate the expression of COXⅡ mRNA, and COXⅡ is one of the downstream effector molecules that TRAP1 mediates its protective effects on hypoxic cardiomyocytes.

  7. Two way controls of apoptotic regulators consign DmArgonaute-1 a better clasp on it

    PubMed Central

    Bag, Indira; SNCVL, Pushpavalli; Garikapati, Koteswara Rao; Bhadra, Utpal

    2018-01-01

    Argonaute family proteins are well conserved among all organisms. Its role in mitotic cell cycle progression and apoptotic cell elimination is poorly understood. Earlier we have established the contribution of Ago-1 in cell cycle control related to G2/M cyclin in Drosophila. Here we have extended our study in understanding the relationship of Ago-1 in regulating apoptosis during Drosophila development. Apoptosis play a critical role in controlling organ shape and size during development of multi cellular organism. Multifarious regulatory pathways control apoptosis during development among which highly conserved JNK (c-Jun N-terminal kinase) pathway play a crucial role. Here we have over expressed Ago-1 in Drosophila eye and brain by employing UAS (upstream activation sequence)-GAL4 system under the expression of eye and brain specific driver. Over expression of Ago-1 resulted in reduced number of ommatidia in the eye and produced smaller size brain in adult and larval Drosophila. A drastic reversal of the phenotype towards normal was observed upon introduction of a single copy of the dominant negative mutation of basket (bsk, Drosophila homolog of JNK) indicating an active and physical involvement of the bsk with Ago-1 in inducing developmental apoptotic process. Further study showed that Ago-1 stimulates phosphorylation of JNK through transforming growth factor-β activated kinase 1- hemipterous (Tak1-hep) axis of JNK pathway. JNK phosphorylation results in up regulation of pro-apoptotic genes head involution defective (hid), grim & reaper (rpr) and induces activation of Drosophila caspases (cysteinyl aspartate proteinases);DRONC (Death regulator Nedd2-like caspase), ICE (alternatively Drice, Death related ICE-like caspase) and DCP1 (Death caspase-1) by inhibiting apoptotic inhibitor protein DIAP1 (Death-associated inhibitor of apoptosis 1). Further, Ago-1 also inhibits miR-14 expression to trigger apoptosis. Our findings propose that Ago-1 acts as a key regulator in controlling cell death, tumor regression and stress response in metazoan providing a constructive bridge between RNAi machinery and cell death. PMID:29385168

  8. Single-cell imaging of the heat-shock response in colon cancer cells suggests that magnitude and length rather than time of onset determines resistance to apoptosis.

    PubMed

    Ramapathiran, Lavanya; Bernas, Tytus; Walter, Franziska; Williams, Linda; Düssmann, Heiko; Concannon, Caoimhín G; Prehn, Jochen H M

    2014-02-01

    Targeting the proteasome is a valuable approach for cancer therapy, potentially limited by pro-survival pathways that are induced in parallel to cell death. Whether these pro-survival pathways are activated in all cells, show different activation kinetics in sensitive versus resistant cells or interact functionally with cell death pathways is unknown. We monitored activation of the heat-shock response (HSR), a key survival pathway induced by proteasome inhibition, relative to apoptosis activation in HCT116 colon cancer cells expressing enhanced green fluorescent protein (EGFP) under the control of the HSP70 promoter. Single-cell and high-content time-lapse imaging of epoxomicin treatment revealed that neither basal activity nor the time of onset of the HSR differed between resistant and sensitive populations. However, resistant cells had significantly higher and prolonged reporter activity than those that succumbed to cell death. p53 deficiency protected against cell death but failed to modulate the HSR. By contrast, inhibition of the HSR significantly increased the cytotoxicity of epoxomicin. Our data provide novel insights into the kinetics and heterogeneity of the HSR during proteasome inhibition, suggesting that the HSR modulates cell death signalling unidirectionally.

  9. p53-dependent control of cell death by nicastrin: lack of requirement for presenilin-dependent gamma-secretase complex.

    PubMed

    Pardossi-Piquard, Raphaëlle; Dunys, Julie; Giaime, Emilie; Guillot-Sestier, Marie-Victoire; St George-Hyslop, Peter; Checler, Frédéric; Alves da Costa, Cristine

    2009-04-01

    Nicastrin (NCT) is a component of the presenilin (PS)-dependent gamma-secretase complexes that liberate amyloid beta-peptides from the beta-Amyloid Precursor Protein. Several lines of evidence indicate that the members of these complexes could also contribute to the control of cell death. Here we show that over-expression of NCT increases the viability of human embryonic kidney (HEK293) cells and decreases staurosporine (STS)- and thapsigargin (TPS)-induced caspase-3 activation in various cell lines from human and neuronal origins by Akt-dependent pathway. NCT lowers p53 expression, transcriptional activity and promoter transactivation and reduces p53 phosphorylation. NCT-associated protection against STS-stimulated cell death was completely abolished by p53 deficiency. Conversely, the depletion of NCT drastically enhances STS-induced caspase-3 activation and p53 pathway and favored p53 nuclear translocation. We examined whether NCT protective function depends on PS-dependent gamma-secretase activity. First, a 29-amino acid deletion known to reduce NCT-dependent amyloid beta-peptide production did not affect NCT-associated protective phenotype. Second, NCT still reduces STS-induced caspase-3 activation in fibroblasts lacking PS1 and PS2. Third, the gamma-secretase inhibitor DFK167 did not affect NCT-mediated reduction of p53 activity. Altogether, our study indicates that NCT controls cell death via phosphoinositide 3-kinase/Akt and p53-dependent pathways and that this function remains independent of the activity and molecular integrity of the gamma-secretase complexes.

  10. Intracellular cholesterol level regulates sensitivity of glioblastoma cells against temozolomide-induced cell death by modulation of caspase-8 activation via death receptor 5-accumulation and activation in the plasma membrane lipid raft.

    PubMed

    Yamamoto, Yutaro; Tomiyama, Arata; Sasaki, Nobuyoshi; Yamaguchi, Hideki; Shirakihara, Takuya; Nakashima, Katsuhiko; Kumagai, Kosuke; Takeuchi, Satoru; Toyooka, Terushige; Otani, Naoki; Wada, Kojiro; Narita, Yoshitaka; Ichimura, Koichi; Sakai, Ryuichi; Namba, Hiroki; Mori, Kentaro

    2018-01-01

    Development of resistance against temozolomide (TMZ) in glioblastoma (GBM) after continuous treatment with TMZ is one of the critical problems in clinical GBM therapy. Intracellular cholesterol regulates cancer cell biology, but whether intracellular cholesterol is involved in TMZ resistance of GBM cells remains unclear. The involvement of intracellular cholesterol in acquired resistance against TMZ in GBM cells was investigated. Intracellular cholesterol levels were measured in human U251 MG cells with acquired TMZ resistance (U251-R cells) and TMZ-sensitive control U251 MG cells (U251-Con cells), and found that the intracellular cholesterol level was significantly lower in U251-R cells than in U251-Con cells. In addition, treatment by intracellular cholesterol remover, methyl-beta cyclodextrin (MβCD), or intracellular cholesterol inducer, soluble cholesterol (Chol), regulated TMZ-induced U251-Con cell death in line with changes in intracellular cholesterol level. Involvement of death receptor 5 (DR5), a death receptor localized in the plasma membrane, was evaluated. TMZ without or with MβCD and/or Chol caused accumulation of DR5 into the plasma membrane lipid raft and formed a complex with caspase-8, an extrinsic caspase cascade inducer, reflected in the induction of cell death. In addition, treatment with caspase-8 inhibitor or knockdown of DR5 dramatically suppressed U251-Con cell death induced by combination treatment with TMZ, MβCD, and Chol. Combined treatment of Chol with TMZ reversed the TMZ resistance of U251-R cells and another GBM cell model with acquired TMZ resistance, whereas clinical antihypercholesterolemia agents at physiological concentrations suppressed TMZ-induced cell death of U251-Con cells. These findings suggest that intracellular cholesterol level affects TMZ treatment of GBM mediated via a DR5-caspase-8 mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Allogeneic major histocompatibility complex-mismatched equine bone marrow-derived mesenchymal stem cells are targeted for death by cytotoxic anti-major histocompatibility complex antibodies.

    PubMed

    Berglund, A K; Schnabel, L V

    2017-07-01

    Allogeneic mesenchymal stem cells (MSCs) are a promising cell source for treating musculoskeletal injuries in horses. Controversy exists, however, over whether major histocompatibility complex (MHC)-mismatched MSCs are recognised by the recipient immune system and targeted for death by a cytotoxic antibody response. To determine if cytotoxic anti-MHC antibodies generated in vivo following MHC-mismatched MSC injections are capable of initiating complement-dependent cytotoxicity of MSCs. Experimental controlled study. Antisera previously collected at Days 0, 7, 14 and 21 post-injection from 4 horses injected with donor MHC-mismatched equine leucocyte antigen (ELA)-A2 haplotype MSCs and one control horse injected with donor MHC-matched ELA-A2 MSCs were utilised in this study. Antisera were incubated with ELA-A2 MSCs before adding complement in microcytotoxicity assays and cell death was analysed via eosin dye exclusion. ELA-A2 peripheral blood leucocytes (PBLs) were used in the assays as a positive control. Antisera from all 4 horses injected with MHC-mismatched MSCs contained antibodies that caused the death of ELA-A2 haplotype MSCs in the microcytotoxicity assays. In 2 of the 4 horses, antibodies were present as early as Day 7 post-injection. MSC death was consistently equivalent to that of ELA-A2 haplotype PBL death at all time points and antisera dilutions. Antisera from the control horse that was injected with MHC-matched MSCs did not contain cytotoxic ELA-A2 antibodies at any of the time points examined. This study examined MSC death in vitro only and utilized antisera from a small number of horses. The cytotoxic antibody response induced in recipient horses following injection with donor MHC-mismatched MSCs is capable of killing donor MSCs in vitro. These results suggest that the use of allogeneic MHC-mismatched MSCs must be cautioned against, not only for potential adverse events, but also for reduced therapeutic efficacy due to targeted MSC death. © 2016 The Authors Equine Veterinary Journal published by John Wiley & Sons Ltd on behalf of EVJ Ltd.

  12. Up-regulated Ectonucleotidases in Fas-Associated Death Domain Protein- and Receptor-Interacting Protein Kinase 1-Deficient Jurkat Leukemia Cells Counteract Extracellular ATP/AMP Accumulation via Pannexin-1 Channels during Chemotherapeutic Drug-Induced Apoptosis.

    PubMed

    Boyd-Tressler, Andrea M; Lane, Graham S; Dubyak, George R

    2017-07-01

    Pannexin-1 (Panx1) channels mediate the efflux of ATP and AMP from cancer cells in response to induction of extrinsic apoptosis by death receptors or intrinsic apoptosis by chemotherapeutic agents. We previously described the accumulation of extracellular ATP /AMP during chemotherapy-induced apoptosis in Jurkat human leukemia cells. In this study, we compared how different signaling pathways determine extracellular nucleotide pools in control Jurkat cells versus Jurkat lines that lack the Fas-associated death domain (FADD) or receptor-interacting protein kinase 1 (RIP1) cell death regulatory proteins. Tumor necrosis factor- α induced extrinsic apoptosis in control Jurkat cells and necroptosis in FADD-deficient cells; treatment of both lines with chemotherapeutic drugs elicited similar intrinsic apoptosis. Robust extracellular ATP/AMP accumulation was observed in the FADD-deficient cells during necroptosis, but not during apoptotic activation of Panx1 channels. Accumulation of extracellular ATP/AMP was similarly absent in RIP1-deficient Jurkat cells during apoptotic responses to chemotherapeutic agents. Apoptotic activation triggered equivalent proteolytic gating of Panx1 channels in all three Jurkat cell lines. The differences in extracellular ATP/AMP accumulation correlated with cell-line-specific expression of ectonucleotidases that metabolized the released ATP/AMP. CD73 mRNA, and α β -methylene-ADP-inhibitable ecto-AMPase activity were elevated in the FADD-deficient cells. In contrast, the RIP1-deficient cells were defined by increased expression of tartrate-sensitive prostatic acid phosphatase as a broadly acting ectonucleotidase. Thus, extracellular nucleotide accumulation during regulated tumor cell death involves interplay between ATP/AMP efflux pathways and different cell-autonomous ectonucleotidases. Differential expression of particular ectonucleotidases in tumor cell variants will determine whether chemotherapy-induced activation of Panx1 channels drives accumulation of immunostimulatory ATP versus immunosuppressive adenosine within the tumor microenvironment. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  13. A receptor tyrosine kinase inhibitor, Tyrphostin A9 induces cancer cell death through Drp1 dependent mitochondria fragmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, So Jung; Park, Young Jun; Shin, Ji Hyun

    2011-05-13

    Highlights: {yields} We screened and identified Tyrphostin A9, a receptor tyrosine kinase inhibitor as a strong mitochondria fission inducer. {yields} Tyrphostin A9 treatment promotes mitochondria dysfunction and contributes to cytotoxicity in cancer cells. {yields} Tyrphostin A9 induces apoptotic cell death through a Drp1-mediated pathway. {yields} Our studies suggest that Tyrphostin A9 induces mitochondria fragmentation and apoptotic cell death via Drp1 dependently. -- Abstract: Mitochondria dynamics controls not only their morphology but also functions of mitochondria. Therefore, an imbalance of the dynamics eventually leads to mitochondria disruption and cell death. To identify specific regulators of mitochondria dynamics, we screened a bioactivemore » chemical compound library and selected Tyrphostin A9, a tyrosine kinase inhibitor, as a potent inducer of mitochondrial fission. Tyrphostin A9 treatment resulted in the formation of fragmented mitochondria filament. In addition, cellular ATP level was decreased and the mitochondrial membrane potential was collapsed in Tyr A9-treated cells. Suppression of Drp1 activity by siRNA or over-expression of a dominant negative mutant of Drp1 inhibited both mitochondrial fragmentation and cell death induced by Tyrpohotin A9. Moreover, treatment of Tyrphostin A9 also evoked mitochondrial fragmentation in other cells including the neuroblastomas. Taken together, these results suggest that Tyrphostin A9 induces Drp1-mediated mitochondrial fission and apoptotic cell death.« less

  14. Control of mitochondrial physiology and cell death by the Bcl-2 family proteins Bax and Bok.

    PubMed

    D'Orsi, Beatrice; Mateyka, Julia; Prehn, Jochen H M

    2017-10-01

    Neuronal cell death is often triggered by events that involve intracellular increases in Ca 2+ . Under resting conditions, the intracellular Ca 2+ concentration is tightly controlled by a number of extrusion and sequestering mechanisms involving the plasma membrane, mitochondria, and ER. These mechanisms act to prevent a disruption of neuronal ion homeostasis. As these processes require ATP, excessive Ca 2+ overloading may cause energy depletion, mitochondrial dysfunction, and may eventually lead to Ca 2+ -dependent cell death. Excessive Ca 2+ entry though glutamate receptors (excitotoxicity) has been implicated in several neurologic and chronic neurodegenerative diseases, including ischemic stroke, epilepsy, and Alzheimer's disease. Recent evidence has revealed that excitotoxic cell death is regulated by the B-cell lymphoma-2 (Bcl-2) family of proteins. Bcl-2 proteins, comprising of both pro-apoptotic and anti-apoptotic members, have been shown to not only mediate the intrinsic apoptosis pathway by controlling mitochondrial outer membrane (MOM) integrity, but to also control neuronal Ca 2+ homeostasis and energetics. In this review, the role of Bcl-2 family proteins in the regulation of apoptosis, their expression in the central nervous system and how they control Ca 2+ -dependent neuronal injury are summarized. We review the current knowledge on Bcl-2 family proteins in the regulation of mitochondrial function and bioenergetics, including the fusion and fission machinery, and their role in Ca 2+ homeostasis regulation at the mitochondria and ER. Specifically, we discuss how the 'pro-apoptotic' Bcl-2 family proteins, Bax and Bok, physiologically expressed in the nervous system, regulate such 'non-apoptotic/daytime' functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Varying butyric acid amounts induce different stress- and cell death-related signals in nerve growth factor-treated PC12 cells: implications in neuropathic pain absence during periodontal disease progression.

    PubMed

    Seki, Keisuke; Cueno, Marni E; Kamio, Noriaki; Saito, Yuko; Kamimoto, Atsushi; Kurita-Ochiai, Tomoko; Ochiai, Kuniyasu

    2016-06-01

    Neuropathic pain is absent from the early stages of periodontal disease possibly due to neurite retraction. Butyric acid (BA) is a periodontopathic metabolite that activates several stress-related signals and, likewise, induce neurite retraction. Neuronal cell death is associated to neurite retraction which would suggest that BA-induced neurite retraction is ascribable to neuronal cell death. However, the underlying mechanism of BA-related cell death signaling remains unknown. In this study, we exposed NGF-treated PC12 cells to varying BA concentrations [0 (control), 0.5, 1.0, 5.0 mM] and determined selected stress-related (H2O2, glutathione reductase, calcium (Ca(2+)), plasma membrane Ca(2+) ATPase (PMCA), and GADD153/CHOPS) and cell death-associated (extrinsic: FasL, TNF-α, TWEAK, and TRAIL; intrinsic: cytochrome C (CytC), NF-kB, CASP8, CASP9, CASP10, and CASP3) signals. Similarly, we confirmed cell death execution by chromatin condensation. Our results showed that low (0.5 mM) and high (1.0 and 5.0 mM) BA levels differ in stress and cell death signaling. Moreover, at periodontal disease-level BA concentration (5 mM), we observed that only FasL amounts were affected and occurred concurrently with chromatin condensation insinuating that cells have fully committed to neurodegeneration. Thus, we believe that both stress and cell death signaling in NGF-treated PC12 cells are affected differently depending on BA concentration. In a periodontal disease scenario, we hypothesize that during the early stages, low BA amounts accumulate resulting to both stress- and cell death-related signals that favor neurite non-proliferation, whereas, during the later stages, high BA amounts accumulate resulting to both stress- and cell death-related signals that favor neurodegeneration. More importantly, we propose that neuropathic pain absence at any stage of periodontal disease progression is ascribable to BA accumulation regardless of amount.

  16. Monte Carlo Study Elucidates the Type 1/Type 2 Choice in Apoptotic Death Signaling in Healthy and Cancer Cells

    PubMed Central

    Raychaudhuri, Subhadip; Raychaudhuri, Somkanya C

    2013-01-01

    Apoptotic cell death is coordinated through two distinct (type 1 and type 2) intracellular signaling pathways. How the type 1/type 2 choice is made remains a central problem in the biology of apoptosis and has implications for apoptosis related diseases and therapy. We study the problem of type 1/type 2 choice in silico utilizing a kinetic Monte Carlo model of cell death signaling. Our results show that the type 1/type 2 choice is linked to deterministic versus stochastic cell death activation, elucidating a unique regulatory control of the apoptotic pathways. Consistent with previous findings, our results indicate that caspase 8 activation level is a key regulator of the choice between deterministic type 1 and stochastic type 2 pathways, irrespective of cell types. Expression levels of signaling molecules downstream also regulate the type 1/type 2 choice. A simplified model of DISC clustering elucidates the mechanism of increased active caspase 8 generation and type 1 activation in cancer cells having increased sensitivity to death receptor activation. We demonstrate that rapid deterministic activation of the type 1 pathway can selectively target such cancer cells, especially if XIAP is also inhibited; while inherent cell-to-cell variability would allow normal cells stay protected. PMID:24709706

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marengo, Barbara; Bottini, Consuelo; La Porta, C.A.M.

    Phosphatidylethanolamine N-methyltransferase (PEMT) is the enzyme that converts phosphatidylethanolamine (PE) into phosphatidylcholine. We have previously shown that PEMT suppressed hepatoma growth by triggering apoptosis. We investigate whether PEMT controlled cell death and cell proliferation triggered by fasting/refeeding and whether it is a marker of early preneoplastic lesions. The induction of programmed cell death and suppression of cell proliferation by fasting were associated with enhanced PEMT expression and activity, and with a decrease in CTP:phosphocholine cytidylyltransferase expression. Refeeding returned the liver growth and expression of CTP:phosphocholine cytidylyltransferase to control levels, while the expression of PEMT decreased to below control values. Aftermore » DENA administration, PEMT protein, evaluated by Western blotting, slightly increased, but it remained below control levels. The treatment with 20 mg/kg DENA to refed rats induced the appearance of initiated hepatocytes that were negative for PEMT expression. Present findings indicate that PEMT is a novel tumour marker for early liver preneoplastic lesions.« less

  18. The synthetic purine reversine selectively induces cell death of cancer cells.

    PubMed

    Piccoli, Marco; Palazzolo, Giacomo; Conforti, Erika; Lamorte, Giuseppe; Papini, Nadia; Creo, Pasquale; Fania, Chiara; Scaringi, Raffaella; Bergante, Sonia; Tringali, Cristina; Roncoroni, Leda; Mazzoleni, Stefania; Doneda, Luisa; Galli, Rossella; Venerando, Bruno; Tettamanti, Guido; Gelfi, Cecilia; Anastasia, Luigi

    2012-10-01

    The synthetic purine reversine has been shown to possess a dual activity as it promotes the de-differentiation of adult cells, including fibroblasts, into stem-cell-like progenitors, but it also induces cell growth arrest and ultimately cell death of cancer cells, suggesting its possible application as an anti-cancer agent. Aim of this study was to investigate the mechanism underneath reversine selectivity in inducing cell death of cancer cells by a comparative analysis of its effects on several tumor cells and normal dermal fibroblasts. We found that reversine is lethal for all cancer cells studied as it induces cell endoreplication, a process that malignant cells cannot effectively oppose due to aberrations in cell cycle checkpoints. On the other hand, normal cells, like dermal fibroblasts, can control reversine activity by blocking the cell cycle, entering a reversible quiescent state. However, they can be induced to become sensitive to the molecule when key cell cycle proteins, e.g., p53, are silenced. Copyright © 2012 Wiley Periodicals, Inc.

  19. Induction of Cell Death through Alteration of Oxidants and Antioxidants in Epithelial Cells Exposed to High Energy Protons

    NASA Technical Reports Server (NTRS)

    Ramesh, Govindarajan; Wu, Honglu

    2012-01-01

    Radiation affects several cellular and molecular processes including double strand breakage, modifications of sugar moieties and bases. In outer space, protons are the primary radiation source which poses a range of potential health risks to astronauts. On the other hand, the use of proton radiation for tumor radiation therapy is increasing as it largely spares healthy tissues while killing tumor tissues. Although radiation related research has been conducted extensively, the molecular toxicology and cellular mechanisms affected by proton radiation remain poorly understood. Therefore, in the present study, we irradiated rat epithelial cells (LE) with different doses of protons and investigated their effects on cell proliferation and cell death. Our data showed an inhibition of cell proliferation in proton irradiated cells with a significant dose dependent activation and repression of reactive oxygen species (ROS) and antioxidants, glutathione and superoxide dismutase respectively as compared to control cells. In addition, apoptotic related genes such as caspase-3 and -8 activities were induced in a dose dependent manner with corresponding increased levels of DNA fragmentation in proton irradiated cells than control cells. Together, our results show that proton radiation alters oxidant and antioxidant levels in the cells to activate apoptotic pathway for cell death.

  20. The Boston Keratoprosthesis: Comparing Corneal Epithelial Cell Compatibility with Titanium and PMMA

    PubMed Central

    Ament, Jared D.; Spurr-Michaud, Sandra J.; Dohlman, Claes H.; Gipson, Ilene K.

    2014-01-01

    Purpose To determine in vitro whether titanium is superior in corneal cell compatibility to standard polymethyl-methacrylate (PMMA) for the Boston Keratoprosthesis (KPro). Methods Human corneal-limbal epithelial (HCLE) cells were cultured 24, 48, 72, 96, 120, 144, or 168 hours in culture plates alone (controls) or with PMMA or titanium discs. Experiments were performed in triplicate and repeated (final n = 6). To determine if a soluble, toxic factor is emitted from materials, concurrent experiments at 48 and 144 hours were performed with discs placed in Transwell Supports, with HCLE cells plated beneath. As an additional test for soluble factors, cells were incubated 24 hours with disc-conditioned media, and number of viable cells per well was quantified at each timepoint by proliferation assay. To determine if delayed cell proliferation was attributable to cell death, HCLE cell death was measured under all conditions and quantified at each timepoint by cytotoxicity assay. The effects of material on HCLE cell proliferation over time was determined by repeated measures ANOVA. P < 0.05 was statistically significant. Results HCLE cell proliferation was greater in wells with titanium discs compared to PMMA. Differences between the test discs and control non-disc cocultures were statistically significant over time for both cell proliferation (P = 0.001) and death (P = 0.0025). No significant difference was found using Transwells (P = 0.9836) or disc-conditioned media (P = 0.36). Conclusion This in vitro HCLE cell model demonstrates significantly increased cell proliferation and decreased cell death with cell/titanium contact compared to cell/PMMA contact. Moreover, differences are unlikely attributable to a soluble factor. Prospective in vivo analysis of the two KPro biomaterials is indicated. PMID:19574903

  1. Many si/shRNAs can kill cancer cells by targeting multiple survival genes through an off-target mechanism

    PubMed Central

    van Dongen, Stijn; Haluck-Kangas, Ashley; Sarshad, Aishe A; Bartom, Elizabeth T; Kim, Kwang-Youn A; Scholtens, Denise M; Hafner, Markus; Zhao, Jonathan C; Murmann, Andrea E

    2017-01-01

    Over 80% of multiple-tested siRNAs and shRNAs targeting CD95 or CD95 ligand (CD95L) induce a form of cell death characterized by simultaneous activation of multiple cell death pathways preferentially killing transformed and cancer stem cells. We now show these si/shRNAs kill cancer cells through canonical RNAi by targeting the 3’UTR of critical survival genes in a unique form of off-target effect we call DISE (death induced by survival gene elimination). Drosha and Dicer-deficient cells, devoid of most miRNAs, are hypersensitive to DISE, suggesting cellular miRNAs protect cells from this form of cell death. By testing 4666 shRNAs derived from the CD95 and CD95L mRNA sequences and an unrelated control gene, Venus, we have identified many toxic sequences - most of them located in the open reading frame of CD95L. We propose that specific toxic RNAi-active sequences present in the genome can kill cancer cells. PMID:29063830

  2. JUN regulates early transcriptional responses to axonal injury in retinal ganglion cells.

    PubMed

    Fernandes, Kimberly A; Harder, Jeffrey M; Kim, Jessica; Libby, Richard T

    2013-07-01

    The AP1 family transcription factor JUN is an important molecule in the neuronal response to injury. In retinal ganglion cells (RGCs), JUN is upregulated soon after axonal injury and disrupting JUN activity delays RGC death. JUN is known to participate in the control of many different injury response pathways in neurons, including pathways controlling cell death and axonal regeneration. The role of JUN in regulating genes involved in cell death, ER stress, and regeneration was tested to determine the overall importance of JUN in regulating RGC response to axonal injury. Genes from each of these pathways were transcriptionally controlled following axonal injury and Jun deficiency altered the expression of many of these genes. The differentially expressed genes included, Atf3, Ddit3, Ecel1, Gadd45α, Gal, Hrk, Pten, Socs3, and Sprr1a. Two of these genes, Hrk and Atf3, were tested for importance in RGC death using null alleles of each gene. Disruption of the prodeath Bcl2 family member Hrk did not affect the rate or amount of RGC death after axonal trauma. Deficiency in the ATF/CREB family transcription factor Atf3 did lessen the amount of RGC death after injury, though it did not provide long term protection to RGCs. Since JUN's dimerization partner determines its transcriptional targets, the expression of several candidate AP1 family members were examined. Multiple AP1 family members were induced by axonal injury and had a different expression profile in Jun deficient retinas compared to wildtype retinas (Fosl1, Fosl2 and Jund). Overall, JUN appears to play a multifaceted role in regulating RGC response to axonal injury. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. The Protective Effects of Insulin and Natural Honey against Hippocampal Cell Death in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Jafari Anarkooli, Iraj; Barzegar Ganji, Hossein; Pourheidar, Maryam

    2014-01-01

    We investigated the effects of insulin and honey as antioxidants to prevent the hippocampal cell death in streptozotocin-induced diabetic rats. We selected sixty Wister rats (5 groups of 12 animals each), including the control group (C), and four diabetic groups (control (D) and 3 groups treated with insulin (I), honey (H), and insulin plus honey (I + H)). Diabetes was induced by streptozotocin injection (IP, 60 mg/kg). Six weeks after the induction of diabetes, the group I received insulin (3-4 U/kg/day, SC), group H received honey (5 mg/kg/day, IP), and group I + H received a combination of the above at the same dose. Groups C and D received normal saline. Two weeks after treatment, rats were sacrificed and the hippocampus was extracted. Neuronal cell death in the hippocampal region was examined using trypan blue assay, “H & E” staining, and TUNEL assay. Cell viability assessment showed significantly lower number of living cells in group D than in group C. Besides, the mean number of living cells was significantly higher in group I, H, and I + H compared to group D. Therefore, it can be concluded that the treatment of the diabetic rats with insulin, honey, and a combination of insulin and honey can prevent neuronal cell death in different hippocampal areas of the studied samples. PMID:24745031

  4. The protective effects of insulin and natural honey against hippocampal cell death in streptozotocin-induced diabetic rats.

    PubMed

    Jafari Anarkooli, Iraj; Barzegar Ganji, Hossein; Pourheidar, Maryam

    2014-01-01

    We investigated the effects of insulin and honey as antioxidants to prevent the hippocampal cell death in streptozotocin-induced diabetic rats. We selected sixty Wister rats (5 groups of 12 animals each), including the control group (C), and four diabetic groups (control (D) and 3 groups treated with insulin (I), honey (H), and insulin plus honey (I + H)). Diabetes was induced by streptozotocin injection (IP, 60 mg/kg). Six weeks after the induction of diabetes, the group I received insulin (3-4 U/kg/day, SC), group H received honey (5 mg/kg/day, IP), and group I + H received a combination of the above at the same dose. Groups C and D received normal saline. Two weeks after treatment, rats were sacrificed and the hippocampus was extracted. Neuronal cell death in the hippocampal region was examined using trypan blue assay, "H & E" staining, and TUNEL assay. Cell viability assessment showed significantly lower number of living cells in group D than in group C. Besides, the mean number of living cells was significantly higher in group I, H, and I + H compared to group D. Therefore, it can be concluded that the treatment of the diabetic rats with insulin, honey, and a combination of insulin and honey can prevent neuronal cell death in different hippocampal areas of the studied samples.

  5. C33-A cells transfected with E6*I or E6*II the short forms of HPV-16 E6, displayed opposite effects on cisplatin-induced apoptosis.

    PubMed

    Vaisman, Carolina E; Del Moral-Hernandez, Oscar; Moreno-Campuzano, Samadhi; Aréchaga-Ocampo, Elena; Bonilla-Moreno, Raul; Garcia-Aguiar, Israel; Cedillo-Barron, Leticia; Berumen, Jaime; Nava, Porfirio; Villegas-Sepúlveda, Nicolas

    2018-03-02

    The HPV-16 E6/E7 bicistronic immature transcript produces 4 mature RNAs: the unspliced HPV-16 E6/E7 pre-mRNA product and 3 alternatively spliced mRNAs. The 3 spliced mRNAs encode short forms of the E6 oncoprotein, namely E6*I, E6*II and E6^E7. In this study we showed that transfection of C-33A cells with monocistronic constructs of these cDNAs fused to GFP, produced different effects on apoptosis, after the treatment with cisplatin. Transfection of C-33A cells with the full-length E6-GFP oncoprotein resulted in a 50% decrease in cell death, while the transfection with the E6*I-GFP construct showed only a 25% of diminution of cell death, compared to the control cells. Transfection with the E6^E7-GFP or E7-GFP construct had no effect on the number of the apoptotic cells, compared with control cells. Conversely, transfection with the E6*II construct resulted in higher cell death than the control cells. Taken together, these results suggested that E6*I or E6*II, the short forms of HPV-16 E6, displayed opposite effects on cisplatin-induced apoptosis, when transfected in C-33A cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Protective effect of aqueous extract from Spirulina platensis against cell death induced by free radicals.

    PubMed

    Chu, Wan-Loy; Lim, Yen-Wei; Radhakrishnan, Ammu Kutty; Lim, Phaik-Eem

    2010-09-21

    Spirulina is a commercial alga well known to contain various antioxidants, especially phycocyanin. Apart from being sold as a nutraceutical, Spirulina is incorporated as a functional ingredient in food products and beverages. Most of the previous reports on antioxidant activity of Spirulina were based on chemical rather than cell-based assays. The primary objective of this study was to assess the antioxidant activity of aqueous extract from Spirulina based on its protective effect against cell death induced by free radicals. The antioxidant activity of the cold water extract from food-grade Spirulina platensis was assessed using both chemical and cell-based assays. In the cell-based assay, mouse fibroblast cells (3T3) cells were incubated for 1 h in medium containing aqueous extract of Spirulina or vitamin C (positive control) at 25, 125 and 250 μg/mL before the addition of 50 μM 1,1-diphenyl-2-picrylhydrazyl (DPPH) or 3-ethylbenzothiazoline-6-sulfonic acid (ABTS). The cells were incubated for another 24 h before being assessed for cell death due to apoptosis using the Cell Death Detection ELISA Kit. Spectrophotometric assays based on DPPH and ABTS were also used to assess the antioxidant activity of the extract compared to vitamin C and vitamin E (positive controls). Spirulina extract did not cause cytotoxic effect on 3T3 cells within the range of concentrations tested (0 - 250 μg/mL). The extract reduced significantly (p < 0.05) apoptotic cell death due to DPPH and ABTS by 4 to 5-fold although the activity was less than vitamin C. Based on the DPPH assay, the radical scavenging activity of the extract was higher than phycocyanin and was at least 50% of vitamin C and vitamin E. Based on the ABTS assay, the antioxidant activity of the extract at 50 μmug/mL was as good as vitamin C and vitamin E. The results showed that aqueous extract of Spirulina has a protective effect against apoptotic cell death due to free radicals. The potential application of incorporating Spirulina into food products and beverages to enhance their antioxidant capacity is worth exploring.

  7. Decoy receptors block TRAIL sensitivity at a supracellular level: the role of stromal cells in controlling tumour TRAIL sensitivity.

    PubMed

    O'Leary, L; van der Sloot, A M; Reis, C R; Deegan, S; Ryan, A E; Dhami, S P S; Murillo, L S; Cool, R H; Correa de Sampaio, P; Thompson, K; Murphy, G; Quax, W J; Serrano, L; Samali, A; Szegezdi, E

    2016-03-10

    Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a death ligand cytokine known for its cytotoxic activity against malignantly transformed cells. TRAIL induces cell death through binding to death receptors DR4 and DR5. The inhibitory decoy receptors (DcR1 and DcR2) co-expressed with death receptor 4 (DR4)/DR5 on the same cell can block the transmission of the apoptotic signal. Here, we show that DcRs also regulate TRAIL sensitivity at a supracellular level and thus represent a mechanism by which the microenvironment can diminish tumour TRAIL sensitivity. Mathematical modelling and layered or spheroid stroma-extracellular matrix-tumour cultures were used to model the tumour microenvironment. By engineering TRAIL to escape binding by DcRs, we found that DcRs do not only act in a cell-autonomous or cis-regulatory manner, but also exert trans-cellular regulation originating from stromal cells and affect tumour cells, highlighting the potent inhibitory effect of DcRs in the tumour tissue and the necessity of selective targeting of the two death-inducing TRAIL receptors to maximise efficacy.

  8. Comparison of activated caspase detection methods in the gentamicin-treated chick cochlea

    PubMed Central

    Kaiser, Christina L.; Chapman, Brittany J.; Guidi, Jessica L.; Terry, Caitlin E.; Mangiardi, Dominic A.; Cotanche, Douglas A.

    2008-01-01

    Aminoglycoside antibiotics induce caspase-dependent apoptotic death in cochlear hair cells. Apoptosis, a regulated form of cell death, can be induced by many stressors, which activate signaling pathways that result in the controlled dismantling of the affected cell. The caspase family of proteases is activated in the apoptotic signaling pathway and is responsible for cellular destruction. The initiator caspase-9 and the effector caspase-3 are both activated in chick cochlear hair cells following aminoglycoside exposure. We have analyzed caspase activation in the avian cochlea during gentamicin-induced hair cell death to compare two different methods of caspase detection: caspase antibodies and CaspaTag kits. Caspase antibodies bind to the cleaved activated form of caspase-9 or caspase-3 in specific locations in fixed tissue. CaspaTag is a fluorescent inhibitor that binds to a reactive cysteine residue on the large subunit of the caspase heterodimer in unfixed tissue. To induce cochlear hair cell loss, 1-2 week-old chickens received a single injection of gentamicin (300 mg/kg). Chicks were sacrificed 24, 30, 42, 48, 72, or 96 h after injection. Cochleae were dissected and labeled for activated caspase-9 or caspase-3 using either caspase-directed antibodies or CaspaTag kits. Ears were co-labeled with either phalloidin or myosin VI to visualize hair cells and to determine the progression of cochlear damage. The timing of caspase activation was similar for both assays; however, caspase-9 and caspase-3 antibodies labeled only those cells currently undergoing apoptotic cell death. Conversely, CaspaTag-labeled all the cells that have undergone apoptotic cell death and ejection from the sensory epithelium, in addition to those that are currently in the cell death process. This makes CaspaTag ideal for showing an overall pattern or level of cell death over a period of time, while caspase antibodies provide a snapshot of cell death at a specific time point. PMID:18487027

  9. Detecting Anastasis In Vivo by CaspaseTracker Biosensor.

    PubMed

    Tang, Ho Man; Fung, Ming Chiu; Tang, Ho Lam

    2018-02-01

    Anastasis (Greek for "rising to life") is a recently discovered cell recovery phenomenon whereby dying cells can reverse late-stage cell death processes that are generally assumed to be intrinsically irreversible. Promoting anastasis could in principle rescue or preserve injured cells that are difficult to replace such as cardiomyocytes or neurons, thereby facilitating tissue recovery. Conversely, suppressing anastasis in cancer cells, undergoing apoptosis after anti-cancer therapies, may ensure cancer cell death and reduce the chances of recurrence. However, these studies have been hampered by the lack of tools for tracking the fate of cells that undergo anastasis in live animals. The challenge is to identify the cells that have reversed the cell death process despite their morphologically normal appearance after recovery. To overcome this difficulty, we have developed Drosophila and mammalian CaspaseTracker biosensor systems that can identify and permanently track the anastatic cells in vitro or in vivo. Here, we present in vivo protocols for the generation and use of the CaspaseTracker dual biosensor system to detect and track anastasis in Drosophila melanogaster after transient exposure to cell death stimuli. While conventional biosensors and protocols can label cells actively undergoing apoptotic cell death, the CaspaseTracker biosensor can permanently label cells that have recovered after caspase activation - a hallmark of late-stage apoptosis, and simultaneously identify active apoptotic processes. This biosensor can also track the recovery of the cells that attempted other forms of cell death that directly or indirectly involved caspase activity. Therefore, this protocol enables us to continuously track the fate of these cells and their progeny, facilitating future studies of the biological functions, molecular mechanisms, physiological and pathological consequences, and therapeutic implications of anastasis. We also discuss the appropriate controls to distinguish cells that undergo anastasis from those that display non-apoptotic caspase activity in vivo.

  10. Role of Hsp-70 in triptolide-mediated cell death of neuroblastoma.

    PubMed

    Antonoff, Mara B; Chugh, Rohit; Skube, Steven J; Dudeja, Vikas; Borja-Cacho, Daniel; Clawson, Kimberly A; Vickers, Selwyn M; Saluja, Ashok K

    2010-09-01

    Our recent work demonstrated that treatment of neuroblastoma with triptolide causes apoptotic cell death in vitro and decreases tumor size in vivo. Triptolide therapy has been associated with reduced expression of Hsp-70, suggesting a mechanism of cell killing involving Hsp-70 inhibition. The principal objective of this study was to investigate the role of Hsp-70 in triptolide-mediated cell death in neuroblastoma. Neuroblastoma cells were transfected with Hsp-70-specific siRNA. Viability, caspase activity, and phosphatidylserine externalization were subsequently measured. An orthotopic, syngeneic murine tumor model was developed, and randomized mice received daily injections of triptolide or vehicle. At 21 d, mice were sacrificed. Immunohistochemisty was used to characterize Hsp-70 levels in residual tumors, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was performed to identify cells undergoing apoptosis. Targeted silencing of Hsp-70 with siRNA significantly decreased cellular viability, augmented caspase-3 activity, and resulted in increased annexin-V staining. These effects parallel those findings obtained following treatment with triptolide. Residual tumors from triptolide-treated mice showed minimal staining with Hsp-70 immunohistochemistry, while control tumors stained prominently. Tumors from treated mice demonstrated marked staining with the TUNEL assay, while control tumors showed no evidence of apoptosis. Use of siRNA to suppress Hsp-70 expression in neuroblastoma resulted in apoptotic cell death, similar to the effects of triptolide. Residual tumors from triptolide-treated mice expressed decreased levels of Hsp-70 and demonstrated significant apoptosis. These findings support the hypothesis that Hsp-70 inhibition plays a significant role in triptolide-mediated neuroblastoma cell death. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Chloroquine synergizes with FTS to enhance cell growth inhibition and cell death

    PubMed Central

    Schmukler, Eran; Wolfson, Eya; Haklai, Roni; Elad-Sfadia, Galit; Kloog, Yoel; Pinkas-Kramarski, Ronit

    2014-01-01

    The Ras family of small GTPases transmits extracellular signals that regulate cell growth, differentiation, motility and death. Ras signaling is constitutively active in a large number of human cancers. Ras can also regulate autophagy by affecting several signaling pathways including the mTOR pathway. Autophagy is a process that regulates the balance between protein synthesis and protein degradation. It is important for normal growth control, but may be defective in diseases. Previously, we have shown that Ras inhibition by FTS induces autophagy, which partially protects cancer cells and may limit the use of FTS as an anti-cancer drug. Since FTS is a non toxic drug we hypothesized that FTS and chloroquine (an autophagy inhibitor) will synergize in cell growth inhibition and cell death. Thus, in the present study, we explored the mechanism of each individual drug and their combined action. Our results demonstrate that in HCT-116 and in Panc-1 cells, FTS induces autophagy, which can be inhibited by chloroquine. Furthermore, the combined treatment synergistically decreased the number of viable cells. Interestingly, the combined treatment enhanced apoptotic cell death as indicated by increased sub-G1 cell population, increased Hoechst staining, activation of caspase 3, decrease in survivin expression and release of cytochrome c. Thus, chloroquine treatment may promote FTS-mediated inhibition of tumor cell growth and may stimulate apoptotic cell death. PMID:24368422

  12. Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress

    NASA Astrophysics Data System (ADS)

    Chiu, Hui-Wen; Xia, Tian; Lee, Yu-Hsuan; Chen, Chun-Wan; Tsai, Jui-Chen; Wang, Ying-Jan

    2014-12-01

    Nanoparticles (NPs) have been used to produce a wide range of products that have applications in imaging and drug delivery in medicine. Due to their chemical stability, well-controlled sizes and surface charges, polystyrene (PS) NPs have been developed as biosensors and drug delivery carriers. However, the possible adverse biological effects and underlying mechanisms are still unclear. Recently, autophagy has been implicated in the regulation of cell death. In this study, we evaluated a library of PS NPs with different surface charges. We found that NH2-labeled polystyrene (NH2-PS) nanospheres were highly toxic with enhanced uptake in macrophage (RAW 264.7) and lung epithelial (BEAS-2B) cells. Furthermore, NH2-PS could induce autophagic cell death. NH2-PS increased autophagic flux due to reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress caused by misfolded protein aggregation. The inhibition of ER stress decreased cytotoxicity and autophagy in the NH2-PS-treated cells. In addition, the Akt/mTOR and AMPK signaling pathways were involved in the regulation of NH2-PS-triggered autophagic cell death. These results suggest an important role of autophagy in cationic NP-induced cell death and provide mechanistic insights into the inhibition of the toxicity and safe material design.Nanoparticles (NPs) have been used to produce a wide range of products that have applications in imaging and drug delivery in medicine. Due to their chemical stability, well-controlled sizes and surface charges, polystyrene (PS) NPs have been developed as biosensors and drug delivery carriers. However, the possible adverse biological effects and underlying mechanisms are still unclear. Recently, autophagy has been implicated in the regulation of cell death. In this study, we evaluated a library of PS NPs with different surface charges. We found that NH2-labeled polystyrene (NH2-PS) nanospheres were highly toxic with enhanced uptake in macrophage (RAW 264.7) and lung epithelial (BEAS-2B) cells. Furthermore, NH2-PS could induce autophagic cell death. NH2-PS increased autophagic flux due to reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress caused by misfolded protein aggregation. The inhibition of ER stress decreased cytotoxicity and autophagy in the NH2-PS-treated cells. In addition, the Akt/mTOR and AMPK signaling pathways were involved in the regulation of NH2-PS-triggered autophagic cell death. These results suggest an important role of autophagy in cationic NP-induced cell death and provide mechanistic insights into the inhibition of the toxicity and safe material design. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05509h

  13. Inverse Susceptibility to Oxidative Death of Lymphocytes Obtained From Alzheimer's Patients and Skin Cancer Survivors: Increased Apoptosis in Alzheimer's and Reduced Necrosis in Cancer

    PubMed Central

    Silva, Monica; Salech, Felipe; Ponce, Daniela P.; Merino, Daniela; Sinning, Mariana; Xiong, Chengjie; Roe, Catherine M.; Quest, Andrew F. G.

    2012-01-01

    A paucity of cancer in individuals with Alzheimer's disease (AD) and low rates of AD in cancer survivors has been reported in epidemiological studies. Deregulation in opposite directions of biological mechanisms, such as susceptibility to cell death, might be shared in the two disorders. We analyzed lymphocytes from AD and skin cancer patients as well as healthy controls and found significantly increased vulnerability of AD lymphocytes to H2O2-induced apoptotic death and higher resistance to death of skin cancer lymphocytes, due to reduced necrosis, as compared with healthy controls by pairwise comparisons adjusted for age and sex. H2O2-induced death in lymphocytes was caspase independent and significantly reduced by PARP-1 inhibition in all three groups. These differences in the susceptibility to cell death observed for lymphocytes from AD and skin cancer patients may be one of the mechanisms that help explain the inverse correlation detected between these diseases in epidemiological studies. PMID:22367434

  14. Induction of cell death by tospoviral protein NSs and the motif critical for cell death does not control RNA silencing suppression activity.

    PubMed

    Singh, Ajeet; Permar, Vipin; Jain, R K; Goswami, Suneha; Kumar, Ranjeet Ranjan; Canto, Tomas; Palukaitis, Peter; Praveen, Shelly

    2017-08-01

    Groundnut bud necrosis virus induces necrotic symptoms in different hosts. Previous studies showed reactive oxygen species-mediated programmed cell death (PCD) resulted in necrotic symptoms. Transgenic expression of viral protein NSs mimics viral symptoms. Here, we showed a role for NSs in influencing oxidative burst in the cell, by analyzing H 2 O 2 accumulation, activities of antioxidant enzymes and expression levels of vacuolar processing enzymes, H 2 O 2 -responsive microRNA 319a.2 plus its possible target metacaspase-8. The role of NSs in PCD, was shown using two NSs mutants: one in the Trp/GH3 motif (a homologue of pro-apototic domain) (NSs S189R ) and the other in a non-Trp/GH3 motif (NSs L172R ). Tobacco rattle virus (TRV) expressing NSs S189R enhanced the PCD response, but not TRV-NSs L172R , while RNA silencing suppression activity was lost in TRV-NSs L172R , but not in TRV-NSs S189R . Therefore, we propose dual roles of NSs in RNA silencing suppression and induction of cell death, controlled by different motifs. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Determinants of suicide and accidental or violent death in the Australian HIV Observational Database.

    PubMed

    McManus, Hamish; Petoumenos, Kathy; Franic, Teo; Kelly, Mark D; Watson, Jo; O'Connor, Catherine C; Jeanes, Mark; Hoy, Jennifer; Cooper, David A; Law, Matthew G

    2014-01-01

    Rates of suicide and accidental or violent death remain high in HIV-positive populations despite significantly improved prognosis since the introduction of cART. We conducted a nested case-control study of suicide and accidental or violent death in the Australian HIV Observational Database (AHOD) between January 1999 and March 2012. For each case, 2 controls were matched by clinic, age, sex, mode of exposure and HIV-positive date to adjust for potential confounding by these covariates. Risk of suicide and accidental or violent death was estimated using conditional logistic regression. We included 27 cases (17 suicide and 10 violent/accidental death) and 54 controls. All cases were men who have sex with men (MSM) or MSM/ injecting drug use (IDU) mode of exposure. Increased risk was associated with unemployment (Odds Ratio (OR) 5.86, 95% CI: 1.69-20.37), living alone (OR 3.26, 95% CI: 1.06-10.07), suicidal ideation (OR 6.55, 95% CI: 1.70-25.21), and >2 psychiatric/cognitive risk factors (OR 4.99, 95% CI: 1.17-30.65). CD4 cell count of >500 cells/µL (OR 0.25, 95% CI: 0.07-0.87) and HIV-positive date ≥1990 (1990-1999 (OR 0.31, 95% CI: 0.11-0.89), post-2000 (OR 0.08, 95% CI: 0.01-0.84)) were associated with decreased risk. CD4 cell count ≥500 cells/µL remained a significant predictor of reduced risk (OR 0.15, 95% CI: 0.03-0.70) in a multivariate model adjusted for employment status, accommodation status and HIV-positive date. After adjustment for psychosocial factors, the immunological status of HIV-positive patients contributed to the risk of suicide and accidental or violent death. The number of psychiatric/cognitive diagnoses contributed to the level of risk but many psychosocial factors were not individually significant. These findings indicate a complex interplay of factors associated with risk of suicide and accidental or violent death.

  16. Cytokinetics of adult rat SVZ after EAE.

    PubMed

    Sajad, Mir; Chawla, Raman; Zargan, Jamil; Umar, Sadiq; Sadaqat, Mir; Khan, Haider A

    2011-01-31

    Cytokinetics regulating cell cycle division can be modulated by several endogenous factors. EAE (experimental autoimmune encephalomyelitis) increases proliferation of progenitor cells in the subventricular zone (SVZ). Using cumulative and single S phase labeling with 5-bromo-2-deoxyuridine, we examined cell cycle kinetics of neural progenitor cells in the SVZ after EAE. 20% of the SVZ cell population was proliferating in adjuvant control rats. However, EAE significantly increased them up to 27% and these cells had a cell cycle length (TC) of 15.6h, significantly (P<0.05) shorter than the 19 h TC in non EAE SVZ cells. Few TUNEL (+) cells were detected in the SVZ cells of adjuvant controls. EAE increased (P<0.05) TUNEL (+) nuclei in SVZ suggesting early stage progenitor cell death. Cell cycle phase analysis revealed that EAE substantially shortened the length of the G1 phase (9.6h) compared with the G1 phase of 12.25 h in adjuvant control SVZ cells (P<0.05). This reduction in G1 contributes to EAE-induced reduction of TC because no significant changes were detected on the length of S, G2 and M phases between the two groups. Our results show a surge in proliferating progenitor cells in the SVZ with concomitant increase in apoptotic cell death after EAE. Furthermore, increase in the SVZ proliferation contributes to EAE-induced neurogenesis and this increase is regulated by shortening the G1 phase. Our investigation suggests the activation of quiescent cells in SVZ to generate actively proliferating progenitors. Moreover, the increase in the cell death in proliferating population may contribute towards negative regulation of proliferative cell number and hence diminished regenerative capacity of CNS following EAE. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Reactive oxygen species-mediated synergistic and preferential induction of cell death and reduction of clonogenic resistance in breast cancer cells by combined cisplatin and FK228.

    PubMed

    Pluchino, Lenora Ann; Choudhary, Shambhunath; Wang, Hwa-Chain Robert

    2016-10-10

    Safe and effective combination chemotherapy regimens against breast cancer are lacking. We used our cellular system, consisting of the non-cancerous human breast epithelial MCF10A cell line and its derived tumorigenic, oncogenic H-Ras-expressing, MCF10A-Ras cell line, to investigate the effectiveness of a combination chemotherapy regimen in treating breast cancer cells using two FDA-approved agents, cisplatin and FK228. Cisplatin and FK228 significantly, synergistically, and preferentially induced death and reduced drug resistance of MCF10A-Ras versus MCF10A cells. The ERK-Nox-ROS pathway played a major role in both synergistic cell death induction and GSH-level reduction, which contributed to the synergistic suppression of drug resistance in cells. Enhancement of the Ras-ERK-Nox pathway by combined cisplatin and FK228 significantly increased ROS levels, leading to induction of death, reduction of drug resistance, and induction of DNA damage and oxidation in cancerous MCF10A-Ras cells. Furthermore, synergistic induction of cell death and reduction of drug resistance by combined cisplatin and FK228 in breast cells is independent of their estrogen receptor status. Our study suggests that combined cisplatin and FK228 should be considered in clinical trials as a new regimen for therapeutic control of breast cancers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. ROS-induced HepG2 Cell Death from hyperthermia using Magnetic Hydroxyapatite Nanoparticles.

    PubMed

    Yang, Chun-Ting; Li, Keng-Yuan; Meng, Fan-Qi; Lin, Jung-Feng; Young, In-Chi; Ivkov, Robert; Lin, Feng-Huei

    2018-06-19

    HepG2 cell death with magnetic hyperthermia (MHT) using hydroxyapatite nanoparticles (mHAPs) and alternating magnetic fields (AMF) was investigated in vitro. The mHAPs were synthesized as thermo-seeds by co-precipitation with the addition of Fe2+. The grain size of HAPs and iron oxide magnetic were 39.1 nm and 19.5 nm were calculated by the Scherrer formula. HepG2 cells were cultured with mHAPs and exposed to an AMF for 30 min yielding maximum temperatures of 43 ± 0.5°C. After heating, cell viability was reduced by 50% relative to controls, lactate dehydrogenase (LDH) concentrations measured in media were three-fold greater than those measured in all control groups. Readouts of toxicity by live/dead staining were consistent with cell viability and LDH assay results. Measured ROS in cells exposed to MHT was two-fold greater than in control groups. Results of cDNA microarray and Western blotting revealed tantalizing evidence of ATM and GADD45 downregulation with possible MKK3/MKK6 and ATF-2 of p38 MAPK inhibition upon exposure to mHAPs and AMF combinations. These results suggest that the combination of mHAPs and AMF can increase intracellular concentrations of reactive oxygen species (ROS) to cause DNA damage, which leads to cell death that complemented heat-stress related biological effects. © 2018 IOP Publishing Ltd.

  19. Death of mitochondria during programmed cell death of leaf mesophyll cells.

    PubMed

    Selga, Tūrs; Selga, Maija; Pāvila, Vineta

    2005-12-01

    The role of plant mitochondria in the programmed cell death (PCD) is widely discussed. However, spectrum and sequence of mitochondrial structural changes during different types of PCD in leaves are poorly described. Pea, cucumber and rye plants were grown under controlled growing conditions. A part of them were sprinkled with ethylene releaser to accelerate cell death. During yellowing the palisade parenchyma mitochondria were attracted to nuclear envelope. Mitochondrial matrix became electron translucent. Mitochondria entered vacuole by invagination of tonoplast and formed multivesicular bodies. Ethephon treatment increased the frequency of sticking of mitochondria to the nuclear envelope or chloroplasts and peroxisomes. Mitochondria divided by different mechanisms and became enclosed in Golgi and ER derived authopagic vacuoles or in the central vacuole. Several fold increase of the diameter of cristae became typical. In all cases mitochondria were attached to nuclear envelope. It can be considered as structural mechanism of promoting of PCD.

  20. Septic shock sera containing circulating histones induce dendritic cell-regulated necrosis in fatal septic shock patients.

    PubMed

    Raffray, Loic; Douchet, Isabelle; Augusto, Jean-Francois; Youssef, Jihad; Contin-Bordes, Cecile; Richez, Christophe; Duffau, Pierre; Truchetet, Marie-Elise; Moreau, Jean-Francois; Cazanave, Charles; Leroux, Lionel; Mourrissoux, Gaelle; Camou, Fabrice; Clouzeau, Benjamin; Jeannin, Pascale; Delneste, Yves; Gabinski, Claude; Guisset, Olivier; Lazaro, Estibaliz; Blanco, Patrick

    2015-04-01

    Innate immune system alterations, including dendritic cell loss, have been reproducibly observed in patients with septic shock and correlated to adverse outcomes or nosocomial infections. The goal of this study is to better understand the mechanisms behind this observation in order to better assess septic shock pathogenesis. Prospective, controlled experimental study. Research laboratory at an academic medical center. The study enrolled 71 patients, 49 with septic shock and 22 with cardiogenic shock. Seventeen healthy controls served as reference. In vitro monocyte-derived dendritic cells were generated from healthy volunteers. Sera were assessed for their ability to promote in vitro dendritic cell death through flow cytometry detection in each group of patients. The percentage of apoptotic or necrotic dendritic cells was evaluated by annexin-V and propidium iodide staining. We observed that only patients with septic shock and not patients with pure cardiogenic shock were characterized by a rapid and profound loss of circulating dendritic cells. In vitro analysis revealed that sera from patients with septic shock induced higher dendritic cell death compared to normal sera or cardiogenic shock (p<0.005). Sera from surviving patients induced dendritic cell death through a caspase-dependent apoptotic pathway, whereas sera from nonsurviving patients induced dendritic cell-regulated necrosis. Dendritic cell necrosis was not due to necroptosis but was dependent of the presence of circulating histone. The toxicity of histones toward dendritic cell could be prevented by recombinant human activated protein C. Finally, we observed a direct correlation between the levels of circulating histones in patients and the ability of the sera to promote dendritic cell-regulated necrosis. The study demonstrates a differential mechanism of dendritic cell death in patients with septic shock that is dependent on the severity of the disease.

  1. Therapeutic approaches to preventing cell death in Huntington disease

    PubMed Central

    Kaplan, Anna; Stockwell, Brent R.

    2012-01-01

    Neurodegenerative diseases affect the lives of millions of patients and their families. Due to the complexity of these diseases and our limited understanding of their pathogenesis, the design of therapeutic agents that can effectively treat these diseases has been challenging. Huntington disease (HD) is one of several neurological disorders with few therapeutic options. HD, like numerous other neurodegenerative diseases, involves extensive neuronal cell loss. One potential strategy to combat HD and other neurodegenerative disorders is to intervene in the execution of neuronal cell death. Inhibiting neuronal cell death pathways may slow the development of neurodegeneration. However, discovering small molecule inhibitors of neuronal cell death remains a significant challenge. Here, we review candidate therapeutic targets controlling cell death mechanisms that have been the focus of research in HD, as well as an emerging strategy that has been applied to developing small molecule inhibitors—fragment-based drug discovery (FBDD). FBDD has been successfully used in both industry and academia to identify selective and potent small molecule inhibitors, with a focus on challenging proteins that are not amenable to traditional high-throughput screening approaches. FBDD has been used to generate potent leads, pre-clinical candidates, and has led to the development of an FDA approved drug. This approach can be valuable for identifying modulators of cell-death-regulating proteins; such compounds may prove to be the key to halting the progression of HD and other neurodegenerative disorders. PMID:22967354

  2. Induction of cyto-protective autophagy by paramontroseite VO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Miao, Yanyan; Zhang, Yunjiao; Liu, Liang; Lin, Jun; Yang, James Y.; Xie, Yi; Wen, Longping

    2013-04-01

    A variety of inorganic nanomaterials have been shown to induce autophagy, a cellular degradation process critical for the maintenance of cellular homeostasis. The overwhelming majority of autophagic responses elicited by nanomaterials were detrimental to cell fate and contributed to increased cell death. A widely held view is that the inorganic nanoparticles, when encapsulated and trapped by autophagosomes, may compromise the normal autophagic process due to the inability of the cells to degrade these materials and thus they manifest a detrimental effect on the well-being of a cell. Here we show that, contrary to this notion, nano-sized paramontroseite VO2 nanocrystals (P-VO2) induced cyto-protective, rather than death-promoting, autophagy in cultured HeLa cells. P-VO2 also caused up-regulation of heme oxygenase-1 (HO-1), a cellular protein with a demonstrated role in protecting cells against death under stress situations. The autophagy inhibitor 3-methyladenine significantly inhibited HO-1 up-regulation and increased the rate of cell death in cells treated with P-VO2, while the HO-1 inhibitor protoporphyrin IX zinc (II) (ZnPP) enhanced the occurrence of cell death in the P-VO2-treated cells while having no effect on the autophagic response induced by P-VO2. On the other hand, Y2O3 nanocrystals, a control nanomaterial, induced death-promoting autophagy without affecting the level of expression of HO-1, and the pro-death effect of the autophagy induced by Y2O3. Our results represent the first report on a novel nanomaterial-induced cyto-protective autophagy, probably through up-regulation of HO-1, and may point to new possibilities for exploiting nanomaterial-induced autophagy for therapeutic applications.

  3. Differential cellular responses by oncogenic levels of c-Myc expression in long-term confluent retinal pigment epithelial cells.

    PubMed

    Wang, Yiping; Cheng, Xiangdong; Samma, Muhammad Kaleem; Kung, Sam K P; Lee, Clement M; Chiu, Sung Kay

    2018-06-01

    c-Myc is a highly pleiotropic transcription factor known to control cell cycle progression, apoptosis, and cellular transformation. Normally, ectopic expression of c-Myc is associated with promoting cell proliferation or triggering cell death via activating p53. However, it is not clear how the levels of c-Myc lead to different cellular responses. Here, we generated a series of stable RPE cell clones expressing c-Myc at different levels, and found that consistent low level of c-Myc induced cellular senescence by activating AP4 in post-confluent RPE cells, while the cells underwent cell death at high level of c-Myc. In addition, high level of c-Myc could override the effect of AP4 on cellular senescence. Further knockdown of AP4 abrogated senescence-like phenotype in cells expressing low level of c-Myc, and accelerated cell death in cells with medium level of c-Myc, indicating that AP4 was required for cellular senescence induced by low level of c-Myc.

  4. Multilayered Magnetic Nanoparticles Fabricated by Nanoimprint Lithography for Magnetomechanical Treatment of Cancer

    NASA Astrophysics Data System (ADS)

    Kwon, Byung Seok

    Fe3O4-magetite nanoparticles have received wide interest as prominent agents for various biomedical applications, ranging from target-specific cancer treatment, gene therapy, and Magnetic Particle Imaging (MPI). However, Fe3O4-magnetite nanoparticles, synthesized by chemical methods beyond a certain size, present challenges in controlling size distribution and shape. Similarly, Fe3O 4-magnetite nanoparticles fabricated by conventional top-down lithographic methods present difficulty of controlling defects and lead to agglomeration due to large size. In order to overcome the difficulties associated with the conventional chemical and top-down lithographic methods, it is critical to develop a fabrication method which produces homogeneous nanoparticles in large quantities with the control of size, defects, and structure. Furthermore, the concept of cell death induced by mechanical perturbation has received wide attention as a way to maximize the cancer cell death with minimal side effects. Previous study has proposed the use of permalloy disk-shaped vortex state microparticles, in order to create cancer cell death by mechanical force. However, insufficient biocompatibility, inadequate mechanical force created by vortex switching, and inability to control the particle size have been critical issues to be further researched and proceeded for in vivo application. Hence, we studied physical and magnetic properties of Fe3O 4 as a material in thin film form and proceeded to develop Fe3 O4 based synthetic antiferromagnetic (SAF) thin films. Then, we combined these favorable physical/magnetic properties with nanoimprint lithography to fabricate homogeneously patterned synthetic antiferromagnetic (SAF) nanoparticles (wafer area >1 x 1 cm2) with the control of size, shape and structure. Then we demonstrated the release of these particles in an aqueous environment. The fabrication process combines a tetrafluoroethylene (ETFE) "working stamp", a bi-layer resist lift-off, defect-free nanoimprint and sputtering in order to fabricate synthetic antiferromagnetic (SAF) nanoparticles. SAF nanoparticles are composed of alternating magnetic/non-magnetic multilayers to prevent any agglomeration in spite of the ferromagnetic nature of the particles. This heterostructure gives rise to nearly zero magnetic remanence and coercivity values and also prevents possible oxidation of Fe 3O4. The superparamagnet-like behavior (nearly zero remanence and coercivity) of SAF nanoparticles suggests that the SAF nanoparticles with favorable geometry fabricated by top-down methods have potential for biomedical application. In order to prove the suitability of SAF nanoparticles for biomedical application, we initially controlled the movement of these SAF nanoparticles with A.C magnetic field, and mechanically rotated them in solution. After we have studied field frequency dependence on mechanical rotation, these SAF nanoparticles were implemented in in vitro environment to test the biocompatibility of these SAF nanoparticlesn, and also to confirm the effectiveness of mechanical force created by A.C magnetic field in order to kill cancer cells. This proof of concept successfully eradicated cancer cells with these SAF nanoparticles. We have demonstrated the effective cancer death after 16 minutes of exposure to mechanically rotating SAF nanoparticles under frequency of 1 Hz (>92% cell death). Furthermore, under the same frequency and exposure time, we have shown that up to 1:4 (nanoparticles:cell) concentration, the mechanical perturbation is effective to kill cancer cells (>80% cell death). However, we suggest to further study the biological mechanism of cancer cell death by mechanical perturbation to truly understand this phenomenon.

  5. Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells.

    PubMed

    Marcos-Campos, I; Asín, L; Torres, T E; Marquina, C; Tres, A; Ibarra, M R; Goya, G F

    2011-05-20

    In this work, the capability of primary, monocyte-derived dendritic cells (DCs) to uptake iron oxide magnetic nanoparticles (MNPs) is assessed and a strategy to induce selective cell death in these MNP-loaded DCs using external alternating magnetic fields (AMFs) is reported. No significant decrease in the cell viability of MNP-loaded DCs, compared to the control samples, was observed after five days of culture. The number of MNPs incorporated into the cytoplasm was measured by magnetometry, which confirmed that 1-5 pg of the particles were uploaded per cell. The intracellular distribution of these MNPs, assessed by transmission electron microscopy, was found to be primarily inside the endosomic structures. These cells were then subjected to an AMF for 30 min and the viability of the blank DCs (i.e. without MNPs), which were used as control samples, remained essentially unaffected. However, a remarkable decrease of viability from approximately 90% to 2-5% of DCs previously loaded with MNPs was observed after the same 30 min exposure to an AMF. The same results were obtained using MNPs having either positive (NH(2)(+)) or negative (COOH(-)) surface functional groups. In spite of the massive cell death induced by application of AMF to MNP-loaded DCs, the number of incorporated magnetic particles did not raise the temperature of the cell culture. Clear morphological changes at the cell structure after magnetic field application were observed using scanning electron microscopy. Therefore, local damage produced by the MNPs could be the main mechanism for the selective cell death of MNP-loaded DCs under an AMF. Based on the ability of these cells to evade the reticuloendothelial system, these complexes combined with an AMF should be considered as a potentially powerful tool for tumour therapy.

  6. Changes in buccal micronucleus cytome parameters associated with smokeless tobacco and pesticide exposure among female tea garden workers of Assam, India.

    PubMed

    Kausar, Afifa; Giri, Sarbani; Roy, Prasenjit; Giri, Anirudha

    2014-03-01

    Assam is the highest tea producing state in India. A large number of workers are engaged in various units of tea industry. There are few reports on the health status of the tea garden workers. The present cytogenetic biomonitoring study was undertaken to investigate the genotoxic effect associated with workers in tea industries in southern Assam. Smokeless tobacco chewing along with betel nut is very common practice among the workers. Workers also get exposed periodically to mixture of pesticides. Employing buccal micronucleus cytome assay, exfoliated buccal cells were analyzed in 90 female tea garden and compared to 90 age and sex matched non-chewer control as well as 70 chewers who are not tea garden workers. Statistically significant (p<0.001) increase in genotoxic and cell death parameters was observed in tea garden workers compared to both the control groups. The frequency of cell proliferation biomarkers was highest in the chewer controls whereas genotoxic and cell death parameters were highest in tea garden workers. Linear correlation analysis revealed strong positive correlation between the duration of occupation and the frequency of micronucleus (r=0.597; p<0.001) as well as cell death parameters (r=0.588; p<0.001). Amount of chewing also had significant positive correlation with micronucleus frequency (r=0.243 or 5.9%; p<0.05) and cell death parameters (r=0.217; p<0.05). A statistically significant decrease in total RBC count, haemoglobin content as well as acetylcholine esterase in the blood of exposed individuals was observed. The average BMI among the tea garden workers was relatively lower compared to the control group. Pesticide exposure and chewing areca nut along with smokeless tobacco use may be responsible for changes in cytome parameters in exfoliated buccal cells. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. To Be or Not to Be: Controlling Cellular Suicide | Center for Cancer Research

    Cancer.gov

    When a cell is damaged and can no longer function properly, a complex series of molecular steps is triggered that allows it to die in a controlled manner. This cellular suicide is called programmed cell death, or apoptosis.

  8. Application of hyperthermia in addition to ionizing irradiation fosters necrotic cell death and HMGB1 release of colorectal tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schildkopf, Petra, E-mail: petra.schildkopf@uk-erlangen.de; Frey, Benjamin, E-mail: benjamin.frey@uk-erlangen.de; Mantel, Frederick, E-mail: frederick.mantel@web.de

    2010-01-01

    Colorectal cancer is the second leading cause of death in developed countries. Tumor therapies should on the one hand aim to stop the proliferation of tumor cells and to kill them, and on the other hand stimulate a specific immune response against residual cancer cells. Dying cells are modulators of the immune system contributing to anti-inflammatory or pro-inflammatory responses, depending on the respective cell death form. The positive therapeutic effects of temperature-controlled hyperthermia (HT), when combined with ionizing irradiation (X-ray), were the origin to examine whether combinations of X-ray with HT can induce immune activating tumor cell death forms, alsomore » characterized by the release of the danger signal HMGB1. Human colorectal tumor cells with differing radiosensitivities were treated with combinations of HT (41.5 {sup o}C for 1 h) and X-ray (5 or 10 Gy). Necrotic cell death was prominent after X-ray and could be further increased by HT. Apoptosis remained quite low in HCT 15 and SW480 cells. X-ray and combinations with HT arrested the tumor cells in the radiosensitive G2 cell cycle phase. The amount of released HMGB1 protein was significantly enhanced after combinatorial treatments in comparison to single ones. We conclude that combining X-ray with HT may induce anti-tumor immunity as a result of the predominant induction of inflammatory necrotic tumor cells and the release of HMGB1.« less

  9. Augmented trophoblast cell death in preeclampsia can proceed via ceramide-mediated necroptosis

    PubMed Central

    Bailey, Liane Jennifer; Alahari, Sruthi; Tagliaferro, Andrea; Post, Martin; Caniggia, Isabella

    2017-01-01

    Preeclampsia, a serious hypertensive disorder of pregnancy, is characterized by elevated ceramide (CER) content that is responsible for heightened trophoblast cell death rates via apoptosis and autophagy. Whether trophoblast cells undergo necroptosis, a newly characterized form of regulated necrosis, and the potential role of CER in this process remain to be established. Herein, we report that exposure of both JEG3 cells and primary isolated cytotrophoblasts to C16:0 CER in conjunction with a caspase-8 inhibitor (Q-VD-OPh) promoted necroptotic cell death, as evidenced by increased expression and association of receptor-interacting protein kinases RIP1 and RIP3, as well as phosphorylation of mixed lineage kinase domain-like (MLKL) protein. MLKL activation and oligomerization could be abrogated by pretreatment with the necroptosis inhibitor necrostatin-1 (Nec-1). CER+Q-VD-OPH-treated primary trophoblasts displayed striking necrotic morphology along with disrupted fusion processes as evidenced by maintenance of E-cadherin-stained membrane boundaries and reduced glial cell missing-1 expression, but these events were effectively reversed using Nec-1. Of clinical relevance, we established an increased susceptibility to necroptotic cell death in preeclamptic placentae relative to normotensive controls. In preeclampsia, increased necrosome (RIP1/RIP3) protein levels, as well as MLKL activation and oligomerization associated with necrotic cytotrophoblast morphology. In addition, caspase-8 activity was reduced in severe early-onset preeclampsia cases. This study is the first to report that trophoblast cells undergo CER-induced necroptotic cell death, thereby contributing to the increased placental dysfunction and cell death found in preeclampsia. PMID:28151467

  10. On the role of phosphatidylinositol 3-kinase, protein kinase b/Akt, and glycogen synthase kinase-3β in photodynamic injury of crayfish neurons and glial cells.

    PubMed

    Komandirov, Maxim A; Knyazeva, Evgeniya A; Fedorenko, Yulia P; Rudkovskii, Mikhail V; Stetsurin, Denis A; Uzdensky, Anatoly B

    2011-10-01

    Photodynamic treatment that causes intense oxidative stress and cell death is currently used in neurooncology. However, along with tumor cells, it may damage healthy neurons and glia. To study the involvement of signaling processes in photodynamic injury or protection of neurons and glia, we used crayfish mechanoreceptor consisting of a single neuron surrounded by glial cells. It was photosensitized with alumophthalocyanine Photosens. Application of specific inhibitors showed that phosphatidylinositol 3-kinase did not participate in photoinduced death of neurons and glia. Akt was involved in photoinduced necrosis but not in apoptosis of neurons and glia. Glycogen synthase kinase-3β participated in photoinduced apoptosis of glial cells and in necrosis of neurons. Therefore, phosphatidylinositol 3-kinase/protein kinase Akt/glycogen synthase kinase-3β pathway was not involved as a whole in photodynamic injury of crayfish neurons and glia but its components, Akt and glycogen synthase kinase-3β, independently and cell specifically regulated death of neurons and glial cells. According to these data, necrosis in this system was a controlled but not a non-regulated cell death mode. The obtained results may be used for the search of pharmacological agents selectively modulating death and survival of normal neurons and glial cells during photodynamic therapy of brain tumors.

  11. Regulation of SOBIR1 accumulation and activation of defense responses in bir1-1 by specific components of ER quality control.

    PubMed

    Sun, Tongjun; Zhang, Qian; Gao, Minghui; Zhang, Yuelin

    2014-03-01

    Receptor-like kinases play diverse roles in plant biology. Arabidopsis BAK1-INTERACTING RECEPTOR-LIKE KINASE 1 (BIR1) functions as a negative regulator of plant immunity. bir1-1 mutant plants display spontaneous cell death and constitutive defense responses that are dependent on SUPPRESSOR OF BIR1,1 (SOBIR1) and PHYTOALEXIN DEFICIENT4 (PAD4). Here we report that mutations in three components of ER quality control, CALRETICULIN3 (CRT3), ER-LOCALIZED DnaJ-LIKE PROTEIN 3b (ERdj3b) and STROMAL-DERIVED FACTOR-2 (SDF2), also suppress the spontaneous cell death and constitutive defense responses in bir1-1. Further analysis revealed that accumulation of the SOBIR1 protein is reduced in crt3-1 and erdj3b-1 mutant plants. These data suggest that ER quality control plays important roles in the biogenesis of SOBIR1, and is required for cell death and defense responses in bir1-1. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  12. Developmental neurotoxicity screening using human embryonic stem cells.

    PubMed

    Bosnjak, Zeljko J

    2012-09-01

    Research in the area of stem cell biology and regenerative medicine, along with neuroscience, will further our understanding of drug-induced death of neurons during their development. With the development of an in vitro model of stem cell-derived human neural cell lines investigators can, under control conditions and during intense neuronal growth, examine molecular mechanisms of various drugs and conditions on early developmental neuroapoptosis in humans. If the use of this model will lead to fewer risks, or identification of drugs and anesthetics that are less likely to cause the death of neurons, this approach will be a major stride toward assuring the safety of drugs during the brain development. The ultimate goal would be not only to find the trigger for the catastrophic chain of events, but also to prevent neuronal cell death itself. Copyright © 2012. Published by Elsevier Inc.

  13. Efficacy of aqueous extract of Hippophae rhamnoides and its bio-active flavonoids against hypoxia-induced cell death.

    PubMed

    Tulsawani, Rajkumar; Gupta, Rashmi; Misra, Kshipra

    2013-01-01

    To investigate the protective efficacy of aqueous extract of Hippophae rhamnoides against chronic hypoxic injury using primary rat hepatocytes. The extract was prepared using maceration method and characterized by its phenolic and flavonoid content and chemical antioxidant capacity using ferric reducing antioxidant power assay. Hepatocytes were maintained in hypoxia chamber (3% and 1% oxygen) for 72 h. The cells kept under normoxic condition served as control. The cells were treated with the extract and flavonoids; isorhamentin, kaempferol or qurecetin-3-galactoside. After the end of exposure period; cell survival, reactive oxygen species (ROS), leakage of lactate dehydrogenase (LDH), alanine aminotransferase (ALT), aspartate aminotransferase (AST), reduced glutathione (GSH), glutathione peroxidase (GPx), and superoxide dismutase (SOD) levels were measured. The extract showed presence of high phenolic and flavonoid content with significant antioxidant activity in chemical assay. The cell exposed to hypoxia showed concentration dependent cell death and harbored higher reactive oxygen species. In addition, these cells showed significant leakage of intracellular LDH, ALT, and AST accompanied by the diminished levels/activities of GSH, GPx, and SOD. The treatment of cells with aqueous extract of H. rhamnoides reduced hypoxia-induced cell death and prevented increase in ROS levels and leakage of intracellular LDH, ALT, and AST from cells. Moreover, these cells maintained better levels/activities of GSH, GPx, and SOD in comparison to the respective controls. The major flavonoids present in aqueous extract of H. rhamnoides; quercetin-3-galactoside, kaempferol, and isorhamentin also prevented hypoxia induced cell injury individually or in combination, however, the protection offered by these compounds taken together could not match to that of the extract. Overall the findings reveal significance of aqueous extract of H. rhamnoides in controlling ROS-meditated hypoxic injury in cells and can be useful in many hepatic complications.

  14. Fluoxetine Prevents Oligodendrocyte Cell Death by Inhibiting Microglia Activation after Spinal Cord Injury

    PubMed Central

    Lee, Jee Y.; Kang, So R.

    2015-01-01

    Abstract Oligodendrocyte cell death and axon demyelination after spinal cord injury (SCI) are known to be important secondary injuries contributing to permanent neurological disability. Thus, blocking oligodendrocyte cell death should be considered for therapeutic intervention after SCI. Here, we demonstrated that fluoxetine, an antidepressant drug, alleviates oligodendrocyte cell death by inhibiting microglia activation after SCI. After injury at the T9 level with a Precision Systems and Instrumentation (Lexington, KY) device, fluoxetine (10 mg/kg, intraperitoneal) was administered once a day for the indicated time points. Immunostaining with CD11b (OX-42) antibody and quantification analysis showed that microglia activation was significantly inhibited by fluoxetine at 5 days after injury. Fluoxetine also significantly inhibited activation of p38 mitogen-activated protein kinase (p38-MAPK) and expression of pro-nerve growth factor (pro-NGF), which is known to mediate oligodendrocyte cell death through the p75 neurotrophin receptor after SCI. In addition, fluoxetine attenuated activation of Ras homolog gene family member A and decreased the level of phosphorylated c-Jun and, ultimately, alleviated caspase-3 activation and significantly reduced cell death of oligodendrocytes at 5 days after SCI. Further, the decrease of myelin basic protein, myelin loss, and axon loss in white matter was also significantly blocked by fluoxetine, as compared to vehicle control. These results suggest that fluoxetine inhibits oligodendrocyte cell death by inhibiting microglia activation and p38-MAPK activation, followed by pro-NGF production after SCI, and provide a potential usage of fluoxetine for a therapeutic agent after acute SCI in humans. PMID:25366938

  15. Protective effect of aqueous extract from Spirulina platensis against cell death induced by free radicals

    PubMed Central

    2010-01-01

    Background Spirulina is a commercial alga well known to contain various antioxidants, especially phycocyanin. Apart from being sold as a nutraceutical, Spirulina is incorporated as a functional ingredient in food products and beverages. Most of the previous reports on antioxidant activity of Spirulina were based on chemical rather than cell-based assays. The primary objective of this study was to assess the antioxidant activity of aqueous extract from Spirulina based on its protective effect against cell death induced by free radicals. Methods The antioxidant activity of the cold water extract from food-grade Spirulina platensis was assessed using both chemical and cell-based assays. In the cell-based assay, mouse fibroblast cells (3T3) cells were incubated for 1 h in medium containing aqueous extract of Spirulina or vitamin C (positive control) at 25, 125 and 250 μg/mL before the addition of 50 μM 1,1-diphenyl-2-picrylhydrazyl (DPPH) or 3-ethylbenzothiazoline-6-sulfonic acid (ABTS). The cells were incubated for another 24 h before being assessed for cell death due to apoptosis using the Cell Death Detection ELISA Kit. Spectrophotometric assays based on DPPH and ABTS were also used to assess the antioxidant activity of the extract compared to vitamin C and vitamin E (positive controls). Results Spirulina extract did not cause cytotoxic effect on 3T3 cells within the range of concentrations tested (0 - 250 μg/mL). The extract reduced significantly (p < 0.05) apoptotic cell death due to DPPH and ABTS by 4 to 5-fold although the activity was less than vitamin C. Based on the DPPH assay, the radical scavenging activity of the extract was higher than phycocyanin and was at least 50% of vitamin C and vitamin E. Based on the ABTS assay, the antioxidant activity of the extract at 50 μmug/mL was as good as vitamin C and vitamin E. Conclusions The results showed that aqueous extract of Spirulina has a protective effect against apoptotic cell death due to free radicals. The potential application of incorporating Spirulina into food products and beverages to enhance their antioxidant capacity is worth exploring. PMID:20858231

  16. In Glaucoma the Upregulated Truncated TrkC.T1 Receptor Isoform in Glia Causes Increased TNF-α Production, Leading to Retinal Ganglion Cell Death

    PubMed Central

    Bai, Yujing; Shi, ZhiHua; Zhuo, Yehong; Liu, Jing; Malakhov, Andrey; Ko, Eunhwa; Burgess, Kevin; Schaefer, Henry; Esteban, Pedro F.; Tessarollo, Lino; Saragovi, H. Uri

    2010-01-01

    Purpose. Glaucoma is a distinct neuropathy characterized by the chronic and progressive death of retinal ganglion cells (RGCs). The etiology of RGC death remains unknown. Risk factors for glaucomatous RGC death are elevated intraocular pressure and glial production of tumor necrosis factor-alpha (TNF-α). Previously, the authors showed that glaucoma causes a rapid upregulation of a neurotrophin receptor truncated isoform lacking the kinase domain, TrkC.T1, in retina. Here they examined the biological role of TrkC.T1 during glaucoma progression. Methods. Rat and mouse models of chronic ocular hypertension were used. Immunofluorescence Western blot analysis and in situ mRNA hybridization were used to identify cells upregulating TrkC.T1. A genetic model of engineered mice lacking TrkC.T1 (TrkC.T1−/−) was used to validate a role for this receptor in glaucoma. Pharmacologic studies were conducted to evaluate intravitreal delivery of agonists or antagonists of TrkC.T1, compared with controls, during glaucoma. Surviving RGCs were quantified by retrograde-labeling techniques. Production of neurotoxic TNF-α and α2 macroglobulin were quantified. Results. TrkC.T1 was upregulated in retinal glia, with a pattern similar to that of TNF-α. TrkC.T1−/− mice had normal retinas. However, during experimental glaucoma, TrkC.T1−/− mice had lower rates of RGC death and produced less TNF-α than wild-type littermates. In rats with glaucoma, the pharmacologic use of TrkC antagonists delayed RGC death and reduced the production of retinal TNF-α. Conclusions. TrkC.T1 is implicated in glaucomatous RGC death through the control of glial TNF-α production. Overall, the data point to a paracrine mechanism whereby elevated intraocular pressure upregulated glial TrkC.T1 expression in glia; TrkC.T1 controlled glial TNF-α production, and TNF-α caused RGC death. PMID:20574020

  17. 5-Fluorouracil-induced apoptosis in cultured oral cancer cells.

    PubMed

    Tong, D; Poot, M; Hu, D; Oda, D

    2000-03-01

    Chemotherapy is commonly used to treat advanced oral squamous cell carcinoma (SCC) and is known to kill cancer cells through apoptosis. Our hypothesis states that 5-fluorouracil (5FU) also kills cultured oral epithelial cells through programmed cell death or apoptosis. Cultured oral cancer cells were exposed to an optimum dose of 20 mg/ml of 5FU. Cells were analyzed for changes in cell cycle distribution and induction of cell death including apoptosis. Normal control, human papilloma virus-immortalized (PP), ATCC SCC cell line (CA1) and two primary oral SCC cell lines (CA3 and -4) were studied. Inhibition of apoptosis by a pan-caspase inhibitor was used. SYTO 11 flow cytometry showed increased apoptosis in all 5FU-treated cell cultures compared to untreated controls. The results show biological variation in apoptotic response. CA1 had the lowest apoptotic rate of the cancer cell lines at 1.5%. Next lowest was CA3, followed by CA4 and PP. In addition, alteration in the G1 and S phase fractions were found. Untreated CA1 showed 28% G1, 53% S compared to 43% G1, and 40% S of treated. We investigated the pathway of apoptosis using the pan-caspase inhibitor IDN-1529 by methylthiazolyl diphenyl tetrazolium bromide (MTT) colorimetric analysis. Results showed mild inhibition of cell death when cells were incubated with 50 microM IDN-1529 for 24 h. This suggests a probable caspase-dependent apoptotic pathway. In conclusion, our data suggest that 5FU induces oral cancer cell death through apoptosis and that biological variation exists between normal and cancer cells and between different types of cancer cells themselves. Our data indicate that cultures of a useful in vitro model for chemosensitivity assays are possible. Our results also suggest a caspase-dependent pathway for chemocytotoxicity in oral SCC.

  18. Iron and cell death in Parkinson's disease: a nuclear microscopic study into iron-rich granules in the parkinsonian substantia nigra of primate models

    NASA Astrophysics Data System (ADS)

    Thong, P. S. P.; Watt, F.; Ponraj, D.; Leong, S. K.; He, Y.; Lee, T. K. Y.

    1999-10-01

    Parkinson's disease is a degenerative brain disease characterised by a loss of cells in the substantia nigra (SN) region of the brain and accompanying biochemical changes such as inhibition of mitochondrial function, increased iron concentrations and decreased glutathione levels in the parkinsonian SN. Though the aetiology of the disease is still unknown, the observed biochemical changes point to the involvement of oxidative stress. In particular, iron is suspected to play a role by promoting free radical production, leading to oxidative stress and cell death. The increase in iron in the parkinsonian SN has been confirmed by several research groups, both in human post-mortem brains and in brain tissue from parkinsonian animal models. However, the question remains as to whether the observed increase in iron is a cause or a consequence of the SN cell death process. Our previous study using unilaterally 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP)-lesioned monkeys in a time sequence experiment has shown that the increase in bulk iron concentrations follow rather than precede dopaminergic cell death. However, changes in the localised iron concentrations, which may play a more direct role in SN cell death, may not be reflected at the bulk level. Indeed, we have observed iron-rich granules in parkinsonian SNs. From this time sequence study into the iron content of iron-rich granules in the SNs of an untreated control and unilaterally MPTP-lesioned parkinsonian models, we present the following observations: (1) Iron-rich granules are found in both control and parkinsonian SNs and are variable in size and iron content in any one model. (2) These iron-rich granules may be associated with neuromelanin granules found in the SN and are known to accumulate transition metal ions such as iron. (3) The early onset of bulk SN cell loss (35%) was accompanied by a significant elevation of iron in granules found in the MPTP-injected SN compared to the contra-lateral SN. This shows that localised iron increase may be an early event contributing to cell death. (4) The iron content in granules found in both the MPTP-injected and contra-lateral SNs is correlated with the degree of bulk SN cell loss (assessed by TH-immunohistochemistry) in individual models. This indicates a correlation between localised iron increase and cell loss, at least at the whole SN level. Our results are consistent with the observation that in Parkinson's disease (PD), neuronal cell death seems to be related to their neuromelanin content and support the proposal that iron-melanin interaction may play a role in oxidative neuronal cell death. Indeed, iron-saturated neuromelanin granules may act as centres of free radical production, contributing to localised cell death.

  19. Control of cancer-related signal transduction networks

    NASA Astrophysics Data System (ADS)

    Albert, Reka

    2013-03-01

    Intra-cellular signaling networks are crucial to the maintenance of cellular homeostasis and for cell behavior (growth, survival, apoptosis, movement). Mutations or alterations in the expression of elements of cellular signaling networks can lead to incorrect behavioral decisions that could result in tumor development and/or the promotion of cell migration and metastasis. Thus, mitigation of the cascading effects of such dysregulations is an important control objective. My group at Penn State is collaborating with wet-bench biologists to develop and validate predictive models of various biological systems. Over the years we found that discrete dynamic modeling is very useful in molding qualitative interaction information into a predictive model. We recently demonstrated the effectiveness of network-based targeted manipulations on mitigating the disease T cell large granular lymphocyte (T-LGL) leukemia. The root of this disease is the abnormal survival of T cells which, after successfully fighting an infection, should undergo programmed cell death. We synthesized the relevant network of within-T-cell interactions from the literature, integrated it with qualitative knowledge of the dysregulated (abnormal) states of several network components, and formulated a Boolean dynamic model. The model indicated that the system possesses a steady state corresponding to the normal cell death state and a T-LGL steady state corresponding to the abnormal survival state. For each node, we evaluated the restorative manipulation consisting of maintaining the node in the state that is the opposite of its T-LGL state, e.g. knocking it out if it is overexpressed in the T-LGL state. We found that such control of any of 15 nodes led to the disappearance of the T-LGL steady state, leaving cell death as the only potential outcome from any initial condition. In four additional cases the probability of reaching the T-LGL state decreased dramatically, thus these nodes are also possible control targets. Our collaborators validated two of these predicted control mechanisms experimentally. Our work suggests that external control of a single node can be a fruitful therapeutic strategy.

  20. A magnetic switch for the control of cell death signalling in in vitro and in vivo systems

    NASA Astrophysics Data System (ADS)

    Cho, Mi Hyeon; Lee, Eun Jung; Son, Mina; Lee, Jae-Hyun; Yoo, Dongwon; Kim, Ji-Wook; Park, Seung Woo; Shin, Jeon-Soo; Cheon, Jinwoo

    2012-12-01

    The regulation of cellular activities in a controlled manner is one of the most challenging issues in fields ranging from cell biology to biomedicine. Nanoparticles have the potential of becoming useful tools for controlling cell signalling pathways in a space and time selective fashion. Here, we have developed magnetic nanoparticles that turn on apoptosis cell signalling by using a magnetic field in a remote and non-invasive manner. The magnetic switch consists of zinc-doped iron oxide magnetic nanoparticles (Zn0.4Fe2.6O4), conjugated with a targeting antibody for death receptor 4 (DR4) of DLD-1 colon cancer cells. The magnetic switch, in its On mode when a magnetic field is applied to aggregate magnetic nanoparticle-bound DR4s, promotes apoptosis signalling pathways. We have also demonstrated that the magnetic switch is operable at the micrometre scale and that it can be applied in an in vivo system where apoptotic morphological changes of zebrafish are successfully induced.

  1. Only in dying, life: programmed cell death during plant development.

    PubMed

    Van Hautegem, Tom; Waters, Andrew J; Goodrich, Justin; Nowack, Moritz K

    2015-02-01

    Programmed cell death (PCD) is a fundamental process of life. During the evolution of multicellular organisms, the actively controlled demise of cells has been recruited to fulfil a multitude of functions in development, differentiation, tissue homeostasis, and immune systems. In this review we discuss some of the multiple cases of PCD that occur as integral parts of plant development in a remarkable variety of cell types, tissues, and organs. Although research in the last decade has discovered a number of PCD regulators, mediators, and executers, we are still only beginning to understand the mechanistic complexity that tightly controls preparation, initiation, and execution of PCD as a process that is indispensable for successful vegetative and reproductive development of plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Cystic fibrosis epithelial cells are primed for apoptosis as a result of increased Fas (CD95).

    PubMed

    Chen, Qiwei; Pandi, Sudha Priya Soundara; Kerrigan, Lauren; McElvaney, Noel G; Greene, Catherine M; Elborn, J Stuart; Taggart, Clifford C; Weldon, Sinéad

    2018-02-24

    Previous work suggests that apoptosis is dysfunctional in cystic fibrosis (CF) airways with conflicting results. We evaluated the relationship between dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) and apoptosis in CF airway epithelial cells. Apoptosis and associated caspase activity were analysed in non-CF and CF tracheal and bronchial epithelial cell lines. Basal levels of apoptosis and activity of caspase-3 and caspase-8 were significantly increased in CF epithelial cells compared to controls, suggesting involvement of extrinsic apoptosis signalling, which is mediated by the activation of death receptors, such as Fas (CD95). Increased levels of Fas were observed in CF epithelial cells and bronchial brushings from CF patients compared to non-CF controls. Neutralisation of Fas significantly inhibited caspase-3 activity in CF epithelial cells compared to untreated cells. In addition, activation of Fas significantly increased caspase-3 activity and apoptosis in CF epithelial cells compared to control cells. Overall, these results suggest that CF airway epithelial cells are more sensitive to apoptosis via increased levels of Fas and subsequent activation of the Fas death receptor pathway, which may be associated with dysfunctional CFTR. Copyright © 2018 European Cystic Fibrosis Society. All rights reserved.

  3. Genetic variation in cell death genes and risk of non-Hodgkin lymphoma.

    PubMed

    Schuetz, Johanna M; Daley, Denise; Graham, Jinko; Berry, Brian R; Gallagher, Richard P; Connors, Joseph M; Gascoyne, Randy D; Spinelli, John J; Brooks-Wilson, Angela R

    2012-01-01

    Non-Hodgkin lymphomas are a heterogeneous group of solid tumours that constitute the 5(th) highest cause of cancer mortality in the United States and Canada. Poor control of cell death in lymphocytes can lead to autoimmune disease or cancer, making genes involved in programmed cell death of lymphocytes logical candidate genes for lymphoma susceptibility. We tested for genetic association with NHL and NHL subtypes, of SNPs in lymphocyte cell death genes using an established population-based study. 17 candidate genes were chosen based on biological function, with 123 SNPs tested. These included tagSNPs from HapMap and novel SNPs discovered by re-sequencing 47 cases in genes for which SNP representation was judged to be low. The main analysis, which estimated odds ratios by fitting data to an additive logistic regression model, used European ancestry samples that passed quality control measures (569 cases and 547 controls). A two-tiered approach for multiple testing correction was used: correction for number of tests within each gene by permutation-based methodology, followed by correction for the number of genes tested using the false discovery rate. Variant rs928883, near miR-155, showed an association (OR per A-allele: 2.80 [95% CI: 1.63-4.82]; p(F) = 0.027) with marginal zone lymphoma that is significant after correction for multiple testing. This is the first reported association between a germline polymorphism at a miRNA locus and lymphoma.

  4. Therapeutic approaches to preventing cell death in Huntington disease.

    PubMed

    Kaplan, Anna; Stockwell, Brent R

    2012-12-01

    Neurodegenerative diseases affect the lives of millions of patients and their families. Due to the complexity of these diseases and our limited understanding of their pathogenesis, the design of therapeutic agents that can effectively treat these diseases has been challenging. Huntington disease (HD) is one of several neurological disorders with few therapeutic options. HD, like numerous other neurodegenerative diseases, involves extensive neuronal cell loss. One potential strategy to combat HD and other neurodegenerative disorders is to intervene in the execution of neuronal cell death. Inhibiting neuronal cell death pathways may slow the development of neurodegeneration. However, discovering small molecule inhibitors of neuronal cell death remains a significant challenge. Here, we review candidate therapeutic targets controlling cell death mechanisms that have been the focus of research in HD, as well as an emerging strategy that has been applied to developing small molecule inhibitors-fragment-based drug discovery (FBDD). FBDD has been successfully used in both industry and academia to identify selective and potent small molecule inhibitors, with a focus on challenging proteins that are not amenable to traditional high-throughput screening approaches. FBDD has been used to generate potent leads, pre-clinical candidates, and has led to the development of an FDA approved drug. This approach can be valuable for identifying modulators of cell-death-regulating proteins; such compounds may prove to be the key to halting the progression of HD and other neurodegenerative disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. TRAIL Death Receptor-4, Decoy Receptor-1 and Decoy Receptor-2 Expression on CD8+ T Cells Correlate with the Disease Severity in Patients with Rheumatoid Arthritis

    PubMed Central

    2010-01-01

    Background Rheumatoid Arthritis (RA) is a chronic autoimmune inflammatory disorder. Although the pathogenesis of disease is unclear, it is well known that T cells play a major role in both development and perpetuation of RA through activating macrophages and B cells. Since the lack of TNF-Related Apoptosis Inducing Ligand (TRAIL) expression resulted in defective thymocyte apoptosis leading to an autoimmune disease, we explored evidence for alterations in TRAIL/TRAIL receptor expression on peripheral T lymphocytes in the molecular mechanism of RA development. Methods The expression of TRAIL/TRAIL receptors on T cells in 20 RA patients and 12 control individuals were analyzed using flow cytometry. The correlation of TRAIL and its receptor expression profile was compared with clinical RA parameters (RA activity scored as per DAS28) using Spearman Rho Analysis. Results While no change was detected in the ratio of CD4+ to CD8+ T cells between controls and RA patient groups, upregulation of TRAIL and its receptors (both death and decoy) was detected on both CD4+ and CD8+ T cells in RA patients compared to control individuals. Death Receptor-4 (DR4) and the decoy receptors DcR1 and DcR2 on CD8+ T cells, but not on CD4+ T cells, were positively correlated with patients' DAS scores. Conclusions Our data suggest that TRAIL/TRAIL receptor expression profiles on T cells might be important in revelation of RA pathogenesis. PMID:20799941

  6. Optical cell cleaning with NIR femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten

    2015-03-01

    Femtosecond laser microscopes have been used as both micro and nanosurgery tools. The optical knock-out of undesired cells in multiplex cell clusters shall be further reported on in this study. Femtosecond laser-induced cell death is beneficial due to the reduced collateral side effects and therefore can be used to selectively destroy target cells within monolayers, as well as within 3D tissues, all the while preserving cells of interest. This is an important characteristic for the application in stem cell research and cancer treatment. Non-precise damage compromises the viability of neighboring cells by inducing side effects such as stress to the cells surrounding the target due to the changes in the microenvironment, resulting from both the laser and laser-exposed cells. In this study, optimum laser parameters for optical cleaning by isolating single cells and cell colonies are exploited through the use of automated software control. Physiological equilibrium and cellular responses to the laser induced damages are also investigated. Cell death dependence on laser focus, determination and selectivity of intensity/dosage, controllable damage and cell recovery mechanisms are discussed.

  7. cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation

    PubMed Central

    2010-01-01

    Background Appropriate control of mitochondrial function, morphology and biogenesis are crucial determinants of the general health of eukaryotic cells. It is therefore imperative that we understand the mechanisms that co-ordinate mitochondrial function with environmental signaling systems. The regulation of yeast mitochondrial function in response to nutritional change can be modulated by PKA activity. Unregulated PKA activity can lead to the production of mitochondria that are prone to the production of ROS, and an apoptotic form of cell death. Results We present evidence that mitochondria are sensitive to the level of cAMP/PKA signaling and can respond by modulating levels of respiratory activity or committing to self execution. The inappropriate activation of one of the yeast PKA catalytic subunits, Tpk3p, is sufficient to commit cells to an apoptotic death through transcriptional changes that promote the production of dysfunctional, ROS producing mitochondria. Our data implies that cAMP/PKA regulation of mitochondrial function that promotes apoptosis engages the function of multiple transcription factors, including HAP4, SOK2 and SCO1. Conclusions We propose that in yeast, as is the case in mammalian cells, mitochondrial function and biogenesis are controlled in response to environmental change by the concerted regulation of multiple transcription factors. The visualization of cAMP/TPK3 induced cell death within yeast colonies supports a model that PKA regulation plays a physiological role in coordinating respiratory function and cell death with nutritional status in budding yeast. PMID:21108829

  8. IFN-γ Induces Mimic Extracellular Trap Cell Death in Lung Epithelial Cells Through Autophagy-Regulated DNA Damage.

    PubMed

    Lin, Chiou-Feng; Chien, Shun-Yi; Chen, Chia-Ling; Hsieh, Chia-Yuan; Tseng, Po-Chun; Wang, Yu-Chih

    2016-02-01

    Treatment of interferon-γ (IFN-γ) causes cell growth inhibition and cytotoxicity in lung epithelial malignancies. Regarding the induction of autophagy related to IFN-γ signaling, this study investigated the link between autophagy and IFN-γ cytotoxicity. In A549 human lung cancer cells, IFN-γ treatment induced concurrent apoptotic and nonapoptotic events. Unexpectedly, the nonapoptotic cells present mimic extracellular trap cell death (ETosis), which was regulated by caspase-3 and by autophagy induction through immunity-related GTPase family M protein 1 and activating transcription factor 6. Furthermore, IFN-γ signaling controlled mimic ETosis through a mechanism involving an autophagy- and Fas-associated protein with death domain-controlled caspase-8/-3 activation. Following caspase-mediated lamin degradation, IFN-γ caused DNA damage-associated ataxia telangiectasia and Rad3-related protein (ATR)/ataxia telangiectasia mutated (ATM)-regulated mimic ETosis. Upon ATR/ATM signaling, peptidyl arginine deiminase 4 (PAD4)-mediated histone 3 citrullination promoted mimic ETosis. Such IFN-γ-induced effects were defective in PC14PE6/AS2 human lung cancer cells, which were unsusceptible to IFN-γ-induced autophagy. Due to autophagy-based caspase cascade activation, IFN-γ triggers unconventional caspase-mediated DNA damage, followed by ATR/ATM-regulated PAD4-mediated histone citrullination during mimic ETosis in lung epithelial malignancy.

  9. Bim regulates alloimmune-mediated vascular injury through effects on T-cell activation and death.

    PubMed

    von Rossum, Anna; Enns, Winnie; Shi, Yu P; MacEwan, Grace E; Malekesmaeli, Mehrnoush; Brinkman, Ryan; Choy, Jonathan C

    2014-06-01

    Bim is a proapoptotic Bcl-2 protein known to downregulate immune responses and to also be required for antigen-induced T-cell activation. However, it is not known how the effect of Bim on these offsetting processes determines the outcome of allogeneic immune responses. We have defined the role of Bim in regulating alloantigen-driven T-cell responses in a model of vascular rejection. Bim was required for proliferation of CD4 and CD8 T cells, and for interleukin-2 production, in T cells stimulated with alloantigen in vitro. Moreover, a partial reduction in Bim expression was sufficient to attenuate T-cell activation, whereas a complete elimination of Bim was required to prevent CD4 T-cell death in response to cytokine withdrawl. When alloimmune-mediated vascular rejection was examined using an aortic interposition model, there was significantly less intimal thickening in Bim(+/-), but not Bim(-/-), graft recipients. T-cell proliferation in response to allograft arteries was significantly reduced in both Bim(+/-) and Bim(-/-) mice, but cell death was attenuated only in Bim(-/-) animals. Bim controls both T-cell activation and death in response to alloantigen stimulation. These processes act cooperatively to determine the outcome of immune responses in allograft arteries. © 2014 American Heart Association, Inc.

  10. Bim Regulates Alloimmune-Mediated Vascular Injury Through Effects on T Cell Activation and Death

    PubMed Central

    von Rossum, Anna; Enns, Winnie; Shi, Yu P.; MacEwan, Grace E.; Malekesmaeli, Mehrnoush; Brinkman, Ryan; Choy, Jonathan C.

    2014-01-01

    Objective Bim is a pro-apoptotic Bcl-2 protein known to down-regulate immune responses and to also be required for antigen-induced T cell activation. However, it is not known how the effect of Bim on these offsetting processes determines the outcome of allogeneic immune responses. We have defined the role of Bim in regulating alloantigen-driven T cell responses in a model of vascular rejection. Approach and Results Bim was required for proliferation of CD4 and CD8 T cells, and for IL-2 production, in T cells stimulated with alloantigen in vitro. Moreover, a partial reduction in Bim expression was sufficient to attenuate T cell activation whereas a complete elimination of Bim was required to prevent CD4 T cell death in response to cytokine withdrawl. When alloimmune-mediated vascular rejection was examined using an aortic interposition model, there was significantly less intimal thickening in Bim+/−, but not Bim−/−, graft recipients. T cell proliferation in response to allograft arteries was significantly reduced in both Bim+/− and Bim−/− mice, but cell death was attenuated only in Bim−/− animals. Conclusions Bim controls both T cell activation and death in response to alloantigen stimulation. These processes act cooperatively to determine the outcome of immune responses in allograft arteries. PMID:24700126

  11. The MST/Hippo Pathway and Cell Death: A Non-Canonical Affair

    PubMed Central

    Fallahi, Emma; O’Driscoll, Niamh A.; Matallanas, David

    2016-01-01

    The MST/Hippo signalling pathway was first described over a decade ago in Drosophila melanogaster and the core of the pathway is evolutionary conserved in mammals. The mammalian MST/Hippo pathway regulates organ size, cell proliferation and cell death. In addition, it has been shown to play a central role in the regulation of cellular homeostasis and it is commonly deregulated in human tumours. The delineation of the canonical pathway resembles the behaviour of the Hippo pathway in the fly where the activation of the core kinases of the pathway prevents the proliferative signal mediated by the key effector of the pathway YAP. Nevertheless, several lines of evidence support the idea that the mammalian MST/Hippo pathway has acquired new features during evolution, including different regulators and effectors, crosstalk with other essential signalling pathways involved in cellular homeostasis and the ability to actively trigger cell death. Here we describe the current knowledge of the mechanisms that mediate MST/Hippo dependent cell death, especially apoptosis. We include evidence for the existence of complex signalling networks where the core proteins of the pathway play a central role in controlling the balance between survival and cell death. Finally, we discuss the possible involvement of these signalling networks in several human diseases such as cancer, diabetes and neurodegenerative disorders. PMID:27322327

  12. Safeguarding Stem Cell-Based Regenerative Therapy against Iatrogenic Cancerogenesis: Transgenic Expression of DNASE1, DNASE1L3, DNASE2, DFFB Controlled By POLA1 Promoter in Proliferating and Directed Differentiation Resisting Human Autologous Pluripotent Induced Stem Cells Leads to their Death

    PubMed Central

    Malecki, Marek; LaVanne, Christine; Alhambra, Dominique; Dodivenaka, Chaitanya; Nagel, Sarah; Malecki, Raf

    2014-01-01

    Introduction The worst possible complication of using stem cells for regenerative therapy is iatrogenic cancerogenesis. The ultimate goal of our work is to develop a self-triggering feedback mechanism aimed at causing death of all stem cells, which resist directed differentiation, keep proliferating, and can grow into tumors. Specific aim The specific aim was threefold: (1) to genetically engineer the DNA constructs for the human, recombinant DNASE1, DNASE1L3, DNASE2, DFFB controlled by POLA promoter; (2) to bioengineer anti-SSEA-4 antibody guided vectors delivering transgenes to human undifferentiated and proliferating pluripotent stem cells; (3) to cause death of proliferating and directed differentiation resisting stem cells by transgenic expression of the human recombinant the DNases (hrDNases). Methods The DNA constructs for the human, recombinant DNASE1, DNASE1L3, DNASE2, DFFB controlled by POLA promoter were genetically engineered. The vectors targeting specifically SSEA-4 expressing stem cells were bioengineered. The healthy volunteers’ bone marrow mononuclear cells (BMMCs) were induced into human, autologous, pluripotent stem cells with non-integrating plasmids. Directed differentiation of the induced stem cells into endothelial cells was accomplished with EGF and BMP. The anti-SSEA 4 antibodies’ guided DNA vectors delivered the transgenes for the human recombinant DNases’ into proliferating stem cells. Results Differentiation of the pluripotent induced stem cells into the endothelial cells was verified by highlighting formation of tight and adherens junctions through transgenic expression of recombinant fluorescent fusion proteins: VE cadherin, claudin, zona occludens 1, and catenin. Proliferation of the stem cells was determined through highlighting transgenic expression of recombinant fluorescent proteins controlled by POLA promoter, while also reporting expression of the transgenes for the hrDNases. Expression of the transgenes for the DNases resulted in complete collapse of the chromatin architecture and degradation of the proliferating cells’ genomic DNA. The proliferating stem cells, but not the differentiating ones, were effectively induced to die. Conclusion Herein, we describe attaining the proof-of-concept for the strategy, whereby transgenic expression of the genetically engineered human recombinant DNases in proliferating and directed differentiation resisting stem cells leads to their death. This novel strategy reduces the risk of iatrogenic neoplasms in stem cell therapy. PMID:25045589

  13. The Influence of Programmed Cell Death in Myeloid Cells on Host Resilience to Infection with Legionella pneumophila or Streptococcus pyogenes

    PubMed Central

    Gamradt, Pia; Xu, Yun; Gratz, Nina; Duncan, Kellyanne; Kobzik, Lester; Högler, Sandra; Decker, Thomas

    2016-01-01

    Pathogen clearance and host resilience/tolerance to infection are both important factors in surviving an infection. Cells of the myeloid lineage play important roles in both of these processes. Neutrophils, monocytes, macrophages, and dendritic cells all have important roles in initiation of the immune response and clearance of bacterial pathogens. If these cells are not properly regulated they can result in excessive inflammation and immunopathology leading to decreased host resilience. Programmed cell death (PCD) is one possible mechanism that myeloid cells may use to prevent excessive inflammation. Myeloid cell subsets play roles in tissue repair, immune response resolution, and maintenance of homeostasis, so excessive PCD may also influence host resilience in this way. In addition, myeloid cell death is one mechanism used to control pathogen replication and dissemination. Many of these functions for PCD have been well defined in vitro, but the role in vivo is less well understood. We created a mouse that constitutively expresses the pro-survival B-cell lymphoma (bcl)-2 protein in myeloid cells (CD68(bcl2tg), thus decreasing PCD specifically in myeloid cells. Using this mouse model we explored the impact that decreased cell death of these cells has on infection with two different bacterial pathogens, Legionella pneumophila and Streptococcus pyogenes. Both of these pathogens target multiple cell death pathways in myeloid cells, and the expression of bcl2 resulted in decreased PCD after infection. We examined both pathogen clearance and host resilience and found that myeloid cell death was crucial for host resilience. Surprisingly, the decreased myeloid PCD had minimal impact on pathogen clearance. These data indicate that the most important role of PCD during infection with these bacteria is to minimize inflammation and increase host resilience, not to aid in the clearance or prevent the spread of the pathogen. PMID:27973535

  14. Caffeic acid phenethyl ester protects 661W cells from H2O2-mediated cell death and enhances electroretinography response in dim-reared albino rats

    PubMed Central

    Chen, Hui; Tran, Julie-Thu A.; Anderson, Robert E.

    2012-01-01

    Purpose Caffeic acid phenethyl ester (CAPE), an active component of honeybee propolis, has a wide range of beneficial properties. The purpose of this study was to test the protective role of CAPE in 661W cells (in vitro) against H2O2-mediated cell death and in albino rats (in vivo) against various light conditions. Methods The 661W cells were pretreated with CAPE and then stressed with H2O2. Cell death was measured with lactate dehydrogenase (LDH) release assay, and mRNA and proteins were analyzed. Sprague Dawley rats were raised on either a control or CAPE (0.02%) diet and exposed to various light conditions for short or long periods. Retinal histology, mRNA, protein, lipid composition, and retinal function by electroretinography (ERG) were measured at the end of feeding. Results Pretreatment of 661W cells with CAPE reduced H2O2-mediated cell death in a dose-dependent manner and induced expression of heme oxygenase-1 (Ho1). Albino rats fed with CAPE had greater expression of Ho1 and intercellular adhesion molecule 1 (Icam1), less expression of FOS-like antigen (Fosl) and lipoxygenase 12 (Lox12) genes in the retina, less translocation of nuclear factor kappaB protein to the nucleus, and a lower molar ratio of n-3 polyunsaturated fatty acids. Further, the ERGs of the retinas of CAPE-fed rats were significantly higher than those of the control-fed rats when raised in dim light. Conclusions CAPE can activate the antioxidative gene expression pathway in retinal cells in vitro and in vivo. Feeding CAPE to albino rats can enhance ERG responses and change the lipid profile in the rats’ retinas. PMID:22690111

  15. Sulfur mustard-induced apoptosis in hairless guinea pig skin.

    PubMed

    Kan, Robert K; Pleva, Christina M; Hamilton, Tracey A; Anderson, Dana R; Petrali, John P

    2003-01-01

    The present study was aimed to examine whether apoptosis is involved in the pathogenesis of sulfur mustard (SM)-induced basal cell death. Skin sites of the hairless guinea pig exposed to SM vapor for 8 minutes were harvested at 3, 6, 12, 24, and 48 hours postexposure. Immunohistochemical detection of basal cell apoptosis was performed using the ApopTag in situ apoptosis labeling kit. Only occasional apoptotic basal cells (BC)were observed in nonexposed and perilesional control sites. At lesional sites, apoptosis of BC was not detected at 3 hours postexposure. However, at 6 hours and 12 hours postexposure, 18% and 59% of BC were apoptotic, respectively. At 24 and 48 hours postexposure, individual apoptotic basal cells were not clearly recognizable due to necrosis. At the ultrastructural level, degenerating BC exhibited typical apoptotic morphology including nuclear condensation and chromatin margination. The results suggest that apoptotic cell death is a cytotoxic mechanism with the number of BC undergoing apoptosis significantly increasing from 6 to 12 hours postexposure. In addition, because necrosis is preferential at 24 hours postexposure, we believe that SM-induced cell death involves early apoptosis and late necrosis, which temporally overlap to produce a single cell death pathway along an apoptotic-necrotic continuum.

  16. GPR30 Activation Contributes to the Puerarin-Mediated Neuroprotection in MPP+-Induced SH-SY5Y Cell Death.

    PubMed

    Cheng, Yue-Fa; Zhu, Guoqi; Wu, Qing-Wen; Xie, Yue-Sheng; Jiang, Yan; Guo, Lan; Guan, Ya-Li; Liu, Ying-Shuo; Zhang, Jun

    2017-02-01

    The neuroprotective action of puerarin in Parkinson's disease (PD) models has been well investigated. However, the mechanisms involved in protection have not been completely understood. G protein-coupled receptor 30 (GPR30) is a G protein-coupled estrogen receptor and considered a potential target in the neuroprotection against PD. In this study, we investigated whether puerarin prevented against 1-methyl-4-phenylpyridinium (MPP + )-induced cell death via GPR30. Our results showed that the GPR30 agonist, G1, exhibited puerarin-mediated neuroprotection against MPP + -induced cell death of SH-SY5Y cells. This protective action was reversed by the GPR30 antagonist. Moreover, a time- and concentration-dependent effect of puerarin on GPR30 expression was verified at the protein level but not at the mRNA level. Further, we showed that an mTor-dependent new GPR30 synthesis contributed to the protection conferred by puerarin. Finally, glial cell line-derived neurotrophic factor (GDNF) levels were enhanced by puerarin and G1 in both control and MPP + -lesioned cells via GPR30. Taken together, our data strongly suggest that puerarin prevents MPP + -induced cell death via facilitating GPR30 expression and GDNF release.

  17. Molecular aspects of ultraviolet radiation-induced apoptosis in the skin.

    PubMed

    Chow, Jeffrey; Tron, Victor A

    2005-12-01

    Apoptosis, or programmed cell death, is an essential physiological process that controls cell numbers during physiological processes, and eliminates abnormal cells that can potentially harm an organism. This review summarizes our current state of knowledge of apoptosis induction in skin by UV radiation. A review of the literature was undertaken focusing on cell death in the skin secondary to UV radiation. It is evident that a number of apoptotic pathways, both intrinsic and extrinsic, are induced following exposure to damaging UV radiation. Although our understanding of the apoptotic processes is gradually increasing, many important aspects remain obscure. These include interconnections between pathways, wavelength-specific differences and cell type differences.

  18. Are mast cells implicated in asphyxia?

    PubMed

    Muciaccia, Barbara; Sestili, Cristina; De Grossi, Stefania; Vestri, Annarita; Cipolloni, Luigi; Cecchi, Rossana

    2016-01-01

    In a previous immunohistochemical (IHC) study, we documented the reaction of lung tissue vessels to hypoxia through the immunodetection of HIF1-α protein, a key regulator of cellular response to hypoxic conditions. Findings showing that asphyxia deaths are associated with an increase in the number of mast cell (MC)-derived tryptase enzymes in the blood suggests that HIF1-α production may be correlated with MC activation in hypoxic conditions. This hypothesis prompted us to investigate the possible role of pulmonary MC in acute asphyxia deaths. Lung of 47 medico-legal autopsy cases (35 asphyxia/hypoxia deaths, 11 controls, and 1 anaphylactic death) were processed by IHC analysis using anti-CD117 (c-Kit) antibody to investigate peri-airway and peri-vascular MC together with their counts and features. Results showed a significant increase in peri-vascular c-kit(+) MC in some asphyxia deaths, such as hanging, strangulation, and aspiration deaths. A strong activation of MC in peri-airway and peri-vascular areas was also observed in lung samples from the anaphylaxis case, which was used as a positive control. Our study points to the potential role of MC in hypoxia and suggests that an evaluation of MC in the lungs may be a useful parameter when forensic pathologists are required to make a differential diagnosis between acute asphyxia deaths and other kinds of death.

  19. Depletion of the Receptor-Interacting Protein Kinase 3 (RIP3) Decreases Photoreceptor Cell Death During the Early Stages of Ocular Murine Cytomegalovirus Infection.

    PubMed

    Xu, Jinxian; Mo, Juan; Liu, Xinglou; Marshall, Brendan; Atherton, Sally S; Dong, Zheng; Smith, Sylvia; Zhang, Ming

    2018-05-01

    The purpose of this study was to determine if the receptor-interacting protein kinase 3 (RIP3) plays a significant role in innate immune responses and death of bystander retinal neurons during murine cytomegalovirus (MCMV) retinal infection, by comparing the innate immune response and cell death in RIP3-depleted mice (Rip3-/-) and Rip3+/+ control mice. Rip3-/- and Rip3+/+ mice were immunosuppressed (IS) and inoculated with MCMV via the supraciliary route. Virus-injected and mock-injected control eyes were removed at days 4, 7, and 10 post infection (p.i.) and markers of innate immunity and cell death were analyzed. Compared to Rip3+/+ mice, significantly more MCMV was recovered and more MCMV-infected RPE cells were observed in injected eyes of Rip3-/- mice at days 4 and 7 p.i. In contrast, fewer TUNEL-stained photoreceptors were observed in Rip3-/- eyes than in Rip3+/+ eyes at these times. Electron microscopy showed that significantly more apoptotic photoreceptor cells were present in Rip3+/+ mice than in Rip3-/- mice. Immunohistochemistry showed that the majority of TUNEL-stained photoreceptors died via mitochondrial flavoprotein apoptosis-inducing factor (AIF)-mediated, caspase 3-independent apoptosis. The majority of RIP3-expressing cells in infected eyes were RPE cells, microglia/macrophages, and glia, whereas retinal neurons contained much lower amounts of RIP3. Western blots showed significantly higher levels of activated nuclear factor-κB and caspase 1 were present in Rip3+/+ eyes compared to Rip3-/- eyes. Our results suggest that RIP3 enhances innate immune responses against ocular MCMV infection via activation of the inflammasome and nuclear factor-κB, which also leads to inflammation and death of bystander cells by multiple pathways including apoptosis and necroptosis.

  20. Depletion of the Receptor-Interacting Protein Kinase 3 (RIP3) Decreases Photoreceptor Cell Death During the Early Stages of Ocular Murine Cytomegalovirus Infection

    PubMed Central

    Xu, Jinxian; Mo, Juan; Liu, Xinglou; Marshall, Brendan; Atherton, Sally S.; Dong, Zheng; Smith, Sylvia

    2018-01-01

    Purpose The purpose of this study was to determine if the receptor-interacting protein kinase 3 (RIP3) plays a significant role in innate immune responses and death of bystander retinal neurons during murine cytomegalovirus (MCMV) retinal infection, by comparing the innate immune response and cell death in RIP3-depleted mice (Rip3−/−) and Rip3+/+ control mice. Methods Rip3−/− and Rip3+/+ mice were immunosuppressed (IS) and inoculated with MCMV via the supraciliary route. Virus-injected and mock-injected control eyes were removed at days 4, 7, and 10 post infection (p.i.) and markers of innate immunity and cell death were analyzed. Results Compared to Rip3+/+ mice, significantly more MCMV was recovered and more MCMV-infected RPE cells were observed in injected eyes of Rip3−/− mice at days 4 and 7 p.i. In contrast, fewer TUNEL-stained photoreceptors were observed in Rip3−/− eyes than in Rip3+/+ eyes at these times. Electron microscopy showed that significantly more apoptotic photoreceptor cells were present in Rip3+/+ mice than in Rip3−/− mice. Immunohistochemistry showed that the majority of TUNEL-stained photoreceptors died via mitochondrial flavoprotein apoptosis-inducing factor (AIF)-mediated, caspase 3–independent apoptosis. The majority of RIP3-expressing cells in infected eyes were RPE cells, microglia/macrophages, and glia, whereas retinal neurons contained much lower amounts of RIP3. Western blots showed significantly higher levels of activated nuclear factor–κB and caspase 1 were present in Rip3+/+ eyes compared to Rip3−/− eyes. Conclusions Our results suggest that RIP3 enhances innate immune responses against ocular MCMV infection via activation of the inflammasome and nuclear factor–κB, which also leads to inflammation and death of bystander cells by multiple pathways including apoptosis and necroptosis.

  1. MEK inhibitor U0126 interferes with immunofluorescence analysis of apoptotic cell death.

    PubMed

    Blank, Norbert; Burger, Renate; Duerr, Birgit; Bakker, Frank; Wohlfarth, Anika; Dumitriu, Ingrid; Kalden, Joachim R; Herrmann, Martin

    2002-08-01

    Binding of extracellular growth factors to cell surface receptors often results in activation of the mitogen-activated protein kinase (MAPK). MAPK is regulated by MAPK kinase, also called MEK. Deprivation of growth factors during cell culture or intracellular MEK inhibition leads to inhibition of proliferation and apoptotic cell death. Besides other techniques, apoptotic cells can be identified by phosphatidylserine (PS) exposure and exclusion of membrane-impermeant propidium iodide (PI). We investigated the limitations of detection of apoptotic cell death and cytofluorometry in cells cultured in the presence of the MEK inhibitor U0126. Apoptotic cell death was induced in the plasmacytoma cell line INA-6, in peripheral blood mononuclear cells (PBMC), and in cultured T lymphoblasts by deprivation of interleukin-6 (IL-6) or by incubation with the MEK inhibitor U0126. Apoptotic cell death was quantified by flow cytometry using annexin V/propidium iodide (AxV/PI) double staining. U0126-treated cells dramatically changed their fluorescence pattern during cell culture. If AxV/PI staining is employed to detect apoptotic cell death, the background fluorescence mimicks PS exposure on viable cells. The compound itself has no intrinsic fluorescence in vitro but develops an intensive fluorescence during cell culture which can be observed in all fluorescence channels with a predominance in the FL1 channel (525 nm). We further demonstrate that at least some of the U0126-induced background fluorescence is dependent on cellular uptake and intracellular modifications or cellular responses. These results demonstrate that appropriate controls for every single time point are necessary if fluorescence analyses are performed in the presence of chemical enzyme inhibitors. In the case of MEK inhibitors, either the use of PD098059 or PD184352 as an alternative for U0126 or nonfluorometric methods for detection of apoptosis should be considered. Copyright 2002 Wiley-Liss, Inc.

  2. Contact-independent cell death of human microglial cells due to pathogenic Naegleria fowleri trophozoites.

    PubMed

    Kim, Jong-Hyun; Kim, Daesik; Shin, Ho-Joon

    2008-12-01

    Free-living Naegleria fowleri leads to a fatal infection known as primary amebic meningoencephalitis in humans. Previously, the target cell death could be induced by phagocytic activity of N. fowleri as a contact-dependent mechanism. However, in this study we investigated the target cell death under a non-contact system using a tissue-culture insert. The human microglial cells, U87MG cells, co-cultured with N. fowleri trophozoites for 30 min in a non-contact system showed morphological changes such as the cell membrane destruction and a reduction in the number. By fluorescence-activated cell sorter (FACS) analysis, U87MG cells co-cultured with N. fowleri trophozoites in a non-contact system showed a significant increase of apoptotic cells (16%) in comparison with that of the control or N. fowleri lysate. When U87MG cells were co-cultured with N. fowleri trophozoites in a non-contact system for 30 min, 2 hr, and 4 hr, the cytotoxicity of amebae against target cells was 40.5, 44.2, and 45.6%, respectively. By contrast, the cytotoxicity of non-pathogenic N. gruberi trophozoites was 10.2, 12.4, and 13.2%, respectively. These results suggest that the molecules released from N. fowleri in a contact-independent manner as well as phagocytosis in a contact-dependent manner may induce the host cell death.

  3. Contact-Independent Cell Death of Human Microglial Cells due to Pathogenic Naegleria fowleri Trophozoites

    PubMed Central

    Kim, Jong-Hyun

    2008-01-01

    Free-living Naegleria fowleri leads to a fatal infection known as primary amebic meningoencephalitis in humans. Previously, the target cell death could be induced by phagocytic activity of N. fowleri as a contact-dependent mechanism. However, in this study we investigated the target cell death under a non-contact system using a tissue-culture insert. The human microglial cells, U87MG cells, co-cultured with N. fowleri trophozoites for 30 min in a non-contact system showed morphological changes such as the cell membrane destruction and a reduction in the number. By fluorescence-activated cell sorter (FACS) analysis, U87MG cells co-cultured with N. fowleri trophozoites in a non-contact system showed a significant increasse of apoptotic cells (16%) in comparison with that of the control or N. fowleri lysate. When U87MG cells were co-cultured with N. fowleri trophozoites in a non-contact system for 30 min, 2 hr, and 4 hr, the cytotoxicity of amebae against target cells was 40.5, 44.2, and 45.6%, respectively. By contrast, the cytotoxicity of non-pathogenic N. gruberi trophozoites was 10.2, 12.4, and 13.2%, respectively. These results suggest that the molecules released from N. fowleri in a contact-independent manner as well as phagocytosis in a contact-dependent manner may induce the host cell death. PMID:19127326

  4. RIG-I-like helicases induce immunogenic cell death of pancreatic cancer cells and sensitize tumors toward killing by CD8+ T cells

    PubMed Central

    Duewell, P; Steger, A; Lohr, H; Bourhis, H; Hoelz, H; Kirchleitner, S V; Stieg, M R; Grassmann, S; Kobold, S; Siveke, J T; Endres, S; Schnurr, M

    2014-01-01

    Pancreatic cancer is characterized by a microenvironment suppressing immune responses. RIG-I-like helicases (RLH) are immunoreceptors for viral RNA that induce an antiviral response program via the production of type I interferons (IFN) and apoptosis in susceptible cells. We recently identified RLH as therapeutic targets of pancreatic cancer for counteracting immunosuppressive mechanisms and apoptosis induction. Here, we investigated immunogenic consequences of RLH-induced tumor cell death. Treatment of murine pancreatic cancer cell lines with RLH ligands induced production of type I IFN and proinflammatory cytokines. In addition, tumor cells died via intrinsic apoptosis and displayed features of immunogenic cell death, such as release of HMGB1 and translocation of calreticulin to the outer cell membrane. RLH-activated tumor cells led to activation of dendritic cells (DCs), which was mediated by tumor-derived type I IFN, whereas TLR, RAGE or inflammasome signaling was dispensable. Importantly, CD8α+ DCs effectively engulfed apoptotic tumor material and cross-presented tumor-associated antigen to naive CD8+ T cells. In comparison, tumor cell death mediated by oxaliplatin, staurosporine or mechanical disruption failed to induce DC activation and antigen presentation. Tumor cells treated with sublethal doses of RLH ligands upregulated Fas and MHC-I expression and were effectively sensitized towards Fas-mediated apoptosis and cytotoxic T lymphocyte (CTL)-mediated lysis. Vaccination of mice with RLH-activated tumor cells induced protective antitumor immunity in vivo. In addition, MDA5-based immunotherapy led to effective tumor control of established pancreatic tumors. In summary, RLH ligands induce a highly immunogenic form of tumor cell death linking innate and adaptive immunity. PMID:25012502

  5. Modern Radiobiology: Contention Of Concepts: Advanced Technology And Development Of Effective Prophylaxis, Prevention And Treatment Of Biological Consequences After Irradiation.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Vecheslav; Jones, Jeffrey

    "Alle Ding' sind Gift, und nichts ohn' Gift; allein die Dosis macht, daß ein Ding kein Gift ist." Paracelsus Philippus Aureolus Theophrastus Bombastus von Hohenheim. Key worlds: Apoptosis, Necrosis, Domains associated with Cell Death, Caspase (catalytic) Domains, Death Domains (DDs), Death Effector Domains (DEDs), Caspase-Associated Recruitment Domains (CARDs, BIR Domains (IAPs), Bcl-2 Homology (BH) Domains, death ligands - TRAIL (TNF-Related Apoptosis-Inducing Ligand), FasL (Fas Ligand), TNFalpha (Tumor Necrosis Factor alpha), Toll-like receptors (TLR), Systemic inflammatory response syndrome (SIRS), Toxic Multiple Organ Injury (TMOI), Toxic Multiple Organ Dysfunction Syndromes (TMODS), Toxic Multiple Organ Failure (TMOF), Anaphylatoxins, or complement peptides; membrane attack complex (MAC), ROS - Reactive Oxygen Species; ASMase, acid sphingomyelinase; Neurotoxins, Cytotoxins, Haemotoxins. Introduction: Radiation affects many cell structures, organelles and metabolic pathways. Different doses and types of radiation ( gamma-radiation, neutron, heavy ion radiation) progress to reversible and irreversible forms of cell injury. Consideration: Apoptosis and Necrosis, major forms of post-radiation cell death, can be initiated and modulated by programmed control and proceed by similar or different pathways.[Akadi et al.,1993, Dunlacht J., et al. 1999] Radiation induced cell death by triggering apoptosis pathways was described in many articles and supported by many scientists. [Rio et al. 2002, Rakesh et al. 1997.] However some authors present results that two distinct pathways can initiate or apoptotic or necrotic responses: the death receptors and mitochondrial pathways.

  6. Autonomous rexinoid death signaling is suppressed by converging signaling pathways in immature leukemia cells.

    PubMed

    Benoit, G R; Flexor, M; Besançon, F; Altucci, L; Rossin, A; Hillion, J; Balajthy, Z; Legres, L; Ségal-Bendirdjian, E; Gronemeyer, H; Lanotte, M

    2001-07-01

    On their own, retinoid X receptor (RXR)-selective ligands (rexinoids) are silent in retinoic acid receptor (RAR)-RXR heterodimers, and no selective rexinoid program has been described as yet in cellular systems. We report here on the rexinoid signaling capacity that triggers apoptosis of immature promyelocytic NB4 cells as a default pathway in the absence of survival factors. Rexinoid-induced apoptosis displays all features of bona fide programmed cell death and is inhibited by RXR, but not RAR antagonists. Several types of survival signals block rexinoid-induced apoptosis. RARalpha agonists switch the cellular response toward differentiation and induce the expression of antiapoptosis factors. Activation of the protein kinase A pathway in the presence of rexinoid agonists induces maturation and blocks immature cell apoptosis. Addition of nonretinoid serum factors also blocks cell death but does not induce cell differentiation. Rexinoid-induced apoptosis is linked to neither the presence nor stability of the promyelocytic leukemia-RARalpha fusion protein and operates also in non-acute promyelocytic leukemia cells. Together our results support a model according to which rexinoids activate in certain leukemia cells a default death pathway onto which several other signaling paradigms converge. This pathway is entirely distinct from that triggered by RAR agonists, which control cell maturation and postmaturation apoptosis.

  7. The role of necroptosis in the treatment of diseases.

    PubMed

    Cho, Young Sik

    2018-04-11

    Necroptosis is an emerging form of programmed cell death occurring via active and well-regulated necrosis, distinct from apoptosis morphologically, and biochemically. Necroptosis is mainly unmasked when apoptosis is compromised in response to cell stress. Unlike apoptotic cells, which are cleared by macrophages or neighboring cells, necrotic cells release danger signals, triggering inflammation, and exacerbating tissue damage. Evidence increasingly suggests that programmed necrosis is not only associated with pathophysiology of disease, but also induces innate immune response to viral infection. Therefore, necroptotic cell death plays both physiological and pathological roles. Physiologically, necroptosis induce an innate immune response as well as premature assembly of viral particles in cells infected with virus that abrogates host apoptotic machinery. On the other hand, necroptosis per se is detrimental, causing various diseases such as sepsis, neurodegenerative diseases and ischemic reperfusion injury. This review discusses the signaling pathways leading to necroptosis, associated necroptotic proteins with target-specific inhibitors and diseases involved. Several studies currently focus on protective approaches to inhibit necroptotic cell death. In cancer biology, however, anticancer drug resistance severely hampers the efficacy of chemotherapy based on apoptosis. Pharmacological switch of cell death finds therapeutic application in drug-resistant cancers. Therefore, the possible clinical role of necroptosis in cancer control will be discussed in brief.

  8. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Jung Ar; Chung, Jin Sil; Cho, Sang-Ho

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain.more » Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.« less

  9. Determinants of Suicide and Accidental or Violent Death in the Australian HIV Observational Database

    PubMed Central

    McManus, Hamish; Petoumenos, Kathy; Franic, Teo; Kelly, Mark D.; Watson, Jo; O’Connor, Catherine C.; Jeanes, Mark; Hoy, Jennifer; Cooper, David A.; Law, Matthew G.

    2014-01-01

    Background Rates of suicide and accidental or violent death remain high in HIV-positive populations despite significantly improved prognosis since the introduction of cART. Methods We conducted a nested case-control study of suicide and accidental or violent death in the Australian HIV Observational Database (AHOD) between January 1999 and March 2012. For each case, 2 controls were matched by clinic, age, sex, mode of exposure and HIV-positive date to adjust for potential confounding by these covariates. Risk of suicide and accidental or violent death was estimated using conditional logistic regression. Results We included 27 cases (17 suicide and 10 violent/accidental death) and 54 controls. All cases were men who have sex with men (MSM) or MSM/ injecting drug use (IDU) mode of exposure. Increased risk was associated with unemployment (Odds Ratio (OR) 5.86, 95% CI: 1.69–20.37), living alone (OR 3.26, 95% CI: 1.06–10.07), suicidal ideation (OR 6.55, 95% CI: 1.70–25.21), and >2 psychiatric/cognitive risk factors (OR 4.99, 95% CI: 1.17–30.65). CD4 cell count of >500 cells/µL (OR 0.25, 95% CI: 0.07–0.87) and HIV-positive date ≥1990 (1990–1999 (OR 0.31, 95% CI: 0.11–0.89), post-2000 (OR 0.08, 95% CI: 0.01–0.84)) were associated with decreased risk. CD4 cell count ≥500 cells/µL remained a significant predictor of reduced risk (OR 0.15, 95% CI: 0.03–0.70) in a multivariate model adjusted for employment status, accommodation status and HIV-positive date. Conclusions After adjustment for psychosocial factors, the immunological status of HIV-positive patients contributed to the risk of suicide and accidental or violent death. The number of psychiatric/cognitive diagnoses contributed to the level of risk but many psychosocial factors were not individually significant. These findings indicate a complex interplay of factors associated with risk of suicide and accidental or violent death. PMID:24586519

  10. Network analysis of genes involved in the enhancement of hyperthermia sensitivity by the knockdown of BAG3 in human oral squamous cell carcinoma cells.

    PubMed

    Yunoki, Tatsuya; Tabuchi, Yoshiaki; Hayashi, Atsushi; Kondo, Takashi

    2016-07-01

    BCL2-associated athanogene 3 (BAG3), a co-chaperone of the heat shock 70 kDa protein (HSPA) family of proteins, is a cytoprotective protein that acts against various stresses, including heat stress. The aim of the present study was to identify gene networks involved in the enhancement of hyperthermia (HT) sensitivity by the knockdown (KD) of BAG3 in human oral squamous cell carcinoma (OSCC) cells. Although a marked elevation in the protein expression of BAG3 was detected in human the OSCC HSC-3 cells exposed to HT at 44˚C for 90 min, its expression was almost completely suppressed in the cells transfected with small interfering RNA against BAG3 (siBAG) under normal and HT conditions. The silencing of BAG3 also enhanced the cell death that was increased in the HSC-3 cells by exposure to HT. Global gene expression analysis revealed many genes that were differentially expressed by >2-fold in the cells exposed to HT and transfected with siBAG. Moreover, Ingenuity® pathways analysis demonstrated two unique gene networks, designated as Pro-cell death and Anti-cell death, which were obtained from upregulated genes and were mainly associated with the biological functions of induction and the prevention of cell death, respectively. Of note, the expression levels of genes in the Pro-cell death and Anti-cell death gene networks were significantly elevated and reduced in the HT + BAG3-KD group compared to those in the HT control group, respectively. These results provide further insight into the molecular mechanisms involved in the enhancement of HT sensitivity by the silencing of BAG3 in human OSCC cells.

  11. Tangeretin and nobiletin induce G1 cell cycle arrest but not apoptosis in human breast and colon cancer cells.

    PubMed

    Morley, Karen L; Ferguson, Peter J; Koropatnick, James

    2007-06-18

    Tangeretin and nobiletin are citrus flavonoids that are among the most effective at inhibiting cancer cell growth in vitro and in vivo. The antiproliferative activity of tangeretin and nobiletin was investigated in human breast cancer cell lines MDA-MB-435 and MCF-7 and human colon cancer line HT-29. Both flavonoids inhibited proliferation in a dose- and time-dependent manner, and blocked cell cycle progression at G1 in all three cell lines. At concentrations that resulted in significant inhibition of proliferation and cell cycle arrest, neither flavonoid induced apoptosis or cell death in any of the tumor cell lines. To test the ability of arrested cells to recover, cells that were incubated with tangeretin and nobiletin for 4 days were then cultured in flavonoid-free medium for an additional 4 days. Cells resumed proliferation similar to untreated control within a day of flavonoid removal. Cell cycle distribution was similar to that of control within 4 days of flavonoid removal. These data indicate that, in these cell lines at concentrations that inhibit proliferation up to 80% over 4 days, tangeretin and nobiletin are cytostatic and significantly suppress proliferation by cell cycle arrest without apoptosis. Such an agent could be expected to spare normal tissues from toxic side effects. Thus, tangeretin and nobiletin could be effective cytostatic anticancer agents. Inhibition of proliferation of human cancers without inducing cell death may be advantageous in treating tumors as it would restrict proliferation in a manner less likely to induce cytotoxicity and death in normal, non-tumor tissues.

  12. Regulation of cell death and cell survival gene expression during ovarian follicular development and atresia.

    PubMed

    Jiang, Jin-Yi; Cheung, Carmen K M; Wang, Yifang; Tsang, Benjamin K

    2003-01-01

    Mammalian ovarian follicular development and atresia is closely regulated by the cross talk of cell death and cell survival signals, which include endocrine hormones (gonadotropins) and intra-ovarian regulators (gonadal steroids, cytokines and growth factors). The fate of the follicle is dependent on a delicate balance in the expression and actions of factors promoting follicular cell proliferation, growth and differentiation and of those inducing programmed cell death (apoptosis). As an important endocrine hormone, FSH binds to its granulosa cell receptors and promotes ovarian follicle survival and growth not only by stimulating proliferation and estradiol secretion of these cells, but also inhibiting the apoptosis by up-regulating the expression of intracellular anti-apoptotic proteins, such as XIAP and FLIP. In addition, intra-ovarian regulators, such as TGF-alpha and TNF-alpha, also play an important role in the control of follicular development and atresia. In response to FSH, Estradiol-17 beta synthesized from the granulosa cells stimulates thecal expression of TGF-alpha, which in turn increases granulosa cell XIAP expression and proliferation. The death receptor and ligand, Fas and Fas ligand, are expressed in granulosa cells following gonadotropin withdrawal, culminating in caspase-mediated apoptosis and follicular atresia. In contrast, TNF-alpha has both survival and pro-apoptotic function in the follicle, depending on the receptor subtype activated, but has been shown to promote granulosa cell survival by increasing XIAP and FLIP expression via the IkappaB-NFkappaB pathway. The pro-apoptotic action of TNF-alpha is mediated through the activation of caspases, via its receptor- (i.e. Caspases-8 and -3) and mitochrondria- (i.e. Caspase-9 and -3) death pathways. In the present manuscript, we have reviewed the actions and interactions of gonadotropins and intra-ovarian regulators in the control of granulosa cell fate and ultimately follicular destiny. We have highlighted the role and regulation of granulosa cell XIAP and FLIP expression, as well as their interactions with the death signaling pathways in the maintenance of granulosa cell survival during follicular development. We have provided strong evidence for these intracellular survival factors as key determinants for ovarian follicular destiny (growth versus atresia), the expression of which is regulated by a highly integrated endocrine, paracrine and autocrine mechanism. Further studies in these aspects will lead to a better understanding of the molecular and cellular regulation of follicular development and atresia, and provide invaluable insight into novel strategies in assisted reproduction in human infertility as well as in increasing reproductive efficiency in livestock industries.

  13. Isocitrate dehydrogenase 1 mutant R132H sensitizes glioma cells to BCNU-induced oxidative stress and cell death.

    PubMed

    Mohrenz, Isabelle Vanessa; Antonietti, Patrick; Pusch, Stefan; Capper, David; Balss, Jörg; Voigt, Sophia; Weissert, Susanne; Mukrowsky, Alicia; Frank, Jan; Senft, Christian; Seifert, Volker; von Deimling, Andreas; Kögel, Donat

    2013-11-01

    Isocitrate dehydrogenase 1 (IDH1) decarboxylates isocitrate to α-ketoglutarate (α-KG) leading to generation of NADPH, which is required to regenerate reduced glutathione (GSH), the major cellular ROS scavenger. Mutation of R132 of IDH1 abrogates generation of α-KG and leads to conversion of α-KG to 2-hydroxyglutarate. We hypothesized that glioma cells expressing mutant IDH1 have a diminished antioxidative capacity and therefore may encounter an ensuing loss of cytoprotection under conditions of oxidative stress. Our study was performed with LN229 cells stably overexpressing IDH1 R132H and wild type IDH1 or with a lentiviral IDH1 knockdown. Quantification of GSH under basal conditions and following treatment with the glutathione reductase inhibitor BCNU revealed significantly lower GSH levels in IDH1 R132H expressing cells and IDH1 KD cells compared to their respective controls. FACS analysis of cell death and ROS production also demonstrated an increased sensitivity of IDH1-R132H-expressing cells and IDH1 KD cells to BCNU, but not to temozolomide. The sensitivity of IDH1-R132H-expressing cells and IDH1 KD cells to ROS induction and cell death was further enhanced with the transaminase inhibitor aminooxyacetic acid and under glutamine free conditions, indicating that these cells were more addicted to glutaminolysis. Increased sensitivity to BCNU-induced ROS production and cell death was confirmed in HEK293 cells inducibly expressing the IDH1 mutants R132H, R132C and R132L. Based on these findings we propose that in addition to its established pro-tumorigenic effects, mutant IDH1 may also limit the resistance of gliomas to specific death stimuli, therefore opening new perspectives for therapy.

  14. Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury

    PubMed Central

    Xie, Cuicui; Ginet, Vanessa; Sun, Yanyan; Koike, Masato; Zhou, Kai; Li, Tao; Li, Hongfu; Li, Qian; Wang, Xiaoyang; Uchiyama, Yasuo; Truttmann, Anita C.; Kroemer, Guido; Puyal, Julien; Blomgren, Klas; Zhu, Changlian

    2016-01-01

    ABSTRACT Perinatal asphyxia induces neuronal cell death and brain injury, and is often associated with irreversible neurological deficits in children. There is an urgent need to elucidate the neuronal death mechanisms occurring after neonatal hypoxia-ischemia (HI). We here investigated the selective neuronal deletion of the Atg7 (autophagy related 7) gene on neuronal cell death and brain injury in a mouse model of severe neonatal hypoxia-ischemia. Neuronal deletion of Atg7 prevented HI-induced autophagy, resulted in 42% decrease of tissue loss compared to wild-type mice after the insult, and reduced cell death in multiple brain regions, including apoptosis, as shown by decreased caspase-dependent and -independent cell death. Moreover, we investigated the lentiform nucleus of human newborns who died after severe perinatal asphyxia and found increased neuronal autophagy after severe hypoxic-ischemic encephalopathy compared to control uninjured brains, as indicated by the numbers of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3)-, LAMP1 (lysosomal-associated membrane protein 1)-, and CTSD (cathepsin D)-positive cells. These findings reveal that selective neuronal deletion of Atg7 is strongly protective against neuronal death and overall brain injury occurring after HI and suggest that inhibition of HI-enhanced autophagy should be considered as a potential therapeutic target for the treatment of human newborns developing severe hypoxic-ischemic encephalopathy. PMID:26727396

  15. Planarian yorkie/YAP functions to integrate adult stem cell proliferation, organ homeostasis and maintenance of axial patterning.

    PubMed

    Lin, Alexander Y T; Pearson, Bret J

    2014-03-01

    During adult homeostasis and regeneration, the freshwater planarian must accomplish a constant balance between cell proliferation and cell death, while also maintaining proper tissue and organ size and patterning. How these ordered processes are precisely modulated remains relatively unknown. Here we show that planarians use the downstream effector of the Hippo signaling cascade, yorkie (yki; YAP in vertebrates) to control a diverse set of pleiotropic processes in organ homeostasis, stem cell regulation, regeneration and axial patterning. We show that yki functions to maintain the homeostasis of the planarian excretory (protonephridial) system and to limit stem cell proliferation, but does not affect the differentiation process or cell death. Finally, we show that Yki acts synergistically with WNT/β-catenin signaling to repress head determination by limiting the expression domains of posterior WNT genes and that of the WNT-inhibitor notum. Together, our data show that yki is a key gene in planarians that integrates stem cell proliferation control, organ homeostasis, and the spatial patterning of tissues.

  16. Fas Versatile Signaling and Beyond: Pivotal Role of Tyrosine Phosphorylation in Context-Dependent Signaling and Diseases

    PubMed Central

    Chakrabandhu, Krittalak; Hueber, Anne-Odile

    2016-01-01

    The Fas/FasL system is known, first and foremost, as a potent apoptosis activator. While its proapoptotic features have been studied extensively, evidence that the Fas/FasL system can elicit non-death signals has also accumulated. These non-death signals can promote survival, proliferation, migration, and invasion of cells. The key molecular mechanism that determines the shift from cell death to non-death signals had remained unclear until the recent identification of the tyrosine phosphorylation in the death domain of Fas as the reversible signaling switch. In this review, we present the connection between the recent findings regarding the control of Fas multi-signals and the context-dependent signaling choices. This information can help explain variable roles of Fas signaling pathway in different pathologies. PMID:27799932

  17. Cell survival under nutrient stress is dependent on metabolic conditions regulated by Akt and not by autophagic vacuoles.

    PubMed

    Bruno, P; Calastretti, A; Priulla, M; Asnaghi, L; Scarlatti, F; Nicolin, A; Canti, G

    2007-10-01

    Akt activation assists tumor cell survival and promotes resistance to chemotherapy. Here we show that constitutively active Akt (CA-Akt) cells are highly sensitized to cell death induced by nutrient and growth factor deprivation, whereas dominant-negative Akt (DN-Akt) cells have a high rate of survival. The content of autophagosomes in starved CA-Akt cells was high, while DN-Akt cells expressed autophagic vacuoles constitutively, independently of nutrition conditions. Thus Akt down-regulation and downstream events can induce autophagosomes which were not directly determinants of cell death. Biochemical analysis in Akt-mutated cells show that (i) Akt and mTOR proteins were degraded more rapidly than the housekeeping proteins, (ii) mTOR phosphorylation at position Thr(2446) was relatively high in DN-Akt and low in CA-Akt cells, induced by starvation in mock cells only, which suggests reduced autoregulation of these pathways in Akt-mutated cells, (iii) both protein synthesis and protein degradation were significantly higher in starved CA-Akt cells than in starved DN-Akt cells or mock cells. In conclusion, constitutively active Akt, unable to control synthesis and wasting of proteins, accelerates the death of starved cells.

  18. Involvement of tumour necrosis factor-α-related apoptosis-inducing ligand in enhanced cytotoxicity of lipopolysaccharide-stimulated dendritic cells to activated T cells

    PubMed Central

    Yu, Yizhi; Liu, Shuxun; Wang, Wenya; Song, Wengang; Zhang, Minghui; Zhang, Weiping; Qin, Zhihai; Cao, Xuetao

    2002-01-01

    Dendritic cells (DC) are potent antigen-presenting cells (APC) specialized in T-cell mediated immune responses, and also play critical roles in the homeostasis of T cells for controlling immune responses. In the present study, we demonstrated that during mouse bone-marrow-derived DC activation of ovalbumin (OVA)-specific Ia-kb-restricted T hybridoma cells, MF2.2D9 and OVA257–264-specific H-2kb-restricted RF33.70 T cells, respectively, both hybridomas undergo cell death, partially mediated via apoptotic ligand–tumour necrosis factor-α (TNF-α)-related apoptosis-inducing ligand (TRAIL). Lipopolysaccharide enhanced the cytotoxic effect on the two activated T hybridoma cells, which was correlated with up-regulation of TRAIL-expression on DC to some extent. The activation of caspase-3 in activated T hybridoma cells cocultured with DC contributed to the programmed cell death pathway T cells underwent. Therefore, our results show that activation-induced cell death of T hybridoma cells can be influenced by DC, suggesting that DC may be involved in elimination of activated T cells at the end of primary immune responses. PMID:12100718

  19. Involvement of tumour necrosis factor-alpha-related apoptosis-inducing ligand in enhanced cytotoxicity of lipopolysaccharide-stimulated dendritic cells to activated T cells.

    PubMed

    Yu, Yizhi; Liu, Shuxun; Wang, Wenya; Song, Wengang; Zhang, Minghui; Zhang, Weiping; Qin, Zhihai; Cao, Xuetao

    2002-07-01

    Dendritic cells (DC) are potent antigen-presenting cells (APC) specialized in T-cell mediated immune responses, and also play critical roles in the homeostasis of T cells for controlling immune responses. In the present study, we demonstrated that during mouse bone-marrow-derived DC activation of ovalbumin (OVA)-specific Ia-kb-restricted T hybridoma cells, MF2.2D9 and OVA257-264-specific H-2kb-restricted RF33.70 T cells, respectively, both hybridomas undergo cell death, partially mediated via apoptotic ligand-tumour necrosis factor-alpha (TNF-alpha)-related apoptosis-inducing ligand (TRAIL). Lipopolysaccharide enhanced the cytotoxic effect on the two activated T hybridoma cells, which was correlated with up-regulation of TRAIL-expression on DC to some extent. The activation of caspase-3 in activated T hybridoma cells cocultured with DC contributed to the programmed cell death pathway T cells underwent. Therefore, our results show that activation-induced cell death of T hybridoma cells can be influenced by DC, suggesting that DC may be involved in elimination of activated T cells at the end of primary immune responses.

  20. Hsp25 and Hsp70 in rodent tumors treated with doxorubicin and lovastatin

    PubMed Central

    Ciocca, Daniel R.; Rozados, Viviana R.; Carrión, F. Darío Cuello; Gervasoni, Silvia I.; Matar, Pablo; Scharovsky, O. Graciela

    2003-01-01

    Heat shock protein 27 (Hsp27) and Hsp70 have been involved in resistance to anticancer drugs in human breast cancer cells growing in vitro and in vivo. In this study, we examined the expression of Hsp25 (the rodent homologue to human Hsp27) and Hsp70 in 3 different rodent tumors (a mouse breast carcinoma, a rat sarcoma, and a rat lymphoma maintained by subcutaneous passages) treated in vivo with doxorubicin (DOX) and lovastatin (LOV). All tumors showed massive cell death under control untreated conditions, and this massive death increased after cytotoxic drug administration. In this study, we show that this death was due to classic apoptosis. The tumors also showed isolated apoptotic cells between viable tumor cells, and this occurred more significantly in the lymphoma. The tumor type that was more resistant to cell death was the sarcoma, and this was found in sarcomas growing both under control conditions and after cytotoxic drug administration. Moreover, sarcomas showed the highest expression levels of Hsp25 in the viable tumor cells growing under untreated conditions, and these levels increased after DOX and LOV administration. After drug treatment, only sarcoma tumor cells showed a significant increase in Hsp70. In other words, sarcomas were the tumors with lower cell death, displayed a competent Hsp70 and Hsp25 response with nuclear translocation, and had the highest levels of Hsp25. In sarcomas, Hsp25 and Hsp70 were found in viable tumor cells located around the blood vessels, and these areas showed the most resistant tumor cell phenotype after chemotherapy. In addition, Hsp25 expression was found in endothelial cells as unique feature revealed only in lymphomas. In conclusion, our study shows that each tumor type has unique features regarding the expression of Hsp25 and Hsp70 and that these proteins seem to be implicated in drug resistance mainly in sarcomas, making these model systems important to perform more mechanistic studies on the role of Hsps in resistance to certain cytotoxic drugs. PMID:12820652

  1. The lysosomotropic drug LeuLeu-OMe induces lysosome disruption and autophagy-independent cell death in Trypanosoma brucei

    PubMed Central

    Koh, Hazel X.; Aye, Htay M.; Tan, Kevin S. W.; He, Cynthia Y.

    2015-01-01

    Background: Trypanosoma brucei is a blood-borne, protozoan parasite that causes African sleeping sickness in humans and nagana in animals. The current chemotherapy relies on only a handful of drugs that display undesirable toxicity, poor efficacy and drug-resistance. In this study, we explored the use of lysosomotropic drugs to induce bloodstream form T. brucei cell death via lysosome destabilization. Methods: We measured drug concentrations that inhibit cell proliferation by 50% (IC50) for several compounds, chosen based on their lysosomotropic effects previously reported in Plasmodium falciparum. The lysosomal effects and cell death induced by L-leucyl-L-leucyl methyl ester (LeuLeu-OMe) were further analyzed by flow cytometry and immunofluorescence analyses of different lysosomal markers. The effect of autophagy in LeuLeu-OMe-induced lysosome destabilization and cytotoxicity was also investigated in control and autophagy-deficient cells. Results: LeuLeu-OMe was selected for detailed analyses due to its strong inhibitory profile against T. brucei with minimal toxicity to human cell lines in vitro. Time-dependent immunofluorescence studies confirmed an effect of LeuLeu-OMe on the lysosome. LeuLeu-OMe-induced cytotoxicity was also found to be dependent on the acidic pH of the lysosome. Although an increase in autophagosomes was observed upon LeuLeu-OMe treatment, autophagy was not required for the cell death induced by LeuLeu-OMe. Necrosis appeared to be the main cause of cell death upon LeuLeu-OMe treatment. Conclusions: LeuLeu-OMe is a lysosomotropic agent capable of destabilizing lysosomes and causing necrotic cell death in bloodstream form of T. brucei. PMID:28357304

  2. Curcumin induces autophagic cell death in Spodoptera frugiperda cells.

    PubMed

    Veeran, Sethuraman; Shu, Benshui; Cui, Gaofeng; Fu, Shengjiao; Zhong, Guohua

    2017-06-01

    The increasing interest in the role of autophagy (type II cell death) in the regulation of insect toxicology has propelled study of investigating autophagic cell death pathways. Turmeric, the rhizome of the herb Curcuma longa (Mañjaḷ in Tamil, India and Jiānghuáng in Chinese) have been traditionally used for the pest control either alone or combination with other botanical pesticides. However, the mechanisms by which Curcuma longa or curcumin exerts cytotoxicity in pests are not well understood. In this study, we investigated the potency of Curcuma longa (curcumin) as a natural pesticide employing Sf9 insect line. Autophagy induction effect of curcumin on Spodoptera frugiperda (Sf9) cells was investigated using various techniques including cell proliferation assay, morphology analysis with inverted phase contrast microscope and Transmission Electron Microscope (TEM) analysis. Autophagy was evaluated using the fluorescent dye monodansylcadaverine (MDC). Cell death measurement was examined using 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) within the concentrations of 5-15μg/mL. Curcumin inhibited the growth of the Sf9 cells and induced autophagic cell death in a time and dose dependent manner. Staining the cells with MDC showed the presence of autophagic vacuoles while increased in a dose and time dependent manner. At the ultrastructural level transmission electron microscopy, cells revealed massive autophagy vacuole accumulation and absence of chromatin condensation. Protein expression levels of ATG8-I and ATG8-II, well-established markers of autophagy related protein were elevated in a time dependent manner after curcumin treatment. The present study proves that curcumin induces autophagic cell death in Sf9 insect cell line and this is the first report of cytotoxic effect of curcumin in insect cells and that will be utilized as natural pesticides in future. Copyright © 2017. Published by Elsevier Inc.

  3. Induction of Mitotic Cell Death by Overriding G2/M Checkpoint in Endometrial Cancer Cells with Non-functional p53

    PubMed Central

    Meng, Xiangbing; Laidler, Laura L.; Kosmacek, Elizabeth A.; Yang, Shujie; Xiong, Zhi; Zhu, Danlin; Wang, Xinjun; Dai, Donghai; Zhang, Yuping; Wang, Xiaofang; Brachova, Pavla; Albitar, Lina; Liu, Dawei; Ianzini, Fiorenza; Mackey, Michael A.; Leslie, Kimberly K.

    2012-01-01

    Objective Endometrial tumors with non-functional p53, such as serous uterine endometrial carcinomas, are aggressive malignancies with a poor outcome, yet they have an Achilles’ heel: due to loss of p53 function, these tumors may be sensitive to treatments which abrogate the G2/M checkpoint. Our objective was to exploit this weakness to induce mitotic cell death using two strategies: (1) EGFR inhibitor gefitinib combined with paclitaxel to arrest cells at mitosis, or (2) BI2536, an inhibitor of polo-like kinase 1 (PLK1), to block PLK1 activity. Methods We examined the impact of combining gefitinib and paclitaxel or PLK1 inhibitor on expression of G2/M checkpoint controllers, cell viability, and cell cycle progression in endometrial cancer cells with mutant p53. Results In cells lacking normal p53 activity, each treatment activated CDC25C and inactivated Wee1, which in turn activated cdc2 and sent cells rapidly through the G2/M checkpoint and into mitosis. Live cell imaging demonstrated irreversible mitotic arrest and eventual cell death. Combinatorial therapy with paclitaxel and gefitinib was highly synergistic and resulted in a 10-fold reduction in the IC50 for paclitaxel, from 14 nM as a single agent to 1.3 nM in the presence of gefitinib. However, BI2536 alone at low concentrations (5 nM) was the most effective treatment and resulted in massive mitotic cell death. In a xenograft mouse model with p53-deficient cells, low dose BI2536 significantly inhibited tumor growth. Conclusions These findings reveal induction of mitotic cell death as a therapeutic strategy for endometrial tumors lacking functional p53. PMID:23146687

  4. Meta-Analysis of Cell-based CaRdiac stUdiEs (ACCRUE) in patients with acute myocardial infarction based on individual patient data.

    PubMed

    Gyöngyösi, Mariann; Wojakowski, Wojciech; Lemarchand, Patricia; Lunde, Ketil; Tendera, Michal; Bartunek, Jozef; Marban, Eduardo; Assmus, Birgit; Henry, Timothy D; Traverse, Jay H; Moyé, Lemuel A; Sürder, Daniel; Corti, Roberto; Huikuri, Heikki; Miettinen, Johanna; Wöhrle, Jochen; Obradovic, Slobodan; Roncalli, Jérome; Malliaras, Konstantinos; Pokushalov, Evgeny; Romanov, Alexander; Kastrup, Jens; Bergmann, Martin W; Atsma, Douwe E; Diederichsen, Axel; Edes, Istvan; Benedek, Imre; Benedek, Theodora; Pejkov, Hristo; Nyolczas, Noemi; Pavo, Noemi; Bergler-Klein, Jutta; Pavo, Imre J; Sylven, Christer; Berti, Sergio; Navarese, Eliano P; Maurer, Gerald

    2015-04-10

    The meta-Analysis of Cell-based CaRdiac study is the first prospectively declared collaborative multinational database, including individual data of patients with ischemic heart disease treated with cell therapy. We analyzed the safety and efficacy of intracoronary cell therapy after acute myocardial infarction (AMI), including individual patient data from 12 randomized trials (ASTAMI, Aalst, BOOST, BONAMI, CADUCEUS, FINCELL, REGENT, REPAIR-AMI, SCAMI, SWISS-AMI, TIME, LATE-TIME; n=1252). The primary end point was freedom from combined major adverse cardiac and cerebrovascular events (including all-cause death, AMI recurrance, stroke, and target vessel revascularization). The secondary end point was freedom from hard clinical end points (death, AMI recurrence, or stroke), assessed with random-effects meta-analyses and Cox regressions for interactions. Secondary efficacy end points included changes in end-diastolic volume, end-systolic volume, and ejection fraction, analyzed with random-effects meta-analyses and ANCOVA. We reported weighted mean differences between cell therapy and control groups. No effect of cell therapy on major adverse cardiac and cerebrovascular events (14.0% versus 16.3%; hazard ratio, 0.86; 95% confidence interval, 0.63-1.18) or death (1.4% versus 2.1%) or death/AMI recurrence/stroke (2.9% versus 4.7%) was identified in comparison with controls. No changes in ejection fraction (mean difference: 0.96%; 95% confidence interval, -0.2 to 2.1), end-diastolic volume, or systolic volume were observed compared with controls. These results were not influenced by anterior AMI location, reduced baseline ejection fraction, or the use of MRI for assessing left ventricular parameters. This meta-analysis of individual patient data from randomized trials in patients with recent AMI revealed that intracoronary cell therapy provided no benefit, in terms of clinical events or changes in left ventricular function. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01098591. © 2015 American Heart Association, Inc.

  5. Distinct Signaling Pathways Mediate Stimulation of Cell Cycle Progression and Prevention of Apoptotic Cell Death by Estrogen in Rat Pituitary Tumor PR1 Cells

    PubMed Central

    Caporali, Simona; Imai, Manami; Altucci, Lucia; Cancemi, Massimo; Caristi, Silvana; Cicatiello, Luigi; Matarese, Filomena; Penta, Roberta; Sarkar, Dipak K.; Bresciani, Francesco; Weisz, Alessandro

    2003-01-01

    Estrogens control cell growth and viability in target cells via an interplay of genomic and extragenomic pathways not yet elucidated. Here, we show evidence that cell proliferation and survival are differentially regulated by estrogen in rat pituitary tumor PR1 cells. Pico- to femtomolar concentrations of 17β-estradiol (E2) are sufficient to foster PR1 cell proliferation, whereas nanomolar concentrations of the same are needed to prevent cell death that occurs at a high rate in these cells in the absence of hormone. Activation of endogenous (PRL) or transfected estrogen-responsive genes occurs at the same, higher concentrations of E2 required to promote cell survival, whereas stimulation of cyclin D3 expression and DNA synthesis occur at lower E2 concentrations. Similarly, the pure antiestrogen ICI 182,780 inhibits estrogen response element-dependent trans-activation and cell death more effectively than cyclin-cdk activity, G1-S transition, or DNA synthesis rate. In antiestrogen-treated and/or estrogen-deprived cells, death is due predominantly to apoptosis. Estrogen-induced cell survival, but not E2-dependent cell cycle progression, can be prevented by an inhibitor of c-Src kinase or by blockade of the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling pathway. These data indicate the coexistence of two distinguishable estrogen signaling pathways in PR1 cells, characterized by different functions and sensitivity to hormones and antihormones. PMID:12960425

  6. p53 and Ca(2+) signaling from the endoplasmic reticulum: partners in anti-cancer therapies.

    PubMed

    Bittremieux, Mart; Bultynck, Geert

    2015-01-01

    Ca(2+) transfer from the endoplasmic reticulum (ER) to the mitochondria critically controls cell survival and cell death decisions. Different oncogenes and deregulation of tumor suppressors exploit this mechanism to favor the survival of altered, malignant cells. Two recent studies of the Pinton team revealed a novel, non-transcriptional function of cytosolic p53 in cell death. During cell stress, p53 is recruited to the ER and the ER-mitochondrial contact sites. This results in augmented ER Ca(2+) levels by enhancing sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) activity, ultimately promoting mitochondrial Ca(2+) overload. The boosting of "toxic" Ca(2+) signaling by p53 appears to be a critical component of the cell death-inducing properties of chemotherapeutic agents and anti-cancer treatments, like photodynamic stress. Strikingly, the resistance of p53-deficient cancer cells to these treatments could be overcome by facilitating Ca(2+) transfer between the ER and the mitochondria via overexpression of SERCA or of the mitochondrial Ca(2+) uniporter (MCU). Importantly, these concepts have also been supported by in vivo Ca(2+) measurements in tumor masses in mice. Collectively, these studies link for the first time the major tumor suppressor, p53, to Ca(2+) signaling in dictating cell-death outcomes and by the success of anti-cancer treatments.

  7. Coenzyme Q10 protects hair cells against aminoglycoside.

    PubMed

    Sugahara, Kazuma; Hirose, Yoshinobu; Mikuriya, Takefumi; Hashimoto, Makoto; Kanagawa, Eiju; Hara, Hirotaka; Shimogori, Hiroaki; Yamashita, Hiroshi

    2014-01-01

    It is well known that the production of free radicals is associated with sensory cell death induced by an aminoglycoside. Many researchers have reported that antioxidant reagents protect sensory cells in the inner ear, and coenzyme Q10 (CoQ10) is an antioxidant that is consumed as a health food in many countries. The purpose of this study was to investigate the role of CoQ10 in mammalian vestibular hair cell death induced by aminoglycoside. Cultured utricles of CBA/CaN mice were divided into three groups (control group, neomycin group, and neomycin + CoQ10 group). In the neomycin group, utricles were cultured with neomycin (1 mM) to induce hair cell death. In the neomycin + CoQ10 group, utricles were cultured with neomycin and water-soluble CoQ10 (30-0.3 µM). Twenty-four hours after exposure to neomycin, the cultured tissues were fixed, and vestibular hair cells were labeled using an anti-calmodulin antibody. Significantly more hair cells survived in the neomycin + CoQ10 group than in the neomycin group. These data indicate that CoQ10 protects sensory hair cells against neomycin-induced death in the mammalian vestibular epithelium; therefore, CoQ10 may be useful as a protective drug in the inner ear.

  8. BAX to basics: How the BCL2 gene family controls the death of retinal ganglion cells

    PubMed Central

    Maes, Margaret E.; Schlamp, Cassandra L.; Nickells, Robert W.

    2017-01-01

    Retinal ganglion cell (RGC) death is the principal consequence of injury to the optic nerve. For several decades, we have understood that the RGC death process was executed by apoptosis, suggesting that there may be ways to therapeutically intervene in this cell death program and provide a more direct treatment to the cells and tissues affected in diseases like glaucoma. A major part of this endeavor has been to elucidate the molecular biological pathways active in RGCs from the point of axonal injury to the point of irreversible cell death. A major component of this process is the complex interaction of members of the BCL2 gene family. Three distinct family members of proteins orchestrate the most critical junction in the apoptotic program of RGCs, culminating in the activation of pro-apoptotic BAX. Once active, BAX causes irreparable damage to mitochondria, while precipitating downstream events that finish off a dying ganglion cell. This review is divided into two major parts. First, we summarize the extent of knowledge of how BCL2 gene family proteins interact to facilitate the activation and function of BAX. This area of investigation has rapidly changed over the last few years and has yielded a dramatically different mechanistic understanding of how the intrinsic apoptotic program is run in mammalian cells. Second, we provided a comprehensive analysis of nearly two decades of investigation of the role of BAX in the process of RGC death, much of which has provided many important insights into the overall pathophysiology of diseases like glaucoma. PMID:28064040

  9. BAX to basics: How the BCL2 gene family controls the death of retinal ganglion cells.

    PubMed

    Maes, Margaret E; Schlamp, Cassandra L; Nickells, Robert W

    2017-03-01

    Retinal ganglion cell (RGC) death is the principal consequence of injury to the optic nerve. For several decades, we have understood that the RGC death process was executed by apoptosis, suggesting that there may be ways to therapeutically intervene in this cell death program and provide a more direct treatment to the cells and tissues affected in diseases like glaucoma. A major part of this endeavor has been to elucidate the molecular biological pathways active in RGCs from the point of axonal injury to the point of irreversible cell death. A major component of this process is the complex interaction of members of the BCL2 gene family. Three distinct family members of proteins orchestrate the most critical junction in the apoptotic program of RGCs, culminating in the activation of pro-apoptotic BAX. Once active, BAX causes irreparable damage to mitochondria, while precipitating downstream events that finish off a dying ganglion cell. This review is divided into two major parts. First, we summarize the extent of knowledge of how BCL2 gene family proteins interact to facilitate the activation and function of BAX. This area of investigation has rapidly changed over the last few years and has yielded a dramatically different mechanistic understanding of how the intrinsic apoptotic program is run in mammalian cells. Second, we provided a comprehensive analysis of nearly two decades of investigation of the role of BAX in the process of RGC death, much of which has provided many important insights into the overall pathophysiology of diseases like glaucoma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A novel Arabidopsis CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) mutant with enhanced pathogen-induced cell death and altered receptor processing.

    PubMed

    Petutschnig, Elena K; Stolze, Marnie; Lipka, Ulrike; Kopischke, Michaela; Horlacher, Juliane; Valerius, Oliver; Rozhon, Wilfried; Gust, Andrea A; Kemmerling, Birgit; Poppenberger, Brigitte; Braus, Gerhard H; Nürnberger, Thorsten; Lipka, Volker

    2014-12-01

    Plants detect pathogens by sensing microbe-associated molecular patterns (MAMPs) through pattern recognition receptors. Pattern recognition receptor complexes also have roles in cell death control, but the underlying mechanisms are poorly understood. Here, we report isolation of cerk1-4, a novel mutant allele of the Arabidopsis chitin receptor CERK1 with enhanced defense responses. We identified cerk1-4 in a forward genetic screen with barley powdery mildew and consequently characterized it by pathogen assays, mutant crosses and analysis of defense pathways. CERK1 and CERK1-4 proteins were analyzed biochemically. The cerk1-4 mutation causes an amino acid exchange in the CERK1 ectodomain. Mutant plants maintain chitin signaling capacity but exhibit hyper-inducible salicylic acid concentrations and deregulated cell death upon pathogen challenge. In contrast to chitin signaling, the cerk1-4 phenotype does not require kinase activity and is conferred by the N-terminal part of the receptor. CERK1 undergoes ectodomain shedding, a well-known process in animal cell surface proteins. Wild-type plants contain the full-length CERK1 receptor protein as well as a soluble form of the CERK1 ectodomain, whereas cerk1-4 plants lack the N-terminal shedding product. Our work suggests that CERK1 may have a chitin-independent role in cell death control and is the first report of ectodomain shedding in plants. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  11. Treatment of oral squamous cell carcinoma using anti-HER2 immunonanoshells.

    PubMed

    Fekrazad, Reza; Hakimiha, Neda; Farokhi, Enice; Rasaee, Mohammad Javad; Ardestani, Mehdi Shafiee; Kalhori, Katayoun A M; Sheikholeslami, Farzaneh

    2011-01-01

    Worldwide, oral squamous cell carcinoma (potentially mediated by HER2) is recognized as the most commonly occurring malignant neoplasm of the oral cavity. Anti-HER2 nanobodies conjugated to gold-silica nanoshells and used as photothermal treatment for oral squamous cell carcinoma may provide a novel therapeutic alternative to current treatment for this disease. KB epithelial or HeLaS3 cell cultures (controls) were exposed to these immunonanoshells, and plasmon resonance electron initiation specific to gold was employed to burn the tumor cells. Following this treatment, significant cell death occurred in the KB tumor cell cultures while there was no evidence of cellular damage or death in the HeLaS3 cell cultures. These findings suggest that photothermal treatment of oral squamous cell carcinoma has considerable advantages.

  12. Controlled intracellular generation of reactive oxygen species in human mesenchymal stem cells using porphyrin conjugated nanoparticles.

    PubMed

    Lavado, Andrea S; Chauhan, Veeren M; Zen, Amer Alhaj; Giuntini, Francesca; Jones, D Rhodri E; Boyle, Ross W; Beeby, Andrew; Chan, Weng C; Aylott, Jonathan W

    2015-09-14

    Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(II) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(II) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn(II) porphyrin and high numbers of irradiations of excitation light were found to generate greater amounts of ROS. A novel dye, which is transformed into fluorescent 7-hydroxy-4-trifluoromethyl-coumarin in the presence of hydrogen peroxide, provided an indirect indicator for cumulative ROS production. The mitochondrial membrane potential was monitored to investigate the destructive effect of increased intracellular ROS production. Flow cytometric analysis of nanoparticle treated hMSCs suggested irradiation with excitation light signalled controlled apoptotic cell death, rather than uncontrolled necrotic cell death. Increased intracellular ROS production did not induce phenotypic changes in hMSC subcultures.

  13. Research of ALA combined with HpD-PDT which induced s180 ascitic tumor cells, death or apoptosis on cytology

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Yan, Min; Zhang, Hui-Guo; Li, Enling; Luo, Hongyu

    2005-07-01

    To ascertain the adequate dosage of ALA combined with HpD-PDT which induced tumor cell death or apoptosis on cytology. And to study the different effect of ALA-PDT and HPD-PDT used only. Rat ascitic tumor cells(S180) were randomly divided into several groups and incubated with ALA(20μg/ml 、40μg/ml、80μg/ml 、160μg/ml)、HPD(2.5μg/ml、5μg/ml、10μg/ml)and their combination dosages. 630nm light (total output 2W) was delivered to tumor cells at a constant fluence rate: 200mw/cm2 and a constant irradiated time period: 20 minutes. We set 3 groups (no photosensitizers or no irradiation or neither) to be the control groups. We used inversion microscopy to observe the morphological change of tumor cells and flow cytometry technology to detect the death or apoptosis of tumor cells during the experiment. ..

  14. The contribution of the programmed cell death machinery in innate immune cells to lupus nephritis.

    PubMed

    Tsai, FuNien; Perlman, Harris; Cuda, Carla M

    2017-12-01

    Systemic lupus erythematosus (SLE) is a chronic multi-factorial autoimmune disease initiated by genetic and environmental factors, which in combination trigger disease onset in susceptible individuals. Damage to the kidney as a consequence of lupus nephritis (LN) is one of the most prevalent and severe outcomes, as LN affects up to 60% of SLE patients and accounts for much of SLE-associated morbidity and mortality. As remarkable strides have been made in unlocking new inflammatory mechanisms associated with signaling molecules of programmed cell death pathways, this review explores the available evidence implicating the action of these pathways specifically within dendritic cells and macrophages in the control of kidney disease. Although advancements into the underlying mechanisms responsible for inducing cell death inflammatory pathways have been made, there still exist areas of unmet need. By understanding the molecular mechanisms by which dendritic cells and macrophages contribute to LN pathogenesis, we can improve their viability as potential therapeutic targets to promote remission. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Piperlongumine potentiates the effects of gemcitabine in in vitro and in vivo human pancreatic cancer models

    PubMed Central

    Mohammad, Jiyan; Dhillon, Harsharan; Chikara, Shireen; Mamidi, Sujan; Sreedasyam, Avinash; Chittem, Kishore; Orr, Megan; Wilkinson, John C.; Reindl, Katie M.

    2018-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers due to a late diagnosis and poor response to available treatments. There is a need to identify complementary treatment strategies that will enhance the efficacy and reduce the toxicity of currently used therapeutic approaches. We investigated the ability of a known ROS inducer, piperlongumine (PL), to complement the modest anti-cancer effects of the approved chemotherapeutic agent gemcitabine (GEM) in PDAC cells in vitro and in vivo. PDAC cells treated with PL + GEM showed reduced cell viability, clonogenic survival, and growth on Matrigel compared to control and individually-treated cells. Nude mice bearing orthotopically implanted MIA PaCa-2 cells treated with both PL (5 mg/kg) and GEM (25 mg/kg) had significantly lower tumor weight and volume compared to control and single agent-treated mice. RNA sequencing (RNA-Seq) revealed that PL + GEM resulted in significant changes in p53-responsive genes that play a role in cell death, cell cycle, oxidative stress, and DNA repair pathways. Cell culture assays confirmed PL + GEM results in elevated ROS levels, arrests the cell cycle in the G0/G1 phase, and induces PDAC cell death. We propose a mechanism for the complementary anti-tumor effects of PL and GEM in PDAC cells through elevation of ROS and transcription of cell cycle arrest and cell death-associated genes. Collectively, our results suggest that PL has potential to be combined with GEM to more effectively treat PDAC. PMID:29535819

  16. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    PubMed

    Galluzzi, Lorenzo; Vitale, Ilio; Aaronson, Stuart A; Abrams, John M; Adam, Dieter; Agostinis, Patrizia; Alnemri, Emad S; Altucci, Lucia; Amelio, Ivano; Andrews, David W; Annicchiarico-Petruzzelli, Margherita; Antonov, Alexey V; Arama, Eli; Baehrecke, Eric H; Barlev, Nickolai A; Bazan, Nicolas G; Bernassola, Francesca; Bertrand, Mathieu J M; Bianchi, Katiuscia; Blagosklonny, Mikhail V; Blomgren, Klas; Borner, Christoph; Boya, Patricia; Brenner, Catherine; Campanella, Michelangelo; Candi, Eleonora; Carmona-Gutierrez, Didac; Cecconi, Francesco; Chan, Francis K-M; Chandel, Navdeep S; Cheng, Emily H; Chipuk, Jerry E; Cidlowski, John A; Ciechanover, Aaron; Cohen, Gerald M; Conrad, Marcus; Cubillos-Ruiz, Juan R; Czabotar, Peter E; D'Angiolella, Vincenzo; Dawson, Ted M; Dawson, Valina L; De Laurenzi, Vincenzo; De Maria, Ruggero; Debatin, Klaus-Michael; DeBerardinis, Ralph J; Deshmukh, Mohanish; Di Daniele, Nicola; Di Virgilio, Francesco; Dixit, Vishva M; Dixon, Scott J; Duckett, Colin S; Dynlacht, Brian D; El-Deiry, Wafik S; Elrod, John W; Fimia, Gian Maria; Fulda, Simone; García-Sáez, Ana J; Garg, Abhishek D; Garrido, Carmen; Gavathiotis, Evripidis; Golstein, Pierre; Gottlieb, Eyal; Green, Douglas R; Greene, Lloyd A; Gronemeyer, Hinrich; Gross, Atan; Hajnoczky, Gyorgy; Hardwick, J Marie; Harris, Isaac S; Hengartner, Michael O; Hetz, Claudio; Ichijo, Hidenori; Jäättelä, Marja; Joseph, Bertrand; Jost, Philipp J; Juin, Philippe P; Kaiser, William J; Karin, Michael; Kaufmann, Thomas; Kepp, Oliver; Kimchi, Adi; Kitsis, Richard N; Klionsky, Daniel J; Knight, Richard A; Kumar, Sharad; Lee, Sam W; Lemasters, John J; Levine, Beth; Linkermann, Andreas; Lipton, Stuart A; Lockshin, Richard A; López-Otín, Carlos; Lowe, Scott W; Luedde, Tom; Lugli, Enrico; MacFarlane, Marion; Madeo, Frank; Malewicz, Michal; Malorni, Walter; Manic, Gwenola; Marine, Jean-Christophe; Martin, Seamus J; Martinou, Jean-Claude; Medema, Jan Paul; Mehlen, Patrick; Meier, Pascal; Melino, Sonia; Miao, Edward A; Molkentin, Jeffery D; Moll, Ute M; Muñoz-Pinedo, Cristina; Nagata, Shigekazu; Nuñez, Gabriel; Oberst, Andrew; Oren, Moshe; Overholtzer, Michael; Pagano, Michele; Panaretakis, Theocharis; Pasparakis, Manolis; Penninger, Josef M; Pereira, David M; Pervaiz, Shazib; Peter, Marcus E; Piacentini, Mauro; Pinton, Paolo; Prehn, Jochen H M; Puthalakath, Hamsa; Rabinovich, Gabriel A; Rehm, Markus; Rizzuto, Rosario; Rodrigues, Cecilia M P; Rubinsztein, David C; Rudel, Thomas; Ryan, Kevin M; Sayan, Emre; Scorrano, Luca; Shao, Feng; Shi, Yufang; Silke, John; Simon, Hans-Uwe; Sistigu, Antonella; Stockwell, Brent R; Strasser, Andreas; Szabadkai, Gyorgy; Tait, Stephen W G; Tang, Daolin; Tavernarakis, Nektarios; Thorburn, Andrew; Tsujimoto, Yoshihide; Turk, Boris; Vanden Berghe, Tom; Vandenabeele, Peter; Vander Heiden, Matthew G; Villunger, Andreas; Virgin, Herbert W; Vousden, Karen H; Vucic, Domagoj; Wagner, Erwin F; Walczak, Henning; Wallach, David; Wang, Ying; Wells, James A; Wood, Will; Yuan, Junying; Zakeri, Zahra; Zhivotovsky, Boris; Zitvogel, Laurence; Melino, Gerry; Kroemer, Guido

    2018-03-01

    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.

  17. Over-expression of Trxo1 increases the viability of tobacco BY-2 cells under H2O2 treatment

    PubMed Central

    Ortiz-Espín, Ana; Locato, Vittoria; Camejo, Daymi; Schiermeyer, Andreas; De Gara, Laura; Sevilla, Francisca; Jiménez, Ana

    2015-01-01

    Background and Aims Reactive oxygen species (ROS), especially hydrogen peroxide, play a critical role in the regulation of plant development and in the induction of plant defence responses during stress adaptation, as well as in plant cell death. The antioxidant system is responsible for controlling ROS levels in these processes but redox homeostasis is also a key factor in plant cell metabolism under normal and stress situations. Thioredoxins (Trxs) are ubiquitous small proteins found in different cell compartments, including mitochondria and nuclei (Trxo1), and are involved in the regulation of target proteins through reduction of disulphide bonds, although their role under oxidative stress has been less well studied. This study describes over-expression of a Trxo1 for the first time, using a cell-culture model subjected to an oxidative treatment provoked by H2O2. Methods Control and over-expressing PsTrxo1 tobacco (Nicotiana tabacum) BY-2 cells were treated with 35 mm H2O2 and the effects were analysed by studying the growth dynamics of the cultures together with oxidative stress parameters, as well as several components of the antioxidant systems involved in the metabolism of H2O2. Analysis of different hallmarks of programmed cell death was also carried out. Key Results Over-expression of PsTrxo1 caused significant differences in the response of TBY-2 cells to high concentrations of H2O2, namely higher and maintained viability in over-expressing cells, whilst the control line presented a severe decrease in viability and marked indications of oxidative stress, with generalized cell death after 3 d of treatment. In over-expressing cells, an increase in catalase activity, decreases in H2O2 and nitric oxide contents and maintenance of the glutathione redox state were observed. Conclusions A decreased content of endogenous H2O2 may be responsible in part for the delayed cell death found in over-expressing cells, in which changes in oxidative parameters and antioxidants were less extended after the oxidative treatment. It is concluded that PsTrxo1 transformation protects TBY-2 cells from exogenous H2O2, thus increasing their viability via a process in which not only antioxidants but also Trxo1 seem to be involved. PMID:26041732

  18. Induced Pluripotent Stem Cells from Patients with Huntington’s Disease Show CAG Repeat Expansion Associated Phenotypes

    PubMed Central

    Mattis, Virginia B; Svendsen, Soshana P; Ebert, Allison; Svendsen, Clive N; King, Alvin R; Casale, Malcolm; Winokur, Sara T; Batugedara, Gayani; Vawter, Marquis; Donovan, Peter J; Lock, Leslie F; Thompson, Leslie M; Zhu, Yu; Fossale, Elisa; Singh Atwal, Ranjit; Gillis, Tammy; Mysore, Jayalakshmi; Li, Jian-hong; Seong, IhnSik; Shen, Yiping; Chen, Xiaoli; Wheeler, Vanessa C; MacDonald, Marcy E; Gusella, James F; Akimov, Sergey; Arbez, Nicolas; Juopperi, Tarja; Ratovitski, Tamara; Chiang, Jason H; Kim, Woon Roung; Chighladze, Eka; Watkin, Erin; Zhong, Chun; Makri, Georgia; Cole, Robert N; Margolis, Russell L; Song, Hongjun; Ming, Guoli; Ross, Christopher A; Kaye, Julia A; Daub, Aaron; Sharma, Punita; Mason, Amanda R; Finkbeiner, Steven; Yu, Junying; Thomson, James A; Rushton, David; Brazier, Stephen P; Battersby, Alysia A; Redfern, Amanda; Tseng, Hsui-Er; Harrison, Alexander W; Kemp, Paul J; Allen, Nicholas D; Onorati, Marco; Castiglioni, Valentina; Cattaneo, Elena; Arjomand, Jamshid

    2013-01-01

    Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded stretch of CAG trinucleotide repeats that results in neuronal dysfunction and death. Here, the HD consortium reports the generation and characterization of 14 induced pluripotent stem cell (iPSC) lines from HD patients and controls. Microarray profiling revealed CAG expansion-associated gene expression patterns that distinguish patient lines from controls, and early onset versus late onset HD. Differentiated HD neural cells showed disease associated changes in electrophysiology, metabolism, cell adhesion, and ultimately cell death for lines with both medium and longer CAG repeat expansions. The longer repeat lines were however the most vulnerable to cellular stressors and BDNF withdrawal using a range of assays across consortium laboratories. The HD iPSC collection represents a unique and well-characterized resource to elucidate disease mechanisms in HD and provides a novel human stem cell platform for screening new candidate therapeutics. PMID:22748968

  19. Red blood cells as modulators of T cell growth and survival.

    PubMed

    Arosa, Fernando A; Pereira, Carlos F; Fonseca, Ana M

    2004-01-01

    T cell homeostasis is largely controlled by a balance between cell death and survival and anomalies in either process account for a number of diseases linked to excessive or faulty T cell growth. Yet, the influence that cells outside the immunological system have on these processes has only recently received attention. Accumulated evidence indicate that homeostasis of the CD4+ and CD8+ T cell pools is highly dynamic and regulated by signals delivered by cells and molecules present in the different internal microenvironments. The major function of red blood cells (RBC) is generally considered to be oxygen and carbon dioxide transport. In recent years, however, RBC have been implicated in the regulation of basic physiological processes, from vascular contraction and platelet aggregation to T cell growth and survival. Regulation of T cell survival by RBC may influence the response of selected subsets of T cells to internal or external stimuli and may help explaining the immunomodulatory activities of red blood cells. By interfering in the balance between death and survival RBC become potential tools that can be manipulated to improve or reverse pathological situations characterized by anomalies in the control of T cell growth.

  20. Microparticulate Caspase-1 Regulates Gasdermin-D and Pulmonary Vascular Endothelial Cell Injury.

    PubMed

    Mitra, Srabani; Exline, Matthew; Habyarimana, Fabien; Gavrilin, Mikhail; Baker, Paul; Masters, Seth L; Wewers, Mark D; Sarkar, Anasuya

    2018-01-24

    Lung endothelial cell apoptosis and injury occurs throughout all stages of acute lung injury (ALI/ARDS) and impacts disease progression. Caspases 1, 4 and 5 are essential for completion of the apoptotic program known as pyroptosis that also involves pro-inflammatory cytokines. Because GSDM-D mediates pyroptotic death and is essential for pore formation, we hypothesized that it may direct caspase-1 encapsulated microparticle (MP) release and mediate endothelial cell death. Our current work provides evidence that GSDM-D is released by LPS stimulated THP1 monocytic cells where it is packaged into microparticles along with active caspase-1. Furthermore, only MP released from stimulated monocytic cells that contain both cleaved GSDM-D and active caspase-1 induce endothelial cell apoptosis. MPs pretreated with caspase-1 inhibitor, YVAD, or pan-caspase inhibitor, ZVAD, do not contain cleaved GSDM-D. MPs from caspase-1KO cells are also deficient in p30 active GSDM-D, further confirming that caspase-1 regulates GSDM-D function. Although control MPs contained cleaved GSDM-D without caspase-1, these fractions were unable to induce cell death, suggesting that encapsulation of both caspase-1 and GSDM-D is essential for cell death induction. Release of microparticulate active caspase-1 was abrogated in GSDM-KO cells, although cytosolic caspase-1 activation was not impaired. Lastly, higher levels of microparticulate GSDM-D was detected in septic ARDS patient plasma when compared to healthy donors. Taken together, these findings suggest that GSDM-D regulates the release of microparticulate active caspase-1 from monocytes essential for induction of cell death and thereby may play a critical role in sepsis-induced endothelial cell injury.

  1. Terpinen-4-ol inhibits colorectal cancer growth via reactive oxygen species

    PubMed Central

    Nakayama, Ken; Murata, Soichiro; Ito, Hiromu; Iwasaki, Kenichi; Villareal, Myra Orlina; Zheng, Yun-Wen; Matsui, Hirofumi; Isoda, Hiroko; Ohkohchi, Nobuhiro

    2017-01-01

    Terpinen-4-ol (TP4O) is the main component of the essential oil extracted from Melaleuca alternifolia, known as the tea tree, of the botanical family Myrtaceae. The anticancer effects of TP4O have been reported in several cancer cell lines. Previous reports have demonstrated that TP4O exerts anticancer effects by inducing apoptotic cell death in several cell lines; however, the underlying molecular mechanisms of these effects remain unclear. In the present study, the anticancer effects of TP4O against the colorectal cancer (CRC) cell lines HCT116 and RKO were evaluated using WST-8 and bromodeoxyuridine assays. The mechanism of cell death was investigated by the measurement of caspase-3/7, Annexin V and lactate dehydrogenase release. Reactive oxygen species (ROS) levels induced by TP4O were evaluated by electron spin resonance and quantitative measurement of dihydroethidium. Localization of the ROS derived from mitochondria was observed by confocal inverted microscopy. Protein levels of ROS scavengers were assessed by western blotting analysis. To confirm the role of ROS, cell viability was measured in the presence of antioxidant reagents. In an in vivo xenograft model of ICR-SCID mice implanted with HCT116 cells, 200 mg/kg TP4O was injected locally, and tumor growth was compared with that of the control. TP4O induced apoptotic cell death in HCT116 and RKO cells in a dose-dependent manner, and TP4O also increased the levels of ROS generated by mitochondria. TP4O-induced cell death was rescued by administration of antioxidant regents. In vivo, TP4O inhibited the proliferation of HCT116 xenografts compared with that of the control group. The results of the present study suggest that TP4O induces apoptosis in CRC cells through ROS generation. Furthermore, TP4O is potentially useful for the development of novel therapies against CRC. PMID:28781645

  2. Apoptotic activities of cardenolide glycosides from Asclepias subulata.

    PubMed

    Rascón-Valenzuela, L A; Velázquez, C; Garibay-Escobar, A; Vilegas, W; Medina-Juárez, L A; Gámez-Meza, N; Robles-Zepeda, R E

    2016-12-04

    Asclepias subulata Decne. (Apocynaceae) is a shrub occurring in Sonora-Arizona desert. The ethnic groups of Sonora, Mexico, Seris and Pimas, use this plant for the treatment of sore eyes, gastrointestinal disorders and cancer. To determine the cell death pathways that the cardenolide glycosides with antiproliferative activity found in the methanol extract of A. subulata are able to activate. The effect of cardenolide glycosides isolated of A. subulata on induction of apoptosis in cancer cells was evaluated through the measuring of several key events of apoptosis. A549 cells were treated for 12h with doses of 3.0, 0.2, 3.0 and 1.0µM of 12, 16-dihydroxicalotropin, calotropin, corotoxigenin 3-O-glucopyranoside and desglucouzarin, respectively. Apoptotic and necrotic cell levels were measured by double staining with annexin V-FITC/PI. Mitochondrial membrane depolarization was examined through JC-1 staining. Apoptosis cell death and the apoptosis pathways activated by cardenolide glycosides isolated of A. subulata were further characterized by the measurement of caspase-3, caspase-8 and caspase-9 activity. Apoptotic assays showed that the four cardenolide glycosides isolated of A. subulata induced apoptosis in A549 cells, which was evidencing by phosphatidylserine externalization in 18.2%, 17.0%, 23.9% and 22.0% for 12, 16-dihydroxicalotropin, calotropin, corotoxigenin 3-O-glucopyranoside and desglucouzarin, respectively, compared with 4.6% of control cells. Cell death was also associated with a decrease in mitochondrial membrane potential, which was more than 75% in the treated cultures respect to control. The activation of caspase-3 was observed in all cardenolide glycosides-treated cancer cells indicating the caspase-dependent apoptosis of A549 cells. Extrinsic and intrinsic apoptosis pathways were activated by cardenolide glycosides treatment at the doses tested. In this study was found that cardenolide glycosides, 12, 16-dihydroxicalotropin, calotropin, corotoxigenin 3-O-glucopyranoside and desglucouzarin, isolated from A. subulata induced the cell death trough caspase-dependent apoptosis, which was activated, preferably, by extrinsic pathway. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. High-throughput monitoring of major cell functions by means of lensfree video microscopy

    PubMed Central

    Kesavan, S. Vinjimore; Momey, F.; Cioni, O.; David-Watine, B.; Dubrulle, N.; Shorte, S.; Sulpice, E.; Freida, D.; Chalmond, B.; Dinten, J. M.; Gidrol, X.; Allier, C.

    2014-01-01

    Quantification of basic cell functions is a preliminary step to understand complex cellular mechanisms, for e.g., to test compatibility of biomaterials, to assess the effectiveness of drugs and siRNAs, and to control cell behavior. However, commonly used quantification methods are label-dependent, and end-point assays. As an alternative, using our lensfree video microscopy platform to perform high-throughput real-time monitoring of cell culture, we introduce specifically devised metrics that are capable of non-invasive quantification of cell functions such as cell-substrate adhesion, cell spreading, cell division, cell division orientation and cell death. Unlike existing methods, our platform and associated metrics embrace entire population of thousands of cells whilst monitoring the fate of every single cell within the population. This results in a high content description of cell functions that typically contains 25,000 – 900,000 measurements per experiment depending on cell density and period of observation. As proof of concept, we monitored cell-substrate adhesion and spreading kinetics of human Mesenchymal Stem Cells (hMSCs) and primary human fibroblasts, we determined the cell division orientation of hMSCs, and we observed the effect of transfection of siCellDeath (siRNA known to induce cell death) on hMSCs and human Osteo Sarcoma (U2OS) Cells. PMID:25096726

  4. The NF-κB regulator Bcl-3 and the BH3-only proteins Bim and Puma control the death of activated T cells

    PubMed Central

    Bauer, Anette; Villunger, Andreas; Labi, Verena; Fischer, Silke F.; Strasser, Andreas; Wagner, Hermann; Schmid, Roland M.; Häcker, Georg

    2006-01-01

    Apoptosis of activated T cells is critical for the termination of immune responses. Here we show that adjuvant-stimulated dendritic cells secrete cytokines that prime activated T cells for survival and analyze the roles of the NF-κB regulator Bcl-3 and the proapoptotic Bcl-2 family members Bim and Puma. Bcl-3 overexpression increased survival, and activated bcl-3−/− T cells died abnormally rapidly. Cytokines from adjuvant-stimulated dendritic cells induced Bcl-3, but survival through cytokine priming was Bcl-3-independent. Apoptosis inhibition by Bcl-3 involved blockade of Bim activation, because Bim was overactivated in Bcl-3-deficient cells, and Bcl-3 failed to increase survival of bim−/− T cells. However, adjuvants increased survival also in Bim-deficient T cells. This Bim-independent death pathway is at least in part regulated by Puma, as shown by analysis of puma−/− and noxa−/− T cells. IL-1, IL-7, and IL-15 primed T cells for survival even in the absence of Bim or Puma. Our data define interrelations and a Bim-independent pathway to activated T cell death. PMID:16832056

  5. Increased level of apoptosis in rat brains and SH-SY5Y cells exposed to excessive fluoride--a mechanism connected with activating JNK phosphorylation.

    PubMed

    Liu, Yan-Jie; Guan, Zhi-Zhong; Gao, Qin; Pei, Jin-Jing

    2011-07-28

    In order to reveal the mechanism of the brain injury induced by chronic fluorosis, the levels of apoptosis and c-Jun N-terminal kinases (JNK) in brains of rats and SH-SY5Y cells exposed to different concentrations of sodium fluoride (NaF) were detected. The dental fluorosis and fluoride contents in blood, urine and bones of rats were measured to evaluate the exhibition of fluorosis. The apoptotic death rate was measured by flow cytometry and the expression of JNK at protein level by Western blotting. The results showed that as compared with controls, the apoptotic death rate was obviously increased in brains of the rats exposed to high-fluoride (50ppm) for 6 months with a concentration dependent manner, but no significant change for 3 months. In SH-SY5Y cells treated with high concentration (50ppm) of fluoride, the increased apoptotic death rate was obviously observed as compared to controls. In addition, the expressions of phospho-JNK at protein level were raised by 20.5% and 107.6%, respectively, in brains of the rats exposed to low-fluoride (5ppm) and high-fluoride for 6 months; while no significant changes were found between the rats exposed to fluoride and the controls for 3 months. The protein level of phospho-JNK was also increased in SH-SY5Y cells exposed to high-fluoride. There were no changes of total-JNK both in the rats and in the SH-SY5Y cells exposed to excessive fluoride as compared to controls. When SH-SY5Y cells were singly treated with SP600125, an inhibitor of phospho-JNK, the decreased expression of phospho-JNK, but no apoptosis, was detected. Interestingly, after JNK phosphorylation in the cultured cells was inhibited by SP600125, the treatment with high-fluoride did not induce the increase of apoptosis. In addition, there was a positive correlation between the expression of phospho-JNK and the apoptotic death rate in rat brains or SH-SY5Y cells treated with high-fluoride. The results indicated that exposure to excessive fluoride resulted in the increase of apoptosis in rat brains and SH-SY5Y cells, in which one of the mechanisms might be activating JNK phosphorylation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Nanoparticle augmented radiation treatment decreases cancer cell proliferation.

    PubMed

    Townley, Helen E; Rapa, Elizabeth; Wakefield, Gareth; Dobson, Peter J

    2012-05-01

    We report significant and controlled cell death using novel x-ray-activatable titania nanoparticles (NPs) doped with lanthanides. Preferential incorporation of such materials into tumor tissue can enhance the effect of radiation therapy. Herein, the incorporation of gadolinium into the NPs is designed to optimize localized energy absorption from a conventional medical x-ray. This result is further optimized by the addition of other rare earth elements. Upon irradiation, energy is transferred to the titania crystal structure, resulting in the generation of reactive oxygen species (ROS). The authors report significant and controlled cell death using x-ray-activated titania nanoparticles doped with lanthanides as enhancers. Upon irradiation X-ray energy is transferred to the titania crystal structure, resulting in the generation of reactive oxygen species. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases

    PubMed Central

    Man, Si Ming; Karki, Rajendra; Kanneganti, Thirumala-Devi

    2017-01-01

    SUMMARY Cell death is a fundamental biological phenomenon that is essential for the survival and development of an organism. Emerging evidence also indicate that cell death contributes to immune defense against infectious diseases. Pyroptosis is a form of inflammatory programed cell death pathway activated by human and mouse caspase-1, human caspase-4 and caspase-5, or mouse caspase-11. These inflammatory caspases are used by the host to control bacterial, viral, fungal or protozoan pathogens. Pyroptosis requires cleavage and activation of the pore-forming effector protein gasdermin D by inflammatory caspases. Physical rupture of the cell causes release of the pro-inflammatory cytokines IL-1β and IL-18, alarmins and endogenous danger-associated molecular patterns, signifying the inflammatory potential of pyroptosis. Here, we describe the central role of inflammatory caspases and pyroptosis in mediating immunity to infection and clearance of pathogens. PMID:28462526

  8. [Role of necroptosis in aluminum induced SH-SY5Y cell death].

    PubMed

    Niu, Qiao; Zhang, Qin-li; Zheng, Jin-ping; Liu, Cheng-yun; Wang, Liang

    2009-02-01

    To study whether necroptosis exists or not in neural cell death induced by aluminum. SH-SY5Y cells were treated with 4 mmol/L AlCl(3) x 6H(2)O The cell viability was determined with CCK-8 kit after treated with Nec-1 at different dosages (0, 30, 60, 90 micromol/L). Mitochondria membrane potential (MMP), content of reactive oxygen species (ROS), and apoptotic rate/necrotic rates were measured with cytometry. Nec-1 ameliorated the necrotic-like cell morphology, the cell viability were 0.28 +/- 0.05, 0.58 +/- 0.03, 0.68 +/- 0.04, and 1.03 +/- 0.17, there were significant differences between the Nec-1 treated groups and that of controls (t values were 3.25, 3.36, 4.56; P < 0.05). After Nec-1 treatment, the necrotic rates were 16.46% +/- 0.54%, 10.40% +/- 0.64%, 5.43% +/- 0.68%, and 6.28% +/- 0.35%, there were significant differences between the Nec-1 treated cells and that of controls (t values were 3.62, 7.32, 6.96; P < 0.05); while the apoptotic rates were 8.68 +/- 0.36, 7.66 +/- 0.53, 5.68 +/- 0.41, and 4.13 +/- 0.41, there was no significant difference among the groups (F = 6.33, P = 0.11). Cytometry had shown the increased cell MMPs after Nec-1 treatment, which were 67.54 +/- 6.36, 49.42 +/- 5.96, 84.79 +/- 6.86, and 95.51 +/- 7.01, there were significant differences as comparing MMPs of the middle and high dosage of Nec-1 treated cells with those of controls (t values were 3.21, 4.01; P < 0.05); while ROS contents in the Nec-1 treated SH-SY5Y cells were 54.07 +/- 3.32, 52.79 +/- 2.36, 54.68 +/- 1.91, and 59.23 +/- 2.96, there was no significant difference among the groups (F = 5.26, P = 0.19). Nec-1, as a specific inhibitor of necroptosis, might effectively block the cell death pathway induced by aluminum, it indicates that necroptosis should be one of the major causes of the SH-SY5Y cell toxicity induced by aluminum, and necroptosis also plays an important role in aluminum induced SH-SY5Y cell death.

  9. Effect of Immortalization-Upregulated Protein-2 (IMUP-2) on Cell Death of Trophoblast

    PubMed Central

    Jung, Ran; Choi, Jong Ho; Lee, Hyun Jung; Kim, Jin Kyeoung; Kim, Gi Jin

    2013-01-01

    Trophoblasts, in the placenta, play a role for placental development as well as implantation in the early pregnancy. The characteristics and functions of trophoblast are identified by their localization and potency for proliferation, differentiation, and invasion. Thus, inadequate trophoblast cell death induces trophoblast dysfunction resulting in abnormal placental development and several gynecological diseases. Recently, it was reported that increased immortalization-upregulated protein-2 (IMUP-2) by hypoxia influences trophoblast apoptosis. However, IMUP-2 function on autophagy, which is type II programmed cell death remains unclear. In this study, we analyzed IMUP-2 expression in trophoblast cells (HTR8-SVneo) and compared IMUP-2 effects on cell death including apoptosis and autophagy in trophoblast regardless of IMUP-2 expression. Increased IMUP-2 in trophoblast by IMUP-2 gene transfection induces cell death, especially, apoptosis increases more than autophagy (p<0.05). However, the decreased IMUP-2 in trophoblasts after siRNA treatment decreased apoptosis with the decreased activities of caspase 3 and 7. The expressions of LC3 and MDC as an autophagosome makers and phosphorylated mTOR, which is a negative regulator for autophagy, increased. In addition, the S phase of cell cycle increased in trophoblasts when IMUP-2 expression decreased. Taken together, the alteration of IMUP-2 can control the balance between apoptosis and autophagy of trophoblasts resulting in functional involvement in placental development and in gynecological diseases by regulating the function of trophoblasts. PMID:25949126

  10. A Unifying Mechanism for Cancer Cell Death through Ion Channel Activation by HAMLET

    PubMed Central

    Storm, Petter; Kjaer Klausen, Thomas; Trulsson, Maria; Ho CS, James; Dosnon, Marion; Westergren, Tomas; Chao, Yinxia; Rydström, Anna; Yang, Henry; Pedersen, Stine Falsig; Svanborg, Catharina

    2013-01-01

    Ion channels and ion fluxes control many aspects of tissue homeostasis. During oncogenic transformation, critical ion channel functions may be perturbed but conserved tumor specific ion fluxes remain to be defined. Here we used the tumoricidal protein-lipid complex HAMLET as a probe to identify ion fluxes involved in tumor cell death. We show that HAMLET activates a non-selective cation current, which reached a magnitude of 2.74±0.88 nA within 1.43±0.13 min from HAMLET application. Rapid ion fluxes were essential for HAMLET-induced carcinoma cell death as inhibitors (amiloride, BaCl2), preventing the changes in free cellular Na+ and K+ concentrations also prevented essential steps accompanying carcinoma cell death, including changes in morphology, uptake, global transcription, and MAP kinase activation. Through global transcriptional analysis and phosphorylation arrays, a strong ion flux dependent p38 MAPK response was detected and inhibition of p38 signaling delayed HAMLET-induced death. Healthy, differentiated cells were resistant to HAMLET challenge, which was accompanied by innate immunity rather than p38-activation. The results suggest, for the first time, a unifying mechanism for the initiation of HAMLET’s broad and rapid lethal effect on tumor cells. These findings are particularly significant in view of HAMLET’s documented therapeutic efficacy in human studies and animal models. The results also suggest that HAMLET offers a two-tiered therapeutic approach, killing cancer cells while stimulating an innate immune response in surrounding healthy tissues. PMID:23505537

  11. A unifying mechanism for cancer cell death through ion channel activation by HAMLET.

    PubMed

    Storm, Petter; Klausen, Thomas Kjaer; Trulsson, Maria; Ho C S, James; Dosnon, Marion; Westergren, Tomas; Chao, Yinxia; Rydström, Anna; Yang, Henry; Pedersen, Stine Falsig; Svanborg, Catharina

    2013-01-01

    Ion channels and ion fluxes control many aspects of tissue homeostasis. During oncogenic transformation, critical ion channel functions may be perturbed but conserved tumor specific ion fluxes remain to be defined. Here we used the tumoricidal protein-lipid complex HAMLET as a probe to identify ion fluxes involved in tumor cell death. We show that HAMLET activates a non-selective cation current, which reached a magnitude of 2.74±0.88 nA within 1.43±0.13 min from HAMLET application. Rapid ion fluxes were essential for HAMLET-induced carcinoma cell death as inhibitors (amiloride, BaCl2), preventing the changes in free cellular Na(+) and K(+) concentrations also prevented essential steps accompanying carcinoma cell death, including changes in morphology, uptake, global transcription, and MAP kinase activation. Through global transcriptional analysis and phosphorylation arrays, a strong ion flux dependent p38 MAPK response was detected and inhibition of p38 signaling delayed HAMLET-induced death. Healthy, differentiated cells were resistant to HAMLET challenge, which was accompanied by innate immunity rather than p38-activation. The results suggest, for the first time, a unifying mechanism for the initiation of HAMLET's broad and rapid lethal effect on tumor cells. These findings are particularly significant in view of HAMLET's documented therapeutic efficacy in human studies and animal models. The results also suggest that HAMLET offers a two-tiered therapeutic approach, killing cancer cells while stimulating an innate immune response in surrounding healthy tissues.

  12. Genetics Home Reference: Troyer syndrome

    MedlinePlus

    ... degeneration and death of muscle cells and motor neurons (specialized nerve cells that control muscle movement) throughout a person's lifetime, leading to a slow progressive decline in muscle and nerve function. The severity of impairment related to Troyer syndrome ...

  13. Simulation of spread and control of lesions in brain.

    PubMed

    Thamattoor Raman, Krishna Mohan

    2012-01-01

    A simulation model for the spread and control of lesions in the brain is constructed using a planar network (graph) representation for the central nervous system (CNS). The model is inspired by the lesion structures observed in the case of multiple sclerosis (MS), a chronic disease of the CNS. The initial lesion site is at the center of a unit square and spreads outwards based on the success rate in damaging edges (axons) of the network. The damaged edges send out alarm signals which, at appropriate intensity levels, generate programmed cell death. Depending on the extent and timing of the programmed cell death, the lesion may get controlled or aggravated akin to the control of wild fires by burning of peripheral vegetation. The parameter phase space of the model shows smooth transition from uncontrolled situation to controlled situation. The simulations show that the model is capable of generating a wide variety of lesion growth and arrest scenarios.

  14. Efficacy of aqueous extract of Hippophae rhamnoides and its bio-active flavonoids against hypoxia-induced cell death

    PubMed Central

    Tulsawani, Rajkumar; Gupta, Rashmi; Misra, Kshipra

    2013-01-01

    Objectives: To investigate the protective efficacy of aqueous extract of Hippophae rhamnoides against chronic hypoxic injury using primary rat hepatocytes. Materials and Methods: The extract was prepared using maceration method and characterized by its phenolic and flavonoid content and chemical antioxidant capacity using ferric reducing antioxidant power assay. Hepatocytes were maintained in hypoxia chamber (3% and 1% oxygen) for 72 h. The cells kept under normoxic condition served as control. The cells were treated with the extract and flavonoids; isorhamentin, kaempferol or qurecetin-3-galactoside. After the end of exposure period; cell survival, reactive oxygen species (ROS), leakage of lactate dehydrogenase (LDH), alanine aminotransferase (ALT), aspartate aminotransferase (AST), reduced glutathione (GSH), glutathione peroxidase (GPx), and superoxide dismutase (SOD) levels were measured. Results: The extract showed presence of high phenolic and flavonoid content with significant antioxidant activity in chemical assay. The cell exposed to hypoxia showed concentration dependent cell death and harbored higher reactive oxygen species. In addition, these cells showed significant leakage of intracellular LDH, ALT, and AST accompanied by the diminished levels/activities of GSH, GPx, and SOD. The treatment of cells with aqueous extract of H. rhamnoides reduced hypoxia-induced cell death and prevented increase in ROS levels and leakage of intracellular LDH, ALT, and AST from cells. Moreover, these cells maintained better levels/activities of GSH, GPx, and SOD in comparison to the respective controls. The major flavonoids present in aqueous extract of H. rhamnoides; quercetin-3-galactoside, kaempferol, and isorhamentin also prevented hypoxia induced cell injury individually or in combination, however, the protection offered by these compounds taken together could not match to that of the extract. Conclusions: Overall the findings reveal significance of aqueous extract of H. rhamnoides in controlling ROS-meditated hypoxic injury in cells and can be useful in many hepatic complications. PMID:23833369

  15. In-depth proteomic profiling of left ventricular tissues in human end-stage dilated cardiomyopathy.

    PubMed

    Liu, Shanshan; Xia, Yan; Liu, Xiaohui; Wang, Yi; Chen, Zhangwei; Xie, Juanjuan; Qian, Juying; Shen, Huali; Yang, Pengyuan

    2017-07-18

    Dilated cardiomyopathy (DCM) is caused by reduced left ventricular (LV) myocardial function, which is one of the most common causes of heart failure (HF). We performed iTRAQ-coupled 2D-LC-MS/MS to profile the cardiac proteome of LV tissues from healthy controls and patients with end-stage DCM. We identified 4263 proteins, of which 125 were differentially expressed in DCM tissues compared to LV controls. The majority of these were membrane proteins related to cellular junctions and neuronal metabolism. In addition, these proteins were involved in membrane organization, mitochondrial organization, translation, protein transport, and cell death process. Four key proteins involved in the cell death process were also detected by western blotting, indicated that cell death was activated in DCM tissues. Furthermore, S100A1 and eEF2 were enriched in the "cellular assembly and organization" and "cell cycle" networks, respectively. We verified decreases in these two proteins in end-stage DCM LV samples through multiple reaction monitoring (MRM). These observations demonstrate that our understanding of the mechanisms underlying DCM can be deepened through comparison of the proteomes of normal LV tissues with that from end-stage DCM in humans.

  16. Anti-cell death engineering of CHO cells: co-overexpression of Bcl-2 for apoptosis inhibition, Beclin-1 for autophagy induction.

    PubMed

    Lee, Jae Seong; Ha, Tae Kwang; Park, Jin Hyoung; Lee, Gyun Min

    2013-08-01

    Genetic engineering approaches to inhibit cell death in Chinese hamster ovary (CHO) cell cultures have been limited primarily to anti-apoptosis engineering. Recently, autophagy has received attention as a new anti-cell death engineering target in addition to apoptosis. In order to achieve a more efficient protection of cells from the stressful culture conditions, the simultaneous targeting of anti-apoptosis and pro-autophagy in CHO cells (DG44) was attempted by co-overexpressing an anti-apoptotic protein, Bcl-2, and a key regulator of autophagy pathway, Beclin-1, respectively. Co-overexpression of Bcl-2 and Beclin-1 exhibited a longer culture period as well as higher viability during serum-free suspension culture, compared with the control (without co-overexpression of Bcl-2 and Beclin-1) and Bcl-2 overexpression only. In addition to the efficient inhibition of apoptosis by Bcl-2 overexpression, Beclin-1 overexpression successfully induced the increase in the autophagic marker protein, LC3-II, and autophagosome formation with the decrease in mTOR activity. Co-immunoprecipitation and qRT-PCR experiments revealed that the enforced expression of Beclin-1 increased Ulk1 expression and level of free-Beclin-1 that did not bind to the Bcl-2 despite the Bcl-2 overexpression. Under other stressful culture conditions such as treatment with sodium butyrate and hyperosmolality, co-overexpression of Bcl-2 and Beclin-1 also protected the cells from cell death more efficiently than Bcl-2 overexpression only, implying the potential of autophagy induction. Taken together, the data obtained here provide the evidence that pro-autophagy engineering together with anti-apoptosis engineering yields a synergistic effect and successfully enhances the anti-cell death engineering of CHO cells. Copyright © 2013 Wiley Periodicals, Inc.

  17. Role of Bax in death of uninfected retinal cells during murine cytomegalovirus retinitis.

    PubMed

    Mo, Juan; Marshall, Brendan; Covar, Jason; Zhang, Nancy Y; Smith, Sylvia B; Atherton, Sally S; Zhang, Ming

    2014-10-08

    Extensive death of uninfected bystander neuronal cells is an important component of the pathogenesis of cytomegalovirus retinitis. Our previous results have shown that caspase 3-dependent and -independent pathways are involved in death of uninfected bystander cells during murine cytomegalovirus (MCMV) retinitis and also that Bcl-2, an important inhibitor of apoptosis via the Bax-mediated mitochondrial pathway, is downregulated during this process. The purpose of this study was to determine whether Bax-mediated mitochondrial damage has a significant role in the death of uninfected retinal cells. BALB/c mice, Bax(-/-) mice, or Bax(+/+) mice were immunosuppressed with methylprednisolone and infected with 5 × 10(3) plaque-forming units (PFU) of the K181 strain of MCMV via the supraciliary route. Injected eyes were analyzed by plaque assay, electron microscopy, hematoxylin and eosin (H&E) staining, TUNEL assay, Western blot (for caspase 3, caspase 12, Bax, receptor interacting protein-1 [RIP1] and receptor interacting protein-3 [RIP3]), as well as immunohistochemical staining for MCMV early antigen and cleaved caspase 3. Significantly more Bax was detected in mitochondrial fractions of MCMV-infected eyes than in mitochondrial fractions of mock-infected control eyes. Furthermore, the level of cleaved caspase 3 was significantly lower in MCMV-infected Bax(-/-) eyes than in MCMV-infected Bax(+/+) eyes. However, more caspase 3-independent cell death of uninfected bystander retinal cells and more cleaved RIP1 were observed in Bax(-/-) than in Bax(+/+) eyes. During MCMV retinitis, Bax is activated and has an important role in death of uninfected bystander retinal cells by caspase 3-dependent apoptosis. Although the exact mechanism remains to be deciphered, active Bax might also prevent death of some types of uninfected retinal cells by a caspase 3-independent pathway. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  18. Role of Bax in Death of Uninfected Retinal Cells During Murine Cytomegalovirus Retinitis

    PubMed Central

    Mo, Juan; Marshall, Brendan; Covar, Jason; Zhang, Nancy Y.; Smith, Sylvia B.; Atherton, Sally S.; Zhang, Ming

    2014-01-01

    Purpose. Extensive death of uninfected bystander neuronal cells is an important component of the pathogenesis of cytomegalovirus retinitis. Our previous results have shown that caspase 3–dependent and –independent pathways are involved in death of uninfected bystander cells during murine cytomegalovirus (MCMV) retinitis and also that Bcl-2, an important inhibitor of apoptosis via the Bax-mediated mitochondrial pathway, is downregulated during this process. The purpose of this study was to determine whether Bax-mediated mitochondrial damage has a significant role in the death of uninfected retinal cells. Methods. BALB/c mice, Bax−/− mice, or Bax+/+ mice were immunosuppressed with methylprednisolone and infected with 5 × 103 plaque-forming units (PFU) of the K181 strain of MCMV via the supraciliary route. Injected eyes were analyzed by plaque assay, electron microscopy, hematoxylin and eosin (H&E) staining, TUNEL assay, Western blot (for caspase 3, caspase 12, Bax, receptor interacting protein-1 [RIP1] and receptor interacting protein-3 [RIP3]), as well as immunohistochemical staining for MCMV early antigen and cleaved caspase 3. Results. Significantly more Bax was detected in mitochondrial fractions of MCMV-infected eyes than in mitochondrial fractions of mock-infected control eyes. Furthermore, the level of cleaved caspase 3 was significantly lower in MCMV-infected Bax−/− eyes than in MCMV-infected Bax+/+ eyes. However, more caspase 3–independent cell death of uninfected bystander retinal cells and more cleaved RIP1 were observed in Bax−/− than in Bax+/+ eyes. Conclusions. During MCMV retinitis, Bax is activated and has an important role in death of uninfected bystander retinal cells by caspase 3–dependent apoptosis. Although the exact mechanism remains to be deciphered, active Bax might also prevent death of some types of uninfected retinal cells by a caspase 3–independent pathway. PMID:25298417

  19. MicroRNA profiling reveals new aspects of HIV neurodegeneration: caspase-6 regulates astrocyte survival.

    PubMed

    Noorbakhsh, Farshid; Ramachandran, Rithwik; Barsby, Nicola; Ellestad, Kristofor K; LeBlanc, Andrea; Dickie, Peter; Baker, Glen; Hollenberg, Morley D; Cohen, Eric A; Power, Christopher

    2010-06-01

    MicroRNAs (miRNAs) are small noncoding RNA molecules, which are known to regulate gene expression in physiological and pathological conditions. miRNA profiling was performed using brain tissue from patients with HIV encephalitis (HIVE), a neuroinflammatory/degenerative disorder caused by HIV infection of the brain. Microarray analysis showed differential expression of multiple miRNAs in HIVE compared to control brains. Target prediction and gene ontology enrichment analysis disclosed targeting of several gene families/biological processes by differentially expressed miRNAs (DEMs), with cell death-related genes, including caspase-6, showing a bias toward down-regulated DEMs. Consistent with the miRNA data, HIVE brains exhibited higher levels of caspase-6 transcripts compared with control patients. Immunohistochemical analysis showed localization of the cleaved form of caspase-6 in astrocytes in HIVE brain sections. Exposure of cultured human primary astrocytes to HIV viral protein R (Vpr) induced p53 up-regulation, loss of mitochondrial membrane potential, and caspase-6 activation followed by cell injury. Transgenic mice, expressing Vpr in microglial cells, demonstrated astrocyte apoptosis in brain, which was associated with caspase-6 activation and neurobehavioral abnormalities. Overall, these data point to previously unrecognized alterations in miRNA profile in the brain during HIV infection, which contribute to cell death through dysregulation of cell death machinery.

  20. Phosphorylation of Puma modulates its apoptotic function by regulating protein stability

    PubMed Central

    Fricker, M; O'Prey, J; Tolkovsky, A M; Ryan, K M

    2010-01-01

    Puma is a potent BH3-only protein that antagonises anti-apoptotic Bcl-2 proteins, promotes Bax/Bak activation and has an essential role in multiple apoptotic models. Puma expression is normally kept very low, but can be induced by several transcription factors including p53, p73, E2F1 and FOXO3a, whereby it can induce an apoptotic response. As Puma can to bind and inactivate all anti-apoptotic members of the Bcl-2 family, its activity must be tightly controlled. We report here, for the first time, evidence that Puma is subject to post-translational control through phosphorylation. We show that Puma is phosphorylated at multiple sites, with the major site of phosphorylation being serine 10. Replacing serine 10 with alanine causes reduced Puma turnover and enhanced cell death. Interestingly, Puma turnover occurs through the proteasome, and substitution of serine 10 causes elevated Puma levels independently of macroautophagy, Bcl-2 family member binding, caspase activity and apoptotic death. We conclude, therefore, that phosphorylation of Puma at serine 10 promotes Puma turnover, represses Puma's cell death potential and promotes cell survival. Owing to the highly pro-apoptotic nature of Puma, these studies highlight an important additional regulatory step in the determination of cellular life or death. PMID:21364664

  1. The effect of TRAIL molecule on cell viability in in vitro beta cell culture.

    PubMed

    Tekmen, I; Ozyurt, D; Pekçetin, C; Buldan, Z

    2007-06-01

    Insulin-dependent diabetes mellitus (IDDM) is an organ-specific autoimmune disorder triggered by autoreactive T cells directed to pancreas beta-cell antigens. In this disorder, more than 90% of beta cells are destroyed. Cell death may be mediated via soluble or membrane-bound cell death ligands. One of these ligands may be tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF-alpha superfamily. In the present study, we examined whether TRAIL had cytotoxic effects on adult rat pancreas beta cell cultures and INS1-E rat insulinoma cell line cultures or not. In this study, cell destruction models were built with TRAIL concentrations of 10, 100 and 1000 ng. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was used for evaluating cell viability. It was detected that cell cultures with TRAIL added showed no differences statistically when compared with control cultures containing no toxic additions. These results showed that TRAIL did not have significant cytotoxic effects on pancreas beta cell culture and INS-1E rat insulinoma cell line cultures. Detection of the expression of TRAIL receptors and natural apoptosis inhibitor proteins will be favourable to investigate the resistance mechanisms to TRAIL-induced cell death in this cell culture system.

  2. Treatment of oral squamous cell carcinoma using anti-HER2 immunonanoshells

    PubMed Central

    Fekrazad, Reza; Hakimiha, Neda; Farokhi, Enice; Rasaee, Mohammad Javad; Ardestani, Mehdi Shafiee; Kalhori, Katayoun AM; Sheikholeslami, Farzaneh

    2011-01-01

    Background Worldwide, oral squamous cell carcinoma (potentially mediated by HER2) is recognized as the most commonly occurring malignant neoplasm of the oral cavity. Anti-HER2 nanobodies conjugated to gold-silica nanoshells and used as photothermal treatment for oral squamous cell carcinoma may provide a novel therapeutic alternative to current treatment for this disease. Methods KB epithelial or HeLaS3 cell cultures (controls) were exposed to these immunonanoshells, and plasmon resonance electron initiation specific to gold was employed to burn the tumor cells. Results Following this treatment, significant cell death occurred in the KB tumor cell cultures while there was no evidence of cellular damage or death in the HeLaS3 cell cultures. Conclusion These findings suggest that photothermal treatment of oral squamous cell carcinoma has considerable advantages. PMID:22131825

  3. 6-Shogaol, a natural product, reduces cell death and restores motor function in rat spinal cord injury.

    PubMed

    Kyung, Kang Soo; Gon, Jeon Hyo; Geun, Kim Yong; Sup, Jung Jin; Suk, Woo Jae; Ho, Kim Jae

    2006-08-01

    Spinal cord injury (SCI) results in progressive waves of secondary injuries, which via the activation of a barrage of noxious pathological mechanisms exacerbate the injury to the spinal cord. Secondary injuries are associated with edema, inflammation, excitotoxicity, excessive cytokine release, caspase activation and cell apoptosis. This study was aimed at investigating the possible neuroprotective effects of 6-shogaol purified from Zingiber officinale by comparing an experimental SCI rat group with SCI control rats. Shogaol attenuated apoptotic cell death, including poly(ADP-ribose) polymerase activity, and reduced astrogliosis and hypomyelination which occurs in areas of active cell death in the spinal cords of SCI rats. The foremost protective effect of shogaol in SCI would therefore be manifested in the suppression of the acute secondary apoptotic cell death. However, it does not attenuate active microglia and macrophage infiltration. This finding is supported by a lack of histopathological changes in the areas of the lesion in the shogaol-treated SCI rats. Moreover, shogaol-mediated neuroprotection has been linked with shogaol's attenuation of p38 mitogen-activated protein kinase, p-SAPK/JNK and signal transducer, and with transcription-3 activation. Our results demonstrate that shogaol administrated immediately after SCI significantly diminishes functional deficits. The shogaol-treated group recovered hindlimb reflexes more rapidly and a higher percentage of these rats regained responses compared with the untreated injured rats. The overall hindlimb functional improvement of hindlimbs, as measured by the Basso, Beattie and Bresnahan scale, was significantly enhanced in the shogaol-treated group relative to the SCI control rats. Our data show that the therapeutic outcome of shogaol probably results from its comprehensive effects of blocking apoptotic cell death, resulting in the protection of white matter, oligodendrocytes and neurons, and inhibiting astrogliosis. Our finding that the administration of shogaol prevents secondary pathological events in traumatic SCIs and promotes recovery of motor functions in an animal model raises the issue of whether shogaol could be used therapeutically in humans after SCI.

  4. Zinc deficiency mediates alcohol-induced apoptotic cell death in the liver of rats through activating ER and mitochondrial cell death pathways

    PubMed Central

    Sun, Qian; Zhong, Wei; Zhang, Wenliang; Li, Qiong; Sun, Xiuhua; Tan, Xiaobing; Sun, Xinguo; Dong, Daoyin

    2015-01-01

    Hepatic zinc deficiency has been well documented in alcoholic patients, but the mechanisms by which zinc deficiency mediates cell death have not been well defined. The objectives of this study were to determine whether alcohol perturbs subcellular zinc homeostasis and how organelle zinc depletion may link with cell death pathways. Wistar rats were pair-fed with the Lieber-DeCarli control or ethanol diet for 5 mo. Chronic alcohol exposure significantly reduced zinc level in isolated hepatic endoplasmic reticulum (ER) and mitochondria. Among the detected zinc transporters, ER Zrt/Irt-like protein (ZIP)13 and mitochondrial ZIP8, which transport zinc from ER and mitochondria to cytosol, were significantly increased. Mitochondrial zinc transporter (ZnT) 4, which transports zinc from cytosol to mitochondria, was also increased. ER phosphorylated eukaryotic initiation factor 2α, activating transcription factor 4, and C/EBP homologous protein were significantly upregulated, and mitochondrial cytochrome c release and Bax insertion were detected in association with caspase-3 activation and apoptotic cell death. To define the role of zinc deficiency in ER and mitochondrial stress, H4IIEC3 cells were treated with 3 μM N,N,N′,N′-tetrakis (2-pyridylmethyl) ethylenediamine for 6 h with or without supplementation with zinc or N-acetylcysteine (NAC). The results demonstrated that zinc deprivation induced caspase-3 activation and apoptosis in association with ER and mitochondria dysfunction, which were inhibited by zinc as low as 10 μM but not by 2 mM NAC. These results suggest that chronic ethanol exposure induced in ER and mitochondrial zinc deficiency might activate intrinsic cell death signaling pathway, which could not be effectively rescued by antioxidant treatment. PMID:25767260

  5. Photothermal-triggered control of sub-cellular drug accumulation using doxorubicin-loaded single-walled carbon nanotubes for the effective killing of human breast cancer cells

    NASA Astrophysics Data System (ADS)

    Oh, Yunok; Jin, Jun-O.; Oh, Junghwan

    2017-03-01

    Single-walled carbon nanotubes (SWNTs) are often the subject of investigation as effective photothermal therapy (PTT) agents owing to their unique strong optical absorption. Doxorubicin (DOX)-loaded SWNTs (SWNTs-DOX) can be used as an efficient therapeutic agent for combined near infrared (NIR) cancer photothermal and chemotherapy. However, SWNTs-DOX-mediated induction of cancer cell death has not been fully investigated, particularly the reaction of DOX inside cancer cells by PTT. In this study, we examined how the SWNTs-DOX promoted effective MDA-MB-231 cell death compared to DOX and PTT alone. We successfully synthesized the SWNTs-DOX. The SWNTs-DOX exhibited a slow DOX release, which was accelerated by NIR irradiation. Furthermore, DOX released from the SWNTs-DOX accumulated inside the cells at high concentration and effectively localized into the MDA-MB-231 cell nucleus. A combination of SWNTs-DOX and PTT promoted an effective MDA-MB-231 cell death by mitochondrial disruption and ROS generation. Thus, SWNTs-DOX can be utilized as an excellent anticancer agent for early breast cancer treatment.

  6. Dietary broccoli sprouts protect against myocardial oxidative damage and cell death during ischemia-reperfusion.

    PubMed

    Akhlaghi, Masoumeh; Bandy, Brian

    2010-09-01

    Cruciferous vegetables are known for antioxidant and anti-carcinogenic effects. In the current study we asked whether dietary broccoli sprouts can protect the heart from ischemia-reperfusion. Rats were fed either control diet (sham and control groups) or a diet mixed with 2% dried broccoli sprouts for 10 days. After 10 days the isolated hearts were subjected to ischemia for 20 min and reperfusion for 2 h, and evaluated for cell death, oxidative damage, and Nrf2-regulated phase 2 enzyme activities. Broccoli sprouts feeding inhibited markers of necrosis (lactate dehydrogenase release) and apoptosis (caspase-3 activity) by 78-86%, and decreased indices of oxidative stress (thiobarbituric acid reactive substances and aconitase inactivation) by 82-116%. While broccoli sprouts increased total glutathione and activities of the phase 2 enzymes glutamate cysteine ligase and quinone reductase in liver, they did not affect these in ischemic-reperfused heart. While the mechanism is not clear, the results show that a relatively short dietary treatment with broccoli sprouts can strongly protect the heart against oxidative stress and cell death caused by ischemia-reperfusion.

  7. Cinnamic acid induces apoptotic cell death and cytoskeleton disruption in human melanoma cells

    PubMed Central

    2013-01-01

    Anticancer activities of cinnamic acid derivatives include induction of apoptosis by irreversible DNA damage leading to cell death. The present work aimed to compare the cytotoxic and genotoxic potential of cinnamic acid in human melanoma cell line (HT-144) and human melanocyte cell line derived from blue nevus (NGM). Viability assay showed that the IC50 for HT-144 cells was 2.4 mM, while NGM cells were more resistant to the treatment. The growth inhibition was probably associated with DNA damage leading to DNA synthesis inhibition, as shown by BrdU incorporation assay, induction of nuclear aberrations and then apoptosis. The frequency of cell death caused by cinnamic acid was higher in HT-144 cells. Activated-caspase 3 staining showed apoptosis after 24 hours of treatment with cinnamic acid 3.2 mM in HT-144 cells, but not in NGM. We observed microtubules disorganization after cinnamic acid exposure, but this event and cell death seem to be independent according to M30 and tubulin labeling. The frequency of micronucleated HT-144 cells was higher after treatment with cinnamic acid (0.4 and 3.2 mM) when compared to the controls. Cinnamic acid 3.2 mM also increased the frequency of micronucleated NGM cells indicating genotoxic activity of the compound, but the effects were milder. Binucleation and multinucleation counting showed similar results. We conclude that cinnamic acid has effective antiproliferative activity against melanoma cells. However, the increased frequency of micronucleation in NGM cells warrants the possibility of genotoxicity and needs further investigation. PMID:23701745

  8. Cinnamic acid induces apoptotic cell death and cytoskeleton disruption in human melanoma cells.

    PubMed

    Niero, Evandro Luís de Oliveira; Machado-Santelli, Gláucia Maria

    2013-05-23

    Anticancer activities of cinnamic acid derivatives include induction of apoptosis by irreversible DNA damage leading to cell death. The present work aimed to compare the cytotoxic and genotoxic potential of cinnamic acid in human melanoma cell line (HT-144) and human melanocyte cell line derived from blue nevus (NGM). Viability assay showed that the IC50 for HT-144 cells was 2.4 mM, while NGM cells were more resistant to the treatment. The growth inhibition was probably associated with DNA damage leading to DNA synthesis inhibition, as shown by BrdU incorporation assay, induction of nuclear aberrations and then apoptosis. The frequency of cell death caused by cinnamic acid was higher in HT-144 cells. Activated-caspase 3 staining showed apoptosis after 24 hours of treatment with cinnamic acid 3.2 mM in HT-144 cells, but not in NGM. We observed microtubules disorganization after cinnamic acid exposure, but this event and cell death seem to be independent according to M30 and tubulin labeling. The frequency of micronucleated HT-144 cells was higher after treatment with cinnamic acid (0.4 and 3.2 mM) when compared to the controls. Cinnamic acid 3.2 mM also increased the frequency of micronucleated NGM cells indicating genotoxic activity of the compound, but the effects were milder. Binucleation and multinucleation counting showed similar results. We conclude that cinnamic acid has effective antiproliferative activity against melanoma cells. However, the increased frequency of micronucleation in NGM cells warrants the possibility of genotoxicity and needs further investigation.

  9. Overexpression of human Hsp27 inhibits serum-induced proliferation in airway smooth muscle myocytes and confers resistance to hydrogen peroxide cytotoxicity.

    PubMed

    Salinthone, Sonemany; Ba, Mariam; Hanson, Lisa; Martin, Jody L; Halayko, Andrew J; Gerthoffer, William T

    2007-11-01

    Airway smooth muscle (ASM) hypertrophy and hyperplasia are characteristics of asthma that lead to thickening of the airway wall and obstruction of airflow. Very little is known about mechanisms underlying ASM remodeling, but in vascular smooth muscle, it is known that progression of atherosclerosis depends on the balance of myocyte proliferation and cell death. Small heat shock protein 27 (Hsp27) is antiapoptotic in nonmuscle cells, but its role in ASM cell survival is unknown. Our hypothesis was that phosphorylation of Hsp27 may regulate airway remodeling by modifying proliferation, cell survival, or both. To test this hypothesis, adenoviral vectors were used to overexpress human Hsp27 in ASM cells. Cells were infected with empty vector (Ad5) or wild-type Hsp27 (AdHsp27 WT), and proliferation and death were assessed. Overexpressing Hsp27 WT caused a 50% reduction in serum-induced proliferation and increased cell survival after exposure to 100 microM hydrogen peroxide (H(2)O(2)) compared with mock-infected controls. Overexpression studies utilizing an S15A, S78A, and S82A non-phosphorylation mutant (AdHsp27 3A) and an S15D, S78D, and S82D pseudo-phosphorylation mutant (AdHsp27 3D) showed phosphorylation of Hsp27 was necessary for regulation of ASM proliferation, but not survival. Hsp27 provided protection against H(2)O(2)-induced cytotoxicity by upregulating cellular glutathione levels and preventing necrotic cell death, but not apoptotic cell death. The results support the notion that ASM cells can be stimulated to undergo proliferation and death and that Hsp27 may regulate these processes, thereby contributing to airway remodeling in asthmatics.

  10. Bone Marrow Microenvironmental Control of Prostate Cancer Skeletal Localization

    DTIC Science & Technology

    2011-05-01

    which can account for the correlation between PTHrP 325 expression and metastatic potential of tumor cells ( Hiraki , et al. 2002; Liao and McCauley...related peptide enhances survival of 404 chondrocytes under conditions that promote apoptotic cell death. Mol Cell Biol 15 4064-4075. 405 Hiraki A

  11. Protection against hydrogen peroxide cytotoxicity in rat-1 fibroblasts provided by the oncoprotein Bcl-2: maintenance of calcium homoeostasis is secondary to the effect of Bcl-2 on cellular glutathione.

    PubMed Central

    Rimpler, M M; Rauen, U; Schmidt, T; Möröy, T; de Groot, H

    1999-01-01

    The oncoprotein Bcl-2 protects cells against apoptosis, but the exact molecular mechanism that underlies this function has not yet been identified. Studying H2O2-induced cell injury in Rat-1 fibroblast cells, we observed that Bcl-2 had a protective effect against the increase in cytosolic calcium concentration and subsequent cell death. Furthermore, overexpression of Bcl-2 resulted in an alteration of cellular glutathione status: the total amount of cellular glutathione was increased by about 60% and the redox potential of the cellular glutathione pool was maintained in a more reduced state during H2O2 exposure compared with non-Bcl-2-expressing controls. In our cytotoxicity model, disruption of cellular glutathione homoeostasis closely correlated with the pathological elevation of cytosolic calcium concentration. Stabilization of the glutathione pool by Bcl-2, N-acetylcysteine or glucose delayed the cytosolic calcium increase and subsequent cell death, whereas depletion of glutathione by dl-buthionine-(S, R)-sulphoximine, sensitized Bcl-2-transfected cells towards cytosolic calcium increase and cell death. We therefore suggest that the protection exerted by Bcl-2 against H2O2-induced cytosolic calcium elevation and subsequent cell death is secondary to its effect on the cellular glutathione metabolism. PMID:10229685

  12. Hemeoxygenase-1 Mediates an Adaptive Response to Spermidine-Induced Cell Death in Human Endothelial Cells

    PubMed Central

    Yang, Hana; Lee, Seung Eun; Kim, Gun-Dong; Park, Hye Rim; Park, Yong Seek

    2013-01-01

    Spermidine (SPD) is a ubiquitous polycation that is commonly distributed in living organisms. Intracellular levels of SPD are tightly regulated, and SPD controls cell proliferation and death. However, SPD undergoes oxidation in the presence of serum, producing aldehydes, hydrogen peroxide, and ammonia, which exert cytotoxic effect on cells. Hemeoxygenase-1 (HO-1) is thought to have a protective effect against oxidative stress. Upregulation of HO-1 in endothelial cells is considered to be beneficial in the cardiovascular disease. In the present study, we demonstrate that the ubiquitous polyamine, SPD, induces HO-1 in human umbilical vein endothelial cells (HUVECs). SPD-induced HO-1 expression was examined by Western blot and reverse transcription-polymerase chain reaction (RT-PCR). Involvement of reactive oxygen species, serum amine oxidase, PI3K/Akt signaling pathway, and transcription factor Nrf2 in the induction of HO-1 by SPD was also investigated. Furthermore, small interfering RNA knockdown of Nrf2 or HO-1 and treatment with the specific HO-1 inhibitor ZnPP exhibited a noteworthy increase of death of SPD-stimulated HUVECs. In conclusion, these results suggest that SPD induces PI3K/Akt-Nrf2-mediated HO-1 expression in human endothelial cells, which may have a role in cytoprotection of the cells against oxidative stress-induced death. PMID:23983896

  13. Neuroprotective effect against axonal damage-induced retinal ganglion cell death in apolipoprotein E-deficient mice through the suppression of kainate receptor signaling.

    PubMed

    Omodaka, Kazuko; Nishiguchi, Koji M; Yasuda, Masayuki; Tanaka, Yuji; Sato, Kota; Nakamura, Orie; Maruyama, Kazuichi; Nakazawa, Toru

    2014-10-24

    Apolipoprotein E (ApoE) plays important roles in the body, including a carrier of cholesterols, an anti-oxidant, and a ligand for the low-density lipoprotein receptors. In the nervous system, the presence of ApoE4 isoforms is associated with Alzheimer's disease. ApoE gene polymorphisms are also associated with glaucoma, but the function of ApoE in the retina remains unclear. In this study, we investigated the role of ApoE in axonal damage-induced RGC death. ApoE was detected in the astrocytes and Müller cells in the wild-type (WT) retina. RGC damage was induced in adult ApoE-deficient mice (male, 10-12 weeks old) through ocular hypertension (OH), optic nerve crush (NC), or by administering kainic acid (KA) intravitreally. The WT mice were treated with a glutamate receptor antagonist (MK801 or CNQX) 30 min before performing NC or left untreated. Seven days later, the retinas were flat mounted and Fluorogold-labeled RGCs were counted. We found that the RGCs in the ApoE-deficient mice were resistant to OH-induced RGC death and optic nerve degeneration 4 weeks after induction. In WT mice, NC effectively induced RGC death (control: 4085±331 cells/mm(2), NC: 1728±170 cells/mm(2)). CNQX, an inhibitor of KA receptors, suppressed this RGC death (3031±246 cells/mm(2)), but MK801, an inhibitor of NMDA receptors, did not (1769±212 cells/mm(2)). This indicated the involvement of KA receptor signaling in NC-induced RGC death. We found that NC- or KA-induced RGC death was significantly less in the ApoE-deficient mice than in the WT mice. These data suggest that the ApoE deficiency had a neuroprotective effect against axonal damage-induced RGC death by suppressing the KA receptor signaling. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Effect of endocannabinoid signalling on cell fate: life, death, differentiation and proliferation of brain cells.

    PubMed

    Garcia-Arencibia, Moises; Molina-Holgado, Eduardo; Molina-Holgado, Francisco

    2018-05-24

    Cell fate events are regulated by different endogenous developmental factors such as the cell micro-environment, external or remote signals and epigenetic factors. Among the many regulatory factors, endocannabinoid-associated signalling pathways are known to conduct several of these events in the developing nervous system and in the adult brain. Interestingly, endocannabinoids exert modulatory actions in both physiological and pathological conditions. Endocannabinoid signalling can promote cell survival by acting on non-transformed brain cells (neurons, astrocytes or oligodendrocytes) and can have either a protumoural or antitumoural effect on transformed cells. Moreover, endocannabinoids are able to attenuate the detrimental effects on neurogenesis and neuroinflammation associated with ageing. Thus, the endocannabinoid system emerges as an important regulator of cell fate, controlling cell survival/cell death decisions depending on the cell type and its environment. © 2018 The British Pharmacological Society.

  15. The anti-caspase inhibitor Q-VD-OPH prevents AIDS disease progression in SIV-infected rhesus macaques.

    PubMed

    Laforge, Mireille; Silvestre, Ricardo; Rodrigues, Vasco; Garibal, Julie; Campillo-Gimenez, Laure; Mouhamad, Shahul; Monceaux, Valérie; Cumont, Marie-Christine; Rabezanahary, Henintsoa; Pruvost, Alain; Cordeiro-da-Silva, Anabela; Hurtrel, Bruno; Silvestri, Guido; Senik, Anna; Estaquier, Jérôme

    2018-04-02

    Apoptosis has been proposed as a key mechanism responsible for CD4+ T cell depletion and immune dysfunction during HIV infection. We demonstrated that Q-VD-OPH, a caspase inhibitor, inhibits spontaneous and activation-induced death of T cells from SIV-infected rhesus macaques (RMs). When administered during the acute phase of infection, Q-VD-OPH was associated with (a) reduced levels of T cell death, (b) preservation of CD4+/CD8+ T cell ratio in lymphoid organs and in the gut, (c) maintenance of memory CD4+ T cells, and (d) increased specific CD4+ T cell response associated with the expression of cytotoxic molecules. Although therapy was limited to the acute phase of infection, Q-VD-OPH-treated RMs showed lower levels of both viral load and cell-associated SIV DNA as compared with control SIV-infected RMs throughout the chronic phase of infection, and prevented the development of AIDS. Overall, our data demonstrate that Q-VD-OPH injection in SIV-infected RMs may represent an adjunctive therapeutic agent to control HIV infection and delaying disease progression to AIDS.

  16. Photochemical Targeting Of Phagocytic Trabecular Meshwork Cells Using Chlorin E6 Coupled Microspheres

    NASA Astrophysics Data System (ADS)

    Latina, M. A.; Kobsa, P. H.; Rakestraw, S. L.; Crean, E. A.; Hasan, T.; Yarmush, M. L.

    1989-03-01

    We have investigated a novel and efficient delivery system utilizing photosensitizer-coupled-latex microspheres to photochemically target and kill phagocytic trabecular meshwork (TM) cells. TM cells are the most actively phagocytic cells within the anterior chamber of the eye and are located within an optically accessible discrete band. This delivery system, along with the property of cell photocytosis, will achieve double selectivity by combining preferential localization of the photosensitizer to the target cells with spatial localization of illumination on the target cells. All experiments were performed with preconfluent bovine TM cells, 3rd to 4th passage, plated in 15 mm wells. Chlorin e6 monoethylene diamine monoamide was conjugated to the surface of 1.0 Am MX Duke Scientific fluorescent latex microspheres. Spectroscopic analysis revealed an average of 1.3 x 10 -17 moles of chlorin e6 per microsphere. TM cells were incubated for 18 hours with 5 x 10 7 microspheres/ml in MEM with 10% FCS, washed with MEM, and irradiated through fresh media using an argon-pumped dye laser emitting .2 W at 660 nm. A dose-survival study indicated that energy doses of 10 J/cm2 or greater resulted in greater than 95% cell death as determined by ethidium bromide exclusion. Cell death could be demonstrated as early as 4 hours post-irradiation. TM cells incubated with a solution of chlorin e6 at a concentration equal to that conjugated to the microspheres showed no cell death. Unirradiated controls also showed no cell death.

  17. Interrogating the relevance of mitochondrial apoptosis for vertebrate development and postnatal tissue homeostasis

    PubMed Central

    Kaufmann, Thomas; Villunger, Andreas

    2016-01-01

    “Programmed cell death or ‘apoptosis’ is critical for organogenesis during embryonic development and tissue homeostasis in the adult. Its deregulation can contribute to a broad range of human pathologies, including neurodegeneration, cancer, or autoimmunity…” These or similar phrases have become generic opening statements in many reviews and textbooks describing the physiological relevance of apoptotic cell death. However, while the role in disease has been documented beyond doubt, facilitating innovative drug discovery, we wonder whether the former is really true. What goes wrong in vertebrate development or in adult tissue when the main route to apoptotic cell death, controlled by the BCL2 family, is impaired? Such scenarios have been mimicked by deletion of one or more prodeath genes within the BCL2 family, and gene targeting studies in mice exploring the consequences have been manifold. Many of these studies were geared toward understanding the role of BCL2 family proteins and mitochondrial apoptosis in disease, whereas fewer focused in detail on their role during normal development or tissue homeostasis, perhaps also due to an irritating lack of phenotype. Looking at these studies, the relevance of classical programmed cell death by apoptosis for development appears rather limited. Together, these many studies suggest either highly selective and context-dependent contributions of mitochondrial apoptosis or significant redundancy with alternative cell death mechanisms, as summarized and discussed here. PMID:27798841

  18. Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury

    PubMed Central

    Sarkar, Chinmoy; Zhao, Zaorui; Aungst, Stephanie; Sabirzhanov, Boris; Faden, Alan I; Lipinski, Marta M

    2015-01-01

    Dysregulation of autophagy contributes to neuronal cell death in several neurodegenerative and lysosomal storage diseases. Markers of autophagy are also increased after traumatic brain injury (TBI), but its mechanisms and function are not known. Following controlled cortical impact (CCI) brain injury in GFP-Lc3 (green fluorescent protein-LC3) transgenic mice, we observed accumulation of autophagosomes in ipsilateral cortex and hippocampus between 1 and 7 d. This accumulation was not due to increased initiation of autophagy but rather to a decrease in clearance of autophagosomes, as reflected by accumulation of the autophagic substrate SQSTM1/p62 (sequestosome 1). This was confirmed by ex vivo studies, which demonstrated impaired autophagic flux in brain slices from injured as compared to control animals. Increased SQSTM1 peaked at d 1–3 but resolved by d 7, suggesting that the defect in autophagy flux is temporary. The early impairment of autophagy is at least in part caused by lysosomal dysfunction, as evidenced by lower protein levels and enzymatic activity of CTSD (cathepsin D). Furthermore, immediately after injury both autophagosomes and SQSTM1 accumulated predominantly in neurons. This was accompanied by appearance of SQSTM1 and ubiquitin-positive puncta in the affected cells, suggesting that, similar to the situation observed in neurodegenerative diseases, impaired autophagy may contribute to neuronal injury. Consistently, GFP-LC3 and SQSTM1 colocalized with markers of both caspase-dependent and caspase-independent cell death in neuronal cells proximal to the injury site. Taken together, our data indicated for the first time that autophagic clearance is impaired early after TBI due to lysosomal dysfunction, and correlates with neuronal cell death. PMID:25484084

  19. What makes a natural clay antibacterial?

    USGS Publications Warehouse

    Williams, Lynda B.; Metge, David W.; Eberl, Dennis D.; Harvey, Ronald W.; Turner, Amanda G.; Prapaipong, Panjai; Port-Peterson, Amisha T.

    2011-01-01

    Chemical analyses of E. coli killed by aqueous leachates of an antibacterial clay show that intracellular concentrations of Fe and P are elevated relative to controls. Phosphorus uptake by the cells supports a regulatory role of polyphosphate or phospholipids in controlling Fe2+. Fenton reaction products can degrade critical cell components, but we deduce that extracellular processes do not cause cell death. Rather, Fe2+ overwhelms outer membrane regulatory proteins and is oxidized when it enters the cell, precipitating Fe3+ and producing lethal hydroxyl radicals.

  20. In Vitro Antiproliferative Effect of the Acetone Extract of Rubus fairholmianus Gard. Root on Human Colorectal Cancer Cells

    PubMed Central

    Plackal Adimuriyil George, Blassan; Tynga, Ivan Mfouo

    2015-01-01

    Plants and plant derived products exert chemopreventive effects on various cancer cell lines by the induction of cell death mechanisms. The effects of root acetone extract of Rubus fairholmianus (RFRA) on the proliferation of human colorectal cancer (Caco-2) cells have been investigated in this study. The extract led to a dose dependent decrease in both viability and proliferation and increased cytotoxicity using trypan blue exclusion, adenosine 5′-triphosphate (ATP), and lactate dehydrogenase (LDH) assay. The morphological features of the treated cells were supportive for the antiproliferative activity. The Annexin V/propidium iodide staining indicated that R. fairholmianus induced toxic effects in Caco-2 cells and the percentages of the early and late apoptotic population significantly increased when compared with control cells. Also we studied the apoptosis inducing ability of the extract by analysing caspase 3/7 activity and the induction of cell death via the effector caspases was confirmed; the activity increased in treated cells compared with control. Thus the present findings highlight that the R. fairholmianus root acetone extract exhibits antiproliferative activity on Caco-2 cells by the induction of apoptosis via caspase dependent pathway. PMID:26078938

  1. Mammalian follicular development and atresia: role of apoptosis.

    PubMed

    Asselin, E; Xiao, C W; Wang, Y F; Tsang, B K

    2000-01-01

    The regulation of follicular development and atresia is a complex process and involves interactions between endocrine factors (gonadotropins) and intraovarian regulators (sex steroids, growth factors and cytokines) in the control of follicular cell fate (i.e. proliferation, differentiation and programmed cell death). Granulosa and theca cells are key players in this fascinating process. As atresia is the fate of most follicles, understanding of how these physiological regulators participate in determining the destiny of the follicle (to degenerate or to ovulate) at cellular and subcellular levels is fundamental. This short review summarizes the role of intraovarian modulators of programmed cell death in the induction of atresia during follicular development. Copyright 2000 S. Karger AG, Basel

  2. Inhibition of glioma growth by minocycline is mediated through endoplasmic reticulum stress-induced apoptosis and autophagic cell death

    PubMed Central

    Liu, Wei-Ting; Huang, Chih-Yuan; Lu, I-Chen; Gean, Po-Wu

    2013-01-01

    Background We have reported that minocycline (Mino) induced autophagic death in glioma cells. In the present study, we characterize the upstream regulators that control autophagy and switch cell death from autophagic to apoptotic. Methods Western blotting and immunofluorescence were used to detect the expressions of eukaryotic translation initiation factor 2α (eIF2α), transcription factor GADD153 (CHOP), and glucose-regulated protein 78 (GRP78). Short hairpin (sh)RNA was used to knock down eIF2α or CHOP expression. Autophagy was assessed by the conversion of light chain (LC)3-I to LC3-II and green fluorescent protein puncta formation. An intracranial mouse model and bioluminescent imaging were used to assess the effect of Mino on tumor growth and survival time of mice. Results The expression of GRP78 in glioma was high, whereas in normal glia it was low. Mino treatment increased GRP78 expression and reduced binding of GRP78 with protein kinase-like endoplasmic reticulum kinase. Subsequently, Mino increased eIF2α phosphorylation and CHOP expression. Knockdown of eIF2α or CHOP reduced Mino-induced LC3-II conversion and glioma cell death. When autophagy was inhibited, Mino induced cell death in a caspase-dependent manner. Rapamycin in combination with Mino produced synergistic effects on LC3 conversion, reduction of the Akt/mTOR/p70S6K pathway, and glioma cell death. Bioluminescent imaging showed that Mino inhibited the growth of glioma and prolonged survival time and that these effects were blocked by shCHOP. Conclusions Mino induced autophagy by eliciting endoplasmic reticulum stress response and switched cell death from autophagy to apoptosis when autophagy was blocked. These results coupled with clinical availability and a safe track record make Mino a promising agent for the treatment of malignant gliomas. PMID:23787763

  3. The contribution of apoptosis and necrosis in freezing injury of sea urchin embryonic cells.

    PubMed

    Boroda, Andrey V; Kipryushina, Yulia O; Yakovlev, Konstantin V; Odintsova, Nelly A

    2016-08-01

    Sea urchins have recently been reported to be a promising tool for investigations of oxidative stress, UV light perturbations and senescence. However, few available data describe the pathway of cell death that occurs in sea urchin embryonic cells after cryopreservation. Our study is focused on the morphological and functional alterations that occur in cells of these animals during the induction of different cell death pathways in response to cold injury. To estimate the effect of cryopreservation on sea urchin cell cultures and identify the involved cell death pathways, we analyzed cell viability (via trypan blue exclusion test, MTT assay and DAPI staining), caspase activity (via flow cytometry and spectrophotometry), the level of apoptosis (via annexin V-FITC staining), and cell ultrastructure alterations (via transmission electron microscopy). Using general caspase detection, we found that the level of caspase activity was low in unfrozen control cells, whereas the number of apoptotic cells with activated caspases rose after freezing-thawing depending on cryoprotectants used, also as the number of dead cells and cells in a late apoptosis. The data using annexin V-binding assay revealed a very high apoptosis level in all tested samples, even in unfrozen cells (about 66%). Thus, annexin V assay appears to be unsuitable for sea urchin embryonic cells. Typical necrotic cells with damaged mitochondria were not detected after freezing in sea urchin cell cultures. Our results assume that physical cell disruption but not freezing-induced apoptosis or necrosis is the predominant reason of cell death in sea urchin cultures after freezing-thawing with any cryoprotectant combination. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Yeast as a model to study apoptosis?

    PubMed

    Fleury, Christophe; Pampin, Mathieu; Tarze, Agathe; Mignotte, Bernard

    2002-02-01

    Programmed cell death (PCD) serves as a major mechanism for the precise regulation of cell numbers, and as a defense mechanism to remove unwanted and potentially dangerous cells. Despite the striking heterogeneity of cell death induction pathways, the execution of the death program is often associated with characteristic morphological and biochemical changes termed apoptosis. Although for a long time the absence of mitochondrial changes was considered as a hallmark of apoptosis, mitochondria appear today as the central executioner of programmed cell death. This crucial position of mitochondria in programmed cell death control is not due to a simple loss of function (deficit in energy supplying), but rather to an active process in the regulation of effector mechanisms. The large diversity of regulators of apoptosis in mammals and their numerous interactions complicate the analysis of their individual functions. Yeast, eukaryotic but unicellular organism, lack the main regulators of apoptosis (caspases, Bcl-2 family members, ...) found in mammals. This absence render them a powerful tool for heterologous expression, functional studies, and even cloning of new regulators of apoptosis. Great advances have thus been made in our understanding of the molecular mechanisms of Bcl-2 family members interactions with themselves and other cellular proteins, specially thanks to the two hybrid system and the easy manipulation of yeast (molecular biology and genetics). This review will focus on the use of yeast as a tool to identify new regulators and study function of mammalian apoptosis regulators.

  5. mTOR kinase inhibitor pp242 causes mitophagy terminated by apoptotic cell death in E1A-Ras transformed cells.

    PubMed

    Gordeev, Serguei A; Bykova, Tatiana V; Zubova, Svetlana G; Bystrova, Olga A; Martynova, Marina G; Pospelov, Valery A; Pospelova, Tatiana V

    2015-12-29

    mTOR is a critical target for controlling cell cycle progression, senescence and cell death in mammalian cancer cells. Here we studied the role of mTOR-dependent autophagy in implementating the antiprolifrative effect of mTORC1-specific inhibitor rapamycin and ATP-competitive mTOR kinase inhibitor pp242. We carried out a comprehensive analysis of pp242- and rapamycin-induced autophagy in ERas tumor cells. Rapamycin exerts cytostatic effect on ERas tumor cells, thus causing a temporary and reversible cell cycle arrest, activation of non-selective autophagy not accompanied by cell death. The rapamycin-treated cells are able to continue proliferation after drug removal. The ATP-competitive mTORC1/mTORC2 kinase inhibitor pp242 is highly cytotoxic by suppressing the function of mTORC1-4EBP1 axis and mTORC1-dependent phosphorylation of mTORC1 target--ULK1-Ser757 (Atg1). In contrast to rapamycin, pp242 activates the selective autophagy targeting mitochondria (mitophagy). The pp242-induced mitophagy is accompanied by accumulation of LC3 and conversion of LC3-I form to LC3-II. However reduced degradation of p62/SQSTM indicates abnormal flux of autophagic process. According to transmission electron microscopy data, short-term pp242-treated ERas cells exhibit numerous heavily damaged mitochondria, which are included in single membrane-bound autophagic/autolysophagic vacuoles (mitophagy). Despite the lack of typical for apoptosis features, ERas-treated cells with induced mitophagy revealed the activation of caspase 3, 9 and nucleosomal DNA fragmentation. Thus, pp242 activates autophagy with suppressed later stages, leading to impaired recycling and accumulation of dysfunctional mitochondria and cell death. Better understanding of how autophagy determines the fate of a cell--survival or cell death, can help to development of new strategy for cancer therapy.

  6. The apical complex couples cell fate and cell survival to cerebral cortical development

    PubMed Central

    Kim, Seonhee; Lehtinen, Maria K.; Sessa, Alessandro; Zappaterra, Mauro; Cho, Seo-Hee; Gonzalez, Dilenny; Boggan, Brigid; Austin, Christina A.; Wijnholds, Jan; Gambello, Michael J.; Malicki, Jarema; LaMantia, Anthony S.; Broccoli, Vania; Walsh, Christopher A.

    2010-01-01

    Cortical development depends upon tightly controlled cell fate and cell survival decisions that generate a functional neuronal population, but the coordination of these two processes is poorly understood. Here we show that conditional removal of a key apical complex protein, Pals1, causes premature withdrawal from the cell cycle, inducing excessive generation of early-born postmitotic neurons followed by surprisingly massive and rapid cell death, leading to the abrogation of virtually the entire cortical structure. Pals1 loss shows exquisite dosage sensitivity, so that heterozygote mutants show an intermediate phenotype on cell fate and cell death. Loss of Pals1 blocks essential cell survival signals, including the mammalian target of rapamycin (mTOR) pathway, while mTORC1 activation partially rescues Pals1 deficiency. These data highlight unexpected roles of the apical complex protein Pals1 in cell survival through interactions with mTOR signaling. PMID:20399730

  7. Activity of Uncleaved Caspase-8 Controls Anti-bacterial Immune Defense and TLR-Induced Cytokine Production Independent of Cell Death.

    PubMed

    Philip, Naomi H; DeLaney, Alexandra; Peterson, Lance W; Santos-Marrero, Melanie; Grier, Jennifer T; Sun, Yan; Wynosky-Dolfi, Meghan A; Zwack, Erin E; Hu, Baofeng; Olsen, Tayla M; Rongvaux, Anthony; Pope, Scott D; López, Carolina B; Oberst, Andrew; Beiting, Daniel P; Henao-Mejia, Jorge; Brodsky, Igor E

    2016-10-01

    Caspases regulate cell death programs in response to environmental stresses, including infection and inflammation, and are therefore critical for the proper operation of the mammalian immune system. Caspase-8 is necessary for optimal production of inflammatory cytokines and host defense against infection by multiple pathogens including Yersinia, but whether this is due to death of infected cells or an intrinsic role of caspase-8 in TLR-induced gene expression is unknown. Caspase-8 activation at death signaling complexes results in its autoprocessing and subsequent cleavage and activation of its downstream apoptotic targets. Whether caspase-8 activity is also important for inflammatory gene expression during bacterial infection has not been investigated. Here, we report that caspase-8 plays an essential cell-intrinsic role in innate inflammatory cytokine production in vivo during Yersinia infection. Unexpectedly, we found that caspase-8 enzymatic activity regulates gene expression in response to bacterial infection as well as TLR signaling independently of apoptosis. Using newly-generated mice in which caspase-8 autoprocessing is ablated (Casp8DA/DA), we now demonstrate that caspase-8 enzymatic activity, but not autoprocessing, mediates induction of inflammatory cytokines by bacterial infection and a wide variety of TLR stimuli. Because unprocessed caspase-8 functions in an enzymatic complex with its homolog cFLIP, our findings implicate the caspase-8/cFLIP heterodimer in control of inflammatory cytokines during microbial infection, and provide new insight into regulation of antibacterial immune defense.

  8. Salicylic Acid–Independent ENHANCED DISEASE SUSCEPTIBILITY1 Signaling in Arabidopsis Immunity and Cell Death Is Regulated by the Monooxygenase FMO1 and the Nudix Hydrolase NUDT7[W

    PubMed Central

    Bartsch, Michael; Gobbato, Enrico; Bednarek, Pawel; Debey, Svenja; Schultze, Joachim L.; Bautor, Jaqueline; Parker, Jane E.

    2006-01-01

    Arabidopsis thaliana ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) controls defense activation and programmed cell death conditioned by intracellular Toll-related immune receptors that recognize specific pathogen effectors. EDS1 is also needed for basal resistance to invasive pathogens by restricting the progression of disease. In both responses, EDS1, assisted by its interacting partner, PHYTOALEXIN-DEFICIENT4 (PAD4), regulates accumulation of the phenolic defense molecule salicylic acid (SA) and other as yet unidentified signal intermediates. An Arabidopsis whole genome microarray experiment was designed to identify genes whose expression depends on EDS1 and PAD4, irrespective of local SA accumulation, and potential candidates of an SA-independent branch of EDS1 defense were found. We define two new immune regulators through analysis of corresponding Arabidopsis loss-of-function insertion mutants. FLAVIN-DEPENDENT MONOOXYGENASE1 (FMO1) positively regulates the EDS1 pathway, and one member (NUDT7) of a family of cytosolic Nudix hydrolases exerts negative control of EDS1 signaling. Analysis of fmo1 and nudt7 mutants alone or in combination with sid2-1, a mutation that severely depletes pathogen-induced SA production, points to SA-independent functions of FMO1 and NUDT7 in EDS1-conditioned disease resistance and cell death. We find instead that SA antagonizes initiation of cell death and stunting of growth in nudt7 mutants. PMID:16531493

  9. Multiple Modes of Cell Death Discovered in a Prokaryotic (Cyanobacterial) Endosymbiont

    PubMed Central

    Zheng, Weiwen; Rasmussen, Ulla; Zheng, Siping; Bao, Xiaodong; Chen, Bin; Gao, Yuan; Guan, Xiong; Larsson, John; Bergman, Birgitta

    2013-01-01

    Programmed cell death (PCD) is a genetically-based cell death mechanism with vital roles in eukaryotes. Although there is limited consensus on similar death mode programs in prokaryotes, emerging evidence suggest that PCD events are operative. Here we present cell death events in a cyanobacterium living endophytically in the fern Azolla microphylla, suggestive of PCD. This symbiosis is characterized by some unique traits such as a synchronized development, a vertical transfer of the cyanobacterium between plant generations, and a highly eroding cyanobacterial genome. A combination of methods was used to identify cell death modes in the cyanobacterium. Light- and electron microscopy analyses showed that the proportion of cells undergoing cell death peaked at 53.6% (average 20%) of the total cell population, depending on the cell type and host developmental stage. Biochemical markers used for early and late programmed cell death events related to apoptosis (Annexin V-EGFP and TUNEL staining assays), together with visualization of cytoskeleton alterations (FITC-phalloidin staining), showed that all cyanobacterial cell categories were affected by cell death. Transmission electron microscopy revealed four modes of cell death: apoptotic-like, autophagic-like, necrotic-like and autolytic-like. Abiotic stresses further enhanced cell death in a dose and time dependent manner. The data also suggest that dynamic changes in the peptidoglycan cell wall layer and in the cytoskeleton distribution patterns may act as markers for the various cell death modes. The presence of a metacaspase homolog (domain p20) further suggests that the death modes are genetically programmed. It is therefore concluded that multiple, likely genetically programmed, cell death modes exist in cyanobacteria, a finding that may be connected with the evolution of cell death in the plant kingdom. PMID:23822984

  10. Age-dependent acute interference with stem and progenitor cell proliferation in the hippocampus after exposure to 1800 MHz electromagnetic radiation.

    PubMed

    Xu, Falin; Bai, Qiongdan; Zhou, Kai; Ma, Li; Duan, Jiajia; Zhuang, Fangli; Xie, Cuicui; Li, Wenli; Zou, Peng; Zhu, Changlian

    2017-01-01

    To investigate the effects of exposure to an 1800 MHz electromagnetic field on cell death and cell proliferation in the developing brain, postnatal day 7 (P7) and P21 healthy Kunming mice were randomly assigned into the experimental and control groups. The experimental groups were exposed to an 1800 MHz electromagnetic field for 8 h daily for three consecutive days. The thymidine analog 5-bromo-2-deoxyuridine (BrdU) was injected intraperitoneally 1 h before each exposure session, and all animals were sacrificed 24 h after the last exposure. Cell death and proliferation markers were detected by immunohistochemistry in the dentate gyrus of the hippocampus. Electromagnetic exposure has no influence on cell death in the dentate gyrus of the hippocampus in P7 and P21 mice as indicated by active caspase-3 immunostaining and Fluoro-Jade labeling. The basal cell proliferation in the hippocampus was higher in P7 than in P21 mice as indicated by the number of cells labeled with BrdU and by immunohistochemical staining for phosphor-histone H3 (PHH3) and brain lipid-binding protein (BLBP). Electromagnetic exposure stimulated DNA synthesis in P7 neural stem and progenitor cells, but reduced cell division and the total number of stem cells in the hippocampus as indicated by increased BrdU labeling and reduced PHH3 and BLBP labeling compared to P7 control mice. There were no significant changes in cell proliferation in P21 mice after exposure to the electromagnetic field. These results indicate that interference with stem cell proliferation upon short-term exposure to an 1800 MHz electromagnetic field depends on the developmental stage of the brain.

  11. Die another way – non-apoptotic mechanisms of cell death

    PubMed Central

    Tait, Stephen W. G.; Ichim, Gabriel; Green, Douglas R.

    2014-01-01

    ABSTRACT Regulated, programmed cell death is crucial for all multicellular organisms. Cell death is essential in many processes, including tissue sculpting during embryogenesis, development of the immune system and destruction of damaged cells. The best-studied form of programmed cell death is apoptosis, a process that requires activation of caspase proteases. Recently it has been appreciated that various non-apoptotic forms of cell death also exist, such as necroptosis and pyroptosis. These non-apoptotic cell death modalities can be either triggered independently of apoptosis or are engaged should apoptosis fail to execute. In this Commentary, we discuss several regulated non-apoptotic forms of cell death including necroptosis, autophagic cell death, pyroptosis and caspase-independent cell death. We outline what we know about their mechanism, potential roles in vivo and define outstanding questions. Finally, we review data arguing that the means by which a cell dies actually matters, focusing our discussion on inflammatory aspects of cell death. PMID:24833670

  12. Cell Death and Cell Death Responses in Liver Disease: Mechanisms and Clinical Relevance

    PubMed Central

    Luedde, Tom; Kaplowitz, Neil; Schwabe, Robert F.

    2015-01-01

    Summary Hepatocellular death is present in almost all types of human liver disease and is used as a sensitive parameter for the detection of acute and chronic liver disease of viral, toxic, metabolic, or autoimmune origin. Clinical data and animal models suggest that hepatocyte death is the key trigger of liver disease progression, manifested by the subsequent development of inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma. Modes of hepatocellular death differ substantially between liver diseases. Different modes of cell death such as apoptosis, necrosis, and necroptosis trigger specific cell death responses and promote progression of liver disease through distinct mechanisms. In this review, we first discuss molecular mechanisms by which different modes of cell death, damage-associated molecular patterns, and specific cell death responses contribute to the development of liver disease. We then review the clinical relevance of cell death, focusing on biomarkers; the contribution of cell death to drug-induced, viral, and fatty liver disease and liver cancer; and evidence for cell death pathways as therapeutic targets. PMID:25046161

  13. The Enemy within: Innate Surveillance-Mediated Cell Death, the Common Mechanism of Neurodegenerative Disease

    PubMed Central

    Richards, Robert I.; Robertson, Sarah A.; O'Keefe, Louise V.; Fornarino, Dani; Scott, Andrew; Lardelli, Michael; Baune, Bernhard T.

    2016-01-01

    Neurodegenerative diseases comprise an array of progressive neurological disorders all characterized by the selective death of neurons in the central nervous system. Although, rare (familial) and common (sporadic) forms can occur for the same disease, it is unclear whether this reflects several distinct pathogenic pathways or the convergence of different causes into a common form of nerve cell death. Remarkably, neurodegenerative diseases are increasingly found to be accompanied by activation of the innate immune surveillance system normally associated with pathogen recognition and response. Innate surveillance is the cell's quality control system for the purpose of detecting such danger signals and responding in an appropriate manner. Innate surveillance is an “intelligent system,” in that the manner of response is relevant to the magnitude and duration of the threat. If possible, the threat is dealt with within the cell in which it is detected, by degrading the danger signal(s) and restoring homeostasis. If this is not successful then an inflammatory response is instigated that is aimed at restricting the spread of the threat by elevating degradative pathways, sensitizing neighboring cells, and recruiting specialized cell types to the site. If the danger signal persists, then the ultimate response can include not only the programmed cell death of the original cell, but the contents of this dead cell can also bring about the death of adjacent sensitized cells. These responses are clearly aimed at destroying the ability of the detected pathogen to propagate and spread. Innate surveillance comprises intracellular, extracellular, non-cell autonomous and systemic processes. Recent studies have revealed how multiple steps in these processes involve proteins that, through their mutation, have been linked to many familial forms of neurodegenerative disease. This suggests that individuals harboring these mutations may have an amplified response to innate-mediated damage in neural tissues, and renders innate surveillance mediated cell death a plausible common pathogenic pathway responsible for neurodegenerative diseases, in both familial and sporadic forms. Here we have assembled evidence in favor of the hypothesis that neurodegenerative disease is the cumulative result of chronic activation of the innate surveillance pathway, triggered by endogenous or environmental danger or damage associated molecular patterns in a progressively expanding cascade of inflammation, tissue damage and cell death. PMID:27242399

  14. Mitochondrial fission proteins regulate programmed cell death in yeast.

    PubMed

    Fannjiang, Yihru; Cheng, Wen-Chih; Lee, Sarah J; Qi, Bing; Pevsner, Jonathan; McCaffery, J Michael; Hill, R Blake; Basañez, Gorka; Hardwick, J Marie

    2004-11-15

    The possibility that single-cell organisms undergo programmed cell death has been questioned in part because they lack several key components of the mammalian cell death machinery. However, yeast encode a homolog of human Drp1, a mitochondrial fission protein that was shown previously to promote mammalian cell death and the excessive mitochondrial fragmentation characteristic of apoptotic mammalian cells. In support of a primordial origin of programmed cell death involving mitochondria, we found that the Saccharomyces cerevisiae homolog of human Drp1, Dnm1, promotes mitochondrial fragmentation/degradation and cell death following treatment with several death stimuli. Two Dnm1-interacting factors also regulate yeast cell death. The WD40 repeat protein Mdv1/Net2 promotes cell death, consistent with its role in mitochondrial fission. In contrast to its fission function in healthy cells, Fis1 unexpectedly inhibits Dnm1-mediated mitochondrial fission and cysteine protease-dependent cell death in yeast. Furthermore, the ability of yeast Fis1 to inhibit mitochondrial fission and cell death can be functionally replaced by human Bcl-2 and Bcl-xL. Together, these findings indicate that yeast and mammalian cells have a conserved programmed death pathway regulated by a common molecular component, Drp1/Dnm1, that is inhibited by a Bcl-2-like function.

  15. Bcl-2△21 and Ac-DEVD-CHO Inhibit Death of Wheat Microspores

    PubMed Central

    Sinha, Rakesh K.; Pospíšil, Pavel; Maheshwari, Priti; Eudes, François

    2016-01-01

    Microspore cell death and low green plant production efficiency are an integral obstacle in the development of doubled haploid production in wheat. The aim of the current study was to determine the effect of anti-apoptotic recombinant human B-cell lymphoma-2 (Bcl-2△21) and caspase-3-inhibitor (Ac-DEVD-CHO) in microspore cell death in bread wheat cultivars AC Fielder and AC Andrew. Induction medium containing Bcl-2△21 and Ac-DEVD-CHO yielded a significantly higher number of viable microspores, embryo-like structures and total green plants in wheat cultivars AC Fielder and AC Andrew. Total peroxidase activity was lower in Bcl-2△21 treated microspore cultures at 96 h of treatment compared to control and Ac-DEVD-CHO. Electron paramagnetic resonance study of total microspore protein showed a different scavenging activity for Bcl-2△21 and Ac-DEVD-CHO. Bcl-2△21 scavenged approximately 50% hydroxyl radical (HO•) formed, whereas Ac-DEVD-CHO scavenged approximately 20% of HO•. Conversely, reduced caspase-3-like activities were detected in the presence of Bcl-2△21 and Ac-DEVD-CHO, supporting the involvement of Bcl-2△21 and Ac-DEVD-CHO in increasing microspore viability by reducing oxidative stress and caspase-3-like activity. Our results indicate that Bcl-2△21 and Ac-DEVD-CHO protects cells from cell death following different pathways. Bcl-2△21 prevents cell damage by detoxifying HO• and suppressing caspase-3-like activity, while Ac-DEVD-CHO inhibits the cell death pathways by modulating caspase-like activity. PMID:28082995

  16. The importance of being dead: cell death mechanisms assessment in anti-sarcoma therapy.

    PubMed

    Rello-Varona, Santiago; Herrero-Martín, David; Lagares-Tena, Laura; López-Alemany, Roser; Mulet-Margalef, Núria; Huertas-Martínez, Juan; Garcia-Monclús, Silvia; García Del Muro, Xavier; Muñoz-Pinedo, Cristina; Tirado, Oscar Martínez

    2015-01-01

    Cell death can occur through different mechanisms, defined by their nature and physiological implications. Correct assessment of cell death is crucial for cancer therapy success. Sarcomas are a large and diverse group of neoplasias from mesenchymal origin. Among cell death types, apoptosis is by far the most studied in sarcomas. Albeit very promising in other fields, regulated necrosis and other cell death circumstances (as so-called "autophagic cell death" or "mitotic catastrophe") have not been yet properly addressed in sarcomas. Cell death is usually quantified in sarcomas by unspecific assays and in most cases the precise sequence of events remains poorly characterized. In this review, our main objective is to put into context the most recent sarcoma cell death findings in the more general landscape of different cell death modalities.

  17. Analysis of the role of GADD153 in the control of apoptosis in NS0 myeloma cells.

    PubMed

    Lengwehasatit, Idsada; Dickson, Alan J

    2002-12-30

    Apoptosis can limit the maximum production of recombinant protein expression from cultured mammalian cells. This article focuses on the links between nutrient deprivation, ER perturbation, the regulation of (growth arrest and DNA damage inducible gene 153) GADD153 expression and apoptosis. During batch culture, decreases in glucose and glutamine correlated with an increase in apoptotic cells. This event was paralleled by a simultaneous increase in GADD153 expression. The expression of GADD153 in batch culture was suppressed by the addition of nutrients and with fed-batch culture the onset of apoptosis was delayed but not completely prevented. In defined stress conditions, glucose deprivation had the greatest effect on cell death when compared to glutamine deprivation or the addition of tunicamycin (an inhibitor of glycosylation), added to generate endoplasmic reticulum stress. However, the contribution of apoptosis to overall cell death (as judged by morphology) was smaller in conditions of glucose deprivation than in glutamine deprivation or tunicamycin treatment. Transient activation of GADD153 expression was found to occur in response to all stresses and occurred prior to detection of the onset of cell death. These results imply that GADD153 expression is either a trigger for apoptosis or offers a valid indicator of the likelihood of cell death arising from stresses of relevance to the bioreactor environment. Copyright 2002 Wiley Periodicals, Inc.

  18. PsANT, the adenine nucleotide translocase of Puccinia striiformis, promotes cell death and fungal growth

    PubMed Central

    Tang, Chunlei; Wei, Jinping; Han, Qingmei; Liu, Rui; Duan, Xiaoyuan; Fu, Yanping; Huang, Xueling; Wang, Xiaojie; Kang, Zhensheng

    2015-01-01

    Adenine nucleotide translocase (ANT) is a constitutive mitochondrial component that is involved in ADP/ATP exchange and mitochondrion-mediated apoptosis in yeast and mammals. However, little is known about the function of ANT in pathogenic fungi. In this study, we identified an ANT gene of Puccinia striiformis f. sp. tritici (Pst), designated PsANT. The PsANT protein contains three typical conserved mitochondrion-carrier-protein (mito-carr) domains and shares more than 70% identity with its orthologs from other fungi, suggesting that ANT is conserved in fungi. Immuno-cytochemical localization confirmed the mitochondrial localization of PsANT in normal Pst hyphal cells or collapsed cells. Over-expression of PsANT indicated that PsANT promotes cell death in tobacco, wheat and fission yeast cells. Further study showed that the three mito-carr domains are all needed to induce cell death. qRT-PCR analyses revealed an in-planta induced expression of PsANT during infection. Knockdown of PsANT using a host-induced gene silencing system (HIGS) attenuated the growth and development of virulent Pst at the early infection stage but not enough to alter its pathogenicity. These results provide new insight into the function of PsANT in fungal cell death and growth and might be useful in the search for and design of novel disease control strategies. PMID:26058921

  19. Regulatory properties of polysaccharopeptide derived from Coriolus versicolor and its combined effect with ciclosporin on the homeostasis of human lymphocytes.

    PubMed

    Lee, Cheuk-Lun; Jiang, Pingping; Sit, Wai-Hung; Yang, Xiatong; Wan, Jennifer Man-Fan

    2010-08-01

    Lymphocyte homoeostasis is essential in inflammatory and autoimmune diseases. In search of natural fungal metabolites with effects on lymphocyte homoeostasis, we recently reported that polysaccharopeptide (PSP) from Coriolus versicolor exhibited ciclosporin-like activity in controlling aberrant lymphocyte activation. This object of this study was to investigate its effect on lymphocyte homoeostasis. This was done by investigating the mechanistic actions of PSP in relation to ciclosporin by performing cell cycle and cell death analysis of human lymphocytes in vitro. We investigated the effect of PSP in the presence and absence of ciclosporin on cell proliferation, cell cycle, cell death, immunophenotype and cell cycle regulatory proteins in human lymphocytes. The data showed that PSP exhibited homoeostatic activity by promoting and inhibiting the proliferation of resting and phytohaemagglutinin (PHA)-stimulated lymphocytes, respectively. PHA-stimulated lymphocytes exhibited G0/G1 cell cycle arrest that was accompanied by a reduction of cyclin E expression with PSP treatment. Both PSP and ciclosporin blocked the reduction of the CD4/CD8 ratio in stimulated lymphocytes. PSP did not induce cell death in human lymphocytes, but the suppression of the Fasreceptor suggested a protective role of PSP against extrinsic cell death signals. These homoeostatic effects were more potent with combined PSP and ciclosporin treatment than with either fungal metabolite alone. Collectively, the results reveal certain novel effects of PSP in lymphocyte homoeostasis and suggest potential as a specific immunomodulatory adjuvant for clinical applications in the treatment of autoimmune diseases.

  20. JunD/AP-1 Antagonizes the Induction of DAPK1 To Promote the Survival of v-Src-Transformed Cells.

    PubMed

    Maślikowski, Bart M; Wang, Lizhen; Wu, Ying; Fielding, Ben; Bédard, Pierre-André

    2017-01-01

    The increase in AP-1 activity is a hallmark of cell transformation by tyrosine kinases. Previously, we reported that blocking AP-1 using the c-Jun dominant negative mutant TAM67 induced senescence, adipogenesis, or apoptosis in v-Src-transformed chicken embryo fibroblasts (CEFs) whereas inhibition of JunD by short hairpin RNA (shRNA) specifically induced apoptosis. To investigate the role of AP-1 in Src-mediated transformation, we undertook a gene profiling study to characterize the transcriptomes of v-Src-transformed CEFs expressing either TAM67 or the JunD shRNA. Our study revealed a cluster of 18 probe sets upregulated exclusively in response to AP-1/JunD impairment and v-Src transformation. Four of these probe sets correspond to genes involved in the interferon pathway. One gene in particular, death-associated protein kinase 1 (DAPK1), is a C/EBPβ-regulated mediator of apoptosis in gamma interferon (IFN-γ)-induced cell death. Here, we show that inhibition of DAPK1 abrogates cell death in v-Src-transformed cells expressing the JunD shRNA. Chromatin immunoprecipitation data indicated that C/EBPβ was recruited to the DAPK1 promoter while the expression of a dominant negative mutant of C/EBPβ abrogated the induction of DAPK1 in response to the inhibition of AP-1. In contrast, as determined by chromatin immunoprecipitation (ChIP) assays, JunD was not detected on the DAPK1 promoter under any conditions, suggesting that JunD promotes survival by indirectly antagonizing the expression of DAPK1 in v-Src transformed cells. Transformation by the v-Src oncoprotein causes extensive changes in gene expression in primary cells such as chicken embryo fibroblasts. These changes, determining the properties of transformed cells, are controlled in part at the transcriptional level. Much attention has been devoted to transcription factors such as AP-1 and NF-κB and the control of genes associated with a more aggressive phenotype. In this report, we describe a novel mechanism of action determined by the JunD component of AP-1, a factor enhancing cell survival in v-Src-transformed cells. We show that the loss of JunD results in the aberrant activation of a genetic program leading to cell death. This program requires the activation of the tumor suppressor death-associated protein kinase 1 (DAPK1). Since DAPK1 is phosphorylated and inhibited by v-Src, these results highlight the importance of this kinase and the multiple mechanisms controlled by v-Src to antagonize the tumor suppressor function of DAPK1. Copyright © 2016 American Society for Microbiology.

  1. Paraptosis in human glioblastoma cell line induced by curcumin.

    PubMed

    Garrido-Armas, Monika; Corona, Juan Carlos; Escobar, Maria Luisa; Torres, Leda; Ordóñez-Romero, Francisco; Hernández-Hernández, Abrahan; Arenas-Huertero, Francisco

    2018-09-01

    Curcumin is a polyphenol compound extracted from Curcuma longa plant, is a molecule with pleiotropic effects that suppresses transformation, proliferation and metastasis of malignant tumors. Curcumin can cause different kinds of cell death depending of its concentration on the exposed cell type. Here we show that exposure of the glioblastoma cell line A172 to curcumin at 50 μM, the IC50, causes morphological change characteristic of paraptosis cell-death. Vesicles derived from the endoplasmic reticulum (ER) and low membrane potential of the mitochondria were constantly found in the exposed cells. Furthermore, changes in expression of the ER Stress Response (ERSR) genes IRE1 and ATF6, and the microRNAs (miRNAs) miR-27a, miR-222, miR-449 was observed after exposure to curcumin. AKT-Insulin and p53-BCL2 networks were predicted being modulated by the affected miRNAs. Furthermore, AKT protein levels reduction was confirmed. Our data, strongly suggest that curcumin exerts its cell-death properties by affecting the integrity of the reticulum, leading to paraptosis in the glioblastoma cells. These data unveils the versatility of curcumin to control cancer progression. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Safety and efficacy of autologous cell therapy in critical limb ischemia: a systematic review.

    PubMed

    Benoit, Eric; O'Donnell, Thomas F; Patel, Amit N

    2013-01-01

    Researchers have accumulated a decade of experience with autologous cell therapy in the treatment of critical limb ischemia (CLI). We conducted a systematic review of clinical trials in the literature to determine the safety and efficacy of cell therapy in CLI. We searched the literature for clinical trials of autologous cell therapy in CLI, including observational series of five or more patients to accrue a large pool of patients for safety analysis. Safety analysis included evaluation of death, cancer, unregulated angiogenesis, and procedural adverse events such as bleeding. Efficacy analysis included the clinical endpoints amputation and death as well as functional and surrogate endpoints. We identified 45 clinical trials, including seven RCTs, and 1,272 patients who received cell therapy. The overall adverse event rate was low (4.2%). Cell therapy patients did not have a higher mortality rate than control patients and demonstrated no increase in cancer incidence when analyzed against population rates. With regard to efficacy, cell therapy patients had a significantly lower amputation rate than control patients (OR 0.36, p = 0.0004). Cell therapy also demonstrated efficacy in a variety of functional and surrogate outcomes. Clinical trials differed in the proportion of patients with risk factors for clinical outcomes, and these influenced rates of amputation and death. Cell therapy presents a favorable safety profile with a low adverse event rate and no increase in severe events such as mortality and cancer and treatment with cell therapy decreases the risk of amputation. Cell therapy has a positive benefit-to-risk ratio in CLI and may be a valuable treatment option, particularly for those challenging patients who cannot undergo arterial reconstruction.

  3. Over-expression of Trxo1 increases the viability of tobacco BY-2 cells under H2O2 treatment.

    PubMed

    Ortiz-Espín, Ana; Locato, Vittoria; Camejo, Daymi; Schiermeyer, Andreas; De Gara, Laura; Sevilla, Francisca; Jiménez, Ana

    2015-09-01

    Reactive oxygen species (ROS), especially hydrogen peroxide, play a critical role in the regulation of plant development and in the induction of plant defence responses during stress adaptation, as well as in plant cell death. The antioxidant system is responsible for controlling ROS levels in these processes but redox homeostasis is also a key factor in plant cell metabolism under normal and stress situations. Thioredoxins (Trxs) are ubiquitous small proteins found in different cell compartments, including mitochondria and nuclei (Trxo1), and are involved in the regulation of target proteins through reduction of disulphide bonds, although their role under oxidative stress has been less well studied. This study describes over-expression of a Trxo1 for the first time, using a cell-culture model subjected to an oxidative treatment provoked by H2O2. Control and over-expressing PsTrxo1 tobacco (Nicotiana tabacum) BY-2 cells were treated with 35 mm H2O2 and the effects were analysed by studying the growth dynamics of the cultures together with oxidative stress parameters, as well as several components of the antioxidant systems involved in the metabolism of H2O2. Analysis of different hallmarks of programmed cell death was also carried out. Over-expression of PsTrxo1 caused significant differences in the response of TBY-2 cells to high concentrations of H2O2, namely higher and maintained viability in over-expressing cells, whilst the control line presented a severe decrease in viability and marked indications of oxidative stress, with generalized cell death after 3 d of treatment. In over-expressing cells, an increase in catalase activity, decreases in H2O2 and nitric oxide contents and maintenance of the glutathione redox state were observed. A decreased content of endogenous H2O2 may be responsible in part for the delayed cell death found in over-expressing cells, in which changes in oxidative parameters and antioxidants were less extended after the oxidative treatment. It is concluded that PsTrxo1 transformation protects TBY-2 cells from exogenous H2O2, thus increasing their viability via a process in which not only antioxidants but also Trxo1 seem to be involved. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Physician Education: Apoptosis.

    PubMed

    Kataoka; Tsuruo

    1996-01-01

    We have come to understand apoptosis as not merely a single form of cell death, but as a fundamental theme in cell biology that has far-reaching implications in the fields of physiology and pathology. At the present time, however, the mechanism of apoptosis is not clearly understood, as research into apoptosis is still at the initial stages. Nevertheless, the links between apoptosis and a variety of pathological conditions are gradually becoming clearer. In this article, we will provide a simple explanation of apoptosis and its mechanism as a novel concept of cell death and discuss the way in which apoptosis has been linked to a variety of pathological conditions. WHAT IS APOPTOSIS?: In normal tissue, cells that are no longer needed are rapidly eliminated without affecting the overall function of the tissue. In this process cells undergo an active and spontaneous suicide called programmed cell death. In fact, the majority of physiological cell deaths take the form of apoptosis. The word apoptosis is used, in contrast to necrosis, to describe the situation in which a cell actively pursues a course toward death upon receiving certain stimuli [1]. The morphological changes of apoptosis found in most cell types first involve contraction in cell volume and condensation of the nucleus. When this happens the intracellular organelles such as the mitochondria retain their normal morphology. As apoptosis proceeds, blebbing of the plasma membrane occurs, and the nucleus becomes fragmented. Finally, the cell itself fragments to form apoptotic bodies that are engulfed by nearby phagocytes. With respect to biochemical changes, it is known that the chromosomes become fragmented into nucleosome units, and DNA forms characteristic ladder patterns when subjected to agarose gel electrophoresis. MECHANISM OF APOPTOSIS: It has been reported that apoptosis is induced in various cells by many kinds of irritations, but the precise mechanism is still unclear. Cell injuries that induce apoptosis include those that cause DNA damage such as radiation and anticancer drugs, those that are mediated by the TNF receptor and Fas receptor (the so-called "death signal receptors"), and the deprivation of cytokines that supply survival signals such as IL-3 and erythropoietin. The tumor suppressor gene p53 plays a very important role in apoptosis induced by damage to DNA. This has been demonstrated by studying resistance to apoptosis of cells derived from p53 knockout mice [2]. Other than the irritations that induce apoptosis, molecules that have been strongly implicated as major players in the drama of apoptosis include the Bcl-2 family proteins and the IL-1 converting enzyme (ICE) and its homolog proteases (caspase family). Both groups of proteins show homology with proteins that affect cell death in nematodes. It is believed that molecules that contribute to cell death have been well conserved in multicellular organisms all the way from the relatively primitive nematodes to mammals including humans. It was discovered that Bcl-2 suppressed apoptosis induced in IL-3 dependent cells by deprivation of IL-3 [3]. It has since become the gene around which apoptosis research revolves. Recently, it has become clear that cell death involving the Bcl-2 protein is under the control of similar proteins from the same family [4]. It is interesting that the phenomenon of cell death may be regulated by the balance of the molecules involved in it. APOPTOSIS ABNORMALITIES AND DISEASE: Physiological cell death plays a major role in the growth and permanent maintenance of the human body [5]. In the process of forming the nervous system, neurons that do not form proper connections die. Physiological cell death also accompanies the removal of virus-infected cells by cytotoxic T cells, the elimination of autoreactive immune cells, the formation of the gut, the reconstitution of cartilage and bone, etc. When physiological cell death that normally should occur is inhibited, inappropriate physiological cell death may occur that is harmful to the body and forms the basis of disease. For example, in patients with neural degenerative disorders such as Alzheimer's disease and Parkinson's disease, we can find premature cell death in a particular subset of neurons. The death of T cells in AIDS patients is also a form of physiological cell death. Inhibition of cell death in the immune system enables the survival of autoreactive B cells and T cells, and is therefore a cause of autoimmune disorders. Apoptosis has been particularly linked to cancer. Normal cells are programmed for death if they are subjected to many types of non-physiological stress such as anticancer drugs or radiation, if they become isolated from surrounding cells and are unable to receive their tissue-specific survival signals [6], or if oncogenes are expressed haphazardly [7]. On the other hand, it is believed that the ability to survive is enhanced in transformed cancer cells because they are more resistant to apoptosis, they exhibit resistance to anticancer drugs, they are no longer dependent on survival signals, and they can metastasize. Therefore, the cancer progresses as the cancer cells maintain the proliferative superiority they acquire from their oncogenes. In other words, when cancer cells become resistant to apoptosis, they become resistant to treatment, metastasize, and proliferate destructively. The concept that the malignancy of cancer is due to its resistance to apoptosis is a relatively new one and is worthy of further study.

  5. Homeostasis of naive and memory CD4+ T cells: IL-2 and IL-7 differentially regulate the balance between proliferation and Fas-mediated apoptosis.

    PubMed

    Jaleco, Sara; Swainson, Louise; Dardalhon, Valérie; Burjanadze, Maryam; Kinet, Sandrina; Taylor, Naomi

    2003-07-01

    Cytokines play a crucial role in the maintenance of polyclonal naive and memory T cell populations. It has previously been shown that ex vivo, the IL-7 cytokine induces the proliferation of naive recent thymic emigrants (RTE) isolated from umbilical cord blood but not mature adult-derived naive and memory human CD4(+) T cells. We find that the combination of IL-2 and IL-7 strongly promotes the proliferation of RTE, whereas adult CD4(+) T cells remain relatively unresponsive. Immunological activity is controlled by a balance between proliferation and apoptotic cell death. However, the relative contributions of IL-2 and IL-7 in regulating these processes in the absence of MHC/peptide signals are not known. Following exposure to either IL-2 or IL-7 alone, RTE, as well as mature naive and memory CD4(+) T cells, are rendered only minimally sensitive to Fas-mediated cell death. However, in the presence of the two cytokines, Fas engagement results in a high level of caspase-dependent apoptosis in both RTE as well as naive adult CD4(+) T cells. In contrast, equivalently treated memory CD4(+) T cells are significantly less sensitive to Fas-induced cell death. The increased susceptibility of RTE and naive CD4(+) T cells to Fas-induced apoptosis correlates with a significantly higher IL-2/IL-7-induced Fas expression on these T cell subsets than on memory CD4(+) T cells. Thus, IL-2 and IL-7 regulate homeostasis by modulating the equilibrium between proliferation and apoptotic cell death in RTE and mature naive and memory T cell subsets.

  6. Endoplasmic reticulum calcium release potentiates the ER stress and cell death caused by an oxidative stress in MCF-7 cells.

    PubMed

    Dejeans, Nicolas; Tajeddine, Nicolas; Beck, Raphaël; Verrax, Julien; Taper, Henryk; Gailly, Philippe; Calderon, Pedro Buc

    2010-05-01

    Increase in cytosolic calcium concentration ([Ca2+](c)), release of endoplasmic reticulum (ER) calcium ([Ca2+](er)) and ER stress have been proposed to be involved in oxidative toxicity. Nevertheless, their relative involvements in the processes leading to cell death are not well defined. In this study, we investigated whether oxidative stress generated during ascorbate-driven menadione redox cycling (Asc/Men) could trigger these three events, and, if so, whether they contributed to Asc/Men cytoxicity in MCF-7 cells. Using microspectrofluorimetry, we demonstrated that Asc/Men-generated oxidative stress was associated with a slow and moderate increase in [Ca2+](c), largely preceding permeation of propidium iodide, and thus cell death. Asc/Men treatment was shown to partially deplete ER calcium stores after 90 min (decrease by 45% compared to control). This event was associated with ER stress activation, as shown by analysis of eIF2 phosphorylation and expression of the molecular chaperone GRP94. Thapsigargin (TG) was then used to study the effect of complete [Ca2+](er) emptying during the oxidative stress generated by Asc/Men. Surprisingly, the combination of TG and Asc/Men increased ER stress to a level considerably higher than that observed for either treatment alone, suggesting that [Ca2+](er) release alone is not sufficient to explain ER stress activation during oxidative stress. Finally, TG-mediated [Ca2+](er) release largely potentiated ER stress, DNA fragmentation and cell death caused by Asc/Men, supporting a role of ER stress in the process of Asc/Men cytotoxicity. Taken together, our results highlight the involvement of ER stress and [Ca2+](er) decrease in the process of oxidative stress-induced cell death in MCF-7 cells. 2009 Elsevier Inc. All rights reserved.

  7. HYAL-2–WWOX–SMAD4 Signaling in Cell Death and Anticancer Response

    PubMed Central

    Hsu, Li-Jin; Chiang, Ming-Fu; Sze, Chun-I; Su, Wan-Pei; Yap, Ye Vone; Lee, I-Ting; Kuo, Hsiang-Ling; Chang, Nan-Shan

    2016-01-01

    Hyaluronidase HYAL-2 is a membrane-anchored protein and also localizes, in part, in the lysosome. Recent study from animal models revealed that both HYAL-1 and HYAL-2 are essential for the metabolism of hyaluronan (HA). Hyal-2 deficiency is associated with chronic thrombotic microangiopathy with hemolytic anemia in mice due to over accumulation of high molecular size HA. HYAL-2 is essential for platelet generation. Membrane HYAL-2 degrades HA bound by co-receptor CD44. Also, in a non-canonical signal pathway, HYAL-2 serves as a receptor for transforming growth factor beta (TGF-β) to signal with downstream tumor suppressors WWOX and SMAD4 to control gene transcription. When SMAD4 responsive element is overly driven by the HYAL-2–WWOX–SMAD4 signaling complex, cell death occurs. When rats are subjected to traumatic brain injury, over accumulation of a HYAL-2–WWOX complex occurs in the nucleus to cause neuronal death. HA induces the signaling of HYAL-2–WWOX–SMAD4 and relocation of the signaling complex to the nucleus. If the signaling complex is overexpressed, bubbling cell death occurs in WWOX-expressing cells. In addition, a small synthetic peptide Zfra (zinc finger-like protein that regulates apoptosis) binds membrane HYAL-2 of non-T/non-B spleen HYAL-2+ CD3− CD19− Z lymphocytes and activates the cells to generate memory anticancer response against many types of cancer cells in vivo. Whether the HYAL-2–WWOX–SMAD4 signaling complex is involved is discussed. In this review and opinion article, we have updated the current knowledge of HA, HYAL-2 and WWOX, HYAL-2–WWOX–SMAD4 signaling, bubbling cell death, and Z cell activation for memory anticancer response. PMID:27999774

  8. Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium

    PubMed Central

    Robinson, Nirmal; McComb, Scott; Mulligan, Rebecca; Dudani, Renu; Krishnan, Lakshmi; Sad, Subash

    2014-01-01

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a virulent pathogen that induces rapid host death. Here we observed that host survival after infection with S. Typhimurium was enhanced in the absence of type I interferon signaling, with improved survival of mice deficient in the receptor for type I interferons (Ifnar1−/− mice) that was attributed to macrophages. Although there was no impairment in cytokine expression or inflammasome activation in Ifnar1−/− macrophages, they were highly resistant to S. Typhimurium–induced cell death. Specific inhibition of the kinase RIP1or knockdown of the gene encoding the kinase RIP3 prevented the death of wild-type macrophages, which indicated that necroptosis was a mechanism of cell death. Finally, RIP3-deficient macrophages, which cannot undergo necroptosis, had similarly less death and enhanced control of S. Typhimurium in vivo. Thus, we propose that S. Typhimurium induces the production of type I interferon, which drives necroptosis of macrophages and allows them to evade the immune response. PMID:22922364

  9. Senescent cells re-engineered to express soluble programmed death receptor-1 for inhibiting programmed death receptor-1/programmed death ligand-1 as a vaccination approach against breast cancer.

    PubMed

    Chen, Zehong; Hu, Kang; Feng, Lieting; Su, Ruxiong; Lai, Nan; Yang, Zike; Kang, Shijun

    2018-06-01

    Various types of vaccines have been proposed as approaches for prevention or delay of the onset of cancer by boosting the endogenous immune system. We previously developed a senescent-cell-based vaccine, induced by radiation and veliparib, as a preventive and therapeutic tool against triple-negative breast cancer. However, the programmed death receptor-1/programmed death ligand-1 (PD-1/PD-L1) pathway was found to play an important role in vaccine failure. Hence, we further developed soluble programmed death receptor-1 (sPD1)-expressing senescent cells to overcome PD-L1/PD-1-mediated immune suppression while vaccinating to promote dendritic cell (DC) maturity, thereby amplifying T-cell activation. In the present study, sPD1-expressing senescent cells showed a particularly active status characterized by growth arrest and modified immunostimulatory cytokine secretion in vitro. As expected, sPD1-expressing senescent tumor cell vaccine (STCV/sPD-1) treatment attracted more mature DC and fewer exhausted-PD1 + T cells in vivo. During the course of the vaccine studies, we observed greater safety and efficacy for STCV/sPD-1 than for control treatments. STCV/sPD-1 pre-injections provided complete protection from 4T1 tumor challenge in mice. Additionally, the in vivo therapeutic study of mice with s.c. 4T1 tumor showed that STCV/sPD-1 vaccination delayed tumorigenesis and suppressed tumor progression at early stages. These results showed that STCV/sPD-1 effectively induced a strong antitumor immune response against cancer and suggested that it might be a potential strategy for TNBC prevention. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  10. Progranulin Deficiency Reduces CDK4/6/pRb Activation and Survival of Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    de la Encarnación, Ana; Alquézar, Carolina; Esteras, Noemí; Martín-Requero, Ángeles

    2015-12-01

    Null mutations in GRN are associated with frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). However, the influence of progranulin (PGRN) deficiency in neurodegeneration is largely unknown. In neuroblastoma cells, silencing of GRN gene causes significantly reduced cell survival after serum withdrawal. The following observations suggest that alterations of the CDK4/6/retinoblastoma protein (pRb) pathway, secondary to changes in PI3K/Akt and ERK1/2 activation induced by PGRN deficiency, are involved in the control of serum deprivation-induced apoptosis: (i) inhibiting CDK4/6 levels or their associated kinase activity by sodium butyrate or PD332991 sensitized control SH-SY5Y cells to serum deprivation-induced apoptosis without affecting survival of PGRN-deficient cells; (ii) CDK4/6/pRb seems to be downstream of the PI3K/Akt and ERK1/2 signaling pathways since their specific inhibitors, LY294002 and PD98059, were able to decrease CDK6-associated kinase activity and induce death of control SH-SY5Y cells; (iii) PGRN-deficient cells show reduced stimulation of PI3K/Akt, ERK1/2, and CDK4/6 activities compared with control cells in the absence of serum; and (iv) supplementation of recombinant human PGRN was able to rescue survival of PGRN-deficient cells. These observations highlight the important role of PGRN-mediated stimulation of the PI3K/Akt-ERK1/2/CDK4/6/pRb pathway in determining the cell fate survival/death under serum deprivation.

  11. Inhibition of caspases prevents ototoxic and ongoing hair cell death

    NASA Technical Reports Server (NTRS)

    Matsui, Jonathan I.; Ogilvie, Judith M.; Warchol, Mark E.

    2002-01-01

    Sensory hair cells die after acoustic trauma or ototoxic insults, but the signal transduction pathways that mediate hair cell death are not known. Here we identify several important signaling events that regulate the death of vestibular hair cells. Chick utricles were cultured in media supplemented with the ototoxic antibiotic neomycin and selected pharmacological agents that influence signaling molecules in cell death pathways. Hair cells that were treated with neomycin exhibited classically defined apoptotic morphologies such as condensed nuclei and fragmented DNA. Inhibition of protein synthesis (via treatment with cycloheximide) increased hair cell survival after treatment with neomycin, suggesting that hair cell death requires de novo protein synthesis. Finally, the inhibition of caspases promoted hair cell survival after neomycin treatment. Sensory hair cells in avian vestibular organs also undergo continual cell death and replacement throughout mature life. It is unclear whether the loss of hair cells stimulates the proliferation of supporting cells or whether the production of new cells triggers the death of hair cells. We examined the effects of caspase inhibition on spontaneous hair cell death in the chick utricle. Caspase inhibitors reduced the amount of ongoing hair cell death and ongoing supporting cell proliferation in a dose-dependent manner. In isolated sensory epithelia, however, caspase inhibitors did not affect supporting cell proliferation directly. Our data indicate that ongoing hair cell death stimulates supporting cell proliferation in the mature utricle.

  12. [Induction of hypoxia-inducible factor-1alpha in two kinds of rats asphyxiation death models].

    PubMed

    Zhang, Bei-lei; Yang, Zhi-hui; Ran, Peng; Liang, Wei-bo; Zhou, Bin; Zhang, Geng-qian; Lu, Mei-li; Zhang, Lin

    2007-02-15

    To investigate the expression of hypoxia-inducible factor 1-alpha (HIF1-alpha) in the heart, lung, liver and kidney in rats died of two typical models of asphyxia. Two asphyxia models were made and tissue samples of the dead rats were collected from different groups at various postmortem duration. The expression and the changes of HIF1-alpha in various tissues were examined by immunohistochemistry and image analysis techniques. Results Significant expression of HIF1-alpha was observed in the myocardial fibers, kidney cells, liver cells and lung cells in both asphyxia models, but not in the control group. The expression of HIF1-alpha in various tissues in the rat died of nitrogen gas breathing was found in the nuclei at 0 hour and the expression level decreased gradually thereafter. The HIF1-alpha expression level and duration in various tissues of the rat died of hanging were higher and longer than that of the former group, with a peak of the expression level observed 6 hours after death, and then started to decline in all tissues except the heart where the expression still showed an increase 24 hours after death. The control groups showed a steady expression in the cytoplasm but not in the nuclei. HIF1-alpha appears to be a valuable biomarker in the diagnosis of asphyxia within 24 hours after death.

  13. Targeting neuronal gap junctions in mouse retina offers neuroprotection in glaucoma

    PubMed Central

    Kumar, Sandeep; Ramakrishnan, Hariharasubramanian; Roy, Kaushambi; Viswanathan, Suresh; Bloomfield, Stewart A.

    2017-01-01

    The progressive death of retinal ganglion cells and resulting visual deficits are hallmarks of glaucoma, but the underlying mechanisms remain unclear. In many neurodegenerative diseases, cell death induced by primary insult is followed by a wave of secondary loss. Gap junctions (GJs), intercellular channels composed of subunit connexins, can play a major role in secondary cell death by forming conduits through which toxic molecules from dying cells pass to and injure coupled neighbors. Here we have shown that pharmacological blockade of GJs or genetic ablation of connexin 36 (Cx36) subunits, which are highly expressed by retinal neurons, markedly reduced loss of neurons and optic nerve axons in a mouse model of glaucoma. Further, functional parameters that are negatively affected in glaucoma, including the electroretinogram, visual evoked potential, visual spatial acuity, and contrast sensitivity, were maintained at control levels when Cx36 was ablated. Neuronal GJs may thus represent potential therapeutic targets to prevent the progressive neurodegeneration and visual impairment associated with glaucoma. PMID:28604388

  14. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases.

    PubMed

    Man, Si Ming; Karki, Rajendra; Kanneganti, Thirumala-Devi

    2017-05-01

    Cell death is a fundamental biological phenomenon that is essential for the survival and development of an organism. Emerging evidence also indicates that cell death contributes to immune defense against infectious diseases. Pyroptosis is a form of inflammatory programmed cell death pathway activated by human and mouse caspase-1, human caspase-4 and caspase-5, or mouse caspase-11. These inflammatory caspases are used by the host to control bacterial, viral, fungal, or protozoan pathogens. Pyroptosis requires cleavage and activation of the pore-forming effector protein gasdermin D by inflammatory caspases. Physical rupture of the cell causes release of the pro-inflammatory cytokines IL-1β and IL-18, alarmins and endogenous danger-associated molecular patterns, signifying the inflammatory potential of pyroptosis. Here, we describe the central role of inflammatory caspases and pyroptosis in mediating immunity to infection and clearance of pathogens. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Two overlapping domains of a lyssavirus matrix protein that acts on different cell death pathways.

    PubMed

    Larrous, Florence; Gholami, Alireza; Mouhamad, Shahul; Estaquier, Jérôme; Bourhy, Hervé

    2010-10-01

    The lyssavirus matrix (M) protein induces apoptosis. The regions of the M protein that are essential for triggering cell death pathways are not yet clearly defined. We therefore compared the M proteins from two viruses that have contrasting characteristics in terms of cellular apoptosis: a genotype 3 lyssavirus, Mokola virus (MOK), and a genotype 1 rabies virus isolated from a dog from Thailand (THA). We identified a 20-amino-acid fragment (corresponding to positions 67 to 86) that retained the cell death activities of the full-length M protein from MOK via both the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and inhibition of cytochrome c oxidase (CcO) activity. We found that the amino acids at positions 77 and 81 have an essential role in triggering these two cell death pathways. Directed mutagenesis demonstrated that the amino acid at position 77 affects CcO activity, whereas the amino acid at position 81 affects TRAIL-dependent apoptosis. Mutations in the full-length M protein that compromised induction of either of these two pathways resulted in delayed apoptosis compared with the time to apoptosis for the nonmutated control.

  16. Two Overlapping Domains of a Lyssavirus Matrix Protein That Acts on Different Cell Death Pathways ▿

    PubMed Central

    Larrous, Florence; Gholami, Alireza; Mouhamad, Shahul; Estaquier, Jérôme; Bourhy, Hervé

    2010-01-01

    The lyssavirus matrix (M) protein induces apoptosis. The regions of the M protein that are essential for triggering cell death pathways are not yet clearly defined. We therefore compared the M proteins from two viruses that have contrasting characteristics in terms of cellular apoptosis: a genotype 3 lyssavirus, Mokola virus (MOK), and a genotype 1 rabies virus isolated from a dog from Thailand (THA). We identified a 20-amino-acid fragment (corresponding to positions 67 to 86) that retained the cell death activities of the full-length M protein from MOK via both the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and inhibition of cytochrome c oxidase (CcO) activity. We found that the amino acids at positions 77 and 81 have an essential role in triggering these two cell death pathways. Directed mutagenesis demonstrated that the amino acid at position 77 affects CcO activity, whereas the amino acid at position 81 affects TRAIL-dependent apoptosis. Mutations in the full-length M protein that compromised induction of either of these two pathways resulted in delayed apoptosis compared with the time to apoptosis for the nonmutated control. PMID:20631119

  17. TRX-E-002-1 Induces c-Jun-Dependent Apoptosis in Ovarian Cancer Stem Cells and Prevents Recurrence In Vivo.

    PubMed

    Alvero, Ayesha B; Heaton, Andrew; Lima, Eydis; Pitruzzello, Mary; Sumi, Natalia; Yang-Hartwich, Yang; Cardenas, Carlos; Steinmacher, Sahra; Silasi, Dan-Arin; Brown, David; Mor, Gil

    2016-06-01

    Chemoresistance is a major hurdle in the management of patients with epithelial ovarian cancer and is responsible for its high mortality. Studies have shown that chemoresistance is due to the presence of a subgroup of cancer cells with stemness properties and a high capacity for tumor repair. We have developed a library of super-benzopyran analogues to generate potent compounds that can induce cell death in chemoresistant cancer stem cells. TRX-E-002-1 is identified as the most potent analogue and can induce cell death in all chemoresistant CD44(+)/MyD88(+) ovarian cancer stem cells tested (IC50 = 50 nmol/L). TRX-E-002-1 is also potent against spheroid cultures formed from cancer stem cells, chemosensitive CD44(-)/MyD88(-) ovarian cancer cells, and heterogeneous cultures of ovarian cancer cells. Cell death was associated with the phosphorylation and increased levels of c-Jun and induction of caspases. In vivo, TRX-E-002-1 given as daily intraperitoneal monotherapy at 100 mg/kg significantly decreased intraperitoneal tumor burden compared with vehicle control. When given in combination with cisplatin, animals receiving the combination of cisplatin and TRX-E-002-1 showed decreased tumor burden compared with each monotherapy. Finally, TRX-E-002-1 given as maintenance treatment after paclitaxel significantly delayed disease recurrence. Our results suggest that TRX-E-002-1 may fill the current need for better therapeutic options in the control and management of recurrent ovarian cancer and may help improve patient survival. Mol Cancer Ther; 15(6); 1279-90. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. Changes in biochemical processes in cerebellar granule cells of mice exposed to methylmercury.

    PubMed

    Bellum, Sairam; Bawa, Bhupinder; Thuett, Kerry A; Stoica, Gheorghe; Abbott, Louise C

    2007-01-01

    At postnatal day 34, male and female C57BL/6J mice were exposed orally once a day to a total of five doses totaling 1.0 or 5.0 mg/kg of methylmercuric chloride or sterile deionized water in moistened rodent chow. Eleven days after the last dose cerebellar granule cells were acutely isolated to measure reactive oxygen species (ROS) levels and mitochondrial membrane potential using CM-H(2)DCFDA and TMRM dyes, respectively. For visualizing intracellular calcium ion distribution using transmission electron microscopy, mice were perfused 11 days after the last dose of methylmercury (MeHg) using the oxalate-pyroantimonate method. Cytosolic and mitochondrial protein fractions from acutely isolated granule cells were analyzed for cytochrome c content using Western blot analysis. Histochemistry (Fluoro-Jade dye) and immunohistochemistry (activated caspase 3) was performed on frozen serial cerebellar sections to label granule cell death and activation of caspase 3, respectively. Granule cells isolated from MeHg-treated mice showed elevated ROS levels and decreased mitochondrial membrane potential when compared to granule cells from control mice. Electron photomicrographs of MeHg-treated granule cells showed altered intracellular calcium ion homeostasis ([Ca(2+)](i)) when compared to control granule cells. However, in spite of these subcellular changes and moderate relocalization of cytochrome c into the cytosol, the concentrations of MeHg used in this study did not produce significant neuronal cell death/apoptosis at the time point examined, as evidenced by Fluoro-Jade and activated caspase 3 immunostaining, respectively. These results demonstrate that short-term in vivo exposure to total doses of 1.0 and 5.0 mg/kg MeHg through the most common exposure route (oral) can result in significant subcellular changes that are not accompanied by overt neuronal cell death.

  19. Mille modis morimur: We die in a thousand ways.

    PubMed

    Banfalvi, Gaspar

    2017-02-01

    Dying cells subjected to apoptotic programs are engulfed by neighboring cells or by professional phagocytes, without inflammation or immunological reactions in the tissue where apoptosis takes place. Apoptotic cells release danger-associated project signals to their neighbours, through different molecular patterns, stimulate antigen production and immune responses. Microenvironmental effects with several functional consequences indicate that cell death is a complex process and may take place in several ways. This idea is expressed by the title of the Special Issue and by the title of the guest editorial "Mille modis morimur" meaning that not only multicellular organisms, but also single cells may die in a thousand ways. This idea is demonstrated by the papers serving as examples for cell death. Apoptosis was induced by clary sage oil in Candida cells. Heavy metal (Gd) induced cell motility and apoptosis was found in mammalian cells. RNA oxidation enhanced the reversion frequency of apoptosis in yeast mutants. The frequency of apoptotic micronucleus formation increased in a concentration-dependent manner by methotrexate. The antioxidant coenzyme Q10 protected renal proximal tubule cells against nicotine-induced apoptosis. The synergy of 2-deoxy-D-glucose combined with berberine induced lysosome/autophagy. The mitochondrial apoptotic pathway could be regulated by glucocorticoid receptor in collaboration with Bcl-2 family proteins in developing T cells. Cylindrospermopsin induced biochemical changes led to apoptosis in plants. Mechanisms of stress seriously impacted the risk of apoptosis. Transcriptional control of apoptotic cell clearance was achieved by macrophage nuclear receptors. Finally, the clinical aspects of apoptosis-induced lymphopenia were reviewed in sepsis and other severe injuries. These examples not only support the view of many ways of cell death, but predict further potential ways to induce or reduce the risk of cell death.

  20. c-FLIP is involved in erythropoietin-mediated protection of erythroid-differentiated cells from TNF-alpha-induced apoptosis.

    PubMed

    Vittori, Daniela; Vota, Daiana; Callero, Mariana; Chamorro, María E; Nesse, Alcira

    2010-05-04

    The TNF-alpha (tumour necrosis factor) affects a wide range of biological activities, such as cell proliferation and apoptosis. Cell life or death responses to this cytokine might depend on cell conditions. This study focused on the modulation of factors that would affect the sensitivity of erythroid-differentiated cells to TNF-alpha. Hemin-differentiated K562 cells showed higher sensitivity to TNF-induced apoptosis than undifferentiated cells. At the same time, hemin-induced erythroid differentiation reduced c-FLIP (cellular FLICE-inhibitory protein) expression. However, this negative effect was prevented by prior treatment with Epo (erythropoietin), which allowed the cell line to maintain c-FLIP levels. On the other hand, erythroid-differentiated UT-7 cells - dependent on Epo for survival - showed resistance to TNF-alpha pro-apoptotic action. Only after the inhibition of PI3K (phosphatidylinositol-3 kinase)-mediated pathways, which was accompanied by negative c-FLIP modulation and increased erythroid differentiation, were UT-7 cells sensitive to TNF-alpha-triggered apoptosis. In summary, erythroid differentiation might deregulate the balance between growth promotion and death signals induced by TNF-alpha, depending on cell type and environmental conditions. The role of c-FLIP seemed to be critical in the protection of erythroid-differentiated cells from apoptosis or in the determination of their sensitivity to TNF-mediated programmed cell death. Epo, which for the first time was found to be involved in the prevention of c-FLIP down-regulation, proved to have an anti-apoptotic effect against the pro-inflammatory factor. The identification of signals related to cell life/death switching would have significant implications in the control of proliferative diseases and would contribute to the understanding of mechanisms underlying the anaemia associated with inflammatory processes.

  1. Tocotrienols promote apoptosis in human breast cancer cells by inducing poly(ADP-ribose) polymerase cleavage and inhibiting nuclear factor kappa-B activity.

    PubMed

    Loganathan, R; Selvaduray, K R; Nesaretnam, K; Radhakrishnan, A K

    2013-04-01

    Tocotrienols and tocopherols are members of the vitamin E family, with similar structures; however, only tocotrienols have been reported to achieve potent anti-cancer effects. The study described here has evaluated anti-cancer activity of vitamin E to elucidate mechanisms of cell death, using human breast cancer cells. Anti-cancer activity of a tocotrienol-rich fraction (TRF) and a tocotrienol-enriched fraction (TEF) isolated from palm oil, as well as pure vitamin E analogues (α-tocopherol, α-, δ- and γ-tocotrienols) were studied using highly aggressive triple negative MDA-MB-231 cells and oestrogen-dependent MCF-7 cells, both of human breast cancer cell lines. Cell population growth was evaluated using a Coulter particle counter. Cell death mechanism, poly(ADP-ribose) polymerase cleavage and levels of NF-κB were determined using commercial ELISA kits. Tocotrienols exerted potent anti-proliferative effects on both types of cell by inducing apoptosis, the underlying mechanism of cell death being ascertained using respective IC50 concentrations of all test compounds. There was marked induction of apoptosis in both cell lines by tocotrienols compared to treatment with Paclitaxel, which was used as positive control. This activity was found to be associated with cleavage of poly(ADP-ribose) polymerase (a DNA repair protein), demonstrating involvement of the apoptotic cell death signalling pathway. Tocotrienols also inhibited expression of nuclear factor kappa-B (NF-κB), which in turn can increase sensitivity of cancer cells to apoptosis. Tocotrienols induced anti-proliferative and apoptotic effects in association with DNA fragmentation, poly(ADP-ribose) polymerase cleavage and NF-κB inhibition in the two human breast cancer cell lines. © 2013 Blackwell Publishing Ltd.

  2. Lamin A/C deficiency reduces circulating tumor cell resistance to fluid shear stress

    PubMed Central

    Denais, Celine; Chan, Maxine F.; Wang, Zhexiao; Lammerding, Jan

    2015-01-01

    Metastasis contributes to over 90% of cancer-related deaths and is initiated when cancer cells detach from the primary tumor, invade the basement membrane, and enter the circulation as circulating tumor cells (CTCs). While metastasis is viewed as an inefficient process with most CTCs dying within the bloodstream, it is evident that some CTCs are capable of resisting hemodynamic shear forces to form secondary tumors in distant tissues. We hypothesized that nuclear lamins A and C (A/C) act as key structural components within CTCs necessary to resist destruction from elevated shear forces of the bloodstream. Herein, we show that, compared with nonmalignant epithelial cells, tumor cells are resistant to elevated fluid shear forces in vitro that mimic those within the bloodstream, as evidenced by significant decreases in cellular apoptosis and necrosis. Knockdown of lamin A/C significantly reduced tumor cell resistance to fluid shear stress, with significantly increased cell death compared with parental tumor cell and nontargeting controls. Interestingly, lamin A/C knockdown increased shear stress-induced tumor cell apoptosis, but did not significantly affect cellular necrosis. These data demonstrate that lamin A/C is an important structural component that enables tumor cell resistance to fluid shear stress-mediated death in the bloodstream, and may thus facilitate survival and hematogenous metastasis of CTCs. PMID:26447202

  3. Rapid Detection of an ABT-737-Sensitive Primed for Death State in Cells Using Microplate-Based Respirometry

    PubMed Central

    Clerc, Pascaline; Carey, Gregory B.; Mehrabian, Zara; Wei, Michael; Hwang, Hyehyun; Girnun, Geoffrey D.; Chen, Hegang; Martin, Stuart S.; Polster, Brian M.

    2012-01-01

    Cells that exhibit an absolute dependence on the anti-apoptotic BCL-2 protein for survival are termed “primed for death” and are killed by the BCL-2 antagonist ABT-737. Many cancers exhibit a primed phenotype, including some that are resistant to conventional chemotherapy due to high BCL-2 expression. We show here that 1) stable BCL-2 overexpression alone can induce a primed for death state and 2) that an ABT-737-induced loss of functional cytochrome c from the electron transport chain causes a reduction in maximal respiration that is readily detectable by microplate-based respirometry. Stable BCL-2 overexpression sensitized non-tumorigenic MCF10A mammary epithelial cells to ABT-737-induced caspase-dependent apoptosis. Mitochondria within permeabilized BCL-2 overexpressing cells were selectively vulnerable to ABT-737-induced cytochrome c release compared to those from control-transfected cells, consistent with a primed state. ABT-737 treatment caused a dose-dependent impairment of maximal O2 consumption in MCF10A BCL-2 overexpressing cells but not in control-transfected cells or in immortalized mouse embryonic fibroblasts lacking both BAX and BAK. This impairment was rescued by delivering exogenous cytochrome c to mitochondria via saponin-mediated plasma membrane permeabilization. An ABT-737-induced reduction in maximal O2 consumption was also detectable in SP53, JeKo-1, and WEHI-231 B-cell lymphoma cell lines, with sensitivity correlating with BCL-2:MCL-1 ratio and with susceptibility (SP53 and JeKo-1) or resistance (WEHI-231) to ABT-737-induced apoptosis. Multiplexing respirometry assays to ELISA-based determination of cytochrome c redistribution confirmed that respiratory inhibition was associated with cytochrome c release. In summary, cell-based respiration assays were able to rapidly identify a primed for death state in cells with either artificially overexpressed or high endogenous BCL-2. Rapid detection of a primed for death state in individual cancers by “bioenergetics-based profiling” may eventually help identify the subset of patients with chemoresistant but primed tumors who can benefit from treatment that incorporates a BCL-2 antagonist. PMID:22880001

  4. Controlled intracellular generation of reactive oxygen species in human mesenchymal stem cells using porphyrin conjugated nanoparticles

    NASA Astrophysics Data System (ADS)

    Lavado, Andrea S.; Chauhan, Veeren M.; Alhaj Zen, Amer; Giuntini, Francesca; Jones, D. Rhodri E.; Boyle, Ross W.; Beeby, Andrew; Chan, Weng C.; Aylott, Jonathan W.

    2015-08-01

    Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(ii) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(ii) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn(ii) porphyrin and high numbers of irradiations of excitation light were found to generate greater amounts of ROS. A novel dye, which is transformed into fluorescent 7-hydroxy-4-trifluoromethyl-coumarin in the presence of hydrogen peroxide, provided an indirect indicator for cumulative ROS production. The mitochondrial membrane potential was monitored to investigate the destructive effect of increased intracellular ROS production. Flow cytometric analysis of nanoparticle treated hMSCs suggested irradiation with excitation light signalled controlled apoptotic cell death, rather than uncontrolled necrotic cell death. Increased intracellular ROS production did not induce phenotypic changes in hMSC subcultures.Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(ii) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(ii) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn(ii) porphyrin and high numbers of irradiations of excitation light were found to generate greater amounts of ROS. A novel dye, which is transformed into fluorescent 7-hydroxy-4-trifluoromethyl-coumarin in the presence of hydrogen peroxide, provided an indirect indicator for cumulative ROS production. The mitochondrial membrane potential was monitored to investigate the destructive effect of increased intracellular ROS production. Flow cytometric analysis of nanoparticle treated hMSCs suggested irradiation with excitation light signalled controlled apoptotic cell death, rather than uncontrolled necrotic cell death. Increased intracellular ROS production did not induce phenotypic changes in hMSC subcultures. Electronic supplementary information (ESI) available: Materials and experimental methods for the synthesis of (1) positively charged alkyne functionalized nanoparticles (2) Zn(ii) and Cu(ii) centred porphyrin (3); conjugating porphyrins to alkyne-functionalized nanoparticles via click chemistry (4) nanoparticle characterisation (size charge and fluorescence), (5) synthesis of BPTFMC (6) hMSC collection, storage and preparation (7) delivery of porphyrin functionalized nanoparticles (8) staining mitochondria, cumulative ROS production and determination of nanoparticles subcellular localisation (9) fluorescence microscopy and controlled irradiation of hMSCs (10) flow cytometry and controlled irradiation using a custom built irradiator. In addition, results highlighting: (1) nanoparticles emission spectra, size and charge, (2) BPTFMC fluorescence response and (3) hMSCs following light irradiation using flow cytometry. See DOI: 10.1039/c5nr00795j

  5. VX-induced cell death involves activation of caspase-3 in cultured rat cortical neurons.

    PubMed

    Tenn, Catherine C; Wang, Yushan

    2007-05-01

    Exposure of cell cultures to organophosphorous compounds such as VX can result in cell death. However, it is not clear whether VX-induced cell death is necrotic or involves programmed cell death mechanisms. Activation of caspases, a family of cysteine proteases, is often involved in cell death, and in particular, caspase-3 activation appears to be a key event in programmed cell death processes including apoptosis. In this study, we investigated VX-induced neuronal cell death, as well as the underlying mechanism in terms of its effect on caspase-3 activity. Primary cortical neuronal cultures were prepared from gestational days 17 to 19 Sprague Dawley rat fetuses. At maturation, the cells were treated with varying concentrations of VX and cell death was evaluated by lactate dehydrogenase (LDH) release. VX induced an increase in LDH release in a concentration-dependent manner. Morphological VX-induced cell death was also characterized by using nuclear staining with propidium iodide and Hoechst 33342. VX induced a concentration- and time-dependent increase in caspase-3 activation. Caspase-3 activation was also confirmed by the proteolytic cleavage of poly(ADP-ribose)polymerase (PARP), an endogenous caspase-3 substrate. These data suggested that in rat cortical neurons, VX-induced cell death via a programmed cell death pathway that involves changes in caspase-3 protease.

  6. Immunotherapy of chronic hepatitis C virus infection with antibodies against programmed cell death-1 (PD-1).

    PubMed

    Fuller, Michael J; Callendret, Benoit; Zhu, Baogong; Freeman, Gordon J; Hasselschwert, Dana L; Satterfield, William; Sharpe, Arlene H; Dustin, Lynn B; Rice, Charles M; Grakoui, Arash; Ahmed, Rafi; Walker, Christopher M

    2013-09-10

    Hepatitis C virus (HCV) persistence is facilitated by exhaustion of CD8+ T cells that express the inhibitory receptor programmed cell death 1 (PD-1). Blockade of PD-1 signaling improves in vitro proliferation of HCV-specific T lymphocytes, but whether antiviral function can be restored in infected individuals is unknown. To address this question, chimpanzees with persistent HCV infection were treated with anti-PD-1 antibodies. A significant reduction in HCV viremia was observed in one of three treated animals without apparent hepatocellular injury. Viremia rebounded in the responder animal when antibody treatment was discontinued. Control of HCV replication was associated with restoration of intrahepatic CD4+ and CD8+ T-cell immunity against multiple HCV proteins. The responder animal had a history of broader T-cell immunity to multiple HCV proteins than the two chimpanzees that did not respond to PD-1 therapy. The results suggest that successful PD-1 blockade likely requires a critical threshold of preexisting virus-specific T cells in liver and warrants consideration of therapeutic vaccination strategies in combination with PD-1 blockade to broaden narrow responses. Anti-PD-1 immunotherapy may also facilitate control of other persistent viruses, notably the hepatitis B virus where options for long-term control of virus replication are limited.

  7. Eating on the fly: function and regulation of autophagy during cell growth, survival and death in Drosophila.

    PubMed

    Neufeld, Thomas P; Baehrecke, Eric H

    2008-07-01

    Significant progress has been made over recent years in defining the normal progression and regulation of autophagy, particularly in cultured mammalian cells and yeast model systems. However, apart from a few notable exceptions, our understanding of the physiological roles of autophagy has lagged behind these advances, and identification of components and features of autophagy unique to higher eukaryotes also remains a challenge. In this review we describe recent insights into the roles and control mechanisms of autophagy gained from in vivo studies in Drosophila. We focus on potential roles of autophagy in controlling cell growth and death, and describe how the regulation of autophagy has evolved to include metazoan-specific signaling pathways. We discuss genetic screening approaches that are being used to identify novel regulators and effectors of autophagy, and speculate about areas of research in this system likely to bear fruit in future studies.

  8. Mechanical stretch triggers rapid epithelial cell division through Piezo1.

    PubMed

    Gudipaty, S A; Lindblom, J; Loftus, P D; Redd, M J; Edes, K; Davey, C F; Krishnegowda, V; Rosenblatt, J

    2017-03-02

    Despite acting as a barrier for the organs they encase, epithelial cells turn over at some of the fastest rates in the body. However, epithelial cell division must be tightly linked to cell death to preserve barrier function and prevent tumour formation. How does the number of dying cells match those dividing to maintain constant numbers? When epithelial cells become too crowded, they activate the stretch-activated channel Piezo1 to trigger extrusion of cells that later die. However, it is unclear how epithelial cell division is controlled to balance cell death at the steady state. Here we show that mammalian epithelial cell division occurs in regions of low cell density where cells are stretched. By experimentally stretching epithelia, we find that mechanical stretch itself rapidly stimulates cell division through activation of the Piezo1 channel. To stimulate cell division, stretch triggers cells that are paused in early G2 phase to activate calcium-dependent phosphorylation of ERK1/2, thereby activating the cyclin B transcription that is necessary to drive cells into mitosis. Although both epithelial cell division and cell extrusion require Piezo1 at the steady state, the type of mechanical force controls the outcome: stretch induces cell division, whereas crowding induces extrusion. How Piezo1-dependent calcium transients activate two opposing processes may depend on where and how Piezo1 is activated, as it accumulates in different subcellular sites with increasing cell density. In sparse epithelial regions in which cells divide, Piezo1 localizes to the plasma membrane and cytoplasm, whereas in dense regions in which cells extrude, it forms large cytoplasmic aggregates. Because Piezo1 senses both mechanical crowding and stretch, it may act as a homeostatic sensor to control epithelial cell numbers, triggering extrusion and apoptosis in crowded regions and cell division in sparse regions.

  9. Powerful inner/outer controlled multi-target magnetic nanoparticle drug carrier prepared by liquid photo-immobilization

    NASA Astrophysics Data System (ADS)

    Guan, Yan-Qing; Zheng, Zhe; Huang, Zheng; Li, Zhibin; Niu, Shuiqin; Liu, Jun-Ming

    2014-05-01

    Nanomagnetic materials offer exciting avenues for advancing cancer therapies. Most researches have focused on efficient delivery of drugs in the body by incorporating various drug molecules onto the surface of nanomagnetic particles. The challenge is how to synthesize low toxic nanocarriers with multi-target drug loading. The cancer cell death mechanisms associated with those nanocarriers remain unclear either. Following the cell biology mechanisms, we develop a liquid photo-immobilization approach to attach doxorubicin, folic acid, tumor necrosis factor-α, and interferon-γ onto the oleic acid molecules coated Fe3O4 magnetic nanoparticles to prepare a kind of novel inner/outer controlled multi-target magnetic nanoparticle drug carrier. In this work, this approach is demonstrated by a variety of structural and biomedical characterizations, addressing the anti-cancer effects in vivo and in vitro on the HeLa, and it is highly efficient and powerful in treating cancer cells in a valuable programmed cell death mechanism for overcoming drug resistance.

  10. The expression patterns of pro-apoptotic and anti-apoptotic factors in human fetal and adult ovary.

    PubMed

    Poljicanin, Ana; Vukusic Pusic, Tanja; Vukojevic, Katarina; Caric, Ana; Vilovic, Katarina; Tomic, Snjezana; Soljic, Violeta; Saraga-Babic, Mirna

    2013-07-01

    The influence of pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins on the cell death (caspase-3, TUNEL) of different ovarian cell lineages was immunohistochemically analyzed in six fetal and five adult human ovaries in order to disclose possible mechanisms of cell number control. Mild to moderate expression of Bcl-2 characterized ovarian surface epithelium, follicular cells and oocytes of 15 and 22 week human ovaries, while expression of Bax and caspase-3 gradually increased in all ovarian cell populations, except caspase-3 in the ovarian surface epithelium. Different levels of Bax and Bcl-2 proteins co-expression characterized fetal ovarian cells, while TUNEL and caspase-3 co-expression was found only in some of them. In adult ovaries, Bcl-2 was moderately and Bax strongly expressed in the surface ovarian epithelium and stroma. Bcl-2 and Bax expression in granulosa and theca interna cells varied depending on the stage of follicular atresia. Caspase-3 apoptotic cells characterized granulosa cells of adult atretic follicles. Our results indicate that intracellular levels of Bcl-2 and Bax protein might regulate the final destiny of developing germ cells. Caspase-3 dependent apoptosis seems to be the most important, but not the only cell death pathway in ovaries. In adult ovaries, caspase-dependent cell death characterized granulosa cells, but not the germ cells. Copyright © 2012 Elsevier GmbH. All rights reserved.

  11. Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells

    PubMed Central

    Akopian, Veronika; Beil, Stephen; Benvenisty, Nissim; Brehm, Jennifer; Christie, Megan; Ford, Angela; Fox, Victoria; Gokhale, Paul J.; Healy, Lyn; Holm, Frida; Hovatta, Outi; Knowles, Barbara B.; Ludwig, Tenneille E.; McKay, Ronald D. G.; Miyazaki, Takamichi; Nakatsuji, Norio; Oh, Steve K. W.; Pera, Martin F.; Rossant, Janet; Stacey, Glyn N.; Suemori, Hirofumi

    2010-01-01

    There are many reports of defined culture systems for the propagation of human embryonic stem cells in the absence of feeder cell support, but no previous study has undertaken a multi-laboratory comparison of these diverse methodologies. In this study, five separate laboratories, each with experience in human embryonic stem cell culture, used a panel of ten embryonic stem cell lines (including WA09 as an index cell line common to all laboratories) to assess eight cell culture methods, with propagation in the presence of Knockout Serum Replacer, FGF-2, and mouse embryonic fibroblast feeder cell layers serving as a positive control. The cultures were assessed for up to ten passages for attachment, death, and differentiated morphology by phase contrast microscopy, for growth by serial cell counts, and for maintenance of stem cell surface marker expression by flow cytometry. Of the eight culture systems, only the control and those based on two commercial media, mTeSR1 and STEMPRO, supported maintenance of most cell lines for ten passages. Cultures grown in the remaining media failed before this point due to lack of attachment, cell death, or overt cell differentiation. Possible explanations for relative success of the commercial formulations in this study, and the lack of success with other formulations from academic groups compared to previously published results, include: the complex combination of growth factors present in the commercial preparations; improved development, manufacture, and quality control in the commercial products; differences in epigenetic adaptation to culture in vitro between different ES cell lines grown in different laboratories. PMID:20186512

  12. Interrogating the relevance of mitochondrial apoptosis for vertebrate development and postnatal tissue homeostasis.

    PubMed

    Tuzlak, Selma; Kaufmann, Thomas; Villunger, Andreas

    2016-10-01

    "Programmed cell death or 'apoptosis' is critical for organogenesis during embryonic development and tissue homeostasis in the adult. Its deregulation can contribute to a broad range of human pathologies, including neurodegeneration, cancer, or autoimmunity…" These or similar phrases have become generic opening statements in many reviews and textbooks describing the physiological relevance of apoptotic cell death. However, while the role in disease has been documented beyond doubt, facilitating innovative drug discovery, we wonder whether the former is really true. What goes wrong in vertebrate development or in adult tissue when the main route to apoptotic cell death, controlled by the BCL2 family, is impaired? Such scenarios have been mimicked by deletion of one or more prodeath genes within the BCL2 family, and gene targeting studies in mice exploring the consequences have been manifold. Many of these studies were geared toward understanding the role of BCL2 family proteins and mitochondrial apoptosis in disease, whereas fewer focused in detail on their role during normal development or tissue homeostasis, perhaps also due to an irritating lack of phenotype. Looking at these studies, the relevance of classical programmed cell death by apoptosis for development appears rather limited. Together, these many studies suggest either highly selective and context-dependent contributions of mitochondrial apoptosis or significant redundancy with alternative cell death mechanisms, as summarized and discussed here. © 2016 Tuzlak et al.; Published by Cold Spring Harbor Laboratory Press.

  13. Human GAPDH Is a Target of Aspirin’s Primary Metabolite Salicylic Acid and Its Derivatives

    PubMed Central

    Manohar, Murli; Harraz, Maged M.; Park, Sang-Wook; Schroeder, Frank C.; Snyder, Solomon H.; Klessig, Daniel F.

    2015-01-01

    The plant hormone salicylic acid (SA) controls several physiological processes and is a key regulator of multiple levels of plant immunity. To decipher the mechanisms through which SA’s multiple physiological effects are mediated, particularly in immunity, two high-throughput screens were developed to identify SA-binding proteins (SABPs). Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH) from plants (Arabidopsis thaliana) was identified in these screens. Similar screens and subsequent analyses using SA analogs, in conjunction with either a photoaffinity labeling technique or surface plasmon resonance-based technology, established that human GAPDH (HsGAPDH) also binds SA. In addition to its central role in glycolysis, HsGAPDH participates in several pathological processes, including viral replication and neuronal cell death. The anti-Parkinson’s drug deprenyl has been shown to suppress nuclear translocation of HsGAPDH, an early step in cell death and the resulting cell death induced by the DNA alkylating agent N-methyl-N’-nitro-N-nitrosoguanidine. Here, we demonstrate that SA, which is the primary metabolite of aspirin (acetyl SA) and is likely responsible for many of its pharmacological effects, also suppresses nuclear translocation of HsGAPDH and cell death. Analysis of two synthetic SA derivatives and two classes of compounds from the Chinese medicinal herb Glycyrrhiza foetida (licorice), glycyrrhizin and the SA-derivatives amorfrutins, revealed that they not only appear to bind HsGAPDH more tightly than SA, but also exhibit a greater ability to suppress translocation of HsGAPDH to the nucleus and cell death. PMID:26606248

  14. A balance of Mad and Myc expression dictates larval cell apoptosis and adult stem cell development during Xenopus intestinal metamorphosis.

    PubMed

    Okada, Morihiro; Miller, Thomas C; Wen, Luan; Shi, Yun-Bo

    2017-05-11

    The Myc/Mad/Max network has long been shown to be an important factor in regulating cell proliferation, death and differentiation in diverse cell types. In general, Myc-Max heterodimers activate target gene expression to promote cell proliferation, although excess of c-Myc can also induce apoptosis. In contrast, Mad competes against Myc to form Mad-Max heterodimers that bind to the same target genes to repress their expression and promote differentiation. The role of the Myc/Mad/Max network during vertebrate development, especially, the so-called postembryonic development, a period around birth in mammals, is unclear. Using thyroid hormone (T3)-dependent Xenopus metamorphosis as a model, we show here that Mad1 is induced by T3 in the intestine during metamorphosis when larval epithelial cell death and adult epithelial stem cell development take place. More importantly, we demonstrate that Mad1 is expressed in the larval cells undergoing apoptosis, whereas c-Myc is expressed in the proliferating adult stem cells during intestinal metamorphosis, suggesting that Mad1 may have a role in cell death during development. By using transcription activator-like effector nuclease-mediated gene-editing technology, we have generated Mad1 knockout Xenopus animals. This has revealed that Mad1 is not essential for embryogenesis or metamorphosis. On the other hand, consistent with its spatiotemporal expression profile, Mad1 knockout leads to reduced larval epithelial apoptosis but surprisingly also results in increased adult stem cell proliferation. These findings not only reveal a novel role of Mad1 in regulating developmental cell death but also suggest that a balance of Mad and Myc controls cell fate determination during adult organ development.

  15. A balance of Mad and Myc expression dictates larval cell apoptosis and adult stem cell development during Xenopus intestinal metamorphosis

    PubMed Central

    Okada, Morihiro; Miller, Thomas C; Wen, Luan; Shi, Yun-Bo

    2017-01-01

    The Myc/Mad/Max network has long been shown to be an important factor in regulating cell proliferation, death and differentiation in diverse cell types. In general, Myc–Max heterodimers activate target gene expression to promote cell proliferation, although excess of c-Myc can also induce apoptosis. In contrast, Mad competes against Myc to form Mad–Max heterodimers that bind to the same target genes to repress their expression and promote differentiation. The role of the Myc/Mad/Max network during vertebrate development, especially, the so-called postembryonic development, a period around birth in mammals, is unclear. Using thyroid hormone (T3)-dependent Xenopus metamorphosis as a model, we show here that Mad1 is induced by T3 in the intestine during metamorphosis when larval epithelial cell death and adult epithelial stem cell development take place. More importantly, we demonstrate that Mad1 is expressed in the larval cells undergoing apoptosis, whereas c-Myc is expressed in the proliferating adult stem cells during intestinal metamorphosis, suggesting that Mad1 may have a role in cell death during development. By using transcription activator-like effector nuclease-mediated gene-editing technology, we have generated Mad1 knockout Xenopus animals. This has revealed that Mad1 is not essential for embryogenesis or metamorphosis. On the other hand, consistent with its spatiotemporal expression profile, Mad1 knockout leads to reduced larval epithelial apoptosis but surprisingly also results in increased adult stem cell proliferation. These findings not only reveal a novel role of Mad1 in regulating developmental cell death but also suggest that a balance of Mad and Myc controls cell fate determination during adult organ development. PMID:28492553

  16. CD147 is increased in HCC cells under starvation and reduces cell death through upregulating p-mTOR in vitro.

    PubMed

    Gou, Xingchun; Tang, Xu; Kong, Derek Kai; He, Xinying; Gao, Xingchun; Guo, Na; Hu, Zhifang; Zhao, Zhaohua; Chen, Yanke

    2016-01-01

    Transarterial chemoembolization (TACE) is the standard of care for treatment of intermediate hepatocellular carcinoma (HCC), however, key molecules involved in HCC cell survival and tumor metastasis post-TACE remain unclear. CD147 is a member of the immunoglobulin superfamily that is overexpressed on the surface of HCC cells and is associated with malignant potential and poor prognosis in HCC patients. In this study, using an Earle's Balanced Salt Solution medium culture model that mimics nutrient deprivation induced by TACE, we investigated the regulation of CD147 expression on HCC cells under starvation conditions and its functional effects on HCC cell death. During early stages of starvation, the expression of CD147 was considerably upregulated in SMMC7721, HepG2 and HCC9204 hepatoma cell lines at the protein levels. Downregulation of CD147 by specific small interfering RNA (siRNA) significantly promoted starvation-induced cell death. In addition, CD147 siRNA-transfected SMMC7721 cells demonstrated significantly increased levels of both apoptosis and autophagy as compared to cells transfected with control siRNA under starvation conditions, whereas no difference was observed between the two treatment groups under normal culture conditions. Furthermore, silencing of CD147 resulted in a remarkable downregulation of phosphorylated mammalian target of rapamycin (p-mTOR) in starved SMMC7721 cells. Finally, the combined treatment of starvation and anti-CD147 monoclonal antibody exhibited a synergistic HCC cell killing effect. Our study suggests that upregulation of CD147 under starvation may reduce hepatoma cell death by modulating both apoptosis and autophagy through mTOR signaling, and that CD147 may be a novel potential molecular target to improve the efficacy of TACE.

  17. Control of the proportion of inner cells by asymmetric divisions and the ensuing resilience of cloned rabbit embryos

    PubMed Central

    Duranthon, Véronique

    2018-01-01

    ABSTRACT Mammalian embryo cloning by nuclear transfer has a low success rate. This is hypothesized to correlate with a high variability of early developmental steps that segregate outer cells, which are fated to extra-embryonic tissues, from inner cells, which give rise to the embryo proper. Exploring the cell lineage of wild-type embryos and clones, imaged in toto until hatching, highlights the respective contributions of cell proliferation, death and asymmetric divisions to phenotypic variability. Preferential cell death of inner cells in clones, probably pertaining to the epigenetic plasticity of the transferred nucleus, is identified as a major difference with effects on the proportion of inner cell. In wild type and clones, similar patterns of outer cell asymmetric divisions are shown to be essential to the robust proportion of inner cells observed in wild type. Asymmetric inner cell division, which is not described in mice, is identified as a regulator of the proportion of inner cells and likely gives rise to resilient clones. PMID:29567671

  18. FLIP the Switch: Regulation of Apoptosis and Necroptosis by cFLIP

    PubMed Central

    Tsuchiya, Yuichi; Nakabayashi, Osamu; Nakano, Hiroyasu

    2015-01-01

    cFLIP (cellular FLICE-like inhibitory protein) is structurally related to caspase-8 but lacks proteolytic activity due to multiple amino acid substitutions of catalytically important residues. cFLIP protein is evolutionarily conserved and expressed as three functionally different isoforms in humans (cFLIPL, cFLIPS, and cFLIPR). cFLIP controls not only the classical death receptor-mediated extrinsic apoptosis pathway, but also the non-conventional pattern recognition receptor-dependent apoptotic pathway. In addition, cFLIP regulates the formation of the death receptor-independent apoptotic platform named the ripoptosome. Moreover, recent studies have revealed that cFLIP is also involved in a non-apoptotic cell death pathway known as programmed necrosis or necroptosis. These functions of cFLIP are strictly controlled in an isoform-, concentration- and tissue-specific manner, and the ubiquitin-proteasome system plays an important role in regulating the stability of cFLIP. In this review, we summarize the current scientific findings from biochemical analyses, cell biological studies, mathematical modeling, and gene-manipulated mice models to illustrate the critical role of cFLIP as a switch to determine the destiny of cells among survival, apoptosis, and necroptosis. PMID:26694384

  19. Role of SIRT1-mediated mitochondrial and Akt pathways in glioblastoma cell death induced by Cotinus coggygria flavonoid nanoliposomes

    PubMed Central

    Wang, Gang; Wang, Jun Jie; To, Tony SS; Zhao, Hua Fu; Wang, Jing

    2015-01-01

    Flavonoids, the major polyphenol components in Cotinus coggygria (CC), have been found to show an anticancer effect in our previous study; however, the exact mechanisms of inducing human glioblastoma (GBM) cell death remain to be resolved. In this study, a novel polyvinylpyrrolidone K-30/sodium dodecyl sulfate and polyethyleneglycol-coated liposome loaded with CC flavonoids (CCFs) was developed to enhance solubility and the antibrain tumor effect, and the molecular mechanism regarding how CCF nanoliposomes (CCF-NLs) induce apoptotic cell death in vitro was investigated. DBTRG-05MG GBM cell lines treated with CCF-NLs showed potential antiproliferative effects. Regarding the underlying mechanisms of inducing apoptosis in DBTRG-05MG GBM cells, CCF-NLs were shown to downregulate the expression of antiapoptotic B-cell lymphoma/leukemia 2 (Bcl-2), an apoptosis-related protein family member, but the expression of proapoptotic Bcl-2-associated X protein was enhanced compared with that in controls. CCF-NLs also inhibited the activity of caspase-3 and -9, which is the initiator caspase of the extrinsic and intrinsic apoptotic pathways. Blockade of caspase activation consistently induced apoptosis and inhibited growth in CCF-NL-treated DBTRG-05MG cells. This study further investigated the role of the Akt pathway in the apoptotic cell death by CCF-NLs, showing that CCF-NLs deactivated Akt. Specifically, CCF-NLs downregulated the expression of p-Akt and SIRT1 as well as the level of phosphorylated p53. Together, these results indicated SIRT1/p53-mediated cell death was induced by CCF-NLs, but not by extracellular signal-regulated kinase, in DBTRG-05MG cells. Overall, this study suggested caspase-dependent activation of both the intrinsic and extrinsic signaling pathways, probably through blockade of the SIRT1/p53-mediated mitochondrial and Akt pathways to exert the proapoptotic effect of CCF-NLs in DBTRG-05MG GBM cells. PMID:26345416

  20. Fish oil-derived lipid emulsion induces RIP1-dependent and caspase 8-licensed necroptosis in IEC-6 cells through overproduction of reactive oxygen species.

    PubMed

    Yan, Jun-Kai; Yan, Wei-Hui; Cai, Wei

    2018-06-23

    Excessive cell death of enterocytes has been demonstrated to be partially associated with the intravenously-administrated lipid emulsions (LEs) during parenteral nutrition (PN) support. However, as a new generation of LE, the effect of fish oil-derived lipid emulsion (FOLE) on the death of enterocytes remains elusive. Intestinal epithelial cells (IEC-6 cell line) were treated with FOLE (0.25-1%) for 24 h. Cell survival was measured by CCK-8 assay, and morphological changes were monitored by time-lapse live cell imaging. The expression of receptor-interacting protein 1/3 (RIP1/3) and caspase 8 was assessed by westernblot, and the formation of necrosome (characterized by the assembly of RIP1/3 complex along with the dissociation of caspase 8) was examined by immunoprecipitation. Additionally, the production of intracellular reactive oxygen species (ROS) was detected by using a ROS detection kit with an oxidation-sensitive probe (DCFH-DA). FOLE dose-dependently induced non-apoptotic, but programmed necroctic cell death (necroptosis) within 4-8 h after treatment. The assembly of RIP1/3 complex along with the dissociation of caspase 8 from RIP1 was observed in FOLE-treated cells. Moreover, FOLE-induced cell death was significantly alleviated by inhibiting RIP1, and was further aggravated by inhibiting caspase 8. In addition, prior to cell death the accumulation of intracellular ROS was significantly increased in FOLE-treated cells (increased by approximately 5-fold versus control, p < 0.001), which could be attenuated by inhibiting RIP1 (decreased by approximately 35% versus FOLE, p < 0.05). FOLE induces RIP1-dependent and caspase 8-licensed necroptosis through overproduction of ROS in vitro. Our findings may provide novel insights into the clinical applications of FOLE during PN support.

  1. The intracellular carboxyl tail of the PAR-2 receptor controls intracellular signaling and cell death.

    PubMed

    Zhu, Zhihui; Stricker, Rolf; Li, Rong yu; Zündorf, Gregor; Reiser, Georg

    2015-03-01

    The protease-activated receptors are a group of unique G protein-coupled receptors, including PAR-1, PAR-2, PAR-3 and PAR-4. PAR-2 is activated by multiple trypsin-like serine proteases, including trypsin, tryptase and coagulation proteases. The clusters of phosphorylation sites in the PAR-2 carboxyl tail are suggested to be important for the binding of adaptor proteins to initiate intracellular signaling to Ca(2+) and mitogen-activated protein kinases. To explore the functional role of PAR-2 carboxyl tail in controlling intracellular Ca(2+), ERK and AKT signaling, a series of truncated mutants containing different clusters of serines/threonines were generated and expressed in HEK293 cells. Firstly, we observed that lack of the complete C-terminus of PAR-2 in a mutated receptor gave a relatively low level of localization on the cell plasma membrane. Secondly, the shortened carboxyl tail containing 13 amino acids was sufficient for receptor internalization. Thirdly, the cells expressing truncation mutants showed deficits in their capacity to couple to intracellular Ca(2+) and ERK and AKT signaling upon trypsin challenge. In addition, HEK293 cells carrying different PAR-2 truncation mutants displayed decreased levels of cell survival after long-lasting trypsin stimulation. In summary, the PAR-2 carboxyl tail was found to control the receptor localization, internalization, intracellular Ca(2+) responses and signaling to ERK and AKT. The latter can be considered to be important for cell death control.

  2. PreSERVE-AMI: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial of Intracoronary Administration of Autologous CD34+ Cells in Patients With Left Ventricular Dysfunction Post STEMI.

    PubMed

    Quyyumi, Arshed A; Vasquez, Alejandro; Kereiakes, Dean J; Klapholz, Marc; Schaer, Gary L; Abdel-Latif, Ahmed; Frohwein, Stephen; Henry, Timothy D; Schatz, Richard A; Dib, Nabil; Toma, Catalin; Davidson, Charles J; Barsness, Gregory W; Shavelle, David M; Cohen, Martin; Poole, Joseph; Moss, Thomas; Hyde, Pamela; Kanakaraj, Anna Maria; Druker, Vitaly; Chung, Amy; Junge, Candice; Preti, Robert A; Smith, Robin L; Mazzo, David J; Pecora, Andrew; Losordo, Douglas W

    2017-01-20

    Despite direct immediate intervention and therapy, ST-segment-elevation myocardial infarction (STEMI) victims remain at risk for infarct expansion, heart failure, reinfarction, repeat revascularization, and death. To evaluate the safety and bioactivity of autologous CD34+ cell (CLBS10) intracoronary infusion in patients with left ventricular dysfunction post STEMI. Patients who underwent successful stenting for STEMI and had left ventricular dysfunction (ejection fraction≤48%) ≥4 days poststent were eligible for enrollment. Subjects (N=161) underwent mini bone marrow harvest and were randomized 1:1 to receive (1) autologous CD34+ cells (minimum 10 mol/L±20% cells; N=78) or (2) diluent alone (N=83), via intracoronary infusion. The primary safety end point was adverse events, serious adverse events, and major adverse cardiac event. The primary efficacy end point was change in resting myocardial perfusion over 6 months. No differences in myocardial perfusion or adverse events were observed between the control and treatment groups, although increased perfusion was observed within each group from baseline to 6 months (P<0.001). In secondary analyses, when adjusted for time of ischemia, a consistently favorable cell dose-dependent effect was observed in the change in left ventricular ejection fraction and infarct size, and the duration of time subjects was alive and out of hospital (P=0.05). At 1 year, 3.6% (N=3) and 0% deaths were observed in the control and treatment group, respectively. This PreSERVE-AMI (Phase 2, randomized, double-blind, placebo-controlled trial) represents the largest study of cell-based therapy for STEMI completed in the United States and provides evidence supporting safety and potential efficacy in patients with left ventricular dysfunction post STEMI who are at risk for death and major morbidity. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01495364. © 2016 American Heart Association, Inc.

  3. Porcine circovirus-2 capsid protein induces cell death in PK15 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walia, Rupali; Dardari, Rkia, E-mail: rdardari@ucalgary.ca; Chaiyakul, Mark

    Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathwaysmore » involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis. - Highlights: • IFN-γ enhances PCV2 replication that leads to cell death in PK15 cells. • IFN-γ enhances nuclear localization of the PCV2 Capsid protein. • Transient PCV2a and 2b-Capsid protein expression induces cell death. • Cell death is not dictated by specific Capsid protein sub-localization.« less

  4. MYC and EGR1 synergize to trigger tumor cell death by controlling NOXA and BIM transcription upon treatment with the proteasome inhibitor bortezomib

    PubMed Central

    Wirth, Matthias; Stojanovic, Natasa; Christian, Jan; Paul, Mariel C.; Stauber, Roland H.; Schmid, Roland M.; Häcker, Georg; Krämer, Oliver H.; Saur, Dieter; Schneider, Günter

    2014-01-01

    The c-MYC (MYC afterward) oncogene is well known for driving numerous oncogenic programs. However, MYC can also induce apoptosis and this function of MYC warrants further clarification. We report here that a clinically relevant proteasome inhibitor significantly increases MYC protein levels and that endogenous MYC is necessary for the induction of apoptosis. This kind of MYC-induced cell death is mediated by enhanced expression of the pro-apoptotic BCL2 family members NOXA and BIM. Quantitative promoter-scanning chromatin immunoprecipitations (qChIP) further revealed binding of MYC to the promoters of NOXA and BIM upon proteasome inhibition, correlating with increased transcription. Both promoters are further characterized by the presence of tri-methylated lysine 4 of histone H3, marking active chromatin. We provide evidence that in our apoptosis models cell death occurs independently of p53 or ARF. Furthermore, we demonstrate that recruitment of MYC to the NOXA as well as to the BIM gene promoters depends on MYC's interaction with the zinc finger transcription factor EGR1 and an EGR1-binding site in both promoters. Our study uncovers a novel molecular mechanism by showing that the functional cooperation of MYC with EGR1 is required for bortezomib-induced cell death. This observation may be important for novel therapeutic strategies engaging the inherent pro-death function of MYC. PMID:25147211

  5. Respiratory function after selective respiratory motor neuron death from intrapleural CTB–saporin injections

    PubMed Central

    Nichols, Nicole L.; Vinit, Stéphane; Bauernschmidt, Lorene; Mitchell, Gordon S.

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) causes progressive motor neuron degeneration, paralysis and death by ventilatory failure. In rodent ALS models: 1) breathing capacity is preserved until late in disease progression despite major respiratory motor neuron death, suggesting unknown forms of compensatory respiratory plasticity; and 2) spinal microglia become activated in association with motor neuron cell death. Here, we report a novel experimental model to study the impact of respiratory motor neuron death on compensatory responses without many complications attendant to spontaneous motor neuron disease. In specific, we used intrapleural injections of cholera toxin B fragment conjugated to saporin (CTB–SAP) to selectively kill motor neurons with access to the pleural space. Motor neuron survival, CD11b labeling (microglia), ventilatory capacity and phrenic motor output were assessed in rats 3–28 days after intrapleural injections of: 1) CTB–SAP (25 and 50 μg), or 2) unconjugated CTB and SAP (i.e. control; (CTB + SAP). CTB–SAP elicited dose-dependent phrenic and intercostal motor neuron death; 7 days post-25 μg CTB–SAP, motor neuron survival approximated that in end-stage ALS rats (phrenic: 36 ± 7%; intercostal: 56 ± 10% of controls; n = 9; p < 0.05). CTB–SAP caused minimal cell death in other brainstem or spinal cord regions. CTB–SAP: 1) increased CD11b fractional area in the phrenic motor nucleus, indicating microglial activation; 2) decreased breathing during maximal chemoreceptor stimulation; and 3) diminished phrenic motor output in anesthetized rats (7 days post-25 μg, CTB–SAP: 0.3 ± 0.07 V; CTB + SAP: 1.5 ± 0.3; n = 9; p < 0.05). Intrapleural CTB–SAP represents a novel, inducible model of respiratory motor neuron death and provides an opportunity to study compensation for respiratory motor neuron loss. PMID:25476493

  6. THAP5 is a human cardiac-specific inhibitor of cell cycle that is cleaved by the proapoptotic Omi/HtrA2 protease during cell death.

    PubMed

    Balakrishnan, Meenakshi P; Cilenti, Lucia; Mashak, Zineb; Popat, Paiyal; Alnemri, Emad S; Zervos, Antonis S

    2009-08-01

    Omi/HtrA2 is a mitochondrial serine protease that has a dual function: while confined in the mitochondria, it promotes cell survival, but when released into the cytoplasm, it participates in caspase-dependent as well as caspase-independent cell death. To investigate the mechanism of Omi/HtrA2's function, we set out to isolate and characterize novel substrates for this protease. We have identified Thanatos-associated protein 5 (THAP5) as a specific interactor and substrate of Omi/HtrA2 in cells undergoing apoptosis. This protein is an uncharacterized member of the THAP family of proteins. THAP5 has a unique pattern of expression and is found predominantly in the human heart, although a very low expression is also seen in the human brain and muscle. THAP5 protein is localized in the nucleus and, when ectopically expressed, induces cell cycle arrest. During apoptosis, THAP5 protein is degraded, and this process can be blocked using a specific Omi/HtrA2 inhibitor, leading to reduced cell death. In patients with coronary artery disease, THAP5 protein levels substantially decrease in the myocardial infarction area, suggesting a potential role of this protein in human heart disease. This work identifies human THAP5 as a cardiac-specific nuclear protein that controls cell cycle progression. Furthermore, during apoptosis, THAP5 is cleaved and removed by the proapoptotic Omi/HtrA2 protease. Taken together, we provide evidence to support that THAP5 and its regulation by Omi/HtrA2 provide a new link between cell cycle control and apoptosis in cardiomyocytes.

  7. Adenosine decreases oxidative stress and protects H2O2-treated neural stem cells against apoptosis through decreasing Mst1 expression.

    PubMed

    Gholinejad, Masoumeh; Jafari Anarkooli, Iraj; Taromchi, Amirhossein; Abdanipour, Alireza

    2018-05-01

    Overproduction of free radicals during oxidative stress induces damage to key biomolecules and activates programed cell death pathways. Neuronal cell death in the nervous system leads to a number of neurodegenerative diseases. The aim of the present study was to evaluate the neuroprotective effect of adenosine on inhibition of apoptosis induced by hydrogen peroxide (H 2 O 2 ) in bone marrow-derived neural stem cells (B-dNSCs), with focus on its regulatory effect on the expression of mammalian sterile 20-like kinase 1 ( Mst1 ), as a novel proapoptotic kinase. B-dNSCs were exposed to adenosine at different doses (2, 4, 6, 8 and 10 µM) for 48 h followed by 125 µM H 2 O 2 for 30 min. Using MTT, terminal deoxynucleotidyl transferase dUTP nick-end labeling and real-time reverse transcription polymerase chain reaction assays, the effects of adenosine on cell survival, apoptosis and Mst1 , nuclear factor (erythroid-derived 2)-like 2 and B-cell lymphoma 2 and adenosine A1 receptor expression were evaluated in pretreated B-dNSCs compared with controls (cells treated with H 2 O 2 only). Firstly, results of the MTT assay indicated 6 µM adenosine to be the most protective dose in terms of promotion of cell viability. Subsequent assays using this dosage indicated that apoptosis rate and Mst1 expression in B-dNSCs pretreated with 6 µM adenosine were significantly decreased compared with the control group. These findings suggest that adenosine protects B-dNSCs against oxidative stress-induced cell death, and therefore, that it may be used to promote the survival rate of B-dNSCs and as a candidate for the treatment of oxidative stress-mediated neurological diseases.

  8. mTOR at the Transmitting and Receiving Ends in Tumor Immunity

    PubMed Central

    Guri, Yakir; Nordmann, Thierry M.; Roszik, Jason

    2018-01-01

    Cancer is a complex disease and a leading cause of death worldwide. Immunity is critical for cancer control. Cancer cells exhibit high mutational rates and therefore altered self or neo-antigens, eliciting an immune response to promote tumor eradication. Failure to mount a proper immune response leads to cancer progression. mTOR signaling controls cellular metabolism, immune cell differentiation, and effector function. Deregulated mTOR signaling in cancer cells modulates the tumor microenvironment, thereby affecting tumor immunity and possibly promoting carcinogenesis. PMID:29662490

  9. mTOR at the Transmitting and Receiving Ends in Tumor Immunity.

    PubMed

    Guri, Yakir; Nordmann, Thierry M; Roszik, Jason

    2018-01-01

    Cancer is a complex disease and a leading cause of death worldwide. Immunity is critical for cancer control. Cancer cells exhibit high mutational rates and therefore altered self or neo-antigens, eliciting an immune response to promote tumor eradication. Failure to mount a proper immune response leads to cancer progression. mTOR signaling controls cellular metabolism, immune cell differentiation, and effector function. Deregulated mTOR signaling in cancer cells modulates the tumor microenvironment, thereby affecting tumor immunity and possibly promoting carcinogenesis.

  10. Evaluation of a 99mTc-labeled AnnexinA5 variant for non-invasive SPECT imaging of cell death in liver, spleen and prostate.

    PubMed

    Greupink, Rick; Sio, Charles F; Ederveen, Antwan; Orsel, Joke

    2009-12-01

    We investigate radio-labeling and pharmacokinetics of a new AnnexinA5 variant (HYNIC-cys-AnxA5) and then assess its utility for the non-invasive detection of cell death in liver, spleen and prostate. AnnexinA5 binds to phosphatidylserine expressed on the surface of apoptotic and necrotic cells. Contrary to other AnnexinA5 variants, the new cys-AnxA5 allows for site-specific conjugation of a hydrazinonicotinamide-maleimide moiety and subsequent radio-labeling with (99m)Tc at a position not involved in the AnxA5-phosphatidylserine interaction. Distribution of (99m)Tc-HYNIC-cys-AnxA5 was studied in rats, both invasively and via SPECT/CT. Cycloheximide was used to induce cell death in liver and spleen, whereas apoptosis in the prostate was induced by castration. HYNIC-cys-AnxA5 was efficiently and reproducibly labeled with (99m)Tc. Blood clearance of radioactivity after iv-injection was adequately described by a two-compartment model, the renal cortex representing the main site of accumulation. Cycloheximide treatment resulted in increased accumulation of intravenous-injected (99m)Tc-HYNIC-cys-AnxA5 in liver and spleen over controls, which correlated well with TUNEL staining for cell death in corresponding tissue sections. However, the increase in TUNEL-positive prostate epithelial cells observed following castration was not paralleled by greater (99m)Tc-HYNIC-cys-AnxA5 accumulation. (99m)Tc-HYNIC-cys-AnxA5 appears a suitable tracer for assessment of cell death in liver and spleen, but not prostate.

  11. Targeting Programmed Cell Death Using Small-Molecule Compounds to Improve Potential Cancer Therapy.

    PubMed

    Ke, Bowen; Tian, Mao; Li, Jingjing; Liu, Bo; He, Gu

    2016-11-01

    Evasion of cell death is one of the hallmarks of cancer cells, beginning with long-established apoptosis and extending to other new forms of cell death. An elaboration of cell death pathways thus will contribute to a better understanding of cancer pathogenesis and therapeutics. With the recent substantial biochemical and genetic explorations of cell death subroutines, their classification has switched from primarily morphological to more molecular definitions. According to their measurable biochemical features and intricate mechanisms, cell death subroutines can be divided into apoptosis, autophagic cell death, mitotic catastrophe, necroptosis, parthanatos, ferroptosis, pyroptosis, pyronecrosis, anoikis, cornification, entosis, and NETosis. Supportive evidence has gradually revealed the prime molecular mechanisms of each subroutine and thus providing series of possible targets in cancer therapy, while the intricate relationships between different cell death subroutines still remain to be clarified. Over the past decades, cancer drug discovery has significantly benefited from the use of small-molecule compounds to target classical modalities of cell death such as apoptosis, while newly identified cell death subroutines has also emerging their potential for cancer drug discovery in recent years. In this review, we comprehensively focus on summarizing 12 cell death subroutines and discussing their corresponding small-molecule compounds in potential cancer therapy. Together, these inspiring findings may provide more evidence to fill in the gaps between cell death subroutines and small-molecule compounds to better develop novel cancer therapeutic strategies. © 2016 Wiley Periodicals, Inc.

  12. Stem Cell-Based Therapies for Polyglutamine Diseases.

    PubMed

    Mendonça, Liliana S; Onofre, Isabel; Miranda, Catarina Oliveira; Perfeito, Rita; Nóbrega, Clévio; de Almeida, Luís Pereira

    2018-01-01

    Polyglutamine (polyQ) diseases are a family of neurodegenerative disorders with very heterogeneous clinical presentations, although with common features such as progressive neuronal death. Thus, at the time of diagnosis patients might present an extensive and irreversible neuronal death demanding cell replacement or support provided by cell-based therapies. For this purpose stem cells, which include diverse populations ranging from embryonic stem cells (ESCs), to fetal stem cells, mesenchymal stromal cells (MSCs) or induced pluripotent stem cells (iPSCs) have remarkable potential to promote extensive brain regeneration and recovery in neurodegenerative disorders. This regenerative potential has been demonstrated in exciting pre and clinical assays. However, despite these promising results, several drawbacks are hampering their successful clinical implementation. Problems related to ethical issues, quality control of the cells used and the lack of reliable models for the efficacy assessment of human stem cells. In this chapter the main advantages and disadvantages of the available sources of stem cells as well as their efficacy and potential to improve disease outcomes are discussed.

  13. Inhibition of ERK1/2 or AKT Activity Equally Enhances Radiation Sensitization in B16F10 Cells.

    PubMed

    Kalal, Bhuvanesh Sukhlal; Fathima, Faraz; Pai, Vinitha Ramanath; Sanjeev, Ganesh; Krishna, Chilakapati Murali; Upadhya, Dinesh

    2018-02-01

    The aim of the study was to evaluate the radiation sensitizing ability of ERK1/2, PI3K-AKT and JNK inhibitors in highly radiation resistant and metastatic B16F10 cells which carry wild-type Ras and Braf . Mouse melanoma cell line B16F10 was exposed to 1.0, 2.0 and 3.0 Gy of electron beam radiation. Phosphorylated ERK1/2, AKT and JNK levels were estimated by ELISA. Cells were exposed to 2.0 and 3.0 Gy of radiation with or without prior pharmacological inhibition of ERK1/2, AKT as well as JNK pathways. Cell death induced by radiation as well as upon inhibition of these pathways was measured by TUNEL assay using flow cytometry. Exposure of B16F10 cells to 1.0, 2.0 and 3.0 Gy of electron beam irradiation triggered an increase in all the three phosphorylated proteins compared to sham-treated and control groups. B16F10 cells pre-treated with either ERK1/2 or AKT inhibitors equally enhanced radiation-induced cell death at 2.0 as well as 3.0 Gy (P < 0.001), while inhibition of JNK pathway increased radiation-induced cell death to a lesser extent. Interestingly combined inhibition of ERK1/2 or AKT pathways did not show additional cell death compared to individual ERK1/2 or AKT inhibition. This indicates that ERK1/2 or AKT mediates radiation resistance through common downstream molecules in B16F10 cells. Even without activating mutations in Ras or Braf genes, ERK1/2 and AKT play a critical role in B16F10 cell survival upon radiation exposure and possibly act through common downstream effector/s.

  14. A flow cytometric approach to the study of crustacean cellular immunity

    USGS Publications Warehouse

    Cardenas, W.; Jenkins, J.A.; Dankert, J.R.

    2000-01-01

    Responses of hemocytes from the crayfish Procambarus zonangulus to stimulation by fungal cell walls (Zymosan A) were measured by flow cytometry. Changes in hemocyte physical characteristics were assessed flow cytometrically using forward- and sidescatter light parameters, and viability was measured by two-color fluorescent staining with calcein-AM and ethidium homodimer 1. The main effects of zymosan A on crayfish hemocytes were reduction in cell size and viability compared to control mixtures (hemocytes in buffer only). Adding diethyldithiocarbamic acid, an inhibitor of phenoloxidase, to hemocyte to zymosan mixtures delayed the time course of cell size reduction and cell death compared to zymosan-positive controls. The inclusion of trypsin inhibitor in reaction mixtures further delayed the reduction in hemocyte size and cell death, thereby indicating that a proteolytic cascade, along with prophenoloxidase activation, played a key role in generating signal molecules which mediate these cellular responses. In addition to traditional methods such as microscopy and protein chemistry, flow cytometry can provide a simple, reproducible, and sensitve method for evaluating invertebrate hemocyte responses to immunological stimuli.

  15. Porous Silicon Nanoparticle Photosensitizers for Singlet Oxygen and Their Phototoxicity Against Cancer Cells

    PubMed Central

    Xiao, Ling; Gu, Luo; Howell, Stephen B.; Sailor, Michael J.

    2011-01-01

    Porous Si nanoparticles, prepared from electrochemically etched single crystal Si wafers, function as photosensitizers to generate 1O2 in ethanol and in aqueous media. The preparation conditions for the porous Si nanoparticles were optimized to maximize (1) the yield of material; (2) its quantum yield of 1O2 production; and (3) its in vitro degradation properties. The optimal formulation was determined to consist of nanoparticles 146 ± 7 nm in diameter, with nominal pore sizes of 12 ± 4 nm. The quantum yield for 1O2 production is 0.10 ± 0.02 in ethanol and 0.17 ± 0.01 in H2O. HeLa or NIH-3T3 cells treated with 100 µg/mL porous Si nanoparticles and exposed to 60 J/cm2 white light (infrared filtered, 100 mW/cm2 for 10 min) exhibit ~ 45% cell death, while controls containing no nanoparticles show 10% or 25% cell death, respectively. The dark control experiment yields < 10% cytotoxicity for either cell type. PMID:21452822

  16. Understanding cell cycle and cell death regulation provides novel weapons against human diseases.

    PubMed

    Wiman, K G; Zhivotovsky, B

    2017-05-01

    Cell division, cell differentiation and cell death are the three principal physiological processes that regulate tissue homoeostasis in multicellular organisms. The growth and survival of cells as well as the integrity of the genome are regulated by a complex network of pathways, in which cell cycle checkpoints, DNA repair and programmed cell death have critical roles. Disruption of genomic integrity and impaired regulation of cell death may both lead to uncontrolled cell growth. Compromised cell death can also favour genomic instability. It is becoming increasingly clear that dysregulation of cell cycle and cell death processes plays an important role in the development of major disorders such as cancer, cardiovascular disease, infection, inflammation and neurodegenerative diseases. Research achievements in these fields have led to the development of novel approaches for treatment of various conditions associated with abnormalities in the regulation of cell cycle progression or cell death. A better understanding of how cellular life-and-death processes are regulated is essential for this development. To highlight these important advances, the Third Nobel Conference entitled 'The Cell Cycle and Cell Death in Disease' was organized at Karolinska Institutet in 2016. In this review we will summarize current understanding of cell cycle progression and cell death and discuss some of the recent advances in therapeutic applications in pathological conditions such as cancer, neurological disorders and inflammation. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  17. Iso-suillin from Suillus flavus Induces Apoptosis in Human Small Cell Lung Cancer H446 Cell Line

    PubMed Central

    Zhao, Jun-Xia; Zhang, Qing-Shuang; Chen, Ying; Yao, Sheng-Jie; Yan, Yong-Xin; Wang, Ying; Zhang, Jin-Xiu; Wang, Li-An

    2016-01-01

    Background: The suillin isoform iso-suillin is a natural substance isolated from a petroleum ether extract of the fruiting bodies of the mushroom Suillus flavus. Previous studies have found its inhibition effect on some cancer cells, and we aimed to study its effects on human small cell lung cancer H446 cell line. Methods: Cell viability was measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Cellular morphological changes (apoptosis and necrosis) were evaluated using an electron microscope and Hoechst 33258 staining detected by the inverted microscope. Flow cytometry was used to detect cell apoptosis, cell cycle distribution, and mitochondrial membrane potential. Protein expression was determined by Western blotting analysis. Results: Here, we describe the ability of iso-suillin to inhibit the growth of H446 cells in time- and dose-dependent way. Iso-suillin had no obvious impact on normal human lymphocyte proliferation at low concentrations (9.09, 18.17, or 36.35 μmol/L) but promoted lymphocyte proliferation at a high concentration (72.70 μmol/L). After treatment of different concentrations of iso-suillin (6.82, 13.63, or 20.45 μmol/L), the apoptosis rate of H446 cells increased with increasing concentrations of iso-suillin (16.70%, 35.54%, and 49.20%, respectively, all P < 0.05 compared with the control), and the expression of related apoptotic proteins in the mitochondrial pathway including cytochrome c and caspase-9 were up-regulated compared with the control (all P < 0.05). On the contrary, Bcl-2/Bax ratio was down-regulated compared with the control. Besides, the expression of pro-apoptotic proteins in the death receptor apoptosis pathway, including Fas-associating protein with a novel death domain and caspase-8, and the expression of caspase-3, a downstream regulatory protein of apoptosis, were also increased compared with the control (all P < 0.05). Inhibitors of caspase-9 and caspase-8 reversed the apoptosis process in H446 cells to varying degrees. Conclusions: These results suggest that iso-suillin could induce H446 cell apoptosis through the mitochondrial pathway and the death-receptor pathway. Therefore, iso-suillin might have a potential application as a novel drug for lung cancer treatment. PMID:27174331

  18. Iso-suillin from Suillus flavus Induces Apoptosis in Human Small Cell Lung Cancer H446 Cell Line.

    PubMed

    Zhao, Jun-Xia; Zhang, Qing-Shuang; Chen, Ying; Yao, Sheng-Jie; Yan, Yong-Xin; Wang, Ying; Zhang, Jin-Xiu; Wang, Li-An

    2016-05-20

    The suillin isoform iso-suillin is a natural substance isolated from a petroleum ether extract of the fruiting bodies of the mushroom Suillus flavus. Previous studies have found its inhibition effect on some cancer cells, and we aimed to study its effects on human small cell lung cancer H446 cell line. Cell viability was measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Cellular morphological changes (apoptosis and necrosis) were evaluated using an electron microscope and Hoechst 33258 staining detected by the inverted microscope. Flow cytometry was used to detect cell apoptosis, cell cycle distribution, and mitochondrial membrane potential. Protein expression was determined by Western blotting analysis. Here, we describe the ability of iso-suillin to inhibit the growth of H446 cells in time- and dose-dependent way. Iso-suillin had no obvious impact on normal human lymphocyte proliferation at low concentrations (9.09, 18.17, or 36.35 μmol/L) but promoted lymphocyte proliferation at a high concentration (72.70 μmol/L). After treatment of different concentrations of iso-suillin (6.82, 13.63, or 20.45 μmol/L), the apoptosis rate of H446 cells increased with increasing concentrations of iso-suillin (16.70%, 35.54%, and 49.20%, respectively, all P < 0.05 compared with the control), and the expression of related apoptotic proteins in the mitochondrial pathway including cytochrome c and caspase-9 were up-regulated compared with the control (all P < 0.05). On the contrary, Bcl-2/Bax ratio was down-regulated compared with the control. Besides, the expression of pro-apoptotic proteins in the death receptor apoptosis pathway, including Fas-associating protein with a novel death domain and caspase-8, and the expression of caspase-3, a downstream regulatory protein of apoptosis, were also increased compared with the control (all P < 0.05). Inhibitors of caspase-9 and caspase-8 reversed the apoptosis process in H446 cells to varying degrees. These results suggest that iso-suillin could induce H446 cell apoptosis through the mitochondrial pathway and the death-receptor pathway. Therefore, iso-suillin might have a potential application as a novel drug for lung cancer treatment.

  19. Morphodynamics of a growing microbial colony driven by cell death

    NASA Astrophysics Data System (ADS)

    Ghosh, Pushpita; Levine, Herbert

    2017-11-01

    Bacterial cells can often self-organize into multicellular structures with complex spatiotemporal morphology. In this work, we study the spatiotemporal dynamics of a growing microbial colony in the presence of cell death. We present an individual-based model of nonmotile bacterial cells which grow and proliferate by consuming diffusing nutrients on a semisolid two-dimensional surface. The colony spreads by growth forces and sliding motility of cells and undergoes cell death followed by subsequent disintegration of the dead cells in the medium. We model cell death by considering two possible situations: In one of the cases, cell death occurs in response to the limitation of local nutrients, while the other case corresponds to an active death process, known as apoptotic or programmed cell death. We demonstrate how the colony morphology is influenced by the presence of cell death. Our results show that cell death facilitates transitions from roughly circular to highly branched structures at the periphery of an expanding colony. Interestingly, our results also reveal that for the colonies which are growing in higher initial nutrient concentrations, cell death occurs much earlier compared to the colonies which are growing in lower initial nutrient concentrations. This work provides new insights into the branched patterning of growing bacterial colonies as a consequence of complex interplay among the biochemical and mechanical effects.

  20. Conditional lethality strains for the biological control of Anastrepha species

    USDA-ARS?s Scientific Manuscript database

    Pro-apoptotic cell death genes are promising candidates for biologically-based autocidal control of pest insects as demonstrated by tetracycline (tet)-suppressible systems for conditional embryonic lethality in Drosophila melanogaster (Dm) and the medfly, Ceratitis capitata (Cc). However, for medfly...

  1. Adenovirus Death Protein (ADP) Is Required for Lytic Infection of Human Lymphocytes

    PubMed Central

    Murali, V. K.; Ornelles, D. A.; Gooding, L. R.; Wilms, H. T.; Huang, W.; Tollefson, A. E.; Wold, W. S. M.

    2014-01-01

    The adenovirus death protein (ADP) is expressed at late times during a lytic infection of species C adenoviruses. ADP promotes the release of progeny virus by accelerating the lysis and death of the host cell. Since some human lymphocytes survive while maintaining a persistent infection with species C adenovirus, we compared ADP expression in these cells with ADP expression in lymphocytes that proceed with a lytic infection. Levels of ADP were low in KE37 and BJAB cells, which support a persistent infection. In contrast, levels of ADP mRNA and protein were higher in Jurkat cells, which proceed with a lytic infection. Epithelial cells infected with an ADP-overexpressing virus died more quickly than epithelial cells infected with an ADP-deleted virus. However, KE37, and BJAB cells remained viable after infection with the ADP-overexpressing virus. Although the levels of ADP mRNA increased in KE37 and BJAB cells infected with the ADP-overexpressing virus, the fraction of cells with detectable ADP was unchanged, suggesting that the control of ADP expression differs between epithelial and lymphocytic cells. When infected with an ADP-deleted adenovirus, Jurkat cells survived and maintained viral DNA for greater than 1 month. These findings are consistent with the notion that the level of ADP expression determines whether lymphocytic cells proceed with a lytic or a persistent adenovirus infection. PMID:24198418

  2. Inflammation arising from obesity reduces taste bud abundance and inhibits renewal.

    PubMed

    Kaufman, Andrew; Choo, Ezen; Koh, Anna; Dando, Robin

    2018-03-01

    Despite evidence that the ability to taste is weakened by obesity and can be rescued with weight loss intervention, few studies have investigated the molecular effects of obesity on the taste system. Taste bud cells undergo continual turnover even in adulthood, exhibiting an average life span of only a few weeks, tightly controlled by a balance of proliferation and cell death. Recent data reveal that an acute inflammation event can alter this balance. We demonstrate that chronic low-grade inflammation brought on by obesity reduces the number of taste buds in gustatory tissues of mice-and is likely the cause of taste dysfunction seen in obese populations-by upsetting this balance of renewal and cell death.

  3. The FEBS Journal in 2018 - putting a bit of color in your life, and your figures.

    PubMed

    Martin, Seamus J

    2018-01-01

    Seamus Martin holds the Smurfit Chair of Medical Genetics at the Smurfit Institute of Genetics, Trinity College Dublin, Ireland. He works on all aspects of cell death control and is especially interested in the links between cell death, cell stress and inflammation. He received the GlaxoSmithKline Award of The Biochemical Society (2006) and The RDS-Irish Times Boyle Medal (2015) for his work on the role of caspases in apoptosis and was elected to the Royal Irish Academy in 2006 and EMBO in 2009. He is the Editor-in-Chief of The FEBS Journal since 2014. © 2018 Federation of European Biochemical Societies.

  4. Granulocyte macrophage-colony stimulating factor and interleukin-3 increase expression of type II tumour necrosis factor receptor, increasing susceptibility to tumour necrosis factor-induced apoptosis. Control of leukaemia cell life/death switching.

    PubMed

    Rae, C; MacEwan, D J

    2004-12-01

    Tumour necrosis factor (TNF) induces apoptosis in a range of cell types via its two receptors, TNFR1 and TNFR2. Here, we demonstrate that proliferation and TNFR2 expression was increased in human leukaemic TF-1 cells by granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin-3 (IL-3), with TNFR1 expression unaffected. Consequently, they switch from a proliferative to a TNF-induced apoptotic phenotype. Raised TNFR2 expression and susceptibility to TNF-induced apoptosis was not a general effect of proliferation as IL-1beta and IFN-gamma both proliferated TF-1 cells with no effect on TNFR expression or apoptosis. Although raised TNFR2 expression correlated with the apoptotic phenotype, stimulation of apoptosis in GM-CSF-pretreated cells was mediated by TNFR1, with stimulation of TNFR2 alone insufficient to initiate cell death. However, TNFR2 did play a role in apoptotic and proliferative responses as they were blocked by the presence of an antagonistic TNFR2 antibody. Additionally, coincubation with cycloheximide blocked the mitotic effects of GM-CSF or IL-3, allowing only the apoptotic responses of TNF to persist. TNF life/death was also observed in K562, but not MOLT-4 and HL-60 human leukaemic cell types. These findings show a cooperative role of TNFR2 in the TNF life/death switching phenomenon.

  5. Radiobiological basis of SBRT and SRS.

    PubMed

    Song, Chang W; Kim, Mi-Sook; Cho, L Chinsoo; Dusenbery, Kathryn; Sperduto, Paul W

    2014-08-01

    Stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) have been demonstrated to be highly effective for a variety of tumors. However, the radiobiological principles of SBRT and SRS have not yet been clearly defined. It is well known that newly formed tumor blood vessels are fragile and extremely sensitive to ionizing radiation. Various lines of evidence indicate that irradiation of tumors with high dose per fraction, i.e. >10 Gy per fraction, not only kills tumor cells but also causes significant damage in tumor vasculatures. Such vascular damage and ensuing deterioration of the intratumor environment then cause ischemic or indirect/secondary tumor cell death within a few days after radiation exposure, indicating that vascular damage plays an important role in the response of tumors to SBRT and SRS. Indications are that the extensive tumor cell death due to the direct effect of radiation on tumor cells and the secondary effect through vascular damage may lead to massive release of tumor-associated antigens and various pro-inflammatory cytokines, thereby triggering an anti-tumor immune response. However, the precise role of immune assault on tumor cells in SBRT and SRS has not yet been clearly defined. The "4 Rs" for conventional fractionated radiotherapy do not include indirect cell death and thus 4 Rs cannot account for the effective tumor control by SBRT and SRS. The linear-quadratic model is for cell death caused by DNA breaks and thus the usefulness of this model for ablative high-dose SBRT and SRS is limited.

  6. Colourful death: six-parameter classification of cell death by flow cytometry--dead cells tell tales.

    PubMed

    Munoz, Luis E; Maueröder, Christian; Chaurio, Ricardo; Berens, Christian; Herrmann, Martin; Janko, Christina

    2013-08-01

    The response of the immune system against dying and dead cells strongly depends on the cell death phenotype. Beside other forms of cell death, two clearly distinct populations, early apoptotic and secondary necrotic cells, have been shown to induce anti-inflammation/tolerance and inflammation/immune priming, respectively. Cytofluorometry is a powerful technique to detect morphological and phenotypical changes occurring during cell death. Here, we describe a new technique using AnnexinA5, propidiumiodide, DiIC1(5) and Hoechst 33342 to sub-classify populations of apoptotic and/or necrotic cells. The method allows the fast and reliable identification of several different phases and pathways of cell death by analysing the following cell death associated changes in a single tube: cellular granularity and shrinkage, phosphatidylserine exposure, ion selectivity of the plasma membrane, mitochondrial membrane potential, and DNA content. The clear characterisation of cell death is of major importance for instance in immunization studies, in experimental therapeutic settings, and in the exploration of cell-death associated diseases. It also enables the analysis of immunological properties of distinct populations of dying cells and the pathways involved in this process.

  7. Xenon neurotoxicity in rat hippocampal slice cultures is similar to isoflurane and sevoflurane.

    PubMed

    Brosnan, Heather; Bickler, Philip E

    2013-08-01

    Anesthetic neurotoxicity in the developing brain of rodents and primates has raised concern. Xenon may be a nonneurotoxic alternative to halogenated anesthetics, but its toxicity has only been studied at low concentrations, where neuroprotective effects predominate in animal models. An equipotent comparison of xenon and halogenated anesthetics with respect to neurotoxicity in developing neurons has not been made. Organotypic hippocampal cultures from 7-day-old rats were exposed to 0.75, 1, and 2 minimum alveolar concentrations (MAC) partial pressures (60% xenon at 1.2, 2.67, and 3.67 atm; isoflurane at 1.4, 1.9, and 3.8%; and sevoflurane at 3.4 and 6.8%) for 6 h, at atmospheric pressure or in a pressure chamber. Cell death was assessed 24 h later with fluorojade and fluorescent dye exclusion techniques. Xenon caused death of hippocampal neurons in CA1, CA3, and dentate regions after 1 and 2 MAC exposures, but not at 0.75 MAC. At 1 MAC, xenon increased cell death 40% above baseline (P < 0.01; ANOVA with Dunnett test). Both isoflurane and sevoflurane increased neuron death at 1 but not 2 MAC. At 1 MAC, the increase in cell death compared with controls was 63% with isoflurane and 90% with sevoflurane (both P < 0.001). Pretreatment of cultures with isoflurane (0.75 MAC) reduced neuron death after 1 MAC xenon, isoflurane, and sevoflurane. Xenon causes neuronal cell death in an in vitro model of the developing rodent brain at 1 MAC, as does isoflurane and sevoflurane at similarly potent concentrations. Preconditioning with a subtoxic dose of isoflurane eliminates this toxicity.

  8. Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells.

    PubMed

    Pizato, Nathalia; Luzete, Beatriz Christina; Kiffer, Larissa Fernanda Melo Vasconcelos; Corrêa, Luís Henrique; de Oliveira Santos, Igor; Assumpção, José Antônio Fagundes; Ito, Marina Kiyomi; Magalhães, Kelly Grace

    2018-01-31

    The implication of inflammation in pathophysiology of several type of cancers has been under intense investigation. Omega-3 fatty acids can modulate inflammation and present anticancer effects, promoting cancer cell death. Pyroptosis is an inflammation related cell death and so far, the function of docosahexaenoic acid (DHA) in pyroptosis cell death has not been described. This study investigated the role of DHA in triggering pyroptosis activation in breast cancer cells. MDA-MB-231 breast cancer cells were supplemented with DHA and inflammation cell death was analyzed. DHA-treated breast cancer cells triggered increased caspase-1and gasdermin D activation, enhanced IL-1β secretion, translocated HMGB1 towards the cytoplasm, and membrane pore formation when compared to untreated cells, suggesting DHA induces pyroptosis programmed cell death in breast cancer cells. Moreover, caspase-1 inhibitor (YVAD) could protect breast cancer cells from DHA-induced pyroptotic cell death. In addition, membrane pore formation showed to be a lysosomal damage and ROS formation-depended event in breast cancer cells. DHA triggered pyroptosis cell death in MDA-MB-231by activating several pyroptosis markers in these cells. This is the first study that shows the effect of DHA triggering pyroptosis programmed cell death in breast cancer cells and it could improve the understanding of the omega-3 supplementation during breast cancer treatment.

  9. Deletion of eIF2β lysine stretches creates a dominant negative that affects the translation and proliferation in human cell line: A tool for arresting the cell growth.

    PubMed

    Salton, Gabrielle Dias; Laurino, Claudia Cilene Fernandes Correia; Mega, Nicolás Oliveira; Delgado-Cañedo, Andrés; Setterblad, Niclas; Carmagnat, Maryvonnick; Xavier, Ricardo Machado; Cirne-Lima, Elizabeth; Lenz, Guido; Henriques, João Antonio Pêgas; Laurino, Jomar Pereira

    2017-08-03

    Eukaryote initiation factor 2 subunit β (eIF2β) plays a crucial role in regulation protein synthesis, which mediates the interaction of eIF2 with mRNA. eIF2β contains evolutionarily conserved polylysine stretches in amino-terminal region and a zinc finger motif in the carboxy-terminus. The gene eIF2β was cloned under tetracycline transcription control and the polylysine stretches were deleted by site-directed mutagenesis (eIF2βΔ3K). The plasmid was transfected into HEK 293 TetR cells. These cells were analyzed for their proliferative and translation capacities as well as cell death rate. Experiments were performed using gene reporter assays, western blotting, flow cytometry, cell sorting, cell proliferation assays and confocal immunofluorescence. eIF2βΔ3K affected negatively the protein synthesis, cell proliferation and cell survival causing G2 cell cycle arrest and increased cell death, acting in a negative dominant manner against the native protein. Polylysine stretches are also essential for eIF2β translocated from the cytoplasm to the nucleus, accumulating in the nucleolus and eIF2βΔ3K did not make this translocation. eIF2β is involved in the protein synthesis process and should act in nuclear processes as well. eIF2βΔ3K reduces cell proliferation and causes cell death. Since translation control is essential for normal cell function and survival, the development of drugs or molecules that inhibit translation has become of great interest in the scenario of proliferative disorders. In conclusion, our results suggest the dominant negative eIF2βΔ3K as a therapeutic strategy for the treatment of proliferative disorders and that eIF2β polylysine stretch domains are promising targets for this.

  10. Programed death-1/programed death-ligand 1 expression in lymph nodes of HIV infected patients: results of a pilot safety study in rhesus macaques using anti–programed death-ligand 1 (Avelumab)

    PubMed Central

    Gill, Amanda L.; Green, Samantha A.; Abdullah, Shahed; Le Saout, Cecile; Pittaluga, Stefania; Chen, Hui; Turnier, Refika; Lifson, Jeffrey; Godin, Steven; Qin, Jing; Sneller, Michael C.; Cuillerot, Jean-Marie; Sabzevari, Helen; Lane, H. Clifford; Catalfamo, Marta

    2016-01-01

    Objective: The programed death-1 (PD1)/programed death-ligand 1 (PD-L1) pathway plays a critical role in balancing immunity and host immunopathology. During chronic HIV/SIV infection, there is persistent immune activation accompanied by accumulation of virus-specific cells with terminally differentiated phenotypes and expression of regulatory receptors such as PD1. These observations led us to hypothesize that the PD1/PD-L1 pathway contributes to the functional dysregulation and ineffective viral control, and its blockade may be a potential immunotherapeutic target. Methods: Lymph node biopsies from HIV-infected patients (n = 23) were studied for expression of PD1 and PD-L1. In addition, we assessed the safety and biological activity of a human anti-PD-L1 antibody (Avelumab) in chronically SIV-infected rhesus macaques. Results: PD-L1 expression was observed in cells with myloid/macrophage morphology in HIV-infected lymph nodes. Administration of anti-PD-L1 was well tolerated, and no changes in body weights, hematologic, or chemistry parameters were observed during the study. Blockade of PD-L1 led to a trend of transient viral control after discontinuation of treatment. Conclusion: Administration of anti-PD-L1 in chronic SIV-infected rhesus macaques was well tolerated. Overall, these data warrant further investigation to assess the efficacy of anti-PD-L1 treatment on viral control in chronic SIV infection as a prelude to such therapy in humans. PMID:27490642

  11. Programed death-1/programed death-ligand 1 expression in lymph nodes of HIV infected patients: results of a pilot safety study in rhesus macaques using anti-programed death-ligand 1 (Avelumab).

    PubMed

    Gill, Amanda L; Green, Samantha A; Abdullah, Shahed; Le Saout, Cecile; Pittaluga, Stefania; Chen, Hui; Turnier, Refika; Lifson, Jeffrey; Godin, Steven; Qin, Jing; Sneller, Michael C; Cuillerot, Jean-Marie; Sabzevari, Helen; Lane, H Clifford; Catalfamo, Marta

    2016-10-23

    The programed death-1 (PD1)/programed death-ligand 1 (PD-L1) pathway plays a critical role in balancing immunity and host immunopathology. During chronic HIV/SIV infection, there is persistent immune activation accompanied by accumulation of virus-specific cells with terminally differentiated phenotypes and expression of regulatory receptors such as PD1. These observations led us to hypothesize that the PD1/PD-L1 pathway contributes to the functional dysregulation and ineffective viral control, and its blockade may be a potential immunotherapeutic target. Lymph node biopsies from HIV-infected patients (n = 23) were studied for expression of PD1 and PD-L1. In addition, we assessed the safety and biological activity of a human anti-PD-L1 antibody (Avelumab) in chronically SIV-infected rhesus macaques. PD-L1 expression was observed in cells with myloid/macrophage morphology in HIV-infected lymph nodes. Administration of anti-PD-L1 was well tolerated, and no changes in body weights, hematologic, or chemistry parameters were observed during the study. Blockade of PD-L1 led to a trend of transient viral control after discontinuation of treatment. Administration of anti-PD-L1 in chronic SIV-infected rhesus macaques was well tolerated. Overall, these data warrant further investigation to assess the efficacy of anti-PD-L1 treatment on viral control in chronic SIV infection as a prelude to such therapy in humans.

  12. Quercetin inhibits prostate cancer by attenuating cell survival and inhibiting anti-apoptotic pathways.

    PubMed

    Ward, Ashley B; Mir, Hina; Kapur, Neeraj; Gales, Dominique N; Carriere, Patrick P; Singh, Shailesh

    2018-06-14

    Despite recent advances in diagnosis and treatment, prostate cancer (PCa) remains the leading cause of cancer-related deaths in men. Current treatments offered in the clinics are often toxic and have severe side effects. Hence, to treat and manage PCa, new agents with fewer side effects or having potential to reduce side effects of conventional therapy are needed. In this study, we show anti-cancer effects of quercetin, an abundant bioflavonoid commonly used to treat prostatitis, and defined quercetin-induced cellular and molecular changes leading to PCa cell death. Cell viability was assessed using MTT. Cell death mode, mitochondrial outer membrane potential, and oxidative stress levels were determined by flow cytometry using Annexin V-7 AAD dual staining kit, JC-1 dye, and ROS detection kit, respectively. Antibody microarray and western blot were used to delineate the molecular changes induced by quercetin. PCa cells treated with various concentrations of quercetin showed time- and dose-dependent decrease in cell viability compared to controls, without affecting normal prostate epithelial cells. Quercetin led to apoptotic and necrotic cell death in PCa cells by affecting the mitochondrial integrity and disturbing the ROS homeostasis depending upon the genetic makeup and oxidative status of the cells. LNCaP and PC-3 cells that have an oxidative cellular environment showed ROS quenching after quercetin treatment while DU-145 showed rise in ROS levels despite having a highly reductive environment. Opposing effects of quercetin were also observed on the pro-survival pathways of PCa cells. PCa cells with mutated p53 (DU-145) and increased ROS showed significant reduction in the activation of pro-survival Akt pathway while Raf/MEK were activated in response to quercetin. PC-3 cells lacking p53 and PTEN with reduced ROS levels showed significant activation of Akt and NF-κB pathway. Although some of these changes are commonly associated with oncogenic response, the cumulative effect of these alterations is PCa cell death. Our results demonstrated quercetin exerts its anti-cancer effects by modulating ROS, Akt, and NF-κB pathways. Quercetin could be used as a chemopreventive option as well as in combination with chemotherapeutic drugs to improve clinical outcomes of PCa patients.

  13. The involvement of protein kinase C-ε in isoflurane induced preconditioning of human embryonic stem cell--derived Nkx2.5(+) cardiac progenitor cells.

    PubMed

    Song, In-Ae; Oh, Ah-Young; Kim, Jin-Hee; Choi, Young-Min; Jeon, Young-Tae; Ryu, Jung-Hee; Hwang, Jung-Won

    2016-02-20

    Anesthetic preconditioning can improve survival of cardiac progenitor cells exposed to oxidative stress. We investigated the role of protein kinase C and isoform protein kinase C-ε in isoflurane-induced preconditioning of cardiac progenitor cells exposed to oxidative stress. Cardiac progenitor cells were obtained from undifferentiated human embryonic stem cells. Immunostaining with anti-Nkx2.5 was used to confirm the differentiated cardiac progenitor cells. Oxidative stress was induced by H2O2 and FeSO4. For anesthetic preconditioning, cardiac progenitor cells were exposed to 0.25, 0.5, and 1.0 mM of isoflurane. PMA and chelerythrine were used for protein kinase C activation and inhibition, while εψRACK and εV1-2 were used for protein kinase C -ε activation and inhibition, respectively. Isoflurane-preconditioning decreased the death rate of Cardiac progenitor cells exposed to oxidative stress (death rates isoflurane 0.5 mM 12.7 ± 9.3%, 1.0 mM 12.0 ± 7.7% vs. control 31.4 ± 10.2%). Inhibitors of both protein kinase C and protein kinase C -ε abolished the preconditioning effect of isoflurane 0.5 mM (death rates 27.6 ± 13.5% and 25.9 ± 8.7% respectively), and activators of both protein kinase C and protein kinase C - ε had protective effects from oxidative stress (death rates 16.0 ± 3.2% and 10.6 ± 3.8% respectively). Both PKC and PKC-ε are involved in isoflurane-induced preconditioning of human embryonic stem cells -derived Nkx2.5(+) Cardiac progenitor cells under oxidative stress.

  14. Mitochondrial quality control: decommissioning power plants in neurodegenerative diseases.

    PubMed

    Mukherjee, Rukmini; Chakrabarti, Oishee

    2013-01-01

    The cell has an intricate quality control system to protect its mitochondria from oxidative stress. This surveillance system is multi-tiered and comprises molecules that are present inside the mitochondria, in the cytosol, and in other organelles like the nucleus and endoplasmic reticulum. These molecules cross talk with each other and protect the mitochondria from oxidative stress. Oxidative stress is a fundamental part of early disease pathogenesis of neurodegenerative diseases. These disorders also damage the cellular quality control machinery that protects the cell against oxidative stress. This exacerbates the oxidative damage and causes extensive neuronal cell death that is characteristic of neurodegeneration.

  15. Interferon-gamma enhances radiation-induced cell death via downregulation of Chk1

    PubMed Central

    Kim, Kwang Seok; Choi, Kyu Jin; Bae, Sangwoo

    2012-01-01

    Interferon-gamma (IFNγ) is a cytokine with roles in immune responses as well as in tumor control. Interferon is often used in cancer treatment together with other therapies. Here we report a novel approach to enhancement of cancer cell killing by combined treatment of IFNγ with ionizing radiation. We found that IFNγ treatment alone in HeLa cells induced phosphorylation of Chk1 in a time- and dose-dependent manner, and resulted in cell arrest. Moreover IFNγ treatment was correlated with attenuation of Chk1 as the treatment shortened protein half-life of Chk1. As Chk1 is an essential cell cycle regulator for viability after DNA damage, attenuation of Chk1 by IFNγ pre-treatment in HeLa cells resulted in increased cell death following ionizing radiation about 2-folds than ionizing radiation treatment alone whereas IFNγ treatment alone had little effect on cell death. X-linked inhibitor of apoptosis-associated factor 1 (XAF1), an IFN-induced gene, seems to partly regulate IFNγ-induced Chk1 destabilization and radiation sensitivity because transient depletion of XAF1 by siRNA prevented IFNγ-induced Chk1 attenuation and partly protected cells from IFNγ-enhanced radiation cell killing. Therefore the results provide a novel rationale to combine IFNγ pretreatment and DNA-damaging anti-cancer drugs such as ionizing radiation to enhance cancer cell killing. PMID:22825336

  16. Photoreceptor cell death and rescue in retinal detachment and degenerations

    PubMed Central

    Murakami, Yusuke; Notomi, Shoji; Hisatomi, Toshio; Nakazawa, Toru; Ishibashi, Tatsuro; Miller, Joan W.; Vavvas, Demetrios G.

    2013-01-01

    Photoreceptor cell death is the ultimate cause of vision loss in various retinal disorders, including retinal detachment (RD). Photoreceptor cell death has been thought to occur mainly through apoptosis, which is the most characterized form of programmed cell death. The caspase family of cysteine proteases plays a central role for inducing apoptosis, and in experimental models of RD, dying photoreceptor cells exhibit caspase activation; however, there is a paradox that caspase inhibition alone does not provide a sufficient protection against photoreceptor cell loss, suggesting that other mechanisms of cell death are involved. Recent accumulating evidence demonstrates that non-apoptotic forms of cell death, such as autophagy and necrosis, are also regulated by specific molecular machinery, such as those mediated by autophagy-related proteins and receptor-interacting protein kinases, respectively. Here we summarize the current knowledge of cell death signaling and its roles in photoreceptor cell death after RD and other retinal degenerative diseases. A body of studies indicate that not only apoptotic but also autophagic and necrotic signaling are involved in photoreceptor cell death, and that combined targeting of these pathways may be an effective neuroprotective strategy for retinal diseases associated with photoreceptor cell loss. PMID:23994436

  17. Effect of G Protein–Coupled Receptor Kinase 1 (Grk1) Overexpression on Rod Photoreceptor Cell Viability

    PubMed Central

    Whitcomb, Tiffany; Sakurai, Keisuke; Brown, Bruce M.; Young, Joyce E.; Sheflin, Lowell; Dlugos, Cynthia; Craft, Cheryl M.; Kefalov, Vladimir J.

    2010-01-01

    Purpose. Photoreceptor rhodopsin kinase (Rk, G protein–dependent receptor kinase 1 [Grk1]) phosphorylates light-activated opsins and channels them into an inactive complex with visual arrestins. Grk1 deficiency leads to human retinopathy and heightened susceptibility to light-induced photoreceptor cell death in the mouse. The goal of this study was to determine whether excess Grk1 activity is protective against photoreceptor cell death. Methods. Grk1-overexpressing transgenic mice (Grk1+) were generated by using a bacterial artificial chromosome (BAC) construct containing mouse Grk1, along with its flanking sequences. Quantitative reverse transcription-PCR, immunoblot analysis, immunostaining, and activity assays were combined with electrophysiology and morphometric analysis, to evaluate Grk1 overexpression and its effect on physiologic and morphologic retinal integrity. Morphometry and nucleosome release assays measured differences in resistance to photoreceptor cell loss between control and transgenic mice exposed to intense light. Results. Compared with control animals, the Grk1+ transgenic line had approximately a threefold increase in Grk1 transcript and immunoreactive protein. Phosphorylated opsin immunochemical staining and in vitro phosphorylation assays confirmed proportionately higher Grk1 enzyme activity. Grk1+ mice retained normal rod function, normal retinal appearance, and lacked evidence of spontaneous apoptosis when reared in cyclic light. In intense light, Grk1+ mice showed photoreceptor damage, and their susceptibility was more pronounced than that of control mice with prolonged exposure times. Conclusions. Enhancing visual pigment deactivation does not appear to protect against apoptosis; however, excess flow of opsin into the deactivation pathway may actually increase susceptibility to stress-induced cell death similar to some forms of retinal degeneration. PMID:19834036

  18. Patterns of cell death in the perinatal mouse forebrain.

    PubMed

    Mosley, Morgan; Shah, Charisma; Morse, Kiriana A; Miloro, Stephen A; Holmes, Melissa M; Ahern, Todd H; Forger, Nancy G

    2017-01-01

    The importance of cell death in brain development has long been appreciated, but many basic questions remain, such as what initiates or terminates the cell death period. One obstacle has been the lack of quantitative data defining exactly when cell death occurs. We recently created a "cell death atlas," using the detection of activated caspase-3 (AC3) to quantify apoptosis in the postnatal mouse ventral forebrain and hypothalamus, and found that the highest rates of cell death were seen at the earliest postnatal ages in most regions. Here we have extended these analyses to prenatal ages and additional brain regions. We quantified cell death in 16 forebrain regions across nine perinatal ages from embryonic day (E) 17 to postnatal day (P) 11 and found that cell death peaks just after birth in most regions. We found greater cell death in several regions in offspring delivered vaginally on the day of parturition compared with those of the same postconception age but still in utero at the time of collection. We also found massive cell death in the oriens layer of the hippocampus on P1 and in regions surrounding the anterior crossing of the corpus callosum on E18 as well as the persistence of large numbers of cells in those regions in adult mice lacking the pro-death Bax gene. Together these findings suggest that birth may be an important trigger of neuronal cell death and identify transient cell groups that may undergo wholesale elimination perinatally. J. Comp. Neurol. 525:47-64, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Death receptor 3 signaling enhances proliferation of human regulatory T cells.

    PubMed

    Bittner, Sebastian; Knoll, Gertrud; Ehrenschwender, Martin

    2017-04-01

    Exploiting regulatory T cells (Tregs) to control aberrant immune reactions is a promising therapeutic approach, but is hampered by their relative paucity. In mice, activation of death receptor 3 (DR3), a member of the TNF-receptor superfamily (TNFRSF), increases Treg frequency and efficiently controls exuberant immune activation. For human Tregs, neither DR3 expression nor potential functions have been described. Here, we show that human Tregs express DR3 and demonstrate DR3-mediated activation of p38, ERK, and NFκB. DR3 stimulation enhances Treg expansion ex vivo while retaining their suppressive capacity. In summary, our results establish a functional role for DR3 signaling in human Tregs and could potentially help to tailor Treg-based therapies. © 2017 Federation of European Biochemical Societies.

  20. Calcineurin Orchestrates Lateral Transfer of Aspergillus fumigatus during Macrophage Cell Death.

    PubMed

    Shah, Anand; Kannambath, Shichina; Herbst, Susanne; Rogers, Andrew; Soresi, Simona; Carby, Martin; Reed, Anna; Mostowy, Serge; Fisher, Matthew C; Shaunak, Sunil; Armstrong-James, Darius P

    2016-11-01

    Pulmonary aspergillosis is a lethal mold infection in the immunocompromised host. Understanding initial control of infection and how this is altered in the immunocompromised host are key goals for comprehension of the pathogenesis of pulmonary aspergillosis. To characterize the outcome of human macrophage infection with Aspergillus fumigatus and how this is altered in transplant recipients on calcineurin inhibitor immunosuppressants. We defined the outcome of human macrophage infection with A. fumigatus, as well as the impact of calcineurin inhibitors, through a combination of single-cell fluorescence imaging, transcriptomics, proteomics, and in vivo studies. Macrophage phagocytosis of A. fumigatus enabled control of 90% of fungal germination. However, fungal germination in the late phagosome led to macrophage necrosis. During programmed necroptosis, we observed frequent cell-cell transfer of A. fumigatus between macrophages, which assists subsequent control of germination in recipient macrophages. Lateral transfer occurred through actin-dependent exocytosis of the late endosome in a vasodilator-stimulated phosphoprotein envelope. Its relevance to the control of fungal germination was also shown by direct visualization in our zebrafish aspergillosis model in vivo. The calcineurin inhibitor FK506 (tacrolimus) reduced cell death and lateral transfer in vitro by 50%. This resulted in uncontrolled fungal germination in macrophages and also resulted in hyphal escape. These observations identify programmed, necrosis-dependent lateral transfer of A. fumigatus between macrophages as an important host strategy for controlling fungal germination. This process is critically dependent on calcineurin. Our studies provide fundamental insights into the pathogenesis of pulmonary aspergillosis in the immunocompromised host.

  1. Dead Cert: Measuring Cell Death.

    PubMed

    Crowley, Lisa C; Marfell, Brooke J; Scott, Adrian P; Boughaba, Jeanne A; Chojnowski, Grace; Christensen, Melinda E; Waterhouse, Nigel J

    2016-12-01

    Many cells in the body die at specific times to facilitate healthy development or because they have become old, damaged, or infected. Defects in cells that result in their inappropriate survival or untimely death can negatively impact development or contribute to a variety of human pathologies, including cancer, AIDS, autoimmune disorders, and chronic infection. Cell death may also occur following exposure to environmental toxins or cytotoxic chemicals. Although this is often harmful, it can be beneficial in some cases, such as in the treatment of cancer. The ability to objectively measure cell death in a laboratory setting is therefore essential to understanding and investigating the causes and treatments of many human diseases and disorders. Often, it is sufficient to know the extent of cell death in a sample; however, the mechanism of death may also have implications for disease progression, treatment, and the outcomes of experimental investigations. There are a myriad of assays available for measuring the known forms of cell death, including apoptosis, necrosis, autophagy, necroptosis, anoikis, and pyroptosis. Here, we introduce a range of assays for measuring cell death in cultured cells, and we outline basic techniques for distinguishing healthy cells from apoptotic or necrotic cells-the two most common forms of cell death. We also provide personal insight into where these assays may be useful and how they may or may not be used to distinguish apoptotic cell death from other death modalities. © 2016 Cold Spring Harbor Laboratory Press.

  2. Lysosome-controlled efficient ROS overproduction against cancer cells with a high pH-responsive catalytic nanosystem

    NASA Astrophysics Data System (ADS)

    Fu, Jingke; Shao, Yiran; Wang, Liyao; Zhu, Yingchun

    2015-04-01

    Excess reactive oxygen species (ROS) have been proved to damage cancer cells efficiently. ROS overproduction is thus greatly desirable for cancer therapy. To date, ROS production is generally uncontrollable and outside cells, which always bring severe side-effects in the vasculature. Since most ROS share a very short half-life and primarily react close to their site of formation, it would be more efficient if excess ROS are controllably produced inside cancer cells. Herein, we report an efficient lysosome-controlled ROS overproduction via a pH-responsive catalytic nanosystem (FeOx-MSNs), which catalyze the decomposition of H2O2 to produce considerable ROS selectively inside the acidic lysosomes (pH 5.0) of cancer cells. After a further incorporation of ROS-sensitive TMB into the nanosystem (FeOx-MSNs-TMB), both a distinct cell labeling and an efficient death of breast carcinoma cells are obtained. This lysosome-controlled efficient ROS overproduction suggests promising applications in cancer treatments.Excess reactive oxygen species (ROS) have been proved to damage cancer cells efficiently. ROS overproduction is thus greatly desirable for cancer therapy. To date, ROS production is generally uncontrollable and outside cells, which always bring severe side-effects in the vasculature. Since most ROS share a very short half-life and primarily react close to their site of formation, it would be more efficient if excess ROS are controllably produced inside cancer cells. Herein, we report an efficient lysosome-controlled ROS overproduction via a pH-responsive catalytic nanosystem (FeOx-MSNs), which catalyze the decomposition of H2O2 to produce considerable ROS selectively inside the acidic lysosomes (pH 5.0) of cancer cells. After a further incorporation of ROS-sensitive TMB into the nanosystem (FeOx-MSNs-TMB), both a distinct cell labeling and an efficient death of breast carcinoma cells are obtained. This lysosome-controlled efficient ROS overproduction suggests promising applications in cancer treatments. Electronic supplementary information (ESI) available: Experimental section, supplementary figures and characterization of as-prepared compounds. See DOI: 10.1039/c5nr00706b

  3. Annonaceous acetogenin mimic AA005 induces cancer cell death via apoptosis inducing factor through a caspase-3-independent mechanism.

    PubMed

    Han, Bing; Wang, Tong-Dan; Shen, Shao-Ming; Yu, Yun; Mao, Chan; Yao, Zhu-Jun; Wang, Li-Shun

    2015-03-18

    Annonaceous acetogenins are a family of natural products with antitumor activities. Annonaceous acetogenin mimic AA005 reportedly inhibits mammalian mitochondrial NADH-ubiquinone reductase (Complex I) and induces gastric cancer cell death. However, the mechanisms underlying its cell-death-inducing activity are unclear. We used SW620 colorectal adenocarcinoma cells to study AA005 cytotoxic activity. Cell deaths were determined by Trypan blue assay and flow cytometry, and related proteins were characterized by western blot. Immunofluorescence and subcellular fractionation were used to evaluate AIF nuclear translocation. Reactive oxygen species were assessed by using redox-sensitive dye DCFDA. AA005 induces a unique type of cell death in colorectal adenocarcinoma cells, characterized by lack of caspase-3 activation or apoptotic body formation, sensitivity to poly (ADP-ribose) polymerase inhibitor Olaparib (AZD2281) but not pan-caspase inhibitor Z-VAD.fmk, and dependence on apoptosis-inducing factor (AIF). AA005 treatment also reduced expression of mitochondrial Complex I components, and leads to accumulation of intracellular reactive oxygen species (ROS) at the early stage. Blocking ROS formation significantly suppresses AA005-induced cell death in SW620 cells. Moreover, blocking activation of RIP-1 by necroptosis inhibitor necrotatin-1 inhibits AIF translocation and partially suppresses AA005-induced cell death in SW620 cells demonstrating that RIP-1 protein may be essential for cell death. AA005 may trigger the cell death via mediated by AIF through caspase-3 independent pathway. Our work provided new mechanisms for AA005-induced cancer cell death and novel clues for cancer treatment via AIF dependent cell death.

  4. [Possibilities and limitations of fibroblast cultures in the study of animal aging].

    PubMed

    Van Gansen, P; Van Lerberghe, N

    1987-01-01

    INTRODUCTION. Aging--the effect of time--occurs in every living organism. Senescence is the last period of the lifespan, leading to death. It happens in all animals, with the exception of a few didermic species (Hydras) having a stock of embryonic cells and being immortal. The causes of animal senescence are badly known. They depend both on genetic characters (maximal lifespan of a species) and on medium factors (mean expectation of life of the animals of a species). Animal senescence could depend on cell aging: 1) by senescence and death of the differentiated cells, 2) by modified proliferation and differentiation of the stem cells of differentiated tissues, 3) by alterations in the extracellular matrices, 4) by interactions between factors 1) 2) and 3) in each tissue, 5) by interactions between the several tissues of an organism. This complexity badly impedes the experimental study of animal senescence. Normal mammal cells are aging when they are cultivated (in vitro ageing): their phenotype varies and depends on the cell generation (in vitro differentiation); the last cell-generation doesn't divide anymore and declines until death of the culture (in vitro senescence). Analysis of these artificial but well controlled systems allows an experimental approach of the proliferation, differentiation, senescence and death of the cells and of the extracellular matrix functions. Present literature upon in vitro aging of cultivated human cells is essentially made of papers where proliferation and differentiation characteristics are compared between early ("young") and late ("old") cell-generations of the cultures. FIBROBLASTIC CELLS OF THE MOUSE SKIN. This cell type has been studied in our laboratory, using different systems: 1) Primary cultures isolated from peeled skins of 19 day old mouse embryos, 2) Mouse dermis analyzed in the animals, 3) Cultivated explants of skins, 4) Serial sub-cultures of fibroblasts isolated from these explants, 5) Cells cultivated comparably on plane substrates (glass, plastic, collagen films) and on tridimensional matrices (collagen fibres). Systems 2), 3), 4) and 5) have been obtained either from 19 day old embryos or from 6 groups of animals of different ages (from 1/2 till 25 month). In primary cultures (system 1) all the cell generations have been analyzed, including the last one until death of the culture. We have shown that many characters are varying with cell-generation: cell form and cell mass, rate of DNA replication and cell division, rate of RNA transcription, nature of the accumulated and of the synthetized proteins, organization of the cytoskeletal elements, organization of the extracellular matrix, type of cell death.(ABSTRACT TRUNCATED AT 400 WORDS)

  5. TOR-mediated autophagy regulates cell death in Drosophila neurodegenerative disease.

    PubMed

    Wang, Tao; Lao, Uyen; Edgar, Bruce A

    2009-09-07

    Target of rapamycin (TOR) signaling is a regulator of cell growth. TOR activity can also enhance cell death, and the TOR inhibitor rapamycin protects cells against proapoptotic stimuli. Autophagy, which can protect against cell death, is negatively regulated by TOR, and disruption of autophagy by mutation of Atg5 or Atg7 can lead to neurodegeneration. However, the implied functional connection between TOR signaling, autophagy, and cell death or degeneration has not been rigorously tested. Using the Drosophila melanogaster visual system, we show in this study that hyperactivation of TOR leads to photoreceptor cell death in an age- and light-dependent manner and that this is because of TOR's ability to suppress autophagy. We also find that genetically inhibiting TOR or inducing autophagy suppresses cell death in Drosophila models of Huntington's disease and phospholipase C (norpA)-mediated retinal degeneration. Thus, our data indicate that TOR induces cell death by suppressing autophagy and provide direct genetic evidence that autophagy alleviates cell death in several common types of neurodegenerative disease.

  6. Plasmodium falciparum exhibits markers of regulated cell death at high population density in vitro.

    PubMed

    Engelbrecht, Dewaldt; Coetzer, Thérèsa Louise

    2016-12-01

    The asexual erythrocytic cycle of the protozoan parasite Plasmodium falciparum is responsible for the pathogenesis of malaria and causes the overwhelming majority of malaria deaths. Rapidly increasing parasitaemia during this 48hour cycle threatens the survival of the human host and the parasite prior to transmission of the slow-maturing sexual stages to the mosquito host. The parasite may utilise regulated cell death (RCD) to control the burden of infection on the host and thus aid its own survival and transmission. The occurrence of RCD in P. falciparum remains a controversial topic. We provide strong evidence for the occurrence of an apoptosis-like phenotype of RCD in P. falciparum under conditions of high parasite density. P. falciparum was maintained in vitro and stressed by allowing growth to an unrestricted peak parasitaemia. Cell death markers, including morphological changes, DNA fragmentation, mitochondrial polarisation and phosphatidylserine externalisation were used to characterise parasite death at the time of peak parasitaemia and 24h later. At peak parasitaemia, mitochondrial depolarisation was observed, together with phosphatidylserine externalisation in both parasitised- and neighbouring non-infected erythrocytes. DNA fragmentation coincided with a decline in parasitaemia. Fewer merozoites were observed in mature schizonts at peak parasitaemia. Growth recovery to near-peak parasitaemia was noted within two intraerythrocytic cycles. The combination and chronological order of the biochemical markers of cell death suggest the occurrence of an apoptosis-like phenotype. The identification of a RCD pathway in P. falciparum may provide novel drug targets, particularly if the pathway differs from the host machinery. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. ER quality control components UGGT and STT3a are required for activation of defense responses in bir1-1.

    PubMed

    Zhang, Qian; Sun, Tongjun; Zhang, Yuelin

    2015-01-01

    The receptor-like kinase SUPPRESSOR OF BIR1, 1 (SOBIR1) functions as a critical regulator in plant immunity. It is required for activation of cell death and defense responses in Arabidopsis bak1-interacting receptor-like kinase 1,1 (bir1-1) mutant plants. Here we report that the ER quality control component UDP-glucose:glycoprotein glucosyltransferase (UGGT) is required for the biogenesis of SOBIR1 and mutations in UGGT suppress the spontaneous cell death and constitutive defense responses in bir1-1. Loss of function of STT3a, which encodes a subunit of the oligosaccharyltransferase complex, also suppresses the autoimmune phenotype in bir1-1. However, it has no effect on the accumulation of SOBIR1, suggesting that additional signaling components other than SOBIR1 may be regulated by ER quality control. Our study provides clear evidence that ER quality control play critical roles in regulating defense activation in bir1-1.

  8. Heat shock during rat embryo development in vitro results in decreased mitosis and abundant cell death.

    PubMed

    Breen, J G; Claggett, T W; Kimmel, G L; Kimmel, C A

    1999-01-01

    Epidemiologic studies strongly suggest that in utero exposure to hyperthermia results in developmental defects in humans. Rats, mice, guinea pigs, and other species exposed to hyperthermia also exhibit a variety of developmental defects. Studies in our laboratory have focused on exposure to hyperthermia on Gestation Day (GD) 10 of rats in vivo or in vitro. Within 24 h after in vivo or in vitro exposure, delayed or abnormal CNS, optic cup, somite, and limb development can be observed. At birth, only rib and vertebral malformations are seen after hyperthermia on GD 10, and these have been shown to be due to alterations in somite segmentation. Unsegmented somites have been thought to result from a cell-cycle block in the presomitic mesoderm, from which somites emerge individually during normal development. In the present study, DNA fragmentation (terminal deoxynucleotidyl transferase (TdT) catalyzed fluorescein-12-dUTP DNA end-labelling), indicative of apoptotic cell death, and changes in cell proliferation were examined in vitro in 37 degrees C control and heat treated (42 degrees C for 15 min) GD 10 CD rat embryos. Embryos were returned to 37 degrees C culture following exposure and evaluated 5, 8, or 18 h later. A temperature-related increase in TdT labelled cells was observed in the CNS, optic vesicle, neural tube, and somites. Increased cell death in the presomitic mesoderm also was evident. Changes in cell proliferation were examined using the cell-specific abundance of proliferating cell nuclear antigen (PCNA) and the quantification of mitotic figures. In neuroectodermal cells in the region of the optic cup, a change in the abundance of PCNA was not apparent, but a marked decrease in mitotic figures was observed. A significant change in cell proliferation in somites was not detected by either method. These results suggest that acute hyperthermia disrupts embryonic development through a combination of inappropriate cell death and/or altered cell proliferation in discrete regions of the developing rat embryo. Furthermore, postnatal vertebral and rib defects following disrupted somite development may be due, in part, to abundant cell death occurring in the presomitic mesoderm.

  9. Streptococcus sanguinis induces foam cell formation and cell death of macrophages in association with production of reactive oxygen species.

    PubMed

    Okahashi, Nobuo; Okinaga, Toshinori; Sakurai, Atsuo; Terao, Yutaka; Nakata, Masanobu; Nakashima, Keisuke; Shintani, Seikou; Kawabata, Shigetada; Ooshima, Takashi; Nishihara, Tatsuji

    2011-10-01

    Streptococcus sanguinis, a normal inhabitant of the human oral cavity, is a common streptococcal species implicated in infective endocarditis. Herein, we investigated the effects of infection with S. sanguinis on foam cell formation and cell death of macrophages. Infection with S. sanguinis stimulated foam cell formation of THP-1, a human macrophage cell line. At a multiplicity of infection >100, S. sanguinis-induced cell death of the macrophages. Viable bacterial infection was required to trigger cell death because heat-inactivated S. sanguinis did not induce cell death. The production of cytokines interleukin-1β and tumor necrosis factor-α from macrophages was also stimulated during bacterial infection. Inhibition of the production of reactive oxygen species (ROS) resulted in reduced cell death, suggesting an association of ROS with cell death. Furthermore, S. sanguinis-induced cell death appeared to be independent of activation of inflammasomes, because cleavage of procaspase-1 was not evident in infected macrophages. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. Cell Death Pathways and Phthalocyanine as an Efficient Agent for Photodynamic Cancer Therapy

    PubMed Central

    Mfouo-Tynga, Ivan; Abrahamse, Heidi

    2015-01-01

    The mechanisms of cell death can be predetermined (programmed) or not and categorized into apoptotic, autophagic and necrotic pathways. The process of Hayflick limits completes the execution of death-related mechanisms. Reactive oxygen species (ROS) are associated with oxidative stress and subsequent cytodamage by oxidizing and degrading cell components. ROS are also involved in immune responses, where they stabilize and activate both hypoxia-inducible factors and phagocytic effectors. ROS production and presence enhance cytodamage and photodynamic-induced cell death. Photodynamic cancer therapy (PDT) uses non-toxic chemotherapeutic agents, photosensitizer (PS), to initiate a light-dependent and ROS-related cell death. Phthalocyanines (PCs) are third generation and stable PSs with improved photochemical abilities. They are effective inducers of cell death in various neoplastic models. The metallated PCs localize in critical cellular organelles and are better inducers of cell death than other previous generation PSs as they favor mainly apoptotic cell death events. PMID:25955645

  11. Caveolin-1 sensitizes cisplatin-induced lung cancer cell apoptosis via superoxide anion-dependent mechanism.

    PubMed

    Pongjit, Kanittha; Chanvorachote, Pithi

    2011-12-01

    Caveolin-1 (Cav-1) expression frequently found in lung cancer was linked with disease prognosis and progression. This study reveals for the first time that Cav-1 sensitizes cisplatin-induced lung carcinoma cell death by the mechanism involving oxidative stress modulation. We established stable Cav-1 overexpressed (H460/Cav-1) cells and investigated their cisplatin susceptibility in comparison with control-transfected cells and found that Cav-1 expression significantly enhanced cisplatin-mediated cell death. Results indicated that the different response to cisplatin between these cells was resulted from different level of superoxide anion induced by cisplatin. Inhibitory study revealed that superoxide anion inhibitor MnTBAP could inhibit cisplatin-mediated toxicity only in H460/Cav-1 cells while had no effect on H460 cells. Further, superoxide anion detected by DHE probe indicated that H460/Cav-1 cells generated significantly higher superoxide anion level in response to cisplatin than that of control cells. The role of Cav-1 in regulating cisplatin sensitivity was confirmed in shRNA-mediated Cav-1 down-regulated (H460/shCav-1) cells and the cells exhibited decreased cisplatin susceptibility and superoxide generation. In summary, these findings reveal novel aspects regarding role of Cav-1 in modulating oxidative stress induced by cisplatin, possibly providing new insights for cancer biology and cisplatin-based chemotherapy.

  12. Cell death in neural precursor cells and neurons before neurite formation prevents the emergence of abnormal neural structures in the Drosophila optic lobe.

    PubMed

    Hara, Yusuke; Sudo, Tatsuya; Togane, Yu; Akagawa, Hiromi; Tsujimura, Hidenobu

    2018-04-01

    Programmed cell death is a conserved strategy for neural development both in vertebrates and invertebrates and is recognized at various developmental stages in the brain from neurogenesis to adulthood. To understand the development of the central nervous system, it is essential to reveal not only molecular mechanisms but also the role of neural cell death (Pinto-Teixeira et al., 2016). To understand the role of cell death in neural development, we investigated the effect of inhibition of cell death on optic lobe development. Our data demonstrate that, in the optic lobe of Drosophila, cell death occurs in neural precursor cells and neurons before neurite formation and functions to prevent various developmental abnormalities. When neuronal cell death was inhibited by an effector caspase inhibitor, p35, multiple abnormal neuropil structures arose during optic lobe development-e.g., enlarged or fused neuropils, misrouted neurons and abnormal neurite lumps. Inhibition of cell death also induced morphogenetic defects in the lamina and medulla development-e.g., failures in the separation of the lamina and medulla cortices and the medulla rotation. These defects were reproduced in the mutant of an initiator caspase, dronc. If cell death was a mechanism for removing the abnormal neuropil structures, we would also expect to observe them in mutants defective for corpse clearance. However, they were not observed in these mutants. When dead cell-membranes were visualized with Apoliner, they were observed only in cortices and not in neuropils. These results suggest that the cell death occurs before mature neurite formation. Moreover, we found that inhibition of cell death induced ectopic neuroepithelial cells, neuroblasts and ganglion mother cells in late pupal stages, at sites where the outer and inner proliferation centers were located at earlier developmental stages. Caspase-3 activation was observed in the neuroepithelial cells and neuroblasts in the proliferation centers. These results indicate that cell death is required for elimination of the precursor cells composing the proliferation centers. This study substantiates an essential role of early neural cell death for ensuring normal development of the central nervous system. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Menadione triggers cell death through ROS-dependent mechanisms involving PARP activation without requiring apoptosis.

    PubMed

    Loor, Gabriel; Kondapalli, Jyothisri; Schriewer, Jacqueline M; Chandel, Navdeep S; Vanden Hoek, Terry L; Schumacker, Paul T

    2010-12-15

    Low levels of reactive oxygen species (ROS) can function as redox-active signaling messengers, whereas high levels of ROS induce cellular damage. Menadione generates ROS through redox cycling, and high concentrations trigger cell death. Previous work suggests that menadione triggers cytochrome c release from mitochondria, whereas other studies implicate the activation of the mitochondrial permeability transition pore as the mediator of cell death. We investigated menadione-induced cell death in genetically modified cells lacking specific death-associated proteins. In cardiomyocytes, oxidant stress was assessed using the redox sensor RoGFP, expressed in the cytosol or the mitochondrial matrix. Menadione elicited rapid oxidation in both compartments, whereas it decreased mitochondrial potential and triggered cytochrome c redistribution to the cytosol. Cell death was attenuated by N-acetylcysteine and exogenous glutathione or by overexpression of cytosolic or mitochondria-targeted catalase. By contrast, no protection was observed in cells overexpressing Cu,Zn-SOD or Mn-SOD. Overexpression of antiapoptotic Bcl-X(L) protected against staurosporine-induced cell death, but it failed to confer protection against menadione. Genetic deletion of Bax and Bak, cytochrome c, cyclophilin D, or caspase-9 conferred no protection against menadione-induced cell death. However, cells lacking PARP-1 showed a significant decrease in menadione-induced cell death. Thus, menadione induces cell death through the generation of oxidant stress in multiple subcellular compartments, yet cytochrome c, Bax/Bak, caspase-9, and cyclophilin D are dispensable for cell death in this model. These studies suggest that multiple redundant cell death pathways are activated by menadione, but that PARP plays an essential role in mediating each of them. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Menadione triggers cell death through ROS-dependent mechanisms involving PARP activation without requiring apoptosis

    PubMed Central

    Loor, Gabriel; Kondapalli, Jyothisri; Schriewer, Jacqueline M.; Chandel, Navdeep S.; Vanden Hoek, Terry L.; Schumacker, Paul T.

    2010-01-01

    Low levels of reactive oxygen species (ROS) can function as redox-active signaling messengers, whereas high levels of ROS induce cellular damage. Menadione generates ROS through redox cycling, and high concentrations trigger cell death. Previous work suggests that menadione triggers cytochrome c release from mitochondria, while other studies implicate activation of the mitochondrial permeability transition poreas the mediator of cell death. We investigated menadione-induced cell death in genetically modified cells lacking specific death-associated proteins. In cardiomyocytes, oxidant stress was assessed using the redox sensor RoGFP, expressed in the cytosol or the mitochondrial matrix. Menadione elicited rapid oxidation in both compartments, while it decreased mitochondrial potential and triggered cytochrome c redistribution to the cytosol. Cell death was attenuated by N-acetyl cysteine and exogenous glutathione (GSH), or by over-expression of cytosolic or mitochondria-targeted catalase. By contrast, no protection was observed in cells over-expressing Cu, Zn-SOD or MnSOD. Over-expression of antiapoptotic Bcl-XLprotected against staurosporine-induced cell death, but it failed to confer protection against menadione. Genetic deletion of Bax and Bak, cytochrome c, cyclophilin D or caspase-9 conferred no protection against menadione-induced cell death. However, cells lacking PARP-1 showed a significant decrease in menadione-induced cell death. Thus, menadione induces cell death through the generation of oxidant stress in multiple subcellular compartments, yet cytochromec, Bax/Bak, caspase-9 and cyclophilin D are dispensable for cell death in this model. These studies suggest that multiple redundant cell death pathways are activated by menadione, but that PARP plays an essential role in mediating each of them. PMID:20937380

  15. Tumor necrosis factor-α inhibits effects of aryl hydrocarbon receptor ligands on cell death in human lymphocytes.

    PubMed

    Ghatrehsamani, Mahdi; Soleimani, Masoud; Esfahani, Behjat A Moayedi; Shirzad, Hedayatollah; Hakemi, Mazdak G; Mossahebimohammadi, Majid; Eskandari, Nahid; Adib, Minoo

    2015-01-01

    Activation of aryl hydrocarbon receptor (AhR) leads to diverse outcome in various kinds of cells. AhR activation may induce apoptosis or prevent of apoptosis and cell death. Recent studies suggest that apoptosis effects of AhR can be modulated by inflammatory cytokine like tumor necrosis factor alpha (TNF-α). In this study, we try to investigate the possible interaction of TNF-α with the 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), a ligand of AhR, on peripheral lymphocytes. Human peripheral blood mononuclear cells (PBMCs) were isolated from peripheral blood by discontinuous density gradient centrifugation on ficoll. Isolated PBMCs were divided into four groups: Control group, TNF-α administered group, TCDD administered group, co-administered group with TCDD and TNF-α. Cells were maintained for a week in lymphocyte culture condition. Then, TNF-α was added to group 2 and 4. Finally, apoptosis and necrosis were analyzed in all samples using flowcytometry. In group 4, the mean percent of necrosis and apoptosis in TCDD treatment groups was significantly larger than other groups; (P < 0.05). Furthermore, there was no significant difference between the mean percent of cell death in TNF-α administered group and TCDD administered group (P > 0.05). However, the mean percent of cell death in co-administered group with TCDD and TNF-α was significantly lower than other groups; (P < 0.05). TNF-α could significantly inhibit effects of TCDD on lymphocytes apoptosis. Combination effects of TNF-α and TCDD on lymphocyte increase cell survival.

  16. Autologous hematopoietic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis: a randomized clinical trial.

    PubMed

    van Laar, Jacob M; Farge, Dominique; Sont, Jacob K; Naraghi, Kamran; Marjanovic, Zora; Larghero, Jérôme; Schuerwegh, Annemie J; Marijt, Erik W A; Vonk, Madelon C; Schattenberg, Anton V; Matucci-Cerinic, Marco; Voskuyl, Alexandre E; van de Loosdrecht, Arjan A; Daikeler, Thomas; Kötter, Ina; Schmalzing, Marc; Martin, Thierry; Lioure, Bruno; Weiner, Stefan M; Kreuter, Alexander; Deligny, Christophe; Durand, Jean-Marc; Emery, Paul; Machold, Klaus P; Sarrot-Reynauld, Francoise; Warnatz, Klaus; Adoue, Daniel F P; Constans, Joël; Tony, Hans-Peter; Del Papa, Nicoletta; Fassas, Athanasios; Himsel, Andrea; Launay, David; Lo Monaco, Andrea; Philippe, Pierre; Quéré, Isabelle; Rich, Éric; Westhovens, Rene; Griffiths, Bridget; Saccardi, Riccardo; van den Hoogen, Frank H; Fibbe, Willem E; Socié, Gérard; Gratwohl, Alois; Tyndall, Alan

    2014-06-25

    High-dose immunosuppressive therapy and autologous hematopoietic stem cell transplantation (HSCT) have shown efficacy in systemic sclerosis in phase 1 and small phase 2 trials. To compare efficacy and safety of HSCT vs 12 successive monthly intravenous pulses of cyclophosphamide. The Autologous Stem Cell Transplantation International Scleroderma (ASTIS) trial, a phase 3, multicenter, randomized (1:1), open-label, parallel-group, clinical trial conducted in 10 countries at 29 centers with access to a European Group for Blood and Marrow Transplantation-registered transplant facility. From March 2001 to October 2009, 156 patients with early diffuse cutaneous systemic sclerosis were recruited and followed up until October 31, 2013. HSCT vs intravenous pulse cyclophosphamide. The primary end point was event-free survival, defined as time from randomization until the occurrence of death or persistent major organ failure. A total of 156 patients were randomly assigned to receive HSCT (n = 79) or cyclophosphamide (n = 77). During a median follow-up of 5.8 years, 53 events occurred: 22 in the HSCT group (19 deaths and 3 irreversible organ failures) and 31 in the control group (23 deaths and 8 irreversible organ failures). During the first year, there were more events in the HSCT group (13 events [16.5%], including 8 treatment-related deaths) than in the control group (8 events [10.4%], with no treatment-related deaths). At 2 years, 14 events (17.7%) had occurred cumulatively in the HSCT group vs 14 events (18.2%) in the control group; at 4 years, 15 events (19%) had occurred cumulatively in the HSCT group vs 20 events (26%) in the control group. Time-varying hazard ratios (modeled with treatment × time interaction) for event-free survival were 0.35 (95% CI, 0.16-0.74) at 2 years and 0.34 (95% CI, 0.16-0.74) at 4 years. Among patients with early diffuse cutaneous systemic sclerosis, HSCT was associated with increased treatment-related mortality in the first year after treatment. However, HCST conferred a significant long-term event-free survival benefit. isrctn.org Identifier: ISRCTN54371254.

  17. A New theraphosid Spider Toxin Causes Early Insect Cell Death by Necrosis When Expressed In Vitro during Recombinant Baculovirus Infection

    PubMed Central

    Ardisson-Araújo, Daniel Mendes Pereira; Morgado, Fabrício Da Silva; Schwartz, Elisabeth Ferroni; Corzo, Gerardo; Ribeiro, Bergmann Morais

    2013-01-01

    Baculoviruses are the most studied insect viruses in the world and are used for biological control of agricultural and forest insect pests. They are also used as versatile vectors for expression of heterologous proteins. One of the major problems of their use as biopesticides is their slow speed to kill insects. Thus, to address this shortcoming, insect-specific neurotoxins from arachnids have been introduced into the baculovirus genome solely aiming to improve its virulence. In this work, an insecticide-like toxin gene was obtained from a cDNA derived from the venom glands of the theraphosid spider Brachypelma albiceps. The mature form of the peptide toxin (called Ba3) has a high content of basic amino acid residues, potential for three possible disulfide bonds, and a predicted three-stranded β-sheetDifferent constructions of the gene were engineered for recombinant baculovirus Autographa californica multiple nuclepolyhedrovirus (AcMNPV) expression. Five different forms of Ba3 were assessed; (1) the full-length sequence, (2) the pro-peptide and mature region, (3) only the mature region, and the mature region fused to an (4) insect or a (5) virus-derived signal peptide were inserted separately into the genome of the baculovirus. All the recombinant viruses induced cell death by necrosis earlier in infection relative to a control virus lacking the toxin gene. However, the recombinant virus containing the mature portion of the toxin gene induced a faster cell death than the other recombinants. We found that the toxin construct with the signal peptide and/or pro-peptide regions delayed the necrosis phenotype. When infected cells were subjected to ultrastructural analysis, the cells showed loss of plasma membrane integrity and structural changes in mitochondria before death. Our results suggest this use of baculovirus is a potential tool to help understand or to identify the effect of insect-specific toxic peptides when produced during infection of insect cells. PMID:24349574

  18. The deubiquitinating enzyme DUBAI stabilizes DIAP1 to suppress Drosophila apoptosis

    PubMed Central

    Yang, C-S; Sinenko, S A; Thomenius, M J; Robeson, A C; Freel, C D; Horn, S R; Kornbluth, S

    2014-01-01

    Deubiquitinating enzymes (DUBs) counteract ubiquitin ligases to modulate the ubiquitination and stability of target signaling molecules. In Drosophila, the ubiquitin–proteasome system has a key role in the regulation of apoptosis, most notably, by controlling the abundance of the central apoptotic regulator DIAP1. Although the mechanism underlying DIAP1 ubiquitination has been extensively studied, the precise role of DUB(s) in controlling DIAP1 activity has not been fully investigated. Here we report the identification of a DIAP1-directed DUB using two complementary approaches. First, a panel of putative Drosophila DUBs was expressed in S2 cells to determine whether DIAP1 could be stabilized, despite treatment with death-inducing stimuli that would induce DIAP1 degradation. In addition, RNAi fly lines were used to detect modifiers of DIAP1 antagonist-induced cell death in the developing eye. Together, these approaches identified a previously uncharacterized protein encoded by CG8830, which we named DeUBiquitinating-Apoptotic-Inhibitor (DUBAI), as a novel DUB capable of preserving DIAP1 to dampen Drosophila apoptosis. DUBAI interacts with DIAP1 in S2 cells, and the putative active site of its DUB domain (C367) is required to rescue DIAP1 levels following apoptotic stimuli. DUBAI, therefore, represents a novel locus of apoptotic regulation in Drosophila, antagonizing cell death signals that would otherwise result in DIAP1 degradation. PMID:24362437

  19. Intra- and Interdimeric Caspase-8 Self-Cleavage Controls Strength and Timing of CD95-Induced Apoptosis

    PubMed Central

    Kallenberger, Stefan M.; Beaudouin, Joël; Claus, Juliane; Fischer, Carmen; Sorger, Peter K.; Legewie, Stefan; Eils, Roland

    2014-01-01

    Apoptosis in response to the ligand CD95L (also known as Fas ligand) is initiated by caspase-8, which is activated by dimerization and self-cleavage at death-inducing signaling complexes (DISCs). Previous work indicated that the degree of substrate cleavage by caspase-8 determines whether a cell dies or survives in response to a death stimulus. To determine how a death ligand stimulus is effectively translated into caspase-8 activity, we assessed this activity over time in single cells with compartmentalized probes that are cleaved by caspase-8, and used multiscale modeling to simultaneously describe single-cell and population data with an ensemble of single-cell models. We derived and experimentally validated a minimal model in which cleavage of caspase-8 in the enzymatic domain occurs in an interdimeric manner through interaction between DISCs, whereas prodomain cleavage sites are cleaved in an intradimeric manner within DISCs. Modeling indicated that sustained membrane-bound caspase-8 activity is followed by transient cytosolic activity, which can be interpreted as a molecular timer mechanism reflected by a limited lifetime of active caspase-8. The activation of caspase-8 by combined intra- and interdimeric cleavage ensures weak signaling at low concentrations of CD95L and strongly accelerated activation at higher ligand concentrations, thereby contributing to precise control of apoptosis. PMID:24619646

  20. Programmed death 1-mediated T cell exhaustion during visceral leishmaniasis impairs phagocyte function.

    PubMed

    Esch, Kevin J; Juelsgaard, Rachel; Martinez, Pedro A; Jones, Douglas E; Petersen, Christine A

    2013-12-01

    Control of Leishmania infantum infection is dependent upon Th1 CD4(+) T cells to promote macrophage intracellular clearance of parasites. Deficient CD4(+) T cell effector responses during clinical visceral leishmaniasis (VL) are associated with elevated production of IL-10. In the primary domestic reservoir of VL, dogs, we define occurrence of both CD4(+) and CD8(+) T cell exhaustion as a significant stepwise loss of Ag-specific proliferation and IFN-γ production, corresponding to increasing VL symptoms. Exhaustion was associated with a 4-fold increase in the population of T cells with surface expression of programmed death 1 (PD-1) between control and symptomatic populations. Importantly, exhausted populations of CD8(+) T cells and to a lesser extent CD4(+) T cells were present prior to onset of clinical VL. VL-exhausted T cells did not undergo significant apoptosis ex vivo after Ag stimulation. Ab block of PD-1 ligand, B7.H1, promoted return of CD4(+) and CD8(+) T cell function and dramatically increased reactive oxygen species production in cocultured monocyte-derived phagocytes. As a result, these phagocytes had decreased parasite load. To our knowledge, we demonstrate for the first time that pan-T cell, PD-1-mediated, exhaustion during VL influenced macrophage-reactive oxygen intermediate production. Blockade of the PD-1 pathway improved the ability of phagocytes isolated from dogs presenting with clinical VL to clear intracellular parasites. T cell exhaustion during symptomatic canine leishmaniasis has implications for the response to vaccination and therapeutic strategies for control of Leishmania infantum in this important reservoir species.

  1. Involvement of reactive oxygen species/c-Jun NH{sub 2}-terminal kinase pathway in kotomolide A induces apoptosis in human breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, P.-L.; Chen, C.-Y.; Tzeng, T.-F.

    2008-06-01

    The anticancer effects of kotomolide A (KTA), a new butanolide constituent isolated from the leaves of Cinnamomum kotoense (Lauraceae), on the two human breast cancer cell lines MCF-7 and MDA-MB-231, were first investigated in our study. KTA exhibited selectively antiproliferative effects in cancer cell lines without showing any toxicity in normal mammary epithelial cells. Treatment of cancer cells with KTA to trigger G2/M phase arrest was associated with increased p21/WAF1 levels and reduced amounts of cyclin A, cyclin B1, cdc2 and cdc25C. KTA induced cancer cell death treatment by triggering mitochondrial and death receptor 5 (DR5) apoptotic pathways, but didmore » not act on the Fas receptor. Exposure of MCF-7 and MDA-MB-231 cells to KTA resulted in cellular glutathione reduction and ROS generation, accompanied by JNK activation and apoptosis. Both antioxidants, NAC and catalase, significantly decreased apoptosis by inhibiting the phosphorylation of JNK and subsequently triggering DR5 cell death pathways. The reduction of JNK expression by siRNA decreased KTA-mediated Bim cleavage, DR5 upregulation and apoptosis. Furthermore, daily KTA i.p. injections in nude mice with MDA-MB-231 s.c. tumors resulted in a 50% decrease of mean tumor volume, compared with vehicle-treated controls. Taken together, the data show that cell death of breast cancer cells in response to KTA is dependent upon ROS generation and JNK activation, triggering intrinsic and extrinsic apoptotic pathways. The ROS/JNK pathway could be a useful target for novel approaches in breast cancer chemotherapy.« less

  2. Histone deacetylase inhibitor SAHA mediates mast cell death and epigenetic silencing of constitutively active D816V KIT in systemic mastocytosis.

    PubMed

    Lyberg, Katarina; Ali, Hani Abdulkadir; Grootens, Jennine; Kjellander, Matilda; Tirfing, Malin; Arock, Michel; Hägglund, Hans; Nilsson, Gunnar; Ungerstedt, Johanna

    2017-02-07

    Systemic mastocytosis (SM) is a clonal bone marrow disorder, where therapeutical options are limited. Over 90% of the patients carry the D816V point mutation in the KIT receptor that renders this receptor constitutively active. We assessed the sensitivity of primary mast cells (MC) and mast cell lines HMC1.2 (D816V mutated), ROSA (KIT WT) and ROSA (KIT D816V) cells to histone deacetylase inhibitor (HDACi) treatment. We found that of four HDACi, suberoyl anilide hydroxamic acid (SAHA) was the most effective in killing mutated MC. SAHA downregulated KIT, followed by major MC apoptosis. Primary SM patient MC cultured ex vivo were even more sensitive to SAHA than HMC1.2 cells, whereas primary MC from healthy subjects were less affected. There was a correlation between cell death and SM disease severity, where cell death was more pronounced in the case of aggressive SM, with almost 100% cell death among MC from the mast cell leukemia patient. Additionally, ROSA (KIT D816V) was more affected by HDACi than ROSA (KIT WT) cells. Using ChIP qPCR, we found that the level of active chromatin mark H3K18ac/H3 decreased significantly in the KIT region. This epigenetic silencing was seen only in the KIT region and not in control genes upstream and downstream of KIT, indicating that the downregulation of KIT is exerted by specific epigenetic silencing. In conclusion, KIT D816V mutation sensitized MC to HDACi mediated killing, and SAHA may be of value as specific treatment for SM, although the specific mechanism of action requires further investigation.

  3. Histone deacetylase inhibitor SAHA mediates mast cell death and epigenetic silencing of constitutively active D816V KIT in systemic mastocytosis

    PubMed Central

    Lyberg, Katarina; Ali, Hani Abdulkadir; Grootens, Jennine; Kjellander, Matilda; Tirfing, Malin; Arock, Michel; Hägglund, Hans

    2017-01-01

    Systemic mastocytosis (SM) is a clonal bone marrow disorder, where therapeutical options are limited. Over 90% of the patients carry the D816V point mutation in the KIT receptor that renders this receptor constitutively active. We assessed the sensitivity of primary mast cells (MC) and mast cell lines HMC1.2 (D816V mutated), ROSA (KIT WT) and ROSA (KIT D816V) cells to histone deacetylase inhibitor (HDACi) treatment. We found that of four HDACi, suberoyl anilide hydroxamic acid (SAHA) was the most effective in killing mutated MC. SAHA downregulated KIT, followed by major MC apoptosis. Primary SM patient MC cultured ex vivo were even more sensitive to SAHA than HMC1.2 cells, whereas primary MC from healthy subjects were less affected. There was a correlation between cell death and SM disease severity, where cell death was more pronounced in the case of aggressive SM, with almost 100% cell death among MC from the mast cell leukemia patient. Additionally, ROSA (KIT D816V) was more affected by HDACi than ROSA (KIT WT) cells. Using ChIP qPCR, we found that the level of active chromatin mark H3K18ac/H3 decreased significantly in the KIT region. This epigenetic silencing was seen only in the KIT region and not in control genes upstream and downstream of KIT, indicating that the downregulation of KIT is exerted by specific epigenetic silencing. In conclusion, KIT D816V mutation sensitized MC to HDACi mediated killing, and SAHA may be of value as specific treatment for SM, although the specific mechanism of action requires further investigation. PMID:28038453

  4. Human islet cells are killed by BID-independent mechanisms in response to FAS ligand.

    PubMed

    Joglekar, Mugdha V; Trivedi, Prerak M; Kay, Thomas W; Hawthorne, Wayne J; O'Connell, Philip J; Jenkins, Alicia J; Hardikar, Anandwardhan A; Thomas, Helen E

    2016-04-01

    Cell death via FAS/CD95 can occur either by activation of caspases alone (extrinsic) or by activation of mitochondrial death signalling (intrinsic) depending on the cell type. The BH3-only protein BID is activated in the BCL-2-regulated or mitochondrial apoptosis pathway and acts as a switch between the extrinsic and intrinsic cell death pathways. We have previously demonstrated that islets from BID-deficient mice are protected from FAS ligand-mediated apoptosis in vitro. However, it is not yet known if BID plays a similar role in human beta cell death. We therefore aimed to test the role of BID in human islet cell apoptosis immediately after isolation from human cadaver donors, as well as after de-differentiation in vitro. Freshly isolated human islets or 10-12 day cultured human islet cells exhibited BID transcript knockdown after BID siRNA transfection, however they were not protected from FAS ligand-mediated cell death in vitro as determined by DNA fragmentation analysis using flow cytometry. On the other hand, the same cells transfected with siRNA for FAS-associated via death domain (FADD), a molecule in the extrinsic cell death pathway upstream of BID, showed significant reduction in cell death. De-differentiated islets (human islet-derived progenitor cells) also demonstrated similar results with no difference in cell death after BID knockdown as compared to scramble siRNA transfections. Our results indicate that BID-independent pathways are responsible for FAS-dependent human islet cell death. These results are different from those observed in mouse islets and therefore demonstrate potentially alternate pathways of FAS ligand-induced cell death in human and mouse islet cells.

  5. A Role for MEK-Interacting Protein 1 in Hormone Responsiveness of ER Positive Breast Cancer Cells

    DTIC Science & Technology

    2010-07-01

    positive, but not ER-negative, breast cancer cell lines. 2) The cell death observed in ER- positiv e cell lin es was associated with an a pproximate...and stained after 24 h, then counted. Top panel: photographs of stained cells. Bottom panel: Quantitation of migrated cells, normalized to control...function and breast cancer biology. W e therefore hypothesized that MP1 m ight play an im portant role in ER positiv e breast cancer cells. To test this

  6. Anticancer activity of Cynodon dactylon and Oxalis corniculata on Hep2 cell line.

    PubMed

    Salahuddin, H; Mansoor, Q; Batool, R; Farooqi, A A; Mahmood, T; Ismail, M

    2016-04-30

    Bioactive chemicals isolated from plants have attracted considerable attention over the years and overwhelmingly increasing laboratory findings are emphasizing on tumor suppressing properties of these natural agents in genetically and chemically induced animal carcinogenesis models. We studied in vitro anticancer activity of organic extracts of Cynodon dactylon and Oxalis corniculata on Hep2 cell line and it was compared with normal human corneal epithelial cells (HCEC) by using MTT assay. Real Time PCR was conducted for p53 and PTEN genes in treated cancer cell line. DNA fragmentation assay was also carried out to note DNA damaging effects of the extracts. The minimally effective concentration of ethanolic extract of Cynodon dactylon and methanolic extract of Oxalis corniculata that was nontoxic to HCEC but toxic to Hep2 was recorded (IC50) at a concentration of 0.042mg/ml (49.48 % cell death) and 0.048mg/ml (47.93% cell death) respectively, which was comparable to the positive control. Our results indicated dose dependent increase in cell death. P53 and PTEN did not show significant increase in treated cell line. Moreover, DNA damaging effects were also not detected in treated cancer cell line. Anticancer activity of these plants on the cancer cell line showed the presence of anticancer components which should be characterized to be used as anticancer therapy.

  7. New aspects in pathogenesis of konzo: neural cell damage directly caused by linamarin contained in cassava (Manihot esculenta Crantz).

    PubMed

    Sreeja, V G; Nagahara, N; Li, Q; Minami, M

    2003-08-01

    Epidemic spastic paraparesis (konzo) found in tropical and subtropical countries is known to be caused by long-term intake of cassava (Manihot esculenta Crantz), which contains a cyanoglucoside linamarin (alpha-hydroxyisobutyronitrile-beta-d-glucopyranoside). It has been reported that linamarin is enzymatically converted to cyanide by bacteria in the intestine, and this is absorbed into the blood and then damages neural cells. However, unmetabolized linamarin was found in the urine after oral administration of cassava; thus, we hypothesized that konzo could be caused by direct toxicity of the unmetabolized linamarin that was transferred to the brain and could be transported into neural cells via a glucose transporter. In the present study it was confirmed that linamarin directly damaged neural culture pheochromocytoma cell (PC) 12 cells; 0.10 mm-linamarin caused cell death at 13.31 (SD 2.07) %, which was significantly different from that of control group (3.18 (SD 0.92) %, P=0.0004). Additional 10 microM-cytochalasin B, an inhibitor of a glucose transporter, prevented cell death: the percentage of dead cells significantly decreased to 6.06 (SD 1.98), P=0.0088). Furthermore, glucose also prevented cell death. These present results strongly suggest that linamarin competes with cytochalasin B and glucose for binding to a glucose transporter and enters into cells via glucose transporter.

  8. Silencing of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase gene enhances glioma radiosensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sung Youl; Yoo, Young Hyun; Park, Jeen-Woo, E-mail: parkjw@knu.ac.kr

    Highlights: •Silencing of the IDPm gene enhances IR-induced autophagy in glioma cells. •Autophagy inhibition augmented apoptosis of irradiated glioma cells. •Results offer a redox-active therapeutic strategy for the treatment of cancer. -- Abstract: Reactive oxygen species (ROS) levels are elevated in organisms that have been exposed to ionizing radiation and are protagonists in the induction of cell death. Recently, we demonstrated that the control of mitochondrial redox balance and the cellular defense against oxidative damage are primary functions of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase (IDPm) via the supply of NADPH for antioxidant systems. In the present study, we report anmore » autophagic response to ionizing radiation in A172 glioma cells transfected with small interfering RNA (siRNA) targeting the IDPm gene. Autophagy in A172 transfectant cells was associated with enhanced autophagolysosome formation and GFP–LC3 punctuation/aggregation. Furthermore, we found that the inhibition of autophagy by chloroquine augmented apoptotic cell death of irradiated A172 cells transfected with IDPm siRNA. Taken together, our data suggest that autophagy functions as a survival mechanism in A172 cells against ionizing radiation-induced apoptosis and the sensitizing effect of IDPm siRNA and autophagy inhibitor on the ionizing radiation-induced apoptotic cell death of glioma cells offers a novel redox-active therapeutic strategy for the treatment of cancer.« less

  9. A mechanistic pan-cancer pathway model informed by multi-omics data interprets stochastic cell fate responses to drugs and mitogens

    PubMed Central

    Bouhaddou, Mehdi; Koch, Rick J.; DiStefano, Matthew S.; Tan, Annie L.; Mertz, Alex E.

    2018-01-01

    Most cancer cells harbor multiple drivers whose epistasis and interactions with expression context clouds drug and drug combination sensitivity prediction. We constructed a mechanistic computational model that is context-tailored by omics data to capture regulation of stochastic proliferation and death by pan-cancer driver pathways. Simulations and experiments explore how the coordinated dynamics of RAF/MEK/ERK and PI-3K/AKT kinase activities in response to synergistic mitogen or drug combinations control cell fate in a specific cellular context. In this MCF10A cell context, simulations suggest that synergistic ERK and AKT inhibitor-induced death is likely mediated by BIM rather than BAD, which is supported by prior experimental studies. AKT dynamics explain S-phase entry synergy between EGF and insulin, but simulations suggest that stochastic ERK, and not AKT, dynamics seem to drive cell-to-cell proliferation variability, which in simulations is predictable from pre-stimulus fluctuations in C-Raf/B-Raf levels. Simulations suggest MEK alteration negligibly influences transformation, consistent with clinical data. Tailoring the model to an alternate cell expression and mutation context, a glioma cell line, allows prediction of increased sensitivity of cell death to AKT inhibition. Our model mechanistically interprets context-specific landscapes between driver pathways and cell fates, providing a framework for designing more rational cancer combination therapy. PMID:29579036

  10. The xylanase inhibitor TAXI-III counteracts the necrotic activity of a Fusarium graminearum xylanase in vitro and in durum wheat transgenic plants.

    PubMed

    Moscetti, Ilaria; Faoro, Franco; Moro, Stefano; Sabbadin, Davide; Sella, Luca; Favaron, Francesco; D'Ovidio, Renato

    2015-08-01

    The xylanase inhibitor TAXI-III has been proven to delay Fusarium head blight (FHB) symptoms caused by Fusarium graminearum in transgenic durum wheat plants. To elucidate the molecular mechanism underlying the capacity of the TAXI-III transgenic plants to limit FHB symptoms, we treated wheat tissues with the xylanase FGSG_03624, hitherto shown to induce cell death and hydrogen peroxide accumulation. Experiments performed on lemmas of flowering wheat spikes and wheat cell suspension cultures demonstrated that pre-incubation of xylanase FGSG_03624 with TAXI-III significantly decreased cell death. Most interestingly, a reduced cell death relative to control non-transgenic plants was also obtained by treating, with the same xylanase, lemmas of TAXI-III transgenic plants. Molecular modelling studies predicted an interaction between the TAXI-III residue H395 and residues E122 and E214 belonging to the active site of xylanase FGSG_03624. These results provide, for the first time, clear indications in vitro and in planta that a xylanase inhibitor can prevent the necrotic activity of a xylanase, and suggest that the reduced FHB symptoms on transgenic TAXI-III plants may be a result not only of the direct inhibition of xylanase activity secreted by the pathogen, but also of the capacity of TAXI-III to avoid host cell death. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  11. Elevated extracellular [K+] inhibits death-receptor- and chemical-mediated apoptosis prior to caspase activation and cytochrome c release.

    PubMed Central

    Thompson, G J; Langlais, C; Cain, K; Conley, E C; Cohen, G M

    2001-01-01

    Efflux of intracellular K(+) and cell shrinkage are features of apoptosis in many experimental systems, and a regulatory role has been proposed for cytoplasmic [K(+)] in initiating apoptosis. We have investigated this in both death-receptor-mediated and chemical-induced apoptosis. Using Jurkat T cells pre-loaded with the K(+) ion surrogate (86)Rb(+), we have demonstrated an efflux of intracellular K(+) during apoptosis that was concomitant with, but did not precede, other apoptotic changes, including phosphatidylserine externalization, mitochondrial depolarization and cell shrinkage. To further clarify the role of K(+) ions in apoptosis, cytoprotection by elevated extracellular [K(+)] was studied. Induction of apoptosis by diverse death-receptor and chemical stimuli in two cell lines was inhibited prior to phosphatidylserine externalization, mitochondrial depolarization, cytochrome c release and caspase activation. Using a cell-free system, we have demonstrated a novel mechanism by which increasing [K(+)] inhibited caspase activation. In control dATP-activated lysates, Apaf-1 oligomerized to a biologically active caspase processing approximately 700 kDa complex and an inactive approximately 1.4 MDa complex. Increasing [K(+)] inhibited caspase activation by preventing formation of the approximately 700 kDa complex, but not of the inactive complex. Thus intracellular and extracellular [K(+)] markedly affect caspase activation and the initiation of apoptosis induced by both death-receptor ligation and chemical stress. PMID:11415444

  12. Near-infrared remotely triggered drug-release strategies for cancer treatment

    NASA Astrophysics Data System (ADS)

    Goodman, Amanda M.; Neumann, Oara; Nørregaard, Kamilla; Henderson, Luke; Choi, Mi-Ran; Clare, Susan E.; Halas, Naomi J.

    2017-11-01

    Remotely controlled, localized drug delivery is highly desirable for potentially minimizing the systemic toxicity induced by the administration of typically hydrophobic chemotherapy drugs by conventional means. Nanoparticle-based drug delivery systems provide a highly promising approach for localized drug delivery, and are an emerging field of interest in cancer treatment. Here, we demonstrate near-IR light-triggered release of two drug molecules from both DNA-based and protein-based hosts that have been conjugated to near-infrared-absorbing Au nanoshells (SiO2 core, Au shell), each forming a light-responsive drug delivery complex. We show that, depending upon the drug molecule, the type of host molecule, and the laser illumination method (continuous wave or pulsed laser), in vitro light-triggered release can be achieved with both types of nanoparticle-based complexes. Two breast cancer drugs, docetaxel and HER2-targeted lapatinib, were delivered to MDA-MB-231 and SKBR3 (overexpressing HER2) breast cancer cells and compared with release in noncancerous RAW 264.7 macrophage cells. Continuous wave laser-induced release of docetaxel from a nanoshell-based DNA host complex showed increased cell death, which also coincided with nonspecific cell death from photothermal heating. Using a femtosecond pulsed laser, lapatinib release from a nanoshell-based human serum albumin protein host complex resulted in increased cancerous cell death while noncancerous control cells were unaffected. Both methods provide spatially and temporally localized drug-release strategies that can facilitate high local concentrations of chemotherapy drugs deliverable at a specific treatment site over a specific time window, with the potential for greatly minimized side effects.

  13. Myocardial Autophagy after Severe Burn in Rats

    PubMed Central

    Zhang, Qiong; Shi, Xiao-hua; Huang, Yue-sheng

    2012-01-01

    Background Autophagy plays a major role in myocardial ischemia and hypoxia injury. The present study investigated the effects of autophagy on cardiac dysfunction in rats after severe burn. Methods Protein expression of the autophagy markers LC3 and Beclin 1 were determined at 0, 1, 3, 6, and 12 h post-burn in Sprague Dawley rats subjected to 30% total body surface area 3rd degree burns. Autophagic, apoptotic, and oncotic cell death were evaluated in the myocardium at each time point by immunofluorescence. Changes of cardiac function were measured in a Langendorff model of isolated heart at 6 h post-burn, and the autophagic response was measured following activation by Rapamycin and inhibition by 3-methyladenine (3-MA). The angiotensin converting enzyme inhibitor enalaprilat, the angiotensin receptor I blocker losartan, and the reactive oxygen species inhibitor diphenylene iodonium (DPI) were also applied to the ex vivo heart model to examine the roles of these factors in post-burn cardiac function. Results Autophagic cell death was first observed in the myocardium at 3 h post-burn, occurring in 0.008 ± 0.001% of total cardiomyocytes, and continued to increase to a level of 0.022 ± 0.005% by 12 h post-burn. No autophagic cell death was observed in control hearts. Compared with apoptosis, autophagic cell death occurred earlier and in larger quantities. Rapamycin enhanced autophagy and decreased cardiac function in isolated hearts 6 h post-burn, while 3-MA exerted the opposite response. Enalaprilat, losartan, and DPI all inhibited autophagy and enhanced heart function. Conclusion Myocardial autophagy is enhanced in severe burns and autophagic cell death occurred early at 3 h post-burn, which may contribute to post-burn cardiac dysfunction. Angiotensin II and reactive oxygen species may play important roles in this process by regulating cell signaling transduction. PMID:22768082

  14. Connecting mitochondrial dynamics and life-or-death events via Bcl-2 family proteins.

    PubMed

    Aouacheria, Abdel; Baghdiguian, Stephen; Lamb, Heather M; Huska, Jason D; Pineda, Fernando J; Hardwick, J Marie

    2017-10-01

    The morphology of a population of mitochondria is the result of several interacting dynamical phenomena, including fission, fusion, movement, elimination and biogenesis. Each of these phenomena is controlled by underlying molecular machinery, and when defective can cause disease. New understanding of the relationships between form and function of mitochondria in health and disease is beginning to be unraveled on several fronts. Studies in mammals and model organisms have revealed that mitochondrial morphology, dynamics and function appear to be subject to regulation by the same proteins that regulate apoptotic cell death. One protein family that influences mitochondrial dynamics in both healthy and dying cells is the Bcl-2 protein family. Connecting mitochondrial dynamics with life-death pathway forks may arise from the intersection of Bcl-2 family proteins with the proteins and lipids that determine mitochondrial shape and function. Bcl-2 family proteins also have multifaceted influences on cells and mitochondria, including calcium handling, autophagy and energetics, as well as the subcellular localization of mitochondrial organelles to neuronal synapses. The remarkable range of physical or functional interactions by Bcl-2 family proteins is challenging to assimilate into a cohesive understanding. Most of their effects may be distinct from their direct roles in apoptotic cell death and are particularly apparent in the nervous system. Dual roles in mitochondrial dynamics and cell death extend beyond BCL-2 family proteins. In this review, we discuss many processes that govern mitochondrial structure and function in health and disease, and how Bcl-2 family proteins integrate into some of these processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Optimizing radiotherapy protocols using computer automata to model tumour cell death as a function of oxygen diffusion processes.

    PubMed

    Paul-Gilloteaux, Perrine; Potiron, Vincent; Delpon, Grégory; Supiot, Stéphane; Chiavassa, Sophie; Paris, François; Costes, Sylvain V

    2017-05-23

    The concept of hypofractionation is gaining momentum in radiation oncology centres, enabled by recent advances in radiotherapy apparatus. The gain of efficacy of this innovative treatment must be defined. We present a computer model based on translational murine data for in silico testing and optimization of various radiotherapy protocols with respect to tumour resistance and the microenvironment heterogeneity. This model combines automata approaches with image processing algorithms to simulate the cellular response of tumours exposed to ionizing radiation, modelling the alteration of oxygen permeabilization in blood vessels against repeated doses, and introducing mitotic catastrophe (as opposed to arbitrary delayed cell-death) as a means of modelling radiation-induced cell death. Published data describing cell death in vitro as well as tumour oxygenation in vivo are used to inform parameters. Our model is validated by comparing simulations to in vivo data obtained from the radiation treatment of mice transplanted with human prostate tumours. We then predict the efficacy of untested hypofractionation protocols, hypothesizing that tumour control can be optimized by adjusting daily radiation dosage as a function of the degree of hypoxia in the tumour environment. Further biological refinement of this tool will permit the rapid development of more sophisticated strategies for radiotherapy.

  16. Signaling via the transcriptionally regulated activin receptor 2B is a novel mediator of neuronal cell death during chicken ciliary ganglion development.

    PubMed

    Koszinowski, S; Buss, K; Kaehlcke, K; Krieglstein, K

    2015-04-01

    The TGF-β ligand superfamily members activin A and BMP control important aspects of embryonic neuronal development and differentiation. Both are known to bind to activin receptor subtypes IIA (ActRIIA) and IIB, while in the avian ciliary ganglion (CG), so far only ActRIIA-expression has been described. We show that the expression of ACVR2B, coding for the ActRIIB, is tightly regulated during CG development and the knockdown of ACVR2B expression leads to a deregulation in the execution of neuronal apoptosis and therefore affects ontogenetic programmed cell death in vivo. While the differentiation of choroid neurons was impeded in the knockdown, pointing toward a reduction in activin A-mediated neural differentiation signaling, naturally occurring neuronal cell death in the CG was not prevented by follistatin treatment. Systemic injections of the BMP antagonist noggin, on the other hand, reduced the number of apoptotic neurons to a similar extent as ACVR2B knockdown. We therefore propose a novel pathway in the regulation of CG neuron ontogenetic programmed cell death, which could be mediated by BMP and signals via the ActRIIB. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. [Neuronal death in the neocortex of drug resistant temporal lobe epilepsy patients].

    PubMed

    Lorigados Pedre, L; Orozco Suárez, S; Morales Chacón, L; García Maeso, I; Estupiñán Diaz, B; Bender del Busto, J E; Pavón Fuentes, N; Paula Piñero, B; Rocha Arrieta, L

    2008-11-01

    Introduction. Participation of apoptotic death mechanisms in drug resistant temporal lobe epilepsy (DRTLE) is currently under great debate. We have investigated if there is neuronal loss and the immunodetection to different markers in neocortical tissue death in eigth patients with DRTLE. The neocortexes of five patients deceased due to non-neurological causes, paired in age and gender were evaluated as control tissue. Methods. The evaluation of neuronal loss was made by means of a stereological study and with immunohistochemical techniques with the synaptophysin marker. Immunopositivity to different apoptotic markers (annexin V, caspase 3 and 8, bcl-2 and p53) and detection of deoxyribonucleic acid (DNA) fragmentation (TUNEL) were analyzed and double labeling with synaptophysin was performed in every case. The results were evaluated with confocal microscope and analyzed with the Zeiss LSM 5 Image Browser Program, 2.80.1113 (Germany). Results. A statistically significant decrease in the total number of cells (p < 0.05) and the synaptophysin cells+ (p<0.01) in the neocortex (layer IV) of the patients with DRTLE when compared with the control tissue was found. No significant differences were found in the apoptotic markers bcl-2, p53, caspase 3 and 8 for any of the neocortex layers while there was a statistically significant increase in the number of TUNEL cells+ (p<0.05) and annexin V+ (p<0.05) in the neocortical layer IV of the patients. Conclusions. This group of evidence speaks in favor of the existence of an effect on the neuronal number in the neocortex layer IV that may be associated with noncaspase dependent apoptotic death process, without being able to rule out death by necrosis. Key words: Drug resistant temporal lobe epilepsy. Apoptosis. Necrosis. Neuronal loss. Neurología 2008;23(9):555-565.

  18. Lack of huntingtin promotes neural stem cells differentiation into glial cells while neurons expressing huntingtin with expanded polyglutamine tracts undergo cell death.

    PubMed

    Conforti, Paola; Camnasio, Stefano; Mutti, Cesare; Valenza, Marta; Thompson, Morgan; Fossale, Elisa; Zeitlin, Scott; MacDonald, Marcy E; Zuccato, Chiara; Cattaneo, Elena

    2013-02-01

    Huntington's disease (HD) is a neurodegenerative disorder that affects muscle coordination and diminishes cognitive abilities. The genetic basis of the disease is an expansion of CAG repeats in the Huntingtin (Htt) gene. Here we aimed to generate a series of mouse neural stem (NS) cell lines that carried varying numbers of CAG repeats in the mouse Htt gene (Hdh CAG knock-in NS cells) or that had Hdh null alleles (Hdh knock-out NS cells). Towards this end, Hdh CAG knock-in mouse ES cell lines that carried an Htt gene with 20, 50, 111, or 140 CAG repeats or that were Htt null were neuralized and converted into self-renewing NS cells. The resulting NS cell lines were immunopositive for the neural stem cell markers NESTIN, SOX2, and BLBP and had similar proliferative rates and cell cycle distributions. After 14 days in vitro, wild-type NS cells gave rise to cultures composed of 70% MAP2(+) neurons and 30% GFAP(+) astrocytes. In contrast, NS cells with expanded CAG repeats underwent neuronal cell death, with only 38%±15% of the MAP2(+) cells remaining at the end of the differentiation period. Cell death was verified by increased caspase 3/7 activity on day 14 of the neuronal differentiation protocol. Interestingly, Hdh knock-out NS cells treated using the same neuronal differentiation protocol showed a dramatic increase in the number of GFAP(+) cells on day 14 (61%±20% versus 24%±10% in controls), and a massive decrease of MAP2(+) neurons (30%±11% versus 64%±17% in controls). Both Hdh CAG knock-in NS cells and Hdh knock-out NS cells showed reduced levels of Bdnf mRNA during neuronal differentiation, in agreement with data obtained previously in HD mouse models and in post-mortem brain samples from HD patients. We concluded that Hdh CAG knock-in and Hdh knock-out NS cells have potential as tools for investigating the roles of normal and mutant HTT in differentiated neurons and glial cells of the brain. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Effects of intracellular iron overload on cell death and identification of potent cell death inhibitors.

    PubMed

    Fang, Shenglin; Yu, Xiaonan; Ding, Haoxuan; Han, Jianan; Feng, Jie

    2018-06-11

    Iron overload causes many diseases, while the underlying etiologies of these diseases are unclear. Cell death processes including apoptosis, necroptosis, cyclophilin D-(CypD)-dependent necrosis and a recently described additional form of regulated cell death called ferroptosis, are dependent on iron or iron-dependent reactive oxygen species (ROS). However, whether the accumulation of intracellular iron itself induces ferroptosis or other forms of cell death is largely elusive. In present study, we study the role of intracellular iron overload itself-induced cell death mechanisms by using ferric ammonium citrate (FAC) and a membrane-permeable Ferric 8-hydroxyquinoline complex (Fe-8HQ) respectively. We show that FAC-induced intracellular iron overload causes ferroptosis. We also identify 3-phosphoinositide-dependent kinase 1 (PDK1) inhibitor GSK2334470 as a potent ferroptosis inhibitor. Whereas, Fe-8HQ-induced intracellular iron overload causes unregulated necrosis, but partially activates PARP-1 dependent parthanatos. Interestingly, we identify many phenolic compounds as potent inhibitors of Fe-8HQ-induced cell death. In conclusion, intracellular iron overload-induced cell death form might be dependent on the intracellular iron accumulation rate, newly identified cell death inhibitors in our study that target ferroptosis and unregulated oxidative cell death represent potential therapeutic strategies against iron overload related diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Apoptosis-Like Death in Bacteria Induced by HAMLET, a Human Milk Lipid-Protein Complex

    PubMed Central

    Hakansson, Anders P.; Roche-Hakansson, Hazeline; Mossberg, Ann-Kristin; Svanborg, Catharina

    2011-01-01

    Background Apoptosis is the primary means for eliminating unwanted cells in multicellular organisms in order to preserve tissue homeostasis and function. It is characterized by distinct changes in the morphology of the dying cell that are orchestrated by a series of discrete biochemical events. Although there is evidence of primitive forms of programmed cell death also in prokaryotes, no information is available to suggest that prokaryotic death displays mechanistic similarities to the highly regulated programmed death of eukaryotic cells. In this study we compared the characteristics of tumor and bacterial cell death induced by HAMLET, a human milk complex of alpha-lactalbumin and oleic acid. Methodology/Principal Findings We show that HAMLET-treated bacteria undergo cell death with mechanistic and morphologic similarities to apoptotic death of tumor cells. In Jurkat cells and Streptococcus pneumoniae death was accompanied by apoptosis-like morphology such as cell shrinkage, DNA condensation, and DNA degradation into high molecular weight fragments of similar sizes, detected by field inverse gel electrophoresis. HAMLET was internalized into tumor cells and associated with mitochondria, causing a rapid depolarization of the mitochondrial membrane and bound to and induced depolarization of the pneumococcal membrane with similar kinetic and magnitude as in mitochondria. Membrane depolarization in both systems required calcium transport, and both tumor cells and bacteria were found to require serine protease activity (but not caspase activity) to execute cell death. Conclusions/Significance Our results suggest that many of the morphological changes and biochemical responses associated with apoptosis are present in prokaryotes. Identifying the mechanisms of bacterial cell death has the potential to reveal novel targets for future antimicrobial therapy and to further our understanding of core activation mechanisms of cell death in eukaryote cells. PMID:21423701

  1. Apoptosis-like death in bacteria induced by HAMLET, a human milk lipid-protein complex.

    PubMed

    Hakansson, Anders P; Roche-Hakansson, Hazeline; Mossberg, Ann-Kristin; Svanborg, Catharina

    2011-03-10

    Apoptosis is the primary means for eliminating unwanted cells in multicellular organisms in order to preserve tissue homeostasis and function. It is characterized by distinct changes in the morphology of the dying cell that are orchestrated by a series of discrete biochemical events. Although there is evidence of primitive forms of programmed cell death also in prokaryotes, no information is available to suggest that prokaryotic death displays mechanistic similarities to the highly regulated programmed death of eukaryotic cells. In this study we compared the characteristics of tumor and bacterial cell death induced by HAMLET, a human milk complex of alpha-lactalbumin and oleic acid. We show that HAMLET-treated bacteria undergo cell death with mechanistic and morphologic similarities to apoptotic death of tumor cells. In Jurkat cells and Streptococcus pneumoniae death was accompanied by apoptosis-like morphology such as cell shrinkage, DNA condensation, and DNA degradation into high molecular weight fragments of similar sizes, detected by field inverse gel electrophoresis. HAMLET was internalized into tumor cells and associated with mitochondria, causing a rapid depolarization of the mitochondrial membrane and bound to and induced depolarization of the pneumococcal membrane with similar kinetic and magnitude as in mitochondria. Membrane depolarization in both systems required calcium transport, and both tumor cells and bacteria were found to require serine protease activity (but not caspase activity) to execute cell death. Our results suggest that many of the morphological changes and biochemical responses associated with apoptosis are present in prokaryotes. Identifying the mechanisms of bacterial cell death has the potential to reveal novel targets for future antimicrobial therapy and to further our understanding of core activation mechanisms of cell death in eukaryote cells.

  2. Long-term Fate Mapping to Assess the Impact of Postnatal Isoflurane Exposure on Hippocampal Progenitor Cell Productivity.

    PubMed

    Jiang, Yifei; Tong, Dongyi; Hofacer, Rylon D; Loepke, Andreas W; Lian, Qingquan; Danzer, Steve C

    2016-12-01

    Exposure to isoflurane increases apoptosis among postnatally generated hippocampal dentate granule cells. These neurons play important roles in cognition and behavior, so their permanent loss could explain deficits after surgical procedures. To determine whether developmental anesthesia exposure leads to persistent deficits in granule cell numbers, a genetic fate-mapping approach to label a cohort of postnatally generated granule cells in Gli1-CreER::GFP bitransgenic mice was utilized. Green fluorescent protein (GFP) expression was induced on postnatal day 7 (P7) to fate map progenitor cells, and mice were exposed to 6 h of 1.5% isoflurane or room air 2 weeks later (P21). Brain structure was assessed immediately after anesthesia exposure (n = 7 controls and 8 anesthesia-treated mice) or after a 60-day recovery (n = 8 controls and 8 anesthesia-treated mice). A final group of C57BL/6 mice was exposed to isoflurane at P21 and examined using neurogenesis and cell death markers after a 14-day recovery (n = 10 controls and 16 anesthesia-treated mice). Isoflurane significantly increased apoptosis immediately after exposure, leading to cell death among 11% of GFP-labeled cells. Sixty days after isoflurane exposure, the number of GFP-expressing granule cells in treated animals was indistinguishable from control animals. Rates of neurogenesis were equivalent among groups at both 2 weeks and 2 months after treatment. These findings suggest that the dentate gyrus can restore normal neuron numbers after a single, developmental exposure to isoflurane. The authors' results do not preclude the possibility that the affected population may exhibit more subtle structural or functional deficits. Nonetheless, the dentate appears to exhibit greater resiliency relative to nonneurogenic brain regions, which exhibit permanent neuron loss after isoflurane exposure.

  3. Cell Death Control by Matrix Metalloproteinases1[OPEN

    PubMed Central

    Zimmermann, Dirk; Sieferer, Elke; Pfannstiel, Jens

    2016-01-01

    In contrast to mammalian matrix metalloproteinases (MMPs) that play important roles in the remodeling of the extracellular matrix in animals, the proteases responsible for dynamic modifications of the plant cell wall are largely unknown. A possible involvement of MMPs was addressed by cloning and functional characterization of Sl2-MMP and Sl3-MMP from tomato (Solanum lycopersicum). The two tomato MMPs were found to resemble mammalian homologs with respect to gelatinolytic activity, substrate preference for hydrophobic amino acids on both sides of the scissile bond, and catalytic properties. In transgenic tomato seedlings silenced for Sl2/3-MMP expression, necrotic lesions were observed at the base of the hypocotyl. Cell death initiated in the epidermis and proceeded to include outer cortical cell layers. In later developmental stages, necrosis spread, covering the entire stem and extending into the leaves of MMP-silenced plants. The subtilisin-like protease P69B was identified as a substrate of Sl2- and Sl3-MMP. P69B was shown to colocalize with Sl-MMPs in the apoplast of the tomato hypocotyl, it exhibited increased stability in transgenic plants silenced for Sl-MMP activity, and it was cleaved and inactivated by Sl-MMPs in vitro. The induction of cell death in Sl2/3-MMP-silenced plants depended on P69B, indicating that Sl2- and Sl3-MMP act upstream of P69B in an extracellular proteolytic cascade that contributes to the regulation of cell death in tomato. PMID:27208293

  4. Oxidative stress-dependent changes in immune responses and cell death in the substantia nigra after ozone exposure in rat.

    PubMed

    Rivas-Arancibia, Selva; Zimbrón, Luis Fernando Hernández; Rodríguez-Martínez, Erika; Maldonado, Perla D; Borgonio Pérez, Gabino; Sepúlveda-Parada, María

    2015-01-01

    Parkinson's disease has been associated with the selective loss of neurons in the substantia nigra pars compacta. Increasing evidence suggests that oxidative stress plays a major role. The resulting increase in reactive oxygen species triggers a sequence of events that leads to cell damage, activation of microglia cells and neuroinflammatory responses. Our objective was to study whether chronic exposure to low doses of ozone, which produces oxidative stress itself, induces progressive cell death in conjunction with glial alterations in the substantia nigra. Animals were exposed to an ozone-free air stream (control) or to low doses of ozone for 7, 15, 30, 60, or 90 days. Each group underwent (1) spectrophotometric analysis for protein oxidation; (2) western blot testing for microglia reactivity and nuclear factor kappa B expression levels; and (3) immunohistochemistry for cytochrome c, GFAP, Iba-1, NFkB, and COX-2. Our results indicate that ozone induces an increase in protein oxidation levels, changes in activated astrocytes and microglia, and cell death. NFkB and cytochrome c showed an increase until 30 days of exposure, while cyclooxygenase 2 in the substantia nigra increased from 7 days up to 90 days of repetitive ozone exposure. These results suggest that oxidative stress caused by ozone exposure induces changes in inflammatory responses and progressive cell death in the substantia nigra in rats, which could also be occurring in Parkinson's disease.

  5. Oxidative stress-dependent changes in immune responses and cell death in the substantia nigra after ozone exposure in rat

    PubMed Central

    Rivas-Arancibia, Selva; Zimbrón, Luis Fernando Hernández; Rodríguez-Martínez, Erika; Maldonado, Perla D.; Borgonio Pérez, Gabino; Sepúlveda-Parada, María

    2015-01-01

    Parkinson's disease has been associated with the selective loss of neurons in the substantia nigra pars compacta. Increasing evidence suggests that oxidative stress plays a major role. The resulting increase in reactive oxygen species triggers a sequence of events that leads to cell damage, activation of microglia cells and neuroinflammatory responses. Our objective was to study whether chronic exposure to low doses of ozone, which produces oxidative stress itself, induces progressive cell death in conjunction with glial alterations in the substantia nigra. Animals were exposed to an ozone-free air stream (control) or to low doses of ozone for 7, 15, 30, 60, or 90 days. Each group underwent (1) spectrophotometric analysis for protein oxidation; (2) western blot testing for microglia reactivity and nuclear factor kappa B expression levels; and (3) immunohistochemistry for cytochrome c, GFAP, Iba-1, NFkB, and COX-2. Our results indicate that ozone induces an increase in protein oxidation levels, changes in activated astrocytes and microglia, and cell death. NFkB and cytochrome c showed an increase until 30 days of exposure, while cyclooxygenase 2 in the substantia nigra increased from 7 days up to 90 days of repetitive ozone exposure. These results suggest that oxidative stress caused by ozone exposure induces changes in inflammatory responses and progressive cell death in the substantia nigra in rats, which could also be occurring in Parkinson's disease. PMID:25999851

  6. 3D measurements of live cells via digital holographic microscopy and terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Park, Jun Yong; Oser, Dorian; Iapozzuto, Peter; Norbury, Sean; Mahajan, Supriya; Khmaladze, Alexander; Sharikova, Anna

    2016-03-01

    This is a study of the central nervous system (CNS) cells, including brain micro vascular endothelial cells (BMV) that constitute the blood brain barrier, and C6 glial cells that are the predominant cell in the brain. The cells are exposed to various chemicals by non-invasive, label-free methods. Digital holographic microscopy (DHM) is a technique that records an interference pattern between an object and reference waves, so that the computationally reconstructed holographic image contains both amplitude and phase information, and 3D images are obtained. The measurement of cell cultures by digital holographic microscopy yields information about cell death mechanisms, since these processes are correlated with individual cell volume. Our in-house DHM combines a visible (red) laser source with a conventional microscope base, and LabVIEW-run data processing. Terahertz spectral signatures are associated with structural changes in molecules and provide complementary information about cells. Both CNS cells BMV and C6 cells are treated with the drug "Methamphetamine" (METH), which induces apoptosis in neuronal cells and exhibits decrease in cell volume, a characteristic of cells undergoing apoptosis (induced cell death). METH can cause CNS cell death by cross-talk between mitochondria-, endoplasmic reticulum-, and receptor-mediated apoptotic events, all of which results in drug induced changes in neuroplasticity and significant neuropathology. Doxorubicin (DOX), a popular anticancer drug, is used as a control. We observe that METH treatment resulted in more pronounced cell volume shrinkage in both the BMV and C6 cells, as compared to DOX-induced cell apoptosis.

  7. Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells.

    PubMed

    Scarlatti, F; Maffei, R; Beau, I; Codogno, P; Ghidoni, R

    2008-08-01

    Resveratrol, a polyphenol found in grapes and other fruit and vegetables, is a powerful chemopreventive and chemotherapeutic molecule potentially of interest for the treatment of breast cancer. The human breast cancer cell line MCF-7, which is devoid of caspase-3 activity, is refractory to apoptotic cell death after incubation with resveratrol. Here we show that resveratrol arrests cell proliferation, triggers death and decreases the number of colonies of cells that are sensitive to caspase-3-dependent apoptosis (MCF-7 casp-3) and also those that are unresponsive to it (MCF-7vc). We demonstrate that resveratrol (i) acts via multiple pathways to trigger cell death, (ii) induces caspase-dependent and caspase-independent cell death in MCF-7 casp-3 cells, (iii) induces only caspase-independent cell death in MCF-7vc cells and (iv) stimulates macroautophagy. Using BECN1 and hVPS34 (human vacuolar protein sorting 34) small interfering RNAs, we demonstrate that resveratrol activates Beclin 1-independent autophagy in both cell lines, whereas cell death via this uncommon form of autophagy occurs only in MCF-7vc cells. We also show that this variant form of autophagic cell death is blocked by the expression of caspase-3, but not by its enzymatic activity. In conclusion, this study reveals that non-canonical autophagy induced by resveratrol can act as a caspase-independent cell death mechanism in breast cancer cells.

  8. Calcium regulates cell death in cancer: Roles of the mitochondria and mitochondria-associated membranes (MAMs).

    PubMed

    Danese, Alberto; Patergnani, Simone; Bonora, Massimo; Wieckowski, Mariusz R; Previati, Maurizio; Giorgi, Carlotta; Pinton, Paolo

    2017-08-01

    Until 1972, the term 'apoptosis' was used to differentiate the programmed cell death that naturally occurs in organismal development from the acute tissue death referred to as necrosis. Many studies on cell death and programmed cell death have been published and most are, at least to some degree, related to cancer. Some key proteins and molecular pathways implicated in cell death have been analyzed, whereas others are still being actively researched; therefore, an increasing number of cellular compartments and organelles are being implicated in cell death and cancer. Here, we discuss the mitochondria and subdomains of the endoplasmic reticulum (ER) that interact with mitochondria, the mitochondria-associated membranes (MAMs), which have been identified as critical hubs in the regulation of cell death and tumor growth. MAMs-dependent calcium (Ca 2+ ) release from the ER allows selective Ca 2+ uptake by the mitochondria. The perturbation of Ca 2+ homeostasis in cancer cells is correlated with sustained cell proliferation and the inhibition of cell death through the modulation of Ca 2+ signaling. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. MPP+ induces necrostatin-1- and ferrostatin-1-sensitive necrotic death of neuronal SH-SY5Y cells.

    PubMed

    Ito, Keisuke; Eguchi, Yutaka; Imagawa, Yusuke; Akai, Shuji; Mochizuki, Hideki; Tsujimoto, Yoshihide

    2017-01-01

    Regulation of cell death is potentially a powerful treatment modality for intractable diseases such as neurodegenerative diseases. Although there have been many reports about the possible involvement of various types of cell death in neurodegenerative diseases, it is still unclear exactly how neurons die in patients with these diseases, thus treatment strategies based on cell death regulation have not been established yet. To obtain some insight into the mechanisms of cell death involved in neurodegenerative diseases, we studied the effect of 1-methyl-4-phenylpyridinium (MPP+) on the human neuroblastoma cell line SH-SY5Y (a widely used model of Parkinson's disease). We found that MPP+ predominantly induced non-apoptotic death of neuronally differentiated SH-SY5Y cells. This cell death was strongly inhibited by necrostatin-1 (Nec-1), a necroptosis inhibitor, and by an indole-containing compound (3,3'-diindolylmethane: DIM). However, it occurred independently of receptor-interacting serine/threonine-protein kinase 1/3 (RIP1/RIP3), indicating that this form of cell death was not necroptosis. MPP+-induced cell death was also inhibited by several inhibitors of ferroptosis, including ferrostatin-1 (Fer-1). Although MPP+-induced death and ferroptosis shared some features, such as occurrence of lipid peroxidation and inhibition by Fer-1, MPP+-induced death seemed to be distinct from ferroptosis because MPP+-induced death (but not ferroptosis) was inhibited by Nec-1, was independent of p53, and was accompanied by ATP depletion and mitochondrial swelling. Further investigation of MPP+-induced non-apoptotic cell death may be useful for understanding the mechanisms of neuronal loss and for treatment of neurodegenerative diseases such as Parkinson's disease.

  10. MPP+ induces necrostatin-1- and ferrostatin-1-sensitive necrotic death of neuronal SH-SY5Y cells

    PubMed Central

    Ito, Keisuke; Eguchi, Yutaka; Imagawa, Yusuke; Akai, Shuji; Mochizuki, Hideki; Tsujimoto, Yoshihide

    2017-01-01

    Regulation of cell death is potentially a powerful treatment modality for intractable diseases such as neurodegenerative diseases. Although there have been many reports about the possible involvement of various types of cell death in neurodegenerative diseases, it is still unclear exactly how neurons die in patients with these diseases, thus treatment strategies based on cell death regulation have not been established yet. To obtain some insight into the mechanisms of cell death involved in neurodegenerative diseases, we studied the effect of 1-methyl-4-phenylpyridinium (MPP+) on the human neuroblastoma cell line SH-SY5Y (a widely used model of Parkinson’s disease). We found that MPP+ predominantly induced non-apoptotic death of neuronally differentiated SH-SY5Y cells. This cell death was strongly inhibited by necrostatin-1 (Nec-1), a necroptosis inhibitor, and by an indole-containing compound (3,3′-diindolylmethane: DIM). However, it occurred independently of receptor-interacting serine/threonine-protein kinase 1/3 (RIP1/RIP3), indicating that this form of cell death was not necroptosis. MPP+-induced cell death was also inhibited by several inhibitors of ferroptosis, including ferrostatin-1 (Fer-1). Although MPP+-induced death and ferroptosis shared some features, such as occurrence of lipid peroxidation and inhibition by Fer-1, MPP+-induced death seemed to be distinct from ferroptosis because MPP+-induced death (but not ferroptosis) was inhibited by Nec-1, was independent of p53, and was accompanied by ATP depletion and mitochondrial swelling. Further investigation of MPP+-induced non-apoptotic cell death may be useful for understanding the mechanisms of neuronal loss and for treatment of neurodegenerative diseases such as Parkinson’s disease. PMID:28250973

  11. The serine protease inhibitor TLCK attenuates intrinsic death pathways in neurons upstream of mitochondrial demise.

    PubMed

    Reuther, C; Ganjam, G K; Dolga, A M; Culmsee, C

    2014-11-01

    It is well-established that activation of proteases, such as caspases, calpains and cathepsins are essential components in signaling pathways of programmed cell death (PCD). Although these proteases have also been linked to mechanisms of neuronal cell death, they are dispensable in paradigms of intrinsic death pathways, e.g. induced by oxidative stress. However, emerging evidence implicated a particular role for serine proteases in mechanisms of PCD in neurons. Here, we investigated the role of trypsin-like serine proteases in a model of glutamate toxicity in HT-22 cells. In these cells glutamate induces oxytosis, a form of caspase-independent cell death that involves activation of the pro-apoptotic protein BH3 interacting-domain death agonist (Bid), leading to mitochondrial demise and ensuing cell death. In this model system, the trypsin-like serine protease inhibitor Nα-tosyl-l-lysine chloromethyl ketone hydrochloride (TLCK) inhibited mitochondrial damage and cell death. Mitochondrial morphology alterations, the impairment of the mitochondrial membrane potential and ATP depletion were prevented and, moreover, lipid peroxidation induced by glutamate was completely abolished. Strikingly, truncated Bid-induced cell death was not affected by TLCK, suggesting a detrimental activity of serine proteases upstream of Bid activation and mitochondrial demise. In summary, this study demonstrates the protective effect of serine protease inhibition by TLCK against oxytosis-induced mitochondrial damage and cell death. These findings indicate that TLCK-sensitive serine proteases play a crucial role in cell death mechanisms upstream of mitochondrial demise and thus, may serve as therapeutic targets in diseases, where oxidative stress and intrinsic pathways of PCD mediate neuronal cell death.

  12. Novel type 1 photosensitizers: viability of leukemia cells exposed to reactive intermediates generated in situ by in vitro photofragmentation

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Raghavan; Karwa, Amol; Lusiak, Przemyslaw M.; Srivastava, Kripa; Poreddy, Amruta R.; Pandurangi, Raghootama S.; Galen, Karen P.; Neumann, William L.; Cantrell, Gary E.; Dorshow, Richard B.

    2009-06-01

    Photodynamic therapy of tumors involving Type 2 photosenstizers has been conspicuously successful, but the Type 1 process, in contrast, has not received much attention despite its considerable potential. Accordingly, several classes of molecules containing fragile bonds such as azido (-N=N=N), azo (-N=N-), sulfenato (-S-O-) and oxaza (-N-O-) functional groups that produce reactive intermediates such as radicals and nitrenes upon photoexcitation were prepared and tested for cell viability using U397 leukemia cell line. The azido photosensitizer was conjugated to leukemia cell binding peptide, SFFWRLS, for targeted cell viability study. The cells were incubated with the photosensitizer at various concentrations, and were illuminated for 5, 10, and 20 minutes. The results show that all the photosensitizers caused cell death compared to the controls when exposed to both the photosensitizers and light. Most importantly, selective cell death was observed with the azido peptide conjugate 6, which clearly demonstrates that these Type 1 sensitizers are useful for phototherapeutic applications.

  13. Autolysis of Escherichia coli and Bacillus subtilis cells in low gravity

    NASA Technical Reports Server (NTRS)

    Kacena, M. A.; Smith, E. E.; Todd, P.

    1999-01-01

    The role of gravity in the autolysis of Bacillus subtilis and Escherichia coli was studied by growing cells on Earth and in microgravity on Space Station Mir. Autolysis analysis was completed by examining the death phase or exponential decay of cells for approximately 4 months following the stationary phase. Consistent with published findings, the stationary-phase cell population was 170% and 90% higher in flight B. subtilis and E. coli cultures, respectively, than in ground cultures. Although both flight autolysis curves began at higher cell densities than control curves, the rate of autolysis in flight cultures was identical to that of their respective ground control rates.

  14. The Inflammasome Drives GSDMD-Independent Secondary Pyroptosis and IL-1 Release in the Absence of Caspase-1 Protease Activity.

    PubMed

    Schneider, Katharina S; Groß, Christina J; Dreier, Roland F; Saller, Benedikt S; Mishra, Ritu; Gorka, Oliver; Heilig, Rosalie; Meunier, Etienne; Dick, Mathias S; Ćiković, Tamara; Sodenkamp, Jan; Médard, Guillaume; Naumann, Ronald; Ruland, Jürgen; Kuster, Bernhard; Broz, Petr; Groß, Olaf

    2017-12-26

    Inflammasomes activate the protease caspase-1, which cleaves interleukin-1β and interleukin-18 to generate the mature cytokines and controls their secretion and a form of inflammatory cell death called pyroptosis. By generating mice expressing enzymatically inactive caspase-1 C284A , we provide genetic evidence that caspase-1 protease activity is required for canonical IL-1 secretion, pyroptosis, and inflammasome-mediated immunity. In caspase-1-deficient cells, caspase-8 can be activated at the inflammasome. Using mice either lacking the pyroptosis effector gasdermin D (GSDMD) or expressing caspase-1 C284A , we found that GSDMD-dependent pyroptosis prevented caspase-8 activation at the inflammasome. In the absence of GSDMD-dependent pyroptosis, the inflammasome engaged a delayed, alternative form of lytic cell death that was accompanied by the release of large amounts of mature IL-1 and contributed to host protection. Features of this cell death modality distinguished it from apoptosis, suggesting it may represent a distinct form of pro-inflammatory regulated necrosis. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Dictyostelium cell death: early emergence and demise of highly polarized paddle cells.

    PubMed

    Levraud, Jean-Pierre; Adam, Myriam; Luciani, Marie-Françoise; de Chastellier, Chantal; Blanton, Richard L; Golstein, Pierre

    2003-03-31

    Cell death in the stalk of Dictyostelium discoideum, a prototypic vacuolar cell death, can be studied in vitro using cells differentiating as a monolayer. To identify early events, we examined potentially dying cells at a time when the classical signs of Dictyostelium cell death, such as heavy vacuolization and membrane lesions, were not yet apparent. We observed that most cells proceeded through a stereotyped series of differentiation stages, including the emergence of "paddle" cells showing high motility and strikingly marked subcellular compartmentalization with actin segregation. Paddle cell emergence and subsequent demise with paddle-to-round cell transition may be critical to the cell death process, as they were contemporary with irreversibility assessed through time-lapse videos and clonogenicity tests. Paddle cell demise was not related to formation of the cellulose shell because cells where the cellulose-synthase gene had been inactivated underwent death indistinguishable from that of parental cells. A major subcellular alteration at the paddle-to-round cell transition was the disappearance of F-actin. The Dictyostelium vacuolar cell death pathway thus does not require cellulose synthesis and includes early actin rearrangements (F-actin segregation, then depolymerization), contemporary with irreversibility, corresponding to the emergence and demise of highly polarized paddle cells.

  16. Molecular Cell Biology of Apoptosis and Necroptosis in Cancer.

    PubMed

    Dillon, Christopher P; Green, Douglas R

    Cell death is a major mechanism to eliminate cells in which DNA is damaged, organelles are stressed, or oncogenes are overexpressed, all events that would otherwise predispose cells to oncogenic transformation. The pathways that initiate and execute cell death are complex, genetically encoded, and subject to significant regulation. Consequently, while these pathways are often mutated in malignancy, there is considerable interest in inducing cell death in tumor cells as therapy. This chapter addresses our current understanding of molecular mechanisms contributing to two cell death pathways, apoptotic cell death and necroptosis, a regulated form of necrotic cell death. Apoptosis can be induced by a wide variety of signals, leading to protease activation that dismantles the cell. We discuss the physiological importance of each apoptosis pathway and summarize their known roles in cancer suppression and the current efforts at targeting each pathway therapeutically. The intricate mechanistic link between death receptor-mediated apoptosis and necroptosis is described, as well as the potential opportunities for utilizing necroptosis in the treatment of malignancy.

  17. Hippo circuitry and the redox modulation of hippo components in cancer cell fate decisions.

    PubMed

    Ashraf, Asma; Pervaiz, Shazib

    2015-12-01

    Meticulous and precise control of organ size is undoubtedly one of the most pivotal processes in mammalian development and regeneration along with cell differentiation, morphogenesis and programmed cell death. These processes are strictly regulated by complex and highly coordinated mechanisms to maintain a steady growth state. There are a number of extrinsic and intrinsic factors that dictate the total number and/or size of cells by influencing growth, proliferation, differentiation and cell death. Multiple pathways, such as those involved in promoting organ size and others that restrict disproportionate tissue growth act simultaneously to maintain cellular and tissue homeostasis. Aberrations at any level in these organ size-regulating processes can lead to various pathological states with cancers being the most formidable one (Yin and Zhang, 2011). Extensive research in the realm of growth control has led to the identification of the Hippo-signaling pathway as a critical network in modulating tissue growth via its effect on multiple signaling pathways and through intricate crosstalk with proteins that regulate cell polarity, adhesion and cell-cell interactions (Zhao et al., 2011b). The Hippo pathway controls cell number and organ size by transducing signals from the plasma membrane to the nucleus to regulate the expression of genes involved in cell fate determination (Shi et al., 2015). In this review, we summarize the recent discoveries concerning Hippo pathway, its diversiform regulation in mammals as well as its implications in cancers, and highlight the possible role of oxidative stress in Hippo pathway regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Mastoparan-induced programmed cell death in the unicellular alga Chlamydomonas reinhardtii

    PubMed Central

    Yordanova, Zhenya P.; Woltering, Ernst J.; Kapchina-Toteva, Veneta M.; Iakimova, Elena T.

    2013-01-01

    Background and Aims Under stress-promoting conditions unicellular algae can undergo programmed cell death (PCD) but the mechanisms of algal cellular suicide are still poorly understood. In this work, the involvement of caspase-like proteases, DNA cleavage and the morphological occurrence of cell death in wasp venom mastoparan (MP)-treated Chlamydomonas reinhardtii were studied. Methods Algal cells were exposed to MP and cell death was analysed over time. Specific caspase inhibitors were employed to elucidate the possible role of caspase-like proteases. YVADase activity (presumably a vacuolar processing enzyme) was assayed by using a fluorogenic caspase-1 substrate. DNA breakdown was evaluated by DNA laddering and Comet analysis. Cellular morphology was examined by confocal laser scanning microscopy. Key Results MP-treated C. reinhardtii cells expressed several features of necrosis (protoplast shrinkage) and vacuolar cell death (lytic vesicles, vacuolization, empty cell-walled corpse-containing remains of digested protoplast) sometimes within one single cell and in different individual cells. Nucleus compaction and DNA fragmentation were detected. YVADase activity was rapidly stimulated in response to MP but the early cell death was not inhibited by caspase inhibitors. At later time points, however, the caspase inhibitors were effective in cell-death suppression. Conditioned medium from MP-treated cells offered protection against MP-induced cell death. Conclusions In C. reinhardtii MP triggered PCD of atypical phenotype comprising features of vacuolar and necrotic cell deaths, reminiscent of the modality of hypersensitive response. It was assumed that depending on the physiological state and sensitivity of the cells to MP, the early cell-death phase might be not mediated by caspase-like enzymes, whereas later cell death may involve caspase-like-dependent proteolysis. The findings substantiate the hypothesis that, depending on the mode of induction and sensitivity of the cells, algal PCD may take different forms and proceed through different pathways. PMID:23250917

  19. Pathological characteristics of liver allografts from donation after brain death followed by cardiac death in pigs.

    PubMed

    Ye, Hui; Wang, Dong-Ping; Zhang, Chuan-Zhao; Zhang, Long-Juan; Wang, Hao-Chen; Li, Zhuo-Hui; Chen, Zhen; Zhang, Tao; Cai, Chang-Jie; Ju, Wei-Qiang; Ma, Yi; Guo, Zhi-Yong; He, Xiao-Shun

    2014-10-01

    Donation after brain death followed by circulatory death (DBCD) is a unique practice in China. The aim of this study was to define the pathologic characteristics of DBCD liver allografts in a porcine model. Fifteen male pigs (25-30 kg) were allocated randomly into donation after brain death (DBD), donation after circulatory death (DCD) and DBCD groups. Brain death was induced by augmenting intracranial pressure. Circulatory death was induced by withdrawal of life support in DBCD group and by venous injection of 40 mL 10% potassium chloride in DCD group. The donor livers were perfused in situ and kept in cold storage for 4 h. Liver tissue and common bile duct samples were collected for hematoxylin and eosin staining, TUNEL testing and electron microscopic examination. Spot necrosis was found in hepatic parenchyma of DBD and DBCD groups, while a large area of necrosis was shown in DCD group. The apoptosis rate of hepatocytes in DBD [(0.56±0.30)%] and DBCD [(0.50 ± 0.11)%] groups was much lower than that in DCD group [(3.78±0.33)%] (P<0.05). And there was no significant difference between DBD group and DBCD group (P>0.05)). The structures of bile duct were intact in both DBD and DBCD groups, while the biliary epithelium was totally damaged in DCD group. Under electron microscope, the DBD hepatocytes were characterized by intact cell membrane, well-organized endoplasmic reticulum, mild mitochondria edema and abundant glycogens. Broken cell membrane, mild inflammatory cell infiltration and sinusoidal epithelium edema, as well as reduced glycogen volume, were found in the DBCD hepatocytes. The DCD hepatocytes had more profound cell organelle injury and much less glycogen storage. In conclusion, the preservation injury of DBCD liver allografts is much less severe than that of un-controlled DCD, but more severe than that of DBD liver allografts under electron microscope, which might reflect post-transplant liver function to some extent.

  20. Leptin suppresses non-apoptotic cell death in ischemic rat cardiomyocytes by reduction of iPLA{sub 2} activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takatani-Nakase, Tomoka, E-mail: nakase@mukogawa-u.ac.jp; Takahashi, Koichi, E-mail: koichi@mukogawa-u.ac.jp

    Caspase-independent, non-apoptotic cell death is an important therapeutic target in myocardial ischemia. Leptin, an adipose-derived hormone, is known to exhibit cytoprotective effects on the ischemic heart, but the mechanisms are poorly understood. In this research, we found that pretreatment of leptin strongly suppressed ischemic-augmented nuclear shrinkage and non-apoptotic cell death on cardiomyocytes. Leptin was also shown to significantly inhibit the activity of iPLA{sub 2}, which is considered to play crucial roles in non-apoptotic cell death, resulting in effective prevention of ischemia-induced myocyte death. These findings provide the first evidence of a protective mechanism of leptin against ischemia-induced non-apoptotic cardiomyocyte death.more » - Highlights: • Myocardial ischemia-model induces in caspase-independent, non-apoptotic cell death. • Leptin strongly inhibits ischemic-augmented non-apoptotic cell death. • Leptin reduces iPLA{sub 2} activity, leading to avoidance of non-apoptotic cell death.« less

  1. Berberine Induces Caspase-Independent Cell Death in Colon Tumor Cells through Activation of Apoptosis-Inducing Factor

    PubMed Central

    Wang, Lihong; Liu, Liping; Shi, Yan; Cao, Hanwei; Chaturvedi, Rupesh; Calcutt, M. Wade; Hu, Tianhui; Ren, Xiubao; Wilson, Keith T.; Polk, D. Brent; Yan, Fang

    2012-01-01

    Berberine, an isoquinoline alkaloid derived from plants, is a traditional medicine for treating bacterial diarrhea and intestinal parasite infections. Although berberine has recently been shown to suppress growth of several tumor cell lines, information regarding the effect of berberine on colon tumor growth is limited. Here, we investigated the mechanisms underlying the effects of berberine on regulating the fate of colon tumor cells, specifically the mouse immorto-Min colonic epithelial (IMCE) cells carrying the Apc min mutation, and of normal colon epithelial cells, namely young adult mouse colonic epithelium (YAMC) cells. Berberine decreased colon tumor colony formation in agar, and induced cell death and LDH release in a time- and concentration-dependent manner in IMCE cells. In contrast, YAMC cells were not sensitive to berberine-induced cell death. Berberine did not stimulate caspase activation, and PARP cleavage and berberine-induced cell death were not affected by a caspase inhibitor in IMCE cells. Rather, berberine stimulated a caspase-independent cell death mediator, apoptosis-inducing factor (AIF) release from mitochondria and nuclear translocation in a ROS production-dependent manner. Amelioration of berberine-stimulated ROS production or suppression of AIF expression blocked berberine-induced cell death and LDH release in IMCE cells. Furthermore, two targets of ROS production in cells, cathepsin B release from lysosomes and PARP activation were induced by berberine. Blockage of either of these pathways decreased berberine-induced AIF activation and cell death in IMCE cells. Thus, berberine-stimulated ROS production leads to cathepsin B release and PARP activation-dependent AIF activation, resulting in caspase-independent cell death in colon tumor cells. Notably, normal colon epithelial cells are less susceptible to berberine-induced cell death, which suggests the specific inhibitory effects of berberine on colon tumor cell growth. PMID:22574158

  2. The art and science of low-energy applications in medicine: pathology perspectives

    NASA Astrophysics Data System (ADS)

    Thomsen, Sharon L.

    2011-03-01

    Applications of low energy non-ionizing irradiation result in non-lethal and lethal effects in cells, tissues and intact individuals. The effects of these applications depend on the physical parameters of the applied energies, the mechanisms of interaction of these energies on the target and the biologic status of the target. Recently, cell death has been found not to be a random accident of situation or age but a range of complicated physiological responses to various extrinsic and intrinsic events some of which are genetically programmed and/ or physiologically regulated. Therefore, cell death has been classified into three general groups: 1) Programmed cell death including apoptosis and necroptosis, cornefication and autophagy; 2) Accidental (traumatic) cell death due to the direct, immediate effects of the lethal event and 3) Necrotic cell death which is, by default, all cell death not associated with programmed or accidental cell death. Lethal low energy non-ionizing application biologic effects involve mechanisms of all three groups as compared to high energy applications that predominantly involve the mechanisms of accidental cell death. Currently, the mechanisms of all these modes of cell death are being vigorously investigated. As research and development of new low energy applications continues, the need to understand the mechanisms of cell death that they produce will be critical to the rational creation of safe, yet effective instruments.

  3. Apoptosis in fish: environmental factors and programmed cell death.

    PubMed

    AnvariFar, Hossein; Amirkolaie, Abdolsamad Keramat; Miandare, Hamed Kolangi; Ouraji, Hossein; Jalali, M Ali; Üçüncü, Sema İşisağ

    2017-06-01

    Apoptosis, a form of programmed cell death, is a critical component in maintaining homeostasis and growth in all tissues and plays a significant role in immunity and cytotoxicity. In contrast to necrosis or traumatic cell death, apoptosis is a well-controlled and vital process characterized mainly by cytoplasmic shrinkage, chromatin condensation, DNA fragmentation, membrane blebbing and apoptotic bodies. Our understanding of apoptosis is partly based on observations in invertebrates but mainly in mammals. Despite the great advantages of fish models in studying vertebrate development and diseases and the tremendous interest observed in recent years, reports on apoptosis in fish are still limited. Although apoptotic machinery is well conserved between aquatic and terrestrial organisms throughout the history of evolution, some differences exist in key components of apoptotic pathways. Core parts of apoptotic machinery in fish are virtually expressed as equivalent to the mammalian models. Some differences are, however, evident, such as the extrinsic and intrinsic pathways of apoptosis including lack of a C-terminal region in the Fas-associated protein with a death domain in fish. Aquatic species inhabit a complex and highly fluctuating environment, making these species good examples to reveal features of apoptosis that may not be easily investigated in mammals. Therefore, in order to gain a wider view on programmed cell death in fish, interactions between the main environmental factors, chemicals and apoptosis are discussed in this review. It is indicated that apoptosis can be induced in fish by exposure to environmental stressors during different stages of the fish life cycle.

  4. Nanosecond-Pulsed DBD Plasma-Generated Reactive Oxygen Species Trigger Immunogenic Cell Death in A549 Lung Carcinoma Cells through Intracellular Oxidative Stress

    PubMed Central

    Lin, Abraham; Truong, Billy; Patel, Sohil; Kaushik, Nagendra; Choi, Eun Ha; Fridman, Gregory; Fridman, Alexander; Miller, Vandana

    2017-01-01

    A novel application for non-thermal plasma is the induction of immunogenic cancer cell death for cancer immunotherapy. Cells undergoing immunogenic death emit danger signals which facilitate anti-tumor immune responses. Although pathways leading to immunogenic cell death are not fully understood; oxidative stress is considered to be part of the underlying mechanism. Here; we studied the interaction between dielectric barrier discharge plasma and cancer cells for oxidative stress-mediated immunogenic cell death. We assessed changes to the intracellular oxidative environment after plasma treatment and correlated it to emission of two danger signals: surface-exposed calreticulin and secreted adenosine triphosphate. Plasma-generated reactive oxygen and charged species were recognized as the major effectors of immunogenic cell death. Chemical attenuators of intracellular reactive oxygen species successfully abrogated oxidative stress following plasma treatment and modulated the emission of surface-exposed calreticulin. Secreted danger signals from cells undergoing immunogenic death enhanced the anti-tumor activity of macrophages. This study demonstrated that plasma triggers immunogenic cell death through oxidative stress pathways and highlights its potential development for cancer immunotherapy. PMID:28467380

  5. Mice lacking Faim2 show increased cell death in the MPTP mouse model of Parkinson disease.

    PubMed

    Komnig, Daniel; Schulz, Jörg B; Reich, Arno; Falkenburger, Björn H

    2016-12-01

    The death receptor Fas/CD95 mediates apoptotic cell death in response to external stimuli. In neurons, Fas-induced apoptosis is prevented by Fas-apoptotic inhibitory molecule 2 (Faim2). Mice lacking Faim2 showed increased neurodegeneration in animal models of stroke and bacterial meningitis. We therefore tested the relevance of Faim2 in a classical animal model of Parkinson disease and determined the toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in Faim2-deficient mice. Without MPTP treatment, there was no difference in the dopaminergic system between Faim2-deficient mice and control mice. MPTP was applied i.p. in doses of 30 mg per kg on five consecutive days. Fourteen days after the last MPTP injection, the number of dopaminergic neurons in the lateral substantia nigra, assayed by stereological counting, was reduced by 39% in control mice and 53% in Faim2-deficient mice. The density of dopaminergic fibers in the dorsal striatum was reduced by 36% in control mice and 69% in Faim2-deficient mice, in the ventral striatum 44% in control mice and 76% in Faim2-deficient mice. Fiber density recovered at 90 days after MPTP with similar density in both groups. Striatal catecholamine levels were reduced by 81-84% in both groups and recovered at 90 days. Faim2 expression was documented in mouse midbrain using quantitative reverse transcription-PCR (qRT-PCR) and found decreased after MPTP administration. Taken together, our findings demonstrate increased degeneration of dopaminergic neurons with Faim2 deficiency, indicating that Fas-induced apoptosis contributes to cell death in the MPTP mouse model. Along with the decreased expression of Faim2 after MPTP, this finding indicates that boosting Faim2 function might represent a therapeutic strategy for Parkinson disease. © 2016 International Society for Neurochemistry.

  6. Nonthermal-plasma-mediated animal cell death

    NASA Astrophysics Data System (ADS)

    Kim, Wanil; Woo, Kyung-Chul; Kim, Gyoo-Cheon; Kim, Kyong-Tai

    2011-01-01

    Animal cell death comprising necrosis and apoptosis occurred in a well-regulated manner upon specific stimuli. The physiological meanings and detailed molecular mechanisms of cell death have been continuously investigated over several decades. Necrotic cell death has typical morphological changes, such as cell swelling and cell lysis followed by DNA degradation, whereas apoptosis shows blebbing formation and regular DNA fragmentation. Cell death is usually adopted to terminate cancer cells in vivo. The current strategies against tumour are based on the induction of cell death by adopting various methods, including radiotherapy and chemotherapeutics. Among these, radiotherapy is the most frequently used treatment method, but it still has obvious limitations. Recent studies have suggested that the use of nonthermal air plasma can be a prominent method for inducing cancer cell death. Plasma-irradiated cells showed the loss of genomic integrity, mitochondrial dysfunction, plasma membrane damage, etc. Tumour elimination with plasma irradiation is an emerging concept in cancer therapy and can be accelerated by targeting certain tumour-specific proteins with gold nanoparticles. Here, some recent developments are described so that the mechanisms related to plasma-mediated cell death and its perspectives in cancer treatment can be understood.

  7. Grouper translationally controlled tumor protein prevents cell death and inhibits the replication of Singapore grouper iridovirus (SGIV).

    PubMed

    Wei, Jingguang; Guo, Minglan; Ji, Huasong; Yan, Yang; Ouyang, Zhengliang; Huang, Xiaohong; Hang, Youhua; Qin, Qiwei

    2012-10-01

    Translationally controlled tumor protein (TCTP) is an important molecule involved in multiple biological processes, such as cell growth, cell cycle progression, malignant transformation, and enhancement of the anti-apoptotic activity. In this study, the TCTP from orange-spotted grouper Epinephelus coioides (Ec-TCTP) was cloned and characterized. The full-length cDNA of Ec-TCTP was comprised of 1057 bp with a 510 bp open reading frame that encodes a putative protein of 170 amino acids. Recombinant Ec-TCTP (rEc-TCTP) was expressed in Escherichia BL21 (DE3) and purified for mouse anti-Ec-TCTP serum preparation. The rEc-TCTP fusion protein was demonstrated to possess antioxidant activity, which conferred resistance to H(2)O(2) damage. Quantitative real-time PCR analysis revealed that Ec-TCTP mRNA is predominately expressed in the liver, and the expression was up-regulated in the liver of grouper after viral challenge with Singapore grouper iridovirus (SGIV). Intracellular localization revealed that Ec-TCTP expression was distributed predominantly in the cytoplasm. Although human TCTP has a role in apoptosis regulation, it is not known if grouper TCTP has any role in apoptosis regulation. Strikingly, grouper TCTP, when overexpressed in fathead minnow (FHM) cells, protected them from cell death induced by cycloheximide (CHX). In addition, overexpressed Ec-TCTP in grouper spleen (GS) cells inhibited the replication of SGIV. These results suggest that Ec-TCTP may play a critical role in their response to SGIV infection, through regulation of a cell death pathway that is common to fish and humans. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Dimethyl sulfoxide (DMSO) exacerbates cisplatin-induced sensory hair cell death in zebrafish (Danio rerio).

    PubMed

    Uribe, Phillip M; Mueller, Melissa A; Gleichman, Julia S; Kramer, Matthew D; Wang, Qi; Sibrian-Vazquez, Martha; Strongin, Robert M; Steyger, Peter S; Cotanche, Douglas A; Matsui, Jonathan I

    2013-01-01

    Inner ear sensory hair cells die following exposure to aminoglycoside antibiotics or chemotherapeutics like cisplatin, leading to permanent auditory and/or balance deficits in humans. Zebrafish (Danio rerio) are used to study drug-induced sensory hair cell death since their hair cells are similar in structure and function to those found in humans. We developed a cisplatin dose-response curve using a transgenic line of zebrafish that expresses membrane-targeted green fluorescent protein under the control of the Brn3c promoter/enhancer. Recently, several small molecule screens have been conducted using zebrafish to identify potential pharmacological agents that could be used to protect sensory hair cells in the presence of ototoxic drugs. Dimethyl sulfoxide (DMSO) is typically used as a solvent for many pharmacological agents in sensory hair cell cytotoxicity assays. Serendipitously, we found that DMSO potentiated the effects of cisplatin and killed more sensory hair cells than treatment with cisplatin alone. Yet, DMSO alone did not kill hair cells. We did not observe the synergistic effects of DMSO with the ototoxic aminoglycoside antibiotic neomycin. Cisplatin treatment with other commonly used organic solvents (i.e. ethanol, methanol, and polyethylene glycol 400) also did not result in increased cell death compared to cisplatin treatment alone. Thus, caution should be exercised when interpreting data generated from small molecule screens since many compounds are dissolved in DMSO.

  9. Dimethyl Sulfoxide (DMSO) Exacerbates Cisplatin-induced Sensory Hair Cell Death in Zebrafish (Danio rerio)

    PubMed Central

    Gleichman, Julia S.; Kramer, Matthew D.; Wang, Qi; Sibrian-Vazquez, Martha; Strongin, Robert M.; Steyger, Peter S.; Cotanche, Douglas A.; Matsui, Jonathan I.

    2013-01-01

    Inner ear sensory hair cells die following exposure to aminoglycoside antibiotics or chemotherapeutics like cisplatin, leading to permanent auditory and/or balance deficits in humans. Zebrafish (Danio rerio) are used to study drug-induced sensory hair cell death since their hair cells are similar in structure and function to those found in humans. We developed a cisplatin dose-response curve using a transgenic line of zebrafish that expresses membrane-targeted green fluorescent protein under the control of the Brn3c promoter/enhancer. Recently, several small molecule screens have been conducted using zebrafish to identify potential pharmacological agents that could be used to protect sensory hair cells in the presence of ototoxic drugs. Dimethyl sulfoxide (DMSO) is typically used as a solvent for many pharmacological agents in sensory hair cell cytotoxicity assays. Serendipitously, we found that DMSO potentiated the effects of cisplatin and killed more sensory hair cells than treatment with cisplatin alone. Yet, DMSO alone did not kill hair cells. We did not observe the synergistic effects of DMSO with the ototoxic aminoglycoside antibiotic neomycin. Cisplatin treatment with other commonly used organic solvents (i.e. ethanol, methanol, and polyethylene glycol 400) also did not result in increased cell death compared to cisplatin treatment alone. Thus, caution should be exercised when interpreting data generated from small molecule screens since many compounds are dissolved in DMSO. PMID:23383324

  10. Comparative study of autophagy inhibition by 3MA and CQ on Cytarabine‑induced death of leukaemia cells.

    PubMed

    Palmeira dos Santos, Caroline; Pereira, Gustavo J S; Barbosa, Christiano M V; Jurkiewicz, Aron; Smaili, Soraya S; Bincoletto, Claudia

    2014-06-01

    As the molecular mechanisms of Cytarabine,one of the most important drugs used in the leukaemia’s treatment, are only partially understood and the role of autophagy on leukaemia development and treatment is only recently being investigated, in this study, by using Chloroquine (CQ) and 3-methyladenine (3MA) as autophagy inhibitors, we aim to evaluate the contribution of an autophagic mechanism to Cytarabine (AraC)-induced death of HL60 leukaemia cells. Trypan blue exclusion and AnnexinV/PI assays were used to evaluate HL60 cell death under AraC treatment in the presence or absence of 3MA and CQ. Western blotting and immunofluorescence experiments were performed to show the involvement of apoptosis and autophagy protein expressions. Phenotypic characterization of HL60-treated cells was performed by using immunophenotyping. Clonogenic assays were applied to analyse clonal function of HL60-treated cells. We observed that although autophagy inhibition by 3MA, but not CQ, increased the death of HL60 AraC cells after 24 h of treatment, no significant differences between AraC and AraC + 3MA-treated groups were observed by using clonogenic assay. In addition, increased number of immature (CD34(+)/CD38(−)Lin(−/low)) HL60 cells was found in AraC and AraC-3MA groups when compared with control untreated cells. Although AraC anti-leukaemia effects could be potentiated by 3MA autophagy inhibition after 24 h of exposure, leukaemia cell resistance, the main causes of treatment failure, is also promoted by autophagy initial stage impairment by 3MA, denoting the complex role of autophagy in leukaemia cells’ response to chemotherapy.

  11. Dictyostelium cell death

    PubMed Central

    Levraud, Jean-Pierre; Adam, Myriam; Luciani, Marie-Françoise; de Chastellier, Chantal; Blanton, Richard L.; Golstein, Pierre

    2003-01-01

    Cell death in the stalk of Dictyostelium discoideum, a prototypic vacuolar cell death, can be studied in vitro using cells differentiating as a monolayer. To identify early events, we examined potentially dying cells at a time when the classical signs of Dictyostelium cell death, such as heavy vacuolization and membrane lesions, were not yet apparent. We observed that most cells proceeded through a stereotyped series of differentiation stages, including the emergence of “paddle” cells showing high motility and strikingly marked subcellular compartmentalization with actin segregation. Paddle cell emergence and subsequent demise with paddle-to-round cell transition may be critical to the cell death process, as they were contemporary with irreversibility assessed through time-lapse videos and clonogenicity tests. Paddle cell demise was not related to formation of the cellulose shell because cells where the cellulose-synthase gene had been inactivated underwent death indistinguishable from that of parental cells. A major subcellular alteration at the paddle-to-round cell transition was the disappearance of F-actin. The Dictyostelium vacuolar cell death pathway thus does not require cellulose synthesis and includes early actin rearrangements (F-actin segregation, then depolymerization), contemporary with irreversibility, corresponding to the emergence and demise of highly polarized paddle cells. PMID:12654899

  12. The slow cell death response when screening chemotherapeutic agents.

    PubMed

    Blois, Joseph; Smith, Adam; Josephson, Lee

    2011-09-01

    To examine the correlation between cell death and a common surrogate of death used in screening assays, we compared cell death responses to those obtained with the sulforhodamine B (SRB) cell protein-based "cytotoxicity" assay. With the SRB assay, the Hill equation was used to obtain an IC50 and final cell mass, or cell mass present at infinite agent concentrations, with eight adherent cell lines and four agents (32 agent/cell combinations). Cells were treated with high agent concentrations (well above the SRB IC50) and the death response determined as the time-dependent decrease in cells failing to bind both annexin V and vital fluorochromes by flow cytometry. Death kinetics were categorized as fast (5/32) (similar to the reference nonadherent Jurkat line), slow (17/32), or none (10/32), despite positive responses in the SRB assay in all cases. With slow cell death, a single exposure to a chemotherapeutic agent caused a slow, progressive increase in dead (necrotic) and dying (apoptotic) cells for at least 72 h. Cell death (defined by annexin and/or fluorochrome binding) did not correlate with the standard SRB "cytotoxicity" assay. With the slow cell death response, a single exposure to an agent caused a slow conversion from vital to apoptotic and necrotic cells over at least 72 h (the longest time point examined). Here, increasing the time of exposure to agent concentrations modestly above the SRB IC50 provides a method of maximizing cell kill. If tumors respond similarly, sustained low doses of chemotherapeutic agents, rather than a log-kill, maximum tolerated dose strategy may be an optimal strategy of maximizing tumor cell death.

  13. Inflammation arising from obesity reduces taste bud abundance and inhibits renewal

    PubMed Central

    Kaufman, Andrew; Choo, Ezen; Koh, Anna

    2018-01-01

    Despite evidence that the ability to taste is weakened by obesity and can be rescued with weight loss intervention, few studies have investigated the molecular effects of obesity on the taste system. Taste bud cells undergo continual turnover even in adulthood, exhibiting an average life span of only a few weeks, tightly controlled by a balance of proliferation and cell death. Recent data reveal that an acute inflammation event can alter this balance. We demonstrate that chronic low-grade inflammation brought on by obesity reduces the number of taste buds in gustatory tissues of mice—and is likely the cause of taste dysfunction seen in obese populations—by upsetting this balance of renewal and cell death. PMID:29558472

  14. Cell death caused by the synergistic effects of zinc and dopamine is mediated by a stress sensor gene Gadd45b - implication in the pathogenesis of Parkinson's disease.

    PubMed

    Yang, Tien-Chun; Wu, Pei-Chun; Chung, I-Fang; Jiang, Jhih-Hang; Fann, Ming-Ji; Kao, Lung-Sen

    2016-10-01

    The pathogenesis of Parkinson's disease (PD) is not completely understood, Zinc (Zn(2+) ) and dopamine (DA) have been shown to involve in the degeneration of dopaminergic cells. By microarray analysis, we identified Gadd45b as a candidate molecule that mediates Zn(2+) and DA-induced cell death; the mRNA and protein levels of Gadd45b are increased by Zn(2+) treatment and raised to an even higher level by Zn(2+) plus DA treatment. Zn(2+) plus DA treatment-induced PC12 cell death was enhanced when there was over-expression of Gadd45b and was decreased by knock down of Gadd45b. MAPK p38 and JNK signaling was able to cross-talk with Gadd45b during Zn(2+) and DA treatment. The synergistic effects of Zn(2+) and DA on PC12 cell death can be accounted for by an activation of the Gadd45b-induced cell death pathway and an inhibition of p38/JNK survival pathway. Furthermore, the in vivo results show that the levels of Gadd45b protein expression and phosphorylation of p38 were increased in the substantia nigra by the infusion of Zn(2+) /DA in the mouse brain and the level of Gadd45b mRNA is significantly higher in the substantia nigra of male PD patients than normal controls. The novel role of Gadd45b and its interactions with JNK and p38 will help our understanding of the pathogenesis of PD and help the development of future treatments for PD. Zinc and dopamine are implicated in the degeneration of dopaminergic neurons. We previously demonstrated that zinc and dopamine induced synergistic effects on PC12 cell death. Results from this study show that these synergistic effects can be accounted for by activation of the Gadd45b-induced cell death pathway and inhibition of the p38/JNK survival pathway. We provide in vitro and in vivo evidence to support a novel role for Gadd45b in the pathogenesis of Parkinson's disease. © 2016 International Society for Neurochemistry.

  15. Mitochondrial control of cell death induced by hyperosmotic stress.

    PubMed

    Criollo, Alfredo; Galluzzi, Lorenzo; Maiuri, M Chiara; Tasdemir, Ezgi; Lavandero, Sergio; Kroemer, Guido

    2007-01-01

    HeLa and HCT116 cells respond differentially to sorbitol, an osmolyte able to induce hypertonic stress. In these models, sorbitol promoted the phenotypic manifestations of early apoptosis followed by complete loss of viability in a time-, dose-, and cell type-specific fashion, by eliciting distinct yet partially overlapping molecular pathways. In HCT116 but not in HeLa cells, sorbitol caused the mitochondrial release of the caspase-independent death effector AIF, whereas in both cell lines cytochrome c was retained in mitochondria. Despite cytochrome c retention, HeLa cells exhibited the progressive activation of caspase-3, presumably due to the prior activation of caspase-8. Accordingly, caspase inhibition prevented sorbitol-induced killing in HeLa, but only partially in HCT116 cells. Both the knock-out of Bax in HCT116 cells and the knock-down of Bax in A549 cells by RNA interference reduced the AIF release and/or the mitochondrial alterations. While the knock-down of Bcl-2/Bcl-X(L) sensitized to sorbitol-induced killing, overexpression of a Bcl-2 variant that specifically localizes to mitochondria (but not of the wild-type nor of a endoplasmic reticulum-targeted form) strongly inhibited sorbitol effects. Thus, hyperosmotic stress kills cells by triggering different molecular pathways, which converge at mitochondria where pro- and anti-apoptotic members of the Bcl-2 family exert their control.

  16. Arabinogalactan Proteins Are Involved in Salt-Adaptation and Vesicle Trafficking in Tobacco by-2 Cell Cultures

    PubMed Central

    Olmos, Enrique; García De La Garma, Jesús; Gomez-Jimenez, Maria C.; Fernandez-Garcia, Nieves

    2017-01-01

    Arabinogalactan proteins (AGPs) are a highly diverse family of glycoproteins that are commonly found in most plant species. However, little is known about the physiological and molecular mechanisms of their function. AGPs are involved in different biological processes such as cell differentiation, cell expansion, tissue development and somatic embryogenesis. AGPs are also involved in abiotic stress response such as salinity modulating cell wall expansion. In this study, we describe how salt-adaptation in tobacco BY-2 cell cultures induces important changes in arabinogalactan proteins distribution and contents. Using the immuno-dot blot technique with different anti-AGP antibodies (JIM13, JIM15, and others), we observed that AGPs were highly accumulated in the culture medium of salt-adapted tobacco cells, probably due to the action of phospholipases. We located these AGP epitopes using immunogold labeling in the cytoplasm associated to the endoplasmic reticulum, the golgi apparatus, and vesicles, plasma membrane and tonoplast. Our results show that salt-adaptation induced a significant reduction of the cytoplasm, plasma membrane and tonoplast content of these epitopes. Yariv reagent was added to the control and salt-adapted tobacco cell cultures, leading to cell death induction in control cells but not in salt-adapted cells. Ultrastructural and immunogold labeling revealed that cell death induced by Yariv reagent in control cells was due to the interaction of Yariv reagent with the AGPs linked to the plasma membranes. Finally, we propose a new function of AGPs as a possible sodium carrier through the mechanism of vesicle trafficking from the apoplast to the vacuoles in salt-adapted tobacco BY-2 cells. This mechanism may contribute to sodium homeostasis during salt-adaptation to high saline concentrations. PMID:28676820

  17. Arabinogalactan Proteins Are Involved in Salt-Adaptation and Vesicle Trafficking in Tobacco by-2 Cell Cultures.

    PubMed

    Olmos, Enrique; García De La Garma, Jesús; Gomez-Jimenez, Maria C; Fernandez-Garcia, Nieves

    2017-01-01

    Arabinogalactan proteins (AGPs) are a highly diverse family of glycoproteins that are commonly found in most plant species. However, little is known about the physiological and molecular mechanisms of their function. AGPs are involved in different biological processes such as cell differentiation, cell expansion, tissue development and somatic embryogenesis. AGPs are also involved in abiotic stress response such as salinity modulating cell wall expansion. In this study, we describe how salt-adaptation in tobacco BY-2 cell cultures induces important changes in arabinogalactan proteins distribution and contents. Using the immuno-dot blot technique with different anti-AGP antibodies (JIM13, JIM15, and others), we observed that AGPs were highly accumulated in the culture medium of salt-adapted tobacco cells, probably due to the action of phospholipases. We located these AGP epitopes using immunogold labeling in the cytoplasm associated to the endoplasmic reticulum, the golgi apparatus, and vesicles, plasma membrane and tonoplast. Our results show that salt-adaptation induced a significant reduction of the cytoplasm, plasma membrane and tonoplast content of these epitopes. Yariv reagent was added to the control and salt-adapted tobacco cell cultures, leading to cell death induction in control cells but not in salt-adapted cells. Ultrastructural and immunogold labeling revealed that cell death induced by Yariv reagent in control cells was due to the interaction of Yariv reagent with the AGPs linked to the plasma membranes. Finally, we propose a new function of AGPs as a possible sodium carrier through the mechanism of vesicle trafficking from the apoplast to the vacuoles in salt-adapted tobacco BY-2 cells. This mechanism may contribute to sodium homeostasis during salt-adaptation to high saline concentrations.

  18. Fas/CD95 regulatory protein Faim2 is neuroprotective after transient brain ischemia.

    PubMed

    Reich, Arno; Spering, Christopher; Gertz, Karen; Harms, Christoph; Gerhardt, Ellen; Kronenberg, Golo; Nave, Klaus A; Schwab, Markus; Tauber, Simone C; Drinkut, Anja; Harms, Kristian; Beier, Chrstioph P; Voigt, Aaron; Göbbels, Sandra; Endres, Matthias; Schulz, Jörg B

    2011-01-05

    Death receptor (DR) signaling has a major impact on the outcome of numerous neurological diseases, including ischemic stroke. DRs mediate not only cell death signals, but also proinflammatory responses and cell proliferation. Identification of regulatory proteins that control the switch between apoptotic and alternative DR signaling opens new therapeutic opportunities. Fas apoptotic inhibitory molecule 2 (Faim2) is an evolutionary conserved, neuron-specific inhibitor of Fas/CD95-mediated apoptosis. To investigate its role during development and in disease models, we generated Faim2-deficient mice. The ubiquitous null mutation displayed a viable and fertile phenotype without overt deficiencies. However, lack of Faim2 caused an increase in susceptibility to combined oxygen-glucose deprivation in primary neurons in vitro as well as in caspase-associated cell death, stroke volume, and neurological impairment after cerebral ischemia in vivo. These processes were rescued by lentiviral Faim2 gene transfer. In summary, we provide evidence that Faim2 is a novel neuroprotective molecule in the context of cerebral ischemia.

  19. A Systems Model of Parkinson's Disease Using Biochemical Systems Theory.

    PubMed

    Sasidharakurup, Hemalatha; Melethadathil, Nidheesh; Nair, Bipin; Diwakar, Shyam

    2017-08-01

    Parkinson's disease (PD), a neurodegenerative disorder, affects millions of people and has gained attention because of its clinical roles affecting behaviors related to motor and nonmotor symptoms. Although studies on PD from various aspects are becoming popular, few rely on predictive systems modeling approaches. Using Biochemical Systems Theory (BST), this article attempts to model and characterize dopaminergic cell death and understand pathophysiology of progression of PD. PD pathways were modeled using stochastic differential equations incorporating law of mass action, and initial concentrations for the modeled proteins were obtained from literature. Simulations suggest that dopamine levels were reduced significantly due to an increase in dopaminergic quinones and 3,4-dihydroxyphenylacetaldehyde (DOPAL) relating to imbalances compared to control during PD progression. Associating to clinically observed PD-related cell death, simulations show abnormal parkin and reactive oxygen species levels with an increase in neurofibrillary tangles. While relating molecular mechanistic roles, the BST modeling helps predicting dopaminergic cell death processes involved in the progression of PD and provides a predictive understanding of neuronal dysfunction for translational neuroscience.

  20. Questions and controversies: the role of necroptosis in liver disease

    PubMed Central

    Dara, Lily; Liu, Zhang-Xu; Kaplowitz, Neil

    2016-01-01

    Acute and chronic liver injury results in hepatocyte death and turnover. If injury becomes chronic, the continuous cell death and turnover leads to chronic inflammation, fibrosis and ultimately cirrhosis and hepatocellular carcinoma. Controlling liver cell death both in acute injury, to rescue the liver from acute liver failure, and in chronic injury, to curb secondary inflammation and fibrosis, is of paramount importance as a therapeutic strategy. Both apoptosis and necrosis occur in the liver, but the occurrence of necroptosis in the liver and its contribution to liver disease is controversial. Necroptosis is a form of regulated necrosis which occurs in certain cell types when caspases (+/−cIAPs) are inhibited through the RIPK1-RIPK3 activation of MLKL. The occurrence of necroptosis in the liver has recently been examined in multiple liver injury models with conflicting results. The aim of this review is to summarize the published data with an emphasis on the controversies and remaining questions in the field. PMID:27924226

  1. Effects of hydrogen peroxide on vestibular hair cells in the guinea pig: importance of cell membrane impairment preceding cell death.

    PubMed

    Tanigawa, Tohru; Tanaka, Hirokazu; Hayashi, Ken; Nakayama, Meiho; Iwasaki, Satoshi; Banno, Shinya; Takumida, Masaya; Brodie, Hirally; Inafuku, Shigeru

    2008-11-01

    Our findings indicate that oxidative stress induces morphological changes in vestibular hair cells and subsequently leads to cell death after 2.5 h. The aim of this study was to confirm the direct effects of oxidative stress on vestibular hair cells. Vestibular hair cells isolated from guinea pigs were loaded with 1 or 10 mM H2O2, and morphological changes were observed. In addition, in a viability/cytotoxicity assay system, the numbers of dead cells in isolated cristae ampullares were counted 1, 3, and 5 h after loading with H2O2 or artificial perilymph (control). Reactive oxygen, in the form of H2O2, directly affects the cell membrane of isolated vestibular hair cells and causes swelling of the cell body, bleb formation, and shortening of the neck region. Morphological changes occur within 30 min after loading with H2O2, but a significant increase in the number of dead cells is noted only after 3 h.

  2. Cystine uptake through the cystine/glutamate antiporter xCT triggers glioblastoma cell death under glucose deprivation.

    PubMed

    Goji, Takeo; Takahara, Kazuhiko; Negishi, Manabu; Katoh, Hironori

    2017-12-01

    Oncogenic signaling in cancer cells alters glucose uptake and utilization to supply sufficient energy and biosynthetic intermediates for survival and sustained proliferation. Oncogenic signaling also prevents oxidative stress and cell death caused by increased production of reactive oxygen species. However, elevated glucose metabolism in cancer cells, especially in glioblastoma, results in the cells becoming sensitive to glucose deprivation ( i.e. in high glucose dependence), which rapidly induces cell death. However, the precise mechanism of this type of cell death remains unknown. Here, we report that glucose deprivation alone does not trigger glioblastoma cell death. We found that, for cell death to occur in glucose-deprived glioblastoma cells, cystine and glutamine also need to be present in culture media. We observed that cystine uptake through the cystine/glutamate antiporter xCT under glucose deprivation rapidly induces NADPH depletion, reactive oxygen species accumulation, and cell death. We conclude that although cystine uptake is crucial for production of antioxidant glutathione in cancer cells its transport through xCT also induces oxidative stress and cell death in glucose-deprived glioblastoma cells. Combining inhibitors targeting cancer-specific glucose metabolism with cystine and glutamine treatment may offer a therapeutic approach for glioblastoma tumors exhibiting high xCT expression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Lack of association of programmed cell death 1 gene (PDCD1) polymorphisms with susceptibility to chronic urticaria in patients with positive autologous serum skin test.

    PubMed

    Brzoza, Z; Grzeszczak, W; Trautsolt, W; Moczulski, D

    2012-01-01

    Autoimmune mechanisms play an important role in the pathophysiology of chronic urticaria (CU), and the autologous serum skin test (ASST) helps to identify patients with autoreactive CU. One of the factors involved in autoreactive mechanisms is the cell surface receptor programmed death-1 which is encoded by the programmed cell death 1 gene (PDCD1). To investigate whether PDCD1 polymorphisms influence susceptibility to CU. We enrolled 93 ASST-positive patients with CU and a control group consisting of 105 healthy volunteers. In all individuals, PD1.3 (7146 A/G; rs 11568821) and PD1.5 (7785 C/T; rs 2227981) polymorphisms were analyzed. No statistically significant differences were found between CU patients and controls for allele or genotype distribution. We also did not observe any association between PDCD1 genotypes and severity of urticaria or age of disease onset. PD1.3 and PD1.5 polymorphisms were not proven to be implicated in susceptibility to ASST-positive CU in the Polish population. A more comprehensive analysis of the 2q33-2q37 genomic region might reveal whether variants of 1 or more of the genes in this region are involved in susceptibility to CU.

  4. The algicidal mechanism of prodigiosin from Hahella sp. KA22 against Microcystis aeruginosa.

    PubMed

    Yang, Ke; Chen, Qiuliang; Zhang, Danyang; Zhang, Huajun; Lei, Xueqian; Chen, Zhangran; Li, Yi; Hong, Yaling; Ma, Xiaohong; Zheng, Wei; Tian, Yun; Zheng, Tianling; Xu, Hong

    2017-08-10

    In recent years, Microcystis aeruginosa blooms have occurred throughout the world, causing huge economic losses and destroying aquatic ecosystems. It is necessary to develop effective and ecofriendly methods to control M. aeruginosa blooms. Here, we report a high algicidal activity of prodigiosin (PG) against M. aeruginosa as well as the algicidal mechanism. PG showed high algicidal activity against M. aeruginosa, with a 50% lethal dose (LD 50 ) of 5.87 μg/mL in 72 h. A combination of methods, including propidium iodide and Annexin V-fluorescein staining assays and light and electron microscopy indicated the existence of two modes of cell death with features similar to those in eukaryotic programmed cell death: necrotic-like and apoptotic-like. Biochemical and physiological analyses showed that PG generates reactive oxygen species (ROS), which induce lipid peroxidation, damage the membrane system and destroy the function of the photosystem. A proteomics analysis revealed that many proteins were differentially expressed in response to PG stress and that most of these proteins were involved in important metabolic processes, which may trigger necrotic-like or apoptotic-like cell death. The present study sheds light on the multiple toxicity mechanisms of PG on M. aeruginosa and its potential for controlling the occurrence of M. aeruginosa blooms in lakes.

  5. Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death.

    PubMed

    Hu, Ping; Han, Zhang; Couvillon, Anthony D; Exton, John H

    2004-11-19

    Endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of many diseases and in cancer therapy. Although the unfolded protein response is known to alleviate ER stress by reducing the accumulation of misfolded proteins, the exact survival elements and their downstream signaling pathways that directly counteract ER stress-stimulated apoptotic signaling remain elusive. Here, we have shown that endogenous Akt and ERK are rapidly activated and act as downstream effectors of phosphatidylinositol 3-kinase in thapsigargin- or tunicamycin-induced ER stress. Introduction of either dominant-negative Akt or MEK1 or the inhibitors LY294002 and U0126 sensitized cells to ER stress-induced cell death in different cell types. Reverse transcription-PCR analysis of gene expression during ER stress revealed that cIAP-2 and XIAP, members of the IAP family of potent caspase suppressors, were strongly induced. Transcription of cIAP-2 and XIAP was up-regulated by the phosphatidylinositol 3-kinase/Akt pathway as shown by its reversal by dominant-negative Akt or LY294002. Ablation of these IAPs by RNA interference sensitized cells to ER stress-induced death, which was reversed by the caspase inhibitor benzyloxycarbonyl-VAD-fluoromethyl ketone. The protective role of IAPs in ER stress coincided with Smac release from mitochondria to the cytosol. Furthermore, it was shown that mTOR was not required for Akt-mediated survival. These results represent the first demonstration that activation of endogenous Akt/IAPs and MEK/ERK plays a critical role in controlling cell survival by resisting ER stress-induced cell death signaling.

  6. Neural crest apoptosis and the establishment of craniofacial pattern: an honorable death.

    PubMed

    Graham, A; Koentges, G; Lumsden, A

    1996-01-01

    During development of the vertebrate head neural crest cells emigrate from the hindbrain and populate the branchial arches, giving rise to distinct skeletal elements and muscle connective tissues in each arch. The production of neural crest from the hindbrain is discontinuous and crest cells destined for different arches, carrying different positional cues, are separated by regions of apoptosis centered on rhombomeres (r) 3 and r5. This cell death program is under the interactive control of the neighboring hindbrain segments. Both r3 and r5 produce large numbers of crest cells when freed from their flanking rhombomere, but when conjoined with their neighbor the cell death program is restored. Two key components of this program are Bmp 4 and msx-2, both of which are expressed in the apoptotic foci of r3 and r5 and which are also regulated by neighbor interactions. Importantly, the addition of recombinant Bmp 4 to isolated cultures of r3 and r5 induces the expression of Bmp 4 and msx-2 and restores the cell death program. This early neural crest segregation is maintained during development and it has profound effects upon the final craniofacial pattern. Even though crest cells from different axial origins will contribute to compound skeletal elements, these distinct populations do not intermingle. Furthermore head muscle connective tissues are exclusively anchored to skeletal domains arising from neural crest from the same axial level. Thus the discontinuous production of neural crest sculpts the crest into nonmixing streams and consequently ensures the fidelity of patterning.

  7. FADD and the NF-κB family member Bcl-3 regulate complementary pathways to control T-cell survival and proliferation

    PubMed Central

    Rangelova, Svetla; Kirschnek, Susanne; Strasser, Andreas; Häcker, Georg

    2008-01-01

    Fas-associated protein with death domain/mediator of receptor induced toxicity (FADD/MORT1) was first described as a transducer of death receptor signalling but was later recognized also to be important for proliferation of T cells. B-cell lymphoma 3 (Bcl-3) is a relatively little understood member of the nuclear factor (NF)-κB family of transcription factors. We recently found that Bcl-3 is up-regulated in T cells from mice where FADD function is blocked by a dominant negative transgene (FADD-DN). To understand the importance of this, we generated FADD-DN/bcl-3−/− mice. Here, we report that T cells from these mice show massive cell death and severely reduced proliferation in response to T-cell receptor (TCR) stimulation in vitro. Transgenic co-expression of Bcl-2 (FADD-DN/bcl-3−/−/vav-bcl-2 mice) rescued the survival but not the proliferation of T cells. FADD-DN/bcl-3−/− mice had normal thymocyte numbers but reduced numbers of peripheral T cells despite an increase in cycling T cells in vivo. However, activation of the classical NF-κB and extracellular regulated kinase (ERK) pathways and expression of interleukin (IL)-2 mRNA upon stimulation were normal in T cells from FADD-DN/bcl-3−/− mice. These data suggest that FADD and Bcl-3 regulate separate pathways that both contribute to survival and proliferation in mouse T cells. PMID:18557791

  8. Caspase-independent cell death mediated by apoptosis-inducing factor (AIF) nuclear translocation is involved in ionizing radiation induced HepG2 cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Hengwen; Yang, Shana; Li, Jianhua

    Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. The aim of radiotherapy is to eradicate cancer cells with ionizing radiation. Except for the caspase-dependent mechanism, several lines of evidence demonstrated that caspase-independent mechanism is directly involved in the cell death responding to irradiation. For this reason, defining the contribution of caspase-independent molecular mechanisms represents the main goal in radiotherapy. In this study, we focused on the role of apoptosis-inducing factor (AIF), the caspase-independent molecular, in ionizing radiation induced hepatocellular carcinoma cell line (HepG2) cell death. We found that ionizing radiation has no function on AIF expressionmore » in HepG2 cells, but could induce AIF release from the mitochondria and translocate into nuclei. Inhibition of AIF could reduce ionizing radiation induced HepG2 cell death. These studies strongly support a direct relationship between AIF nuclear translocation and radiation induced cell death. What's more, AIF nuclear translocation is caspase-independent manner, but not caspase-dependent manner, in this process. These new findings add a further attractive point of investigation to better define the complex interplay between caspase-independent cell death and radiation therapy. - Highlights: • AIF nuclear translocation is involved in ionizing radiation induced hepatocellular carcinoma cell line HepG2 cell death. • AIF mediated cell death induced by ionizing radiation is caspase-independent. • Caspase-independent pathway is involved in ionzing radiation induced HepG2 cell death.« less

  9. Normal and leukaemic human haemopoietic cells in diffusion chamber. A morphological and functional CFU-C study.

    PubMed

    Laurent, M; Clémancey-Marcille, G; Hollard, D

    1980-03-01

    Leukaemic human bone marrow and peripheral blood cells were cultured for 25 d in diffusion chambers implanted into cyclophosphamide treated mice. Normal bone marrow cells were cultured simultaneously. These cells were studied both morphologically and functionally (CFU-C). The leukaemic cells behaved heterogeneously, 2 groups being distinguishable in accordance with their initial in vitro growth pattern (1: no growth or microcluster growth. 2: macrocluster growth). Group I showed progressive cellular death with a diminution of granulocytic progenitors and the appearance of a predominantly macrophagic population. This behaviour resembled that of the control group. The initial microcluster growth pattern remained identical throughout the entire culture period. Group 2, after considerable cellular death up to d 5, showed an explosive proliferation of the granulocytic progenitors and incomplete differentiation (up to myelocyte). The initial macrocluster growth pattern remained identical.

  10. A set of nutrient limitations trigger yeast cell death in a nitrogen-dependent manner during wine alcoholic fermentation

    PubMed Central

    Duc, Camille; Pradal, Martine; Sanchez, Isabelle; Noble, Jessica; Tesnière, Catherine

    2017-01-01

    Yeast cell death can occur during wine alcoholic fermentation. It is generally considered to result from ethanol stress that impacts membrane integrity. This cell death mainly occurs when grape musts processing reduces lipid availability, resulting in weaker membrane resistance to ethanol. However the mechanisms underlying cell death in these conditions remain unclear. We examined cell death occurrence considering yeast cells ability to elicit an appropriate response to a given nutrient limitation and thus survive starvation. We show here that a set of micronutrients (oleic acid, ergosterol, pantothenic acid and nicotinic acid) in low, growth-restricting concentrations trigger cell death in alcoholic fermentation when nitrogen level is high. We provide evidence that nitrogen signaling is involved in cell death and that either SCH9 deletion or Tor inhibition prevent cell death in several types of micronutrient limitation. Under such limitations, yeast cells fail to acquire any stress resistance and are unable to store glycogen. Unexpectedly, transcriptome analyses did not reveal any major changes in stress genes expression, suggesting that post-transcriptional events critical for stress response were not triggered by micronutrient starvation. Our data point to the fact that yeast cell death results from yeast inability to trigger an appropriate stress response under some conditions of nutrient limitations most likely not encountered by yeast in the wild. Our conclusions provide a novel frame for considering both cell death and the management of nutrients during alcoholic fermentation. PMID:28922393

  11. Evaluation of Dying Vocal Fold Epithelial Cells by Ultrastructural Features and TUNEL Method

    PubMed Central

    Novaleski, Carolyn K.; Mizuta, Masanobu; Rousseau, Bernard

    2016-01-01

    Cell death is a regulated mechanism of eliminating cells to maintain tissue homeostasis. This study described two methodological procedures for evaluating cell death in the epithelium of immobilized, approximated, and vibrated vocal folds from 12 New Zealand white breeder rabbits. The gold standard technique of transmission electron microscopy evaluated high-quality ultrastructural criteria of cell death and a common immunohistochemical marker, terminal deoxynucleotidyl transferase dUTP nick end labeling method, to confirm cell death signaling. Results revealed that ultrastructural characteristics of apoptotic cell death, specifically condensed chromatin and apoptotic bodies, were observed after vocal fold vibration and approximation. Although episodes of necrotic cell death were rare, few enlarged cell nuclei were present after vibration and approximation. The vocal fold expresses an immunohistochemical marker for apoptosis along the apical surface of the epithelium. This study provides a solid foundation for future investigations regarding the role of cell death in vocal fold health and disease. PMID:27537846

  12. Lack of the programmed death-1 receptor renders host susceptible to enteric microbial infection through impairing the production of the mucosal natural killer cell effector molecules.

    PubMed

    Solaymani-Mohammadi, Shahram; Lakhdari, Omar; Minev, Ivelina; Shenouda, Steve; Frey, Blake F; Billeskov, Rolf; Singer, Steven M; Berzofsky, Jay A; Eckmann, Lars; Kagnoff, Martin F

    2016-03-01

    The programmed death-1 receptor is expressed on a wide range of immune effector cells, including T cells, natural killer T cells, dendritic cells, macrophages, and natural killer cells. In malignancies and chronic viral infections, increased expression of programmed death-1 by T cells is generally associated with a poor prognosis. However, its role in early host microbial defense at the intestinal mucosa is not well understood. We report that programmed death-1 expression is increased on conventional natural killer cells but not on CD4(+), CD8(+) or natural killer T cells, or CD11b(+) or CD11c(+) macrophages or dendritic cells after infection with the mouse pathogen Citrobacter rodentium. Mice genetically deficient in programmed death-1 or treated with anti-programmed death-1 antibody were more susceptible to acute enteric and systemic infection with Citrobacter rodentium. Wild-type but not programmed death-1-deficient mice infected with Citrobacter rodentium showed significantly increased expression of the conventional mucosal NK cell effector molecules granzyme B and perforin. In contrast, natural killer cells from programmed death-1-deficient mice had impaired expression of those mediators. Consistent with programmed death-1 being important for intracellular expression of natural killer cell effector molecules, mice depleted of natural killer cells and perforin-deficient mice manifested increased susceptibility to acute enteric infection with Citrobacter rodentium. Our findings suggest that increased programmed death-1 signaling pathway expression by conventional natural killer cells promotes host protection at the intestinal mucosa during acute infection with a bacterial gut pathogen by enhancing the expression and production of important effectors of natural killer cell function. © Society for Leukocyte Biology.

  13. Methods for assessing autophagy and autophagic cell death.

    PubMed

    Tasdemir, Ezgi; Galluzzi, Lorenzo; Maiuri, M Chiara; Criollo, Alfredo; Vitale, Ilio; Hangen, Emilie; Modjtahedi, Nazanine; Kroemer, Guido

    2008-01-01

    Autophagic (or type 2) cell death is characterized by the massive accumulation of autophagic vacuoles (autophagosomes) in the cytoplasm of cells that lack signs of apoptosis (type 1 cell death). Here we detail and critically assess a series of methods to promote and inhibit autophagy via pharmacological and genetic manipulations. We also review the techniques currently available to detect autophagy, including transmission electron microscopy, half-life assessments of long-lived proteins, detection of LC3 maturation/aggregation, fluorescence microscopy, and colocalization of mitochondrion- or endoplasmic reticulum-specific markers with lysosomal proteins. Massive autophagic vacuolization may cause cellular stress and represent a frustrated attempt of adaptation. In this case, cell death occurs with (or in spite of) autophagy. When cell death occurs through autophagy, on the contrary, the inhibition of the autophagic process should prevent cellular demise. Accordingly, we describe a strategy for discriminating cell death with autophagy from cell death through autophagy.

  14. Scratch2 prevents cell cycle re-entry by repressing miR-25 in postmitotic primary neurons.

    PubMed

    Rodríguez-Aznar, Eva; Barrallo-Gimeno, Alejandro; Nieto, M Angela

    2013-03-20

    During the development of the nervous system the regulation of cell cycle, differentiation, and survival is tightly interlinked. Newly generated neurons must keep cell cycle components under strict control, as cell cycle re-entry leads to neuronal degeneration and death. However, despite their relevance, the mechanisms controlling this process remain largely unexplored. Here we show that Scratch2 is involved in the control of the cell cycle in neurons in the developing spinal cord of the zebrafish embryo. scratch2 knockdown induces postmitotic neurons to re-enter mitosis. Scratch2 prevents cell cycle re-entry by maintaining high levels of the cycle inhibitor p57 through the downregulation of miR-25. Thus, Scratch2 appears to safeguard the homeostasis of postmitotic primary neurons by preventing cell cycle re-entry.

  15. tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize

    USDA-ARS?s Scientific Manuscript database

    Sex determination in maize is controlled by a developmental cascade leading to the formation of unisexual florets derived from an initially bisexual floral meristem. Abortion of pistil primordia in staminate florets is controlled by a tasselseed-mediated cell death process. Here, we describe the pos...

  16. "Falling leaves": a survey of the history of apoptosis.

    PubMed

    Formigli, L; Conti, A; Lippi, D

    2004-04-01

    Cell death has long been defined using morphological criteria. A first important concept, "necrosis", was early identified by Areteo from Cappadocia and by Galen. The term apoptosis was introduced by Kerr in 1972 to indicate a particular form of death in which cells commit suicide by chopping themselves into membrane-bounded apoptotic bodies. Apoptosis is distinguished from necrosis, or accidental cell death, which is characterized by nuclear autolysis and cell disintegration. The aim of this study was an evaluation of the concepts of apoptosis and necrosis, starting from the first definition of cell death by Rudolph Virchow in 1859. In recent years substantial progress has been made in the understanding of apoptotic and necrotic cell death. In particular, cell death researchers have evolved a paradigm change, from one in which apoptosis and necrosis were considered distinct forms of cell demise, to one in which the 2 cell deaths share common features, as an integral part of a same cell death process. Since pure apoptosis and necrosis are only extremes in a continuum spectrum of aponecrotic response, a mixture of features associated with both apoptosis and necrosis represents the more typical tissue and cell response to damaging stimuli.

  17. Ferroptosis and Cell Death Analysis by Flow Cytometry.

    PubMed

    Chen, Daishi; Eyupoglu, Ilker Y; Savaskan, Nicolai

    2017-01-01

    Cell death and its recently discovered regulated form ferroptosis are characterized by distinct morphological, electrophysiological, and pharmacological features. In particular ferroptosis can be induced by experimental compounds and clinical drugs (i.e., erastin, sulfasalazine, sorafenib, and artesunate) in various cell types and cancer cells. Pharmacologically, this cell death process can be inhibited by iron chelators and lipid peroxidation inhibitors. Relevance of this specific cell death form has been found in different pathological conditions such as cancer, neurotoxicity, neurodegeneration, and ischemia. Distinguishing cell viability and cell death is essential for experimental and clinical applications and a key component in flow cytometry experiments. Dead cells can compromise the integrity of the data by nonspecific binding of antibodies and dyes. Therefore it is essential that dead cells are robustly and reproducibly identified and characterized by means of cytometry application. Here we describe a procedure to detect and quantify cell death and its specific form ferroptosis based on standard flow cytometry techniques.

  18. Isogambogenic acid induces apoptosis-independent autophagic cell death in human non-small-cell lung carcinoma cells.

    PubMed

    Yang, Jianhong; Zhou, Yongzhao; Cheng, Xia; Fan, Yi; He, Shichao; Li, Shucai; Ye, Haoyu; Xie, Caifeng; Wu, Wenshuang; Li, Chunyan; Pei, Heying; Li, Luyuan; Wei, Zhe; Peng, Aihua; Wei, Yuquan; Li, Weimin; Chen, Lijuan

    2015-01-09

    To overcome drug resistance caused by apoptosis deficiency in patients with non-small cell lung carcinoma (NSCLC), there is a need to identify other means of triggering apoptosis-independent cancer cell death. We are the first to report that isogambogenic acid (iso-GNA) can induce apoptosis-independent autophagic cell death in human NSCLC cells. Several features of the iso-GNA-treated NSCLC cells indicated that iso-GNA induced autophagic cell death. First, there was no evidence of apoptosis or cleaved caspase 3 accumulation and activation. Second, iso-GNA treatment induced the formation of autophagic vacuoles, increased LC3 conversion, caused the appearance of autophagosomes and increased the expression of autophagy-related proteins. These findings provide evidence that iso-GNA induces autophagy in NSCLC cells. Third, iso-GNA-induced cell death was inhibited by autophagic inhibitors or by selective ablation of Atg7 and Beclin 1 genes. Furthermore, the mTOR inhibitor rapamycin increased iso-GNA-induced cell death by enhancing autophagy. Finally, a xenograft model provided additional evidence that iso-GNA exhibited anticancer effect through inducing autophagy-dependent cell death in NSCLC cells. Taken together, our results demonstrated that iso-GNA exhibited an anticancer effect by inducing autophagy-dependent cell death in NSCLC cells, which may be an effective chemotherapeutic agent that can be used against NSCLC in a clinical setting.

  19. Isogambogenic acid induces apoptosis-independent autophagic cell death in human non-small-cell lung carcinoma cells

    PubMed Central

    Yang, Jianhong; Zhou, Yongzhao; Cheng, Xia; Fan, Yi; He, Shichao; Li, Shucai; Ye, Haoyu; Xie, Caifeng; Wu, Wenshuang; Li, Chunyan; Pei, Heying; Li, Luyuan; Wei, Zhe; Peng, Aihua; Wei, Yuquan; Li, Weimin; Chen, Lijuan

    2015-01-01

    To overcome drug resistance caused by apoptosis deficiency in patients with non-small cell lung carcinoma (NSCLC), there is a need to identify other means of triggering apoptosis-independent cancer cell death. We are the first to report that isogambogenic acid (iso-GNA) can induce apoptosis-independent autophagic cell death in human NSCLC cells. Several features of the iso-GNA-treated NSCLC cells indicated that iso-GNA induced autophagic cell death. First, there was no evidence of apoptosis or cleaved caspase 3 accumulation and activation. Second, iso-GNA treatment induced the formation of autophagic vacuoles, increased LC3 conversion, caused the appearance of autophagosomes and increased the expression of autophagy-related proteins. These findings provide evidence that iso-GNA induces autophagy in NSCLC cells. Third, iso-GNA-induced cell death was inhibited by autophagic inhibitors or by selective ablation of Atg7 and Beclin 1 genes. Furthermore, the mTOR inhibitor rapamycin increased iso-GNA-induced cell death by enhancing autophagy. Finally, a xenograft model provided additional evidence that iso-GNA exhibited anticancer effect through inducing autophagy-dependent cell death in NSCLC cells. Taken together, our results demonstrated that iso-GNA exhibited an anticancer effect by inducing autophagy-dependent cell death in NSCLC cells, which may be an effective chemotherapeutic agent that can be used against NSCLC in a clinical setting. PMID:25571970

  20. Simultaneous induction of apoptotic, autophagic, and necrosis-like cell death by monoclonal antibodies recognizing chicken transferrin receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohno, Yoshiya; Yagi, Hideki; Nakamura, Masanori

    Programmed cell death (PCD) is categorized as apoptotic, autophagic, or necrosis-like. Although the possibility that plural (two or three) death signals could be induced by a given stimulus has been reported, the precise mechanisms regulating PCD are not well understood. Recently, we have obtained two anti-chicken transferrin receptor (TfR) monoclonal antibodies (mAbs; D18 and D19) inducing a unique cell death. Although the cell death had several features of apoptosis, autophagic and necrosis-like morphological alterations were simultaneously observed in electron microphotographs. In addition to cells with condensed chromatin and an intact plasma membrane (apoptotic cells), cells having many vacuoles in themore » cytoplasm (autophagic cells), and enlarged cells with ruptured plasma membranes (necrosis-like cells) were observed in DT40 cells treated with the mAbs, however, the latter two types of dead cells were not detected upon treatment with staurosporine, a typical apoptosis inducer. In autophagic cells, numerous membrane-bound vesicles occupying most of the cytoplasmic space, which frequently contained electron-dense materials from cytoplasmic fragments and organelles, were observed. The simultaneous induction of multiple death signals from a stimulus via the TfR is of great interest to those researching cell death. In addition, activation of caspases was observed in DT40 cells treated with D19, however, the cell death was not inhibited with z-VAD-fmk, a pan-caspase inhibitor, suggesting that at least in part, a caspase-independent pathway is involved in the TfR-mediated cell death.« less

  1. Inhibiting connexin channels protects against cryopreservation-induced cell death in human blood vessels.

    PubMed

    Bol, M; Van Geyt, C; Baert, S; Decrock, E; Wang, N; De Bock, M; Gadicherla, A K; Randon, C; Evans, W H; Beele, H; Cornelissen, R; Leybaert, L

    2013-04-01

    Cryopreserved blood vessels are being increasingly employed in vascular reconstruction procedures but freezing/thawing is associated with significant cell death that may lead to graft failure. Vascular cells express connexin proteins that form gap junction channels and hemichannels. Gap junction channels directly connect the cytoplasm of adjacent cells and may facilitate the passage of cell death messengers leading to bystander cell death. Two hemichannels form a gap junction channel but these channels are also present as free non-connected hemichannels. Hemichannels are normally closed but may open under stressful conditions and thereby promote cell death. We here investigated whether blocking gap junctions and hemichannels could prevent cell death after cryopreservation. Inclusion of Gap27, a connexin channel inhibitory peptide, during cryopreservation and thawing of human saphenous veins and femoral arteries was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assays and histological examination. We report that Gap27 significantly reduces cell death in human femoral arteries and saphenous veins when present during cryopreservation/thawing. In particular, smooth muscle cell death was reduced by 73% in arteries and 71% in veins, while endothelial cell death was reduced by 32% in arteries and 51% in veins. We conclude that inhibiting connexin channels during cryopreservation strongly promotes vascular cell viability. Copyright © 2012 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  2. Apoptotic death in cerebral hemisphere cells is density dependent and modulated by transient oxygen and glucose deprivation.

    PubMed

    Yavin, E; Billia, D M

    1997-03-01

    Flow cytometry, light and fluorescence microscopy, and designated biochemical techniques were used to examine the type of death which occurs in cerebral cortex cells when grown under crowded vs. sparse conditions or after brief anoxia/hypoglycemia. A 4 hr episode of anoxia combined with glucose deprivation enhanced apoptotic cell death as assessed by 4',6-diamidino-2-phenylindole (DAPI) staining and reduced neutral red eye uptake. An additional form of cell death involving exclusion of the nucleus was recorded by time lapse cinematography and DAPI stain. The presence of the endonuclease inhibitor aurintricarboxylic acid (0.1 mM) reduced cell death by 56.6%, while the protein and RNA synthesis inhibitors actinomycin D and cycloheximide (each at 5 micrograms/ml) effectively decreased cell death by 83.3% and 90.6%, respectively. In contrast, 5 mM glutamate had no effect on cell death in accord with the immature state of the cells. Growth of cells under crowded conditions improved cell survival; after 2 h or 4 days in culture, cells seeded at high density (34 microgram cellular DNA/cm2) showed a nearly 3-fold decline in the amount of cell death in comparison to cells seeded at low density (5 micrograms cellular DNA/cm2). At high cell density, anoxic episodes enhanced cell death most likely by preventing a cell density-mediated rescue. Neutral red dye uptake, an index for cell viability, was enhanced with increasing cell density and in vitro maturation, but was reduced in dense cultures exposed to anoxic/hypoglycemic conditions. The data suggest that cell density may play a critical role in brain organogenesis and that anoxic stress is more deleterious in dense than sparse cell assemblies.

  3. Dual effect of insulin resistance and cadmium on human granulosa cells - In vitro study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belani, Muskaan, E-mail: muskaanbelani@gmail.com

    Combined exposure of cadmium (Cd) and insulin resistance (IR) might be responsible for subfertility. In the present study, we investigated the effects of Cd in vitro in IR human granulosa cells. Isolated human granulosa cells from control and polycystic ovary syndrome (PCOS) follicular fluid samples were confirmed for IR by decrease in protein expression of insulin receptor-β. Control and IR human granulosa cells were then incubated with or without 32 μM Cd. The combined effect of IR with 32 μM Cd in granulosa cells demonstrated significant decrease in expression of StAR, CYP11A1, CYP19A1, 17β-HSD, 3β-HSD, FSH-R and LH-R. Decrease wasmore » also observed in progesterone and estradiol concentrations as compared to control. Additionally, increase in protein expression of cleaved PARP-F2, active caspase-3 and a positive staining for Annexin V and PI indicated apoptosis as the mode of increased cell death ultimately leading to decreased steroidogenesis, as observed through the combined exposure. Taken together the results suggest decrease in steroidogenesis ultimately leading to abnormal development of the follicle thus compromising fertility at the level of preconception. - Highlights: • Protein expression of INSR-β in granulosa cells to differentiate PCOS-IR and NIR • Cd and IR together decrease steroidogenesis in human granulosa cells in vitro. • Cd and IR increase human granulosa cell death by increase in apoptosis. • Environment and life style are set to hamper pregnancies at preconception level.« less

  4. Increased percentages of PD-1 on CD4+ T cells is associated with higher INF-γ production and altered IL-17 production in patients with systemic lupus erythematosus.

    PubMed

    Dolff, S; Quandt, D; Feldkamp, T; Jun, C; Mitchell, A; Hua, F; Specker, C; Kribben, A; Witzke, O; Wilde, B

    2014-01-01

    Programmed death (PD)-1 is a cell death receptor that, upon stimulation, leads to apoptosis. Previous studies have shown alteration of PD-1 expression on T cells and PD-1 genes in patients with systemic lupus erythematosus (SLE). The aim of this study was to assess the expression of this receptor on effector T cells in patients with SLE. In this study we enrolled 32 SLE patients and 31 healthy controls. T cells from peripheral blood were analysed by flow cytometry for the expression of PD-1. Interferon (IFN)-γ and interleukin (IL)-17-producing cells were investigated for the expression of this co-stimulatory marker. Percentages of CD4(+) T cells expressing PD-1 were significantly increased in patients with SLE compared to healthy controls. The percentage of PD-1 expression was correlated with the production of INF-γ (r = 0.83, p < 0.0001). We also investigated the production of IL-17 by PD-1(+) CD3(+) T cells. Inactive patients (3.2 ± 1.2% vs. 5.9 ± 3.5%, p = 0.002) and patients without lupus nephritis (LN) (3.2 ± 1.5% vs. 5.9 ± 3.5%, p = 0.005) showed lower levels of IL-17 compared to healthy controls. We have demonstrated increased expression of PD-1 on CD4(+) T cells in SLE patients and an association between PD-1 expression on CD4(+) T cells and IFN-γ expression on CD3(+) T cells. We have also shown that there is an altered subset of PD-1(+) T cells in inactive patients and patients without LN producing lower amounts of IL-17.

  5. Can deaths in police cells be prevented? Experience from Norway and death rates in other countries.

    PubMed

    Aasebø, Willy; Orskaug, Gunnar; Erikssen, Jan

    2016-01-01

    To describe the changes in death rates and causes of deaths in Norwegian police cells during the last 2 decades. To review reports on death rates in police cells that have been published in medical journals and elsewhere, and discuss the difficulties of comparing death rates between countries. Data on deaths in Norwegian police cells were collected retrospectively in 2002 and 2012 for two time periods: 1993-2001 (period 1) and 2003-2012 (period 2). Several databases were searched to find reports on deaths in police cells from as many countries as possible. The death rates in Norwegian police cells reduced significantly from 0.83 deaths per year per million inhabitants (DYM) in period 1 to 0.22 DYM in period 2 (p < 0.05). The most common cause of death in period 1 was alcohol intoxication including intracranial bleeding in persons with high blood alcohol levels, and the number declined from 16 persons in period 1 to 1 person in period 2 (p = 0.032). The median death rate in the surveyed Western countries was 0.44 DYM (range: 0.14-1.46 DYM). The number of deaths in Norwegian police cells reduced by about 75% over a period of approximately 10 years. This is probably mainly due to individuals with severe alcohol intoxication no longer being placed in police cells. However, there remain large methodology difficulties in comparing deaths rates between countries. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  6. Dual Roles of Reactive Oxygen Species and NADPH Oxidase RBOHD in an Arabidopsis-Alternaria Pathosystem1[W

    PubMed Central

    Pogány, Miklós; von Rad, Uta; Grün, Sebastian; Dongó, Anita; Pintye, Alexandra; Simoneau, Philippe; Bahnweg, Günther; Kiss, Levente; Barna, Balázs; Durner, Jörg

    2009-01-01

    Arabidopsis (Arabidopsis thaliana) NADPH oxidases have been reported to suppress the spread of pathogen- and salicylic acid-induced cell death. Here, we present dual roles of RBOHD (for respiratory burst oxidase homolog D) in an Arabidopsis-Alternaria pathosystem, suggesting either initiation or prevention of cell death dependent on the distance from pathogen attack. Our data demonstrate that a rbohD knockout mutant exhibits increased spread of cell death at the macroscopic level upon inoculation with the fungus Alternaria brassicicola. However, the cellular patterns of reactive oxygen species accumulation and cell death are fundamentally different in the AtrbohD mutant compared with the wild type. Functional RBOHD causes marked extracellular hydrogen peroxide accumulation as well as cell death in distinct, single cells of A. brassicicola-infected wild-type plants. This single cell response is missing in the AtrbohD mutant, where infection triggers spreading-type necrosis preceded by less distinct chloroplastic hydrogen peroxide accumulation in large clusters of cells. While the salicylic acid analog benzothiadiazole induces the action of RBOHD and the development of cell death in infected tissues, the ethylene inhibitor aminoethoxyvinylglycine inhibits cell death, indicating that both salicylic acid and ethylene positively regulate RBOHD and cell death. Moreover, A. brassicicola-infected AtrbohD plants hyperaccumulate ethylene and free salicylic acid compared with the wild type, suggesting negative feedback regulation of salicylic acid and ethylene by RBOHD. We propose that functional RBOHD triggers death in cells that are damaged by fungal infection but simultaneously inhibits death in neighboring cells through the suppression of free salicylic acid and ethylene levels. PMID:19726575

  7. Role of T cell death in maintaining immune tolerance during persistent viral hepatitis.

    PubMed

    Larrubia, Juan Ramón; Lokhande, Megha Uttam; García-Garzón, Silvia; Miquel, Joaquín; Subirá, Dolores; Sanz-de-Villalobos, Eduardo

    2013-03-28

    Virus-specific T cells play an important role in the resolution of hepatic infection. However, during chronic hepatitis infection these cells lack their effector functions and fail to control the virus. Hepatitis B virus and hepatitis C virus have developed several mechanisms to generate immune tolerance. One of these strategies is the depletion of virus-specific T cells by apoptosis. The immunotolerogenic liver has unique property to retain and activate naïve T cell to avoid the over reactivation of immune response against antigens which is exploited by hepatotropic viruses to persist. The deletion of the virus-specific T cells occurs by intrinsic (passive) apoptotic mechanism. The pro-apoptotic molecule Bcl-2 interacting mediator (Bim) has attracted increasing attention as a pivotal involvement in apoptosis, as a regulator of tissue homeostasis and an enhancer for the viral persistence. Here, we reviewed our current knowledge on the evidence showing critical role of Bim in viral-specific T cell death by apoptotic pathways and helps in the immune tolerance.

  8. Adenovirus-mediated suppression of HMGI(Y) protein synthesis as potential therapy of human malignant neoplasias

    PubMed Central

    Scala, Stefania; Portella, Giuseppe; Fedele, Monica; Chiappetta, Gennaro; Fusco, Alfredo

    2000-01-01

    High mobility group I (HMGI) proteins are overexpressed in several human malignant tumors. We previously demonstrated that inhibition of HMGI synthesis prevents thyroid cell transformation. Here, we report that an adenovirus carrying the HMGI(Y) gene in an antisense orientation (Ad-Yas) induced programmed cell death of two human thyroid anaplastic carcinoma cell lines (ARO and FB-1), but not normal thyroid cells. The Ad-Yas virus led to death of lung, colon, and breast carcinoma cells. A control adenovirus carrying the lacZ gene did not inhibit the growth of either normal or neoplastic cells. Ad-Yas treatment of tumors induced in athymic mice by ARO cells caused a drastic reduction in tumor size. Therefore, suppression of HMGI(Y) protein synthesis by an HMGI(Y) antisense adenoviral vector may be a useful treatment strategy in a variety of human malignant neoplasias, in which HMGI(Y) gene overexpression is a general event. PMID:10759549

  9. Matrix Elasticity of Void-Forming Hydrogels Controls Transplanted Stem Cell-Mediated Bone Formation

    PubMed Central

    Huebsch, Nathaniel; Lippens, Evi; Lee, Kangwon; Mehta, Manav; Koshy, Sandeep T; Darnell, Max C; Desai, Rajiv; Madl, Christopher M.; Xu, Maria; Zhao, Xuanhe; Chaudhuri, Ovijit; Verbeke, Catia; Kim, Woo Seob; Alim, Karen; Mammoto, Akiko; Ingber, Donald E.; Duda, Georg N; Mooney, David J.

    2015-01-01

    The effectiveness of stem-cell therapies has been hampered by cell death and limited control over fate1. These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype2–4. Stem cell behavior can also be controlled in vitro by manipulating the elasticity of both porous and non-porous materials5–7, yet translation to therapeutic processes in vivo remains elusive. Here, by developing injectable, void-forming hydrogels that decouple pore formation from elasticity, we show that mesenchymal stem cell (MSC) osteogenesis in vitro, and cell deployment in vitro and in vivo, can be controlled by modifying, respectively, the hydrogel's elastic modulus or its chemistry. When the hydrogels were used to transplant MSCs, the hydrogel's elasticity regulated bone regeneration, with optimal bone formation at 60 kPa. Our findings show that biophysical cues can be harnessed to direct therapeutic stem-cell behaviors in situ. PMID:26366848

  10. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation

    NASA Astrophysics Data System (ADS)

    Huebsch, Nathaniel; Lippens, Evi; Lee, Kangwon; Mehta, Manav; Koshy, Sandeep T.; Darnell, Max C.; Desai, Rajiv M.; Madl, Christopher M.; Xu, Maria; Zhao, Xuanhe; Chaudhuri, Ovijit; Verbeke, Catia; Kim, Woo Seob; Alim, Karen; Mammoto, Akiko; Ingber, Donald E.; Duda, Georg N.; Mooney, David J.

    2015-12-01

    The effectiveness of stem cell therapies has been hampered by cell death and limited control over fate. These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype. Stem cell behaviour can also be controlled in vitro by manipulating the elasticity of both porous and non-porous materials, yet translation to therapeutic processes in vivo remains elusive. Here, by developing injectable, void-forming hydrogels that decouple pore formation from elasticity, we show that mesenchymal stem cell (MSC) osteogenesis in vitro, and cell deployment in vitro and in vivo, can be controlled by modifying, respectively, the hydrogel’s elastic modulus or its chemistry. When the hydrogels were used to transplant MSCs, the hydrogel’s elasticity regulated bone regeneration, with optimal bone formation at 60 kPa. Our findings show that biophysical cues can be harnessed to direct therapeutic stem cell behaviours in situ.

  11. [Methuosis: a novel type of cell death].

    PubMed

    Cai, Hongbing; Liu, Jinkun; Fan, Qin; Li, Xin

    2013-12-01

    Cell death is a major physiological or pathological phenomenon in life activities. The classic forms of cell death include apoptosis, necrosis, and autophagy. Recently, a novel type of cell death has been observed and termed as methuosis, in which excessive stimuli can induce cytoplasmic uptake and accumulation of small bubbles that gradually merge into giant vacuoles, eventually leading to decreased cellular metabolic activity, cell membrane rupture and cell death. In this article, we describe the nomenclature, morphological characteristics and underlying mechanisms of methuosis, compare methuosis with autophagy, oncosis and paraptosis, and review the related researches.

  12. Involvement of cyclin D1/CDK4 and pRb mediated by PI3K/AKT pathway activation in Pb{sup 2+}-induced neuronal death in cultured hippocampal neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Chenchen; Xing Tairan; Tang Mingliang

    2008-06-15

    Lead (Pb) is widely recognized as a neurotoxicant. One of the suggested mechanisms of lead neurotoxicity is apoptotic cell death. And the mechanism by which Pb{sup 2+} causes neuronal death is not well understood. The present study sought to examine the obligate nature of cyclin D1/cyclin-dependent kinase 4 (CDK4), phosphorylation of its substrate retinoblastoma protein (pRb) and its select upstream signal phosphoinositide 3-kinase (PI3K)/AKT pathway in the death of primary cultured rat hippocampal neurons evoked by Pb{sup 2+}. Our data showed that lead treatment of primary hippocampal cultures results in dose-dependent cell death. Inhibition of CDK4 prevented Pb{sup 2+}-induced neuronalmore » death significantly but was incomplete. In addition, we demonstrated that the levels of cyclin D1 and pRb/p107 were increased during Pb{sup 2+} treatment. These elevated expression persisted up to 48 h, returning to control levels after 72 h. We also presented pharmacological and morphological evidences that cyclin D1/CDK4 and pRb/p107 were required for such kind of neuronal death. Addition of the PI3K inhibitor LY294002 (30 {mu}M) or wortmannin (100 nM) significantly rescued the cultured hippocampal neurons from death caused by Pb{sup 2+}. And that Pb{sup 2+}-elicited phospho-AKT (Ser473) participated in the induction of cyclin D1 and partial pRb/p107 expression. These results provide evidences that cell cycle elements play a required role in the death of neurons evoked by Pb{sup 2+} and suggest that certain signaling elements upstream of cyclin D1/CDK4 are modified and/or required for this form of neuronal death.« less

  13. IFN-α potentiates the direct and immune-mediated antitumor effects of epigenetic drugs on both metastatic and stem cells of colorectal cancer.

    PubMed

    Buoncervello, Maria; Romagnoli, Giulia; Buccarelli, Mariachiara; Fragale, Alessandra; Toschi, Elena; Parlato, Stefania; Lucchetti, Donatella; Macchia, Daniele; Spada, Massimo; Canini, Irene; Sanchez, Massimo; Falchi, Mario; Musella, Martina; Biffoni, Mauro; Belardelli, Filippo; Capone, Imerio; Sgambato, Alessandro; Vitiani, Lucia Ricci; Gabriele, Lucia

    2016-05-03

    Epigenetic alterations, including dysregulated DNA methylation and histone modifications, govern the progression of colorectal cancer (CRC). Cancer cells exploit epigenetic regulation to control cellular pathways, including apoptotic and metastatic signals. Since aberrations in epigenome can be pharmacologically reversed by DNA methyltransferase and histone deacetylase inhibitors, epigenetics in combination with standard agents are currently envisaged as a new therapeutic frontier in cancer, expected to overcome drug resistance associated with current treatments. In this study, we challenged this idea and demonstrated that the combination of azacitidine and romidepsin with IFN-α owns a high therapeutic potential, targeting the most aggressive cellular components of CRC, such as metastatic cells and cancer stem cells (CSCs), via tight control of key survival and death pathways. Moreover, the antitumor efficacy of this novel pharmacological approach is associated with induction of signals of immunogenic cell death. Of note, a previously undisclosed key role of IFN-α in inducing both antiproliferative and pro-apoptotic effects on CSCs of CRC was also found. Overall, these findings open a new frontier on the suitability of IFN-α in association with epigenetics as a novel and promising therapeutic approach for CRC management.

  14. IFN-α potentiates the direct and immune-mediated antitumor effects of epigenetic drugs on both metastatic and stem cells of colorectal cancer

    PubMed Central

    Buoncervello, Maria; Fragale, Alessandra; Toschi, Elena; Parlato, Stefania; Lucchetti, Donatella; Macchia, Daniele; Spada, Massimo; Canini, Irene; Sanchez, Massimo; Falchi, Mario; Musella, Martina; Biffoni, Mauro; Belardelli, Filippo; Capone, Imerio; Sgambato, Alessandro; Vitiani, Lucia Ricci; Gabriele, Lucia

    2016-01-01

    Epigenetic alterations, including dysregulated DNA methylation and histone modifications, govern the progression of colorectal cancer (CRC). Cancer cells exploit epigenetic regulation to control cellular pathways, including apoptotic and metastatic signals. Since aberrations in epigenome can be pharmacologically reversed by DNA methyltransferase and histone deacetylase inhibitors, epigenetics in combination with standard agents are currently envisaged as a new therapeutic frontier in cancer, expected to overcome drug resistance associated with current treatments. In this study, we challenged this idea and demonstrated that the combination of azacitidine and romidepsin with IFN-α owns a high therapeutic potential, targeting the most aggressive cellular components of CRC, such as metastatic cells and cancer stem cells (CSCs), via tight control of key survival and death pathways. Moreover, the antitumor efficacy of this novel pharmacological approach is associated with induction of signals of immunogenic cell death. Of note, a previously undisclosed key role of IFN-α in inducing both antiproliferative and pro-apoptotic effects on CSCs of CRC was also found. Overall, these findings open a new frontier on the suitability of IFN-α in association with epigenetics as a novel and promising therapeutic approach for CRC management. PMID:27028869

  15. Bovine seminal ribonuclease triggers Beclin1-mediated autophagic cell death in pancreatic cancer cells.

    PubMed

    Fiorini, Claudia; Gotte, Giovanni; Donnarumma, Federica; Picone, Delia; Donadelli, Massimo

    2014-05-01

    Among the large number of variants belonging to the pancreatic-type secretory ribonuclease (RNase) superfamily, bovine pancreatic ribonuclease (RNase A) is the proto-type and bovine seminal RNase (BS-RNase) represents the unique natively dimeric member. In the present manuscript, we evaluate the anti-tumoral property of these RNases in pancreatic adenocarcinoma cell lines and in nontumorigenic cells as normal control. We demonstrate that BS-RNase stimulates a strong anti-proliferative and pro-apoptotic effect in cancer cells, while RNase A is largely ineffective. Notably, we reveal for the first time that BS-RNase triggers Beclin1-mediated autophagic cancer cell death, providing evidences that high proliferation rate of cancer cells may render them more susceptible to autophagy by BS-RNase treatment. Notably, to improve the autophagic response of cancer cells to BS-RNase we used two different strategies: the more basic (as compared to WT enzyme) G38K mutant of BS-RNase, known to interact more strongly than wt with the acidic membrane of cancer cells, or BS-RNase oligomerization (tetramerization or formation of larger oligomers). Both mutant BS-RNase and BS-RNase oligomers potentiated autophagic cell death as compared to WT native dimer of BS-RNase, while the various RNase A oligomers remained completely ineffective. Altogether, our results shed more light on the mechanisms lying at the basis of BS-RNase antiproliferative effect in cancer cells, and support its potential use to develop new anti-cancer strategies. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Corosolic Acid Induces Non-Apoptotic Cell Death through Generation of Lipid Reactive Oxygen Species Production in Human Renal Carcinoma Caki Cells.

    PubMed

    Woo, Seon Min; Seo, Seung Un; Min, Kyoung-Jin; Im, Seung-Soon; Nam, Ju-Ock; Chang, Jong-Soo; Kim, Shin; Park, Jong-Wook; Kwon, Taeg Kyu

    2018-04-27

    Corosolic acid is one of the pentacyclic triterpenoids isolated from Lagerstroemia speciose and has been reported to exhibit anti-cancer and anti-proliferative activities in various cancer cells. In the present study, we investigated the molecular mechanisms of corosolic acid in cancer cell death. Corosolic acid induces a decrease of cell viability and an increase of cell cytotoxicity in human renal carcinoma Caki cells. Corosolic acid-induced cell death is not inhibited by apoptosis inhibitor (z-VAD-fmk, a pan-caspase inhibitor), necroptosis inhibitor (necrostatin-1), or ferroptosis inhibitors (ferrostatin-1 and deferoxamine (DFO)). Furthermore, corosolic acid significantly induces reactive oxygen species (ROS) levels, but antioxidants ( N -acetyl-l-cysteine (NAC) and trolox) do not inhibit corosolic acid-induced cell death. Interestingly, corosolic acid induces lipid oxidation, and α-tocopherol markedly prevents corosolic acid-induced lipid peroxidation and cell death. Anti-chemotherapeutic effects of α-tocopherol are dependent on inhibition of lipid oxidation rather than inhibition of ROS production. In addition, corosolic acid induces non-apoptotic cell death in other renal cancer (ACHN and A498), breast cancer (MDA-MB231), and hepatocellular carcinoma (SK-Hep1 and Huh7) cells, and α-tocopherol markedly inhibits corosolic acid-induced cell death. Therefore, our results suggest that corosolic acid induces non-apoptotic cell death in cancer cells through the increase of lipid peroxidation.

  17. Early induction of c-Myc is associated with neuronal cell death.

    PubMed

    Lee, Hyun-Pil; Kudo, Wataru; Zhu, Xiongwei; Smith, Mark A; Lee, Hyoung-gon

    2011-11-14

    Neuronal cell cycle activation has been implicated in neurodegenerative diseases such as Alzheimer's disease, while the initiating mechanism of cell cycle activation remains to be determined. Interestingly, our previous studies have shown that cell cycle activation by c-Myc (Myc) leads to neuronal cell death which suggests Myc might be a key regulator of cell cycle re-entry mediated neuronal cell death. However, the pattern of Myc expression in the process of neuronal cell death has not been addressed. To this end, we examined Myc induction by the neurotoxic agents camptothecin and amyloid-β peptide in a differentiated SH-SY5Y neuronal cell culture model. Myc expression was found to be significantly increased following either treatment and importantly, the induction of Myc preceded neuronal cell death suggesting it is an early event of neuronal cell death. Since ectopic expression of Myc in neurons causes the cell cycle activation and neurodegeneration in vivo, the current data suggest that induction of Myc by neurotoxic agents or other disease factors might be a key mediator in cell cycle activation and consequent cell death that is a feature of neurodegenerative diseases. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. P2X7 Integrates PI3K/AKT and AMPK-PRAS40-mTOR Signaling Pathways to Mediate Tumor Cell Death

    PubMed Central

    Bai, Aiping; Zhang, Chunqing; Li, Linglin; Enjyoji, Keiichi; Junger, Wolfgang G.; Robson, Simon C.; Wu, Yan

    2013-01-01

    Background Extracellular adenosine triphosphate (ATP) functions as a novel danger signal that boosts antitumor immunity and can also directly kill tumor cells. We have previously reported that chronic exposure of tumor cells to ATP provokes P2X7-mediated tumor cell death, by as yet incompletely defined molecular mechanisms. Methodology/Principal Findings Here, we show that acute exposure of tumor cells to ATP results in rapid cytotoxic effects impacting several aspects of cell growth/survival, leading to inhibition of tumor growth in vitro and in vivo. Using agonist and antagonist studies together with generation of P2X7 deficient tumor cell lines by lentiviral shRNA delivery system, we confirm P2X7 to be the central control node transmitting extracellular ATP signals. We identify that downstream intracellular signaling regulatory networks implicate two signaling pathways: the known P2X7-PI3K/AKT axis and remarkably a novel P2X7-AMPK-PRAS40-mTOR axis. When exposed to high levels of extracellular ATP, these two signaling axes perturb the balance between growth and autophagy, thereby promoting tumor cell death. Conclusions Our study defines novel molecular mechanisms underpinning the antitumor actions of P2X7 and provides a further rationale for purine-based drugs in targeted cancer therapy. PMID:23565201

  19. FasL-triggered death of Jurkat cells requires caspase 8-induced, ATP-dependent cross-talk between Fas and the purinergic receptor P2X(7).

    PubMed

    Aguirre, Adam; Shoji, Kenji F; Sáez, Juan C; Henríquez, Mauricio; Quest, Andrew F G

    2013-02-01

    Fas ligation via the ligand FasL activates the caspase-8/caspase-3-dependent extrinsic death pathway. In so-called type II cells, an additional mechanism involving tBid-mediated caspase-9 activation is required to efficiently trigger cell death. Other pathways linking FasL-Fas interaction to activation of the intrinsic cell death pathway remain unknown. However, ATP release and subsequent activation of purinergic P2X(7) receptors (P2X(7)Rs) favors cell death in some cells. Here, we evaluated the possibility that ATP release downstream of caspase-8 via pannexin1 hemichannels (Panx1 HCs) and subsequent activation of P2X(7)Rs participate in FasL-stimulated cell death. Indeed, upon FasL stimulation, ATP was released from Jurkat cells in a time- and caspase-8-dependent manner. Fas and Panx1 HCs colocalized and inhibition of the latter, but not connexin hemichannels, reduced FasL-induced ATP release. Extracellular apyrase, which hydrolyzes ATP, reduced FasL-induced death. Also, oxidized-ATP or Brilliant Blue G, two P2X(7)R blockers, reduced FasL-induced caspase-9 activation and cell death. These results represent the first evidence indicating that the two death receptors, Fas and P2X(7)R connect functionally via caspase-8 and Panx1 HC-mediated ATP release to promote caspase-9/caspase-3-dependent cell death in lymphoid cells. Thus, a hitherto unsuspected route was uncovered connecting the extrinsic to the intrinsic pathway to amplify death signals emanating from the Fas receptor in type II cells. Copyright © 2012 Wiley Periodicals, Inc.

  20. Protein kinase A inhibitor, H89, enhances survival and clonogenicity of dissociated human embryonic stem cells through Rho-associated coiled-coil containing protein kinase (ROCK) inhibition.

    PubMed

    Zhang, Liang; Xu, Yanqing; Xu, Jiandong; Wei, Yuping; Xu, Xia

    2016-04-01

    Can cell survival of dissociated human embryonic stem cells (hESCs) be increased during culture? A protein kinase A (PKA) inhibitor, H89, can significantly enhance survival and clonogenicity of dissociated hESCs without affecting their pluripotency. hESCs are vulnerable to massive cell death upon cellular detachment and dissociation. hESCs were dissociated into single cells and then cultured in feeder-dependent and -independent manners. H89 was added to the culture medium at different concentrations for 1 day. The statistical results were obtained from at least three independent experiments (n ≥ 4). The group without treatment was used as the negative control. 4 µM H89 was added in the culture medium to promote cell survival and colony formation of dissociated hESCs. MTT method and propidium iodide (PI) staining were used to determine cell proliferation, cell death and cell cycle, respectively. To count colony formation, alkaline phosphatase (AP) staining was carried out. Western blot was performed to determine protein expression. Except AP staining, immunofluorescence, RT-PCR and karyotype analysis were used to confirm the pluripotent state of H89 treated hESCs. H89 inhibits the dissociation-induced phosphorylation of PKA and two substrates of Rho-associated coiled-coil containing protein kinase (ROCK), myosin light chain (MLC2) and myosin phosphatase target subunit 1 (MYPT1), significantly increases cell survival and colony formation, and strongly depresses dissociation-induced cell death and cell blebbing without affecting the pluripotency of hESCs and their differentiation in vitro. Appropriate H89 concentration should be used and 1 day of H89 treatment is sufficient for promoting survival and colony formation of dissociated hESCs. These results provide an alternative for human pluripotent stem cell (hPSC) culture, broaden the scope of participants in the cell death of single hES cells after dissociation and further enlighten clues to understand the mechanism of dissociation-induced cell death. This research was supported by the National Natural Science Foundation of China (21176238, 21576266), and Chinese Academy of Sciences. There is no conflict of interest to declare. Nil. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. How Ketamine Affects Livers of Pregnant Mice and Developing Mice?

    PubMed

    Cheung, Hoi Man; Chow, Tony Chin Hung; Yew, David Tai Wai

    2017-05-19

    It is well known that ketamine abuse can induce liver damage in adult addicts, but the effects of ketamine abuse in pregnant mothers on their offspring have received less attention. In this study, we investigated the effects of 5-day ketamine injections (30 mg/kg) to pregnant Institute for Cancer Research (ICR) mice during early gestation or mid-gestation on the aspartate aminotransferase (AST) and alkaline phosphatase (ALP) activities of the mothers and the offspring. We also looked into whether administering ketamine treatment to the mothers had any effects on the extent of fibrosis, cell proliferation and cell death in the livers of the newborns. No significant biochemical differences were found between treatment and control groups in the mothers. In the offspring, ketamine treatment mildly suppressed the gradual increase of hepatic AST activity in neonates during liver maturation. Measurements of hepatic ALP activity and lactic acid dehydrogenase (LDH) immunoreactivity revealed that ketamine treatment may lead to increased cell death. Proliferation of liver cells of the newborns was also retarded as shown by reduced proliferative cell nuclear antigen (PCNA) immunoreactivity in the ketamine groups. No obvious fibrosis was evident. Thus, we demonstrated that ketamine administration to pregnant mice suppressed hepatic development and also induced liver cell death of the offspring.

  2. Identification of factors that function in Drosophila salivary gland cell death during development using proteomics

    PubMed Central

    McPhee, C K; Balgley, B M; Nelson, C; Hill, J H; Batlevi, Y; Fang, X; Lee, C S; Baehrecke, E H

    2013-01-01

    Proteasome inhibitors induce cell death and are used in cancer therapy, but little is known about the relationship between proteasome impairment and cell death under normal physiological conditions. Here, we investigate the relationship between proteasome function and larval salivary gland cell death during development in Drosophila. Drosophila larval salivary gland cells undergo synchronized programmed cell death requiring both caspases and autophagy (Atg) genes during development. Here, we show that ubiquitin proteasome system (UPS) function is reduced during normal salivary gland cell death, and that ectopic proteasome impairment in salivary gland cells leads to early DNA fragmentation and salivary gland condensation in vivo. Shotgun proteomic analyses of purified dying salivary glands identified the UPS as the top category of proteins enriched, suggesting a possible compensatory induction of these factors to maintain proteolysis during cell death. We compared the proteome following ectopic proteasome impairment to the proteome during developmental cell death in salivary gland cells. Proteins that were enriched in both populations of cells were screened for their function in salivary gland degradation using RNAi knockdown. We identified several factors, including trol, a novel gene CG11880, and the cop9 signalsome component cop9 signalsome 6, as required for Drosophila larval salivary gland degradation. PMID:22935612

  3. Stomatal lock-open, a consequence of epidermal cell death, follows transient suppression of stomatal opening in barley attacked by Blumeria graminis.

    PubMed

    Prats, Elena; Gay, Alan P; Mur, Luis A J; Thomas, Barry J; Carver, Timothy L W

    2006-01-01

    Blumeria graminis f.sp. hordei (Bgh) attack disrupted stomatal behaviour, and hence leaf water conductance (g(l)), in barley genotypes Pallas and Risø-S (susceptible), P01 (with Mla1 conditioning a hypersensitive response; HR), and P22 and Risø-R (with mlo5 conditioning papilla-based penetration resistance). Inoculation caused some stomatal closure well before the fungus attempted infection. Coinciding with epidermal cell penetration, stomatal opening in light was also impeded, although stomata of susceptible and mlo5 lines remained largely able to close in darkness. Following infection, in susceptible lines stomata closed in darkness but opening in light was persistently impeded. In Risø-R, stomata recovered nearly complete function by approximately 30 h after inoculation, i.e. after penetration resistance was accomplished. In P01, stomata became locked open and unable to close in darkness shortly after epidermal cells died due to HR. In the P22 background, mlo5 penetration resistance was often followed by consequential death of attacked cells, and here too stomata became locked open, but not until approximately 24 h after pathogen attack had ceased. The influence of epidermal cell death was localized, and only affected stomata within one or two cells distance. These stomata were unable to close not only in darkness but also after application of abscisic acid and in wilted leaves suffering drought. Thus, resistance to Bgh based on HR or associated with cell death may have previously unsuspected negative consequences for the physiological health of apparently 'disease-free' plants. The results are discussed in relation to the control of stomatal aperture in barley by epidermal cells.

  4. Parthanatos, a messenger of death.

    PubMed

    David, Karen Kate; Andrabi, Shaida Ahmad; Dawson, Ted Murray; Dawson, Valina Lynn

    2009-01-01

    Poly-ADP-ribose polymerase-1 (PARP-1)'s roles in the cell span from maintaining life to inducing death. The processes PARP-1 is involved in include DNA repair, DNA transcription, mitosis, and cell death. Of PARP-1's different cellular functions, its role in cell death is of particular interest to designing therapies for diseases. Genetic deletion of PARP-1 revealed that PARP-1 overactivation underlies cell death in models of stroke, diabetes, inflammation and neurodegeneration. Since interfering with PARP-1 mediated cell death will be clinically beneficial, great effort has been invested into understanding mechanisms downstream of PARP-1 overactivation. Recent evidence shows that poly-ADP ribose (PAR) polymer itself can act as a cell death effector downstream of PARP-1. We coined the term parthanatos after Thanatos, the personification of death in Greek mythology, to refer to PAR-mediated cell death. In this review, we will present evidence and questions raised by these recent findings, and summarize the proposed mechanisms by which PARP-1 overactivation kills. It is evident that further understanding of parthanatos opens up new avenues for therapy in ameliorating diseases related to PARP-1 overactivation.

  5. Anthranilate Fluorescence Marks a Calcium-Propagated Necrotic Wave That Promotes Organismal Death in C. elegans

    PubMed Central

    Coburn, Cassandra; Allman, Erik; Mahanti, Parag; Benedetto, Alexandre; Cabreiro, Filipe; Pincus, Zachary; Matthijssens, Filip; Araiz, Caroline; Mandel, Abraham; Vlachos, Manolis; Edwards, Sally-Anne; Fischer, Grahame; Davidson, Alexander; Pryor, Rosina E.; Stevens, Ailsa; Slack, Frank J.; Tavernarakis, Nektarios; Braeckman, Bart P.; Schroeder, Frank C.; Nehrke, Keith; Gems, David

    2013-01-01

    For cells the passage from life to death can involve a regulated, programmed transition. In contrast to cell death, the mechanisms of systemic collapse underlying organismal death remain poorly understood. Here we present evidence of a cascade of cell death involving the calpain-cathepsin necrosis pathway that can drive organismal death in Caenorhabditis elegans. We report that organismal death is accompanied by a burst of intense blue fluorescence, generated within intestinal cells by the necrotic cell death pathway. Such death fluorescence marks an anterior to posterior wave of intestinal cell death that is accompanied by cytosolic acidosis. This wave is propagated via the innexin INX-16, likely by calcium influx. Notably, inhibition of systemic necrosis can delay stress-induced death. We also identify the source of the blue fluorescence, initially present in intestinal lysosome-related organelles (gut granules), as anthranilic acid glucosyl esters—not, as previously surmised, the damage product lipofuscin. Anthranilic acid is derived from tryptophan by action of the kynurenine pathway. These findings reveal a central mechanism of organismal death in C. elegans that is related to necrotic propagation in mammals—e.g., in excitotoxicity and ischemia-induced neurodegeneration. Endogenous anthranilate fluorescence renders visible the spatio-temporal dynamics of C. elegans organismal death. PMID:23935448

  6. Mitochondrial calcium uniporter silencing potentiates caspase-independent cell death in MDA-MB-231 breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curry, Merril C.; Peters, Amelia A.; Kenny, Paraic A.

    Highlights: •Some clinical breast cancers are associated with MCU overexpression. •MCU silencing did not alter cell death initiated with the Bcl-2 inhibitor ABT-263. •MCU silencing potentiated caspase-independent cell death initiated by ionomycin. •MCU silencing promoted ionomycin-mediated cell death without changes in bulk Ca{sup 2+}. -- Abstract: The mitochondrial calcium uniporter (MCU) transports free ionic Ca{sup 2+} into the mitochondrial matrix. We assessed MCU expression in clinical breast cancer samples using microarray analysis and the consequences of MCU silencing in a breast cancer cell line. Our results indicate that estrogen receptor negative and basal-like breast cancers are characterized by elevated levelsmore » of MCU. Silencing of MCU expression in the basal-like MDA-MB-231 breast cancer cell line produced no change in proliferation or cell viability. However, distinct consequences of MCU silencing were seen on cell death pathways. Caspase-dependent cell death initiated by the Bcl-2 inhibitor ABT-263 was not altered by MCU silencing; whereas caspase-independent cell death induced by the calcium ionophore ionomycin was potentiated by MCU silencing. Measurement of cytosolic Ca{sup 2+} levels showed that the promotion of ionomycin-induced cell death by MCU silencing occurs independently of changes in bulk cytosolic Ca{sup 2+} levels. This study demonstrates that MCU overexpression is a feature of some breast cancers and that MCU overexpression may offer a survival advantage against some cell death pathways. MCU inhibitors may be a strategy to increase the effectiveness of therapies that act through the induction of caspase-independent cell death pathways in estrogen receptor negative and basal-like breast cancers.« less

  7. Heterotrimeric G Protein Signaling Is Required for Epidermal Cell Death in Rice[W][OA

    PubMed Central

    Steffens, Bianka; Sauter, Margret

    2009-01-01

    In rice (Oryza sativa) adventitious root primordia are formed at the nodes as part of normal development. Upon submergence of rice plants, adventitious roots emerge from the nodes preceded by death of epidermal cells above the root primordia. Cell death is induced by ethylene and mediated by hydrogen peroxide (H2O2). Pharmacological experiments indicated that epidermal cell death was dependent on signaling through G proteins. Treatment with GTP-γ-S induced epidermal cell death, whereas GDP-β-S partially inhibited ethylene-induced cell death. The dwarf1 (d1) mutant of rice has repressed expression of the Gα subunit RGA1 of heterotrimeric G protein. In d1 plants, cell death in response to ethylene and H2O2 was nearly completely abolished, indicating that signaling through Gα is essential. Ethylene and H2O2 were previously shown to alter gene expression in epidermal cells that undergo cell death. Transcriptional regulation was not generally affected in the d1 mutant, indicating that altered gene expression is not sufficient to trigger cell death in the absence of Gα. Analysis of genes encoding proteins related to G protein signaling revealed that four small GTPase genes, two GTPase-activating protein genes, and one GDP dissociation inhibitor gene but not RGA1 were differentially expressed in epidermal cells above adventitious roots, indicating that Gα activity is regulated posttranscriptionally. PMID:19656904

  8. Mechanism of cell death resulting from DNA interstrand cross-linking in mammalian cells

    PubMed Central

    Osawa, T; Davies, D; Hartley, J A

    2011-01-01

    DNA interstrand cross-links (ICLs) are critical cytotoxic lesions produced by cancer chemotherapeutic agents such as the nitrogen mustards and platinum drugs; however, the exact mechanism of ICL-induced cell death is unclear. Here, we show a novel mechanism of p53-independent apoptotic cell death involving prolonged cell-cycle (G2) arrest, ICL repair involving HR, transient mitosis, incomplete cytokinesis, and gross chromosomal abnormalities resulting from ICLs in mammalian cells. This characteristic ‘giant' cell death, observed by using time-lapse video microscopy, was reduced in ICL repair ERCC1- and XRCC3-deficient cells. Collectively, the results illustrate the coordination of ICL-induced cellular responses, including cell-cycle arrest, DNA damage repair, and cell death. PMID:21814285

  9. Parthanatos, a messenger of death

    PubMed Central

    David, Karen Kate; Andrabi, Shaida Ahmad; Dawson, Ted Murray; Dawson, Valina Lynn

    2015-01-01

    Poly-ADP-ribose polymerase-1 (PARP-1)'s multiple roles in the cell span from maintaining life to inducing death. The processes PARP-1 is involved in include, but are not limited to DNA repair, DNA transcription, mitosis, and cell death. Of PARP-1's different cellular functions, its active role in cell death is of particular interest to designing therapies for diseases. Genetic deletion of PARP-1 revealed that PARP-1 over activation underlies cell death in experimental models of stroke, diabetes, inflammation and neurodegeneration. Since interfering with PARP-1 mediated cell death will be clinically beneficial, great effort has been invested into designing PARP-1 inhibitors and understanding mechanisms downstream of PARP-1 over activation. PARP-1 overactivation may kill by depleting cellular energy through nicotinamide adenine dinucleotide (NAD+) consumption, and by releasing the cell death effector apoptosis-inducing factor (AIF). Unexpectedly, recent evidence shows that poly-ADP ribose (PAR) polymer itself, and not the consumption of NAD+ is the source of cytotoxicity. Thus, PAR polymer acts as a cell death effector downstream of PARP-1-mediated cell death signaling. We coined the term parthanatos after Thanatos, the personification of death in Greek mythology, to refer to PAR-mediated cell death. In this review, we will summarize the proposed mechanisms by which PARP-1 overactivation kills. We will present evidence for parthanatos, and the questions raised by these recent findings. It is evident that further understanding of parthanatos opens up new avenues for therapy in ameliorating diseases related to PARP-1 over activation. PMID:19273119

  10. Inhibitory effects of mouse bone marrow mesenchymal stem cell soup on staurospurine-induced cell death in MCF-7 and AGS.

    PubMed

    Zhaleh, M; Azadbakht, M; Bidmeshki Pour, A

    2017-01-01

    Staurospurine induces apoptosis in cell line. Bone Marrow Mesenchymal stem cells Soup is a promising tool for cell proliferation via a variety of secreted factors. In this study, we examined the effects of BMSCs Soup on Staurospurine induced-cell death in MCF-7 and AGS cells. There were three Groups: Group I: no incubation with BM Soup; Group II: incubated with 24 h BM Soup; Group III: incubation with 48 h BM Soup. There were two treatments in each group. The treatments were 1μM Staurospurine (Treatment 1) and 0.0 μM Staurospurine (Treatment 2). The cells were cultured in culture medium containing 0.2 % BSA. We obtained the cell viability, cell death and NO concentration. Our results showed that BM soup administration for 48 hours protectsed against 1μM staurosporine concentration induced cell death and reduced cell toxicity in MCF-7 and AGS cells. Cell viability and cell toxicity assay showed that BM soup in time dependent manner increased cell viability (p < 0.05) and cell death assay showed that cell death in time dependent manner was decreased(p < 0.05). Our data showed that BM soup with increasing NO concentration reduced staurospurine induced cell death and cell cytotoxicity (p < 0.05). It's concluded that BMSCs soup suppressed staurospurine-induced cytotoxicity activity process in MCF-7 and AGS cells (Fig. 9, Ref. 79).

  11. Die Another Day: Inhibition of Cell Death Pathways by Cytomegalovirus.

    PubMed

    Brune, Wolfram; Andoniou, Christopher E

    2017-09-02

    Multicellular organisms have evolved multiple genetically programmed cell death pathways that are essential for homeostasis. The finding that many viruses encode cell death inhibitors suggested that cellular suicide also functions as a first line of defence against invading pathogens. This theory was confirmed by studying viral mutants that lack certain cell death inhibitors. Cytomegaloviruses, a family of species-specific viruses, have proved particularly useful in this respect. Cytomegaloviruses are known to encode multiple death inhibitors that are required for efficient viral replication. Here, we outline the mechanisms used by the host cell to detect cytomegalovirus infection and discuss the methods employed by the cytomegalovirus family to prevent death of the host cell. In addition to enhancing our understanding of cytomegalovirus pathogenesis we detail how this research has provided significant insights into the cross-talk that exists between the various cell death pathways.

  12. Comparison of Types of Cell Death: Apoptosis and Necrosis.

    ERIC Educational Resources Information Center

    Manning, Francis; Zuzel, Katherine

    2003-01-01

    Cell death is an essential factor in many biological processes including development. Discusses two types of cell death: (1) necrosis (induced by sodium azide); and (2) apoptosis (induced by sodium chromate). Illustrates key features that differ between these two types of cells death including loss of membrane integrity and internucleosomal DNA…

  13. ZBP1/DAI ubiquitination and sensing of influenza vRNPs activate programmed cell death

    PubMed Central

    Kuriakose, Teneema; Malireddi, R.K. Subbarao; Mishra, Ashutosh

    2017-01-01

    Innate sensing of influenza virus infection induces activation of programmed cell death pathways. We have recently identified Z-DNA–binding protein 1 (ZBP1) as an innate sensor of influenza A virus (IAV). ZBP1-mediated IAV sensing is critical for triggering programmed cell death in the infected lungs. Surprisingly, little is known about the mechanisms regulating ZBP1 activation to induce programmed cell death. Here, we report that the sensing of IAV RNA by retinoic acid inducible gene I (RIG-I) initiates ZBP1-mediated cell death via the RIG-I–MAVS–IFN-β signaling axis. IAV infection induces ubiquitination of ZBP1, suggesting potential regulation of ZBP1 function through posttranslational modifications. We further demonstrate that ZBP1 senses viral ribonucleoprotein (vRNP) complexes of IAV to trigger cell death. These findings collectively indicate that ZBP1 activation requires RIG-I signaling, ubiquitination, and vRNP sensing to trigger activation of programmed cell death pathways during IAV infection. The mechanism of ZBP1 activation described here may have broader implications in the context of virus-induced cell death. PMID:28634194

  14. Aerosol-delivered programmed cell death 4 enhanced apoptosis, controlled cell cycle and suppressed AP-1 activity in the lungs of AP-1 luciferase reporter mice.

    PubMed

    Hwang, S-K; Jin, H; Kwon, J T; Chang, S-H; Kim, T H; Cho, C-S; Lee, K H; Young, M R; Colburn, N H; Beck, G R; Yang, H-S; Cho, M-H

    2007-09-01

    The long-term survival of lung cancer patients treated with conventional therapies remains poor and therefore the need for novel approaches remains high. This has led to the re-emergence of aerosol delivery as a therapeutic intervention. In this study, glucosylated polyethylenimine (GPEI) was used as carrier to investigate programmed cell death 4 (PDCD4) and PDCD4 mutant (D418A), an eIF4A-binding mutant, on PDCD4-related signaling and activator protein-1 (AP-1) activity in the lungs of AP-1 luciferase reporter mice. After confirming the efficiency of GPEI as a carrier in lungs, the effects of aerosol-delivered PDCD4 were investigated in AP-1 luciferase reporter mice. Aerosol delivery of GPEI/PDCD4 through a nose-only inhalation facilitated the apoptosis of lungs whereas aerosol PDCD4 mutant did not. Also, such aerosol delivery regulated proteins relevant to cell-cycle control and suppressed AP-1 activity. Results obtained by western blot analysis, immunohistochemistry, luciferase assay and deoxynucleotidyl-transferase-mediated nick end labeling study suggest that combined actions such as facilitating apoptosis, controlling cell cycle and suppression of AP-1 activity by PDCD4 may provide useful tool for designing lung tumor prevention and treatment by which PDCD4 functions as a transformation suppressor in the future.

  15. Inhibition of ERK1/2 or AKT Activity Equally Enhances Radiation Sensitization in B16F10 Cells

    PubMed Central

    Kalal, Bhuvanesh Sukhlal; Fathima, Faraz; Pai, Vinitha Ramanath; Sanjeev, Ganesh; Krishna, Chilakapati Murali; Upadhya, Dinesh

    2018-01-01

    Background The aim of the study was to evaluate the radiation sensitizing ability of ERK1/2, PI3K-AKT and JNK inhibitors in highly radiation resistant and metastatic B16F10 cells which carry wild-type Ras and Braf. Methods Mouse melanoma cell line B16F10 was exposed to 1.0, 2.0 and 3.0 Gy of electron beam radiation. Phosphorylated ERK1/2, AKT and JNK levels were estimated by ELISA. Cells were exposed to 2.0 and 3.0 Gy of radiation with or without prior pharmacological inhibition of ERK1/2, AKT as well as JNK pathways. Cell death induced by radiation as well as upon inhibition of these pathways was measured by TUNEL assay using flow cytometry. Results Exposure of B16F10 cells to 1.0, 2.0 and 3.0 Gy of electron beam irradiation triggered an increase in all the three phosphorylated proteins compared to sham-treated and control groups. B16F10 cells pre-treated with either ERK1/2 or AKT inhibitors equally enhanced radiation-induced cell death at 2.0 as well as 3.0 Gy (P < 0.001), while inhibition of JNK pathway increased radiation-induced cell death to a lesser extent. Interestingly combined inhibition of ERK1/2 or AKT pathways did not show additional cell death compared to individual ERK1/2 or AKT inhibition. This indicates that ERK1/2 or AKT mediates radiation resistance through common downstream molecules in B16F10 cells. Conclusions Even without activating mutations in Ras or Braf genes, ERK1/2 and AKT play a critical role in B16F10 cell survival upon radiation exposure and possibly act through common downstream effector/s. PMID:29581812

  16. A biologically based model of growth and senescence of Syrian hamster embryo (SHE) cells after exposure to arsenic.

    PubMed Central

    Liao, K H; Gustafson, D L; Fox, M H; Chubb, L S; Reardon, K F; Yang, R S

    2001-01-01

    We modified the two-stage Moolgavkar-Venzon-Knudson (MVK) model for use with Syrian hamster embryo (SHE) cell neoplastic progression. Five phenotypic stages are proposed in this model: Normal cells can either become senescent or mutate into immortal cells followed by anchorage-independent growth and tumorigenic stages. The growth of normal SHE cells was controlled by their division, death, and senescence rates, and all senescent cells were converted from normal cells. In this report, we tested the modeling of cell kinetics of the first two phenotypic stages against experimental data evaluating the effects of arsenic on SHE cells. We assessed cell division and death rates using flow cytometry and correlated cell division rates to the degree of confluence of cell cultures. The mean cell death rate was approximately equal to 1% of the average division rate. Arsenic did not induce immortalization or further mutations of SHE cells at concentrations of 2 microM and below, and chromium (3.6 microM) and lead (100 microM) had similar negative results. However, the growth of SHE cells was inhibited by 5.4 microM arsenic after a 2-day exposure, with cells becoming senescent after only 16 population doublings. In contrast, normal cells and cells exposed to lower arsenic concentrations grew normally for at least 30 population doublings. The biologically based model successfully predicted the growth of normal and arsenic-treated cells, as well as the senescence rates. Mechanisms responsible for inducing cellular senescence in SHE cells exposed to arsenic may help explain the apparent inability of arsenic to induce neoplasia in experimental animals. PMID:11748027

  17. Adipose derived mesenchymal stem cells partially rescue mitomycin C treated ARPE19 cells from death in co-culture condition.

    PubMed

    Singh, Amar K; Srivastava, Girish K; García-Gutiérrez, María T; Pastor, J Carlos

    2013-12-01

    Age-related macular degeneration is a retinal disease with important damage at the RPE layer. This layer is considered a target for therapeutical approaches. Stem cell transplantation is a promising option for retinal diseases. Adipose derived mesenchymal stem cells secret growth factors which might play a significant role in RPE maintenance. This study aimed to evaluate human AD-MSCs ability to rescue mitomycin C treated dying ARPE19 cells in co-culture condition. ARPE19 cells were treated with MMC (50 μg/ml, 100 μg/ml and 200 μg/ml) for 2 hours to induce cell death. These treated cells were co-cultured with hAD-MSCs in indirect co-culture system for 3 days and 3 weeks. Then the viability, growth and proliferation of these ARPE19 cells were evaluated by a cell viability/cytotoxicity assay kit and Alamar Blue (AB) assay. Untreated ARPE19 cells and human skin fibroblasts (HSF) were used as controls. MMC blocked ARPE19 cell proliferation significantly in 3 days and cells were almost completely dead after 3 weeks. Cell toxicity of MMC increased significantly with concentration. When these cells were co-cultured with hAD-MSCs, a significant growth difference was observed in treated cells compared to untreated cells. hAD-MSCs rescue capacity was also significantly higher than HSF for treated ARPE19 cells. This study showed that hAD-MSCs rescued MMC treated ARPE19 cells from death. It probably occurred due to undefined growth factors secreted by hAD-MSCs in the medium, shared by treated ARPE19 cells in co-culture conditions. This study supports further evaluation of the effect of hAD-MSCs subretinal transplantation over the RPE degeneration process in AMD patients.

  18. Characterization of MUDENG, a novel anti-apoptotic protein

    PubMed Central

    Choi, J-H; Lim, J-B; Wickramanayake, D D; Wagley, Y; Kim, J; Lee, H-C; Seo, H G; Kim, T-H; Oh, J-W

    2016-01-01

    MUDENG (Mu-2-related death-inducing gene, MuD) is revealed to be involved in cell death signaling. Astrocytes, the major glial cell type in the central nervous system, are a source of brain tumors. In this study, we examined MuD expression and function in human astroglioma cells. Stimulation of U251-MG cells with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resulted in a 40% decrease in cell viability and a 33% decrease in MuD protein levels, although not in MuD mRNA levels. To study the functional relevance of MuD expression, stable transfectants expressing high levels of MuD were generated. Stimulation of these transfectants with TRAIL resulted in enhanced cell survival (77% for stable and 46% for control transfectants). Depletion of MuD led to a marked reduction upon TRAIL stimulation in cell viability (22% in MuD-depleted cells and 54% in control cells). In addition, we observed that MuD depletion increased the susceptibility of the cells to TRAIL by enhancing the cleavage of caspase-3/-9 and BH3-interacting domain death agonist (Bid). A unique 25-kDa fragment of B-cell lymphoma 2 (Bcl-2) lacking BH4 was observed 60–180 min post TRAIL treatment in MuD-depleted cells, suggesting that Bcl-2 is converted from its anti-apoptotic form to the truncated pro-apoptotic form. Importantly, the TRAIL-mediated decrease in cell viability in MuD-depleted cells was abrogated upon Bid depletion, indicating that the role of MuD in apoptotic signaling takes place at the Bid and Bcl-2 junction. MuD localizes predominantly in the endoplasmic reticulum and partly in the mitochondria and its amounts are reduced 6 h post TRAIL stimulation, presumably via caspase-3-mediated MuD cleavage. Collectively, these results suggest that MuD, a novel signaling protein, not only possesses an anti-apoptotic function but may also constitute an important target for the design of ideal candidates for combinatorial treatment strategies for glioma cells. PMID:27136675

  19. Control of retinoic acid synthesis and FGF expression in the nasal pit is required to pattern the craniofacial skeleton.

    PubMed

    Song, Y; Hui, J N; Fu, K K; Richman, J M

    2004-12-15

    Endogenous retinoids are important for patterning many aspects of the embryo including the branchial arches and frontonasal region of the embryonic face. The nasal placodes express retinaldehyde dehydrogenase-3 (RALDH3) and thus retinoids from the placode are a potential patterning influence on the developing face. We have carried out experiments that have used Citral, a RALDH antagonist, to address the function of retinoid signaling from the nasal pit in a whole embryo model. When Citral-soaked beads were implanted into the nasal pit of stage 20 chicken embryos, the result was a specific loss of derivatives from the lateral nasal prominences. Providing exogenous retinoic acid residue development of the beak demonstrating that most Citral-induced defects were produced by the specific blocking of RA synthesis. The mechanism of Citral effects was a specific increase in programmed cell death on the lateral (lateral nasal prominence) but not the medial side (frontonasal mass) of the nasal pit. Gene expression studies were focused on the Bone Morphogenetic Protein (BMP) pathway, which has a well-established role in programmed cell death. Unexpectedly, blocking RA synthesis decreased rather than increased Msx1, Msx2, and Bmp4 expression. We also examined cell survival genes, the most relevant of which was Fgf8, which is expressed around the nasal pit and in the frontonasal mass. We found that Fgf8 was not initially expressed along the lateral side of the nasal pit at the start of our experiments, whereas it was expressed on the medial side. Citral prevented upregulation of Fgf8 along the lateral edge and this may have contributed to the specific increase in programmed cell death in the lateral nasal prominence. Consistent with this idea, exogenous FGF8 was able to prevent cell death, rescue most of the morphological defects and was able to prevent a decrease in retinoic acid receptorbeta (Rarbeta) expression caused by Citral. Together, our results demonstrate that endogenous retinoids act upstream of FGF8 and the balance of these two factors is critical for regulating programmed cell death and morphogenesis in the face. In addition, our data suggest a novel role for endogenous retinoids from the nasal pit in controlling the precise downregulation of FGF in the center of the frontonasal mass observed during normal vertebrate development.

  20. Lysozyme activates Enterococcus faecium to induce necrotic cell death in macrophages.

    PubMed

    Gröbner, Sabine; Fritz, Evelyn; Schoch, Friederike; Schaller, Martin; Berger, Alexander C; Bitzer, Michael; Autenrieth, Ingo B

    2010-10-01

    Enterococci are commensal organisms in the alimentary tract. However, they can cause a variety of life-threatening infections, especially in nosocomial settings. We hypothesized that induction of cell death might enable these facultative pathogenic bacteria to evade the innate immune response and to cause infections of their host. We demonstrate that E. faecium when exposed to lysozyme induces cell death in macrophages in vitro and in vivo. Flow cytometric analyses of J774A.1 macrophages infected with E. faecium revealed loss of cell membrane integrity indicated by uptake of propidium iodide and decrease of the inner mitochondrial transmembrane potential DeltaPsi(m). Inhibition of caspases, treatment of macrophages with cytochalasin D, or rifampicin did not prevent cells from dying, suggesting cell death mechanisms that are independent of caspase activation, bacterial uptake, and intracellular bacterial replication. Characteristics of necrotic cell death were demonstrated by both lack of procaspase 3 activation and cell shrinkage, electron microscopy, and release of lactate dehydrogenase. Pretreatment of E. faecium with lysozyme and subsequently with broad spectrum protease considerably reduced cell death, suggesting that a bacterial surface protein is causative for cell death induction. Moreover, in a mouse peritonitis model we demonstrated that E. faecium induces cell death of peritoneal macrophages in vivo. Altogether, our results show that enterococci, under specific conditions such as exposure to lysozyme, induce necrotic cell death in macrophages, which might contribute to disseminated infections by these facultative pathogenic bacteria.

Top