Sample records for control cell growth

  1. Growth control of the eukaryote cell: a systems biology study in yeast.

    PubMed

    Castrillo, Juan I; Zeef, Leo A; Hoyle, David C; Zhang, Nianshu; Hayes, Andrew; Gardner, David Cj; Cornell, Michael J; Petty, June; Hakes, Luke; Wardleworth, Leanne; Rash, Bharat; Brown, Marie; Dunn, Warwick B; Broadhurst, David; O'Donoghue, Kerry; Hester, Svenja S; Dunkley, Tom Pj; Hart, Sarah R; Swainston, Neil; Li, Peter; Gaskell, Simon J; Paton, Norman W; Lilley, Kathryn S; Kell, Douglas B; Oliver, Stephen G

    2007-01-01

    Cell growth underlies many key cellular and developmental processes, yet a limited number of studies have been carried out on cell-growth regulation. Comprehensive studies at the transcriptional, proteomic and metabolic levels under defined controlled conditions are currently lacking. Metabolic control analysis is being exploited in a systems biology study of the eukaryotic cell. Using chemostat culture, we have measured the impact of changes in flux (growth rate) on the transcriptome, proteome, endometabolome and exometabolome of the yeast Saccharomyces cerevisiae. Each functional genomic level shows clear growth-rate-associated trends and discriminates between carbon-sufficient and carbon-limited conditions. Genes consistently and significantly upregulated with increasing growth rate are frequently essential and encode evolutionarily conserved proteins of known function that participate in many protein-protein interactions. In contrast, more unknown, and fewer essential, genes are downregulated with increasing growth rate; their protein products rarely interact with one another. A large proportion of yeast genes under positive growth-rate control share orthologs with other eukaryotes, including humans. Significantly, transcription of genes encoding components of the TOR complex (a major controller of eukaryotic cell growth) is not subject to growth-rate regulation. Moreover, integrative studies reveal the extent and importance of post-transcriptional control, patterns of control of metabolic fluxes at the level of enzyme synthesis, and the relevance of specific enzymatic reactions in the control of metabolic fluxes during cell growth. This work constitutes a first comprehensive systems biology study on growth-rate control in the eukaryotic cell. The results have direct implications for advanced studies on cell growth, in vivo regulation of metabolic fluxes for comprehensive metabolic engineering, and for the design of genome-scale systems biology models of the eukaryotic cell.

  2. Growth control of the eukaryote cell: a systems biology study in yeast

    PubMed Central

    Castrillo, Juan I; Zeef, Leo A; Hoyle, David C; Zhang, Nianshu; Hayes, Andrew; Gardner, David CJ; Cornell, Michael J; Petty, June; Hakes, Luke; Wardleworth, Leanne; Rash, Bharat; Brown, Marie; Dunn, Warwick B; Broadhurst, David; O'Donoghue, Kerry; Hester, Svenja S; Dunkley, Tom PJ; Hart, Sarah R; Swainston, Neil; Li, Peter; Gaskell, Simon J; Paton, Norman W; Lilley, Kathryn S; Kell, Douglas B; Oliver, Stephen G

    2007-01-01

    Background Cell growth underlies many key cellular and developmental processes, yet a limited number of studies have been carried out on cell-growth regulation. Comprehensive studies at the transcriptional, proteomic and metabolic levels under defined controlled conditions are currently lacking. Results Metabolic control analysis is being exploited in a systems biology study of the eukaryotic cell. Using chemostat culture, we have measured the impact of changes in flux (growth rate) on the transcriptome, proteome, endometabolome and exometabolome of the yeast Saccharomyces cerevisiae. Each functional genomic level shows clear growth-rate-associated trends and discriminates between carbon-sufficient and carbon-limited conditions. Genes consistently and significantly upregulated with increasing growth rate are frequently essential and encode evolutionarily conserved proteins of known function that participate in many protein-protein interactions. In contrast, more unknown, and fewer essential, genes are downregulated with increasing growth rate; their protein products rarely interact with one another. A large proportion of yeast genes under positive growth-rate control share orthologs with other eukaryotes, including humans. Significantly, transcription of genes encoding components of the TOR complex (a major controller of eukaryotic cell growth) is not subject to growth-rate regulation. Moreover, integrative studies reveal the extent and importance of post-transcriptional control, patterns of control of metabolic fluxes at the level of enzyme synthesis, and the relevance of specific enzymatic reactions in the control of metabolic fluxes during cell growth. Conclusion This work constitutes a first comprehensive systems biology study on growth-rate control in the eukaryotic cell. The results have direct implications for advanced studies on cell growth, in vivo regulation of metabolic fluxes for comprehensive metabolic engineering, and for the design of genome-scale systems biology models of the eukaryotic cell. PMID:17439666

  3. The duration of mitosis and daughter cell size are modulated by nutrients in budding yeast

    PubMed Central

    2017-01-01

    The size of nearly all cells is modulated by nutrients. Thus, cells growing in poor nutrients can be nearly half the size of cells in rich nutrients. In budding yeast, cell size is thought to be controlled almost entirely by a mechanism that delays cell cycle entry until sufficient growth has occurred in G1 phase. Here, we show that most growth of a new daughter cell occurs in mitosis. When the rate of growth is slowed by poor nutrients, the duration of mitosis is increased, which suggests that cells compensate for slow growth in mitosis by increasing the duration of growth. The amount of growth required to complete mitosis is reduced in poor nutrients, leading to a large reduction in cell size. Together, these observations suggest that mechanisms that control the extent of growth in mitosis play a major role in cell size control in budding yeast. PMID:28939614

  4. The duration of mitosis and daughter cell size are modulated by nutrients in budding yeast.

    PubMed

    Leitao, Ricardo M; Kellogg, Douglas R

    2017-11-06

    The size of nearly all cells is modulated by nutrients. Thus, cells growing in poor nutrients can be nearly half the size of cells in rich nutrients. In budding yeast, cell size is thought to be controlled almost entirely by a mechanism that delays cell cycle entry until sufficient growth has occurred in G1 phase. Here, we show that most growth of a new daughter cell occurs in mitosis. When the rate of growth is slowed by poor nutrients, the duration of mitosis is increased, which suggests that cells compensate for slow growth in mitosis by increasing the duration of growth. The amount of growth required to complete mitosis is reduced in poor nutrients, leading to a large reduction in cell size. Together, these observations suggest that mechanisms that control the extent of growth in mitosis play a major role in cell size control in budding yeast. © 2017 Leitao and Kellogg.

  5. Automated single cell microbioreactor for monitoring intracellular dynamics and cell growth in free solution†

    PubMed Central

    Johnson-Chavarria, Eric M.; Agrawal, Utsav; Tanyeri, Melikhan; Kuhlman, Thomas E.

    2014-01-01

    We report an automated microfluidic-based platform for single cell analysis that allows for cell culture in free solution with the ability to control the cell growth environment. Using this approach, cells are confined by the sole action of gentle fluid flow, thereby enabling non-perturbative analysis of cell growth away from solid boundaries. In addition, the single cell microbioreactor allows for precise and time-dependent control over cell culture media, with the combined ability to observe the dynamics of non-adherent cells over long time scales. As a proof-of-principle demonstration, we used the platform to observe dynamic cell growth, gene expression, and intracellular diffusion of repressor proteins while precisely tuning the cell growth environment. Overall, this microfluidic approach enables the direct observation of cellular dynamics with exquisite control over environmental conditions, which will be useful for quantifying the behaviour of single cells in well-defined media. PMID:24836754

  6. β-Catenin activation regulates tissue growth non-cell autonomously in the hair stem cell niche.

    PubMed

    Deschene, Elizabeth R; Myung, Peggy; Rompolas, Panteleimon; Zito, Giovanni; Sun, Thomas Yang; Taketo, Makoto M; Saotome, Ichiko; Greco, Valentina

    2014-03-21

    Wnt/β-catenin signaling is critical for tissue regeneration. However, it is unclear how β-catenin controls stem cell behaviors to coordinate organized growth. Using live imaging, we show that activation of β-catenin specifically within mouse hair follicle stem cells generates new hair growth through oriented cell divisions and cellular displacement. β-Catenin activation is sufficient to induce hair growth independently of mesenchymal dermal papilla niche signals normally required for hair regeneration. Wild-type cells are co-opted into new hair growths by β-catenin mutant cells, which non-cell autonomously activate Wnt signaling within the neighboring wild-type cells via Wnt ligands. This study demonstrates a mechanism by which Wnt/β-catenin signaling controls stem cell-dependent tissue growth non-cell autonomously and advances our understanding of the mechanisms that drive coordinated regeneration.

  7. Suppression of BRCA2 by Mutant Mitochondrial DNA in Prostate Cancer

    DTIC Science & Technology

    2014-07-01

    growth of prostatic epithelia both in vitro and in vivo To evaluate the impact of interaction between DAB2IP and Skp2 on cell growth , MTT assay and soft...determined using western blot and actin was used as a loading control. One thousand cells /well were seeded using 96-well plate. In vitro cell growth ...SEM. (E) 1 × 103 cells of C4-2 shSkp2 cells and its control were seeded at 96-well plate. In vitro cell growth was determined using

  8. Deregulation of cell growth and malignant transformation.

    PubMed

    Sulić, Sanda; Panić, Linda; Dikić, Ivan; Volarević, Sinisa

    2005-08-01

    Cell growth and cell division are fundamental aspects of cell behavior in all organisms. Recent insights from many model organisms have shed light on the molecular mechanisms that control cell growth and cell division. A significant body of evidence has now been accumulated, showing a direct link between deregulation of components of cell cycle machinery and cancer. In addition, defects in one or more steps that control growth are important for malignant transformation, as many tumor suppressors and proto-oncogenes have been found to regulate cell growth. The importance of cell growth in tumor development is further supported by the discovery that rapamycin, an effective anticancer drug, inhibits a key regulator of protein synthetic machinery and cell growth, mammalian target of rapamycin (mTOR). In most cases, cell growth and cell division are coupled, thereby maintaining cell size within physiological limits. We believe that, in a long-term perspective, understanding how these two processes are coordinated in vivo and how their interplay is deregulated in a number of diseases, including cancer, may have a direct impact on the efficiency of modern therapeutics.

  9. Toxicity and Radioprotective Effects of DF-1 and Carbon Nanotubes in Human Lung and Liver Cell Lines

    NASA Technical Reports Server (NTRS)

    Burgoyne, Madeline; Holtorf, Heidi; Huff, Janice; Moore, Valerie; Jeevarajan, Antony

    2007-01-01

    The DF-1 compound, a sixty carbon fullerene derivative, has been shown to have antioxidant effects and is thought to possibly help mediate the effects of radiation on cells. While this is potentially useful, it is important to first understand the effect that the DF-1 has on the cells and the growth rate of the cells to determine if the material itself has any innate toxicity. A growth curve was established for both HF-19 cells, human fibroblasts, and HepG2 cells, liver tissue cells in the presence of two different concentrations of DF-1 and for untreated controls. The cells were plated in triplicate in 60mm dishes and were lifted and counted with a hemocytometer daily for one week. The growth curve data for the HF-19 cells show that while the low concentration of DF-1 had no apparent effect on the growth rate, the high concentration of DF-1 appeared to severely inhibit the growth of the HF-19 cells. The growth curve data for the HepG2 cells shows that the DF-1 compound had no significant effect on the rate at which the cells grew. A second growth curve study was performed plain carbon nanotubes, but with only 24 hour exposure to a high and low concentration of material. The carbon nanotubes are another carbon compound similar to DF-1, but in the shape of a tube, rather than a ball. We hypothesize that nanotubes may also mediate the effect of radiation on cells. This time, nanotubes did not showed any significant effect on the growth rate HF-19 or HepG2 cells. A third growth curve study is underway to further determine the effect of DF-1, nanotubes, and a derivatized nanotube (BHT-nanotubes). This derivatized nanotube has been modified with a compound that is known to be very effective at neutralizing free radicals. We expect that the high concentration of DF-1 and possibly the nanotubes and BHT-nanotubes may inhibit the growth of the HF-19 cells while the low concentration will resemble the growth of the control. We also hypothesize that there will be no significant effect on the growth of the HepG2 cells by the nanotubes, and BHT-nanotubes. In order to examine the usefulness of the DF-1, nanotubes, and BHT-nanotubes in mediating the effects of radiation a clonogenic assay is being performed. The HF-19 cells were plated in different concentrations of the various compounds and exposed to varying amounts of radiation. The cells are being allowed to grow in a small enough concentration so that the ability of each cell to divide can be seen by the development of cell clusters. By comparing the irradiated control to the un-irradiated control the effects of radiation alone can be seen. By comparing the compound treated irradiated cells to the irradiated control the usefulness of each compound can be seen. It is thought that Amifostine, the positive control, will have more regularly dividing cells then the irradiated control, as will DF-1 and hopefully both nanotube materials as well.

  10. Accumulation of neutral mutations in growing cell colonies with competition.

    PubMed

    Sorace, Ron; Komarova, Natalia L

    2012-12-07

    Neutral mutations play an important role in many biological processes including cancer initiation and progression, the generation of drug resistance in bacterial and viral diseases as well as cancers, and the development of organs in multicellular organisms. In this paper we study how neutral mutants are accumulated in nonlinearly growing colonies of cells subject to growth constraints such as crowding or lack of resources. We investigate different types of growth control which range from "division-controlled" to "death-controlled" growth (and various mixtures of both). In division-controlled growth, the burden of handling overcrowding lies with the process of cell-divisions, the divisions slow down as the carrying capacity is approached. In death-controlled growth, it is death rate that increases to slow down expansion. We show that division-controlled growth minimizes the number of accumulated mutations, and death-controlled growth corresponds to the maximum number of mutants. We check that these results hold in both deterministic and stochastic settings. We further develop a general (deterministic) theory of neutral mutations and achieve an analytical understanding of the mutant accumulation in colonies of a given size in the absence of back-mutations. The long-term dynamics of mutants in the presence of back-mutations is also addressed. In particular, with equal forward- and back-mutation rates, if division-controlled and a death-controlled types are competing for space and nutrients, cells obeying division-controlled growth will dominate the population. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Mycobacteria Modify Their Cell Size Control under Sub-Optimal Carbon Sources

    PubMed Central

    Priestman, Miles; Thomas, Philipp; Robertson, Brian D.; Shahrezaei, Vahid

    2017-01-01

    The decision to divide is the most important one that any cell must make. Recent single cell studies suggest that most bacteria follow an “adder” model of cell size control, incorporating a fixed amount of cell wall material before dividing. Mycobacteria, including the causative agent of tuberculosis Mycobacterium tuberculosis, are known to divide asymmetrically resulting in heterogeneity in growth rate, doubling time, and other growth characteristics in daughter cells. The interplay between asymmetric cell division and adder size control has not been extensively investigated. Moreover, the impact of changes in the environment on growth rate and cell size control have not been addressed for mycobacteria. Here, we utilize time-lapse microscopy coupled with microfluidics to track live Mycobacterium smegmatis cells as they grow and divide over multiple generations, under a variety of growth conditions. We demonstrate that, under optimal conditions, M. smegmatis cells robustly follow the adder principle, with constant added length per generation independent of birth size, growth rate, and inherited pole age. However, the nature of the carbon source induces deviations from the adder model in a manner that is dependent on pole age. Understanding how mycobacteria maintain cell size homoeostasis may provide crucial targets for the development of drugs for the treatment of tuberculosis, which remains a leading cause of global mortality. PMID:28748182

  12. Optimal control on bladder cancer growth model with BCG immunotherapy and chemotherapy

    NASA Astrophysics Data System (ADS)

    Dewi, C.; Trisilowati

    2015-03-01

    In this paper, an optimal control model of the growth of bladder cancer with BCG (Basil Calmate Guerin) immunotherapy and chemotherapy is discussed. The purpose of this optimal control is to determine the number of BCG vaccine and drug should be given during treatment such that the growth of bladder cancer cells can be suppressed. Optimal control is obtained by applying Pontryagin principle. Furthermore, the optimal control problem is solved numerically using Forward-Backward Sweep method. Numerical simulations show the effectiveness of the vaccine and drug in controlling the growth of cancer cells. Hence, it can reduce the number of cancer cells that is not infected with BCG as well as minimize the cost of the treatment.

  13. A conserved signaling network monitors delivery of sphingolipids to the plasma membrane in budding yeast

    PubMed Central

    Clarke, Jesse; Dephoure, Noah; Horecka, Ira; Gygi, Steven; Kellogg, Douglas

    2017-01-01

    In budding yeast, cell cycle progression and ribosome biogenesis are dependent on plasma membrane growth, which ensures that events of cell growth are coordinated with each other and with the cell cycle. However, the signals that link the cell cycle and ribosome biogenesis to membrane growth are poorly understood. Here we used proteome-wide mass spectrometry to systematically discover signals associated with membrane growth. The results suggest that membrane trafficking events required for membrane growth generate sphingolipid-dependent signals. A conserved signaling network appears to play an essential role in signaling by responding to delivery of sphingolipids to the plasma membrane. In addition, sphingolipid-dependent signals control phosphorylation of protein kinase C (Pkc1), which plays an essential role in the pathways that link the cell cycle and ribosome biogenesis to membrane growth. Together these discoveries provide new clues as to how growth-­dependent signals control cell growth and the cell cycle. PMID:28794263

  14. Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures

    PubMed Central

    Cerruti, Benedetta; Puliafito, Alberto; Shewan, Annette M.; Yu, Wei; Combes, Alexander N.; Little, Melissa H.; Chianale, Federica; Primo, Luca; Serini, Guido; Mostov, Keith E.; Celani, Antonio

    2013-01-01

    The growth of a well-formed epithelial structure is governed by mechanical constraints, cellular apico-basal polarity, and spatially controlled cell division. Here we compared the predictions of a mathematical model of epithelial growth with the morphological analysis of 3D epithelial structures. In both in vitro cyst models and in developing epithelial structures in vivo, epithelial growth could take place close to or far from mechanical equilibrium, and was determined by the hierarchy of time-scales of cell division, cell–cell rearrangements, and lumen dynamics. Equilibrium properties could be inferred by the analysis of cell–cell contact topologies, and the nonequilibrium phenotype was altered by inhibiting ROCK activity. The occurrence of an aberrant multilumen phenotype was linked to fast nonequilibrium growth, even when geometric control of cell division was correctly enforced. We predicted and verified experimentally that slowing down cell division partially rescued a multilumen phenotype induced by altered polarity. These results improve our understanding of the development of epithelial organs and, ultimately, of carcinogenesis. PMID:24145168

  15. A Bilayer Construct Controls Adipose-Derived Stem Cell Differentiation into Endothelial Cells and Pericytes without Growth Factor Stimulation

    DTIC Science & Technology

    2011-01-01

    A Bilayer Construct Controls Adipose-Derived Stem Cell Differentiation into Endothelial Cells and Pericytes Without Growth Factor Stimulation...Ph.D.3 This work describes the differentiation of adipose-derived mesenchymal stem cells (ASC) in a composite hy- drogel for use as a vascularized...tissue from a single population of ASC. This work underscores the importance of the extracellular matrix in controlling stem cell phenotype. It is our

  16. Natural Killer Cells Control Tumor Growth by Sensing a Growth Factor.

    PubMed

    Barrow, Alexander D; Edeling, Melissa A; Trifonov, Vladimir; Luo, Jingqin; Goyal, Piyush; Bohl, Benjamin; Bando, Jennifer K; Kim, Albert H; Walker, John; Andahazy, Mary; Bugatti, Mattia; Melocchi, Laura; Vermi, William; Fremont, Daved H; Cox, Sarah; Cella, Marina; Schmedt, Christian; Colonna, Marco

    2018-01-25

    Many tumors produce platelet-derived growth factor (PDGF)-DD, which promotes cellular proliferation, epithelial-mesenchymal transition, stromal reaction, and angiogenesis through autocrine and paracrine PDGFRβ signaling. By screening a secretome library, we found that the human immunoreceptor NKp44, encoded by NCR2 and expressed on natural killer (NK) cells and innate lymphoid cells, recognizes PDGF-DD. PDGF-DD engagement of NKp44 triggered NK cell secretion of interferon gamma (IFN)-γ and tumor necrosis factor alpha (TNF-α) that induced tumor cell growth arrest. A distinctive transcriptional signature of PDGF-DD-induced cytokines and the downregulation of tumor cell-cycle genes correlated with NCR2 expression and greater survival in glioblastoma. NKp44 expression in mouse NK cells controlled the dissemination of tumors expressing PDGF-DD more effectively than control mice, an effect enhanced by blockade of the inhibitory receptor CD96 or CpG-oligonucleotide treatment. Thus, while cancer cell production of PDGF-DD supports tumor growth and stromal reaction, it concomitantly activates innate immune responses to tumor expansion. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Modular control of endothelial sheet migration

    PubMed Central

    Vitorino, Philip; Meyer, Tobias

    2008-01-01

    Growth factor-induced migration of endothelial cell monolayers enables embryonic development, wound healing, and angiogenesis. Although collective migration is widespread and therapeutically relevant, the underlying mechanism by which cell monolayers respond to growth factor, sense directional signals, induce motility, and coordinate individual cell movements is only partially understood. Here we used RNAi to identify 100 regulatory proteins that enhance or suppress endothelial sheet migration into cell-free space. We measured multiple live-cell migration parameters for all siRNA perturbations and found that each targeted protein primarily regulates one of four functional outputs: cell motility, directed migration, cell–cell coordination, or cell density. We demonstrate that cell motility regulators drive random, growth factor-independent motility in the presence or absence of open space. In contrast, directed migration regulators selectively transduce growth factor signals to direct cells along the monolayer boundary toward open space. Lastly, we found that regulators of cell–cell coordination are growth factor-independent and reorient randomly migrating cells inside the sheet when boundary cells begin to migrate. Thus, cells transition from random to collective migration through a modular control system, whereby growth factor signals convert boundary cells into pioneers, while cells inside the monolayer reorient and follow pioneers through growth factor-independent migration and cell–cell coordination. PMID:19056882

  18. Endocrinological control of growth.

    PubMed

    Sizonenko, P C

    1978-01-01

    Many endocrinological factors control cellular growth of different tissues (cell multiplication and cell volume) and skeletal growth. The role of neuro-transmitters and of hypothalamic releasing and inhibiting factors of growth hormone secretion will be reviewed. The importance of the somatomedins on cartilage growth will be stressed. Thyroid hormones, androgens, and oestrogens have important stimulating actions on skeletal growth and maturation. Conversely, glucocorticoids have an important inhibitory effect on growth. The precise roles of these hormone factors in the regulation of growth hormone secretion, somatomedin production and tissue growth, particularly the cartilage, remain to be completely elucidated.

  19. Constitutive Uncoupling of Pathways of Gene Expression That Control Growth and Differentiation in Myeloid Leukemia: A Model for the Origin and Progression of Malignancy

    NASA Astrophysics Data System (ADS)

    Sachs, Leo

    1980-10-01

    Chemical carcinogens and tumor promoters have pleiotropic effects. Tumor initiators can produce a variety of mutations and tumor promoters can regulate a variety of physiological molecules that control growth and differentiation. The appropriate mutation and the regulation of the appropriate molecules to induce cell growth can initiate and promote the sequence of changes required for transformation of normal cells into malignant cells. After this sequence of changes, some tumors can still be induced to revert with a high frequency from a malignant phenotype to a nonmalignant phenotype. Results obtained from analysis of regulation of growth and differentiation in normal and leukemic myeloid cells, the phenotypic reversion of malignancy by induction of normal differentiation in myeloid leukemia, and the blocks in differentiation-defective leukemic cell mutants have been used to propose a general model for the origin and progression of malignancy. The model states that malignancy originates by changing specific pathways of gene expression required for growth from inducible to constitutive in cells that can still be induced to differentiate normally by the physiological inducer of differentiation. The malignant cells, unlike the normal cells, then no longer require the physiological inducer for growth. This changes the requirements for growth and uncouples growth from differentiation. Constitutive expression of other specific pathways can uncouple other controls, which then causes blocks in differentiation and the further progression of malignancy. The existence of specific constitutive pathways of gene expression that uncouple controls in malignant cells can also explain the expression of fetal proteins, hormones, and some other specialized products of normal development in various types of tumors.

  20. Synergism between inositol polyphosphates and TOR kinase signaling in nutrient sensing, growth control, and lipid metabolism in Chlamydomonas

    USDA-ARS?s Scientific Manuscript database

    The networks that govern carbon metabolism and control intracellular carbon partitioning in photosynthetic cells are poorly understood. Target of rapamycin (TOR) kinase is a conserved growth regulator that integrates nutrient signals and modulates cell growth in eukaryotes, though the TOR signaling ...

  1. Fetal Adrenal Demedullation Lowers Circulating Norepinephrine and Attenuates Growth Restriction but not Reduction of Endocrine Cell Mass in an Ovine Model of Intrauterine Growth Restriction

    PubMed Central

    Davis, Melissa A.; Macko, Antoni R.; Steyn, Leah V.; Anderson, Miranda J.; Limesand, Sean W.

    2015-01-01

    Placental insufficiency is associated with fetal hypoglycemia, hypoxemia, and elevated plasma norepinephrine (NE) that become increasingly pronounced throughout the third trimester and contribute to intrauterine growth restriction (IUGR). This study evaluated the effect of fetal adrenal demedullation (AD) on growth and pancreatic endocrine cell mass. Placental insufficiency-induced IUGR was created by exposing pregnant ewes to elevated ambient temperatures during mid-gestation. Treatment groups consisted of control and IUGR fetuses with either surgical sham or AD at 98 days gestational age (dGA; term = 147 dGA), a time-point that precedes IUGR. Samples were collected at 134 dGA. IUGR-sham fetuses were hypoxemic, hypoglycemic, and hypoinsulinemic, and values were similar in IUGR-AD fetuses. Plasma NE concentrations were ~5-fold greater in IUGR-sham compared to control-sham, control-AD, and IUGR-AD fetuses. IUGR-sham and IUGR-AD fetuses weighed less than controls. Compared to IUGR-sham fetuses, IUGR-AD fetuses weighed more and asymmetrical organ growth was absent. Pancreatic β-cell mass and α-cell mass were lower in both IUGR-sham and IUGR-AD fetuses compared to controls, however, pancreatic endocrine cell mass relative to fetal mass was lower in IUGR-AD fetuses. These findings indicate that NE, independently of hypoxemia, hypoglycemia and hypoinsulinemia, influence growth and asymmetry of growth but not pancreatic endocrine cell mass in IUGR fetuses. PMID:25584967

  2. Insulin-like growth factor and fibroblast growth factor expression profiles in growth-restricted fetal sheep pancreas.

    PubMed

    Chen, Xiaochuan; Rozance, Paul J; Hay, William W; Limesand, Sean W

    2012-05-01

    Placental insufficiency results in intrauterine growth restriction (IUGR), impaired fetal insulin secretion and less fetal pancreatic β-cell mass, partly due to lower β-cell proliferation rates. Insulin-like growth factors (IGFs) and fibroblast growth factors (FGFs) regulate fetal β-cell proliferation and pancreas development, along with transcription factors, such as pancreatic and duodenal homeobox 1 (PDX-1). We determined expression levels for these growth factors, their receptors and IGF binding proteins in ovine fetal pancreas and isolated islets. In the IUGR pancreas, relative mRNA expression levels of IGF-I, PDX-1, FGF7 and FGFR2IIIb were 64% (P < 0.01), 76% (P < 0.05), 76% (P < 0.05) and 52% (P < 0.01) lower, respectively, compared with control fetuses. Conversely, insulin-like growth factor binding protein 2 (IGFBP-2) mRNA and protein concentrations were 2.25- and 1.2-fold greater (P < 0.05) in the IUGR pancreas compared with controls. In isolated islets from IUGR fetuses, IGF-II and IGFBP-2 mRNA concentrations were 1.5- and 3.7-fold greater (P < 0.05), and insulin mRNA was 56% less (P < 0.05) than control islets. The growth factor expression profiles for IGF and FGF signaling pathways indicate that declines in β-cell mass are due to decreased growth factor signals for both pancreatic progenitor epithelial cell and mature β-cell replication.

  3. Spatial control of translation repression and polarized growth by conserved NDR kinase Orb6 and RNA-binding protein Sts5.

    PubMed

    Nuñez, Illyce; Rodriguez Pino, Marbelys; Wiley, David J; Das, Maitreyi E; Chen, Chuan; Goshima, Tetsuya; Kume, Kazunori; Hirata, Dai; Toda, Takashi; Verde, Fulvia

    2016-07-30

    RNA-binding proteins contribute to the formation of ribonucleoprotein (RNP) granules by phase transition, but regulatory mechanisms are not fully understood. Conserved fission yeast NDR (Nuclear Dbf2-Related) kinase Orb6 governs cell morphogenesis in part by spatially controlling Cdc42 GTPase. Here we describe a novel, independent function for Orb6 kinase in negatively regulating the recruitment of RNA-binding protein Sts5 into RNPs to promote polarized cell growth. We find that Orb6 kinase inhibits Sts5 recruitment into granules, its association with processing (P) bodies, and degradation of Sts5-bound mRNAs by promoting Sts5 interaction with 14-3-3 protein Rad24. Many Sts5-bound mRNAs encode essential factors for polarized cell growth, and Orb6 kinase spatially and temporally controls the extent of Sts5 granule formation. Disruption of this control system affects cell morphology and alters the pattern of polarized cell growth, revealing a role for Orb6 kinase in the spatial control of translational repression that enables normal cell morphogenesis.

  4. The cell cycle.

    PubMed

    Singh, N; Lim, R B; Sawyer, M A

    2000-07-01

    The cell cycle and the cell cycle control system are the engines that drive life. They allow for the processes of cell renewal and the growth of organisms, under controlled conditions. The control system is essential for the monitoring of normal cell growth and replication of genetic material and to ensure that normal, functional daughter cells are produced at completion of each cell cycle. Although certain clinical applications exist which take advantage of the events of the cell cycle, our understanding of its mechanisms and how to manipulate them is infantile. The next decades will continue to see the effort of many researchers focused upon unlocking the mysteries of the cell cycle and the cell cycle control system.

  5. Human Keratinocytes That Express hTERT and Also Bypass a p16INK4a-Enforced Mechanism That Limits Life Span Become Immortal yet Retain Normal Growth and Differentiation Characteristics

    PubMed Central

    Dickson, Mark A.; Hahn, William C.; Ino, Yasushi; Ronfard, Vincent; Wu, Jenny Y.; Weinberg, Robert A.; Louis, David N.; Li, Frederick P.; Rheinwald, James G.

    2000-01-01

    Normal human cells exhibit a limited replicative life span in culture, eventually arresting growth by a process termed senescence. Progressive telomere shortening appears to trigger senescence in normal human fibroblasts and retinal pigment epithelial cells, as ectopic expression of the telomerase catalytic subunit, hTERT, immortalizes these cell types directly. Telomerase expression alone is insufficient to enable certain other cell types to evade senescence, however. Such cells, including keratinocytes and mammary epithelial cells, appear to require loss of the pRB/p16INK4a cell cycle control mechanism in addition to hTERT expression to achieve immortality. To investigate the relationships among telomerase activity, cell cycle control, senescence, and differentiation, we expressed hTERT in two epithelial cell types, keratinocytes and mesothelial cells, and determined the effect on proliferation potential and on the function of cell-type-specific growth control and differentiation systems. Ectopic hTERT expression immortalized normal mesothelial cells and a premalignant, p16INK4a-negative keratinocyte line. In contrast, when four keratinocyte strains cultured from normal tissue were transduced to express hTERT, they were incompletely rescued from senescence. After reaching the population doubling limit of their parent cell strains, hTERT+ keratinocytes entered a slow growth phase of indefinite length, from which rare, rapidly dividing immortal cells emerged. These immortal cell lines frequently had sustained deletions of the CDK2NA/INK4A locus or otherwise were deficient in p16INK4a expression. They nevertheless typically retained other keratinocyte growth controls and differentiated normally in culture and in xenografts. Thus, keratinocyte replicative potential is limited by a p16INK4a-dependent mechanism, the activation of which can occur independent of telomere length. Abrogation of this mechanism together with telomerase expression immortalizes keratinocytes without affecting other major growth control or differentiation systems. PMID:10648628

  6. Involvement of DNA methylation in the control of cell growth during heat stress in tobacco BY-2 cells.

    PubMed

    Centomani, Isabella; Sgobba, Alessandra; D'Addabbo, Pietro; Dipierro, Nunzio; Paradiso, Annalisa; De Gara, Laura; Dipierro, Silvio; Viggiano, Luigi; de Pinto, Maria Concetta

    2015-11-01

    The alteration of growth patterns, through the adjustment of cell division and expansion, is a characteristic response of plants to environmental stress. In order to study this response in more depth, the effect of heat stress on growth was investigated in tobacco BY-2 cells. The results indicate that heat stress inhibited cell division, by slowing cell cycle progression. Cells were stopped in the pre-mitotic phases, as shown by the increased expression of CycD3-1 and by the decrease in the NtCycA13, NtCyc29 and CDKB1-1 transcripts. The decrease in cell length and the reduced expression of Nt-EXPA5 indicated that cell expansion was also inhibited. Since DNA methylation plays a key role in controlling gene expression, the possibility that the altered expression of genes involved in the control of cell growth, observed during heat stress, could be due to changes in the methylation state of their promoters was investigated. The results show that the altered expression of CycD3-1 and Nt-EXPA5 was consistent with changes in the methylation state of the upstream region of these genes. These results suggest that DNA methylation, controlling the expression of genes involved in plant development, contributes to growth alteration occurring in response to environmental changes.

  7. Tumorigenicity of MCF-7 human breast cancer cells lacking the p38α mitogen-activated protein kinase

    PubMed Central

    Mendoza, Rhone A; Moody, Emily E; Enriquez, Marlene I; Mejia, Sylvia M; Thordarson, Gudmundur

    2011-01-01

    We have generated cell lines with significantly reduced expression of the p38 mitogen-activated protein kinase (p38 MAPK), Min-p38 MAPK cells, and used these cells to investigate its role in tumorigenesis of breast cancer cells. MCF-7 cells were stably transfected with a plasmid producing small interfering RNA that inhibited the expression of p38 MAPK. Control cells were stably transfected with the same plasmid producing non-interfering RNA. The reduction in the p38 MAPK activity caused a significant increase in the expressions of the estrogen receptor-α (ERα) and the progesterone receptor, but eliminated the expression of the ERβ. Min-p38 MAPK cells showed an enhanced overall growth response to 17β-estradiol (E2), whereas growth hormone plus epidermal growth factor were largely ineffective growth stimulators in these cells compared to controls. Although the long-term net growth rate of the Min-p38 MAPK cells was increased in response to E2, their proliferation rate was not different from controls in short-term cultures. However, the Min-p38 MAPK cells did show a significant decreased rate of apoptosis after E2 treatment and a reduction in the basal phosphorylation of p53 tumor suppressor protein compared to controls. When the Min-p38 MAPK cells were xenografted into E2-treated athymic nude mice, their tumorigenicity was enhanced compared to control cells. Conclusions: increased tumorigenicity of Min-p38 MAPK cells was caused mainly by a decrease in apoptosis rate indicating that the lack of the p38 MAPK caused an imbalance to increase the ERα:ERβ ratio and a reduction in the activity of the p53 tumor suppressor protein. PMID:20974639

  8. Concerted control of Escherichia coli cell division

    PubMed Central

    Osella, Matteo; Nugent, Eileen; Cosentino Lagomarsino, Marco

    2014-01-01

    The coordination of cell growth and division is a long-standing problem in biology. Focusing on Escherichia coli in steady growth, we quantify cell division control using a stochastic model, by inferring the division rate as a function of the observable parameters from large empirical datasets of dividing cells. We find that (i) cells have mechanisms to control their size, (ii) size control is effected by changes in the doubling time, rather than in the single-cell elongation rate, (iii) the division rate increases steeply with cell size for small cells, and saturates for larger cells. Importantly, (iv) the current size is not the only variable controlling cell division, but the time spent in the cell cycle appears to play a role, and (v) common tests of cell size control may fail when such concerted control is in place. Our analysis illustrates the mechanisms of cell division control in E. coli. The phenomenological framework presented is sufficiently general to be widely applicable and opens the way for rigorous tests of molecular cell-cycle models. PMID:24550446

  9. Cell division and endoreduplication: doubtful engines of vegetative growth.

    PubMed

    John, Peter C L; Qi, Ruhu

    2008-03-01

    Currently, there is little information to indicate whether plant cell division and development is the collective effect of individual cell programming (cell-based) or is determined by organ-wide growth (organismal). Modulation of cell division does not confirm cell autonomous programming of cell expansion; instead, final cell size seems to be determined by the balance between cells formed and subsequent tissue growth. Control of growth in regions of the plant therefore has great importance in determining cell, organ and plant development. Here, we question the view that formation of new cells and their programmed expansion is the driving force of growth. We believe there is evidence that division does not drive, but requires, cell growth and a similar requirement for growth is detected in the modified cycle termed endoreduplication.

  10. A link between mitotic entry and membrane growth suggests a novel model for cell size control

    PubMed Central

    Anastasia, Steph D.; Nguyen, Duy Linh; Thai, Vu; Meloy, Melissa; MacDonough, Tracy

    2012-01-01

    Addition of new membrane to the cell surface by membrane trafficking is necessary for cell growth. In this paper, we report that blocking membrane traffic causes a mitotic checkpoint arrest via Wee1-dependent inhibitory phosphorylation of Cdk1. Checkpoint signals are relayed by the Rho1 GTPase, protein kinase C (Pkc1), and a specific form of protein phosphatase 2A (PP2ACdc55). Signaling via this pathway is dependent on membrane traffic and appears to increase gradually during polar bud growth. We hypothesize that delivery of vesicles to the site of bud growth generates a signal that is proportional to the extent of polarized membrane growth and that the strength of the signal is read by downstream components to determine when sufficient growth has occurred for initiation of mitosis. Growth-dependent signaling could explain how membrane growth is integrated with cell cycle progression. It could also control both cell size and morphogenesis, thereby reconciling divergent models for mitotic checkpoint function. PMID:22451696

  11. A link between mitotic entry and membrane growth suggests a novel model for cell size control.

    PubMed

    Anastasia, Steph D; Nguyen, Duy Linh; Thai, Vu; Meloy, Melissa; MacDonough, Tracy; Kellogg, Douglas R

    2012-04-02

    Addition of new membrane to the cell surface by membrane trafficking is necessary for cell growth. In this paper, we report that blocking membrane traffic causes a mitotic checkpoint arrest via Wee1-dependent inhibitory phosphorylation of Cdk1. Checkpoint signals are relayed by the Rho1 GTPase, protein kinase C (Pkc1), and a specific form of protein phosphatase 2A (PP2A(Cdc55)). Signaling via this pathway is dependent on membrane traffic and appears to increase gradually during polar bud growth. We hypothesize that delivery of vesicles to the site of bud growth generates a signal that is proportional to the extent of polarized membrane growth and that the strength of the signal is read by downstream components to determine when sufficient growth has occurred for initiation of mitosis. Growth-dependent signaling could explain how membrane growth is integrated with cell cycle progression. It could also control both cell size and morphogenesis, thereby reconciling divergent models for mitotic checkpoint function.

  12. Interactions between insulin-like growth factor-I, estrogen receptor-α (ERα) and ERβ in regulating growth/apoptosis of MCF-7 human breast cancer cells

    PubMed Central

    Mendoza, Rhone A.; Enriquez, Marlene I; Mejia, Sylvia M; Moody, Emily E; Thordarson, Gudmundur

    2011-01-01

    Understanding of the interactions between estradiol (E2) and insulin-like growth factor-I (IGF-I) is still incomplete. Cell lines derived from the MCF-7 breast cancer cells were generated with suppressed expression of the IGF-I receptor (IGF-IR), termed IGF-IR.low cells, by stable transfection using small interfering RNA (siRNA) expression vector. Vector for control cells carried sequence generating non-interfering RNA. Concomitant with reduction in the IGF-IR levels, the IGF-IR.low cells also showed a reduction in estrogen receptor α (ERα) and progesterone receptor expressions and an elevation in the expression of ERβ. The number of the IGF-IR.low cells was reduced in response to IGF-I and human growth hormone plus epidermal growth factor, but E2 did not cause increase in the number of the IGF-IR.low cells compared to controls. Proliferation rate of IGF-IR.low cells was only reduced in response to E2 compared to controls, whereas their basal and hormone stimulated apoptosis rate was increased. Phosphorylation of p38 mitogen activated protein kinase (p38 MAPK) was increased in the IGF-IR.low cells after treatment with E2, without affecting control cells. Further, phosphorylation of the tumor suppressor protein p53 was elevated in the IGF-IR.low cells compared to the controls. Summary, suppressing the IGF-IR expression decreased the level of ERα but increased the level of ERβ. Overall growth rate of the IGF-IR.low cells was reduced mostly through an increase in apoptosis without affecting proliferation substantially. We hypothesize that a decreased ERα:ERβ ratio triggered a rapid phosphorylation of p38 MAPK which in turn phosphorylated the p53 tumor suppressor and accelerated apoptosis rate. PMID:20974640

  13. Receptor control in mesenchymal stem cell engineering

    NASA Astrophysics Data System (ADS)

    Dalby, Matthew J.; García, Andrés J.; Salmeron-Sanchez, Manuel

    2018-03-01

    Materials science offers a powerful tool to control mesenchymal stem cell (MSC) growth and differentiation into functional phenotypes. A complex interplay between the extracellular matrix and growth factors guides MSC phenotypes in vivo. In this Review, we discuss materials-based bioengineering approaches to direct MSC fate in vitro and in vivo, mimicking cell-matrix-growth factor crosstalk. We first scrutinize MSC-matrix interactions and how the properties of a material can be tailored to support MSC growth and differentiation in vitro, with an emphasis on MSC self-renewal mechanisms. We then highlight important growth factor signalling pathways and investigate various materials-based strategies for growth factor presentation and delivery. Integrin-growth factor crosstalk in the context of MSC engineering is introduced, and bioinspired material designs with the potential to control the MSC niche phenotype are considered. Finally, we summarize important milestones on the road to MSC engineering for regenerative medicine.

  14. S-Fms signalobody enhances myeloid cell growth and migration.

    PubMed

    Kawahara, Masahiro; Hitomi, Azusa; Nagamune, Teruyuki

    2014-07-01

    Since receptor tyrosine kinases (RTKs) control various cell fates in many types of cells, mimicry of RTK functions is promising for artificial control of cell fates. We have previously developed single-chain Fv (scFv)/receptor chimeras named signalobodies that can mimic receptor signaling in response to a specific antigen. While the RTK-based signalobodies enabled us to control cell growth and migration, further extension of applicability in another cell type would underlie the impact of the RTK-based signalobodies. In this study, we applied the scFv-c-Fms (S-Fms) signalobody in a murine myeloid progenitor cell line, FDC-P1. S-Fms transduced a fluorescein-conjugated BSA (BSA-FL)-dependent growth signal and activated downstream signaling molecules including MEK, ERK, Akt, and STAT3, which are major constituents of Ras/MAPK, PI3K/Akt, and JAK/STAT signaling pathways. In addition, S-Fms transduced a migration signal as demonstrated by the transwell-based migration assay. Direct real-time observation of the cells further confirmed that FDC/S-Fms cells underwent directional cell migration toward a positive gradient of BSA-FL. These results demonstrated the utility of the S-Fms signalobody for controlling growth and migration of myeloid cells. Further extension of our approach includes economical large-scale production of practically relevant blood cells as well as artificial control of cell migration for tissue regeneration and immune response. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. CLIC4 Moves Into Nucleus to Stabilize Anti-Growth Signal | Center for Cancer Research

    Cancer.gov

    In cancer, the delicate balance of signaling pathways that control cell growth and function is disrupted. One signaling pathway commonly altered in cancer is the TGF-beta pathway. TGF-beta significantly inhibits growth of normal cells, particularly epithelial cells. Many cancer cells have developed ways to bypass one or more steps of this pathway in order to achieve uncontrolled growth.

  16. Mathematical modeling of solid cancer growth with angiogenesis

    PubMed Central

    2012-01-01

    Background Cancer arises when within a single cell multiple malfunctions of control systems occur, which are, broadly, the system that promote cell growth and the system that protect against erratic growth. Additional systems within the cell must be corrupted so that a cancer cell, to form a mass of any real size, produces substances that promote the growth of new blood vessels. Multiple mutations are required before a normal cell can become a cancer cell by corruption of multiple growth-promoting systems. Methods We develop a simple mathematical model to describe the solid cancer growth dynamics inducing angiogenesis in the absence of cancer controlling mechanisms. Results The initial conditions supplied to the dynamical system consist of a perturbation in form of pulse: The origin of cancer cells from normal cells of an organ of human body. Thresholds of interacting parameters were obtained from the steady states analysis. The existence of two equilibrium points determine the strong dependency of dynamical trajectories on the initial conditions. The thresholds can be used to control cancer. Conclusions Cancer can be settled in an organ if the following combination matches: better fitness of cancer cells, decrease in the efficiency of the repairing systems, increase in the capacity of sprouting from existing vascularization, and higher capacity of mounting up new vascularization. However, we show that cancer is rarely induced in organs (or tissues) displaying an efficient (numerically and functionally) reparative or regenerative mechanism. PMID:22300422

  17. The Control of Growth Symmetry Breaking in the Arabidopsis Hypocotyl.

    PubMed

    Peaucelle, Alexis; Wightman, Raymond; Höfte, Herman

    2015-06-29

    Complex shapes in biology depend on the ability of cells to shift from isotropic to anisotropic growth during development. In plants, this growth symmetry breaking reflects changes in the extensibility of the cell walls. The textbook view is that the direction of turgor-driven cell expansion depends on the cortical microtubule (CMT)-mediated orientation of cellulose microfibrils. Here, we show that this view is incomplete at best. We used atomic force microscopy (AFM) to study changes in cell-wall mechanics associated with growth symmetry breaking within the hypocotyl epidermis. We show that, first, growth symmetry breaking is preceded by an asymmetric loosening of longitudinal, as compared to transverse, anticlinal walls, in the absence of a change in CMT orientation. Second, this wall loosening is triggered by the selective de-methylesterification of cell-wall pectin in longitudinal walls, and, third, the resultant mechanical asymmetry is required for the growth symmetry breaking. Indeed, preventing or promoting pectin de-methylesterification, respectively, increased or decreased the stiffness of all the cell walls, but in both cases reduced the growth anisotropy. Finally, we show that the subsequent CMT reorientation contributes to the consolidation of the growth axis but is not required for the growth symmetry breaking. We conclude that growth symmetry breaking is controlled at a cellular scale by bipolar pectin de-methylesterification, rather than by the cellulose-dependent mechanical anisotropy of the cell walls themselves. Such a cell asymmetry-driven mechanism is comparable to that underlying tip growth in plants but also anisotropic cell growth in animal cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Sonic hedgehog controls growth of external genitalia by regulating cell cycle kinetics

    PubMed Central

    Seifert, Ashley W.; Zheng, Zhengui; Ormerod, Brandi K.; Cohn, Martin J.

    2010-01-01

    During embryonic development, cells are instructed which position to occupy, they interpret these cues as differentiation programmes, and expand these patterns by growth. Sonic hedgehog (Shh) specifies positional identity in many organs; however, its role in growth is not well understood. In this study, we show that inactivation of Shh in external genitalia extends the cell cycle from 8.5 to 14.4 h, and genital growth is reduced by ∼75%. Transient Shh signalling establishes pattern in the genital tubercle; however, transcriptional levels of G1 cell cycle regulators are reduced. Consequently, G1 length is extended, leading to fewer progenitor cells entering S-phase. Cell cycle genes responded similarly to Shh inactivation in genitalia and limbs, suggesting that Shh may regulate growth by similar mechanisms in different organ systems. The finding that Shh regulates cell number by controlling the length of specific cell cycle phases identifies a novel mechanism by which Shh elaborates pattern during appendage development. PMID:20975695

  19. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN-depleted head and neck cancer tumor cells.

    PubMed

    Liu, Zhiyong; Hartman, Yolanda E; Warram, Jason M; Knowles, Joseph A; Sweeny, Larissa; Zhou, Tong; Rosenthal, Eben L

    2011-08-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma-mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer, there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here, we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were cocultured with fibroblasts or inoculated with fibroblasts into severe combined immunodeficient mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Coculture experiments showed fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN-silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN-silenced cells compared with control vector-transfected cells, whereas inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast coculture, suggesting the importance of FGFR2 signaling in fibroblast-mediated tumor growth. Analysis of xenografted tumors revealed that EMMPRIN-silenced tumors had a larger stromal compartment compared with control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast-independent tumor growth.

  20. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN depleted head and neck cancer tumor cells

    PubMed Central

    Liu, Zhiyong; Hartman, Yolanda E.; Warram, Jason M.; Knowles, Joseph A.; Sweeny, Larrisa; Zhou, Tong; Rosenthal, Eben L.

    2011-01-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were co-cultured with fibroblasts or inoculated with fibroblasts into SCID mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Co-culture experiments demonstrated fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN silenced cells compared to control vector transfected cells, while inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast co-culture, suggesting the importance of FGFR2 signaling in fibroblast mediated tumor growth. Analysis of xenografted tumors revealed EMMPRIN silenced tumors had a larger stromal compartment compared to control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast independent tumor growth. PMID:21665938

  1. Experimental treatment of neoplasic diseases and tumors with iono magnetic therapy

    NASA Astrophysics Data System (ADS)

    Rizsanyi, Elek Karsay; Quiróz, David Lavan; Huamaccto, Carlos Levano; Marroquín, Erwin Guerra

    2001-10-01

    The Iono Magnetic Therapy is a alternative control method for cell growth population in pancreas and cerebral cancer. The magnetic field applied to cells with cancer decrease the growth of this cells or their multiplication. We observed a potential difference opposite to cell potential and propose that the ionic interchange is very slow tampering with cell growth in cancer.

  2. Calcium pectate chemistry causes growth to be stored in Chara corallina: a test of the pectate cycle.

    PubMed

    Proseus, Timothy E; Boyer, John S

    2008-08-01

    Calcium pectate chemistry was reported to control the growth rate of cells of Chara corallina, and required turgor pressure (P) to do so. Accordingly, this chemistry should account for other aspects of growth, particularly the ability of plants to compensate for brief exposure to low P, that is, to 'store' growth. Live Chara cells or isolated walls were attached to a pressure probe, and P was varied. Low P caused growth to be inhibited in live cells, but when P returned to normal (0.5 MPa), a flush of growth completely compensated for that lost at low P for as long as 23-53 min. This growth storage was absent in isolated walls, mature cells and live cells exposed to cold, indicating that the cytoplasm delivered a metabolically derived growth factor needing P for its action. Because the cytoplasm delivered pectate needing P for its action, pectate was supplied to isolated walls at low P as though the cytoplasm had done so. Growth was stored while otherwise none occurred. It was concluded that a P-dependent cycle of calcium pectate chemistry not only controlled growth rate and new wall deposition, but also accounted for stored growth.

  3. N-Cadherin and Fibroblast Growth Factor Receptors crosstalk in the control of developmental and cancer cell migrations.

    PubMed

    Nguyen, Thao; Mège, René Marc

    2016-11-01

    Cell migrations are diverse. They constitutemajor morphogenetic driving forces during embryogenesis, but they contribute also to the loss of tissue homeostasis and cancer growth. Capabilities of cells to migrate as single cells or as collectives are controlled by internal and external signalling, leading to the reorganisation of their cytoskeleton as well as by the rebalancing of cell-matrix and cell-cell adhesions. Among the genes altered in numerous cancers, cadherins and growth factor receptors are of particular interest for cell migration regulation. In particular, cadherins such as N-cadherin and a class of growth factor receptors, namely FGFRs cooperate to regulate embryonic and cancer cell behaviours. In this review, we discuss on reciprocal crosstalk between N-cadherin and FGFRs during cell migration. Finally, we aim at clarifying the synergy between N-cadherin and FGFR signalling that ensure cellular reorganization during cell movements, mainly during cancer cell migration and metastasis but also during developmental processes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Cyclic adenosine monophosphate modulates cell morphology and behavior of a cultured renal epithelial.

    PubMed

    Amsler, K

    1990-07-01

    The role of cyclic adenosine monophosphate (cAMP) dependent protein kinase (PKA) in modulating functions of differentiated renal cells is well established. Its importance in controlling their growth and differentiation is less clear. We have used somatic cell genetic techniques to probe the role of PKA in controlling morphology and behavior of a renal epithelial cell line, LLC-PK1, which acquires many properties characteristic of the renal proximal tubular cell. Mutants of this line altered in PKA activity have been isolated and their behavior compared to that of the parent line. The results indicate that PKA is involved, either directly or indirectly, in maintenance of cell morphology, cell-cell and cell-substratum interactions, density-dependent growth regulation, and expression of one function characteristic of the renal proximal tubular cell, Na-hexose symport. The relevance of these results to the role of PKA in controlling growth and differentiation of renal epithelial cells in vivo is discussed.

  5. A conserved signaling network monitors delivery of sphingolipids to the plasma membrane in budding yeast.

    PubMed

    Clarke, Jesse; Dephoure, Noah; Horecka, Ira; Gygi, Steven; Kellogg, Douglas

    2017-10-01

    In budding yeast, cell cycle progression and ribosome biogenesis are dependent on plasma membrane growth, which ensures that events of cell growth are coordinated with each other and with the cell cycle. However, the signals that link the cell cycle and ribosome biogenesis to membrane growth are poorly understood. Here we used proteome-wide mass spectrometry to systematically discover signals associated with membrane growth. The results suggest that membrane trafficking events required for membrane growth generate sphingolipid-dependent signals. A conserved signaling network appears to play an essential role in signaling by responding to delivery of sphingolipids to the plasma membrane. In addition, sphingolipid-dependent signals control phosphorylation of protein kinase C (Pkc1), which plays an essential role in the pathways that link the cell cycle and ribosome biogenesis to membrane growth. Together these discoveries provide new clues as to how growth--dependent signals control cell growth and the cell cycle. © 2017 Clarke et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. High density growth of T7 expression strains with auto-induction option

    DOEpatents

    Studier, F. William

    2010-07-20

    A bacterial growth medium for promoting auto-induction of transcription of cloned DNA in cultures of bacterial cells grown batchwise is disclosed. The transcription is under the control of a lac repressor. Also disclosed is a bacterial growth medium for improving the production of a selenomethionine-containing protein or polypeptide in a bacterial cell, the protein or polypeptide being produced by recombinant DNA techniques from a lac or T7lac promoter, the bacterial cell encoding a vitamin B12-dependent homocysteine methylase. Finally, disclosed is a bacterial growth medium for suppressing auto-induction of expression in cultures of bacterial cells grown batchwise, said transcription being under the control of lac repressor.

  7. A tip-localized RhoGAP controls cell polarity by globally inhibiting Rho GTPase at the cell apex.

    PubMed

    Hwang, Jae-Ung; Vernoud, Vanessa; Szumlanski, Amy; Nielsen, Erik; Yang, Zhenbiao

    2008-12-23

    Highly elongated eukaryotic cells (e.g., neuronal axons, fungal hyphae, and pollen tubes) are generated through continuous apically restricted growth (tip growth), which universally requires tip-localized Rho GTPases. We used the oscillating pollen tube as a model system to determine the function and regulation of Rho GTPases in tip growth. Our previous work showed that the spatiotemporal dynamics of the apical cap of the activated Rho-like GTPase from Plant 1 (ROP1) are critical for tip growth in pollen tubes. However, the underlying mechanism for the generation and maintenance of this dynamic apical cap is poorly understood. A screen for mutations that enhance ROP1-overexpression-induced depolarization of pollen-tube growth identified REN1 (ROP1 enhancer 1) in Arabidopsis, whose null mutations turn elongated pollen tubes into bulbous cells. REN1 encodes a novel Rho GTPase-activating protein (RhoGAP) required for restricting the ROP1 activity to the pollen-tube tip. REN1 was localized to exocytic vesicles accumulated in the pollen-tube apex, as well as to the apical plasma membrane at the site of ROP1 activation. The apical localization of REN1 and its function in controlling growth polarity was compromised by disruption of ROP1-dependent F-actin and vesicular trafficking, which indicates that REN1 targeting and function is regulated by ROP1 downstream signaling. Our findings suggest that the REN1 RhoGAP controls a negative-feedback-based global inhibition of ROP1. This function provides a critical self-organizing mechanism, by which ROP signaling is spatially limited to the growth site and temporally oscillates during continuous tip growth. Similar spatiotemporal control of Rho GTPase signaling may also play an important role in cell-polarity control in other systems, including tip growth in fungi and cell movement in animals.

  8. How do fission yeast cells grow and connect growth to the mitotic cycle?

    PubMed

    Sveiczer, Ákos; Horváth, Anna

    2017-05-01

    To maintain size homeostasis in a unicellular culture, cells should coordinate growth to the division cycle. This is achieved via size control mechanisms (also known as size checkpoints), i.e. some events during the mitotic cycle supervene only if the cell has reached a critical size. Rod-shaped cells like those of fission yeast are ideal model organisms to study these checkpoints via time-lapse microphotography. By applying this method, once we can analyse the growth process between two consecutive divisions at a single (or even at an 'average') cellular level, moreover, we can also position the size checkpoint(s) at the population level. Finally, any of these controls can be abolished in appropriate cell cycle mutants, either in steady-state or in induction synchronised cultures. In the latter case, we produce abnormally oversized cells, and microscopic experiments with them clearly show the existence of a critical size above which the size checkpoint ceases (becomes cryptic). In this review, we delineate the development of our knowledge both on the growth mode of fission yeast and on the operating size control(s) during its mitotic cycle. We finish these historical stories with our recent findings, arguing that three different size checkpoints exist in the fission yeast cell cycle, namely in late G1, in mid G2 and in late G2, which has been concluded by analysing these controls in several cell cycle mutants.

  9. Quantifying the entropic cost of cellular growth control

    NASA Astrophysics Data System (ADS)

    De Martino, Daniele; Capuani, Fabrizio; De Martino, Andrea

    2017-07-01

    Viewing the ways a living cell can organize its metabolism as the phase space of a physical system, regulation can be seen as the ability to reduce the entropy of that space by selecting specific cellular configurations that are, in some sense, optimal. Here we quantify the amount of regulation required to control a cell's growth rate by a maximum-entropy approach to the space of underlying metabolic phenotypes, where a configuration corresponds to a metabolic flux pattern as described by genome-scale models. We link the mean growth rate achieved by a population of cells to the minimal amount of metabolic regulation needed to achieve it through a phase diagram that highlights how growth suppression can be as costly (in regulatory terms) as growth enhancement. Moreover, we provide an interpretation of the inverse temperature β controlling maximum-entropy distributions based on the underlying growth dynamics. Specifically, we show that the asymptotic value of β for a cell population can be expected to depend on (i) the carrying capacity of the environment, (ii) the initial size of the colony, and (iii) the probability distribution from which the inoculum was sampled. Results obtained for E. coli and human cells are found to be remarkably consistent with empirical evidence.

  10. CYCD3 D-type cyclins regulate cambial cell proliferation and secondary growth in Arabidopsis

    PubMed Central

    Collins, Carl; Maruthi, N. M.; Jahn, Courtney E.

    2015-01-01

    A major proportion of plant biomass is derived from the activity of the cambium, a lateral meristem responsible for vascular tissue formation and radial organ enlargement in a process termed secondary growth. In contrast to our relatively good understanding of the regulation of primary meristems, remarkably little is known concerning the mechanisms controlling secondary growth, particularly how cambial cell divisions are regulated and integrated with vascular differentiation. A genetic loss-of-function approach was used here to reveal a rate-limiting role for the Arabidopsis CYCLIN D3 (CYCD3) subgroup of cell-cycle genes in the control of cambial cell proliferation and secondary growth, providing conclusive evidence of a direct link between the cell cycle and vascular development. It is shown that all three CYCD3 genes are specifically expressed in the cambium throughout vascular development. Analysis of a triple loss-of-function CYCD3 mutant revealed a requirement for CYCD3 in promoting the cambial cell cycle since mutant stems and hypocotyls showed a marked reduction in diameter linked to reduced mitotic activity in the cambium. Conversely, loss of CYCD3 provoked an increase in xylem cell size and the expression of differentiation markers, showing that CYCD3 is required to restrain the differentiation of xylem precursor cells. Together, our data show that tight control of cambial cell division through developmental- and cell type-specific regulation of CYCD3 is required for normal vascular development, constituting part of a novel mechanism controlling organ growth in higher plants. PMID:26022252

  11. Mitochondrial respiratory control is lost during growth factor deprivation.

    PubMed

    Gottlieb, Eyal; Armour, Sean M; Thompson, Craig B

    2002-10-01

    The ability of cells to maintain a bioenergetically favorable ATP/ADP ratio confers a tight balance between cellular events that consume ATP and the rate of ATP production. However, after growth factor withdrawal, the cellular ATP/ADP ratio declines. To investigate these changes, mitochondria from growth factor-deprived cells isolated before the onset of apoptosis were characterized in vitro. Mitochondria from growth factor-deprived cells have lost their ability to undergo matrix condensation in response to ADP, which is accompanied by a failure to perform ADP-coupled respiration. At the time of analysis, mitochondria from growth factor-deprived cells were not depleted of cytochrome c and cytochrome c-dependent respiration was unaffected, demonstrating that the inhibition of the respiratory rate is not due to loss of cytochrome c. Agents that disrupt the mitochondrial outer membrane, such as digitonin, or maintain outer membrane exchange of adenine nucleotide, such as Bcl-x(L), restored ADP-dependent control of mitochondrial respiration. Together, these data suggest that the regulation of mitochondrial outer membrane permeability contributes to respiratory control.

  12. PFKFB3 Control of Cancer Growth by Responding to Circadian Clock Outputs

    PubMed Central

    Chen, Lili; Zhao, Jiajia; Tang, Qingming; Li, Honggui; Zhang, Chenguang; Yu, Ran; Zhao, Yan; Huo, Yuqing; Wu, Chaodong

    2016-01-01

    Circadian clock dysregulation promotes cancer growth. Here we show that PFKFB3, the gene that encodes for inducible 6-phosphofructo-2-kinase as an essential supporting enzyme of cancer cell survival through stimulating glycolysis, mediates circadian control of carcinogenesis. In patients with tongue cancers, PFKFB3 expression in both cancers and its surrounding tissues was increased significantly compared with that in the control, and was accompanied with dys-regulated expression of core circadian genes. In the in vitro systems, SCC9 tongue cancer cells displayed rhythmic expression of PFKFB3 and CLOCK that was distinct from control KC cells. Furthermore, PFKFB3 expression in SCC9 cells was stimulated by CLOCK through binding and enhancing the transcription activity of PFKFB3 promoter. Inhibition of PFKFB3 at zeitgeber time 7 (ZT7), but not at ZT19 caused significant decreases in lactate production and in cell proliferation. Consistently, PFKFB3 inhibition in mice at circadian time (CT) 7, but not CT19 significantly reduced the growth of implanted neoplasms. Taken together, these findings demonstrate PFKFB3 as a mediator of circadian control of cancer growth, thereby highlighting the importance of time-based PFKFB3 inhibition in cancer treatment. PMID:27079271

  13. Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis

    NASA Technical Reports Server (NTRS)

    Ingber, D. E.; Prusty, D.; Sun, Z.; Betensky, H.; Wang, N.

    1995-01-01

    Capillary endothelial cells can be switched between growth and differentiation by altering cell-extracellular matrix interactions and thereby, modulating cell shape. Studies were carried out to determine when cell shape exerts its growth-regulatory influence during cell cycle progression and to explore the role of cytoskeletal structure and mechanics in this control mechanism. When G0-synchronized cells were cultured in basic fibroblast growth factor (FGF)-containing defined medium on dishes coated with increasing densities of fibronectin or a synthetic integrin ligand (RGD-containing peptide), cell spreading, nuclear extension, and DNA synthesis all increased in parallel. To determine the minimum time cells must be adherent and spread on extracellular matrix (ECM) to gain entry into S phase, cells were removed with trypsin or induced to retract using cytochalasin D at different times after plating. Both approaches revealed that cells must remain extended for approximately 12-15 h and hence, most of G1, in order to enter S phase. After this restriction point was passed, normally 'anchorage-dependent' endothelial cells turned on DNA synthesis even when round and in suspension. The importance of actin-containing microfilaments in shape-dependent growth control was confirmed by culturing cells in the presence of cytochalasin D (25-1000 ng ml-1): dose-dependent inhibition of cell spreading, nuclear extension, and DNA synthesis resulted. In contrast, induction of microtubule disassembly using nocodazole had little effect on cell or nuclear spreading and only partially inhibited DNA synthesis. Interestingly, combination of nocodazole with a suboptimal dose of cytochalasin D (100 ng ml-1) resulted in potent inhibition of both spreading and growth, suggesting that microtubules are redundant structural elements which can provide critical load-bearing functions when microfilaments are partially compromised. Similar synergism between nocodazole and cytochalasin D was observed when cytoskeletal stiffness was measured directly in living cells using magnetic twisting cytometry. These results emphasize the importance of matrix-dependent changes in cell and nuclear shape as well as higher order structural interactions between different cytoskeletal filament systems for control of capillary cell growth during angiogenesis.

  14. The CXCR5 chemokine receptor is expressed by carcinoma cells and promotes growth of colon carcinoma in the liver.

    PubMed

    Meijer, Joost; Zeelenberg, Ingrid S; Sipos, Bence; Roos, Ed

    2006-10-01

    The chemokine receptor CXCR5 is expressed by B cells and certain T cells and controls their migration into and within lymph nodes. Its ligand BCA-1/CXCL13 is present in lymph nodes and spleen and also in the liver. Surprisingly, we detected CXCR5 in several mouse and human carcinoma cell lines. CXCR5 was particularly prominent in pancreatic carcinoma cell lines and was also detected by immunohistochemistry in 7 of 18 human pancreatic carcinoma tissues. Expression in CT26 colon carcinoma was low in vitro, up-regulated in vivo, and rapidly lost when cells were explanted in vitro. CXCL13 strongly promoted proliferation of CXCR5-transfected CT26 cells in vitro. In the liver, after intrasplenic injection, these CXCR5 transfectants initially grew faster than controls, but the growth rate of control tumors accelerated later to become similar to the transfectants, likely due to the up-regulation of CXCR5. Inhibition of CXCR5 function, by trapping CXCR5 in the endoplasmic reticulum using a CXCL13-KDEL "intrakine," had no effect on initial growth of liver foci but later caused a prolonged growth arrest. In contrast, s.c. and lung tumors of CXCR5- and intrakine-transfected cells grew at similar rates as controls. We conclude that expression of CXCR5 on tumor cells promotes the growth of tumor cells in the liver and, at least for CT26 cells, seems to be required for outgrowth to large liver tumors. Given the limited expression on normal cells, CXCR5 may constitute an attractive target for therapy, particularly for pancreatic carcinoma.

  15. Extracellular matrix as a solid-state regulator in angiogenesis: identification of new targets for anti-cancer therapy

    NASA Technical Reports Server (NTRS)

    Ingber, D. E.

    1992-01-01

    Angiogenesis, the growth of blood capillaries, is regulated by soluble growth factors and insoluble extracellular matrix (ECM) molecules. Soluble angiogenic mitogens act over large distances to initiate capillary growth whereas changes in ECM govern whether individual cells will grow, differentiate, or involute in response to these stimuli in the local tissue microenvironment. Analysis of this local control mechanism has revealed that ECM molecules switch capillary endothelial cells between differentiation and growth by both binding specific transmembrane integrin receptors and physically resisting cell-generated mechanical loads that are applied to these receptors. Control of capillary endothelial cell form and function therefore may be exerted by altering the mechanical properties of the ECM as well as its chemical composition. Understanding of this mechanochemical control mechanism has led to the development of new angiogenesis inhibitors that may be useful for the treatment of cancer.

  16. Tumorigenicity of MCF-7 human breast cancer cells lacking the p38α mitogen-activated protein kinase.

    PubMed

    Mendoza, Rhone A; Moody, Emily E; Enriquez, Marlene I; Mejia, Sylvia M; Thordarson, Gudmundur

    2011-01-01

    We have generated cell lines with significantly reduced expression of the p38 mitogen-activated protein kinase (p38 MAPK), Min-p38 MAPK cells, and used these cells to investigate p38 MAPK's role in tumorigenesis of breast cancer cells. MCF-7 cells were stably transfected with a plasmid producing small interfering RNA that inhibited the expression of p38 MAPK. Control cells were stably transfected with the same plasmid producing non-interfering RNA. The reduction in the p38 MAPK activity caused a significant increase in the expressions of estrogen receptor-α (ERα) and the progesterone receptor, but eliminated the expression of ERβ. Min-p38 MAPK cells showed an enhanced overall growth response to 17β-estradiol (E₂), whereas GH plus epidermal growth factor were largely ineffective growth stimulators in these cells compared to controls. Although the long-term net growth rate of the Min-p38 MAPK cells was increased in response to E₂, their proliferation rate was lower compared to controls in short-term cultures. However, the Min-p38 MAPK cells did show a significant decreased rate of apoptosis after E₂ treatment and a reduction in the basal phosphorylation of p53 tumor suppressor protein compared to controls. When the Min-p38 MAPK cells were xenografted into E₂-treated athymic nude mice, their tumorigenicity was enhanced compared to control cells. Increased tumorigenicity of Min-p38 MAPK cells was caused mainly by a decrease in the apoptosis rate indicating that the lack of the p38 MAPK caused an imbalance to increase the ERα:ERβ ratio and a reduction in the activity of the p53 tumor suppressor protein.

  17. PP2ARts1 is a master regulator of pathways that control cell size

    PubMed Central

    Zapata, Jessica; Dephoure, Noah; MacDonough, Tracy; Yu, Yaxin; Parnell, Emily J.; Mooring, Meghan; Gygi, Steven P.; Stillman, David J.

    2014-01-01

    Cell size checkpoints ensure that passage through G1 and mitosis occurs only when sufficient growth has occurred. The mechanisms by which these checkpoints work are largely unknown. PP2A associated with the Rts1 regulatory subunit (PP2ARts1) is required for cell size control in budding yeast, but the relevant targets are unknown. In this paper, we used quantitative proteome-wide mass spectrometry to identify proteins controlled by PP2ARts1. This revealed that PP2ARts1 controls the two key checkpoint pathways thought to regulate the cell cycle in response to cell growth. To investigate the role of PP2ARts1 in these pathways, we focused on the Ace2 transcription factor, which is thought to delay cell cycle entry by repressing transcription of the G1 cyclin CLN3. Diverse experiments suggest that PP2ARts1 promotes cell cycle entry by inhibiting the repressor functions of Ace2. We hypothesize that control of Ace2 by PP2ARts1 plays a role in mechanisms that link G1 cyclin accumulation to cell growth. PMID:24493588

  18. Design of serum-free medium for suspension culture of CHO cells on the basis of general commercial media.

    PubMed

    Miki, Hideo; Takagi, Mutsumi

    2015-08-01

    The design of serum-free media for suspension culture of genetically engineered Chinese hamster ovary (CHO) cells using general commercial media as a basis was investigated. Subcultivation using a commercial serum-free medium containing insulin-like growth factor (IGF)-1 with or without FCS necessitated additives other than IGF-1 to compensate for the lack of FCS and improve cell growth. Suspension culture with media containing several combinations of growth factors suggested the effectiveness of addition of both IGF-1 and the lipid signaling molecule lysophosphatidic acid (LPA) for promoting cell growth. Subcultivation of CHO cells in suspension culture using the commercial serum-free medium EX-CELL™302, which contained an IGF-1 analog, supplemented with LPA resulted in gradually increasing specific growth rate comparable to the serum-containing medium and in almost the same high antibody production regardless of the number of generations. The culture with EX-CELL™302 supplemented with LPA in a jar fermentor with pH control at 6.9 showed an apparently higher cell growth rate than the cultures without pH control and with pH control at 6.8. The cell growth in the medium supplemented with aurintricarboxylic acid (ATA), which was much cheaper than IGF-1, in combination with LPA was synergistically promoted similarly to that in the medium supplemented with IGF-1 and LPA. In conclusion, the serum-free medium designed on the basis of general commercial media could support the growth of CHO cells and antibody production comparable to serum-containing medium in suspension culture. Moreover, the possibility of cost reduction by the substitution of IGF-1 with ATA was also shown.

  19. Effect of graphene oxide ratio on the cell adhesion and growth behavior on a graphene oxide-coated silicon substrate

    NASA Astrophysics Data System (ADS)

    Jeong, Jin-Tak; Choi, Mun-Ki; Sim, Yumin; Lim, Jung-Taek; Kim, Gil-Sung; Seong, Maeng-Je; Hyung, Jung-Hwan; Kim, Keun Soo; Umar, Ahmad; Lee, Sang-Kwon

    2016-09-01

    Control of living cells on biocompatible materials or on modified substrates is important for the development of bio-applications, including biosensors and implant biomaterials. The topography and hydrophobicity of substrates highly affect cell adhesion, growth, and cell growth kinetics, which is of great importance in bio-applications. Herein, we investigate the adhesion, growth, and morphology of cultured breast cancer cells on a silicon substrate, on which graphene oxides (GO) was partially formed. By minimizing the size and amount of the GO-containing solution and the further annealing process, GO-coated Si samples were prepared which partially covered the Si substrates. The coverage of GO on Si samples decreases upon annealing. The behaviors of cells cultured on two samples have been observed, i.e. partially GO-coated Si (P-GO) and annealed partially GO-coated Si (Annealed p-GO), with a different coverage of GO. Indeed, the spreading area covered by the cells and the number of cells for a given culture period in the incubator were highly dependent on the hydrophobicity and the presence of oxygenated groups on GO and Si substrates, suggesting hydrophobicity-driven cell growth. Thus, the presented method can be used to control the cell growth via an appropriate surface modification.

  20. Influence of smartphone Wi-Fi signals on adipose-derived stem cells.

    PubMed

    Lee, Sang-Soon; Kim, Hyung-Rok; Kim, Min-Sook; Park, Sanghoon; Yoon, Eul-Sik; Park, Seung-Ha; Kim, Deok-Woo

    2014-09-01

    The use of smartphones is expanding rapidly around the world, thus raising the concern of possible harmful effects of radiofrequency generated by smartphones. We hypothesized that Wi-Fi signals from smartphones may have harmful influence on adipose-derived stem cells (ASCs). An in vitro study was performed to assess the influence of Wi-Fi signals from smartphones. The ASCs were incubated under a smartphone connected to a Wi-Fi network, which was uploading files at a speed of 4.8 Mbps for 10 hours a day, for a total of 5 days. We constructed 2 kinds of control cells, one grown in 37°C and the other grown in 39°C. After 5 days of Wi-Fi exposure from the smartphone, the cells underwent cell proliferation assay, apoptosis assay, and flow cytometry analysis. Three growth factors, vascular endothelial growth factor, hepatocyte growth factor, and transforming growth factor-β, were measured from ASC-conditioned media. Cell proliferation rate was higher in Wi-Fi-exposed cells and 39°C control cells compared with 37°C control cells. Apoptosis assay, flow cytometry analysis, and growth factor concentrations showed no remarkable differences among the 3 groups. We could not find any harmful effects of Wi-Fi electromagnetic signals from smartphones. The increased proliferation of ASCs under the smartphone, however, might be attributable to the thermal effect.

  1. Cell Size and Growth Rate Are Modulated by TORC2-Dependent Signals.

    PubMed

    Lucena, Rafael; Alcaide-Gavilán, Maria; Schubert, Katherine; He, Maybo; Domnauer, Matthew G; Marquer, Catherine; Klose, Christian; Surma, Michal A; Kellogg, Douglas R

    2018-01-22

    The size of all cells, from bacteria to vertebrates, is proportional to the growth rate set by nutrient availability, but the underlying mechanisms are unknown. Here, we show that nutrients modulate cell size and growth rate via the TORC2 signaling network in budding yeast. An important function of the TORC2 network is to modulate synthesis of ceramide lipids, which play roles in signaling. TORC2-dependent control of ceramide signaling strongly influences both cell size and growth rate. Thus, cells that cannot make ceramides fail to modulate their growth rate or size in response to changes in nutrients. PP2A associated with the Rts1 regulatory subunit (PP2A Rts1 ) is embedded in a feedback loop that controls TORC2 signaling and helps set the level of TORC2 signaling to match nutrient availability. Together, the data suggest a model in which growth rate and cell size are mechanistically linked by ceramide-dependent signals arising from the TORC2 network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Growth inhibition of squamous cell carcinoma xenografts with the polyamine analogue BE 4444.

    PubMed

    Auchter, R M; Pickart, M A; Nash, G A; Qu, R P; Harari, P M

    1996-09-01

    The capacity of radiation to cure advanced head and neck squamous cell carcinoma is compromised by the proliferation of surviving tumor cells during the course of therapy (overall duration, often 7-9 weeks). Antiproliferative agents that inhibit tumor proliferation, even in the absence of direct cytotoxicity, may be useful adjuncts for concurrent use with radiation. Modulation of endogenous polyamine (PA) metabolism has the potential to inhibit cell growth. The PA analogue 1,19-bis(ethylamino)-5,10,15-triazanonadecane (BE 4444) is a synthetic compound that demonstrates antiproliferative effects in human tumor cells. To evaluate the PA analogue BE 4444 for its inhibitory effect on the growth of human squamous cell carcinoma xenografts in nude mice. Xenografts of human squamous cell carcinomas were grown in nude mice; then, BE 4444 was injected intraperitoneally (5 mg/kg) on a twice-daily schedule for 8 days. Tumor growth measurements were performed twice weekly for 8 weeks and compared with those of control mice that were injected with sterile saline solution on the same schedule. The PA levels in the tumor and normal tissue samples were assayed at the completion of treatment. Tumor volume in the BE 4444-treated mice was reduced by 62% compared with tumor volumes in control mice, and the tumor growth rate was reduced by 64%. This growth inhibition was maintained through completion of the experiment. Levels of endogenous PAs were not significantly different from control levels, suggesting that the mechanism of action for BE 4444 is not simply PA biosynthesis inhibition. The PA analogue BE 4444 is an inhibitor of human squamous cell cancer growth. Further studies are in progress to characterize the potential value of PA analogues as adjuncts to radiation therapy for rapidly proliferating squamous cell carcinoma of the head and neck.

  3. siRNA blocking the RAS signalling pathway and inhibits the growth of oesophageal squamous cell carcinoma in nude mice.

    PubMed

    Wang, Xinjie; Zheng, Yuling; Fan, Qingxia; Zhang, Xudong; Shi, Yonggang

    2014-12-01

    The aim of this study was to study RAS-siRNA blocking RAS pathway and suppressing cell growth in human oesophageal squamous cell carcinoma in nude mice. The methods in this study was to construct RAS-siRNA expression vector, establish 40 oesophageal squamous cell carcinoma xenograft animal models and divided them into five groups: control group, siRNA control group, RAS-siRNA group, paclitaxel group and RAS-siRNA and paclitaxel group. We observed tumour growth in nude mice, studied histology by HE staining, tumour growth inhibition by TUNEL assay and detected the RAS, MAPK and cyclin D1 protein expression by immunohistochemistry and western blot. We have obtained the following results: (i) successfully established animal models; (ii) nude mice in each group after treatment inhibited tumour volume was significantly reduced compared with the control group (p < 0.05); (iii) compared with the control group, the number of apoptotic cells were significantly increased in the siRNA control group and the RAS-siRNA group, and the number of apoptosis cells in the paclitaxel and RAS-siRNA group is significantly most than the paclitaxel group and RAS-siRNA group (p < 0.05); and (iv) after treatment, RAS, MAPK and cyclin D1 expression in five groups was decreasing gradually. After adding paclitaxel, the protein expression in the paclitaxel and RAS-siRNA group was significantly lower than that of paclitaxel group, negative control and paclitaxel group (p < 0.05). We therefore conclude that RAS-siRNA can block the RAS signal transduction pathway, reduce the activity of tumour cells, arrest tumour cell cycle, promote apoptosis, inhibit cell proliferation and increase tumour cell sensitivity to chemotherapeutic drugs. Copyright © 2014 John Wiley & Sons, Ltd.

  4. The Arabidopsis EIN2 restricts organ growth by retarding cell expansion

    PubMed Central

    Feng, Guanping; Liu, Gang; Xiao, Jianhua

    2015-01-01

    The growth of plant organ to its characteristic size is a fundamental developmental process, but the mechanism is still poorly understood. Plant hormones play a great role in organ size control by modulating cell division and/or cell expansion. ETHYLENE INSENSITVE 2 (EIN2) was first identified by a genetic screen for ethylene insensitivity and is regarded as a central component of ethylene signaling, but its role in cell growth has not been reported. Here we demonstrate that changed expression of EIN2 led to abnormity of cell expansion by morphological and cytological analyses of EIN2 loss-of-function mutants and the overexpressing transgenic plant. Our findings suggest that EIN2 controls final organ size by restricting cell expansion. PMID:26039475

  5. CLIC4 Moves Into Nucleus to Stabilize Anti-Growth Signal | Center for Cancer Research

    Cancer.gov

    In cancer, the delicate balance of signaling pathways that control cell growth and function is disrupted. One signaling pathway commonly altered in cancer is the TGF-beta pathway. TGF-beta significantly inhibits growth of normal cells, particularly epithelial cells. Many cancer cells have developed ways to bypass one or more steps of this pathway in order to achieve

  6. Phosphatidylinositol Phosphate 5-Kinase Iγi2 in Association with Src Controls Anchorage-independent Growth of Tumor Cells*

    PubMed Central

    Thapa, Narendra; Choi, Suyong; Hedman, Andrew; Tan, Xiaojun; Anderson, Richard A.

    2013-01-01

    A fundamental property of tumor cells is to defy anoikis, cell death caused by a lack of cell-matrix interaction, and grow in an anchorage-independent manner. How tumor cells organize signaling molecules at the plasma membrane to sustain oncogenic signals in the absence of cell-matrix interactions remains poorly understood. Here, we describe a role for phosphatidylinositol 4-phosphate 5-kinase (PIPK) Iγi2 in controlling anchorage-independent growth of tumor cells in coordination with the proto-oncogene Src. PIPKIγi2 regulated Src activation downstream of growth factor receptors and integrins. PIPKIγi2 directly interacted with the C-terminal tail of Src and regulated its subcellular localization in concert with talin, a cytoskeletal protein targeted to focal adhesions. Co-expression of PIPKIγi2 and Src synergistically induced the anchorage-independent growth of nonmalignant cells. This study uncovers a novel mechanism where a phosphoinositide-synthesizing enzyme, PIPKIγi2, functions with the proto-oncogene Src, to regulate oncogenic signaling. PMID:24151076

  7. Genetic dissection of cardiac growth control pathways

    NASA Technical Reports Server (NTRS)

    MacLellan, W. R.; Schneider, M. D.

    2000-01-01

    Cardiac muscle cells exhibit two related but distinct modes of growth that are highly regulated during development and disease. Cardiac myocytes rapidly proliferate during fetal life but exit the cell cycle irreversibly soon after birth, following which the predominant form of growth shifts from hyperplastic to hypertrophic. Much research has focused on identifying the candidate mitogens, hypertrophic agonists, and signaling pathways that mediate these processes in isolated cells. What drives the proliferative growth of embryonic myocardium in vivo and the mechanisms by which adult cardiac myocytes hypertrophy in vivo are less clear. Efforts to answer these questions have benefited from rapid progress made in techniques to manipulate the murine genome. Complementary technologies for gain- and loss-of-function now permit a mutational analysis of these growth control pathways in vivo in the intact heart. These studies have confirmed the importance of suspected pathways, have implicated unexpected pathways as well, and have led to new paradigms for the control of cardiac growth.

  8. Stable Regulation of Cell Cycle Events in Mycobacteria: Insights From Inherently Heterogeneous Bacterial Populations.

    PubMed

    Logsdon, Michelle M; Aldridge, Bree B

    2018-01-01

    Model bacteria, such as E. coli and B. subtilis , tightly regulate cell cycle progression to achieve consistent cell size distributions and replication dynamics. Many of the hallmark features of these model bacteria, including lateral cell wall elongation and symmetric growth and division, do not occur in mycobacteria. Instead, mycobacterial growth is characterized by asymmetric polar growth and division. This innate asymmetry creates unequal birth sizes and growth rates for daughter cells with each division, generating a phenotypically heterogeneous population. Although the asymmetric growth patterns of mycobacteria lead to a larger variation in birth size than typically seen in model bacterial populations, the cell size distribution is stable over time. Here, we review the cellular mechanisms of growth, division, and cell cycle progression in mycobacteria in the face of asymmetry and inherent heterogeneity. These processes coalesce to control cell size. Although Mycobacterium smegmatis and Mycobacterium bovis Bacillus Calmette-Guérin (BCG) utilize a novel model of cell size control, they are similar to previously studied bacteria in that initiation of DNA replication is a key checkpoint for cell division. We compare the regulation of DNA replication initiation and strategies used for cell size homeostasis in mycobacteria and model bacteria. Finally, we review the importance of cellular organization and chromosome segregation relating to the physiology of mycobacteria and consider how new frameworks could be applied across the wide spectrum of bacterial diversity.

  9. Expression of genomic AtCYCD2;1 in Arabidopsis induces cell division at smaller cell sizes: implications for the control of plant growth.

    PubMed

    Qi, Ruhu; John, Peter Crook Lloyd

    2007-07-01

    The Arabidopsis (Arabidopsis thaliana) CYCD2;1 gene introduced in genomic form increased cell formation in the Arabidopsis root apex and leaf, while generating full-length mRNA, raised CDK/CYCLIN enzyme activity, reduced G1-phase duration, and reduced size of cells at S phase and division. Other cell cycle genes, CDKA;1, CYCLIN B;1, and the cDNA form of CYCD2;1 that produced an aberrantly spliced mRNA, produced smaller or zero increases in CDK/CYCLIN activity and did not increase the number of cells formed. Plants with a homozygous single insert of genomic CYCD2;1 grew with normal morphology and without accelerated growth of root or shoot, not providing evidence that cell formation or CYCLIN D2 controls growth of postembryonic vegetative tissues. At the root apex, cells progressed normally from meristem to elongation, but their smaller size enclosed less growth and a 40% reduction in final size of epidermal and cortical cells was seen. Smaller elongated cell size inhibited endoreduplication, indicating a cell size requirement. Leaf cells were also smaller and more numerous during proliferation and epidermal pavement and palisade cells attained 59% and 69% of controls, whereas laminas reached normal size. Autonomous control of expansion was therefore not evident in abundant cell types that formed tissues of root or leaf. Cell size was reduced by a greater number formed in a tissue prior to cell and tissue expansion. Initiation and termination of expansion did not correlate with cell dimension or number and may be determined by tissue-wide signals acting across cellular boundaries.

  10. The potential for chemical mixtures from the environment to enable the cancer hallmark of sustained proliferative signalling

    PubMed Central

    Engström, Wilhelm; Darbre, Philippa; Eriksson, Staffan; Gulliver, Linda; Hultman, Tove; Karamouzis, Michalis V.; Klaunig, James E.; Mehta, Rekha; Moorwood, Kim; Sanderson, Thomas; Sone, Hideko; Vadgama, Pankaj; Wagemaker, Gerard; Ward, Andrew; Singh, Neetu; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Colacci, Anna Maria; Vaccari, Monica; Mondello, Chiara; Scovassi, A. Ivana; Raju, Jayadev; Hamid, Roslida A.; Memeo, Lorenzo; Forte, Stefano; Roy, Rabindra; Woodrick, Jordan; Salem, Hosni K.; Ryan, Elizabeth; Brown, Dustin G.; Bisson, William H.

    2015-01-01

    The aim of this work is to review current knowledge relating the established cancer hallmark, sustained cell proliferation to the existence of chemicals present as low dose mixtures in the environment. Normal cell proliferation is under tight control, i.e. cells respond to a signal to proliferate, and although most cells continue to proliferate into adult life, the multiplication ceases once the stimulatory signal disappears or if the cells are exposed to growth inhibitory signals. Under such circumstances, normal cells remain quiescent until they are stimulated to resume further proliferation. In contrast, tumour cells are unable to halt proliferation, either when subjected to growth inhibitory signals or in the absence of growth stimulatory signals. Environmental chemicals with carcinogenic potential may cause sustained cell proliferation by interfering with some cell proliferation control mechanisms committing cells to an indefinite proliferative span. PMID:26106143

  11. Sulfonated polyaniline-based organic electrodes for controlled electrical stimulation of human osteosarcoma cells.

    PubMed

    Min, Yong; Yang, Yanyin; Poojari, Yadagiri; Liu, Yidong; Wu, Jen-Chieh; Hansford, Derek J; Epstein, Arthur J

    2013-06-10

    Electrically conducting polymers (CPs) were found to stimulate various cell types such as neurons, osteoblasts, and fibroblasts in both in vitro and in vivo studies. However, to our knowledge, no studies have been reported on the utility of CPs in stimulation of cancer or tumor cells in the literature. Here we report a facile fabrication method of self-doped sulfonated polyaniline (SPAN)-based interdigitated electrodes (IDEs) for controlled electrical stimulation of human osteosarcoma (HOS) cells. Increased degree of sulfonation was found to increase the SPAN conductivity, which in turn improved the cell attachment and cell growth without electrical stimulation. However, an enhanced cell growth was observed under controlled electrical (AC) stimulation at low applied voltage and frequency (≤800 mV and ≤1 kHz). The cell growth reached a maximum threshold at an applied voltage or frequency and beyond which pronounced cell death was observed. We believe that these organic electrodes may find utility in electrical stimulation of cancer or tumor cells for therapy and research and may also provide an alternative to the conventional metal-based electrodes.

  12. KIT Signaling Promotes Growth of Colon Xenograft Tumors in Mice and Is Up-Regulated in a Subset of Human Colon Cancers.

    PubMed

    Chen, Evan C; Karl, Taylor A; Kalisky, Tomer; Gupta, Santosh K; O'Brien, Catherine A; Longacre, Teri A; van de Rijn, Matt; Quake, Stephen R; Clarke, Michael F; Rothenberg, Michael E

    2015-09-01

    Receptor tyrosine kinase (RTK) inhibitors have advanced colon cancer treatment. We investigated the role of the RTK KIT in development of human colon cancer. An array of 137 patient-derived colon tumors and their associated xenografts were analyzed by immunohistochemistry to measure levels of KIT and its ligand KITLG. KIT and/or KITLG was stably knocked down by expression of small hairpin RNAs from lentiviral vectors in DLD1, HT29, LS174T, and COLO320 DM colon cancer cell lines, and in UM-COLON#8 and POP77 xenografts; cells transduced with only vector were used as controls. Cells were analyzed by real-time quantitative reverse transcription polymerase chain reaction, single-cell gene expression analysis, flow cytometry, and immunohistochemical, immunoblot, and functional assays. Xenograft tumors were grown from control and KIT-knockdown DLD1 and UM-COLON#8 cells in immunocompromised mice and compared. Some mice were given the RTK inhibitor imatinib after injection of cancer cells; tumor growth was measured based on bioluminescence. We assessed tumorigenicity using limiting dilution analysis. KIT and KITLG were expressed heterogeneously by a subset of human colon tumors. Knockdown of KIT decreased proliferation of colon cancer cell lines and growth of xenograft tumors in mice compared with control cells. KIT knockdown cells had increased expression of enterocyte markers, decreased expression of cycling genes, and, unexpectedly, increased expression of LGR5 associated genes. No activating mutations in KIT were detected in DLD1, POP77, or UM-COLON#8 cells. However, KITLG-knockdown DLD1 cells formed smaller xenograft tumors than control cells. Gene expression analysis of single CD44(+) cells indicated that KIT can promote growth via KITLG autocrine and/or paracrine signaling. Imatinib inhibited growth of KIT(+) colon cancer organoids in culture and growth of xenograft tumors in mice. Cancer cells with endogenous KIT expression were more tumorigenic in mice. KIT and KITLG are expressed by a subset of human colon tumors. KIT signaling promotes growth of colon cancer cells and organoids in culture and xenograft tumors in mice via its ligand, KITLG, in an autocrine or paracrine manner. Patients with KIT-expressing colon tumors can benefit from KIT RTK inhibitors. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  13. KIT Signaling Promotes Growth of Colon Xenograft Tumors in Mice and is Upregulated in a Subset of Human Colon Cancers

    PubMed Central

    Chen, Evan C.; Karl, Taylor A.; Kalisky, Tomer; Gupta, Santosh K.; O’Brien, Catherine A.; Longacre, Teri A.; van de Rijn, Matt; Quake, Stephen R.; Clarke, Michael F.; Rothenberg, Michael E.

    2015-01-01

    Background & Aims Receptor tyrosine kinase (RTK) inhibitors have advanced colon cancer treatment. We investigated the role of the RTK KIT in development of human colon cancer. Methods An array of 137 patient-derived colon tumors and their associated xenografts were analyzed by immunohistochemistry to measure levels of KIT and its ligand KITLG. KIT and/or KITLG was stably knocked down by expression of small hairpin RNAs from lentiviral vectors in DLD1, HT29, LS174T, and COLO320 colon cancer cell lines, and in UM-COLON#8 and POP77 xenografts; cells transduced with only vector were used as controls. Cells were analyzed by real-time quantitative reverse transcription PCR, single-cell gene expression analysis, flow cytometry, and immunohistochemical, immunoblot, and functional assays. Xenograft tumors were grown from control and KIT-knockdown DLD1 and UM-COLON#8 cells in immunocompromised mice and compared. Some mice were given the RTK inhibitor imatinib following injection of cancer cells; tumor growth was measured based on bioluminescence. We assessed tumorigenicity using limiting dilution analysis. Results KIT and KITLG were expressed heterogeneously by a subset of human colon tumors. Knockdown of KIT decreased proliferation of colon cancer cell lines and growth of xenograft tumors in mice, compared with control cells. KIT knockdown cells had increased expression of enterocyte markers, decreased expression of cycling genes, and, unexpectedly, increased expression of LGR5-associated genes. No activating mutations in KIT were detected in DLD1, POP77, or UM-COLON#8 cell lines. However, KITLG-knockdown DLD1 cells formed smaller xenograft tumors than control cells. Gene expression analysis of single CD44+ cells indicated that KIT may promote growth via KITLG autocrine and/or paracrine signaling. Imatinib inhibited growth of KIT+ colon cancer organoids in culture and growth of xenograft tumors in mice. Cancer cells with endogenous KIT expression were more tumorigenic in mice. Conclusions KIT and KITLG are expressed by a subset of human colon tumors. KIT signaling promotes growth of colon cancer cells and organoids in culture and xenograft tumors in mice via its ligand, KITLG, in an autocrine or paracrine manner. Patients with KIT-expressing colon tumors may benefit from KIT RTK inhibitors. PMID:26026391

  14. BSC-1 growth inhibitor transforms a mitogenic stimulus into a hypertrophic stimulus for renal proximal tubular cells: relationship to Na/sup +//H/sup +/ antiport activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fine, L.G.; Holley, R.W.; Nasri, H.

    Renal hypertrophy is characterized by an increase in cell size and protein content with minimal hyperplasia. The mechanisms of control of this pattern of cell growth have not been determined. The present studies examined whether the growth inhibitor elaborated by BSC-1 kidney epilethal cells (GI), which has nearly identical biological properties to transforming growth factor ..beta.. (TGF-..beta..), could transform a mitogenic stimulus into a hypertrophic stimulus for rabbit renal proximal tubular cells in primary culture. Insulin plus hydrocortisone increased the amount of protein per cell, cell volume, and (/sup 3/H)thymidine incorporation at 24 and 48 hr in these cells. Whenmore » added together with insulin plus hydrocortisone, GI/TGF-..beta.. inhibited the stimulatory effect of these mitogens on (/sup 3/H)thymidine incorporation but did not block the increase in protein per cell and cell volume - i.e., the cells underwent hypertrophy. The fact that this pattern persisted for 48 hr indicated that GI/TGF-..beta.. exerted a prolonged inhibitory effect on mitogenic-stimulated DNA synthesis rather than delaying its onset. Amiloride-sensitive Na/sup +/ uptake using /sup 22/Na/sup +/ as a tracer, correlated with protein per cell and cell volume rather than with DNA synthesis. These studies indicate that the control of cell size may be regulated by autocrine mechanisms mediated by the elaboration of growth inhibitory factors that alter the pattern of the growth response to mitogens.« less

  15. Cell size control and homeostasis in bacteria

    NASA Astrophysics Data System (ADS)

    Bradde, Serena; Taheri, Sattar; Sauls, John; Hill, Nobert; Levine, Petra; Paulsson, Johan; Vergassola, Massimo; Jun, Suckjoon

    2015-03-01

    How cells control their size is a fundamental question in biology. The mechanisms for sensing size, time, or a combination of the two are not supported by experimental evidence. By analysing distributions of size at division at birth and generation time of hundreds of thousands of Gram-negative E. coli and Gram-positive B. subtilis cells under a wide range of tightly controlled steady-state growth conditions, we are now in the position to validate different theoretical models. In this talk I will present all possible models in details and present a general mechanism that quantitatively explains all measurable aspects of growth and cell division at both population and single-cell levels.

  16. Control of proliferation and cancer growth by the Hippo signaling pathway

    PubMed Central

    Ehmer, Ursula; Sage, Julien

    2015-01-01

    The control of cell division is essential for normal development and the maintenance of cellular homeostasis. Abnormal cell proliferation is associated with multiple pathological states, including cancer. While the Hippo/YAP signaling pathway was initially thought to control organ size and growth, increasing evidence indicates that this pathway also plays a major role in the control of proliferation independent of organ size control. In particular, accumulating evidence indicates that the Hippo/YAP signaling pathway functionally interacts with multiple other cellular pathways and serves as a central node in the regulation of cell division, especially in cancer cells. Here recent observations are highlighted that connect Hippo/YAP signaling to transcription, the basic cell cycle machinery, and the control of cell division. Furthermore, the oncogenic and tumor suppressive attributes of YAP/TAZ are reviewed which emphasizes the relevance of the Hippo pathway in cancer. PMID:26432795

  17. A Hypergravity Environment Induced by Centrifugation Alters Plant Cell Proliferation and Growth in an Opposite Way to Microgravity

    NASA Astrophysics Data System (ADS)

    Manzano, Ana I.; Herranz, Raúl; van Loon, Jack J. W. A.; Medina, F. Javier

    2012-12-01

    Seeds of Arabidopsis thaliana were exposed to hypergravity environments (2 g and 6 g) and germinated during centrifugation. Seedlings grew for 2 and 4 days before fixation. In all cases, comparisons were performed against an internal (subjected to rotational vibrations and other factors of the machine) and an external control at 1 g. On seedlings grown in hypergravity the total length and the root length were measured. The cortical root meristematic cells were analyzed to investigate the alterations in cell proliferation, which were quantified by counting the number of cells per millimeter in the specific cell files, and cell growth, which were appraised through the rate of ribosome biogenesis, assessed by morphological and morphometrical parameters of the nucleolus. The expression of cyclin B1, a key regulator of entry in mitosis, was assessed by the use of a CYCB1:GUS genetic construction. The results showed significant differences in some of these parameters when comparing the 1 g internal rotational control with the 1 g external control, indicating that the machine by itself was a source of alterations. When the effect of hypergravity was isolated from other environmental factors, by comparing the experimental conditions with the rotational control, cell proliferation appeared depleted, cell growth was increased and there was an enhanced expression of cyclin B1. The functional meaning of these effects is that cell proliferation and cell growth, which are strictly associated functions under normal 1 g ground conditions, are uncoupled under hypergravity. This uncoupling was also described by us in previous experiments as an effect of microgravity, but in an opposite way. Furthermore, root meristems appear thicker in hypergravity-treated than in control samples, which can be related to changes in the cell wall induced by altered gravity.

  18. Use of a small molecule cell cycle inhibitor to control cell growth and improve specific productivity and product quality of recombinant proteins in CHO cell cultures.

    PubMed

    Du, Zhimei; Treiber, David; McCarter, John D; Fomina-Yadlin, Dina; Saleem, Ramsey A; McCoy, Rebecca E; Zhang, Yuling; Tharmalingam, Tharmala; Leith, Matthew; Follstad, Brian D; Dell, Brad; Grisim, Brent; Zupke, Craig; Heath, Carole; Morris, Arvia E; Reddy, Pranhitha

    2015-01-01

    The continued need to improve therapeutic recombinant protein productivity has led to ongoing assessment of appropriate strategies in the biopharmaceutical industry to establish robust processes with optimized critical variables, that is, viable cell density (VCD) and specific productivity (product per cell, qP). Even though high VCD is a positive factor for titer, uncontrolled proliferation beyond a certain cell mass is also undesirable. To enable efficient process development to achieve consistent and predictable growth arrest while maintaining VCD, as well as improving qP, without negative impacts on product quality from clone to clone, we identified an approach that directly targets the cell cycle G1-checkpoint by selectively inhibiting the function of cyclin dependent kinases (CDK) 4/6 with a small molecule compound. Results from studies on multiple recombinant Chinese hamster ovary (CHO) cell lines demonstrate that the selective inhibitor can mediate a complete and sustained G0/G1 arrest without impacting G2/M phase. Cell proliferation is consistently and rapidly controlled in all recombinant cell lines at one concentration of this inhibitor throughout the production processes with specific productivities increased up to 110 pg/cell/day. Additionally, the product quality attributes of the mAb, with regard to high molecular weight (HMW) and glycan profile, are not negatively impacted. In fact, high mannose is decreased after treatment, which is in contrast to other established growth control methods such as reducing culture temperature. Microarray analysis showed major differences in expression of regulatory genes of the glycosylation and cell cycle signaling pathways between these different growth control methods. Overall, our observations showed that cell cycle arrest by directly targeting CDK4/6 using selective inhibitor compound can be utilized consistently and rapidly to optimize process parameters, such as cell growth, qP, and glycosylation profile in recombinant antibody production cultures. © 2014 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  19. Red blood cells as modulators of T cell growth and survival.

    PubMed

    Arosa, Fernando A; Pereira, Carlos F; Fonseca, Ana M

    2004-01-01

    T cell homeostasis is largely controlled by a balance between cell death and survival and anomalies in either process account for a number of diseases linked to excessive or faulty T cell growth. Yet, the influence that cells outside the immunological system have on these processes has only recently received attention. Accumulated evidence indicate that homeostasis of the CD4+ and CD8+ T cell pools is highly dynamic and regulated by signals delivered by cells and molecules present in the different internal microenvironments. The major function of red blood cells (RBC) is generally considered to be oxygen and carbon dioxide transport. In recent years, however, RBC have been implicated in the regulation of basic physiological processes, from vascular contraction and platelet aggregation to T cell growth and survival. Regulation of T cell survival by RBC may influence the response of selected subsets of T cells to internal or external stimuli and may help explaining the immunomodulatory activities of red blood cells. By interfering in the balance between death and survival RBC become potential tools that can be manipulated to improve or reverse pathological situations characterized by anomalies in the control of T cell growth.

  20. Mitochondrial respiratory control is lost during growth factor deprivation

    PubMed Central

    Gottlieb, Eyal; Armour, Sean M.; Thompson, Craig B.

    2002-01-01

    The ability of cells to maintain a bioenergetically favorable ATP/ADP ratio confers a tight balance between cellular events that consume ATP and the rate of ATP production. However, after growth factor withdrawal, the cellular ATP/ADP ratio declines. To investigate these changes, mitochondria from growth factor-deprived cells isolated before the onset of apoptosis were characterized in vitro. Mitochondria from growth factor-deprived cells have lost their ability to undergo matrix condensation in response to ADP, which is accompanied by a failure to perform ADP-coupled respiration. At the time of analysis, mitochondria from growth factor-deprived cells were not depleted of cytochrome c and cytochrome c-dependent respiration was unaffected, demonstrating that the inhibition of the respiratory rate is not due to loss of cytochrome c. Agents that disrupt the mitochondrial outer membrane, such as digitonin, or maintain outer membrane exchange of adenine nucleotide, such as Bcl-xL, restored ADP-dependent control of mitochondrial respiration. Together, these data suggest that the regulation of mitochondrial outer membrane permeability contributes to respiratory control. PMID:12228733

  1. EMMPRIN regulates tumor growth and metastasis by recruiting bone marrow-derived cells through paracrine signaling of SDF-1 and VEGF.

    PubMed

    Chen, Yanke; Gou, Xingchun; Kong, Derek Kai; Wang, Xiaofei; Wang, Jianhui; Chen, Zeming; Huang, Chen; Zhou, Jiangbing

    2015-10-20

    EMMPRIN, a cell adhesion molecule highly expressed in a variety of tumors, is associated with poor prognosis in cancer patients. Mechanistically, EMMPRIN has been characterized to contribute to tumor development and progression by controlling the expression of MMPs and VEGF. In the present study, by using fluorescently labeled bone marrow-derived cells (BMDCs), we found that the down-regulation of EMMPRIN expression in cancer cells reduces tumor growth and metastasis, and is associated with the reduced recruitment of BMDCs. Further protein profiling studies suggest that EMMPRIN controls BMDC recruitment through regulating the secretion of soluble factors, notably, VEGF and SDF-1. We demonstrate that the expression and secretion of SDF-1 in tumor cells are regulated by EMMPRIN. This study reveals a novel mechanism by which EMMPRIN promotes tumor growth and metastasis by recruitment of BMDCs through controlling secretion and paracrine signaling of SDF-1 and VEGF.

  2. Effect and mechanism of PAR-2 on the proliferation of esophageal cancer cells.

    PubMed

    Quanjun, D; Qingyu, Z; Qiliang, Z; Liqun, X; Jinmei, C; Ziquan, L; Shike, H

    2016-11-01

    Esophageal Cancer (EC) is a common malignant tumor occurred in the digestive tract. In this study, we investigated the mechanism of Protease Activated Receptor 2 (PAR-2) on the proliferation of esophageal cancer cell. Transfected esophageal cancer (EC) cell (PAR-2shRNA EC109) was established with low stable PAR-2 expression. EC109 cell was treated with PAR-2 agonist, PAR-2 anti-agonist and MAPK inhibitor respectively; Untreated EC109 cell (blank control) and PAR-2shRNA EC109 cell were used for analysis also. The mRNA expressions of PAR-2, ERK1, Cyclin D1, and c-fos in each group were detected by reverse transcript and polymerase chain reaction. Western blot was used to detect the protein expressions in each group. The cell growth curves were drawn to compare the cell growth. Compared with the blank control, the mRNA and protein expressions of PAR-2, Cyclin D1, and c-fos in PAR-2 agonist group increased significantly (p < 0.05), while decreased significantly in PAR-2shRNA EC109 cell and MAPK inhibitor group (p < 0.05). The mRNA expression of ERK1 and protein expression of p-ERK1 increased in PAR-2 agonist group, decreased in PAR-2shRNA EC109 cell and MAPK inhibitor group when compared with blank control (p < 0.05). The growth of cells was upward in PAR-2 agonist group at cell growth phase when compared with blank control, while decreased in PAR-2 shRNA EC109 cell and MAPK inhibitor group with statistical difference (p < 0.05). PAR-2 regulate cell proliferation through the MAPK pathway in esophageal carcinoma cell, and Cyclin D1, c-fos are involved in this process.

  3. Manipulation of the sodium-potassium ratio as a lever for controlling cell growth and improving cell specific productivity in perfusion CHO cell cultures.

    PubMed

    Wang, Samantha B; Lee-Goldman, Alexandria; Ravikrishnan, Janani; Zheng, Lili; Lin, Henry

    2018-04-01

    Perfusion processes typically require removal of a continuous or semi-continuous volume of cell culture in order to maintain a desired target cell density. For fast growing cell lines, the product loss from this stream can be upwards of 35%, significantly reducing the overall process yield. As volume removed is directly proportional to cell growth, the ability to modulate growth during perfusion cell culture production thus becomes crucial. Leveraging existing media components to achieve such control without introducing additional supplements is most desirable because it decreases process complexity and eliminates safety and clearance concerns. Here, the impact of extracellular concentrations of sodium (Na) and potassium (K) on cell growth and productivity is explored. High throughput small-scale models of perfusion revealed Na:K ratios below 1 can significantly suppress cell growth by inducing cell cycle arrest in the G0/1 phase. A concomitant increase in cell specific productivity was also observed, reaching as high as 115 pg/cell/day for one cell line studied. Multiple recombinant Chinese hamster ovary (CHO) cell lines demonstrated similar responses to lower Na:K media, indicating the universal applicability of such an approach. Product quality attributes were also assessed and revealed that effects were cell line specific, and can be acceptable or manageable depending on the phase of the drug development. Drastically altering Na and K levels in perfusion media as a lever to impact cell growth and productivity is proposed. © 2017 Wiley Periodicals, Inc.

  4. The Adder Phenomenon Emerges from Independent Control of Pre- and Post-Start Phases of the Budding Yeast Cell Cycle.

    PubMed

    Chandler-Brown, Devon; Schmoller, Kurt M; Winetraub, Yonatan; Skotheim, Jan M

    2017-09-25

    Although it has long been clear that cells actively regulate their size, the molecular mechanisms underlying this regulation have remained poorly understood. In budding yeast, cell size primarily modulates the duration of the cell-division cycle by controlling the G1/S transition known as Start. We have recently shown that the rate of progression through Start increases with cell size, because cell growth dilutes the cell-cycle inhibitor Whi5 in G1. Recent phenomenological studies in yeast and bacteria have shown that these cells add an approximately constant volume during each complete cell cycle, independent of their size at birth. These results seem to be in conflict, as the phenomenological studies suggest that cells measure the amount they grow, rather than their size, and that size control acts over the whole cell cycle, rather than specifically in G1. Here, we propose an integrated model that unifies the adder phenomenology with the molecular mechanism of G1/S cell-size control. We use single-cell microscopy to parameterize a full cell-cycle model based on independent control of pre- and post-Start cell-cycle periods. We find that our model predicts the size-independent amount of cell growth during the full cell cycle. This suggests that the adder phenomenon is an emergent property of the independent regulation of pre- and post-Start cell-cycle periods rather than the consequence of an underlying molecular mechanism measuring a fixed amount of growth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Study the Origin and Mechanisms of Castration Resistance Characterized by Outgrowth of Prostate Cancer Cells with Low/Negative Androgen Receptor

    DTIC Science & Technology

    2016-10-01

    growth. The CRISPR/ Cas9 -mediated inhibition of GREB1 function suppressed growth of AR-hi cells that are further inhibited by Enzalutamide treatment...PSA enhancer. (I) The CRISPR/ Cas9 -mediated inhibition of GREB1 function suppresses growth of AR-hi cells. * control (SgNT) vs. each GREB1 inhibited

  6. Expression of insulin-like growth factor-2 receptors on EL4 lymphoma cells overexpressing growth hormone.

    PubMed

    Farmer, John T; Weigent, Douglas A

    2007-01-01

    In the present study, we report the upregulation of functional IGF-2Rs in cells overexpressing growth hormone (GH). EL4 lymphoma cells stably transfected with an rGH cDNA overexpression vector (GHo) exhibited an increase in the binding of (125)I-IGF-2 with no change in the binding affinity compared to vector alone controls. An increase in the expression of the insulin-like growth factor-2 receptor (IGF-2R) in cells overexpressing GH was confirmed by Western blot analysis and IGF-2R promoter luciferase assays. EL4 cells produce insulin-like growth factor-2 (IGF-2) as detected by the reverse transcription-polymerase chain reaction (RT-PCR); however, no IGF-2 protein was detected by Western analysis. The increase in the expression of the IGF-2R resulted in greater levels of IGF-2 uptake in GHo cells compared to vector alone controls. The data suggest that one of the consequences of the overexpression of GH is an increase in the expression of the IGF-2R.

  7. Fibroblast growth factor receptor signaling crosstalk in skeletogenesis.

    PubMed

    Miraoui, Hichem; Marie, Pierre J

    2010-11-02

    Fibroblast growth factors (FGFs) play important roles in the control of embryonic and postnatal skeletal development by activating signaling through FGF receptors (FGFRs). Germline gain-of-function mutations in FGFR constitutively activate FGFR signaling, causing chondrocyte and osteoblast dysfunctions that result in skeletal dysplasias. Crosstalk between the FGFR pathway and other signaling cascades controls skeletal precursor cell differentiation. Genetic analyses revealed that the interplay of WNT and FGFR1 determines the fate and differentiation of mesenchymal stem cells during mouse craniofacial skeletogenesis. Additionally, interactions between FGFR signaling and other receptor tyrosine kinase networks, such as those mediated by the epidermal growth factor receptor and platelet-derived growth factor receptor α, were associated with excessive osteoblast differentiation and bone formation in the human skeletal dysplasia called craniosynostosis, which is a disorder of skull development. We review the roles of FGFR signaling and its crosstalk with other pathways in controlling skeletal cell fate and discuss how this crosstalk could be pharmacologically targeted to correct the abnormal cell phenotype in skeletal dysplasias caused by aberrant FGFR signaling.

  8. Axon growth regulation by a bistable molecular switch.

    PubMed

    Padmanabhan, Pranesh; Goodhill, Geoffrey J

    2018-04-25

    For the brain to function properly, its neurons must make the right connections during neural development. A key aspect of this process is the tight regulation of axon growth as axons navigate towards their targets. Neuronal growth cones at the tips of developing axons switch between growth and paused states during axonal pathfinding, and this switching behaviour determines the heterogeneous axon growth rates observed during brain development. The mechanisms controlling this switching behaviour, however, remain largely unknown. Here, using mathematical modelling, we predict that the molecular interaction network involved in axon growth can exhibit bistability, with one state representing a fast-growing growth cone state and the other a paused growth cone state. Owing to stochastic effects, even in an unchanging environment, model growth cones reversibly switch between growth and paused states. Our model further predicts that environmental signals could regulate axon growth rate by controlling the rates of switching between the two states. Our study presents a new conceptual understanding of growth cone switching behaviour, and suggests that axon guidance may be controlled by both cell-extrinsic factors and cell-intrinsic growth regulatory mechanisms. © 2018 The Author(s).

  9. Critical role of zinc finger protein 521 in the control of growth, clonogenicity and tumorigenic potential of medulloblastoma cells

    PubMed Central

    Iaccino, Enrico; Scicchitano, Stefania; Lupia, Michela; Chiarella, Emanuela; Mega, Tiziana; Bernaudo, Francesca; Pelaggi, Daniela; Mesuraca, Maria; Pazzaglia, Simonetta; Semenkow, Samantha; Bar, Eli E.; Kool, Marcel; Pfister, Stefan; Bond, Heather M.; Eberhart, Charles G.; Steinkühler, Christian; Morrone, Giovanni

    2013-01-01

    The stem cell-associated transcription co-factor ZNF521 has been implicated in the control of hematopoietic, osteo-adipogenic and neural progenitor cells. ZNF521 is highly expressed in cerebellum and in particular in the neonatal external granule layer that contains candidate medulloblastoma cells-of-origin, and in the majority of human medulloblastomas. Here we have explored its involvement in the control of human and murine medulloblastoma cells. The effect of ZNF521 on growth and tumorigenic potential of human medulloblastoma cell lines as well as primary Ptc1−/+ mouse medulloblastoma cells was investigated in a variety of in vitro and in vivo assays, by modulating its expression using lentiviral vectors carrying the ZNF521 cDNA, or shRNAs that silence its expression. Enforced overexpression of ZNF521 in DAOY medulloblastoma cells significantly increased their proliferation, growth as spheroids and ability to generate clones in single-cell cultures and semisolid media, and enhanced their migratory ability in wound-healing assays. Importantly, ZNF521-expressing cells displayed a greatly enhanced tumorigenic potential in nude mice. All these activities required the ZNF521 N-terminal motif that recruits the nucleosome remodeling and histone deacetylase complex, which might therefore represent an appealing therapeutic target. Conversely, silencing of ZNF521 in human UW228 medulloblastoma cells that display high baseline expression decreased their proliferation, clonogenicity, sphere formation and wound-healing ability. Similarly, Zfp521 silencing in mouse Ptc1−/+ medulloblastoma cells drastically reduced their growth and tumorigenic potential. Our data strongly support the notion that ZNF521, through the recruitment of the NuRD complex, contributes to the clonogenic growth, migration and tumorigenicity of medulloblastoma cells. PMID:23907569

  10. Critical role of zinc finger protein 521 in the control of growth, clonogenicity and tumorigenic potential of medulloblastoma cells.

    PubMed

    Spina, Raffaella; Filocamo, Gessica; Iaccino, Enrico; Scicchitano, Stefania; Lupia, Michela; Chiarella, Emanuela; Mega, Tiziana; Bernaudo, Francesca; Pelaggi, Daniela; Mesuraca, Maria; Pazzaglia, Simonetta; Semenkow, Samantha; Bar, Eli E; Kool, Marcel; Pfister, Stefan; Bond, Heather M; Eberhart, Charles G; Steinkühler, Christian; Morrone, Giovanni

    2013-08-01

    The stem cell-associated transcription co-factor ZNF521 has been implicated in the control of hematopoietic, osteo-adipogenic and neural progenitor cells. ZNF521 is highly expressed in cerebellum and in particular in the neonatal external granule layer that contains candidate medulloblastoma cells-of-origin, and in the majority of human medulloblastomas. Here we have explored its involvement in the control of human and murine medulloblastoma cells. The effect of ZNF521 on growth and tumorigenic potential of human medulloblastoma cell lines as well as primary Ptc1-/+ mouse medulloblastoma cells was investigated in a variety of in vitro and in vivo assays, by modulating its expression using lentiviral vectors carrying the ZNF521 cDNA, or shRNAs that silence its expression. Enforced overexpression of ZNF521 in DAOY medulloblastoma cells significantly increased their proliferation, growth as spheroids and ability to generate clones in single-cell cultures and semisolid media, and enhanced their migratory ability in wound-healing assays. Importantly, ZNF521-expressing cells displayed a greatly enhanced tumorigenic potential in nude mice. All these activities required the ZNF521 N-terminal motif that recruits the nucleosome remodeling and histone deacetylase complex, which might therefore represent an appealing therapeutic target. Conversely, silencing of ZNF521 in human UW228 medulloblastoma cells that display high baseline expression decreased their proliferation, clonogenicity, sphere formation and wound-healing ability. Similarly, Zfp521 silencing in mouse Ptc1-/+ medulloblastoma cells drastically reduced their growth and tumorigenic potential. Our data strongly support the notion that ZNF521, through the recruitment of the NuRD complex, contributes to the clonogenic growth, migration and tumorigenicity of medulloblastoma cells.

  11. Characteristics of MIC-1 antlerogenic stem cells and their effect on hair growth in rabbits.

    PubMed

    Cegielski, Marek; Izykowska, Ilona; Chmielewska, Magdalena; Dziewiszek, Wojciech; Bochnia, Marek; Calkosinski, Ireneusz; Dziegiel, Piotr

    2013-01-01

    We characterized growth factors produced by MIC-1 antlerogenic stem cells and attempted to apply those cells to stimulate hair growth in rabbits. We evaluated the gene and protein expression of growth factors by immunocytochemical and molecular biology techniques in MIC-1 cells. An animal model was used to assess the effects of xenogenous stem cells on hair growth. In the experimental group, rabbits were intradermally injected with MIC-1 stem cells, whereas the control group rabbits were given vehicle-only. After 1, 2 and 4 weeks, skin specimen were collected for histological and immunohistochemical tests. MIC-1 antlerogenic stem cells express growth factors, as confirmed at the mRNA and protein levels. Histological and immunohistochemical analysis demonstrated an increase in the number of hair follicles, as well as the amount of secondary hair in the follicles, without an immune response in animals injected intradermally with MIC-1 cells, compared to animals receiving vehicle-alone. MIC-1 cells accelerated hair growth in rabbits due to the activation of cells responsible for the regulation of the hair growth cycle through growth factors. Additionally, the xenogenous cell implant did not induce immune response.

  12. Control over Silica Particle Growth and Particle–Biomolecule Interactions Facilitates Silica Encapsulation of Mammalian Cells with Thickness Control

    DOE PAGES

    Johnston, Robert K.; Harper, Jason C.; Tartis, Michaelann S.

    2017-07-13

    Over the past 20 years, many strategies utilizing sol–gel chemistry to integrate biological cells into silica-based materials have been reported. One such strategy, Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition, shows promise as an efficient encapsulation technique due to the ability to vary the silica encapsulation morphology obtained by this process through variation of SG-CViL reaction conditions. In this report, we develop SG-CViL as a tunable, multi-purpose silica encapsulation strategy by investigating the mechanisms governing both silica particle generation and subsequent interaction with phospholipid assemblies (liposomes and living cells). Using Dynamic Light Scattering (DLS) measurements, linear and exponential silica particlemore » growth dynamics were observed which were dependent on deposition buffer ion constituents and ion concentration. Silica particle growth followed a cluster–cluster growth mechanism at acidic pH, and a monomer-cluster growth mechanism at neutral to basic pH. Increasing silica sol aging temperature resulted in higher rates of particle growth and larger particles. DLS measurements employing PEG-coated liposomes and cationic liposomes, serving as model phospholipid assemblies, revealed that electrostatic interactions promote more stable liposome–silica interactions than hydrogen bonding and facilitate silica coating on suspension cells. However, continued silica reactivity leads to aggregation of silica-coated suspension cells, revealing the need for cell isolation to tune deposited silica thickness. As a result, utilizing these mechanistic study insights, silica was deposited onto adherent HeLa cells under biocompatible conditions with micrometer-scale control over silica thickness, minimal cell manipulation steps, and retained cell viability over several days.« less

  13. Control over Silica Particle Growth and Particle–Biomolecule Interactions Facilitates Silica Encapsulation of Mammalian Cells with Thickness Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Robert K.; Harper, Jason C.; Tartis, Michaelann S.

    Over the past 20 years, many strategies utilizing sol–gel chemistry to integrate biological cells into silica-based materials have been reported. One such strategy, Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition, shows promise as an efficient encapsulation technique due to the ability to vary the silica encapsulation morphology obtained by this process through variation of SG-CViL reaction conditions. In this report, we develop SG-CViL as a tunable, multi-purpose silica encapsulation strategy by investigating the mechanisms governing both silica particle generation and subsequent interaction with phospholipid assemblies (liposomes and living cells). Using Dynamic Light Scattering (DLS) measurements, linear and exponential silica particlemore » growth dynamics were observed which were dependent on deposition buffer ion constituents and ion concentration. Silica particle growth followed a cluster–cluster growth mechanism at acidic pH, and a monomer-cluster growth mechanism at neutral to basic pH. Increasing silica sol aging temperature resulted in higher rates of particle growth and larger particles. DLS measurements employing PEG-coated liposomes and cationic liposomes, serving as model phospholipid assemblies, revealed that electrostatic interactions promote more stable liposome–silica interactions than hydrogen bonding and facilitate silica coating on suspension cells. However, continued silica reactivity leads to aggregation of silica-coated suspension cells, revealing the need for cell isolation to tune deposited silica thickness. As a result, utilizing these mechanistic study insights, silica was deposited onto adherent HeLa cells under biocompatible conditions with micrometer-scale control over silica thickness, minimal cell manipulation steps, and retained cell viability over several days.« less

  14. Regulation of Cell Diameter, For3p Localization, and Cell Symmetry by Fission Yeast Rho-GAP Rga4p

    PubMed Central

    Das, Maitreyi; Wiley, David J.; Medina, Saskia; Vincent, Helen A.; Larrea, Michelle; Oriolo, Andrea

    2007-01-01

    Control of cellular dimensions and cell symmetry are critical for development and differentiation. Here we provide evidence that the putative Rho-GAP Rga4p of Schizosaccharomyces pombe controls cellular dimensions. rga4Δ cells are wider in diameter and shorter in length, whereas Rga4p overexpression leads to reduced diameter of the growing cell tip. Consistent with a negative role in cell growth control, Rga4p protein localizes to the cell sides in a “corset” pattern, and to the nongrowing cell tips. Additionally, rga4Δ cells show an altered growth pattern similar to that observed in mutants of the formin homology protein For3p. Consistent with these observations, Rga4p is required for normal localization of For3p and for normal distribution of the actin cytoskeleton. We show that different domains of the Rga4p protein mediate diverse morphological functions. The C-terminal GAP domain mediates For3p localization to the cell tips and maintains cell diameter. Conversely, overexpression of the N-terminal LIM homology domain of Rga4p promotes actin cable formation in a For3p-dependent manner. Our studies indicate that Rga4p functionally interacts with For3p and has a novel function in the control of cell diameter and cell growth. PMID:17377067

  15. Hippo circuitry and the redox modulation of hippo components in cancer cell fate decisions.

    PubMed

    Ashraf, Asma; Pervaiz, Shazib

    2015-12-01

    Meticulous and precise control of organ size is undoubtedly one of the most pivotal processes in mammalian development and regeneration along with cell differentiation, morphogenesis and programmed cell death. These processes are strictly regulated by complex and highly coordinated mechanisms to maintain a steady growth state. There are a number of extrinsic and intrinsic factors that dictate the total number and/or size of cells by influencing growth, proliferation, differentiation and cell death. Multiple pathways, such as those involved in promoting organ size and others that restrict disproportionate tissue growth act simultaneously to maintain cellular and tissue homeostasis. Aberrations at any level in these organ size-regulating processes can lead to various pathological states with cancers being the most formidable one (Yin and Zhang, 2011). Extensive research in the realm of growth control has led to the identification of the Hippo-signaling pathway as a critical network in modulating tissue growth via its effect on multiple signaling pathways and through intricate crosstalk with proteins that regulate cell polarity, adhesion and cell-cell interactions (Zhao et al., 2011b). The Hippo pathway controls cell number and organ size by transducing signals from the plasma membrane to the nucleus to regulate the expression of genes involved in cell fate determination (Shi et al., 2015). In this review, we summarize the recent discoveries concerning Hippo pathway, its diversiform regulation in mammals as well as its implications in cancers, and highlight the possible role of oxidative stress in Hippo pathway regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Biomaterials for the programming of cell growth in oral tissues: The possible role of APA.

    PubMed

    Salerno, Marco; Giacomelli, Luca; Larosa, Claudio

    2011-01-06

    Examples of programmed tissue response after the interaction of cells with biomaterials are a hot topic in current dental research. We propose here the use of anodic porous alumina (APA) for the programming of cell growth in oral tissues. In particular, APA may trigger cell growth by the controlled release of specific growth factors and/or ions. Moreover, APA may be used as a scaffold to promote generation of new tissue, due to the high interconnectivity of pores and the high surface roughness displayed by this material.

  17. TGFbeta type II receptor signaling controls Schwann cell death and proliferation in developing nerves.

    PubMed

    D'Antonio, Maurizio; Droggiti, Anna; Feltri, M Laura; Roes, Jürgen; Wrabetz, Lawrence; Mirsky, Rhona; Jessen, Kristján R

    2006-08-16

    During development, Schwann cell numbers are precisely adjusted to match the number of axons. It is essentially unknown which growth factors or receptors carry out this important control in vivo. Here, we tested whether the type II transforming growth factor (TGF) beta receptor has a role in this process. We generated a conditional knock-out mouse in which the type II TGFbeta receptor is specifically ablated only in Schwann cells. Inactivation of the receptor, evident at least from embryonic day 18, resulted in suppressed Schwann cell death in normally developing and injured nerves. Notably, the mutants also showed a strong reduction in Schwann cell proliferation. Consequently, Schwann cell numbers in wild-type and mutant nerves remained similar. Lack of TGFbeta signaling did not appear to affect other processes in which TGFbeta had been implicated previously, including myelination and response of adult nerves to injury. This is the first in vivo evidence for a growth factor receptor involved in promoting Schwann cell division during development and the first genetic evidence for a receptor that controls normal developmental Schwann cell death.

  18. PHABULOSA Controls the Quiescent Center-Independent Root Meristem Activities in Arabidopsis thaliana

    PubMed Central

    Sebastian, Jose; Ryu, Kook Hui; Zhou, Jing; Tarkowská, Danuše; Tarkowski, Petr; Cho, Young-Hee; Yoo, Sang-Dong; Kim, Eun-Sol; Lee, Ji-Young

    2015-01-01

    Plant growth depends on stem cell niches in meristems. In the root apical meristem, the quiescent center (QC) cells form a niche together with the surrounding stem cells. Stem cells produce daughter cells that are displaced into a transit-amplifying (TA) domain of the root meristem. TA cells divide several times to provide cells for growth. SHORTROOT (SHR) and SCARECROW (SCR) are key regulators of the stem cell niche. Cytokinin controls TA cell activities in a dose-dependent manner. Although the regulatory programs in each compartment of the root meristem have been identified, it is still unclear how they coordinate one another. Here, we investigate how PHABULOSA (PHB), under the posttranscriptional control of SHR and SCR, regulates TA cell activities. The root meristem and growth defects in shr or scr mutants were significantly recovered in the shr phb or scr phb double mutant, respectively. This rescue in root growth occurs in the absence of a QC. Conversely, when the modified PHB, which is highly resistant to microRNA, was expressed throughout the stele of the wild-type root meristem, root growth became very similar to that observed in the shr; however, the identity of the QC was unaffected. Interestingly, a moderate increase in PHB resulted in a root meristem phenotype similar to that observed following the application of high levels of cytokinin. Our protoplast assay and transgenic approach using ARR10 suggest that the depletion of TA cells by high PHB in the stele occurs via the repression of B-ARR activities. This regulatory mechanism seems to help to maintain the cytokinin homeostasis in the meristem. Taken together, our study suggests that PHB can dynamically regulate TA cell activities in a QC-independent manner, and that the SHR-PHB pathway enables a robust root growth system by coordinating the stem cell niche and TA domain. PMID:25730098

  19. Platelet-derived growth factor-receptor alpha strongly inhibits melanoma growth in vitro and in vivo.

    PubMed

    Faraone, Debora; Aguzzi, Maria Simona; Toietta, Gabriele; Facchiano, Angelo M; Facchiano, Francesco; Magenta, Alessandra; Martelli, Fabio; Truffa, Silvia; Cesareo, Eleonora; Ribatti, Domenico; Capogrossi, Maurizio C; Facchiano, Antonio

    2009-08-01

    Cutaneous melanoma is the most aggressive skin cancer; it is highly metastatic and responds poorly to current therapies. The expression of platelet-derived growth factor receptors (PDGF-Rs) is reported to be reduced in metastatic melanoma compared with benign nevi or normal skin; we then hypothesized that PDGF-Ralpha may control growth of melanoma cells. We show here that melanoma cells overexpressing PDGF-Ralpha respond to serum with a significantly lower proliferation compared with that of controls. Apoptosis, cell cycle arrest, pRb dephosphorylation, and DNA synthesis inhibition were also observed in cells overexpressing PDGF-Ralpha. Proliferation was rescued by PDGF-Ralpha inhibitors, allowing to exclude nonspecific toxic effects and indicating that PDGF-Ralpha mediates autocrine antiproliferation signals in melanoma cells. Accordingly, PDGF-Ralpha was found to mediate staurosporine cytotoxicity. A protein array-based analysis of the mitogen-activated protein kinase pathway revealed that melanoma cells overexpressing PDGF-Ralpha show a strong reduction of c-Jun phosphorylated in serine 63 and of protein phosphatase 2A/Balpha and a marked increase of p38gamma, mitogen-activated protein kinase kinase 3, and signal regulatory protein alpha1 protein expression. In a mouse model of primary melanoma growth, infection with the Ad-vector overexpressing PDGF-Ralpha reached a significant 70% inhibition of primary melanoma growth (P < .001) and a similar inhibition of tumor angiogenesis. All together, these data demonstrate that PDGF-Ralpha strongly impairs melanoma growth likely through autocrine mechanisms and indicate a novel endogenous mechanism involved in melanoma control.

  20. Temporal Control of Transforming Growth Factor (TGF) - Betal Expression on Mammary Cell Multistep Transformation

    DTIC Science & Technology

    1999-10-01

    deregulated cell mors and may eventually regress through growth (18). The importance of APC and 0- cat - apoptosis (25). enin in the development of colorectal...progression. In support of this idea, Torre Amione et al. [74] demonstrated that, unlike parental tumor cells, fibrosarcoma cells transfected to express 10

  1. Light-regulated leaf expansion in two Populus species: dependence on developmentally controlled ion transport.

    PubMed

    Stiles, Kari A; Van Volkenburgh, Elizabeth

    2002-07-01

    Leaf growth responses to light have been compared in two species of Populus, P. deltoides and P. trichocarpa. These species differ markedly in morphology, anatomy, and dependence on light during leaf expansion. Light stimulates the growth rate and acidification of cell walls in P. trichocarpa but not in P. deltoides, whereas leaves of P. deltoides maintain growth in the dark. Light-induced growth is promoted in P. deltoides when cells are provided 50-100 mM KCl. In both species, light initially depolarizes, then hyperpolarizes mesophyll plasma membranes. However, in the dark, the resting E(m) of mesophyll cells in P. deltoides, but not in P. trichocarpa, is relatively insensitive to decade changes in external [K+]. Results suggest that light-stimulated leaf growth depends on developmentally regulated cellular mechanisms controlling ion fluxes across the plasma membrane. These developmental differences underlie species-level differences in growth and physiological responses to the photoenvironment.

  2. CNPY2 inhibits MYLIP-mediated AR protein degradation in prostate cancer cells.

    PubMed

    Ito, Saya; Ueno, Akihisa; Ueda, Takashi; Nakagawa, Hideo; Taniguchi, Hidefumi; Kayukawa, Naruhiro; Fujihara-Iwata, Atsuko; Hongo, Fumiya; Okihara, Koji; Ukimura, Osamu

    2018-04-03

    The androgen receptor (AR) is a ligand-dependent transcription factor that promotes prostate cancer (PC) cell growth through control of target gene expression. This report suggests that Canopy FGF signaling regulator 2 (CNPY2) controls AR protein levels in PC cells. We found that AR was ubiquitinated by an E3 ubiquitin ligase, myosin regulatory light chain interacting protein (MYLIP) and then degraded through the ubiquitin-proteasome pathway. CNPY2 decreased the ubiquitination activity of MYLIP by inhibition of interaction between MYLIP and UBE2D1, an E2 ubiquitin ligase. CNPY2 up-regulated gene expression of AR target genes such as KLK3 gene which encodes the prostate specific antigen (PSA) and promoted cell growth of PC cells. The cell growth inhibition by CNPY2 knockdown was rescued by AR overexpression. Furthermore, positive correlation of expression levels between CNPY2 and AR/AR target genes was observed in tissue samples from human prostate cancer patients. Together, these results suggested that CNPY2 promoted cell growth of PC cells by inhibition of AR protein degradation through MYLIP-mediated AR ubiquitination.

  3. CNPY2 inhibits MYLIP-mediated AR protein degradation in prostate cancer cells

    PubMed Central

    Ito, Saya; Ueno, Akihisa; Ueda, Takashi; Nakagawa, Hideo; Taniguchi, Hidefumi; Kayukawa, Naruhiro; Fujihara-Iwata, Atsuko; Hongo, Fumiya; Okihara, Koji; Ukimura, Osamu

    2018-01-01

    The androgen receptor (AR) is a ligand-dependent transcription factor that promotes prostate cancer (PC) cell growth through control of target gene expression. This report suggests that Canopy FGF signaling regulator 2 (CNPY2) controls AR protein levels in PC cells. We found that AR was ubiquitinated by an E3 ubiquitin ligase, myosin regulatory light chain interacting protein (MYLIP) and then degraded through the ubiquitin-proteasome pathway. CNPY2 decreased the ubiquitination activity of MYLIP by inhibition of interaction between MYLIP and UBE2D1, an E2 ubiquitin ligase. CNPY2 up-regulated gene expression of AR target genes such as KLK3 gene which encodes the prostate specific antigen (PSA) and promoted cell growth of PC cells. The cell growth inhibition by CNPY2 knockdown was rescued by AR overexpression. Furthermore, positive correlation of expression levels between CNPY2 and AR/AR target genes was observed in tissue samples from human prostate cancer patients. Together, these results suggested that CNPY2 promoted cell growth of PC cells by inhibition of AR protein degradation through MYLIP-mediated AR ubiquitination. PMID:29707137

  4. The Mechanism Forming the Cell Surface of Tip-Growing Rooting Cells Is Conserved among Land Plants.

    PubMed

    Honkanen, Suvi; Jones, Victor A S; Morieri, Giulia; Champion, Clement; Hetherington, Alexander J; Kelly, Steve; Proust, Hélène; Saint-Marcoux, Denis; Prescott, Helen; Dolan, Liam

    2016-12-05

    To discover mechanisms that controlled the growth of the rooting system in the earliest land plants, we identified genes that control the development of rhizoids in the liverwort Marchantia polymorpha. 336,000 T-DNA transformed lines were screened for mutants with defects in rhizoid growth, and a de novo genome assembly was generated to identify the mutant genes. We report the identification of 33 genes required for rhizoid growth, of which 6 had not previously been functionally characterized in green plants. We demonstrate that members of the same orthogroup are active in cell wall synthesis, cell wall integrity sensing, and vesicle trafficking during M. polymorpha rhizoid and Arabidopsis thaliana root hair growth. This indicates that the mechanism for constructing the cell surface of tip-growing rooting cells is conserved among land plants and was active in the earliest land plants that existed sometime more than 470 million years ago [1, 2]. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populus

    PubMed Central

    Love, Jonathan; Björklund, Simon; Vahala, Jorma; Hertzberg, Magnus; Kangasjärvi, Jaakko; Sundberg, Björn

    2009-01-01

    The plant hormone ethylene is an important signal in plant growth responses to environmental cues. In vegetative growth, ethylene is generally considered as a regulator of cell expansion, but a role in the control of meristem growth has also been suggested based on pharmacological experiments and ethylene-overproducing mutants. In this study, we used transgenic ethylene-insensitive and ethylene-overproducing hybrid aspen (Populus tremula × tremuloides) in combination with experiments using an ethylene perception inhibitor [1-methylcyclopropene (1-MCP)] to demonstrate that endogenous ethylene produced in response to leaning stimulates cell division in the cambial meristem. This ethylene-controlled growth gives rise to the eccentricity of Populus stems that is formed in association with tension wood. PMID:19293381

  6. Growth and acid production of Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842 in the fermentation of algal carcass.

    PubMed

    Li, C; Zhang, G F; Mao, X; Wang, J Y; Duan, C Y; Wang, Z J; Liu, L B

    2016-06-01

    Algal carcass is a low-value byproduct of algae after its conversion to biodiesel. Dried algal carcass is rich in protein, carbohydrate, and multiple amino acids, and it is typically well suited for growth and acid production of lactic acid bacteria. In this study, Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842 was used to ferment different algal carcass media (ACM), including 2% ACM, 2% ACM with 1.9% glucose (ACM-G), and 2% ACM with 1.9% glucose and 2g/L amino acid mixture (ACM-GA). Concentrations of organic acids (lactic acid and acetic acid), acetyl-CoA, and ATP were analyzed by HPLC, and activities of lactate dehydrogenase (LDH), acetokinase (ACK), pyruvate kinase (PK), and phosphofructokinase (PFK) were determined by using a chemical approach. The growth of L. bulgaricus cells in ACM-GA was close to that in the control medium (de Man, Rogosa, and Sharpe). Lactic acid and acetic acid contents were greatly reduced when L. bulgaricus cells were grown in ACM compared with the control medium. Acetyl-CoA content varied with organic acid content and was increased in cells grown in different ACM compared with the control medium. The ATP content of L. bulgaricus cells in ACM was reduced compared with that of cells grown in the control medium. Activities of PFK and ACK of L. bulgaricus cells grown in ACM were higher and those of PK and LDH were lower compared with the control. Thus, ACM rich in nutrients may serve as an excellent substrate for growth by lactic acid bacteria, and addition of appropriate amounts of glucose and amino acids can improve growth and acid production. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. The potential for chemical mixtures from the environment to enable the cancer hallmark of sustained proliferative signalling.

    PubMed

    Engström, Wilhelm; Darbre, Philippa; Eriksson, Staffan; Gulliver, Linda; Hultman, Tove; Karamouzis, Michalis V; Klaunig, James E; Mehta, Rekha; Moorwood, Kim; Sanderson, Thomas; Sone, Hideko; Vadgama, Pankaj; Wagemaker, Gerard; Ward, Andrew; Singh, Neetu; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Colacci, Anna Maria; Vaccari, Monica; Mondello, Chiara; Scovassi, A Ivana; Raju, Jayadev; Hamid, Roslida A; Memeo, Lorenzo; Forte, Stefano; Roy, Rabindra; Woodrick, Jordan; Salem, Hosni K; Ryan, Elizabeth P; Brown, Dustin G; Bisson, William H

    2015-06-01

    The aim of this work is to review current knowledge relating the established cancer hallmark, sustained cell proliferation to the existence of chemicals present as low dose mixtures in the environment. Normal cell proliferation is under tight control, i.e. cells respond to a signal to proliferate, and although most cells continue to proliferate into adult life, the multiplication ceases once the stimulatory signal disappears or if the cells are exposed to growth inhibitory signals. Under such circumstances, normal cells remain quiescent until they are stimulated to resume further proliferation. In contrast, tumour cells are unable to halt proliferation, either when subjected to growth inhibitory signals or in the absence of growth stimulatory signals. Environmental chemicals with carcinogenic potential may cause sustained cell proliferation by interfering with some cell proliferation control mechanisms committing cells to an indefinite proliferative span. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Synthesis of Very-Long-Chain Fatty Acids in the Epidermis Controls Plant Organ Growth by Restricting Cell Proliferation

    PubMed Central

    Nobusawa, Takashi; Okushima, Yoko; Nagata, Noriko; Kojima, Mikiko; Sakakibara, Hitoshi; Umeda, Masaaki

    2013-01-01

    Plant organ growth is controlled by inter-cell-layer communication, which thus determines the overall size of the organism. The epidermal layer interfaces with the environment and participates in both driving and restricting growth via inter-cell-layer communication. However, it remains unknown whether the epidermis can send signals to internal tissue to limit cell proliferation in determinate growth. Very-long-chain fatty acids (VLCFAs) are synthesized in the epidermis and used in the formation of cuticular wax. Here we found that VLCFA synthesis in the epidermis is essential for proper development of Arabidopsis thaliana. Wild-type plants treated with a VLCFA synthesis inhibitor and pasticcino mutants with defects in VLCFA synthesis exhibited overproliferation of cells in the vasculature or in the rib zone of shoot apices. The decrease of VLCFA content increased the expression of IPT3, a key determinant of cytokinin biosynthesis in the vasculature, and, indeed, elevated cytokinin levels. These phenotypes were suppressed in ipt3;5;7 triple mutants, and also by vasculature-specific expression of cytokinin oxidase, which degrades active forms of cytokinin. Our results imply that VLCFA synthesis in the epidermis is required to suppress cytokinin biosynthesis in the vasculature, thus fine-tuning cell division activity in internal tissue, and therefore that shoot growth is controlled by the interaction between the surface (epidermis) and the axis (vasculature) of the plant body. PMID:23585732

  9. Onion epidermis as a new model to study the control of growth anisotropy in higher plants.

    PubMed

    Suslov, Dmitry; Verbelen, Jean-Pierre; Vissenberg, Kris

    2009-01-01

    To elucidate the role of cellulose microfibrils in the control of growth anisotropy, a link between their net orientation, in vitro cell wall extensibility, and anisotropic cell expansion was studied during development of the adaxial epidermis of onion (Allium cepa) bulb scales using polarization confocal microscopy, creep tests, and light microscopy. During growth the net cellulose alignment across the whole thickness of the outer epidermal wall changed from transverse through random to longitudinal and back to transverse relative to the bulb axis. Cell wall extension in vitro was always higher transverse than parallel to the net cellulose alignment. The direction of growth anisotropy was perpendicular to the net microfibril orientation and changed during development from longitudinal to transverse to the bulb axis. The correlation between the degree of growth anisotropy and the net cellulose alignment was poor. Thus the net cellulose microfibril orientation across the whole thickness of the outer periclinal epidermis wall defines the direction but not the degree of growth anisotropy. Strips isolated from the epidermis in the directions perpendicular and transverse to a net cellulose orientation can be used as an extensiometric model to prove a protein involvement in the control of growth anisotropy.

  10. Target of Rapamycin (TOR)-like 1 Kinase Is Involved in the Control of Polyphosphate Levels and Acidocalcisome Maintenance in Trypanosoma brucei*

    PubMed Central

    de Jesus, Teresa Cristina Leandro; Tonelli, Renata Rosito; Nardelli, Sheila C.; da Silva Augusto, Leonardo; Motta, Maria Cristina M.; Girard-Dias, Wendell; Miranda, Kildare; Ulrich, Paul; Jimenez, Veronica; Barquilla, Antonio; Navarro, Miguel; Docampo, Roberto; Schenkman, Sergio

    2010-01-01

    Target of rapamycin (TOR) kinases are highly conserved protein kinases that integrate signals from nutrients and growth factors to coordinate cell growth and cell cycle progression. It has been previously described that two TOR kinases control cell growth in the protozoan parasite Trypanosoma brucei, the causative agent of African trypanosomiasis. Here we studied an unusual TOR-like protein named TbTOR-like 1 containing a PDZ domain and found exclusively in kinetoplastids. TbTOR-like 1 localizes to unique cytosolic granules. After hyperosmotic stress, the localization of the protein shifts to the cell periphery, different from other organelle markers. Ablation of TbTOR-like 1 causes a progressive inhibition of cell proliferation, producing parasites accumulating in the S/G2 phase of the cell cycle. TbTOR-like 1 knocked down cells have an increased area occupied by acidic vacuoles, known as acidocalcisomes, and are enriched in polyphosphate and pyrophosphate. These results suggest that TbTOR-like 1 might be involved in the control of acidocalcisome and polyphosphate metabolism in T. brucei. PMID:20495004

  11. S100A8/A9 (Calprotectin) Negatively Regulates G2/M Cell Cycle Progression and Growth of Squamous Cell Carcinoma

    PubMed Central

    Khammanivong, Ali; Wang, Chengxing; Sorenson, Brent S.; Ross, Karen F.; Herzberg, Mark C.

    2013-01-01

    Malignant transformation results in abnormal cell cycle regulation and uncontrolled growth in head and neck squamous cell carcinoma (HNSCC) and other cancers. S100A8/A9 (calprotectin) is a calcium-binding heterodimeric protein complex implicated in cell cycle regulation, but the specific mechanism and role in cell cycle control and carcinoma growth are not well understood. In HNSCC, S100A8/A9 is downregulated at both mRNA and protein levels. We now report that downregulation of S100A8/A9 correlates strongly with a loss of cell cycle control and increased growth of carcinoma cells. To show its role in carcinogenesis in an in vitro model, S100A8/A9 was stably expressed in an S100A8/A9-negative human carcinoma cell line (KB cells, HeLa-like). S100A8/A9 expression increases PP2A phosphatase activity and p-Chk1 (Ser345) phosphorylation, which appears to signal inhibitory phosphorylation of mitotic p-Cdc25C (Ser216) and p-Cdc2 (Thr14/Tyr15) to inactivate the G2/M Cdc2/cyclin B1 complex. Cyclin B1 expression then downregulates and the cell cycle arrests at the G2/M checkpoint, reducing cell division. As expected, S100A8/A9-expressing cells show both decreased anchorage-dependent and -independent growth and mitotic progression. Using shRNA, silencing of S100A8/A9 expression in the TR146 human HNSCC cell line increases growth and survival and reduces Cdc2 inhibitory phosphorylation at Thr14/Tyr15. The level of S100A8/A9 endogenous expression correlates strongly with the reduced p-Cdc2 (Thr14/Tyr14) level in HNSCC cell lines, SCC-58, OSCC-3 and UMSCC-17B. S100A8/A9-mediated control of the G2/M cell cycle checkpoint is, therefore, a likely suppressive mechanism in human squamous cell carcinomas and may suggest new therapeutic approaches. PMID:23874958

  12. Blockade of epidermal growth factor receptor signaling leads to inhibition of renal cell carcinoma growth in the bone of nude mice.

    PubMed

    Weber, Kristy L; Doucet, Michele; Price, Janet E; Baker, Cheryl; Kim, Sun Jin; Fidler, Isaiah J

    2003-06-01

    Renal cell carcinoma (RCC) frequently produces metastases to the musculoskeletal system that are a major source of morbidity in the form of pain, immobilization, fractures, neurological compromise, and a decreased ability to perform activities of daily living. Patients with metastatic RCC therefore have a dismal prognosis because there is no effective adjuvant treatment for this disease. Because the epidermal growth factor receptor (EGF-R) signaling cascade is important in the growth and metastasis of RCC, its blockade has been hypothesized to inhibit tumor growth and hence prevent resultant bone destruction. We determined whether blockade of EGF-R by the tyrosine kinase inhibitor PKI 166 inhibited the growth of RCC in bone. We use a novel cell line, RBM1-IT4, established from a human RCC bone metastasis. Protein and mRNA expression of the ligands and receptors was assessed by Western and Northern blots. The stimulation of RBM1-IT4 cells with epidermal growth factor or transforming growth factor alpha resulted in increased cellular proliferation and tyrosine kinase autophosphorylation. PKI 166 prevented these effects. First, RBM1-IT4 cells were implanted into the tibia of nude mice, where they established lytic, progressively growing lesions, after which the mice were treated with PKI 166 alone or in combination with paclitaxel (Taxol). Immunohistochemical analysis revealed that tumor cells and tumor-associated endothelial cells in control mice expressed activated EGF-R. Treatment of mice with PKI 166 alone or in combination with Taxol produced a significant decrease in the incidence and size of bone lesions as compared with the results in control or Taxol-treated mice (P < 0.001). Treatment with PKI 166 also decreased the expression of phosphorylated EGF-R by tumor cells and tumor-associated endothelial cells, and this was even more pronounced with PKI 166 plus Taxol treatment. The PKI 166 plus Taxol combination produced apoptosis of tumor cells and tumor-associated endothelial cells. Tumor cell proliferation, shown by proliferating cell nuclear antigen positivity, was decreased in all treatment groups. In addition, the integrity of the bone was maintained in mice treated with PKI 166 or PKI 166 plus Taxol, whereas massive bone destruction was seen in control and Taxol-treated mice. These results suggest that blockade of EGF-R signaling inhibits growth of RCC in the bone by its effect on tumor cells and tumor-associated endothelial cells.

  13. On the genetic control of planar growth during tissue morphogenesis in plants.

    PubMed

    Enugutti, Balaji; Kirchhelle, Charlotte; Schneitz, Kay

    2013-06-01

    Tissue morphogenesis requires extensive intercellular communication. Plant organs are composites of distinct radial cell layers. A typical layer, such as the epidermis, is propagated by stereotypic anticlinal cell divisions. It is presently unclear what mechanisms coordinate cell divisions relative to the plane of a layer, resulting in planar growth and maintenance of the layer structure. Failure in the regulation of coordinated growth across a tissue may result in spatially restricted abnormal growth and the formation of a tumor-like protrusion. Therefore, one way to approach planar growth control is to look for genetic mutants that exhibit localized tumor-like outgrowths. Interestingly, plants appear to have evolved quite robust genetic mechanisms that govern these aspects of tissue morphogenesis. Here we provide a short summary of the current knowledge about the genetics of tumor formation in plants and relate it to the known control of coordinated cell behavior within a tissue layer. We further portray the integuments of Arabidopsis thaliana as an excellent model system to study the regulation of planar growth. The value of examining this process in integuments was established by the recent identification of the Arabidopsis AGC VIII kinase UNICORN as a novel growth suppressor involved in the regulation of planar growth and the inhibition of localized ectopic growth in integuments and other floral organs. An emerging insight is that misregulation of central determinants of adaxial-abaxial tissue polarity can lead to the formation of spatially restricted multicellular outgrowths in several tissues. Thus, there may exist a link between the mechanisms regulating adaxial-abaxial tissue polarity and planar growth in plants.

  14. Mechanosensation Dynamically Coordinates Polar Growth and Cell Wall Assembly to Promote Cell Survival.

    PubMed

    Davì, Valeria; Tanimoto, Hirokazu; Ershov, Dmitry; Haupt, Armin; De Belly, Henry; Le Borgne, Rémi; Couturier, Etienne; Boudaoud, Arezki; Minc, Nicolas

    2018-04-23

    How growing cells cope with size expansion while ensuring mechanical integrity is not known. In walled cells, such as those of microbes and plants, growth and viability are both supported by a thin and rigid encasing cell wall (CW). We deciphered the dynamic mechanisms controlling wall surface assembly during cell growth, using a sub-resolution microscopy approach to monitor CW thickness in live rod-shaped fission yeast cells. We found that polar cell growth yielded wall thinning and that thickness negatively influenced growth. Thickness at growing tips exhibited a fluctuating behavior with thickening phases followed by thinning phases, indicative of a delayed feedback promoting thickness homeostasis. This feedback was mediated by mechanosensing through the CW integrity pathway, which probes strain in the wall to adjust synthase localization and activity to surface growth. Mutants defective in thickness homeostasis lysed by rupturing the wall, demonstrating its pivotal role for walled cell survival. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. The effect of desferrioxamine on transferrin receptors, the cell cycle and growth rates of human leukaemic cells.

    PubMed Central

    Bomford, A; Isaac, J; Roberts, S; Edwards, A; Young, S; Williams, R

    1986-01-01

    The effect of the iron chelator, desferrioxamine, on transferrin binding, growth rates and the cell cycle was investigated in the human leukaemic cell line, K562. At all concentrations of the chelator (2-50 microM) binding of 125I-transferrin was increased by 24 h and reached a maximum at 72-96 h. Maximum binding (6-8-fold increased) occurred in cells treated with 20 microM-desferrioxamine, in contrast with control cells which, at 96 h, showed a 50% decrease over initial binding. Scatchard analysis at 4 degrees C showed that this increased binding was due to an increase in the number of receptors, as the Kd was similar in induced (1.8 nM) and control (1.5 nM) cells. After 96 h cells, cultured with 20 and 50 microM-desferrioxamine accumulated 59Fe from bovine transferrin at over twice the rate found with control cells, reflecting the increase in transferrin receptors. Although iron uptake was unimpaired by the chelator there was a dose-dependent inhibition of cell growth, with control cells completing three divisions in 96 h and those in 10 microM-desferrioxamine only two divisions. At the highest concentration (50 microM), cell division was abrogated although cell viability was maintained (85%). In contrast, DNA synthesis was not markedly affected, except at 50 microM-desferrioxamine when incorporation of [3H]thymidine was 52% of that in control cells. Flow cytometry revealed that there was a progressive accumulation of the cells in the active phases of their cycle (S, G2 + M). Desferrioxamine may increase transferrin receptors in two ways: by chelating a regulatory pool of iron within the cell, and by arresting cells in S phase when receptors are maximally expressed. PMID:3790074

  16. TGF-beta1 expression in EL4 lymphoma cells overexpressing growth hormone.

    PubMed

    Farmer, John T; Weigent, Douglas A

    2006-03-01

    Our previous studies show that growth hormone overexpression (GHo) upregulates the expression of the IGF-1R and IGF-2R resulting in the protection of the EL4 lymphoma cell line from apoptosis. In this study, we report that GHo also increases TGF-beta1 protein expression measured by luciferase promoter assay, Western analysis, and ELISA. Further, the data show that antibody to TGF-betaR2 decreases TGF-beta1 promoter activity to the level of vector alone control cells. GHo cells treated with (125)I-rh-latent TGF-beta1 showed increased activation of latent TGF-beta1 as measured by an increase in the active 24kDa, TGF-beta1 compared to vector alone control cells. The ability of endogenous GH to increase TGF-beta1 expression is blocked in EL4 cells by antisense but not sense oligodeoxynucleotides or in cells cultured with antibody to growth hormone (GH). The data suggest that endogenous GH may protect from apoptosis through the IGF-1R receptor while limiting cellular growth through increased expression and activation of TGF-beta1.

  17. Improved Performance in Mammalian Cell Perfusion Cultures by Growth Inhibition.

    PubMed

    Wolf, Moritz K F; Closet, Aurélie; Bzowska, Monika; Bielser, Jean-Marc; Souquet, Jonathan; Broly, Hervé; Morbidelli, Massimo

    2018-05-21

    Mammalian cell perfusion cultures represent a promising alternative to the current fed-batch technology for the production of various biopharmaceuticals. Long-term operation at a fixed viable cell density (VCD) requires a viable culture and a constant removal of excessive cells. Product loss in the cell removing bleed stream deteriorates the process yield. In this study, the authors investigate the use of chemical and environmental growth inhibition on culture performance by either adding valeric acid (VA) to the production media or by reducing the culture temperature (33.0 °C) with respect to control conditions (36.5 °C, no VA). Low temperature significantly reduces cellular growth, thus, resulting in lower bleed rates accompanied by a reduced product loss of 11% compared to 26% under control conditions. Additionally, the cell specific productivity of the target protein improves and maintained stable leading to media savings per mass of product. VA shows initially an inhibitory effect on cellular growth. However, cells seemed to adapt to the presence of the inhibitor resulting in a recovery of the cellular growth. Cell cycle and Western blot analyses support the observed results. This work underlines the role of temperature as a key operating variable for the optimization of perfusion cultures. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effects of chilling on protein synthesis in tomato suspension cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matadial, B.; Pauls, K.P.

    The effect of chilling on cell growth, cell viability, protein content and protein composition in suspension cultures of L. esculentum and L. hirsutum was investigated. Cell growth for both species was arrested at 2{degrees}C but when cultures were transferred to 25{degree}C cell growth resumed. There was no difference in viability between control and chilled cultures of L. esculentum, however, L. hirsutum control cultures exhibited larger amounts of Fluorescein Diacetate induced fluorescence than chilled cultures. {sup 35}S-methionine incorporation into proteins was 2.5-2 times higher in L. hirsutum than in L. esculentum. Quantitative and qualitative differences, in {sup 35}S-methionine labelled proteins, betweenmore » chilled and control cultures were observed by SDS-PAGE and fluorography. Protein content in chilled cultures decreased over time but then increased when cultures were transferred to 25{degrees}C.« less

  19. Expression of human choline kinase in NIH 3T3 fibroblasts increases the mitogenic potential of insulin and insulin-like growth factor I.

    PubMed

    Chung, T; Huang, J S; Mukherjee, J J; Crilly, K S; Kiss, Z

    2000-05-01

    In mammalian cells, growth factors, oncogenes, and carcinogens stimulate phosphocholine (PCho) synthesis by choline kinase (CK), suggesting that PCho may regulate cell growth. To validate the role of PCho in mitogenesis, we determined the effects of insulin, insulin-like growth factor I (IGF-I), and other growth factors on DNA synthesis in NIH 3T3 fibroblast sublines highly expressing human choline kinase (CK) without increasing phosphatidylcholine synthesis. In serum-starved CK expressor cells, insulin and IGF-I stimulated DNA synthesis, p70 S6 kinase (p70 S6K) activity, phosphatidylinositol 3-kinase (PI3K) activity, and activating phosphorylation of p42/p44 mitogen-activated protein kinases (MAPK) to greater extents than in the corresponding vector control cells. Furthermore, the CK inhibitor hemicholinium-3 (HC-3) inhibited insulin- and IGF-I-induced DNA synthesis in the CK overexpressors, but not in the vector control cells. The results indicate that high cellular levels of PCho potentiate insulin- and IGF-I-induced DNA synthesis by MAPK- and p70 S6K-regulated mechanisms.

  20. The Impact of Cetuximab Plus AKT- or mTOR- Inhibitor in a Patient-Derived Colon Cancer Cell Model with Wild-Type RAS and PIK3CA Mutation.

    PubMed

    Kim, Ju Sun; Kim, Jung Eun; Kim, Kyung; Lee, Jeeyun; Park, Joon Oh; Lim, Ho Yeong; Park, Young Suk; Kang, Won Ki; Kim, Seung Tae

    2017-01-01

    Background: Anti-EGFR therapies have been recommended for advanced colorectal cancer (CRC) with wild-type RAS and PIK3CA mutation. However, PIK3CA mutations are a poor prognostic marker and a negative predictor of response to anti-EGFR therapies in RAS wild-type CRC. Therefore, new and advanced treatment strategies are needed for personalized medical treatment of patients with wild-type RAS and PIK3CA mutation. Methods: Patient-derived tumor cells were collected from the ascites of a refractory colon cancer patient with wild-type RAS and PIK3CA mutation. We performed a cell viability assay for cetuximab, AZD5363 (AKT inhibitor), and everolimus (mTOR inhibitor) using PDCs. We also evaluated combinations of cetuximab plus AZD5363 or everolimus in a cell viability assay. Results: Based on cellular proliferation by MTT assay, tumor cells were significantly inhibited by 1uM cetuximab (control vs. cetuximab, mean growth = 100.0% vs 58.07%, p = 0.0103), 1uM AZD5363 (control vs. AZD5363, mean growth = 100.0% vs 58.22%, p = 0.0123), and 1uM everolimus (control vs. everolimus, mean growth = 100.0% vs 52.17%, p = 0.0011). Tumor cell growth was more profoundly reduced by combinations of cetuximab plus AZD5363 (control vs. cetuximab plus AZD5363, mean growth = 100.0% vs 25.00%, p < 0.0001) or everolimus (control vs. cetuximab+everolimus, mean growth = 100.0% vs 28.24%, p < 0.0001). Conclusions: Taken together, these results indicate that RAS wild-type and PIK3CA mutant PDCs originating from CRC are considerably inhibited by treatment with cetuximab plus AZD5363 or everolimus, with downregulation of the AKT and ERK pathways. These combinations may be considered as new options for advanced CRC patients with wild-type RAS and PIK3CA mutation in the context of clinical trials.

  1. Reduced growth factor requirement of keloid-derived fibroblasts may account for tumor growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, S.B.; Trupin, K.M.; Rodriguez-Eaton, S.

    Keloids are benign dermal tumors that form during an abnormal wound-healing process is genetically susceptible individuals. Although growth of normal and keloid cells did not differ in medium containing 10% (vol/vol) fetal bovine serum, keloid culture grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) fetal bovine serum, keloid cultures grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) plasma or 1% fetal bovine serum. Conditioned medium from keloid cultures did not stimulate growth of normal cells in plasma nor did it contain detectable platelet-derived growth factor or epidermal growth factor. Keloidmore » fibroblasts responded differently than normal adult fibroblasts to transforming growth factor ..beta... Whereas transforming growth factor ..beta.. reduced growth stimulation by epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from keloids. Normal and keloid fibroblasts also responded differently to hydrocortisone: growth was stimulated in normal adult cells and unaffected or inhibited in keloid cells. Fetal fibroblasts resembled keloid cells in their ability to grow in plasma and in their response to hydrocortisone. The ability of keloid fibroblasts to grow to higher cell densities in low-serum medium than cells from normal adult skin or from normal early or mature scars suggests that a reduced dependence on serum growth factors may account for their prolonged growth in vivo. Similarities between keloid and fetal cells suggest that keloids may result from the untimely expression of growth-control mechanism that is developmentally regulated.« less

  2. Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks

    NASA Technical Reports Server (NTRS)

    Huang, S.; Ingber, D. E.

    2000-01-01

    Development of characteristic tissue patterns requires that individual cells be switched locally between different phenotypes or "fates;" while one cell may proliferate, its neighbors may differentiate or die. Recent studies have revealed that local switching between these different gene programs is controlled through interplay between soluble growth factors, insoluble extracellular matrix molecules, and mechanical forces which produce cell shape distortion. Although the precise molecular basis remains unknown, shape-dependent control of cell growth and function appears to be mediated by tension-dependent changes in the actin cytoskeleton. However, the question remains: how can a generalized physical stimulus, such as cell distortion, activate the same set of genes and signaling proteins that are triggered by molecules which bind to specific cell surface receptors. In this article, we use computer simulations based on dynamic Boolean networks to show that the different cell fates that a particular cell can exhibit may represent a preprogrammed set of common end programs or "attractors" which self-organize within the cell's regulatory networks. In this type of dynamic network model of information processing, generalized stimuli (e.g., mechanical forces) and specific molecular cues elicit signals which follow different trajectories, but eventually converge onto one of a small set of common end programs (growth, quiescence, differentiation, apoptosis, etc.). In other words, if cells use this type of information processing system, then control of cell function would involve selection of preexisting (latent) behavioral modes of the cell, rather than instruction by specific binding molecules. Importantly, the results of the computer simulation closely mimic experimental data obtained with living endothelial cells. The major implication of this finding is that current methods used for analysis of cell function that rely on characterization of linear signaling pathways or clusters of genes with common activity profiles may overlook the most critical features of cellular information processing which normally determine how signal specificity is established and maintained in living cells. Copyright 2000 Academic Press.

  3. Phosphate limitation induces sporulation in the chytridiomycete Blastocladiella emersonii.

    PubMed

    Bongiorno, Vagner Alexandre; Ferreira da Cruz, Angela; Nunis da Silva, Antonio; Corrêa, Luiz Carlos

    2012-09-01

    The cell cycle is controlled by numerous mechanisms that ensure correct cell division. If growth is not possible, cells may eventually promote autophagy, differentiation, or apoptosis. Microorganisms interrupt their growth and differentiate under general nutrient limitation. We analyzed the effects of phosphate limitation on growth and sporulation in the chytridiomycete Blastocladiella emersonii using kinetic data, phase-contrast, and laser confocal microscopy. Under phosphate limitation, zoospores germinated and subsequently formed 2-4 spores, regardless of the nutritional content of the medium. The removal of phosphate at any time during growth induced sporulation of vegetative cells. If phosphate was later added to the same cultures, growth was restored if the cells were not yet committed to sporulation. The cycles of addition and withdrawal of phosphate from growth medium resulted in cycles of germination-growth, germination-sporulation, or germination-growth-sporulation. These results show that phosphate limitation is sufficient to interrupt cell growth and to induce complete sporulation in B. emersonii. We concluded that the determination of growth or sporulation in this microorganism is linked to phosphate availability when other nutrients are not limiting. This result provides a new tool for the dissection of nutrient-energy and signal pathways in cell growth and differentiation.

  4. iNKT cell cytotoxic responses control T-lymphoma growth in vitro and in vivo

    PubMed Central

    Bassiri, Hamid; Das, Rupali; Guan, Peng; Barrett, David M.; Brennan, Patrick J.; Banerjee, Pinaki P.; Wiener, Susan J.; Orange, Jordan S.; Brenner, Michael B.; Grupp, Stephan A.; Nichols, Kim E.

    2013-01-01

    Invariant natural killer T (iNKT) cells comprise a lineage of CD1d-restricted glycolipid-reactive T lymphocytes with important roles in host immunity to cancer. iNKT cells indirectly participate in antitumor responses by inducing dendritic cell maturation and producing cytokines that promote tumor clearance by CD8+ T and NK cells. Although iNKT cells thereby act as potent cellular adjuvants, it is less clear whether they directly control the growth of tumors. To gain insights into the direct contribution of iNKT cells to tumor immune surveillance, we developed in vitro and in vivo systems to selectively examine the antitumor activity of iNKT cells in the absence of other cytolytic effectors. Using the EL4 T-lymphoma cell line as a model, we find that iNKT cells exert robust and specific lysis of tumor cells in vitro in a manner that is differentially-induced by iNKT cell agonists of varying TCR affinities, such as OCH, α-galactosyl ceramide and PBS44. In vitro blockade of CD1d-mediated lipid antigen presentation, disruption of T cell receptor (TCR) signaling, or loss of perforin expression significantly reduce iNKT cell killing. Consistent with these findings, iNKT cell reconstitution of T, B, and NK cell-deficient mice slows EL4 growth in vivo via TCR-CD1d and perforin-dependent mechanisms. Together, these observations establish that iNKT cells are sufficient to control the growth of T-lymphoma in vitro and in vivo. They also suggest that the induction of iNKT cell cytotoxic responses in situ might serve as a more effective strategy to prevent and/or treat CD1d+ cancers, such as T-lymphoma. PMID:24563871

  5. Quantification of shape and cell polarity reveals a novel mechanism underlying malformations resulting from related FGF mutations during facial morphogenesis

    PubMed Central

    Li, Xin; Young, Nathan M.; Tropp, Stephen; Hu, Diane; Xu, Yanhua; Hallgrímsson, Benedikt; Marcucio, Ralph S.

    2013-01-01

    Fibroblast growth factor (FGF) signaling mutations are a frequent contributor to craniofacial malformations including midfacial anomalies and craniosynostosis. FGF signaling has been shown to control cellular mechanisms that contribute to facial morphogenesis and growth such as proliferation, survival, migration and differentiation. We hypothesized that FGF signaling not only controls the magnitude of growth during facial morphogenesis but also regulates the direction of growth via cell polarity. To test this idea, we infected migrating neural crest cells of chicken embryos with  replication-competent avian sarcoma virus expressing either FgfR2C278F, a receptor mutation found in Crouzon syndrome or the ligand Fgf8. Treated embryos exhibited craniofacial malformations resembling facial dysmorphologies in craniosynostosis syndrome. Consistent with our hypothesis, ectopic activation of FGF signaling resulted in decreased cell proliferation, increased expression of the Sprouty class of FGF signaling inhibitors, and repressed phosphorylation of ERK/MAPK. Furthermore, quantification of cell polarity in facial mesenchymal cells showed that while orientation of the Golgi body matches the direction of facial prominence outgrowth in normal cells, in FGF-treated embryos this direction is randomized, consistent with aberrant growth that we observed. Together, these data demonstrate that FGF signaling regulates cell proliferation and cell polarity and that these cell processes contribute to facial morphogenesis. PMID:23906837

  6. Vertically aligned carbon nanotubes as cytocompatible material for enhanced adhesion and proliferation of osteoblast-like cells.

    PubMed

    Giannona, Suna; Firkowska, Izabela; Rojas-Chapana, José; Giersig, Michael

    2007-01-01

    In this study, we describe the spatial organization of CAL-72 osteoblast-like cells on arrays of vertically aligned multi-walled carbon nanotubes (VACNTs). It was observed that, unlike cell growth on non-patterned surfaces, the cell attachment and spreading process on VACNTs was significantly enhanced. Additionally, since carbon nanotubes are known to possess resilient mechanical properties and are chemically stable, the effect of periodic arrays of VACNTs on CAL-72 osteoblast-like cells was also studied. The periodicity and alignment of VACNTs considerably influenced growth, shape and orientation of the cells by steering toward the nanopattern. This situation is of great interest for the potential application of VACNTs in bone bioenginnering. This data provides evidence that CAL-72 osteoblast-like cells can sense physical features at the nanoscale. These results give a fascinating insight into the ways in which cell growth can be influenced by man-made nanostructures and could provide a framework for achieving controlled cell guidance with controlled organization and special physical properties.

  7. The effect of retinal pigment epithelial cell patch size on growth factor expression

    DOE PAGES

    Vargis, Elizabeth A.; Peterson, Cristen B.; Morrell-Falvey, Jennifer L.; ...

    2014-01-30

    The spatial organization of retinal pigment epithelial (RPE) cells grown in culture was controlled using micropatterning techniques in order to examine the effect of patch size on cell health and differentiation. Understanding this effect is a critical step in the development of multiplexed high throughput fluidic assays and provides a model for replicating disease states associated with the deterioration of retinal tissue during age-related macular degeneration (AMD). Microcontact printing of fibronectin on polystyrene and glass substrates was used to promote cell attachment, forming RPE patches of controlled size and shape. These colonies mimic the effect of atrophy and loss-of-function thatmore » occurs in the retina during degenerative diseases such as AMD. After 72 hours of cell growth, levels of vascular endothelial growth factor (VEGF), an important biomarker of AMD, were measured. Cells were counted and morphological indicators of cell viability and tight junction formation were assessed via fluorescence microscopy. As a result, up to a twofold increase of VEGF expression per cell was measured as colony size decreased, suggesting that the local microenvironment of, and connections between, RPE cells influences growth factor expression leading to the initiation and progression of diseases such as AMD.« less

  8. Cell Wall Composition, Biosynthesis and Remodeling during Pollen Tube Growth

    PubMed Central

    Mollet, Jean-Claude; Leroux, Christelle; Dardelle, Flavien; Lehner, Arnaud

    2013-01-01

    The pollen tube is a fast tip-growing cell carrying the two sperm cells to the ovule allowing the double fertilization process and seed setting. To succeed in this process, the spatial and temporal controls of pollen tube growth within the female organ are critical. It requires a massive cell wall deposition to promote fast pollen tube elongation and a tight control of the cell wall remodeling to modify the mechanical properties. In addition, during its journey, the pollen tube interacts with the pistil, which plays key roles in pollen tube nutrition, guidance and in the rejection of the self-incompatible pollen. This review focuses on our current knowledge in the biochemistry and localization of the main cell wall polymers including pectin, hemicellulose, cellulose and callose from several pollen tube species. Moreover, based on transcriptomic data and functional genomic studies, the possible enzymes involved in the cell wall remodeling during pollen tube growth and their impact on the cell wall mechanics are also described. Finally, mutant analyses have permitted to gain insight in the function of several genes involved in the pollen tube cell wall biosynthesis and their roles in pollen tube growth are further discussed. PMID:27137369

  9. Dynamic metabolic modeling for a MAB bioprocess.

    PubMed

    Gao, Jianying; Gorenflo, Volker M; Scharer, Jeno M; Budman, Hector M

    2007-01-01

    Production of monoclonal antibodies (MAb) for diagnostic or therapeutic applications has become an important task in the pharmaceutical industry. The efficiency of high-density reactor systems can be potentially increased by model-based design and control strategies. Therefore, a reliable kinetic model for cell metabolism is required. A systematic procedure based on metabolic modeling is used to model nutrient uptake and key product formation in a MAb bioprocess during both the growth and post-growth phases. The approach combines the key advantages of stoichiometric and kinetic models into a complete metabolic network while integrating the regulation and control of cellular activity. This modeling procedure can be easily applied to any cell line during both the cell growth and post-growth phases. Quadratic programming (QP) has been identified as a suitable method to solve the underdetermined constrained problem related to model parameter identification. The approach is illustrated for the case of murine hybridoma cells cultivated in stirred spinners.

  10. EMMPRIN regulates tumor growth and metastasis by recruiting bone marrow-derived cells through paracrine signaling of SDF-1 and VEGF

    PubMed Central

    Chen, Yanke; Gou, Xingchun; Kong, Derek Kai; Wang, Xiaofei; Wang, Jianhui; Chen, Zeming; Huang, Chen; Zhou, Jiangbing

    2015-01-01

    EMMPRIN, a cell adhesion molecule highly expressed in a variety of tumors, is associated with poor prognosis in cancer patients. Mechanistically, EMMPRIN has been characterized to contribute to tumor development and progression by controlling the expression of MMPs and VEGF. In the present study, by using fluorescently labeled bone marrow-derived cells (BMDCs), we found that the down-regulation of EMMPRIN expression in cancer cells reduces tumor growth and metastasis, and is associated with the reduced recruitment of BMDCs. Further protein profiling studies suggest that EMMPRIN controls BMDC recruitment through regulating the secretion of soluble factors, notably, VEGF and SDF-1. We demonstrate that the expression and secretion of SDF-1 in tumor cells are regulated by EMMPRIN. This study reveals a novel mechanism by which EMMPRIN promotes tumor growth and metastasis by recruitment of BMDCs through controlling secretion and paracrine signaling of SDF-1 and VEGF. PMID:26416452

  11. Changes in pituitary growth hormone cells prepared from rats flown on Spacelab 3

    NASA Technical Reports Server (NTRS)

    Grindeland, R.; Hymer, W. C.; Farrington, M.; Fast, T.; Hayes, C.; Motter, K.; Patil, L.; Vasques, M.

    1987-01-01

    The effect of exposure to microgravity on pituitary gland was investigated by examining cells isolated from anterior pituitaries of rats flown on the 7-day Spacelab 3 mission and, subsequently, cultured for 6 days. Compared with ground controls, flight cells contained more intracellular growth hormone (GH); however, the flight cells released less GH over the 6-day culture period and after implantation into hypophysectomized rats than did the control cells. Compared with control rats, glands from large rats (400 g) contained more somatotrophs (44 percent compared with 37 percent in control rats); small rats (200 g) showed no difference. No major differences were found in the somatotroph ultrastructure (by TEM) or in the pattern of the immunoactive GH variants. However, high-performance liquid chromatography fractionation of culture media indicated that flight cells released much less of a biologically active high-molecular weight GH variant, suggesting that space flight may lead to secretory dysfunction.

  12. iNKT cell cytotoxic responses control T-lymphoma growth in vitro and in vivo .

    PubMed

    Bassiri, Hamid; Das, Rupali; Guan, Peng; Barrett, David M; Brennan, Patrick J; Banerjee, Pinaki P; Wiener, Susan J; Orange, Jordan S; Brenner, Michael B; Grupp, Stephan A; Nichols, Kim E

    2014-01-01

    Invariant natural killer T (iNKT) cells comprise a lineage of CD1d-restricted glycolipid-reactive T lymphocytes with important roles in host immunity to cancer. iNKT cells indirectly participate in antitumor responses by inducing dendritic cell maturation and producing cytokines that promote tumor clearance by CD8+ T and NK cells. Although iNKT cells thereby act as potent cellular adjuvants, it is less clear whether they directly control the growth of tumors. To gain insights into the direct contribution of iNKT cells to tumor immune surveillance, we developed in vitro and in vivo systems to selectively examine the antitumor activity of iNKT cells in the absence of other cytolytic effectors. Using the EL4 T-lymphoma cell line as a model, we found that iNKT cells exert robust and specific lysis of tumor cells in vitro in a manner that is differentially induced by iNKT cell agonists of varying T-cell receptor (TCR) affinities, such as OCH, α-galactosyl ceramide, and PBS44. In vitro blockade of CD1d-mediated lipid antigen presentation, disruption of TCR signaling, or loss of perforin expression significantly reduce iNKT cell killing. Consistent with these findings, iNKT cell reconstitution of T, B, and NK cell–deficient mice slows EL4 growth in vivo via TCR-CD1d and perforin-dependent mechanisms. Together, these observations establish that iNKT cells are sufficient to control the growth of T lymphoma in vitro and in vivo. They also suggest that the induction of iNKT cell cytotoxic responses in situ might serve as a more effective strategy to prevent and/or treat CD1d+ cancers, such as T lymphoma. ©2013 AACR.

  13. Microgravity associated changes in pituitary growth hormone (GH) cells prepared from rats flown on Space Lab 3

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Farrington, M.; Hayes, C.; Grindeland, R.; Fast, T.

    1985-01-01

    The effect of microgravity on the release of pituitary growth hormone (GH) in rats is studied. The pituitary glands from six adult rats exposed to microgravity are analyzed for in vitro and in vivo changes in pituitary growth hormone cells. The GH cell functions in the somatotrophs of flight rats are compared to a control group. The two assay procedures employed in the experiment are described. It is observed that intracellular levels of GH are two to three times greater in the flight rats than in the control group; however, the amount of GH released from the somatotrophs is 1.11 + or - 0.4 micrograms for the flight rats and 1.85 + or - 1.3 micrograms for the control rats.

  14. Progranulin and its biological effects in cancer.

    PubMed

    Arechavaleta-Velasco, Fabian; Perez-Juarez, Carlos Eduardo; Gerton, George L; Diaz-Cueto, Laura

    2017-11-07

    Cancer cells have defects in regulatory mechanisms that usually control cell proliferation and homeostasis. Different cancer cells share crucial alterations in cell physiology, which lead to malignant growth. Tumorigenesis or tumor growth requires a series of events that include constant cell proliferation, promotion of metastasis and invasion, stimulation of angiogenesis, evasion of tumor suppressor factors, and avoidance of cell death pathways. All these events in tumor progression may be regulated by growth factors produced by normal or malignant cells. The growth factor progranulin has significant biological effects in different types of cancer. This protein is a regulator of tumorigenesis because it stimulates cell proliferation, migration, invasion, angiogenesis, malignant transformation, resistance to anticancer drugs, and immune evasion. This review focuses on the biological effects of progranulin in several cancer models and provides evidence that this growth factor should be considered as a potential biomarker and target in cancer treatment.

  15. Molecular mechanisms of ulcer healing.

    PubMed

    Tarnawski, A

    2000-04-01

    An ulcer in the gastrointestinal tract is a deep necrotic lesion penetrating the entire mucosal thickness and muscularis mucosae. Ulcer healing is an active process of filling the mucosal defect with proliferating and migrating epithelial and connective tissue cells. At the ulcer margin, epithelial cells proliferate and migrate onto the granulation tissue to cover (reepithelialize) the ulcer and also invade granulation tissue to reconstruct glandular structures within the ulcer scar. The reepithelialization and reconstruction of glandular structures is controlled by growth factors: trefoil peptides, EGF, HGF, bFGF and PDGF; and locally produced cytokines by regenerating cells in an orderly fashion and integrated manner to ensure the quality of mucosal restoration. These growth factors, most notably EGF, trigger cell proliferation via signal transduction pathways involving EGF-R, adapter proteins (Grb2, Shc and Sos), Ras, Raf1 and MAP (Erk1/Erk2) kinases, which, after translocation to nuclei, activate transcription factors and cell proliferation. Cell migration requires cytoskeletal rearrangements and is controlled by growth factors via Rho/Rac and signaling pathways involving PLC-gamma, PI-3 K and phosphorylation of focal adhesion proteins. Granulation tissue develops at the ulcer base. It consists of connective tissue cells: fibroblasts, macrophages and proliferating endothelial cells forming microvessels under the control of angiogenic growth factors: bFGF, VEGF and angiopoietins, which all promote angiogenesiscapillary vessel formation, essential for the restoration of microvascular network in the mucosa and thus crucial for oxygen and nutrient supply. The major mechanism of activation of angiogenic growth factors and their receptor expression appears to be hypoxia, which activates hypoxia-inducible factor, which binds to VEGF promoter.

  16. PCB153 reduces telomerase activity and telomere length in immortalized human skin keratinocytes (HaCaT) but not in human foreskin keratinocytes (NFK)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senthilkumar, P.K.; Robertson, L.W.; Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA

    Polychlorinated biphenyls (PCBs), ubiquitous environmental pollutants, are characterized by long term-persistence in the environment, bioaccumulation, and biomagnification in the food chain. Exposure to PCBs may cause various diseases, affecting many cellular processes. Deregulation of the telomerase and the telomere complex leads to several biological disorders. We investigated the hypothesis that PCB153 modulates telomerase activity, telomeres and reactive oxygen species resulting in the deregulation of cell growth. Exponentially growing immortal human skin keratinocytes (HaCaT) and normal human foreskin keratinocytes (NFK) were incubated with PCB153 for 48 and 24 days, respectively, and telomerase activity, telomere length, superoxide level, cell growth, and cellmore » cycle distribution were determined. In HaCaT cells exposure to PCB153 significantly reduced telomerase activity, telomere length, cell growth and increased intracellular superoxide levels from day 6 to day 48, suggesting that superoxide may be one of the factors regulating telomerase activity, telomere length and cell growth compared to untreated control cells. Results with NFK cells showed no shortening of telomere length but reduced cell growth and increased superoxide levels in PCB153-treated cells compared to untreated controls. As expected, basal levels of telomerase activity were almost undetectable, which made a quantitative comparison of treated and control groups impossible. The significant down regulation of telomerase activity and reduction of telomere length by PCB153 in HaCaT cells suggest that any cell type with significant telomerase activity, like stem cells, may be at risk of premature telomere shortening with potential adverse health effects for the affected organism. -- Highlights: ► Human immortal (HaCaT) and primary (NFK) keratinocytes were exposed to PCB153. ► PCB153 significantly reduced telomerase activity and telomere length in HaCaT. ► No effect on telomere length and telomerase activity was found in NFK. ► Increased intracellular superoxide levels and reduced cell growth was seen in both. ► PCB153 may damage telomerase expressing cells like stem cells.« less

  17. [Effect of spermine on cell growth and polysaccharide production in suspension cultures of protocorm-like bodies from Dendrobium huoshanense].

    PubMed

    Wei, Ming; Jiang, Shao-Tong; Luo, Jian-Ping

    2007-03-01

    The effect of outer spermine on cell growth, accumulation of polysaccharides and utilization of nutrient together with the intracellular polyamine contents were investigated in suspension cultures of protocorm-like bodies from Dendrobium huoshanense. The results indicated that spermine at 0.6 mmol/L was the most effective in increasing cell growth and polysaccharide synthesis. The specific growth rate of cell increased from 0.046d(-1) to 0.054d(-1), and the maximum dry weight and polysaccharide production reached 32.4g DW/L and 2.46g/L respectively, which were 1.32-fold and 1.31-fold that of the control on day 30. The titres of intracellular free polyamines were higher in the cultures treated with spermine than that of the control. Invertase and nitrate reductase activities were found to increase significantly in the cultured cells treated with spermine, which was beneficial to the utilization of carbon and nitrogen source.

  18. Effect of high electromagnetic fields on cellular growth

    NASA Astrophysics Data System (ADS)

    Albalawi, Abdullah; Mustafa, Mohammed; Masood, Samina

    It is already known that high-intensity electromagnetic field affect the human lung growth and forces the T-cells to decrease by 20-30 percent. The electromagnetic field had a severe impact on human T-cells in contrast to lung cells. Due to the high-intensity electromagnetic field, the growth of T-cells becomes low and release of Ca+2 increases up to 3.5 times more than the lung cells. The high-intensity electromagnetic radiations do not directly produce cancer cells but had a severe impact on the growth of T-cells. It can also be said that electromagnetic field acts a role in the cancer initiation. It creates disordered in the structure of membranes and gesture transduction. The higher exposure to electromagnetic field increases PKC-alpha and this larger release from membranes cannot be controlled. It was concluded that greater exposure to the electromagnetic field is dangerous and had a severe impact on T-cells growth and lung cells growth and due to this greater possibility of leukemia occurrence. We show a similar effect of electromagnetic fields single celled bacteria to compare the bacterial cellular growth with the human cells using the bacteria strains which are commonly found in human body.

  19. Supplementation of conventional freezing medium with a combination of catalase and trehalose results in better protection of surface molecules and functionality of hematopoietic cells.

    PubMed

    Sasnoor, Lalita M; Kale, Vaijayanti P; Limaye, Lalita S

    2003-10-01

    Our previous studies had shown that a combination of the bio-antioxidant catalase and the membrane stabilizer trehalose in the conventional freezing mixture affords better cryoprotection to hematopoietic cells as judged by clonogenic assays. In the present investigation, we extended these studies using several parameters like responsiveness to growth factors, expression of growth factor receptors, adhesion assays, adhesion molecule expression, and long-term culture-forming ability. Cells were frozen with (test cells) or without additives (control cells) in the conventional medium containing 10% dimethylsulfoxide (DMSO). Experiments were done on mononuclear cells (MNC) from cord blood/fetal liver hematopoietic cells (CB/FL) and CD34(+) cells isolated from frozen MNC. Our results showed that the responsiveness of test cells to the two early-acting cytokines, viz. interleukin-3 (IL-3) and stem cell factor (SCF) in CFU assays was better than control cells as seen by higher colony formation at limiting concentrations of these cytokines. We, therefore, analyzed the expression of these two growth factor receptors by flow cytometry. We found that in cryopreserved test MNC, as well as CD34(+) cells isolated from them, the expression of both cytokine receptors was two- to three-fold higher than control MNC and CD34(+) cells isolated from them. Adhesion assays carried out with CB/FL-derived CD34(+) cells and KG1a cells showed significantly higher adherence of test cells to M210B4 than respective control cells. Cryopreserved test MNC as well as CD34(+) cells isolated from them showed increased expression of adhesion molecules like CD43, CD44, CD49d, and CD49e. On isolated CD34(+) cells and KG1a cells, there was a two- to three-fold increase in a double-positive population expressing CD34/L-selectin in test cells as compared to control cells. Long-term cultures (LTC) were set up with frozen MNC as well as with CD34(+) cells. Clonogenic cells from LTC were enumerated at the end of the fifth week. There was a significantly increased formation of CFU from test cells than from control cells, indicating better preservation of early progenitors in test cells. Our results suggest that use of a combination of catalase and trehalose as a supplement in the conventional freezing medium results in better protection of growth factor receptors, adhesion molecules, and functionality of hematopoietic cells, yielding a better graft quality.

  20. Contact Inhibition: Also a Control for Cell Proliferation in Unicellular Algae?

    PubMed

    Costas, E; Aguilera, A; Gonzalez-Gil, S; López-Rodas, V

    1993-02-01

    According to traditional views, the proliferation of unicellular algae is controlled primarily by environmental conditions. But as in mammalian cells, other biological mechanisms, such as growth factors, cellular aging, and contact inhibition, might also control algal proliferation. Here we ask whether contact inhibition regulates growth in several species of unicellular algae as it does in mammalian cells. Laboratory cultures of the dinoflagellate Prorocentrum lima (Ehrenberg) Dodge show contact inhibition at low cell density, so this would be an autocontrol mechanism of cell proliferation that could also act in natural populations of P. lima. But, Synechocystis spp., Phaeodactylum tricornutum (Bohlin), Skeletonema costatum (Greville), and Tetraselmis spp. do not exhibit contact inhibition in laboratory cultures because they are able to grow at high cellular density. Apparently their growth is limited by nutrient depletion or catabolite accumulation instead of contact inhibition. Spirogyra insignis (Hassall) Kutz, Prorocentrum triestinum Schiller, and Alexandrium tamarense (Halim) Balech show a complex response, as they are able to grow in both low and high cell density medium. These results suggest that contact inhibition is more adaptative in benthic unicellular algae.

  1. Sequential growth factor application in bone marrow stromal cell ligament engineering.

    PubMed

    Moreau, Jodie E; Chen, Jingsong; Horan, Rebecca L; Kaplan, David L; Altman, Gregory H

    2005-01-01

    In vitro bone marrow stromal cell (BMSC) growth may be enhanced through culture medium supplementation, mimicking the biochemical environment in which cells optimally proliferate and differentiate. We hypothesize that the sequential administration of growth factors to first proliferate and then differentiate BMSCs cultured on silk fiber matrices will support the enhanced development of ligament tissue in vitro. Confluent second passage (P2) BMSCs obtained from purified bone marrow aspirates were seeded on RGD-modified silk matrices. Seeded matrices were divided into three groups for 5 days of static culture, with medium supplement of basic fibroblast growth factor (B) (1 ng/mL), epidermal growth factor (E; 1 ng/mL), or growth factor-free control (C). After day 5, medium supplementation was changed to transforming growth factor-beta1 (T; 5 ng/mL) or C for an additional 9 days of culture. Real-time RT-PCR, SEM, MTT, histology, and ELISA for collagen type I of all sample groups were performed. Results indicated that BT supported the greatest cell ingrowth after 14 days of culture in addition to the greatest cumulative collagen type I expression measured by ELISA. Sequential growth factor application promoted significant increases in collagen type I transcript expression from day 5 of culture to day 14, for five of six groups tested. All T-supplemented samples surpassed their respective control samples in both cell ingrowth and collagen deposition. All samples supported spindle-shaped, fibroblast cell morphology, aligning with the direction of silk fibers. These findings indicate significant in vitro ligament development after only 14 days of culture when using a sequential growth factor approach.

  2. Heteroresistance at the single-cell level: adapting to antibiotic stress through a population-based strategy and growth-controlled interphenotypic coordination.

    PubMed

    Wang, Xiaorong; Kang, Yu; Luo, Chunxiong; Zhao, Tong; Liu, Lin; Jiang, Xiangdan; Fu, Rongrong; An, Shuchang; Chen, Jichao; Jiang, Ning; Ren, Lufeng; Wang, Qi; Baillie, J Kenneth; Gao, Zhancheng; Yu, Jun

    2014-02-11

    Heteroresistance refers to phenotypic heterogeneity of microbial clonal populations under antibiotic stress, and it has been thought to be an allocation of a subset of "resistant" cells for surviving in higher concentrations of antibiotic. The assumption fits the so-called bet-hedging strategy, where a bacterial population "hedges" its "bet" on different phenotypes to be selected by unpredicted environment stresses. To test this hypothesis, we constructed a heteroresistance model by introducing a blaCTX-M-14 gene (coding for a cephalosporin hydrolase) into a sensitive Escherichia coli strain. We confirmed heteroresistance in this clone and that a subset of the cells expressed more hydrolase and formed more colonies in the presence of ceftriaxone (exhibited stronger "resistance"). However, subsequent single-cell-level investigation by using a microfluidic device showed that a subset of cells with a distinguishable phenotype of slowed growth and intensified hydrolase expression emerged, and they were not positively selected but increased their proportion in the population with ascending antibiotic concentrations. Therefore, heteroresistance--the gradually decreased colony-forming capability in the presence of antibiotic--was a result of a decreased growth rate rather than of selection for resistant cells. Using a mock strain without the resistance gene, we further demonstrated the existence of two nested growth-centric feedback loops that control the expression of the hydrolase and maximize population growth in various antibiotic concentrations. In conclusion, phenotypic heterogeneity is a population-based strategy beneficial for bacterial survival and propagation through task allocation and interphenotypic collaboration, and the growth rate provides a critical control for the expression of stress-related genes and an essential mechanism in responding to environmental stresses. Heteroresistance is essentially phenotypic heterogeneity, where a population-based strategy is thought to be at work, being assumed to be variable cell-to-cell resistance to be selected under antibiotic stress. Exact mechanisms of heteroresistance and its roles in adaptation to antibiotic stress have yet to be fully understood at the molecular and single-cell levels. In our study, we have not been able to detect any apparent subset of "resistant" cells selected by antibiotics; on the contrary, cell populations differentiate into phenotypic subsets with variable growth statuses and hydrolase expression. The growth rate appears to be sensitive to stress intensity and plays a key role in controlling hydrolase expression at both the bulk population and single-cell levels. We have shown here, for the first time, that phenotypic heterogeneity can be beneficial to a growing bacterial population through task allocation and interphenotypic collaboration other than partitioning cells into different categories of selective advantage.

  3. Evolution of Cell Size Homeostasis and Growth Rate Diversity during Initial Surface Colonization of Shewanella oneidensis.

    PubMed

    Lee, Calvin K; Kim, Alexander J; Santos, Giancarlo S; Lai, Peter Y; Lee, Stella Y; Qiao, David F; Anda, Jaime De; Young, Thomas D; Chen, Yujie; Rowe, Annette R; Nealson, Kenneth H; Weiss, Paul S; Wong, Gerard C L

    2016-09-06

    Cell size control and homeostasis are fundamental features of bacterial metabolism. Recent work suggests that cells add a constant size between birth and division ("adder" model). However, it is not known how cell size homeostasis is influenced by the existence of heterogeneous microenvironments, such as those during biofilm formation. Shewanella oneidensis MR-1 can use diverse energy sources on a range of surfaces via extracellular electron transport (EET), which can impact growth, metabolism, and size diversity. Here, we track bacterial surface communities at single-cell resolution to show that not only do bacterial motility appendages influence the transition from two- to three-dimensional biofilm growth and control postdivisional cell fates, they strongly impact cell size homeostasis. For every generation, we find that the average growth rate for cells that stay on the surface and continue to divide (nondetaching population) and that for cells that detach before their next division (detaching population) are roughly constant. However, the growth rate distribution is narrow for the nondetaching population, but broad for the detaching population in each generation. Interestingly, the appendage deletion mutants (ΔpilA, ΔmshA-D, Δflg) have significantly broader growth rate distributions than that of the wild type for both detaching and nondetaching populations, which suggests that Shewanella appendages are important for sensing and integrating environmental inputs that contribute to size homeostasis. Moreover, our results suggest multiplexing of appendages for sensing and motility functions contributes to cell size dysregulation. These results can potentially provide a framework for generating metabolic diversity in S. oneidensis populations to optimize EET in heterogeneous environments.

  4. Reducing cell wall feruloylation by expression of a fungal ferulic acid esterase in Festuca arundinacea modifies plant growth, leaf morphology and the turnover of cell wall arabinoxylans

    PubMed Central

    Iyer, Prashanti R.; Buanafina, M. Fernanda; Shearer, Erica A.

    2017-01-01

    A feature of cell wall arabinoxylan in grasses is the presence of ferulic acid which upon oxidative coupling by the action of peroxidases forms diferuloyl bridges between formerly separated arabinoxylans. Ferulate cross-linking is suspected of playing various roles in different plant processes. Here we investigate the role of cell wall feruloyaltion in two major processes, that of leaf growth and the turnover of cell wall arabinoxylans on leaf senescence in tall fescue using plants in which the level of cell wall ferulates has been reduced by targeted expression of the Aspergillus niger ferulic acid esterase A (FAEA) to the apoplast or Golgi. Analysis of FAE expressing plants showed that all the lines had shorter and narrower leaves compared to control, which may be a consequence of the overall growth rate being lower and occurring earlier in FAE expressing leaves than in controls. Furthermore, the final length of epidermal cells was shorter than controls, indicating that their expansion was curtailed earlier than in control leaves. This may be due to the observations that the deposition of both ether and ester linked monomeric hydroxycinnamic acids and ferulate dimerization stopped earlier in FAE expressing leaves but at a lower level than controls, and hydroxycinnamic acid deposition started to slow down when peroxidase levels increased. It would appear therefore that one of the possible mechanisms for controlling overall leaf morphology such as leaf length and width in grasses, where leaf morphology is highly variable between species, may be the timing of hydroxycinnamic acid deposition in the expanding cell walls as they emerge from cell division into the elongation zone, controlled partially by the onset of peroxidase activity in this region. PMID:28934356

  5. Reduction of transforming growth factor-β1 expression in leukemia and its possible role in leukemia development.

    PubMed

    Wu, Yong; Chen, Ping; Huang, Hui-Fang; Huang, Mei-Juan; Chen, Yuan-Zhong

    2012-01-01

    The expression of transforming growth factor-β1 (TGF-β1) in leukemic cells and sera from patients with leukemia and its possible role in leukemia development were studied. TGF-β1 levels in culture supernatants from leukemic cells were significantly lower than those from normal bone marrow mononuclear cells. Serum TGF-β1 levels in leukemic patients were significantly lower compared with healthy controls, but returned to normal in patients achieving complete remission, and decreased when patients relapsed. TGF-β1 mRNA expression levels were significantly higher in normal bone marrow mononuclear cells but lower in leukemic cells compared with normal CD34 + cells. After transfection of the TGF-β1 gene to HL-60 cells, cell apoptosis was detected. Moreover, by flow cytometry analysis, cells arrested in G1 phase were 62% for TGF-β1 transfected cells and 44% for controls. Transfection of exogenous TGF-β1 gene inhibited HL60 cells xenograft growth in nude mice, and prolonged survival of tumor-bearing mice compared with the controls. Decreased endogenous TGF-β1 expression in leukemia cells may be involved in leukemia development, Transfection of exogenous TGF-B1 gene to HL60 can inhibit the proliferation of the cells and induce cell apoptosis by down regulating bcl-2, hTERT (human telomerase reverse transcriptase) and c-myc expression.

  6. Biotechnological enhancement of capsaicin biosynthesis in cell suspension cultures of Naga King Chili (Capsicum chinense Jacq.).

    PubMed

    Kehie, Mechuselie; Kumaria, Suman; Tandon, Pramod

    2016-01-01

    Cell suspension cultures were initiated from hypocotyl derived callus to induce capsaicin biosynthesis in suspension cultures of Naga King Chili (Capsicum chinense Jacq.). Efficient capsaicin production with high growth index (GI) was obtained by exposing cells to salicylic acid (SA) and calcium channel modulators in suspension cultures. The time course of capsaicin formation is related to the cell growth profile in a batch culture. Cells cultivated in the standard medium (SM) initially showed low level of capsaicin yield during active growth. When the cells approached stationary phase, cell growth and cell viability decreased whereas capsaicin production increased continuously. In the fed-batch cultures, the highest capsaicin yield (567.4 ± 8.1 μgg(1) fresh weight) (f.wt) was obtained by feeding the cells with 1 mM SA. However, SA feeding during cultivation repressed the cell growth. Enhanced cell growth (3.1 ± 0.1 GI/culture) and capsaicin yield (534 ± 7.8 μgg(-1)f.wt) were obtained when the cells were fed with calcium ionophore A23187 (0.5 mM) on day 25 as compared to the control. Addition of the calcium channel blocker verapamil hydrochloride (100 mM) inhibited cell growth and capsaicin production in Naga King Chili suspension cell cultures.

  7. Antitumor and antiangiogenic activities of anti-vascular endothelial growth factor hairpin ribozyme in human hepatocellular carcinoma cell cultures and xenografts.

    PubMed

    Li, Li-Hua; Guo, Zi-Jian; Yan, Ling-Ling; Yang, Ji-Cheng; Xie, Yu-Feng; Sheng, Wei-Hua; Huang, Zhao-Hui; Wang, Xue-Hao

    2007-12-21

    To study the effectiveness and mechanisms of anti- human vascular endothelial growth factor (hVEGF) hairpin ribozyme on angiogenesis, oncogenicity and tumor growth in a hepatocarcinoma cell line and a xenografted model. The artificial anti-hVEGF hairpin ribozyme was transfected into hepatocarcinoma cell line SMMC-7,721 and, subsequently, polymerase chain reaction (PCR) and reverse transcription polymerase chain reaction (RT-PCR) were performed to confirm the ribozyme gene integration and transcription. To determine the effects of ribozyme ,VEGF expression was detected by semiquantitative RT-PCR and enzyme liked immunosorbent assay (ELISA). MTT assay was carried out to measure the cell proliferation. Furthermore,the transfected and control cells were inoculated into nude mice respectively, the growth of cells in nude mice and angiogenesis were observed. VEGF expression was down-regulated sharply by ribozyme in transfected SMMC-7,721 cells and xenografted tumor. Compared to the control group, the transfected cells grew slower in cell cultures and xenografts, and the xenograft formation was delayed as well. In addition, the microvessel density of the xenografted tumor was obviously declined in the transfected group. As demonstrated by microscopy,reduction of VEGF production induced by ribozyme resulted in a significantly higher cell differentiation and less proliferation vigor in xenografted tumor. Anti-hVEGF hairpin ribozyme can effectively inhibit VEGF expression and growth of hepatocarcinoma in vitro and in vivo. VEGF is functionally related to cell proliferation, differentiation and tumori-genesis in hepatocarcinoma.

  8. [Apoptosis inducing effect of Hechanpian on human lung adenocarcinoma A549 cells].

    PubMed

    Xiong, Shao-Quan; Zhou, Dai-Han; Lin, Li-Zhu

    2010-06-01

    To study the apoptosis inducing effects of Hechanpian (HCP) on human lung adenocarcinoma A549 cells. HCP containing rat serum was prepared and applied on A549 cells. The cell growth inhibition rate was tested by MTT assay; the effect of HCP on cell apoptosis was observed with Propidium iodide (PI) staining and flow cytometry analysis; the mRNA expression of epidermal growth factor receptor (EGFR) was detected through RT-PCR. The growth of A549 cells was obviously inhibited after being treated by HCP containing serum, and the cells presented an apoptotic change. The cell apoptosis rate after treated by serum containing 10% and 20% HCP was 20.5% and 33.2%, respectively, significantly higher than that in the control (6.1% in cells didn't treated with HCP, P < 0.05). Compared with control, EGFR mRNA expression in HCP treated cells was significantly lower (P < 0.05). HCP has apoptosis inducing effect on A549 cell, and its molecular mechanism is probably correlated with the inhibition of EGFR gene transcription.

  9. ABA Suppresses Root Hair Growth via the OBP4 Transcriptional Regulator1[OPEN

    PubMed Central

    Kawamura, Ayako; Schäfer, Sabine; Breuer, Christian; Shibata, Michitaro; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Matsui, Minami

    2017-01-01

    Plants modify organ growth and tune morphogenesis in response to various endogenous and environmental cues. At the cellular level, organ growth is often adjusted by alterations in cell growth, but the molecular mechanisms underlying this control remain poorly understood. In this study, we identify the DNA BINDING WITH ONE FINGER (DOF)-type transcription regulator OBF BINDING PROTEIN4 (OBP4) as a repressor of cell growth. Ectopic expression of OBP4 in Arabidopsis (Arabidopsis thaliana) inhibits cell growth, resulting in severe dwarfism and the repression of genes involved in the regulation of water transport, root hair development, and stress responses. Among the basic helix-loop-helix transcription factors known to control root hair growth, OBP4 binds the ROOT HAIR DEFECTIVE6-LIKE2 (RSL2) promoter to repress its expression. The accumulation of OBP4 proteins is detected in expanding root epidermal cells, and its expression level is increased by the application of abscisic acid (ABA) at concentrations sufficient to inhibit root hair growth. ABA-dependent induction of OBP4 is associated with the reduced expression of RSL2. Furthermore, ectopic expression of OBP4 or loss of RSL2 function results in ABA-insensitive root hair growth. Taken together, our results suggest that OBP4-mediated transcriptional repression of RSL2 contributes to the ABA-dependent inhibition of root hair growth in Arabidopsis. PMID:28167701

  10. My body is a cage: mechanisms and modulation of plant cell growth.

    PubMed

    Braidwood, Luke; Breuer, Christian; Sugimoto, Keiko

    2014-01-01

    388 I. 388 II. 389 III. 389 IV. 390 V. 391 VI. 393 VII. 394 VIII. 398 399 References 399 SUMMARY: The wall surrounding plant cells provides protection from abiotic and biotic stresses, and support through the action of turgor pressure. However, the presence of this strong elastic wall also prevents cell movement and resists cell growth. This growth can be likened to extending a house from the inside, using extremely high pressures to push out the walls. Plants must increase cell volume in order to explore their environment, acquire nutrients and reproduce. Cell wall material must stretch and flow in a controlled manner and, concomitantly, new cell wall material must be deposited at the correct rate and site to prevent wall and cell rupture. In this review, we examine biomechanics, cell wall structure and growth regulatory networks to provide a 'big picture' of plant cell growth. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  11. Priming cells for their final destination: microenvironment controlled cell culture by a modular ECM-mimicking feeder film.

    PubMed

    Barthes, Julien; Vrana, Nihal E; Özçelik, Hayriye; Gahoual, Rabah; François, Yannis N; Bacharouche, Jalal; Francius, Grégory; Hemmerlé, Joseph; Metz-Boutigue, Marie-Hélène; Schaaf, Pierre; Lavalle, Philippe

    2015-09-01

    Mammalian cell culture is the starting point in many research studies focusing on biomedical applications. However, researchers have little control over the standardized cell microenvironment parameters. Here a modular ECM-mimicking surface coating for cell culture environment is designed. This substrate is a new and versatile thin film obtained by spin-coating of concentrated gelatin crosslinked by transglutaminase. It can be modified with respect to the biochemical and biophysical needs of the final cell destination, i.e. it delivers loaded multi-growth factors and serum components and allows for cell culture in a serum-free culture medium. Also, a well-known cell behavior modulator, the substrate stiffness, is controlled exogenously by addition of nanoparticles. In addition to growth factors, antimicrobial agents such as natural peptides are added to the substrate for limiting the repeated addition of antimicrobial agents to the culture medium and to prevent the increase of resistant bacterial strains in the culture environment. Finally, this substrate contains simultaneously ECM components, growth factors, stiffening elements and antimicrobial agents. It provides a favorable microenvironment and sterile conditions. It is a free-of-maintenance system, as cells will grow without addition of serum or antimicrobial cocktails. This low cost and easy-to-use substrate could emerge as a new standard for cell culture.

  12. Effect of Removal of Spermatogonial Stem Cells (SSCs) from In Vitro Culture on Gene Expression of Niche Factors in Bovine

    PubMed Central

    Akbarinejad, Vahid; Tajik, Parviz; Movahedin, Mansoureh; Youssefi, Reza

    2016-01-01

    Background: Niche cells, regulating Spermatogonial Stem Cells (SSCs) fate are believed to have a reciprocal communication with SSCs. The present study was conducted to evaluate the effect of SSC elimination on the gene expression of Glial cell line-Derived Neurotrophic Factor (GDNF), Fibroblast Growth Factor 2 (FGF2) and Kit Ligand (KITLG), which are the main growth factors regulating SSCs development and secreted by niche cells, primarily Sertoli cells. Methods: Following isolation, bovine testicular cells were cultured for 12 days on extracellular matrix-coated plates. In the germ cell-removed group, the SSCs were removed from the in vitro culture using differential plating; however, in the control group, no intervention in the culture was performed. Colony formation of SSCs was evaluated using an inverted microscope. The gene expression of growth factors and spermatogonia markers were assessed using quantitative real time PCR. Results: SSCs colonies were developed in the control group but they were rarely observed in the germ cell-removed group; moreover, the expression of spermatogonia markers was detected in the control group while it was not observed in the germ cell-removed group, substantiating the success of SSCs removal. The expression of Gdnf and Fgf2 was greater in the germ cell-removed than control group (p<0.05), whereas the expression of Kitlg was lower in the germ cell-removed than control group (p< 0.05). Conclusion: In conclusion, the results revealed that niche cells respond to SSCs removal by upregulation of GDNF and FGF2, and downregulation of KITLG in order to stimulate self-renewal and arrest differentiation. PMID:27563426

  13. Interactions between IGF-I, estrogen receptor-α (ERα), and ERβ in regulating growth/apoptosis of MCF-7 human breast cancer cells.

    PubMed

    Mendoza, Rhone A; Enriquez, Marlene I; Mejia, Sylvia M; Moody, Emily E; Thordarson, Gudmundur

    2011-01-01

    Understanding of the interactions between estradiol (E₂) and IGF-I is still incomplete. Cell lines derived from the MCF-7 breast cancer cells were generated with suppressed expression of the IGF-I receptor (IGF-IR), termed IGF-IR.low cells, by stable transfection using small interfering RNA (siRNA) expression vector. Vector for control cells carried sequence generating noninterfering RNA. Concomitant with reduction in the IGF-IR levels, the IGF-IR.low cells also showed a reduction in estrogen receptor α (ERα) and progesterone receptor expressions, and an elevation in the expression of ERβ. The number of the IGF-IR.low cells was reduced in response to IGF-I and human GH plus epidermal growth factor, but E₂ did not cause an increase in the number of the IGF-IR.low cells compared to controls. The proliferation rate of IGF-IR.low cells was only reduced in response to E₂ compared to controls, whereas their basal and hormone-stimulated apoptosis rate was increased. Phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) was increased in the IGF-IR.low cells after treatment with E₂, without affecting control cells. Furthermore, phosphorylation of the tumor suppressor protein p53 was elevated in the IGF-IR.low cells compared to the controls. In conclusion, suppressing IGF-IR expression decreased the level of ERα but increased the level of ERβ. Overall growth rate of the IGF-IR.low cells was reduced mostly through an increase in apoptosis without affecting proliferation substantially. We hypothesize that a decreased ERα:ERβ ratio triggered a rapid phosphorylation of p38 MAPK, which in turn phosphorylated the p53 tumor suppressor and accelerated apoptosis rate.

  14. Calpain-Mediated positional information directs cell wall orientation to sustain plant stem cell activity, growth and development

    USDA-ARS?s Scientific Manuscript database

    Eukaryotic development and stem cell control depend on the integration of cell positional sensing with cell cycle control and cell wall positioning, yet few factors that directly link these events are known. The DEFECTIVE KERNEL1 (DEK1) gene encoding the unique plant calpain protein is fundamental f...

  15. Cell intrinsic control of axon regeneration

    PubMed Central

    Mar, Fernando M; Bonni, Azad; Sousa, Mónica M

    2014-01-01

    Although neurons execute a cell intrinsic program of axonal growth during development, following the establishment of connections, the developmental growth capacity declines. Besides environmental challenges, this switch largely accounts for the failure of adult central nervous system (CNS) axons to regenerate. Here, we discuss the cell intrinsic control of axon regeneration, including not only the regulation of transcriptional and epigenetic mechanisms, but also the modulation of local protein translation, retrograde and anterograde axonal transport, and microtubule dynamics. We further explore the causes underlying the failure of CNS neurons to mount a vigorous regenerative response, and the paradigms demonstrating the activation of cell intrinsic axon growth programs. Finally, we present potential mechanisms to support axon regeneration, as these may represent future therapeutic approaches to promote recovery following CNS injury and disease. PMID:24531721

  16. Spatial Regulation of Root Growth: Placing the Plant TOR Pathway in a Developmental Perspective

    PubMed Central

    Barrada, Adam; Montané, Marie-Hélène; Robaglia, Christophe; Menand, Benoît

    2015-01-01

    Plant cells contain specialized structures, such as a cell wall and a large vacuole, which play a major role in cell growth. Roots follow an organized pattern of development, making them the organs of choice for studying the spatio-temporal regulation of cell proliferation and growth in plants. During root growth, cells originate from the initials surrounding the quiescent center, proliferate in the division zone of the meristem, and then increase in length in the elongation zone, reaching their final size and differentiation stage in the mature zone. Phytohormones, especially auxins and cytokinins, control the dynamic balance between cell division and differentiation and therefore organ size. Plant growth is also regulated by metabolites and nutrients, such as the sugars produced by photosynthesis or nitrate assimilated from the soil. Recent literature has shown that the conserved eukaryotic TOR (target of rapamycin) kinase pathway plays an important role in orchestrating plant growth. We will summarize how the regulation of cell proliferation and cell expansion by phytohormones are at the heart of root growth and then discuss recent data indicating that the TOR pathway integrates hormonal and nutritive signals to orchestrate root growth. PMID:26295391

  17. Cellular modelling of secondary radial growth in conifer trees: application to Pinus radiata (D. Don).

    PubMed

    Forest, Loïc; Demongeot, Jacques; Demongeota, Jacques

    2006-05-01

    The radial growth of conifer trees proceeds from the dynamics of a merismatic tissue called vascular cambium or cambium. Cambium is a thin layer of active proliferating cells. The purpose of this paper was to model the main characteristics of cambial activity and its consecutive radial growth. Cell growth is under the control of the auxin hormone indole-3-acetic. The model is composed of a discrete part, which accounts for cellular proliferation, and a continuous part involving the transport of auxin. Cambium is modeled in a two-dimensional cross-section by a cellular automaton that describes the set of all its constitutive cells. Proliferation is defined as growth and division of cambial cells under neighbouring constraints, which can eliminate some cells from the cambium. The cell-growth rate is determined from auxin concentration, calculated with the continuous model. We studied the integration of each elementary cambial cell activity into the global coherent movement of macroscopic morphogenesis. Cases of normal and abnormal growth of Pinus radiata (D. Don) are modelled. Abnormal growth includes deformed trees where gravity influences auxin transport, producing heterogeneous radial growth. Cross-sectional microscopic views are also provided to validate the model's hypothesis and results.

  18. Dimensionless number is central to stress relaxation and expansive growth of the cell wall.

    PubMed

    Ortega, Joseph K E

    2017-06-07

    Experiments demonstrate that both plastic and elastic deformation of the cell wall are necessary for wall stress relaxation and expansive growth of walled cells. A biophysical equation (Augmented Growth Equation) was previously shown to accurately model the experimentally observed wall stress relaxation and expansive growth rate. Here, dimensional analysis is used to obtain a dimensionless Augmented Growth Equation with dimensionless coefficients (groups of variables, or Π parameters). It is shown that a single Π parameter controls the wall stress relaxation rate. The Π parameter represents the ratio of plastic and elastic deformation rates, and provides an explicit relationship between expansive growth rate and the wall's mechanical properties. Values for Π are calculated for plant, algal, and fungal cells from previously reported experimental results. It is found that the Π values for each cell species are large and very different from each other. Expansive growth rates are calculated using the calculated Π values and are compared to those measured for plant and fungal cells during different growth conditions, after treatment with IAA, and in different developmental stages. The comparison shows good agreement and supports the claim that the Π parameter is central to expansive growth rate of walled cells.

  19. Barx2 is Expressed in Satellite Cells and is Required for Normal Muscle Growth and Regeneration

    PubMed Central

    Meech, Robyn; Gonzalez, Katie N.; Barro, Marietta; Gromova, Anastasia; Zhuang, Lizhe; Hulin, Julie-Ann; Makarenkova, Helen P.

    2015-01-01

    Muscle growth and regeneration are regulated through a series of spatiotemporally dependent signaling and transcriptional cascades. Although the transcriptional program controlling myogenesis has been extensively investigated, the full repertoire of transcriptional regulators involved in this process is far from defined. Various homeodomain transcription factors have been shown to play important roles in both muscle development and muscle satellite cell-dependent repair. Here, we show that the homeodomain factor Barx2 is a new marker for embryonic and adult myoblasts and is required for normal postnatal muscle growth and repair. Barx2 is coexpressed with Pax7, which is the canonical marker of satellite cells, and is upregulated in satellite cells after muscle injury. Mice lacking the Barx2 gene show reduced postnatal muscle growth, muscle atrophy, and defective muscle repair. Moreover, loss of Barx2 delays the expression of genes that control proliferation and differentiation in regenerating muscle. Consistent with the in vivo observations, satellite cell-derived myoblasts cultured from Barx2−/− mice show decreased proliferation and ability to differentiate relative to those from wild-type or Barx2+/− mice. Barx2−/− myoblasts show reduced expression of the differentiation-associated factor myogenin as well as cell adhesion and matrix molecules. Finally, we find that mice lacking both Barx2 and dystrophin gene expression have severe early onset myopathy. Together, these data indicate that Barx2 is an important regulator of muscle growth and repair that acts via the control of satellite cell proliferation and differentiation. PMID:22076929

  20. Increased Melanoma Growth and Metastasis Spreading in Mice Overexpressing Placenta Growth Factor

    PubMed Central

    Marcellini, Marcella; De Luca, Naomi; Riccioni, Teresa; Ciucci, Alessandro; Orecchia, Angela; Lacal, Pedro Miguel; Ruffini, Federica; Pesce, Maurizio; Cianfarani, Francesca; Zambruno, Giovanna; Orlandi, Augusto; Failla, Cristina Maria

    2006-01-01

    Placenta growth factor (PlGF), a member of the vascular endothelial growth factor family, plays an important role in adult pathological angiogenesis. To further investigate PlGF functions in tumor growth and metastasis formation, we used transgenic mice overexpressing PlGF in the skin under the control of the keratin 14 promoter. These animals showed a hypervascularized phenotype of the skin and increased levels of circulating PlGF with respect to their wild-type littermates. Transgenic mice and controls were inoculated intradermally with B16-BL6 melanoma cells. The tumor growth rate was fivefold increased in transgenic animals compared to wild-type mice, in the presence of a similar percentage of tumor necrotic tissue. Tumor vessel area was increased in transgenic mice as compared to controls. Augmented mobilization of endothelial and hematopoietic stem cells from the bone marrow was observed in transgenic animals, possibly contributing to tumor vascularization. The number and size of pulmonary metastases were significantly higher in transgenic mice compared to wild-type littermates. Finally, PlGF promoted tumor cell invasion of the extracellular matrix and increased the activity of selected matrix metalloproteinases. These findings indicate that PlGF, in addition to enhancing tumor angiogenesis and favoring tumor growth, may directly influence melanoma dissemination. PMID:16877362

  1. p53 functions as a cell cycle control protein in osteosarcomas.

    PubMed

    Diller, L; Kassel, J; Nelson, C E; Gryka, M A; Litwak, G; Gebhardt, M; Bressac, B; Ozturk, M; Baker, S J; Vogelstein, B

    1990-11-01

    Mutations in the p53 gene have been associated with a wide range of human tumors, including osteosarcomas. Although it has been shown that wild-type p53 can block the ability of E1a and ras to cotransform primary rodent cells, it is poorly understood why inactivation of the p53 gene is important for tumor formation. We show that overexpression of the gene encoding wild-type p53 blocks the growth of osteosarcoma cells. The growth arrest was determined to be due to an inability of the transfected cells to progress into S phase. This suggests that the role of the p53 gene as an antioncogene may be in controlling the cell cycle in a fashion analogous to the check-point control genes in Saccharomyces cerevisiae.

  2. Neurotrophins, growth-factor-regulated genes and the control of energy balance.

    PubMed

    Salton, Stephen R J

    2003-03-01

    Neurotrophic growth factors are proteins that control neuronal differentiation and survival, and consequently play important roles in the developing and adult stages of the nervous system. Study of the genes that are regulated by these growth factors has provided insight into the proteins that are critical to the maturation of the nervous system, suggesting that select neurotrophins may play a role in the control of body homeostasis by the brain and peripheral nervous system. Our understanding of the mechanisms of action of neurotrophic growth factors has increased through experimental manipulation of cultured neurons and neuronal cell lines. In particular, the PC12 pheochromocytoma cell line, which displays many properties of adrenal chromaffin cells and undergoes differentiation into sympathetic neuron-like cells when treated with nerve growth factor, has been extensively investigated to identify components of neurotrophin signaling pathways as well as the genes that they regulate. VGF was one of the first neurotrophin-regulated clones identified in NGF-treated PC12 cells. Subsequent studies indicate that the vgf gene is regulated in vivo in the nervous system by neurotrophins, by electrical activity, in response to injury or seizure, and by feeding and the circadian clock. The vgf gene encodes a polypeptide rich in paired basic amino acids; this polypeptide is differentially processed in neuronal and neuroendocrine cells and is released via the regulated secretory pathway. Generation and analysis of knockout mice that fail to synthesize VGF indicate that this protein plays a critical, non-redundant role in the regulation of energy homeostasis, providing a possible link between neurotrophin function in the nervous system and the peripheral control of feeding and metabolic activity. Future experiments should clarify the sites and mechanisms of action of this neurotrophin-regulated neuronal and neuroendocrine protein.

  3. Suspension culture of pluripotent stem cells: effect of shear on stem cell fate.

    PubMed

    Keller, Kevin C; Rodrigues, Beatriz; zur Nieden, Nicole I

    2014-01-01

    Despite significant promise, the routine usage of suspension cell culture to manufacture stem cell-derived differentiated cells has progressed slowly. Suspension culture is an innovative way of either expanding or differentiating cells and sometimes both are combined into a single bioprocess. Its advantages over static 2D culturing include a homogeneous and controllable culture environment and producing a large quantity of cells in a fraction of time. This feature makes suspension cell culture ideal for use in stem cell research and eventually ideal in the large-scale production of differentiated cells for regenerative medicine. Because of their tremendous differentiation capacities and unlimited growth properties, pluripotent stem cells (PSCs) in particular are considered potential sources for future cell-replacement therapies. Currently, expansion of PSCs is accomplished in 2D, which only permits a limited amount of cell growth per culture flask before cells need to be passaged. However, before stem cells can be applied clinically, several aspects of their expansion, such as directed growth, but also differentiation, need to be better controlled. This review will summarize recent advantages in suspension culture of PSCs, while at the same time highlighting current challenges.

  4. Using adenovirus armed short hairpin RNA targeting transforming growth factor β1 inhibits melanoma growth and metastasis in an ex vivo animal model.

    PubMed

    Tai, Kuo-Feng; Wang, Chien-Hsing

    2013-12-01

    The transforming growth factor β (TGF-β) is the key molecule implicated in impaired immune function in human patients with malignant melanoma. TGF-β can promote tumor growth, invasion, and metastasis in advanced stages of melanoma. Blocking these tumor-promoting effects of TGF-β provides a potentially important therapeutic strategy for the treatment of melanoma. In this study, we used an adenovirus-based shRNA expression system and successfully constructed Ad/TGF-β1-RNA interference (RNAi) which mediated the RNAi for TGF-β1 gene silencing. We examined the effects of TGF-β1 protein knockdown by RNAi on the growth and metastasis of melanoma in C57BL/6 mice induced by the B16F0 cell line. The TGF-β1 hairpin oligonucleotide was cloned into adenoviral vector. The resulting recombinant adenoviruses infected murine melanoma cell line, B16F0, and designated as B16F0/TGF-β1-RNAi cells. The blank adenoviral vector also infected B16F0 cells and designed as B16F0/vector-control cells served as a control. TGF-β1 expression was reduced in B16F0/TGF-β1-RNAi cells compared with B16F0 cells and B16F0/vector-control cells. Three million wild-type B16F0 cells, B16F0/vector-control cells, and B16F0/TGF-β1-RNAi cells were injected subcutaneously into the right flanks of adult female syngeneic mice C57BL/6. The tumor sizes were 756.09 (65.35), 798.48 (78.77), and 203.55 (24.56) mm at the 14th day in the mice receiving B16F0 cells, B16F0/vector-control cells, and B16F0/TGFβ1-RNAi cells, respectively. The P value was less than 0.01 by 1-way analysis of variance. TGF-β1 knockdown in B16F0 cells enhanced the infiltration of CD4 and CD8 T cells in the tumor regions. C57BL/6 mice were evaluated for pulmonary metastasis after tail vein injection of 2 million B16F0 cells, B16F0/vector-control cells, and B16F0/TGF-β1-RNAi cells. The pulmonary metastasis also reduced significantly on days 14 day and 21 in mice injected with B16F0/TGF-β1-RNAi tumors. The blood vessel density of the tumors markedly reduced in B16F0/TGF-β1-RNAi tumors. Our results showed that Ad/TGF-β1-RNAi could induce silencing of the TGF-β1 gene effectively. Silencing of TGF-β1 expression in B16F0 cells by RNAi technology can inhibit the growth and metastasis of this tumor after being transplanted to C57BL/6 mice. This kind of adenoviral vector based on RNAi might be a promising vector for cancer therapy.

  5. The cell-cycle interactome: a source of growth regulators?

    PubMed

    Blomme, Jonas; Inzé, Dirk; Gonzalez, Nathalie

    2014-06-01

    When plants develop, cell proliferation and cell expansion are tightly controlled in order to generate organs with a determinate final size such as leaves. Several studies have demonstrated the importance of the cell proliferation phase for leaf growth, illustrating that cell-cycle regulation is crucial for correct leaf development. A large and complex set of interacting proteins that constitute the cell-cycle interactome controls the transition from one cell-cycle phase to another. Here, we review the current knowledge on cell-cycle regulators from this interactome affecting final leaf size when their expression is altered, mainly in Arabidopsis. In addition to the description of mutants of CYCLIN-DEPENDENT KINASES (CDKs), CYCLINS (CYCs), and their transcriptional and post-translational regulators, a phenotypic analysis of gain- and loss-of-function mutants for 27 genes encoding proteins that interact with cell-cycle proteins is presented. This compilation of information shows that when cell-cycle-related genes are mis-expressed, leaf growth is often altered and that, seemingly, three main trends appear to be crucial in the regulation of final organ size by cell-cycle-related genes: (i) cellular compensation; (ii) gene dosage; and (iii) correct transition through the G2/M phase by ANAPHASE PROMOTING COMPLEX/CYCLOSOME (APC/C) activation. In conclusion, this meta-analysis shows that the cell-cycle interactome is enriched in leaf growth regulators, and illustrates the potential to identify new leaf growth regulators among putative new cell-cycle regulators. © The Author 2013. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Cytokinesis-Based Constraints on Polarized Cell Growth in Fission Yeast

    PubMed Central

    Bohnert, K. Adam; Gould, Kathleen L.

    2012-01-01

    The rod-shaped fission yeast Schizosaccharomyces pombe, which undergoes cycles of monopolar-to-bipolar tip growth, is an attractive organism for studying cell-cycle regulation of polarity establishment. While previous research has described factors mediating this process from interphase cell tips, we found that division site signaling also impacts the re-establishment of bipolar cell growth in the ensuing cell cycle. Complete loss or targeted disruption of the non-essential cytokinesis protein Fic1 at the division site, but not at interphase cell tips, resulted in many cells failing to grow at new ends created by cell division. This appeared due to faulty disassembly and abnormal persistence of the cell division machinery at new ends of fic1Δ cells. Moreover, additional mutants defective in the final stages of cytokinesis exhibited analogous growth polarity defects, supporting that robust completion of cell division contributes to new end-growth competency. To test this model, we genetically manipulated S. pombe cells to undergo new end take-off immediately after cell division. Intriguingly, such cells elongated constitutively at new ends unless cytokinesis was perturbed. Thus, cell division imposes constraints that partially override positive controls on growth. We posit that such constraints facilitate invasive fungal growth, as cytokinesis mutants displaying bipolar growth defects formed numerous pseudohyphae. Collectively, these data highlight a role for previous cell cycles in defining a cell's capacity to polarize at specific sites, and they additionally provide insight into how a unicellular yeast can transition into a quasi-multicellular state. PMID:23093943

  7. Heterologous Expression of the Carrot Hsp17.7 gene Increased Growth, Cell Viability, and Protein Solubility in Transformed Yeast (Saccharomyces cerevisiae) under Heat, Cold, Acid, and Osmotic Stress Conditions.

    PubMed

    Ko, Eunhye; Kim, Minhye; Park, Yunho; Ahn, Yeh-Jin

    2017-08-01

    In industrial fermentation of yeast (Saccharomyces cerevisiae), culture conditions are often modified from the optimal growth conditions of the cells to maintain large-scale cultures and/or to increase recombinant protein production. However, altered growth conditions can be stressful to yeast cells resulting in reduced cell growth and viability. In this study, a small heat shock protein gene from carrot (Daucus carota L.), Hsp17.7, was inserted into the yeast genome via homologous recombination to increase tolerance to stress conditions that can occur during industrial culture. A DNA construct, Translational elongation factor gene promoter-carrot Hsp17.7 gene-Phosphoribosyl-anthranilate isomerase gene (an auxotrophic marker), was generated by a series of PCRs and introduced into the chromosome IV of the yeast genome. Immunoblot analysis showed that carrot Hsp17.7 accumulated in the transformed yeast cell lines. Growth rates and cell viability of these cell lines were higher than control cell lines under heat, cold, acid, and hyperosmotic stress conditions. Soluble protein levels were higher in the transgenic cell lines than control cell lines under heat and cold conditions, suggesting the molecular chaperone function of the recombinant Hsp17.7. This study showed that a recombinant DNA construct containing a HSP gene from carrot was successfully expressed in yeast by homologous recombination and increased tolerances to abiotic stress conditions.

  8. TNFR2-deficient memory CD8 T cells provide superior protection against tumor cell growth.

    PubMed

    Kim, Edward Y; Teh, Soo-Jeet; Yang, Jocelyn; Chow, Michael T; Teh, Hung-Sia

    2009-11-15

    TNF receptor-2 (TNFR2) plays a critical role in promoting the activation and survival of naive T cells during the primary response. Interestingly, anti-CD3 plus IL-2 activated TNFR2(-/-) CD8 T cells are highly resistant to activation-induced cell death (AICD), which correlates with high expression levels of prosurvival molecules such as Bcl-2, survivin, and CD127 (IL-7Ralpha). We determined whether the resistance of activated TNFR2(-/-) CD8 T cells to AICD contributes to more effective protection against tumor cell growth. We found that during a primary tumor challenge, despite initial inferiority in controlling tumor cell growth, TNFR2(-/-) mice were able to more effectively control tumor burden over time compared with wild-type (WT) mice. Furthermore, vaccination of TNFR2(-/-) mice with recombinant Listeria monocytogenes that express OVA confers better protection against the growth of OVA-expressing E.G7 tumor cells relative to similarly vaccinated WT mice. The enhanced protection against tumor cell growth was not due to more effective activation of OVA-specific memory CD8 T cells in vaccinated TNFR2(-/-) mice. In vitro studies indicate that optimally activated OVA-specific TNFR2(-/-) CD8 T cells proliferated to the same extent and possess similar cytotoxicity against E.G7 tumor cells as WT CD8 T cells. However, relative to WT cells, activated OVA-specific TNFR2(-/-) CD8 T cells were highly resistant to AICD. Thus, the enhanced protection against E.G7 in TNFR2(-/-) mice is likely due to the recruitment and activation of OVA-specific memory TNFR2(-/-) CD8 T cells and their prolonged survival at the tumor site.

  9. PKCeta enhances cell cycle progression, the expression of G1 cyclins and p21 in MCF-7 cells.

    PubMed

    Fima, E; Shtutman, M; Libros, P; Missel, A; Shahaf, G; Kahana, G; Livneh, E

    2001-10-11

    Protein kinase C encodes a family of enzymes implicated in cellular differentiation, growth control and tumor promotion. However, not much is known with respect to the molecular mechanisms that link protein kinase C to cell cycle control. Here we report that the expression of PKCeta in MCF-7 cells, under the control of a tetracycline-responsive inducible promoter, enhanced cell growth and affected the cell cycle at several points. The induced expression of another PKC isoform, PKCdelta, in MCF-7 cells had opposite effects and inhibited their growth. PKCeta expression activated cellular pathways in these cells that resulted in the increased expression of the G1 phase cyclins, cyclin D and cyclin E. Expression of the cyclin-dependent kinase inhibitor p21(WAF1) was also specifically elevated in PKCeta expressing cells, but its overall effects were not inhibitory. Although, the protein levels of the cyclin-dependent kinase inhibitor p27(KIP1) were not altered by the induced expression of PKCeta, the cyclin E associated Cdk2 kinase activity was in correlation with the p27(KIP1) bound to the cyclin E complex and not by p21(WAF1) binding. PKCeta expression enhanced the removal of p27(KIP1) from this complex, and its re-association with the cyclin D/Cdk4 complex. Reduced binding of p27(KIP1) to the cyclin D/Cdk4 complex at early time points of the cell cycle also enhanced the activity of this complex, while at later time points the decrease in bound p21(WAF1) correlated with its increased activity in PKCeta-expressing cells. Thus, PKCeta induces altered expression of several cell cycle functions, which may contribute to its ability to affect cell growth.

  10. Receptor-selective retinoids implicate retinoic acid receptor alpha and gamma in the regulation of bmp-2 and bmp-4 in F9 embryonal carcinoma cells.

    PubMed

    Rogers, M B

    1996-01-01

    The effect of retinoids on malignant cells and embryos indicates that retinoids influence the expression of growth factors or alter the response of cells to growth factors. The bone morphogenetic proteins, Bmp-2 and Bmp-4, are candidates for such growth factors because retinoic acid (RA) treatment of F9 embryonal carcinoma cells induced Bmp-2 mRNA, while simultaneously repressing Bmp-4 levels. Also, recombinant Bmp-2 affected the growth and differentiation of these cells. Regulation of each gene was concentration dependent and required continuous RA treatment. The short half-lives of the Bmp-2 (75 +/- 11 min) and Bmp-4 (70 +/- 4 min) mRNAs suggest that their abundance is primarily controlled at the transcriptional level. To determine which RA receptor (RAR) controls bmp-2 and bmp-4 expression, F9 cells were exposed to various receptor-selective retinoids. RAR alpha- and gamma-selective retinoids induced Bmp-2 and repressed Bmp-4 equally as well as all-trans RA. In contrast, a RAR beta-selective retinoid had little effect on Bmp-2 induction but repressed Bmp-4. A RAR alpha-selective antagonist inhibited all-trans RA stimulation of Bmp-2, although not as dramatically as a RAR beta gamma-selective antagonist. No differences were observed between Bmp levels in all-trans RA and 9-cis RA-treated cells, indicating that the RXRs play little part in controlling these genes. The results are consistent with RAR alpha and gamma-controlled Bmp-2 and Bmp-4 regulation.

  11. Kidney tubular-cell secretion of osteoblast growth factor is increased by kaempferol: a scientific basis for "the kidney controlling the bone" theory of Chinese medicine.

    PubMed

    Long, Mian; Li, Shun-xiang; Xiao, Jiang-feng; Wang, Jian; Lozanoff, Scott; Zhang, Zhi-guang; Luft, Benjamin J; Johnson, Francis

    2014-09-01

    To study, at the cytological level, the basic concept of Chinese medicine that "the Kidney (Shen) controls the bone". Kaempferol was isolated form Rhizoma Drynariae (Gu Sui Bu, GSB) and at several concentrations was incubated with opossum kidney (OK) cells, osteoblasts (MC3T3 E1) and human fibroblasts (HF) at cell concentrations of 2×10(4)/mL. Opossum kidney cell-conditioned culture media with kaempferol at 70 nmol/L (70kaeOKM) and without kaempferol (0OKM) were used to stimulate MC3T3 E1 and HF proliferation. The bone morphological protein receptors I and II (BMPR I and II) in OK cells were identified by immune-fluorescence staining and Western blot analysis. Kaempferol was found to increase OK cell growth (P<0.05), but alone did not promote MC3T3 E1 or HF cell proliferation. However, although OKM by itself increased MC3T3 E1 growth by 198% (P<0.01), the 70kaeOKM further increased the growth of these cells by an additional 127% (P<0.01). It indicates that the kidney cell generates a previously unknown osteoblast growth factor (OGF) and kaempferol increases kidney cell secretion of OGF. Neither of these media had any significant effect on HF growth. Kaempferol also was found to increase the level of the BMPR II in OK cells. This lends strong support to the original idea that the Kidney has a significant influence over bone-formation, as suggested by some long-standing Chinese medical beliefs, kaempferol may also serve to stimulate kidney repair and indirectly stimulate bone formation.

  12. Truncated Hormone Inhibits Breast Tumor Blood Vessel Formation, Not Tumor Growth | Center for Cancer Research

    Cancer.gov

    The hormone prolactin (PRL) plays a critical role in normal breast development by stimulating the proliferation of mammary cells, the production of milk proteins, and the formation of new mammary blood vessels. Unfortunately, the same cell and vessel growth pathways controlled by PRL in normal cells also operate in breast cancer cells, and elevated plasma PRL is a risk factor

  13. Effect of bevacizumab on angiogenesis and growth of canine osteosarcoma cells xenografted in athymic mice.

    PubMed

    Scharf, Valery F; Farese, James P; Coomer, Alastair R; Milner, Rowan J; Taylor, David P; Salute, Marc E; Chang, Myron N; Neal, Dan; Siemann, Dietmar W

    2013-05-01

    Objective-To investigate the effects of bevacizumab, a human monoclonal antibody against vascular endothelial growth factor, on the angiogenesis and growth of canine osteosarcoma cells xenografted in mice. Animals-27 athymic nude mice. Procedures-To each mouse, highly metastasizing parent osteosarcoma cells of canine origin were injected into the left gastrocnemius muscle. Each mouse was then randomly allocated to 1 of 3 treatment groups: high-dose bevacizumab (4 mg/kg, IP), low-dose bevacizumab (2 mg/kg, IP), or control (no treatment). Tumor growth (the number of days required for the tumor to grow from 8 to 13 mm), vasculature, histomorphology, necrosis, and pulmonary metastasis were evaluated. Results-Mice in the high-dose bevacizumab group had significantly delayed tumor growth (mean ± SD, 13.4 ± 3.8 days; range, 9 to 21 days), compared with that for mice in the low-dose bevacizumab group (mean ± SD, 9.4 ± 1.5 days; range, 7 to 11 days) or control group (mean ± SD, 7. 2 ± 1.5 days; range, 4 to 9 days). Mice in the low-dose bevacizumab group also had significantly delayed tumor growth, compared with that for mice in the control group. Conclusions and Clinical Relevance-Results indicated that bevacizumab inhibited growth of canine osteosarcoma cells xenografted in mice, which suggested that vascular endothelial growth factor inhibitors may be clinically useful for the treatment of osteosarcoma in dogs. Impact for Human Medicine-Canine osteosarcoma is used as a research model for human osteosarcoma; therefore, bevacizumab may be clinically beneficial for the treatment of osteosarcoma in humans.

  14. A Two-Layer Gene Circuit for Decoupling Cell Growth from Metabolite Production.

    PubMed

    Lo, Tat-Ming; Chng, Si Hui; Teo, Wei Suong; Cho, Han-Saem; Chang, Matthew Wook

    2016-08-01

    We present a synthetic gene circuit for decoupling cell growth from metabolite production through autonomous regulation of enzymatic pathways by integrated modules that sense nutrient and substrate. The two-layer circuit allows Escherichia coli to selectively utilize target substrates in a mixed pool; channel metabolic resources to growth by delaying enzymatic conversion until nutrient depletion; and activate, terminate, and re-activate conversion upon substrate availability. We developed two versions of controller, both of which have glucose nutrient sensors but differ in their substrate-sensing modules. One controller is specific for hydroxycinnamic acid and the other for oleic acid. Our hydroxycinnamic acid controller lowered metabolic stress 2-fold and increased the growth rate 2-fold and productivity 5-fold, whereas our oleic acid controller lowered metabolic stress 2-fold and increased the growth rate 1.3-fold and productivity 2.4-fold. These results demonstrate the potential for engineering strategies that decouple growth and production to make bio-based production more economical and sustainable. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Role of RhoA, mDia, and ROCK in cell shape-dependent control of the Skp2-p27kip1 pathway and the G1/S transition.

    PubMed

    Mammoto, Akiko; Huang, Sui; Moore, Kimberly; Oh, Philmo; Ingber, Donald E

    2004-06-18

    Cell shape-dependent control of cell-cycle progression underlies the spatial differentials of growth that drive tissue morphogenesis, yet little is known about how cell distortion impacts the biochemical signaling machinery that is responsible for growth control. Here we show that the Rho family GTPase, RhoA, conveys the "cell shape signal" to the cell-cycle machinery in human capillary endothelial cells. Cells accumulating p27(kip1) and arrested in mid G(1) phase when spreading were inhibited by restricted extracellular matrix adhesion, whereas constitutively active RhoA increased expression of the F-box protein Skp2 required for ubiquitination-dependent degradation of p27(kip1) and restored G(1) progression in these cells. Studies with dominant-negative and constitutively active forms of mDia1, a downstream effector of RhoA, and with a pharmacological inhibitor of ROCK, another RhoA target, revealed that RhoA promoted G(1) progression by altering the balance of activities between these two downstream effectors. These data indicate that signaling proteins such as mDia1 and ROCK, which are thought to be involved primarily in cytoskeletal remodeling, also mediate cell growth regulation by coupling cell shape to the cell-cycle machinery at the level of signal transduction.

  16. Neural Stem Cell Differentiation Using Microfluidic Device-Generated Growth Factor Gradient.

    PubMed

    Kim, Ji Hyeon; Sim, Jiyeon; Kim, Hyun-Jung

    2018-04-11

    Neural stem cells (NSCs) have the ability to self-renew and differentiate into multiple nervous system cell types. During embryonic development, the concentrations of soluble biological molecules have a critical role in controlling cell proliferation, migration, differentiation and apoptosis. In an effort to find optimal culture conditions for the generation of desired cell types in vitro , we used a microfluidic chip-generated growth factor gradient system. In the current study, NSCs in the microfluidic device remained healthy during the entire period of cell culture, and proliferated and differentiated in response to the concentration gradient of growth factors (epithermal growth factor and basic fibroblast growth factor). We also showed that overexpression of ASCL1 in NSCs increased neuronal differentiation depending on the concentration gradient of growth factors generated in the microfluidic gradient chip. The microfluidic system allowed us to study concentration-dependent effects of growth factors within a single device, while a traditional system requires multiple independent cultures using fixed growth factor concentrations. Our study suggests that the microfluidic gradient-generating chip is a powerful tool for determining the optimal culture conditions.

  17. Normal and leukaemic human haemopoietic cells in diffusion chamber. A morphological and functional CFU-C study.

    PubMed

    Laurent, M; Clémancey-Marcille, G; Hollard, D

    1980-03-01

    Leukaemic human bone marrow and peripheral blood cells were cultured for 25 d in diffusion chambers implanted into cyclophosphamide treated mice. Normal bone marrow cells were cultured simultaneously. These cells were studied both morphologically and functionally (CFU-C). The leukaemic cells behaved heterogeneously, 2 groups being distinguishable in accordance with their initial in vitro growth pattern (1: no growth or microcluster growth. 2: macrocluster growth). Group I showed progressive cellular death with a diminution of granulocytic progenitors and the appearance of a predominantly macrophagic population. This behaviour resembled that of the control group. The initial microcluster growth pattern remained identical throughout the entire culture period. Group 2, after considerable cellular death up to d 5, showed an explosive proliferation of the granulocytic progenitors and incomplete differentiation (up to myelocyte). The initial macrocluster growth pattern remained identical.

  18. Phenotypic indications of FtsZ inhibition in hok/sok-induced bacterial growth changes and stress response.

    PubMed

    Chukwudi, Chinwe Uzoma; Good, Liam

    2018-01-01

    The hok/sok locus has been shown to enhance the growth of bacteria in adverse growth conditions such as high temperature, low starting-culture densities and antibiotic treatment. This is in addition to their well-established plasmid-stabilization effect via post-segregational killing of plasmid-free daughter cells. It delays the onset of growth by prolonging the lag phase of bacterial culture, and increases the rate of exponential growth when growth eventually begins. This enables the cells adapt to the prevailing growth conditions and enhance their survival in stressful conditions. These effects functionally complement defective SOS response mechanism, and appear analogous to the growth effects of FtsZ in the SOS pathway. In this study, the role of FtsZ in the hok/sok-induced changes in bacterial growth and cell division was investigated. Morphologic studies of early growth-phase cultures and cells growing under temperature stress showed elongated cells typical of FtsZ inhibition/deficiency. Both ftsZ silencing and over-expression produced comparable growth effects in control cells, and altered the growth changes observed otherwise in the hok/sok + cells. These changes were diminished in SOS-deficient strain containing mutant FtsZ. The involvement of FtsZ in the hok/sok-induced growth changes may be exploited as drug target in host bacteria, which often propagate antibiotic resistance elements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Computational modelling of the scaffold-free chondrocyte regeneration: a two-way coupling between the cell growth and local fluid flow and nutrient concentration.

    PubMed

    Hossain, Md Shakhawath; Bergstrom, D J; Chen, X B

    2015-11-01

    The in vitro chondrocyte cell culture process in a perfusion bioreactor provides enhanced nutrient supply as well as the flow-induced shear stress that may have a positive influence on the cell growth. Mathematical and computational modelling of such a culture process, by solving the coupled flow, mass transfer and cell growth equations simultaneously, can provide important insight into the biomechanical environment of a bioreactor and the related cell growth process. To do this, a two-way coupling between the local flow field and cell growth is required. Notably, most of the computational and mathematical models to date have not taken into account the influence of the cell growth on the local flow field and nutrient concentration. The present research aimed at developing a mathematical model and performing a numerical simulation using the lattice Boltzmann method to predict the chondrocyte cell growth without a scaffold on a flat plate placed inside a perfusion bioreactor. The model considers the two-way coupling between the cell growth and local flow field, and the simulation has been performed for 174 culture days. To incorporate the cell growth into the model, a control-volume-based surface growth modelling approach has been adopted. The simulation results show the variation of local fluid velocity, shear stress and concentration distribution during the culture period due to the growth of the cell phase and also illustrate that the shear stress can increase the cell volume fraction to a certain extent.

  20. Elevated endothelial progenitor cells during painful sickle cell crisis.

    PubMed

    van Beem, Rachel T; Nur, Erfan; Zwaginga, Jaap Jan; Landburg, Precious P; van Beers, Eduard J; Duits, Ashley J; Brandjes, Dees P; Lommerse, Ingrid; de Boer, Hetty C; van der Schoot, C Ellen; Schnog, John-John B; Biemond, Bart J

    2009-09-01

    Circulating endothelial progenitor cells (EPCs) counts were determined in patients with sickle cell disease (SCD) to elucidate their role in SCD-related ischemia-induced angiogenesis and reendothelialization. Circulating EPC counts (KDR(+)/CD34(+)/Cd45(dim) cells) and their relation to serum levels of EPC mobilizing growth factors erythropoietin, vascular endothelial growth factor, and interleukin-8 were investigated in SCD patients during asymptomatic state (n=66) and painful crisis (n=36) and compared to healthy controls (n=13). EPC counts were comparable between controls (0; range, 0-1.1 cells/mL) and patients (0; range, 0-0 cells/mL) in asymptomatic state, but were significantly higher during painful crisis (41.7; range, 0-186 cells/mL; p<0.05). Also in a paired analysis of 12 patients who were included both during asymptomatic state and painful crisis, EPC counts increased significantly during painful crisis (from 0 [range, 0-0] to 26 [range, 0-149 cell/mL; p<0.05). EPC counts were not related to any of the measured growth factors. The higher EPC counts during painful crisis might indicate a role for EPC mobilization in reendothelialization. As a relationship of EPCs with the established mobilizing growth factors, measured in this study was not observed, the mechanism of EPC mobilization in SCD remains to be elucidated.

  1. Anti-cell growth and anti-cancer stem cell activities of the non-canonical hedgehog inhibitor GANT61 in triple-negative breast cancer cells.

    PubMed

    Koike, Yoshikazu; Ohta, Yusuke; Saitoh, Wataru; Yamashita, Tetsumasa; Kanomata, Naoki; Moriya, Takuya; Kurebayashi, Junichi

    2017-09-01

    Triple-negative breast cancer (TNBC) exhibits biologically aggressive behavior and has a poor prognosis. Novel molecular targeting agents are needed to control TNBC. Recent studies revealed that the non-canonical hedgehog (Hh) signaling pathway plays important roles in the regulation of cancer stem cells (CSCs) in breast cancer. Therefore, the anti-cell growth and anti-CSC effects of the non-canonical Hh inhibitor GANT61 were investigated in TNBC cells. The effects of GANT61 on cell growth, cell cycle progression, apoptosis, and the proportion of CSCs were investigated in three TNBC cell lines. Four ER-positive breast cancer cell lines were also used for comparisons. The expression levels of effector molecules in the Hh pathway: glioma-associated oncogene (GLI) 1 and GLI2, were measured. The combined effects of GANT61 and paclitaxel on anti-cell growth and anti-CSC activities were also investigated. Basal expression levels of GLI1 and GLI2 were significantly higher in TNBC cells than in ER-positive breast cancer cells. GANT61 dose-dependently decreased cell growth in association with G1-S cell cycle retardation and increased apoptosis. GANT61 significantly decreased the CSC proportion in all TNBC cell lines. Paclitaxel decreased cell growth, but not the CSC proportion. Combined treatments of GANT61 and paclitaxel more than additively enhanced anti-cell growth and/or anti-CSC activities. The non-canonical Hh inhibitor GANT61 decreased not only cell growth, but also the CSC population in TNBC cells. GANT61 enhanced the anti-cell growth activity of paclitaxel in these cells. These results suggest for the first time that GANT61 has potential as a therapeutic agent in the treatment of patients with TNBC.

  2. [5-aza-2'-deoxycytidine-induced inhibition of CDH13 expression and its inhibitory effect on methylation status in human colon cancer cells in vitro and on growth of xenograft in nude mice].

    PubMed

    Ren, Jian-zhen; Huo, Ji-rong

    2012-01-01

    To determine the inhibitory effect of 5-aza-2'-deoxycytidine (5-Aza-CdR) on the growth of human colon carcinoma cells and xenografts in nude mice, to observe its effect on CDH13 gene expression and methylation in the xenografts, and to explore the possible mechanisms. Human colon carcinoma cell line HCT116 cells were treated with 5-Aza-CdR, and the cell morphology was observe by phase contrast microscopy. The cell growth was assessed by MTT assay. A tumor-bearing mouse model was generated by subcutaneous inoculation of human colon carcinoma HCT116 cells into nude mice. The tumor growth in the nude mice was observed, the CDH13 gene expression and its methylation status in the tumors were detected using methylation specific PCR (MSP), RT-PCR, Western blotting and immunohistochemistry. After treatment with 5-Aza-CdR, the inhibition rate of the growth of cultured HCT116 cells was increased as the concentration was increasing. The growth of the xenografts in nude mice was significantly inhibited, and the methylated CDH13 gene was reactivated. After 4 weeks of 5-Aza-CdR treatment, no significant difference was found between the body weights of nude mice in the 5-Aza-CdR group [(18.06 ± 1.29) g] and control group [(17.07 ± 0.84) g], (P > 0.10), and the average volume of xenografts of the 5-Aza-CdR group was (907.00 ± 87.29) mm(3), significantly smaller than the (1370.93 ± 130.20) mm(3) in the control group (P < 0.005). No expression of CDH13 gene was found in the control group. The expression of CDH13 gene in the 5-Aza-CdR group was increased along with the increasing concentration of 5-Aza-CdR. 5-Aza-CdR inhibits the growth of human colon cancer cells in culture and in nude mice, and induces the cancer cells to re-express CDH13 in nude mice. Its mechanism may be that demethylation of the methylated CDH13 promoter induced by 5-Aza-CdR restores CDH13 expression and thus inhibits the tumor growth in nude mice.

  3. Temporal Control of Transforming Growth Factor (TGF) - Betal Expression on Mammary Cell Multistep Transformation

    DTIC Science & Technology

    2001-10-01

    tu- vation of transcription and deregulated cell mors and may eventually regress through growth (18). The importance of APC and [- cat - apoptosis (25...receptors, fibrosarcoma cells transfected to express 10ng/ml TPRII [621, ALK-1 [63], and endoglin [64], and one of its TGF-131 in vitro are unable to

  4. Anti-Angiogenic Action of Neutral Endopeptidase

    DTIC Science & Technology

    2005-11-30

    side of hydrophobic amino acids and inactivates a variety of physiologically active peptides, including atrial natriuretic factor, substance P ...follows. 15. SUBJECT TERMS Angiogenesis, Cell surface peptidase , Neutral endopeptidase, Basic fibroblast growth factor, Prostate cancer Proteolysis 16...patients with prostate cancer. Cell-surface peptidases are the guardians of the cell against small stimulatory peptides, functioning to control growth

  5. Expression of insulin-like growth factor-1 and insulin-like growth factor-1 receptors in EL4 lymphoma cells overexpressing growth hormone.

    PubMed

    Weigent, Douglas A; Arnold, Robyn E

    2005-03-01

    Almost all of the previous studies with growth hormone (GH) have been done with exogenously supplied GH and, therefore, involve actions of the hormone through its receptor. However, the actions of endogenous or lymphocyte GH are still unclear. In a previous study, we showed that overexpression of GH (GHo) in a lymphoid cell line resulted in protection of the cells to apoptosis mediated by nitric oxide (NO). In the present study, we show that the protection from apoptosis could be transferred to control cells with culture fluids obtained from GHo cells and blocked by antibodies to the insulin-like growth factor-1 (IGF-1) or antibodies to the IGF-1-receptor (IGF-1R). Northern and Western blot analysis detected significantly higher levels of IGF-1 in cells overexpressing GH. An increase in the expression of the IGF-1R in GHo cells was also detected by Western blot analysis, (125)I-IGF-1 binding and analysis of IGF-1R promoter luciferase constructs. Transfection of GHo cells with a dominant negative IGF-1R mutant construct blocked the generation of NO and activation of Akt seen in GHo cells compared to vector alone control EL4 cells. The results suggest that one of the consequences of the overexpression of GH, in cells lacking the GH receptor, is an increase in the expression of IGF-1 and the IGF-1R which mediate the protection of EL4 lymphoma cells from apoptosis.

  6. Individuality and universality in the growth-division laws of single E. coli cells

    NASA Astrophysics Data System (ADS)

    Kennard, Andrew S.; Osella, Matteo; Javer, Avelino; Grilli, Jacopo; Nghe, Philippe; Tans, Sander J.; Cicuta, Pietro; Cosentino Lagomarsino, Marco

    2016-01-01

    The mean size of exponentially dividing Escherichia coli cells in different nutrient conditions is known to depend on the mean growth rate only. However, the joint fluctuations relating cell size, doubling time, and individual growth rate are only starting to be characterized. Recent studies in bacteria reported a universal trend where the spread in both size and doubling times is a linear function of the population means of these variables. Here we combine experiments and theory and use scaling concepts to elucidate the constraints posed by the second observation on the division control mechanism and on the joint fluctuations of sizes and doubling times. We found that scaling relations based on the means collapse both size and doubling-time distributions across different conditions and explain how the shape of their joint fluctuations deviates from the means. Our data on these joint fluctuations highlight the importance of cell individuality: Single cells do not follow the dependence observed for the means between size and either growth rate or inverse doubling time. Our calculations show that these results emerge from a broad class of division control mechanisms requiring a certain scaling form of the "division hazard rate function," which defines the probability rate of dividing as a function of measurable parameters. This "model free" approach gives a rationale for the universal body-size distributions observed in microbial ecosystems across many microbial species, presumably dividing with multiple mechanisms. Additionally, our experiments show a crossover between fast and slow growth in the relation between individual-cell growth rate and division time, which can be understood in terms of different regimes of genome replication control.

  7. Increased proliferation of endothelial cells with overexpression of soluble TNF-alpha receptor I gene.

    PubMed

    Sugano, Masahiro; Tsuchida, Keiko; Tomita, Hideharu; Makino, Naoki

    2002-05-01

    Vascular endothelial growth factor (VEGF) can overcome a potential anti-angiogenic effect of TNF-alpha by inhibiting endothelial apoptosis induced by this cytokine. Soluble TNF-alpha receptor I (sTNFRI) is an extracellular domain of TNFRI and antagonizes the activity of TNF-alpha. Here we report that sTNFRI is able to stimulate the growth of endothelial cells not by antagonizing TNF-alpha. Exogenously added recombinant human sTNFRI stimulated significantly more cell growth of human umbilical venous endothelial cells (HUVEC) with a low dose (50-200 pg/ml) compared with smooth muscle cells. In contrast, monoclonal antibody against TNF-alpha did not stimulate growth of human HUVEC. The sTNFRI expression plasmid (pcDNA3.1 plasmid) was introduced into the cell culture using OPTI-MEM, lipofectin and transferrin. Growth of HUVEC transfected with sTNFRI vector also increased significantly compared with those transfected with control vector. HUVEC transfected with sTNFRI vector increased the extracellular domain of TNFRI mRNA levels, but did not affect the intracellular domain of TNFRI mRNA levels. Accumulation of sTNFRI significantly increased in conditioned medium from HUVEC transfected with sTNFRI vector compared with those transfected with control vector. HUVEC transfected with sTNFRI vector not only increased sTNFRI but also prevented shedding of sTNFRI from TNFRI. The TNF-alpha -induced internucleosomic fragmentation was also significantly prevented in HUVEC transfected with sTNFRI vector compared with those transfected with control vector. These results suggest that instead of growth factors such as VEGF, local transfection of the sTNFRI gene may have potential therapeutic value in vascular diseases in which TNF-alpha is also usually highly expressed.

  8. A Stochastic Model of Eye Lens Growth

    PubMed Central

    Šikić, Hrvoje; Shi, Yanrong; Lubura, Snježana; Bassnett, Steven

    2015-01-01

    The size and shape of the ocular lens must be controlled with precision if light is to be focused sharply on the retina. The lifelong growth of the lens depends on the production of cells in the anterior epithelium. At the lens equator, epithelial cells differentiate into fiber cells, which are added to the surface of the existing fiber cell mass, increasing its volume and area. We developed a stochastic model relating the rates of cell proliferation and death in various regions of the lens epithelium to deposition of fiber cells and lens growth. Epithelial population dynamics were modeled as a branching process with emigration and immigration between various proliferative zones. Numerical simulations were in agreement with empirical measurements and demonstrated that, operating within the strict confines of lens geometry, a stochastic growth engine can produce the smooth and precise growth necessary for lens function. PMID:25816743

  9. EFFECT OF HYPOXIA ON THE EXPRESSION OF GENES THAT ENCODE SOME IGFBP AND CCN PROTEINS IN U87 GLIOMA CELLS DEPENDS ON IRE1 SIGNALING.

    PubMed

    Minchenko, O H; Kharkova, A P; Minchenko, D O; Karbovskyi, L L

    2015-01-01

    We have studied hypoxic regulation of the expression of different insulin-like growth factor binding protein genes in U87 glioma cells in relation to inhibition of IRE1 (inositol requiring enzyme-1), a central mediator of endoplasmic reticulum stress, which controls cell proliferation and tumor growth. We have demonstrated that hypoxia leads to up-regulation of the expression of IGFBP6, IGFBP7, IGFBP10/CYR61, WISP1, and WISP2 genes and down-regulation--of IGFBP9/NOV gene at the mRNA level in control glioma cells, being more signifcant changes for IGFBP10/CYR61 and WISP2 genes. At the same time, inhibition of IRE1 modifies the effect of hypoxia on the expression of all studied genes: eliminates sensitivity to hypoxia the expression of IGFBP7 and IGFBP9/NOV genes, suppresses effect of hypoxia on IGFBP6, IGFBP10/CYR61, and WISP2 genes, and slightly enhances hypoxic regulation of WISP1 gene expression in glioma cells. We have also demonstrated that the expression of all studied genes in glioma cells is regulated by IRE1 signaling enzyme upon normoxic condition, because inhibition of IRE1 significantly up-regulates IGFBP7, IGFBP10/CYR61, WISP1, and WISP2 genes and down-regulates IGFBP6 and IGFBP9/NOV genes as compared to control glioma cells. The present study demonstrates that hypoxia, which contributes to tumor growth, affects all studied IGFBP and WISP gene expressions and that inhibition of IRE1 preferentially abolishes or suppresses the hypoxic regulation of these gene expressions and thus possibly contributes to slower glioma growth. Moreover, inhibition of IRE1, which correlates with suppression of cell proliferation and glioma growth, is down-regulated expression of pro-proliferative IGFBP genes, attesting to the fact that endoplasmic reticulum stress is a necessary component of malignant tumor growth.

  10. Influence of iron deficiency on the growth rate and physiological state of Prorocentrum micans Ehrenberg

    NASA Astrophysics Data System (ADS)

    Huan-Xin, W.; Xiang-Wei, S.; Jing-Ke, W.; Ya-Chao, Q.

    2004-12-01

    Previous researches had shown that iron is an important limiting element to marine primary production. However, the mechanism of how iron affects marine algae is not well understood. Prorocentrum micans Ehrenberg is an armoured marine planktonic dinoflagellate, which causes harmful red tide when blooming. In this research, we discussed the mechanism of iron deficiency affecting the growth rate and physiological state of P. micans Ehrenberg, based on the observation of the growth of P. micans Ehrenberg under iron deficiency. The results showed that the growth rate of P. micans Ehrenberg decreased under iron deficiency, as the time to reach the peak of cell numbers was delayed 3-4 days compared to the control group. Meanwhile, the maximal cell number and the concentration of chlorophyll a dropped slightly. Examination of cell morphology by transmission electron microscope showed that the arrangement of P. micans Ehrenberg chloroplast granum was disturbed under iron deficiency. The thylakoids exhibited twisted structure with larger interstices among the thylakoid layers. Chloroplast membrane system folded abnormally and fewer starch particles were synthesized and accumulated compared to the control group. In addition, many cavities appeared in mitochondria, and a few cells developed incomplete nuclear envelop. The energy spectrogram of the algal cells showed that the relative ratio of the contents of the elements in cell also changed as the degree of iron deficiency changed. The iron deficiency-induced morphological changes of P. micans Ehrenberg cell organelles may be due to the misfolding of some core proteins that originally require iron ion as folding center. The structural abnormality of the major cell organelles further led to the functional retardation or loss in photosynthesis, electron transport, and metabolism, which blocks normal growth of P. micans Ehrenberg. Taken together, the research helped to improve our understanding on the limiting effects of iron on marine algae growth and proposed a potential way to control red tides caused by algae blooming.

  11. Inflating bacterial cells by increased protein synthesis

    PubMed Central

    Basan, Markus; Zhu, Manlu; Dai, Xiongfeng; Warren, Mya; Sévin, Daniel; Wang, Yi-Ping; Hwa, Terence

    2015-01-01

    Understanding how the homeostasis of cellular size and composition is accomplished by different organisms is an outstanding challenge in biology. For exponentially growing Escherichia coli cells, it is long known that the size of cells exhibits a strong positive relation with their growth rates in different nutrient conditions. Here, we characterized cell sizes in a set of orthogonal growth limitations. We report that cell size and mass exhibit positive or negative dependences with growth rate depending on the growth limitation applied. In particular, synthesizing large amounts of “useless” proteins led to an inversion of the canonical, positive relation, with slow growing cells enlarged 7- to 8-fold compared to cells growing at similar rates under nutrient limitation. Strikingly, this increase in cell size was accompanied by a 3- to 4-fold increase in cellular DNA content at slow growth, reaching up to an amount equivalent to ∼8 chromosomes per cell. Despite drastic changes in cell mass and macromolecular composition, cellular dry mass density remained constant. Our findings reveal an important role of protein synthesis in cell division control. PMID:26519362

  12. Extracellular matrix and cell shape: potential control points for inhibition of angiogenesis

    NASA Technical Reports Server (NTRS)

    Ingber, D.

    1991-01-01

    Capillary endothelial (CE) cells require two extracellular signals in order to switch from quiescence to growth and back to differentiation during angiogenesis: soluble angiogenic factors and insoluble extracellular matrix (ECM) molecules. Soluble endothelial mitogens, such as basic fibroblast growth factor (FGF), act over large distances to trigger capillary growth, whereas ECM molecules act locally to modulate cell responsiveness to these soluble cues. Recent studies reveal that ECM molecules regulate CE cell growth and differentiation by modulating cell shape and by activating intracellular chemical signaling pathways inside the cell. Recognition of the importance of ECM and cell shape during capillary morphogenesis has led to the identification of a series of new angiogenesis inhibitors. Elucidation of the molecular mechanism of capillary regulation may result in development of even more potent angiogenesis modulators in the future.

  13. Iron Reverses Impermeable Chelator Inhibition of DNA Synthesis in CCl39 Cells

    NASA Astrophysics Data System (ADS)

    Alcain, Francisco J.; Low, Hans; Crane, Frederick L.

    1994-08-01

    Treatment of Chinese hamster lung fibro-blasts (CCl 39 cells) with the impermeable iron(II) chelator bathophenanthroline disulfonate (BPS) inhibits DNA synthesis when cell growth is initiated with growth factors including epidermal growth factor plus insulin, thrombin, or ceruloplasmin, but not with 10% fetal calf serum. The BPS treatment inhibits transplasma membrane electron transport. The treatment leads to release of iron from the cells as determined by BPS iron(II) complex formation over 90 min. Growth factor stimulation of DNA synthesis and electron transport are restored by addition of di- or trivalent iron to the cells in the form of ferric ammonium citrate, ferrous ammonium sulfate, or diferric transferrin. The effect with BPS differs from the inhibition of growth by hydroxyurea, which acts on the ribonucleotide reductase, or diethylenetriaminepentaacetic acid, which is another impermeable chelating agent, in that these agents inhibit growth in 10% fetal calf serum. The BPS effect is consistent with removal of iron from a site on the cell surface that controls DNA synthesis.

  14. Impaired Angiogenic Potential of Human Placental Mesenchymal Stromal Cells in Intrauterine Growth Restriction.

    PubMed

    Mandò, Chiara; Razini, Paola; Novielli, Chiara; Anelli, Gaia Maria; Belicchi, Marzia; Erratico, Silvia; Banfi, Stefania; Meregalli, Mirella; Tavelli, Alessandro; Baccarin, Marco; Rolfo, Alessandro; Motta, Silvia; Torrente, Yvan; Cetin, Irene

    2016-04-01

    Human placental mesenchymal stromal cells (pMSCs) have never been investigated in intrauterine growth restriction (IUGR). We characterized cells isolated from placental membranes and the basal disc of six IUGR and five physiological placentas. Cell viability and proliferation were assessed every 7 days during a 6-week culture. Expression of hematopoietic, stem, endothelial, and mesenchymal markers was evaluated by flow cytometry. We characterized the multipotency of pMSCs and the expression of genes involved in mitochondrial content and function. Cell viability was high in all samples, and proliferation rate was lower in IUGR compared with control cells. All samples presented a starting heterogeneous population, shifting during culture toward homogeneity for mesenchymal markers and occurring earlier in IUGR than in controls. In vitro multipotency of IUGR-derived pMSCs was restricted because their capacity for adipocyte differentiation was increased, whereas their ability to differentiate toward endothelial cell lineage was decreased. Mitochondrial content and function were higher in IUGR pMSCs than controls, possibly indicating a shift from anaerobic to aerobic metabolism, with the loss of the metabolic characteristics that are typical of undifferentiated multipotent cells. This study demonstrates that the loss of endothelial differentiation potential and the increase of adipogenic ability are likely to play a significant role in the vicious cycle of abnormal placental development in intrauterine growth restriction (IUGR). This is the first observation of a potential role for placental mesenchymal stromal cells in intrauterine growth restriction, thus leading to new perspectives for the treatment of IUGR. ©AlphaMed Press.

  15. Impaired Angiogenic Potential of Human Placental Mesenchymal Stromal Cells in Intrauterine Growth Restriction

    PubMed Central

    Mandò, Chiara; Razini, Paola; Novielli, Chiara; Anelli, Gaia Maria; Belicchi, Marzia; Erratico, Silvia; Banfi, Stefania; Meregalli, Mirella; Tavelli, Alessandro; Baccarin, Marco; Rolfo, Alessandro; Motta, Silvia

    2016-01-01

    Human placental mesenchymal stromal cells (pMSCs) have never been investigated in intrauterine growth restriction (IUGR). We characterized cells isolated from placental membranes and the basal disc of six IUGR and five physiological placentas. Cell viability and proliferation were assessed every 7 days during a 6-week culture. Expression of hematopoietic, stem, endothelial, and mesenchymal markers was evaluated by flow cytometry. We characterized the multipotency of pMSCs and the expression of genes involved in mitochondrial content and function. Cell viability was high in all samples, and proliferation rate was lower in IUGR compared with control cells. All samples presented a starting heterogeneous population, shifting during culture toward homogeneity for mesenchymal markers and occurring earlier in IUGR than in controls. In vitro multipotency of IUGR-derived pMSCs was restricted because their capacity for adipocyte differentiation was increased, whereas their ability to differentiate toward endothelial cell lineage was decreased. Mitochondrial content and function were higher in IUGR pMSCs than controls, possibly indicating a shift from anaerobic to aerobic metabolism, with the loss of the metabolic characteristics that are typical of undifferentiated multipotent cells. Significance This study demonstrates that the loss of endothelial differentiation potential and the increase of adipogenic ability are likely to play a significant role in the vicious cycle of abnormal placental development in intrauterine growth restriction (IUGR). This is the first observation of a potential role for placental mesenchymal stromal cells in intrauterine growth restriction, thus leading to new perspectives for the treatment of IUGR. PMID:26956210

  16. Influence of electrolytes on growth, phototropism, nutation and surface potential in etiolated cucumber seedlings

    NASA Technical Reports Server (NTRS)

    Spalding, E. P.; Cosgrove, D. J.

    1993-01-01

    A variety of electrolytes (10-30 mol m-3) increased the relative growth rate of etiolated cucumber (Cucumis sativus L. cv. Burpee's Pickler) hypocotyls by 20-50% relative to water-only controls. The nonelectrolyte mannitol inhibited growth by 10%. All salts tested were effective, regardless of chemical composition or valence. Measurements of cell-sap osmolality ruled out an osmotic mechanism for the growth stimulation by electrolytes. This, and the nonspecificity of the response, indicate that an electrical property of the solutions was responsible for their growth-stimulating activity. Measurements of surface electrical potential supported this reasoning. Treatment with electrolytes also enhanced nutation and altered the pattern of phototropic curvature development. A novel analytical method for quantitating these effects on growth was developed. The evidence indicates that electrolytes influence an electrophysiological parameter that is involved in the control of cell expansion and the coordination of growth underlying tropisms and nutations.

  17. Allyl isothiocyanate, a constituent of cruciferous vegetables, inhibits growth of PC-3 human prostate cancer xenografts in vivo.

    PubMed

    Srivastava, Sanjay K; Xiao, Dong; Lew, Karen L; Hershberger, Pamela; Kokkinakis, Demetrius M; Johnson, Candace S; Trump, Donald L; Singh, Shivendra V

    2003-10-01

    We have shown previously that allyl isothiocyanate (AITC), a constituent of cruciferous vegetables, significantly inhibits survival of PC-3 and LNCaP human prostate cancer cells in culture, whereas proliferation of a normal prostate epithelial cell line is minimally affected by AITC even at concentrations that are highly cytotoxic to the prostate cancer cells. The present studies were designed to test the hypothesis that AITC administration may retard growth of human prostate cancer xenografts in vivo. Bolus i.p. injection of 10 micromol AITC, three times per week (Monday, Wednesday and Friday) beginning the day of tumor cell implantation, significantly inhibited the growth of PC-3 xenograft (P < 0.05 by two-way ANOVA). For example, 26 days after tumor cell implantation, the average tumor volume in control mice (1025 +/- 205 mm3) was approximately 1.7-fold higher compared with AITC-treated mice. Histological analysis of tumors excised at the termination of the experiment revealed a statistically significant increase in number of apoptotic bodies with a concomitant decrease in cells undergoing mitosis in the tumors of AITC-treated mice compared with that of control mice. Western blot analysis indicated an approximately 70% reduction in the levels of anti-apoptotic protein Bcl-2 in the tumor lysate of AITC-treated mice compared with that of control mice. Moreover, the tumors from AITC-treated mice, but not control mice, exhibited cleavage of BID, which is known to promote apoptosis. Statistically significant reduction in the expression of several proteins that regulate G2/M progression, including cyclin B1, cell division cycle (Cdc)25B and Cdc25C (44, 45 and 90% reduction, respectively, compared with control), was also observed in the tumors of AITC-treated mice relative to control tumors. In conclusion, the results of the present study indicate that AITC administration inhibits growth of PC-3 xenografts in vivo by inducing apoptosis and reducing mitotic activity.

  18. Effect of transforming growth factor beta (TGF-β) receptor I kinase inhibitor on prostate cancer bone growth.

    PubMed

    Wan, Xinhai; Li, Zhi-Gang; Yingling, Jonathan M; Yang, Jun; Starbuck, Michael W; Ravoori, Murali K; Kundra, Vikas; Vazquez, Elba; Navone, Nora M

    2012-03-01

    Transforming growth factor beta 1 (TGF-β1) has been implicated in the pathogenesis of prostate cancer (PCa) bone metastasis. In this study, we tested the antitumor efficacy of a selective TGF-β receptor I kinase inhibitor, LY2109761, in preclinical models. The effect of LY2109761 on the growth of MDA PCa 2b and PC-3 human PCa cells and primary mouse osteoblasts (PMOs) was assessed in vitro by measuring radiolabeled thymidine incorporation into DNA. In vivo, the right femurs of male SCID mice were injected with PCa cells. We monitored the tumor burden in control- and LY2109761-treated mice with MRI analysis and the PCa-induced bone response with X-ray and micro-CT analyses. Histologic changes in bone were studied by performing bone histomorphometric evaluations. PCa cells and PMOs expressed TGF-β receptor I. TGF-β1 induced pathway activation (as assessed by induced expression of p-Smad2) and inhibited cell growth in PC-3 cells and PMOs but not in MDA PCa 2b cells. LY2109761 had no effect on PCa cells but induced PMO proliferation in vitro. As expected, LY2109761 reversed the TGF-β1-induced pathway activation and growth inhibition in PC-3 cells and PMOs. In vivo, LY2109761 treatment for 6weeks resulted in increased volume in normal bone and increased osteoblast and osteoclast parameters. In addition, LY2109761 treatment significantly inhibited the growth of MDA PCa 2b and PC-3 in the bone of SCID mice (p<0.05); moreover, it resulted in significantly less bone loss and change in osteoclast-associated parameters in the PC-3 tumor-bearing bones than in the untreated mice. In summary, we report for the first time that targeting TGF-β receptors with LY2109761 can control PCa bone growth while increasing the mass of normal bone. This increased bone mass in nontumorous bone may be a desirable side effect of LY2109761 treatment for men with osteopenia or osteoporosis secondary to androgen-ablation therapy, reinforcing the benefit of effectively controlling PCa growth in bone. Thus, targeting TGF-β receptor I is a valuable intervention in men with advanced PCa. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Effect of transforming growth factor beta (TGF-β) receptor I kinase inhibitor on prostate cancer bone growth

    PubMed Central

    Wan, Xinhai; Li, Zhi-Gang; Yingling, Jonathan M.; Yang, Jun; Starbuck, Michael W.; Ravoori, Murali K.; Kundra, Vikas; Vazquez, Elba; Navone, Nora M.

    2012-01-01

    Transforming growth factor beta 1 (TGF-β1) has been implicated in the pathogenesis of prostate cancer (PCa) bone metastasis. In this study, we tested the antitumor efficacy of a selective TGF-β receptor I kinase inhibitor, LY2109761, in preclinical models. The effect of LY2109761 on the growth of MDA PCa 2b and PC-3 human PCa cells and primary mouse osteoblasts (PMOs) was assessed in vitro by measuring radiolabeled thymidine incorporation into DNA. In vivo, the right femurs of male SCID mice were injected with PCa cells. We monitored the tumor burden in control- and LY2109761-treated mice with MRI analysis and the PCa-induced bone response with x-ray and micro-CT analyses. Histologic changes in bone were studied by performing bone histomorphometric evaluations. PCa cells and PMOs expressed TGF-β receptor I. TGF-β1 induced pathway activation (as assessed by induced expression of p-Smad2) and inhibited cell growth in PC-3 cells and PMOs but not in MDA PCa 2b cells. LY2109761 had no effect on PCa cells but induced PMO proliferation in vitro. As expected, LY2109761 reversed the TGF-β1–induced pathway activation and growth inhibition in PC-3 cells and PMOs. In vivo, LY2109761 treatment for 6 weeks resulted in increased volume in normal bone and increased osteoblast and osteoclast parameters. In addition, LY2109761 treatment significantly inhibited the growth of MDA PCa 2b and PC-3 in the bone of SCID mice (p < 0.05); moreover, it resulted in significantly less bone loss and change in osteoclast-associated parameters in the PC-3 tumor–bearing bones than in the untreated mice. In summary, we report for the first time that targeting TGF-β receptors with LY2109761 can control PCa bone growth while increasing the mass of normal bone. This increased bone mass in nontumorous bone may be a desirable side effect of LY2109761 treatment for men with osteopenia or osteoporosis secondary to androgen-ablation therapy, reinforcing the benefit of effectively controlling PCa growth in bone. Thus, targeting TGF-β receptor I is a valuable intervention in men with advanced PCa. PMID:22173053

  20. Strategies for Controlled Delivery of Growth Factors and Cells for Bone Regeneration

    PubMed Central

    Vo, Tiffany N.; Kasper, F. Kurtis; Mikos, Antonios G.

    2012-01-01

    The controlled delivery of growth factors and cells within biomaterial carriers can enhance and accelerate functional bone formation. The carrier system can be designed with preprogrammed release kinetics to deliver bioactive molecules in a localized, spatiotemporal manner most similar to the natural wound healing process. The carrier can also act as an extracellular matrix-mimicking substrate for promoting osteoprogenitor cellular infiltration and proliferation for integrative tissue repair. This review discusses the role of various regenerative factors involved in bone healing and their appropriate combinations with different delivery systems for augmenting bone regeneration. The general requirements of protein, cell and gene therapy are described, with elaboration on how the selection of materials, configurations and processing affects growth factor and cell delivery and regenerative efficacy in both in vitro and in vivo applications for bone tissue engineering. PMID:22342771

  1. Effect of electromagnetic microwave radiation on the growth of Ehrlich ascites carcinoma.

    PubMed

    Kryukova, O V; Pyankov, V F; Kopylov, A F; Khlebopros, R G

    2016-09-01

    Daily exposure of mouse recipients of Ehrlich ascites carcinoma to electromagnetic radiation of the microwave range leads to a change in the dynamics of tumor growth by decreasing the total number of cells. The number of tumor cells with blebbing morphological signs after microwave radiation increases gradually with tumor growth. The maximum content of tumor cells in the state of blebbing is observed during active proliferation in tumor-recipient mice of the control group (without irradiation).

  2. Development of a Monitoring Method for Nonlabeled Human Pluripotent Stem Cell Growth by Time-Lapse Image Analysis.

    PubMed

    Suga, Mika; Kii, Hiroaki; Niikura, Keiichi; Kiyota, Yasujiro; Furue, Miho K

    2015-07-01

    : Cell growth is an important criterion for determining healthy cell conditions. When somatic cells or cancer cells are dissociated into single cells for passaging, the cell numbers can be counted at each passage, providing information on cell growth as an indicator of the health conditions of these cells. In the case of human pluripotent stem cells (hPSCs), because the cells are usually dissociated into cell clumps of ∼50-100 cells for passaging, cell counting is time-consuming. In the present study, using a time-lapse imaging system, we developed a method to determine the growth of hPSCs from nonlabeled live cell phase-contrast images without damaging these cells. Next, the hPSC colony areas and number of nuclei were determined and used to derive equations to calculate the cell number in hPSC colonies, which were assessed on time-lapse images acquired using a culture observation system. The relationships between the colony areas and nuclei numbers were linear, although the equation coefficients were dependent on the cell line used, colony size, colony morphology, and culture conditions. When the culture conditions became improper, the change in cell growth conditions could be detected by analysis of the phase-contrast images. This method provided real-time information on colony growth and cell growth rates without using treatments that can damage cells and could be useful for basic research on hPSCs and cell processing for hPSC-based therapy. This is the first study to use a noninvasive method using images to systemically determine the growth of human pluripotent stem cells (hPSCs) without damaging or wasting cells. This method would be useful for quality control during cell culture of clinical hPSCs. ©AlphaMed Press.

  3. Some results from studies on the effects of weightlessness on the growth of epiphytic orchids

    NASA Technical Reports Server (NTRS)

    Cherevchenko, T. M.; Mayko, T. K.

    1983-01-01

    Epidendrum orchids were placed in a Malakhit-2 micro-greenhouse aboard the Soyuz-36-Salyut-6 space station to test their growth under weightless conditions. Growth occurred but was less than in control plants left on Earth; cells were smaller and parenchymal development slowed in all tissues. Stems, roots, and leaves were smaller. The number of stomas on the leaves was about the same as in the controls, but, because of the smaller leaf size, there were more per unit area. A modeling experiment using a clinostat revealed a large decrease in gibberellin activity and auxin activity. It was assumed that weightlessness primarily affects gibberellin biosynthesis, inhibiting cell growth. Reestablishment of growth compound activity upon return of the plants to Earth was indicated by the fact that the orchids resumed growth thereafter.

  4. The inhibition of superoxide production in EL4 lymphoma cells overexpressing growth hormone.

    PubMed

    Arnold, Robyn E; Weigent, Douglas A

    2003-05-01

    A substantial body of research exists to support the production of growth hormone by cells of the immune system. However, the function and mechanism of action of lymphocyte-derived growth hormone remain largely unelucidated. Since, it has been found that exogenous growth hormone (GH) primes neutrophils for the production of reactive oxygen intermediates (ROI) and in particular superoxide (O2-), we investigated the role of GH on the production of O2- in T cells. Furthermore, we examined whether endogenous and exogenous GH act similarly. Our studies show that overexpression of GH in EL4, a T-cell lymphoma cell line, results in a decrease in the production of O2- compared to control cells, as detected using the fluorescent dye, dihydroethidium. O2- production in control cells was not affected by treatment with inhibitors of xanthine oxidase or a non-specific NADPH-oxidase inhibitor. However, treatment with diallyl sulfide, an inhibitor of cytochrome P450 2E1 mimicked the reduction in O2- production seen in cells overexpressing GH. Although no significant change could be detected in CYP2E1 protein levels, CYP2E1 activity was found to be greater in control EL4 than in cells overexpressing GH. Both the decrease in O2- production and the lower CYP2E1 activity in GH overexpressing cells could be abrogated by treatment with N(G)-monomethyl-L-arginine, an inhibitor of nitric oxide synthase. The overexpression of GH protects cells from apoptosis induced by isoniazid, a CYP2E1 inducer, suggesting a role for nitric oxide as a mediator in the regulation of xenobiotic metabolism and apoptosis-protection by lymphocyte GH.

  5. 10-Shogaol, an Antioxidant from Zingiber officinale for Skin Cell Proliferation and Migration Enhancer

    PubMed Central

    Chen, Chung-Yi; Cheng, Kuo-Chen; Chang, Andy Y; Lin, Ying-Ting; Hseu, You-Cheng; Wang, Hui-Min

    2012-01-01

    In this work, one of Zingiber officinale components, 10-shogaol, was tested with 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, metal chelating ability, and reducing power to show antioxidant activity. 10-Shogaol promoted human normal epidermal keratinocytes and dermal fibroblasts cell growths. 10-Shogaol enhanced growth factor production in transforming growth factor-β (TGF-β), platelet derived growth factor-αβ (PDGF-αβ) and vascular endothelial growth factors (VEGF) of both cells. In the in vitro wound healing assay for 12 or 24 h, with 10-shogaol, the fibroblasts and keratinocytes migrated more rapidly than the vehicle control group. Thus, this study substantiates the target compound, 10-shogaol, as an antioxidant for human skin cell growth and a migration enhancer with potential to be a novel wound repair agent. PMID:22408422

  6. Evidence for pleural epithelial-mesenchymal transition in murine compensatory lung growth

    PubMed Central

    Ysasi, Alexandra B.; Wagner, Willi L.; Valenzuela, Cristian D.; Kienzle, Arne; Servais, Andrew B.; Bennett, Robert D.; Tsuda, Akira; Ackermann, Maximilian; Mentzer, Steven J.

    2017-01-01

    In many mammals, including rodents and humans, removal of one lung results in the compensatory growth of the remaining lung; however, the mechanism of compensatory lung growth is unknown. Here, we investigated the changes in morphology and phenotype of pleural cells after pneumonectomy. Between days 1 and 3 after pneumonectomy, cells expressing α-smooth muscle actin (SMA), a cytoplasmic marker of myofibroblasts, were significantly increased in the pleura compared to surgical controls (p < .01). Scanning electron microscopy of the pleural surface 3 days post-pneumonectomy demonstrated regions of the pleura with morphologic features consistent with epithelial-mesenchymal transition (EMT); namely, cells with disrupted intercellular junctions and an acquired mesenchymal (rounded and fusiform) morphotype. To detect the migration of the transitional pleural cells into the lung, a biotin tracer was used to label the pleural mesothelial cells at the time of surgery. By post-operative day 3, image cytometry of post-pneumonectomy subpleural alveoli demonstrated a 40-fold increase in biotin+ cells relative to pneumonectomy-plus-plombage controls (p < .01). Suggesting a similar origin in space and time, the distribution of cells expressing biotin, SMA, or vimentin demonstrated a strong spatial autocorrelation in the subpleural lung (p < .001). We conclude that post-pneumonectomy compensatory lung growth involves EMT with the migration of transitional mesothelial cells into subpleural alveoli. PMID:28542402

  7. Bacterial Associates Modify Growth Dynamics of the Dinoflagellate Gymnodinium catenatum

    PubMed Central

    Bolch, Christopher J. S.; Bejoy, Thaila A.; Green, David H.

    2017-01-01

    Marine phytoplankton cells grow in close association with a complex microbial associate community known to affect the growth, behavior, and physiology of the algal host. The relative scale and importance these effects compared to other major factors governing algal cell growth remain unclear. Using algal-bacteria co-culture models based on the toxic dinoflagellate Gymnodinium catenatum, we tested the hypothesis that associate bacteria exert an independent effect on host algal cell growth. Batch co-cultures of G. catenatum were grown under identical environmental conditions with simplified bacterial communities composed of one-, two-, or three-bacterial associates. Modification of the associate community membership and complexity induced up to four-fold changes in dinoflagellate growth rate, equivalent to the effect of a 5°C change in temperature or an almost six-fold change in light intensity (20–115 moles photons PAR m-2 s-1). Almost three-fold changes in both stationary phase cell concentration and death rate were also observed. Co-culture with Roseobacter sp. DG874 reduced dinoflagellate exponential growth rate and led to a more rapid death rate compared with mixed associate community controls or co-culture with either Marinobacter sp. DG879, Alcanivorax sp. DG881. In contrast, associate bacteria concentration was positively correlated with dinoflagellate cell concentration during the exponential growth phase, indicating growth was limited by supply of dinoflagellate-derived carbon. Bacterial growth increased rapidly at the onset of declining and stationary phases due to either increasing availability of algal-derived carbon induced by nutrient stress and autolysis, or at mid-log phase in Roseobacter co-cultures potentially due to the onset of bacterial-mediated cell lysis. Co-cultures with the three bacterial associates resulted in dinoflagellate and bacterial growth dynamics very similar to more complex mixed bacterial community controls, suggesting that three-way co-cultures are sufficient to model interaction and growth dynamics of more complex communities. This study demonstrates that algal associate bacteria independently modify the growth of the host cell under non-limiting growth conditions and supports the concept that algal–bacterial interactions are an important structuring mechanism in phytoplankton communities. PMID:28469613

  8. Bioelectrochemical control of neural cell development on conducting polymers.

    PubMed

    Collazos-Castro, Jorge E; Polo, José L; Hernández-Labrado, Gabriel R; Padial-Cañete, Vanesa; García-Rama, Concepción

    2010-12-01

    Electrically conducting polymers hold promise for developing advanced neuroprostheses, bionic systems and neural repair devices. Among them, poly(3, 4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) exhibits superior physicochemical properties but biocompatibility issues have limited its use. We describe combinations of electrochemical and molecule self-assembling methods to consistently control neural cell development on PEDOT:PSS while maintaining very low interfacial impedance. Electro-adsorbed polylysine enabled long-term neuronal survival and growth on the nanostructured polymer. Neurite extension was strongly inhibited by an additional layer of PSS or heparin, which in turn could be either removed electrically or further coated with spermine to activate cell growth. Binding basic fibroblast growth factor (bFGF) to the heparin layer inhibited neurons but promoted proliferation and migration of precursor cells. This methodology may orchestrate neural cell behavior on electroactive polymers, thus improving cell/electrode communication in prosthetic devices and providing a platform for tissue repair strategies. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Growth of cultured corneal endothelial cells onto a vitreous carbon matrix.

    PubMed

    Wickham, M G; Cleveland, P H; Binder, P S; Akers, P H

    1983-01-01

    Fourth passage cells of a rabbit corneal endothelial line were grown for 1 week in flasks containing pieces of a reticulated vitreous carbon matrix. The rate of cell growth in flasks containing the matrix was consistent with that in control flasks. Small fragments of the vitreous carbon material lying on the flask floor were covered by the monolayers as the cells grew to confluency. Vertical growth of cells onto larger pieces of the matrix proceeded in a staged fashion with maximum cell density on pieces of the matrix closest to the floor of the flask. As defined by scanning electron microscopy, cell growth occurred to a level at least 600 microns above the floor of the flask and the confluent monolayer. This novel culture procedure should be a model situation for study of many different aspects of the in vitro capabilities of corneal endothelial cells.

  10. p53 functions as a cell cycle control protein in osteosarcomas.

    PubMed Central

    Diller, L; Kassel, J; Nelson, C E; Gryka, M A; Litwak, G; Gebhardt, M; Bressac, B; Ozturk, M; Baker, S J; Vogelstein, B

    1990-01-01

    Mutations in the p53 gene have been associated with a wide range of human tumors, including osteosarcomas. Although it has been shown that wild-type p53 can block the ability of E1a and ras to cotransform primary rodent cells, it is poorly understood why inactivation of the p53 gene is important for tumor formation. We show that overexpression of the gene encoding wild-type p53 blocks the growth of osteosarcoma cells. The growth arrest was determined to be due to an inability of the transfected cells to progress into S phase. This suggests that the role of the p53 gene as an antioncogene may be in controlling the cell cycle in a fashion analogous to the check-point control genes in Saccharomyces cerevisiae. Images PMID:2233717

  11. Treatment Analysis in a Cancer Stem Cell Context Using a Tumor Growth Model Based on Cellular Automata.

    PubMed

    Monteagudo, Ángel; Santos, José

    2015-01-01

    Cancer can be viewed as an emergent behavior in terms of complex system theory and artificial life, Cellular Automata (CA) being the tool most used for studying and characterizing the emergent behavior. Different approaches with CA models were used to model cancer growth. The use of the abstract model of acquired cancer hallmarks permits the direct modeling at cellular level, where a cellular automaton defines the mitotic and apoptotic behavior of cells, and allows for an analysis of different dynamics of the cellular system depending on the presence of the different hallmarks. A CA model based on the presence of hallmarks in the cells, which includes a simulation of the behavior of Cancer Stem Cells (CSC) and their implications for the resultant growth behavior of the multicellular system, was employed. This modeling of cancer growth, in the avascular phase, was employed to analyze the effect of cancer treatments in a cancer stem cell context. The model clearly explains why, after treatment against non-stem cancer cells, the regrowth capability of CSCs generates a faster regrowth of tumor behavior, and also shows that a continuous low-intensity treatment does not favor CSC proliferation and differentiation, thereby allowing an unproblematic control of future tumor regrowth. The analysis performed indicates that, contrary to the current attempts at CSC control, trying to make CSC proliferation more difficult is an important point to consider, especially in the immediate period after a standard treatment for controlling non-stem cancer cell proliferation.

  12. Growth performance and histological intestinal alterations in piglets fed dietary raw and heated pigeon pea seed meal.

    PubMed

    Mekbungwan, A; Yamauchi, K

    2004-04-01

    Histological intestinal villus alterations were studied in piglets fed raw (PM) or heated (HPM) pigeon pea seed meal. The trypsin inhibition rate was 99.15% in PM and 54.31% HPM. The PM and HPM were added into the basal diet (crude protein; 176.3 g/kg, gross energy; 4.15 kcal/g, control) at 20% and 40% levels, respectively. The diets were formulated in order to adjust protein to 180 g/kg and gross energy to about 4.20 kcal/g. The feed intake was not different among groups. The daily body weight gain and feed efficiency tended to decrease with the increasing PM level, and they decreased significantly in the 40% PM group compared with the control group (P < 0.05). However, HPM groups showed a growth performance similar to the control. The villus height, cell area and cell mitosis tended to decrease with the increasing PM level, and they decreased significantly in the 40% PM group compared with the control group (P < 0.05). In HPM group, these villus height, cell area and cell mitosis were significantly higher than those of the 40% PM group (P < 0.05), and did not show a significant difference compared with the control. Compared with the duodenal villus surface of the control group, the PM groups had a smooth surface due to flat cells and the HPM group showed a rough surface due to protuberated cells. The current histological alterations of intestinal villi demonstrate that the villi might be atrophied in the piglets fed raw PM due to anti-nutritional factors, resulting in the decreased growth performance, and that heating PM might abolish such a harmful effect of the anti-nutritional factors on the villus function, resulting in a similar growth performance to the control. Raw PM could be incorporated under a level of 40%, but heated PM increases the incorporation rate up to the 40% level.

  13. Spaceflight and age affect tibial epiphyseal growth plate histomorphometry

    NASA Technical Reports Server (NTRS)

    Montufar-Solis, Dina; Duke, Pauline J.; Durnova, G.

    1992-01-01

    Growth plate histomorphometry of rats flown aboard the Soviet biosatellite Cosmos 2044, a 14-day spaceflight, was compared with that of control groups. In growth plates of flight animals, there was a significant increase in cell number per column and height of the proliferative zone and a reduction in height and cell number in the hypertrophy/calcification zone. No significant differences were found in matrix organization at the ultrastructural level of flight animals, indicating that although spacefligfht continues to affect bone growth of 15-wk-old rats, extracellular matrix is not altered in the same manner as seen previously in younger animals. All groups showed growth plate characteristics attributed to aging: lack of calcification zone, reduced hypertrophy zone, and unraveling of collagen fibrils. Tail-suspended controls did not differ from other controls in any of the parameters measured. The results suggest that growth plates of older rats are less responsive to unloading by spaceflight or suspension than those of younger rats and provide new evidence about the modifying effect of spaceflight on the growth plate.

  14. Apoptosis: its role in pituitary development and neoplastic pituitary tissue.

    PubMed

    Guzzo, M F; Carvalho, L R S; Bronstein, M D

    2014-04-01

    Apoptosis, also known as programmed cell death, is a phenomenon in which different stimuli trigger cellular mechanisms that culminate in death, in the absence of inflammatory cell response. Two different activation pathways are known, the intrinsic pathway (or mitochondrial) and extrinsic (or death-receptor pathway), both pathways trigger enzymatic reactions that lead cells to break up and be phagocytized by neighboring cells. This process is a common occurrence in physiological and pathological states, participating in the control of cell proliferation, differentiation and remodeling of organs. In the early steps of pituitary gland formation, numerous apoptotic cells are detected in the separation of Rathke's pouch from the roof of oral ectoderm. In the distal part of the gland, which will form the adenohypophysis, the ratio of apoptosis was significantly lower. However, there is evidence that neoplastic pituitary cells undergo unbalance in genes that control apoptosis leading to uncontrolled cell growth. No direct evidence of apoptosis was found in the drugs used for tumors producing prolactin and growth hormone. In conclusion, an unbalancing in the apoptosis process is the boundary between development and tumor growth.

  15. In vitro effects of nicotine on the non-small-cell lung cancer line A549.

    PubMed

    Gao, Tao; Zhou, Xue-Liang; Liu, Sheng; Rao, Chang-Xiu; Shi, Wen; Liu, Ji-Chun

    2016-04-01

    To investigate in vitro effects of nicotine on the non-small-cell lung cancer line A549. The case-control study was conducted at the First Affiliated Hospital of Nanchang University from 1st January to 30th June, 2014 and comprised A549 cells which were treated with a series of concentrations of nicotine (0.01 µM, 0.1 µM, 1 µM and 10 µM) for 24 hours. Control cells were incubated under the same conditions without the addition of nicotine. Cell growth was detected by monotetrazolium salt [3-(4, 5-dimethyl-2-thiazolyl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay. Cell apoptosis was detected by Haematoxylin and Eosin staining, immunofluorescence analysis of Filamentous actin and electron microscope observation. Nicotine had no significant effect on A549 cell growth at the dose of 0.01µM (p>0.05), but had significant growth inhibitory effects at the doses of 0.1µM, 1µM and 10µM (p< 0.05 each). A significant decrease in cell numbers was observed on staining (p< 0.05). Significant changes in the size and shape of cells and concomitant changes in cytoskeletons and organelles were observed by immunofluorescence and electron microscope observation (p< 0.05). The growth inhibitory effects of nicotine on A549 cells were found to be dose-dependent.

  16. Placental insufficiency decreases pancreatic vascularity and disrupts hepatocyte growth factor signaling in the pancreatic islet endothelial cell in fetal sheep.

    PubMed

    Rozance, Paul J; Anderson, Miranda; Martinez, Marina; Fahy, Anna; Macko, Antoni R; Kailey, Jenai; Seedorf, Gregory J; Abman, Steven H; Hay, William W; Limesand, Sean W

    2015-02-01

    Hepatocyte growth factor (HGF) and vascular endothelial growth factor A (VEGFA) are paracrine hormones that mediate communication between pancreatic islet endothelial cells (ECs) and β-cells. Our objective was to determine the impact of intrauterine growth restriction (IUGR) on pancreatic vascularity and paracrine signaling between the EC and β-cell. Vessel density was less in IUGR pancreata than in controls. HGF concentrations were also lower in islet EC-conditioned media (ECCM) from IUGR, and islets incubated with control islet ECCM responded by increasing insulin content, which was absent with IUGR ECCM. The effect of ECCM on islet insulin content was blocked with an inhibitory anti-HGF antibody. The HGF receptor was not different between control and IUGR islets, but VEGFA was lower and the high-affinity VEGF receptor was higher in IUGR islets and ECs, respectively. These findings show that paracrine actions from ECs increase islet insulin content, and in IUGR ECs, secretion of HGF was diminished. Given the potential feed-forward regulation of β-cell VEGFA and islet EC HGF, these two growth factors are highly integrated in normal pancreatic islet development, and this regulation is decreased in IUGR fetuses, resulting in lower pancreatic islet insulin concentrations and insulin secretion. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  17. Evidence for a Transketolase-Mediated Metabolic Checkpoint Governing Biotrophic Growth in Rice Cells by the Blast Fungus Magnaporthe oryzae

    PubMed Central

    Fernandez, Jessie; Marroquin-Guzman, Margarita; Wilson, Richard A.

    2014-01-01

    The blast fungus Magnaporthe oryzae threatens global food security through the widespread destruction of cultivated rice. Foliar infection requires a specialized cell called an appressorium that generates turgor to force a thin penetration hypha through the rice cuticle and into the underlying epidermal cells, where the fungus grows for the first days of infection as a symptomless biotroph. Understanding what controls biotrophic growth could open new avenues for developing sustainable blast intervention programs. Here, using molecular genetics and live-cell imaging, we dismantled M. oryzae glucose-metabolizing pathways to reveal that the transketolase enzyme, encoded by TKL1, plays an essential role in facilitating host colonization during rice blast disease. In the absence of transketolase, Δtkl1 mutant strains formed functional appressoria that penetrated rice cuticles successfully and developed invasive hyphae (IH) in rice cells from primary hyphae. However, Δtkl1 could not undertake sustained biotrophic growth or cell-to-cell movement. Transcript data and observations using fluorescently labeled histone H1:RFP fusion proteins indicated Δtkl1 mutant strains were alive in host cells but were delayed in mitosis. Mitotic delay could be reversed and IH growth restored by the addition of exogenous ATP, a metabolite depleted in Δtkl1 mutant strains. We show that ATP might act via the TOR signaling pathway, and TOR is likely a downstream target of activation for TKL1. TKL1 is also involved in controlling the migration of appressorial nuclei into primary hyphae in host cells. When taken together, our results indicate transketolase has a novel role in mediating - via ATP and TOR signaling - an in planta-specific metabolic checkpoint that controls nuclear migration from appressoria into primary hyphae, prevents mitotic delay in early IH and promotes biotrophic growth. This work thus provides new information about the metabolic strategies employed by M. oryzae to enable rice cell colonization. PMID:25188286

  18. Controlling cytoplasmic c-Fos controls tumor growth in the peripheral and central nervous system.

    PubMed

    Gil, Germán A; Silvestre, David C; Tomasini, Nicolás; Bussolino, Daniela F; Caputto, Beatriz L

    2012-06-01

    Some 20 years ago c-Fos was identified as a member of the AP-1 family of inducible transcription factors (Angel and Karin in Biochim Biophys Acta 1072:129-157, 1991). More recently, an additional activity was described for this protein: it associates to the endoplasmic reticulum and activates the biosynthesis of phospholipids (Bussolino et al. in FASEB J 15:556-558, 2001), (Gil et al. in Mol Biol Cell 15:1881-1894, 2004), the quantitatively most important components of cellular membranes. This latter activity of c-Fos determines the rate of membrane genesis and consequently of growth in differentiating PC12 cells (Gil et al. in Mol Biol Cell 15:1881-1894, 2004). In addition, it has been shown that c-Fos is over-expressed both in PNS and CNS tumors (Silvestre et al. in PLoS One 5(3):e9544, 2010). Herein, it is shown that c-Fos-activated phospholipid synthesis is required to support membrane genesis during the exacerbated growth characteristic of brain tumor cells. Specifically blocking c-Fos-activated phospholipid synthesis significantly reduces proliferation of tumor cells in culture. Blocking c-Fos expression also prevents tumor progression in mice intra-cranially xeno-grafted human brain tumor cells. In NPcis mice, an animal model of the human disease Neurofibromatosis Type I (Cichowski and Jacks in Cell 104:593-604, 2001), animals spontaneously develop tumors of the PNS and the CNS, provided they express c-Fos (Silvestre et al. in PLoS One 5(3):e9544, 2010). Treatment of PNS tumors with an antisense oligonucleotide that specifically blocks c-Fos expression also blocks tumor growth in vivo. These results disclose cytoplasmic c-Fos as a new target for effectively controlling brain tumor growth.

  19. A perfusion culture system using a stirred ceramic membrane reactor for hyperproduction of IgG2a monoclonal antibody by hybridoma cells.

    PubMed

    Dong, Haodi; Tang, Ya-Jie; Ohashi, Ryo; Hamel, Jean-François P

    2005-01-01

    A novel perfusion culture system for efficient production of IgG2a monoclonal antibody (mAb) by hybridoma cells was developed. A ceramic membrane module was constructed and used as a cell retention device installed in a conventional stirred-tank reactor during the perfusion culture. Furthermore, the significance of the control strategy of perfusion rate (volume of fresh medium/working volume of reactor/day, vvd) was investigated. With the highest increasing rate (deltaD, vvd per day, vvdd) of perfusion rate, the maximal viable cell density of 3.5 x 10(7) cells/mL was obtained within 6 days without any limitation and the cell viability was maintained above 95%. At lower deltaD's, the cell growth became limited. Under nutrient-limited condition, the specific cell growth rate (mu) was regulated by deltaD. During the nonlimited growth phase, the specific mAb production rate (qmAb) remained constant at 0.26 +/- 0.02 pg/cell x h in all runs. During the cell growth-limited phase, qmAb was regulated by deltaD within the range of 0.25-0.65 vvdd. Under optimal conditions, qmAb of 0.80 and 2.15 pg/cell x h was obtained during the growth-limited phase and stationary phase, respectively. The overall productivity and yield were 690 mg/L x day and 340 mg/L x medium, respectively. This study demonstrated that this novel perfusion culture system for suspension mammalian cells can support high cell density and efficient mAb production and that deltaD is an important control parameter to regulate and achieve high mAb production.

  20. Multiple Regulatory Systems Coordinate DNA Replication with Cell Growth in Bacillus subtilis

    PubMed Central

    Murray, Heath; Koh, Alan

    2014-01-01

    In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes. PMID:25340815

  1. Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.

    PubMed

    Murray, Heath; Koh, Alan

    2014-10-01

    In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.

  2. Thermogelling 3D Systems towards Stem Cell-Based Tissue Regeneration Therapies.

    PubMed

    Wang, Xiaoyuan; Young, David James; Wu, Yun-Long; Loh, Xian Jun

    2018-03-02

    Stem cell culturing and differentiation is a very important research direction for tissue engineering. Thermogels are well suited for encapsulating cells because of their non-biotoxic nature and mild sol-gel transition as temperature increases. In particular, thermogels provide a 3D growth environment for stem cell growth, which is more similar to the extracellular matrix than flat substrates, so thermogels as a medium can overcome many of the cell abnormalities caused by 2D cell growth. In this review, we summarize the applications of thermogels in cell and stem cell culture in recent years. We also elaborate on the methods to induce stem cell differentiation by using thermogel-based 3D scaffolds. In particular, thermogels, encapsulating specific differentiation-inducing factor and having specific structures and moduli, can induce the differentiation into the desired tissue cells. Three dimensional thermogel scaffolds that control the growth and differentiation of cells will undoubtedly have a bright future in regenerative medicine.

  3. The PPARδ ligand GW501516 reduces growth but not apoptosis in mouse inner medullary collecting duct cells.

    PubMed

    Clark, Jordan; Nasrallah, Rania; Hébert, Richard L

    2009-01-01

    The collecting duct (CD) expresses considerable amounts of PPARδ. While its role is unknown in the CD, in other renal cells it has been shown to regulate both growth and apoptosis. We thus hypothesized that PPARδ reduces apoptotic responses and stimulates cell growth in the mouse CD, and examined the effect of GW501516, a synthetic PPARδ ligand, on these responses in mouse IMCD-K2 cells. High doses of GW501516 decreased both DNA and protein synthesis in these cells by 80%, but had no overall effect on cell viability. Although anisomycin treatment resulted in an increase of caspase-3 levels of about 2.59-fold of control, GW501516 did not affect anisomycin-induced changes in active caspase-3 levels. These results show that a PPARδ ligand inhibits growth but does not affect anisomycin-apoptosis in a mouse IMCD cell line. This could have therapeutic implications for renal diseases associated with increased CD growth responses.

  4. Modelling cell wall growth using a fibre-reinforced hyperelastic-viscoplastic constitutive law

    NASA Astrophysics Data System (ADS)

    Huang, R.; Becker, A. A.; Jones, I. A.

    2012-04-01

    A fibre-reinforced hyperelastic-viscoplastic model using a finite strain Finite Element (FE) analysis is presented to study the expansive growth of cell walls. Based on the connections between biological concepts and plasticity theory, e.g. wall-loosening and plastic yield, wall-stiffening and plastic hardening, the modelling of cell wall growth is established within a framework of anisotropic viscoplasticity aiming to represent the corresponding biology-controlled behaviour of a cell wall. In order to model in vivo growth, special attention is paid to the differences between a living cell and an isolated wall. The proposed hyperelastic-viscoplastic theory provides a unique framework to clarify the interplay between cellulose microfibrils and cell wall matrix and how this interplay regulates sustainable growth in a particular direction while maintaining the mechanical strength of the cell walls by new material deposition. Moreover, the effect of temperature is taken into account. A numerical scheme is suggested and FE case studies are presented and compared with experimental data.

  5. Lentivirus-mediated shRNA interference of ghrelin receptor blocks proliferation in the colorectal cancer cells.

    PubMed

    Liu, An; Huang, Chenggang; Xu, Jia; Cai, Xuehong

    2016-09-01

    Ghrelin, an orexigenic peptide, acts via the growth hormone secretagogue receptor (GHSR) to stimulate the release of growth hormone. Moreover, it has a range of biological actions, including the stimulation of food intake, modulation of insulin signaling and cardiovascular effects. Recently, it has been demonstrated that ghrelin has a proliferative and antiapoptotic effects in cancers, suggesting a potential role in promoting tumor growth. However, it remains unknown whether GHSR contributes to colorectal cancer proliferation. In this study, the therapeutic effect of lentivirus-mediated short hairpin RNA (shRNA) targeting ghrelin receptor 1a (GHSR1a) was analyzed in colorectal cancer cell line SW480 both in vitro and in vivo. Our study demonstrated that ghrelin and GHSR1a are significantly upregulated in cancerous colorectal tissue samples and cell lines. In vitro, human colorectal cancer cell line SW480 with downregulation of GHSR1a by shRNA showed significant inhibition of cell viability compared with blank control (BC) or scrambled control (SC) regardless of the application of exogenous ghrelin. Furthermore, GHSR1a silencing by target specific shRNA was shown capable of increasing PTEN, inhibiting AKT phosphorylation and promoting the release of p53 in SW480 cells. In addition, the effects of GHSR1a knockdown were further explored in vivo using colorectal tumor xenograft mouse model. The tumor weights were decreased markedly in GHSR1α knockdown SW480 mouse xenograft tumors compared with blank control or negative control tumors. Our results suggested that the expression of GHSR1a is significantly correlated with the growth of colorectal cancer cells, and the GHSR1a knockdown approach may be a potential therapy for the treatment of colorectal cancer. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  6. Role of bentonite clays on cell growth.

    PubMed

    Cervini-Silva, Javiera; Ramírez-Apan, María Teresa; Kaufhold, Stephan; Ufer, Kristian; Palacios, Eduardo; Montoya, Ascención

    2016-04-01

    Bentonites, naturally occurring clays, are produced industrially because of their adsorbent capacity but little is known about their effects on human health. This manuscript reports on the effect of bentonites on cell growth behaviour. Bentonites collected from India (Bent-India), Hungary (Bent-Hungary), Argentina (Bent-Argentina), and Indonesia (Bent-Indonesia) were studied. All four bentonites were screened in-vitro against two human cancer cell lines [U251 (central nervous system, glioblastoma) and SKLU-1 (lung adenocarcinoma)] supplied by the National Cancer Institute (USA). Bentonites induced growth inhibition in the presence of U251 cells, and growth increment in the presence of SKLU-1 cells, showing that interactions between bentonite and cell surfaces were highly specific. The proliferation response for U251 cells was explained because clay surfaces controlled the levels of metabolic growth components, thereby inhibiting the development of high-grade gliomas, particularly primary glioblastomas. On the other hand, the proliferation response for SKLU-1 was explained by an exacerbated growth favoured by swelling, and concomitant accumulation of solutes, and their hydration and transformation via clay-surface mediated reactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Reassessing the roles of PIN proteins and anticlinal microtubules during pavement cell morphogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belteton, Samuel; Sawchuk, Megan G.; Donohoe, Bryon S.

    The leaf epidermis is a biomechanical shell that influences the size and shape of the organ. Its morphogenesis is a multiscale process in which nanometer-scale cytoskeletal protein complexes, individual cells, and groups of cells pattern growth and define macroscopic leaf traits. Interdigitated growth of neighboring cells is an evolutionarily conserved developmental strategy. Understanding how signaling pathways and cytoskeletal proteins pattern cell walls during this form of tissue morphogenesis is an important research challenge. The cellular and molecular control of a lobed cell morphology is currently thought to involve PIN-FORMED (PIN)-type plasma membrane efflux carriers that generate subcellular auxin gradients. Auxinmore » gradients were proposed to function across cell boundaries to encode stable offset patterns of cortical microtubules and actin filaments between adjacent cells. Many models suggest that long-lived microtubules along the anticlinal cell wall generate local cell wall heterogeneities that restrict local growth and specify the timing and location of lobe formation. Here we used Arabidopsis reverse genetics and multivariate long-term time-lapse imaging to test current cell shape control models. We found that neither PIN proteins nor microtubules along the anticlinal wall predict the patterns of lobe formation. In fields of lobing cells, anticlinal microtubules are not correlated with cell shape and are unstable at the time scales of cell expansion. Our analyses indicate that anticlinal microtubules have multiple functions in pavement cells, and that lobe initiation is likely controlled by complex interactions among cell geometry, cell wall stress patterns, and transient microtubule networks that span the anticlinal and periclinal walls.« less

  8. Reassessing the Roles of PIN Proteins and Anticlinal Microtubules during Pavement Cell Morphogenesis1[OPEN

    PubMed Central

    Sawchuk, Megan G.; Scarpella, Enrico

    2018-01-01

    The leaf epidermis is a biomechanical shell that influences the size and shape of the organ. Its morphogenesis is a multiscale process in which nanometer-scale cytoskeletal protein complexes, individual cells, and groups of cells pattern growth and define macroscopic leaf traits. Interdigitated growth of neighboring cells is an evolutionarily conserved developmental strategy. Understanding how signaling pathways and cytoskeletal proteins pattern cell walls during this form of tissue morphogenesis is an important research challenge. The cellular and molecular control of a lobed cell morphology is currently thought to involve PIN-FORMED (PIN)-type plasma membrane efflux carriers that generate subcellular auxin gradients. Auxin gradients were proposed to function across cell boundaries to encode stable offset patterns of cortical microtubules and actin filaments between adjacent cells. Many models suggest that long-lived microtubules along the anticlinal cell wall generate local cell wall heterogeneities that restrict local growth and specify the timing and location of lobe formation. Here, we used Arabidopsis (Arabidopsis thaliana) reverse genetics and multivariate long-term time-lapse imaging to test current cell shape control models. We found that neither PIN proteins nor long-lived microtubules along the anticlinal wall predict the patterns of lobe formation. In fields of lobing cells, anticlinal microtubules are not correlated with cell shape and are unstable at the time scales of cell expansion. Our analyses indicate that anticlinal microtubules have multiple functions in pavement cells and that lobe initiation is likely controlled by complex interactions among cell geometry, cell wall stress patterns, and transient microtubule networks that span the anticlinal and periclinal walls. PMID:29192026

  9. Matrix Metalloproteinase-1 Activation Contributes to Airway Smooth Muscle Growth and Asthma Severity

    PubMed Central

    Naveed, Shams-un-nisa; Clements, Debbie; Jackson, David J.; Philp, Christopher; Billington, Charlotte K.; Soomro, Irshad; Reynolds, Catherine; Harrison, Timothy W.; Johnston, Sebastian L.; Shaw, Dominick E.

    2017-01-01

    Rationale: Matrix metalloproteinase-1 (MMP-1) and mast cells are present in the airways of people with asthma. Objectives: To investigate whether MMP-1 could be activated by mast cells and increase asthma severity. Methods: Patients with stable asthma and healthy control subjects underwent spirometry, methacholine challenge, and bronchoscopy, and their airway smooth muscle cells were grown in culture. A second asthma group and control subjects had symptom scores, spirometry, and bronchoalveolar lavage before and after rhinovirus-induced asthma exacerbations. Extracellular matrix was prepared from decellularized airway smooth muscle cultures. MMP-1 protein and activity were assessed. Measurements and Main Results: Airway smooth muscle cells generated pro–MMP-1, which was proteolytically activated by mast cell tryptase. Airway smooth muscle treated with activated mast cell supernatants produced extracellular matrix, which enhanced subsequent airway smooth muscle growth by 1.5-fold (P < 0.05), which was dependent on MMP-1 activation. In asthma, airway pro–MMP-1 was 5.4-fold higher than control subjects (P = 0.002). Mast cell numbers were associated with airway smooth muscle proliferation and MMP-1 protein associated with bronchial hyperresponsiveness. During exacerbations, MMP-1 activity increased and was associated with fall in FEV1 and worsening asthma symptoms. Conclusions: MMP-1 is activated by mast cell tryptase resulting in a proproliferative extracellular matrix. In asthma, mast cells are associated with airway smooth muscle growth, MMP-1 levels are associated with bronchial hyperresponsiveness, and MMP-1 activation are associated with exacerbation severity. Our findings suggest that airway smooth muscle/mast cell interactions contribute to asthma severity by transiently increasing MMP activation, airway smooth muscle growth, and airway responsiveness. PMID:27967204

  10. Pathogen-free, plasma-poor platelet lysate and expansion of human mesenchymal stem cells.

    PubMed

    Iudicone, Paola; Fioravanti, Daniela; Bonanno, Giuseppina; Miceli, Michelina; Lavorino, Claudio; Totta, Pierangela; Frati, Luigi; Nuti, Marianna; Pierelli, Luca

    2014-01-27

    Supplements to support clinical-grade cultures of mesenchymal stem cells (MSC) are required to promote growth and expansion of these cells. Platelet lysate (PL) is a human blood component which may replace animal serum in MSC cultures being rich in various growth factors. Here, we describe a plasma poor pathogen-free platelet lysate obtained by pooling 12 platelet (PLT) units, to produce a standardized and safe supplement for clinical-grade expansion of MSC. PL lots were obtained by combining 2 6-unit PLT pools in additive solution (AS) following a transfusional-based procedure including pathogen inactivation (PI) by Intercept technology and 3 cycles of freezing/thawing, followed by membrane removal. Three PI-PL and 3 control PL lots were produced to compare their ability to sustain bone marrow derived MSC selection and expansion. Moreover, two further PL, subjected to PI or not, were also produced starting from the same initial PLT pools to evaluate the impact of PI on growth factor concentration and capacity to sustain cell growth. Additional PI-PL lots were used for comparison with fetal bovine serum (FBS) on MSC expansion. Immunoregulatory properties of PI-PL-generated MSC were documented in vitro by mixed lymphocyte culture (MLC) and peripheral blood mononuclear cells (PBMC) mitogen induced proliferation. PI-PL and PL control lots had similar concentrations of 4 well-described growth factors endowed with MSC stimulating ability. Initial growth and MSC expansion by PI-PL and PL controls were comparable either using different MSC populations or in head to head experiments. Moreover, PI-PL and PL control sustained similar MSC growth of frozen/thawed MSC. Multilineage differentiation of PI-derived and PI-PL-derived MSC were maintained in any MSC cultures as well as their immunoregulatory properties. Finally, no direct impact of PI on growth factor concentration and MSC growth support was observed, whereas the capacity of FBS to sustain MSC expansion in basic medium was irrelevant as compared to PL and PI-PL. The replacement of animal additives with human supplements is a basic issue in MSC ex vivo production. PI-PL represents a standardized, plasma-poor, human preparation which appears as a safe and good candidate to stimulate MSC growth in clinical-scale cultures.

  11. Pathogen-free, plasma-poor platelet lysate and expansion of human mesenchymal stem cells

    PubMed Central

    2014-01-01

    Background Supplements to support clinical-grade cultures of mesenchymal stem cells (MSC) are required to promote growth and expansion of these cells. Platelet lysate (PL) is a human blood component which may replace animal serum in MSC cultures being rich in various growth factors. Here, we describe a plasma poor pathogen-free platelet lysate obtained by pooling 12 platelet (PLT) units, to produce a standardized and safe supplement for clinical-grade expansion of MSC. Methods PL lots were obtained by combining 2 6-unit PLT pools in additive solution (AS) following a transfusional-based procedure including pathogen inactivation (PI) by Intercept technology and 3 cycles of freezing/thawing, followed by membrane removal. Three PI-PL and 3 control PL lots were produced to compare their ability to sustain bone marrow derived MSC selection and expansion. Moreover, two further PL, subjected to PI or not, were also produced starting from the same initial PLT pools to evaluate the impact of PI on growth factor concentration and capacity to sustain cell growth. Additional PI-PL lots were used for comparison with fetal bovine serum (FBS) on MSC expansion. Immunoregulatory properties of PI-PL-generated MSC were documented in vitro by mixed lymphocyte culture (MLC) and peripheral blood mononuclear cells (PBMC) mitogen induced proliferation. Results PI-PL and PL control lots had similar concentrations of 4 well-described growth factors endowed with MSC stimulating ability. Initial growth and MSC expansion by PI-PL and PL controls were comparable either using different MSC populations or in head to head experiments. Moreover, PI-PL and PL control sustained similar MSC growth of frozen/thawed MSC. Multilineage differentiation of PI-derived and PI-PL-derived MSC were maintained in any MSC cultures as well as their immunoregulatory properties. Finally, no direct impact of PI on growth factor concentration and MSC growth support was observed, whereas the capacity of FBS to sustain MSC expansion in basic medium was irrelevant as compared to PL and PI-PL. Conclusion The replacement of animal additives with human supplements is a basic issue in MSC ex vivo production. PI-PL represents a standardized, plasma-poor, human preparation which appears as a safe and good candidate to stimulate MSC growth in clinical-scale cultures. PMID:24467837

  12. GLI pathogenesis-related 1 functions as a tumor-suppressor in lung cancer.

    PubMed

    Sheng, Xiumei; Bowen, Nathan; Wang, Zhengxin

    2016-03-18

    GLI pathogenesis-related 1 (GLIPR1) was originally identified in glioblastomas and its expression was also found to be down-regulated in prostate cancer. Functional studies revealed both growth suppression and proapoptotic activities for GLIPR1 in multiple cancer cell lines. GLIPR1's role in lung cancer has not been investigated. Protein arginine methyltransferase 5 (PRMT5) is a protein arginine methyltransferase and forms a stoichiometric complex with the WD repeat domain 77 (WDR77) protein. Both PRMT5 and WDR77 are essential for growth of lung epithelial and cancer cells. But additional gene products that interact genetically or biochemichally with PRMT5 and WDR77 in the control of lung cancer cell growth are not characterized. DNA microarray and immunostaining were used to detect GLIPR1 expression during lung development and lung tumorigenesis. GLIPR1 expression was also analyzed in the TCGA lung cancer cohort. The consequence of GLIPR1 on growth of lung cancer cells in the tissue culture and lung tumor xenografts in the nude mice was observed. We found that GLIPR1 expression is negatively associated with PRMT5/WDR77. GLIPR1 is absent in growing epithelial cells at the early stages of mouse lung development and highly expressed in the adult lung. Expression of GLIPR1 was down-regulated during lung tumorigenesis and its expression suppressed growth of lung cancer cells in the tissue culture and lung tumor xenografts in mice. GLIPR1 regulates lung cancer growth through the V-Erb-B avian erythroblastic leukemia viral oncogene homolog 3 (ErbB3). This study reveals a novel pathway that PRMT5/WDR77 regulates GLIPR1 expression to control lung cancer cell growth and GLIPR1 as a potential therapeutic agent for lung cancer.

  13. Growth of a Bacterium Under a High-Pressure Oxy-Helium Atmosphere †

    PubMed Central

    Taylor, Craig D.

    1979-01-01

    Growth of a barotolerant marine organism, EP-4, in a glutamate medium equilibrated with an oxy-helium atmosphere at 500 atmospheres (atm; total pressure) (20°C) was compared with control cultures incubated at hydrostatic pressures of 1 and 500 atm. Relative to the 1-atm control culture, incubation of EP-4 at 500 atm in the absence of an atmosphere resulted in an approximately fivefold reduction in the growth rate and a significant but time variant reduction in the rate constants for the incorporation of substrate into cell material and respiration. Distinct from the pressurized control and separate from potential effects of dissolution of helium upon decompression of subsamples, exposure of the organism to high-pressure oxy-helium resulted in either a loss of viability of a large fraction of the cells or the arrest of growth for one-third of the experimental period. After these initial effects, however, the culture grew exponentially at a rate which was three times greater than the 500-atm control culture. The rate constant for the incorporation of substrate into cell material was also enhanced twofold in the presence of high-pressure oxy-helium. Dissolved oxygen was well controlled in all of the cultures, minimizing any potential toxic effects of this gas. PMID:16345337

  14. Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma.

    PubMed

    Laouar, Yasmina; Sutterwala, Fayyaz S; Gorelik, Leonid; Flavell, Richard A

    2005-06-01

    Interferon-gamma and interleukin 12 produced by the innate arm of the immune system are important regulators of T helper type 1 (T(H)1) cell development, but signals that negatively regulate their expression remain controversial. Here we show that transforming growth factor-beta (TGF-beta) controlled T(H)1 differentiation through the regulation of interferon-gamma produced by natural killer (NK) cells. Blockade of TGF-beta signaling in NK cells caused the accumulation of a large pool of NK cells secreting copious interferon-gamma, responsible for T(H)1 differentiation and protection from leishmania infection. In contrast, blockade of TGF-beta signaling in dendritic cells did not affect dendritic cell homeostasis or interleukin 12 production, thus indicating a previously undescribed demarcation of the function of TGF-beta in NK cells versus dendritic cells.

  15. Nanotechnology in the regulation of stem cell behavior

    NASA Astrophysics Data System (ADS)

    Wu, King-Chuen; Tseng, Ching-Li; Wu, Chi-Chang; Kao, Feng-Chen; Tu, Yuan-Kun; So, Edmund C.; Wang, Yang-Kao

    2013-10-01

    Stem cells are known for their potential to repair damaged tissues. The adhesion, growth and differentiation of stem cells are likely controlled by the surrounding microenvironment which contains both chemical and physical cues. Physical cues in the microenvironment, for example, nanotopography, were shown to play important roles in stem cell fate decisions. Thus, controlling stem cell behavior by nanoscale topography has become an important issue in stem cell biology. Nanotechnology has emerged as a new exciting field and research from this field has greatly advanced. Nanotechnology allows the manipulation of sophisticated surfaces/scaffolds which can mimic the cellular environment for regulating cellular behaviors. Thus, we summarize recent studies on nanotechnology with applications to stem cell biology, including the regulation of stem cell adhesion, growth, differentiation, tracking and imaging. Understanding the interactions of nanomaterials with stem cells may provide the knowledge to apply to cell-scaffold combinations in tissue engineering and regenerative medicine.

  16. Modeling mechanical interactions in growing populations of rod-shaped bacteria

    NASA Astrophysics Data System (ADS)

    Winkle, James J.; Igoshin, Oleg A.; Bennett, Matthew R.; Josić, Krešimir; Ott, William

    2017-10-01

    Advances in synthetic biology allow us to engineer bacterial collectives with pre-specified characteristics. However, the behavior of these collectives is difficult to understand, as cellular growth and division as well as extra-cellular fluid flow lead to complex, changing arrangements of cells within the population. To rationally engineer and control the behavior of cell collectives we need theoretical and computational tools to understand their emergent spatiotemporal dynamics. Here, we present an agent-based model that allows growing cells to detect and respond to mechanical interactions. Crucially, our model couples the dynamics of cell growth to the cell’s environment: Mechanical constraints can affect cellular growth rate and a cell may alter its behavior in response to these constraints. This coupling links the mechanical forces that influence cell growth and emergent behaviors in cell assemblies. We illustrate our approach by showing how mechanical interactions can impact the dynamics of bacterial collectives growing in microfluidic traps.

  17. Truncated Hormone Inhibits Breast Tumor Blood Vessel Formation, Not Tumor Growth | Center for Cancer Research

    Cancer.gov

    The hormone prolactin (PRL) plays a critical role in normal breast development by stimulating the proliferation of mammary cells, the production of milk proteins, and the formation of new mammary blood vessels. Unfortunately, the same cell and vessel growth pathways controlled by PRL in normal cells also operate in breast cancer cells, and elevated plasma PRL is a risk factor for breast cancer, especially in post-menopausal women.

  18. ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth.

    PubMed

    Zhao, Jian; Yuan, Xuejun; Frödin, Morten; Grummt, Ingrid

    2003-02-01

    Phosphorylation of transcription factors by mitogen-activated protein kinase (MAPK) cascades links cell signaling with the control of gene expression. Here we show that growth factors induce rRNA synthesis by activating MAPK-dependent signaling cascades that target the RNA polymerase I-specific transcription initiation factor TIF-IA. Activation of TIF-IA and ribosomal gene transcription is sensitive to PD98059, indicating that TIF-IA is targeted by MAPK in vivo. Phosphopeptide mapping and mutational analysis reveals two serine residues (S633 and S649) that are phosphorylated by ERK and RSK kinases. Replacement of S649 by alanine inactivates TIF-IA, inhibits pre-rRNA synthesis, and retards cell growth. The results provide a link between growth factor signaling, ribosome production, and cell growth, and may have a major impact on the mechanism of cell transformation.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marengo, Barbara; Bottini, Consuelo; La Porta, C.A.M.

    Phosphatidylethanolamine N-methyltransferase (PEMT) is the enzyme that converts phosphatidylethanolamine (PE) into phosphatidylcholine. We have previously shown that PEMT suppressed hepatoma growth by triggering apoptosis. We investigate whether PEMT controlled cell death and cell proliferation triggered by fasting/refeeding and whether it is a marker of early preneoplastic lesions. The induction of programmed cell death and suppression of cell proliferation by fasting were associated with enhanced PEMT expression and activity, and with a decrease in CTP:phosphocholine cytidylyltransferase expression. Refeeding returned the liver growth and expression of CTP:phosphocholine cytidylyltransferase to control levels, while the expression of PEMT decreased to below control values. Aftermore » DENA administration, PEMT protein, evaluated by Western blotting, slightly increased, but it remained below control levels. The treatment with 20 mg/kg DENA to refed rats induced the appearance of initiated hepatocytes that were negative for PEMT expression. Present findings indicate that PEMT is a novel tumour marker for early liver preneoplastic lesions.« less

  20. Epidermal Growth Factor-Dependent Transformation by a Human EGF Receptor Proto-Oncogene

    NASA Astrophysics Data System (ADS)

    Velu, Thierry J.; Beguinot, Laura; Vass, William C.; Willingham, Mark C.; Merlino, Glenn T.; Pastan, Ira; Lowy, Douglas R.

    1987-12-01

    The epidermal growth factor (EGF) receptor gene EGFR has been placed in a retrovirus vector to examine the growth properties of cells that experimentally overproduce a full-length EGF receptor. NIH 3T3 cells transfected with the viral DNA or infected with the corresponding rescued retrovirus developed a fully transformed phenotype in vitro that required both functional EGFR expression and the presence of EGF in the growth medium. Cells expressing 4 × 105 EGF receptors formed tumors in nude mice, while control cells did not. Therefore, the EGFR retrovirus, which had a titer on NIH 3T3 cells that was greater than 107 focus-forming units per milliliter, can efficiently transfer and express this gene, and increased numbers of EGF receptors can contribute to the transformed phenotype.

  1. Feeding a Mixture of Choline Forms during Lactation Improves Offspring Growth and Maternal Lymphocyte Response to Ex Vivo Immune Challenges.

    PubMed

    Lewis, Erin D; Richard, Caroline; Goruk, Susan; Wadge, Emily; Curtis, Jonathan M; Jacobs, René L; Field, Catherine J

    2017-07-07

    Study objectives were to examine the impact of feeding a mixture of choline forms, or a diet high in glycerophosphocholine (GPC) on maternal immune function and offspring growth during lactation. Lactating Sprague-Dawley rat dams ( n = 6/diet) were randomized to one of three diets, providing 1 g/kg total choline: Control (100% free choline (FC)), Mixed Choline (MC; 50% phosphatidylcholine (PC), 25% FC, 25% GPC), or High GPC (HGPC; 75% GPC, 12.5% PC, 12.5% FC). At 3 weeks, cell phenotypes and cytokine production with Concanavalin A (ConA)-or lipopolysaccharide (LPS)-stimulated splenocytes and mesenteric lymphocytes were measured. Feeding MC or HGPC diets improved pups' growth compared to Control (+22% body weight, p < 0.05). In spleen, MC-and HGPC-fed dams had higher proportions of cytotoxic (CD8+) T cells expressing CD27, CD71 and CD127, total B cells (CD45RA+) and dendritic cells (OX6+OX62+), and produced less IL-6 and IFN-γ after ConA than Control-fed dams ( p < 0.05). MC and HGPC LPS-stimulated splenocytes produced less IL-1β and IL-6 than Control. ConA-stimulated mesenteric lymphocytes from MC and HGPC dams produced more IL-2 and IFN-γ than Control ( p < 0.05). In summary, feeding a mixture of choline forms during lactation improved offspring growth and resulted in a more efficient maternal immune response following mitogenic immune challenge.

  2. Feeding a Mixture of Choline Forms during Lactation Improves Offspring Growth and Maternal Lymphocyte Response to Ex Vivo Immune Challenges

    PubMed Central

    Lewis, Erin D.; Goruk, Susan; Wadge, Emily; Curtis, Jonathan M.; Field, Catherine J.

    2017-01-01

    Study objectives were to examine the impact of feeding a mixture of choline forms, or a diet high in glycerophosphocholine (GPC) on maternal immune function and offspring growth during lactation. Lactating Sprague-Dawley rat dams (n = 6/diet) were randomized to one of three diets, providing 1 g/kg total choline: Control (100% free choline (FC)), Mixed Choline (MC; 50% phosphatidylcholine (PC), 25% FC, 25% GPC), or High GPC (HGPC; 75% GPC, 12.5% PC, 12.5% FC). At 3 weeks, cell phenotypes and cytokine production with Concanavalin A (ConA)-or lipopolysaccharide (LPS)-stimulated splenocytes and mesenteric lymphocytes were measured. Feeding MC or HGPC diets improved pups’ growth compared to Control (+22% body weight, p < 0.05). In spleen, MC-and HGPC-fed dams had higher proportions of cytotoxic (CD8+) T cells expressing CD27, CD71 and CD127, total B cells (CD45RA+) and dendritic cells (OX6+OX62+), and produced less IL-6 and IFN-γ after ConA than Control-fed dams (p < 0.05). MC and HGPC LPS-stimulated splenocytes produced less IL-1β and IL-6 than Control. ConA-stimulated mesenteric lymphocytes from MC and HGPC dams produced more IL-2 and IFN-γ than Control (p < 0.05). In summary, feeding a mixture of choline forms during lactation improved offspring growth and resulted in a more efficient maternal immune response following mitogenic immune challenge. PMID:28686201

  3. Limitation of thiamine pyrophosphate supply to growing Escherichia coli switches metabolism to efficient D-lactate formation.

    PubMed

    Tian, Kangming; Niu, Dandan; Liu, Xiaoguang; Prior, Bernard A; Zhou, Li; Lu, Fuping; Singh, Suren; Wang, Zhengxiang

    2016-01-01

    Efficient production of D-lactate by engineered Escherichia coli entails balancing cell growth and product synthesis. To develop a metabolic switch to implement a desirable transition from cell growth to product fermentation, a thiamine auxotroph B0013-080A was constructed in a highly efficient D-lactate producer E. coli strain B0013-070. This was achieved by inactivation of thiE, a gene encoding a thiamine phosphate synthase for biosynthesis of thiamine monophosphate. The resultant mutant B0013-080A failed to grow on the medium in the absence of thiamine yet growth was restored when exogenous thiamine was provided. A linear relationship between cell mass formation and amount of thiamine supplemented was mathematically determined in a shake flask experiment and confirmed in a 7-L bioreactor system. This calculation revealed that ∼ 95-96 thiamine molecules per cell were required to satisfy cell growth. This relationship was employed to develop a novel fermentation process for D-lactate production by using thiamine as a limiting condition. A D-lactate productivity of 4.11 g · L(-1) · h(-1) from glycerol under microaerobic condition and 3.66 g · L(-1) · h(-1) from glucose under anaerobic condition was achieved which is 19.1% and 10.2% higher respectively than the parental strain. These results revealed a convenient and reliable method to control cell growth and improve D-lactate fermentation. This control strategy could be applied to other biotechnological processes that require optimal allocation of carbon between cell growth and product formation. © 2015 Wiley Periodicals, Inc.

  4. Photoperiod- and temperature-mediated control of phenology in trees - a molecular perspective.

    PubMed

    Singh, Rajesh Kumar; Svystun, Tetiana; AlDahmash, Badr; Jönsson, Anna Maria; Bhalerao, Rishikesh P

    2017-01-01

    Contents 511 I. 511 II. 512 III. 513 IV. 513 V. 517 VI. 517 VII. 521 VIII. 521 Acknowledgements 521 References 521 SUMMARY: Trees growing in boreal and temperate regions synchronize their growth with seasonal climatic changes in adaptive responses that are essential for their survival. These trees cease growth before the winter and establish a dormant state during which growth cessation is maintained by repression of responses to growth-promotive signals. Reactivation of growth in the spring follows the release from dormancy promoted by prolonged exposure to low temperature during the winter. The timing of the key events and regulation of the molecular programs associated with the key stages of the annual growth cycle are controlled by two main environmental cues: photoperiod and temperature. Recently, key components mediating photoperiodic control of growth cessation and bud set have been identified, and striking similarities have been observed in signaling pathways controlling growth cessation in trees and floral transition in Arabidopsis. Although less well understood, the regulation of bud dormancy and bud burst may involve cell-cell communication and chromatin remodeling. Here, we discuss current knowledge of the molecular-level regulation of the annual growth cycle of woody trees in temperate and boreal regions, and identify key questions that need to be addressed in the future. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  5. Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat)

    NASA Technical Reports Server (NTRS)

    Lewis, M. L.; Reynolds, J. L.; Cubano, L. A.; Hatton, J. P.; Lawless, B. D.; Piepmeier, E. H.

    1998-01-01

    Alteration in cytoskeletal organization appears to underlie mechanisms of gravity sensitivity in space-flown cells. Human T lymphoblastoid cells (Jurkat) were flown on the Space Shuttle to test the hypothesis that growth responsiveness is associated with microtubule anomalies and mediated by apoptosis. Cell growth was stimulated in microgravity by increasing serum concentration. After 4 and 48 h, cells filtered from medium were fixed with formalin. Post-flight, confocal microscopy revealed diffuse, shortened microtubules extending from poorly defined microtubule organizing centers (MTOCs). In comparable ground controls, discrete microtubule filaments radiated from organized MTOCs and branched toward the cell membrane. At 4 h, 30% of flown, compared to 17% of ground, cells showed DNA condensation characteristic of apoptosis. Time-dependent increase of the apoptosis-associated Fas/ APO-1 protein in static flown, but not the in-flight 1 g centrifuged or ground controls, confirmed microgravity-associated apoptosis. By 48 h, ground cultures had increased by 40%. Flown populations did not increase, though some cells were cycling and actively metabolizing glucose. We conclude that cytoskeletal alteration, growth retardation, and metabolic changes in space-flown lymphocytes are concomitant with increased apoptosis and time-dependent elevation of Fas/APO-1 protein. We suggest that reduced growth response in lymphocytes during spaceflight is linked to apoptosis.

  6. LIM kinase function and renal growth: Potential role for LIM kinases in fetal programming of kidney development.

    PubMed

    Sparrow, Alexander J; Sweetman, Dylan; Welham, Simon J M

    2017-10-01

    Maternal dietary restriction during pregnancy impairs nephron development and results in offspring with fewer nephrons. Cell turnover in the early developing kidney is altered by exposure to maternal dietary restriction and may be regulated by the LIM-kinase family of enzymes. We set out to establish whether disturbance of LIM-kinase activity might play a role in the impairment of nephron formation. E12.5 metanephric kidneys and HK2 cells were grown in culture with the pharmacological LIM-kinase inhibitor BMS5. Organs were injected with DiI, imaged and cell numbers measured over 48h to assess growth. Cells undergoing mitosis were visualised by pH3 labelling. Growth of cultured kidneys reduced to 83% of controls after exposure to BMS5 and final cell number to 25% of control levels after 48h. Whilst control and BMS5 treated organs showed cells undergoing mitosis (100±11 cells/field vs 113±18 cells/field respectively) the proportion in anaphase was considerably diminished with BMS5 treatment (7.8±0.8% vs 0.8±0.6% respectively; P<0.01). This was consistent with effects on HK2 cells highlighting a severe impact of BMS5 on formation of the mitotic spindle and centriole positioning. DiI labelled cells migrated in 100% of control cultures vs 0% BMS5 treated organs. The number of nephrogenic precursor cells appeared depleted in whole organs and formation of new nephrons was blocked by exposure to BMS5. Pharmacological blockade of LIM-kinase function in the early developing kidney results in failure of renal development. This is likely due to prevention of dividing cells from completion of mitosis with their resultant loss. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The bantam microRNA acts through Numb to exert cell growth control and feedback regulation of Notch in tumor-forming stem cells in the Drosophila brain.

    PubMed

    Wu, Yen-Chi; Lee, Kyu-Sun; Song, Yan; Gehrke, Stephan; Lu, Bingwei

    2017-05-01

    Notch (N) signaling is central to the self-renewal of neural stem cells (NSCs) and other tissue stem cells. Its deregulation compromises tissue homeostasis and contributes to tumorigenesis and other diseases. How N regulates stem cell behavior in health and disease is not well understood. Here we show that N regulates bantam (ban) microRNA to impact cell growth, a process key to NSC maintenance and particularly relied upon by tumor-forming cancer stem cells. Notch signaling directly regulates ban expression at the transcriptional level, and ban in turn feedback regulates N activity through negative regulation of the Notch inhibitor Numb. This feedback regulatory mechanism helps maintain the robustness of N signaling activity and NSC fate. Moreover, we show that a Numb-Myc axis mediates the effects of ban on nucleolar and cellular growth independently or downstream of N. Our results highlight intricate transcriptional as well as translational control mechanisms and feedback regulation in the N signaling network, with important implications for NSC biology and cancer biology.

  8. Knockdown of NF-E2-related factor 2 inhibits the proliferation and growth of U251MG human glioma cells in a mouse xenograft model.

    PubMed

    Ji, Xiang-Jun; Chen, Sui-Hua; Zhu, Lin; Pan, Hao; Zhou, Yuan; Li, Wei; You, Wan-Chun; Gao, Chao-Chao; Zhu, Jian-Hong; Jiang, Kuan; Wang, Han-Dong

    2013-07-01

    NF-E2-related factor 2 (Nrf2) is a pivotal transcription factor of cellular responses to oxidative stress and recent evidence suggests that Nrf2 plays an important role in cancer pathobiology. However, the underlying mechanism has yet to be elucidated, particularly in glioma. In the present study, we investigated the role of Nrf2 in the clinical prognosis, cell proliferation and tumor growth of human glioblastoma multiforme (GBM). We detected overexpression of Nrf2 protein levels in GBM compared to normal brain tissues. Notably, higher protein levels of Nrf2 were significantly associated with poorer overall survival and 1-year survival for GBM patients. Furthermore, we constructed the plasmid Si-Nrf2 and transduced it into U251MG cells to downregulate the expression of Nrf2 and established stable Nrf2 knockdown cells. The downregulation of Nrf2 suppressed cell proliferation in vitro and tumor growth in mouse xenograft models. We performed immunohistochemistry staining to detect the protein levels of Nrf2, Ki-67, caspase-3 and CD31 in the xenograft tumors and found that the expression levels of Nrf2 and Ki-67 were much lower in the Si-Nrf2 group compared to the Si-control group. In addition, the number of caspase-3-positive cells was significantly increased in the Si-Nrf2 group. By analysis of microvessel density (MVD) assessed by CD31, the MVD value in the Si-Nrf2 group decreased significantly compared to the Si-control group. These findings indicate that the knockdown of Nrf2 may suppress tumor growth by inhibiting cell proliferation, increasing cell apoptosis and inhibiting angiogenesis. These results highlight the potential of Nrf2 as a candidate molecular target to control GBM cell proliferation and tumor growth.

  9. Live-cell mass profiling: an emerging approach in quantitative biophysics.

    PubMed

    Zangle, Thomas A; Teitell, Michael A

    2014-12-01

    Cell mass, volume and growth rate are tightly controlled biophysical parameters in cellular development and homeostasis, and pathological cell growth defines cancer in metazoans. The first measurements of cell mass were made in the 1950s, but only recently have advances in computer science and microfabrication spurred the rapid development of precision mass-quantifying approaches. Here we discuss available techniques for quantifying the mass of single live cells with an emphasis on relative features, capabilities and drawbacks for different applications.

  10. Effects of Nitrogen Availability and Form on Phytoplankton Growth in a Eutrophied Estuary (Neuse River Estuary, NC, USA).

    PubMed

    Cira, Emily K; Paerl, Hans W; Wetz, Michael S

    2016-01-01

    Nitrogen availability and form are important controls on estuarine phytoplankton growth. This study experimentally determined the influence of urea and nitrate additions on phytoplankton growth throughout the growing season (March 2012, June 2011, August 2011) in a temperate, eutrophied estuary (Neuse River Estuary, North Carolina, USA). Photopigments (chlorophyll a and diagnostic photopigments: peridinin, fucoxanthin, alloxanthin, zeaxanthin, chlorophyll b) and microscopy-based cell counts were used as indicators of phytoplankton growth. In March, the phytoplankton community was dominated by Gyrodinium instriatum and only fucoxanthin-based growth rates were stimulated by nitrogen addition. The limited response to nitrogen suggests other factors may control phytoplankton growth and community composition in early spring. In June, inorganic nitrogen concentrations were low and stimulatory effects of both nitrogen forms were observed for chlorophyll a- and diagnostic photopigment-based growth rates. In contrast, cell counts showed that only cryptophyte and dinoflagellate (Heterocapsa rotundata) growth were stimulated. Responses of other photopigments may have been due to an increase in pigment per cell or growth of plankton too small to be counted with the microscopic methods used. Despite high nitrate concentrations in August, growth rates were elevated in response to urea and/or nitrate addition for all photopigments except peridinin. However, this response was not observed in cell counts, again suggesting that pigment-based growth responses may not always be indicative of a true community and/or taxa-specific growth response. This highlights the need to employ targeted microscopy-based cell enumeration concurrent with pigment-based technology to facilitate a more complete understanding of phytoplankton dynamics in estuarine systems. These results are consistent with previous studies showing the seasonal importance of nitrogen availability in estuaries, and also reflect taxa-specific responses nitrogen availability. Finally, this study demonstrates that under nitrogen-limiting conditions, the phytoplankton community and its various taxa are capable of using both urea and nitrate to support growth.

  11. Effects of Nitrogen Availability and Form on Phytoplankton Growth in a Eutrophied Estuary (Neuse River Estuary, NC, USA)

    PubMed Central

    Paerl, Hans W.; Wetz, Michael S.

    2016-01-01

    Nitrogen availability and form are important controls on estuarine phytoplankton growth. This study experimentally determined the influence of urea and nitrate additions on phytoplankton growth throughout the growing season (March 2012, June 2011, August 2011) in a temperate, eutrophied estuary (Neuse River Estuary, North Carolina, USA). Photopigments (chlorophyll a and diagnostic photopigments: peridinin, fucoxanthin, alloxanthin, zeaxanthin, chlorophyll b) and microscopy-based cell counts were used as indicators of phytoplankton growth. In March, the phytoplankton community was dominated by Gyrodinium instriatum and only fucoxanthin-based growth rates were stimulated by nitrogen addition. The limited response to nitrogen suggests other factors may control phytoplankton growth and community composition in early spring. In June, inorganic nitrogen concentrations were low and stimulatory effects of both nitrogen forms were observed for chlorophyll a- and diagnostic photopigment-based growth rates. In contrast, cell counts showed that only cryptophyte and dinoflagellate (Heterocapsa rotundata) growth were stimulated. Responses of other photopigments may have been due to an increase in pigment per cell or growth of plankton too small to be counted with the microscopic methods used. Despite high nitrate concentrations in August, growth rates were elevated in response to urea and/or nitrate addition for all photopigments except peridinin. However, this response was not observed in cell counts, again suggesting that pigment-based growth responses may not always be indicative of a true community and/or taxa-specific growth response. This highlights the need to employ targeted microscopy-based cell enumeration concurrent with pigment-based technology to facilitate a more complete understanding of phytoplankton dynamics in estuarine systems. These results are consistent with previous studies showing the seasonal importance of nitrogen availability in estuaries, and also reflect taxa-specific responses nitrogen availability. Finally, this study demonstrates that under nitrogen-limiting conditions, the phytoplankton community and its various taxa are capable of using both urea and nitrate to support growth. PMID:27504970

  12. HMGB proteins involved in TOR signaling as general regulators of cell growth by controlling ribosome biogenesis.

    PubMed

    Vizoso-Vázquez, A; Barreiro-Alonso, A; González-Siso, M I; Rodríguez-Belmonte, E; Lamas-Maceiras, M; Cerdán, M E

    2018-04-30

    The number of ribosomes and their activity need to be highly regulated because their function is crucial for the cell. Ribosome biogenesis is necessary for cell growth and proliferation in accordance with nutrient availability and other external and intracellular signals. High-mobility group B (HMGB) proteins are conserved from yeasts to human and are decisive in cellular fate. These proteins play critical functions, from the maintenance of chromatin structure, DNA repair, or transcriptional regulation, to facilitation of ribosome biogenesis. They are also involved in cancer and other pathologies. In this review, we summarize evidence of how HMGB proteins contribute to ribosome-biogenesis control, with special emphasis on a common nexus to the target of rapamycin (TOR) pathway, a signaling cascade essential for cell growth and proliferation from yeast to human. Perspectives in this field are also discussed.

  13. Brain tumor modeling: glioma growth and interaction with chemotherapy

    NASA Astrophysics Data System (ADS)

    Banaem, Hossein Y.; Ahmadian, Alireza; Saberi, Hooshangh; Daneshmehr, Alireza; Khodadad, Davood

    2011-10-01

    In last decade increasingly mathematical models of tumor growths have been studied, particularly on solid tumors which growth mainly caused by cellular proliferation. In this paper we propose a modified model to simulate the growth of gliomas in different stages. Glioma growth is modeled by a reaction-advection-diffusion. We begin with a model of untreated gliomas and continue with models of polyclonal glioma following chemotherapy. From relatively simple assumptions involving homogeneous brain tissue bounded by a few gross anatomical landmarks (ventricles and skull) the models have been expanded to include heterogeneous brain tissue with different motilities of glioma cells in grey and white matter. Tumor growth is characterized by a dangerous change in the control mechanisms, which normally maintain a balance between the rate of proliferation and the rate of apoptosis (controlled cell death). Result shows that this model closes to clinical finding and can simulate brain tumor behavior properly.

  14. GROWTH REGULATION IN RSV INFECTED CHECKEN EMBRYO FIBROBLASTS: THE ROLE OF THE src GENE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parry, G.; Bartholomew, J.C.; Bissell, M.J.

    1980-03-01

    The relationship between growth regulation and cell transformation has been studied in many cultured cell lines transformed by a range of oncogenic agents. The main conclusion derived from these investigations is that the nature of the growth regulatory lesion in transformed cells is a function of the agent used to induce transformation. For example, when 3T3 fibroblasts are rendered stationary by serum deprivation, normal cells accumulate in G{sub 1} but SV40 transformed cells are arrested at all stages of the cell cycle. In contrast, 3T3 cells transformed with Rous sarcoma virus B77, accumulate in G{sub 1} upon serum deprivation. Thismore » is also true when mouse sarcoma virus (MSV) is used as the transforming agent. MSV-transformed cells accumulate in G{sub 1}, just as do normal cells. In this letter we report a detailed study of the mechanisms leading to loss of growth control in chicken embryo fibroblasts transformed by Rous sarcoma virus (RSV). We have been particularly concerned with the role of the src gene in the process, and have used RSV mutants temperature sensitive (ts) for transformation to investigate the nature of the growth regulatory lesion. Two principal findings have emerged: (a) the stationary phase of the cell cycle (G{sub 1}) in chick embryo fibroblasts has two distinct compartments, (for simplicity referred to as G{sub 1} and G{sub 0} states), (b) when rendered stationary at 41.5{sup o} by serum deprivation, normal cells enter a G{sub 0}-like state, but cells infected with the ts-mutant occupy a G{sub 1} state, even though a known src gene product, a kinase, should be inactive at this temperature. The possibility is discussed that viral factors other than the active src protein kinase influence growth control.« less

  15. Protein disulfide isomerases in the endoplasmic reticulum promote anchorage-independent growth of breast cancer cells.

    PubMed

    Wise, Randi; Duhachek-Muggy, Sara; Qi, Yue; Zolkiewski, Michal; Zolkiewska, Anna

    2016-06-01

    Metastatic breast cancer cells are exposed to stress of detachment from the extracellular matrix (ECM). Cultured breast cancer cells that survive this stress and are capable of anchorage-independent proliferation form mammospheres. The purpose of this study was to explore a link between mammosphere growth, ECM gene expression, and the protein quality control system in the endoplasmic reticulum (ER). We compared the mRNA and protein levels of ER folding factors in SUM159PT and MCF10DCIS.com breast cancer cells grown as mammospheres versus adherent conditions. Publicly available gene expression data for mammospheres formed by primary breast cancer cells and for circulating tumor cells (CTCs) were analyzed to assess the status of ECM/ER folding factor genes in clinically relevant samples. Knock-down of selected protein disulfide isomerase (PDI) family members was performed to examine their roles in SUM159PT mammosphere growth. We found that cells grown as mammospheres had elevated expression of ECM genes and ER folding quality control genes. CTC gene expression data for an index patient indicated that upregulation of ECM and ER folding factor genes occurred at the time of acquired therapy resistance and disease progression. Knock-down of PDI, ERp44, or ERp57, three members of the PDI family with elevated protein levels in mammospheres, in SUM159PT cells partially inhibited the mammosphere growth. Thus, breast cancer cell survival and growth under detachment conditions require enhanced assistance of the ER protein folding machinery. Targeting ER folding factors, in particular members of the PDI family, may improve the therapeutic outcomes in metastatic breast cancer.

  16. Internal Membrane Control in Azotobacter vinelandii

    PubMed Central

    Pate, Jack L.; Shah, Vinod K.; Brill, Winston J.

    1973-01-01

    Azotobacter vinelandii was grown on N2, NH4+, or NO3−, and an internal membrane network was observed by electron microscopy of thin sections of cells. Cells obtained in early exponential growth contained less internal membrane than did cells from cultures in late exponential growth. It seems likely that O2 has a role in regulating the amount of internal membrane structure. Images PMID:4123239

  17. [Effect of aspirin on cell biological activities in murine bone marrow stromal cells].

    PubMed

    Du, Mi; Pan, Wan; Yang, Pishan; Ge, Shaohua

    2016-03-01

    To determine the effect of aspirin on cell proliferation, alkaline phosphatase (ALP) activity, cell cycle and apoptosis in murine bone marrow stromal cells, so as to explore an appropriate dose range to improve bone regeneration in periodontal treatment. ST2 cells were stimulated with aspirin (concentrations of 1, 10, 100 and 1 000 μmol/L) for 1, 2, 3, 5 and 7 d. Cell proliferation was measured by methyl thiazolyl tetrazolium (MTT) assay. After ST2 cells were treated for 1, 3 and 7 d, ALP activity was measured by ALP kit, cell cycle and apoptosis were measured by flow cytometry (FCM) after treated for 48 h. MTT assays showed that various doses of aspirin have different effects on the cell growth. Briefly, lower concentrations (1, 10 μmol/L) of aspirin promoted the cell growth, the A value of 0, 1 and 10 μmol/L aspirin 7-day-treated cells were 0.313±0.012, 0.413±0.010 and 0.387±0.017 respectively (P <0.01 vs control), and so did the ALP level ([4.3±0.9], [6.0±0.3] and [7.7±0.4] μmol·min(-1)·g(-1), P <0.05 vs control), while higher concentrations, especially 1000 μmol/L of aspirin might inhibit the cell growth with time going, A value and ALP level were 0.267±0.016, (4.3±1.3) μmol·min(-1)·g(-1) respectively (P <0.05 vs control). Cell cycle analysis revealed no changes in comparison to control cells after treatment with 1 or 10 μmol/L aspirin, but it was observed that cell mitosis from S phase to G2/M phase proceeded at higher concentrations of 100 μmol/L aspirin, and the cell cycle in phase G0/G1 arrested at 1000 μmol/L. Parallel apoptosis/necrosis studies showed that the percentage of cells in apoptosis decreased dramatically at all doses of aspirin, the apoptosis rates of ST2 cells responded to 0, 1, 10, 100 and 1000 μmol/L aspirin were (11.50±0.90)%, (5.30±0.10)%, (5.50±0.10)%, (4.90±0.90)% and (7.95±0.25)% respectively (P<0.05 vs control). This study demonstrated that lower dosage of aspirin can promote ST2 cells growth, osteogenic activity and inhibit its apoptosis. Aspirin maybe used for the bone reconstruction with a proper concentration.

  18. Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation

    NASA Astrophysics Data System (ADS)

    Sutton, Amy; Shirman, Tanya; Timonen, Jaakko V. I.; England, Grant T.; Kim, Philseok; Kolle, Mathias; Ferrante, Thomas; Zarzar, Lauren D.; Strong, Elizabeth; Aizenberg, Joanna

    2017-03-01

    Mechanical forces in the cell's natural environment have a crucial impact on growth, differentiation and behaviour. Few areas of biology can be understood without taking into account how both individual cells and cell networks sense and transduce physical stresses. However, the field is currently held back by the limitations of the available methods to apply physiologically relevant stress profiles on cells, particularly with sub-cellular resolution, in controlled in vitro experiments. Here we report a new type of active cell culture material that allows highly localized, directional and reversible deformation of the cell growth substrate, with control at scales ranging from the entire surface to the subcellular, and response times on the order of seconds. These capabilities are not matched by any other method, and this versatile material has the potential to bridge the performance gap between the existing single cell micro-manipulation and 2D cell sheet mechanical stimulation techniques.

  19. Type I collagen-induced YAP nuclear expression promotes primary cilia growth and contributes to cell migration in confluent mouse embryo fibroblast 3T3-L1 cells.

    PubMed

    Xu, Qian; Liu, Xiaoling; Liu, Weiwei; Hayashi, Toshihiko; Yamato, Masayuki; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi

    2018-05-30

    The extracellular matrix (ECM) is a major biomechanical environment for all cells in vivo, and tightly controls wound healing and cancer progression. Type I collagen (Col I) is the most abundant component in ECM and plays an essential role for cell motility control and migration beyond structural support. Our previous results showed that Col I increased the length of primary cilia and the expression of primary cilia-associated proteins in 3T3-L1 cells. The Hippo/YAP pathway serves as a major integrator of cell surface-mediated signals and regulates key processes for the development and maintenance of tissue functions. In this study, we investigated the role of Hippo/YAP signaling in primary cilia growth of cells cultured on Col I-coated plate, as well as the potential link between primary cilia and migration. At 2-day post-confluence, YAP localization in the nucleus was dramatically increased when the cells were cultured on Col I-coated plate, accompanied by cilia growth. YAP inhibitor verteporfin repressed the growth of primary cilia as well as the expressions of ciliogenesis-associated proteins in confluent 3T3-L1 cells cultured on Col I-coated plate. Moreover, knockdown of either YAP or IFT88, one of the ciliogenesis-associated proteins, reversed the migration of confluent 3T3-L1 cells promoted by Col I-coating. In conclusion, activation of YAP pathway by Col I-coating of culture plate for confluent 3T3-L1 cells is positively associated with the primary cilia growth, which eventually results in promoted migration.

  20. The Role of Mammalian Target of Rapamycin (mTOR) in Insulin Signaling.

    PubMed

    Yoon, Mee-Sup

    2017-10-27

    The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that controls a wide spectrum of cellular processes, including cell growth, differentiation, and metabolism. mTOR forms two distinct multiprotein complexes known as mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), which are characterized by the presence of raptor and rictor, respectively. mTOR controls insulin signaling by regulating several downstream components such as growth factor receptor-bound protein 10 (Grb10), insulin receptor substrate (IRS-1), F-box/WD repeat-containing protein 8 (Fbw8), and insulin like growth factor 1 receptor/insulin receptor (IGF-IR/IR). In addition, mTORC1 and mTORC2 regulate each other through a feedback loop to control cell growth. This review outlines the current understanding of mTOR regulation in insulin signaling in the context of whole body metabolism.

  1. Microtubule Dynamics Scale with Cell Size to Set Spindle Length and Assembly Timing.

    PubMed

    Lacroix, Benjamin; Letort, Gaëlle; Pitayu, Laras; Sallé, Jérémy; Stefanutti, Marine; Maton, Gilliane; Ladouceur, Anne-Marie; Canman, Julie C; Maddox, Paul S; Maddox, Amy S; Minc, Nicolas; Nédélec, François; Dumont, Julien

    2018-05-21

    Successive cell divisions during embryonic cleavage create increasingly smaller cells, so intracellular structures must adapt accordingly. Mitotic spindle size correlates with cell size, but the mechanisms for this scaling remain unclear. Using live cell imaging, we analyzed spindle scaling during embryo cleavage in the nematode Caenorhabditis elegans and sea urchin Paracentrotus lividus. We reveal a common scaling mechanism, where the growth rate of spindle microtubules scales with cell volume, which explains spindle shortening. Spindle assembly timing is, however, constant throughout successive divisions. Analyses in silico suggest that controlling the microtubule growth rate is sufficient to scale spindle length and maintain a constant assembly timing. We tested our in silico predictions to demonstrate that modulating cell volume or microtubule growth rate in vivo induces a proportional spindle size change. Our results suggest that scalability of the microtubule growth rate when cell size varies adapts spindle length to cell volume. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Autologous platelet-rich plasma: a potential therapeutic tool for promoting hair growth.

    PubMed

    Li, Zheng Jun; Choi, Hye-In; Choi, Dae-Kyoung; Sohn, Kyung-Cheol; Im, Myung; Seo, Young-Joon; Lee, Young-Ho; Lee, Jeung-Hoon; Lee, Young

    2012-07-01

    Recently, autologous platelet-rich plasma (PRP) has attracted attention in various medical fields, including plastic and orthopedic surgery and dermatology, for its ability to promote wound healing. PRP has been tested during facelift and hair transplantation to reduce swelling and pain and to increase hair density. To investigate the effects of PRP on hair growth using in vivo and in vitro models. PRP was prepared using the double-spin method and applied to dermal papilla (DP) cells. The proliferative effect of activated PRP on DP cells was measured. To understand the mechanisms of activated PRP on hair growth, we evaluated signaling pathways. In an in vivo study, mice received subcutaneous injections of activated PRP, and their results were compared with control mice. Activated PRP increased the proliferation of DP cells and stimulated extracellular signal-regulated kinase (ERK) and Akt signaling. Fibroblast growth factor 7 (FGF-7) and beta-catenin, which are potent stimuli for hair growth, were upregulated in DP cells. The injection of mice with activated PRP induced faster telogen-to-anagen transition than was seen on control mice. Although few studies tested the effects of activated PRP on hair growth, this research provides support for possible clinical application of autologous PRP and its secretory factors for promotion of hair growth. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  3. EG-03EXPRESSION OF PRMT5 CORRELATES WITH MALIGNANT GRADE IN GLIOMAS AND PLAYS A PIVOTAL ROLE IN TUMOR GROWTH

    PubMed Central

    Han, Xiaosi; Li, Rong; Zhang, Wenbin; Yang, Xiuhua; Fathallah-Shaykh, Hassan; Gillespie, Yancey; Nabors, Burt

    2014-01-01

    Protein arginine methyltransferase 5 (PRMT5) catalyzes the formation of ω-NG,N′G-symmetric dimethylarginine residues on histones as well as other proteins. The modification play an important role in cell differentiation and tumor cell growth. However, the role of PRMT5 in human glioma cells has not been characterized. In this study, we assessed protein expression profiles of PRMT5 in control brain, WHO grade II astrocytomas, anaplastic astrocytomas, and glioblastoma multiforme (GBM) by immunohistochemistry. PRMT5 was low in glial cells in control brain tissues and low grade astrocytomas. Its expression increased in parallel with malignant progression, and was highly expressed in GBM. Knockdown of PRMT5 by small hairpin RNA caused alterations of p-ERK1/2 and significantly repressed the clonogenic potential and viability of glioma cells. These findings indicate that PRMT5 is a marker of malignant progression in glioma tumors and plays a pivotal role in tumor growth.

  4. Origin of Complexity in Multicellular Organisms

    NASA Astrophysics Data System (ADS)

    Furusawa, Chikara; Kaneko, Kunihiko

    2000-06-01

    Through extensive studies of dynamical system modeling cellular growth and reproduction, we find evidence that complexity arises in multicellular organisms naturally through evolution. Without any elaborate control mechanism, these systems can exhibit complex pattern formation with spontaneous cell differentiation. Such systems employ a ``cooperative'' use of resources and maintain a larger growth speed than simple cell systems, which exist in a homogeneous state and behave ``selfishly.'' The relevance of the diversity of chemicals and reaction dynamics to the growth of a multicellular organism is demonstrated. Chaotic biochemical dynamics are found to provide the multipotency of stem cells.

  5. Chromatin reorganisation in Epstein-Barr virus-infected cells and its role in cancer development.

    PubMed

    West, Michelle J

    2017-10-01

    The oncogenic Epstein-Barr virus (EBV) growth transforms B cells and drives lymphoma and carcinoma development. The virus encodes four key transcription factors (EBNA2, EBNA3A, EBNA3B and EBNA3C) that hijack host cell factors to bind gene control elements and reprogramme infected B cells. These viral factors predominantly target long-range enhancers to alter the expression of host cell genes that control B cell growth and survival and facilitate virus persistence. Enhancer and super-enhancer binding by these EBNAs results in large-scale reorganisation of three-dimensional enhancer-promoter architecture to drive the overexpression of oncogenes, the silencing of tumour suppressors and the modulation of transcription, cell-cycle progression, migration and adhesion. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  6. Density-dependent regulation of growth of BSC-1 cells in cell culture: control of growth by serum factors.

    PubMed Central

    Holley, R W; Armour, R; Baldwin, J H; Brown, K D; Yeh, Y C

    1977-01-01

    BSC-1 cells grow slowly, to high cell density, in medium with 0.1% calf serum. An increase in the serum concentration increases both the growth rate of the cells and the final cell density. The serum can be replaced to some extent by epidermal growth factor (EGF). Initiation of DNA synthesis in BSC-1 cells that have spread into a "wound" in a crowded cell layer requires the addition of a trace of serum or EGF, if the cells have previously been deprived of serum. The binding of 125I-labeled EGF to low-density and high-density BSC-1 cells has been studied. Binding is faster to low-density cells. Cells at low cell density also bind much more EGF per cell than cells at high cell density. The fraction of bound 125I-labeled EGF that is present on the cell surface as intact EGF is larger at low than at high cell density. The results indicate that the number of available EGF receptors per cell decreases drastically as the cell density increases. It is suggested that a decrease in the number of available EGF receptor sites per cell, and the accompanying decrease in sensitivity of the cells to EGF, contributes to density-dependent regulation of growth of these cells. Images PMID:303774

  7. Response of melanoma tumor phospholipid metabolism to chloroethyle nitrosourea: a high resolution proton NMR spectroscopy study.

    PubMed

    Morvan, Daniel; Demidem, Aïcha; Madelmont, Jean-Claude

    2003-07-01

    Phospholipid metabolism is tightly involved in tumor growth regulation and tumor cell survival. The response of phospholipid metabolism to chloroethyle nitrosourea treatment is investigated in a murine B16 melanoma model. Measurements of phospholipid derivatives are performed on intact tumor tissue samples using one- and two-dimensional proton NMR spectroscopy. During the tumor growth inhibition phase under treatment, tumors overexpress phosphocholine, phosphoethanolamine, glycerophosphocholine and glycerophosphoethanolamine, whereas phosphatidylcholine and phosphatidylethanolamine levels are maintained to control levels. During re-growth, which remained quantitatively much below control growth, chloroethyle nitrosourea-treated melanoma tumors overexpress phosphocholine and phosphoethanolamine only. In treated melanoma, phosphatidylcholine levels show an inverse relationship with tumor growth rates. In conclusion, chloroethyle nitrosourea-treated melanoma tumors maintain their phosphatidylcholine levels and exhibit transformed phospholipid metabolism phenotype, by mechanisms that could participate in tumor cell survival.

  8. Expression of a hyperactive androgen receptor leads to androgen-independent growth of prostate cancer cells.

    PubMed

    Hsieh, Chen-Lin; Cai, Changmeng; Giwa, Ahmed; Bivins, Aaronica; Chen, Shao-Yong; Sabry, Dina; Govardhan, Kumara; Shemshedini, Lirim

    2008-07-01

    Cellular changes that affect the androgen receptor (AR) can cause prostate cancer to transition from androgen dependent to androgen independent, which is usually lethal. One common change in prostate tumors is overexpression of the AR, which has been shown to lead to androgen-independent growth of prostate cancer cells. This led us to hypothesize that expression of a hyperactive AR would be sufficient for androgen-independent growth of prostate cancer cells. To test this hypothesis, stable lune cancer prostate (LNCaP) cell lines were generated, which express a virion phosphoprotein (VP)16-AR hybrid protein that contains full-length AR fused to the strong viral transcriptional activation domain VP16. This fusion protein elicited as much as a 20-fold stronger transcriptional activity than the natural AR. Stable expression of VP16-AR in LNCaP cells yielded androgen-independent cell proliferation, while under the same growth conditions the parental LNCaP cells exhibited only androgen-dependent growth. These results show that expression of a hyperactive AR is sufficient for androgen-independent growth of prostate cancer cells. To study the molecular basis of this enhanced growth, we measured the expression of soluble guanylyl cyclase-alpha1 (sGCalpha1), a subunit of the sGC, an androgen-regulated gene that has been shown to be involved in prostate cancer cell growth. Interestingly, the expression of sGCalpha1 is androgen independent in VP16-AR-expressing cells, in contrast to its androgen-induced expression in control LNCaP cells. RNA(I)-dependent inhibition of sGCalpha1 expression resulted in significantly reduced proliferation of VP16-AR cells, implicating an important role for sGCalpha1 in the androgen-independent growth of these cells.

  9. Growth and Metabolism of the Green Alga, Chlorella Pyrenoidosa, in Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Mills, W. Ronald

    2003-01-01

    The effect of microgravity on living organisms during space flight has been a topic of interest for some time, and a substantial body of knowledge on the subject has accumulated. Despite this, comparatively little information is available regarding the influence of microgravity on algae, even though it has been suggested for long duration flight or occupancy in space that plant growth systems, including both higher plants and algae, are likely to be necessary for bioregenerative life support systems. High-Aspect-Ratio Rotating-Wall Vessel or HARV bioreactors developed at Johnson Space Center provide a laboratory-based approach to investigating the effects of microgravity on cellular reactions. In this study, the HARV bioreactor was used to examine the influence of simulated microgravity on the growth and metabolism of the green alga, Chlorella pyrenoidosa. After the first 2 days of culture, cell numbers increased more slowly in simulated microgravity than in the HARV gravity control; after 7 days, growth in simulated microgravity was just over half (58%) that of the gravity control and at 14 days it was less than half (42%). Chlorophyll and protein were also followed as indices of cell competence and function; as with growth, after 2-3 days, protein and chlorophyll levels were reduced in modeled microgravity compared to gravity controls. Photosynthesis is a sensitive biochemical index of the fitness of photosynthetic organisms; thus, CO2-dependent O2 evolution was tested as a measure of photosynthetic capacity of cells grown in simulated microgravity. When data were expressed with respect to cell number, modeled microgravity appeared to have little effect on CO2 fixation. Thus, even though the overall growth rate was lower for cells cultured in microgravity, the photosynthetic capacity of the cells appears to be unaffected. Cells grown in simulated microgravity formed loose clumps or aggregates within about 2 days of culture, with aggregation increasing over time. Presently, the basis for, or significance of, the cell aggregation is unknown. The results from this study suggest that cell growth and morphological characteristics of green algae may be altered by culture in simulated microgravity. The data obtained to date should provide a solid basis for additional experimentation regarding the influence of modeled microgravity on cell morphology, physiological activity, protein production and possibly gene expression in algal and plant cell systems. The final aim of the study is to provide useful information to elucidate the underlying mechanism for the biological effects of microgravity on cells.

  10. Circuit Design Features of a Stable Two-Cell System.

    PubMed

    Zhou, Xu; Franklin, Ruth A; Adler, Miri; Jacox, Jeremy B; Bailis, Will; Shyer, Justin A; Flavell, Richard A; Mayo, Avi; Alon, Uri; Medzhitov, Ruslan

    2018-02-08

    Cell communication within tissues is mediated by multiple paracrine signals including growth factors, which control cell survival and proliferation. Cells and the growth factors they produce and receive constitute a circuit with specific properties that ensure homeostasis. Here, we used computational and experimental approaches to characterize the features of cell circuits based on growth factor exchange between macrophages and fibroblasts, two cell types found in most mammalian tissues. We found that the macrophage-fibroblast cell circuit is stable and robust to perturbations. Analytical screening of all possible two-cell circuit topologies revealed the circuit features sufficient for stability, including environmental constraint and negative-feedback regulation. Moreover, we found that cell-cell contact is essential for the stability of the macrophage-fibroblast circuit. These findings illustrate principles of cell circuit design and provide a quantitative perspective on cell interactions. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. SOXF factors regulate murine satellite cell self-renewal and function through inhibition of β-catenin activity.

    PubMed

    Alonso-Martin, Sonia; Auradé, Frédéric; Mademtzoglou, Despoina; Rochat, Anne; Zammit, Peter S; Relaix, Frédéric

    2018-06-08

    Muscle satellite cells are the primary source of stem cells for postnatal skeletal muscle growth and regeneration. Understanding genetic control of satellite cell formation, maintenance, and acquisition of their stem cell properties is on-going, and we have identified SOXF (SOX7, SOX17, SOX18) transcriptional factors as being induced during satellite cell specification. We demonstrate that SOXF factors regulate satellite cell quiescence, self-renewal and differentiation. Moreover, ablation of Sox17 in the muscle lineage impairs postnatal muscle growth and regeneration. We further determine that activities of SOX7, SOX17 and SOX18 overlap during muscle regeneration, with SOXF transcriptional activity requisite. Finally, we show that SOXF factors also control satellite cell expansion and renewal by directly inhibiting the output of β-catenin activity, including inhibition of Ccnd1 and Axin2 . Together, our findings identify a key regulatory function of SoxF genes in muscle stem cells via direct transcriptional control and interaction with canonical Wnt/β-catenin signaling. © 2018, Alonso-Martin et al.

  12. Illegitimate WNT signaling promotes proliferation of multiple myeloma cells

    PubMed Central

    Derksen, Patrick W. B.; Tjin, Esther; Meijer, Helen P.; Klok, Melanie D.; Mac Gillavry, Harold D.; van Oers, Marinus H. J.; Lokhorst, Henk M.; Bloem, Andries C.; Clevers, Hans; Nusse, Roel; van der Neut, Ronald; Spaargaren, Marcel; Pals, Steven T.

    2004-01-01

    The unrestrained growth of tumor cells is generally attributed to mutations in essential growth control genes, but tumor cells are also influenced by signals from the environment. In multiple myeloma (MM), the factors and signals coming from the bone marrow microenvironment are possibly even essential for the growth of the tumor cells. As targets for intervention, these signals may be equally important as mutated oncogenes. Given their oncogenic potential, WNT signals form a class of paracrine growth factors that could act to influence MM cell growth. In this paper, we report that MM cells have hallmarks of active WNT signaling, whereas the cells have not undergone detectable mutations in WNT signaling genes such as adenomatous polyposis coli and β-catenin (CTNNB1). We show that the malignant MM plasma cells overexpress β-catenin, including its N-terminally unphosphorylated form, suggesting active β-catenin/T cell factor-mediated transcription. Further accumulation and nuclear localization of β-catenin, and/or increased cell proliferation, was achieved by stimulation of WNT signaling with either Wnt3a, LiCl, or the constitutively active S33Y mutant of β-catenin. In contrast, by blocking WNT signaling by dominant-negative T cell factor, we can interfere with the growth of MM cells. We therefore suggest that MM cells are dependent on an active WNT signal, which may have important implications for the management of this incurable form of cancer. PMID:15067127

  13. Mesenchymal Stem Cells Suppress Chronic Rejection in Heterotopic Small Intestine Transplant Rat Models Via Inhibition of CD68, Transforming Growth Factor- β1, and Platelet-Derived Growth Factor Expression.

    PubMed

    Li, Fuxin; Cao, Jisen; Zhao, Zhicheng; Li, Chuan; Qi, Feng; Liu, Tong

    2017-04-01

    Mesenchymal stem cells are easy to obtain and expand, with characteristics of low immunogenicity and strong tissue repair capacity. In this study, our aim was to investigate the role of mesenchymal stem cells in chronic immune rejection of heterotopic small intestine transplant in rats. After successfully constructing a rat chronic immune rejection model of heterotopic small intestine transplant, we infused mesenchymal stem cells into the animal recipients. We observed mesenchymal stem cell location in the recipients, recipient survival, pathology changes, and the expression of CD68, transforming growth factor β1, and platelet-derived growth factor C in the donor intestine. Mesenchymal stem cells inhibited the lymphocyte proliferation caused by concanavalin A in vitro. After stem cells were infused into recipients, they were mainly located in the donor intestine, as well as in the spleen and thymus. Recovery after transplant and pathology changes of the donor intestine in rats with stem cell infusion were better than in the control group; however, we observed no differences in survival time, accompanied by downregulated expression of CD68, transforming growth factor β1, and platelet-derived growth factor C. Mesenchymal stem cells, to a certain extent, could inhibit the process of chronic rejection. The mechanisms may include the inhibited function of these cells on lymphocyte proliferation, reduced infiltration of macrophages, and reduced expression of transforming growth factor β1 and platelet-derived growth factor C.

  14. Altered decorin leads to disrupted endothelial cell function: a possible mechanism in the pathogenesis of fetal growth restriction?

    PubMed

    Chui, A; Murthi, P; Gunatillake, T; Brennecke, S P; Ignjatovic, V; Monagle, P T; Whitelock, J M; Said, J M

    2014-08-01

    Fetal growth restriction (FGR) is a key cause of adverse pregnancy outcome where maternal and fetal factors are identified as contributing to this condition. Idiopathic FGR is associated with altered vascular endothelial cell functions. Decorin (DCN) has important roles in the regulation of endothelial cell functions in vascular environments. DCN expression is reduced in FGR. The objectives were to determine the functional consequences of reduced DCN in a human microvascular endothelial cell line model (HMVEC), and to determine downstream targets of DCN and their expression in primary placental microvascular endothelial cells (PLECs) from control and FGR-affected placentae. Short-interference RNA was used to reduce DCN expression in HMVECs and the effect on proliferation, angiogenesis and thrombin generation was determined. A Growth Factor PCR Array was used to identify downstream targets of DCN. The expression of target genes in control and FGR PLECs was performed. DCN reduction decreased proliferation and angiogenesis but increased thrombin generation with no effect on apoptosis. The array identified three targets of DCN: FGF17, IL18 and MSTN. Validation of target genes confirmed decreased expression of VEGFA, MMP9, EGFR1, IGFR1 and PLGF in HMVECs and PLECs from control and FGR pregnancies. Reduction of DCN in vascular endothelial cells leads to disrupted cell functions. The targets of DCN include genes that play important roles in angiogenesis and cellular growth. Therefore, differential expression of these may contribute to the pathogenesis of FGR and disease states in other microvascular circulations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Air-Adapted Methanosarcina acetivorans Shows High Methane Production and Develops Resistance against Oxygen Stress

    PubMed Central

    Jasso-Chávez, Ricardo; Santiago-Martínez, M. Geovanni; Lira-Silva, Elizabeth; Pineda, Erika; Zepeda-Rodríguez, Armando; Belmont-Díaz, Javier; Encalada, Rusely; Saavedra, Emma; Moreno-Sánchez, Rafael

    2015-01-01

    Methanosarcina acetivorans, considered a strict anaerobic archaeon, was cultured in the presence of 0.4–1% O2 (atmospheric) for at least 6 months to generate air-adapted cells; further, the biochemical mechanisms developed to deal with O2 were characterized. Methane production and protein content, as indicators of cell growth, did not change in air-adapted cells respect to cells cultured under anoxia (control cells). In contrast, growth and methane production significantly decreased in control cells exposed for the first time to O2. Production of reactive oxygen species was 50 times lower in air-adapted cells versus control cells, suggesting enhanced anti-oxidant mechanisms that attenuated the O2 toxicity. In this regard, (i) the transcripts and activities of superoxide dismutase, catalase and peroxidase significantly increased; and (ii) the thiol-molecules (cysteine + coenzyme M-SH + sulfide) and polyphosphate contents were respectively 2 and 5 times higher in air-adapted cells versus anaerobic-control cells. Long-term cultures (18 days) of air-adapted cells exposed to 2% O2 exhibited the ability to form biofilms. These data indicate that M. acetivorans develops multiple mechanisms to contend with O2 and the associated oxidative stress, as also suggested by genome analyses for some methanogens. PMID:25706146

  16. Interrogating the Escherichia coli cell cycle by cell dimension perturbations

    PubMed Central

    Zheng, Hai; Ho, Po-Yi; Jiang, Meiling; Tang, Bin; Liu, Weirong; Li, Dengjin; Yu, Xuefeng; Kleckner, Nancy E.; Amir, Ariel; Liu, Chenli

    2016-01-01

    Bacteria tightly regulate and coordinate the various events in their cell cycles to duplicate themselves accurately and to control their cell sizes. Growth of Escherichia coli, in particular, follows a relation known as Schaechter’s growth law. This law says that the average cell volume scales exponentially with growth rate, with a scaling exponent equal to the time from initiation of a round of DNA replication to the cell division at which the corresponding sister chromosomes segregate. Here, we sought to test the robustness of the growth law to systematic perturbations in cell dimensions achieved by varying the expression levels of mreB and ftsZ. We found that decreasing the mreB level resulted in increased cell width, with little change in cell length, whereas decreasing the ftsZ level resulted in increased cell length. Furthermore, the time from replication termination to cell division increased with the perturbed dimension in both cases. Moreover, the growth law remained valid over a range of growth conditions and dimension perturbations. The growth law can be quantitatively interpreted as a consequence of a tight coupling of cell division to replication initiation. Thus, its robustness to perturbations in cell dimensions strongly supports models in which the timing of replication initiation governs that of cell division, and cell volume is the key phenomenological variable governing the timing of replication initiation. These conclusions are discussed in the context of our recently proposed “adder-per-origin” model, in which cells add a constant volume per origin between initiations and divide a constant time after initiation. PMID:27956612

  17. Interrogating the Escherichia coli cell cycle by cell dimension perturbations.

    PubMed

    Zheng, Hai; Ho, Po-Yi; Jiang, Meiling; Tang, Bin; Liu, Weirong; Li, Dengjin; Yu, Xuefeng; Kleckner, Nancy E; Amir, Ariel; Liu, Chenli

    2016-12-27

    Bacteria tightly regulate and coordinate the various events in their cell cycles to duplicate themselves accurately and to control their cell sizes. Growth of Escherichia coli, in particular, follows a relation known as Schaechter's growth law. This law says that the average cell volume scales exponentially with growth rate, with a scaling exponent equal to the time from initiation of a round of DNA replication to the cell division at which the corresponding sister chromosomes segregate. Here, we sought to test the robustness of the growth law to systematic perturbations in cell dimensions achieved by varying the expression levels of mreB and ftsZ We found that decreasing the mreB level resulted in increased cell width, with little change in cell length, whereas decreasing the ftsZ level resulted in increased cell length. Furthermore, the time from replication termination to cell division increased with the perturbed dimension in both cases. Moreover, the growth law remained valid over a range of growth conditions and dimension perturbations. The growth law can be quantitatively interpreted as a consequence of a tight coupling of cell division to replication initiation. Thus, its robustness to perturbations in cell dimensions strongly supports models in which the timing of replication initiation governs that of cell division, and cell volume is the key phenomenological variable governing the timing of replication initiation. These conclusions are discussed in the context of our recently proposed "adder-per-origin" model, in which cells add a constant volume per origin between initiations and divide a constant time after initiation.

  18. GROWTH REGULATION IN ROUS SARCOMA VIRUS INFECTED CHICKEN EMBRYO FIBROBLASTS: THE ROLE OF THE src GENE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parry, G.; Bartholomew, J.A.; Blssell, M.J.

    1980-07-01

    We report here a study of the mechanisms leading to loss of growth control in chicken embryo fibroblasts transformed by Rous sarcoma virus (RSV). We have been particularly concerned with the role of the src gene in this process, and have used RSV mutants temperature sensitive (ts) for transformation to investigate the nature of the growth regulatory lesion. The two principal findings were (1) the stationary phase of the cell cycle (G{sub 1}) in chick embryo fibroblasts seems to have two distinct regulatory compartments (using the terminology of Brooks et al. we refer to these as 'Q' and 'A' states).more » When rendered stationary at 41.5 C by serum deprivation, normal cells enter a Q state, but cells infected with the ts-mutant occupy an A state. (2) Whereas normal cells can occupy either state depending on culture conditions, the ts-infected cells, at 41.5 C, do not seem to enter Q even though a known src gene product, a kinase, is reported to be inactive at this temperature. We discuss the possibility that viral factors other than the active src protein kinase influence growth control in infected cultures.« less

  19. Wall extensibility: its nature, measurement and relationship to plant cell growth

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1993-01-01

    Expansive growth of plant cells is controlled principally by processes that loosen the wall and enable it to expand irreversibly. The central role of wall relaxation for cell expansion is reviewed. The most common methods for assessing the extension properties of plant cell walls ( wall extensibility') are described, categorized and assessed critically. What emerges are three fundamentally different approaches which test growing cells for their ability (a) to enlarge at different values of turgor, (b) to induce wall relaxation, and (c) to deform elastically or plastically in response to an applied tensile force. Analogous methods with isolated walls are similarly reviewed. The results of these different assays are related to the nature of plant cell growth and pertinent biophysical theory. I argue that the extensibilities' measured by these assays are fundamentally different from one another and that some are more pertinent to growth than others.

  20. Control of growth and squamous differentiation in normal human bronchial epithelial cells by chemical and biological modifiers and transferred genes.

    PubMed Central

    Pfeifer, A M; Lechner, J F; Masui, T; Reddel, R R; Mark, G E; Harris, C C

    1989-01-01

    The majority of human lung cancers arise from bronchial epithelial cells. The normal pseudostratified bronchial epithelium is composed of basal, mucous, and ciliated cells. This multi-differentiated epithelium usually responds to xenobiotics and physical injury by undergoing basal cell hyperplasia, mucous cell hyperplasia, and squamous metaplasia. One step of the multistage process of carcinogenesis is thought to involve aberrations in control of the squamous metaplastic processes. Decreased responsiveness to regulators of terminal squamous differentiation may confer a selective clonal expansion advantage to an initiated cell. We studied the effects of endogenous [e.g., transforming growth factor beta 1 (TGF-beta 1) and serum] and exogenous [e.g., 12-O-tetradecanoyl-13-phorbol-acetate (TPA), tobacco smoke condensate, and aldehydes] modifiers of normal human bronchial epithelial (NHBE) cell in a serum-free culture system. NHBE cells are growth inhibited by all of these compounds and induced to undergo squamous differentiation by TGF-beta 1 or TPA. In contrast, lung carcinoma cell lines are relatively resistant to inducers of terminal squamous differentiation which may provide them with a selective growth advantage. Chemical agents and activated protooncogenes (ras,raf,myc) altered the response to endogenous and exogenous inducers of squamous differentiation and caused extended cellular lifespan, aneuploidy, and/or tumorigenicity. The data suggest a close relationship between dysregulation of terminal differentiation pathways and neoplastic transformation of human bronchial epithelial cells. PMID:2538323

  1. Effects of Iron Administration on the Diameter of Cells of Growth Cartilage of Rat Pups During Pregnancy.

    PubMed

    Umbreen, Faiza; Qamar, Khadija; Shaukat, Sadia; Tasawar, Amna

    2017-07-01

    To determine the effect of oral iron administration on pregnant rats on the diameter of cells of growth plate of rat pups. Experimental study. Anatomy Department, Army Medical College, Rawalpindi in collaboration with National Institute of Health (NIH), Islamabad from March to November 2016. Group Acontaining 8 pregnant rats was control group, and group B containing same number of pregnant rats was the study group. Control group Awas on standard diet throughout pregnancy. Iron was given to the experimental group B for 21 days (throughout pregnancy) in the form of syrup 0.5ml daily (2.75 mg of elemental iron) given in water. Rat infants were born via spontaneous vaginal delivery. Inclusion criteria for infants was pups born at term which were active and taking feed. Femur from each rat infant of right side was removed for the growth plate investigation. Processing, embedding and staining with Hematoxylin and Eosin, Perl's stain for histological study was done. The cell diameter in hypertrophy and proliferative zone was evaluated. Mean values of the diameter of chondrocytes in both the zones of growth cartilage of femur were measured. Diameter of the cells in hypertrophy and proliferative zones was considerably decreased in group B as compared to group A. Administration of iron during pregnancy with normal iron status can disturb growth of the rat infant through its accumulation in the epiphyseal plate of femur. The cell diameter of the hypertrophy and proliferative zones was markedly reduced in iron administered group as compared to the control group.

  2. Cell wall integrity signaling in plants: "To grow or not to grow that's the question".

    PubMed

    Voxeur, Aline; Höfte, Herman

    2016-09-01

    Plants, like yeast, have the ability to monitor alterations in the cell wall architecture that occur during normal growth or in changing environments and to trigger compensatory changes in the cell wall. We discuss how recent advances in our understanding of the cell wall architecture provide new insights into the role of cell wall integrity sensing in growth control. Next we review the properties of membrane receptor-like kinases that have roles in pH control, mechano-sensing and reactive oxygen species accumulation in growing cells and which may be the plant equivalents of the yeast cell wall integrity (CWI) sensors. Finally, we discuss recent findings showing an increasing role for CWI signaling in plant immunity and the adaptation to changes in the ionic environment of plant cells. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Inhibition of prostate smooth muscle contraction and prostate stromal cell growth by the inhibitors of Rac, NSC23766 and EHT1864.

    PubMed

    Wang, Y; Kunit, T; Ciotkowska, A; Rutz, B; Schreiber, A; Strittmatter, F; Waidelich, R; Liu, C; Stief, C G; Gratzke, C; Hennenberg, M

    2015-06-01

    Medical therapy of lower urinary tract symptoms (LUTS) suggestive of benign prostatic hyperplasia (BPH) targets smooth muscle contraction in the prostate, or prostate growth. However, current therapeutic options are insufficient. Here, we investigated the role of Rac in the control of smooth muscle tone in human prostates and growth of prostate stromal cells. Experiments were performed using human prostate tissues from radical prostatectomy and cultured stromal cells (WPMY-1). Expression of Rac was examined by Western blot and fluorescence staining. Effects of Rac inhibitors (NSC23766 and EHT1864) on contractility were assessed in the organ bath. The effects of Rac inhibitors were assessed by pull-down, cytotoxicity using a cell counting kit, cytoskeletal organization by phalloidin staining and cell growth using an 5-ethynyl-2'-deoxyuridine assay. Expression of Rac1-3 was observed in prostate samples from each patient. Immunoreactivity for Rac1-3 was observed in the stroma, where it colocalized with the smooth muscle marker, calponin. NSC23766 and EHT1864 significantly reduced contractions of prostate strips induced by noradrenaline, phenylephrine or electrical field stimulation. NSC23766 and EHT1864 inhibited Rac activity in WPMY-1 cells. Survival of WPMY-1 cells ranged between 64 and 81% after incubation with NSC23766 (50 or 100 μM) or EHT1864 (25 μM) for 24 h. NSC23766 and EHT1864 induced cytoskeletal disorganization in WPMY-1 cells. Both inhibitors impaired the growth of WPMY-1 cells. Rac may be a link connecting the control of prostate smooth muscle tone with proliferation of smooth muscle cells. Improvements in LUTS suggestive of BPH by Rac inhibitors appears possible. © 2015 The British Pharmacological Society.

  4. Combination of three angiogenic growth factors has synergistic effects on sprouting of endothelial cell/mesenchymal stem cell-based spheroids in a 3D matrix.

    PubMed

    Kim, Sook Kyoung; Lee, Jaeyeon; Song, Myeongjin; Kim, Mirim; Hwang, Soon Jung; Jang, Hwanseok; Park, Yongdoo

    2016-11-01

    Combinations of angiogenic growth factors have been shown to have synergistic effects on angiogenesis and natural wound healing in various animal models. Each growth factor has unique roles during angiogenesis; vascular endothelial growth factor (VEGF) plays a key role during the initial step of angiogenesis, whereas PDGF functions in the maturation of blood vessels. We used a combination of three angiogenic growth factors to increase angiogenesis in vitro and in vivo. We chose VEGF as a basic factor and added platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) to induce angiogenesis in three in vitro and in vivo models: 3D angiogenesis assay, 3D co-culture, and matrigel plug implantation assay. Cell proliferation was significantly higher in co-cultured cells treated with PDGF + VEGF + FGF than in the control, single, or dual combination groups. mRNA expression of α-smooth muscle actin (α-SMA), von Willebrand factor (vWF), and CD105 was higher in the triple group (PDGF + VEGF + FGF) than in control, single, or dual combination groups. In the PDGF + VEGF + FGF group, the length and number of branches of spheroids was also significantly higher than in the control, single, or dual combination groups. Furthermore, in a nude mouse model, α-SMA expression was significantly higher in the PDGF + VEGF + FGF group than in other groups. In conclusion, the addition of PDGF and FGF to VEGF showed synergistic effects on angiogenesis in vitro and in vivo. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1535-1543, 2016. © 2015 Wiley Periodicals, Inc.

  5. Calcium influences sensitivity to growth inhibition induced by a cell surface sialoglycopeptide

    NASA Technical Reports Server (NTRS)

    Betz, N. A.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    While studies concerning mitogenic factors have been an important area of research for many years, much less is understood about the mechanisms of action of cell surface growth inhibitors. We have purified an 18 kDa cell surface sialoglycopeptide growth inhibitor (CeReS-18) which can reversibly inhibit the proliferation of diverse cell types. The studies discussed in this article show that three mouse keratinocyte cell lines exhibit sixty-fold greater sensitivity than other fibroblasts and epithelial-like cells to CeReS-18-induced growth inhibition. Growth inhibition induced by CeReS-18 treatment is a reversible process, and the three mouse keratinocyte cell lines exhibited either single or multiple cell cycle arrest points, although a predominantly G0/G1 cell cycle arrest point was exhibited in Swiss 3T3 fibroblasts. The sensitivity of the mouse keratinocyte cell lines to CeReS-18-induced growth inhibition was not affected by the degree of tumorigenic progression in the cell lines and was not due to differences in CeReS-18 binding affinity or number of cell surface receptors per cell. However, the sensitivity of both murine fibroblasts and keratinocytes could be altered by changing the extracellular calcium concentration, such that increased extracellular calcium concentrations resulted in decreased sensitivity to CeReS-18-induced proliferation inhibition. Thus the increased sensitivity of the murine keratinocyte cell lines to CeReS-18 could be ascribed to the low calcium concentration used in their propagation. Studies are currently under way investigating the role of calcium in CeReS-18-induced growth arrest. The CeReS-18 may serve as a very useful tool to study negative growth control and the signal transduction events associated with cell cycling.

  6. Geometric Constraints and the Anatomical Interpretation of Twisted Plant Organ Phenotypes

    PubMed Central

    Weizbauer, Renate; Peters, Winfried S.; Schulz, Burkhard

    2011-01-01

    The study of plant mutants with twisting growth in axial organs, which normally grow straight in the wild-type, is expected to improve our understanding of the interplay among microtubules, cellulose biosynthesis, cell wall structure, and organ biomechanics that control organ growth and morphogenesis. However, geometric constraints based on symplastic growth and the consequences of these geometric constraints concerning interpretations of twisted-organ phenotypes are currently underestimated. Symplastic growth, a fundamental concept in plant developmental biology, is characterized by coordinated growth of adjacent cells based on their connectivity through cell walls. This growth behavior implies that in twisting axial organs, all cell files rotate in phase around the organ axis, as has been illustrated for the Arabidopsis spr1 and twd1 mutants in this work. Evaluating the geometry of such organs, we demonstrate that a radial gradient in cell elongation and changes in cellular growth anisotropy must occur in twisting organs out of geometric necessity alone. In-phase rotation of the different cell layers results in a decrease of length and angle toward organ axis from the outer cell layers inward. Additionally, the circumference of each cell layer increases in twisting organs, which requires compensation through radial expansion or an adjustment of cell number. Therefore, differential cell elongation and growth anisotropy cannot serve as arguments for or against specific hypotheses regarding the molecular cause of twisting growth. We suggest instead, that based on mathematical modeling, geometric constraints in twisting organs are indispensable for the explanation of the causal connection of molecular and biomechanical processes in twisting as well as normal organs. PMID:22645544

  7. Serum levels of the angiogenic factor pleiotrophin in relation to disease stage in lung cancer patients

    PubMed Central

    Jäger, R; List, B; Knabbe, C; Souttou, B; Raulais, D; Zeiler, T; Wellstein, A; Aigner, A; Neubauer, A; Zugmaier, G

    2002-01-01

    Pleiotrophin is a heparin-binding growth factor involved in the differentiation and proliferation of neuronal tissue during embryogenesis, and also secreted by melanoma and breast carcinoma cells. Pleiotrophin exhibits mitogenic and angiogenic properties and has been shown to influence the vascular supply, expansion and metastasis of tumour cells. Our aim was to study the serum and plasma concentrations of pleiotrophin and the classical angiogenic growth factor vascular endothelial growth factor. Using a specific ELISA-test we studied patients with small cell lung cancer (n=63), and patients with non-small cell lung cancer (n=22) in comparison to healthy control subjects (n=41). In most of the lung cancer patients (81%), we found serum levels of pleiotrophin above those of control subjects (P<0.001). Of the 63 small cell lung cancer patients in the study pleiotrophin serum levels were elevated in 55 cases (87%) and in 14 cases (63%) of the 22 non-small cell lung cancer patients. Pleiotrophin mean serum concentrations were 10.8-fold higher in the tumour patient group as compared to the control group (P<0.001). Furthermore, pleiotrophin serum levels correlated positively with the stage of disease and inversely with the response to therapy. Plasma vascular endothelial growth factor concentrations were elevated in only in 28.6% of small cell lung cancer and 45.5% of non-small cell lung cancer patients by an average of 2.3-fold. Quite strikingly, there was no apparent correlation between the plasma vascular endothelial growth factor concentration and the stage of disease. Our study suggests that pleiotrophin may be an early indicator of lung cancer and might be of use in monitoring the efficacy of therapy, which needs to be confirmed by larger studies. British Journal of Cancer (2002) 86, 858–863. DOI: 10.1038/sj/bjc/6600202 www.bjcancer.com © 2002 Cancer Research UK PMID:11953815

  8. Reassessing the Roles of PIN Proteins and Anticlinal Microtubules during Pavement Cell Morphogenesis.

    PubMed

    Belteton, Samuel A; Sawchuk, Megan G; Donohoe, Bryon S; Scarpella, Enrico; Szymanski, Daniel B

    2018-01-01

    The leaf epidermis is a biomechanical shell that influences the size and shape of the organ. Its morphogenesis is a multiscale process in which nanometer-scale cytoskeletal protein complexes, individual cells, and groups of cells pattern growth and define macroscopic leaf traits. Interdigitated growth of neighboring cells is an evolutionarily conserved developmental strategy. Understanding how signaling pathways and cytoskeletal proteins pattern cell walls during this form of tissue morphogenesis is an important research challenge. The cellular and molecular control of a lobed cell morphology is currently thought to involve PIN-FORMED (PIN)-type plasma membrane efflux carriers that generate subcellular auxin gradients. Auxin gradients were proposed to function across cell boundaries to encode stable offset patterns of cortical microtubules and actin filaments between adjacent cells. Many models suggest that long-lived microtubules along the anticlinal cell wall generate local cell wall heterogeneities that restrict local growth and specify the timing and location of lobe formation. Here, we used Arabidopsis ( Arabidopsis thaliana ) reverse genetics and multivariate long-term time-lapse imaging to test current cell shape control models. We found that neither PIN proteins nor long-lived microtubules along the anticlinal wall predict the patterns of lobe formation. In fields of lobing cells, anticlinal microtubules are not correlated with cell shape and are unstable at the time scales of cell expansion. Our analyses indicate that anticlinal microtubules have multiple functions in pavement cells and that lobe initiation is likely controlled by complex interactions among cell geometry, cell wall stress patterns, and transient microtubule networks that span the anticlinal and periclinal walls. © 2018 American Society of Plant Biologists. All Rights Reserved.

  9. Possible reduction of hepatoma formation by Smmu 7721 cells in SCID mice and metastasis formation by B16F10 melanoma cells in C57BL/6 mice by Agaricus blazei murill extract.

    PubMed

    Wu, Ming-Fang; Lu, Hsu-Feng; Hsu, Yu-Ming; Tang, Ming-Chu; Chen, Hsueh-Chin; Lee, Ching-Sung; Yang, Yi-Yuan; Yeh, Ming-Yang; Chung, Hsiung-Kwang; Huang, Yi-Ping; Wu, Chih-Chung; Chung, Jing-Gung

    2011-01-01

    Agaricus blazei Murill extract (ABM) has been reported to possess antitumor effects. In this study, the role of ABM in tumor growth and metastasis in vivo was evaluated in experimental Smmu 7721 hepatoma cells in severe combined immunodeficiency (SCID) mice and B16F10 melanoma cells lung metastasis in C57BL/6 mice. For the tumor growth model, the size of the liver tumor mass was about 10 mm to 20 mm in the control group. In comparison with the control group, the tumor mass seem to grow slowly with ABM treatment, especially at the high dose. For the tumor metastasis model, after a six-week treatment, the survival rates of B6 mice were 0%, 30%, 10% and 50% for control group, low, median and high concentration ABM treatment groups, respectively. The survival rate showed that pretreatment of C57BL/6 (B6) mice with ABM lengthened their lifespan after tumor cell inoculation, which supports the notion that ABM successfully reduced lung metastasis formation by B16F10 melanoma cells. The treatment effect was dependent on the concentration of ABM for tumor growth and metastasis in these models.

  10. Effect of Disrupting Seven-in-Absentia Homolog 2 Function on Lung Cancer Cell Growth

    PubMed Central

    Ahmed, Atique U.; Schmidt, Rebecca L.; Park, Cheol Hong; Reed, Nanette R.; Hesse, Shayla E.; Thomas, Charles F.; Molina, Julian R.; Deschamps, Claude; Yang, Ping; Aubry, Marie C.

    2008-01-01

    Background Hyperactivated epidermal growth factor receptor (EGFR) and/or RAS signaling drives cellular transformation and tumorigenesis in human lung cancers, but agents that block activated EGFR and RAS signaling have not yet been demonstrated to substantially extend patients’ lives. The human homolog of Drosophila seven-in-absentia—SIAH-1 and SIAH-2—are ubiquitin E3 ligases and conserved downstream components of the RAS pathway that are required for mammalian RAS signal transduction. We examined whether inhibiting SIAH-2 function blocks lung cancer growth. Methods The antiproliferative and antitumorigenic effects of lentiviral expression of anti-SIAH-2 molecules (ie, a dominant-negative protease-deficient mutant of SIAH-2 [SIAH-2PD] and short hairpin RNA [shRNA]–mediated gene knockdown against SIAH-2) were assayed in normal human lung epithelial BEAS-2B cells and in human lung cancer BZR, A549, H727, and UMC11 cells by measuring cell proliferation rates, by assessing MAPK and other activated downstream components of the RAS pathway by immunoblotting, assessing apoptosis by terminal deoxynucleotidyltransferase–mediated UTP end-labeling (TUNEL) assay, quantifying anchorage-independent cell growth in soft agar, and assessing A549 cell–derived tumor growth in athymic nude mice (groups of 10 mice, with two injections of 1 × 106 cells each at the dorsal left and right scapular areas). All statistical tests were two-sided. Results SIAH-2 deficiency in human lung cancer cell lines reduced MAPK signaling and statistically significantly inhibited cell proliferation compared with those in SIAH-proficient cells (P < .001) and increased apoptosis (TUNEL-positive A549 cells 3 days after lentivirus infection: SIAH-2PD vs control, 30.1% vs 0.0%, difference = 30.1%, 95% confidence interval [CI] = 23.1% to 37.0%, P < .001; SIAH-2-shRNA#6 vs control shRNA, 27.9% vs 0.0%, difference = 27.9%, 95% CI = 23.1% to 32.6%, P < .001). SIAH-2 deficiency also reduced anchorage-independent growth of A549 cells in soft agar (mean number of colonies: SIAH-2PD vs control, 124.7 vs 57.3, difference = 67.3, 95% CI = 49.4 to 85.3, P < .001; shRNA-SIAH-2#6 vs shRNA control: 27.0 vs 119.7, difference = 92.7, 95% CI = 69.8 to 115.5, P < .001), and blocked the growth of A549 cell–derived tumors in nude mice (mean tumor volume on day 36 after A549 cell injection: SIAH-2PD infected vs uninfected, 191.0 vs 558.5 mm3, difference = 367.5 mm3, 95% CI = 237.6 to 497.4 mm3, P < .001; SIAH-2PD infected vs control infected, 191.0 vs 418.3 mm3, difference = 227.5 mm3, 95% CI = 87.4 to 367.1 mm3, P = .003; mean resected tumor weight: SIAH-2PD infected vs uninfected, 0.12 vs 0.48 g, difference = 0.36 g, 95% CI = 0.23 to 0.50 g, P < .001; SIAH-2PD infected vs control infected, 0.12 vs 0.29 g, difference = 0.17 g, 95% CI = 0.04 to 0.31 g, P = .016). Conclusions SIAH-2 may be a viable target for novel anti-RAS and anticancer agents aimed at inhibiting EGFR and/or RAS-mediated tumorigenesis. PMID:19001609

  11. The Spacelab 3 simulation: basis for a model of growth plate response in microgravity in the rat

    NASA Technical Reports Server (NTRS)

    Montufar-Solis, D.; Duke, P. J.; Morey-Holton, E.

    2001-01-01

    Data from Spacelab 3 (SL3) suggested that spaceflight significantly reduces the activity of the rat tibial growth plate. Animal processing after SL3 began twelve hours post-landing, so data reflect post-flight re-adaptation in addition to spaceflight effects. To determine if a twelve-hour period of weight bearing after seven days of unloading could affect the physes of spaceflown rats, the present study assessed the growth plate response to unloading with or without a reloading period. Rats were subjected to hind-limb suspension for seven days and then euthanized, with or without twelve hours of reloading. Activity of the growth plate was assessed by morphometric analysis. Rats suspended without reloading had reserve zone (RZ) height greater than controls, and shorter hypertrophy/calcification zone (HCZ) with fewer cells. The greater RZ was associated with a larger cell area, indicating a possible mitotic delay or secretion defect. Twelve hours of reloading decreased RZ height and cell number, and restored the number of cells in HCZ to control values, but the number of cells in the proliferative zone and height in HCZ were reduced. These results suggest the rebound response to preserve/restore skeletal function after a period of unloading involves an acceleration of growth associated with a decreased cell cycle time in PZ. Changes during the reloading period in this simulation support our hypothesis that the effects of spaceflight on SL3 growth plates were altered by changes that occurred post-landing. The similarities in response to unloading by suspension or during spaceflight are used to propose a model of growth plate response during spaceflight.

  12. EGF-mediated EGFR/ERK signaling pathway promotes germinative cell proliferation in Echinococcus multilocularis that contributes to larval growth and development.

    PubMed

    Cheng, Zhe; Liu, Fan; Li, Xiu; Dai, Mengya; Wu, Jianjian; Guo, Xinrui; Tian, Huimin; Heng, Zhijie; Lu, Ying; Chai, Xiaoli; Wang, Yanhai

    2017-02-01

    Larvae of the tapeworm E. multilocularis cause alveolar echinococcosis (AE), one of the most lethal helminthic infections in humans. A population of stem cell-like cells, the germinative cells, is considered to drive the larval growth and development within the host. The molecular mechanisms controlling the behavior of germinative cells are largely unknown. Using in vitro cultivation systems we show here that the EGFR/ERK signaling in the parasite can promote germinative cell proliferation in response to addition of human EGF, resulting in stimulated growth and development of the metacestode larvae. Inhibition of the signaling by either the EGFR inhibitors CI-1033 and BIBW2992 or the MEK/ERK inhibitor U0126 impairs germinative cell proliferation and larval growth. These data demonstrate the contribution of EGF-mediated EGFR/ERK signaling to the regulation of germinative cells in E. multilocularis, and suggest the EGFR/ERK signaling as a potential therapeutic target for AE and perhaps other human cestodiasis.

  13. Voluntary Running Suppresses Tumor Growth through Epinephrine- and IL-6-Dependent NK Cell Mobilization and Redistribution.

    PubMed

    Pedersen, Line; Idorn, Manja; Olofsson, Gitte H; Lauenborg, Britt; Nookaew, Intawat; Hansen, Rasmus Hvass; Johannesen, Helle Hjorth; Becker, Jürgen C; Pedersen, Katrine S; Dethlefsen, Christine; Nielsen, Jens; Gehl, Julie; Pedersen, Bente K; Thor Straten, Per; Hojman, Pernille

    2016-03-08

    Regular exercise reduces the risk of cancer and disease recurrence. Yet the mechanisms behind this protection remain to be elucidated. In this study, tumor-bearing mice randomized to voluntary wheel running showed over 60% reduction in tumor incidence and growth across five different tumor models. Microarray analysis revealed training-induced upregulation of pathways associated with immune function. NK cell infiltration was significantly increased in tumors from running mice, whereas depletion of NK cells enhanced tumor growth and blunted the beneficial effects of exercise. Mechanistic analyses showed that NK cells were mobilized by epinephrine, and blockade of β-adrenergic signaling blunted training-dependent tumor inhibition. Moreover, epinephrine induced a selective mobilization of IL-6-sensitive NK cells, and IL-6-blocking antibodies blunted training-induced tumor suppression, intratumoral NK cell infiltration, and NK cell activation. Together, these results link exercise, epinephrine, and IL-6 to NK cell mobilization and redistribution, and ultimately to control of tumor growth. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Enhancement of Immune Activation Activities of Spirulina maxima Grown in Deep-Sea Water

    PubMed Central

    Choi, Woon Yong; Kang, Do Hyung; Lee, Hyeon Yong

    2013-01-01

    In this study, the immuno-modulatory and anticancer activities of marine algae, Spirulina maxima grown in deep-sea water (DSW), were investigated. It was found that the extract of S. maxima, cultured in DSW, effectively suppressed the expression of Bcl2 in A549 cells as well as inhibiting various human cancer cells with concentration dependency, which possibly implies that the extracts may play more important roles in controlling cancer cell growth. The secretion of cytokines IL-6 and TNF-α from human B cells was also greatly increased, compared to those of the extract grown in conventional sea-water. The growth of Human Natural Killer (NK) cells in the presence of the extracts from DSW was significantly higher (12.2 × 104 viable cells/mL) when compared to the control (1.1 × 104 viable cells/mL). Based on HPLC analysis, the increase in the biological activities of the extracts from DSW was caused by considerably high amounts of β-carotene and ascorbic acid because the DSW contained high concentrations and good ratios of several key minerals for biosynthesizing β-carotene and ascorbic acid, as well as maintaining high cell growth. PMID:23743830

  15. [Recombinant adeno-associated virus mediated RNA interference of angiogenin expression inhibits cell growth of human lung adenocarcinoma].

    PubMed

    Li, Bai-Ling; Zhang, Guan-Xin; Hou, Xiao-Lei; Tan, Meng-Wei; Yuan, Yang; Liu, Xiao-Hong; Gong, De-Jun; Huang, Sheng-Dong

    2009-03-01

    To study the inhibition of angiogenin (ANG) expression in human lung squamous cancer cell strain-A549 through adeno-associated virus (AAV)-mediated RNA-interference, and therefore to observe its effect on the growth of cancer cells and tumor formation. Recombinant AAV expressing H1-promoter-induced small-interference- RNA (siRNA) targeting ANG (AAV-shANG) was constructed, and then transfected into A549 cells. A549 cells and cells transfected with AAV-Null were used as the control groups. The effects of the reduced expression of ANG by RNAi from AAV-shANG on the growth, formation, reproduction, apoptosis, and microvessel-density of the carcinoma were observed. In vitro experiment showed that AAV-shANG was constructed successfully, There was an significant decrease in the expression of ANG protein 72 h after transfection, compared with the normal A459 cells and AAV-Null cells (P < 0.01). Cell cycle analysis showed that the proliferation index (PI) of normal A549 cells, AAV-Null cells and AAVshANG cells were 0.32 +/- 0.29, 0.35 +/- 0.38 and 0.31 +/- 0.43, respectively. There was no statistic difference in the PIs among the 3 groups (P > 0.05). In vivo experiment using thymus-defect mice showed that, there was an remarkable reduction in the mass and volume of tumors in AAV-shANG transfected group, compared to the control groups. Microvessel-density was 9.4 +/- 1.5, 9.8 +/- 2.1 and 5.7 +/- 1.9, respectively in the 3 groups, a statistic difference among the AAV-shANG-transfected group, the normal A549 group and the AAV-Null transfected group. The percentages of apoptotic cells in each group were (7.7 +/- 3.1)%, (8.5 +/- 5.4)%, (17.1 +/- 8.6)%, respectively, the experimental group being higher than those of the control groups. Positive rates of PCNA were (84.8 +/- 9.7)%, (85.8 +/- 9.8)%, and (70.4 +/- 10.1)%, respectively, the AAV-shANG transfected cancer cells showing a lower PCNA index than the control groups. AAV-mediated expression of siRNA could reduce the expression of ANG in cancer cells, significantly enough to inhibit cell proliferation, promote cell apoptosis and inhibit tumor growth.

  16. Effect of hypoxia on the expression of genes encoding insulin-like growth factors and some related proteins in U87 glioma cells without IRE1 function.

    PubMed

    Minchenko, Dmytro O; Kharkova, A P; Halkin, O V; Karbovskyi, L L; Minchenko, O H

    2016-04-01

    The aim of the present study was to investigate the effect of hypoxia on the expression of genes encoding insulin-like growth factors (IGF1 and IGF2), their receptor (IGF1R), binding protein-4 (IGFBP4), and stanniocalcin 2 (STC2) in U87 glioma cells in relation to inhibition of endoplasmic reticulum stress signaling mediated by IRE1 (inositol requiring enzyme 1) for evaluation of their possible significance in the control of tumor growth. The expression of IGF1, IGF2, IGF1R, IGFBP4, and STC2 genes in U87 glioma cells transfected by empty vector pcDNA3.1 (control) and cells without IRE1 signaling enzyme function (transfected by dnIRE1) upon hypoxia was studied by qPCR. The expression of IGF1 and IGF2 genes is down-regulated in glioma cells without IRE1 signaling enzyme function in comparison with the control cells. At the same time, the expression of IGF1R, IGFBP4, and STC2 genes was up-regulated in glioma cells upon inhibition of IRE1, with more significant changes for IGFBP4 and STC2 genes. We also showed that hypoxia does not change significantly the expression of IGF1, IGF2, and IGF1R genes but up-regulated IGFBP4 and STC2 genes expression in control glioma cells. Moreover, the inhibition of both enzymatic activities (kinase and endoribonuclease) of IRE1 in glioma cells does not change significantly the effect of hypoxia on the expression of IGF1, IGF1R, and IGFBP4 genes but introduces sensitivity of IGF2 gene to hypoxic condition. Thus, the expression of IGF2 gene is resistant to hypoxia only in control glioma cells and significantly down-regulated in cells without functional activity of IRE1 signaling enzyme, which is central mediator of the unfolded protein response and an important component of the tumor growth as well as metabolic diseases. Results of this study demonstrate that the expression of IGF1 and IGF1R genes is resistant to hypoxic condition both in control U87 glioma cells and cells without IRE1 signaling enzyme function. However, hypoxia significantly up-regulates the expression of IGFBP4 gene independently on the inhibition of IRE1 enzyme. These data show that proteins encoded by these genes are resistant to hypoxia except IGFBP4 and participate in the regulation of metabolic and proliferative processes through IRE1 signaling.

  17. Prox1 and fibroblast growth factor receptors form a novel regulatory loop controlling lens fiber differentiation and gene expression

    PubMed Central

    Audette, Dylan S.; Anand, Deepti; So, Tammy; Rubenstein, Troy B.; Lachke, Salil A.; Lovicu, Frank J.; Duncan, Melinda K.

    2016-01-01

    Lens epithelial cells differentiate into lens fibers (LFs) in response to a fibroblast growth factor (FGF) gradient. This cell fate decision requires the transcription factor Prox1, which has been hypothesized to promote cell cycle exit in differentiating LF cells. However, we find that conditional deletion of Prox1 from mouse lenses results in a failure in LF differentiation despite maintenance of normal cell cycle exit. Instead, RNA-seq demonstrated that Prox1 functions as a global regulator of LF cell gene expression. Intriguingly, Prox1 also controls the expression of fibroblast growth factor receptors (FGFRs) and can bind to their promoters, correlating with decreased downstream signaling through MAPK and AKT in Prox1 mutant lenses. Further, culturing rat lens explants in FGF increased their expression of Prox1, and this was attenuated by the addition of inhibitors of MAPK. Together, these results describe a novel feedback loop required for lens differentiation and morphogenesis, whereby Prox1 and FGFR signaling interact to mediate LF differentiation in response to FGF. PMID:26657765

  18. Prox1 and fibroblast growth factor receptors form a novel regulatory loop controlling lens fiber differentiation and gene expression.

    PubMed

    Audette, Dylan S; Anand, Deepti; So, Tammy; Rubenstein, Troy B; Lachke, Salil A; Lovicu, Frank J; Duncan, Melinda K

    2016-01-15

    Lens epithelial cells differentiate into lens fibers (LFs) in response to a fibroblast growth factor (FGF) gradient. This cell fate decision requires the transcription factor Prox1, which has been hypothesized to promote cell cycle exit in differentiating LF cells. However, we find that conditional deletion of Prox1 from mouse lenses results in a failure in LF differentiation despite maintenance of normal cell cycle exit. Instead, RNA-seq demonstrated that Prox1 functions as a global regulator of LF cell gene expression. Intriguingly, Prox1 also controls the expression of fibroblast growth factor receptors (FGFRs) and can bind to their promoters, correlating with decreased downstream signaling through MAPK and AKT in Prox1 mutant lenses. Further, culturing rat lens explants in FGF increased their expression of Prox1, and this was attenuated by the addition of inhibitors of MAPK. Together, these results describe a novel feedback loop required for lens differentiation and morphogenesis, whereby Prox1 and FGFR signaling interact to mediate LF differentiation in response to FGF. © 2016. Published by The Company of Biologists Ltd.

  19. Regulation of planar growth by the Arabidopsis AGC protein kinase UNICORN.

    PubMed

    Enugutti, Balaji; Kirchhelle, Charlotte; Oelschner, Maxi; Torres Ruiz, Ramón Angel; Schliebner, Ivo; Leister, Dario; Schneitz, Kay

    2012-09-11

    The spatial coordination of growth is of central importance for the regulation of plant tissue architecture. Individual layers, such as the epidermis, are clonally propagated and structurally maintained by symmetric cell divisions that are oriented along the plane of the layer. The developmental control of this process is poorly understood. The simple cellular basis and sheet-like structure of Arabidopsis integuments make them an attractive model system to address planar growth. Here we report on the characterization of the Arabidopsis UNICORN (UCN) gene. Analysis of ucn integuments reveals localized distortion of planar growth, eventually resulting in an ectopic multicellular protrusion. In addition, ucn mutants exhibit ectopic growth in filaments and petals, as well as aberrant embryogenesis. We further show that UCN encodes an active AGC VIII kinase. Genetic, biochemical, and cell biological data suggest that UCN suppresses ectopic growth in integuments by directly repressing the KANADI transcription factor ABERRANT TESTA SHAPE. Our findings indicate that UCN represents a unique plant growth regulator that maintains planar growth of integuments by repressing a developmental regulator involved in the control of early integument growth and polarity.

  20. Direct in situ observation of ZnO nucleation and growth via transmission X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Tay, S. E. R.; Goode, A. E.; Nelson Weker, J.; Cruickshank, A. A.; Heutz, S.; Porter, A. E.; Ryan, M. P.; Toney, M. F.

    2016-01-01

    The nucleation and growth of a nanostructure controls its size and morphology, and ultimately its functional properties. Hence it is crucial to investigate growth mechanisms under relevant growth conditions at the nanometer length scale. Here we image the nucleation and growth of electrodeposited ZnO nanostructures in situ, using a transmission X-ray microscope and specially designed electrochemical cell. We show that this imaging technique leads to new insights into the nucleation and growth mechanisms in electrodeposited ZnO including direct, in situ observations of instantaneous versus delayed nucleation.The nucleation and growth of a nanostructure controls its size and morphology, and ultimately its functional properties. Hence it is crucial to investigate growth mechanisms under relevant growth conditions at the nanometer length scale. Here we image the nucleation and growth of electrodeposited ZnO nanostructures in situ, using a transmission X-ray microscope and specially designed electrochemical cell. We show that this imaging technique leads to new insights into the nucleation and growth mechanisms in electrodeposited ZnO including direct, in situ observations of instantaneous versus delayed nucleation. Electronic supplementary information (ESI) available: Methods and videos of nanoparticle growth. See DOI: 10.1039/c5nr07019h

  1. The B-cell receptor controls fitness of MYC-driven lymphoma cells via GSK3β inhibition.

    PubMed

    Varano, Gabriele; Raffel, Simon; Sormani, Martina; Zanardi, Federica; Lonardi, Silvia; Zasada, Christin; Perucho, Laura; Petrocelli, Valentina; Haake, Andrea; Lee, Albert K; Bugatti, Mattia; Paul, Ulrike; Van Anken, Eelco; Pasqualucci, Laura; Rabadan, Raul; Siebert, Reiner; Kempa, Stefan; Ponzoni, Maurilio; Facchetti, Fabio; Rajewsky, Klaus; Casola, Stefano

    2017-06-08

    Similar to resting mature B cells, where the B-cell antigen receptor (BCR) controls cellular survival, surface BCR expression is conserved in most mature B-cell lymphomas. The identification of activating BCR mutations and the growth disadvantage upon BCR knockdown of cells of certain lymphoma entities has led to the view that BCR signalling is required for tumour cell survival. Consequently, the BCR signalling machinery has become an established target in the therapy of B-cell malignancies. Here we study the effects of BCR ablation on MYC-driven mouse B-cell lymphomas and compare them with observations in human Burkitt lymphoma. Whereas BCR ablation does not, per se, significantly affect lymphoma growth, BCR-negative (BCR - ) tumour cells rapidly disappear in the presence of their BCR-expressing (BCR + ) counterparts in vitro and in vivo. This requires neither cellular contact nor factors released by BCR + tumour cells. Instead, BCR loss induces the rewiring of central carbon metabolism, increasing the sensitivity of receptor-less lymphoma cells to nutrient restriction. The BCR attenuates glycogen synthase kinase 3 beta (GSK3β) activity to support MYC-controlled gene expression. BCR - tumour cells exhibit increased GSK3β activity and are rescued from their competitive growth disadvantage by GSK3β inhibition. BCR - lymphoma variants that restore competitive fitness normalize GSK3β activity after constitutive activation of the MAPK pathway, commonly through Ras mutations. Similarly, in Burkitt lymphoma, activating RAS mutations may propagate immunoglobulin-crippled tumour cells, which usually represent a minority of the tumour bulk. Thus, while BCR expression enhances lymphoma cell fitness, BCR-targeted therapies may profit from combinations with drugs targeting BCR - tumour cells.

  2. Control of growth of juvenile leaves of Eucalyptus globulus: effects of leaf age.

    PubMed

    Metcalfe, J C; Davies, W J; Pereira, J S

    1991-12-01

    Biophysical variables influencing the expansion of plant cells (yield threshold, cell wall extensibility and turgor) were measured in individual Eucalyptus globulus leaves from the time of emergence until cessation of growth. Leaf water relations variables and growth rates were determined as relative humidity was changed on an hourly basis. Yield threshold and cell wall extensibility were estimated from plots of leaf growth rate versus turgor. Cell wall extensibility was also measured by the Instron technique, and yield threshold was determined experimentally both by stress relaxation in a psychrometer chamber and by incubation in a range of polyethylene glycol solutions. Once emerging leaves reached approximately 5 cm(2) in size, increases in leaf area were rapid throughout the expansive phase and varied little between light and dark periods. Both leaf growth rate and turgor were sensitive to changes in humidity, and in the longer term, both yield threshold and cell wall extensibility changed as the leaf aged. Rapidly expanding leaves had a very low yield threshold and high cell wall extensibility, whereas mature leaves had low cell wall extensibility. Yield threshold increased with leaf age.

  3. Expression of vascular endothelial growth factor does not promote transformation but confers a growth advantage in vivo to Chinese hamster ovary cells.

    PubMed Central

    Ferrara, N; Winer, J; Burton, T; Rowland, A; Siegel, M; Phillips, H S; Terrell, T; Keller, G A; Levinson, A D

    1993-01-01

    Vascular endothelial growth factor (VEGF) is a mitogen with a specificity for endothelial cells in vitro and an angiogenic inducer in vivo. We tested the hypothesis that VEGF may confer on expressing cells a growth advantage in vivo. Dihydrofolatereductase--Chinese hamster ovary cells were transfected with expression vectors which direct the constitutive synthesis of VEGF. Neither the expression nor the exogenous administration of VEGF stimulated anchorage-dependent or anchorage-independent growth of Chinese hamster ovary cells in vitro. However, VEGF-expressing clones, unlike control cells, demonstrated an ability to proliferate in nude mice. Histologic examination revealed that the proliferative lesions were compact, well vascularized, and nonedematous. Ultrastructural analysis revealed that capillaries within the lesions were of the continuous type. These findings indicate that the expression of VEGF may confer on cells the ability to grow in vivo in the absence of transformation by purely paracrine mechanisms. Since VEGF is a widely distributed protein, this property may have relevance for a variety of physiological and pathological proliferative processes. Images PMID:8423215

  4. c-Myc plays a key role in TADs-induced apoptosis and cell cycle arrest in human hepatocellular carcinoma cells.

    PubMed

    Zhang, Dongdong; Qi, Junpeng; Liu, Rui; Dai, Bingling; Ma, Weina; Zhan, Yingzhuan; Zhang, Yanmin

    2015-01-01

    Cancer cell growth is complicated progression which is regulated and controlled by multiple factors including cell cycle, migration and apoptosis. In present study, we report that TADs, a novel derivative of taspine, has an essential role in resisting hepatocellular carcinoma growth (including arrest cell cycle) and migration, and inducing cell apoptosis. Our findings demonstrated that the TADs showed good inhibition on the hepatoma cell growth and migration, and good action on apoptosis induction. Using genome-wide microarray analysis, we found the down-regulated growth and apoptosis factors, and selected down-regulated genes were confirmed by Western blot. Knockdown of a checkpoint c-Myc by siRNA significantly attenuated tumor inhibition and apoptosis effects of TADs. Moreover, our results indicated TADs could simultaneously increase cyclin D1 protein levels and decrease amount of cyclin E, cyclin B1 and cdc2 of the cycle proteins, and also TADs reduced Bcl-2 expression, and upregulated Bad, Bak and Bax activities. In conclusion, these results illustrated that TADs is a key factor in growth and apoptosis signaling inhibitor, has potential in cancer therapy.

  5. Identification of heparin-binding EGF-like growth factor as a target in intercellular regulation of epidermal basal cell growth by suprabasal retinoic acid receptors.

    PubMed Central

    Xiao, J H; Feng, X; Di, W; Peng, Z H; Li, L A; Chambon, P; Voorhees, J J

    1999-01-01

    The role of retinoic acid receptors (RARs) in intercellular regulation of cell growth was assessed by targeting a dominant-negative RARalpha mutant (dnRARalpha) to differentiated suprabasal cells of mouse epidermis. dnRARalpha lacks transcriptional activation but not DNA-binding and receptor dimerization functions. Analysis of transgenic mice revealed that dnRARalpha dose-dependently impaired induction of basal cell proliferation and epidermal hyperplasia by all-trans RA (tRA). dnRARalpha formed heterodimers with endogenous retinoid X receptor-alpha (RXRalpha) over RA response elements in competition with remaining endogenous RARgamma-RXRalpha heterodimers, and dose-dependently impaired retinoid-dependent gene transcription. To identify genes regulated by retinoid receptors and involved in cell growth control, we analyzed the retinoid effects on expression of the epidermal growth factor (EGF) receptor, EGF, transforming growth factor-alpha, heparin-binding EGF-like growth factor (HB-EGF) and amphiregulin genes. In normal epidermis, tRA rapidly and selectively induced expression of HB-EGF but not the others. This induction occurred exclusively in suprabasal cells. In transgenic epidermis, dnRARalpha dose-dependently inhibited tRA induction of suprabasal HB-EGF and subsequent basal cell hyperproliferation. Together, our observations suggest that retinoid receptor heterodimers located in differentiated suprabasal cells mediate retinoid induction of HB-EGF, which in turn stimulates basal cell growth via intercellular signaling. These events may underlie retinoid action in epidermal regeneration during wound healing. PMID:10075925

  6. Oocyte-granulosa-theca cell interactions during preantral follicular development

    PubMed Central

    Orisaka, Makoto; Tajima, Kimihisa; Tsang, Benjamin K; Kotsuji, Fumikazu

    2009-01-01

    The preantral-early antral follicle transition is the penultimate stage of follicular development in terms of gonadotropin dependence and follicle destiny (growth versus atresia). Follicular growth during this period is tightly regulated by oocyte-granulosa-theca cell interactions. Formation of the theca cell layer is a key event that occurs during this transitional stage. Granulosal factor(s) stimulates the recruitment of theca cells from cortical stromal cells, while oocyte-derived growth differentiation factor-9 (GDF-9) is involved in the differentiation of theca cells during this early stage of follicular development. The preantral to early antral transition is most susceptible to follicular atresia. GDF-9 promotes follicular survival and growth during transition from preantral stage to early antral stage by suppressing granulosa cell apoptosis and follicular atresia. GDF-9 also enhances preantral follicle growth by up-regulating theca cell androgen production. Thecal factor(s) promotes granulosa cell proliferation and suppress granulosa cell apoptosis. Understanding the intraovarian mechanisms in the regulation of follicular growth and atresia during this stage may be of clinical significance in the selection of the best quality germ cells for assisted reproduction. In addition, since certain ovarian dysfunctions, such as polycystic ovarian syndrome and gonadotropin poor-responsiveness, are consequences of dysregulated follicle growth at this transitional stage, understanding the molecular and cellular mechanisms in the control of follicular development during the preantral-early antral transition may provide important insight into the pathophysiology and rational treatment of these conditions. PMID:19589134

  7. Expression of a transmembrane phosphotyrosine phosphatase inhibits cellular response to platelet-derived growth factor and insulin-like growth factor-1.

    PubMed

    Mooney, R A; Freund, G G; Way, B A; Bordwell, K L

    1992-11-25

    Tyrosine phosphorylation is a mechanism of signal transduction shared by many growth factor receptors and oncogene products. Phosphotyrosine phosphatases (PTPases) potentially modulate or counter-regulate these signaling pathways. To test this hypothesis, the transmembrane PTPase CD45 (leukocyte common antigen) was expressed in the murine cell line C127. Hormone-dependent autophosphorylation of the platelet-derived growth factor (PDGF) and insulin-like growth factor-1 (IGF-1) receptors was markedly reduced in cells expressing the transmembrane PTPase. Tyrosine phosphorylation of other PDGF-dependent phosphoproteins (160, 140, and 55 kDa) and IGF-1-dependent phosphoproteins (145 kDa) was similarly decreased. Interestingly, the pattern of growth factor-independent tyrosine phosphorylations was comparable in cells expressing the PTPase and control cells. This suggests a selectivity or accessibility of the PTPase limited to a subset of cellular phosphotyrosyl proteins. The maximum mitogenic response to PDGF and IGF-1 in cells expressing the PTPase was decreased by 67 and 71%, respectively. These results demonstrate that a transmembrane PTPase can both affect the tyrosine phosphorylation state of growth factor receptors and modulate proximal and distal cellular responses to the growth factors.

  8. Different modes of APC/C activation control growth and neuron-glia interaction in the developing Drosophila eye.

    PubMed

    Neuert, Helen; Yuva-Aydemir, Yeliz; Silies, Marion; Klämbt, Christian

    2017-12-15

    The development of the nervous system requires tight control of cell division, fate specification and migration. The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that affects different steps of cell cycle progression, as well as having postmitotic functions in nervous system development. It can therefore link different developmental stages in one tissue. The two adaptor proteins, Fizzy/Cdc20 and Fizzy-related/Cdh1, confer APC/C substrate specificity. Here, we show that two distinct modes of APC/C function act during Drosophila eye development. Fizzy/Cdc20 controls the early growth of the eye disc anlage and the concomitant entry of glial cells onto the disc. In contrast, fzr/cdh1 acts during neuronal patterning and photoreceptor axon growth, and subsequently affects neuron-glia interaction. To further address the postmitotic role of Fzr/Cdh1 in controlling neuron-glia interaction, we identified a series of novel APC/C candidate substrates. Four of our candidate genes are required for fzr/cdh1 -dependent neuron-glia interaction, including the dynein light chain Dlc90F Taken together, our data show how different modes of APC/C activation can couple early growth and neuron-glia interaction during eye disc development. © 2017. Published by The Company of Biologists Ltd.

  9. Acyl-CoA Synthetase VL3 Knockdown Inhibits Human Glioma Cell Proliferation and Tumorigenicity

    PubMed Central

    Pei, Zhengtong; Sun, Peng; Huang, Ping; Lal, Bachchu; Laterra, John; Watkins, Paul A.

    2009-01-01

    The contribution of lipid metabolic pathways to malignancy is poorly understood. Expression of the fatty acyl-CoA synthetase, ACSVL3, was found to be markedly elevated in clinical malignant glioma specimens but nearly undetectable in normal glia. ACSVL3 levels correlated with the malignant behavior of human glioma cell lines and glioma cells propagated as xenografts. ACSVL3 expression was induced by the activation of oncogenic receptor tyrosine kinases (RTK) c-Met and EGFR. Inhibiting c-Met activation with neutralizing anti-HGF monoclonal antibodies reduced ACSVL3 expression concurrent with tumor growth inhibition in vivo. ACSVL3 expression knockdown using RNA interference, which decreased long-chain fatty acid activation, inhibited anchorage-dependent and anchorage-independent glioma cell growth by ~70% and ~ 90%, respectively. ACSVL3-depleted cells were less tumorigenic than control cells and subcutaneous xenografts grew ~60% slower than control tumors. Orthotopic xenografts produced by ACSVL3-depleted cells were 82–86 % smaller than control xenografts. ACSVL3 knockdown disrupted Akt function as evidenced by RTK-induced transient decreases in total and phosphorylated Akt, as well as GSK3β, via a caspase-dependent mechanism. Expressing constitutively active myr-Akt rescued cells from the anchorage-dependent and anchorage-independent growth inhibitory effects of ACSVL3 depletion. These studies show that ACSVL3 maintains oncogenic properties of malignant glioma cells via a mechanism that involves, in part, the regulation of Akt function. PMID:19920185

  10. Aerobic expression of Vitreoscilla hemoglobin improves the growth performance of CHO-K1 cells.

    PubMed

    Juárez, Mariana; González-De la Rosa, Claudia H; Memún, Elisa; Sigala, Juan-Carlos; Lara, Alvaro R

    2017-03-01

    Inefficient carbon metabolism is a relevant issue during the culture of mammalian cells for the production of biopharmaceuticals. Therefore, cell engineering strategies to improve the metabolic and growth performance of cell lines are needed. The expression of Vitreoscilla stercoraria hemoglobin (VHb) has been shown to significantly reduce overflow metabolism and improve the aerobic growth of bacteria. However, the effects of VHb on mammalian cells have been rarely studied. Here, the impact of VHb on growth and lactate accumulation during CHO-K1 cell culture was investigated. For this purpose, CHO-K1 cells were transfected with plasmids carrying the vgb or gfp gene to express VHb or green fluorescence protein (GFP), respectively. VHb expression increased the specific growth rate and biomass yields on glucose and glutamine by 60 %, and reduced the amount of lactate produced per cell by 40 %, compared to the GFP-expression controls. Immunofluorescence microscopy showed that VHb is distributed in the cytoplasm and organelles, which support the hypothesis that VHb could serve as an oxygen carrier, enhancing aerobic respiration. These results are useful for the development of better producing cell lines for industrial applications. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Promotion of SH-SY5Y Cell Growth by Gold Nanoparticles Modified with 6-Mercaptopurine and a Neuron-Penetrating Peptide

    NASA Astrophysics Data System (ADS)

    Xiao, Yaruo; Zhang, Enqi; Fu, Ailing

    2017-12-01

    Much effort has been devoted to the discovery of effective biomaterials for nerve regeneration. Here, we reported a novel application of gold nanoparticles (AuNPs) modified with 6-mercaptopurine (6MP) and a neuron-penetrating peptide (RDP) as a neurophic agent to promote proliferation and neurite growth of human neuroblastoma (SH-SY5Y) cells. When the cells were treated with 6MP-AuNPs-RDP conjugates, they showed higher metabolic activity than the control. Moreover, SH-SY5Y cells were transplanted onto the surface coated with 6MP-AuNPs-RDP to examine the effect of neurite development. It can be concluded that 6MP-AuNPs-RDP attached to the cell surface and then internalized into cells, leading to a significant increase of neurite growth. Even though 6MP-AuNPs-RDP-treated cells were recovered from frozen storage, the cells still maintained constant growth, indicating that the cells have excellent tolerance to 6MP-AuNPs-RDP. The results suggested that the 6MP-AuNPs-RDP had promising potential to be developed as a neurophic nanomaterial for neuronal growth.

  12. Effect of Schinus terebinthifolius on Candida albicans growth kinetics, cell wall formation and micromorphology.

    PubMed

    Alves, Lívia Araújo; Freires, Irlan de Almeida; Pereira, Tricia Murielly; de Souza, Andrade; Lima, Edeltrudes de Oliveira; de Castro, Ricardo Dias

    2013-01-01

    To evaluate the anti-fungal activity of a tincture from Schinus terebinthifolius (Brazilian pepper tree) on Candida albicans (ATCC 289065), a micro-organism associated with fungal infections of the oral cavity. Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) were determined through microdilution technique, as well as the microbial growth curve of C. albicans promoted by S. terebinthifolius. In addition, this study investigated a possible activity of the product on the fungal cell wall and its biological activity on fungal morphology. Nystatin was used as control and all tests were performed in triplicate. S. terebinthifolius showed MIC of 312.5 µg/mL and MFC of 2500 µg/mL upon the strain tested, while Nystatin showed MIC and MFC of 6.25 µg/mL. As regards the microbial growth curve, S. terebinthifolius was able to significantly reduce the number of CFU/mL when compared to growth control until the time of 60 min. In the times 120 and 180 min there was no statistically significant difference between the growth control and the experimental product. S. terebinthifolius possibly acts on the fungal cell wall, once the sorbitol test indicated a MIC of 1250 µg/mL. In the fungal morphology, a reduction was observed of pseudo-hyphae, chlamydoconidia and blastoconidia in the presence of the experimental product. S. terebinthifolius showed anti-fungal activity against C. albicans, inhibiting, probably, the fungal cell wall formation.

  13. Wnt/Notum spatial feedback inhibition controls neoblast differentiation to regulate reversible growth of the planarian brain

    PubMed Central

    Hill, Eric M.; Petersen, Christian P.

    2015-01-01

    Mechanisms determining final organ size are poorly understood. Animals undergoing regeneration or ongoing adult growth are likely to require sustained and robust mechanisms to achieve and maintain appropriate sizes. Planarians, well known for their ability to undergo whole-body regeneration using pluripotent adult stem cells of the neoblast population, can reversibly scale body size over an order of magnitude by controlling cell number. Using quantitative analysis, we showed that after injury planarians perfectly restored brain:body proportion by increasing brain cell number through epimorphosis or decreasing brain cell number through tissue remodeling (morphallaxis), as appropriate. We identified a pathway controlling a brain size set-point that involves feedback inhibition between wnt11-6/wntA/wnt4a and notum, encoding conserved antagonistic signaling factors expressed at opposite brain poles. wnt11-6/wntA/wnt4a undergoes feedback inhibition through canonical Wnt signaling but is likely to regulate brain size in a non-canonical pathway independently of beta-catenin-1 and APC. Wnt/Notum signaling tunes numbers of differentiated brain cells in regenerative growth and tissue remodeling by influencing the abundance of brain progenitors descended from pluripotent stem cells, as opposed to regulating cell death. These results suggest that the attainment of final organ size might be accomplished by achieving a balance of positional signaling inputs that regulate the rates of tissue production. PMID:26525673

  14. Hair Follicle Generation by Injections of Adult Human Follicular Epithelial and Dermal Papilla Cells into Nude Mice

    PubMed Central

    Nilforoushzadeh, Mohammadali; Rahimi Jameh, Elham; Jaffary, Fariba; Abolhasani, Ehsan; Keshtmand, Gelavizh; Zarkob, Hajar; Mohammadi, Parvaneh; Aghdami, Nasser

    2017-01-01

    Objective Dermal papilla and hair epithelial stem cells regulate hair formation and the growth cycle. Damage to or loss of these cells can cause hair loss. Although several studies claim to reconstitute hairs using rodent cells in an animal model, additional research is needed to develop a stable human hair follicle reconstitution protocol. In this study, we have evaluated hair induction by injecting adult cultured human dermal papilla cells and a mixture of hair epithelial and dermal papilla cells in a mouse model. Materials and Methods In this experimental study, discarded human scalp skins were used to obtain dermal papilla and hair epithelial cells. After separation, cells were cultured and assessed for their characteristics. We randomly allocated 15 C57BL/6 nude mice into three groups that received injections in their dorsal skin. The first group received cultured dermal papilla cells, the second group received a mixture of cultured epithelial and dermal papilla cells, and the third group (control) received a placebo [phosphate-buffered saline (PBS-)]. Results Histopathologic examination of the injection sites showed evidence of hair growth in samples that received cells compared with the control group. However, the group that received epithelial and dermal papilla cells had visible evidence of hair growth. PKH tracing confirmed the presence of transplanted cells in the new hair. Conclusion Our data showed that injection of a combination of adult human cultured dermal papilla and epithelial cells could induce hair growth in nude mice. This study emphasized that the combination of human adult cultured dermal papilla and epithelial cells could induce new hair in nude mice. PMID:28670518

  15. SMG-1 and mTORC1 Act Antagonistically to Regulate Response to Injury and Growth in Planarians

    PubMed Central

    González-Estévez, Cristina; Felix, Daniel A.; Smith, Matthew D.; Paps, Jordi; Morley, Simon J.; James, Victoria; Sharp, Tyson V.; Aboobaker, A. Aziz

    2012-01-01

    Planarian flatworms are able to both regenerate their whole bodies and continuously adapt their size to nutrient status. Tight control of stem cell proliferation and differentiation during these processes is the key feature of planarian biology. Here we show that the planarian homolog of the phosphoinositide 3-kinase-related kinase (PIKK) family member SMG-1 and mTOR complex 1 components are required for this tight control. Loss of smg-1 results in a hyper-responsiveness to injury and growth and the formation of regenerative blastemas that remain undifferentiated and that lead to lethal ectopic outgrowths. Invasive stem cell hyper-proliferation, hyperplasia, hypertrophy, and differentiation defects are hallmarks of this uncontrolled growth. These data imply a previously unappreciated and novel physiological function for this PIKK family member. In contrast we found that planarian members of the mTOR complex 1, tor and raptor, are required for the initial response to injury and blastema formation. Double smg-1 RNAi experiments with tor or raptor show that abnormal growth requires mTOR signalling. We also found that the macrolide rapamycin, a natural compound inhibitor of mTORC1, is able to increase the survival rate of smg-1 RNAi animals by decreasing cell proliferation. Our findings support a model where Smg-1 acts as a novel regulator of both the response to injury and growth control mechanisms. Our data suggest the possibility that this may be by suppressing mTOR signalling. Characterisation of both the planarian mTORC1 signalling components and another PIKK family member as key regulators of regeneration and growth will influence future work on regeneration, growth control, and the development of anti-cancer therapies that target mTOR signalling. PMID:22479207

  16. [Experimental study on Dendrobium candidum polysaccharides on promotion of hair growth].

    PubMed

    Chen, Jian; Qi, Hui; Li, Jin-Biao; Yi, Yan-Qun; Chen, Dan; Hu, Xiao-Hong; Wang, Mei-Ling; Sun, Xing-Li; Wei, Xiao-Yong

    2014-01-01

    To observe the effect and mechanism of Dendrobium candidum polysaccharides (DCP) in promoting hair growth, in order to lay a foundation for the development and utilization of D. candidum. The water-extraction and alcohol-precipitation method was adopted to extract DCP, and the phenol-sulphuric acid method was used to determine its content. Thirty C57BL6J mice were collected to establish the hair loss model with hair removal cream. They were randomly divided into the control group, the positive control group and the DCP group, and given 0.2 mL of ultra-pure water, minoxidil tincture and DCP (5.0 g x L(-1)) 21 days. The mice hair growth scoring standard was adopted to evaluate the hair growth of C57BL/6J mice at 7, 14 d. The hairs in unit hair-losing areas of treated C57BL/6J mice at 21 d were weighed to evaluate the effect of DCP on the promotion of hair growth. MTT assay and RT-PCR method were used to evaluate the effect of DCP on the proliferatin of HaCaT cells and the mRNA expression of VEGF in HaCaT cells. The extraction percent of DCP was 29.87%, and its content was 79.65%. The average scores for the hair growth and weight of C57BL/6J mice of DCP group were much higher than the control group. The survival rate and mRNA expression of VEGF of HaCaT cells were much higher than the control group. DCP has the effect in promoting hair growth. Its mechanism may be related to the up-regulation of the mRNA expression of VEGF.

  17. Wnt/Beta-Catenin, Foxa2, and CXCR4 Axis Controls Prostate Cancer Progression

    DTIC Science & Technology

    2013-07-01

    NT1 cells with or without Foxa2 were cultured in 5% strip medium in the presence or absence of androgen. Cell growth curve was measured by WTS...assays. Over-expression of Foxa2 increased NT1 cell growth even in the absence of androgen. Figure 3. knocking-down Foxa2 did not affect PC3 cell ...in NeoTag1 cells decreased AR level; however, AR 6 activity did not change. Foxa2 target genes were up-regulated in NT1 /Foxa2 over-expressing

  18. Compartmentalized microchannel array for high-throughput analysis of single cell polarized growth and dynamics

    DOE PAGES

    Geng, Tao; Bredeweg, Erin L.; Szymanski, Craig J.; ...

    2015-11-04

    Here, interrogating polarized growth is technologically challenging due to extensive cellular branching and uncontrollable environmental conditions in conventional assays. Here we present a robust and high-performance microfluidic system that enables observations of polarized growth with enhanced temporal and spatial control over prolonged periods. The system has built-in tunability and versatility to accommodate a variety of science applications requiring precisely controlled environments. Using the model filamentous fungus, Neurospora crassa, this microfluidic system enabled direct visualization and analysis of cellular heterogeneity in a clonal fungal cell population, nuclear distribution and dynamics at the subhyphal level, and quantitative dynamics of gene expression withmore » single hyphal compartment resolution in response to carbon source starvation and exchange experiments. Although the microfluidic device is demonstrated on filamentous fungi, our technology is immediately extensible to a wide array of other biosystems that exhibit similar polarized cell growth with applications ranging from bioenergy production to human health.« less

  19. Continuous coating of silicon-on-ceramic

    NASA Technical Reports Server (NTRS)

    Heaps, J. D.; Schuldt, S. B.; Grung, B. L.; Zook, J. D.; Butter, C. D.

    1980-01-01

    Growth of sheet silicon on low-cost substrates has been demonstrated by the silicon coating with inverted meniscus (SCIM) technique. A mullite-based ceramic substrate is coated with carbon and then passed over a trough of molten silicon with a raised meniscus. Solidification occurs at the trailing edge of the downstream meniscus, producing a silicon-on-ceramic (SOC) layer. Meniscus shape and stability are controlled by varying the level of molten silicon in a reservoir connected to the trough. The thermal conditions for growth and the crystallographic texture of the SOC layers are similar to those produced by dip-coating, the original technique of meniscus-controlled growth. The thermal conditions for growth have been analyzed in some detail. The analysis correctly predicts the velocity-thickness relationship and the liquid-solid interface shape for dip-coating, and appears to be equally applicable to SCIM-coating. Solar cells made from dip-coated SOC material have demonstrated efficiencies of 10% on 4-sq cm cells and 9.9% on 10-sq cm cells.

  20. The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells

    PubMed Central

    2011-01-01

    Background The leaf epidermis is an important architectural control element that influences the growth properties of underlying tissues and the overall form of the organ. In dicots, interdigitated pavement cells are the building blocks of the tissue, and their morphogenesis includes the assembly of specialized cell walls that surround the apical, basal, and lateral (anticlinal) cell surfaces. The microtubule and actin cytoskeletons are highly polarized along the cortex of the anticlinal wall; however, the relationships between these arrays and cell morphogenesis are unclear. Results We developed new quantitative tools to compare population-level growth statistics with time-lapse imaging of cotyledon pavement cells in an intact tissue. The analysis revealed alternating waves of lobe initiation and a phase of lateral isotropic expansion that persisted for days. During lateral isotropic diffuse growth, microtubule organization varied greatly between cell surfaces. Parallel microtubule bundles were distributed unevenly along the anticlinal surface, with subsets marking stable cortical domains at cell indentations and others clearly populating the cortex within convex cell protrusions. Conclusions Pavement cell morphogenesis is discontinuous, and includes punctuated phases of lobe initiation and lateral isotropic expansion. In the epidermis, lateral isotropic growth is independent of pavement cell size and shape. Cortical microtubules along the upper cell surface and stable cortical patches of anticlinal microtubules may coordinate the growth behaviors of orthogonal cell walls. This work illustrates the importance of directly linking protein localization data to the growth behavior of leaf epidermal cells. PMID:21284861

  1. The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells.

    PubMed

    Zhang, Chunhua; Halsey, Leah E; Szymanski, Daniel B

    2011-02-01

    The leaf epidermis is an important architectural control element that influences the growth properties of underlying tissues and the overall form of the organ. In dicots, interdigitated pavement cells are the building blocks of the tissue, and their morphogenesis includes the assembly of specialized cell walls that surround the apical, basal, and lateral (anticlinal) cell surfaces. The microtubule and actin cytoskeletons are highly polarized along the cortex of the anticlinal wall; however, the relationships between these arrays and cell morphogenesis are unclear. We developed new quantitative tools to compare population-level growth statistics with time-lapse imaging of cotyledon pavement cells in an intact tissue. The analysis revealed alternating waves of lobe initiation and a phase of lateral isotropic expansion that persisted for days. During lateral isotropic diffuse growth, microtubule organization varied greatly between cell surfaces. Parallel microtubule bundles were distributed unevenly along the anticlinal surface, with subsets marking stable cortical domains at cell indentations and others clearly populating the cortex within convex cell protrusions. Pavement cell morphogenesis is discontinuous, and includes punctuated phases of lobe initiation and lateral isotropic expansion. In the epidermis, lateral isotropic growth is independent of pavement cell size and shape. Cortical microtubules along the upper cell surface and stable cortical patches of anticlinal microtubules may coordinate the growth behaviors of orthogonal cell walls. This work illustrates the importance of directly linking protein localization data to the growth behavior of leaf epidermal cells.

  2. Intrauterine Growth Restriction Affects Cerebellar Granule Cells in the Developing Guinea Pig Brain.

    PubMed

    Tolcos, Mary; McDougall, Annie; Shields, Amy; Chung, Yoonyoung; O'Dowd, Rachael; Turnley, Ann; Wallace, Megan; Rees, Sandra

    2018-01-01

    Intrauterine growth restriction (IUGR) can lead to adverse neurodevelopmental sequelae in postnatal life. However, the effects of IUGR on the cerebellum are still to be fully elucidated. A major determinant of growth and development of the cerebellum is proliferation and subsequent migration of cerebellar granule cells. Our objective was to determine whether IUGR, induced by chronic placental insufficiency (CPI) in guinea pigs, results in abnormal cerebellar development due to deficits suggestive of impaired granule cell proliferation and/or migration. CPI was induced by unilateral ligation of the uterine artery at mid-gestation, producing growth-restricted (GR) foetuses at 52 and 60 days of gestation (dg), and neonates at 1 week postnatal age (term approx. 67 dg). Controls were from sham-operated animals. In GR foetuses compared with controls at 52 dg, the external granular layer (EGL) width and internal granular layer (IGL) area were similar. In GR foetuses compared with controls at 60 dg: (a) the EGL width was greater (p < 0.005); (b) the IGL area was smaller (p < 0.005); (c) the density of Ki67-negative (postmitotic) granule cells in the EGL was greater (p < 0.01); (d) the somal area of Purkinje cells was reduced (p < 0.005), and (e) the linear density of Bergmann glia was similar. The EGL width in GR foetuses at 60 dg was comparable to that of 52 dg control and GR foetuses. The pattern of p27-immunoreactivity in the EGL was the inverse of Ki67-immunoreactivity at both foetal ages; there was no difference between control and GR foetuses at either age in the width of p27-immunoreactivity, or in the percentage of the EGL width that it occupied. In the molecular layer of GR neonates compared with controls there was an increase in the areal density of granule cells (p < 0.05) and in the percentage of migrating to total number of granule cells (p < 0.01) at 1 week but not at 60 dg (p > 0.05). Thus, we found no specific evidence that IUGR affects granule cell proliferation, but it alters the normal program of migration to the IGL and, in addition, the development of Purkinje cells. Such alterations will likely affect the development of appropriate circuitry and have implications for cerebellar function. © 2018 S. Karger AG, Basel.

  3. A Model of Controlled Growth

    NASA Astrophysics Data System (ADS)

    Bressan, Alberto; Lewicka, Marta

    2018-03-01

    We consider a free boundary problem for a system of PDEs, modeling the growth of a biological tissue. A morphogen, controlling volume growth, is produced by specific cells and then diffused and absorbed throughout the domain. The geometric shape of the growing tissue is determined by the instantaneous minimization of an elastic deformation energy, subject to a constraint on the volumetric growth. For an initial domain with C}^{2,α boundary, our main result establishes the local existence and uniqueness of a classical solution, up to a rigid motion.

  4. Effect of Saw Palmetto Supplements on Androgen-Sensitive LNCaP Human Prostate Cancer Cell Number and Syrian Hamster Flank Organ Growth

    PubMed Central

    Opoku-Acheampong, Alexander B.; Penugonda, Kavitha; Lindshield, Brian L.

    2016-01-01

    Saw palmetto supplements (SPS) are commonly consumed by men with prostate cancer. We investigated whether SPS fatty acids and phytosterols concentrations determine their growth-inhibitory action in androgen-sensitive LNCaP cells and hamster flank organs. High long-chain fatty acids-low phytosterols (HLLP) SPS ≥ 750 nM with testosterone significantly increased and ≥500 nM with dihydrotestosterone significantly decreased LNCaP cell number. High long-chain fatty acids-high phytosterols (HLHP) SPS ≥ 500 nM with dihydrotestosterone and high medium-chain fatty acids-low phytosterols (HMLP) SPS ≥ 750 nM or with androgens significantly decreased LNCaP cell number (n = 3; p < 0.05). Five- to six-week-old, castrated male Syrian hamsters were randomized to control (n = 4), HLLP, HLHP, and HMLP SPS (n = 6) groups. Testosterone or dihydrotestosterone was applied topically daily for 21 days to the right flank organ; the left flank organ was treated with ethanol and served as the control. Thirty minutes later, SPS or ethanol was applied to each flank organ in treatment and control groups, respectively. SPS treatments caused a notable but nonsignificant reduction in the difference between left and right flank organ growth in testosterone-treated SPS groups compared to the control. The same level of inhibition was not seen in dihydrotestosterone-treated SPS groups (p < 0.05). Results may suggest that SPS inhibit 5α-reductase thereby preventing hamster flank organ growth. PMID:27272436

  5. Effect of Saw Palmetto Supplements on Androgen-Sensitive LNCaP Human Prostate Cancer Cell Number and Syrian Hamster Flank Organ Growth.

    PubMed

    Opoku-Acheampong, Alexander B; Penugonda, Kavitha; Lindshield, Brian L

    2016-01-01

    Saw palmetto supplements (SPS) are commonly consumed by men with prostate cancer. We investigated whether SPS fatty acids and phytosterols concentrations determine their growth-inhibitory action in androgen-sensitive LNCaP cells and hamster flank organs. High long-chain fatty acids-low phytosterols (HLLP) SPS ≥ 750 nM with testosterone significantly increased and ≥500 nM with dihydrotestosterone significantly decreased LNCaP cell number. High long-chain fatty acids-high phytosterols (HLHP) SPS ≥ 500 nM with dihydrotestosterone and high medium-chain fatty acids-low phytosterols (HMLP) SPS ≥ 750 nM or with androgens significantly decreased LNCaP cell number (n = 3; p < 0.05). Five- to six-week-old, castrated male Syrian hamsters were randomized to control (n = 4), HLLP, HLHP, and HMLP SPS (n = 6) groups. Testosterone or dihydrotestosterone was applied topically daily for 21 days to the right flank organ; the left flank organ was treated with ethanol and served as the control. Thirty minutes later, SPS or ethanol was applied to each flank organ in treatment and control groups, respectively. SPS treatments caused a notable but nonsignificant reduction in the difference between left and right flank organ growth in testosterone-treated SPS groups compared to the control. The same level of inhibition was not seen in dihydrotestosterone-treated SPS groups (p < 0.05). Results may suggest that SPS inhibit 5α-reductase thereby preventing hamster flank organ growth.

  6. Guiding neuronal growth with light

    PubMed Central

    Ehrlicher, A.; Betz, T.; Stuhrmann, B.; Koch, D.; Milner, V.; Raizen, M. G.; Käs, J.

    2002-01-01

    Control over neuronal growth is a fundamental objective in neuroscience, cell biology, developmental biology, biophysics, and biomedicine and is particularly important for the formation of neural circuits in vitro, as well as nerve regeneration in vivo [Zeck, G. & Fromherz, P. (2001) Proc. Natl. Acad. Sci. USA 98, 10457–10462]. We have shown experimentally that we can use weak optical forces to guide the direction taken by the leading edge, or growth cone, of a nerve cell. In actively extending growth cones, a laser spot is placed in front of a specific area of the nerve's leading edge, enhancing growth into the beam focus and resulting in guided neuronal turns as well as enhanced growth. The power of our laser is chosen so that the resulting gradient forces are sufficiently powerful to bias the actin polymerization-driven lamellipodia extension, but too weak to hold and move the growth cone. We are therefore using light to control a natural biological process, in sharp contrast to the established technique of optical tweezers [Ashkin, A. (1970) Phys. Rev. Lett. 24, 156–159; Ashkin, A. & Dziedzic, J. M. (1987) Science 235, 1517–1520], which uses large optical forces to manipulate entire structures. Our results therefore open an avenue to controlling neuronal growth in vitro and in vivo with a simple, noncontact technique. PMID:12456879

  7. Apoptosis-induced CXCL5 accelerates inflammation and growth of prostate tumor metastases in bone.

    PubMed

    Roca, Hernan; Jones, Jacqueline D; Purica, Marta C; Weidner, Savannah; Koh, Amy J; Kuo, Robert; Wilkinson, John E; Wang, Yugang; Daignault-Newton, Stephanie; Pienta, Kenneth J; Morgan, Todd M; Keller, Evan T; Nör, Jacques E; Shea, Lonnie D; McCauley, Laurie K

    2018-01-02

    During tumor progression, immune system phagocytes continually clear apoptotic cancer cells in a process known as efferocytosis. However, the impact of efferocytosis in metastatic tumor growth is unknown. In this study, we observed that macrophage-driven efferocytosis of prostate cancer cells in vitro induced the expression of proinflammatory cytokines such as CXCL5 by activating Stat3 and NF-κB(p65) signaling. Administration of a dimerizer ligand (AP20187) triggered apoptosis in 2 in vivo syngeneic models of bone tumor growth in which apoptosis-inducible prostate cancer cells were either coimplanted with vertebral bodies, or inoculated in the tibiae of immunocompetent mice. Induction of 2 pulses of apoptosis correlated with increased infiltration of inflammatory cells and accelerated tumor growth in the bone. Apoptosis-induced tumors displayed elevated expression of the proinflammatory cytokine CXCL5. Likewise, CXCL5-deficient mice had reduced tumor progression. Peripheral blood monocytes isolated from patients with bone metastasis of prostate cancer were more efferocytic compared with normal controls, and CXCL5 serum levels were higher in metastatic prostate cancer patients relative to patients with localized prostate cancer or controls. Altogether, these findings suggest that the myeloid phagocytic clearance of apoptotic cancer cells accelerates CXCL5-mediated inflammation and tumor growth in bone, pointing to CXCL5 as a potential target for cancer therapeutics.

  8. Effects of growth factors and glucosamine on porcine mandibular condylar cartilage cells and hyaline cartilage cells for tissue engineering applications.

    PubMed

    Wang, Limin; Detamore, Michael S

    2009-01-01

    Temporomandibular joint (TMJ) condylar cartilage is a distinct cartilage that has both fibrocartilaginous and hyaline-like character, with a thin proliferative zone that separates the fibrocartilaginous fibrous zone at the surface from the hyaline-like mature and hypertrophic zones below. In this study, we compared the effects of insulin-like growth factor-I (IGF-I), basic fibroblast growth factor (bFGF), transforming growth factor beta1 (TGF-beta1), and glucosamine sulphate on porcine TMJ condylar cartilage and ankle cartilage cells in monolayer culture. In general, TMJ condylar cartilage cells proliferated faster than ankle cartilage cells, while ankle cells produced significantly greater amounts of glycosaminoglycans (GAGs) and collagen than TMJ condylar cartilage cells. IGF-I and bFGF were potent stimulators of TMJ cell proliferation, while no signals statistically outperformed controls for ankle cell proliferation. IGF-I was the most effective signal for GAG production with ankle cells, and the most potent upregulator of collagen synthesis for both cell types. Glucosamine sulphate promoted cell proliferation and biosynthesis at specific concentrations and outperformed growth factors in certain instances. In conclusion, hyaline cartilage cells had lower cell numbers and superior biosynthesis compared to TMJ condylar cartilage cells, and we have found IGF-I at 100 ng/mL and glucosamine sulphate at 100 microg/mL to be the most effective signals for these cells under the prescribed conditions.

  9. Disulfiram, a drug widely used to control alcoholism, suppresses self-renewal of glioblastoma and overrides resistance to temozolomide

    PubMed Central

    Triscott, Joanna; Lee, Cathy; Hu, Kaiji; Fotovati, Abbas; Berns, Rachel; Pambid, Mary; Luk, Margaret; Kast, Richard E.; Kong, Esther; Toyota, Eric; Yip, Stephen; Toyota, Brian; Dunn, Sandra E.

    2012-01-01

    Glioblastomas (GBM) are associated with high rates of relapse. These brain tumors are often resistant to chemotherapies like temozolomide (TMZ) and there are very few treatment options available to patients. We recently reported that polo-like kinase-1 (PLK1) is associated with the proliferative subtype of GBM; which has the worst prognosis. In this study, we addressed the potential of repurposing disulfiram (DSF), a drug widely used to control alcoholism for the past six decades. DSF has good safety profiles and penetrates the blood-brain barrier. Here we report that DSF inhibited the growth of TMZ resistant GBM cells, (IC90=100 nM), but did not affect normal human astrocytes. At similar DSF concentrations, self-renewal was blocked by ~100% using neurosphere growth assays. Likewise the drug completely inhibited the self-renewal of the BT74 and GBM4 primary cell lines. Additionally, DSF suppressed growth and self-renewal of primary cells from two GBM tumors. These cells were resistant to TMZ, had unmethylated MGMT, and expressed high levels of PLK1. Consistent with its role in suppressing GBM growth, DSF inhibited the expression of PLK1 in GBM cells. Likewise, PLK1 inhibition with siRNA, or small molecules (BI-2536 or BI-6727) blocked growth of TMZ resistant cells. Our studies suggest that DSF has the potential to be repurposed for treatment of refractory GBM. PMID:23047041

  10. Isolation and Identification of Proteins Secreted by Cells Cultured within Synthetic Hydrogel-Based Matrices

    PubMed Central

    2018-01-01

    Cells interact with and remodel their microenvironment, degrading large extracellular matrix (ECM) proteins (e.g., fibronectin, collagens) and secreting new ECM proteins and small soluble factors (e.g., growth factors, cytokines). Synthetic mimics of the ECM have been developed as controlled cell culture platforms for use in both fundamental and applied studies. However, how cells broadly remodel these initially well-defined matrices remains poorly understood and difficult to probe. In this work, we have established methods for widely examining both large and small proteins that are secreted by cells within synthetic matrices. Specifically, human mesenchymal stem cells (hMSCs), a model primary cell type, were cultured within well-defined poly(ethylene glycol) (PEG)-peptide hydrogels, and these cell-matrix constructs were decellularized and degraded for subsequent isolation and analysis of deposited proteins. Shotgun proteomics using liquid chromatography and mass spectrometry identified a variety of proteins, including the large ECM proteins fibronectin and collagen VI. Immunostaining and confocal imaging confirmed these results and provided visualization of protein organization within the synthetic matrices. Additionally, culture medium was collected from the encapsulated hMSCs, and a Luminex assay was performed to identify secreted soluble factors, including vascular endothelial growth factor (VEGF), endothelial growth factor (EGF), basic fibroblast growth factor (FGF-2), interleukin 8 (IL-8), and tumor necrosis factor alpha (TNF-α). Together, these methods provide a unique approach for studying dynamic reciprocity between cells and synthetic microenvironments and have the potential to provide new biological insights into cell responses during three-dimensional (3D) controlled cell culture. PMID:29552635

  11. Isolation and Identification of Proteins Secreted by Cells Cultured within Synthetic Hydrogel-Based Matrices.

    PubMed

    Sawicki, Lisa A; Choe, Leila H; Wiley, Katherine L; Lee, Kelvin H; Kloxin, April M

    2018-03-12

    Cells interact with and remodel their microenvironment, degrading large extracellular matrix (ECM) proteins (e.g., fibronectin, collagens) and secreting new ECM proteins and small soluble factors (e.g., growth factors, cytokines). Synthetic mimics of the ECM have been developed as controlled cell culture platforms for use in both fundamental and applied studies. However, how cells broadly remodel these initially well-defined matrices remains poorly understood and difficult to probe. In this work, we have established methods for widely examining both large and small proteins that are secreted by cells within synthetic matrices. Specifically, human mesenchymal stem cells (hMSCs), a model primary cell type, were cultured within well-defined poly(ethylene glycol) (PEG)-peptide hydrogels, and these cell-matrix constructs were decellularized and degraded for subsequent isolation and analysis of deposited proteins. Shotgun proteomics using liquid chromatography and mass spectrometry identified a variety of proteins, including the large ECM proteins fibronectin and collagen VI. Immunostaining and confocal imaging confirmed these results and provided visualization of protein organization within the synthetic matrices. Additionally, culture medium was collected from the encapsulated hMSCs, and a Luminex assay was performed to identify secreted soluble factors, including vascular endothelial growth factor (VEGF), endothelial growth factor (EGF), basic fibroblast growth factor (FGF-2), interleukin 8 (IL-8), and tumor necrosis factor alpha (TNF-α). Together, these methods provide a unique approach for studying dynamic reciprocity between cells and synthetic microenvironments and have the potential to provide new biological insights into cell responses during three-dimensional (3D) controlled cell culture.

  12. Role of human epididymis protein 4 in chemoresistance and prognosis of epithelial ovarian cancer.

    PubMed

    Lee, Seungho; Choi, Seowon; Lee, Yookyung; Chung, Donghae; Hong, Suntaek; Park, Nohhyun

    2017-01-01

    Human epididymis protein 4 (HE4) is a novel biomarker for epithelial ovarian cancer. This study was designed to evaluate the role of HE4 in chemo-response against anti-cancer drugs and prognosis of epithelial ovarian cancer. HE4-depleted cells and HE4-overexpressing cells were generated. The effect of HE4 gene silencing and overexpression was examined using a cell viability assay after exposure to chemotherapeutic agents and the signaling pathway. We studied the expression of HE4 in ovarian cancer tissue and the prognostic significance. Cytoplasmic staining was graded for intensity and percentage of positive cells. The grades were multiplied to determine an H-score. Knockdown of HE4 in OVCAR-3 cells resulted in reduction in cell growth and increased sensitivity to paclitaxel and cisplatin compared to control cells. This effect originated from the decreased activation of cell-growth-related signaling, such as AKT and Erk mediated by epidermal growth factor (EGF), while overexpression of HE4 resulted in enhanced cell growth and suppressed the anti-tumorigenic activity of paclitaxel. Activation of AKT and Erk pathways was enhanced in HE4-overexpressing cells compared to control cells. Based on the results of multivariate analysis, the risk of death was significantly higher in patients with an H-score > 4. HE4 induces chemoresistance against anti-cancer drugs and activates the AKT and Erk pathways to enhance tumor survival. HE4 expression in ovarian cancer tissue is associated with a worse prognosis for epithelial ovarian cancer patients. © 2016 Japan Society of Obstetrics and Gynecology.

  13. Intracellular growth of Mycobacterium tuberculosis after macrophage cell death leads to serial killing of host cells

    PubMed Central

    Mahamed, Deeqa; Boulle, Mikael; Ganga, Yashica; Mc Arthur, Chanelle; Skroch, Steven; Oom, Lance; Catinas, Oana; Pillay, Kelly; Naicker, Myshnee; Rampersad, Sanisha; Mathonsi, Colisile; Hunter, Jessica; Wong, Emily B; Suleman, Moosa; Sreejit, Gopalkrishna; Pym, Alexander S; Lustig, Gila; Sigal, Alex

    2017-01-01

    A hallmark of pulmonary tuberculosis is the formation of macrophage-rich granulomas. These may restrict Mycobacterium tuberculosis (Mtb) growth, or progress to central necrosis and cavitation, facilitating pathogen growth. To determine factors leading to Mtb proliferation and host cell death, we used live cell imaging to track Mtb infection outcomes in individual primary human macrophages. Internalization of Mtb aggregates caused macrophage death, and phagocytosis of large aggregates was more cytotoxic than multiple small aggregates containing similar numbers of bacilli. Macrophage death did not result in clearance of Mtb. Rather, it led to accelerated intracellular Mtb growth regardless of prior activation or macrophage type. In contrast, bacillary replication was controlled in live phagocytes. Mtb grew as a clump in dead cells, and macrophages which internalized dead infected cells were very likely to die themselves, leading to a cell death cascade. This demonstrates how pathogen virulence can be achieved through numbers and aggregation states. DOI: http://dx.doi.org/10.7554/eLife.22028.001 PMID:28130921

  14. Modified model of VX2 tumor overexpressing vascular endothelial growth factor.

    PubMed

    Pascale, Florentina; Ghegediban, Saida-Homayra; Bonneau, Michel; Bedouet, Laurent; Namur, Julien; Verret, Valentin; Schwartz-Cornil, Isabelle; Wassef, Michel; Laurent, Alexandre

    2012-06-01

    To determine whether upregulated expression of vascular endothelial growth factor (VEGF) in VX2 cells can increase vessel density (VD) and reduce tumor necrosis. The VX2 cell line was transfected with expression vectors containing cDNA for rabbit VEGF. Stable clones producing rabbit VEGF (VEGF-VX2) were selected. VEGF-VX2 cells (n = 5 rabbits) or nontransfected VX2 cells (controls; n = 5 rabbits) were implanted into leg muscle of 10 rabbits. The animals were sacrificed at day 21. Tumor volume, percentage of necrosis, VD, and VEGF concentration in tumor protein extract were quantified. Overexpression of VEGF by VX2 cells augmented tumor implantation efficiency 100% and favored cyst formation. The tumor volume was significantly larger for VEGF-VX2 transfected tumors versus controls (P = .0143). Overexpression of VEGF in VX2 cells significantly increased the VD of the tumors (P = .0138). The percentage of necrosis was reduced in VEGF-VX2 tumors versus controls (19.5% vs 38.5 %; P = .002). VEGF concentration in VEGF-VX2 tumors was significantly higher than in control tumors (P = .041) and was correlated with tumor volume (ρ = .883, P = .012). The overexpression of VEGF increased tumor growth and vascularization, favored cyst formation, and reduced tumor necrosis. This new phenotype of the VX2 tumor may offer some advantages over classic models of VX2 tumor for evaluating anticancer therapies. Copyright © 2012 SIR. Published by Elsevier Inc. All rights reserved.

  15. Calcium/calmodulin-dependent protein kinase II activity regulates the proliferative potential of growth plate chondrocytes.

    PubMed

    Li, Yuwei; Ahrens, Molly J; Wu, Amy; Liu, Jennifer; Dudley, Andrew T

    2011-01-01

    For tissues that develop throughout embryogenesis and into postnatal life, the generation of differentiated cells to promote tissue growth is at odds with the requirement to maintain the stem cell/progenitor cell population to preserve future growth potential. In the growth plate cartilage, this balance is achieved in part by establishing a proliferative phase that amplifies the number of progenitor cells prior to terminal differentiation into hypertrophic chondrocytes. Here, we show that endogenous calcium/calmodulin-dependent protein kinase II (CamkII, also known as Camk2) activity is upregulated prior to hypertrophy and that loss of CamkII function substantially blocks the transition from proliferation to hypertrophy. Wnt signaling and Pthrp-induced phosphatase activity negatively regulate CamkII activity. Release of this repression results in activation of multiple effector pathways, including Runx2- and β-catenin-dependent pathways. We present an integrated model for the regulation of proliferation potential by CamkII activity that has important implications for studies of growth control and adult progenitor/stem cell populations.

  16. Study of lung-metastasized prostate cancer cell line chemotaxis to epidermal growth factor with a BIOMEMS device

    NASA Astrophysics Data System (ADS)

    Tata, Uday; Rao, Smitha M. N.; Sharma, Akash; Pabba, Krishna; Pokhrel, Kushal; Adhikari, Bandita; Lin, Victor K.; Chiao, J.-C.

    2012-09-01

    Understanding the effects of different growth factors on cancer metastasis will enable researchers to develop effective post-surgery therapeutic strategies to stop the spread of cancer. Conventional Boyden chamber assays to evaluate cell motility in metastasis studies require high volumes of reagents and are impractical for high-throughput analysis. A microfluidic device was designed for arrayed assaying of prostate cancer cell migration towards different growth factors. The device was created with polydimethylsiloxane (PDMS) and featured two wells connected by 10 micro channels. One well was for cell seeding and the other well for specific growth factors. Each channel has a width of 20 μm, a length of 1 mm and a depth of 10 μm. The device was placed on a culture dish and primed with growth media. Lung-metastasized cells in suspension of RPMI 1640 media1 supplemented with 2% of fetal bovine serum (FBS) were seeded in the cell wells. Cell culture media with epidermal growth factor (EGF) of 25, 50, 75, 100 and 125 ng ml-1 concentrations were individually added in the respective growth factor wells. A 5-day time-lapsed study of cell migration towards the chemoattractant was performed. The average numbers of cells per device in the microchannels were obtained for each attractant condition. The results indicated migration of cells increased from 50 to 100 ng ml-1 of EGF and significantly decreased at 125 ng ml-1 of EGF, as compared to control.

  17. Role of obestatin on growth hormone secretion: An in vitro approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pazos, Yolanda, E-mail: yolanda.pazos@usc.es; CIBER Fisiopatologia de la Obesidad y Nutricion; Alvarez, Carlos J.P.

    Obestatin, the ghrelin-associated peptide, showed to activate MAPK signaling with no effect on Akt nor cell proliferating activity in rat tumor somatotroph cells (growth cells, GC). A sequential analysis of the obestatin transmembrane signaling pathway indicated a route involving the consecutive activation of G{sub i}, PI3k, novel PKC{epsilon}, and Src for ERK1/2 activation. Furthermore, obestatin treatment triggers growth hormone (GH) release in the first 30 min, being more acute at 15 min. At 1 h, obestatin treated cells showed the same levels in GH secretion than controls. Added to this functionality, obestatin was secreted by GC cells. Based on themore » capacity to stimulate GH release from somatotroph cells, obestatin may act directly in the pituitary through an autocrine/paracrine mechanism.« less

  18. Response of Human Prostate Cancer Cells to Mitoxantrone Treatment in Simulated Microgravity Environment

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Wu, Honglu

    2012-07-01

    RESPONSE OF HUMAN PROSTATE CANCER CELLS TO MITOXANTRONE TREATMENT IN SIMULATED MICROGRAVITY ENVIRONMENT Ye Zhang1,2, Christopher Edwards3, and Honglu Wu1 1 NASA-Johnson Space Center, Houston, TX 2 Wyle Integrated Science and Engineering Group, Houston, TX 3 Oregon State University, Corvallis, OR This study explores the changes in growth of human prostate cancer cells (LNCaP) and their response to the treatment of an antineoplastic agent, mitoxantrone, under the simulated microgravity condition. In comparison to static 1g, microgravity and simulated microgravity have been shown to alter global gene expression patterns and protein levels in various cultured cell models or animals. However, very little is known about the effect of altered gravity on the responses of cells to the treatment of drugs, especially chemotherapy drugs. To test the hypothesis that zero gravity would result in altered regulations of cells in response to antineoplastic agents, we cultured LNCaP cells in either a High Aspect Ratio Vessel (HARV) bioreactor at the rotating condition to model microgravity in space or in the static condition as control, and treated the cells with mitoxantrone. Cell growth, as well as expressions of oxidative stress related genes, were analyzed after the drug treatment. Compared to static 1g controls, the cells cultured in the simulated microgravity environment did not present significant differences in cell viability, growth rate, or cell cycle distribution. However, after mitoxantrone treatment, a significant proportion of bioreactor cultured cells became apoptotic or was arrested in G2. Several oxidative stress related genes also showed a higher expression level post mitoxantrone treatment. Our results indicate that simulated microgravity may alter the response of LNCaP cells to mitoxantrone treatment. Understanding the mechanisms by which cells respond to drugs differently in an altered gravity environment will be useful for the improvement of cancer treatment on the ground. This study explores the changes in growth of human prostate cancer cells (LNCaP) and their response to the treatment of an antineoplastic agent, mitoxantrone, under the simulated microgravity condition. In comparison to static 1g, microgravity and simulated microgravity have been shown to alter global gene expression patterns and protein levels in various cultured cell models or animals. However, very little is known about the effect of altered gravity on the responses of cells to the treatment of drugs, especially chemotherapy drugs. To test the hypothesis that zero gravity would result in altered regulations of cells in response to antineoplastic agents, we cultured LNCaP cells in either a High Aspect Ratio Vessel (HARV) bioreactor at the rotating condition to model microgravity in space or in the static condition as control, and treated the cells with mitoxantrone. Cell growth, as well as expressions of oxidative stress related genes, were analyzed after the drug treatment. Compared to static 1g controls, the cells cultured in the simulated microgravity environment did not present significant differences in cell viability, growth rate, or cell cycle distribution. However, after mitoxantrone treatment, a significant proportion of bioreactor cultured cells became apoptotic or was arrested in G2. Several oxidative stress related genes also showed a higher expression level post mitoxantrone treatment. Our results indicate that simulated microgravity may alter the response of LNCaP cells to mitoxantrone treatment. Understanding the mechanisms by which cells respond to drugs differently in an altered gravity environment will be useful for the improvement of cancer treatment on the ground.

  19. TGFβ signaling supports survival and metastasis of endometrial cancer cells

    PubMed Central

    Lei, XiuFen; Wang, Long; Yang, Junhua; Sun, Lu-Zhe

    2009-01-01

    The association of mutation of the transforming growth factor beta (TGFβ) type II receptor (RII) with microsatellite instability revealed a significant molecular mechanism of tumorigenesis and tumor progression in gastrointestinal carcinomas with DNA replication error. However, mutation of RII is rare in other types of carcinomas with microsatellite instability including endometrial adenocarcinoma suggesting that TGFβ receptor signaling may be necessary for tumor progression. To test this hypothesis, we abrogated TGFβ signaling with ectopic expression of a dominant-negative RII (DNRII) in human endometrial carcinoma HEC-1-A cells with microsatellite instability. Our study showed that over-expression of DNRII blocked the TGFβ signaling, inhibited anchorage-dependent and -independent growth, and stimulated apoptosis in vitro. Interestingly, the expression of DNRII expression showed little effect on tumor growth of subcutaneously inoculated cells in vivo. On the other hand, the DNRII cells showed more epithelial features whereas the control cells showed more mesenchymal features suggesting a reversal of autocrine TGFβ-induced epithelial–mesenchymal transition (EMT). Consistent with these findings, DNRII cells were much less migratory and invasive in vitro and metastatic in vivo than the control cells. Therefore, an intact TGFβ signaling pathway appears necessary for the metastatic phenotypes of this carcinoma model. PMID:20622970

  20. The Physics of Cancer

    NASA Astrophysics Data System (ADS)

    La Porta, Caterina A. M.; Zapperi, Stefano

    2017-04-01

    Preface; 1. Introduction to the cell; 2. The biology of cancer; 3. A modeling toolbox for cancer growth; 4. Vascular hydrodynamics and tumor angiogenesis; 5. Cancer stem cells and the population dynamics of tumors; 6. Biomechanics of cancer; 7. Cancer cell migration; 8. Chromosome and chromatin dynamics in cancer; 9. Control of tumor growth by the immune system; 10. Pharmacological approaches: old and new; 11. Outlook on the physics of cancer: a new interdisciplinary area; References; Index.

  1. Deciphering the Mechanism of Alternative Cleavage and Polyadenylation in Mantle Cell Lymphoma (MCL)

    DTIC Science & Technology

    2015-12-01

    expression, increased cell proliferation and increased tumor growth in an in vivo mouse xenograft . [13]. However, Pcf11 did not have any effect on the...miRNA Regulation through Alternative Polyadenylation in Glioblastoma . (Selected for Plenary talk). Symposia on Cancer research, 2014. Illuminating...Albrecht T.R., Li W., Shyu A-B., and Wagner, E.J. CFlm25 Links Global change in APA to Cell Growth Control and Glioblastoma Survival. Abstract

  2. Mechanisms of Integrin-Mediated Growth Control in Normal, Transformed, and Neoplastic Breast Cells

    DTIC Science & Technology

    1996-10-01

    Takeichi ). 3. Breast Cell Isolation and Culture Normal human BC was obtained from Clonetics Corp (San Diego, CA, cat . # CC-0228) or from reduction...mammary epithelial growth medium (MEGM) from Clonetics ( cat . #CC- 3051). A number of breast carcinoma cell lines (see Table I) were obtained from the...at autophosphorylation of FAK as well as using commercially available kits for tyrosine kinases (Boehringer Mannheim cat # 1-534-505; Life

  3. p21WAF1 expression induced by MEK/ERK pathway activation or inhibition correlates with growth arrest, myogenic differentiation and onco-phenotype reversal in rhabdomyosarcoma cells

    PubMed Central

    Ciccarelli, Carmela; Marampon, Francesco; Scoglio, Arianna; Mauro, Annunziata; Giacinti, Cristina; De Cesaris, Paola; Zani, Bianca M

    2005-01-01

    Background p21WAF1, implicated in the cell cycle control of both normal and malignant cells, can be induced by p53-dependent and independent mechanisms. In some cells, MEKs/ERKs regulate p21WAF1 transcriptionally, while in others they also affect the post-transcriptional processes. In myogenic differentiation, p21WAF1 expression is also controlled by the myogenic transcription factor MyoD. We have previously demonstrated that the embryonal rhabdomyosarcoma cell line undergoes growth arrest and myogenic differentiation following treatments with TPA and the MEK inhibitor U0126, which respectively activate and inhibit the ERK pathway. In this paper we attempt to clarify the mechanism of ERK-mediated and ERK-independent growth arrest and myogenic differentiation of embryonal and alveolar rhabdomyosarcoma cell lines, particularly as regards the expression of the cell cycle inhibitor p21WAF1. Results p21WAF1 expression and growth arrest are induced in both embryonal (RD) and alveolar (RH30) rhabdomyosarcoma cell lines following TPA or MEK/ERK inhibitor (U0126) treatments, whereas myogenic differentiation is induced in RD cells alone. Furthermore, the TPA-mediated post-transcriptional mechanism of p21WAF1-enhanced expression in RD cells is due to activation of the MEK/ERK pathway, as shown by transfections with constitutively active MEK1 or MEK2, which induces p21WAF1 expression, and with ERK1 and ERK2 siRNA, which prevents p21WAF1 expression. By contrast, U0126-mediated p21WAF1 expression is controlled transcriptionally by the p38 pathway. Similarly, myogenin and MyoD expression is induced both by U0126 and TPA and is prevented by p38 inhibition. Although MyoD and myogenin depletion by siRNA prevents U0126-mediated p21WAF1 expression, the over-expression of these two transcription factors is insufficient to induce p21WAF1. These data suggest that the transcriptional mechanism of p21WAF1 expression in RD cells is rescued when MEK/ERK inhibition relieves the functions of myogenic transcription factors. Notably, the forced expression of p21WAF1 in RD cells causes growth arrest and the reversion of anchorage-independent growth. Conclusion Our data provide evidence of the key role played by the MEK/ERK pathway in the growth arrest of Rhabdomyosarcoma cells. The results of this study suggest that the targeting of MEK/ERKs to rescue p21WAF1 expression and myogenic transcription factor functions leads to the reversal of the Rhabdomyosarcoma phenotype. PMID:16351709

  4. p21WAF1 expression induced by MEK/ERK pathway activation or inhibition correlates with growth arrest, myogenic differentiation and onco-phenotype reversal in rhabdomyosarcoma cells.

    PubMed

    Ciccarelli, Carmela; Marampon, Francesco; Scoglio, Arianna; Mauro, Annunziata; Giacinti, Cristina; De Cesaris, Paola; Zani, Bianca M

    2005-12-13

    p21WAF1, implicated in the cell cycle control of both normal and malignant cells, can be induced by p53-dependent and independent mechanisms. In some cells, MEKs/ERKs regulate p21WAF1 transcriptionally, while in others they also affect the post-transcriptional processes. In myogenic differentiation, p21WAF1 expression is also controlled by the myogenic transcription factor MyoD. We have previously demonstrated that the embryonal rhabdomyosarcoma cell line undergoes growth arrest and myogenic differentiation following treatments with TPA and the MEK inhibitor U0126, which respectively activate and inhibit the ERK pathway. In this paper we attempt to clarify the mechanism of ERK-mediated and ERK-independent growth arrest and myogenic differentiation of embryonal and alveolar rhabdomyosarcoma cell lines, particularly as regards the expression of the cell cycle inhibitor p21WAF1. p21WAF1 expression and growth arrest are induced in both embryonal (RD) and alveolar (RH30) rhabdomyosarcoma cell lines following TPA or MEK/ERK inhibitor (U0126) treatments, whereas myogenic differentiation is induced in RD cells alone. Furthermore, the TPA-mediated post-transcriptional mechanism of p21WAF1-enhanced expression in RD cells is due to activation of the MEK/ERK pathway, as shown by transfections with constitutively active MEK1 or MEK2, which induces p21WAF1 expression, and with ERK1 and ERK2 siRNA, which prevents p21WAF1 expression. By contrast, U0126-mediated p21WAF1 expression is controlled transcriptionally by the p38 pathway. Similarly, myogenin and MyoD expression is induced both by U0126 and TPA and is prevented by p38 inhibition. Although MyoD and myogenin depletion by siRNA prevents U0126-mediated p21WAF1 expression, the over-expression of these two transcription factors is insufficient to induce p21WAF1. These data suggest that the transcriptional mechanism of p21WAF1 expression in RD cells is rescued when MEK/ERK inhibition relieves the functions of myogenic transcription factors. Notably, the forced expression of p21WAF1 in RD cells causes growth arrest and the reversion of anchorage-independent growth. Our data provide evidence of the key role played by the MEK/ERK pathway in the growth arrest of Rhabdomyosarcoma cells. The results of this study suggest that the targeting of MEK/ERKs to rescue p21WAF1 expression and myogenic transcription factor functions leads to the reversal of the Rhabdomyosarcoma phenotype.

  5. Decreasing CNPY2 Expression Diminishes Colorectal Tumor Growth and Development through Activation of p53 Pathway.

    PubMed

    Yan, Ping; Gong, Hui; Zhai, Xiaoyan; Feng, Yi; Wu, Jun; He, Sheng; Guo, Jian; Wang, Xiaoxia; Guo, Rui; Xie, Jun; Li, Ren-Ke

    2016-04-01

    Neovascularization drives tumor development, and angiogenic factors are important neovascularization initiators. We recently identified the secreted angiogenic factor CNPY2, but its involvement in cancer has not been explored. Herein, we investigate CNPY2's role in human colorectal cancer (CRC) development. Tumor samples were obtained from CRC patients undergoing surgery. Canopy 2 (CNPY2) expression was analyzed in tumor and adjacent normal tissue. Stable lines of human HCT116 cells expressing CNPY2 shRNA or control shRNA were established. To determine CNPY2's effects on tumor xenografts in vivo, human CNPY2 shRNA HCT116 cells and controls were injected into nude mice, separately. Cellular apoptosis, growth, and angiogenesis in the xenografts were evaluated. CNPY2 expression was significantly higher in CRC tissues. CNPY2 knockdown in HCT116 cells inhibited growth and migration and promoted apoptosis. In xenografts, CNPY2 knockdown prevented tumor growth and angiogenesis and promoted apoptosis. Knockdown of CNPY2 in the HCT116 CRC cell line reversibly increased p53 activity. The p53 activation increased cyclin-dependent kinase inhibitor p21 and decreased cyclin-dependent kinase 2, thereby inhibiting tumor cell growth, inducing cell apoptosis, and reducing angiogenesis both in vitro and in vivo. CNPY2 may play a critical role in CRC development by enhancing cell proliferation, migration, and angiogenesis and by inhibiting apoptosis through negative regulation of the p53 pathway. Therefore, CNPY2 may represent a novel CRC therapeutic target and prognostic indicator. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. In vitro analysis of multistage carcinogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nettesheim, P.; Fitzgerald, D.J.; Kitamura, H.

    1987-11-01

    Several key events in the multistep process of neoplastic transformation of rat tracheal epithelium (RTE) are described. Whether tracheal epithelium is exposed in vivo to carcinogenic agents or whether primary tracheal epithelial cells are exposed in vitro to carcinogens, initiated stem cells can be detected soon after the exposure by their ability to grow under selective conditions in culture. These initiated stem cells differ fundamentally from normal stem cells in their response to factors normally constraining proliferation and self-renewal. Thus, disruption of inhibitory control mechanisms of stem cell replication appears to be the first event in RTE cell transformation. Whilemore » the probability of self-renewal (PSR) is clearly increased in initiated stem cells, most of the descendants derived form such stem cells differentiate and become terminal and do not express transformed characteristics. Progression from the first to the second stage of RTE cell transformation, the stage of the immortal growth variant (IGV), is characterized by loss of responsiveness to the growth-restraining effects of retinoic acid. In the third stage of neoplastic transformation, the stage during which neoplastic growth variants (NGV) appear, a growth factor receptor gene is inappropriately expressed in some of the transformants. Thus, it appears that loss of growth-restraining mechanisms may be an early event, and activation of a growth stimulatory mechanism a late event, in neoplastic transformation of RTE cells.« less

  7. Cdk1-dependent control of membrane-trafficking dynamics

    PubMed Central

    McCusker, Derek; Royou, Anne; Velours, Christophe; Kellogg, Douglas

    2012-01-01

    Cyclin-dependent kinase 1 (Cdk1) is required for initiation and maintenance of polarized cell growth in budding yeast. Cdk1 activates Rho-family GTPases, which polarize the actin cytoskeleton for delivery of membrane to growth sites via the secretory pathway. Here we investigate whether Cdk1 plays additional roles in the initiation and maintenance of polarized cell growth. We find that inhibition of Cdk1 causes a cell surface growth defect that is as severe as that caused by actin depolymerization. However, unlike actin depolymerization, Cdk1 inhibition does not result in a massive accumulation of intracellular secretory vesicles or their cargoes. Analysis of post-Golgi vesicle dynamics after Cdk1 inhibition demonstrates that exocytic vesicles are rapidly mistargeted away from the growing bud, possibly to the endomembrane/vacuolar system. Inhibition of Cdk1 also causes defects in the organization of endocytic and exocytic zones at the site of growth. Cdk1 thus modulates membrane-trafficking dynamics, which is likely to play an important role in coordinating cell surface growth with cell cycle progression. PMID:22767578

  8. Biofilm growth program and architecture revealed by single-cell live imaging

    NASA Astrophysics Data System (ADS)

    Yan, Jing; Sabass, Benedikt; Stone, Howard; Wingreen, Ned; Bassler, Bonnie

    Biofilms are surface-associated bacterial communities. Little is known about biofilm structure at the level of individual cells. We image living, growing Vibrio cholerae biofilms from founder cells to ten thousand cells at single-cell resolution, and discover the forces underpinning the architectural evolution of the biofilm. Mutagenesis, matrix labeling, and simulations demonstrate that surface-adhesion-mediated compression causes V. cholerae biofilms to transition from a two-dimensional branched morphology to a dense, ordered three-dimensional cluster. We discover that directional proliferation of rod-shaped bacteria plays a dominant role in shaping the biofilm architecture, and this growth pattern is controlled by a single gene. Competition analyses reveal the advantages of the dense growth mode in providing the biofilm with superior mechanical properties. We will further present continuum theory to model the three-dimensional growth of biofilms at the solid-liquid interface as well as solid-air interface.

  9. Imaging System For Measuring Macromolecule Crystal Growth Rates in Microgravity

    NASA Technical Reports Server (NTRS)

    Corder, Eric L.; Briscoe, Jeri

    2004-01-01

    In order to determine how macromolecule crystal quality improvement in microgravity is related to crystal growth characteristics, a team of scientists and engineers at NASA's Marshal Space Flight Center (MSFC) developed flight hardware capable of measuring the crystal growth rates of a population of crystals growing under the same conditions. As crystal growth rate is defined as the change or delta in a defined dimension or length (L) of crystal over time, the hardware was named Delta-L. Delta-L consists of three sub assemblies: a fluid unit including a temperature-controlled growth cell, an imaging unit, and a control unit (consisting of a Data Acquisition and Control Unit (DACU), and a thermal control unit). Delta-L will be used in connection with the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) inside the Microgravity Science Glovebox (MSG), onboard the International Space Station. This paper will describe the Delta-L imaging system. The Delta-L imaging system was designed to locate, resolve, and capture images of up to 10 individual crystals ranging in size from 10 to 500 microns with a point-to-point accuracy of +/- 2.0 microns within a quartz growth cell observation area of 20 mm x 10 mm x 1 mm. The optical imaging system is comprised of a video microscope camera mounted on computer controlled translation stages. The 3-axis translation stages and control units provide crewmembers the ability to search throughout the growth cell observation area for crystals forming in size of approximately 10 microns. Once the crewmember has selected ten crystals of interest, the growth of these crystals is tracked until the size reaches approximately 500 microns. In order to resolve these crystals an optical system with a magnification of 10X was designed. A black and white NTSC camera was utilized with a 20X microscope objective and a 0.5X custom designed relay lens with an inline light to meet the magnification requirement. The design allows a 500 pm crystal to be viewed in the vertical dimension on a standard NTSC monitor (4:3 aspect ratio). Images of the 10 crystals are collected periodically and stored in sets by the DACU.

  10. Priming Dental Pulp Stem Cells With Fibroblast Growth Factor-2 Increases Angiogenesis of Implanted Tissue-Engineered Constructs Through Hepatocyte Growth Factor and Vascular Endothelial Growth Factor Secretion

    PubMed Central

    Gorin, Caroline; Rochefort, Gael Y.; Bascetin, Rumeyza; Ying, Hanru; Lesieur, Julie; Sadoine, Jérémy; Beckouche, Nathan; Berndt, Sarah; Novais, Anita; Lesage, Matthieu; Hosten, Benoit; Vercellino, Laetitia; Merlet, Pascal; Le-Denmat, Dominique; Marchiol, Carmen; Letourneur, Didier; Nicoletti, Antonino; Vital, Sibylle Opsahl; Poliard, Anne; Salmon, Benjamin; Germain, Stéphane

    2016-01-01

    Tissue engineering strategies based on implanting cellularized biomaterials are promising therapeutic approaches for the reconstruction of large tissue defects. A major hurdle for the reliable establishment of such therapeutic approaches is the lack of rapid blood perfusion of the tissue construct to provide oxygen and nutrients. Numerous sources of mesenchymal stem cells (MSCs) displaying angiogenic potential have been characterized in the past years, including the adult dental pulp. Establishment of efficient strategies for improving angiogenesis in tissue constructs is nevertheless still an important challenge. Hypoxia was proposed as a priming treatment owing to its capacity to enhance the angiogenic potential of stem cells through vascular endothelial growth factor (VEGF) release. The present study aimed to characterize additional key factors regulating the angiogenic capacity of such MSCs, namely, dental pulp stem cells derived from deciduous teeth (SHED). We identified fibroblast growth factor-2 (FGF-2) as a potent inducer of the release of VEGF and hepatocyte growth factor (HGF) by SHED. We found that FGF-2 limited hypoxia-induced downregulation of HGF release. Using three-dimensional culture models of angiogenesis, we demonstrated that VEGF and HGF were both responsible for the high angiogenic potential of SHED through direct targeting of endothelial cells. In addition, FGF-2 treatment increased the fraction of Stro-1+/CD146+ progenitor cells. We then applied in vitro FGF-2 priming to SHED before encapsulation in hydrogels and in vivo subcutaneous implantation. Our results showed that FGF-2 priming is more efficient than hypoxia at increasing SHED-induced vascularization compared with nonprimed controls. Altogether, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both HGF and VEGF. Significance The results from the present study show that fibroblast growth factor-2 (FGF-2) priming is more efficient than hypoxia at increasing dental pulp stem cells derived from deciduous teeth (SHED)-induced vascularization compared with nonprimed controls. Together, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both hepatocyte growth factor and vascular endothelial growth factor. PMID:26798059

  11. Gravisensing in single-celled systems

    NASA Astrophysics Data System (ADS)

    Braun, M.; Limbach, C.

    Single-celled systems are favourable cell types for studying several aspects of gravisensing and gravitropic responses. Whether and how actin is involved in both processes in higher plant statocytes is still a matter of intensive debate. In single-celled and tip-growing characean rhizoids and protonemata, however, there is clear evidence that actin is a central keyplayer controlling polarized growth and the mechanisms of gravity sensing and growth reorientation. Both cell types exhibit a unique actin polymerization in the extending tip, strictly colocalized with the prominent ER-aggregate in the center of the Spitzenkoerper. The local accumulation of ADF and profilin in this central array suggest that actin polymerization is controlled by these actin-binding proteins, which can be regulated by calcium, pH and a variety of other parameters. Distinct actin filaments extend even into the outermost tip and form a dense meshwork in the apical and subapical region, before they become bundled by villin to form two populations of thick actin cables that generate rotational cytoplasmic streaming in the basal region. Actomyosin not only mediates the delivery of secretory vesicles to the growing tip and controls the incorporation pattern of cell wall material, but also coordinates the tip-focused distribution pattern of calcium channels in the apical membrane. They establish the tip-high calcium gradient, a prerequisite for exocytosis. Microgravity experiments have added much to our understanding that both cell types use an efficient actomyosin-based system to control and correct the position of their statoliths and to direct sedimenting statoliths to confined graviperception sites at the plasma membrane. Actin's involvement in the graviresponses is more indirect. The upward growth of negatively gravitropic protonemata was shown to be preceded by a statolith-induced relocalization the Ca2+-calcium gradient to the upper flank that does not occur in positively gravitropic (downward growing) rhizoids, in which statoliths sedimentation is followed by differential flank growth. Based on these results, it is evident that polymerization, dynamic reorganization and the diverse functions of actin spatiotemporally controlled by numerous actin-binding proteins are fundamental for the processes of gravity sensing and gravity-oriented polarized growth. Financial support by Deutsches Zentrum für Luft- und Raumfahrt (DLR) on behalf of the Bundesministerium für Bildung und Forschung (50WB9998).

  12. Breast cancer cell-associated endopeptidase EC 24.11 modulates proliferative response to bombesin.

    PubMed

    Burns, D M; Walker, B; Gray, J; Nelson, J

    1999-01-01

    We have investigated the production, growth and inactivation of gastrin-releasing peptide (GRP)-like peptides in human breast cancer cell lines. Radioimmunoassay detected GRP-like immunoreactivity (GRP-LI) in T47D breast cancer cells but not in the conditioned medium, indicating rapid clearance. No GRP-LI was found in the ZR-75-1 or MDA-MB-436 cells or their conditioned medium. High-performance liquid chromatography (HPLC) analysis of the GRP-LI in the T47D cells revealed a major peak, which co-eluted with GRP(18-27), and a minor more hydrophilic peak. In vitro stimulation of T47D cell growth by bombesin (BN) was enhanced to 138% of control levels (bombesin alone) by the addition of the selective endopeptidase EC 3.4.24.11 inhibitor phosphoramidon (0.1 ng ml(-1)). Fluorogenic analysis using whole cells confirmed low levels of this phosphoramidon-sensitive enzyme on the T47D cells. This enzyme, previously unreported in human breast cancer cells, significantly modulates both T47D growth and its response to BN-induced growth.

  13. Breast cancer cell-associated endopeptidase EC 24.11 modulates proliferative response to bombesin

    PubMed Central

    Burns, D M; Walker, B; Gray, J; Nelson, J

    1999-01-01

    We have investigated the production, growth and inactivation of gastrin-releasing peptide (GRP)-like peptides in human breast cancer cell lines. Radioimmunoassay detected GRP-like immunoreactivity (GRP-LI) in T47D breast cancer cells but not in the conditioned medium, indicating rapid clearance. No GRP-LI was found in the ZR-75-1 or MDA-MB-436 cells or their conditioned medium. High-performance liquid chromatography (HPLC) analysis of the GRP-LI in the T47D cells revealed a major peak, which co-eluted with GRP18–27, and a minor more hydrophilic peak. In vitro stimulation of T47D cell growth by bombesin (BN) was enhanced to 138% of control levels (bombesin alone) by the addition of the selective endopeptidase EC 3.4.24.11 inhibitor phosphoramidon (0.1 ng ml−;1). Fluorogenic analysis using whole cells confirmed low levels of this phosphoramidon-sensitive enzyme on the T47D cells. This enzyme, previously unreported in human breast cancer cells, significantly modulates both T47D growth and its response to BN-induced growth. © 1999 Cancer Research Campaign PMID:9888460

  14. Inhibition of Tumorigenesis by the Thyroid Hormone Receptor β in Xenograft Models

    PubMed Central

    Kim, Won Gu; Zhao, Li; Kim, Dong Wook; Willingham, Mark C.

    2014-01-01

    Background: Previous studies showed a close association between several types of human cancers and somatic mutations of thyroid hormone receptor β (TRβ) and reduced expression of TRβ due to epigenetic inactivation and/or deletion of the THRB gene. These observations suggest that TRβ could act as a tumor suppressor in carcinogenesis. However, the mechanisms by which TRβ could function to inhibit tumorigenesis are less well understood. Methods: We used the human follicular thyroid cancer cell lines (FTC-133 and FTC-236 cells) to elucidate how functional expression of the THRB gene could affect tumorigenesis. We stably expressed the THRB gene in FTC cells and evaluated the effects of the expressed TRβ on cancer cell proliferation, migration, and tumor growth in cell-based studies and xenograft models. Results: Expression of TRβ in FTC-133 cells, as compared with control FTC cells without TRβ, reduced cancer cell proliferation and impeded migration of tumor cells through inhibition of the AKT-mTOR-p70 S6K pathway. TRβ expression in FTC-133 and FTC-236 led to less tumor growth in xenograft models. Importantly, new vessel formation was significantly suppressed in tumors induced by FTC cells expressing TRβ compared with control FTC cells without TRβ. The decrease in vessel formation was mediated by the downregulation of vascular endothelial growth factor in FTC cells expressing TRβ. Conclusions: These findings indicate that TRβ acts as a tumor suppressor through downregulation of the AKT-mTOR-p70 S6K pathway and decreased vascular endothelial growth factor expression in FTC cells. The present results raise the possibility that TRβ could be considered as a potential therapeutic target for thyroid cancer. PMID:23731250

  15. Growth monitoring and control in complex medium: a case study employing fed-batch penicillin fermentation and computer-aided on-line mass balancing.

    PubMed

    Mou, D G; Cooney, C L

    1983-01-01

    To broaden the practicality of on-line growth monitoring and control, its application in fedbatch penicillin fermentation using high corn steep liquor (CSL) concentration (53 g/L) is demonstrated. By employing a calculation method that considers the vagaries of CSL consumption, overall and instantaneous carbon-balancing equations are successfully used to calculate, on-line, the cell concentration and instantaneous specific growth rate in the penicillin production phase. As a consequence, these equations, together with a feedback control strategy, enable the computer control of glucose feed and maintenance of the preselected production-phase growth rate with error less than 0.002 h(-1).

  16. Effects of gene silencing of CypB on gastric cancer cells.

    PubMed

    Guo, Feng; Zhang, Ying; Zhao, Chun-Na; Li, Lin; Guo, Yan-Jun

    2015-04-01

    To determine the effect of gene silencing of cyclophilin B (CypB) on growth and proliferation of gastric cancer cells. CypB siRNA lentivirus (LV-CypB-si) and control lentivirus (LV-si-con) were produced. CypB expression in gastric cancer cell lines was detected by Western blot. BGC823 and SGC7901 cells were chosen to be infected with LV-si-con and LV-CypB-si, and stable transfectants were isolated. The cell groups transfected with LV-CypB-siRNA, LV-siRNA-con and transfected no carrier were served as the experimental group, the implicit control group and the blank control group respectively. MTT and colony formation assays were used to examine the effect of CypB on the cell growth and proliferation in vitro. Cell cycle was analyzed with flow cytometry. The expression of VEGFR of BGC823-si and SGC7901-si was detected by Western blot. Gene silencing of CypB can inhibit gastric cancer cell growth, proliferation, cell cycle progress and tumorigenesis. CypB expression level was obviously higher in SGC7901 and BGC823 than MKN28 and GES. These two cell lines were infected with LV-si-con and LV-CypB-si respectively. MTT and cloney formation assays showed a significantly decreased rate of cell proliferation from the forth day or the fifth day in cells transfected with LV-CypB-si (P<0.05). Down-regulation of CypB resulted in slightly decreased percentage of S phase and increased percentage of G1 (P<0.05). These findings indicated that CypB could promote the G1-S transition of gastric cancer cell. In addition, the expression of VEGF of BGC823 and SGC7901 transfected with CypB siRNA was reduced in comparison with the implicit control group and the blank control group. Gene silencing of CypB decreases gastric cancer cells proliferation and in vivo tumorigenesis. These findings indiccate CypB could be a potential biomarker and therapeutic target for gastric cancer. Copyright © 2015 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  17. Density-dependent regulation of growth of BSC-1 cells in cell culture: Control of growth by low molecular weight nutrients

    PubMed Central

    Holley, Robert W.; Armour, Rosemary; Baldwin, Julia H.

    1978-01-01

    BSC-1 cells, epithelial cells of African green monkey kidney origin, show pronounced density-dependent regulation of growth in cell culture. Growth of the cells is rapid to a density of approximately 1.5 × 105 cells/per cm2 in Dulbecco-modified Eagle's medium supplemented with 10% calf serum. Above this “saturation density,” growth is much slower. It has been found that the glucose concentration in the culture medium is important in determining the “saturation density.” If the glucose concentration is increased 4-fold, the “saturation density” increases approximately 50%. Reduction of the “saturation density” of BSC-1 cells is also possible by decreasing the concentrations of low molecular weight nutrients in the culture medium. In medium supplemented with 0.1% calf serum, decreasing the concentrations of all of the organic constituents of the medium, from the high levels present in Dulbecco-modified Eagle's medium to concentrations near physiological levels, decreases the “saturation density” by approximately half. The decreased “saturation density” is not the result of lowering the concentration of any single nutrient but rather results from reduction of the concentrations of several nutrients. When the growth of BSC-1 cells is limited by low concentrations of all of the nutrients, some stimulation of growth results from increasing, separately, the concentrations of individual groups of nutrients, but the best growth stimulation is obtained by increasing the concentrations of all of the nutrients. The “wound healing” phenomenon, one manifestation of density-dependent regulation of growth in cell culture, is abolished by lowering the concentration of glutamine in the medium. Density-dependent regulation of growth of BSC-1 cells in cell culture thus appears to be a complex phenomenon that involves an interaction of nutrient concentrations with other regulatory factors. PMID:272650

  18. Cotton Ascorbate Oxidase Promotes Cell Growth in Cultured Tobacco Bright Yellow-2 Cells through Generation of Apoplast Oxidation

    PubMed Central

    Li, Rong; Xin, Shan; Tao, Chengcheng; Jin, Xiang; Li, Hongbin

    2017-01-01

    Ascorbate oxidase (AO) plays an important role in cell growth through the modulation of reduction/oxidation (redox) control of the apoplast. Here, a cotton (Gossypium hirsutum) apoplastic ascorbate oxidase gene (GhAO1) was obtained from fast elongating fiber tissues. GhAO1 belongs to the multicopper oxidase (MCO) family and includes a signal peptide and several transmembrane regions. Analyses of quantitative real-time polymerase chain reaction (QRT-PCR) and enzyme activity showed that GhAO1 was expressed abundantly in 15-day post-anthesis (dpa) wild-type (WT) fibers in comparison with fuzzless-lintless (fl) mutant ovules. Subcellular distribution analysis in onion cells demonstrated that GhAO1 is localized in the cell wall. In transgenic tobacco bright yellow-2 (BY-2) cells with ectopic overexpression of GhAO1, the enhancement of cell growth with 1.52-fold increase in length versus controls was indicated, as well as the enrichment of both total ascorbate in whole-cells and dehydroascorbate acid (DHA) in apoplasts. In addition, promoted activities of AO and monodehydroascorbate reductase (MDAR) in apoplasts and dehydroascorbate reductase (DHAR) in whole-cells were displayed in transgenic tobacco BY-2 cells. Accumulation of H2O2, and influenced expressions of Ca2+ channel genes with the activation of NtMPK9 and NtCPK5 and the suppression of NtTPC1B were also demonstrated in transgenic tobacco BY-2 cells. Finally, significant induced expression of the tobacco NtAO gene in WT BY-2 cells under indole-3-acetic acid (IAA) treatment appeared; however, the sensitivity of the NtAO gene expression to IAA disappeared in transgenic BY-2 cells, revealing that the regulated expression of the AO gene is under the control of IAA. Taken together, these results provide evidence that GhAO1 plays an important role in fiber cell elongation and may promote cell growth by generating the oxidation of apoplasts, via the auxin-mediated signaling pathway. PMID:28644407

  19. Cell death induced by Morarah and Khaltita in hepatoma cancer cells (Huh-7).

    PubMed

    Baig, Saeeda; Alamgir, Mohiuddin

    2009-10-01

    To compare the combined and isolated growth inhibitory effects of Morarah and Khaltita (herbs) on hepatoma cell lines (Huh-7), through induction of apoptosis or necrosis. Comparative controlled in-vitro study. The Molecular Biology Laboratory, The Aga Khan University, Karachi, from June to December 2006. The growth of hepatoma cell lines (Huh-7) was checked by adding Khaltita and Morarah to the cells before culture in a 24 well plate. Six wells were selected and labeled for each of the four variables (controls, Khaltita, Morarah and mixture). After 2 days, cells were studied under an inverted phase contrast microscope and fields were recorded. Approximately four fields per slide of higher intensity were selected randomly to determine the dead cell density, and the procedure was repeated 10 or more times. Frequency and percentages were calculated for dead or alive cells in controls, Morarah, Khaltita and their mixture. Chi-square was used to compare the qualitative variables. P-values < 0.05 were considered significant. Morarah and Khaltita were found to induce statistically significant (p < 0.001) cell death in hepatoma cell lines (Huh-7). At a magnification of 40x, the controls showed 1% dead cells compared to 91% in Morarah, 83% in Khaltita and 73% in combined mixture of Khaltita and Morarah. At magnification of 20x, the controls showed 4% dead cells compared to 44% in Morarah, 47% in Khaltita and 49% in the combined mixture of Khaltita and Morarah. Morarah and Khaltita induced cell death in cultured hepatoma cells (Huh-7).

  20. Attenuation of the DNA Damage Response by Transforming Growth Factor-Beta Inhibitors Enhances Radiation Sensitivity of Non–Small-Cell Lung Cancer Cells In Vitro and In Vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Shisuo; Bouquet, Sophie; Lo, Chen-Hao

    2015-01-01

    Purpose: To determine whether transforming growth factor (TGF)-β inhibition increases the response to radiation therapy in human and mouse non–small-cell lung carcinoma (NSCLC) cells in vitro and in vivo. Methods and Materials: TGF-β–mediated growth response and pathway activation were examined in human NSCLC NCI-H1299, NCI-H292, and A549 cell lines and murine Lewis lung cancer (LLC) cells. Cells were treated in vitro with LY364947, a small-molecule inhibitor of the TGF-β type 1 receptor kinase, or with the pan-isoform TGF-β neutralizing monoclonal antibody 1D11 before radiation exposure. The DNA damage response was assessed by ataxia telangiectasia mutated (ATM) or Trp53 protein phosphorylation, γH2AX foci formation,more » or comet assay in irradiated cells. Radiation sensitivity was determined by clonogenic assay. Mice bearing syngeneic subcutaneous LLC tumors were treated with 5 fractions of 6 Gy and/or neutralizing or control antibody. Results: The NCI-H1299, A549, and LLC NSCLC cell lines pretreated with LY364947 before radiation exposure exhibited compromised DNA damage response, indicated by decreased ATM and p53 phosphorylation, reduced γH2AX foci, and increased radiosensitivity. The NCI-H292 cells were unresponsive. Transforming growth factor-β signaling inhibition in irradiated LLC cells resulted in unresolved DNA damage. Subcutaneous LLC tumors in mice treated with TGF-β neutralizing antibody exhibited fewer γH2AX foci after irradiation and significantly greater tumor growth delay in combination with fractionated radiation. Conclusions: Inhibition of TGF-β before radiation attenuated DNA damage recognition and increased radiosensitivity in most NSCLC cells in vitro and promoted radiation-induced tumor control in vivo. These data support the rationale for concurrent TGF-β inhibition and RT to provide therapeutic benefit in NSCLC.« less

  1. Control of intracellular pH and growth by fibronectin in capillary endothelial cells

    NASA Technical Reports Server (NTRS)

    Ingber, D. E.; Prusty, D.; Frangioni, J. V.; Cragoe, E. J. Jr; Lechene, C.; Schwartz, M. A.

    1990-01-01

    The aim of this work was to analyze the mechanism by which fibronectin (FN) regulates capillary endothelial cell proliferation. Endothelial cell growth can be controlled in chemically-defined medium by varying the density of FN coated on the substratum (Ingber, D. E., and J. Folkman. J. Cell Biol. 1989. 109:317-330). In this system, DNA synthetic rates are stimulated by FN in direct proportion to its effect on cell extension (projected cell areas) both in the presence and absence of saturating amounts of basic FGF. To investigate direct growth signaling by FN, we carried out microfluorometric measurements of intracellular pH (pHi), a cytoplasmic signal that is commonly influenced by soluble mitogens. pHi increased 0.18 pH units as FN coating densities were raised and cells progressed from round to spread. Intracellular alkalinization induced by attachment to FN was rapid and followed the time course of cell spreading. When measured in the presence and absence of FGF, the effects of FN and FGF on pHi were found to be independent and additive. Furthermore, DNA synthesis correlated with pHi for all combinations of FGF and FN. Ethylisopropylamiloride, a specific inhibitor of the plasma membrane Na+/H+ antiporter, completely suppressed the effects of FN on both pHi and DNA synthesis. However, cytoplasmic pH per se did not appear to be a critical determinant of growth since DNA synthesis was not significantly inhibited when pHi was lowered over the physiological range by varying the pH of the medium. We conclude that FN and FGF exert their growth-modulating effects in part through activation of the Na+/H+ exchanger, although they appear to trigger this system via separate pathways.

  2. Effect of low frequency magnetic fields on the growth of MNP-treated HT29 colon cancer cells

    NASA Astrophysics Data System (ADS)

    Spyridopoulou, K.; Makridis, A.; Maniotis, N.; Karypidou, N.; Myrovali, E.; Samaras, T.; Angelakeris, M.; Chlichlia, K.; Kalogirou, O.

    2018-04-01

    Recent investigations have attempted to understand and exploit the impact of magnetic field-actuated internalized magnetic nanoparticles (MNPs) on the proliferation rate of cancer cells. Due to the complexity of the parameters governing magnetic field-exposure though, individual studies to date have raised contradictory results. In our approach we performed a comparative analysis of key parameters related to the cell exposure of cancer cells to magnetic field-actuated MNPs, and to the magnetic field, in order to better understand the factors affecting cellular responses to magnetic field-stimulated MNPs. We used magnetite MNPs with a hydrodynamic diameter of 100 nm and studied the proliferation rate of MNPs-treated versus untreated HT29 human colon cancer cells, exposed to either static or alternating low frequency magnetic fields with varying intensity (40-200 mT), frequency (0-8 Hz) and field gradient. All three parameters, field intensity, frequency, and field gradient affected the growth rate of cells, with or without internalized MNPs, as compared to control MNPs-untreated and magnetic field-untreated cells. We observed that the growth inhibitory effects induced by static and rotating magnetic fields were enhanced by pre-treating the cells with MNPs, while the growth promoting effects observed in alternating field-treated cells were weakened by MNPs. Compared to static, rotating magnetic fields of the same intensity induced a similar extend of cell growth inhibition, while alternating fields of varying intensity (70 or 100 mT) and frequency (0, 4 or 8 Hz) induced cell proliferation in a frequency-dependent manner. These results, highlighting the diverse effects of mode, intensity, and frequency of the magnetic field on cell growth, indicate that consistent and reproducible results can be achieved by controlling the complexity of the exposure of biological samples to MNPs and external magnetic fields, through monitoring crucial experimental parameters. We demonstrate that further research focusing on the accurate manipulation of the aforementioned magnetic field exposure parameters could lead to the development of successful non-invasive therapeutic anticancer approaches.

  3. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control

    PubMed Central

    Zhao, Bin; Wei, Xiaomu; Li, Weiquan; Udan, Ryan S.; Yang, Qian; Kim, Joungmok; Xie, Joe; Ikenoue, Tsuneo; Yu, Jindan; Li, Li; Zheng, Pan; Ye, Keqiang; Chinnaiyan, Arul; Halder, Georg; Lai, Zhi-Chun; Guan, Kun-Liang

    2007-01-01

    The Hippo pathway plays a key role in organ size control by regulating cell proliferation and apoptosis in Drosophila. Although recent genetic studies have shown that the Hippo pathway is regulated by the NF2 and Fat tumor suppressors, the physiological regulations of this pathway are unknown. Here we show that in mammalian cells, the transcription coactivator YAP (Yes-associated protein), is inhibited by cell density via the Hippo pathway. Phosphorylation by the Lats tumor suppressor kinase leads to cytoplasmic translocation and inactivation of the YAP oncoprotein. Furthermore, attenuation of this phosphorylation of YAP or Yorkie (Yki), the Drosophila homolog of YAP, potentiates their growth-promoting function in vivo. Moreover, YAP overexpression regulates gene expression in a manner opposite to cell density, and is able to overcome cell contact inhibition. Inhibition of YAP function restores contact inhibition in a human cancer cell line bearing deletion of Salvador (Sav), a Hippo pathway component. Interestingly, we observed that YAP protein is elevated and nuclear localized in some human liver and prostate cancers. Our observations demonstrate that YAP plays a key role in the Hippo pathway to control cell proliferation in response to cell contact. PMID:17974916

  4. Impact of Hydroxychloroquine-Loaded Polyurethane Intravaginal Rings on Lactobacilli

    PubMed Central

    Traore, Yannick Leandre; Chen, Yufei; Bernier, Anne-Marie

    2015-01-01

    The use of polymeric devices for controlled sustained delivery of drugs is a promising approach for the prevention of HIV-1 infection. Unfortunately, certain microbicides, when topically applied vaginally, may be cytotoxic to vaginal epithelial cells and the protective microflora present within the female genital tract. In this study, we evaluated the impact of hydroxychloroquine (HCQ)-loaded, reservoir-type, polyurethane intravaginal rings (IVRs) on the growth of Lactobacillus crispatus and Lactobacillus jensenii and on the viability of vaginal and ectocervical epithelial cells. The IVRs were fabricated using hot-melt injection molding and were capable of providing controlled release of HCQ for 24 days, with mean daily release rates of 17.01 ± 3.6 μg/ml in sodium acetate buffer (pH 4) and 29.45 ± 4.84 μg/ml in MRS broth (pH 6.2). Drug-free IVRs and the released HCQ had no significant effects on bacterial growth or the viability of vaginal or ectocervical epithelial cells. Furthermore, there was no significant impact on the integrity of vaginal epithelial cell monolayers, in comparison with controls, as measured by transepithelial electrical resistance. Overall, this is the first study to evaluate the effects of HCQ-loaded IVRs on the growth of vaginal flora and the integrity of vaginal epithelial cell monolayers. PMID:26416871

  5. miR-34a-dependent overexpression of Per1 decreases cholangiocarcinoma growth.

    PubMed

    Han, Yuyan; Meng, Fanyin; Venter, Julie; Wu, Nan; Wan, Ying; Standeford, Holly; Francis, Heather; Meininger, Cynthia; Greene, John; Trzeciakowski, Jerome P; Ehrlich, Laurent; Glaser, Shannon; Alpini, Gianfranco

    2016-06-01

    Disruption of circadian rhythm is associated with cancer development and progression. MicroRNAs (miRNAs) are a class of small non-coding RNAs that trigger mRNA translation inhibition. We aimed to evaluate the role of Per1 and related miRNAs in cholangiocarcinoma growth. The expression of clock genes was evaluated in human cholangiocarcinoma tissue arrays and cholangiocarcinoma lines. The rhythmic expression of clock genes was evaluated in cholangiocarcinoma cells and H69 (non-malignant cholangiocytes) by qPCR. We measured cell proliferation, cell cycle and apoptosis in Mz-ChA-1 cells after Per1 overexpression. We examined tumor growth in vivo after injection of Per1 overexpressing cells. We verified miRNAs that targets Per1. The circadian rhythm of miR-34a was evaluated in cholangiocarcinoma and H69 cells. We evaluated cell proliferation, apoptosis and invasion after inhibition of miR-34a in vitro, and the potential molecular mechanisms by mRNA profiling after overexpression of Per1. Expression of Per1 was decreased in cholangiocarcinoma. The circadian rhythm of Per1 expression was lost in cholangiocarcinoma cells. Decreased cell proliferation, lower G2/M arrest, and enhanced apoptosis were shown in Per1 overexpressing cells. An in vivo study revealed decreased tumor growth, decreased proliferation, angiogenesis and metastasis after overexpressing Per1. Per1 was verified as a target of miR-34a. miR-34a was rhythmically expressed in cholangiocarcinoma cells and H69. The inhibition of miR-34a decreased proliferation, migration and invasion in cholangiocarcinoma cells. mRNA profiling has shown that overexpression of Per1 inhibits cell growth through regulation of multiple cancer-related pathways, such as cell cycle, cell growth and apoptosis pathways. Disruption of circadian rhythms of clock genes contribute to the malignant phenotypes of human cholangiocarcinoma. The current study is about how biological clock and its regulators affect the bile duct tumor growth. The disruption of biological clock has a negative impact in different cancers. Per1 is a gene that is involved in maintaining the biological clock and show 24h oscillation. Reduced levels of Per1 and disruption of 24h circadian rhythm was found in bile duct cancer cells. Therefore, a genetic modified bile duct cancer cells was created. It has a higher level of Per1 expression and partially recovered circadian rhythm. Those genetic modified cells also displayed slower cell growth or higher rate of cell death. We also used mice model that lack of immune system to show that our genetic modified bile duct cells form smaller tumor. In addition, we tried to see how Per1 is communicating with other genes in regarding of controlling the tumor growth. We found Per1 is regulated by microRNA-34a, a small non-coding RNA that directly binds to genes and inhibit gene expression. Decreased level of miR-34a has also significantly reduced tumor growth through controlling the cell growth and cell death balance. Therefore bile duct cancer patients may be treated with miR-34a inhibitor or Per1 stimulator in the future. Published by Elsevier B.V.

  6. Influence of the fractioned irradiation energy in the phototherapy with low intensity laser on the growth of human dental pulp fibroblasts

    NASA Astrophysics Data System (ADS)

    Meneguzzo, D. T.; Eduardo, C. P.; Ribeiro, M. S.; Marques, M. M.

    2008-03-01

    Laser phototherapy has proven to improve treatment of several pathologies in dentistry. The aim of the present study was to analyze the low power laser phototherapy effects comparing multiple irradiations with the same total energy at once. This in vitro study focuses on the biostimulation of cellular growth of pulp fibroblasts (FP5 cell lineage). The cells were grown in Dulbecco's Modified Eagle's (DME) medium with either 5% (nutritional deficit) or 10% fetal bovine serum (FBS). Laser irradiation was carried out with diode lasers with the following parameters: 685 nm, 40 mW, spot size 0.019 cm2. The groups were: G1(6.3J/cm2, 3 s, 0.12J), G2 (12.6J/cm2, 6 s, 0.24J), G3 (18.9J/cm2, 9 s, 0.36J), G4 (2 irradiations of 6.3J/cm2, 0.24J), G5 (3 irradiations of 6.3J/cm2, 0.36J), G6 (5% SFB, negative control, without irradiation), and G7 (10% SFB, positive control, without irradiation). On groups G4 and G5 the irradiation was performed with 6h-intervals. For growth analysis, the MTT test was used 24 hours after the last irradiation. The data from spectrophotometer were analyzed by ANOVA followed by the Tukey's test. The groups submitted to multiple irradiations presented significantly higher cell growth than the groups with single irradiation. This cell growth was similar to that of positive control group. The laser phototherapy with multiple irradiations is more effective on cellular growth.

  7. Effects of single and combined cell treatments based on low pH and high concentrations of ethanol on the growth and fermentation of Dekkera bruxellensis and Saccharomyces cerevisiae.

    PubMed

    Bassi, Ana Paula Guarnieri; da Silva, Jéssica Carolina Gomes; Reis, Vanda Renata; Ceccato-Antonini, Sandra Regina

    2013-09-01

    The alcoholic fermentation in Brazil displays some peculiarities because the yeast used is recycled in a non-aseptic process. After centrifugation, the cells are treated with acid to control the bacterial growth. However, it is difficult to manage the indigenous yeasts without affecting the main culture of Saccharomyces cerevisiae. This work evaluated how the cell treatment could be modified to combat contaminant yeasts based on the differential sensitivities to low pH and high concentrations of ethanol displayed by an industrial strain of S. cerevisiae and three strains of Dekkera bruxellensis, which are common contaminant yeasts in Brazilian fermentation processes. The tests were initially performed in rich medium with a low pH or a high concentration of ethanol to analyse the yeast growth profile. Then, the single and combined effects of low pH and ethanol concentration on the yeast cell viability were evaluated under non-proliferative conditions. The effects on the fermentation parameters were also verified. S. cerevisiae grew best when not subjected to the stresses, but this yeast and D. bruxellensis had similar growth kinetics when exposed to a low pH or increased ethanol concentrations. However, the combined treatments of low pH (2.0) and ethanol (11 or 13 %) resulted in a decrease of D. bruxellensis cell viability almost three times higher than of S. cerevisiae, which was only slightly affected by all cell treatments. The initial viability of the treated cells was restored within 8 h of growth in sugar cane juice, with the exception of the combined treatment for D. bruxellensis. The ethanol-based cell treatment, in despite of slowing the fermentation, could decrease and maintain D. bruxellensis population under control while S. cerevisiae was taking over the fermentation along six fermentative cycles. These results indicate that it may be possible to control the growth of D. bruxellensis without major effects on S. cerevisiae. The cells could be treated between the fermentation cycles by the parcelled addition of 13 % ethanol to the tanks in which the yeast cream is treated with sulphuric acid at pH 2.0.

  8. Controlled release of drugs in electrosprayed nanoparticles for bone tissue engineering.

    PubMed

    Jayaraman, Praveena; Gandhimathi, Chinnasamy; Venugopal, Jayarama Reddy; Becker, David Laurence; Ramakrishna, Seeram; Srinivasan, Dinesh Kumar

    2015-11-01

    Generating porous topographic substrates, by mimicking the native extracellular matrix (ECM) to promote the regeneration of damaged bone tissues, is a challenging process. Generally, scaffolds developed for bone tissue regeneration support bone cell growth and induce bone-forming cells by natural proteins and growth factors. Limitations are often associated with these approaches such as improper scaffold stability, and insufficient cell adhesion, proliferation, differentiation, and mineralization with less growth factor expression. Therefore, the use of engineered nanoparticles has been rapidly increasing in bone tissue engineering (BTE) applications. The electrospray technique is advantageous over other conventional methods as it generates nanomaterials of particle sizes in the micro/nanoscale range. The size and charge of the particles are controlled by regulating the polymer solution flow rate and electric voltage. The unique properties of nanoparticles such as large surface area-to-volume ratio, small size, and higher reactivity make them promising candidates in the field of biomedical engineering. These nanomaterials are extensively used as therapeutic agents and for drug delivery, mimicking ECM, and restoring and improving the functions of damaged organs. The controlled and sustained release of encapsulated drugs, proteins, vaccines, growth factors, cells, and nucleotides from nanoparticles has been well developed in nanomedicine. This review provides an insight into the preparation of nanoparticles by electrospraying technique and illustrates the use of nanoparticles in drug delivery for promoting bone tissue regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Crossroads of Wnt and Hippo in epithelial tissues.

    PubMed

    Bernascone, Ilenia; Martin-Belmonte, Fernando

    2013-08-01

    Epithelial tissues undergo constant growth and differentiation during embryonic development and to replace damaged tissue in adult organs. These processes are governed by different signaling pathways that ultimately control the expression of genes associated with cell proliferation, patterning, and death. One essential pathway is Wnt, which controls tubulogenesis in several epithelial organs. Recently, Wnt has been closely linked to other signaling pathways, such as Hippo, that orchestrate proliferation and apoptosis to control organ size. There is evidence that epithelial cell junctions may sequester the transcription factors that act downstream of these signaling pathways, which would represent an important aspect of their functional regulation and their influence on cell behavior. Here, we review the transcriptional control exerted by the Wnt and Hippo signaling pathways during epithelial growth, patterning, and differentiation and recent advances in understanding of the regulation and crosstalk of these pathways in epithelial tissues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Control effect of periodic variation on the growth of harmful algal bloom causative species

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Liu, S. T.; Liu, T.; Yu, C.; Hu, Z.

    2018-01-01

    Blue-green algae and Dinoflagellate etc. are common types of phytoplankton as causative species which cause the harmful algal blooms (HABs). The growth process of causative species is complex according to the variation of the environmental disturbance such as the periodic factor in reality and recent studies have not revealed the secret of the growth complexity yet. Based on the empirical and theoretical results of the growth of causative species, a nonlinear controlled system with periodic factor was obtained and the different effects of the periodic factor on the control of the cell density and the growth rate of causative species were studied by three theorems using the norm theory and finite difference method. Simulations and experimental data were also used to assess the effectiveness of the controlled results.

  11. Growth characteristics of (100)HgCdTe layers in low-temperature MOVPE with ditertiarybutyltelluride

    NASA Astrophysics Data System (ADS)

    Yasuda, K.; Hatano, H.; Ferid, T.; Minamide, M.; Maejima, T.; Kawamoto, K.

    1996-09-01

    Low-temperature growth of (100)HgCdTe (MCT) layers in MOVPE has been studied using ditertiarybutyltelluride (DtBTe), dimethylcadmium (DMCd), and elementary mercury as precursors. MCT layers were grown at 275°C on (100)GaAs substrates. Growths were carried out in a vertical growth cell which has a narrow spacing between the substrate and cell ceiling. Using the growth cell, the Cd-composition ( x) of MCT layers was controlled over a wide range from 0 to 0.98 by the DMCd flow. The growth rate of the MCT layers was constant at 5 μm h -1 for the increased DMCd flow. Preferential Cd-incorporation into MCT layers and an increase of the growth rate were observed in the presence of mercury vapor. The growth characteristics were considered to be due to the alkyl-exchange reaction between DMCd and mercury. The electrical properties and crystallinity of grown layers were also evaluated, which showed that layers with high quality can be grown at 275°C.

  12. Mechanism of Growth Enhancement of Plants Induced by Active Species in Plasmas

    NASA Astrophysics Data System (ADS)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya

    2015-09-01

    Plant growth enhances when seeds are irradiated by plasma. However the mechanism of the growth enhancement by plasma has not been clarified. In this study, growth enhancement of plants using various active species and variation of plant cells are investigated. RF plasma is generated under conditions where pressure is 60 Pa and input electrical power is 60 W. Irradiation period varies from 0 (control) to 75 min. Air plasma shows maximum growth of plants with irradiation period of 60 min on the other hand, oxygen plasma shows the maximum growth with irradiation period of 15 min. From change of gaseous species and pressure dependence, growth enhancing factor is expected to be active oxygen species produced in plasma. According to gene expression analysis of Arabidopsis, there are two speculated mechanism of plant growth enhancement. The first is acceleration of cell cycle by gene expressions of photosynthesis and glycolytic pathway, and the second is increase of cell size via plant hormone production.

  13. Effect of nitrogen on the seasonal course of growth and maintenance respiration in stems of Norway spruce trees.

    PubMed

    Stockfors, Jan; Linder, Sune

    1998-03-01

    To determine effects of stem nitrogen concentration ([N]) on the seasonal course of respiration, rates of stem respiration of ten control and ten irrigated-fertilized (IL), 30-year-old Norway spruce trees (Picea abies (L.) Karst.), growing in northern Sweden, were measured on seven occasions from June 1993 to April 1994. To explore sources of seasonal variation and mechanisms of fertilization effects on respiration, we separated total respiration into growth and maintenance respiration for both xylem and phloem bark. Stem respiration increased in response to the IL treatment and was positively correlated with growth rate, volume of living cells and stem nitrogen content. However, no significant effect of IL treatment or [N] in the living cells was found for respiration per unit volume of live cells. Total stem respiration during the growing season (June to September) was estimated to be 16.7 and 29.7 mol CO(2) m(-2) for control and IL-treated trees, respectively. Respiration during the growing season accounted for approximately 64% of total annual respiration. Depending on the method, estimated growth respiration varied between 40 and 60% of total respiration during the growing season. Between 75 and 80% of the live cell volume in the stems was in the phloem, and phloem maintenance accounted for about 70% of maintenance respiration. Because most of the living cells were found in the phloem, and the living xylem cells were concentrated in the outer growth rings, we concluded that the best base for expressing rates of stem growth and maintenance respiration in young Norway spruce trees is stem surface area.

  14. [Coronary disease extension determines mobilization of endothelial progenitor cells and cytokines after a first myocardial infarction with ST elevation].

    PubMed

    Jiménez-Navarro, Manuel F; González, Francisco Jesús; Caballero-Borrego, Juan; Marchal, Juan Antonio; Rodríguez-Losada, Noela; Carrillo, Esmeralda; García-Pinilla, José Manuel; Hernández-García, José M; Pérez-González, Rita; Ramírez, Gemma; Aránega, Antonia; de Teresa Galván, Eduardo

    2011-12-01

    Multivessel coronary disease is still a postinfarction prognostic marker despite new forms of reperfusion, such as primary angioplasty. The aim of this study was to determine the time sequence of various sets of endothelial progenitor cells and angiogenic cytokines (vascular endothelial growth factor, hepatocyte growth factor) according to the degree of extension of the postinfarction coronary disease. We studied the release kinetics in 32 patients admitted for a first myocardial infarction with ST elevation, grouped according to whether they had single or multivessel disease, and 26 controls. The patients had a higher number of endothelial progenitor cells and angiogenic cytokines than the controls at all 3 measurements (admission, day 3, and day 7) of the following subsets: CD34, CD34+CD133+, CD34+KDR+, and CD34+CD133+KDR+CD45+(weak); this latter was higher on day 7. The levels of these cell subsets were all higher in the patients with single-vessel disease and at all 3 measurements. The vascular endothelial growth factor levels were raised during the first week and the hepatocyte growth factor showed an early peak on admission for infarction. No significant differences were seen in the cytokines according to coronary disease extension. Although the release kinetics of different subsets of endothelial progenitor cells in patients with a first acute myocardial infarction with ST elevation was similar in those with single vessel disease to those with multivessel disease, the number of circulating endothelial progenitor cells was greater in the patients with single vessel disease. The vascular endothelial growth factor levels were raised during the first postinfarction week and the hepatocyte growth factor were higher on admission. Copyright © 2011 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  15. Growth modulation effects of CBM2a under the control of AtEXP4 and CaMV35S promoters in Arabidopsis thaliana, Nicotiana tabacum and Eucalyptus camaldulensis.

    PubMed

    Keadtidumrongkul, Pornthep; Suttangkakul, Anongpat; Pinmanee, Phitsanu; Pattana, Kanokwan; Kittiwongwattana, Chokchai; Apisitwanich, Somsak; Vuttipongchaikij, Supachai

    2017-08-01

    The expression of cell-wall-targeted Carbohydrate Binding Modules (CBMs) can alter cell wall properties and modulate growth and development in plants such as tobacco and potato. CBM2a identified in xylanase 10A from Cellulomonas fimi is of particular interest for its ability to bind crystalline cellulose. However, its potential for promoting plant growth has not been explored. In this work, we tested the ability of CBM2a to promote growth when expressed using both CaMV35S and a vascular tissue-specific promoter derived from Arabidopsis expansin4 (AtEXP4) in three plant species: Arabidopsis, Nicotiana tabacum and Eucalyptus camaldulensis. In Arabidopsis, the expression of AtEXP4pro:CBM2a showed trends for growth promoting effects including the increase of root and hypocotyl lengths and the enlargements of the vascular xylem area, fiber cells and vessel cells. However, in N. tabacum, the expression of CBM2a under the control of either CaMV35S or AtEXP4 promoter resulted in subtle changes in the plant growth, and the thickness of secondary xylem and vessel and fiber cell sizes were generally reduced in the transgenic lines with AtEXP4pro:CBM2a. In Eucalyptus, while transgenics expressing CaMV35S:CBM2a showed very subtle changes compared to wild type, those transgenics with AtEXP4pro:CBM2a showed increases in plant height, enlargement of xylem areas and xylem fiber and vessel cells. These data provide comparative effects of expressing CBM2a protein in different plant species, and this finding can be applied for plant biomass improvement.

  16. Influence of organic buffers on bacteriocin production by Streptococcus thermophilus ST110.

    PubMed

    Somkuti, George A; Gilbreth, Stefanie E

    2007-08-01

    The effect of the organic buffer salts MES, MOPS, and PIPES on the growth of S. thermophilus ST110, medium pH, and accumulation of the antipediococcal bacteriocin thermophilin 110 were evaluated in whey permeate media over a period of 24 h. In nonbuffered medium, thermophilin 110 production at 37 degrees C paralleled the growth of S. thermophilus ST110 and reached a maximum after 8-10 h. Addition of organic buffer salts decreased the drop in medium pH and resulted in increased biomass (dry cells; microg/mL) and higher yields of thermophilin 110 (units/microg cells). The best results were obtained by the addition of 1% (w/v) MES to the medium, which reduced the pH drop to 1.8 units after 10 h of growth (compared to 2.3 pH units in the control) and resulted in a 1.5-fold increase in cell mass (495 microg/mL) and a 7-fold increase in thermophilin 110 yield (77 units/microg dry cells) over the control. The results showed that whey permeate-based media may be suitable for producing large amounts of thermophilin 110 needed for controlling spoilage pediococci in industrial wine and beer fermentations.

  17. Comparative study of time-dependent effects of 4 and 8 Hz mechanical vibration at infrasound frequency on E. coli K-12 cells proliferation.

    PubMed

    Martirosyan, Varsik; Ayrapetyan, Sinerik

    2015-01-01

    The aim of the present work is to study the time-dependent effects of mechanical vibration (MV) at infrasound (IS) frequency at 4 and 8 Hz on E. coli K-12 growth by investigating the cell proliferation, using radioactive [(3)H]-thymidine assay. In our previous work it was suggested that the aqua medium can serve as a target through which the biological effect of MV on microbes could be realized. At the same time it was shown that microbes have mechanosensors on the surface of the cells and can sense small changes of the external environment. The obtained results were shown that the time-dependent effects of MV at 4 and 8 Hz frequency could either stimulate or inhibit the growth of microbes depending from exposure time. It more particularly, the invention relates to a method for controlling biological functions through the application of mechanical vibration, thus making it possible to artificially control the functions of bacterial cells, which will allow us to develop method that can be used in agriculture, industry, medicine, biotechnology to control microbial growth.

  18. [Role of connective tissue growth factor (CTGF) in proliferation and migration of pancreatic cancer cells].

    PubMed

    Bai, Yu-chun; Kang, Quan; Luo, Qing; Wu, Dao-qi; Ye, Wei-xia; Lin, Xue-mei; Zhao, Yong

    2011-10-01

    To explore the expression of connective tissue growth factor (CTGF) in pancreatic cancer and its influence on the proliferation and migration of cancer cells. The expression of CTGF in pancreatic cell line PANC-1 cells was analyzed by real-time PCR and in pancreatic carcinoma (50 cases) tissues by immunohistochemistry. The ability of proliferation and migration in vitro of PANC-1 cells was tested by MTT assay, scratch test and Boyden chamber test after the CTGF gene was overexpressed by Ad5-CTGF or silenced with Ad5-siCTGF transfection. CTGF was overexpressed in both pancreatic cancer cells and tissues. Overxpression of CTGF leads to increased proliferation and migration of PANC-1 cells. The CTGF-transfected PANC-1 cells showed apparent stronger proliferation ability and scratch-repair ability than that of empty vector controls. The results of Boyden chamber test showed that there were 34 cells/field (200× magnificantion) of the CTGF-transfected overexpressing cells, much more than the 11 cells/field of the empty vector control cells; and 6 cells/microscopic field of the Ad5-siCTGF-transfected silenced cells, much less than the 15 cells/field of the control cells. CTGF is overexpressed in both pancreatic cancer cells in vitro and in vivo, indicating that it may play an important role in the cell proliferation and migration in pancreatic cancer.

  19. Prevention of Breast Cell Transformation by Blockade of the AP-1 Transcription Factor

    DTIC Science & Technology

    2000-10-01

    Distribution Unlimited 13. ABSTRACT (Maximum 200 Words) In this study, we are investigating the role of AP- M in controlling breast cell growth and...serum and these growth factors depend on AP-1 to transduce proliferative signal. AP- M blockade induced by the expression of TAM67 inhibits breast...demonstrated that TAM67 inhibits basal AP-1 activity and AP- M activity stimulated by several different growth factors. We have also discovered that AP-1

  20. Unique and Conserved Features of the Barley Root Meristem

    PubMed Central

    Kirschner, Gwendolyn K.; Stahl, Yvonne; Von Korff, Maria; Simon, Rüdiger

    2017-01-01

    Plant root growth is enabled by root meristems that harbor the stem cell niches as a source of progenitors for the different root tissues. Understanding the root development of diverse plant species is important to be able to control root growth in order to gain better performances of crop plants. In this study, we analyzed the root meristem of the fourth most abundant crop plant, barley (Hordeum vulgare). Cell division studies revealed that the barley stem cell niche comprises a Quiescent Center (QC) of around 30 cells with low mitotic activity. The surrounding stem cells contribute to root growth through the production of new cells that are displaced from the meristem, elongate and differentiate into specialized root tissues. The distal stem cells produce the root cap and lateral root cap cells, while cells lateral to the QC generate the epidermis, as it is typical for monocots. Endodermis and inner cortex are derived from one common initial lateral to the QC, while the outer cortex cell layers are derived from a distinct stem cell. In rice and Arabidopsis, meristem homeostasis is achieved through feedback signaling from differentiated cells involving peptides of the CLE family. Application of synthetic CLE40 orthologous peptide from barley promotes meristem cell differentiation, similar to rice and Arabidopsis. However, in contrast to Arabidopsis, the columella stem cells do not respond to the CLE40 peptide, indicating that distinct mechanisms control columella cell fate in monocot and dicot plants. PMID:28785269

  1. Computer modeling of dendritic web growth processes and characterization of the material

    NASA Technical Reports Server (NTRS)

    Seidensticker, R. G.; Kothmann, R. E.; Mchugh, J. P.; Duncan, C. S.; Hopkins, R. H.; Blais, P. D.; Davis, J. R.; Rohatgi, A.

    1978-01-01

    High area throughput rate will be required for the economical production of silicon dendritic web for solar cells. Web width depends largely on the temperature distribution on the melt surface while growth speed is controlled by the dissipation of the latent heat of fusion. Thermal models were developed to investigate each of these aspects, and were used to engineer the design of laboratory equipment capable of producing crystals over 4 cm wide; growth speeds up to 10 cm/min were achieved. The web crystals were characterized by resistivity, lifetime and etch pit density data as well as by detailed solar cell I-V data. Solar cells ranged in efficiency from about 10 to 14.5% (AM-1) depending on growth conditions. Cells with lower efficiency displayed lowered bulk lifetime believed to be due to surface contamination.

  2. Life sciences, biotechnology, and microgravity

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Hayes, C.; Grindeland, R.; Lanhan, J. W.; Morrison, D.

    1987-01-01

    Growth hormone (GH) studies on rats flown aboard Spacelab 3 are discussed, and evidence for the direct effect of microgravity on cell function is reviewed. SL-3 rat GH cells were found to experience a secretory lesion (they contained more hormone per cell, but released less per cell relative to controls). Pituitary cell culture experiments on the STS-8 mission showed that GH cells did not subsequently release as much hormone as did control cells, indicating a secretory lesion. Changes in bone and muscle noted in SL-3 rats are related to GH cell findings.

  3. Development of novel microfluidic platforms for neural stem cell research

    NASA Astrophysics Data System (ADS)

    Chung, Bonggeun

    This dissertation describes the development and characterization of novel microfluidic platforms to study proliferation, differentiation, migration, and apoptosis of neural stem cells (NSCs). NSCs hold tremendous promise for fundamental biological studies and cell-based therapies in human disorders. NSCs are defined as cells that can self-renew yet maintain the ability to generate the three principal cell types of the central nervous system such as neurons, astrocytes, and oligodendrocytes. NSCs therefore have therapeutic possibilities in multiple neurodevelopmental and neurodegenerative diseases. Despite their promise, cell-based therapies are limited by the inability to precisely control their behavior in culture. Compared to traditional culture tools, microfluidic platforms can provide much greater control over cell microenvironments and optimize proliferation and differentiation conditions of cells exposed to combinatorial mixtures of growth factors. Human NSCs were cultured for more than 1 week in the microfluidic device while constantly exposed to a continuous gradient of a growth factor mixture. NSCs proliferated and differentiated in a graded and proportional fashion that varied directly with growth factor concentration. In parallel to the study of growth and differentiation of NSCs, we are interested in proliferation and apoptosis of mouse NSCs exposed to morphogen gradients. Morphogen gradients are fundamental to animal brain development. Nonetheless, much controversy remains about the mechanisms by which morphogen gradients act on the developing brain. To overcome limitations of in-vitro models of gradients, we have developed a hybrid microfluidic platform that can mimic morphogen gradient profiles. Bone morphogenetic protein (BMP) activity in the developing cortex is graded and cortical NSC responses to BMPs are highly dependent on concentration and gradient slope of BMPs. To make novel microfluidic devices integrated with multiple functions, we have also developed a microfluidic multi-injector (MMI) that can generate temporal and spatial concentration gradients. MMI consists of fluidic channels and control channels with pneumatically actuated on-chip barrier valves. Repetitive actuations of on-chip valves control pulsatile release of solution that establishes microscopic chemical gradients. The development of novel gradient-generating microfluidic platforms will help in advancing our understanding of brain development and provide a versatile tool with basic and applied studies in stem cell biology.

  4. Temperature dependence of protein solubility-determination, application to crystallization, and growth kinetics studies

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1993-01-01

    A scintillation method was developed for determinations of the temperature dependence of the solubility, and of nucleation induction times of proteins, in 50-100 mu(l) volumes of solution. Solubility data for lysozyme and horse serum albumin were obtained for various combinations of pH and precipitant concentrations. These data and the nucleation induction information were used for dynamic crystallization control, that is, for the controlled separation of nucleation and growth stages. Individual lysozyme and horse serum albumin crystals were grown in 15-20 mu(l) solution volumes contained in x-ray capillaries. The morphology and kinetics of the growth and dissolution of lysozyme in aqueous solutions with 2.5 percent NaCl and at pH = 4.5 was studied in situ with a depth resolution of 300 A (4 unit cells) by high resolution optical microscopy and digital image processing. The bulk super- or under saturation, sigma, of the solution inside a closed growth cell was controlled by temperature. The growth habit was bound by (110) and (101) faces that grew through layer spreading, although with different growth rate dependencies on supersaturation/temperature. At sigma less than 10 (obtained at higher temperatures) growth was purely kinetic ally controlled, with impurity effects (macrostep formation and kinetic hindrance) becoming significant for sigma less than 2. At sigma greater than 10 (lower temperatures), anisotropies in the interfacial kinetics were more pronounced, with interfacial kinetics and bulk transport becoming equally important to the growth morphology. Growth rates were growth history dependent. The formation of striations (layers of irregularly incorporated solution) was unambiguously correlated with growth temperature variations. Etching exposed dislocations and various high-index faces whose growth morphologies were studied during return to the steady state growth form. Growth steps were observed to originate from two-dimensional nuclei or from outcrops of growth striations, and from dislocations that preferentially formed in growth sector boundaries.

  5. EGF-mediated EGFR/ERK signaling pathway promotes germinative cell proliferation in Echinococcus multilocularis that contributes to larval growth and development

    PubMed Central

    Li, Xiu; Dai, Mengya; Wu, Jianjian; Guo, Xinrui; Tian, Huimin; Heng, Zhijie; Lu, Ying; Chai, Xiaoli

    2017-01-01

    Background Larvae of the tapeworm E. multilocularis cause alveolar echinococcosis (AE), one of the most lethal helminthic infections in humans. A population of stem cell-like cells, the germinative cells, is considered to drive the larval growth and development within the host. The molecular mechanisms controlling the behavior of germinative cells are largely unknown. Methodology/Principal findings Using in vitro cultivation systems we show here that the EGFR/ERK signaling in the parasite can promote germinative cell proliferation in response to addition of human EGF, resulting in stimulated growth and development of the metacestode larvae. Inhibition of the signaling by either the EGFR inhibitors CI-1033 and BIBW2992 or the MEK/ERK inhibitor U0126 impairs germinative cell proliferation and larval growth. Conclusions/Significance These data demonstrate the contribution of EGF-mediated EGFR/ERK signaling to the regulation of germinative cells in E. multilocularis, and suggest the EGFR/ERK signaling as a potential therapeutic target for AE and perhaps other human cestodiasis. PMID:28241017

  6. Linking stem cell function and growth pattern of intestinal organoids.

    PubMed

    Thalheim, Torsten; Quaas, Marianne; Herberg, Maria; Braumann, Ulf-Dietrich; Kerner, Christiane; Loeffler, Markus; Aust, Gabriela; Galle, Joerg

    2018-01-15

    Intestinal stem cells (ISCs) require well-defined signals from their environment in order to carry out their specific functions. Most of these signals are provided by neighboring cells that form a stem cell niche, whose shape and cellular composition self-organize. Major features of this self-organization can be studied in ISC-derived organoid culture. In this system, manipulation of essential pathways of stem cell maintenance and differentiation results in well-described growth phenotypes. We here provide an individual cell-based model of intestinal organoids that enables a mechanistic explanation of the observed growth phenotypes. In simulation studies of the 3D structure of expanding organoids, we investigate interdependences between Wnt- and Notch-signaling which control the shape of the stem cell niche and, thus, the growth pattern of the organoids. Similar to in vitro experiments, changes of pathway activities alter the cellular composition of the organoids and, thereby, affect their shape. Exogenous Wnt enforces transitions from branched into a cyst-like growth pattern; known to occur spontaneously during long term organoid expansion. Based on our simulation results, we predict that the cyst-like pattern is associated with biomechanical changes of the cells which assign them a growth advantage. The results suggest ongoing stem cell adaptation to in vitro conditions during long term expansion by stabilizing Wnt-activity. Our study exemplifies the potential of individual cell-based modeling in unraveling links between molecular stem cell regulation and 3D growth of tissues. This kind of modeling combines experimental results in the fields of stem cell biology and cell biomechanics constituting a prerequisite for a better understanding of tissue regeneration as well as developmental processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. c-myb stimulates cell growth by regulation of insulin-like growth factor (IGF) and IGF-binding protein-3 in K562 leukemia cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Min-Sun; Kim, Sun-Young; Arunachalam, Sankarganesh

    2009-07-17

    c-myb plays an important role in the regulation of cell growth and differentiation, and is highly expressed in immature hematopoietic cells. The human chronic myelogenous leukemia cell K562, highly expresses IGF-I, IGF-II, IGF-IR, and IGF-induced cellular proliferation is mediated by IGF-IR. To characterize the impact of c-myb on the IGF-IGFBP-3 axis in leukemia cells, we overexpressed c-myb using an adenovirus gene transfer system in K562 cells. The overexpression of c-myb induced cell proliferation, compared to control, and c-myb induced cell growth was inhibited by anti-IGF-IR antibodies. c-myb overexpression resulted in a significant increase in the expression of IGF-I, IGF-II, andmore » IGF-IR, and a decrease in IGFBP-3 expression. By contrast, disruption of c-myb function by DN-myb overexpression resulted in significant reduction of IGF-I, IGF-II, IGF-IR, and elevation of IGFBP-3 expression. In addition, exogenous IGFBP-3 inhibited the proliferation of K562 cells, and c-myb induced cell growth was blocked by IGFBP-3 overexpression in a dose-dependent manner. The growth-promoting effects of c-myb were mediated through two major intracellular signaling pathways, Akt and Erk. Activation of Akt and Erk by c-myb was completely blocked by IGF-IR and IGFBP-3 antibodies. These findings suggest that c-myb stimulates cell growth, in part, by regulating expression of the components of IGF-IGFBP axis in K562 cells. In addition, disruption of c-myb function by DN-myb may provide a useful strategy for treatment of leukemia.« less

  8. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice.

    PubMed

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Giao Ly, Nancy Ngoc; Nguy, Susanna; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Daley, Donnele; Barilla, Rocky; Tippens, Daniel; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Hajdu, Cristina; Pellicciotta, Ilenia; Oh, Philmo; Du, Kevin; Miller, George

    2016-06-01

    The role of radiation therapy in the treatment of patients with pancreatic ductal adenocarcinoma (PDA) is controversial. Randomized controlled trials investigating the efficacy of radiation therapy in patients with locally advanced unresectable PDA have reported mixed results, with effects ranging from modest benefit to worse outcomes compared with control therapies. We investigated whether radiation causes inflammatory cells to acquire an immune-suppressive phenotype that limits the therapeutic effects of radiation on invasive PDAs and accelerates progression of preinvasive foci. We investigated the effects of radiation therapy in p48(Cre);LSL-Kras(G12D) (KC) and p48(Cre);LSLKras(G12D);LSL-Trp53(R172H) (KPC) mice, as well as in C57BL/6 mice with orthotopic tumors grown from FC1242 cells derived from KPC mice. Some mice were given neutralizing antibodies against macrophage colony-stimulating factor 1 (CSF1 or MCSF) or F4/80. Pancreata were exposed to doses of radiation ranging from 2 to 12 Gy and analyzed by flow cytometry. Pancreata of KC mice exposed to radiation had a higher frequency of advanced pancreatic intraepithelial lesions and more foci of invasive cancer than pancreata of unexposed mice (controls); radiation reduced survival time by more than 6 months. A greater proportion of macrophages from radiation treated invasive and preinvasive pancreatic tumors had an immune-suppressive, M2-like phenotype compared with control mice. Pancreata from mice exposed to radiation had fewer CD8(+) T cells than controls, and greater numbers of CD4(+) T cells of T-helper 2 and T-regulatory cell phenotypes. Adoptive transfer of T cells from irradiated PDA to tumors of control mice accelerated tumor growth. Radiation induced production of MCSF by PDA cells. A neutralizing antibody against MCSF prevented radiation from altering the phenotype of macrophages in tumors, increasing the anti-tumor T-cell response and slowing tumor growth. Radiation treatment causes macrophages murine PDA to acquire an immune-suppressive phenotype and disabled T-cell-mediated anti-tumor responses. MCSF blockade negates this effect, allowing radiation to have increased efficacy in slowing tumor growth. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  9. PCOTH, a novel gene overexpressed in prostate cancers, promotes prostate cancer cell growth through phosphorylation of oncoprotein TAF-Ibeta/SET.

    PubMed

    Anazawa, Yoshio; Nakagawa, Hidewaki; Furihara, Mutsuo; Ashida, Shingo; Tamura, Kenji; Yoshioka, Hiroki; Shuin, Taro; Fujioka, Tomoaki; Katagiri, Toyomasa; Nakamura, Yusuke

    2005-06-01

    Through genome-wide cDNA microarray analysis coupled with microdissection of prostate cancer cells, we identified a novel gene, prostate collagen triple helix (PCOTH), showing overexpression in prostate cancer cells and its precursor cells, prostatic intraepithelial neoplasia (PIN). Immunohistochemical analysis using polyclonal anti-PCOTH antibody confirmed elevated expression of PCOTH, a 100-amino-acid protein containing collagen triple-helix repeats, in prostate cancer cells and PINs. Knocking down PCOTH expression by small interfering RNA (siRNA) resulted in drastic attenuation of prostate cancer cell growth, and concordantly, LNCaP derivative cells that were designed to constitutively express exogenous PCOTH showed higher growth rate than LNCaP cells transfected with mock vector, suggesting the growth-promoting effect of PCOTH on prostate cancer cell. To investigate the biological mechanisms of this growth-promoting effect, we applied two-dimensional differential gel electrophoresis (2D-DIGE) to analyze the phospho-protein fractions in LNCaP cells transfected with PCOTH. We found that the phosphorylation level of oncoprotein TAF-Ibeta/SET was significantly elevated in LNCaP cells transfected with PCOTH than control LNCaP cells, and these findings were confirmed by Western blotting and in-gel kinase assay. Furthermore, knockdown of endogenous TAF-Ibeta expression by siRNA also attenuated viability of prostate cancer cells as well. These findings suggest that PCOTH is involved in growth and survival of prostate cancer cells thorough, in parts, the TAF-Ibeta pathway, and that this molecule should be a promising target for development of new therapeutic strategies for prostate cancers.

  10. Nuclear organization mediates cancer-compromised genetic and epigenetic control.

    PubMed

    Zaidi, Sayyed K; Fritz, Andrew; Tracy, Kirsten; Gordon, Jonathan; Tye, Coralee; Boyd, Joseph; Van Wijnen, Andre; Nickerson, Jeffrey; Imbalzano, Anthony; Lian, Jane; Stein, Janet; Stein, Gary

    2018-05-09

    Nuclear organization is functionally linked to genetic and epigenetic regulation of gene expression for biological control and is modified in cancer. Nuclear organization supports cell growth and phenotypic properties of normal and cancer cells by facilitating physiologically responsive interactions of chromosomes, genes and regulatory complexes at dynamic three-dimensional microenvironments. We will review nuclear structure/function relationships that include: 1. Epigenetic bookmarking of genes by phenotypic transcription factors to control fidelity and plasticity of gene expression as cells enter and exit mitosis; 2. Contributions of chromatin remodeling to breast cancer nuclear morphology, metabolism and effectiveness of chemotherapy; 3. Relationships between fidelity of nuclear organization and metastasis of breast cancer to bone; 4. Dynamic modifications of higher-order inter- and intra-chromosomal interactions in breast cancer cells; 5. Coordinate control of cell growth and phenotype by tissue-specific transcription factors; 6. Oncofetal epigenetic control by bivalent histone modifications that are functionally related to sustaining the stem cell phenotype; and 7. Noncoding RNA-mediated regulation in the onset and progression of breast cancer. The discovery of components to nuclear organization that are functionally related to cancer and compromise gene expression have the potential for translation to innovative cancer diagnosis and targeted therapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. A Co-Receptor Independent Transgenic Human TCR Mediates Anti-Tumor and Anti-Self Immunity in Mice

    PubMed Central

    Mehrotra, Shikhar; Al-Khami, Amir A.; Klarquist, Jared; Husain, Shahid; Naga, Osama; Eby, Jonathan M.; Murali, Anuradha K.; Lyons, Gretchen E.; Li, Mingli; Spivey, Natali D.; Norell, Håkan; Martins da Palma, Telma; Onicescu, Georgiana; Diaz-Montero, C. Marcela; Garrett-Mayer, Elizabeth; Cole, David J.; Le Poole, I. Caroline; Nishimura, Michael I.

    2013-01-01

    Recent advancements in T cell immunotherapy suggest that T cells engineered with high affinity T cell receptors (TCR) can offer better tumor regression. However, whether a high affinity TCR alone is sufficient to control tumor growth, or the T cell subset bearing the TCR is also important remains unclear. Using the human tyrosinase epitope reactive, CD8 independent, high affinity TCR isolated from MHC class-I restricted CD4+ T cells obtained from tumor infiltrating lymphocytes of a metastatic melanoma patient, we developed a novel TCR transgenic mouse with a C57BL/6 background. This HLA-A2 restricted TCR was positively selected on both CD4+ and CD8+ single-positive (SP) cells. However, when the TCR transgenic mouse was developed with an HLA-A2 background, the transgenic TCR was primarily expressed by CD3+CD4-CD8- double-negative (DN) T cells. TIL 1383I TCR transgenic CD4+, CD8+ and CD4-CD8- T cells were functional and retained the ability to control tumor growth without the need for vaccination or cytokine support in vivo. Furthermore, the HLA-A2+/human tyrosinase TCR double transgenic mice developed spontaneous hair depigmentation and had visual defects that progressed with age. Our data show that the expression of the high affinity TIL 1383I TCR alone in CD3+ T cells is sufficient to control the growth of murine and human melanoma and the presence or absence of CD4 and CD8 co-receptors had little effect on its functional capacity. PMID:22798675

  12. Plant TOR signaling components

    PubMed Central

    John, Florian; Roffler, Stefan; Wicker, Thomas; Ringli, Christoph

    2011-01-01

    Cell growth is a process that needs to be tightly regulated. Cells must be able to sense environmental factors like nutrient abundance, the energy level or stress signals and coordinate growth accordingly. The Target Of Rapamycin (TOR) pathway is a major controller of growth-related processes in all eukaryotes. If environmental conditions are favorable, the TOR pathway promotes cell and organ growth and restrains catabolic processes like autophagy. Rapamycin is a specific inhibitor of the TOR kinase and acts as a potent inhibitor of TOR signaling. As a consequence, interfering with TOR signaling has a strong impact on plant development. This review summarizes the progress in the understanding of the biological significance and the functional analysis of the TOR pathway in plants. PMID:22057328

  13. Stem cell secretome-rich nanoclay hydrogel: a dual action therapy for cardiovascular regeneration

    NASA Astrophysics Data System (ADS)

    Waters, Renae; Pacelli, Settimio; Maloney, Ryan; Medhi, Indrani; Ahmed, Rafeeq P. H.; Paul, Arghya

    2016-03-01

    A nanocomposite hydrogel with photocrosslinkable micro-porous networks and a nanoclay component was successfully prepared to control the release of growth factor-rich stem cell secretome. The proven pro-angiogenic and cardioprotective potential of this new bioactive system provides a valuable therapeutic platform for cardiac tissue repair and regeneration.A nanocomposite hydrogel with photocrosslinkable micro-porous networks and a nanoclay component was successfully prepared to control the release of growth factor-rich stem cell secretome. The proven pro-angiogenic and cardioprotective potential of this new bioactive system provides a valuable therapeutic platform for cardiac tissue repair and regeneration. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07806g

  14. Chloroquine synergizes with FTS to enhance cell growth inhibition and cell death

    PubMed Central

    Schmukler, Eran; Wolfson, Eya; Haklai, Roni; Elad-Sfadia, Galit; Kloog, Yoel; Pinkas-Kramarski, Ronit

    2014-01-01

    The Ras family of small GTPases transmits extracellular signals that regulate cell growth, differentiation, motility and death. Ras signaling is constitutively active in a large number of human cancers. Ras can also regulate autophagy by affecting several signaling pathways including the mTOR pathway. Autophagy is a process that regulates the balance between protein synthesis and protein degradation. It is important for normal growth control, but may be defective in diseases. Previously, we have shown that Ras inhibition by FTS induces autophagy, which partially protects cancer cells and may limit the use of FTS as an anti-cancer drug. Since FTS is a non toxic drug we hypothesized that FTS and chloroquine (an autophagy inhibitor) will synergize in cell growth inhibition and cell death. Thus, in the present study, we explored the mechanism of each individual drug and their combined action. Our results demonstrate that in HCT-116 and in Panc-1 cells, FTS induces autophagy, which can be inhibited by chloroquine. Furthermore, the combined treatment synergistically decreased the number of viable cells. Interestingly, the combined treatment enhanced apoptotic cell death as indicated by increased sub-G1 cell population, increased Hoechst staining, activation of caspase 3, decrease in survivin expression and release of cytochrome c. Thus, chloroquine treatment may promote FTS-mediated inhibition of tumor cell growth and may stimulate apoptotic cell death. PMID:24368422

  15. Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation

    DOE PAGES

    Sutton, Amy; Shirman, Tanya; Timonen, Jaakko V. I.; ...

    2017-03-13

    Mechanical forces in the cell’s natural environment have a crucial impact on growth, differentiation and behaviour. Few areas of biology can be understood without taking into account how both individual cells and cell networks sense and transduce physical stresses. However, the field is currently held back by the limitations of the available methods to apply physiologically relevant stress profiles on cells, particularly with sub-cellular resolution, in controlled in vitro experiments. Here we report a new type of active cell culture material that allows highly localized, directional and reversible deformation of the cell growth substrate, with control at scales ranging frommore » the entire surface to the subcellular, and response times on the order of seconds. These capabilities are not matched by any other method, and this versatile material has the potential to bridge the performance gap between the existing single cell micro-manipulation and 2D cell sheet mechanical stimulation techniques.« less

  16. Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation

    PubMed Central

    Sutton, Amy; Shirman, Tanya; Timonen, Jaakko V. I.; England, Grant T; Kim, Philseok; Kolle, Mathias; Ferrante, Thomas; Zarzar, Lauren D; Strong, Elizabeth; Aizenberg, Joanna

    2017-01-01

    Mechanical forces in the cell’s natural environment have a crucial impact on growth, differentiation and behaviour. Few areas of biology can be understood without taking into account how both individual cells and cell networks sense and transduce physical stresses. However, the field is currently held back by the limitations of the available methods to apply physiologically relevant stress profiles on cells, particularly with sub-cellular resolution, in controlled in vitro experiments. Here we report a new type of active cell culture material that allows highly localized, directional and reversible deformation of the cell growth substrate, with control at scales ranging from the entire surface to the subcellular, and response times on the order of seconds. These capabilities are not matched by any other method, and this versatile material has the potential to bridge the performance gap between the existing single cell micro-manipulation and 2D cell sheet mechanical stimulation techniques. PMID:28287116

  17. Multiscale Modelling of Cancer Progression and Treatment Control: The Role of Intracellular Heterogeneities in Chemotherapy Treatment

    NASA Astrophysics Data System (ADS)

    Chaplain, Mark A. J.; Powathil, Gibin G.

    Cancer is a complex, multiscale process involving interactions at intracellular, intercellular and tissue scales that are in turn susceptible to microenvironmental changes. Each individual cancer cell within a cancer cell mass is unique, with its own internal cellular pathways and biochemical interactions. These interactions contribute to the functional changes at the cellular and tissue scale, creating a heterogenous cancer cell population. Anticancer drugs are effective in controlling cancer growth by inflicting damage to various target molecules and thereby triggering multiple cellular and intracellular pathways, leading to cell death or cell-cycle arrest. One of the major impediments in the chemotherapy treatment of cancer is drug resistance driven by multiple mechanisms, including multi-drug and cell-cycle mediated resistance to chemotherapy drugs. In this article, we discuss two hybrid multiscale modelling approaches, incorporating multiple interactions involved in the sub-cellular, cellular and microenvironmental levels to study the effects of cell-cycle, phase-specific chemotherapy on the growth and progression of cancer cells.

  18. Multiscale Modelling of Cancer Progression and Treatment Control: The Role of Intracellular Heterogeneities in Chemotherapy Treatment

    NASA Astrophysics Data System (ADS)

    Chaplain, Mark A. J.; Powathil, Gibin G.

    2015-04-01

    Cancer is a complex, multiscale process involving interactions at intracellular, intercellular and tissue scales that are in turn susceptible to microenvironmental changes. Each individual cancer cell within a cancer cell mass is unique, with its own internal cellular pathways and biochemical interactions. These interactions contribute to the functional changes at the cellular and tissue scale, creating a heterogenous cancer cell population. Anticancer drugs are effective in controlling cancer growth by inflicting damage to various target molecules and thereby triggering multiple cellular and intracellular pathways, leading to cell death or cell-cycle arrest. One of the major impediments in the chemotherapy treatment of cancer is drug resistance driven by multiple mechanisms, including multi-drug and cell-cycle mediated resistance to chemotherapy drugs. In this article, we discuss two hybrid multiscale modelling approaches, incorporating multiple interactions involved in the sub-cellular, cellular and microenvironmental levels to study the effects of cell-cycle, phase-specific chemotherapy on the growth and progression of cancer cells.

  19. Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, Amy; Shirman, Tanya; Timonen, Jaakko V. I.

    Mechanical forces in the cell’s natural environment have a crucial impact on growth, differentiation and behaviour. Few areas of biology can be understood without taking into account how both individual cells and cell networks sense and transduce physical stresses. However, the field is currently held back by the limitations of the available methods to apply physiologically relevant stress profiles on cells, particularly with sub-cellular resolution, in controlled in vitro experiments. Here we report a new type of active cell culture material that allows highly localized, directional and reversible deformation of the cell growth substrate, with control at scales ranging frommore » the entire surface to the subcellular, and response times on the order of seconds. These capabilities are not matched by any other method, and this versatile material has the potential to bridge the performance gap between the existing single cell micro-manipulation and 2D cell sheet mechanical stimulation techniques.« less

  20. A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension.

    PubMed

    Cavuoto, Paul; Fenech, Michael F

    2012-10-01

    Methionine is an essential amino acid with many key roles in mammalian metabolism such as protein synthesis, methylation of DNA and polyamine synthesis. Restriction of methionine may be an important strategy in cancer growth control particularly in cancers that exhibit dependence on methionine for survival and proliferation. Methionine dependence in cancer may be due to one or a combination of deletions, polymorphisms or alterations in expression of genes in the methionine de novo and salvage pathways. Cancer cells with these defects are unable to regenerate methionine via these pathways. Defects in the metabolism of folate may also contribute to the methionine dependence phenotype in cancer. Selective killing of methionine dependent cancer cells in co-culture with normal cells has been demonstrated using culture media deficient in methionine. Several animal studies utilizing a methionine restricted diet have reported inhibition of cancer growth and extension of a healthy life-span. In humans, vegan diets, which can be low in methionine, may prove to be a useful nutritional strategy in cancer growth control. The development of methioninase which depletes circulating levels of methionine may be another useful strategy in limiting cancer growth. The application of nutritional methionine restriction and methioninase in combination with chemotherapeutic regimens is the current focus of clinical studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. The preliminary study on the effects of growth hormone and insulin-like growth factor-I on κ-casein synthesis in bovine mammary epithelial cells in vitro.

    PubMed

    Wang, M Z; Ji, Y; Wang, C; Chen, L M; Wang, H R; Loor, J J

    2016-04-01

    The effects of growth hormone (GH) and insulin-like growth factor-I (IGF-I) on protein synthesis and gene expression of κ-casein in bovine mammary epithelial cell in vitro were studied. The treatments were designed as follows: the growth medium without serum was set as the control group, while the treatments were medium supplemented with GH (100 ng/ml), IGF-I (100 ng/ml), and GH (100 ng/ml) + IGF-I (100 ng/ml). The quantity of κ-casein protein was measured by ELISA, and the κ-casein gene (CSN3) expression was examined by real-time quantitative PCR (RT-qPCR). Compared with the control group, all the experimental groups had greater (p < 0.05) expression of CSN3. The concentration of κ-casein followed a similar response as CSN3, but the difference between the treatments and the control was not statistically significant (p > 0.05). Furthermore, no synergistic effect of GH and IGF-I was observed for both the κ-casein concentration and CSN3 expression. It is therefore concluded that GH or IGF-I can independently promote the expression of CSN3 in bovine mammary epithelial cells in vitro. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  2. Targeting Endothelial Cells with Multifunctional GaN/Fe Nanoparticles

    NASA Astrophysics Data System (ADS)

    Braniste, Tudor; Tiginyanu, Ion; Horvath, Tibor; Raevschi, Simion; Andrée, Birgit; Cebotari, Serghei; Boyle, Erin C.; Haverich, Axel; Hilfiker, Andres

    2017-08-01

    In this paper, we report on the interaction of multifunctional nanoparticles with living endothelial cells. The nanoparticles were synthesized using direct growth of gallium nitride on zinc oxide nanoparticles alloyed with iron oxide followed by core decomposition in hydrogen flow at high temperature. Using transmission electron microscopy, we demonstrate that porcine aortic endothelial cells take up GaN-based nanoparticles suspended in the growth medium. The nanoparticles are deposited in vesicles and the endothelial cells show no sign of cellular damage. Intracellular inert nanoparticles are used as guiding elements for controlled transportation or designed spatial distribution of cells in external magnetic fields.

  3. c-Myc plays a key role in TADs-induced apoptosis and cell cycle arrest in human hepatocellular carcinoma cells

    PubMed Central

    Zhang, Dongdong; Qi, Junpeng; Liu, Rui; Dai, Bingling; Ma, Weina; Zhan, Yingzhuan; Zhang, Yanmin

    2015-01-01

    Cancer cell growth is complicated progression which is regulated and controlled by multiple factors including cell cycle, migration and apoptosis. In present study, we report that TADs, a novel derivative of taspine, has an essential role in resisting hepatocellular carcinoma growth (including arrest cell cycle) and migration, and inducing cell apoptosis. Our findings demonstrated that the TADs showed good inhibition on the hepatoma cell growth and migration, and good action on apoptosis induction. Using genome-wide microarray analysis, we found the down-regulated growth and apoptosis factors, and selected down-regulated genes were confirmed by Western blot. Knockdown of a checkpoint c-Myc by siRNA significantly attenuated tumor inhibition and apoptosis effects of TADs. Moreover, our results indicated TADs could simultaneously increase cyclin D1 protein levels and decrease amount of cyclin E, cyclin B1 and cdc2 of the cycle proteins, and also TADs reduced Bcl-2 expression, and upregulated Bad, Bak and Bax activities. In conclusion, these results illustrated that TADs is a key factor in growth and apoptosis signaling inhibitor, has potential in cancer therapy. PMID:26045987

  4. Arabidopsis JAGGED links floral organ patterning to tissue growth by repressing Kip-related cell cycle inhibitors.

    PubMed

    Schiessl, Katharina; Muiño, Jose M; Sablowski, Robert

    2014-02-18

    Plant morphogenesis requires coordinated cytoplasmic growth, oriented cell wall extension, and cell cycle progression, but it is debated which of these processes are primary drivers for tissue growth and directly targeted by developmental genes. Here, we used ChIP high-throughput sequencing combined with transcriptome analysis to identify global target genes of the Arabidopsis transcription factor JAGGED (JAG), which promotes growth of the distal region of floral organs. Consistent with the roles of JAG during organ initiation and subsequent distal organ growth, we found that JAG directly repressed genes involved in meristem development, such as CLAVATA1 and HANABA TARANU, and genes involved in the development of the basal region of shoot organs, such as BLADE ON PETIOLE 2 and the GROWTH REGULATORY FACTOR pathway. At the same time, JAG regulated genes involved in tissue polarity, cell wall modification, and cell cycle progression. In particular, JAG directly repressed KIP RELATED PROTEIN 4 (KRP4) and KRP2, which control the transition to the DNA synthesis phase (S-phase) of the cell cycle. The krp2 and krp4 mutations suppressed jag defects in organ growth and in the morphology of petal epidermal cells, showing that the interaction between JAG and KRP genes is functionally relevant. Our work reveals that JAG is a direct mediator between genetic pathways involved in organ patterning and cellular functions required for tissue growth, and it shows that a regulatory gene shapes plant organs by releasing a constraint on S-phase entry.

  5. Different Amounts of DNA in Newborn Cells of Escherichia coli Preclude a Role for the Chromosome in Size Control According to the "Adder" Model.

    PubMed

    Huls, Peter G; Vischer, Norbert O E; Woldringh, Conrad L

    2018-01-01

    According to the recently-revived adder model for cell size control, newborn cells of Escherichia coli will grow and divide after having added a constant size or length, ΔL , irrespective of their size at birth. Assuming exponential elongation, this implies that large newborns will divide earlier than small ones. The molecular basis for the constant size increment is still unknown. As DNA replication and cell growth are coordinated, the constant ΔL could be based on duplication of an equal amount of DNA, ΔG , present in newborn cells. To test this idea, we measured amounts of DNA and lengths of nucleoids in DAPI-stained cells growing in batch culture at slow and fast rates. Deeply-constricted cells were divided in two subpopulations of longer and shorter lengths than average; these were considered to represent large and small prospective daughter cells, respectively. While at slow growth, large and small prospective daughter cells contained similar amounts of DNA, fast growing cells with multiforked replicating chromosomes, showed a significantly higher amount of DNA (20%) in the larger cells. This observation precludes the hypothesis that Δ L is based on the synthesis of a constant ΔG . Growth curves were constructed for siblings generated by asymmetric division and growing according to the adder model. Under the assumption that all cells at the same growth rate exhibit the same time between initiation of DNA replication and cell division (i.e., constant C+D -period), the constructions predict that initiation occurs at different sizes ( Li ) and that, at fast growth, large newborn cells transiently contain more DNA than small newborns, in accordance with the observations. Because the state of segregation, measured as the distance between separated nucleoids, was found to be more advanced in larger deeply-constricted cells, we propose that in larger newborns nucleoid separation occurs faster and at a shorter length, allowing them to divide earlier. We propose a composite model in which both differential initiation and segregation leads to an adder-like behavior of large and small newborn cells.

  6. Lactose/whey utilization and ethanol production by transformed Saccharomyces cerevisiae cells.

    PubMed

    Porro, D; Martegani, E; Ranzi, B M; Alberghina, L

    1992-04-05

    Strains of Saccharomyces cerevisiae transformed with a multicopy expression vector bearing both the Escherichia coli beta-galactosidase gene under the control of the upstream activating sequence of the GAL1-10 genes and the GAL4 activator gene release part of beta-galactosidase in the growth medium. This release is due to cell lysis of the older mother cells; the enzyme maintains its activity in buffered growth media. Fermentation studies with transformed yeast strains showed that the release of beta-galactosidase allowed an efficient growth on buffered media containing lactose as carbon source as well as on whey-based media. The transformed strains utilized up to 95% of the lactose and a high growth yield was obtained in rich media. High productions of ethanol were also observed in stationary phase after growth in lactose minimal media.

  7. Rice actin-binding protein RMD is a key link in the auxin-actin regulatory loop that controls cell growth.

    PubMed

    Li, Gang; Liang, Wanqi; Zhang, Xiaoqing; Ren, Haiyun; Hu, Jianping; Bennett, Malcolm J; Zhang, Dabing

    2014-07-15

    The plant hormone auxin plays a central role in plant growth and development. Auxin transport and signaling depend on actin organization. Despite its functional importance, the mechanistic link between actin filaments (F-actin) and auxin intracellular signaling remains unclear. Here, we report that the actin-organizing protein Rice Morphology Determinant (RMD), a type II formin from rice (Oryza sativa), provides a key link. Mutants lacking RMD display abnormal cell growth and altered configuration of F-actin array direction. The rmd mutants also exhibit an inhibition of auxin-mediated cell elongation, decreased polar auxin transport, altered auxin distribution gradients in root tips, and suppression of plasma membrane localization of auxin transporters O. sativa PIN-FORMED 1b (OsPIN1b) and OsPIN2 in root cells. We demonstrate that RMD is required for endocytosis, exocytosis, and auxin-mediated OsPIN2 recycling to the plasma membrane. Moreover, RMD expression is directly regulated by heterodimerized O. sativa auxin response factor 23 (OsARF23) and OsARF24, providing evidence that auxin modulates the orientation of F-actin arrays through RMD. In support of this regulatory loop, osarf23 and lines with reduced expression of both OsARF23 and OsARF24 display reduced RMD expression, disrupted F-actin organization and cell growth, less sensitivity to auxin response, and altered auxin distribution and OsPIN localization. Our findings establish RMD as a crucial component of the auxin-actin self-organizing regulatory loop from the nucleus to cytoplasm that controls rice cell growth and morphogenesis.

  8. Bioherbicides: Current knowledge on weed control mechanism.

    PubMed

    Radhakrishnan, Ramalingam; Alqarawi, Abdulaziz A; Abd Allah, Elsayed Fathi

    2018-04-17

    Weed control is a challenging event during crop cultivation. Integrated management, including the application of bioherbicides, is an emerging method for weed control in sustainable agriculture. Plant extracts, allelochemicals and some microbes are utilized as bioherbicides to control weed populations. Bioherbicides based on plants and microbes inhibit the germination and growth of weeds; however,few studies conducted in weed physiology. This review ascribes the current knowledge of the physiological changes in weeds that occur during the exposure to bioherbicides. Plant extracts or metabolites are absorbed by weed seeds, which initiates damage to the cell membrane, DNA, mitosis, amylase activity and other biochemical processes and delays or inhibits seed germination. The growth of weeds is also retarded due to low rates of root-cell division, nutrient uptake, photosynthetic pigment synthesis, and plant growth hormone synthesis, while the productions of reactive oxygen species (ROS) and stress-mediated hormones increase, including irregular antioxidant activity. However, lytic enzymes and toxic substances secreted from microbes degrade the weed seed coat and utilize the endosperm for survival, which inhibits seed germination. The microbes grow through the intercellular spaces to reach the root core, and the deposition of toxins in the cells affects cell division and cellular functions. Some of the metabolites of deleterious microbes cause disease, necrosis and chlorosis,which inhibit the germination and growth of weed seeds by suppressing photosynthesis and gibberellin activities and enhancing ROS, abscisic acid and ethylene. This review explains the effects of bioherbicides (derived from plants and microbes) on weed-plant physiology to elucidate their modes of action. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Single-cell analysis of S. cerevisiae growth recovery after a sublethal heat-stress applied during an alcoholic fermentation.

    PubMed

    Tibayrenc, Pierre; Preziosi-Belloy, Laurence; Ghommidh, Charles

    2011-06-01

    Interest in bioethanol production has experienced a resurgence in the last few years. Poor temperature control in industrial fermentation tanks exposes the yeast cells used for this production to intermittent heat stress which impairs fermentation efficiency. Therefore, there is a need for yeast strains with improved tolerance, able to recover from such temperature variations. Accordingly, this paper reports the development of methods for the characterization of Saccharomyces cerevisiae growth recovery after a sublethal heat stress. Single-cell measurements were carried out in order to detect cell-to-cell variability. Alcoholic batch fermentations were performed on a defined medium in a 2 l instrumented bioreactor. A rapid temperature shift from 33 to 43 °C was applied when ethanol concentration reached 50 g l⁻¹. Samples were collected at different times after the temperature shift. Single cell growth capability, lag-time and initial growth rate were determined by monitoring the growth of a statistically significant number of cells after agar medium plating. The rapid temperature shift resulted in an immediate arrest of growth and triggered a progressive loss of cultivability from 100 to 0.0001% within 8 h. Heat-injured cells were able to recover their growth capability on agar medium after a lag phase. Lag-time was longer and more widely distributed as the time of heat exposure increased. Thus, lag-time distribution gives an insight into strain sensitivity to heat-stress, and could be helpful for the selection of yeast strains of technological interest.

  10. Tax-dependent stimulation of G1 phase-specific cyclin-dependent kinases and increased expression of signal transduction genes characterize HTLV type 1-transformed T cells.

    PubMed

    Haller, K; Ruckes, T; Schmitt, I; Saul, D; Derow, E; Grassmann, R

    2000-11-01

    Human T cell leukemia virus protein induces T cells to permanent IL-2-dependent growth. These cells occasionally convert to factor independence. The viral oncoprotein Tax acts as an essential growth factor of transformed lymphocytes and stimulates the cell cycle in the G(1) phase. In T cells and fibroblasts Tax enhances the activity of the cyclin-dependent kinases (CDK) CDK4 and CDK6. These kinases, which require binding to cyclin D isotypes for their activity, control the G(1) phase. Coimmunoprecipitation from these cells revealed that Tax associates with cyclin D3/CDK6, suggesting a direct activation of this kinase. The CDK stimulation may account in part for the mitogenic Tax effect, which causes IL-2-dependent T cell growth by Tax. To address the conversion to IL-2-independent proliferation and to identify overexpressed genes, which contribute to the transformed growth, the gene expression patterns of HTLV-1-transformed T cells were compared with that of peripheral blood lymphocytes. Potentially overexpressed cDNAs were cloned, sequenced, and used to determine the RNA expression. Genes found to be up-regulated are involved in signal transduction (STAT5a, cyclin G(1), c-fgr, hPGT) and also glycoprotein synthesis (LDLC, ribophorin). Many of these are also activated during T cell activation and implicated in the regulation of growth and apoptosis. The transcription factor STAT5a, which is involved in IL-2 signaling, was strongly up-regulated only in IL-2-independent cells, thus suggesting that it contributes to factor-independent growth. Thus, the differentially expressed genes could cooperate with the Tax-induced cell cycle stimulation in the maintenance of IL-2-dependent and IL-2-independent growth of HTLV-transformed lymphocytes.

  11. Synergism between inositol polyphosphates and TOR kinase signaling in nutrient sensing, growth control and lipid metabolism in Chlamydomonas.

    PubMed

    Couso, Inmaculada; Evans, Bradley; Li, Jia; Liu, Yu; Ma, Fangfang; Diamond, Spencer; Allen, Doug K; Umen, James G

    2016-09-06

    The networks that govern carbon metabolism and control intracellular carbon partitioning in photosynthetic cells are poorly understood. Target of rapamycin (TOR) kinase is a conserved growth regulator that integrates nutrient signals and modulates cell growth in eukaryotes, though the TOR signaling pathway in plants and algae has yet to be completely elucidated. We screened the unicellular green alga Chlamydomonas using insertional mutagenesis to find mutants that conferred hypersensitivity to the TOR inhibitor rapamycin. We characterized one mutant, vip1-1, that is predicted to encode a conserved inositol hexakisphosphate kinase from the VIP family that pyrophosphorylates phytic acid (InsP6) to produce the low abundance signaling molecules InsP7 and InsP8. Unexpectedly, the rapamycin hypersensitive growth arrest of vip1-1 cells was dependent on the presence of external acetate, which normally has a growth-stimulatory effect on Chlamydomonas. vip1-1 mutants also constitutively over-accumulated triacylglycerols (TAGs) in a manner that was synergistic with other TAG inducing stimuli such as starvation. vip1-1 cells had reduced InsP7 and InsP8, both of which are dynamically modulated in wild-type cells by TOR kinase activity and the presence of acetate. Our data uncover an interaction between the TOR kinase and inositol polyphosphate signaling systems that we propose governs carbon metabolism and intracellular pathways that lead to storage lipid accumulation. {copyright, serif} 2016 American Society of Plant Biologists. All rights reserved.

  12. The integrity of the plant Golgi apparatus depends on cell growth-controlled activity of GNL1.

    PubMed

    Du, Wenyan; Tamura, Kentaro; Stefano, Giovanni; Brandizzi, Federica

    2013-05-01

    Membrane traffic and organelle integrity in the plant secretory pathway depend on ARF-GTPases, which are activated by guanine-nucleotide exchange factors (ARF-GEFs). While maintenance of conserved roles, evolution of unique functions as well as tissue-specific roles have been shown for a handful of plant ARF-GEFs, a fundamental yet unanswered question concerns the extent to which their function overlaps during cell growth. To address this, we have characterized pao, a novel allele of GNOM-like 1 (GNL1), a brefeldin A (BFA)-insensitive ARF-GEF, isolated through a confocal microscopy-based forward genetics screen of the Golgi in Arabidopsis thaliana. Specifically, we have analyzed the dependence of the integrity of trafficking routes and secretory organelles on GNL1 availability during expansion stages of cotyledon epidermal cells, an exquisite model system for vegetative cell growth analyses in intact tissues. We show that Golgi traffic is influenced largely by GNL1 availability at early stages of cotyledon cell expansion but by BFA-sensitive GEFs when cell growth terminates. These data reveal an unanticipated level of complexity in the biology of GNL1 by showing that its cellular roles are correlated with cell growth. These results also indicate that the cell growth stage is an important element weighting into functional analyses of the cellular roles of ARF-GEFs.

  13. CP-31398 prevents the growth of p53-mutated colorectal cancer cells in vitro and in vivo.

    PubMed

    He, Xingxing; Kong, Xinjuan; Yan, Junwei; Yan, Jingjun; Zhang, Yunan; Wu, Qian; Chang, Ying; Shang, Haitao; Dou, Qian; Song, Yuhu; Liu, Fang

    2015-03-01

    Rescuing the function of mutant p53 protein is an attractive cancer therapeutic strategy. Small molecule CP-31398 was shown to restore mutant p53 tumor suppressor functions in cancer cells. Here, we determined the effects of CP-31398 on the growth of p53-mutated colorectal cancer (CRC) cells in vitro and in vivo. CRC cells which carry p53 mutation in codon 273 were treated with CP-31398 and the control, and the effects of CP-31398 on cell cycle, cell apoptosis, and proliferation were determined. The expression of p53-responsive downstream genes was evaluated by quantitative reverse transcriptase PCR (RT-PCR) and Western blot. CP-31398 was administrated into xenograft tumors created by the inoculation of HT-29 cells, and then the effect of CP-31398 on the growth of xenograft tumors was examined. CP-31398 induced p53 downstream target molecules in cultured HT-29 cells, which resulted in the inhibition of CRC cell growth assessed by the determination of cell cycle, apoptosis, and cell proliferation. In xenograft tumors, CP-31398 modulated the expression of Bax, Bcl-2, caspase 3, cyclin D, and Mdm2 and then blocked the growth of xenograft tumors. CP-31398 would be developed as a therapeutic candidate for p53-mutated CRC due to the restoration of mutant p53 tumor suppressor functions.

  14. ABT-510 induces tumor cell apoptosis and inhibits ovarian tumor growth in an orthotopic, syngeneic model of epithelial ovarian cancer

    PubMed Central

    Greenaway, James; Henkin, Jack; Lawler, Jack; Moorehead, Roger; Petrik, Jim

    2012-01-01

    Epithelial ovarian cancer (EOC) is the fifth most common cancer in women and is characterized by a low 5-year survival rate. One strategy that can potentially improve the overall survival rate in ovarian cancer is the use of antitumor agents such as ABT-510. ABT-510 is a small mimetic peptide of the naturally occurring antiangiogenic compound thrombospondin-1 and has been shown to significantly reduce tumor growth and burden in preclinical mouse models and in naturally occurring tumors in dogs. This is the first evaluation of ABT-510 in a preclinical model of human EOC. Tumorigenic mouse surface epithelial cells were injected into the bursa of C57BL/6 mice that were treated with either 100 mg/kg ABT-510 or an equivalent amount of PBS. ABT-510 caused a significant reduction in tumor size, ascites fluid volume, and secondary lesion dissemination when compared with PBS controls. Analysis of the vasculature of ABT-510-treated mice revealed vascular remodeling with smaller diameter vessels and lower overall area, increased number of mature vessels, and decreased tissue hypoxia. Tumors of ABT-510-treated mice had a significantly higher proportion of apoptotic tumor cells compared with the PBS-treated controls. Immunoblot analysis of cell lysates revealed a reduction in vascular endothelial growth factor, vascular endothelial growth factor receptor-2, and proliferating cell nuclear antigen protein expression as well as expression of members of the phosphatidylinositol 3-kinase and mitogen-activated protein kinase survival pathways. In vitro, ABT-510 induced tumor cell apoptosis in mouse and human ovarian cancer cells. This study shows ABT-510 as a promising candidate for inhibiting tumor growth and ascites formation in human EOC. PMID:19139114

  15. ABT-510 induces tumor cell apoptosis and inhibits ovarian tumor growth in an orthotopic, syngeneic model of epithelial ovarian cancer.

    PubMed

    Greenaway, James; Henkin, Jack; Lawler, Jack; Moorehead, Roger; Petrik, Jim

    2009-01-01

    Epithelial ovarian cancer (EOC) is the fifth most common cancer in women and is characterized by a low 5-year survival rate. One strategy that can potentially improve the overall survival rate in ovarian cancer is the use of antitumor agents such as ABT-510. ABT-510 is a small mimetic peptide of the naturally occurring antiangiogenic compound thrombospondin-1 and has been shown to significantly reduce tumor growth and burden in preclinical mouse models and in naturally occurring tumors in dogs. This is the first evaluation of ABT-510 in a preclinical model of human EOC. Tumorigenic mouse surface epithelial cells were injected into the bursa of C57BL/6 mice that were treated with either 100 mg/kg ABT-510 or an equivalent amount of PBS. ABT-510 caused a significant reduction in tumor size, ascites fluid volume, and secondary lesion dissemination when compared with PBS controls. Analysis of the vasculature of ABT-510-treated mice revealed vascular remodeling with smaller diameter vessels and lower overall area, increased number of mature vessels, and decreased tissue hypoxia. Tumors of ABT-510-treated mice had a significantly higher proportion of apoptotic tumor cells compared with the PBS-treated controls. Immunoblot analysis of cell lysates revealed a reduction in vascular endothelial growth factor, vascular endothelial growth factor receptor-2, and proliferating cell nuclear antigen protein expression as well as expression of members of the phosphatidylinositol 3-kinase and mitogen-activated protein kinase survival pathways. In vitro, ABT-510 induced tumor cell apoptosis in mouse and human ovarian cancer cells. This study shows ABT-510 as a promising candidate for inhibiting tumor growth and ascites formation in human EOC.

  16. Additive effects of inflammation and stress reaction on Toll-like receptor 4-mediated growth of endometriotic stromal cells.

    PubMed

    Khan, Khaleque Newaz; Kitajima, Michio; Inoue, Tsuneo; Tateishi, Seiko; Fujishita, Akira; Nakashima, Masahiro; Masuzaki, Hideaki

    2013-10-01

    Is there any combined effect between inflammation and stress reaction on Toll-like receptor 4 (TLR4)-mediated growth of endometriotic cells? A combined effect of local inflammation and stress reaction in the pelvic environment may be involved in TLR4-mediated growth of endometriotic stromal cells. In endometriosis, higher endotoxin levels in the menstrual fluid (MF) and peritoneal fluid (PF) and higher tissue concentrations of human heat shock protein 70 (HSP70) in the eutopic and ectopic endometria promote TLR4-mediated growth of endometriotic cells. This is a case-controlled research study with prospective collection and retrospective evaluation of sera, MF, PF and endometrial tissues from 43 women with and 20 women without endometriosis. PF was collected from 43 women with endometriosis and 20 control women during laparoscopy. Sera and endometrial biopsy specimens were collected from a proportion of these women. MF was collected from a separate population of 20 women with endometriosis and 15 control women. HSP70 concentrations in sera, MF, PF and in culture media were measured by ELISA. Gene expression of HSP70 by endometrial cells in response to lipopolysaccharide (LPS) was examined by qRT-PCR. The individual and combined effects of LPS and HSP70 on the secretion of interleukin-6 (IL-6) and tumor necrosis factor α (TNFα) by PF-derived macrophages (M[Symbol: see text]) were examined by ELISA, while their effects on endometrial cell proliferation were examined by bromodeoxyuridine and [(3)H]-thymidine incorporation assay. Concentrations of HSP70 were maximal in MF, intermediate in PF and the lowest in sera. In MF and PF, HSP70 levels were higher in women with endometriosis than in controls. LPS stimulated gene expression and secretion of HSP70 by eutopic endometrial stromal cells (ESCs) and this effect was abrogated after pretreatment of cells with an anti-TLR4 antibody. This effect was significantly higher for ESCs derived from women with endometriosis than for ESCs from control women. Exogenous treatment with either HSP70 or LPS significantly stimulated the production of IL-6 and TNFα by M[Symbol: see text] and promoted the proliferation of ESCs, and a significant additive effect between LPS and HSP70 was observed. While individual treatment with either polymyxin B, an LPS antagonist, or anti-HSP70 antibody was unable to suppress the combined effects of LPS and HSP70 on cytokine secretion or ESC proliferation, pretreatment of cells with the anti-TLR4 antibody was able to significantly suppress their combined effects. Further studies are needed to examine the mutual role between other secondary inflammatory mediators and endogenous stress proteins in promoting pelvic inflammation and growth of endometriotic stromal cells. Our findings suggest that endotoxin and HSP70 are mutually involved in a stress reaction and in inflammation. A combined effect between local inflammation and a stress reaction in pelvic environment may be involved in TLR4-mediated growth of endometriotic cells. Since endometriosis is a multi-factorial disease, it is difficult to explain uniformly its growth regulation by a single factor. Our findings may provide some new insights in understanding the physiopathology or pathogenesis of endometriosis and may hold new therapeutic potential. This work was supported by Grants-in-Aid for Scientific Research (grant no. 16591671 and 18591837) from the Ministry of Education, Sports, Culture, Science and Technology of Japan (to K.N.K.). There is no conflict of interest related to this study. Not applicable.

  17. Effect of saw palmetto extract on PI3K cell signaling transduction in human glioma.

    PubMed

    Yang, Yang; Hui, Lv; Yuqin, Che; Jie, Li; Shuai, Hou; Tiezhu, Zhou; Wei, Wang

    2014-08-01

    Saw palmetto extract can induce the apoptosis of prostate cancer cells. The aim of the present study was to investigate the effect of saw palmetto extract on the phosphatidylinositol 3-kinase (PI3K)/Akt signaling transduction pathway in human glioma U87 and U251 cell lines. Suspensions of U87 and U251 cells in a logarithmic growth phase were seeded into six-well plates at a density of 10 4 cells/well. In the experimental group, 1 μl/ml saw palmetto extract was added, while the control group was cultured without a drug for 24 h. The expression levels of PI3K, B-cell lymphoma-extra large (Bcl-xL) and p53 were evaluated through western blot analysis. In the experimental group, the U87 and U251 cells exhibited a lower expression level of PI3K protein as compared with the control group (t=6.849; P<0.001). In addition, the two cell lines had a higher expression level of p53 protein in the experimental group as compared with the control group (t=40.810; P<0.001). Protein expression levels of Bcl-xL decreased significantly in the experimental group as compared with the control group (t=19.640; P=0.000). Therefore, saw palmetto extract induces glioma cell growth arrest and apoptosis via decreasing PI3K/Akt signal transduction.

  18. Cationic ferritin uptake by cultured anterior pituitary cells treated with the proteinase inhibitor, BOC-DPhe-Phe-Lys-H.

    PubMed

    Gaál, G; Bácsy, E; Rappay, G

    1988-01-01

    Cultured cells from the anterior pituitary glands of adult rats were treated with the tripeptide aldehyde proteinase inhibitor, BOC-DPhe-Phe-Lys-H. The addition of this tripeptide aldehyde decreased the in vitro release of prolactin to 25% of the control value, while the release of growth hormone in the same cultures decreased to 33% of the control value. Prolactin immunostaining was stronger in semithin sections of proteinase-inhibitor-treated cultures than in control sections. After 2 h treatment with the inhibitor, prolactin- and growth hormone-containing secretory granules were numerous, and the number of crinophagic vacuoles had increased. In the presence of the inhibitor, the overall cytoarchitecture of parenchymal cells was well preserved, and the pathway of the uptake of cationic ferritin appeared to be unaffected.

  19. Cytotoxic effects of polybasic acids, poly(alkenoic acid)s, and the monomers with various functional groups on human pulp fibroblasts.

    PubMed

    Kurata, Shigeaki; Morishita, Kumiko; Kawase, Toshio; Umemoto, Kozo

    2011-01-01

    This study evaluated the cytotoxicity of various polybasic acids, poly(alkenoic acid)s, and the monomers with various acidic functional groups such as carboxyl, phosphoryl, and sulfo group. The cell growth of fibroblasts cultivated in medium containing polybasic acids and polymers up to the concentration to 5 mmol/L was not significantly different compared with that of control without their acids. On the other hand, the cell growth fibroblasts cultivated in medium containing 1 mmol/L of the monomers with acryloyloxy and phosphoryl or carboxyl group decreased remarkably compared with that of the control and the cells were probably lifeless. Those exposed to the monomers with a ether bond and a carboxyl group or a amide bond and a sulfo group was not significantly different compared with that of control.

  20. Delivering growth factors through a polymeric scaffold to cell cultures containing both nucleus pulposus and annulus fibrosus.

    PubMed

    Akyuva, Yener; Kaplan, Necati; Yilmaz, Ibrahim; Ozbek, Hanefi; Sirin, Duygu Yasar; Karaaslan, Numan; Guler, Olcay; Ateş, Özkan

    2018-04-09

    The aim of this in vitro experimental study was to design a novel, polyvinyl alcohol(PVA)-basedpolymericscaffold that permits the controlled release of insulin-likegrowthfactor1(IGF-1)/bonemorphogenetic protein-2(BMP-2) following intervertebral disc administration. The drug delivery system was composed of two different solutions that formed a scaffold within seconds after coming into contact with each other. We performed swelling,pH,temperature tests and analysis of the controlled release of growth factors from this system.The release kinetics of the growth factors was determined through enzyme linked immunosorbent assay(ELISA). Cell proliferation and viability was monitored with microscopy and analyzed using an MTT assay and acridine orange/propidium iodide(AO/PI) staining. Chondroadherin(CHAD), hypoxiainduciblefactor-1alpha(HIF-1α),collagentypeII(COL2A1) gene expressions were determined with quantitative real-timepolymerasechainreaction(qRT-PCR) analysis to show the effects of IGF-1/BMP-2 administration on annulus fibrosus cell(AFC)/nucleus pulposus cell(NPC) cultures. The scaffold allowed for the controlled release of IGF-1 and BMP-2 in different time intervals. It was observed that as the application time increased, the number of cells and the degree of extracellular matrix development increased in AFC/NPC cultures. AO/PI staining and an MTT analysis showed that cells retained their specific morphology and continued to proliferate. It was observed that HIF-1α and CHAD expression increased in a time-dependent manner, and there wasn't any COL2A1 expression in the AFC/NPC cultures. The designed scaffold may be used as an alternative method for intervertebral disc administration of growth factors after further in vivo studies. We believe that such prototype scaffolds may be an innovative technology in targeted drug therapies after reconstructive neurosurgeries.

  1. Active Control of pH in the Bioculture System Through Carbon Dioxide Control

    NASA Technical Reports Server (NTRS)

    Monhollon, Luke; Pletcher, David; Hauss, Jessica

    2016-01-01

    For successful cell research, the growth culture environment must be tightly controlled. Deviance from the optimal conditions will mask the desired variable being analyzed or lead to inconstancies in the results. In standard laboratories, technology and procedures are readily available for the reliable control of variables such as temperature, pH, nutrient loading, and dissolved gases. Due to the nature of spaceflight, and the inherent constraints to engineering designs, these same elements become a challenge to maintain at stable values by both automated and manual approaches. Launch mass, volume, and power usage create significant constraints to cell culture systems; nonetheless, innovative solutions for active environmental controls are available. The acidity of the growth media cannot be measured through standard probes due to the degradation of electrodes and reliance on indicators for chromatography. Alternatively, carbon dioxide sensors are capable of monitoring the pH by leveraging the relationship between the partial pressure of carbon dioxide and carbonic acid in solution across a membrane. In microgravity cell growth systems, the gas delivery system can be used to actively maintain the media at the proper acidity by maintaining a suitable gas mixture around permeable tubing. Through this method, launch mass and volume are significantly reduced through the efficient use of the limited gas supply in orbit.

  2. Automatic Control of Gene Expression in Mammalian Cells.

    PubMed

    Fracassi, Chiara; Postiglione, Lorena; Fiore, Gianfranco; di Bernardo, Diego

    2016-04-15

    Automatic control of gene expression in living cells is paramount importance to characterize both endogenous gene regulatory networks and synthetic circuits. In addition, such a technology can be used to maintain the expression of synthetic circuit components in an optimal range in order to ensure reliable performance. Here we present a microfluidics-based method to automatically control gene expression from the tetracycline-inducible promoter in mammalian cells in real time. Our approach is based on the negative-feedback control engineering paradigm. We validated our method in a monoclonal population of cells constitutively expressing a fluorescent reporter protein (d2EYFP) downstream of a minimal CMV promoter with seven tet-responsive operator motifs (CMV-TET). These cells also constitutively express the tetracycline transactivator protein (tTA). In cells grown in standard growth medium, tTA is able to bind the CMV-TET promoter, causing d2EYFP to be maximally expressed. Upon addition of tetracycline to the culture medium, tTA detaches from the CMV-TET promoter, thus preventing d2EYFP expression. We tested two different model-independent control algorithms (relay and proportional-integral (PI)) to force a monoclonal population of cells to express an intermediate level of d2EYFP equal to 50% of its maximum expression level for up to 3500 min. The control input is either tetracycline-rich or standard growth medium. We demonstrated that both the relay and PI controllers can regulate gene expression at the desired level, despite oscillations (dampened in the case of the PI controller) around the chosen set point.

  3. Controlled Growth and the Maintenance of Human Pluripotent Stem Cells by Cultivation with Defined Medium on Extracellular Matrix-Coated Micropatterned Dishes

    PubMed Central

    Takenaka, Chiemi; Miyajima, Hiroshi; Yoda, Yusuke; Imazato, Hideo; Yamamoto, Takako; Gomi, Shinichi; Ohshima, Yasuhiro; Kagawa, Kenichi; Sasaki, Tetsuji; Kawamata, Shin

    2015-01-01

    Here, we introduce a new serum-free defined medium (SPM) that supports the cultivation of human pluripotent stem cells (hPSCs) on recombinant human vitronectin-N (rhVNT-N)-coated dishes after seeding with either cell clumps or single cells. With this system, there was no need for an intervening sequential adaptation process after moving hPSCs from feeder layer-dependent conditions. We also introduce a micropatterned dish that was coated with extracellular matrix by photolithographic technology. This procedure allowed the cultivation of hPSCs on 199 individual rhVNT-N-coated small round spots (1 mm in diameter) on each 35-mm polystyrene dish (termed “patterned culture”), permitting the simultaneous formation of 199 uniform high-density small-sized colonies. This culture system supported controlled cell growth and maintenance of undifferentiated hPSCs better than dishes in which the entire surface was coated with rhVNT-N (termed “non-patterned cultures”). Non-patterned cultures produced variable, unrestricted cell proliferation with non-uniform cell growth and uneven densities in which we observed downregulated expression of some self-renewal-related markers. Comparative flow cytometric studies of the expression of pluripotency-related molecules SSEA-3 and TRA-1-60 in hPSCs from non-patterned cultures and patterned cultures supported this concept. Patterned cultures of hPSCs allowed sequential visual inspection of every hPSC colony, giving an address and number in patterned culture dishes. Several spots could be sampled for quality control tests of production batches, thereby permitting the monitoring of hPSCs in a single culture dish. Our new patterned culture system utilizing photolithography provides a robust, reproducible and controllable cell culture system and demonstrates technological advantages for the mass production of hPSCs with process quality control. PMID:26115194

  4. Stable MOB1 interaction with Hippo/MST is not essential for development and tissue growth control.

    PubMed

    Kulaberoglu, Yavuz; Lin, Kui; Holder, Maxine; Gai, Zhongchao; Gomez, Marta; Assefa Shifa, Belul; Mavis, Merdiye; Hoa, Lily; Sharif, Ahmad A D; Lujan, Celia; Smith, Ewan St John; Bjedov, Ivana; Tapon, Nicolas; Wu, Geng; Hergovich, Alexander

    2017-09-25

    The Hippo tumor suppressor pathway is essential for development and tissue growth control, encompassing a core cassette consisting of the Hippo (MST1/2), Warts (LATS1/2), and Tricornered (NDR1/2) kinases together with MOB1 as an important signaling adaptor. However, it remains unclear which regulatory interactions between MOB1 and the different Hippo core kinases coordinate development, tissue growth, and tumor suppression. Here, we report the crystal structure of the MOB1/NDR2 complex and define key MOB1 residues mediating MOB1's differential binding to Hippo core kinases, thereby establishing MOB1 variants with selective loss-of-interaction. By studying these variants in human cancer cells and Drosophila, we uncovered that MOB1/Warts binding is essential for tumor suppression, tissue growth control, and development, while stable MOB1/Hippo binding is dispensable and MOB1/Trc binding alone is insufficient. Collectively, we decrypt molecularly, cell biologically, and genetically the importance of the diverse interactions of Hippo core kinases with the pivotal MOB1 signal transducer.The Hippo tumor suppressor pathway is essential for development and tissue growth control. Here the authors employ a multi-disciplinary approach to characterize the interactions of the three Hippo kinases with the signaling adaptor MOB1 and show how they differently affect development, tissue growth and tumor suppression.

  5. Intrauterine growth restriction decreases pulmonary alveolar and vessel growth and causes pulmonary artery endothelial cell dysfunction in vitro in fetal sheep

    PubMed Central

    Seedorf, Gregory J.; Brown, Alicia; Roe, Gates; O'Meara, Meghan C.; Gien, Jason; Tang, Jen-Ruey; Abman, Steven H.

    2011-01-01

    Intrauterine growth restriction (IUGR) increases the risk for bronchopulmonary dysplasia (BPD). Abnormal lung structure has been noted in animal models of IUGR, but whether IUGR adversely impacts fetal pulmonary vascular development and pulmonary artery endothelial cell (PAEC) function is unknown. We hypothesized that IUGR would decrease fetal pulmonary alveolarization, vascular growth, and in vitro PAEC function. Studies were performed in an established model of severe placental insufficiency and IUGR induced by exposing pregnant sheep to elevated temperatures. Alveolarization, quantified by radial alveolar counts, was decreased 20% (P < 0.005) in IUGR fetuses. Pulmonary vessel density was decreased 44% (P < 0.01) in IUGR fetuses. In vitro, insulin increased control PAEC migration, tube formation, and nitric oxide (NO) production. This response was absent in IUGR PAECs. VEGFA stimulated tube formation, and NO production also was absent. In control PAECs, insulin increased cell growth by 68% (P < 0.0001). Cell growth was reduced in IUGR PAECs by 29% at baseline (P < 0.01), and the response to insulin was attenuated (P < 0.005). Despite increased basal and insulin-stimulated Akt phosphorylation in IUGR PAECs, endothelial NO synthase (eNOS) protein expression as well as basal and insulin-stimulated eNOS phosphorylation were decreased in IUGR PAECs. Both VEGFA and VEGFR2 also were decreased in IUGR PAECs. We conclude that fetuses with IUGR are characterized by decreased alveolar and vascular growth and PAEC dysfunction in vitro. This may contribute to the increased risk for adverse respiratory outcomes and BPD in infants with IUGR. PMID:21873446

  6. A nonlinear competitive model of the prostate tumor growth under intermittent androgen suppression.

    PubMed

    Yang, Jing; Zhao, Tong-Jun; Yuan, Chang-Qing; Xie, Jing-Hui; Hao, Fang-Fang

    2016-09-07

    Hormone suppression has been the primary modality of treatment for prostate cancer. However long-term androgen deprivation may induce androgen-independent (AI) recurrence. Intermittent androgen suppression (IAS) is a potential way to delay or avoid the AI relapse. Mathematical models of tumor growth and treatment are simple while they are capable of capturing the essence of complicated interactions. Game theory models have analyzed that tumor cells can enhance their fitness by adopting genetically determined survival strategies. In this paper, we consider the survival strategies as the competitive advantage of tumor cells and propose a new model to mimic the prostate tumor growth in IAS therapy. Then we investigate the competition effect in tumor development by numerical simulations. The results indicate that successfully IAS-controlled states can be achieved even though the net growth rate of AI cells is positive for any androgen level. There is crucial difference between the previous models and the new one in the phase diagram of successful and unsuccessful tumor control by IAS administration, which means that the suggestions from the models for medication can be different. Furthermore we introduce quadratic logistic terms to the competition model to simulate the tumor growth in the environment with a finite carrying capacity considering the nutrients or inhibitors. The simulations show that the tumor growth can reach an equilibrium state or an oscillatory state with the net growth rate of AI cells being androgen independent. Our results suggest that the competition and the restraint of a limited environment can enhance the possibility of relapse prevention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Phosphorylation and activation of ubiquitin-specific protease-14 by Akt regulates the ubiquitin-proteasome system

    PubMed Central

    Xu, Daichao; Shan, Bing; Lee, Byung-Hoon; Zhu, Kezhou; Zhang, Tao; Sun, Huawang; Liu, Min; Shi, Linyu; Liang, Wei; Qian, Lihui; Xiao, Juan; Wang, Lili; Pan, Lifeng; Finley, Daniel; Yuan, Junying

    2015-01-01

    Regulation of ubiquitin-proteasome system (UPS), which controls the turnover of short-lived proteins in eukaryotic cells, is critical in maintaining cellular proteostasis. Here we show that USP14, a major deubiquitinating enzyme that regulates the UPS, is a substrate of Akt, a serine/threonine-specific protein kinase critical in mediating intracellular signaling transducer for growth factors. We report that Akt-mediated phosphorylation of USP14 at Ser432, which normally blocks its catalytic site in the inactive conformation, activates its deubiquitinating activity in vitro and in cells. We also demonstrate that phosphorylation of USP14 is critical for Akt to regulate proteasome activity and consequently global protein degradation. Since Akt can be activated by a wide range of growth factors and is under negative control by phosphoinosotide phosphatase PTEN, we suggest that regulation of UPS by Akt-mediated phosphorylation of USP14 may provide a common mechanism for growth factors to control global proteostasis and for promoting tumorigenesis in PTEN-negative cancer cells. DOI: http://dx.doi.org/10.7554/eLife.10510.001 PMID:26523394

  8. Use of Fenbendazole-Containing Therapeutic Diets for Mice in Experimental Cancer Therapy Studies

    PubMed Central

    Duan, Qiwen; Liu, Yanfeng; Booth, Carmen J; Rockwell, Sara

    2012-01-01

    Pinworm infection (oxyuriasis) is a common problem in rodent colonies. Facility-wide prophylactic treatment of all mice with a diet containing therapeutic levels of fenbendazole for several weeks is often used to control pinworm outbreaks. We examined the effect of feeding a therapeutic diet containing 150 ppm fenbendazole on the growth of EMT6 mouse mammary tumors implanted into BALB/c Rw mice. Mice were randomized to receive either a fenbendazole-containing or control diet for 1 wk before tumor cells were injected intradermally in the flanks and throughout tumor growth. Tumor growth was monitored by serial measurements of tumor diameters from the time tumors became palpable until they reached 1000 mm3. The medicated diet did not alter tumor growth, invasion, or metastasis. When tumors reached volumes of approximately 100 mm3, some were irradiated locally with 10 Gy of X-rays. Irradiation significantly delayed tumor growth; fenbendazole did not alter the radiation-induced growth delay. However, cell culture studies showed that fenbendazole concentrations not far above those expected in the tissues of mice on this diet altered the growth of the tumor cells in culture. Recent data from other laboratories also have demonstrated effects of fenbendazole that could complicate experiments. Care should therefore be exercised in deciding whether chow containing fenbendazole should be administered to mouse colonies being used in cancer research. PMID:22776123

  9. Use of fenbendazole-containing therapeutic diets for mice in experimental cancer therapy studies.

    PubMed

    Duan, Qiwen; Liu, Yanfeng; Booth, Carmen J; Rockwell, Sara

    2012-03-01

    Pinworm infection (oxyuriasis) is a common problem in rodent colonies. Facility-wide prophylactic treatment of all mice with a diet containing therapeutic levels of fenbendazole for several weeks is often used to control pinworm outbreaks. We examined the effect of feeding a therapeutic diet containing 150 ppm fenbendazole on the growth of EMT6 mouse mammary tumors implanted into BALB/c Rw mice. Mice were randomized to receive either a fenbendazole-containing or control diet for 1 wk before tumor cells were injected intradermally in the flanks and throughout tumor growth. Tumor growth was monitored by serial measurements of tumor diameters from the time tumors became palpable until they reached 1000 mm3. The medicated diet did not alter tumor growth, invasion, or metastasis. When tumors reached volumes of approximately 100 mm3, some were irradiated locally with 10 Gy of X-rays. Irradiation significantly delayed tumor growth; fenbendazole did not alter the radiation-induced growth delay. However, cell culture studies showed that fenbendazole concentrations not far above those expected in the tissues of mice on this diet altered the growth of the tumor cells in culture. Recent data from other laboratories also have demonstrated effects of fenbendazole that could complicate experiments. Care should therefore be exercised in deciding whether chow containing fenbendazole should be administered to mouse colonies being used in cancer research.

  10. Tobacco Translationally Controlled Tumor Protein Interacts with Ethylene Receptor Tobacco Histidine Kinase1 and Enhances Plant Growth through Promotion of Cell Proliferation1[OPEN

    PubMed Central

    Tao, Jian-Jun; Cao, Yang-Rong; Chen, Hao-Wei; Wei, Wei; Li, Qing-Tian; Ma, Biao; Zhang, Wan-Ke; Chen, Shou-Yi; Zhang, Jin-Song

    2015-01-01

    Ethylene is an important phytohormone in the regulation of plant growth, development, and stress response throughout the lifecycle. Previously, we discovered that a subfamily II ethylene receptor tobacco (Nicotiana tabacum) Histidine Kinase1 (NTHK1) promotes seedling growth. Here, we identified an NTHK1-interacting protein translationally controlled tumor protein (NtTCTP) by the yeast (Saccharomyces cerevisiae) two-hybrid assay and further characterized its roles in plant growth. The interaction was further confirmed by in vitro glutathione S-transferase pull down and in vivo coimmunoprecipitation and bimolecular fluorescence complementation assays, and the kinase domain of NTHK1 mediates the interaction with NtTCTP. The NtTCTP protein is induced by ethylene treatment and colocalizes with NTHK1 at the endoplasmic reticulum. Overexpression of NtTCTP or NTHK1 reduces plant response to ethylene and promotes seedling growth, mainly through acceleration of cell proliferation. Genetic analysis suggests that NtTCTP is required for the function of NTHK1. Furthermore, association of NtTCTP prevents NTHK1 from proteasome-mediated protein degradation. Our data suggest that plant growth inhibition triggered by ethylene is regulated by a unique feedback mechanism, in which ethylene-induced NtTCTP associates with and stabilizes ethylene receptor NTHK1 to reduce plant response to ethylene and promote plant growth through acceleration of cell proliferation. PMID:25941315

  11. Wingless promotes proliferative growth in a gradient-independent manner.

    PubMed

    Baena-Lopez, Luis Alberto; Franch-Marro, Xavier; Vincent, Jean-Paul

    2009-10-06

    Morphogens form concentration gradients that organize patterns of cells and control growth. It has been suggested that, rather than the intensity of morphogen signaling, it is its gradation that is the relevant modulator of cell proliferation. According to this view, the ability of morphogens to regulate growth during development depends on their graded distributions. Here, we describe an experimental test of this model for Wingless, one of the key organizers of wing development in Drosophila. Maximal Wingless signaling suppresses cellular proliferation. In contrast, we found that moderate and uniform amounts of exogenous Wingless, even in the absence of endogenous Wingless, stimulated proliferative growth. Beyond a few cell diameters from the source, Wingless was relatively constant in abundance and thus provided a homogeneous growth-promoting signal. Although morphogen signaling may act in combination with as yet uncharacterized graded growth-promoting pathways, we suggest that the graded nature of morphogen signaling is not required for proliferation, at least in the developing Drosophila wing, during the main period of growth.

  12. StearoylCoA Desaturase-5: A Novel Regulator of Neuronal Cell Proliferation and Differentiation

    PubMed Central

    Sinner, Debora I.; Kim, Gretchun J.; Henderson, Gregory C.; Igal, R. Ariel

    2012-01-01

    Recent studies have demonstrated that human stearoylCoA desaturase-1 (SCD1), a Δ9-desaturase that converts saturated fatty acids (SFA) into monounsaturated fatty acids, controls the rate of lipogenesis, cell proliferation and tumorigenic capacity in cancer cells. However, the biological function of stearoylCoA desaturase-5 (SCD5), a second isoform of human SCD that is highly expressed in brain, as well as its potential role in human disease, remains unknown. In this study we report that the constitutive overexpression of human SCD5 in mouse Neuro2a cells, a widely used cell model of neuronal growth and differentiation, displayed a greater n-7 MUFA-to-SFA ratio in cell lipids compared to empty-vector transfected cells (controls). De novo synthesis of phosphatidylcholine and cholesterolesters was increased whereas phosphatidylethanolamine and triacylglycerol formation was reduced in SCD5-expressing cells with respect to their controls, suggesting a differential use of SCD5 products for lipogenic reactions. We also observed that SCD5 expression markedly accelerated the rate of cell proliferation and suppressed the induction of neurite outgrowth, a typical marker of neuronal differentiation, by retinoic acid indicating that the desaturase plays a key role in the mechanisms of cell division and differentiation. Critical signal transduction pathways that are known to modulate these processes, such epidermal growth factor receptor (EGFR)Akt/ERK and Wnt, were affected by SCD5 expression. Epidermal growth factor-induced phosphorylation of EGFR, Akt and ERK was markedly blunted in SCD5-expressing cells. Furthermore, the activity of canonical Wnt was reduced whereas the non-canonical Wnt was increased by the presence of SCD5 activity. Finally, SCD5 expression increased the secretion of recombinant Wnt5a, a non-canonical Wnt, whereas it reduced the cellular and secreted levels of canonical Wnt7b. Our data suggest that, by a coordinated modulation of key lipogenic pathways and transduction signaling cascades, SCD5 participates in the regulation of neuronal cell growth and differentiation. PMID:22745828

  13. Regulating Prostate Cancer Sensitivity to Chemotherapy through Translational Control of CCAAT Enhancer Binding Proteins

    DTIC Science & Technology

    2015-08-01

    ratio in LNCaP and PC3 cells and suppression of CEBPB sensitized these cells to bortezomib in vitro. PC3 xenografts deficient in CEBPB showed...resistant growth of PCa tumors in a mouse xenograft model. shNTV or shCEBPB LNCaP cells were subcutaneously engrafted into male NSG mice and when tumors...was monitored weekly by caliper measurement for 8-weeks (Fig. 3B). We observed significant suppression of CRPC growth in xenografts expressing shC

  14. Growth and gene expression are predominantly controlled by distinct regions of the human IL-4 receptor.

    PubMed

    Ryan, J J; McReynolds, L J; Keegan, A; Wang, L H; Garfein, E; Rothman, P; Nelms, K; Paul, W E

    1996-02-01

    IL-4 causes hematopoietic cells to proliferate and express a series of genes, including CD23. We examined whether IL-4-mediated growth, as measured by 4PS phosphorylation, and gene induction were similarly controlled. Studies of M12.4.1 cells expressing human IL-4R truncation mutants indicated that the region between amino acids 557-657 is necessary for full gene expression, which correlated with Stat6 DNA binding activity. This region was not required for 4PS phosphorylation. Tyrosine-to-phenylalanine mutations in the interval between amino acids 557-657 revealed that as long as one tyrosine remained unmutated, CD23 was fully induced. When all three tyrosines were mutated, the receptor was unable to induce CD23. The results indicate that growth regulation and gene expression are principally controlled by distinct regions of IL-4R.

  15. Symbiotic Fungi Control Plant Root Cortex Development through the Novel GRAS Transcription Factor MIG1.

    PubMed

    Heck, Carolin; Kuhn, Hannah; Heidt, Sven; Walter, Stefanie; Rieger, Nina; Requena, Natalia

    2016-10-24

    In an approaching scenario of soil nutrient depletion, root association with soil microorganisms can be key for plant health and sustainability [1-3]. Symbiotic arbuscular mycorrhizal (AM) fungi are major players in helping plants growing under nutrient starvation conditions. They provide plants with minerals like phosphate and, furthermore, act as modulators of plant growth altering the root developmental program [4, 5]. However, the precise mechanisms involved in this latter process are not well understood. Here, we show that AM fungi are able to modulate root cortex development in Medicago truncatula by activating a novel GRAS-domain transcription factor, MIG1, that determines the size of cortical root cells. MIG1 expression peaks in arbuscule-containing cells, suggesting a role in cell remodeling during fungal accommodation. Roots ectopically expressing MIG1 become thicker due to an increase in the number and width of cortical cells. This phenotype is fully counteracted by gibberellin (GA) and phenocopied with a GA biosynthesis inhibitor or by expression of a dominant DELLA (Δ18DELLA1) protein. MIG1 downregulation leads to malformed arbuscules, a phenotype rescued by Δ18DELLA1, suggesting that MIG1 intersects with the GA signaling to control cell morphogenesis through DELLA1. DELLA1 was shown to be a central node controlling arbuscule branching [6-8]. Now we provide evidence that, together with MIG1, DELLA1 is responsible for radial cortical cell expansion during arbuscule development. Our data point toward DELLA proteins being not only longitudinal root growth repressors [9] but also positive regulators of cortical radial cell expansion, extending the knowledge of how DELLAs control root growth. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Inhibition of platelet-derived growth factor signaling prevents muscle fiber growth during skeletal muscle hypertrophy.

    PubMed

    Sugg, Kristoffer B; Korn, Michael A; Sarver, Dylan C; Markworth, James F; Mendias, Christopher L

    2017-03-01

    The platelet-derived growth factor receptors alpha and beta (PDGFRα and PDGFRβ) mark fibroadipogenic progenitor cells/fibroblasts and pericytes in skeletal muscle, respectively. While the role that these cells play in muscle growth and development has been evaluated, it was not known whether the PDGF receptors activate signaling pathways that control transcriptional and functional changes during skeletal muscle hypertrophy. To evaluate this, we inhibited PDGFR signaling in mice subjected to a synergist ablation muscle growth procedure, and performed analyses 3 and 10 days after induction of hypertrophy. The results from this study indicate that PDGF signaling is required for fiber hypertrophy, extracellular matrix production, and angiogenesis that occur during muscle growth. © 2017 Federation of European Biochemical Societies.

  17. Radiation Therapy Induces Macrophages to Suppress Immune Responses Against Pancreatic Tumors in Mice

    PubMed Central

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Ly, Nancy Ngoc Giao; Nguy, Susanna; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Daley, Donnele; Barilla, Rocky; Tippens, Daniel; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R.; Hajdu, Cristina; Pellicciotta, Ilenia; Oh, Philmo; Du, Kevin; Miller, George

    2016-01-01

    Background & Aims The role of radiation therapy in the treatment of patients with pancreatic ductal adenocarcinoma (PDA) is controversial. Randomized controlled trials investigating the efficacy of radiation therapy in patients with locally advanced unresectable PDA have reported mixed results, with effects ranging from modest benefit to worse outcome, compared with control therapies. We investigated whether radiation causes inflammatory cells to acquire an immune-suppressive phenotype that limits the therapeutic effects of radiation on invasive PDAs and accelerates progression of pre-invasive foci. Methods We investigated the effects of radiation in p48Cre;LSL-KrasG12D (KC) and p48Cre;LSLKrasG12D;LSL-Trp53R172H (KPC) mice, as well as in C57BL/6 mice with orthotopic tumors grown from FC1242 cells derived from KPC mice. Some mice were given neutralizing antibodies against macrophage colony stimulating factor 1 (CSF1 or MCSF) or F4/80. Pancreata were exposed to doses of radiation ranging from 2–12 Gy and analyzed by flow cytometry. Results Pancreata of KC mice exposed to radiation had a higher frequency of advanced pancreatic intraepithelial lesions and more foci of invasive cancer than pancreata of unexposed mice (controls); radiation reduced survival time by more than 6 months. A greater proportion of macrophages from invasive and pre-invasive pancreatic tumors had an immune-suppressive, M2-like phenotype, compared with control mice. Pancreata from mice exposed to radiation had fewer CD8+ T cells than controls and greater numbers of CD4+ T cells of T-helper 2 and T-regulatory cell phenotypes. Adoptive transfer of T cells from irradiated PDA to tumors of control mice accelerated tumor growth. Radiation induced production of MCSF by PDA cells. An antibody against MCSF prevented radiation from altering the phenotype of macrophages in tumors, increasing the anti-tumor T-cell response and slowing tumor growth. Conclusions Radiation exposure causes macrophages in PDAs of mice to acquire an immune-suppressive phenotype and reduce T-cell mediated anti-tumor responses. Agents that block MCSF prevent this effect, allowing radiation to have increased efficacy in slowing tumor growth. PMID:26946344

  18. BTG interacts with retinoblastoma to control cell fate in Dictyostelium.

    PubMed

    Conte, Daniele; MacWilliams, Harry K; Ceccarelli, Adriano

    2010-03-12

    In the genesis of many tissues, a phase of cell proliferation is followed by cell cycle exit and terminal differentiation. The latter two processes overlap: genes involved in the cessation of growth may also be important in triggering differentiation. Though conceptually distinct, they are often causally related and functional interactions between the cell cycle machinery and cell fate control networks are fundamental to coordinate growth and differentiation. A switch from proliferation to differentiation may also be important in the life cycle of single-celled organisms, and genes which arose as regulators of microbial differentiation may be conserved in higher organisms. Studies in microorganisms may thus contribute to understanding the molecular links between cell cycle machinery and the determination of cell fate choice networks. Here we show that in the amoebozoan D. discoideum, an ortholog of the metazoan antiproliferative gene btg controls cell fate, and that this function is dependent on the presence of a second tumor suppressor ortholog, the retinoblastoma-like gene product. Specifically, we find that btg-overexpressing cells preferentially adopt a stalk cell (and, more particularly, an Anterior-Like Cell) fate. No btg-dependent preference for ALC fate is observed in cells in which the retinoblastoma-like gene has been genetically inactivated. Dictyostelium btg is the only example of non-metazoan member of the BTG family characterized so far, suggesting that a genetic interaction between btg and Rb predated the divergence between dictyostelids and metazoa. While the requirement for retinoblastoma function for BTG antiproliferative activity in metazoans is known, an interaction of these genes in the control of cell fate has not been previously documented. Involvement of a single pathway in the control of mutually exclusive processes may have relevant implication in the evolution of multicellularity.

  19. The effect of CT26 tumor-derived TGF-β on the balance of tumor growth and immunity.

    PubMed

    Owyang, Stephanie Y; Zhang, Min; Walkup, Grace A; Chen, Grace E; Grasberger, Helmut; El-Zaatari, Mohamad; Kao, John Y

    2017-11-01

    TGF-β is an important target for many cancer therapies under development. In addition to suppressing anti-tumor immunity, it has pleiotropic direct pro- and anti- tumor effects. The actions of increased endogenous TGF-β production remain unclear, and may affect the outcomes of anti-TGF-β cancer therapy. We hypothesize that tumor-derived TGF-β (td-TGF-β) plays an important role in maintaining tumor remission by controlling tumor proliferation in vivo, and that decreasing td-TGF-β in the tumor microenvironment will result in tumor progression. The aim of this study was to examine the effect of TGF-β in the tumor microenvironment on the balance between its anti-proliferative and immunosuppressive effects. A murine BALB/c spontaneous colon adenocarcinoma cell line (CT26) was genetically engineered to produce increased active TGF-β (CT26-TGF-β), a dominant-negative soluble TGF-β receptor (CT26-TGF-β-R), or the empty neomycin cassette as control (CT26-neo). In vitro proliferation rates were measured. For in vivo studies, the three cell lines were injected into syngeneic BALB/c mice, and tumor growth was measured over time. Immunodeficient BALB/c nude mice were used to investigate the role of T and B cells. In vitro, CT26-TGF-β-R and CT26-TGF-β cells showed increased and suppressed proliferation, respectively, compared to control (CT26-neo), confirming TGF-β has direct anti-tumor effects. In vivo, we found that CT26-TGF-β-R cells displayed slower growth compared to control, likely secondary to reduced suppression of anti-tumor immunity, as this effect was ablated in immunodeficient BALB/c nude mice. However, CT26-TGF-β cells (excess TGF-β) exhibited rapid early growth compared to control, but later failed to progress. The same pattern was shown in immunodeficient BALB/c nude mice, suggesting the effect on tumor growth is direct, with minimal immune system involvement. There was minimal effect on systemic antitumor immunity as determined by peripheral antigen-specific splenocyte type 1 cytokine production and tumor growth rate of CT26-neo on the contralateral flank of the same mice. Although TGF-β has opposing effects on tumor growth, this study showed that excessive td-TGF-β in the tumor microenvironment renders the tumor non-proliferative. Depleting excess td-TGF-β may release this endogenous tumor suppressive mechanism, thus triggering the progression of the tumor. Therefore, our findings support cautions against using anti-TGF-β strategies in treating cancer, as this may tip the balance of anti-immunity vs. anti-tumor effects of TGF-β, leading to tumor progression instead of remission. Copyright © 2017 European Federation of Immunological Societies. All rights reserved.

  20. Sox2 in the dermal papilla niche controls hair growth by fine-tuning Bmp signaling in differentiating hair shaft progenitors

    PubMed Central

    Clavel, Carlos; Grisanti, Laura; Zemla, Roland; Rezza, Amelie; Barros, Rita; Sennett, Rachel; Mazloom, Amin; Chung, Chi-Yeh; Cai, Xiaoqiang; Cai, Chen-Leng; Pevny, Larysa; Nicolis, Silvia; Ma’ayan, Avi; Rendl, Michael

    2012-01-01

    SUMMARY How dermal papilla (DP) niche cells regulate hair follicle progenitors to control hair growth remains unclear. Using Tbx18Cre to target embryonic DP precursors, we ablate the transcription factor Sox2 early and efficiently, resulting in diminished hair shaft outgrowth. We find that DP niche expression of Sox2 controls the migration rate of differentiating hair shaft progenitors. Transcriptional profiling of Sox2 null DPs reveals increased Bmp6 and decreased Bmp inhibitor Sostdc1, a direct Sox2 transcriptional target. Subsequently, we identify upregulated Bmp signaling in knockout hair shaft progenitors and demonstrate that Bmps inhibit cell migration, an effect that can be attenuated by Sostdc1. A shorter and Sox2-negative hair type lacks Sostdc1 in the DP and shows reduced migration and increased Bmp activity of hair shaft progenitors. Collectively, our data identify Sox2 as a key regulator of hair growth that controls progenitor migration by fine-tuning Bmp-mediated mesenchymal-epithelial crosstalk. PMID:23153495

  1. A demonstration of athermal effects of continuous microwave irradiation on the growth and antibiotic sensitivity of Pseudomonas aeruginosa PAO1.

    PubMed

    Nakouti, Ismini; Hobbs, Glyn; Teethaisong, Yothin; Phipps, David

    2017-01-01

    Stress, caused by exposure to microwaves (2.45 GHz) at constant temperature (37 ± 0.5°C), alters the growth profile of Pseudomonas aeruginosa PAO1. In the absence of microwave treatment a simple, highly reproducible growth curve was observed over 24 h or more. Microwave treatment caused no reduction in growth during the first 6 h, but at a later stage (>12 h) the growth was markedly different to the controls. Secondary growth, typical of the presence of persisters clearly became apparent, as judged by both the dissolved oxygen and the cell density profiles. These treated cells showed distinct morphological changes, but on regrowth these cells reverted to normal. The microwave induced persisters were subject to antibiotic challenge (tobramycin) and showed increased sensitivity when compared to the unstressed planktonic cells. This is in marked contrast to antibiotic induced persisters which show increased resistance. This provides evidence for both a nonthermal effect of microwaves and a previously undescribed route to a novel form of antibiotic susceptible persister cells. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:37-44, 2017. © 2016 American Institute of Chemical Engineers.

  2. [Regulation of airway stem cell proliferation in idiopathic pulmonary fibrosis].

    PubMed

    Yang, S X; Wu, Q; Sun, X; Li, X; Li, K; Xu, L; Li, Y; Zhang, Q Y; Zhang, Y C; Chen, H Y

    2016-09-01

    To investigate the effect of fibroblasts on regulating airway stem cell proliferation in idiopathic pulmonary fibrosis. Lung cell suspension was prepared from β-actin-GFP mice. Airway stem cells were obtained by fluorescence activated cell sorting and co-cultured with lung fibroblasts. The fibroblasts were treated with TGF-β inhibitor SB43142. The expression of growth factors FGF1/2 and the effect of FGF1/2 on stem cell proliferation were observed. The cloning efficiency of airway stem cells, when co-cultured with normal lung fibroblast cells for 8 days, was (3.5±1.1)%, while the cloning efficiency was reduced to (0.04±0.04)% when co-cultured with lung fibroblasts from idiopathic pulmonary fibrosis patients. The difference between the 2 groups was statistically significant(P=0.002 5). TGF-β receptor inhibitor SB431542 increased lung fibroblast growth factors FGF1/2 expression.FGF1 mRNA expression was increased to the experimental group 0.005 5 from 0.000 2 in the control group.FGF2 mRNA expression of the amount raised to the experimental group 0.000 15 from 0.000 8 in the control group.FGF1/2 promoted the growth of airway stem cells. After FGF1/2 was co-cultured with normal lung fibroblast cells for 8 days, the cloning efficiency of airway stem cells was (0.3±0.1)%. During the development of idiopathic pulmonary fibrosis, fibroblast secreted FGF1/2 regulate airway stem cell proliferation.

  3. Cellular localization of the activated EGFR determines its effect on cell growth in MDA-MB-468 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyatt, Dustin C.; Ceresa, Brian P.

    2008-11-01

    The epidermal growth factor (EGF) receptor (EGFR) is a ubiquitously expressed receptor tyrosine kinase that regulates diverse cell functions that are dependent upon cell type, the presence of downstream effectors, and receptor density. In addition to activating biochemical pathways, ligand stimulation causes the EGFR to enter the cell via clathrin-coated pits. Endocytic trafficking influences receptor signaling by controlling the duration of EGFR phosphorylation and coordinating the receptor's association with downstream effectors. To better understand the individual contributions of cell surface and cytosolic EGFRs on cell physiology, we used EGF that was conjugated to 900 nm polystyrene beads (EGF-beads). EGF-beads canmore » stimulate the EGFR and retain the activated receptor at the plasma membrane. In MDA-MB-468 cells, a breast cancer cell line that over-expresses the EGFR, only internalized, activated EGFRs stimulate caspase-3 and induce cell death. Conversely, signaling cascades triggered from activated EGFR retained at the cell surface inhibit caspase-3 and promote cell proliferation. Thus, through endocytosis, the activated EGFR can differentially regulate cell growth in MDA-MB-468 cells.« less

  4. Cre-mediated recombination in pituitary somatotropes

    PubMed Central

    Nasonkin, Igor O.; Potok, Mary Anne; Camper, Sally A.

    2009-01-01

    We report a transgenic line with highly penetrant cre recombinase activity in the somatotrope cells of the anterior pituitary gland. Expression of the cre transgene is under the control of the locus control region of the human growth hormone gene cluster and the rat growth hormone promoter. Cre recombinase activity was assessed with two different lacZ reporter genes that require excision of a floxed stop sequence for expression: a chick β-actin promoter with the CMV enhancer transgene and a ROSA26 knock-in. Cre activity is detectable in the developing pituitary after initiation of Gh transcription and persists through adulthood with high penetrance in Gh expressing cells and lower penetrance in lactotropes, a cell type that shares a common origin with somatotropes. This Gh-cre transgenic line is suitable for efficient, cell-specific deletion of floxed regions of genomic DNA in differentiated somatotropes and a subset of lactotrope cells of the anterior pituitary gland. PMID:19039787

  5. Optimising Cell Aggregate Expansion in a Perfused Hollow Fibre Bioreactor via Mathematical Modelling

    PubMed Central

    Chapman, Lloyd A. C.; Shipley, Rebecca J.; Whiteley, Jonathan P.; Ellis, Marianne J.; Byrne, Helen M.; Waters, Sarah L.

    2014-01-01

    The need for efficient and controlled expansion of cell populations is paramount in tissue engineering. Hollow fibre bioreactors (HFBs) have the potential to meet this need, but only with improved understanding of how operating conditions and cell seeding strategy affect cell proliferation in the bioreactor. This study is designed to assess the effects of two key operating parameters (the flow rate of culture medium into the fibre lumen and the fluid pressure imposed at the lumen outlet), together with the cell seeding distribution, on cell population growth in a single-fibre HFB. This is achieved using mathematical modelling and numerical methods to simulate the growth of cell aggregates along the outer surface of the fibre in response to the local oxygen concentration and fluid shear stress. The oxygen delivery to the cell aggregates and the fluid shear stress increase as the flow rate and pressure imposed at the lumen outlet are increased. Although the increased oxygen delivery promotes growth, the higher fluid shear stress can lead to cell death. For a given cell type and initial aggregate distribution, the operating parameters that give the most rapid overall growth can be identified from simulations. For example, when aggregates of rat cardiomyocytes that can tolerate shear stresses of up to are evenly distributed along the fibre, the inlet flow rate and outlet pressure that maximise the overall growth rate are predicted to be in the ranges to (equivalent to to ) and to (or 15.6 psi to 15.7 psi) respectively. The combined effects of the seeding distribution and flow on the growth are also investigated and the optimal conditions for growth found to depend on the shear tolerance and oxygen demands of the cells. PMID:25157635

  6. Characterization of dependencies between growth and division in budding yeast.

    PubMed

    Mayhew, Michael B; Iversen, Edwin S; Hartemink, Alexander J

    2017-02-01

    Cell growth and division are processes vital to the proliferation and development of life. Coordination between these two processes has been recognized for decades in a variety of organisms. In the budding yeast Saccharomyces cerevisiae , this coordination or 'size control' appears as an inverse correlation between cell size and the rate of cell-cycle progression, routinely observed in G 1 prior to cell division commitment. Beyond this point, cells are presumed to complete S/G 2 /M at similar rates and in a size-independent manner. As such, studies of dependence between growth and division have focused on G 1 Moreover, in unicellular organisms, coordination between growth and division has commonly been analysed within the cycle of a single cell without accounting for correlations in growth and division characteristics between cycles of related cells. In a comprehensive analysis of three published time-lapse microscopy datasets, we analyse both intra- and inter-cycle dependencies between growth and division, revisiting assumptions about the coordination between these two processes. Interestingly, we find evidence (i) that S/G 2 /M durations are systematically longer in daughters than in mothers, (ii) of dependencies between S/G 2 /M and size at budding that echo the classical G 1 dependencies, and (iii) in contrast with recent bacterial studies, of negative dependencies between size at birth and size accumulated during the cell cycle. In addition, we develop a novel hierarchical model to uncover inter-cycle dependencies, and we find evidence for such dependencies in cells growing in sugar-poor environments. Our analysis highlights the need for experimentalists and modellers to account for new sources of cell-to-cell variation in growth and division, and our model provides a formal statistical framework for the continued study of dependencies between biological processes. © 2017 The Author(s).

  7. Wound-healing potential of human umbilical cord blood-derived mesenchymal stromal cells in vitro--a pilot study.

    PubMed

    You, Hi-Jin; Namgoong, Sik; Han, Seung-Kyu; Jeong, Seong-Ho; Dhong, Eun-Sang; Kim, Woo-Kyung

    2015-11-01

    Our previous studies demonstrated that human bone marrow-derived mesenchymal stromal cells have great potential for wound healing. However, it is difficult to clinically utilize cultured stem cells. Recently, human umbilical cord blood-derived mesenchymal stromal cells (hUCB-MSCs) have been commercialized for cartilage repair as a first cell therapy product that uses allogeneic stem cells. Should hUCB-MSCs have a superior effect on wound healing as compared with fibroblasts, which are the main cell source in current cell therapy products for wound healing, they may possibly replace fibroblasts. The purpose of this in vitro study was to compare the wound-healing activity of hUCB-MSCs with that of fibroblasts. This study was particularly designed to compare the effect of hUCB-MSCs on diabetic wound healing with those of allogeneic and autologous fibroblasts. Healthy (n = 5) and diabetic (n = 5) fibroblasts were used as the representatives of allogeneic and autologous fibroblasts for diabetic patients in the control group. Human UCB-MSCs (n = 5) were used in the experimental group. Cell proliferation, collagen synthesis and growth factor (basic fibroblast growth factor, vascular endothelial growth factor and transforming growth factor-β) production were compared among the three cell groups. Human UCB-MSCs produced significantly higher amounts of vascular endothelial growth factor and basic fibroblast growth factor when compared with both fibroblast groups. Human UCB-MSCs were superior to diabetic fibroblasts but not to healthy fibroblasts in collagen synthesis. There were no significant differences in cell proliferation and transforming growth factor-β production. Human UCB-MSCs may have greater capacity for diabetic wound healing than allogeneic or autologous fibroblasts, especially in angiogenesis. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  8. Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes.

    PubMed

    Khosla, S; Dean, W; Brown, D; Reik, W; Feil, R

    2001-03-01

    Culture of preimplantation mammalian embryos and cells can influence their subsequent growth and differentiation. Previously, we reported that culture of mouse embryonic stem cells is associated with deregulation of genomic imprinting and affects the potential for these cells to develop into normal fetuses. The purpose of our current study was to determine whether culture of preimplantation mouse embryos in a chemically defined medium (M16) with or without fetal calf serum (FCS) can affect their subsequent development and imprinted gene expression. Only one third of the blastocysts that had been cultured from two-cell embryos in M16 medium complemented with FCS developed into viable Day 14 fetuses after transfer into recipients. These M16 + FCS fetuses were reduced in weight as compared with controls and M16 fetuses and had decreased expression of the imprinted H19 and insulin-like growth factor 2 genes associated with a gain of DNA methylation at an imprinting control region upstream of H19. They also displayed increased expression of the imprinted gene Grb10. The growth factor receptor binding gene Grb7, in contrast, was strongly reduced in its expression in most of the M16 + FCS fetuses. No alterations were detected for the imprinted gene MEST: Preimplantation culture in the presence of serum can influence the regulation of multiple growth-related imprinted genes, thus leading to aberrant fetal growth and development.

  9. Loss of Ptpn11 (Shp2) drives satellite cells into quiescence

    PubMed Central

    Griger, Joscha; Schneider, Robin; Lahmann, Ines; Schöwel, Verena; Keller, Charles; Spuler, Simone; Nazare, Marc; Birchmeier, Carmen

    2017-01-01

    The equilibrium between proliferation and quiescence of myogenic progenitor and stem cells is tightly regulated to ensure appropriate skeletal muscle growth and repair. The non-receptor tyrosine phosphatase Ptpn11 (Shp2) is an important transducer of growth factor and cytokine signals. Here we combined complex genetic analyses, biochemical studies and pharmacological interference to demonstrate a central role of Ptpn11 in postnatal myogenesis of mice. Loss of Ptpn11 drove muscle stem cells out of the proliferative and into a resting state during muscle growth. This Ptpn11 function was observed in postnatal but not fetal myogenic stem cells. Furthermore, muscle repair was severely perturbed when Ptpn11 was ablated in stem cells due to a deficit in stem cell proliferation and survival. Our data demonstrate a molecular difference in the control of cell cycle withdrawal in fetal and postnatal myogenic stem cells, and assign to Ptpn11 signaling a key function in satellite cell activity. DOI: http://dx.doi.org/10.7554/eLife.21552.001 PMID:28463680

  10. The effects of functional magnetic nanotubes with incorporated nerve growth factor in neuronal differentiation of PC12 cells

    NASA Astrophysics Data System (ADS)

    Xie, Jining; Chen, Linfeng; Varadan, Vijay K.; Yancey, Justin; Srivatsan, Malathi

    2008-03-01

    In this in vitro study the efficiency of magnetic nanotubes to bind with nerve growth factor (NGF) and the ability of NGF-incorporated magnetic nanotubes to release the bound NGF are investigated using rat pheochromocytoma cells (PC12 cells). It is found that functional magnetic nanotubes with NGF incorporation enabled the differentiation of PC12 cells into neurons exhibiting growth cones and neurite outgrowth. Microscope observations show that filopodia extending from neuron growth cones were in close proximity to the NGF-incorporated magnetic nanotubes, at times appearing to extend towards or into them. These results show that magnetic nanotubes can be used as a delivery vehicle for NGF and thus may be exploited in attempts to treat neurodegenerative disorders such as Parkinson's disease with neurotrophins. Further neurite outgrowth can be controlled by manipulating magnetic nanotubes with external magnetic fields, thus helping in directed regeneration.

  11. ``Rhizogenesis in vitro'' - as a model to study microgravity biological effects

    NASA Astrophysics Data System (ADS)

    Bulavin, Iliya

    Functioning organisms is based on the physiological and biochemical processes in different tissues and cells. Numerous spaceflight biological experiments have shown the essential changes in cell behavior of multicellular and unicellular organisms in comparison with that on Earth. In our investigations, we used the model “Rhizogenesis in vitro” to study cell differentiation in the root cap and growth zones under clinorotation. Advantage of this model is the possibility to study the influence of clinorotation at the beginning of root initiation de novo and next morphogenetic processes unlike experiments in vivo with embryonal seedling roots formed in seeds. Arabidopsis thaliana plants of wild type and scr mutant (3999 by NASC database) were used. For rhizogenesis induction, rosette leaves with petioles were cut and transferred in Petri dishes on MS medium contained 1/10 of MS mineral salt, without vitamins and hormones. One half of Petri dishes were placed vertically (control), the other - on a slow horizontal clinostat (2 rpm). Anatomical investigation of A. thaliana wild type and scr mutant roots formed de novo showed that formation of root cap and growth zones (meristem, distal elongation zone (DEZ), central elongation zone (CEZ) and mature zone) under clinorotation was similar to that in control. A root cap consists of columella and peripheral cells. In the columella there are meristematic cells, statocytes (graviperceptive cells), and secretory cells. Epidermis, parenchyma, endodermis and central cylinder are distinguished in wild type roots. Unlike a wild type, a cortex of scr mutant was represented by one cell layer which had the parenchyma and endodermis characteristics. A root cap length and width were similar in control and under clinorotation. A cell number in the meristem and DEZ and a length of these growth zones did not differ in control and the experimental conditions. The ultrasructure of cap meristematic cells was typical for cells of this type. Statocytes preserved their polarity in control but it was disturbed under clinorotation due to amyloplast distribution in the cytoplasm whole volume and/or their localization in the cell center. Structural rearrangements occurred similarly in statocytes under their transformation in secretory cells in control and under clinorotation. A characteristic features of the root proper meristematic cells in the control and in the experiment are central nucleus location, the great diversity of a size and a shape of mitochondria and plastids, poorly ER development, the presence of some small ER-bodies. As cells passed in the DEZ, their size enlarged but a nucleus can preserve the central location. A quantity of ER-cistern, vacuoles, and ER-bodies increased also. Dictyosomes acquired polarity and produced many Golgi vesicles. In CEZ cells, a large vacuole occupied the cell center, and the cytoplasm with organelles was on the cell periphery. So, we can conclude that under clinorotation: 1) the structure of a cap and growth zones of A. thaliana wild type and scr mutant roots formed de novo in vitro as similar to that in control; 2) a gaviperceptive apparatus formed in both objects but did not function. The obtained data allow to propose the model “Rhizogenesis in vitro” for using in spaceflight experiments to study the influence of real microgravity on the cellular differentiation and basic processes.

  12. The apical scaffold big bang binds to spectrins and regulates the growth of Drosophila melanogaster wing discs.

    PubMed

    Forest, Elodie; Logeay, Rémi; Géminard, Charles; Kantar, Diala; Frayssinoux, Florence; Heron-Milhavet, Lisa; Djiane, Alexandre

    2018-03-05

    During development, cell numbers are tightly regulated, ensuring that tissues and organs reach their correct size and shape. Recent evidence has highlighted the intricate connections between the cytoskeleton and the regulation of the key growth control Hippo pathway. Looking for apical scaffolds regulating tissue growth, we describe that Drosophila melanogaster big bang (Bbg), a poorly characterized multi-PDZ scaffold, controls epithelial tissue growth without affecting epithelial polarity and architecture. bbg -mutant tissues are smaller, with fewer cells that are less apically constricted than normal. We show that Bbg binds to and colocalizes tightly with the β-heavy-Spectrin/Kst subunit at the apical cortex and promotes Yki activity, F-actin enrichment, and the phosphorylation of the myosin II regulatory light chain Spaghetti squash. We propose a model in which the spectrin cytoskeleton recruits Bbg to the cortex, where Bbg promotes actomyosin contractility to regulate epithelial tissue growth. © 2018 Forest et al.

  13. Biocontrol Potential of Streptomyces hydrogenans Strain DH16 toward Alternaria brassicicola to Control Damping Off and Black Leaf Spot of Raphanus sativus

    PubMed Central

    Manhas, Rajesh K.; Kaur, Talwinder

    2016-01-01

    Biocontrol agents and their bioactive metabolites provide one of the best alternatives to decrease the use of chemical pesticides. In light of this, the present investigation reports the biocontrol potential of Streptomyces hydrogenans DH16 and its metabolites towards Alternaria brassicicola, causal agent of black leaf spot and damping off of seedlings of crucifers. In vitro antibiosis of strain against pathogen revealed complete suppression of mycelial growth of pathogen, grown in potato dextrose broth supplemented with culture supernatant (20% v/v) of S. hydrogenans DH16. Microscopic examination of the fungal growth showed severe morphological abnormalities in the mycelium caused by antifungal metabolites. In vivo studies showed the efficacy of streptomycete cells and culture supernatant as seed dressings to control damping off of Raphanus sativus seedlings. Treatment of pathogen infested seeds with culture supernatant (10%) and streptomycete cells significantly improved seed germination (75–80%) and vigor index (1167–1538). Furthermore, potential of cells and culture supernatant as foliar treatment to control black leaf spot was also evaluated. Clearly visible symptoms of disease were observed in the control plants with 66.81% disease incidence and retarded growth of root system. However, disease incidence reduced to 6.78 and 1.47% in plants treated with antagonist and its metabolites, respectively. Additionally, treatment of seeds and plants with streptomycete stimulated various growth traits of plants over uninoculated control plants in the absence of pathogen challenge. These results indicate that S. hydrogenans and its culture metabolites can be developed as biofungicides as seed dressings to control seed borne pathogens, and as sprays to control black leaf spot of crucifers. PMID:28018402

  14. Effects of Nrf2 knockdown on the properties of irradiated cell conditioned medium from A549 human lung cancer cells.

    PubMed

    Yoshino, Hironori; Murakami, Kanna; Nawamaki, Mikoto; Kashiwakura, Ikuo

    2018-05-01

    The nuclear factor erythroid 2-related factor 2 (Nrf2) plays an important role in cellular defense against oxidative stress. Recent studies have demonstrated that Nrf2 is a useful target for cancer treatment, including radiation therapy. Ionizing radiation affects, not only the irradiated cells, but also the non-irradiated neighboring cells, and this effect is known as radiation-induced bystander effect. Upon exposure to radiation, the irradiated cells transmit signals to the non-irradiated cells via gap junctions or soluble factors. These signals in turn cause biological effects, such as a decrease in the clonogenic potential and cell death, in the non-irradiated neighboring cells. Nrf2 inhibition enhances cellular radiosensitivity. However, whether this modification of radiosensitivity by Nrf2 inhibition affects the radiation-induced bystander effects is unknown. In this study, we prepared an Nrf2 knockdown human lung cancer cell A549 and investigated whether the effects of irradiated cell conditioned medium (ICCM) on cell growth and cell death induction of non-irradiated cells vary depending on the Nrf2 knockdown. We found that Nrf2 knockdown resulted in a decrease in the cell growth and an increase in the radiosensitivity of A549 cells. When non-irradiated A549 cells were transfected with control siRNA and treated with ICCM, no significant difference was observed in the cell growth and proportion of Annexin V + dead cells between ICCM from non-irradiated cells and that from 2 or 8 Gy-irradiated cells. Similarly, no significant difference was observed in the cell growth and cell death induction upon treatment with ICCM in the Nrf2 knockdown A549 cells. Taken together, these results suggest that Nrf2 knockdown decreases cell growth and enhances the radiosensitivity of A549 cells; however, it does not alter the effect of ICCM on cell growth.

  15. [Abnormal expression of insulin-like growth factor-I receptor and inhibitory effect of its transcription intervention on nude mice xenograft tumor].

    PubMed

    Yao, M; Yan, X D; Cai, Y; Gu, J J; Yang, X L; Pan, L H; Wang, L; Yao, D F

    2016-11-20

    Objective: To investigate the expression of insulin-like growth factor-I receptor (IGF-IR) in liver cancer and the inhibitory effect of its transcription intervention on nude mice xenograft tumor. Methods: A total of 40 patients with primary liver cancer were enrolled, and 40 samples of cancer lesions, peri-cancerous tissues (with a distance of 2 cm to the margin of cancer lesion), or distal liver tissues (with a distance of 5 cm to the margin of cancer lesion), with a weight of 200 mg, were collected after surgery. Some of these samples were used for pathological examination, and the rest were stored at -85°C. A total of 18 BALB/c nude mice aged 4-6 weeks with a body weight of 18-20 g (9 male and 9 female mice) were randomly divided into control group, negative control group, and co-intervention group, with 6 mice in each group, and fed under specific pathogen-free conditions. The cell line was cultured in the dimethyl sulfoxide complete medium containing 10% fetal bovine serum in a CO 2 incubator at 37°C. When the cell confluence reached 90% after cell inoculation, shRNA was divided into co-intervention group, negative control group, and untreated control group and were transfected to hepatoma cells using PolyJetTM transfection reagent. Stable cell clones obtained by G418 screening and used for the in vivo study. Immunohistochemistry, Western blotting, and quantitative real-time PCR were used to analyze the expression of IGF-IR in the human hepatoma tissue and cell line. The IGF-IR shRNA eukaryotic expression plasmids were established and screened for the most effective sequence; they were transfected to PLC/PRF/5 hepatoma cells, and the CCK-8 assay was used to analyze the changes in cell proliferation. The stable cell line screened out by G418 was inoculated to establish the subcutaneous xenograft tumor in nude mice. The tumor growth curve was plotted and histological examination was performed. Graphpad Prism 5.0 and SPSS 18.0 were used for plotting and data analysis; the variance test and Q test were used for comparison of means between multiple samples, the t-test was used for comparison of means between any two samples, the chi-square test or Fisher's exact test was used for comparison of rates between samples, and a rank correlation analysis was performed for expression intensity. Results: The liver cancer group had a significantly higher positive rate of IGF-IR than the peri-cancerous group and distal tissue group (82.5% vs 42.5%/10%, χ 2 = 13.653 and 42.29, both P < 0.01), as well as significantly higher expression intensity than these two groups ( Z = 4.771 and 6.579, both P < 0.01). IGF-IR was not significantly expressed in the L02 cell line and was strongly expressed in the PLC/PRF/5 hepatoma cells, and the expression intensity of IGF-IR in the PLC/PRF/5 hepatoma cells was 4 and 5 times that in Bel-7404 cells and HepG2 cells, respectively. After the PLC/PRF/5 hepatoma cells were transfected with shRNA4 with the best co-intervention effect, the mean inhibition rate of tumor cell growth reached 63.9% at 72 hours, and the mean inhibition rate of IGF-IR transcription reached 59.6%. Tumor cells were arrested in G1 phase, and there was a significant increase in apoptosis rate. As for the subcutaneous hepatoma xenograft in nude mice, the intervention group had significantly slower tumor growth than the blank control group and negative control group (143±24 mm3 vs 372±46 mm3/350±50 mm3, t = 10.776 and 9.142, both P < 0.01); the intervention group had significantly downregulated IGF-IR expression, which was significantly lower than that in the blank control group and negative control group ( t = 11.184 and 9.450, both P < 0.01). Conclusion: Intervention of IGF-IR transcription can effectively inhibit the growth of xenograft tumor in nude mice, suggesting that IGF-IR gene might become a new potential target for the treatment of liver cancer.

  16. Antitumor activity of cytotoxic T lymphocytes engineered to target vascular endothelial growth factor receptors

    NASA Astrophysics Data System (ADS)

    Niederman, Thomas M. J.; Ghogawala, Zoher; Carter, Bob S.; Tompkins, Hillary S.; Russell, Margaret M.; Mulligan, Richard C.

    2002-05-01

    The demonstration that angiogenesis is required for the growth of solid tumors has fueled an intense interest in the development of new therapeutic strategies that target the tumor vasculature. Here we report the development of an immune-based antiangiogenic strategy that is based on the generation of T lymphocytes that possess a killing specificity for cells expressing vascular endothelial growth factor receptors (VEGFRs). To target VEGFR-expressing cells, recombinant retroviral vectors were generated that encoded a chimeric T cell receptor comprised of VEGF sequences linked to intracellular signaling sequences derived from the chain of the T cell receptor. After transduction of primary murine CD8 lymphocytes by such vectors, the transduced cells were shown to possess an efficient killing specificity for cells expressing the VEGF receptor, Flk-1, as measured by in vitro cytotoxicity assays. After adoptive transfer into tumor-bearing mice, the genetically modified cytotoxic T lymphocytes strongly inhibited the growth of a variety of syngeneic murine tumors and human tumor xenografts. An increased effect on in vivo tumor growth inhibition was seen when this therapy was combined with the systemic administration of TNP-470, a conventional angiogenesis inhibitor. The utilization of the immune system to target angiogenic markers expressed on tumor vasculature may prove to be a powerful means for controlling tumor growth.

  17. Suppression of polymorphonuclear (PMN) and monocyte-mediated inhibition of Candida albicans growth by delta-9-tetrahydrocannabinol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djeu, J.Y.; Parapanios, A.; Halkias, D.

    This study was an in vitro attempt to identify the effector cells responsible for growth inhibition of the opportunistic fungus, candida albicans, and to determine if THC or another marijuana derivatives, 11-hydroxyTHC, would adversely affect their function. Using a 24h radiolabel assay, the authors found that growth inhibition of C. albicans was primarily mediated by PMN and monocytes that could be isolated normal human peripheral blood. Both effector cell types caused almost complete inhibition of Candida growth at effector/target ratio of 300/1 and inhibition was often still seen at 30/1-. Incubation of PMN, PBL, or monocytes for 1 hr atmore » 37C with THC or 11-hydroxyTHC caused a marked suppression of function in all 3 cell populations. Maximal suppression was obtained with 7.5-10..mu..g/ml of the drugs in medium containing 10% fetal bovine serum (FBS) or with 2-4..mu..g/ml in 1% FBS. These drug concentrations did not affect lymphoid cell viability or candida growth in the absence of lymphoid effector cells. Marijuana derivatives, therefore, are doubly dangerous in that opportunistic fungi such as C. albicans can grow in their presence while the effector cells that control fungal growth are readily inactivated.« less

  18. Inhibition of cancer cell growth by exposure to a specific time-varying electromagnetic field involves T-type calcium channels.

    PubMed

    Buckner, Carly A; Buckner, Alison L; Koren, Stan A; Persinger, Michael A; Lafrenie, Robert M

    2015-01-01

    Electromagnetic field (EMF) exposures affect many biological systems. The reproducibility of these effects is related to the intensity, duration, frequency, and pattern of the EMF. We have shown that exposure to a specific time-varying EMF can inhibit the growth of malignant cells. Thomas-EMF is a low-intensity, frequency-modulated (25-6 Hz) EMF pattern. Daily, 1 h, exposures to Thomas-EMF inhibited the growth of malignant cell lines including B16-BL6, MDA-MB-231, MCF-7, and HeLa cells but did not affect the growth of non-malignant cells. Thomas-EMF also inhibited B16-BL6 cell proliferation in vivo. B16-BL6 cells implanted in syngeneic C57b mice and exposed daily to Thomas-EMF produced smaller tumours than in sham-treated controls. In vitro studies showed that exposure of malignant cells to Thomas-EMF for > 15 min promoted Ca(2+) influx which could be blocked by inhibitors of voltage-gated T-type Ca(2+) channels. Blocking Ca(2+) uptake also blocked Thomas-EMF-dependent inhibition of cell proliferation. Exposure to Thomas-EMF delayed cell cycle progression and altered cyclin expression consistent with the decrease in cell proliferation. Non-malignant cells did not show any EMF-dependent changes in Ca(2+) influx or cell growth. These data confirm that exposure to a specific EMF pattern can affect cellular processes and that exposure to Thomas-EMF may provide a potential anti-cancer therapy.

  19. Inhibition of Cancer Cell Growth by Exposure to a Specific Time-Varying Electromagnetic Field Involves T-Type Calcium Channels

    PubMed Central

    Buckner, Carly A.; Buckner, Alison L.; Koren, Stan A.; Persinger, Michael A.; Lafrenie, Robert M.

    2015-01-01

    Electromagnetic field (EMF) exposures affect many biological systems. The reproducibility of these effects is related to the intensity, duration, frequency, and pattern of the EMF. We have shown that exposure to a specific time-varying EMF can inhibit the growth of malignant cells. Thomas-EMF is a low-intensity, frequency-modulated (25-6 Hz) EMF pattern. Daily, 1 h, exposures to Thomas-EMF inhibited the growth of malignant cell lines including B16-BL6, MDA-MB-231, MCF-7, and HeLa cells but did not affect the growth of non-malignant cells. Thomas-EMF also inhibited B16-BL6 cell proliferation in vivo. B16-BL6 cells implanted in syngeneic C57b mice and exposed daily to Thomas-EMF produced smaller tumours than in sham-treated controls. In vitro studies showed that exposure of malignant cells to Thomas-EMF for > 15 min promoted Ca2+ influx which could be blocked by inhibitors of voltage-gated T-type Ca2+ channels. Blocking Ca2+ uptake also blocked Thomas-EMF-dependent inhibition of cell proliferation. Exposure to Thomas-EMF delayed cell cycle progression and altered cyclin expression consistent with the decrease in cell proliferation. Non-malignant cells did not show any EMF-dependent changes in Ca2+ influx or cell growth. These data confirm that exposure to a specific EMF pattern can affect cellular processes and that exposure to Thomas-EMF may provide a potential anti-cancer therapy. PMID:25875081

  20. Control of DNA replication: a new facet of Hox proteins?

    PubMed

    Miotto, Benoit; Graba, Yacine

    2010-09-01

    Hox proteins are well-known as developmental transcription factors controlling cell and tissue identity, but recent findings suggest that they are also part of the cell replication machinery. Hox-mediated control of transcription and replication may ensure coordinated control of cell growth and differentiation, two processes that need to be tightly and precisely coordinated to allow proper organ formation and patterning. In this review we summarize the available data linking Hox proteins to the replication machinery and discuss the developmental and pathological implications of this new facet of Hox protein function.

  1. Distinct CCR2(+) Gr1(+) cells control growth of the Yersinia pestis ΔyopM mutant in liver and spleen during systemic plague.

    PubMed

    Ye, Zhan; Uittenbogaard, Annette M; Cohen, Donald A; Kaplan, Alan M; Ambati, Jayakrishna; Straley, Susan C

    2011-02-01

    We are using a systemic plague model to identify the cells and pathways that are undermined by the virulence protein YopM of the plague bacterium Yersinia pestis. In this study, we pursued previous findings that Gr1(+) cells are required to selectively limit growth of ΔyopM Y. pestis and that CD11b(+) cells other than polymorphonuclear leukocytes (PMNs) are selectively lost in spleens infected with parent Y. pestis. When PMNs were ablated from mice, ΔyopM Y. pestis grew as well as the parent strain in liver but not in spleen, showing that these cells are critical for controlling growth of the mutant in liver but not spleen. In mice lacking expression of the chemokine receptor CCR2, wild-type growth was restored to ΔyopM Y. pestis in both organs. In spleen, the Gr1(+) cells differentially recruited by parent and ΔyopM Y. pestis infections were CCR2(+) Gr1(+) CD11b(+) CD11c(Lo-Int) MAC3(+) iNOS(+) (inducible nitric oxide synthase-positive) inflammatory dendritic cells (iDCs), and their recruitment to spleen from blood was blocked when YopM was present in the infecting strain. Consistent with influx of iDCs being affected by YopM in spleen, the growth defect of the ΔyopM mutant was relieved by the parent Y. pestis strain in a coinfection assay in which the parent strain could affect the fate of the mutant in trans. In a mouse model of bubonic plague, CCR2 also was shown to be required for ΔyopM Y. pestis to show wild-type growth in skin. The data imply that YopM's pathogenic effect indirectly undermines signaling through CCR2. We propose a model for how YopM exerts its different effects in liver and spleen.

  2. Spermine Regulates Pollen Tube Growth by Modulating Ca2+-Dependent Actin Organization and Cell Wall Structure

    PubMed Central

    Aloisi, Iris; Cai, Giampiero; Faleri, Claudia; Navazio, Lorella; Serafini-Fracassini, Donatella; Del Duca, Stefano

    2017-01-01

    Proper growth of the pollen tube depends on an elaborate mechanism that integrates several molecular and cytological sub-processes and ensures a cell shape adapted to the transport of gametes. This growth mechanism is controlled by several molecules among which cytoplasmic and apoplastic polyamines. Spermine (Spm) has been correlated with various physiological processes in pollen, including structuring of the cell wall and modulation of protein (mainly cytoskeletal) assembly. In this work, the effects of Spm on the growth of pear pollen tubes were analyzed. When exogenous Spm (100 μM) was supplied to germinating pollen, it temporarily blocked tube growth, followed by the induction of apical swelling. This reshaping of the pollen tube was maintained also after growth recovery, leading to a 30–40% increase of tube diameter. Apical swelling was also accompanied by a transient increase in cytosolic calcium concentration and alteration of pH values, which were the likely cause for major reorganization of actin filaments and cytoplasmic organelle movement. Morphological alterations of the apical and subapical region also involved changes in the deposition of pectin, cellulose, and callose in the cell wall. Thus, results point to the involvement of Spm in cell wall construction as well as cytoskeleton organization during pear pollen tube growth. PMID:29033970

  3. Myocilin Regulates Cell Proliferation and Survival*

    PubMed Central

    Joe, Myung Kuk; Kwon, Heung Sun; Cojocaru, Radu; Tomarev, Stanislav I.

    2014-01-01

    Myocilin, a causative gene for open angle glaucoma, encodes a secreted glycoprotein with poorly understood functions. To gain insight into its functions, we produced a stably transfected HEK293 cell line expressing myocilin under an inducible promoter and compared gene expression profiles between myocilin-expressing and vector control cell lines by a microarray analysis. A significant fraction of differentially expressed genes in myocilin-expressing cells was associated with cell growth and cell death, suggesting that myocilin may have a role in the regulation of cell growth and survival. Increased proliferation of myocilin-expressing cells was demonstrated by the WST-1 proliferation assay, direct cell counting, and immunostaining with antibodies against Ki-67, a cellular proliferation marker. Myocilin-containing conditioned medium also increased proliferation of unmodified HEK293 cells. Myocilin-expressing cells were more resistant to serum starvation-induced apoptosis than control cells. TUNEL-positive apoptotic cells were dramatically decreased, and two apoptotic marker proteins, cleaved caspase 7 and cleaved poly(ADP-ribose) polymerase, were significantly reduced in myocilin-expressing cells as compared with control cells under apoptotic conditions. In addition, myocilin-deficient mesenchymal stem cells exhibited reduced proliferation and enhanced susceptibility to serum starvation-induced apoptosis as compared with wild-type mesenchymal stem cells. Phosphorylation of ERK1/2 and its upstream kinases, c-Raf and MEK, was increased in myocilin-expressing cells compared with control cells. Elevated phosphorylation of ERK1/2 was also observed in the trabecular meshwork of transgenic mice expressing 6-fold higher levels of myocilin when compared with their wild-type littermates. These results suggest that myocilin promotes cell proliferation and resistance to apoptosis via the ERK1/2 MAPK signaling pathway. PMID:24563482

  4. DCAF1 controls T-cell function via p53-dependent and -independent mechanisms.

    PubMed

    Guo, Zengli; Kong, Qing; Liu, Cui; Zhang, Song; Zou, Liyun; Yan, Feng; Whitmire, Jason K; Xiong, Yue; Chen, Xian; Wan, Yisong Y

    2016-01-05

    On activation, naive T cells grow in size and enter cell cycle to mount immune response. How the fundamental processes of T-cell growth and cell cycle entry are regulated is poorly understood. Here we report that DCAF1 (Ddb1-cullin4-associated-factor 1) is essential for these processes. The deletion of DCAF1 in T cells impairs their peripheral homeostasis. DCAF1 is upregulated on T-cell receptor activation and critical for activation-induced T-cell growth, cell cycle entry and proliferation. In addition, DCAF1 is required for T-cell expansion and function during anti-viral and autoimmune responses in vivo. DCAF1 deletion leads to a drastic stabilization of p53 protein, which can be attributed to a requirement of DCAF1 for MDM2-mediated p53 poly-ubiquitination. Importantly, p53 deletion rescues the cell cycle entry defect but not the growth defect of DCAF1-deficient cells. Therefore, DCAF1 is vital for T-cell function through p53-dependent and -independent mechanisms.

  5. DCAF1 controls T-cell function via p53-dependent and -independent mechanisms

    PubMed Central

    Guo, Zengli; Kong, Qing; Liu, Cui; Zhang, Song; Zou, Liyun; Yan, Feng; Whitmire, Jason K.; Xiong, Yue; Chen, Xian; Wan, Yisong Y.

    2016-01-01

    On activation, naive T cells grow in size and enter cell cycle to mount immune response. How the fundamental processes of T-cell growth and cell cycle entry are regulated is poorly understood. Here we report that DCAF1 (Ddb1–cullin4-associated-factor 1) is essential for these processes. The deletion of DCAF1 in T cells impairs their peripheral homeostasis. DCAF1 is upregulated on T-cell receptor activation and critical for activation-induced T-cell growth, cell cycle entry and proliferation. In addition, DCAF1 is required for T-cell expansion and function during anti-viral and autoimmune responses in vivo. DCAF1 deletion leads to a drastic stabilization of p53 protein, which can be attributed to a requirement of DCAF1 for MDM2-mediated p53 poly-ubiquitination. Importantly, p53 deletion rescues the cell cycle entry defect but not the growth defect of DCAF1-deficient cells. Therefore, DCAF1 is vital for T-cell function through p53-dependent and -independent mechanisms. PMID:26728942

  6. Autogenous cultured growth plate chondrocyte transplantation in the treatment of physeal injury in rabbits.

    PubMed

    Tomaszewski, R; Bohosiewicz, J; Gap, A; Bursig, H; Wysocka, A

    2014-11-01

    The aim of this experimental study on New Zealand's white rabbits was to investigate the transplantation of autogenous growth plate cells in order to treat the injured growth plate. They were assessed in terms of measurements of radiological tibial varus and histological characteristics. An experimental model of plate growth medial partial resection of the tibia in 14 New Zealand white rabbits was created. During this surgical procedure the plate growth cells were collected and cultured. While the second surgery was being performed, the autologous cultured growth plate cells were grafted at the right tibia, whereas the left tibia was used as a control group. Histological examinations showed that the grafted right tibia presented the regular shape of the plate growth with hypertrophic maturation, chondrocyte columniation and endochondral calcification. Radiological study shows that the mean tibial deformity at the left angle was 20.29° (6.25 to 33) and 7.21° (5 to 10) in the right angle. This study has demonstrated that grafting of autogenous cultured growth plate cells into a defect of the medial aspect of the proximal tibial physis can prevent bone bridge formation, growth arrest and the development of varus deformity. Cite this article: Bone Joint Res 2014;3:310-16. ©2014 The British Editorial Society of Bone & Joint Surgery.

  7. Overexpression of connexin 43 reduces melanoma proliferative and metastatic capacity

    PubMed Central

    Tittarelli, A; Guerrero, I; Tempio, F; Gleisner, M A; Avalos, I; Sabanegh, S; Ortíz, C; Michea, L; López, M N; Mendoza-Naranjo, A; Salazar-Onfray, F

    2015-01-01

    Background: Alterations in connexin 43 (Cx43) expression and/or gap junction (GJ)-mediated intercellular communication are implicated in cancer pathogenesis. Herein, we have investigated the role of Cx43 in melanoma cell proliferation and apoptosis sensitivity in vitro, as well as metastatic capability and tumour growth in vivo. Methods: Connexin 43 expression levels, GJ coupling and proliferation rates were analysed in four different human melanoma cell lines. Furthermore, tumour growth and lung metastasis of high compared with low Cx43-expressing FMS cells were evaluated in vivo using a melanoma xenograft model. Results: Specific inhibition of Cx43 channel activity accelerated melanoma cell proliferation, whereas overexpression of Cx43 increased GJ coupling and reduced cell growth. Moreover, Cx43 overexpression in FMS cells increased basal and tumour necrosis factor-α-induced apoptosis and resulted in decreased melanoma tumour growth and lower number and size of metastatic foci in vivo. Conclusions: Our findings reveal an important role for Cx43 in intrinsically controlling melanoma growth, death and metastasis, and emphasise the potential use of compounds that selectively enhance Cx43 expression on melanoma in the future chemotherapy and/or immunotherapy protocols. PMID:26135897

  8. Aspirin induces apoptosis in vitro and inhibits tumor growth of human hepatocellular carcinoma cells in a nude mouse xenograft model

    PubMed Central

    HOSSAIN, MOHAMMAD AKBAR; KIM, DONG HWAN; JANG, JUNG YOON; KANG, YONG JUNG; YOON, JEONG-HYUN; MOON, JEON-OK; CHUNG, HAE YOUNG; KIM, GI-YOUNG; CHOI, YUNG HYUN; COPPLE, BRYAN L.; KIM, NAM DEUK

    2012-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are known to induce apoptosis in a variety of cancer cells, including colon, prostate, breast and leukemia. Among them, aspirin, a classical NSAID, shows promise in cancer therapy in certain types of cancers. We hypothesized that aspirin might affect the growth of liver cancer cells since liver is the principal site for aspirin metabolism. Therefore, we investigated the effects of aspirin on the HepG2 human hepatocellular carcinoma cell line in vitro and the HepG2 cell xenograft model in BALB/c nude mice. We found that treatment with aspirin inhibited cell growth and induced apoptosis involving both extrinsic and intrinsic pathways as measured by DNA ladder formation, alteration in the Bax/Bcl-2 ratio, activation of the caspase activities and related protein expressions. In vivo antitumor activity assay also showed that aspirin resulted in significant tumor growth inhibition compared to the control. Oral administration of aspirin (100 mg/kg/day) caused a significant reduction in the growth of HepG2 tumors in nude mice. These findings suggest that aspirin may be used as a promising anticancer agent against liver cancer. PMID:22179060

  9. Enhancement of UV-induced nucleotide excision repair activity upon forskolin treatment is cell growth-dependent.

    PubMed

    Lee, Jeong-Min; Park, Jeong-Min; Kang, Tae-Hong

    2016-10-01

    Forskolin (FSK), an adenylyl cyclase activator, has recently been shown to enhance nucleotide excision repair (NER) upon UV exposure. However, our study revealed that this effect was detected in human skin epithelial ARPE19 cells only in growing cells, but not in non-cycling cells. When the cells were grown at low density (70% confluence), FSK was capable of stimulating cAMP responsive element binding (CREB) phosphorylation, a marker for FSK-stimulated PKA activation, and resulted in a significant increase of NER activity compared to control treatment. However, cells grown under 100% confluent conditions showed neither FSK-induced CREB phosphorylation nor the resulting NER enhancement. These findings indicate that cellular growth is critical for FSK-induced NER enhancement and suggest that cellular growth conditions should be considered as a variable while evaluating a reagent's pharmacotherapeutic efficacy. [BMB Reports 2016; 49(10): 566-571].

  10. SRF selectively controls tip cell invasive behavior in angiogenesis.

    PubMed

    Franco, Claudio A; Blanc, Jocelyne; Parlakian, Ara; Blanco, Raquel; Aspalter, Irene M; Kazakova, Natalia; Diguet, Nicolas; Mylonas, Elena; Gao-Li, Jacqueline; Vaahtokari, Anne; Penard-Lacronique, Virgine; Fruttiger, Markus; Rosewell, Ian; Mericskay, Mathias; Gerhardt, Holger; Li, Zhenlin

    2013-06-01

    Efficient angiogenic sprouting is essential for embryonic, postnatal and tumor development. Serum response factor (SRF) is known to be important for embryonic vascular development. Here, we studied the effect of inducible endothelial-specific deletion of Srf in postnatal and adult mice. We find that endothelial SRF activity is vital for postnatal growth and survival, and is equally required for developmental and pathological angiogenesis, including during tumor growth. Our results demonstrate that SRF is selectively required for endothelial filopodia formation and cell contractility during sprouting angiogenesis, but seems dispensable for vascular remodeling. At the molecular level, we observe that vascular endothelial growth factor A induces nuclear accumulation of myocardin-related transcription factors (MRTFs) and regulates MRTF/SRF-dependent target genes including Myl9, which is important for endothelial cell migration in vitro. We conclude that SRF has a unique function in regulating migratory tip cell behavior during sprouting angiogenesis. We hypothesize that targeting the SRF pathway could provide an opportunity to selectively target tip cell filopodia-driven angiogenesis to restrict tumor growth.

  11. The skeletal vascular system - Breathing life into bone tissue.

    PubMed

    Stegen, Steve; Carmeliet, Geert

    2017-08-26

    During bone development, homeostasis and repair, a dense vascular system provides oxygen and nutrients to highly anabolic skeletal cells. Characteristic for the vascular system in bone is the serial organization of two capillary systems, each typified by specific morphological and physiological features. Especially the arterial capillaries mediate the growth of the bone vascular system, serve as a niche for skeletal and hematopoietic progenitors and couple angiogenesis to osteogenesis. Endothelial cells and osteoprogenitor cells interact not only physically, but also communicate to each other by secretion of growth factors. A vital angiogenic growth factor is vascular endothelial growth factor and its expression in skeletal cells is controlled by osteogenic transcription factors and hypoxia signaling, whereas the secretion of angiocrine factors by endothelial cells is regulated by Notch signaling, blood flow and possibly hypoxia. Bone loss and impaired fracture repair are often associated with reduced and disorganized blood vessel network and therapeutic targeting of the angiogenic response may contribute to enhanced bone regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Experiment K-6-06. Morphometric and EM analyses of tibial epiphyseal plates from Cosmos 1887 rats

    NASA Technical Reports Server (NTRS)

    Duke, P. J.; Montufar-Solis, D.; Durnova, G.

    1990-01-01

    Light and electron microscopy studies were carried out on decalcified tibial epiphyseal plates of rats flown aboard Cosmos 1887 (12.5d flight plus 53.5h recovery). Analysis of variance showed that the proliferative zone of flight animals was significantly higher than that of synchronous controls, while the hypertrophic/calcification zone was significantly reduced. Flight animals had more cells than synchronous controls in the proliferative zone, and less in the hypertrophic/calcification region. The total number of cells, however, was significantly higher in flight animals. No differences were found for perimeter or shape factor of growth plates, but area was significantly lower in flight animals in comparison to synchronous controls. Collagen fibrils in flight animals were shorter and wider than in synchronous controls. The time required for a cell to cycle through the growth plate is 2 to 3 days, so most of the cells and matrix present were formed after the animals had returned to 1 g, and probably represent stages of recovery from microgravity exposure, which in itself is an interesting question.

  13. Role of Granulocyte-Macrophage Colony-Stimulating Factor Production by T Cells during Mycobacterium tuberculosis Infection.

    PubMed

    Rothchild, Alissa C; Stowell, Britni; Goyal, Girija; Nunes-Alves, Cláudio; Yang, Qianting; Papavinasasundaram, Kadamba; Sassetti, Christopher M; Dranoff, Glenn; Chen, Xinchun; Lee, Jinhee; Behar, Samuel M

    2017-10-24

    Mice deficient for granulocyte-macrophage colony-stimulating factor (GM-CSF -/- ) are highly susceptible to infection with Mycobacterium tuberculosis , and clinical data have shown that anti-GM-CSF neutralizing antibodies can lead to increased susceptibility to tuberculosis in otherwise healthy people. GM-CSF activates human and murine macrophages to inhibit intracellular M. tuberculosis growth. We have previously shown that GM-CSF produced by iNKT cells inhibits growth of M. tuberculosis However, the more general role of T cell-derived GM-CSF during infection has not been defined and how GM-CSF activates macrophages to inhibit bacterial growth is unknown. Here we demonstrate that, in addition to nonconventional T cells, conventional T cells also produce GM-CSF during M. tuberculosis infection. Early during infection, nonconventional iNKT cells and γδ T cells are the main source of GM-CSF, a role subsequently assumed by conventional CD4 + T cells as the infection progresses. M. tuberculosis -specific T cells producing GM-CSF are also detected in the peripheral blood of infected people. Under conditions where nonhematopoietic production of GM-CSF is deficient, T cell production of GM-CSF is protective and required for control of M. tuberculosis infection. However, GM-CSF is not required for T cell-mediated protection in settings where GM-CSF is produced by other cell types. Finally, using an in vitro macrophage infection model, we demonstrate that GM-CSF inhibition of M. tuberculosis growth requires the expression of peroxisome proliferator-activated receptor gamma (PPARγ). Thus, we identified GM-CSF production as a novel T cell effector function. These findings suggest that a strategy augmenting T cell production of GM-CSF could enhance host resistance against M. tuberculosis IMPORTANCE Mycobacterium tuberculosis is the bacterium that causes tuberculosis, the leading cause of death by any infection worldwide. T cells are critical components of the immune response to Mycobacterium tuberculosis While gamma interferon (IFN-γ) is a key effector function of T cells during infection, a failed phase IIb clinical trial and other studies have revealed that IFN-γ production alone is not sufficient to control M. tuberculosis In this study, we demonstrate that CD4 + , CD8 + , and nonconventional T cells produce GM-CSF during Mycobacterium tuberculosis infection in mice and in the peripheral blood of infected humans. Under conditions where other sources of GM-CSF are absent, T cell production of GM-CSF is protective and is required for control of infection. GM-CSF activation of macrophages to limit bacterial growth requires host expression of the transcription factor PPARγ. The identification of GM-CSF production as a T cell effector function may inform future host-directed therapy or vaccine designs. Copyright © 2017 Rothchild et al.

  14. PDGF controls contact inhibition of locomotion by regulating N-cadherin during neural crest migration.

    PubMed

    Bahm, Isabel; Barriga, Elias H; Frolov, Antonina; Theveneau, Eric; Frankel, Paul; Mayor, Roberto

    2017-07-01

    A fundamental property of neural crest (NC) migration is contact inhibition of locomotion (CIL), a process by which cells change their direction of migration upon cell contact. CIL has been proven to be essential for NC migration in amphibians and zebrafish by controlling cell polarity in a cell contact-dependent manner. Cell contact during CIL requires the participation of the cell adhesion molecule N-cadherin, which starts to be expressed by NC cells as a consequence of the switch between E- and N-cadherins during epithelial-to-mesenchymal transition (EMT). However, the mechanism that controls the upregulation of N-cadherin remains unknown. Here, we show that platelet-derived growth factor receptor alpha (PDGFRα) and its ligand platelet-derived growth factor A (PDGF-A) are co-expressed in migrating cranial NC. Inhibition of PDGF-A/PDGFRα blocks NC migration by inhibiting N-cadherin and, consequently, impairing CIL. Moreover, we identify phosphatidylinositol-3-kinase (PI3K)/AKT as a downstream effector of the PDGFRα cellular response during CIL. Our results lead us to propose PDGF-A/PDGFRα signalling as a tissue-autonomous regulator of CIL by controlling N-cadherin upregulation during EMT. Finally, we show that once NC cells have undergone EMT, the same PDGF-A/PDGFRα works as an NC chemoattractant, guiding their directional migration. © 2017. Published by The Company of Biologists Ltd.

  15. An electron microscopy study of the diversity of Streptococcus sanguinis cells induced by lysozyme in vitro.

    PubMed

    Hao, Yuqing; Li, Li; Li, Wei; Zhou, Xuedong; Lu, Junjun

    2010-01-01

    Bacterial virulence could be altered by the antimicrobial agents of the host. Our aim was to identify the damage and survival of Streptococcus sanguinis induced by lysozymes in vitro and to analyse the potential of oral microorganisms to shirk host defences, which cause infective endocarditis. S. sanguinis ATCC 10556 received lysozyme at concentrations of 12.5, 25, 50 and 100 microg/ml. Cells were examined by electron microscopy. The survival was assessed by colony counting and construction of a growth curve. Challenged by lysozymes, cells mainly exhibited cell wall damage, which seemed to increase with increasing lysozyme concentration and longer incubation period in the presence of ions. Cells with little as well as apparent lesion were observed under the same treatment set, and anomalous stick and huge rotund bodies were occasionally observed. After the removal of the lysozyme, some damaged cells could be reverted to its original form with brain heart infusion (BHI), and their growth curve was similar to the control cells. After further incubation in BHI containing lysozyme, S. sanguinis cell damage stopped progressing, and their growth curve was also similar to the control cells. The results suggested that the S. sanguinis lesions caused by the lysozyme in the oral cavity may be nonhomogeneous and that some damaged cells could self-repair and survive. It also indicated that S. sanguinis with damaged cell walls may survive and be transmitted in the bloodstream.

  16. Minoxidil upregulates the expression of vascular endothelial growth factor in human hair dermal papilla cells.

    PubMed

    Lachgar, S; Charveron, M; Gall, Y; Bonafe, J L

    1998-03-01

    The hair follicle dermal papilla which controls hair growth, is characterized in the anagen phase by a highly developed vascular network. We have demonstrated in a previous study that the expression of an angiogenic growth factor called vascular endothelial growth factor (VEGF) mRNA varied during the hair cycle. VEGF mRNA is strongly expressed in dermal papilla cells (DPC) in the anagen phase, but during the catagen and telogen phases. VEGF mRNA is less strongly expressed. This involvement of VEGF during the hair cycle allowed us to determine whether VEGF mRNA expression by DPC was regulated by minoxidil. In addition, the effect of minoxidil on VEGF protein synthesis in both cell extracts and DPC-conditioned medium, was investigated immunoenzymatically. Both VEGF mRNA and protein were significantly elevated in treated DPC compared with controls. DPC incubated with increasing minoxidil concentrations (0.2, 2, 6, 12 and 24 mumol/L) induced a dose-dependent expression of VEGF mRNA. Quantification of transcripts showed that DPC stimulated with 24 mumol/L minoxidil express six times more VEGF mRNA than controls. Similarly, VEGF protein production increases in cell extracts and conditioned media following minoxidil stimulation. These studies strongly support the likely involvement of minoxidil in the development of dermal papilla vascularization via a stimulation of VEGF expression, and support the hypothesis that minoxidil has a physiological role in maintaining a good vascularization of hair follicles in androgenetic alopecia.

  17. Fabrication and evaluation of novel zeolite membranes to control the neoplastic activity and anti-tumoral drug treatments in human breast cancer cells. Part 1: Synthesis and characterization of Pure Zeolite Membranes and Mixed Matrix Membranes for adhesion and growth of cancer cells.

    PubMed

    Tavolaro, Palmira; Martino, Guglielmo; Andò, Sebastiano; Tavolaro, Adalgisa

    2016-12-01

    Novel pure and hybrid zeolite membranes were prepared with appropriate different physicochemical characteristics such as frameworks, hydrophilicity, crystal size, chemical composition, acid-base properties (Point of Zero Charge, PZC) and surface morphology and used in inorganic cell/scaffold constructs. Because the control of cell interactions, as the adhesion, proliferation, remodelling and mobility, is important for differentiation and progression of tumors, this work focused on response of cancer cells adhered and grown on synthesized zeolite surfaces in order to study the influence of these scaffolds in controlled conditions. We have selected the MCF-7 and MDA-MB-231 human breast cancer cell line as model tumor cell lines. This study showed that all the zeolite membranes synthesized are excellent scaffolds because they are very selective materials to support the adhesion and growth of neoplastic cells. All zeolite scaffolds were characterized by FESEM, FTIR ATR, XRD, AFM, PZC and contact angle analyses. Cell adhesion, viability and morphology were measured by count, MTT assay and FESEM microphotography analysis, at various incubation times. Copyright © 2016. Published by Elsevier B.V.

  18. Dietary resveratrol does not delay engraftment, sensitize to vincristine or inhibit growth of high-risk acute lymphoblastic leukemia cells in NOD/SCID mice.

    PubMed

    Zunino, Susan J; Storms, David H; Newman, John W; Pedersen, Theresa L; Keen, Carl L; Ducore, Jonathan M

    2012-12-01

    Acute lymphoblastic leukemia (ALL) with translocation t(4;11) is a high-risk leukemia found in 60-85% of infants with ALL and is often refractory to conventional chemotherapeutics after relapse. To evaluate the efficacy of dietary resveratrol in vivo, 5-week-old NOD.CB17-Prkdcscid/J mice were fed a control diet or a diet containing 0.2% w/w resveratrol. After 3 weeks of dietary treatment, mice were engrafted with the human t(4;11) ALL line SEM by tail vein injection. Engraftment was monitored by evaluating the presence of human CD19+ cells in peripheral blood using flow cytometry. Relative to control diet, dietary resveratrol did not delay the engraftment of the leukemia cells. To determine if dietary resveratrol could increase efficacy of a chemotherapeutic agent, vincristine was injected intraperitoneally into leukemic mice fed the control or supplemented diet. Survival curves and monitoring the percentage of human leukemia cells in peripheral blood showed that resveratrol did not inhibit leukemia cell growth or influence the activity of vincristine. Mass spectrometric analysis of mouse serum revealed that the majority of resveratrol was present as glucuronidated and sulfated metabolites. These data do not support the concept that dietary resveratrol has potential as a preventative agent against the growth of high-risk t(4;11) ALL.

  19. Dietary resveratrol does not delay engraftment, sensitize to vincristine or inhibit growth of high-risk acute lymphoblastic leukemia cells in NOD/SCID mice

    PubMed Central

    ZUNINO, SUSAN J.; STORMS, DAVID H.; NEWMAN, JOHN W.; PEDERSEN, THERESA L.; KEEN, CARL L.; DUCORE, JONATHAN M.

    2012-01-01

    Acute lymphoblastic leukemia (ALL) with translocation t(4;11) is a high-risk leukemia found in 60–85% of infants with ALL and is often refractory to conventional chemotherapeutics after relapse. To evaluate the efficacy of dietary resveratrol in vivo, 5-week-old NOD.CB17-Prkdcscid/J mice were fed a control diet or a diet containing 0.2% w/w resveratrol. After 3 weeks of dietary treatment, mice were engrafted with the human t(4;11) ALL line SEM by tail vein injection. Engraftment was monitored by evaluating the presence of human CD19+ cells in peripheral blood using flow cytometry. Relative to control diet, dietary resveratrol did not delay the engraftment of the leukemia cells. To determine if dietary resveratrol could increase efficacy of a chemotherapeutic agent, vincristine was injected intraperitoneally into leukemic mice fed the control or supplemented diet. Survival curves and monitoring the percentage of human leukemia cells in peripheral blood showed that resveratrol did not inhibit leukemia cell growth or influence the activity of vincristine. Mass spectrometric analysis of mouse serum revealed that the majority of resveratrol was present as glucuronidated and sulfated metabolites. These data do not support the concept that dietary resveratrol has potential as a preventative agent against the growth of high-risk t(4;11) ALL. PMID:23041950

  20. Transcription factor EGR-1 suppresses the growth and transformation of human HT-1080 fibrosarcoma cells by induction of transforming growth factor beta 1.

    PubMed Central

    Liu, C; Adamson, E; Mercola, D

    1996-01-01

    The early growth response 1 (EGR-1) gene product is a transcription factor with role in differentiation and growth. We have previously shown that expression of exogenous EGR-1 in various human tumor cells unexpectedly and markedly reduces growth and tumorigenicity and, conversely, that suppression of endogenous Egr-1 expression by antisense RNA eliminates protein expression, enhances growth, and promotes phenotypic transformation. However, the mechanism of these effects remained unknown. The promoter of human transforming growth factor beta 1 (TGF-beta 1) contains two GC-rich EGR-1 binding sites. We show that expression of EGR-1 in human HT-1080 fibrosarcoma cells uses increased secretion of biologically active TGF-beta 1 in direct proportion (rPearson = 0.96) to the amount of EGR-1 expressed and addition of recombinant human TGF-beta 1 is strongly growth-suppressive for these cells. Addition of monoclonal anti-TGF-beta 1 antibodies to EGR-1-expressing HT-1080 cells completely reverses the growth inhibitory effects of EGR-1. Reporter constructs bearing the EGR-1 binding segment of the TGF-beta 1 promoter was activated 4- to 6-fold relative to a control reporter in either HT-1080 cells that stably expressed or parental cells cotransfected with an EGR-1 expression vector. Expression of delta EGR-1, a mutant that cannot interact with the corepressors, nerve growth factor-activated factor binding proteins NAB1 and NAB2, due to deletion of the repressor domain, exhibited enhanced transactivation of 2- to 3.5-fold over that of wild-type EGR-1 showing that the reporter construct reflected the appropriate in vivo regulatory context. The EGR-1-stimulated transactivation was inhibited by expression of the Wilms tumor suppressor, a known specific DNA-binding competitor. These results indicate that EGR-1 suppresses growth of human HT-1080 fibrosarcoma cells by induction of TGF-beta 1. Images Fig. 1 Fig. 5 PMID:8876223

  1. Transcriptomic alterations in human prostate cancer cell LNCaP tumor xenograft modulated by dietary phenethyl isothiocyanate

    USDA-ARS?s Scientific Manuscript database

    Temporal growth of tumor xenografts in mice on a control diet was compared to mice supplemented daily with 3 µmol/g of the cancer preventive compound phenethyl isothiocyanate. Phenethyl isothiocyanate decreased the rate of tumor growth. The effects of phenethyl isothiocyanate on tumor growth were ex...

  2. TORC1 signaling inhibition by rapamycin and caffeine affect lifespan, global gene expression, and cell proliferation of fission yeast.

    PubMed

    Rallis, Charalampos; Codlin, Sandra; Bähler, Jürg

    2013-08-01

    Target of rapamycin complex 1 (TORC1) is implicated in growth control and aging from yeast to humans. Fission yeast is emerging as a popular model organism to study TOR signaling, although rapamycin has been thought to not affect cell growth in this organism. Here, we analyzed the effects of rapamycin and caffeine, singly and combined, on multiple cellular processes in fission yeast. The two drugs led to diverse and specific phenotypes that depended on TORC1 inhibition, including prolonged chronological lifespan, inhibition of global translation, inhibition of cell growth and division, and reprograming of global gene expression mimicking nitrogen starvation. Rapamycin and caffeine differentially affected these various TORC1-dependent processes. Combined drug treatment augmented most phenotypes and effectively blocked cell growth. Rapamycin showed a much more subtle effect on global translation than did caffeine, while both drugs were effective in prolonging chronological lifespan. Rapamycin and caffeine did not affect the lifespan via the pH of the growth media. Rapamycin prolonged the lifespan of nongrowing cells only when applied during the growth phase but not when applied after cells had stopped proliferation. The doses of rapamycin and caffeine strongly correlated with growth inhibition and with lifespan extension. This comprehensive analysis will inform future studies into TORC1 function and cellular aging in fission yeast and beyond. © 2013 The Authors. Aging Cell published by John Wiley & Sons Ltd and the Anatomical Society.

  3. Enhancing dendritic cell immunotherapy for melanoma using a simple mathematical model.

    PubMed

    Castillo-Montiel, E; Chimal-Eguía, J C; Tello, J Ignacio; Piñon-Zaráte, G; Herrera-Enríquez, M; Castell-Rodríguez, A E

    2015-06-09

    The immunotherapy using dendritic cells (DCs) against different varieties of cancer is an approach that has been previously explored which induces a specific immune response. This work presents a mathematical model of DCs immunotherapy for melanoma in mice based on work by Experimental Immunotherapy Laboratory of the Medicine Faculty in the Universidad Autonoma de Mexico (UNAM). The model is a five delay differential equation (DDEs) which represents a simplified view of the immunotherapy mechanisms. The mathematical model takes into account the interactions between tumor cells, dendritic cells, naive cytotoxic T lymphocytes cells (inactivated cytotoxic cells), effector cells (cytotoxic T activated cytotoxic cells) and transforming growth factor β cytokine (T G F-β). The model is validated comparing the computer simulation results with biological trial results of the immunotherapy developed by the research group of UNAM. The results of the growth of tumor cells obtained by the control immunotherapy simulation show a similar amount of tumor cell population than the biological data of the control immunotherapy. Moreover, comparing the increase of tumor cells obtained from the immunotherapy simulation and the biological data of the immunotherapy applied by the UNAM researchers obtained errors of approximately 10 %. This allowed us to use the model as a framework to test hypothetical treatments. The numerical simulations suggest that by using more doses of DCs and changing the infusion time, the tumor growth decays compared with the current immunotherapy. In addition, a local sensitivity analysis is performed; the results show that the delay in time " τ", the maximal growth rate of tumor "r" and the maximal efficiency of tumor cytotoxic cells rate "aT" are the most sensitive model parameters. By using this mathematical model it is possible to simulate the growth of the tumor cells with or without immunotherapy using the infusion protocol of the UNAM researchers, to obtain a good approximation of the biological trials data. It is worth mentioning that by manipulating the different parameters of the model the effectiveness of the immunotherapy may increase. This last suggests that different protocols could be implemented by the Immunotherapy Laboratory of UNAM in order to improve their results.

  4. On the role of stress anisotropy in the growth of stems.

    PubMed

    Baskin, Tobias I; Jensen, Oliver E

    2013-11-01

    We review the role of anisotropic stress in controlling the growth anisotropy of stems. Instead of stress, growth anisotropy is usually considered in terms of compliance. Anisotropic compliance is typical of cell walls, because they contain aligned cellulose microfibrils, and it appears to be sufficient to explain the growth anisotropy of an isolated cell. Nevertheless, a role for anisotropic stress in the growth of stems is indicated by certain growth responses that appear too rapid to be accounted for by changes in cell-wall compliance and because the outer epidermal wall of most growing stems has microfibrils aligned axially, an arrangement that would favour radial expansion based on cell-wall compliance alone. Efforts to quantify stress anisotropy in the stem have found that it is predominantly axial, and large enough in principle to explain the elongation of the epidermis, despite its axial microfibrils. That the epidermis experiences a stress deriving from the inner tissue, the so-called 'tissue stress', has been widely recognized; however, the origin of the dominant axial direction remains obscure. Based on geometry, an isolated cylindrical cell should have an intramural stress anisotropy favouring the transverse direction. Explanations for tissue stress have invoked differential elastic moduli, differential plastic deformation (so-called differential growth), and a phenomenon analogous to the maturation stress generated by secondary cell walls. None of these explanations has been validated. We suggest that understanding the role of stress anisotropy in plant growth requires a deeper understanding of the nature of stress in hierarchical, organic structures.

  5. Systems analysis of shoot apical meristem growth and development: integrating hormonal and mechanical signaling.

    PubMed

    Murray, James A H; Jones, Angharad; Godin, Christophe; Traas, Jan

    2012-10-01

    The shoot apical meristem (SAM) is a small population of stem cells that continuously generates organs and tissues. This review covers our current understanding of organ initiation by the SAM in Arabidopsis thaliana. Meristem function and maintenance involves two major hormones, cytokinins and auxins. Cytokinins appear to play a major role in meristem maintenance and in controlling meristematic properties, such as cell proliferation. Self-organizing transport processes, which are still only partially understood, lead to the patterned accumulation of auxin at particular positions, where organs will grow out. A major downstream target of auxin-mediated growth regulation is the cell wall, which is a determinant for both growth rates and growth distribution, but feedbacks with metabolism and the synthetic capacity of the cytoplasm are crucial as well. Recent work has also pointed at a potential role of mechanical signals in growth coordination, but the precise mechanisms at work remain to be elucidated.

  6. Therapeutically blocking Interleukin-11 Receptor-α enhances doxorubicin cytotoxicity in high grade type I endometrioid tumours.

    PubMed

    Winship, Amy; Van Sinderen, Michelle; Rainczuk, Katarzyna; Dimitriadis, Evdokia

    2017-04-04

    High grade type I endometrial cancers have poor prognosis. Interleukin (IL)11 is elevated in tumours and uterine lavage with increasing tumour grade in women. IL11 regulates cell cycle, invasion and migration and we recently demonstrated that IL11 receptor (R)α inhibition impaired low and moderate grade endometrial tumourigenesis in vivo. In this report, we hypothesized that micro-RNA(miR)-1 regulates IL11 and that IL11 promotes high grade endometrial tumour growth. We aimed to determine whether combination treatment using an anti-human IL11Rα blocking antibody (Ab) and doxorubicin chemotherapeutic impairs high grade tumour growth. MiR-1 was absent in human endometrial tumours versus human benign endometrium (n = 10/group). Transfection with miR-1 mimic restored miR-1 expression, down-regulated IL11 mRNA and impaired cell viability in grade 3-derived AN3CA human endometrial epithelial cancer cells. AN3CA cell proliferation was reduced in response to Ab and doxorubicin combination treatment versus Ab, IgG control, or doxorubicin alone. Subcutaneous xenograft tumours were established in female Balb/c athymic nude mice using AN3CA cells expressing IL11 and IL11Rα. Administration of recombinant human IL11 to mice (n = 4/group) activated IL11 downstream target, signal transducers and activators of transcription (STAT3) and significantly increased tumour growth (p < 0.05), suggesting that IL11 promotes high grade tumour growth. IL11Rα blocking Ab reduced STAT3 phosphorylation and combination treatment with doxorubicin resulted in a significant reduction in tumour growth (p < 0.05) compared to Ab, doxorubicin, or IgG control. Our data suggest that therapeutically targeting IL11Rα in combination with doxorubicin chemotherapy could inhibit high grade type I endometrioid cancer growth.

  7. Overexpression of membrane metalloendopeptidase inhibits substance P stimulation of cholangiocarcinoma growth.

    PubMed

    Meng, Fanyin; DeMorrow, Sharon; Venter, Julie; Frampton, Gabriel; Han, Yuyan; Francis, Heather; Standeford, Holly; Avila, Shanika; McDaniel, Kelly; McMillin, Matthew; Afroze, Syeda; Guerrier, Micheleine; Quezada, Morgan; Ray, Debolina; Kennedy, Lindsey; Hargrove, Laura; Glaser, Shannon; Alpini, Gianfranco

    2014-05-01

    Substance P (SP) promotes cholangiocyte growth during cholestasis by activating its receptor, NK1R. SP is a proteolytic product of tachykinin (Tac1) and is deactivated by membrane metalloendopeptidase (MME). This study aimed to evaluate the functional role of SP in the regulation of cholangiocarcinoma (CCA) growth. NK1R, Tac1, and MME expression and SP secretion were assessed in human CCA cells and nonmalignant cholangiocytes. The proliferative effects of SP (in the absence/presence of the NK1R inhibitor, L-733,060) and of L-733,060 were evaluated. In vivo, the effect of L-733,060 treatment or MME overexpression on tumor growth was evaluated by using a xenograft model of CCA in nu/nu nude mice. The expression of Tac1, MME, NK1R, PCNA, CK-19, and VEGF-A was analyzed in the resulting tumors. Human CCA cell lines had increased expression of Tac1 and NK1R, along with reduced levels of MME compared with nonmalignant cholangiocytes, resulting in a subsequent increase in SP secretion. SP treatment increased CCA cell proliferation in vitro, which was blocked by L-733,060. Treatment with L-733,060 alone inhibited CCA proliferation in vitro and in vivo. Xenograft tumors derived from MME-overexpressed human Mz-ChA-1 CCA cells had a slower growth rate than those derived from control cells. Expression of PCNA, CK-19, and VEGF-A decreased, whereas MME expression increased in the xenograft tumors treated with L-733,060 or MME-overexpressed xenograft tumors compared with controls. The study suggests that SP secreted by CCA promotes CCA growth via autocrine pathway. Blockade of SP secretion and NK1R signaling may be important for the management of CCA.

  8. Rhizoids and protonemata of characean algae: model cells for research on polarized growth and plant gravity sensing.

    PubMed

    Braun, M; Limbach, C

    2006-12-01

    Gravitropically tip-growing rhizoids and protonemata of characean algae are well-established unicellular plant model systems for research on gravitropism. In recent years, considerable progress has been made in the understanding of the cellular and molecular mechanisms underlying gravity sensing and gravity-oriented growth. While in higher-plant statocytes the role of cytoskeletal elements, especially the actin cytoskeleton, in the mechanisms of gravity sensing is still enigmatic, there is clear evidence that in the characean cells actin is intimately involved in polarized growth, gravity sensing, and the gravitropic response mechanisms. The multiple functions of actin are orchestrated by a variety of actin-binding proteins which control actin polymerisation, regulate the dynamic remodelling of the actin filament architecture, and mediate the transport of vesicles and organelles. Actin and a steep gradient of cytoplasmic free calcium are crucial components of a feedback mechanism that controls polarized growth. Experiments performed in microgravity provided evidence that actomyosin is a key player for gravity sensing: it coordinates the position of statoliths and, upon a change in the cell's orientation, directs sedimenting statoliths to specific areas of the plasma membrane, where contact with membrane-bound gravisensor molecules elicits short gravitropic pathways. In rhizoids, gravitropic signalling leads to a local reduction of cytoplasmic free calcium and results in differential growth of the opposite subapical cell flanks. The negative gravitropic response of protonemata involves actin-dependent relocation of the calcium gradient and displacement of the centre of maximal growth towards the upper flank. On the basis of the results obtained from the gravitropic model cells, a similar fine-tuning function of the actomyosin system is discussed for the early steps of gravity sensing in higher-plant statocytes.

  9. Mesophyll cell ultrastructure of wheat leaves etiolated by lead and selenium.

    PubMed

    Semenova, Galina A; Fomina, Irina R; Kosobryukhov, Anatoly A; Lyubimov, Valery Yu; Nadezhkina, Ekaterina S; Balakhnina, Tamara I

    2017-12-01

    The ultrastructure of mesophyll cells was studied in leaves of the Triticum aestivum L. cv. "Trizo" seedlings after two weeks of growth on soil contaminated by Pb and/or Se. The soil treatments: control; (Pb1) 50mgkg -1 ; (Pb2) 100mgkg -1 ; (Se1) 0.4mgkg -1 ; (Se2) 0.8mgkg -1 ; (Pb1+Se1); (Pb1+Se2); (P2+Se1); and (Pb2+Se2) were used. Light and other conditions were optimal for plant growth. The (Se1)-plants showed enhanced growth and biomass production; (Pb1+Se1)-plants did not lag behind the controls, though O 2 evolution decreased; chlorophyll content did not differ statistically in these treatments. Other treatments led to statistically significant growth suppression, chlorophyll content reduction, inhibition of photosynthesis, stress development tested by H 2 O 2 and leaf etiolation at the end of 14-days experiment. The tops of etiolated leaves remained green, while the main leaf parts were visually white. Plastids in mesophyll cells of etiolated parts of leaves were mainly represented by etioplasts and an insignificant amount of degraded chloroplasts. Other cellular organelles remained intact in most mesophyll cells of the plants, except (Pb2+Se2)-plants. Ruptured tonoplast and etioplast envelope, swelled cytoplasm and mitochondria, and electron transparent matrix of gialoplasm were observed in the mesophyll cells at (Pb2+Se2)-treatment, that caused maximal inhibition of plant growth. The results indicate that Pb and Se effects on growth of wheat leaves are likely to target meristem in which the development of proplastids to chloroplasts under the light is determined by chlorophyll biosynthesis. Antagonistic effect of low concentration of Se and Pb in combination may retard etiolation process. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. FoxA and LIPG endothelial lipase control the uptake of extracellular lipids for breast cancer growth

    PubMed Central

    Slebe, Felipe; Rojo, Federico; Vinaixa, Maria; García-Rocha, Mar; Testoni, Giorgia; Guiu, Marc; Planet, Evarist; Samino, Sara; Arenas, Enrique J.; Beltran, Antoni; Rovira, Ana; Lluch, Ana; Salvatella, Xavier; Yanes, Oscar; Albanell, Joan; Guinovart, Joan J.; Gomis, Roger R.

    2016-01-01

    The mechanisms that allow breast cancer (BCa) cells to metabolically sustain rapid growth are poorly understood. Here we report that BCa cells are dependent on a mechanism to supply precursors for intracellular lipid production derived from extracellular sources and that the endothelial lipase (LIPG) fulfils this function. LIPG expression allows the import of lipid precursors, thereby contributing to BCa proliferation. LIPG stands out as an essential component of the lipid metabolic adaptations that BCa cells, and not normal tissue, must undergo to support high proliferation rates. LIPG is ubiquitously and highly expressed under the control of FoxA1 or FoxA2 in all BCa subtypes. The downregulation of either LIPG or FoxA in transformed cells results in decreased proliferation and impaired synthesis of intracellular lipids. PMID:27045898

  11. Cellular and Tumor Radiosensitivity is Correlated to Epidermal Growth Factor Receptor Protein Expression Level in Tumors Without EGFR Amplification;Epidermal growth factor receptor; Radiotherapy; Squamous cell carcinoma; Biomarker; Local tumor control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasten-Pisula, Ulla; Saker, Jarob; Eicheler, Wolfgang

    2011-07-15

    Purpose: There is conflicting evidence for whether the expression of epidermal growth factor receptor in human tumors can be used as a marker of radioresponse. Therefore, this association was studied in a systematic manner using squamous cell carcinoma (SCC) cell lines grown as cell cultures and xenografts. Methods and Materials: The study was performed with 24 tumor cell lines of different tumor types, including 10 SCC lines, which were also investigated as xenografts on nude mice. Egfr gene dose and the length of CA-repeats in intron 1 were determined by polymerase chain reaction, protein expression in vitro by Western blotmore » and in vivo by enzyme-linked immunosorbent assay, and radiosensitivity in vitro by colony formation. Data were correlated with previously published tumor control dose 50% data after fractionated irradiation of xenografts of the 10 SCC. Results: EGFR protein expression varies considerably, with most tumor cell lines showing moderate and only few showing pronounced upregulation. EGFR upregulation could only be attributed to massive gene amplification in the latter. In the case of little or no amplification, in vitro EGFR expression correlated with both cellular and tumor radioresponse. In vivo EGFR expression did not show this correlation. Conclusions: Local tumor control after the fractionated irradiation of tumors with little or no gene amplification seems to be dependent on in vitro EGFR via its effect on cellular radiosensitivity.« less

  12. Nanopipette Apparatus for Manipulating Cells

    NASA Technical Reports Server (NTRS)

    Vilozny, Boaz (Inventor); Seger, R. Adam (Inventor); Actis, Paolo (Inventor); Pourmand, Nader (Inventor)

    2017-01-01

    Disclosed herein are methods and systems for controlled ejection of desired material onto surfaces including in single cells using nanopipettes, as well as ejection onto and into cells. Some embodiments are directed to a method and system comprising nanopipettes combined with an xyz controller for depositing a user defined pattern on an arbitrary substrate for the purpose of controlled cell adhesion and growth. Alternate embodiments are directed to a method and system comprising nanopipettes combined with an xyz controller and electronic control of a voltage differential in a bore of the nanopipette electroosmotically injecting material into a cell in a high-throughput manner and with minimal damage to the cell. Yet other embodiments are directed to method and system comprising functionalized nanopipettes combined with scanning ion conductance microscopy for studying molecular interactions and detection of biomolecules inside a single living cell.

  13. Hormonal control of growth in the wing imaginal disks of Junonia coenia: the relative contributions of insulin and ecdysone.

    PubMed

    Nijhout, H Frederik; Laub, Emily; Grunert, Laura W

    2018-03-19

    The wing imaginal disks of Lepidoptera can be grown in tissue culture, but require both insulin and ecdysone to grow normally. Here, we investigate the contributions the two hormones make to growth. Ecdysone is required to maintain mitoses, whereas in the presence of insulin alone mitoses stop. Both ecdysone and insulin stimulate protein synthesis, but only ecdysone stimulates DNA synthesis. Insulin stimulates primarily cytoplasmic growth and an increase in cell size, whereas ecdysone, by virtue of its stimulation of DNA synthesis and mitosis, stimulates growth by an increase in cell number. Although both hormones stimulate protein synthesis, they do so in different spatial patterns. Both hormones stimulate protein synthesis in the inter-vein regions, but ecdysone stimulates synthesis more strongly in the veins and in the margin of the wing disk. We propose that the balance of insulin and ecdysone signaling must be regulated to maintain normal growth, and when growth appears to be due primarily to an increase in cell number, or an increase in cell size, this may indicate growth occurred under conditions that favored a stronger role for ecdysone, or insulin, respectively. © 2018. Published by The Company of Biologists Ltd.

  14. Carnosine retards tumor growth in vivo in an NIH3T3-HER2/neu mouse model.

    PubMed

    Renner, Christof; Zemitzsch, Nadine; Fuchs, Beate; Geiger, Kathrin D; Hermes, Matthias; Hengstler, Jan; Gebhardt, Rolf; Meixensberger, Jürgen; Gaunitz, Frank

    2010-01-06

    It was previously demonstrated that the dipeptide carnosine inhibits growth of cultured cells isolated from patients with malignant glioma. In the present work we investigated whether carnosine also affects tumor growth in vivo and may therefore be considered for human cancer therapy. A mouse model was used to investigate whether tumor growth in vivo can be inhibited by carnosine. Therefore, NIH3T3 fibroblasts, conditionally expressing the human epidermal growth factor receptor 2 (HER2/neu), were implanted into the dorsal skin of nude mice, and tumor growth in treated animals was compared to control mice. In two independent experiments nude mice that received tumor cells received a daily intra peritoneal injection of 500 microl of 1 M carnosine solution. Measurable tumors were detected 12 days after injection. Aggressive tumor growth in control animals, that received a daily intra peritoneal injection of NaCl solution started at day 16 whereas aggressive growth in mice treated with carnosine was delayed, starting around day 19. A significant effect of carnosine on tumor growth was observed up to day 24. Although carnosine was not able to completely prevent tumor growth, a microscopic examination of tumors revealed that those from carnosine treated animals had a significant lower number of mitosis (p < 0.0003) than untreated animals, confirming that carnosine affects proliferation in vivo. As a naturally occurring substance with a high potential to inhibit growth of malignant cells in vivo, carnosine should be considered as a potential anti-cancer drug. Further experiments should be performed in order to understand how carnosine acts at the molecular level.

  15. Connecting the nucleolus to the cell cycle and human disease.

    PubMed

    Tsai, Robert Y L; Pederson, Thoru

    2014-08-01

    Long known as the center of ribosome synthesis, the nucleolus is connected to cell cycle regulation in more subtle ways. One is a surveillance system that reacts promptly when rRNA synthesis or processing is impaired, halting cell cycle progression. Conversely, the nucleolus also acts as a first-responder to growth-related stress signals. Here we review emerging concepts on how these "infraribosomal" links between the nucleolus and cell cycle progression operate in both forward and reverse gears. We offer perspectives on how new cancer therapeutic designs that target this infraribosomal mode of cell growth control may shape future clinical progress. © FASEB.

  16. ROOT HAIR DEFECTIVE SIX-LIKE4 (RSL4) promotes root hair elongation by transcriptionally regulating the expression of genes required for cell growth.

    PubMed

    Vijayakumar, Priya; Datta, Sourav; Dolan, Liam

    2016-12-01

    ROOT HAIR DEFECTIVE SIX-LIKE4 (RSL4) is necessary and sufficient for root hair elongation in Arabidopsis thaliana. Root hair length is determined by the duration for which RSL4 protein is present in the developing root hair. The aim of this research was to identify genes regulated by RSL4 that affect root hair growth. To identify genes regulated by RSL4, we identified genes whose expression was elevated by induction of RSL4 activity in the presence of an inhibitor of translation. Thirty-four genes were identified as putative targets of RSL transcriptional regulation, and the results suggest that the activities of SUPPRESSOR OF ACTIN (SAC1), EXOCSYT SUBUNIT 70A1 (EXO70A1), PEROXIDASE7 (PRX7) and CALCIUM-DEPENDENT PROTEIN KINASE11 (CPK11) are required for root hair elongation. These data indicate that RSL4 controls cell growth by controlling the expression of genes encoding proteins involved in cell signalling, cell wall modification and secretion. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  17. Ebselen inhibits QSOX1 enzymatic activity and suppresses invasion of pancreatic and renal cancer cell lines.

    PubMed

    Hanavan, Paul D; Borges, Chad R; Katchman, Benjamin A; Faigel, Douglas O; Ho, Thai H; Ma, Chen-Ting; Sergienko, Eduard A; Meurice, Nathalie; Petit, Joachim L; Lake, Douglas F

    2015-07-30

    Quiescin sulfhydryl oxidase 1 (QSOX1) is a highly conserved disulfide bond-generating enzyme that is overexpressed in diverse tumor types. Its enzymatic activity promotes the growth and invasion of tumor cells and alters extracellular matrix composition. In a nude mouse-human tumor xenograft model, tumors containing shRNA for QSOX1 grew significantly more slowly than controls, suggesting that QSOX1 supports a proliferative phenotype in vivo. High throughput screening experiments identified ebselen as an in vitro inhibitor of QSOX1 enzymatic activity. Ebselen treatment of pancreatic and renal cancer cell lines stalled tumor growth and inhibited invasion through Matrigel in vitro. Daily oral treatment with ebselen resulted in a 58% reduction in tumor growth in mice bearing human pancreatic tumor xenografts compared to controls. Mass spectrometric analysis of ebselen-treated QSOX1 mechanistically revealed that C165 and C237 of QSOX1 covalently bound to ebselen. This report details the anti-neoplastic properties of ebselen in pancreatic and renal cancer cell lines. The results here offer a "proof-of-principle" that enzymatic inhibition of QSOX1 may have clinical relevancy.

  18. PDGF-BB induces vascular smooth muscle cell expression of high molecular weight FGF-2, which accumulates in the nucleus.

    PubMed

    Pintucci, Giuseppe; Yu, Pey-Jen; Saponara, Fiorella; Kadian-Dodov, Daniella L; Galloway, Aubrey C; Mignatti, Paolo

    2005-08-15

    Basic fibroblast growth factor (FGF-2) and platelet-derived growth factor (PDGF) are implicated in vascular remodeling secondary to injury. Both growth factors control vascular endothelial and smooth muscle cell proliferation, migration, and survival through overlapping intracellular signaling pathways. In vascular smooth muscle cells PDGF-BB induces FGF-2 expression. However, the effect of PDGF on the different forms of FGF-2 has not been elucidated. Here, we report that treatment of vascular aortic smooth muscle cells with PDGF-BB rapidly induces expression of 20.5 and 21 kDa, high molecular weight (HMW) FGF-2 that accumulates in the nucleus and nucleolus. Conversely, PDGF treatment has little or no effect on 18 kDa, low-molecular weight FGF-2 expression. PDGF-BB-induced upregulation of HMW FGF-2 expression is controlled by sustained activation of extracellular signal-regulated kinase (ERK)-1/2 and is abolished by actinomycin D. These data describe a novel interaction between PDGF-BB and FGF-2, and indicate that the nuclear forms of FGF-2 may mediate the effect of PDGF activity on vascular smooth muscle cells.

  19. Skeletal muscle satellite cells

    NASA Technical Reports Server (NTRS)

    Schultz, E.; McCormick, K. M.

    1994-01-01

    Evidence now suggests that satellite cells constitute a class of myogenic cells that differ distinctly from other embryonic myoblasts. Satellite cells arise from somites and first appear as a distinct myoblast type well before birth. Satellite cells from different muscles cannot be functionally distinguished from one another and are able to provide nuclei to all fibers without regard to phenotype. Thus, it is difficult to ascribe any significant function to establishing or stabilizing fiber type, even during regeneration. Within a muscle, satellite cells exhibit marked heterogeneity with respect to their proliferative behavior. The satellite cell population on a fiber can be partitioned into those that function as stem cells and those which are readily available for fusion. Recent studies have shown that the cells are not simply spindle shaped, but are very diverse in their morphology and have multiple branches emanating from the poles of the cells. This finding is consistent with other studies indicating that the cells have the capacity for extensive migration within, and perhaps between, muscles. Complexity of cell shape usually reflects increased cytoplasmic volume and organelles including a well developed Golgi, and is usually associated with growing postnatal muscle or muscles undergoing some form of induced adaptive change or repair. The appearance of activated satellite cells suggests some function of the cells in the adaptive process through elaboration and secretion of a product. Significant advances have been made in determining the potential secretion products that satellite cells make. The manner in which satellite cell proliferative and fusion behavior is controlled has also been studied. There seems to be little doubt that cellcell coupling is not how satellite cells and myofibers communicate. Rather satellite cell regulation is through a number of potential growth factors that arise from a number of sources. Critical to the understanding of this form of control is to determine which of the many growth factors that can alter satellite cell behavior in vitro are at work in vivo. Little work has been done to determine what controls are at work after a regeneration response has been initiated. It seems likely that, after injury, growth factors are liberated through proteolytic activity and initiate an activation process whereby cells enter into a proliferative phase. After myofibers are formed, it also seems likely that satellite cell behavior is regulated through diffusible factors arising from the fibers rather than continuous control by circulating factors.(ABSTRACT TRUNCATED AT 400 WORDS).

  20. [Inhibitory effect of Biejiajian pills on HepG2 cell xenograft growth and expression of β-catenin and Tbx3 in nude mice].

    PubMed

    Wen, Bin; Sun, Hai-Tao; He, Song-Qi; LA, Lei; An, Hai-Yan; Pang, Jie

    2016-02-01

    To explore the molecular mechanism by which Biejiajian pills inhibit hepatocellular carcinoma in a nude mouse model bearing HepG2 cell xenograft. The inhibitory effect of Biejiajian pills on the growth of HepG2 cell xenograft in nude mice was observed. Immunohistochemical method was used to examine proliferating cell nuclear antigen (PCNA) expression in HepG2 cell xenograft, and TUNEL method was employed to detect the cell apoptosis; the expression levels of β-catenin and Tbx3 were measured by Western blotting. Biejiajian pills significantly suppressed the growth of HepG2 cell xenograft in nude mice. The tumor-bearing mice treated with a high and a moderate dose of Biejiajian pills showed significantly increased apoptosis rate of the tumor cells [(22.9±1.220)% and (14.7±0.50)%, respectively] compared with the control group [(5.5±0.90)%, P<0.05]. Treatment with Biejiajian pills significantly decreased the expressions of PNCA, β-catenin, and Tbx3 in the cell xenograft (P<0.05). Biejiajian pills can inhibit the growth of HepG2 cell xenograft in nude mice and promote tumor cell apoptosis possibly by inhibiting PNCA expression and the Wnt/β-catenin signaling pathway.

Top