Sample records for control cells grown

  1. Nucleolar structure and proliferation activity of Arabidopsis root cells from seedlings germinated on the International Space Station

    NASA Astrophysics Data System (ADS)

    Matía, Isabel; González-Camacho, Fernando; Marco, Roberto; Kiss, John Z.; Gasset, Gilbert; Medina, Francisco-Javier

    Seeds of Arabidopsis thaliana were sent to the International Space Station in the "Cervantes Mission" (Spanish Soyuz Mission). Seed germination was initiated in flight by supplying culture medium. Seedlings were grown for 4 days at 22 °C, and growth was stopped by the addition of paraformaldehyde fixative. Once back on the ground, samples were immediately processed for microscopy. A ground control experiment was simultaneously replicated. Glutaraldehyde-fixed root cells from seedlings grown in the Biorack on board of the Space Shuttle (STS-84 Mission) in similar conditions were also ultrastructurally examined. The length of seedlings grown at 1 g was conspicuously shorter than parallel samples grown under microgravity. We examined the morphology of the root meristematic cells, with a focus on their nucleoli in the cortex and stele. In general, root cortical cells proliferate at a higher rate and their nucleoli are more active than those of stele cells. While the stele showed longer cells with larger nucleoli in the flight samples, cortical cells from space-grown seedlings were shorter, more numerous and more densely packed than ground controls. However, nucleoli were smaller and less active in fast proliferating flight cells than in the ground controls. This reduced level of ribosome synthesis in the flight samples is probably the result of an accelerated cell cycle. An altered rate of cell proliferation may be detrimental for the plant and could be the reason for the reported smaller size of older space-grown seedlings. Finally, two-dimensional protein electrophoresis showed noticeable differences between space samples and ground controls.

  2. Human Colon Cancer Cells Cultivated in Space

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Within five days, bioreactor cultivated human colon cancer cells (shown) grown in Microgravity on the STS-70 mission in 1995, had grown 30 times the volume of the control specimens on Earth. The samples grown in space had a higher level of cellular organization and specialization. Because they more closely resemble tumors found in the body, microgravity grown cell cultures are ideal for research purposes.

  3. Biotechnology

    NASA Image and Video Library

    1995-07-15

    Within five days, bioreactor cultivated human colon cancer cells (shown) grown in Microgravity on the STS-70 mission in 1995, had grown 30 times the volume of the control specimens on Earth. The samples grown in space had a higher level of cellular organization and specialization. Because they more closely resemble tumors found in the body, microgravity grown cell cultures are ideal for research purposes.

  4. The influence of gravity on the formation of amyloplasts in columella cells of Zea mays L

    NASA Technical Reports Server (NTRS)

    Moore, R.; Fondren, W. M.; Koon, E. C.; Wang, C. L.

    1986-01-01

    Columella (i.e., putative graviperceptive) cells of Zea mays seedlings grown in the microgravity of outer space allocate significantly less volume to putative statoliths (amyloplasts) than do columella cells of Earth-grown seedlings. Amyloplasts of flight-grown seedlings are significantly smaller than those of ground controls, as is the average volume of individual starch grains. Similarly, the relative volume of starch in amyloplasts in columella cells of flight-grown seedlings is significantly less than that of Earth-grown seedlings. Microgravity does not significantly alter the volume of columella cells, the average number of amyloplasts per columella cell, or the number of starch grains per amyloplast. These results are discussed relative to the influence of gravity on cellular and organellar structure.

  5. Ultrastructure of potato tubers formed in microgravity under controlled environmental conditions

    NASA Technical Reports Server (NTRS)

    Cook, Martha E.; Croxdale, Judith G.; Tibbitts, T. W. (Principal Investigator)

    2003-01-01

    Previous spaceflight reports attribute changes in plant ultrastructure to microgravity, but it was thought that the changes might result from growth in uncontrolled environments during spaceflight. To test this possibility, potato explants were examined (a leaf, axillary bud, and small stem segment) grown in the ASTROCULTURETM plant growth unit, which provided a controlled environment. During the 16 d flight of space shuttle Columbia (STS-73), the axillary bud of each explant developed into a mature tuber. Upon return to Earth, tuber slices were examined by transmission electron microscopy. Results showed that the cell ultrastructure of flight-grown tubers could not be distinguished from that of tuber cells grown in the same growth unit on the ground. No differences were observed in cellular features such as protein crystals, plastids with starch grains, mitochondria, rough ER, or plasmodesmata. Cell wall structure, including underlying microtubules, was typical of ground-grown plants. Because cell walls of tubers formed in space were not required to provide support against the force due to gravity, it was hypothesized that these walls might exhibit differences in wall components as compared with walls formed in Earth-grown tubers. Wall components were immunolocalized at the TEM level using monoclonal antibodies JIM 5 and JIM 7, which recognize epitopes of pectins, molecules thought to contribute to wall rigidity and cell adhesion. No difference in presence, abundance or distribution of these pectin epitopes was seen between space- and Earth-grown tubers. This evidence indicates that for the parameters studied, microgravity does not affect the cellular structure of plants grown under controlled environmental conditions.

  6. Cytological and ultrastructural studies on root tissues

    NASA Technical Reports Server (NTRS)

    Slocum, R. D.; Gaynor, J. J.; Galston, A. W.

    1984-01-01

    The anatomy and fine structure of roots from oat and mung bean seedlings, grown under microgravity conditions for 8 days aboard the Space Shuttle, was examined and compared to that of roots from ground control plants grown under similar conditions. Roots from both sets of oat seedlings exhibited characteristic monocotyledonous tissue organization and normal ultrastructural features, except for cortex cell mitochondria, which exhibited a 'swollen' morphology. Various stages of cell division were observed in the meristematic tissues of oat roots. Ground control and flight-grown mung bean roots also showed normal tissue organization, but root cap cells in the flight-grown roots were collapsed and degraded in appearance, especially at the cap periphery. At the ultrastructural level, these cells exhibited a loss of organelle integrity and a highly-condensed cytoplasm. This latter observation perhaps suggests a differing tissue sensitivity for the two species to growth conditions employed in space flight. The basis for abnormal root cap cell development is not understood, but the loss of these putative gravity-sensing cells holds potential significance for long term plant growth orientation during space flight.

  7. Gentamicin: effect on E. coli in space

    NASA Technical Reports Server (NTRS)

    Kacena, M. A.; Todd, P.

    1999-01-01

    Previous investigations have shown that liquid bacterial cultures grown in space flight were not killed as effectively by antibiotic treatments as were cultures grown on Earth. However, the cause for the decreased antibiotic effectiveness remains unknown. Possible explanations include modified cell proliferation and modified antibiotic transport in the culture medium. Escherichia coli cultures were grown in space flight (STS-69 and STS-73), with and without gentamicin, on a solid agar substrate thus eliminating fluid effects and reducing the unknowns associated with space-flight bacterial cultures in suspension. This research showed that E. coli cultures grown in flight on agar for 24 to 27 hours experienced a heightened growth compared to simultaneous controls. However, addition of gentamicin to the agar killed the bacteria such that both flight and ground control E. coli samples had similar final cell concentrations. Therefore, while the reported existence of a decrease in antibiotic effectiveness in liquid cultures remains unexplained, these data suggest that gentamicin in space flight was at least as effective as, if not more effective than, on Earth, when E. coli cells were grown on agar.

  8. Efficacy and safety of cell-associated vaccines against Marek's disease virus grown in QT35 cells or JBJ-1 cells.

    PubMed

    Geerligs, Harm; Spijkers, Ine; Rodenberg, Jeff

    2013-06-01

    The Marek's disease virus (MDV) vaccine strain CVI 988 usually is grown in primary chicken embryo fibroblasts (CEFs). We found that the strains could be grown also in the QT35 and JBJ-1 cell lines to titers in the same range as in the CEFs. Both cell lines are fibroblast-like cell lines, which can be grown in flat-bottomed tissue-culture flasks, roller bottles, and on microcarriers. For growth in QT35 cells it was necessary to adapt the virus to the cell line; for growth in JBJ-1 cells this was not necessary. We investigated the efficacy of experimental CVI 988 vaccines grown in QT35 cells and JBJ-1 cells. The efficacy studies were performed in accordance with European Pharmacopoeia (EP) monograph for live MDV disease vaccines. Groups of 1-day-old specific-pathogen-free chicks were vaccinated. Nonvaccinated control groups were included in the studies. Five to 7 days after vaccination all chickens were challenged with the very virulent MDV strain RB1B. After challenge the chickens were observed for a period of 70 days for signs of MD. The protection induced by CVI 988 grown in QT35 cells as well as JBJ-1 cells complied with the requirements of the EP that prescribe that the protection index should be at least 80%. The safety of the vaccines grown in QT35 cells and JBJ-1 cells was tested in a field study in commercial layer chickens. The vaccine virus was not safe after passaging in QT35 cells. This can be explained by the presence of fragments of the genome of MDV strains in the QT35 cell line. No signs of MD were noticed in the study in which CVI988 grown in JBJ-1 cells was tested. It is concluded that the JBJ-1 cell line is a suitable substrate for the current vaccines against MD.

  9. Radiation damage in lithium-counterdoped N/P silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hermann, A. M.; Swartz, C. K.; Brandhorst, H. W., Jr.; Weinberg, I.

    1980-01-01

    The radiation resistance and low-temperature annealing properties of lithium-counterdoped n(+)-p silicon solar cells are investigated. Cells fabricated from float zone and Czochralski grown silicon were irradiated with 1 MeV electrons and their performance compared to that of 0.35 ohm-cm control cells. The float zone cells demonstrated superior radiation resistance compared to the control cells, while no improvement was noted for the Czochralski grown cells. Annealing kinetics were found to lie between first and second order for relatively short times, and the most likely annealing mechanism was found to be the diffusion of lithium to defects with the subsequent neutralization of defects by combination with lithium. Cells with zero lithium gradients exhibited the best radiation resistance.

  10. GaSb thermophotovoltaic cells grown on GaAs by molecular beam epitaxy using interfacial misfit arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juang, Bor-Chau, E-mail: bcjuang@ucla.edu; Laghumavarapu, Ramesh B.; Foggo, Brandon J.

    There exists a long-term need for foreign substrates on which to grow GaSb-based optoelectronic devices. We address this need by using interfacial misfit arrays to grow GaSb-based thermophotovoltaic cells directly on GaAs (001) substrates and demonstrate promising performance. We compare these cells to control devices grown on GaSb substrates to assess device properties and material quality. The room temperature dark current densities show similar characteristics for both cells on GaAs and on GaSb. Under solar simulation the cells on GaAs exhibit an open-circuit voltage of 0.121 V and a short-circuit current density of 15.5 mA/cm{sup 2}. In addition, the cells on GaAsmore » substrates maintain 10% difference in spectral response to those of the control cells over a large range of wavelengths. While the cells on GaSb substrates in general offer better performance than the cells on GaAs substrates, the cost-savings and scalability offered by GaAs substrates could potentially outweigh the reduction in performance. By further optimizing GaSb buffer growth on GaAs substrates, Sb-based compound semiconductors grown on GaAs substrates with similar performance to devices grown directly on GaSb substrates could be realized.« less

  11. Growth and acid production of Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842 in the fermentation of algal carcass.

    PubMed

    Li, C; Zhang, G F; Mao, X; Wang, J Y; Duan, C Y; Wang, Z J; Liu, L B

    2016-06-01

    Algal carcass is a low-value byproduct of algae after its conversion to biodiesel. Dried algal carcass is rich in protein, carbohydrate, and multiple amino acids, and it is typically well suited for growth and acid production of lactic acid bacteria. In this study, Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842 was used to ferment different algal carcass media (ACM), including 2% ACM, 2% ACM with 1.9% glucose (ACM-G), and 2% ACM with 1.9% glucose and 2g/L amino acid mixture (ACM-GA). Concentrations of organic acids (lactic acid and acetic acid), acetyl-CoA, and ATP were analyzed by HPLC, and activities of lactate dehydrogenase (LDH), acetokinase (ACK), pyruvate kinase (PK), and phosphofructokinase (PFK) were determined by using a chemical approach. The growth of L. bulgaricus cells in ACM-GA was close to that in the control medium (de Man, Rogosa, and Sharpe). Lactic acid and acetic acid contents were greatly reduced when L. bulgaricus cells were grown in ACM compared with the control medium. Acetyl-CoA content varied with organic acid content and was increased in cells grown in different ACM compared with the control medium. The ATP content of L. bulgaricus cells in ACM was reduced compared with that of cells grown in the control medium. Activities of PFK and ACK of L. bulgaricus cells grown in ACM were higher and those of PK and LDH were lower compared with the control. Thus, ACM rich in nutrients may serve as an excellent substrate for growth by lactic acid bacteria, and addition of appropriate amounts of glucose and amino acids can improve growth and acid production. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. High density growth of T7 expression strains with auto-induction option

    DOEpatents

    Studier, F. William

    2010-07-20

    A bacterial growth medium for promoting auto-induction of transcription of cloned DNA in cultures of bacterial cells grown batchwise is disclosed. The transcription is under the control of a lac repressor. Also disclosed is a bacterial growth medium for improving the production of a selenomethionine-containing protein or polypeptide in a bacterial cell, the protein or polypeptide being produced by recombinant DNA techniques from a lac or T7lac promoter, the bacterial cell encoding a vitamin B12-dependent homocysteine methylase. Finally, disclosed is a bacterial growth medium for suppressing auto-induction of expression in cultures of bacterial cells grown batchwise, said transcription being under the control of lac repressor.

  13. Enhancement of Immune Activation Activities of Spirulina maxima Grown in Deep-Sea Water

    PubMed Central

    Choi, Woon Yong; Kang, Do Hyung; Lee, Hyeon Yong

    2013-01-01

    In this study, the immuno-modulatory and anticancer activities of marine algae, Spirulina maxima grown in deep-sea water (DSW), were investigated. It was found that the extract of S. maxima, cultured in DSW, effectively suppressed the expression of Bcl2 in A549 cells as well as inhibiting various human cancer cells with concentration dependency, which possibly implies that the extracts may play more important roles in controlling cancer cell growth. The secretion of cytokines IL-6 and TNF-α from human B cells was also greatly increased, compared to those of the extract grown in conventional sea-water. The growth of Human Natural Killer (NK) cells in the presence of the extracts from DSW was significantly higher (12.2 × 104 viable cells/mL) when compared to the control (1.1 × 104 viable cells/mL). Based on HPLC analysis, the increase in the biological activities of the extracts from DSW was caused by considerably high amounts of β-carotene and ascorbic acid because the DSW contained high concentrations and good ratios of several key minerals for biosynthesizing β-carotene and ascorbic acid, as well as maintaining high cell growth. PMID:23743830

  14. The von Hippel-Lindau (VHL) tumor-suppressor gene is down-regulated by selenium deficiency in Caco-2 cells and rat colon mucosa.

    PubMed

    Uthus, Eric; Begaye, Adrienne; Ross, Sharon; Zeng, Huawei

    2011-08-01

    To test the hypothesis that selenium affects DNA methylation and hence gene regulation, we employed a methylation array (Panomics) in the human colonic epithelial Caco-2 cell model. The array profiles DNA methylation from promoter regions of 82 human genes. After conditioning cells to repeatedly reduced concentrations of fetal bovine serum, a serum-free culture was established. Se-methylselenocysteine (SeMSC) was added at 0 (deficient Se) or 250 (control Se) nM to cells maintained in DMEM. After 7 days, cells were collected and stored at -80 °C until analysis; experiments were replicated three times. Glutathione peroxidase activity was significantly decreased in cells grown in low SeMSC. Cells grown in 250 nM SeMSC had maximal GPx activity. Genomic DNA from cells grown in the low-SeMSC media and media containing 250 nM SeMSC was incubated with methylation-binding protein followed by isolation of methylated DNA. The methylated DNA was labeled with biotin and hybridized to the methylation array. Thus, genes with promoter methylation will produce a higher chemiluminescence signal than those genes with no promoter methylation. Of the genes profiled, the von Hippel-Lindau (VHL) gene was most different as indicated by quantification following chemiluminescence detection demonstrating that the promoter region of VHL was hypermethylated in cells from the low-SeMSC media. To determine whether promoter methylation affected transcription, we isolated RNA from replicate samples and performed real-time RT PCR. VHL (mRNA) was down-regulated (fold change significantly <1) in cells grown in low SeMSC compared to cells grown in 250 nM SeMSC (control; fold change = 1). We also show that (mRNA) Vhl expression is significantly reduced in mucosa from rats fed a diet deficient in Se. Our results suggest that low Se status affects DNA promoter region methylation and that this can result in down-regulation of the tumor suppressor gene VHL.

  15. Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance

    PubMed Central

    Ene, Iuliana V.; Walker, Louise A.; Schiavone, Marion; Lee, Keunsook K.; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A. R.; Munro, Carol A.

    2015-01-01

    ABSTRACT The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. PMID:26220968

  16. Influence of microgravity on root-cap regeneration and the structure of columella cells in Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; McClelen, C. E.; Fondren, W. M.; Wang, C. L.

    1987-01-01

    We launched imbibed seeds and seedlings of Zea mays into outer space aboard the space shuttle Columbia to determine the influence of microgravity on 1) root-cap regeneration, and 2) the distribution of amyloplasts and endoplasmic reticulum (ER) in the putative statocytes (i.e., columella cells) of roots. Decapped roots grown on Earth completely regenerated their caps within 4.8 days after decapping, while those grown in microgravity did not regenerate caps. In Earth-grown seedlings, the ER was localized primarily along the periphery of columella cells, and amyloplasts sedimented in response to gravity to the lower sides of the cells. Seeds germinated on Earth and subsequently launched into outer space had a distribution of ER in columella cells similar to that of Earth-grown controls, but amyloplasts were distributed throughout the cells. Seeds germinated in outer space were characterized by the presence of spherical and ellipsoidal masses of ER and randomly distributed amyloplasts in their columella cells. These results indicate that 1) gravity is necessary for regeneration of the root cap, 2) columella cells can maintain their characteristic distribution of ER in microgravity only if they are exposed previously to gravity, and 3) gravity is necessary to distribute the ER in columella cells of this cultivar of Z. mays.

  17. The Effects of Low-Shear Mechanical Stress on Yersinia pestis Virulence

    NASA Astrophysics Data System (ADS)

    Lawal, Abidat; Jejelowo, Olufisayo A.; Rosenzweig, Jason A.

    2010-11-01

    Manned space exploration has created a need to evaluate the effects of spacelike stress on pathogenic and opportunistic microbes astronauts could carry with them to the International Space Station and beyond. Yersinia pestis (YP) causes bubonic, septicemic, and pneumonic plague and is capable of killing infected patients within 3-7 days. In this study, low-shear modeled microgravity (LSMMG), a spacelike stress, was used to physically stress YP; and its effects on proliferation, cold growth, and type III secretion system (T3SS) function were evaluated. YP was grown to saturation in either LSMMG or normal gravity (NG) conditions prior to being used for RAW 246.7 cell infections, HeLa cell infections, and Yop secretion assays. A mutant strain of YP (ΔyopB) that lacks the ability to inject Yersinia outer membrane proteins (Yops) into the host cell was used as a negative control in cell infection experiments. Our experimental results indicate that YP cultivated under LSMMG resulted in reduced YopM production and secretion compared to its NG-grown counterpart. Similarly, NG-grown YP induced more cell rounding in HeLa cells than did the LSMMG-grown YP, which suggests that LSMMG somehow impairs T3SS optimum function. Also, LSMMG-grown YP used to infect cultured RAW 246.7 cells showed a similar pattern of dysfunction in that it proliferated less than did its NG-grown counterpart during an 8-hour infection period. This study suggests that LSMMG can attenuate bacterial virulence contrary to previously published data that have demonstrated LSMMG-induced hypervirulence of other Gram-negative enterics.

  18. The effects of low-shear mechanical stress on Yersinia pestis virulence.

    PubMed

    Lawal, Abidat; Jejelowo, Olufisayo A; Rosenzweig, Jason A

    2010-11-01

    Manned space exploration has created a need to evaluate the effects of spacelike stress on pathogenic and opportunistic microbes astronauts could carry with them to the International Space Station and beyond. Yersinia pestis (YP) causes bubonic, septicemic, and pneumonic plague and is capable of killing infected patients within 3-7 days. In this study, low-shear modeled microgravity (LSMMG), a spacelike stress, was used to physically stress YP; and its effects on proliferation, cold growth, and type III secretion system (T3SS) function were evaluated. YP was grown to saturation in either LSMMG or normal gravity (NG) conditions prior to being used for RAW 246.7 cell infections, HeLa cell infections, and Yop secretion assays. A mutant strain of YP (ΔyopB) that lacks the ability to inject Yersinia outer membrane proteins (Yops) into the host cell was used as a negative control in cell infection experiments. Our experimental results indicate that YP cultivated under LSMMG resulted in reduced YopM production and secretion compared to its NG-grown counterpart. Similarly, NG-grown YP induced more cell rounding in HeLa cells than did the LSMMG-grown YP, which suggests that LSMMG somehow impairs T3SS optimum function. Also, LSMMG-grown YP used to infect cultured RAW 246.7 cells showed a similar pattern of dysfunction in that it proliferated less than did its NG-grown counterpart during an 8-hour infection period. This study suggests that LSMMG can attenuate bacterial virulence contrary to previously published data that have demonstrated LSMMG-induced hypervirulence of other Gram-negative enterics.

  19. Hydrofocusing Bioreactor for Three-Dimensional Cell Culture

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Spaulding, Glenn F.; Tsao, Yow-Min D.; Flechsig, Scott; Jones, Leslie; Soehnge, Holly

    2003-01-01

    The hydrodynamic focusing bioreactor (HFB) is a bioreactor system designed for three-dimensional cell culture and tissue-engineering investigations on orbiting spacecraft and in laboratories on Earth. The HFB offers a unique hydrofocusing capability that enables the creation of a low-shear culture environment simultaneously with the "herding" of suspended cells, tissue assemblies, and air bubbles. Under development for use in the Biotechnology Facility on the International Space Station, the HFB has successfully grown large three-dimensional, tissuelike assemblies from anchorage-dependent cells and grown suspension hybridoma cells to high densities. The HFB, based on the principle of hydrodynamic focusing, provides the capability to control the movement of air bubbles and removes them from the bioreactor without degrading the low-shear culture environment or the suspended three-dimensional tissue assemblies. The HFB also provides unparalleled control over the locations of cells and tissues within its bioreactor vessel during operation and sampling.

  20. Culture on electrospun polyurethane scaffolds decreases atrial natriuretic peptide expression by cardiomyocytes in vitro.

    PubMed

    Rockwood, Danielle N; Akins, Robert E; Parrag, Ian C; Woodhouse, Kimberly A; Rabolt, John F

    2008-12-01

    The function of the mammalian heart depends on the functional alignment of cardiomyocytes, and controlling cell alignment is an important consideration in biomaterial design for cardiac tissue engineering and research. The physical cues that guide functional cell alignment in vitro and the impact of substrate-imposed alignment on cell phenotype, however, are only partially understood. In this report, primary cardiac ventricular cells were grown on electrospun, biodegradable polyurethane (ES-PU) with either aligned or unaligned microfibers. ES-PU scaffolds supported high-density cultures and cell subpopulations remained intact over two weeks in culture. ES-PU cultures contained electrically-coupled cardiomyocytes with connexin-43 localized to points of cell:cell contact. Multi-cellular organization correlated with microfiber orientation and aligned materials yielded highly oriented cardiomyocyte groupings. Atrial natriuretic peptide, a molecular marker that shows decreasing expression during ventricular cell maturation, was significantly lower in cultures grown on ES-PU scaffolds than in those grown on tissue culture polystyrene. Cells grown on aligned ES-PU had significantly lower steady state levels of ANP and constitutively released less ANP over time indicating that scaffold-imposed cell organization resulted in a shift in cell phenotype to a more mature state. We conclude that the physical organization of microfibers in ES-PU scaffolds impacts both multi-cellular architecture and cardiac cell phenotype in vitro.

  1. Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance.

    PubMed

    Ene, Iuliana V; Walker, Louise A; Schiavone, Marion; Lee, Keunsook K; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A R; Munro, Carol A; Brown, Alistair J P

    2015-07-28

    The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. The C. albicans cell wall is the first line of defense against external insults, the site of immune recognition by the host, and an attractive target for antifungal therapy. Its tensile strength is conferred by a network of cell wall polysaccharides, which are remodeled in response to growth conditions and environmental stress. However, little is known about how cell wall elasticity is regulated and how it affects adaptation to stresses such as sudden changes in osmolarity. We show that elasticity is critical for survival under conditions of osmotic shock, before stress signaling pathways have time to induce gene expression and drive glycerol accumulation. Critical cell wall remodeling enzymes control cell wall flexibility, and its regulation is strongly dependent on host nutritional inputs. We also demonstrate an entirely new level of cell wall dynamism, where significant architectural changes and structural realignment occur within seconds of an osmotic shock. Copyright © 2015 Ene et al.

  2. Radiation damage in lithium-counterdoped n/p silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hermann, A. M.; Swartz, C. K.; Brandhorst, H. W., Jr.; Weinberg, I.

    1980-01-01

    Lithium counterdoped n+/p silicon solar cells were irradiated with 1 MV electrons and their post irradiation performance and low temperature annealing properties were compared to that of the 0.35 ohm cm control cells. Cells fabricated from float zone and Czochralski grown silicon were investigated. It was found that the float zone cells exhibited superior radiation resistance compared to the control cells, while no improvement was noted for the Czochralski grown cells. Room temperature and 60 C annealing studies were conducted. The annealing was found to be a combination of first and second order kinetics for short times. It was suggested that the principal annealing mechanism was migration of lithium to a radiation induced defect with subsequent neutralization of the defect by combination with lithium. The effects of base lithium gradient were investigated. It was found that cells with negative base lithium gradients exhibited poor radiation resistance and performance compared to those with positive or no lithium gradients; the latter being preferred for overall performance and radiation resistance.

  3. Effect of Serum from Chickens Treated with Clenbuterol on Myosin Accumulation, Beta-Adrenergic Receptor Population, and Cyclic AM Synthesis in Embryonic Chicken Skeletal Muscle Cell Cultures

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.; Wuethrich, A. J.; Hancock, D. L.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Broiler chickens at 35 days of age were fed 1 ppm clenbuterol for 14 days. This level of dietary clenbuterol led to 5-7% increases in weights of leg and breast muscle tissue. At the end of the 14-day period, serum was prepared from both control and clenbuterol-treated chickens and was then employed as a component of cell culture media at a final concentration of 20% (v/v). Muscle cell cultures were prepared from both the leg and breast muscle groups of twelve-day chick embryos. Treatment groups included control chicken serum to which 10 nM, 50 nM, and 1 micron clenbuterol had been added, as well as cells grown in media containing 10% horse serum. Cultures were subjected to each treatment for 3 days beginning on the seventh day in culture. Neither the percent fusion nor the number of nuclei in myotubes were significantly affected by any of the treatments. The quantity of MHC was not increased by serum from clenbuterol-treated chickens in either breast and leg muscle cultures; however, MHC quantity was 50- 100% higher in cultures grown in control chicken serum to which 10 nM and 50 nM clenbuterol had also been added. The Beta-AR population was 4,000-7,000 Beta-AR per cell in cultures grown in chicken serum, with leg muscle cultures having approximately 25-30% more receptors than breast muscle cultures. Receptor population was not significantly affected by the presence of clenbuterol or by the presence of serum from clenbuterol-treated chickens. In contrast, the Beta-AR population in leg and breast muscle cultures grown in the presence of 10% horse serum was 18,000-20,000 Beta-AR per cell. Basal concentration of cAMP was not significantly affected by any of the treatments. When cultures grown in chicken serum were stimulated for 10 min with 1 micron isoproterenol, limited increases of 12-20% in cAMP concentration above basal levels were observed. However, when cultures grown in the presence of horse serum were stimulated with 1 micron isoproterenol, increases of 600-800 % in cAMP concentration above basal levels were observed. Thus, not only did cells grown in horse serum have a higher Beta-AR population, each receptor had a higher capacity for cAMP synthesis following isoproterenol stimulation. Finally, the hypothesis was tested that clenbuterol exerts its action on muscle protein content by changes in cAMP concentration. No correlation was apparent between basal cAMP concentration and MHC content.

  4. Effect of Serum from Chickens Treated with Clenbuterol on Myosin Accumulation, Beta-Adrenergic Receptor Population, and Cyclic AMP Synthesis in Embryonic Chicken Skeletal Muscle Cell Cultures

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, Kristin Y.; Wuethrich, Andrew J.; Hancock, Deana L.

    2002-01-01

    Broiler chickens at 35 d of age were fed 1 ppm clenbuterol for 14 d. This level of dietary clenbuterol led to 5-7% increases in the weights of leg and breast muscle tissue. At the end of the 14-d period, serum was prepared from both control and clenbuterol-treated chickens, and was then employed as a component of cell culture media at a final concentration of 20% (v/v). Muscle cell cultures were prepared from both the leg and the breast muscle groups of 12-d chick embryos. Treatment groups included control chicken serum to which 10 nM, 50 nM, and 1 uM clenbuterol had been added, as well as cells grown in media containing 10% horse serum. Cultures were subjected to each treatment for 3 d, beginning on the seventh d in culture. Neither the percent fusion nor the number of nuclei in myotubes was significantly affected by any of the treatments. The quantity of myosin heavy chains (MHCs) was not increased by serum from clenbuterol-treated chickens in either breast or leg muscle cultures; however, the MHC quantity was 50-150% higher in cultures grown in control chicken serum to which 10 and 50 nM clenbuterol had also been added. The B-adrenergic receptor (betaAR) population was 4000-7000 betaARs per cell in cultures grown in chicken serum with leg muscle cultures having approximately 25-30% more receptors than breast muscle Culture. Receptor population was not significantly affected by the presence of clenbuterol or by the presence of serum from clenbuterol-treated chickens. In contrast, the betaAR Population in leg and breast muscle cultures grown in the presence of 10% horse serum was 16,000-18,000 betaARs per cell. Basal concentration of cyclic adenosine 3':5'monophosphate (cAMP) was not significantly affected by the treatments. When cultures grown in chicken serum were stimulated for 10 min with 1 uM isoproterenol, limited increases of 12-20% in cAMP Concentration above the. basal levels were observed. However, when cultures grown in the presence of horse serum were stimulated with 1 uM isoproterenol, cAMP concentration was stimulated 5- to 9-fold above the basal levels. Thus, not only did cells, grown in horse serum have a higher PAR population, but also each receptor had a higher capacity for cAMP synthesis following isoproterenol stimulation. Finally, the hypothesis that clenbuterol exerts its action on muscle protein content by changes in cAMP concentration was tested. No correlation was apparent between basal cAMP concentration and MHC content.

  5. Consequences of bacterial resistance to disinfection by iodine in potable water

    NASA Technical Reports Server (NTRS)

    Mcfeters, Gordon A.; Pyle, Barry H.

    1987-01-01

    This study was done to quantify the sensitivity of bacteria to iodine under controlled laboratory conditions. When exposed to 1 mg/1 I2 for 1 min, bacteria isolated from the Shuttle were more resistant than a P. aeruginosa isolated from a povidine-iodine solution. Cultures grown in rich media were more sensitive than those grown in low nutrient solutions. The P. aeruginosa and a P. cepacia isolated from the Shuttle were resuspended in PBW after exposure to iodine. Iodinated cells recovered better than uniodinated controls. Pseudomonads in biofilms developed on coupons of stainless steel were more resistant to iodine than cells suspended in buffered water. Although resistant bacteria may colonize spacecraft water systems, multiple treatment barriers should provide adequate control of these contaminants.

  6. Electron microscopic analysis of gravisensing Chara rhizoids developed under microgravity conditions.

    PubMed

    Braun, M; Buchen, B; Sievers, A

    1999-01-01

    Tip-growing, unicellular Chara rhizoids that react gravitropically on Earth developed in microgravity. In microgravity, they grew out from the nodes of the green thallus in random orientation. Development and morphogenesis followed an endogenous program that is not affected by the gravitational field. The cell shape, the polar cytoplasmic organization, and the polar distribution of cell organelles, except for the statoliths, were not different from controls that had grown on earth (ground controls). The ultrastructure of the organelles and the microtubules were well preserved. Microtubules were excluded from the apical zone in both ground controls as well as microgravity-grown rhizoids. The statoliths (vesicles containing BaSO4 crystals in a matrix) in microgravity-grown rhizoids were spread over a larger area (up to 50 microm basal to the tip) than the statoliths of ground controls (10-30 microm). Some statoliths were even located in the subapical zone close to microtubules, which was not observed in ground controls. The crystals in statoliths from microgravity-grown rhizoids appeared more loosely arranged in the vesicle matrix compared with ground controls. The chemical composition of the crystals was identified as BaSO4 by X-ray microanalysis. There is evidence that the amount of BaSO4 in statoliths of rhizoids developed in microgravity is lower than in ground controls, indicating that the gravisensitivity of microgravity-developed rhizoids might be reduced compared with ground controls. Lack of gravity, however, does not affect the process of tip growth and does not inhibit the development of the structures needed for the gravity-sensing machinery.

  7. A549 lung epithelial cells grown as three-dimensional aggregates: alternative tissue culture model for Pseudomonas aeruginosa pathogenesis.

    PubMed

    Carterson, A J; Höner zu Bentrup, K; Ott, C M; Clarke, M S; Pierson, D L; Vanderburg, C R; Buchanan, K L; Nickerson, C A; Schurr, M J

    2005-02-01

    A three-dimensional (3-D) lung aggregate model was developed from A549 human lung epithelial cells by using a rotating-wall vessel bioreactor to study the interactions between Pseudomonas aeruginosa and lung epithelial cells. The suitability of the 3-D aggregates as an infection model was examined by immunohistochemistry, adherence and invasion assays, scanning electron microscopy, and cytokine and mucoglycoprotein production. Immunohistochemical characterization of the 3-D A549 aggregates showed increased expression of epithelial cell-specific markers and decreased expression of cancer-specific markers compared to their monolayer counterparts. Immunohistochemistry of junctional markers on A549 3-D cells revealed that these cells formed tight junctions and polarity, in contrast to the cells grown as monolayers. Additionally, the 3-D aggregates stained positively for the production of mucoglycoprotein while the monolayers showed no indication of staining. Moreover, mucin-specific antibodies to MUC1 and MUC5A bound with greater affinity to 3-D aggregates than to the monolayers. P. aeruginosa attached to and penetrated A549 monolayers significantly more than the same cells grown as 3-D aggregates. Scanning electron microscopy of A549 cells grown as monolayers and 3-D aggregates infected with P. aeruginosa showed that monolayers detached from the surface of the culture plate postinfection, in contrast to the 3-D aggregates, which remained attached to the microcarrier beads. In response to infection, proinflammatory cytokine levels were elevated for the 3-D A549 aggregates compared to monolayer controls. These findings suggest that A549 lung cells grown as 3-D aggregates may represent a more physiologically relevant model to examine the interactions between P. aeruginosa and the lung epithelium during infection.

  8. [Radiation-induced changes in the cellular chromatin of cereal plants cultivated in the area of the Chernobyl Atomic Electric Power Station].

    PubMed

    Reshetnikov, V N; Lapteva, O K; Sosnovskaia, T F; Roshchenko, M V

    1996-01-01

    The changes in chromatin and DNA of seedling and callus tissues of cereals grown in the Chernobyl NPP zones with contamination levels of 15, 40 and 60 Ci/km2 were studied. Test samples produced by germinating and culturing seed cells of grown in contaminated areas were notable for the content of soluble polydesoxiribonucleotides, amount of DNA damages, DNA distribution over separate compartments of cell nucleus as compared to the control. Analogy between radiation-induced changes in chromatine and processes occurring in cell nucleus senescence was observed.

  9. Effect of dislocations on the open-circuit voltage, short-circuit current and efficiency of heteroepitaxial indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Flood, Dennis J.

    1990-01-01

    Excellent radiation resistance of indium phosphide solar cells makes them a promising candidate for space power applications, but the present high cost of starting substrates may inhibit their large scale use. Thin film indium phosphide cells grown on Si or GaAs substrates have exhibited low efficiencies, because of the generation and propagation of large number of dislocations. Dislocation densities were calculated and its influence on the open circuit voltage, short circuit current, and efficiency of heteroepitaxial indium phosphide cells was studied using the PC-1D. Dislocations act as predominant recombination centers and are required to be controlled by proper transition layers and improved growth techniques. It is shown that heteroepitaxial grown cells could achieve efficiencies in excess of 18 percent AMO by controlling the number of dislocations. The effect of emitter thickness and surface recombination velocity on the cell performance parameters vs. dislocation density is also studied.

  10. Impurities in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.

    1985-01-01

    Metallic impurities, both singly and in combinations, affect the performance of silicon solar cells. Czochralski silicon web crystals were grown with controlled additions of secondary impurities. The primary electrical dopants were boron and phosphorus. The silicon test ingots were grown under controlled and carefully monitored conditions from high-purity charge and dopant material to minimize unintentional contamination. Following growth, each crystal was characterized by chemical, microstructural, electrical, and solar cell tests to provide a detailed and internally consistent description of the relationships between silicon impurity concentration and solar cell performance. Deep-level spectroscopy measurements were used to measure impurity concentrations at levels below the detectability of other techniques and to study thermally-induced changes in impurity activity. For the majority of contaminants, impurity-induced performance loss is due to a reduction of the base diffusion length. From these observations, a semi-empirical model which predicts cell performance as a function of metal impurity concentration was formulated. The model was then used successfully to predict the behavior of solar cells bearing as many as 11 different impurities.

  11. Establishing laboratory standards for biological flight experiments

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Moriarity, Debra M.

    1989-01-01

    The general objective of this research was to assess the effects of exposure to simulated microgravity on ultrastructural aspects of the contractile system in chicken skeletal muscle cells. This general objective had two specific experimental components: (1) the progression of changes in cell morphology, fusion, and patterns of contractile filament organization in muscle cell cultures grown in hollow fibers in the Clinostat were evaluated, with appropriate controls; (2) to initiate experiments in which muscle cells were grown on the surface of microcarrier beads. The ultimate objective of this second portion of the work is to determine if these beads can be rotated in a bioreactor and thereby obtain a more accurate approximation of the effects of simulated microgravity on differentiated muscle cells.

  12. In situ flat embedding of monolayers and cell relocation in the acrylic resin LR white for comparative light and electron microscopy studies.

    PubMed

    Steiner, M; Schöfer, C; Mosgoeller, W

    1994-12-01

    A simple and reliable method has been developed for the in situ LR White embedding of cell monolayers grown on glass cover-slips. Combined with cytochemical or immunological procedures, this technique allows light and/or electron microscopy investigations of a large number of cells in the same horizontal plane within a relatively short period of time. It can be applied to cells grown on microgrid finder cover-slips which allows a distinct site of even an individual cell of a monolayer to be studied at first at the light microscope level and subsequently at the electron microscope level. Hence, it is also suitable for controlling manipulation of single cells, followed by their serial sectioning after relocation in the electron microscope.

  13. Enzymes of the Isoleucine-Valine Pathway in Acinetobacter

    PubMed Central

    Twarog, Robert

    1972-01-01

    Regulation of four of the enzymes required for isoleucine and valine biosynthesis in Acinetobacter was studied. A three- to fourfold derepression of acetohydroxyacid synthetase was routinely observed in two different wild-type strains when grown in minimal medium relative to cells grown in minimal medium supplemented with leucine, valine, and isoleucine. A similar degree of synthetase derepression was observed in appropriately grown isoleucine or leucine auxotrophs. No significant derepression of threonine deaminase or transaminase B occurred in either wild-type or mutant cells grown under a variety of conditions. Three amino acid analogues were tested with wild-type cells; except for a two- to threefold derepression of dihydroxyacid dehydrase when high concentrations of aminobutyric acid were added to the medium, essentially the same results were obtained. Experiments showed that threonine deaminase is subject to feedback inhibition by isoleucine and that valine reverses this inhibition. Cooperative effects in threonine deaminase were demonstrated with crude extracts. The data indicate that the synthesis of isoleucine and valine in Acinetobacter is regulated by repression control of acetohydroxyacid synthetase and feedback inhibition of threonine deaminase and acetohydroxyacid synthetase. PMID:4669215

  14. Improving the storage stability of Bifidobacterium breve in low pH fruit juice.

    PubMed

    Saarela, M; Alakomi, H L; Mättö, J; Ahonen, A M; Puhakka, A; Tynkkynen, S

    2011-09-01

    Bifidobacterial food applications are limited since bifidobacteria are sensitive to e.g. acidic conditions prevalent in many food matrices. The aim of the present study was to investigate whether a low pH selection step alone or combined to UV mutagenesis could improve the viability of an acid sensitive Bifidobacterium strain, B. breve 99, in low pH food matrices. Furthermore, the potential of carriers and an oat fibre preparation to further improve the stability was studied. The best performing low pH tolerant variants in the present study were generated by UV-mutagenesis with 70-700μJ/cm(2) followed by incubation in growth medium at pH 4.5. The most promising variants regarding the low pH tolerance showed, in repeated tests with cells grown without pH control, about one Log-value better survival in pH 3.8 fruit juice after one week storage at 4°C compared to wild-type B. breve 99. Cells grown with pH control, PDX formulated and then frozen showed poorer viability in low pH fruit juice than cells grown with no pH control. For frozen concentrates pH 3.8 was too stressful and no or small differences between the variants and the wild-type strain were seen. The differences detected at pH 3.8 with the cells grown without pH control were also seen with the frozen concentrates at pH 4.5. Some improvement in the stability could be achieved by using a combination of trehalose, vitamin C and PDX as a freezing carrier material, whereas a significant improvement in the stability was seen when oat fibre was added into the fruit juice together with the frozen cells. Due to the initial very poor fruit juice tolerance of B. breve 99 the obtained improvement in the stability was not enough for commercial applications. However, the same methods could be applied to initially better performing strains to further improve their stability in the fruit juice. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. HilD and PhoP independently regulate the expression of grhD1, a novel gene required for Salmonella Typhimurium invasion of host cells.

    PubMed

    Banda, María M; López, Carolina; Manzo, Rubiceli; Rico-Pérez, Gadea; García, Pablo; Rosales-Reyes, Roberto; De la Cruz, Miguel A; Soncini, Fernando C; García-Del Portillo, Francisco; Bustamante, Víctor H

    2018-03-19

    When Salmonella is grown in the nutrient-rich lysogeny broth (LB), the AraC-like transcriptional regulator HilD positively controls the expression of genes required for Salmonella invasion of host cells, such as the Salmonella pathogenicity island 1 (SPI-1) genes. However, in minimal media, the two-component system PhoP/Q activates the expression of genes necessary for Salmonella replication inside host cells, such as the SPI-2 genes. Recently, we found that the SL1344_1872 hypothetical gene, located in a S. Typhimurium genomic island, is co-expressed with the SPI-1 genes. In this study we demonstrate that HilD induces indirectly the expression of SL1344_1872 when S. Typhimurium is grown in LB; therefore, we named SL1344_1872 as grhD1 for gene regulated by HilD. Furthermore, we found that PhoP positively controls the expression of grhD1, independently of HilD, when S. Typhimurium is grown in LB or N-minimal medium. Moreover, we demonstrate that the grhD1 gene is required for the invasion of S. Typhimurium into epithelial cells, macrophages and fibroblasts, as well as for the intestinal inflammatory response caused by S. Typhimurium in mice. Thus, our results reveal a novel virulence factor of Salmonella, whose expression is positively and independently controlled by the HilD and PhoP transcriptional regulators.

  16. The influence of microgravity and spaceflight on columella cell ultrastructure in starch-deficient mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Guisinger, M. M.; Kiss, J. Z.

    1999-01-01

    The ultrastructure of root cap columella cells was studied by morphometric analysis in wild-type, a reduced-starch mutant, and a starchless mutant of Arabidopsis grown in microgravity (F-microgravity) and compared to ground 1g (G-1g) and flight 1g (F-1g) controls. Seedlings of the wild-type and reduced-starch mutant that developed during an experiment on the Space Shuttle (both the F-microgravity samples and the F-lg control) exhibited a decreased starch content in comparison to the G-1g control. These results suggest that some factor associated with spaceflight (and not microgravity per se) affects starch metabolism. Elevated levels of ethylene were found during the experiments on the Space Shuttle, and analysis of ground controls with added ethylene demonstrated that this gas was responsible for decreased starch levels in the columella cells. This is the first study to use an on-board centrifuge as a control when quantifying starch in spaceflight-grown plants. Furthermore, our results show that ethylene levels must be carefully considered and controlled when designing experiments with plants for the International Space Station.

  17. Molybdenum and vanadium do not replace tungsten in the catalytically active forms of the three tungstoenzymes in the hyperthermophilic archaeon Pyrococcus furiosus.

    PubMed Central

    Mukund, S; Adams, M W

    1996-01-01

    Three different types of tungsten-containing enzyme have been previously purified from Pyrococcus furiosus (optimum growth temperature, 100 degrees C): aldehyde ferredoxin oxidoreductase (AOR), formaldehyde ferredoxin oxidoreductase (FOR), and glyceraldehyde-3-phosphate oxidoreductase (GAPOR). In this study, the organism was grown in media containing added molybdenum (but not tungsten or vanadium) or added vanadium (but not molybdenum or tungsten). In both cell types, there were no dramatic changes compared with cells grown with tungsten, in the specific activities of hydrogenase, ferredoxin:NADP oxidoreductase, or the 2-keto acid ferredoxin oxidoreductases specific for pyruvate, indolepyruvate, 2-ketoglutarate, and 2-ketoisovalerate. Compared with tungsten-grown cells, the specific activities of AOR, FOR, and GAPOR were 40, 74, and 1%, respectively, in molybdenum-grown cells, and 7, 0, and 0%, respectively, in vanadium-grown cells. AOR purified from vanadium-grown cells lacked detectable vanadium, and its tungsten content and specific activity were both ca. 10% of the values for AOR purified from tungsten-grown cells. AOR and FOR purified from molybdenum-grown cells contained no detectable molybdenum, and their tungsten contents and specific activities were > 70% of the values for the enzymes purified from tungsten-grown cells. These results indicate that P. furiosus uses exclusively tungsten to synthesize the catalytically active forms of AOR, FOR, and GAPOR, and active molybdenum- or vanadium-containing isoenzymes are not expressed when the cells are grown in the presence of these other metals. PMID:8550411

  18. Influence of smartphone Wi-Fi signals on adipose-derived stem cells.

    PubMed

    Lee, Sang-Soon; Kim, Hyung-Rok; Kim, Min-Sook; Park, Sanghoon; Yoon, Eul-Sik; Park, Seung-Ha; Kim, Deok-Woo

    2014-09-01

    The use of smartphones is expanding rapidly around the world, thus raising the concern of possible harmful effects of radiofrequency generated by smartphones. We hypothesized that Wi-Fi signals from smartphones may have harmful influence on adipose-derived stem cells (ASCs). An in vitro study was performed to assess the influence of Wi-Fi signals from smartphones. The ASCs were incubated under a smartphone connected to a Wi-Fi network, which was uploading files at a speed of 4.8 Mbps for 10 hours a day, for a total of 5 days. We constructed 2 kinds of control cells, one grown in 37°C and the other grown in 39°C. After 5 days of Wi-Fi exposure from the smartphone, the cells underwent cell proliferation assay, apoptosis assay, and flow cytometry analysis. Three growth factors, vascular endothelial growth factor, hepatocyte growth factor, and transforming growth factor-β, were measured from ASC-conditioned media. Cell proliferation rate was higher in Wi-Fi-exposed cells and 39°C control cells compared with 37°C control cells. Apoptosis assay, flow cytometry analysis, and growth factor concentrations showed no remarkable differences among the 3 groups. We could not find any harmful effects of Wi-Fi electromagnetic signals from smartphones. The increased proliferation of ASCs under the smartphone, however, might be attributable to the thermal effect.

  19. Organization of cortical microtubules in graviresponding maize roots

    NASA Technical Reports Server (NTRS)

    Blancaflor, E. B.; Hasenstein, K. H.

    1993-01-01

    Immunofluorescence labeling of cortical microtubules (MTs) was used to investigate the relationship between MT arrangement and changes in growth rate of the upper and lower sides of horizontally placed roots of maize (Zea mays L. cv. Merit). Cap cells and cells of the elongation zone of roots grown vertically in light or darkness showed MT arrangements that were transverse (perpendicular) to the growth direction. Microtubules of cells basal to the elongation zone typically showed oblique orientation. Two hours after horizontal reorientation, cap cells of gravicompetent, light-grown and curving roots contained MTs parallel to the gravity vector. The MT arrangement on the upper side of the elongation zone remained transverse but the MTs of the outer four to five layers of cortical cells along the lower side of the elongation zone showed reorientation parallel to the axis of the root. The MTs of the lower epidermis retained their transverse orientation. Dark-grown roots did not curve and did not show reorientation of MTs in cells of the root cap or elongation zone. The data indicate that MT depolymerization and reorientation is correlated with reduction in growth rate, and that MT reorientation is one of the steps of growth control of graviresponding roots.

  20. Characterization and regulation of glycine transport in Fusarium oxysporum var. lini.

    PubMed

    Castro, I M; Lima, A A; Nascimento, A F; Ruas, M M; Nicoli, J R; Brandão, R L

    1996-08-01

    Glycine was transported in Fusarium oxysporum cells, grown on glycine as the sole source of carbon and nitrogen, by a facilitated diffusion transport system with a half-saturation constant (Ks) of 11 mM and a maximum velocity (Vmax) of 1.2 mM (g dry weight)-1 h-1 at pH 5.0 and 26 degrees C. Under conditions of nitrogen starvation, the same system was present together with a high-affinity one (Ks) of about 47 microM and Vmax of about 60 microM (g dry weight)-1 h-1). The low-affinity system was more specific than the high-affinity system. Cells grown on gelatine showed the same behavior. In cells grown on glucose-gelatine medium, the low-affinity system was poorly expressed even after carbon and nitrogen starvation. Moreover, addition of glucose to cells grown on glycine and resuspended in mineral medium caused an increase of the glycine transport probably due to a boost in protein synthesis. This stimulation did not affect the Ks of the low-affinity system. These results demonstrate that, as is the case for other eukaryotic systems, F. oxysporum glycine transport is under control of nitrogen sources but its regulation by carbon sources appears to be more complex.

  1. Comparative effectiveness of a clinostat and a slow-turning lateral vessel at mimicking the ultrastructural effects of microgravity in plant cells

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1990-01-01

    The object of this research was to determine how effectively the actions of a clinostat and a fluid-filled, slow-turning lateral vessel (STLV) mimic the ultrastructural effects of microgravity in plant cells. We accomplished this by qualitatively and quantitatively comparing the ultrastructures of cells grown on clinostats and in an STLV with those of cells grown at 1 g and in microgravity aboard the Space Shuttle Columbia. Columella cells of Brassica perviridis seedlings grown in microgravity and in an STLV have similar structures. Both contain significantly more lipid bodies, less starch, and fewer dictyosomes than columella cells of seedlings grown at 1 g. Cells of seedlings grown on clinostats have significantly different ultrastructures from those grown in microgravity or in an STLV, indicating that clinostats do not mimic microgravity at the ultrastructural level. The similar structures of columella cells of seedlings grown in an STLV and in microgravity suggest that an STLV effectively mimics microgravity at the ultrastructural level.

  2. Regulation of phosphoenolpyruvate carboxykinase and pyruvate kinase in Saccharomyces cerevisiae grown in the presence of glycolytic and gluconeogenic carbon sources and the role of mitochondrial function on gluconeogenesis.

    PubMed

    Wilson, A J; Bhattacharjee, J K

    1986-12-01

    Phosphoenolpyruvate carboxykinase (PEPCKase) and pyruvate kinase (PKase) were measured in Saccharomyces cerevisiae grown in the presence of glycolytic and gluconeogenic carbon sources. The PEPCKase activity was highest in ethanol-grown cells. However, high PEPCKase activity was also observed in cells grown in 1% glucose, especially as compared with the activity of sucrose-, maltose-, or galactose-grown cells. Activity was first detected after 12 h when glucose was exhausted from the growth medium. The PKase activity was very high in glucose-grown cells; considerable activity was also present in ethanol- and pyruvate-grown cells. The absolute requirement of respiration for gluconeogenesis was demonstrated by the absence or significantly low levels of PEPCKase and fructose-1,6-bisphosphatase activities observed in respiratory deficient mutants, as well as in wild-type S. cerevisiae cells grown in the presence of glucose and antimycin A or chloramphenicol. Obligate glycolytic and gluconeogenic enzymes were present simultaneously only in stationary phase cells, but not in exponential phase cells; hence futile cycling could not occur in log phase cells regardless of the presence of carbon source in the growth medium.

  3. Multiple P2Y receptor subtypes in the apical membranes of polarized epithelial cells

    PubMed Central

    McAlroy, H L; Ahmed, S; Day, S M; Baines, D L; Wong, H Y; Yip, C Y; Ko, W H; Wilson, S M; Collett, A

    2000-01-01

    Apical ATP, ATP, UTP and UDP evoked transient increases in short circuit current (ISC, a direct measure of transepithelial ion transport) in confluent Caco-2 cells grown on permeable supports. These responses were mediated by a population of at least three pharmacologically distinct receptors. Experiments using cells grown on glass coverslips showed that ATP and UTP consistently increased intracellular free calcium ([Ca2+]i) whilst sensitivity to UDP was variable. Cross desensitization experiments suggested that the responses to UTP and ATP were mediated by a common receptor population. Messenger RNA transcripts corresponding to the P2Y2, P2Y4 and P2Y6 receptors genes were detected in cells grown on Transwell membranes by the reverse transcriptase–polymerase chain reaction. Identical results were obtained for cells grown on glass. Experiments in which ISC and [Ca2+]i were monitored simultaneously in cells on Transwell membranes, confirmed that apical ATP and UTP increased both parameters and showed that the UDP-evoked increase in ISC was accompanied by a [Ca2+]i-signal. Ionomycin consistently increased [Ca2+]i in such polarized cells but caused no discernible change in ISC. However, subsequent application of apical ATP or UTP evoked a small rise in ISC but no rise in [Ca2+]i. UDP evoked no such response. As well as evoking increases in [Ca2+]i, the ATP/UTP-sensitive receptors present in Caco-2 cells thus allow direct control over ion channels in the apical membrane. The UDP-sensitive receptors, however, appear to simply evoke a rise in [Ca2+]i. PMID:11139443

  4. Spaceflight effects on cultured embryonic chick bone cells

    NASA Technical Reports Server (NTRS)

    Landis, W. J.; Hodgens, K. J.; Block, D.; Toma, C. D.; Gerstenfeld, L. C.

    2000-01-01

    A model calcifying system of primary osteoblast cell cultures derived from normal embryonic chicken calvaria has been flown aboard the shuttle, Endeavour, during the National Aeronautics and Space Administration (NASA) mission STS-59 (April 9-20, 1994) to characterize unloading and other spaceflight effects on the bone cells. Aliquots of cells (approximately 7 x 10(6)) grown in Dulbecco's modified Eagle's medium (DMEM) + 10% fetal bovine serum (FBS) were mixed with microcarrier beads, inoculated into cartridge culture units of artificial hollow fiber capillaries, and carried on the shuttle. To promote cell differentiation, cartridge media were supplemented with 12.5 microg/ml ascorbate and 10 mM beta-glycerophosphate for varying time periods before and during flight. Four cartridges contained cells from 17-day-old embryos grown for 5 days in the presence of ascorbate prior to launch (defined as flight cells committed to the osteoblastic lineage) and four cartridges supported cells from 14-day-old embryos grown for 10 days with ascorbate before launch (uncommitted flight cells). Eight cartridges prepared in the same manner were maintained under normal gravity throughout the flight (control cells) and four additional identical cartridges under normal gravity were terminated on the day of launch (basal cells). From shuttle launch to landing, all cartridges were contained in closed hardware units maintaining 5% CO2, 37 degrees C, and media delivery at a rate of approximately 1.5 ml/6 h. During day 3 and day 5 of flight, duplicate aliquots of conditioned media and accumulated cell products were collected in both the flight and the control hardware units. At the mission end, comparisons among flight, basal, and control samples were made in cell metabolism, gene expression for type I collagen and osteocalcin, and ultrastructure. Both committed and uncommitted flight cells were metabolically active, as measured by glucose uptake and lactate production, at approximately the same statistical levels as control counterparts. Flight cells elaborated a less extensive extracellular matrix, evidenced by a reduced collagen gene expression and collagen protein appearance compared with controls. Osteocalcin was expressed by all cells, a result indicating progressive differentiation of both flight and control osteoblasts, but its message levels also were reduced in flight cells compared with ground samples. This finding suggested that osteoblasts subjected to flight followed a slower progression toward a differentiated function. The summary of data indicates that spaceflight, including microgravity exposure, demonstrably affects bone cells by down-regulating type I collagen and osteocalcin gene expression and thereby inhibiting expression of the osteogenic phenotype notably by committed osteoblasts. The information is important for insight into the response of bone cells to changes of gravity and of force in general.

  5. Colon tumor cells grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These photos compare the results of colon carcinoma cells grown in a NASA Bioreactor flown on the STS-70 Space Shuttle in 1995 flight and ground control experiments. The cells grown in microgravity (left) have aggregated to form masses that are larger and more similar to tissue found in the body than the cells cultured on the ground (right). The principal investigator is Milburn Jessup of the University of Texas M. D. Anderson Cancer Center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: NASA and University of Texas M. D. Anderson Cancer Center.

  6. Cellular Lipids of a Nocardia Grown on Propane and n-Butane

    PubMed Central

    Davis, J. B.

    1964-01-01

    Lipid fractions of propane- and n-butane-grown nocardial cells each contain a chloroform-soluble, ether-insoluble polymer not observed previously in liquid n-alkane-grown cells. The polymer in propane-grown cells is poly-β-hydroxybutyrate. The polymer in n-butane-grown cells apparently contains unsaturation in the molecule, and is identified tentatively as a co-polymer of β-hydroxybutyric and β-hydroxybutenoic (specifically 3-hydroxy 2-butenoic) acids. The other major component of the lipid fraction consists of triglycerides containing principally palmitic and stearic acids. There seems to be little qualitative distinction in the glycerides of propane- or n-butane-grown cells. Oxidative assimilation of n-butane is described. PMID:14199017

  7. Efficient extravasation of tumor-repopulating cells depends on cell deformability

    PubMed Central

    Chen, Junjian; Zhou, Wenwen; Jia, Qiong; Chen, Junwei; Zhang, Shuang; Yao, Wenting; Wei, Fuxiang; Zhang, Yuejin; Yang, Fang; Huang, Wei; Zhang, Yao; Zhang, Huafeng; Zhang, Yi; Huang, Bo; Zhang, Zhihong; Jia, Haibo; Wang, Ning

    2016-01-01

    Cancer metastasis is the most deadly stage in cancer progression. Despite significant efforts over the past decades, it remains elusive why only a very small fraction of cancer cells is able to generate micrometastasis and metastatic colonization. Recently we have shown that tumor-repopulating cells (TRCs), a highly tumorigenic subpopulation of mouse melanoma cells, can be selected by being cultured and grown in 3D soft fibrin gels. Here we show that when injected into the yolk of a 2 day-post-fertilization (dpf) embryo of Tg (fli1:EGFP or kdrl:mCherry) zebrafish, TRCs are much more efficient in surviving and growing at various secondary sites to generate micrometastasis and metastatic colonization than control melanoma cells that are grown on rigid plastic. The metastasis of TRCs is dependent on the presence of Sox2, a self-renewal gene, and silencing Sox2 leads to the inhibition of TRC metastasis. High-resolution of 3D confocal images of the TRCs at the secondary sites show that extravasation and formation of micrometastases by TRCs are more efficient than by the control cells. Remarkably, efficient extravasation of TRCs in vivo and transmigration in vitro are determined by TRC deformability, as a result of low Cdc42 and high Sox2. Our findings suggest that tumor cell deformability is a key factor in controlling extravasation dynamics during metastasis. PMID:26787224

  8. Enhancement of UV-induced nucleotide excision repair activity upon forskolin treatment is cell growth-dependent.

    PubMed

    Lee, Jeong-Min; Park, Jeong-Min; Kang, Tae-Hong

    2016-10-01

    Forskolin (FSK), an adenylyl cyclase activator, has recently been shown to enhance nucleotide excision repair (NER) upon UV exposure. However, our study revealed that this effect was detected in human skin epithelial ARPE19 cells only in growing cells, but not in non-cycling cells. When the cells were grown at low density (70% confluence), FSK was capable of stimulating cAMP responsive element binding (CREB) phosphorylation, a marker for FSK-stimulated PKA activation, and resulted in a significant increase of NER activity compared to control treatment. However, cells grown under 100% confluent conditions showed neither FSK-induced CREB phosphorylation nor the resulting NER enhancement. These findings indicate that cellular growth is critical for FSK-induced NER enhancement and suggest that cellular growth conditions should be considered as a variable while evaluating a reagent's pharmacotherapeutic efficacy. [BMB Reports 2016; 49(10): 566-571].

  9. Growth characteristics of (100)HgCdTe layers in low-temperature MOVPE with ditertiarybutyltelluride

    NASA Astrophysics Data System (ADS)

    Yasuda, K.; Hatano, H.; Ferid, T.; Minamide, M.; Maejima, T.; Kawamoto, K.

    1996-09-01

    Low-temperature growth of (100)HgCdTe (MCT) layers in MOVPE has been studied using ditertiarybutyltelluride (DtBTe), dimethylcadmium (DMCd), and elementary mercury as precursors. MCT layers were grown at 275°C on (100)GaAs substrates. Growths were carried out in a vertical growth cell which has a narrow spacing between the substrate and cell ceiling. Using the growth cell, the Cd-composition ( x) of MCT layers was controlled over a wide range from 0 to 0.98 by the DMCd flow. The growth rate of the MCT layers was constant at 5 μm h -1 for the increased DMCd flow. Preferential Cd-incorporation into MCT layers and an increase of the growth rate were observed in the presence of mercury vapor. The growth characteristics were considered to be due to the alkyl-exchange reaction between DMCd and mercury. The electrical properties and crystallinity of grown layers were also evaluated, which showed that layers with high quality can be grown at 275°C.

  10. In vitro antifungal activity of extracts obtained from Hypericum perforatum adventitious roots cultured in a mist bioreactor against planktonic cells and biofilm of Malassezia furfur.

    PubMed

    Simonetti, Giovanna; Tocci, Noemi; Valletta, Alessio; Brasili, Elisa; D'Auria, Felicia Diodata; Idoux, Alicia; Pasqua, Gabriella

    2016-01-01

    Xanthone-rich extracts from Hypericum perforatum root cultures grown in a Mist Bioreactor as antifungal agents against Malassezia furfur. Extracts of Hypericum perforatum roots grown in a bioreactor showed activity against planktonic cells and biofilm of Malassezia furfur. Dried biomass, obtained from roots grown under controlled conditions in a ROOTec mist bioreactor, has been extracted with solvents of increasing polarity (i.e. chloroform, ethyl acetate and methanol). The methanolic fraction was the richest in xanthones (2.86 ± 0.43 mg g(-1) DW) as revealed by HPLC. The minimal inhibitory concentration of the methanol extract against M. furfur planktonic cells was 16 μg mL(-1). The inhibition percentage of biofilm formation, at a concentration of 16 μg mL(-1), ranged from 14% to 39%. The results show that H. perforatum root extracts could be used as new antifungal agents in the treatment of Malassezia infections.

  11. Gorlin syndrome-derived induced pluripotent stem cells are hypersensitive to hedgehog-mediated osteogenic induction.

    PubMed

    Hasegawa, Daigo; Ochiai-Shino, Hiromi; Onodera, Shoko; Nakamura, Takashi; Saito, Akiko; Onda, Takeshi; Watanabe, Katsuhito; Nishimura, Ken; Ohtaka, Manami; Nakanishi, Mahito; Kosaki, Kenjiro; Yamaguchi, Akira; Shibahara, Takahiko; Azuma, Toshifumi

    2017-01-01

    Gorlin syndrome is an autosomal dominant inherited syndrome that predisposes a patient to the formation of basal cell carcinomas, odontogenic keratocysts, and skeletal anomalies. Causative mutations in several genes associated with the sonic hedgehog (SHH) signaling pathway, including PTCH1, have been identified in Gorlin syndrome patients. However, no definitive genotype-phenotype correlations are evident in these patients, and their clinical presentation varies greatly, often leading to delayed diagnosis and treatment. We generated iPSCs from four unrelated Gorlin syndrome patients with loss-of-function mutations in PTCH1 using the Sendai virus vector (SeVdp(KOSM)302). The patient-derived iPSCs exhibited basic iPSC features, including stem cell marker expression, totipotency, and the ability to form teratomas. GLI1 expression levels were greater in fibroblasts and patient-derived iPSCs than in the corresponding control cells. Patient-derived iPSCs expressed lower basal levels than control iPSCs of the genes encoding the Hh ligands Indian Hedgehog (IHH) and SHH, the Hh acetyltransferase HHAT, Wnt proteins, BMP4, and BMP6. Most of these genes were upregulated in patient-derived iPSCs grown in osteoblast differentiation medium (OBM) and downregulated in control iPSCs cultured in OBM. The expression of GLI1 and GLI2 substantially decreased in both control and patient-derived iPSCs cultured in OBM, whereas GLI3, SHH, and IHH were upregulated in patient-derived iPSCs and downregulated in control iPSCs grown in OBM. Activation of Smoothened by SAG in cells grown in OBM significantly enhanced alkaline phosphatase activity in patient-derived iPSCs compared with control iPSC lines. In summary, patient-derived iPSCs expressed lower basal levels than the control iPSCs of the genes encoding Hh, Wnt, and bone morphogenetic proteins, but their expression of these genes strongly increased under osteogenic conditions. These findings indicate that patient-derived iPSCs are hypersensitive to osteogenic induction. We propose that Hh signaling is constituently active in iPSCs from Gorlin syndrome patients, enhancing their response to osteogenic induction and contributing to disease-associated abnormalities.

  12. Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells

    PubMed Central

    Akopian, Veronika; Beil, Stephen; Benvenisty, Nissim; Brehm, Jennifer; Christie, Megan; Ford, Angela; Fox, Victoria; Gokhale, Paul J.; Healy, Lyn; Holm, Frida; Hovatta, Outi; Knowles, Barbara B.; Ludwig, Tenneille E.; McKay, Ronald D. G.; Miyazaki, Takamichi; Nakatsuji, Norio; Oh, Steve K. W.; Pera, Martin F.; Rossant, Janet; Stacey, Glyn N.; Suemori, Hirofumi

    2010-01-01

    There are many reports of defined culture systems for the propagation of human embryonic stem cells in the absence of feeder cell support, but no previous study has undertaken a multi-laboratory comparison of these diverse methodologies. In this study, five separate laboratories, each with experience in human embryonic stem cell culture, used a panel of ten embryonic stem cell lines (including WA09 as an index cell line common to all laboratories) to assess eight cell culture methods, with propagation in the presence of Knockout Serum Replacer, FGF-2, and mouse embryonic fibroblast feeder cell layers serving as a positive control. The cultures were assessed for up to ten passages for attachment, death, and differentiated morphology by phase contrast microscopy, for growth by serial cell counts, and for maintenance of stem cell surface marker expression by flow cytometry. Of the eight culture systems, only the control and those based on two commercial media, mTeSR1 and STEMPRO, supported maintenance of most cell lines for ten passages. Cultures grown in the remaining media failed before this point due to lack of attachment, cell death, or overt cell differentiation. Possible explanations for relative success of the commercial formulations in this study, and the lack of success with other formulations from academic groups compared to previously published results, include: the complex combination of growth factors present in the commercial preparations; improved development, manufacture, and quality control in the commercial products; differences in epigenetic adaptation to culture in vitro between different ES cell lines grown in different laboratories. PMID:20186512

  13. Pichia pastoris regulates its gene-specific response to different carbon sources at the transcriptional, rather than the translational, level.

    PubMed

    Prielhofer, Roland; Cartwright, Stephanie P; Graf, Alexandra B; Valli, Minoska; Bill, Roslyn M; Mattanovich, Diethard; Gasser, Brigitte

    2015-03-11

    The methylotrophic, Crabtree-negative yeast Pichia pastoris is widely used as a heterologous protein production host. Strong inducible promoters derived from methanol utilization genes or constitutive glycolytic promoters are typically used to drive gene expression. Notably, genes involved in methanol utilization are not only repressed by the presence of glucose, but also by glycerol. This unusual regulatory behavior prompted us to study the regulation of carbon substrate utilization in different bioprocess conditions on a genome wide scale. We performed microarray analysis on the total mRNA population as well as mRNA that had been fractionated according to ribosome occupancy. Translationally quiescent mRNAs were defined as being associated with single ribosomes (monosomes) and highly-translated mRNAs with multiple ribosomes (polysomes). We found that despite their lower growth rates, global translation was most active in methanol-grown P. pastoris cells, followed by excess glycerol- or glucose-grown cells. Transcript-specific translational responses were found to be minimal, while extensive transcriptional regulation was observed for cells grown on different carbon sources. Due to their respiratory metabolism, cells grown in excess glucose or glycerol had very similar expression profiles. Genes subject to glucose repression were mainly involved in the metabolism of alternative carbon sources including the control of glycerol uptake and metabolism. Peroxisomal and methanol utilization genes were confirmed to be subject to carbon substrate repression in excess glucose or glycerol, but were found to be strongly de-repressed in limiting glucose-conditions (as are often applied in fed batch cultivations) in addition to induction by methanol. P. pastoris cells grown in excess glycerol or glucose have similar transcript profiles in contrast to S. cerevisiae cells, in which the transcriptional response to these carbon sources is very different. The main response to different growth conditions in P. pastoris is transcriptional; translational regulation was not transcript-specific. The high proportion of mRNAs associated with polysomes in methanol-grown cells is a major finding of this study; it reveals that high productivity during methanol induction is directly linked to the growth condition and not only to promoter strength.

  14. Determination of tumor cell procoagulant activity by Sonoclot analysis in whole blood.

    PubMed

    Amirkhosravi, A; Biggerstaff, J P; Warnes, G; Francis, D A; Francis, J L

    1996-12-01

    Coagulation activation in cancer may be due to expression of procoagulant activity (PCA) by tumor cells. Some PCA activate coagulation, while others influence platelet aggregation. Thus, clotting time assessments of PCA may not reflect the potential for hypercoagulability. We therefore studied the effect of various malignant and non-malignant cells on whole blood coagulation using the Sonoclot Analyzer. Five human (HT29 colon, J82 bladder, MCF-7 breast, BT-474 breast and A375 malignant melanoma) and three rodent (MC28, WEHI-164 and Neuro2a) cell lines were used. Rat thymocytes and peritoneal macrophages and human endotoxin-stimulated mononuclear cells and umbilical vein endothelial cells (HUVEC) were used as non-malignant controls. All tumor cells markedly shortened the recalcification time of citrated blood and the most potent (HT29 and J82) also increased clot rate (P < 0.01). The breast cancer cells MCF-7 and BT-474 expressed only weak PCA and did not affect clotting rate. None of the non-malignant cells significantly affected clotting time or rate in whole blood. J82 and HT29 cells grown in serum-rich media shortened the recalcification time of both normal and FVII-deficient plasmas. However, cells grown in serum-free conditions had significantly less PCA in FVII-deficient plasma. We conclude that the Sonoclot Analyzer is useful for determining cellular PCA; significant PCA is a feature of malignant cells and cells grown in medium containing serum supplements cannot be reliably evaluated for PCA.

  15. Carbon nanowall scaffold to control culturing of cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Watanabe, Hitoshi; Kondo, Hiroki; Okamoto, Yukihiro; Hiramatsu, Mineo; Sekine, Makoto; Baba, Yoshinobu; Hori, Masaru

    2014-12-01

    The effect of carbon nanowalls (CNWs) on the culturing rate and morphological control of cervical cancer cells (HeLa cells) was investigated. CNWs with different densities were grown using plasma-enhanced chemical vapor deposition and subjected to post-growth plasma treatment for modification of the surface terminations. Although the surface wettability of the CNWs was not significantly dependent on the CNW densities, the cell culturing rates were significantly dependent. Morphological changes of the cells were not significantly dependent on the density of CNWs. These results indicate that plasma-induced surface morphology and chemical terminations enable nanobio applications using carbon nanomaterials.

  16. Attachment of Escherichia coli O157:H7 grown in tryptic soy broth and nutrient broth to apple and lettuce surfaces as related to cell hydrophobicity, surface charge, and capsule production.

    PubMed

    Hassan, A N; Frank, J F

    2004-10-01

    This study investigated the effect of growth in tryptic soy broth (TSB) and nutrient broth (NB) on the ability Escherichia coli O157:H7 to attach to lettuce and apple surfaces. In addition, cell surface hydrophobicity, charge and capsule production were determined on cells grown in these media. Cells grown in NB attached less to lettuce and apple surfaces than did those grown in TSB. TSB, but not NB, supported capsule production by E. coli O157:H7. Cells grown in TSB were more hydrophilic than those grown in NB. No difference was found in the electrokinetic properties of cells grown in these media. Electrostatic and hydrophobic interactions and surface proteins did not appear to play an important role in the attachment of E. coli O157:H7 to these surfaces. Of the factors studied, only capsule production was associated with attachment ability. Copyright 2003 Elsevier B.V.

  17. Pullulan production by Aureobasidium pullulans grown on ethanol stillage as a nitrogen source.

    PubMed

    West, T P; Strohfus, B

    1996-01-01

    Pullulan production by Aureobasidium pullulans strain RP-1 using thin stillage from fuel ethanol production as a nitrogen source was studied in a medium using corn syrup as a carbon source. The use of 1% thin stillage as a nitrogen source instead of ammonium sulphate elevated polysaccharide production by strain RP-1 cells when grown on a concentration of up to 7.5% corn syrup, independent of yeast extract supplementation. Dry weights of cells grown in medium containing ammonium sulphate as the nitrogen source were higher than the stillage-grown cells after 7 days of growth. The viscosity of the polysaccharide on day 7 was higher for cells grown on thin stillage rather than ammonium sulphate as a nitrogen source. The pullulan content of the polysaccharide elaborated by ammonium sulphate-grown cells on day 7 was higher than the pullulan content of polysaccharide produced by stillage-grown cells regardless of whether yeast extract was added to the culture medium.

  18. Dye-sensitized solar cells with vertically aligned TiO2 nanowire arrays grown on carbon fibers.

    PubMed

    Cai, Xin; Wu, Hongwei; Hou, Shaocong; Peng, Ming; Yu, Xiao; Zou, Dechun

    2014-02-01

    One-dimensional semiconductor TiO2 nanowires (TNWs) have received widespread attention from solar cell and related optoelectronics scientists. The controllable synthesis of ordered TNW arrays on arbitrary substrates would benefit both fundamental research and practical applications. Herein, vertically aligned TNW arrays in situ grown on carbon fiber (CF) substrates through a facile, controllable, and seed-assisted thermal process is presented. Also, hierarchical TiO2 -nanoparticle/TNW arrays were prepared that favor both the dye loading and depressed charge recombination of the CF/TNW photoanode. An impressive conversion efficiency of 2.48 % (under air mass 1.5 global illumination) and an apparent efficiency of 4.18 % (with a diffuse board) due to the 3D light harvesting of the wire solar cell were achieved. Moreover, efficient and inexpensive wire solar cells made from all-CF electrodes and completely flexible CF-based wire solar cells were demonstrated, taking into account actual application requirements. This work may provide an intriguing avenue for the pursuit of lightweight, cost-effective, and high-performance flexible/wearable solar cells. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Chloroplast and reactive oxygen species involvement in apoptotic-like programmed cell death in Arabidopsis suspension cultures

    PubMed Central

    Doyle, Siamsa M.; Diamond, Mark; McCabe, Paul F.

    2010-01-01

    Chloroplasts produce reactive oxygen species (ROS) during cellular stress. ROS are known to act as regulators of programmed cell death (PCD) in plant and animal cells, so it is possible that chloroplasts have a role in regulating PCD in green tissue. Arabidopsis thaliana cell suspension cultures are model systems in which to test this, as here it is shown that their cells contain well-developed, functional chloroplasts when grown in the light, but not when grown in the dark. Heat treatment at 55 °C induced apoptotic-like (AL)-PCD in the cultures, but light-grown cultures responded with significantly less AL-PCD than dark-grown cultures. Chloroplast-free light-grown cultures were established using norflurazon, spectinomycin, and lincomycin and these cultures responded to heat treatment with increased AL-PCD, demonstrating that chloroplasts affect AL-PCD induction in light-grown cultures. Antioxidant treatment of light-grown cultures also resulted in increased AL-PCD induction, suggesting that chloroplast-produced ROS may be involved in AL-PCD regulation. Cycloheximide treatment of light-grown cultures prolonged cell viability and attenuated AL-PCD induction; however, this effect was less pronounced in dark-grown cultures, and did not occur in antioxidant-treated light-grown cultures. This suggests that a complex interplay between light, chloroplasts, ROS, and nuclear protein synthesis occurs during plant AL-PCD. The results of this study highlight the importance of taking into account the time-point at which cells are observed and whether the cells are light-grown and chloroplast-containing or not, for any study on plant AL-PCD, as it appears that chloroplasts can play a significant role in AL-PCD regulation. PMID:19933317

  20. Germination of pine seed in weightlessness (investigation in Kosmos 782)

    NASA Technical Reports Server (NTRS)

    Platonova, R. N.; Parfenov, G. P.; Olkhovenko, V. P.; Karpova, N. I.; Pichugov, M. Y.

    1978-01-01

    An investigation was made of the orientation of aboveground and underground organs of pine plants grown from seed in weightlessness. Orientation was found to be caused by the position of the seeds relative to the substrate surface. Normal growth was manifest only for the plants grown from seed oriented with embryo toward the substrate. Differences were noted between experiment and control as to the quantitative content of nucleoli in the meristematic cells of the rootlets and the shape of cells in the cotyledonous leaflets. No complete agreement was found between data obtained in weightlessness and when gravity was compensated (clinostat treatment with horizontal rotation).

  1. Immobilisation increases yeast cells' resistance to dehydration-rehydration treatment.

    PubMed

    Borovikova, Diana; Rozenfelde, Linda; Pavlovska, Ilona; Rapoport, Alexander

    2014-08-20

    This study was performed with the goal of revealing if the dehydration procedure used in our new immobilisation method noticeably decreases the viability of yeast cells in immobilised preparations. Various yeasts were used in this research: Saccharomyces cerevisiae cells that were rather sensitive to dehydration and had been aerobically grown in an ethanol-containing medium, a recombinant strain of S. cerevisiae grown in aerobic conditions which were completely non-resistant to dehydration and an anaerobically grown bakers' yeast strain S. cerevisiae, as well as a fairly resistant Pichia pastoris strain. Experiments performed showed that immobilisation of all these strains essentially increased their resistance to a dehydration-rehydration treatment. The increase of cells' viability (compared with control cells dehydrated in similar conditions) was from 30 to 60%. It is concluded that a new immobilisation method, which includes a dehydration stage, does not lead to an essential loss of yeast cell viability. Correspondingly, there is no risk of losing the biotechnological activities of immobilised preparations. The possibility of producing dry, active yeast preparations is shown, for those strains that are very sensitive to dehydration and which can be used in biotechnology in an immobilised form. Finally, the immobilisation approach can be used for the development of efficient methods for the storage of recombinant yeast strains. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Space stress and genome shock in developing plant cells

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.

    1996-01-01

    In the present paper I review symptoms of stress at the level of the nucleus in cells of plants grown in space under nonoptimized conditions. It remains to be disclosed to what extent gravity "unloading" in the space environment directly contributes to the low mitotic index and the chromosomal anomalies and damage that is frequently, but not invariably, demonstrable in space-grown plants. Evaluation of the available facts indicates that indirect effects play a major role and that there is a significant biological component to the susceptibility to stress damage equation as well. Much remains to be learned on how to provide strictly controlled, optimal environments for plant growth in space. Only after optimized controls become possible will one be able to attribute any observed space effects to lowered gravity or to other significant but more indirect effects of the space environment.

  3. Quantitative Schlieren analysis applied to holograms of crystals grown on Spacelab 3

    NASA Technical Reports Server (NTRS)

    Brooks, Howard L.

    1986-01-01

    In order to extract additional information about crystals grown in the microgravity environment of Spacelab, a quantitative schlieren analysis technique was developed for use in a Holography Ground System of the Fluid Experiment System. Utilizing the Unidex position controller, it was possible to measure deviation angles produced by refractive index gradients of 0.5 milliradians. Additionally, refractive index gradient maps for any recorded time during the crystal growth were drawn and used to create solute concentration maps for the environment around the crystal. The technique was applied to flight holograms of Cell 204 of the Fluid Experiment System that were recorded during the Spacelab 3 mission on STS 51B. A triglycine sulfate crystal was grown under isothermal conditions in the cell and the data gathered with the quantitative schlieren analysis technique is consistent with a diffusion limited growth process.

  4. Occurrence of carotenoids and sporopollenin in Nanochlorum eucaryotum, a novel marine alga with unusual characteristics.

    PubMed

    Geisert, M; Rose, T; Bauer, W; Zahn, R K

    1987-01-01

    Pigment analysis of Nanochlorum eucaryotum on two strains grown under different gaseous conditions was performed. Air-gassed control cultures did not differ qualitatively with respect to the content of chlorophylls a and b, carotenes alpha and beta, lutein, violaxanthin, neoxanthin and cryptoxanthin in comparison with cultures grown under natural gas. The absolute pigment content per cell increased in cultures grown with natural gas. Growth of N. eucaryotum depends on CO2 which is present in concentrations up to 2.0 vol% in natural gas. N. eucaryotum cannot utilize methane and is therefore not methylotrophic. In cultures of N. eucaryotum grown with natural gas and in air-gassed cultures under nitrogen deficient conditions the secondary carotenoids canthaxanthin and astaxanthin could be detected. In air-gassed cultures of strain N. eucaryotum Colona the same secondary carotenoids have been found, while secondary carotenoids were never found in strain N. eucaryotum Mainz. Cell walls of N. eucaryotum always contain sporopollenin as confirmed by isolation, elemental analysis, infrared absorption spectrophotometry, acetolysis-resistance and electron microscopy.

  5. Analysis of composition and microstructures of Ge grown on porous silicon using Raman spectroscopy and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Aouassa, Mansour; Jadli, Imen; Hassayoun, Latifa Slimen; Maaref, Hassen; Panczer, Gerard; Favre, Luc; Ronda, Antoine; Berbezier, Isabelle

    2017-12-01

    Composition and microstructure of Ge grown on porous silicon (PSi) by Molecular Beam Epitaxy (MBE) at different temperatures are examined using High Resolution Transmission Electron Microscopy (HRTEM) and Raman spectroscopy. Ge grown at 400 °C on PSi buffer produces a planar Ge film with high crystalline quality compared to Ge grown on bulk Si. This result is attributed to the compliant nature of PSi. Increasing growth temperature >600 °C, changes the PSi morphology, increase the Ge/Si intermixing in the pores during Ge growth and lead to obtain a composite SiGe/Si substrate. Ge content in the composite SiGe substrate can controlled via growth temperature. These substrates serve as low cost virtual substrate for high efficiency III-V/Si solar cells.

  6. Internal Membrane Control in Azotobacter vinelandii

    PubMed Central

    Pate, Jack L.; Shah, Vinod K.; Brill, Winston J.

    1973-01-01

    Azotobacter vinelandii was grown on N2, NH4+, or NO3−, and an internal membrane network was observed by electron microscopy of thin sections of cells. Cells obtained in early exponential growth contained less internal membrane than did cells from cultures in late exponential growth. It seems likely that O2 has a role in regulating the amount of internal membrane structure. Images PMID:4123239

  7. Gallium phosphide nanowires as a substrate for cultured neurons.

    PubMed

    Hällström, Waldemar; Mårtensson, Thomas; Prinz, Christelle; Gustavsson, Per; Montelius, Lars; Samuelson, Lars; Kanje, Martin

    2007-10-01

    Dissociated sensory neurons were cultured on epitaxial gallium phosphide (GaP) nanowires grown vertically from a gallium phosphide surface. Substrates covered by 2.5 microm long, 50 nm wide nanowires supported cell adhesion and axonal outgrowth. Cell survival was better on nanowire substrates than on planar control substrates. The cells interacted closely with the nanostructures, and cells penetrated by hundreds of wires were observed as well as wire bending due to forces exerted by the cells.

  8. Effects of photoperiod regimes and ultraviolet-C radiations on biosynthesis of industrially important lignans and neolignans in cell cultures of Linum usitatissimum L. (Flax).

    PubMed

    Anjum, Sumaira; Abbasi, Bilal Haider; Doussot, Joël; Favre-Réguillon, Alain; Hano, Christophe

    2017-02-01

    Lignans and neolignans are principal bioactive components of Linum usitatissimum L. (Flax), having multiple pharmacological activities. In present study, we are reporting an authoritative abiotic elicitation strategy of photoperiod regimes along with UV-C radiations. Cell cultures were grown in different photoperiod regimes (24h-dark, 24h-light and 16L/8D h photoperiod) either alone or in combination with various doses (1.8-10.8kJ/m 2 ) of ultraviolet-C (UV-C) radiations. Secoisolariciresinol diglucoside (SDG), lariciresinol diglucoside (LDG), dehydrodiconiferyl alcohol glucoside (DCG), and guaiacylglycerol-β-coniferyl alcohol ether glucoside (GGCG) were quantified by using reverse phase-high performance liquid chromatography (RP-HPLC). Results showed that the cultures exposed to UV-C radiations, accumulated higher levels of lignans, neolignans and other biochemical markers than cultures grown under different photoperiod regimes. 3.6kJ/m 2 dose of UV-C radiations resulted in 1.86-fold (7.1mg/g DW) increase in accumulation of SDG, 2.25-fold (21.6mg/g DW) in LDG, and 1.33-fold (9.2mg/g DW) in GGCG in cell cultures grown under UV+photoperiod than their respective controls. Furthermore, cell cultures grown under UV+dark showed 1.36-fold (60.0mg/g DW) increase in accumulation of DCG in response to 1.8kJ/m 2 dose of UV-C radiations. Smilar trends were observed in productivity of SDG, LDG and GGCG. Additionally, 3.6kJ/m 2 dose of UV-C radiations also resulted in 2.82-fold (195.65mg/l) increase in total phenolic production, 2.94-fold (98.9mg/l) in total flavonoid production and 1.04-fold (95%) in antioxidant activity of cell cultures grown under UV+photoperiod. These findings open new dimensions for feasible production of biologically active lignans and neolignans by Flax cell cultures. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Some karyological observations on plants grown in space

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.; Oconnor, S. A.

    1982-01-01

    Experiments were conducted to assess whether cell division in a plant root would be affected by prolonged exposure to microgravity. Root materials from sunflower, oat, and mung bean plants grown on STS-2 and STS-3 were utilized for the experiments. It is found that all oat, sunflower, and mung seedlings showed a reduced number of cells in division as they went through their first cell division cycle on earth when compared to their ground controls. A significant number of oat, mung, and sunflower plantlets exhibited random root orientation and the lack of strictly orthotropic growth of their shoot systems in the flight samples. In addition, it is found that the mung roots were apparently least affected in terms of their cytology despite the fact that their roots were often randomly oriented.

  10. Zeolite scaffolds for cultures of human breast cancer cells. Part II: Effect of pure and hybrid zeolite membranes on neoplastic and metastatic activity control.

    PubMed

    Tavolaro, Palmira; Martino, Guglielmo; Andò, Sebastiano; Tavolaro, Adalgisa

    2016-11-01

    This work is focused on the response of two invasive phenotypes of human breast cancer cells, MCF-7 and MDA-MB-231, grown on synthesized zeolite scaffolds in order to study the influence of those biomaterials in controlled conditions with and without anti-tumoral drug treatments. Our research was directed to the use of doxorubicin (DOX) and bergapten (5-MOP). The former is broadly considered the most active single agent available for the treatment of breast cancer, the second is a natural psoralen with an apoptotic effect. The results indicate that both drugs inhibit the cell viability of all cell lines grown on all zeolite scaffolds and that all Pure Zeolite Membranes are more responsive with respect to all Mixed Matrix Membranes. Moreover, the results after treatment with DOX at a concentration of 7.4μM for 24h, show that the expression of the matrix metalloproteinases (MMP-2 and MMP-9) is greatly reduced in both cell lines, especially in those adherent on Pure Zeolite Scaffolds. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A Bruch's membrane substitute fabricated from silk fibroin supports the function of retinal pigment epithelial cells in vitro.

    PubMed

    Shadforth, Audra M A; Suzuki, Shuko; Theodoropoulos, Christina; Richardson, Neil A; Chirila, Traian V; Harkin, Damien G

    2017-06-01

    Silk fibroin provides a promising biomaterial for ocular tissue reconstruction, including the damaged outer blood-retinal barrier of patients afflicted with age-related macular degeneration (AMD). The aim of the present study was to evaluate the function of retinal pigment epithelial (RPE) cells in vitro, when grown on fibroin membranes manufactured to a thickness similar to that of Bruch's membrane (3 µm). Confluent cultures of RPE cells (ARPE-19) were established on fibroin membranes and maintained under conditions designed to promote maturation over 4 months. Control cultures were grown on polyester cell culture well inserts (Transwell ® ). Cultures established on either material developed a cobblestone morphology, with partial pigmentation, within 12 weeks. Immunocytochemistry at 16 weeks revealed a similar distribution pattern between cultures for F-actin, ZO-1, ezrin, cytokeratin pair 8/18, RPE-65 and Na + /K + -ATPase. Electron microscopy revealed that cultures grown on fibroin displayed a rounder apical surface with a more dense distribution of microvilli. Both cultures avidly ingested fluorescent microspheres coated with vitronectin and bovine serum albumin (BSA), but not controls coated with BSA alone. VEGF and PEDF were detected in the conditioned media collected from above and below the two membrane types. Levels of PEDF were significantly higher than for VEGF on both membranes and a trend was observed towards larger amounts of PEDF in apical compartments. These findings demonstrated that RPE cell functions on fibroin membranes are equivalent to those observed for standard test materials (polyester membranes). As such, these studies support advancement to studies of RPE cell implantation on fibroin membranes in a preclinical model. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Selective Inhibition of the Oxidation of Ferrous Iron or Sulfur in Thiobacillus ferrooxidans

    PubMed Central

    Harahuc, Lesia; Lizama, Hector M.; Suzuki, Isamu

    2000-01-01

    The oxidation of either ferrous iron or sulfur by Thiobacillus ferrooxidans was selectively inhibited or controlled by various anions, inhibitors, and osmotic pressure. Iron oxidation was more sensitive than sulfur oxidation to inhibition by chloride, phosphate, and nitrate at low concentrations (below 0.1 M) and also to inhibition by azide and cyanide. Sulfur oxidation was more sensitive than iron oxidation to the inhibitory effect of high osmotic pressure. These differences were evident not only between iron oxidation by iron-grown cells and sulfur oxidation by sulfur-grown cells but also between the iron and sulfur oxidation activities of the same iron-grown cells. Growth experiments with ferrous iron or sulfur as an oxidizable substrate confirmed the higher sensitivity of iron oxidation to inhibition by phosphate, chloride, azide, and cyanide. Sulfur oxidation was actually stimulated by 50 mM phosphate or chloride. Leaching of Fe and Zn from pyrite (FeS2) and sphalerite (ZnS) by T. ferrooxidans was differentially affected by phosphate and chloride, which inhibited the solubilization of Fe without significantly affecting the solubilization of Zn. PMID:10698768

  13. Over-expression of AtEXLA2 alters etiolated arabidopsis hypocotyl growth

    PubMed Central

    Boron, Agnieszka Karolina; Van Loock, Bram; Suslov, Dmitry; Markakis, Marios Nektarios; Verbelen, Jean-Pierre; Vissenberg, Kris

    2015-01-01

    Background and Aims Plant stature and shape are largely determined by cell elongation, a process that is strongly controlled at the level of the cell wall. This is associated with the presence of many cell wall proteins implicated in the elongation process. Several proteins and enzyme families have been suggested to be involved in the controlled weakening of the cell wall, and these include xyloglucan endotransglucosylases/hydrolases (XTHs), yieldins, lipid transfer proteins and expansins. Although expansins have been the subject of much research, the role and involvement of expansin-like genes/proteins remain mostly unclear. This study investigates the expression and function of AtEXLA2 (At4g38400), a member of the expansin-like A (EXLA) family in arabidposis, and considers its possible role in cell wall metabolism and growth. Methods Transgenic plants of Arabidopsis thaliana were grown, and lines over-expressing AtEXLA2 were identified. Plants were grown in the dark, on media containing growth hormones or precursors, or were gravistimulated. Hypocotyls were studied using transmission electron microscopy and extensiometry. Histochemical GUS (β-glucuronidase) stainings were performed. Key Results AtEXLA2 is one of the three EXLA members in arabidopsis. The protein lacks the typical domain responsible for expansin activity, but contains a presumed cellulose-interacting domain. Using promoter::GUS lines, the expression of AtEXLA2 was seen in germinating seedlings, hypocotyls, lateral root cap cells, columella cells and the central cylinder basally to the elongation zone of the root, and during different stages of lateral root development. Furthermore, promoter activity was detected in petioles, veins of leaves and filaments, and also in the peduncle of the flowers and in a zone just beneath the papillae. Over-expression of AtEXLA2 resulted in an increase of >10 % in the length of dark-grown hypocotyls and in slightly thicker walls in non-rapidly elongating etiolated hypocotyl cells. Biomechanical analysis by creep tests showed that AtEXLA2 over-expression may decrease the wall strength in arabidopsis hypocotyls. Conclusions It is concluded that AtEXLA2 may function as a positive regulator of cell elongation in the dark-grown hypocotyl of arabidopsis by possible interference with cellulose metabolism, deposition or its organization. PMID:25492062

  14. Inhibition by derivatives of diguanidines of cell proliferation in Ehrlich ascites cells grown in cultures.

    PubMed Central

    Alhonen-Hongisto, L; Pösö, H; Jänne, J

    1980-01-01

    The anti-proliferative effects of 1,1'-[(methylethanediylidene)dinitrilo]diguanidine [methylglyoxal bis(guanylhydrazone)] and 1,1'-[(metHYLETHANEDIYLIDENE)dinitrilo]bis-(3-aminoguaNIDINE) HAVE BEEN STUDIED IN Ehrlich ascites carcinoma cells grown in suspension cultures. Both compounds are potent inhibitors of S-adenosyl-L-methionine decarboxylase from the tumour cells. In the presence of putrescine (but not in its absence), the inhibition produced by 1,1'-[methylethanediylidene)dinitrilo]bis-(3-aminoguanadine) was apparently irreversible, as judged by persistent depression of the enzyme activity even after extensive dialysis. The two compounds produced similar increases in adenosylmethionine decarboxylase activity, which resulted from a striking stabilization of the enzyme in cells grown in the presence of the drugs. The inhibitory effect of the two diguanidine derivatives on the synthesis of DNA and protein became evident after an exposure of 4--8 h. At that time, the only change seen in tumour polyamines in cells grown in the presence of the inhibitors was an increase in cellular putrescine. To find out whether the compounds initially interfered with the energy production of the tumour cells, the cultures were grown in the presence of uniformly labelled glucose, and the formation of lactate, as well as the oxidation of the sugar into CO2, were measured. The activation of glycolysis upon dilution of the tumour cells with fresh medium and the subsequent formation of labelled CO2 were siliar in control cells and in cells exposed to methylglyoxal bis(buanylhydrazone), 1,1'-[(methylethanediylidene)dinitrilo]bis-(3-aminoguanidine) or diaminopropanol. Only a marginal decrease in the cellular content of ATP was found in cells exposed to the inhibitors for 24 h. The diguanidine-induced growth inhibition was fully reversed by low concentrations of exogenous polyamines. However, the possibility remained that the reversal by polyamines was due to a decrease of intracellular diguanidine concentration. Our results indicate that the mode of action of 1,1'-[(methylethanediylidene)dinitrilo]bis-(3-aminoguanidine) is fully comparable to that of methylglyoxal bis(guanylhydrazone), as regards stabilization of adenosylmethionine decarboxylase and the appearance of growth inhibition in Ehrlich ascites cells. The data tend to support the view that both compounds apparently have an early anti-proliferative effect unrelated to polyamine metabolism. PMID:7396877

  15. NMR studies on Na+ transport in Synechococcus PCC 6311

    NASA Technical Reports Server (NTRS)

    Nitschmann, W. H.; Packer, L.

    1992-01-01

    The freshwater cyanobacterium Synechococcus PCC 6311 is able to adapt to grow after sudden exposure to salt (NaCl) stress. We have investigated the mechanism of Na+ transport in these cells during adaptation to high salinity. Na+ influx under dark aerobic conditions occurred independently of delta pH or delta psi across the cytoplasmic membrane, ATPase activity, and respiratory electron transport. These findings are consistent with the existence of Na+/monovalent anion cotransport or simultaneous Na+/H+ +anion/OH- exchange. Na+ influx was dependent on Cl-, Br-, NO3-, or NO2-. No Na+ uptake occurred after addition of NaI, NaHCO3, or Na2SO4. Na+ extrusion was absolutely dependent on delta pH and on an ATPase activity and/or on respiratory electron transport. This indicates that Na+ extrusion via Na+/H+ exchange is driven by primary H+ pumps in the cytoplasmic membrane. Cells grown for 4 days in 0.5 m NaCl medium, "salt-grown cells," differ from control cells by a lower maximum velocity of Na+ influx and by lower steady-state ratios of [Na+]in/[Na+]out. These results indicate that cells grown in high-salt medium increase their capacity to extrude Na+. During salt adaptation Na+ extrusion driven by respiratory electron transport increased from about 15 to 50%.

  16. Tumor spheroid model for the biologically targeted radiotherapy of neuroblastoma micrometastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, K.A.; Mairs, R.; Murray, T.

    Neuroblastoma is a pediatric malignancy with a poor prognosis at least partly attributable to an early pattern of dissemination. New approaches to treatment of micrometastases include targeted radiotherapy using radiolabeled antibodies or molecules which are taken up preferentially by tumor cells. Multicellular tumor spheroids (MTS) resemble micrometastases during the avascular phase of their development. A human neuroblastoma cell line (NBl-G) was grown as MTS and incubated briefly with a radiolabeled monoclonal antibody ({sup 131}I-UJ13A) directed against neuroectodermal antigens. Spheroid response was evaluated in terms of regrowth delay or proportion sterilized. A dose-response relationship was demonstrated in terms of {sup 131}Imore » activity or duration of incubation. Control experiments using unlabeled UJ13A, radiolabeled nonspecific antibody (T2.10), radiolabeled human serum albumin, and radiolabeled sodium iodide showed these to be relatively ineffective compared to {sup 131}I-UJ13A. The cell line NBl-G grown as MTS has also been found to preferentially accumulate the radiolabeled catecholamine precursor molecule m-({sup 131}I)iodobenzylguanidine compared to cell lines derived from other tumor types. NBl-G cells grown as MTS provide a promising laboratory model for targeted radiotherapy of neuroblastoma micrometastases using radiolabeled antibodies or m-iodobenzylguanidine.« less

  17. Quantitative Proteomic and Microarray Analysis of the Archaeon Methanosarcina Acetivorans Grown with Acetate Versus Methanol*

    PubMed Central

    Li, Lingyun; Li, Qingbo; Rohlin, Lars; Kim, UnMi; Salmon, Kirsty; Rejtar, Tomas; Gunsalus, Robert P.; Karger, Barry L.; Ferry, James G.

    2008-01-01

    Summary Methanosarcina acetivorans strain C2A is an acetate- and methanol-utilizing methane-producing organism for which the genome, the largest yet sequenced among the Archaea, reveals extensive physiological diversity. LC linear ion trap-FTICR mass spectrometry was employed to analyze acetate- vs. methanol-grown cells metabolically labeled with 14N vs. 15N, respectively, to obtain quantitative protein abundance ratios. DNA microarray analyses of acetate- vs. methanol-grown cells was also performed to determine gene expression ratios. The combined approaches were highly complementary, extending the physiological understanding of growth and methanogenesis. Of the 1081 proteins detected, 255 were ≥ 3-fold differentially abundant. DNA microarray analysis revealed 410 genes that were ≥ 2.5-fold differentially expressed of 1972 genes with detected expression. The ratios of differentially abundant proteins were in good agreement with expression ratios of the encoding genes. Taken together, the results suggest several novel roles for electron transport components specific to acetate-grown cells, including two flavodoxins each specific for growth on acetate or methanol. Protein abundance ratios indicated that duplicate CO dehydrogenase/acetyl-CoA complexes function in the conversion of acetate to methane. Surprisingly, the protein abundance and gene expression ratios indicated a general stress response in acetate- vs. methanol-grown cells that included enzymes specific for polyphosphate accumulation and oxidative stress. The microarray analysis identified transcripts of several genes encoding regulatory proteins with identity to the PhoU, MarR, GlnK, and TetR families commonly found in the Bacteria domain. An analysis of neighboring genes suggested roles in controlling phosphate metabolism (PhoU), ammonia assimilation (GlnK), and molybdopterin cofactor biosynthesis (TetR). Finally, the proteomic and microarray results suggested roles for two-component regulatory systems specific for each growth substrate. PMID:17269732

  18. Cytoplasmic Acidification and Secondary Metabolite Production in Different Plant Cell Suspensions (A Comparative Study).

    PubMed Central

    Hagendoorn, MJM.; Wagner, A. M.; Segers, G.; Van Der Plas, LHW.; Oostdam, A.; Van Walraven, H. S.

    1994-01-01

    In this study, a correlation is described between low cytoplasmic pH, measured with the fluorescent probes 2[prime],7[prime]-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (acetoxymethyl ester) and bis- [3-propyl-5-oxoisoxazol-4-yl]pentamethine oxonol, and the production of secondary metabolites for several plant cell-suspension systems. Anthraquinone production in Morinda citrifolia suspensions is negligible in the presence of 2,4-dichlorophenoxyacetic acid (2,4-D), whereas with naphthalene acetic acid (NAA) a significant accumulation is realized. NAA-grown cells showed a lower cytoplasmic pH than did 2,4-D-grown cells. Addition of 2,4-D or parachlorophenoxy acetic acid to NAA-grown cells resulted in an inhibition of anthraquinone production and an increase of the cytoplasmic pH, whereas addition of parachlorophenyl acetic acid had no effect on either parameter. Lignin production in Petunia hybrida cells could be induced by subculturing them in a medium without iron. These cells showed a lower cytoplasmic pH than control cells. Addition of Fe3+ led to a decreased lignin content and an increased cytoplasmic pH. Two cell lines of Linum flavum showed a different level of coniferin and lignin concentration in their cells. Cells that accumulated coniferin and lignin had a lower cytoplasmic pH than cells that did not accumulate these secondary metabolites. Apparently, in different species and after different kinds of treatment there is a correlation between acidification of the cytoplasm and the production of different secondary metabolites. The possible role of this acidification in secondary metabolite production is discussed. PMID:12232364

  19. Cytoplasmic Acidification and Secondary Metabolite Production in Different Plant Cell Suspensions (A Comparative Study).

    PubMed

    Hagendoorn, MJM.; Wagner, A. M.; Segers, G.; Van Der Plas, LHW.; Oostdam, A.; Van Walraven, H. S.

    1994-10-01

    In this study, a correlation is described between low cytoplasmic pH, measured with the fluorescent probes 2[prime],7[prime]-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (acetoxymethyl ester) and bis- [3-propyl-5-oxoisoxazol-4-yl]pentamethine oxonol, and the production of secondary metabolites for several plant cell-suspension systems. Anthraquinone production in Morinda citrifolia suspensions is negligible in the presence of 2,4-dichlorophenoxyacetic acid (2,4-D), whereas with naphthalene acetic acid (NAA) a significant accumulation is realized. NAA-grown cells showed a lower cytoplasmic pH than did 2,4-D-grown cells. Addition of 2,4-D or parachlorophenoxy acetic acid to NAA-grown cells resulted in an inhibition of anthraquinone production and an increase of the cytoplasmic pH, whereas addition of parachlorophenyl acetic acid had no effect on either parameter. Lignin production in Petunia hybrida cells could be induced by subculturing them in a medium without iron. These cells showed a lower cytoplasmic pH than control cells. Addition of Fe3+ led to a decreased lignin content and an increased cytoplasmic pH. Two cell lines of Linum flavum showed a different level of coniferin and lignin concentration in their cells. Cells that accumulated coniferin and lignin had a lower cytoplasmic pH than cells that did not accumulate these secondary metabolites. Apparently, in different species and after different kinds of treatment there is a correlation between acidification of the cytoplasm and the production of different secondary metabolites. The possible role of this acidification in secondary metabolite production is discussed.

  20. LiNixCo1-xO2 Cell Grown by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Rao, M. C.; Ravindranadh, K.; Begum, Sk. Muntaz; Nirmala, G.

    2011-07-01

    Thin films of LiNixCo1-xO2 were prepared by pulsed laser deposition technique. Two important deposition parameters such as substrate temperature and oxygen partial pressure during the thin film deposition were controlled. The electrochemical measurements were carried out on Li//LiNixCo1-xO2 cells with a lithium metal foil as anode and LiNixCo1-xO2 film as cathode of 1.5 cm2 active area using a Teflon home-made cell hardware. Electrochemical titration was made by charging and discharging the cells using the galvanostatic mode of a Mac-Pile single 608 electrochemical analyzer system in the potential range between 2.0 and 4.1 V. Specific capacity as high as 220 mC/cm2 μm was measured for the film grown at 700 °C.

  1. Analysis of the Ethylene Response in the epinastic Mutant of Tomato1

    PubMed Central

    Barry, Cornelius S.; Fox, Elizabeth A.; Yen, Hsiao-ching; Lee, Sanghyeob; Ying, Tie-jin; Grierson, Donald; Giovannoni, James J.

    2001-01-01

    Ethylene can alter plant morphology due to its effect on cell expansion. The most widely documented example of ethylene-mediated cell expansion is promotion of the “triple response” of seedlings grown in the dark in ethylene. Roots and hypocotyls become shorter and thickened compared with controls due to a reorientation of cell expansion, and curvature of the apical hook is more pronounced. The epinastic (epi) mutant of tomato (Lycopersicon esculentum) has a dark-grown seedling phenotype similar to the triple response even in the absence of ethylene. In addition, in adult plants both the leaves and the petioles display epinastic curvature and there is constitutive expression of an ethylene-inducible chitinase gene. However, petal senescence and abscission and fruit ripening are all normal in epi. A double mutant (epi/epi;Nr/Nr) homozygous for both the recessive epi and dominant ethylene-insensitive Never-ripe loci has the same dark-grown seedling and vegetative phenotypes as epi but possesses the senescence and ripening characteristics of Never-ripe. These data suggest that a subset of ethylene responses controlling vegetative growth and development may be constitutively activated in epi. In addition, the epi locus has been placed on the tomato RFLP map on the long arm of chromosome 4 and does not demonstrate linkage to reported tomato CTR1 homologs. PMID:11553734

  2. Simultaneous reduction of nitrate and selenate by cell suspensions of selenium-respiring bacteria

    USGS Publications Warehouse

    Oremland, R.S.; Blum, J.S.; Bindi, A.B.; Dowdle, P.R.; Herbel, M.; Stolz, J.F.

    1999-01-01

    Washed-cell suspensions of Sulfurospirillum barnesii reduced selenate [Se(VI)] when cells were cultured with nitrate, thiosulfate, arsenate, or fumarate as the electron acceptor. When the concentration of the electron donor was limiting, Se(VI) reduction in whole cells was approximately fourfold greater in Se(VI)-grown cells than was observed in nitrate-grown cells; correspondingly, nitrate reduction was ~11-fold higher in nitrate-grown cells than in Se(VI)-grown cells. However, a simultaneous reduction of nitrate and Se(VI) was observed in both cases. At nonlimiting electron donor concentrations, nitrate- grown cells suspended with equimolar nitrate and selenate achieved a complete reductive removal of nitrogen and selenium oxyanions, with the bulk of nitrate reduction preceding that of selenate reduction. Chloramphenicol did not inhibit these reductions. The Se(VI)-respiring haloalkaliphile Bacillus arsenicoselenatis gave similar results, but its Se(VI) reductase was not constitutive in nitrate-grown cells. No reduction of Se(VI) was noted for Bacillus selenitireducens, which respires selenite. The results of kinetic experiments with cell membrane preparations of S. barnesii suggest the presence of constitutive selenate and nitrate reduction, as well as an inducible, high- affinity nitrate reductase in nitrate-grown cells which also has a low affinity for selenate. The simultaneous reduction of micromolar Se(VI) in the presence of millimolar nitrate indicates that these organisms may have a functional use in bioremediating nitrate-rich, seleniferous agricultural wastewaters. Results with 75Se-selenate tracer show that these organisms can lower ambient Se(VI) concentrations to levels in compliance with new regulations proposed for release of selenium oxyanions into the environment.

  3. Cell-wall architecture and lignin composition of wheat developed in a microgravity environment.

    PubMed

    Levine, L H; Heyenga, A G; Levine, H G; Choi, J; Davin, L B; Krikorian, A D; Lewis, N G

    2001-07-01

    The microgravity environment encountered during space-flight has long been considered to affect plant growth and developmental processes, including cell wall biopolymer composition and content. As a prelude to studying how microgravity is perceived - and acted upon - by plants, it was first instructive to investigate what gross effects on plant growth and development occurred in microgravity. Thus, wheat seedlings were exposed to microgravity on board the space shuttle Discovery (STS-51) for a 10 day duration, and these specimens were compared with their counterparts grown on Earth under the same conditions (e.g. controls). First, the primary roots of the wheat that developed under both microgravity and 1 g on Earth were examined to assess the role of gravity on cellulose microfibril (CMF) organization and secondary wall thickening patterns. Using a quick freeze/deep etch technique, this revealed that the cell wall CMFs of the space-grown wheat maintained the same organization as their 1 g-grown counterparts. That is, in all instances, CMFs were randomly interwoven with each other in the outermost layers (farthest removed from the plasma membrane), and parallel to each other within the individual strata immediately adjacent to the plasma membranes. The CMF angle in the innermost stratum relative to the immediately adjacent stratum was ca 80 degrees in both the space and Earth-grown plants. Second, all plants grown in microgravity had roots that grew downwards into the agar; they did not display "wandering" and upward growth as previously reported by others. Third, the space-grown wheat also developed normal protoxylem and metaxylem vessel elements with secondary thickening patterns ranging from spiral to regular pit to reticulate thickenings. Fourthly, both the space- and Earth-grown plants were essentially of the same size and height, and their lignin analyses revealed no substantial differences in their amounts and composition regardless of the gravitational field experienced, i.e. for the purposes of this study, all plants were essentially identical. These results suggest that the microgravity environment itself at best only slightly affected either cell wall biopolymer synthesis or the deposition of CMFs, in contrast to previous assertions.

  4. Cell-wall architecture and lignin composition of wheat developed in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Levine, L. H.; Heyenga, A. G.; Levine, H. G.; Choi, J.; Davin, L. B.; Krikorian, A. D.; Lewis, N. G.; Sager, J. C. (Principal Investigator)

    2001-01-01

    The microgravity environment encountered during space-flight has long been considered to affect plant growth and developmental processes, including cell wall biopolymer composition and content. As a prelude to studying how microgravity is perceived - and acted upon - by plants, it was first instructive to investigate what gross effects on plant growth and development occurred in microgravity. Thus, wheat seedlings were exposed to microgravity on board the space shuttle Discovery (STS-51) for a 10 day duration, and these specimens were compared with their counterparts grown on Earth under the same conditions (e.g. controls). First, the primary roots of the wheat that developed under both microgravity and 1 g on Earth were examined to assess the role of gravity on cellulose microfibril (CMF) organization and secondary wall thickening patterns. Using a quick freeze/deep etch technique, this revealed that the cell wall CMFs of the space-grown wheat maintained the same organization as their 1 g-grown counterparts. That is, in all instances, CMFs were randomly interwoven with each other in the outermost layers (farthest removed from the plasma membrane), and parallel to each other within the individual strata immediately adjacent to the plasma membranes. The CMF angle in the innermost stratum relative to the immediately adjacent stratum was ca 80 degrees in both the space and Earth-grown plants. Second, all plants grown in microgravity had roots that grew downwards into the agar; they did not display "wandering" and upward growth as previously reported by others. Third, the space-grown wheat also developed normal protoxylem and metaxylem vessel elements with secondary thickening patterns ranging from spiral to regular pit to reticulate thickenings. Fourthly, both the space- and Earth-grown plants were essentially of the same size and height, and their lignin analyses revealed no substantial differences in their amounts and composition regardless of the gravitational field experienced, i.e. for the purposes of this study, all plants were essentially identical. These results suggest that the microgravity environment itself at best only slightly affected either cell wall biopolymer synthesis or the deposition of CMFs, in contrast to previous assertions.

  5. Cell wall canals formed upon growth of Candida maltosa in the presence of hexadecane are associated with polyphosphates.

    PubMed

    Zvonarev, Anton N; Crowley, David E; Ryazanova, Lubov P; Lichko, Lydia P; Rusakova, Tatiana G; Kulakovskaya, Tatiana V; Dmitriev, Vladimir V

    2017-05-01

    Canals are supramolecular complexes observed in the cell wall of Candida maltosa grown in the presence of hexadecane as a sole carbon source. Such structures were not observed in glucose-grown cells. Microscopic observations of cells stained with diaminobenzidine revealed the presence of oxidative enzymes in the canals. 4΄,6΄-diamino-2-phenylindole staining revealed that a substantial part of cellular polyphosphate was present in the cell wall of cells grown on hexadecane in condition of phosphate limitation. The content and chain length of polyphosphates were higher in hexadecane-grown cells than in glucose grown ones. The treatment of cells with yeast polyphosphatase PPX1 resulted in the decrease of the canal size. These data clearly indicated that polyphosphates are constituents of canals; they might play an important role in the canal structure and functioning. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Gravity, chromosomes, and organized development in aseptically cultured plant cells

    NASA Technical Reports Server (NTRS)

    Krikorian, Abraham D.

    1993-01-01

    The objectives of the PCR experiment are: to test the hypothesis that microgravity will in fact affect the pattern and developmental progression of embryogenically competent plant cells from one well-defined, critical stage to another; to determine the effects of microgravity in growth and differentiation of embryogenic carrot cells grown in cell culture; to determine whether microgravity or the space environment fosters an instability of the differentiated state; and to determine whether mitosis and chromosome behavior are adversely affected by microgravity. The methods employed will consist of the following: special embryogenically competent carrot cell cultures will be grown in cell culture chambers provided by NASDA; four cell culture chambers will be used to grow cells in liquid medium; two dishes (plant cell culture dishes) will be used to grow cells on a semi-solid agar support; progression to later embryonic stages will be induced in space via crew intervention and by media manipulation in the case of liquid grown cell cultures; progression to later stages in case of semi-solid cultures will not need crew intervention; embryo stages will be fixed at a specific interval (day 6) in flight only in the case of liquid-grown cultures; and some living cells and somatic embryos will be returned for continued post-flight development and 'grown-out.' These will derive from the semi-solid grown cultures.

  7. How effectively does a clinostat mimic the ultrastructural effects of microgravity on plant cells?

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1990-01-01

    Columella cells of seedlings of Zea mays L. cv. Bear Hybrid grown in the microgravity of orbital flight allocate significantly larger relative-volumes to hyaloplasm and lipid bodies, and significantly smaller relative-volumes to dictyosomes, plastids, and starch than do columella cells of seedlings grown at 1 g. The ultrastructure of columella cells of seedlings grown at 1 g and on a rotating clinostat is not significantly different. However, the ultrastructure of cells exposed to these treatments differs significantly from that of seedlings grown in microgravity. These results indicate that the actions of a rotating clinostat do not mimic the ultrastructural effects of microgravity in columella cells of Z. mays.

  8. Changes in vacuolation in the root apex cells of soybean seedlings in microgravity

    NASA Technical Reports Server (NTRS)

    Klymchuk, D. O.; Kordyum, E. L.; Vorobyova, T. V.; Chapman, D. K.; Brown, C. S.

    2003-01-01

    Changes in the vacuolation in root apex cells of soybean (Glycine max L. [Merr.]) seedlings grown in microgravity were investigated. Spaceflight and ground control seedlings were grown in the absence or presence of KMnO4 (to remove ethylene) for 6 days. After landing, in order to study of cell ultrastructure and subcellular free calcium ion distribution, seedling root apices were fixed in 2.5% (w/v) glutaraldehyde in 0.1 M cacodylate buffer and 2% (w/v) glutaraldehyde, 2.5% (w/v) formaldehyde, 2% (w/v) potassium antimonate K[Sb(OH)6] in 0.1 M K2HPO4 buffer with an osmolarity (calculated theoretically) of 0.45 and 1.26 osmol. The concentrations of ethylene in all spaceflight canisters were significantly higher than in the ground control canisters. Seedling growth was reduced in the spaceflight-exposed plants. Additionally, the spaceflight-exposed plants exhibited progressive vacuolation in the root apex cells, particularly in the columella cells, to a greater degree than the ground controls. Plasmolysis was observed in columella cells of spaceflight roots fixed in solutions with relatively high osmolarity (1.26 osmol). The appearance of plasmolysis permitted the evaluation of the water status of cells. The water potential of the spaceflight cells was higher than the surrounding fixative solution. A decrease in osmotic potential and/or an increase in turgor potential may have induced increases in cell water potential. However, the plasmolysed (i.e. non-turgid) cells implied that increases in water potential were accompanied with a decrease in osmotic potential. In such cells changes in vacuolation may have been involved to maintain turgor pressure or may have been a result of intensification of other vacuolar functions like digestion and storage. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  9. Video of Tissue Grown in Space in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Principal investigator Leland Chung grew prostate cancer and bone stromal cells aboard the Space Shuttle Columbia during the STS-107 mission. Although the experiment samples were lost along with the ill-fated spacecraft and crew, he did obtain downlinked video of the experiment that indicates the enormous potential of growing tissues in microgravity. Cells grown aboard Columbia had grown far larger tissue aggregates at day 5 than did the cells grown in a NASA bioreactor on the ground.

  10. Response to copper of Acidithiobacillus ferrooxidans ATCC 23270 grown in elemental sulfur.

    PubMed

    Almárcegui, Rodrigo J; Navarro, Claudio A; Paradela, Alberto; Albar, Juan Pablo; von Bernath, Diego; Jerez, Carlos A

    2014-11-01

    The response of Acidithiobacillus ferrooxidans ATCC 23270 to copper was analyzed in sulfur-grown cells by using quantitative proteomics. Forty-seven proteins showed altered levels in cells grown in the presence of 50 mM copper sulfate. Of these proteins, 24 were up-regulated and 23 down-regulated. As seen before in ferrous iron-grown cells, there was a notorious up-regulation of RND-type Cus systems and different RND-type efflux pumps, indicating that these proteins are very important in copper resistance. Copper also triggered the down-regulation of the major outer membrane porin of A. ferrooxidans in sulfur-grown bacteria, suggesting they respond to the metal by decreasing the influx of cations into the cell. On the contrary, copper in sulfur-grown cells caused an overexpression of putative TadA and TadB proteins known to be essential for biofilm formation in bacteria. Surprisingly, sulfur-grown microorganisms showed increased levels of proteins related with energy generation (rus and petII operons) in the presence of copper. Although rus operon is overexpressed mainly in cells grown in ferrous iron, the up-regulation of rusticyanin in sulfur indicates a possible role for this protein in copper resistance as well. Finally, copper response in A. ferrooxidans appears to be influenced by the substrate being oxidized by the microorganism. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  11. AUXIN BINDING PROTEIN1 Links Cell Wall Remodeling, Auxin Signaling, and Cell Expansion in Arabidopsis[W

    PubMed Central

    Paque, Sébastien; Mouille, Grégory; Grandont, Laurie; Alabadí, David; Gaertner, Cyril; Goyallon, Arnaud; Muller, Philippe; Primard-Brisset, Catherine; Sormani, Rodnay; Blázquez, Miguel A.; Perrot-Rechenmann, Catherine

    2014-01-01

    Cell expansion is an increase in cell size and thus plays an essential role in plant growth and development. Phytohormones and the primary plant cell wall play major roles in the complex process of cell expansion. In shoot tissues, cell expansion requires the auxin receptor AUXIN BINDING PROTEIN1 (ABP1), but the mechanism by which ABP1 affects expansion remains unknown. We analyzed the effect of functional inactivation of ABP1 on transcriptomic changes in dark-grown hypocotyls and investigated the consequences of gene expression on cell wall composition and cell expansion. Molecular and genetic evidence indicates that ABP1 affects the expression of a broad range of cell wall–related genes, especially cell wall remodeling genes, mainly via an SCFTIR/AFB-dependent pathway. ABP1 also functions in the modulation of hemicellulose xyloglucan structure. Furthermore, fucosidase-mediated defucosylation of xyloglucan, but not biosynthesis of nonfucosylated xyloglucan, rescued dark-grown hypocotyl lengthening of ABP1 knockdown seedlings. In muro remodeling of xyloglucan side chains via an ABP1-dependent pathway appears to be of critical importance for temporal and spatial control of cell expansion. PMID:24424095

  12. Control of seed development in Arabidopsis thaliana by atmospheric oxygen

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Crispi, M.; Musgrave, M. E.

    1998-01-01

    Seed development is known to be inhibited completely when plants are grown in oxygen concentrations below 5.1 kPa, but apart from reports of decreased seed weight little is known about embryogenesis at subambient oxygen concentrations above this critical level. Arabidopsis thaliana (L.) Heynh. plants were grown full term under continuous light in premixed atmospheres with oxygen partial pressures of 2.5, 5.1, 10.1, 16.2 and 21.3 kPa O2, 0.035 kPa CO2 and the balance nitrogen. Seeds were harvested for germination tests and microscopy when siliques had yellowed. Seed germination was depressed in O2 treatments below 16.2 kPa, and seeds from plants grown in 2.5 kPa O2 did not germinate at all. Fewer than 25% of the seeds from plants grown in 5.1 kPa oxygen germinated and most of the seedlings appeared abnormal. Light and scanning electron microscopic observation of non-germinated seeds showed that these embryos had stopped growing at different developmental stages depending upon the prevailing oxygen level. Embryos stopped growing at the heart-shaped to linear cotyledon stage in 5.1 kPa O2, at around the curled cotyledon stage in 10.1 kPa O2, and at the premature stage in 16.2 kPa O2. Globular and heart-shaped embryos were observed in sectioned seeds from plants grown in 2.5 kPa O2. Tissue degeneration caused by cell autolysis and changes in cell structure were observed in cotyledons and radicles. Transmission electron microscopy of mature seeds showed that storage substances, such as protein bodies, were reduced in subambient oxygen treatments. The results demonstrate control of embryo development by oxygen in Arabidopsis.

  13. Changes in membrane lipid composition during saline growth of the fresh water cyanobacterium Synechococcus 6311

    NASA Technical Reports Server (NTRS)

    Huflejt, M. E.; Tremolieres, A.; Pineau, B.; Lang, J. K.; Hatheway, J.; Packer, L.

    1990-01-01

    Growth of Synechococcus 6311 in the presence of 0.5 molar NaCl is accompanied by significant changes in membrane lipid composition. Upon transfer of the cells from a low salt' (0.015 molar NaCl) to high salt' (0.5 molar NaCl) growth medium at different stages of growth, a rapid decrease in palmitoleic acid (C16:1 delta 9) content was accompanied by a concomitant increase in the amount of the two C18:1 acids (C18:1 delta 9, C18:1 delta 11), with the higher increase in oleic acid C18:1 delta 9 content. These changes began to occur within the first hour after the sudden elevation of NaCl and progressed for about 72 hours. The percentage of palmitic acid (C16:0) and stearic acid (C18:0) remained almost unchanged in the same conditions. High salt-dependent changes within ratios of polar lipid classes also occurred within the first 72 hours of growth. The amount of monogalactosyl diacylglycerol (bilayer-destabilizing lipid) decreased and that of the digalactosyl diacylglycerol (bilayer-stabilizing lipid) increased. Consequently, in the three day old cells, the ratio of monogalactosyl diacylglycerol to digalactosyl diacylglycerol in the membranes of high salt-grown cells was about half of that in the membranes of low salt-grown cells. The total content of anionic lipids (phosphatidylglycerol and sulfoquinovosyl diacylglycerol) was always higher in the isolated membranes and the whole cells from high salt-grown cultures compared to that in the cells and membranes from low salt-grown cultures. All the observed rearrangements in the lipid environment occurred in both thylakoid and cytoplasmic membranes. Similar lipid composition changes, however, to a much lesser extent, were also observed in the aging, low salt-grown cultures. The observed changes in membrane fatty acids and lipids composition correlate with the alterations in electron and ion transport activities, and it is concluded that the rearrangement of the membrane lipid environment is an essential part of the process by which cells control membrane function and stability.

  14. Transport of choline by Madin-Darby canine kidney cells.

    PubMed

    Zlatkine, P; Moll, G; Blais, A; Loiseau, A; Le Grimellec, C

    1993-12-12

    Choline is an essential precursor for the synthesis of phosphatidylcholine, the most abundant phospholipid classes in renal cells, as well as for the synthesis of the osmolyte glycerophosphorylcholine. The characteristics of choline uptake in the renal epithelial cell line MDCK were investigated. In the range of physiological concentrations, choline entered MDCK cells, grown as a monolayer on solid support, via a specific sodium-independent transport system (apparent Km = 43 microM, apparent Vmax = 284 pmol/mg protein per 5 min). Cell ATP depletion, addition of KCl to the medium to reduce the cell membrane potential, and hemicholinium-3 (HC-3) inhibited choline uptake. Specific binding of [3H]HC-3 was detected on the apical membrane of cells grown on plastic dishes, whereas it occurred only on the basolateral domain of cells grown on permeant support. When growing cells on filter, choline uptake from the basolateral side was 10-times the apical uptake. This suggests that the choline carrier present at the apical domain of cells grown on solid support is either inactivated or no longer targeted to the apical but to the basolateral membrane of MDCK cells grown on filter.

  15. Adipocyte differentiation influences the proliferation and migration of normal and tumoral breast epithelial cells.

    PubMed

    Creydt, Virginia Pistone; Sacca, Paula Alejandra; Tesone, Amelia Julieta; Vidal, Luciano; Calvo, Juan Carlos

    2010-01-01

    Stromal tissue regulates the development and differentiation of breast epithelial cells, with adipocytes being the main stromal cell type. The aim of the present study was to evaluate the effect of adipocyte differentiation on proliferation and migration, as well as to assess the activity of heparanase and metalloproteinase-9 (MMP-9), in normal (NMuMG) and tumoral (LM3) murine breast epithelial cells. NMuMG and LM3 cells were grown on irradiated 3T3-L1 cells (stromal support, SS) at various degrees of differentiation [preadipocytes (preA), poorly differentiated adipocytes (pDA) and mature adipocytes (MA)] and/or were incubated in the presence of conditioned medium (CM) derived from each of these three types of differentiated cells. Cells grown on a plastic support or in fresh medium served as the controls. Cell proliferation was measured with a commercial colorimetric kit, and the motility of the epithelial cells was evaluated by means of a wound-healing assay. Heparanase activity was assessed by quantifying heparin degradation, and the expression of MMP-9 was determined using Western blotting. The results indicate that cell proliferation was increased after 24 and 48 h in the NMuMG and LM3 cells grown on preA, pDA and MA SS. In the NMuMG cells cultured on SS in the presence of all three types of CM, proliferation was enhanced. LM3 cell migration was increased in the presence of all three types of CM and in cells grown on preA SS. Heparanase activity was increased in the NMuMG cells incubated with all three types of CM, and in the LM3 cells incubated with the CM from pDA and MA. Both the NMuMG and LM3 cell lines presented basal expression of MMP-9; however, a significant increase in MMP-9 expression was observed in the LM3 cells incubated with each of the three types of CM. In conclusion, adipocyte differentiation influences normal and tumoral breast epithelial cell proliferation and migration. Heparanase and MMP-9 appear to be involved in this regulation. The experimental model presented in this study is in keeping with the characteristics of the physiological environment of breast epithelial cells, in terms of both the soluble and insoluble factors present and the stromal structure per se.

  16. Silicon Web Process Development. [for solar cell fabrication

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Hopkins, R. H.; Mchugh, J. P.; Hill, F. E.; Heimlich, M. E.; Driggers, J. M.

    1979-01-01

    Silicon dendritic web, ribbon form of silicon and capable of fabrication into solar cells with greater than 15% AMl conversion efficiency, was produced from the melt without die shaping. Improvements were made both in the width of the web ribbons grown and in the techniques to replenish the liquid silicon as it is transformed to web. Through means of improved thermal shielding stress was reduced sufficiently so that web crystals nearly 4.5 cm wide were grown. The development of two subsystems, a silicon feeder and a melt level sensor, necessary to achieve an operational melt replenishment system, is described. A gas flow management technique is discussed and a laser reflection method to sense and control the melt level as silicon is replenished is examined.

  17. Analysis of cellular adhesion on superhydrophobic and superhydrophilic vertically aligned carbon nanotube scaffolds.

    PubMed

    Machado, M M; Lobo, A O; Marciano, F R; Corat, E J; Corat, M A F

    2015-03-01

    We analyzed GFP cells after 24h cultivated on superhydrophilic vertically aligned carbon nanotube scaffolds. We produced two different densities of VACNT scaffolds on Ti using Ni or Fe catalysts. A simple and fast oxygen plasma treatment promoted the superhydrophilicity of them. We used five different substrates, such as: as-grown VACNT produced using Ni as catalyst (Ni), as-grown VACNT produced using Fe as catalyst (Fe), VACNT-O produced using Ni as catalyst (NiO), VACNT-O produced using Fe as catalyst (FeO) and Ti (control). The 4',6-diamidino-2-phenylindole reagent nuclei stained the adherent cells cultivated on five different analyzed scaffolds. We used fluorescence microscopy for image collect, ImageJ® to count adhered cell and GraphPad Prism 5® for statistical analysis. We demonstrated in crescent order: Fe, Ni, NiO, FeO and Ti scaffolds that had an improved cellular adhesion. Oxygen treatment associated to high VACNT density (group FeO) presented significantly superior cell adhesion up to 24h. However, they do not show significant differences compared with Ti substrates (control). We demonstrated that all the analyzed substrates were nontoxic. Also, we proposed that the density and hydrophilicity influenced the cell adhesion behavior. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Differential cytochrome content and reductase activity in Geospirillum barnesii strain SeS3

    USGS Publications Warehouse

    Stolz, J.F.; Gugliuzza, T.; Switzer, Blum J.; Oremland, R.; Martinez, Murillo F.

    1997-01-01

    The protein composition, cytochrome content, and reductase activity in the dissimilatory selenate-reducing bacterium Geospirillum barnesii strain SeS3, grown with thiosulfate, nitrate, selenate, or fumarate as the terminal electron acceptor, was investigated. Comparison of seven high-molecular-mass membrane proteins (105.3, 90.3, 82.6, 70.2, 67.4, 61.1, and 57.3 kDa) by SDS-PAGE showed that their detection was dependent on the terminal electron acceptor used. Membrane fractions from cells grown on thiosulfate contained a 70.2-kDa c-type cytochrome with absorbance maxima at 552, 522, and 421 nm. A 61.1-kDa c-type cytochrome with absorption maxima at 552, 523, and 423 nm was seen in membrane fractions from cells grown on nitrate. No c-type cytochromes were detected in membrane fractions of either selenate- or fumarate-grown cells. Difference spectra, however, revealed the presence of a cytochrome b554 (absorption maxima at 554, 523, and 422 nm) in membrane fractions from selenate-grown cells and a cytochrome b556 (absorption maxima at 556, 520, and 416 nm) in membrane fractions from fumarate-grown cells. Analysis of reductase activity in the different membrane fractions showed variability in substrate specificity. However, enzyme activity was greatest for the substrate on which the cells had been grown (e.g., membranes from nitrate-grown cells exhibited the greatest activity with nitrate). These results show that protein composition, cytochrome content, and reductase activity are dependent on the terminal electron acceptor used for growth.

  19. Dictyostelium myosin I double mutants exhibit conditional defects in pinocytosis.

    PubMed

    Novak, K D; Peterson, M D; Reedy, M C; Titus, M A

    1995-12-01

    The functional relationship between three Dictyostelium myosin Is, myoA, myoB, and myoC, has been examined through the creation of double mutants. Two double mutants, myoA-/B- and myoB-/C-, exhibit similar conditional defects in fluid-phase pinocytosis. Double mutants grown in suspension culture are significantly impaired in their ability to take in nutrients from the medium, whereas they are almost indistinguishable from wild-type and single mutant strains when grown on a surface. The double mutants are also found to internalize gp126, a 116-kD membrane protein, at a slower rate than either the wild-type or single mutant cells. Ultrastructural analysis reveals that both double mutants possess numerous small vesicles, in contrast to the wild-type or myosin I single mutants that exhibit several large, clear vacuoles. The alterations in fluid and membrane internalization in the suspension-grown double mutants, coupled with the altered vesicular profile, suggest that these cells may be compromised during the early stages of pinocytosis, a process that has been proposed to occur via actin-based cytoskeletal rearrangements. Scanning electron microscopy and rhodamine-phalloidin staining indicates that the myosin I double mutants appear to extend a larger number of actin-filled structures, such as filopodia and crowns, than wild-type cells. Rhodamine-phalloidin staining of the F-actin cytoskeleton of these suspension-grown cells also reveals that the double mutant cells are delayed in the rearrangement of cortical actin-rich structures upon adhesion to a substrate. We propose that myoA, myoB, and myoC play roles in controlling F-actin filled membrane projections that are required for pinosome internalization in suspension.

  20. Growth and development in higher plants under simulated microgravity conditions on a 3-dimensional clinostat.

    PubMed

    Shimazu, T; Yuda, T; Miyamoto, K; Yamashita, M; Ueda, J

    2001-01-01

    Growth and development of etiolated pea (Pisum sativum L. cv. Alaska) and maize (Zea mays L. cv. Golden Cross Bantam) seedlings grown under simulated microgravity conditions were intensively studied using a 3-dimensional clinostat as a simulator of weightlessness. Epicotyls of etiolated pea seedlings grown on the clinostat were the most oriented toward the direction far from cotyledons. Mesocotyls of etiolated maize seedlings grew at random and coleoptiles curved slightly during clinostat rotation. Clinostat rotation promoted the emergence of the 3rd internodes in etiolated pea seedlings, while it significantly inhibited the growth of the 1st internodes. In maize seedlings, the growth of coleoptiles was little affected by clinostat rotation, but that of mesocotyls was suppressed, and therefore, the emergence of the leaf out of coleoptile was promoted. Clinostat rotation reduced the osmotic concentration in the 1st internodes of pea seedlings, although it has little effect on the 2nd and the 3rd internodes. Clinostat rotation also reduced the osmotic concentrations in both coleoptiles and mesocotyls of maize seedlings. Cell-wall extensibilities of the 1st and the 3rd internodes of pea seedlings grown on the clinostat were significantly lower and higher as compared with those on 1 g conditions, respectively. Cell-wall extensibility of mesocotyls in seedlings grown on the clinostat also decreased. Changes in cell wall properties seem to be well correlated to the growth of each organ in pea and maize seedlings. These results suggest that the growth and development of plants is controlled under gravity on earth, and that the growth responses of higher plants to microgravity conditions are regulated by both cell-wall mechanical properties and osmotic properties of stem cells. c 2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  1. Seed Germination and Seedling Growth under Simulated Microgravity Causes Alterations in Plant Cell Proliferation and Ribosome Biogenesis

    NASA Astrophysics Data System (ADS)

    Matía, Isabel; van Loon, Jack W. A.; Carnero-Díaz, Eugénie; Marco, Roberto; Medina, Francisco Javier

    2009-01-01

    The study of the modifications induced by altered gravity in functions of plant cells is a valuable tool for the objective of the survival of terrestrial organisms in conditions different from those of the Earth. We have used the system "cell proliferation-ribosome biogenesis", two inter-related essential cellular processes, with the purpose of studying these modifications. Arabidopsis seedlings belonging to a transformed line containing the reporter gene GUS under the control of the promoter of the cyclin gene CYCB1, a cell cycle regulator, were grown in a Random Positioning Machine, a device known to accurately simulate microgravity. Samples were taken at 2, 4 and 8 days after germination and subjected to biometrical analysis and cellular morphometrical, ultrastructural and immunocytochemical studies in order to know the rates of cell proliferation and ribosome biogenesis, plus the estimation of the expression of the cyclin gene, as an indication of the state of cell cycle regulation. Our results show that cells divide more in simulated microgravity in a Random Positioning Machine than in control gravity, but the cell cycle appears significantly altered as early as 2 days after germination. Furthermore, higher proliferation is not accompanied by an increase in ribosome synthesis, as is the rule on Earth, but the functional markers of this process appear depleted in simulated microgravity-grown samples. Therefore, the alteration of the gravitational environmental conditions results in a considerable stress for plant cells, including those not specialized in gravity perception.

  2. Lipids of Pseudomonas aeruginosa Cells Grown on Hydrocarbons and on Trypticase Soy Broth1

    PubMed Central

    Edmonds, Paul; Cooney, J. J.

    1969-01-01

    Lipids were extracted from cells of Pseudomonas aeruginosa grown on a pure hydrocarbon (tridecane), mixed hydrocarbons (JP-4 jet fuel), and on Trypticase Soy Broth. Total lipids produced from each substrate represented from 7.1 to 8.2% of cellular dry weight, of which 5.0 to 6.4% were obtained before cellular hydrolysis (free lipids) and 1.7 to 2.0% were extracted after cellular hydrolysis (bound lipids). Free lipids from cells grown on each medium were separated into four fractions by thin-layer chromatography. All fractions were present in cells from each type of medium, and the “neutral fraction” constituted the largest fraction. The fatty acid composition of free lipids was determined by gas-liquid chromatography. Cells grown on each medium contained saturated and unsaturated C14 to C20 fatty acids. Trace amounts of C13 fatty acids were found in tridecane-grown cells. Saturated C16 and C18 were the major acids present in all cells. Quantitative differences were found in fatty acids produced on the three media, but specific correlations between substrate carbon sources and fatty acid content of cells were not evident. Tridecane-grown cells contained only traces of C13 acid and small amounts of C15 and C17 acids, suggesting that the organism's fatty acids were derived from de novo synthesis rather than by direct incorporation of the hydrocarbon. PMID:4976464

  3. Cometabolism of Methyl tertiary Butyl Ether and Gaseous n-Alkanes by Pseudomonas mendocina KR-1 Grown on C5 to C8 n-Alkanes

    PubMed Central

    Smith, Christy A.; O'Reilly, Kirk T.; Hyman, Michael R.

    2003-01-01

    Pseudomonas mendocina KR-1 grew well on toluene, n-alkanes (C5 to C8), and 1° alcohols (C2 to C8) but not on other aromatics, gaseous n-alkanes (C1 to C4), isoalkanes (C4 to C6), 2° alcohols (C3 to C8), methyl tertiary butyl ether (MTBE), or tertiary butyl alcohol (TBA). Cells grown under carbon-limited conditions on n-alkanes in the presence of MTBE (42 μmol) oxidized up to 94% of the added MTBE to TBA. Less than 3% of the added MTBE was oxidized to TBA when cells were grown on either 1° alcohols, toluene, or dextrose in the presence of MTBE. Concentrated n-pentane-grown cells oxidized MTBE to TBA without a lag phase and without generating tertiary butyl formate (TBF) as an intermediate. Neither TBF nor TBA was consumed by n-pentane-grown cells, while formaldehyde, the expected C1 product of MTBE dealkylation, was rapidly consumed. Similar Ks values for MTBE were observed for cells grown on C5 to C8 n-alkanes (12.95 ± 2.04 mM), suggesting that the same enzyme oxidizes MTBE in cells grown on each n-alkane. All growth-supporting n-alkanes (C5 to C8) inhibited MTBE oxidation by resting n-pentane-grown cells. Propane (Ki = 53 μM) and n-butane (Ki = 16 μM) also inhibited MTBE oxidation, and both gases were also consumed by cells during growth on n-pentane. Cultures grown on C5 to C8 n-alkanes also exhibited up to twofold-higher levels of growth in the presence of propane or n-butane, whereas no growth stimulation was observed with methane, ethane, MTBE, TBA, or formaldehyde. The results are discussed in terms of their impacts on our understanding of MTBE biodegradation and cometabolism. PMID:14660389

  4. Polysaccharide That May Serve as a Carbon and Energy Storage Compound for Sporulation in Bacillus cereus

    PubMed Central

    Slock, J. A.; Stahly, D. P.

    1974-01-01

    An intracellular, glucose-containing polysaccharide accumulates in Bacillus cereus early in sporulation and is degraded at the time of spore maturation. This pattern of accumulation and degradation occurred when growth was limited by glucose or a component of yeast extract. These data suggest that the polysaccharide may be serving as a carbon and energy storage compound for sporulation. A somewhat similar pattern of accumulation and degradation of poly-β-hydroxybutyric acid (PHB) was shown earlier by Kominek and Halvorson (1965) to occur in Bacillus cereus. When cells were grown in a medium buffered strongly at pH 7.4, however, very little accumulation of PHB occurred. We have found that polysaccharide accumulates in cells grown in both the strong and weakly buffered media. Perhaps polysaccharide is the major carbon and energy storage compound when cells are grown under conditions preventing significant accumulation of PHB. The lack of polysaccharide accumulation during the exponential phase of growth may be an indication that the needed biosynthetic enzymes are controlled by catabolite repression during growth. The polysaccharide was purified and found to consist of glucose. The iodine absorption spectrum suggests a degree of branching between that of glycogen and amylopectin. PMID:4214355

  5. Design of a Three-Layer Antireflection Coating for High Efficiency Indium Phosphide Solar Cells Using a Chemical Oxide as First Layer

    NASA Technical Reports Server (NTRS)

    Moulot, Jacques; Faur, Mircea; Faur, Maria; Goradia, Chandra; Goradia, Manju; Bailey, Sheila

    1995-01-01

    It is well known that the behavior of III-V compound based solar cells is largely controlled by their surface, since the majority of light generated carriers (63% for GaAs and 79% for InP) are created within 0.2 microns of the illuminated surface of the cell. Consequently, the always observed high surface recombination velocity (SRV) on these cells is a serious limiting factor for their high efficiency performance, especially for those with the p-n junction made by either thermal diffusion or ion implantation. A good surface passivation layer, ideally, a grown oxide as opposed to a deposited one, will cause a significant reduction in the SRV without adding interface problems, thus improving the performance of III-V compound based solar cells. Another significant benefit to the overall performance of the solar cells can be achieved by a substantial reduction of their large surface optical reflection by the use of a well designed antireflection (AR) coating. In this paper, we demonstrate the effectiveness of using a chemically grown, thermally and chemically stable oxide, not only for surface passivation but also as an integral part of a 3- layer AR coating for thermally diffused p(+)n InP solar cells. A phosphorus-rich interfacial oxide, In(PO3)3, is grown at the surface of the p(+) emitter using an etchant based on HNO3, o-H3PO4 and H2O2. This oxide has the unique properties of passivating the surface as well as serving as a fairly efficient antireflective layer yielding a measured record high AM0, 25 C, open-circuit voltage of 890.3 mV on a thermally diffused InP(Cd,S) solar cell. Unlike conventional single layer AR coatings such as ZnS, Sb2O3, SiO or double layer AR coatings such as ZnS/MgF2 deposited by e-beam or resistive evaporation, this oxide preserves the stoichiometry of the InP surface. We show that it is possible to design a three-layer AR coating for a thermally diffused InP solar cell using the In(PO3)3 grown oxide as the first layer and Al2O3, MgF2 or ZnS, MgF2 as the second and third layers respectively, so as to yield an overall theoretical reflectance of less than 2%. Since chemical oxides are readily grown on III-V semiconductor materials, the technique of using the grown oxide layer to both passivate the surface as well as serve as the first of a multilayer AR coating, should work well for essentially all III-V compound-based solar cells.

  6. Design of a three-layer antireflection coating for high efficiency indium phosphide solar cells using a chemical oxide as first layer

    NASA Technical Reports Server (NTRS)

    Moulot, Jacques; Faur, M.; Faur, M.; Goradia, C.; Goradia, M.; Bailey, S.

    1995-01-01

    It is well known that the behavior of III-V compound based solar cells is largely controlled by their surface, since the majority of light generated carriers (63% for GaAs and 79% for InP) are created within 0.2 mu m of the surface of the illuminated cell. Consequently, the always observed high surface recombination velocity (SRV) on these cells is a serious limiting factor for their high efficiency performance, especially for those with p-n junction made by either thermal diffusion or ion implantation. A good surface passivation layer, ideally a grown oxide as opposed to a deposited one, will cause a significant reduction in the SRV without adding interface problems, thus improving the performance of III-V compound based solar cells. Another significant benefit to the overall performance of the solar cells can be achieved by a substantial reduction of their large surface optical reflection by the use of a well designed antireflection (AR) coating. In this paper, we demonstrate the effectiveness of using a chemically grown thermally and chemically stable oxide, not only for surface passivation but also as an integral part of a 3-layer AR coating for thermally diffused p+n InP solar cells. A phosphorus-rich interfacial oxide, In(PO3)3, is grown at the surface of the p+ emitter using an etchant based on HNO3, o-H3PO4 and H2O2. This oxide has the unique properties of passivating the surface as well as serving as an efficient antireflective layer yielding a measured record high AMO open-circuit voltage of 890.3 mV on a thermally diffused InP(Cd,S) solar cell. Unlike conventional single layer AR coatings such as ZnS, Sb2O3, SiO or double layer AR coatings such as ZnS/MgF2 deposited by e-beam or resistive evaporation, this oxide preserves the stoichiometry of the InP surface. We show that it is possible to design a three-layer AR coating for a thermally diffused InP solar cell using the In(PO3)3 grown oxide as the first layer and Al2O3 and MgF2 as the second and third layers respectively, so as to yield an overall theoretical reflectance of less than 2%. Since chemical oxides are readily grown on III-V semiconductors materials, the technique of using the grown oxide layer to both passivate the surface as well as serve as the first of a multilayer AR coating should work well for all III-V compound-based solar cells.

  7. Human fetal enterocytes in vitro: modulation of the phenotype by extracellular matrix.

    PubMed Central

    Sanderson, I R; Ezzell, R M; Kedinger, M; Erlanger, M; Xu, Z X; Pringault, E; Leon-Robine, S; Louvard, D; Walker, W A

    1996-01-01

    The differentiation of small intestinal epithelial cells may require stimulation by microenvironmental factors in vivo. In this study, the effects of mesenchymal and luminal elements in nonmalignant epithelia] cells isolated from the human fetus were studied in vitro. Enterocytes from the human fetus were cultured and microenvironmental factors were added in stages, each stage more closely approximating the microenvironment in vivo. Four stages were examined: epithelial cells derived on plastic from intestinal culture and grown as a cell clone, the same cells grown on connective tissue support, primary epithelial explants grown on fibroblasts with a laminin base, and primary epithelial explants grown on fibroblasts and laminin with n-butyrate added to the incubation medium. The epithelial cell clone dedifferentiated when grown on plastic; however, the cells expressed cytokeratins and villin as evidence of their epithelial cell origin. Human connective tissue matrix from Engelbreth-Holm-Swarm sarcoma cells (Matrigel) modulated their phenotype: alkaline phosphatase activity increased, microvilli developed on their apical surface, and the profile of insulin-like growth factor binding proteins resembled that secreted by differentiated enterocytes. Epithelial cells taken directly from the human fetus as primary cultures and grown as explants on fibroblasts and laminin expressed greater specific enzyme activities in brush border membrane fractions than the cell clone. These activities were enhanced by the luminal molecule sodium butyrate. Thus the sequential addition of connective tissue and luminal molecules to nonmalignant epithelia] cells in vitro induces a spectrum of changes in the epithelial cell phenotype toward full differentiation. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8755542

  8. High-efficiency GaAs and GaInP solar cells grown by all solid-state molecular-beam-epitaxy

    PubMed Central

    2011-01-01

    We report the initial results of GaAs and GaInP solar cells grown by all solid-state molecular-beam-epitaxy (MBE) technique. For GaAs single-junction solar cell, with the application of AlInP as the window layer and GaInP as the back surface field layer, the photovoltaic conversion efficiency of 26% at one sun concentration and air mass 1.5 global (AM1.5G) is realized. The efficiency of 16.4% is also reached for GaInP solar cell. Our results demonstrate that the MBE-grown phosphide-contained III-V compound semiconductor solar cell can be quite comparable to the metal-organic-chemical-vapor-deposition-grown high-efficiency solar cell. PMID:22040124

  9. Differentiate or Die: 3-Bromopyruvate and Pluripotency in Mouse Embryonic Stem Cells

    PubMed Central

    Rodrigues, Ana Sofia; Pereira, Sandro L.; Correia, Marcelo; Gomes, Andreia; Perestrelo, Tânia; Ramalho-Santos, João

    2015-01-01

    Background Pluripotent embryonic stem cells grown under standard conditions (ESC) have a markedly glycolytic profile, which is shared with many different types of cancer cells. Thus, some therapeutic strategies suggest that pharmacologically shifting cancer cells towards an oxidative phenotype, using glycolysis inhibitors, may reduce cancer aggressiveness. Given the metabolic parallels between cancer and stemness would chemotherapeutical agents have an effect on pluripotency, and could a strategy involving these agents be envisioned to modulate stem cell fate in an accessible manner? In this manuscript we attempted to determine the effects of 3-bromopyruvate (3BrP) in pluripotency. Although it has other intracellular targets, this compound is a potent inhibitor of glycolysis enzymes thought to be important to maintain a glycolytic profile. The goal was also to determine if we could contribute towards a pharmacologically accessible metabolic strategy to influence cell differentiation. Methodology/Principal Findings Mouse embryonic stem cells (mESC) grown under standard pluripotency conditions (in the presence of Leukemia Inducing Factor- LIF) were treated with 3BrP. As a positive control for differentiation other mESCs were grown without LIF. Overall our results demonstrate that 3BrP negatively affects pluripotency, forcing cells to become less glycolytic and with more active mitochondria. These changes in metabolism are correlated with increased differentiation, even under pluripotency conditions (i.e. in the presence of LIF). However, 3BrP also significantly impaired cell function, and may have other roles besides affecting the metabolic profile of mESCs. Conclusions/Findings Treatment of mESCs with 3BrP triggered a metabolic switch and loss of pluripotency, even in the presence of LIF. Interestingly, the positive control for differentiation allowed for a distinction between 3BrP effects and changes associated with spontaneous differentiation/loss of pluripotency in the absence of LIF. Additionally, there was a slight differentiation bias towards mesoderm in the presence of 3BrP. However, the side effects on cellular function suggest that the use of this drug is probably not adequate to efficiently push cells towards specific differentiation fates. PMID:26266544

  10. Differentiate or Die: 3-Bromopyruvate and Pluripotency in Mouse Embryonic Stem Cells.

    PubMed

    Rodrigues, Ana Sofia; Pereira, Sandro L; Correia, Marcelo; Gomes, Andreia; Perestrelo, Tânia; Ramalho-Santos, João

    2015-01-01

    Pluripotent embryonic stem cells grown under standard conditions (ESC) have a markedly glycolytic profile, which is shared with many different types of cancer cells. Thus, some therapeutic strategies suggest that pharmacologically shifting cancer cells towards an oxidative phenotype, using glycolysis inhibitors, may reduce cancer aggressiveness. Given the metabolic parallels between cancer and stemness would chemotherapeutical agents have an effect on pluripotency, and could a strategy involving these agents be envisioned to modulate stem cell fate in an accessible manner? In this manuscript we attempted to determine the effects of 3-bromopyruvate (3BrP) in pluripotency. Although it has other intracellular targets, this compound is a potent inhibitor of glycolysis enzymes thought to be important to maintain a glycolytic profile. The goal was also to determine if we could contribute towards a pharmacologically accessible metabolic strategy to influence cell differentiation. Mouse embryonic stem cells (mESC) grown under standard pluripotency conditions (in the presence of Leukemia Inducing Factor- LIF) were treated with 3BrP. As a positive control for differentiation other mESCs were grown without LIF. Overall our results demonstrate that 3BrP negatively affects pluripotency, forcing cells to become less glycolytic and with more active mitochondria. These changes in metabolism are correlated with increased differentiation, even under pluripotency conditions (i.e. in the presence of LIF). However, 3BrP also significantly impaired cell function, and may have other roles besides affecting the metabolic profile of mESCs. Treatment of mESCs with 3BrP triggered a metabolic switch and loss of pluripotency, even in the presence of LIF. Interestingly, the positive control for differentiation allowed for a distinction between 3BrP effects and changes associated with spontaneous differentiation/loss of pluripotency in the absence of LIF. Additionally, there was a slight differentiation bias towards mesoderm in the presence of 3BrP. However, the side effects on cellular function suggest that the use of this drug is probably not adequate to efficiently push cells towards specific differentiation fates.

  11. High density growth of T7 expression strains with auto-induction option

    DOEpatents

    Studier, F. William

    2013-03-19

    A method for promoting and suppressing auto-induction of transcription of a cloned gene 1 of bacteriophage T7 in cultures of bacterial cells grown batchwise is disclosed. The transcription is under the control of a promoter whose activity can be induced by an exogenous inducer whose ability to induce said promoter is dependent on the metabolic state of said bacterial cells.

  12. Fibronectin promotes differentiation of neural crest progenitors endowed with smooth muscle cell potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa-Silva, Bruno; Programa de Pos-graduacao em Neurociencias, Centro de Ciencias Biologicas, Universidade Federal de Santa Catarina, Campus Universitario - Trindade, 88040-900, Florianopolis, S.C.; Coelho da Costa, Meline

    The neural crest (NC) is a model system used to investigate multipotency during vertebrate development. Environmental factors control NC cell fate decisions. Despite the well-known influence of extracellular matrix molecules in NC cell migration, the issue of whether they also influence NC cell differentiation has not been addressed at the single cell level. By analyzing mass and clonal cultures of mouse cephalic and quail trunk NC cells, we show for the first time that fibronectin (FN) promotes differentiation into the smooth muscle cell phenotype without affecting differentiation into glia, neurons, and melanocytes. Time course analysis indicated that the FN-induced effectmore » was not related to massive cell death or proliferation of smooth muscle cells. Finally, by comparing clonal cultures of quail trunk NC cells grown on FN and collagen type IV (CLIV), we found that FN strongly increased both NC cell survival and the proportion of unipotent and oligopotent NC progenitors endowed with smooth muscle potential. In contrast, melanocytic progenitors were prominent in clonogenic NC cells grown on CLIV. Taken together, these results show that FN promotes NC cell differentiation along the smooth muscle lineage, and therefore plays an important role in fate decisions of NC progenitor cells.« less

  13. Effects of Growth Rate and Limiting Substrate on Glucose Metabolism in Escherichia coli1

    PubMed Central

    Wright, D. N.; Lockhart, W. R.

    1965-01-01

    Wright, D. N. (Iowa State University, Ames), and W. R. Lockhart. Effects of growth rate and limiting substrate on glucose metabolism in Escherichia coli. J. Bacteriol. 89:1082–1085. 1965.—Escherichia coli was grown in continuous culture at various rates in a defined medium with either glucose of (NH4)2SO4 as the rate-limiting substrate. Cellular content of polysaccharide (“glycogen”) is greater in cells grown under nitrogen limitation with glucose available in excess, and is greater in rapidly grown than in slowly grown cells. The ability of cells to carry on endogenous respiration, as measured by tetrazolium reduction, can be correlated with their glycogen content. In carbon-limited cultures, the proportion of substrate glucose diverted to glycogen production is least for cells grown slowly, which may reflect greater energy requirements for cell maintenance in such cultures. The activity of glucose-6-phosphate dehydrogenase (indicating function of a C-1 preferential pathway for glucose degradation) is greater in rapidly grown cells, confirming earlier observations in batch cultures. Activity of this enzyme is also greater in nitrogen-limited than in carbon-limited cells, suggesting that there may be catabolic repression of the Embden-Meyerhoff pathway when glucose is available in excess. PMID:14276099

  14. Properties of Streptococcus mutans Grown in a Synthetic Medium: Binding of Glucosyltransferase and In Vitro Adherence, and Binding of Dextran/Glucan and Glycoprotein and Agglutination

    PubMed Central

    Wu-Yuan, Christine D.; Tai, Stella; Slade, Hutton D.

    1979-01-01

    The influence of culture media on various properties of Streptococcus mutans was investigated. Strains of S. mutans (serotypes c, d, f, and g) were grown in a complex medium (Todd-Hewitt broth [THB]) or a synthetic medium (SYN). The SYN cells, in contrast to THB cells, did not bind extracellular glucosyltransferase and did not produce in vitro adherence. Both types of cells possessed constitutive levels of glucosyltransferase. B13 cells grown in SYN plus invertase-treated glucose possessed the same level of constitutive enzyme as THB cells. In contrast to THB cells, the SYN cells of seven serotype strains did not agglutinate upon the addition of high-molecular-weight dextran/glucan. Significant quantities of lower-molecular-weight (2 × 104 or 7 × 104) dextran and B13 glucan were bound by SYN cells. SYN cells agglutinated weakly in anti-glucan serum (titers, 0 to 16), whereas THB cells possessed titers of 32 to 256. Evidence for the existence of a second binding site in agglutination which does not possess a glucan-like polymer has been obtained. B13 cells grown in invertase-treated THB agglutinated to the same degree as normal THB cells. The nature of this site is unknown. SYN cells possess the type-specific polysaccharide antigen. B13 cells did not bind from THB a glycoprotein which reacts with antisera to the A, B, or T blood group antigens or which allows agglutination upon the addition of dextran. The results demonstrate that S. mutans grown in a chemically defined medium possesse markedly different biochemical and biological activities than cells grown in a complex organic medium. PMID:457252

  15. Localization and subcellular association of Grapevine Pinot Gris Virus in grapevine leaf tissues.

    PubMed

    Tarquini, Giulia; Ermacora, Paolo; Bianchi, Gian Luca; De Amicis, Francesca; Pagliari, Laura; Martini, Marta; Loschi, Alberto; Saldarelli, Pasquale; Loi, Nazia; Musetti, Rita

    2018-05-01

    Despite the increasing impact of Grapevine Pinot gris disease (GPG-disease) worldwide, etiology about this disorder is still uncertain. The presence of the putative causal agent, the Grapevine Pinot Gris Virus (GPGV), has been reported in symptomatic grapevines (presenting stunting, chlorotic mottling, and leaf deformation) as well as in symptom-free plants. Moreover, information on virus localization in grapevine tissues and virus-plant interactions at the cytological level is missing at all. Ultrastructural and cytochemical investigations were undertaken to detect virus particles and the associated cytopathic effects in field-grown grapevine showing different symptom severity. Asymptomatic greenhouse-grown grapevines, which tested negative for GPGV by real time RT-PCR, were sampled as controls. Multiplex real-time RT-PCR and ELISA tests excluded the presence of viruses included in the Italian certification program both in field-grown and greenhouse-grown grapevines. Conversely, evidence was found for ubiquitous presence of Grapevine Rupestris Stem Pitting-associated Virus (GRSPaV), Hop Stunt Viroid (HSVd), and Grapevine Yellow Speckle Viroid 1 (GYSVd-1) in both plant groups. Moreover, in every field-grown grapevine, GPGV was detected by real-time RT-PCR. Ultrastructural observations and immunogold labelling assays showed filamentous flexuous viruses in the bundle sheath cells, often located inside membrane-bound organelles. No cytological differences were observed among field-grown grapevine samples showing different symptom severity. GPGV localization and associated ultrastructural modifications are reported and discussed, in the perspective of assisting management and control of the disease.

  16. Amyloplasts That Sediment in Protonemata of the Moss Ceratodon purpureus Are Nonrandomly Distributed in Microgravity1

    PubMed Central

    Kern, Volker D.; Smith, Jeffrey D.; Schwuchow, Jochen M.; Sack, Fred D.

    2001-01-01

    Little is known about whether or how plant cells regulate the position of heavy organelles that sediment toward gravity. Dark-grown protonemata of the moss Ceratodon purpureus displays a complex plastid zonation in that only some amyloplasts sediment along the length of the tip cell. If gravity is the major force determining the position of amyloplasts that sediment, then these plastids should be randomly distributed in space. Instead, amyloplasts were clustered in the subapical region in microgravity. Cells rotated on a clinostat on earth had a roughly similar non-random plastid distribution. Subapical clusters were also found in ground controls that were inverted and kept stationary, but the distribution profile differed considerably due to amyloplast sedimentation. These findings indicate the existence of as yet unknown endogenous forces and mechanisms that influence amyloplast position and that are normally masked in stationary cells grown on earth. It is hypothesized that a microtubule-based mechanism normally compensates for g-induced drag while still allowing for regulated amyloplast sedimentation. PMID:11299388

  17. GaAs Solar Cells Grown on Unpolished, Spalled Ge Substrates: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavalli, Alessandro; Johnston, Steven; Sulas, Dana

    Decreasing the cost of single-crystal substrates by wafer reuse techniques has long been sought for III-V solar cells. Controlled spalling of III-V devices is a possible pathway for epitaxial liftoff, which would help reduce costs, but chemo- mechanical polishing after liftoff tends to limit the potential cost savings. Growth on an unpolished spalled surface would be an additional step toward lower costs, but it is crucial to show high efficiency solar cell devices on these unprocessed substrates. In this study, we spalled 2-inch Ge wafers using a Ni stressor layer, and then grew GaAs solar cells by HVPE on themore » spalled Ge surface without any other surface treatment. We show a 12.8% efficient single-junction device, without anti-reflection coating, with quantum efficiency very close to identical devices grown by HVPE on non-spalled GaAs substrates. Demonstrating a high carrier collection on unpolished spalled wafers is a step toward reducing substrate-related liftoff and reuse costs.« less

  18. Physiological studies of chloramine resistance developed by Klebsiella pneumoniae under low-nutrient growth conditions.

    PubMed Central

    Stewart, M H; Olson, B H

    1992-01-01

    This study investigated the physiological mechanisms of resistance to chloramines developed by Klebsiella pneumoniae grown in a nutrient-limited environment. Growth under these conditions resulted in cells that were smaller than cells grown under high-nutrient conditions and extensively aggregated. Cellular aggregates ranged from 10 to more than 10,000 cells per aggregate, with a mean population aggregate size of 90 cells. This aggregation may have been facilitated by the presence of extracellular polymer material. By using glucose as a reference of capsule content, it was determined that growth under low-nutrient conditions produced cells with 8 x 10(-14) to 41 x 10(-14) g of carbohydrate per cell, with a mean +/- standard deviation of 27 x 10(-14) +/- 16 x 10(-14) g of carbohydrate per cell. In comparison, growth under high-nutrient conditions resulted in 2.7 x 10(-14) to 5.9 x 10(-14) g of carbohydrate per cell, with a mean and standard deviation of 4.3 x 10(-14) +/- 1.2 x 10(-14) g of carbohydrate per cell. Cell wall and cell membrane lipids also varied with growth conditions. The ratio of saturated to unsaturated fatty acids in cells grown under low-nutrient conditions was approximately five times greater than that in cells grown under high-nutrient conditions, suggesting possible differences in membrane permeability. An analysis of sulfhydryl (-SH) groups revealed no quantitative difference with respect to growth conditions. However, upon exposure to chloramines, only 33% of the -SH groups of cells grown under low-nutrient conditions were oxidized, compared with 80% oxidization of -SH groups in cells grown under high-nutrient conditions. The reduced effectiveness of chloramine oxidization of -SH groups in cells grown under low-nutrient conditions may be due to restricted penetration of chloramines into the cells, conformational changes of enzymes, or a combination of both factors. The results of this study suggest that chloramine resistance developed under low-nutrient growth conditions may be a function of multiple physiological factors, including cellular aggregation and protection of sulfhydryl groups within the cell. PMID:1444406

  19. Modulation of statolith mass and grouping in white clover (Trifolium repens) growth in 1-g, microgravity and on the clinostat

    NASA Technical Reports Server (NTRS)

    Smith, J. D.; Todd, P.; Staehelin, L. A.

    1997-01-01

    Current models of gravity perception in higher plants focus on the buoyant weight of starch-filled amyloplasts as the initial gravity signal susceptor (statolith). However, no tests have yet determined if statolith mass is regulated to increase or decrease gravity stimulus to the plant. To this end, the root caps of white clover (Trifolium repens) grown in three gravity environments with three different levels of gravity stimulation have been examined: (i) 1-g control with normal static gravistimulation, (ii) on a slow clinostat with constant gravistimulation, and (iii) in the stimulus-free microgravity aboard the Space Shuttle. Seedlings were germinated and grown in the BioServe Fluid Processing Apparatus and root cap structure was examined at both light and electron microscopic levels, including three-dimensional cell reconstruction from serial sections. Quantitative analysis of the electron micrographs demonstrated that the starch content of amyloplasts varied with seedling age but not gravity condition. It was also discovered that, unlike in starch storage amyloplasts, all of the starch granules of statolith amyloplasts were encompassed by a fine filamentous, ribosome-excluding matrix. From light micrographic 3-D cell reconstructions, the absolute volume, number, and positional relationships between amyloplasts showed (i) that individual amyloplast volume increased in microgravity but remained constant in seedlings grown for up to three days on the clinostat, (ii) the number of amyloplasts per cell remained unchanged in microgravity but decreased on the clinostat, and (iii) the three-dimensional positions of amyloplasts were not random. Instead amyloplasts in microgravity were grouped near the cell centers while those from the clinostat appeared more dispersed. Taken together, these observations suggest that changing gravity stimulation can elicit feedback control over statolith mass by changing the size, number, and grouping of amyloplasts. These results support the starch-statolith theory of graviperception in higher plants and add to current models with a new feedback control loop as a mechanism for modulation of statolith responsiveness to inertial acceleration.

  20. Comparison of three rocky mountain spotted fever vaccines.

    PubMed Central

    Kenyon, R H; Sammons, L S; Pedersen, C E

    1975-01-01

    Growth of Rocky Mountain spotted fever (RMSF) rickettsiae in duck embryo cell (DEC) cultures and chicken embryo cell (CEC) cultures was evaluated. Experimental lots of duck embryo cell- and chicken embryo cell-grown Rocky Mountain spotted fever vaccines and a commercial lot of yolk sac-grown vaccine were compared for protective efficacy in rhesus monkeys. Incidence and magnitude of antibody response, febrile response, and rickettsemia, as well as incidence of fatalities, suggested that both cell culture-derived vaccines were more immunogenic than the yolk sac-grown vaccine. PMID:810494

  1. The regulation of focal adhesion complex formation and salivary gland epithelial cell organization by nanofibrous PLGA scaffolds

    PubMed Central

    Sequeira, Sharon J.; Soscia, David A.; Oztan, Basak; Mosier, Aaron P.; Jean-Gilles, Riffard; Gadre, Anand; Cady, Nathaniel C.; Yener, Bülent; Castracane, James; Larsen, Melinda

    2012-01-01

    Nanofiber scaffolds have been useful for engineering tissues derived from mesenchymal cells, but few studies have investigated their applicability for epithelial cell-derived tissues. In this study, we generated nanofiber (250 nm) or microfiber (1200 nm) scaffolds via electrospinning from the polymer, poly-L-lactic-co-glycolic acid (PLGA). Cell-scaffold contacts were visualized using fluorescent immunocytochemistry and laser scanning confocal microscopy. Focal adhesion (FA) proteins, such as phosphorylated FAK (Tyr397), paxillin (Tyr118), talin and vinculin were localized to FA complexes in adult cells grown on planar surfaces but were reduced and diffusely localized in cells grown on nanofiber surfaces, similar to the pattern observed in adult mouse salivary gland tissues. Significant differences in epithelial cell morphology and cell clustering were also observed and quantified, using image segmentation and computational cell-graph analyses. No statistically significant differences in scaffold stiffness between planar PLGA film controls compared to nanofibers scaffolds were detected using nanoindentation with atomic force microscopy, indicating that scaffold topography rather than mechanical properties accounts for changes in cell attachments and cell structure. Finally, PLGA nanofiber scaffolds could support the spontaneous self-organization and branching of dissociated embryonic salivary gland cells. Nanofiber scaffolds may therefore have applicability in the future for engineering an artificial salivary gland. PMID:22285464

  2. Comparison of Vibrio parahaemolyticus grown in estuarine water and rich medium.

    PubMed Central

    Pace, J; Chai, T J

    1989-01-01

    Cell envelope composition and selected physiological traits of Vibrio parahaemolyticus were studied in regard to the Kanagawa phenomenon and growth conditions. Cell envelopes were prepared from cells cultured in Proteose Peptone-beef extract (Difco Laboratories, Detroit, Mich.) medium or filtered estuarine water. Protein, phospholipid, and lipopolysaccharide contents varied with culture conditions. The phospholipids present in the cell envelopes were identified as phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin. Phosphatidylethanolamine decreased and phosphatidylglycerol increased in cells grown in estuarine water. Profiles of proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated numerous protein species, with four to six predominant proteins ranging from 26,000 to 120,000 in molecular weight. The profile of V. parahaemolyticus cell envelope proteins was unique and might be useful in the identification of the organism. Alkaline phosphatase activity was slightly higher in Kanagawa-negative strains and was higher in cells grown in estuarine water than in cells grown in rich laboratory medium. The DNA levels in estuarine water-grown cells increased, while RNA levels and cell volume decreased. Bacteriophage sensitivity typing demonstrated a close intraspecies relationship. Results indicated that Kanagawa-positive and -negative strains were closely related, but they could be grouped separately and may have undergone starvation-related physiological changes when cultured in estuarine water. Images PMID:2782869

  3. Xylem development and cell wall changes of soybean seedlings grown in space.

    PubMed

    de Micco, Veronica; Aronne, Giovanna; Joseleau, Jean-Paul; Ruel, Katia

    2008-04-01

    Plants growing in altered gravity conditions encounter changes in vascular development and cell wall deposition. The aim of this study was to investigate xylem anatomy and arrangement of cellulose microfibrils in vessel walls of different organs of soybean seedlings grown in Space. Seeds germinated and seedlings grew for 5 d in Space during the Foton-M2 mission. The environmental conditions, other than gravity, of the ground control repeated those experienced in orbit. The seedlings developed in space were compared with those of the control test on the basis of numerous anatomical and ultrastructural parameters such as number of veins, size and shape of vessel lumens, thickness of cell walls and deposition of cellulose microfibrils. Observations made with light, fluorescence and transmission electron microscopy, together with the quantification of the structural features through digital image analysis, showed that the alterations due to microgravity do not occur at the same level in the various organs of soybean seedlings. The modifications induced by microgravity or by the indirect effect of space-flight conditions, became conspicuous only in developing vessels at the ultrastructural level. The results suggested that the orientation of microfibrils and their assembly in developing vessels are perturbed by microgravity at the beginning of wall deposition, while they are still able to orient and arrange in thicker and ordered structures at later stages of secondary wall deposition. The process of proper cell-wall building, although not prevented, is perturbed in Space at the early stage of development. This would explain the almost unaltered anatomy of mature structures, accompanied by a slower growth observed in seedlings grown in Space than on Earth.

  4. Xylem Development and Cell Wall Changes of Soybean Seedlings Grown in Space

    PubMed Central

    de Micco, Veronica; Aronne, Giovanna; Joseleau, Jean-Paul; Ruel, Katia

    2008-01-01

    Background and Aims Plants growing in altered gravity conditions encounter changes in vascular development and cell wall deposition. The aim of this study was to investigate xylem anatomy and arrangement of cellulose microfibrils in vessel walls of different organs of soybean seedlings grown in Space. Methods Seeds germinated and seedlings grew for 5 d in Space during the Foton-M2 mission. The environmental conditions, other than gravity, of the ground control repeated those experienced in orbit. The seedlings developed in space were compared with those of the control test on the basis of numerous anatomical and ultrastructural parameters such as number of veins, size and shape of vessel lumens, thickness of cell walls and deposition of cellulose microfibrils. Key Results Observations made with light, fluorescence and transmission electron microscopy, together with the quantification of the structural features through digital image analysis, showed that the alterations due to microgravity do not occur at the same level in the various organs of soybean seedlings. The modifications induced by microgravity or by the indirect effect of space-flight conditions, became conspicuous only in developing vessels at the ultrastructural level. The results suggested that the orientation of microfibrils and their assembly in developing vessels are perturbed by microgravity at the beginning of wall deposition, while they are still able to orient and arrange in thicker and ordered structures at later stages of secondary wall deposition. Conclusions The process of proper cell-wall building, although not prevented, is perturbed in Space at the early stage of development. This would explain the almost unaltered anatomy of mature structures, accompanied by a slower growth observed in seedlings grown in Space than on Earth. PMID:18252765

  5. Short-term and long-term clinostat and vibration-induced biochemical changes in dwarf Marigold stems

    NASA Astrophysics Data System (ADS)

    Siegel, S. M.; Siegel, B. Z.

    Stems of 21-day dwarf Marigold plants cultivated on the clinostat were compared with plants cultivated on vertical axis rotators (``vibrational controls'') and stationary controls for long-term changes in cell wall composition. Stems of 21-day plants grown under stationary conditions and subsequently exposed to the clinostat for 24 hours were also analyzed. Among the long-term markers, calcium, lignin, and protein-bound hemicellulose (possibly cell wall glycoprotein) clearly differentiated the effects of vibration from those of the clinostat. Short-term differential responses included rate of ethylene production, nastic movement and peroxidase activity of the cell wall, but not of the protoplast.

  6. Short-term and long-term clinostat and vibration-induced biochemical changes in dwarf marigold stems

    NASA Technical Reports Server (NTRS)

    Siegel, S. M.; Siegel, B. Z.

    1983-01-01

    Stems of 21-day dwarf marigold plants cultivated on the clinostat were compared with plants cultivated on vertical axis rotators ('vibrational controls') and stationary controls for long-term changes in cell wall composition. Stems of 21-day plants grown under stationary conditions and subsequently exposed to the clinostat for 24 hours were also analyzed. Among the long-term markers, calcium, lignin, and protein-bound hemicellulose (possibly cell wall glycoprotein) clearly differentiated the effects of vibration from those of the clinostat. Short-term differential responses included rate of ethylene production, nastic movement and peroxidase activity of the cell wall, but not of the protoplast.

  7. The role of calcium ions in cytological effects of hypogravity

    NASA Astrophysics Data System (ADS)

    Kordyum, E. L.; Belyavskaya, N. A.; Nedukha, E. M.; Palladina, T. A.; Tarasenko, V. A.

    Electron-cytochemical and biochemical methods made it possible to reveal certain differences in ATPase activity stimulation by calcium ions in root apex cells of pea seedlings and moss protonema Funaria hygrometrica grown under stationary and slow clinostatic (2 rev/min) conditions. It was showed that under clinostatic conditions in comparison with the control variant the ATPase activity decreases in plasmalemma. The protein content in the plasmalemma fraction was also twice as low under these conditions. The root apex cells of the pea seedlings grown under spaceflight conditions were found to contain high concentrations of membrane-bound calcium. The data obtained are discussed in relation to problems of possible mechanisms of disturbance in calcium balance and the system of active calcium ion transport through plasmalemma under hypogravity.

  8. Evaluation of the Green Microalga Monoraphidium sp. Dek19 Growth Utilizing Ethanol Plant Side Streams and Potential for Biofuel Production

    NASA Astrophysics Data System (ADS)

    Colson, David Michael

    This research was conducted to evaluate the potential for growth of Monoraphidium sp. Dek19 using side streams from an ethanol plant for culture medium. Additionally, the potential of using enzymes to break down the cell wall material to release fermentable sugars and oil was examined. The ethanol streams selected were methanator influent, methanator effluent, and thin stillage. This species of microalgae has been previously studied and found to have the ability to grow in and remediate the effluent water from the DeKalb Sanitary District (DSD). The Monoraphidium sp. Dek19 was grown in various concentrations of the ethanol plant side streams concurrently with algae cultures grown in the DSD effluent. The algae cultures were grown in 250ml flasks to determine the optimal concentrations of the ethanol streams. The concentrations with the growth rate and cell counts closest to or higher than the DSD effluents were selected for further examination. These concentrations were repeated to evaluate the most optimal growth conditions using the ethanol streams in comparison to the DSD effluent grown algae. The selected growth condition for the ethanol streams was determined to be using the methanator effluent as the base water component with the thin stillage added to a 2% concentration. The 2% concentration showed an average increase in cell count to be 8.49% higher than the control cell count. The methanator influent was discarded as a base water component, as the growth of the algae was 40.18% less than that of the control. Other concentrations considered resulted in a decrease in cell. count ranging from 9.20-48.97%. The three closest growth results of the concentration of thin stillage and methanator effluent (1%, 2%, and 4%) were scaled up to 2L flasks to confirm the results on a larger scale. The results showed a greater reduction in the cell count of the 1% and 4% concentrations, 23.52% and 16.31% reduction in cell count respectively. The 2% concentration showed a similar increase in cell count as before at 12.59% increase in cell count over the control. The 2% concentration algae growth cultures were grown exclusively alongside of the control group of DSD effluent grown algae. The solutions were grown to carrying capacity and the algae biomass was extracted from the solution by centrifugation and air drying in a dehydrator. This was repeated until enough biomass was collected to conduct rehydration and a typical anaerobic fermentation process. The resuspended algae were pH adjusted to a pH of 5.2 ±0.2. The algae were treated with a combination of cellulase and alpha-amylase, and put through a liquefaction process at 80°C for 3 hours. The resulting solutions were analyzed using High Performance Liquid Chromatography (HPLC) to evaluate the sugar profile of each treatment. The liquefaction solutions were treated with further enzymes, nutrients, and yeast and ran through an anaerobic fermentation process. The fermentations were allowed to progress for 72 hours, and were again analyzed using an HPLC for ethanol and sugar profile. The fermentation results showed a potential of up to 0.587%w/v ethanol production in a 10% solids microalgae slurry. The remaining fermentation products were analyzed using a petroleum ether lipid extraction unit. This analysis showed that the DSD effluent microalgae had an average of 15.53% lipid content on a dry matter basis, and the methanator effluent with 2% thin stillage added resulted in 28.02% lipid content on a dry matter basis. The fermentation products were also treated with a demulsifier, spun down with a centrifuge, and examination of a released lipid layer was conducted. This analysis showed that there was a thin layer of oil on almost all treatments of the algae solutions when spun down in a centrifuge. These. results indicate that the cellulosic enzymes broke down the cell wall material sufficiently for the quick extraction of the oil without the use of hexane. The entirety of the resulting analysis showed that Monoraphidium sp. Dek19 is a viable option for growth using the side streams from an ethanol plant and the use of enzymes will breakdown the biomass of the algae for production of cellulosic ethanol. Additionally, the extraction of oil can be performed in a quicker and safer manner.

  9. Potential for utilization of algal biomass for components of the diet in CELSS

    NASA Technical Reports Server (NTRS)

    Kamarei, A. R.; Nakhost, Z.; Karel, M.

    1986-01-01

    The major nutritional components of the green algae (Scenedesmus obliquus) grown in a Constant Cell Density Apparatus were determined. Suitable methodology to prepare proteins from which three major undesirable components of these cells (i.e., cell walls, nucleic acids, and pigments) were either removed or substantially reduced was developed. Results showed that processing of green algae to protein isolate enhances is potential nutritional and organoleptic acceptability as a diet component in controlled Ecological Life Support System.

  10. The utilization of aconate and itaconate by Micrococcus sp

    PubMed Central

    Cooper, R. A.; Itiaba, K.; Kornberg, H. L.

    1965-01-01

    1. An organism, identified as Micrococcus sp., was isolated by elective culture on aconate; it also grew on itaconate. 2. Washed suspensions of the aconate-grown organism readily oxidized intermediates of the tricarboxylic acid cycle, aconate and succinic semialdehyde, but not itaconate. Itaconate-grown cells oxidized tricarboxylic acid-cycle intermediates, succinic semialdehyde and itaconate, but not aconate. Succinate-grown cells oxidized neither itaconate nor aconate. 3. Extracts of aconate-grown cells catalysed the formation of succinic semialdehyde and carbon dioxide, in equimolar amounts, from aconate. In the presence of NAD or NADP, succinic semialdehyde was oxidized to succinate with concomitant reduction of the coenzyme. 4. Extracts of itaconate-grown cells catalysed the formation of pyruvate and acetyl-CoA from itaconyl-CoA. 5. Key enzymes involved in the formation of succinate from aconate, and of pyruvate and acetyl-CoA from itaconate, were distinct and inducible: their formation preceded growth on the appropriate substrate. PMID:14342240

  11. Surface Tension Guided Hanging-Drop: Producing Controllable 3D Spheroid of High-Passaged Human Dermal Papilla Cells and Forming Inductive Microtissues for Hair-Follicle Regeneration.

    PubMed

    Lin, Bojie; Miao, Yong; Wang, Jin; Fan, Zhexiang; Du, Lijuan; Su, Yongsheng; Liu, Bingcheng; Hu, Zhiqi; Xing, Malcolm

    2016-03-09

    Human dermal papilla (DP) cells have been studied extensively when grown in the conventional monolayer. However, because of great deviation from the real in vivo three-dimensional (3D) environment, these two-dimensional (2D) grown cells tend to lose the hair-inducible capability during passaging. Hence, these 2D caused concerns have motivated the development of novel 3D culture techniques to produce cellular microtissues with suitable mimics. The hanging-drop approach is based on surface tension-based technique and the interaction between surface tension and gravity field that makes a convergence of liquid drops. This study used this technique in a converged drop to form cellular spheroids of dermal papilla cells. It leads to a controllable 3Dspheroid model for scalable fabrication of inductive DP microtissues. The optimal conditions for culturing high-passaged (P8) DP spheroids were determined first. Then, the morphological, histological and functional studies were performed. In addition, expressions of hair-inductive markers including alkaline phosphatase, α-smooth muscle actin and neural cell adhesion molecule were also analyzed by quantitative RT-PCR, immunostaining and immunoblotting. Finally, P8-DP microtissues were coimplanted with newborn mouse epidermal cells (EPCs) into nude mice. Our results indicated that the formation of 3D microtissues not only endowed P8-DP microtissues many similarities to primary DP, but also confer these microtissues an enhanced ability to induce hair-follicle (HF) neogenesis in vivo. This model provides a potential to elucidate the native biology of human DP, and also shows the promising for the controllable and scalable production of inductive DP cells applied in future follicle regeneration.

  12. Increased expression of tissue plasminogen activator and its inhibitor and reduced fibrinolytic potential of human endothelial cells cultured in elevated glucose.

    PubMed

    Maiello, M; Boeri, D; Podesta, F; Cagliero, E; Vichi, M; Odetti, P; Adezati, L; Lorenzi, M

    1992-08-01

    In diabetic patients, elevated plasma levels of t-PA and PAI-1 accompany impaired fibrinolysis. To identify mechanisms for these abnormalities, we examined whether vascular endothelial cells exposed to high glucose upregulate t-PA and PAI-1 production and whether ambient PA activity is decreased concomitantly. In 17 cultures of human umbilical vein endothelial cells grown to confluency in 30 mM glucose, the t-PA antigen released to the medium in 24 h was (median) 52 ng/10(6) cells (range 10-384) and the PAI-1 antigen was 872 ng/10(6) cells (range 217-2074)--both greater (P less than 0.02) than the amounts released by paired control cultures grown in 5 mM glucose--29 ng/10(6) cells (range 7.5-216) and 461 ng/10(6) cells (range 230-3215), respectively. In the presence of high glucose, the steady-state levels of t-PA and PAI-1 mRNAs were increased correspondingly (median 142 and 183% of control, respectively, P less than 0.05); high glucose per se and hypertonicity contributed to the upregulation in additive fashion. The PA activity of conditioned medium from cultures exposed to high glucose was 0.4 IU/ml (range 0.2-0.6), which was significantly lower (P less than 0.02) than the PA activity of control medium (0.5 IU/ml, range 0.2-0.9). No difference was observed when comparing the PA activities of acidified conditioned media, expected to be depleted of inhibitors. Thus, high glucose coordinately upregulates endothelial t-PA and PAI-1 expression through effects exerted at the pretranslational level and enhanced by even mild degrees of hypertonicity.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Platinum blue staining of cells grown in electrospun scaffolds.

    PubMed

    Yusuf, Mohammed; Millas, Ana Luiza G; Estandarte, Ana Katrina C; Bhella, Gurdeep K; McKean, Robert; Bittencourt, Edison; Robinson, Ian K

    2014-01-01

    Fibroblast cells grown in electrospun polymer scaffolds were stained with platinum blue, a heavy metal stain, and imaged using scanning electron microscopy. Good contrast on the cells was achieved compared with samples that were gold sputter coated. The cell morphology could be clearly observed, and the cells could be distinguished from the scaffold fibers. Here we optimized the required concentration of platinum blue for imaging cells grown in scaffolds and show that a higher concentration causes platinum aggregation. Overall, platinum blue is a useful stain for imaging cells because of its enhanced contrast using scanning electron microscopy (SEM). In the future it would be useful to investigate cell growth and morphology using three-dimensional imaging methods.

  14. Protein disulfide isomerases in the endoplasmic reticulum promote anchorage-independent growth of breast cancer cells.

    PubMed

    Wise, Randi; Duhachek-Muggy, Sara; Qi, Yue; Zolkiewski, Michal; Zolkiewska, Anna

    2016-06-01

    Metastatic breast cancer cells are exposed to stress of detachment from the extracellular matrix (ECM). Cultured breast cancer cells that survive this stress and are capable of anchorage-independent proliferation form mammospheres. The purpose of this study was to explore a link between mammosphere growth, ECM gene expression, and the protein quality control system in the endoplasmic reticulum (ER). We compared the mRNA and protein levels of ER folding factors in SUM159PT and MCF10DCIS.com breast cancer cells grown as mammospheres versus adherent conditions. Publicly available gene expression data for mammospheres formed by primary breast cancer cells and for circulating tumor cells (CTCs) were analyzed to assess the status of ECM/ER folding factor genes in clinically relevant samples. Knock-down of selected protein disulfide isomerase (PDI) family members was performed to examine their roles in SUM159PT mammosphere growth. We found that cells grown as mammospheres had elevated expression of ECM genes and ER folding quality control genes. CTC gene expression data for an index patient indicated that upregulation of ECM and ER folding factor genes occurred at the time of acquired therapy resistance and disease progression. Knock-down of PDI, ERp44, or ERp57, three members of the PDI family with elevated protein levels in mammospheres, in SUM159PT cells partially inhibited the mammosphere growth. Thus, breast cancer cell survival and growth under detachment conditions require enhanced assistance of the ER protein folding machinery. Targeting ER folding factors, in particular members of the PDI family, may improve the therapeutic outcomes in metastatic breast cancer.

  15. Evidence of root zone hypoxia in Brassica rapa L. grown in microgravity.

    PubMed

    Stout, S C; Porterfield, D M; Briarty, L G; Kuang, A; Musgrave, M E

    2001-03-01

    A series of experiments was conducted aboard the U.S. space shuttle and the Mir space station to evaluate microgravity-induced root zone hypoxia in rapid-cycling Brassica (Brassica rapa L.), using both root and foliar indicators of low-oxygen stress to the root zone. Root systems from two groups of plants 15 and 30 d after planting, grown in a phenolic foam nutrient delivery system on the shuttle (STS-87), were harvested and fixed for microscopy or frozen for enzyme assays immediately postflight or following a ground-based control. Activities of fermentative enzymes were measured as indicators of root zone hypoxia and metabolism. Following 16 d of microgravity, ADH (alcohol dehydrogenase) activity was increased in the spaceflight roots 47% and 475% in the 15-d-old and 30-d-old plants, respectively, relative to the ground control. Cytochemical localization showed ADH activity in only the root tips of the space-grown plants. Shoots from plants that were grown from seed in flight in a particulate medium on the Mir station were harvested at 13 d after planting and quick-frozen and stored in flight in a gaseous nitrogen freezer or chemically fixed in flight for subsequent microscopy. When compared to material from a high-fidelity ground control, concentrations of shoot sucrose and total soluble carbohydrate were significantly greater in the spaceflight treatment according to enzymatic carbohydrate analysis. Stereological analysis of micrographs of sections from leaf and cotyledon tissue fixed in flight and compared with ground controls indicated no changes in the volume of protoplast, cell wall, and intercellular space in parenchyma cells. Within the protoplasm, the volume occupied by starch was threefold higher in the spaceflight than in the ground control, with a concomitant decrease in vacuolar volume in the spaceflight treatment. Both induction of fermentative enzyme activity in roots and accumulation of carbohydrates in foliage have been repeatedly shown to occur in response to root zone oxygen deprivation. These results indicate that root zone hypoxia is a persistent challenge in spaceflight plant growth experiments and may be caused by microgravity-induced changes in fluid and gas distribution.

  16. Evidence of root zone hypoxia in Brassica rapa L. grown in microgravity

    NASA Technical Reports Server (NTRS)

    Stout, S. C.; Porterfield, D. M.; Briarty, L. G.; Kuang, A.; Musgrave, M. E.

    2001-01-01

    A series of experiments was conducted aboard the U.S. space shuttle and the Mir space station to evaluate microgravity-induced root zone hypoxia in rapid-cycling Brassica (Brassica rapa L.), using both root and foliar indicators of low-oxygen stress to the root zone. Root systems from two groups of plants 15 and 30 d after planting, grown in a phenolic foam nutrient delivery system on the shuttle (STS-87), were harvested and fixed for microscopy or frozen for enzyme assays immediately postflight or following a ground-based control. Activities of fermentative enzymes were measured as indicators of root zone hypoxia and metabolism. Following 16 d of microgravity, ADH (alcohol dehydrogenase) activity was increased in the spaceflight roots 47% and 475% in the 15-d-old and 30-d-old plants, respectively, relative to the ground control. Cytochemical localization showed ADH activity in only the root tips of the space-grown plants. Shoots from plants that were grown from seed in flight in a particulate medium on the Mir station were harvested at 13 d after planting and quick-frozen and stored in flight in a gaseous nitrogen freezer or chemically fixed in flight for subsequent microscopy. When compared to material from a high-fidelity ground control, concentrations of shoot sucrose and total soluble carbohydrate were significantly greater in the spaceflight treatment according to enzymatic carbohydrate analysis. Stereological analysis of micrographs of sections from leaf and cotyledon tissue fixed in flight and compared with ground controls indicated no changes in the volume of protoplast, cell wall, and intercellular space in parenchyma cells. Within the protoplasm, the volume occupied by starch was threefold higher in the spaceflight than in the ground control, with a concomitant decrease in vacuolar volume in the spaceflight treatment. Both induction of fermentative enzyme activity in roots and accumulation of carbohydrates in foliage have been repeatedly shown to occur in response to root zone oxygen deprivation. These results indicate that root zone hypoxia is a persistent challenge in spaceflight plant growth experiments and may be caused by microgravity-induced changes in fluid and gas distribution.

  17. Chitosan-coated amyloid fibrils increase adipogenesis of mesenchymal stem cells.

    PubMed

    Gilbert, Jay; Reynolds, Nicholas P; Russell, Sarah M; Haylock, David; McArthur, Sally; Charnley, Mirren; Jones, Owen G

    2017-10-01

    Mesenchymal stem cells (MSCs) have the potential to revolutionize medicine due to their ability to differentiate into specific lineages for targeted tissue repair. Development of materials and cell culture platforms that improve differentiation of either autologous or allogenic stem cell sources into specific lineages would enhance clinical utilization of MCSs. In this study, nanoscale amyloid fibrils were evaluated as substrate materials to encourage viability, proliferation, multipotency, and differentiation of MSCs. Fibrils assembled from the proteins lysozyme or β-lactoglobulin, with and without chitosan coatings, were deposited on planar mica surfaces. MSCs were cultured and differentiated on fibril-covered surfaces, as well as on unstructured controls and tissue culture plastic. Expression of CD44 and CD90 proteins indicated that multipotency was maintained for all fibrils, and osteogenic differentiation was similarly comparable among all tested materials. MSCs grown for 7days on fibril-covered surfaces favored multicellular spheroid formation and demonstrated a >75% increase in adipogenesis compared to tissue culture plastic controls, although this benefit could only be achieved if MSCs were transferred to TCP for the final differentiation step. The largest spheroids and greatest tendency to undergo adipogenesis was evidenced among MSCs grown on fibrils coated with the positively-charged polysaccharide chitosan, suggesting that spheroid formation is prompted by both topography and cell-surface interactivity and that there is a connection between multicellular spheroid formation and adipogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Temperature modulates the cell wall mechanical properties of rice coleoptiles by altering the molecular mass of hemicellulosic polysaccharides

    NASA Technical Reports Server (NTRS)

    Nakamura, Yukiko; Wakabayashi, Kazuyuki; Hoson, Takayuki

    2003-01-01

    The present study was conducted to investigate the mechanism inducing the difference in the cell wall extensibility of rice (Oryza sativa L. cv. Koshihikari) coleoptiles grown under various temperature (10-50 degrees C) conditions. The growth rate and the cell wall extensibility of rice coleoptiles exhibited the maximum value at 30-40 degrees C, and became smaller as the growth temperature rose or dropped from this temperature range. The amounts of cell wall polysaccharides per unit length of coleoptile increased in coleoptiles grown at 40 degrees C, but not at other temperature conditions. On the other hand, the molecular size of hemicellulosic polysaccharides was small at temperatures where the cell wall extensibility was high (30-40 degrees C). The autolytic activities of cell walls obtained from coleoptiles grown at 30 and 40 degrees C were substantially higher than those grown at 10, 20 and 50 degrees C. Furthermore, the activities of (1-->3),(1-->4)-beta-glucanases extracted from coleoptile cell walls showed a similar tendency. When oat (1-->3),(1-->4)-beta-glucans with high molecular mass were incubated with the cell wall enzyme preparations from coleoptiles grown at various temperature conditions, the extensive molecular mass downshifts were brought about only by the cell wall enzymes obtained from coleoptiles grown at 30-40 degrees C. There were close correlations between the cell wall extensibility and the molecular mass of hemicellulosic polysaccharides or the activity of beta -glucanases. These results suggest that the environmental temperature regulates the cell wall extensibility of rice coleoptiles by modifying mainly the molecular mass of hemicellulosic polysaccharides. Modulation of the activity of beta-glucanases under various temperature conditions may be involved in the alteration of the molecular size of hemicellulosic polysaccharides.

  19. Efficiencies of Bio-electrocatalytic Production of Hydrogen from Lactate Using Shewanella oneidensis MR-1

    USDA-ARS?s Scientific Manuscript database

    Shewanella oneidensis MR-1 was grown in a chemostatic, continuously-fed bioelectrochemical cell under slightly aerated conditions. The start-up phase was controlled potentiostatically (0.4 V vs. SHE). When a stable performance was achieved, the reactor was switched to bio-electrocatalytic producti...

  20. Downregulation of Lysyl Oxidase Protects Retinal Endothelial Cells From High Glucose-Induced Apoptosis.

    PubMed

    Kim, Dongjoon; Mecham, Robert P; Trackman, Philip C; Roy, Sayon

    2017-05-01

    To investigate the effect of reducing high glucose (HG)-induced lysyl oxidase (LOX) overexpression and increased activity on retinal endothelial cell apoptosis. Rat retinal endothelial cells (RRECs) were grown in normal (N) or HG (30 mM glucose) medium for 7 days. In parallel, RRECs were grown in HG medium and transfected with LOX small interfering RNA (siRNA), scrambled siRNA as control, or exposed to β-aminopropionitrile (BAPN), a LOX inhibitor. LOX expression, AKT activation, and caspase-3 activity were determined by Western blot (WB) analysis and apoptosis by differential dye staining assay. Moreover, to determine whether diabetes-induced LOX overexpression alters AKT activation and promotes apoptosis, changes in LOX expression, AKT phosphorylation, caspase-3 activation, and Bax expression were assessed in retinas of streptozotocin (STZ)-induced diabetic mice and LOX heterozygous knockout (LOX+/-) mice. WB analysis indicated significant LOX overexpression and reduced AKT activation under HG condition in RRECs. Interestingly, when cells grown in HG were transfected with LOX siRNA or exposed to BAPN, the number of apoptotic cells was significantly decreased concomitant with increased AKT phosphorylation. Diabetic mouse retinas exhibited LOX overexpression, decreased AKT phosphorylation, and increased Bax and caspase-3 activation compared to values in nondiabetic mice. In LOX+/- mice, reduced LOX levels were observed with increased AKT activity, and reduced Bax and caspase-3 activity. Furthermore, decreased levels of LOX in the LOX+/- mice was protective against diabetes-induced apoptosis. Findings from this study indicate that preventing LOX overexpression may be protective against HG-induced apoptosis in retinal vascular cells associated with diabetic retinopathy.

  1. Comparative transcriptomics indicate changes in cell wall organization and stress response in seedlings during spaceflight.

    PubMed

    Johnson, Christina M; Subramanian, Aswati; Pattathil, Sivakumar; Correll, Melanie J; Kiss, John Z

    2017-08-21

    Plants will play an important role in the future of space exploration as part of bioregenerative life support. Thus, it is important to understand the effects of microgravity and spaceflight on gene expression in plant development. We analyzed the transcriptome of Arabidopsis thaliana using the Biological Research in Canisters (BRIC) hardware during Space Shuttle mission STS-131. The bioinformatics methods used included RMA (robust multi-array average), MAS5 (Microarray Suite 5.0), and PLIER (probe logarithmic intensity error estimation). Glycome profiling was used to analyze cell wall composition in the samples. In addition, our results were compared to those of two other groups using the same hardware on the same mission (BRIC-16). In our BRIC-16 experiments, we noted expression changes in genes involved in hypoxia and heat shock responses, DNA repair, and cell wall structure between spaceflight samples compared to the ground controls. In addition, glycome profiling supported our expression analyses in that there was a difference in cell wall components between ground control and spaceflight-grown plants. Comparing our studies to those of the other BRIC-16 experiments demonstrated that, even with the same hardware and similar biological materials, differences in results in gene expression were found among these spaceflight experiments. A common theme from our BRIC-16 space experiments and those of the other two groups was the downregulation of water stress response genes in spaceflight. In addition, all three studies found differential regulation of genes associated with cell wall remodeling and stress responses between spaceflight-grown and ground control plants. © 2017 Botanical Society of America.

  2. Three-dimensional Myoblast Aggregates--Effects of Modeled Microgravity

    NASA Technical Reports Server (NTRS)

    Byerly, Diane; Sognier, M. A.; Marquette, M. L.

    2006-01-01

    The overall objective of these studies is to elucidate the molecular and cellular alterations that contribute to muscle atrophy in astronauts caused by exposure to microgravity conditions in space. To accomplish this, a three-dimensional model test system was developed using mouse myoblast cells (C2C12). Myoblast cells were grown as three-dimensional aggregates (without scaffolding or other solid support structures) in both modeled microgravity (Rotary Cell Culture System, Synthecon, Inc.) and at unit gravity in coated Petri dishes. Evaluation of H&E stained thin sections of the aggregates revealed the absence of any necrosis. Confocal microscopy evaluations of cells stained with the Live/Dead assay (Molecular Probes) confirmed that viable cells were present throughout the aggregates with an average of only three dead cells observed per aggregate. Preliminary results from gene array analysis (Affymetrix chip U74Av2) showed that approximately 14% of the genes were down regulated (decreased more than 3 fold) and 4% were upregulated in cells exposed to modeled microgravity for 12 hours compared to unit gravity controls. Additional studies using fluorescent phallacidin revealed a decrease in F-actin in the cells exposed to modeled microgravity compared to unit gravity. Myoblast cells grown as aggregates in modeled microgravity exhibited spontaneous differentiation into syncitia while no differentiation was seen in the unit gravity controls. These studies show that 1)the model test system developed is suitable for assessing cellular and molecular alterations in myoblasts; 2) gene expression alterations occur rapidly (within 12 hours) following exposure to modeled microgravity; and 3) modeled microgravity conditions stimulated myoblast cell differentiation. Achieving a greater understanding of the molecular alterations leading to muscle atrophy will eventually enable the development of cell-based countermeasures, which may be valuable for treatment of muscle diseases on Earth and future space explorations.

  3. Carbon dioxide fixation in the metabolism of propylene and propylene oxide by Xanthobacter strain Py2.

    PubMed Central

    Small, F J; Ensign, S A

    1995-01-01

    Evidence for a requirement for CO2 in the productive metabolism of aliphatic alkenes and epoxides by the propylene-oxidizing bacterium Xanthobacter strain Py2 is presented. In the absence of CO2, whole-cell suspensions of propylene-grown cells catalyzed the isomerization of propylene oxide (epoxypropane) to acetone. In the presence of CO2, no acetone was produced. Acetone was not metabolized by suspensions of propylene-grown cells, in either the absence or presence of CO2. The degradation of propylene and propylene oxide by propylene-grown cells supported the fixation of 14CO2 into cell material, and the time course of 14C fixation correlated with the time course of propylene and propylene oxide degradation. The degradation of glucose and propionaldehyde by propylene-grown or glucose-grown cells did not support significant 14CO2 fixation. With propylene oxide as the substrate, the concentration dependence of 14CO2 fixation exhibited saturation kinetics, and at saturation, 0.9 mol of CO2 was fixed per mol of propylene oxide consumed. Cultures grown with propylene in a nitrogen-deficient medium supplemented with NaH13CO3 specifically incorporated 13C label into the C-1 (major labeled position) and C-3 (minor labeled position) carbon atoms of the endogenous storage compound poly-beta-hydroxybutyrate. No specific label incorporation was observed when cells were cultured with glucose or n-propanol as a carbon source. The depletion of CO2 from cultures grown with propylene, but not glucose or n-propanol, inhibited bacterial growth. We propose that propylene oxide metabolism in Xanthobacter strain Py2 proceeds by terminal carboxylation of an isomerization intermediate, which, in the absence of CO2, is released as acetone. PMID:7592382

  4. Fermentation of 1,2-Propanediol and 1,2-Ethanediol by Some Genera of Enterobacteriaceae, Involving Coenzyme B12-Dependent Diol Dehydratase

    PubMed Central

    Toraya, Tetsuo; Honda, Susumu; Fukui, Saburo

    1979-01-01

    Klebsiella pneumoniae (Aerobacter aerogenes) ATCC 8724 was able to grow anaerobically on 1,2-propanediol and 1,2-ethanediol as carbon and energy sources. Whole cells of the bacterium grown anaerobically on 1,2-propanediol or on glycerol catalyzed conversion of 1,2-diols and aldehydes to the corresponding acids and alcohols. Glucose-grown cells also converted aldehydes, but not 1,2-diols, to acids and alcohols. The presence of activities of coenzyme B12-dependent diol dehydratase, alcohol dehydrogenase, coenzyme-A-dependent aldehyde dehydrogenase, phosphotransacetylase, and acetate kinase was demonstrated with crude extracts of 1,2-propanediol-grown cells. The dependence of the levels of these enzymes on growth substrates, together with cofactor requirements in in vitro conversion of these substrates, indicates that 1,2-diols are fermented to the corresponding acids and alcohols via aldehydes, acyl-coenzyme A, and acyl phosphates. This metabolic pathway for 1,2-diol fermentation was also suggested in some other genera of Enterobacteriaceae which were able to grow anaerobically on 1,2-propanediol. When the bacteria were cultivated in a 1,2-propanediol medium not supplemented with cobalt ion, the coenzyme B12-dependent conversion of 1,2-diols to aldehydes was the rate-limiting step in this fermentation. This was because the intracellular concentration of coenzyme B12 was very low in the cells grown in cobalt-deficient medium, since the apoprotein of diol dehydratase was markedly induced in the cells grown in the 1,2-propanediol medium. Better cell yields were obtained when the bacteria were grown anaerobically on 1,2-propanediol. Evidence is presented that aerobically grown cells have a different metabolic pathway for utilizing 1,2-propanediol. PMID:378959

  5. Characterization of the Sclerotinia sclerotiorum cell wall proteome.

    PubMed

    Liu, Longzhou; Free, Stephen J

    2016-08-01

    We used a proteomic analysis to identify cell wall proteins released from Sclerotinia sclerotiorum hyphal and sclerotial cell walls via a trifluoromethanesulfonic acid (TFMS) digestion. Cell walls from hyphae grown in Vogel's glucose medium (a synthetic medium lacking plant materials), from hyphae grown in potato dextrose broth and from sclerotia produced on potato dextrose agar were used in the analysis. Under the conditions used, TFMS digests the glycosidic linkages in the cell walls to release intact cell wall proteins. The analysis identified 24 glycosylphosphatidylinositol (GPI)-anchored cell wall proteins and 30 non-GPI-anchored cell wall proteins. We found that the cell walls contained an array of cell wall biosynthetic enzymes similar to those found in the cell walls of other fungi. When comparing the proteins in hyphal cell walls grown in potato dextrose broth with those in hyphal cell walls grown in the absence of plant material, it was found that a core group of cell wall biosynthetic proteins and some proteins associated with pathogenicity (secreted cellulases, pectin lyases, glucosidases and proteases) were expressed in both types of hyphae. The hyphae grown in potato dextrose broth contained a number of additional proteins (laccases, oxalate decarboxylase, peroxidase, polysaccharide deacetylase and several proteins unique to Sclerotinia and Botrytis) that might facilitate growth on a plant host. A comparison of the proteins in the sclerotial cell wall with the proteins in the hyphal cell wall demonstrated that sclerotia formation is not marked by a major shift in the composition of cell wall protein. We found that the S. sclerotiorum cell walls contained 11 cell wall proteins that were encoded only in Sclerotinia and Botrytis genomes. © 2015 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  6. Surface topography and chemistry shape cellular behavior on wide band-gap semiconductors.

    PubMed

    Bain, Lauren E; Collazo, Ramon; Hsu, Shu-Han; Latham, Nicole Pfiester; Manfra, Michael J; Ivanisevic, Albena

    2014-06-01

    The chemical stability and electrical properties of gallium nitride make it a promising material for the development of biocompatible electronics, a range of devices including biosensors as well as interfaces for probing and controlling cellular growth and signaling. To improve the interface formed between the probe material and the cell or biosystem, surface topography and chemistry can be applied to modify the ways in which the device interacts with its environment. PC12 cells are cultured on as-grown planar, unidirectionally polished, etched nanoporous and nanowire GaN surfaces with and without a physisorbed peptide sequence that promotes cell adhesion. While cells demonstrate preferential adhesion to roughened surfaces over as-grown flat surfaces, the topography of that roughness also influences the morphology of cellular adhesion and differentiation in neurotypic cells. Addition of the peptide sequence generally contributes further to cellular adhesion and promotes development of stereotypic long, thin neurite outgrowths over alternate morphologies. The dependence of cell behavior on both the topographic morphology and surface chemistry is thus demonstrated, providing further evidence for the importance of surface modification for modulating bio-inorganic interfaces. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Serotonin Signal Transduction in Two Groups of Autistic Patients

    DTIC Science & Technology

    2013-12-01

    modification as learned from the initial studies. Treat cells with escitalopram or r-citalopram and test for increased coupling between G proteins and...improved medications. 6 Figure 1 (above). Escitalopram translocates Gs in cells obtained from High 5HT subjects. Lymphoblasts from High...5HT/High IS or Normal 5HT/moderate IS (two lines each) were grown in suspension and treated with escitalopram or control (r-citalopram, @10 µM) for

  8. Role of Stat3 and ErbB2 in Breast Cancer

    DTIC Science & Technology

    2012-10-01

    also activated by receptor tyrosine kinases, such as the epidermal growth factor receptor (EGFR) or platelet -derived growth factor receptor (PDGFR...cells were grown to different densities, up to 5 days post-confluence, as indicated. Detergent cell lysates were probed for Stat3-ptyr705, active Rac...and lysates probed for total cav1, cadherin 11 or tubulin as a loading control. 15 C Figure 7: Cadherin 11 and Rac1 downregulation

  9. Effect of Different Carbon Sources on Relative Growth Rate, Internal Carbohydrates, and Mannitol 1-Oxidoreductase Activity in Celery Suspension Cultures.

    PubMed Central

    Stoop, JMH.; Pharr, D. M.

    1993-01-01

    Little information exists concerning the biochemical route of mannitol catabolism in higher plant cells. In this study, the role of a recently discovered mannitol 1-oxidoreductase (MDH) in mannitol catabolism was investigated. Suspension cultures of celery (Apium graveolens L. var dulce [Mill.] Pers.) were successfully grown on nutrient media with either mannitol, mannose, or sucrose as the sole carbon source. Cell cultures grown on any of the three carbon sources did not differ in relative growth rate, as measured by packed cell volume, but differed drastically in internal carbohydrate concentration. Mannitol-grown cells contained high concentrations of mannitol and extremely low concentrations of sucrose, fructose, glucose, and mannose. Sucrose-grown cells had high concentrations of sucrose early in the growth cycle and contained a substantial hexose pool. Mannose-grown cells had a high mannose concentration early in the cycle, which decreased during the growth cycle, whereas their internal sucrose concentrations remained relatively constant during the entire growth cycle. Celery suspension cultures on all three carbon substrates contained an NAD-dependent MDH. Throughout the growth cycle, MDH activity was 2- to 4-fold higher in mannitol-grown cells compared with sucrose- or mannose-grown cells, which did not contain detectable levels of mannitol, indicating that MDH functions pre-dominantly in an oxidative capacity in situ. The MDH activity observed in celery cells was 3-fold higher than the minimum amount required to account for the observed rate of mannitol utilization from the media. Cultures transferred from mannitol to mannose underwent a decrease in MDH activity over a period of days, and transfer from mannose to mannitol resulted in an increase in MDH activity. These data provide strong evidence that MDH plays an important role in mannitol utilization in celery suspension cultures. PMID:12231996

  10. Bifidobacteria isolated from infants and cultured on human milk oligosaccharides affect intestinal epithelial function

    PubMed Central

    Chichlowski, Maciej; De Lartigue, Guillaume; German, J. Bruce; Raybould, Helen E.; Mills, David A.

    2012-01-01

    Objectives Human milk oligosaccharides (HMO) are the third most abundant component of breast milk. Our laboratory has previously revealed gene clusters specifically linked to HMO metabolism in select bifidobacteria isolated from fecal samples of infants. Our objective was to test the hypothesis that growth of select bifidobacteria on HMO stimulates the intestinal epithelium. Methods Caco-2 and HT-29 cells were incubated with lactose (LAC) or HMO-grown Bifidobacterium longum subsp. infantis (B. infantis) or B. bifidum. Bacterial adhesion and translocation was measured by real-time quantitative PCR. Expression of pro- and anti-inflammatory cytokines and tight junction proteins was analyzed by real time reverse transcriptase. Distribution of tight junction proteins was measured using immunofluorescent microscopy. Results We showed that HMO-grown B. infantis had significantly higher rate of adhesion to HT-29 cells compared to B. bifidum. B. infantis also induced expression of a cell membrane glycoprotein, P-selectin glycoprotein ligand -1. Both B. infantis and B. bifidum grown on HMO caused less occludin relocalization and higher expression of anti-inflammatory cytokine, interleukin (IL)-10 compared to LAC-grown bacteria in Caco-2 cells. B. bifidum grown on HMO showed higher expression of junctional adhesion molecule and occludin in Caco-2 cell and HT-29 cells. There were no significant differences between LAC or HMO treatments in bacterial translocation. Conclusions This study provides evidence for the specific relationship between HMO-grown bifidobacteria and intestinal epithelial cells. To our knowledge, this is the first study describing HMO-induced changes in the bifidobacteria-intestinal cells interaction. PMID:22383026

  11. Human uterine cervical epithelial cells grown on permeable support--a new model for the study of differentiation.

    PubMed

    Gorodeski, G I; Romero, M F; Hopfer, U; Rorke, E; Utian, W H; Eckert, R L

    1994-04-01

    The purpose of the present study was to establish culture conditions for human uterine cervical epithelial cells on permeable support and to determine how it affects cervical cell differentiation. Human ectocervical epithelial cells (hECE), HPV-16 immortalized hECE cells (ECE16-1) and Caski cells were grown on collagen-coated filters. Culture conditions, density of cells in culture and expression of epithelial and cervical-cell phenotypic markers were determined and compared in cells grown on filter and on solid support. Compared with the latter, cultures on filter had a higher cell density, hECE cells stratified to 5-12 cell layers compared to 1-3 on solid support, and cells of all three types expressed intercellular tight junctions. The cytokeratin profiles revealed differences between the three cell types as well as differences within the same cell species when grown on filter, compared to solid support. Of particular importance was the finding of a higher expression of K-13 in hECE grown on filter compared to solid support; K-13 is a marker of ectocervical cell differentiation. The cytokeratin profiles of the cultured hECE, ECE16-1 and Caski cells resembled those of ectocervical, squamous metaplastic and endocervical epithelia, respectively. hECE and ECE16-1 expressed involucrin protein, the level of which in both was higher in cells grown on filter compared to solid support. Polarization of the cultures was determined by morphology (stratification of hECE cells, expression of pseudomicrovilli in the apical cell membrane), selective apical vs. basolateral secretion of [35S]methionine- and [35S]cysteine-, [3H]fucose- and [14C]glucosamine-labeled molecules, and positive short-circuit current (Isc) under voltage-clamp conditions. Confluency of the cultures was determined by measuring transepithelial unidirectional fluxes of inert molecules with different molecular weights (MWs) through the paracellular pathway, and by measuring transepithelial conductance. The results indicated transepithelial permeability of 7-22.10(-6) cm.sec-1, which was 5-100 fold smaller compared to blank inserts, with a cut-off MW of 40-70 kDa for hECE and Caski cells. Transepithelial conductance ranged 18.5 to 51.5 mS.cm-2, indicating a leaky but confluent epithelia. Collectively the results indicate the epithelial nature of the cells and their improved differentiation when grown on filter support; hECE is a model for ectocervical epithelium while ECE16-1 and Caski express phenotypic characteristics of squamous metaplastic cervical epithelium and endocervical epithelium respectively.

  12. Suppression of Hydroxycinnamate Network Formation in Cell Walls of Rice Shoots Grown under Microgravity Conditions in Space

    PubMed Central

    Wakabayashi, Kazuyuki; Soga, Kouichi; Hoson, Takayuki; Kotake, Toshihisa; Yamazaki, Takashi; Higashibata, Akira; Ishioka, Noriaki; Shimazu, Toru; Fukui, Keiji; Osada, Ikuko; Kasahara, Haruo; Kamada, Motoshi

    2015-01-01

    Network structures created by hydroxycinnamate cross-links within the cell wall architecture of gramineous plants make the cell wall resistant to the gravitational force of the earth. In this study, the effects of microgravity on the formation of cell wall-bound hydroxycinnamates were examined using etiolated rice shoots simultaneously grown under artificial 1 g and microgravity conditions in the Cell Biology Experiment Facility on the International Space Station. Measurement of the mechanical properties of cell walls showed that shoot cell walls became stiff during the growth period and that microgravity suppressed this stiffening. Amounts of cell wall polysaccharides, cell wall-bound phenolic acids, and lignin in rice shoots increased as the shoot grew. Microgravity did not influence changes in the amounts of cell wall polysaccharides or phenolic acid monomers such as ferulic acid (FA) and p-coumaric acid, but it suppressed increases in diferulic acid (DFA) isomers and lignin. Activities of the enzymes phenylalanine ammonia-lyase (PAL) and cell wall-bound peroxidase (CW-PRX) in shoots also increased as the shoot grew. PAL activity in microgravity-grown shoots was almost comparable to that in artificial 1 g-grown shoots, while CW-PRX activity increased less in microgravity-grown shoots than in artificial 1 g-grown shoots. Furthermore, the increases in expression levels of some class III peroxidase genes were reduced under microgravity conditions. These results suggest that a microgravity environment modifies the expression levels of certain class III peroxidase genes in rice shoots, that the resultant reduction of CW-PRX activity may be involved in suppressing DFA formation and lignin polymerization, and that this suppression may cause a decrease in cross-linkages within the cell wall architecture. The reduction in intra-network structures may contribute to keeping the cell wall loose under microgravity conditions. PMID:26378793

  13. EB66 cell line, a duck embryonic stem cell-derived substrate for the industrial production of therapeutic monoclonal antibodies with enhanced ADCC activity.

    PubMed

    Olivier, Stéphane; Jacoby, Marine; Brillon, Cédric; Bouletreau, Sylvana; Mollet, Thomas; Nerriere, Olivier; Angel, Audrey; Danet, Sévérine; Souttou, Boussad; Guehenneux, Fabienne; Gauthier, Laurent; Berthomé, Mathilde; Vié, Henri; Beltraminelli, Nicola; Mehtali, Majid

    2010-01-01

    Monoclonal antibodies (mAbs) represent the fastest growing class of therapeutic proteins. The increasing demand for mAb manufacturing and the associated high production costs call for the pharmaceutical industry to improve its current production processes or develop more efficient alternative production platforms. The experimental control of IgG fucosylation to enhance antibody dependent cell cytotoxicity (ADCC) activity constitutes one of the promising strategies to improve the efficacy of monoclonal antibodies and to potentially reduce the therapeutic cost. We report here that the EB66 cell line derived from duck embryonic stem cells can be efficiently genetically engineered to produce mAbs at yields beyond a 1 g/L, as suspension cells grown in serum-free culture media. EB66 cells display additional attractive grown characteristics such as a very short population doubling time of 12 to 14 hours, a capacity to reach very high cell density (> 30 million cells/mL) and a unique metabolic profile resulting in low ammonium and lactate accumulation and low glutamine consumption, even at high cell densities. Furthermore, mAbs produced on EB66 cells display a naturally reduced fucose content resulting in strongly enhanced ADCC activity. The EB66 cells have therefore the potential to evolve as a novel cellular platform for the production of high potency therapeutic antibodies.

  14. Utilization of xylose as a carbon source for mixotrophic growth of Scenedesmus obliquus.

    PubMed

    Yang, Suling; Liu, Guijun; Meng, Youting; Wang, Ping; Zhou, Sijing; Shang, Hongzhong

    2014-11-01

    Mixotrophic cultivation is one potential mode for microalgae production, and an economically acceptable and environmentally sustainable organic carbon source is essential. The potential use of xylose for culturing Scenedesmus obliquus in a mixotrophic mode and physiological features of xylose-grown S. obliquus were studied. S. obliquus had a certain xylose tolerance, and was capable of utilizing xylose for growth. At a xylose concentration of 4gL(-1), the maximal cell density was 2.2gL(-1), being 2.9-fold of that under photoautotrophic condition and arriving to the level of mixotrophic growth using 4gL(-1) glucose. No changes in cellular morphology of the cells grown with or without xylose were detected. Fluorescence emission from photosystem II (PS II) relative to photosystem I (PS I) was decreased in mixotrophic cells, implying that the PSII activity was decreased. The biomass lipid content was enhanced and carbohydrate concentration was decreased, in relation to photoautotrophic controls. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Dictyostelium RasG Is Required for Normal Motility and Cytokinesis, But Not Growth

    PubMed Central

    Tuxworth, Richard I.; Cheetham, Janet L.; Machesky, Laura M.; Spiegelmann, George B.; Weeks, Gerald; Insall, Robert H.

    1997-01-01

    RasG is the most abundant Ras protein in growing Dictyostelium cells and the closest relative of mammalian Ras proteins. We have generated null mutants in which expression of RasG is completely abolished. Unexpectedly, RasG − cells are able to grow at nearly wild-type rates. However, they exhibit defective cell movement and a wide range of defects in the control of the actin cytoskeleton, including a loss of cell polarity, absence of normal lamellipodia, formation of unusual small, punctate polymerized actin structures, and a large number of abnormally long filopodia. Despite their lack of polarity and abnormal cytoskeleton, mutant cells perform normal chemotaxis. However, rasG − cells are unable to perform normal cytokinesis, becoming multinucleate when grown in suspension culture. Taken together, these data suggest a principal role for RasG in coordination of cell movement and control of the cytoskeleton. PMID:9245789

  16. Effects of substrate conductivity on cell morphogenesis and proliferation using tailored, atomic layer deposition-grown ZnO thin films

    PubMed Central

    Choi, Won Jin; Jung, Jongjin; Lee, Sujin; Chung, Yoon Jang; Yang, Cheol-Soo; Lee, Young Kuk; Lee, You-Seop; Park, Joung Kyu; Ko, Hyuk Wan; Lee, Jeong-O

    2015-01-01

    We demonstrate that ZnO films grown by atomic layer deposition (ALD) can be employed as a substrate to explore the effects of electrical conductivity on cell adhesion, proliferation, and morphogenesis. ZnO substrates with precisely tunable electrical conductivity were fabricated on glass substrates using ALD deposition. The electrical conductivity of the film increased linearly with increasing duration of the ZnO deposition cycle (thickness), whereas other physical characteristics, such as surface energy and roughness, tended to saturate at a certain value. Differences in conductivity dramatically affected the behavior of SF295 glioblastoma cells grown on ZnO films, with high conductivity (thick) ZnO films causing growth arrest and producing SF295 cell morphologies distinct from those cultured on insulating substrates. Based on simple electrostatic calculations, we propose that cells grown on highly conductive substrates may strongly adhere to the substrate without focal-adhesion complex formation, owing to the enhanced electrostatic interaction between cells and the substrate. Thus, the inactivation of focal adhesions leads to cell proliferation arrest. Taken together, the work presented here confirms that substrates with high conductivity disturb the cell-substrate interaction, producing cascading effects on cellular morphogenesis and disrupting proliferation, and suggests that ALD-grown ZnO offers a single-variable method for uniquely tailoring conductivity. PMID:25897486

  17. Utilization of non-conventional systems for conversion of biomass to food components: Potential for utilization of algae in engineered foods

    NASA Technical Reports Server (NTRS)

    Karel, M.; Kamarei, A. R.; Nakhost, Z.

    1985-01-01

    The major nutritional components of the green algae (Scenedesmus obliquus) grown in a Constant Cell density Apparatus were determined. Suitable methodology to prepare proteins from which three major undesirable components of these cells (i.e., cell walls, nucleic acids, and pigments) were either removed or substantially reduced was developed. Results showed that processing of green algae to protein isolate enhances its potential nutritional and organoleptic acceptability as a diet component in a Controlled Ecological Life Support System.

  18. The effects of blood and blood products on the arachnoid cell.

    PubMed

    Hansen, Eric A; Romanova, Liudmila; Janson, Christopher; Lam, Cornelius H

    2017-06-01

    After traumatic brain injury (TBI), large amounts of red blood cells and hemolytic products are deposited intracranially creating debris in the cerebrospinal fluid (CSF). This debris, which includes heme and bilirubin, is cleared via the arachnoid granulations and lymphatic systems. However, the mechanisms by which erythrocytes and their breakdown products interfere with normal CSF dynamics remain poorly defined. The purpose of this study was to model in vitro how blood breakdown products affect arachnoid cells at the CSF-blood barrier, and the extent to which the resorption of CSF into the venous drainage system is mechanically impaired following TBI. Arachnoid cells were grown to confluency on permeable membranes. Rates of growth and apoptosis were measured in the presence of blood and lysed blood, changes in transepithelial electrical resistance (TEER) was measured in the presence of blood and hemoglobin, and small molecule permeability was determined in the presence of blood, lysed blood, bilirubin, and biliverdin. These results were directly compared with an established rat brain endothelial cell line (RBEC4) co-cultured with rat brain astrocytes. We found that arachnoid cells grown in the presence of whole or lysed erythrocytes had significantly slower growth rates than controls. Bilirubin and biliverdin, despite their low solubilities, altered the paracellular transport of arachnoid cells more than the acute blood breakdown components of whole and lysed blood. Mannitol permeability was up to four times higher in biliverdin treatments than controls, and arachnoid membranes demonstrated significantly decreased small molecule permeabilities in the presence of whole and lysed blood. We conclude that short-term (<24 h) arachnoid cell transport and long-term (>5 days) arachnoid cell viability are affected by blood and blood breakdown products, with important consequences for CSF flow and blood clearance after TBI.

  19. Adaptive Mechanisms Underlying Microbial Resistance to Disinfectants

    DTIC Science & Technology

    2016-02-01

    dilution]). A clinical surrogate, Escherichia coli , was used in these studies. E. coli cells were grown in the absence or presence of Lysol. The parent... Escherichia coli RTU strength Lysol Single nucleotide polymorphism (SNP...of Escheria coli with control sets of E.coli for physiological, biochemical, and genetic differences in an attempt to understand resistance

  20. Transgenic switchgrass ( Panicum virgatum L.) targeted for reduced recalcitrance to bioconversion: A two-year comparative analysis of field-grown lines modified for target gene or genetic element expression

    DOE PAGES

    Dumitrache, Alexandru; Natzke, Jace; Rodriguez, Jr., Miguel; ...

    2016-11-18

    Five different types of transgenic ( GAUT4, miRNA, MYB4, COMT and FPGS) Panicum virgatum L. (switchgrass) were grown in a field in Knoxville, Tenn., USA over two consecutive years between 2011 and 2015 in separate experiments. Clonal replicates were established (year-one) and produced much greater biomass during the second year. After each growing season the above ground biomass was analyzed for cell wall sugars and for recalcitrance to enzymatic digestibility, and biofuel using a separate hydrolysis and fermentation (SHF) screen. Here, each transgenic event and control had more glucan, xylan and less ethanol (g/g basis) from the second year ofmore » growth relative to the first year plants. There was no correlation between plant carbohydrate content and biofuel production. In each of cell wall-targeted transgenics, GAUT4, MYB4, COMT and FPGS, the second year of growth resulted in increased carbohydrate abundance (up to 12%) and reduced recalcitrance through higher ethanol yields (up to 21%) over the non-transgenic control plants.« less

  1. Transgenic switchgrass ( Panicum virgatum L.) targeted for reduced recalcitrance to bioconversion: A two-year comparative analysis of field-grown lines modified for target gene or genetic element expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumitrache, Alexandru; Natzke, Jace; Rodriguez, Jr., Miguel

    Five different types of transgenic ( GAUT4, miRNA, MYB4, COMT and FPGS) Panicum virgatum L. (switchgrass) were grown in a field in Knoxville, Tenn., USA over two consecutive years between 2011 and 2015 in separate experiments. Clonal replicates were established (year-one) and produced much greater biomass during the second year. After each growing season the above ground biomass was analyzed for cell wall sugars and for recalcitrance to enzymatic digestibility, and biofuel using a separate hydrolysis and fermentation (SHF) screen. Here, each transgenic event and control had more glucan, xylan and less ethanol (g/g basis) from the second year ofmore » growth relative to the first year plants. There was no correlation between plant carbohydrate content and biofuel production. In each of cell wall-targeted transgenics, GAUT4, MYB4, COMT and FPGS, the second year of growth resulted in increased carbohydrate abundance (up to 12%) and reduced recalcitrance through higher ethanol yields (up to 21%) over the non-transgenic control plants.« less

  2. Time course field analysis of COMT-downregulated switchgrass: Lignification, recalcitrance, and rust susceptibility

    DOE PAGES

    Baxter, Holly L.; Mazarei, Mitra; Fu, Chunxiang; ...

    2016-05-18

    Modifying plant cell walls by manipulating lignin biosynthesis can improve biofuel yields from lignocellulosic crops. For example, transgenic switchgrass lines with downregulated expression of caffeic acid O-methyltransferase, a lignin biosynthetic enzyme, produce up to 38% more ethanol than controls. The aim of the present study was to understand cell wall lignification over the second and third growing seasons of COMT-downregulated field-grown switchgrass. COMT gene expression, lignification, and cell wall recalcitrance were assayed for two independent transgenic lines at monthly intervals. Switchgrass rust (Puccinia emaculata) incidence was also tracked across the seasons. Trends in lignification over time differed between the 2more » years. In 2012, sampling was initiated in mid-growing season on reproductive-stage plants and there was little variation in the lignin content of all lines (COMT-downregulated and control) over time. COMT-downregulated lines maintained 11-16% less lignin, 33-40% lower S/G (syringyl-to-guaiacyl) ratios, and 15-42% higher sugar release relative to controls for all time points. In 2013, sampling was initiated earlier in the season on elongation-stage plants and the lignin content of all lines steadily increased over time, while sugar release expectedly decreased. S/G ratios increased in non-transgenic control plants as biomass accumulated over the season, while remaining relatively stable across the season in the COMT-downregulated lines. Differences in cell wall chemistry between transgenic and non-transgenic lines were not apparent until plants transitioned to reproductive growth in mid-season, after which the cell walls of COMT-downregulated plants exhibited phenotypes consistent with what was observed in 2012. There were no differences in rust damage between transgenics and controls at any time point. Finally, these results provide relevant fundamental insights into the process of lignification in a maturing field-grown biofuel feedstock with downregulated lignin biosynthesis.« less

  3. Time course field analysis of COMT-downregulated switchgrass: Lignification, recalcitrance, and rust susceptibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Holly L.; Mazarei, Mitra; Fu, Chunxiang

    Modifying plant cell walls by manipulating lignin biosynthesis can improve biofuel yields from lignocellulosic crops. For example, transgenic switchgrass lines with downregulated expression of caffeic acid O-methyltransferase, a lignin biosynthetic enzyme, produce up to 38% more ethanol than controls. The aim of the present study was to understand cell wall lignification over the second and third growing seasons of COMT-downregulated field-grown switchgrass. COMT gene expression, lignification, and cell wall recalcitrance were assayed for two independent transgenic lines at monthly intervals. Switchgrass rust (Puccinia emaculata) incidence was also tracked across the seasons. Trends in lignification over time differed between the 2more » years. In 2012, sampling was initiated in mid-growing season on reproductive-stage plants and there was little variation in the lignin content of all lines (COMT-downregulated and control) over time. COMT-downregulated lines maintained 11-16% less lignin, 33-40% lower S/G (syringyl-to-guaiacyl) ratios, and 15-42% higher sugar release relative to controls for all time points. In 2013, sampling was initiated earlier in the season on elongation-stage plants and the lignin content of all lines steadily increased over time, while sugar release expectedly decreased. S/G ratios increased in non-transgenic control plants as biomass accumulated over the season, while remaining relatively stable across the season in the COMT-downregulated lines. Differences in cell wall chemistry between transgenic and non-transgenic lines were not apparent until plants transitioned to reproductive growth in mid-season, after which the cell walls of COMT-downregulated plants exhibited phenotypes consistent with what was observed in 2012. There were no differences in rust damage between transgenics and controls at any time point. Finally, these results provide relevant fundamental insights into the process of lignification in a maturing field-grown biofuel feedstock with downregulated lignin biosynthesis.« less

  4. Gene Expression by the Sulfate-Reducing Bacterium Desulfovibrio vulgaris Hildenborough Grown on an Iron Electrode under Cathodic Protection Conditions▿ †

    PubMed Central

    Caffrey, Sean M.; Park, Hyung Soo; Been, Jenny; Gordon, Paul; Sensen, Christoph W.; Voordouw, Gerrit

    2008-01-01

    The genome sequence of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough was reanalyzed to design unique 70-mer oligonucleotide probes against 2,824 probable protein-coding regions. These included three genes not previously annotated, including one that encodes a c-type cytochrome. Using microarrays printed with these 70-mer probes, we analyzed the gene expression profile of wild-type D. vulgaris grown on cathodic hydrogen, generated at an iron electrode surface with an imposed negative potential of −1.1 V (cathodic protection conditions). The gene expression profile of cells grown on cathodic hydrogen was compared to that of cells grown with gaseous hydrogen bubbling through the culture. Relative to the latter, the electrode-grown cells overexpressed two hydrogenases, the hyn-1 genes for [NiFe] hydrogenase 1 and the hyd genes, encoding [Fe] hydrogenase. The hmc genes for the high-molecular-weight cytochrome complex, which allows electron flow from the hydrogenases across the cytoplasmic membrane, were also overexpressed. In contrast, cells grown on gaseous hydrogen overexpressed the hys genes for [NiFeSe] hydrogenase. Cells growing on the electrode also overexpressed genes encoding proteins which promote biofilm formation. Although the gene expression profiles for these two modes of growth were distinct, they were more closely related to each other than to that for cells grown in a lactate- and sulfate-containing medium. Electrochemically measured corrosion rates were lower for iron electrodes covered with hyn-1, hyd, and hmc mutant biofilms than for wild-type biofilms. This confirms the importance, suggested by the gene expression studies, of the corresponding gene products in D. vulgaris-mediated iron corrosion. PMID:18310429

  5. Aliphatic and chlorinated alkenes and epoxides as inducers of alkene monooxygenase and epoxidase activities in Xanthobacter strain Py2.

    PubMed Central

    Ensign, S A

    1996-01-01

    The inducible nature of the alkene oxidation system of Xanthobacter strain Py2 has been investigated. Cultures grown with glucose as the carbon source did not contain detectable levels of alkene monooxygenase or epoxidase, two key enzymes of alkene and epoxide metabolism. Upon addition of propylene to glucose-grown cultures, alkene monooxygenase and epoxidase activities increased and after an 11-h induction period reached levels of specific activity comparable to those in propylene-grown cells. Addition of chloramphenicol or rifampin prevented the increase in the enzyme activities. Comparison of the banding patterns of proteins present in cell extracts revealed that polypeptides with molecular masses of 43, 53, and 57 kDa accumulate in propylene-grown but not glucose-grown cells. Pulse-labeling of glucose-grown cells with [35S]methionine and [35S]cysteine revealed that the 43-, 53-, and 57-kDa proteins, as well as two additional polypeptides with molecular masses of 12 and 21 kDa, were newly synthesized upon exposure of cells to propylene or propylene oxide. The addition to glucose-grown cells of a variety of other aliphatic and chlorinated alkenes and epoxides, including ethylene, vinyl chloride (1-chloroethylene), cis- and trans-1,2-dichloroethylene, 1-chloropropylene, 1,3-dichloropropylene, 1-butylene, trans-2-butylene, isobutylene, ethylene oxide, epichlorohydrin (3-chloro-1,2-epoxypropane), 1,2-epoxybutane, cis- and trans-2,3-epoxybutane, and isobutylene oxide stimulated the synthesis of the five propylene-inducible polypeptides as well as increases in alkene monooxygenase and epoxidase activities. In contrast, acetylene, and a range of aliphatic and chlorinated alkanes, did not stimulate the synthesis of the propylene-inducible polypeptides or the increase in alkene monooxygenase and epoxidase activities. PMID:8572713

  6. Mesoporous silica nanoparticle-based substrates for cell directed delivery of Notch signalling modulators to control myoblast differentiation

    NASA Astrophysics Data System (ADS)

    Böcking, Dominique; Wiltschka, Oliver; Niinimäki, Jenni; Shokry, Hussein; Brenner, Rolf; Lindén, Mika; Sahlgren, Cecilia

    2014-01-01

    Biochemical cues are critical to control stem cell function and can be utilized to develop smart biomaterials for stem cell engineering. The challenge is to deliver these cues in a restricted manner with spatial and temporal control. Here we have developed bilayer films of mesoporous silica nanoparticles for delayed cellular delivery of Notch modulators to promote muscle stem cell differentiation. We demonstrate that drug-loaded particles are internalized from the particle-covered surface, which allows for direct delivery of the drug into the cell and a delayed and confined drug release. Substrates of particles loaded with γ-secretase-inhibitors, which block the Notch signalling pathway, promoted efficient differentiation of myoblasts. The particle substrates were fully biocompatible and did not interfere with the inherent differentiation process. We further demonstrate that impregnating commercially available, biocompatible polymer scaffolds with MSNs allows for a free standing substrate for cell directed drug delivery.Biochemical cues are critical to control stem cell function and can be utilized to develop smart biomaterials for stem cell engineering. The challenge is to deliver these cues in a restricted manner with spatial and temporal control. Here we have developed bilayer films of mesoporous silica nanoparticles for delayed cellular delivery of Notch modulators to promote muscle stem cell differentiation. We demonstrate that drug-loaded particles are internalized from the particle-covered surface, which allows for direct delivery of the drug into the cell and a delayed and confined drug release. Substrates of particles loaded with γ-secretase-inhibitors, which block the Notch signalling pathway, promoted efficient differentiation of myoblasts. The particle substrates were fully biocompatible and did not interfere with the inherent differentiation process. We further demonstrate that impregnating commercially available, biocompatible polymer scaffolds with MSNs allows for a free standing substrate for cell directed drug delivery. Electronic supplementary information (ESI) available: (1) Particle characterization. (2) Immunohistochemistry and SEM analyses of C2C12 cells grown on films for 3, 6, 24 and 72 h. Light microscopy and WST1 analyses of cells grown on cover slips and films for 6, 24 and 72 h (3) Quantification of protein levels of C2C12 cells differentiating on cover slips versus MSN films. (4) Stability of MSN films in biological solution and the influence on cell viability. (5) Cell internalization of particles from MSN films and intracellular drug release at 12 and 24 h (6) Cell internalization and intracellular DiI release of MSNs from (3Dtro®) fiber scaffolds impregnated with MSNs. See DOI: 10.1039/c3nr04022d

  7. Increase in gap-junctional intercellular communications (GJIC) of normal human dermal fibroblasts (NHDF) on surfaces coated with high-molecular-weight hyaluronic acid (HMW HA).

    PubMed

    Park, Jeong Ung; Tsuchiya, Toshie

    2002-06-15

    Normal human dermal fibroblast (NHDF) cells were used to detect differences in gap-junctional intercellular communication (GJIC) by hyaluronic acid (HA), a linear polymer built from repeating disaccharide units that consist of N-acetyl-D-glucosamine (GlcNa) and D-glucuronic acid (GlcA) linked by a beta 1-4 glycosidic bond. The NHDF cells were cultured with different molecular weights (MW) of HA for 4 days. The rates of cell attachment in dishes coated with high-molecular-weight (HMW; 310 kDa or 800 kDa) HA at 2 mg/dish were significantly reduced at an early time point compared with low-molecular-weight (LMW; 4.8 kDa or 48 kDa) HA with the same coating amounts. HA-coated surfaces were observed by atomic force microscopy (AFM) under air and showed that HA molecules ran parallel in the dish coated with LMW HA and had an aggregated island structure in the dish coated with HMW HA surfaces. The cell functions of GJIC were assayed by a scrape-loading dye transfer (SLDT) method using a dye solution of Lucifer yellow. Promotion of the dye transfer was clearly obtained in the cell monolayer grown on the surface coated with HMW HA. These results suggest that HMW HA promotes the function of GJIC in NHDF cells. In contrast, when HMW HA was added to the monolayer of NHDF cells, the functions of GJIC clearly were lowered in comparison with the cells grown in the control dish or with those grown on the surface of HMW HA. Therefore it is concluded that the MW size of HA and its application method are important factors for generating biocompatible tissue-engineered products because of the manner in which the GJIC participates in cell differentiation and cell growth rate. Copyright 2002 Wiley Periodicals, Inc. J Biomed Mater Res 60: 541-547, 2002

  8. Control of Breast Tumor Cell Growth by Dietary Indoles

    DTIC Science & Technology

    1997-09-01

    N-nitrosodimethylamine metabolites to mouse liver macromolecules. Chemico-Biol. Interactions 48, 81-90. 5. Bailey, G.S., Hendricks , J.D., Shelton...Food Chem. Toxicol. 21, 31-36. 7. Dashwood, R.H., Arbogast, D.N., Fong, A.T., Hendricks , J.D. and Bailey, G.S. (1988) Mechanisms of... penicillin , 50 units/ml streptomycin, and 2 mM L-glutamine. MDA- MB-231 cells were grown in DMEM supplemented with 10% FBS, 50 units/ml penicillin , 50

  9. Serotonin Signal Transduction in Two Groups of Autistic Patients

    DTIC Science & Technology

    2012-10-01

    as learned from the initial studies. Treat cells with escitalopram or r-citalopram and test for increased coupling between G proteins and effector...Figure 1 (top). Escitalopram translocates Gs in cells obtained from High 5HT subjects. Lymphoblasts from High 5HT/High IS or Normal 5HT/moderate IS...two lines each) were grown in suspension and treated with escitalopram or control (r-citalopram, @10 µM) for 3days, harvested and membranes were

  10. Proteomic alterations in root tips of Arabidopsis thaliana seedlings under altered gravity conditions

    NASA Astrophysics Data System (ADS)

    Zheng, H. Q.; Wang, H.

    Gravity has a profound influence on plant growth and development Removed the influence of gravitational acceleration by spaceflight caused a wide range of cellular changes in plant Whole seedling that germinated and grown on clinostats showed the absent of gravitropism At the cellular level clinostat treatment has specific effects on plant cells such as induce alterations in cell wall composition increase production of heat-soluble proteins impact on the cellular energy metabolism facilitate a uniform distribution of plastids amyloplasts and increase number and volume of nucleoli A number of recent studies have shown that the exposure of Arabidopsis seedlings and callus cells to gravity stimulation hyper g-forces or clinostat rotation induces alterations in gene expression In our previous study the proteome of the Arabidopsis thaliana callus cells were separated by high resolution two-dimensional electrophoresis 2-DE Image analysis revealed that 80 protein spots showed quantitative and qualitative variations after exposure to clinostat rotation treatment We report here a systematic proteomic approach to investigate the altered gravity responsive proteins in root tip of Arabidopsis thaliana cv Landsberg erecta Three-day-old seedlings were exposed for 12h to a horizontal clinostat rotation H simulated weightlessness altered g-forces by centrifugation 7g hypergravity a vertical clinostat rotation V clinostat control or a stationary control grown conditions Total proteins of roots were extracted

  11. Orientation and length of mammalian skeletal myocytes in response to a unidirectional stretch

    NASA Technical Reports Server (NTRS)

    Collinsworth, A. M.; Torgan, C. E.; Nagda, S. N.; Rajalingam, R. J.; Kraus, W. E.; Truskey, G. A.

    2000-01-01

    Effects of mechanical forces exerted on mammalian skeletal muscle cells during development were studied using an in vitro model to unidirectionally stretch cultured C2C12 cells grown on silastic membrane. Previous models to date have not studied these responses of the mammalian system specifically. The silastic membrane upon which these cells were grown exhibited linear strain behavior over the range of 3.6-14.6% strain, with a Poisson's ratio of approximately 0.5. To mimic murine in utero long bone growth, cell substrates were stretched at an average strain rate of 2.36%/day for 4 days or 1.77%/day for 6 days with an overall membrane strain of 9.5% and 10.6%, respectively. Both control and stretched fibers stained positively for the contractile protein, alpha-actinin, demonstrating muscle fiber development. An effect of stretch on orientation and length of myofibers was observed. At both strain rates, stretched fibers aligned at a smaller angle relative to the direction of stretch and were significantly longer compared to randomly oriented control fibers. There was no effect of duration of stretch on orientation or length, suggesting the cellular responses are independent of strain rate for the range tested. These results demonstrate that, under conditions simulating mammalian long bone growth, cultured myocytes respond to mechanical forces by lengthening and orienting along the direction of stretch.

  12. Listeria monocytogenes grown at 7° C shows reduced acid survival and an altered transcriptional response to acid shock compared to L. monocytogenes grown at 37° C.

    PubMed

    Ivy, R A; Wiedmann, M; Boor, K J

    2012-06-01

    Survival of the food-borne pathogen Listeria monocytogenes in acidic environments (e.g., in the human stomach) is vital to its transmission. Refrigerated, ready-to-eat foods have been sources of listeriosis outbreaks. The purpose of this study was to determine whether growth at a low temperature (i.e., 7°C) affects L. monocytogenes survival or gene transcription after exposure to a simulated gastric environment (i.e., acid shock at 37°C). L. monocytogenes cells grown at 7°C were less resistant to artificial gastric fluid (AGF) or acidified brain heart infusion broth (ABHI) than bacteria grown at higher temperatures (i.e., 30°C or 37°C). For L. monocytogenes grown at 7°C, stationary-phase cells were more resistant to ABHI than log-phase cells, indicating that both temperature and growth phase affect acid survival. Microarray transcriptomic analysis revealed that the number and functional categories of genes differentially expressed after acid shock differed according to both growth temperature and growth phase. The acid response of L. monocytogenes grown to log phase at 37°C involved stress-related transcriptional regulators (i.e., σ(B), σ(H), CtsR, and HrcA), some of which have been implicated in adaptation to the intracellular environment. In contrast, for bacteria grown at 7°C to stationary phase, acid exposure did not result in differential expression of the stress regulons examined. However, two large operons encoding bacteriophage-like proteins were induced, suggesting lysogenic prophage induction. The adaptive transcriptional response observed in 37°C-grown cells was largely absent in 7°C-grown cells, suggesting that temperatures commonly encountered during food storage and distribution affect the ability of L. monocytogenes to survive gastric passage and ultimately cause disease.

  13. Epitaxial Ge Solar Cells Directly Grown on Si (001) by MOCVD Using Isobutylgermane

    NASA Astrophysics Data System (ADS)

    Kim, Youngjo; Kim, Kangho; Lee, Jaejin; Kim, Chang Zoo; Kang, Ho Kwan; Park, Won-Kyu

    2018-03-01

    Epitaxial Ge layers have been grown on Si (001) substrates by metalorganic chemical vapor deposition (MOCVD) using an isobutylgermane (IBuGe) metalorganic source. Low and high temperature two-step growth and post annealing techniques are employed to overcome the lattice mismatch problem between Ge and Si. It is demonstrated that high quality Ge epitaxial layers can be grown on Si (001) by using IBuGe with surface RMS roughness of 2 nm and an estimated threading dislocation density of 4.9 × 107 cm -2. Furthermore, single-junction Ge solar cells have been directly grown on Si substrates with an in situ MOCVD growth. The epitaxial Ge p- n junction structures are investigated with transmission electron microscopy and electrochemical C- V measurements. As a result, a power conversion efficiency of 1.69% was achieved for the Ge solar cell directly grown on Si substrate under AM1.5G condition.

  14. Changes in Escherichia coli cells starved in seawater or grown in seawater-wastewater mixtures.

    PubMed Central

    Munro, P M; Gauthier, M J; Laumond, F M

    1987-01-01

    Some metabolic modifications of Escherichia coli cells during starvation in seawater were studied in laboratory microcosms. The apparent die-off of this bacterium under such conditions, as observed by comparing the enumeration of CFU in conventional freshwater media and direct epifluorescence counts, was partially prevented when cells were previously grown in salted organic medium or on seawater-wastewater agar. beta-Galactosidase activity of starved cells disappeared gradually with time, even though some other enzymatic activities, such as that of alkaline phosphatase, increased. Moreover, some modifications of sensitivity to antibiotics, heavy metals, and bacteriophages in seawater- and wastewater-grown cells suggested that the cells undergo structural changes under natural marine conditions. These results provide additional experimental data indicating the possible active adaptation of E. coli cells to seawater. PMID:3116927

  15. Production of polyhydroxybutyrate and alginate from glycerol by Azotobacter vinelandii under nitrogen-free conditions.

    PubMed

    Yoneyama, Fuminori; Yamamoto, Mayumi; Hashimoto, Wataru; Murata, Kousaku

    2015-01-01

    Glycerol is an interesting feedstock for biomaterials such as biofuels and bioplastics because of its abundance as a by-product during biodiesel production. Here we demonstrate glycerol metabolism in the nitrogen-fixing species Azotobacter vinelandii through metabolomics and nitrogen-free bacterial production of biopolymers, such as poly-d-3-hydroxybutyrate (PHB) and alginate, from glycerol. Glycerol-3-phosphate was accumulated in A. vinelandii cells grown on glycerol to the exponential phase, and its level drastically decreased in the cells grown to the stationary growth phase. A. vinelandii also overexpressed the glycerol-3-phosphate dehydrogenase gene when it was grown on glycerol. These results indicate that glycerol was first converted to glycerol-3-phosphate by glycerol kinase. Other molecules with industrial interests, such as lactic acid and amino acids including γ-aminobutyric acid, have also been accumulated in the bacterial cells grown on glycerol. Transmission electron microscopy revealed that glycerol-grown A. vinelandii stored PHB within the cells. The PHB production level reached 33% per dry cell weight in nitrogen-free glycerol medium. When grown on glycerol, alginate-overproducing mutants generated through chemical mutagenesis produced 2-fold the amount of alginate from glycerol than the parental wild-type strain. To the best of our knowledge, this is the first report on bacterial production of biopolymers from glycerol without addition of any nitrogen source.

  16. OXIDATION OF POLYCHLORINATED BIPHENYLS BY PSEUDOMONAS SP. STRAIN LB400 AND PSEUDOMONAS PSEUDOALCALIGENES KF707

    EPA Science Inventory

    Biphenyl-grown cells and cell extracts prepared from biphenyl-grown cells of Pseudomonas sp. strain LB400 oxidize a much wider range of chlorinated biphenyls than do analogous preparations from Pseudomonas pseudoalcaligenes KF707. These results are attributed to differences in th...

  17. EFFECT OF PHOSPHORUS CONCENTRATION ON THE GROWTH OF CATTAIL CALLUS CELLS

    EPA Science Inventory

    This investigation examined the growth of Typha latifolia (cattail) callus cells grown in 5 different (0, 11, 22, 33, 44, jg/L(-1) phosphosur concentrations. The cells were grown for two successive subcultures on semi-solid media, and subsequently in suspension culture with the s...

  18. Chloroplast avoidance movement is not functional in plants grown under strong sunlight.

    PubMed

    Higa, Takeshi; Wada, Masamitsu

    2016-04-01

    Chloroplast movement in nine climbing plant species was investigated. It is thought that chloroplasts generally escape from strong light to avoid photodamage but accumulate towards weak light to perform photosynthesis effectively. Unexpectedly, however, the leaves of climbing plants grown under strong sunlight showed very low or no chloroplast photorelocation responses to either weak or strong blue light when detected by red light transmittance through leaves. Direct observations of Cayratia japonica leaves, for example, revealed that the average number of chloroplasts in upper periclinal walls of palisade tissue cells was only 1.2 after weak blue-light irradiation and almost all of the chloroplasts remained at the anticlinal wall, the state of chloroplast avoidance response. The leaves grown under strong light have thin and columnar palisade tissue cells comparing with the leaves grown under low light. Depending on our analyses and our schematic model, the thinner cells in a unit leaf area have a wider total plasma membrane area, such that more chloroplasts can exist on the plasma membrane in the thinner cells than in the thicker cells in a unit leaf-area basis. The same strategy might be used in other plant leaves grown under direct sunlight. © 2015 John Wiley & Sons Ltd.

  19. Increased iron supplied through Fet3p results in replicative life span extension of Saccharomyces cerevisiae under conditions requiring respiratory metabolism.

    PubMed

    Botta, Gabriela; Turn, Christina S; Quintyne, Nicholas J; Kirchman, Paul A

    2011-10-01

    We have previously shown that copper supplementation extends the replicative life span of Saccharomyces cerevisiae when grown under conditions forcing cells to respire. We now show that copper's effect on life span is through Fet3p, a copper containing enzyme responsible for high affinity transport of iron into yeast cells. Life span extensions can also be obtained by supplementing the growth medium with 1mM ferric chloride. Extension by high iron levels is still dependent on the presence of Fet3p. Life span extension by iron or copper requires growth on media containing glycerol as the sole carbon source, which forces yeast to respire. Yeast grown on glucose containing media supplemented with iron show no extension of life span. The iron associated with cells grown in media supplemented with copper or iron is 1.4-1.8 times that of cells grown without copper or iron supplementation. As with copper supplementation, iron supplementation partially rescues the life span of superoxide dismutase mutants. Cells grown with copper supplementation display decreased production of superoxide as measured by dihydroethidium staining. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Poly(2-oxazoline) hydrogels as next generation three-dimensional cell supports

    PubMed Central

    Dargaville, Tim R; Hollier, Brett G; Shokoohmand, Ali; Hoogenboom, Richard

    2014-01-01

    Synthetic hydrogels selectively decorated with cell adhesion motifs are rapidly emerging as promising substrates for 3D cell culture. When cells are grown in 3D they experience potentially more physiologically relevant cell–cell interactions and physical cues compared with traditional 2D cell culture on stiff surfaces. A newly developed polymer based on poly(2-oxazoline)s has been used for the first time to control attachment of fibroblast cells and is discussed here for its potential use in 3D cell culture with particular focus on cancer cells toward the ultimate aim of high-throughput screening of anticancer therapies. Advantages and limitations of using poly(2-oxazoline) hydrogels are discussed and compared with more established polymers, especially polyethylene glycol (PEG). PMID:24714592

  1. Reduced Mitogenicity of Sera Following Weight Loss in Premenopausal Women

    PubMed Central

    Azrad, Maria; Chang, Pi-Ling; Gower, Barbara A.; Hunter, Gary R.; Nagy, Tim R.

    2011-01-01

    We investigated whether serum from normal weight women is less mitogenic and more apoptotic than sera from the same women in the overweight state. Sera from premenopausal women, age (mean ±SEE) 34.6±0.53 years, who were randomized to caloric restriction (CR) (n=13), CR + aerobic exercise (AE) (n=14) or CR + resistance training (RT) (n=20) were used to culture endometrial cancer cells. Phases of the cell cycle were determined, proliferating cell nuclear antigen (PCNA) positivity was used to assess proliferation and apoptosis was assessed by determining cleaved caspase-3 and poly-ADP-ribose polymerase (PARP). Analyses showed that overall, cells grown in sera from the weight-reduced state had significantly more cells in G0/G1 and significantly fewer cells in the S and G2/M phases of the cell cycle than cells grown in sera from the overweight state. PCNA staining confirmed that cells grown in sera from the weight-reduced state had fewer proliferating cells. Cleaved caspase-3 and PARP were not different in cells grown in sera from the weight-reduced state compared to the overweight state. We conclude that weight loss with or without exercise could lower the risk for cancer through changes in serum that result in reduced cellular mitogenicity. PMID:21774593

  2. Functional Maturation of Induced Pluripotent Stem Cell Hepatocytes in Extracellular Matrix—A Comparative Analysis of Bioartificial Liver Microenvironments

    PubMed Central

    Wang, Bo; Jakus, Adam E.; Baptista, Pedro M.; Soker, Shay; Soto-Gutierrez, Alejandro; Abecassis, Michael M.; Shah, Ramille N.

    2016-01-01

    Induced pluripotent stem cells (iPSCs) are new diagnostic and potentially therapeutic tools to model disease and assess the toxicity of pharmaceutical medications. A common limitation of cell lineages derived from iPSCs is a blunted phenotype compared with fully developed, endogenous cells. We examined the influence of novel three-dimensional bioartificial microenvironments on function and maturation of hepatocyte-like cells differentiated from iPSCs and grown within an acellular, liver-derived extracellular matrix (ECM) scaffold. In parallel, we also compared a bioplotted poly-l-lactic acid (PLLA) scaffold that allows for cell growth in three dimensions and formation of cell-cell contacts but is infused with type I collagen (PLLA-collagen scaffold) alone as a “deconstructed” control scaffold with narrowed biological diversity. iPSC-derived hepatocytes cultured within both scaffolds remained viable, became polarized, and formed bile canaliculi-like structures; however, cells grown within ECM scaffolds had significantly higher P450 (CYP2C9, CYP3A4, CYP1A2) mRNA levels and metabolic enzyme activity compared with iPSC hepatocytes grown in either bioplotted PLLA collagen or Matrigel sandwich control culture. Additionally, the rate of albumin synthesis approached the level of primary cryopreserved hepatocytes with lower transcription of fetal-specific genes, α-fetoprotein and CYP3A7, compared with either PLLA-collagen scaffolds or sandwich culture. These studies show that two acellular, three-dimensional culture systems increase the function of iPSC-derived hepatocytes. However, scaffolds derived from ECM alone induced further hepatocyte maturation compared with bioplotted PLLA-collagen scaffolds. This effect is likely mediated by the complex composition of ECM scaffolds in contrast to bioplotted scaffolds, suggesting their utility for in vitro hepatocyte assays or drug discovery. Significance Through the use of novel technology to develop three-dimensional (3D) scaffolds, the present study demonstrated that hepatocyte-like cells derived via induced pluripotent stem cell (iPSC) technology mature on 3D extracellular matrix scaffolds as a result of 3D matrix structure and scaffold biology. The result is an improved hepatic phenotype with increased synthetic and catalytic potency, an improvement on the blunted phenotype of iPSC-derived hepatocytes, a critical limitation of iPSC technology. These findings provide insight into the influence of 3D microenvironments on the viability, proliferation, and function of iPSC hepatocytes to yield a more mature population of cells for cell toxicity studies and disease modeling. PMID:27421950

  3. The ethyl acetate extract of Phellinus linteus grown on germinated brown rice induces G0/G1 cell cycle arrest and apoptosis in human colon carcinoma HT29 cells.

    PubMed

    Park, Hye-Jin; Choi, Se Young; Hong, Se Mi; Hwang, Sung Gu; Park, Dong Ki

    2010-07-01

    It is well known that Phellinus linteus has a variety of biological functions, such as antitumor and immunomodulating activities. In our previous studies, we developed a P. linteus grown on germinated brown rice (PBR) and found that organic solvent extracts of PBR possessed immunomodulating activity to regulate a balance of cytokine network in mice. The components of PBR are ergosterol peroxide, gamma-aminobutyric acid (GABA) and Beta-glucan. In this study, we demonstrate that an organic solvent extract of P. linteus grown on PBR induced apoptotic cell death through the induction of G(0)/G(1) arrest of cell cycle and the apoptosis via DNA fragmentation in human colon carcinoma HT-29 cells. Cell death induced by the extract of P. linteus grown on PBR was shown to be associated with the upregulation of p21(CIP1/WAF1), the downregulation of cyclin D1, anti-apoptotic protein, Bcl-2, the release of cytochrome c, and the activation of caspase-9, caspase-3 and caspase-8. This study suggests that the ethyl acetate extract of P. linteus grown on PBR induces apoptosis accompanied by cell cycle arrest at G(0)/G(1) phase and regulates apoptosis-regulatory proteins, which may be applicable to anticancer therapy.

  4. Cytoskeletal and functional changes in bioreactor assembled thyroid tissue organoids exposed to gamma radiation

    NASA Technical Reports Server (NTRS)

    Green, Lora M.; Patel, Zarana; Murray, Deborah K.; Rightnar, Steven; Burell, Cheryl G.; Gridley, Daila S.; Nelson, Gregory A.

    2002-01-01

    Fischer rat thyroid cells were grown under low-shear stress in a bioreactor to a stage of organization composed of integrated follicles resembling small thyroid glands prior to exposure to 3 Gray-gamma radiation. Bioreactor tissues and controls (both irradiated and non-irradiated) were harvested at 24, 48, 96 and 144 hours post-exposure. Tissue samples were fixed and fluorescently labeled for actin and microtubules. Tissues were assessed for changes in cytoskeletal components induced by radiation and quantified by laser scanning cytometry. ELISA's were used to quantify transforming growth factor-beta and thyroxin released from cells to the culture supernatant. Tissue architecture was disrupted by exposure to radiation with the structural organization of actin and loss of follicular content the most obviously affected. With time post-irradiation the actin appeared disordered and the levels of fluorescence associated with filamentous-actin and microtubules cycled in the tissue analogs, but not in the flask-grown cultures. Active transforming growth factor-beta was higher in supernatants from the irradiated bioreactor tissue. Thyroxin release paralleled cell survival in the bioreactors and control cultures. Thus, the engineered tissue responses to radiation differed from those of conventional tissue culture making it a potentially better mimic of the in vivo situation.

  5. Magnetic Resonance Imaging of Electrolysis.

    PubMed Central

    Meir, Arie; Hjouj, Mohammad; Rubinsky, Liel; Rubinsky, Boris

    2015-01-01

    This study explores the hypothesis that Magnetic Resonance Imaging (MRI) can image the process of electrolysis by detecting pH fronts. The study has relevance to real time control of cell ablation with electrolysis. To investigate the hypothesis we compare the following MR imaging sequences: T1 weighted, T2 weighted and Proton Density (PD), with optical images acquired using pH-sensitive dyes embedded in a physiological saline agar solution phantom treated with electrolysis and discrete measurements with a pH microprobe. We further demonstrate the biological relevance of our work using a bacterial E. Coli model, grown on the phantom. The results demonstrate the ability of MRI to image electrolysis produced pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E. Coli model grown on the phantom. The results are promising and invite further experimental research. PMID:25659942

  6. Field-grown miR156 transgenic switchgrass reproduction, yield, global gene expression analysis, and bioconfinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Chelsea R.; Millwood, Reginald J.; Tang, Yuhong

    Genetic engineering has been effective in altering cell walls for biofuel production in the bioenergy crop, switchgrass (Panicum virgatum). However, regulatory issues arising from gene flow may prevent commercialization of engineered switchgrass in the eastern United States where the species is native. And, depending on its expression level, microRNA156 (miR156) can reduce, delay, or eliminate flowering, which may serve to decrease transgene flow. Here, in this unique field study of transgenic switchgrass that was permitted to flower, two low (T14 and T35) and two medium (T27 and T37) miR156-overexpressing 'Alamo' lines with the transgene under the control of the constitutivemore » maize (Zea mays) ubiquitin 1 promoter, along with nontransgenic control plants, were grown in eastern Tennessee over two seasons.« less

  7. Field-grown miR156 transgenic switchgrass reproduction, yield, global gene expression analysis, and bioconfinement

    DOE PAGES

    Johnson, Chelsea R.; Millwood, Reginald J.; Tang, Yuhong; ...

    2017-11-30

    Genetic engineering has been effective in altering cell walls for biofuel production in the bioenergy crop, switchgrass (Panicum virgatum). However, regulatory issues arising from gene flow may prevent commercialization of engineered switchgrass in the eastern United States where the species is native. And, depending on its expression level, microRNA156 (miR156) can reduce, delay, or eliminate flowering, which may serve to decrease transgene flow. Here, in this unique field study of transgenic switchgrass that was permitted to flower, two low (T14 and T35) and two medium (T27 and T37) miR156-overexpressing 'Alamo' lines with the transgene under the control of the constitutivemore » maize (Zea mays) ubiquitin 1 promoter, along with nontransgenic control plants, were grown in eastern Tennessee over two seasons.« less

  8. Differences in Physical and Biochemical Properties of Thermus scotoductus SA-01 Cultured with Dielectric or Convection Heating.

    PubMed

    Cockrell, Allison L; Fitzgerald, Lisa A; Cusick, Kathleen D; Barlow, Daniel E; Tsoi, Stanislav D; Soto, Carissa M; Baldwin, Jeffrey W; Dale, Jason R; Morris, Robert E; Little, Brenda J; Biffinger, Justin C

    2015-09-01

    A thermophile, Thermus scotoductus SA-01, was cultured within a constant-temperature (65°C) microwave (MW) digester to determine if MW-specific effects influenced the growth and physiology of the organism. As a control, T. scotoductus cells were also cultured using convection heating at the same temperature as the MW studies. Cell growth was analyzed by optical density (OD) measurements, and cell morphologies were characterized using electron microscopy imaging (scanning electron microscopy [SEM] and transmission electron microscopy [TEM]), dynamic light scattering (DLS), and atomic force microscopy (AFM). Biophysical properties (i.e., turgor pressure) were also calculated with AFM, and biochemical compositions (i.e., proteins, nucleic acids, fatty acids) were analyzed by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Gas chromatography-mass spectrometry (GC-MS) was used to analyze the fatty acid methyl esters extracted from cell membranes. Here we report successful cultivation of a thermophile with only dielectric heating. Under the MW conditions for growth, cell walls remained intact and there were no indications of membrane damage or cell leakage. Results from these studies also demonstrated that T. scotoductus cells grown with MW heating exhibited accelerated growth rates in addition to altered cell morphologies and biochemical compositions compared with oven-grown cells. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Growth of Bacillus methanolicus in 2 M methanol at 50 °C: the effect of high methanol concentration on gene regulation of enzymes involved in formaldehyde detoxification by the ribulose monophosphate pathway.

    PubMed

    Bozdag, Ahmet; Komives, Claire; Flickinger, Michael C

    2015-07-01

    Bacillus methanolicus MGA3 is a Gram-positive aerobic methylotroph growing optimally at 50-53°C. Methylotrophy in B. methanolicus is encoded on pBM19 and by two chromosomal copies of the methanol dehydrogenase (mdh), hexulose phosphate synthase (hps) and phosphohexuloisomerase (phi) genes. However, there are no published studies on the regulation of methylotrophy or the dominant mechanism of detoxification of intracellular formaldehyde in response to high methanol concentration. The µ max of B. methanolicus MGA3 was assessed on methanol, mannitol and glucose. B. methanolicus achieved a µ max at 25 mM initial methanol of 0.65 ± 0.007 h(-1), which decreased to 0.231 ± 0.004 h(-1) at 2 M initial methanol. Slow growth was also observed with initial methanol concentrations of >2 M. The µ max on mannitol and glucose are 0.532 ± 0.002 and 0.336 ± 0.003 h(-1), respectively. Spiking cultures with additional methanol (100 mM) did not disturb the growth rate of methanol-grown cells, whereas, a 50 mM methanol spike halted the growth in mannitol. Surprisingly, growth in methanol was inhibited by 1 mM formaldehyde, while mannitol-grown cells tolerated 2 mM. Moreover, mannitol-grown cells removed formaldehyde faster than methanol-grown cells. Further, we show that methanol oxidation in B. methanolicus MGA3 is mainly carried out by the pBM19-encoded mdh. Formaldehyde and formate addition down-regulate the mdh and hps genes in methanol-grown cells. Similarly, they down-regulate mdh genes in mannitol-grown cells, but up-regulate hps. Phosphofructokinase (pfk) is up-regulated in both methanol and mannitol-grown cells, which suggests that pfk may be a possible synthetic methylotrophy target to reduce formaldehyde growth toxicity at high methanol concentrations.

  10. Hyperaccumulation of zinc by zinc-depleted Candida utilis grown in chemostat culture.

    PubMed

    Lawford, H G; Pik, J R; Lawford, G R; Williams, T; Kligerman, A

    1980-01-01

    The steady-state levels of zinc in Candida utilis yeast grown in continuous culture under conditions of zinc limitations are <1nmol Zn2+/mg dry weight of cells. Unlike carbon-limited cells, zinc-depleted cells from a zinc-limited chemostat possess the capacity to accumulate and store zinc at levels far in excess of the steady-state level of 4 nmol/mg dry biomass observed in carbon-limited chemostat cultures. Zinc uptake is energy-dependent and apparently undirectional since accumulated 65Zn neither exists from preloaded cells nor exchanges with cold Zn2+. The transport system exhibits a high affinity for Zn2+ (Km =.36micrM) with a Vmaxof 2.2 nmol per minute per milligram dry weight of cells. Growth during the period of the uptake assay is responsible for the apparent plateau level of 35 nmol Zn2+/mg dry weight of cells achieved after 20-30 min in the presence of 65Zn at pH 4.5 and 30 degrees C. Inhibition of growth during the uptake assay by cycloheximide results in a biphasic linear pattern of zinc accumulation where the cellular zinc is about 60 nmol/mg dry weight after 1 h. The enhanced level of accumulated zinc is not inhibtory to growth. Zinc-depleted C. utilis contains elevated amounts of polyphosphate and this anionic evidence does not allow discrimination between possible regulation of zinc homestasis either by inhibitions of zinc efflux through control of the membrane carrier or by control of the synthesis of a cytoplasmic zinc-sequestering macromolecule.

  11. Effects of several factors on the heat-shock-induced thermotolerance of Listeria monocytogenes.

    PubMed Central

    Pagán, R; Condón, S; Sala, F J

    1997-01-01

    The influence of the temperature at which Listeria monocytogenes had been grown (4 or 37 degrees C) on the response to heat shocks of different durations at different temperatures was investigated. For cells grown at 4 degrees C, the effect of storage, prior to and after heat shock, on the induced thermotolerance was also studied. Death kinetics of heat-shocked cells is also discussed. For L. monocytogenes grown at 37 degrees C, the greatest response to heat shock was a fourfold increase in thermotolerance. For L. monocytogenes grown at 4 degrees C, the greatest response to heat shock was a sevenfold increase in thermotolerance. The only survival curves of cells to have shoulders were those for cells that had been heat shocked. A 3% concentration of sodium chloride added to the recovery medium made these shoulders disappear and decreased decimal reduction times. The percentage of cells for which thermotolerance increased after a heat shock was smaller the milder the heat shock and the longer the prior storage. PMID:9251209

  12. Purification of a d-Mannose Isomerase from Mycobacterium smegmatis1

    PubMed Central

    Hey-Ferguson, Ann; Elbein, Alan D.

    1970-01-01

    An enzyme, d-mannose ketol isomerase, catalyzing the isomerization of d-mannose and d-fructose was purified approximately 60-fold from cells of Mycobacterium smegmatis grown on mannose as the sole carbon source. This enzyme was shown to catalyze the conversion of d-mannose and d-lyxose to ketoses. The ketose produced from mannose was identified as fructose by chemical and chromatographic methods. The reaction was shown to be reversible, the equilibrium ratio of fructose to mannose being approximately 65 to 35. The pH optimum was about 7.5, and the Km for mannose was estimated to be 7 × 10−3m. Mannose isomerase activity was greatest in cells grown on mannose, whereas cells grown on fructose had about 30% as much activity. Very low levels of activity were detected in cells grown on other substrates. There was an immediate increase in enzyme activity on transfer of cells from nutrient broth to a mannose mineral salts medium. PMID:5438047

  13. Chromosome Conformation of Human Fibroblasts Grown in 3-Dimensional Spheroids

    PubMed Central

    Chen, Haiming; Comment, Nicholas; Chen, Jie; Ronquist, Scott; Hero, Alfred; Ried, Thomas; Rajapakse, Indika

    2015-01-01

    In the study of interphase chromosome organization, genome-wide chromosome conformation capture (Hi-C) maps are often generated using 2-dimensional (2D) monolayer cultures. These 2D cells have morphological deviations from cells that exist in 3-dimensional (3D) tissues in vivo, and may not maintain the same chromosome conformation. We used Hi-C maps to test the extent of differences in chromosome conformation between human fibroblasts grown in 2D cultures and those grown in 3D spheroids. Significant differences in chromosome conformation were found between 2D cells and those grown in spheroids. Intra-chromosomal interactions were generally increased in spheroid cells, with a few exceptions, while inter-chromosomal interactions were generally decreased. Overall, chromosomes located closer to the nuclear periphery had increased intra-chromosomal contacts in spheroid cells, while those located more centrally had decreased interactions. This study highlights the necessity to conduct studies on the topography of the interphase nucleus under conditions that mimic an in vivo environment. PMID:25738643

  14. Host-Pathogen Interactions: I. A Correlation Between α-Galactosidase Production and Virulence 1

    PubMed Central

    English, Patricia D.; Albersheim, Peter

    1969-01-01

    Resistance or susceptibility of Red Kidney, Pinto and Small White beans (Phaseolus vulgaris) to the alpha, beta, and gamma strains of Colletotrichum lindemuthianum was either confirmed or established. These fungal strains secrete α-galactosidase, β-galactosidase and β-xylosidase when grown on cell walls isolated from the hypocotyls of any of the above bean varieties. These enzymes effectively degrade cell walls isolated from susceptible 5-day old hypocotyls but degrade only slightly the walls isolated from resistant 18-day old hypocotyls. The amounts of the β-galactosidase and β-xylosidase secreted by the 3 fungal strains are relatively low and are approximately equivalent. The secretion of these 2 enzymes is not dependent upon the bean variety from which the hypocotyl cell walls used as a carbon source were isolated. However, the fungal strains secrete greater amounts of α-galactosidase when grown on hypocotyl cell walls isolated from susceptible plants than when grown on walls from resistant plants. Virulent isolates of the fungus, when grown on hypocotyl cell walls isolated from a susceptible plant, secrete more α-galactosidase than do attenuated (avirulent) isolates of the same fungal strain grown under the same conditions. The α-galactosidase secreted by each of the fungal strains is capable of removing galactose from the hypocotyl cell walls of each bean variety tested. Galactose is removed from the cell walls of each variety at the same rate regardless of whether the cell walls were isolated from a susceptible or resistant plant. PMID:16657049

  15. EGY1 plays a role in regulation of endodermal plastid size and number that are involved in ethylene-dependent gravitropism of light-grown Arabidopsis hypocotyls.

    PubMed

    Guo, Di; Gao, Xiaorong; Li, Hao; Zhang, Tao; Chen, Gu; Huang, Pingbo; An, Lijia; Li, Ning

    2008-03-01

    Egy1 was isolated as an ethylene-dependent gravitropism-deficient Arabidopsis mutant. Molecular studies reveal that EGY1 gene encodes a 59-kDa plastid-targeted metalloprotease. It is actively expressed in hypocotyl tissue and targets to endodermal and cortex plastid. Its protein level is up-regulated by both ethylene and light. CAB protein accumulation and chlorophyll level is severely reduced in hypocotyls and endodermal cells, respectively. Sucrose is able to restore the severely reduced starch and lipid contents as well as the deficient endodermal plastid size found in light-grown egy1 hypocotyls yet it fails to rescue the reduced plastid number and chlorophyll level in egy1 endodermal cells. The loss-of-function egy1 mutation results in a smaller size (1.9 +/- 0.3 microm in diameter) and less number (5 +/- 1) of plastids in endodermal cells, which are nearly 50% of the wild-type. EGY1 is specially required for the development of full-size endodermal plastid in seedlings that are grown on sucrose-free media under light. It plays a direct role in controlling the light-induced chlorophyll production, grana formation and plastid replication in endodermal cell. However, it plays an indirect role in regulation of endodermal plastid size. It is likely that the ethylene-dependent gravitropism-deficient phenotype of egy1 hypocotyls may result from the smaller size and less number of endodermal plastids. Gravicurvature assays performed on ethylene-insensitive mutants, etr1-1, etr2-1, ers2-1, ein4-1 and ein2-5, have clearly demonstrated the necessary role for ethylene in vigorous gravitropism of light-grown hypocotyls. The degree of ethylene-dependent gravicurvature is positively correlated with the combined state of endodermal plastid mass and number. Neither ethylene nor EGY1-regulated full-size endodermal plastid is sufficient for promotion of vigorous hypocotyl gravitropism. Presence of 4 full-size plastids per endodermal cell together with ethylene pretreatment of hypocotyls becomes sufficient to trigger vigorous gravicurvature in light-grown seedlings. A model is therefore proposed to address the role of EGY1 in regulation of endodermal plastid size and number as well as the stimulatory effect of ethylene on hypocotyl gravitropism.

  16. Transcription attenuation is the major mechanism by which the leu operon of Salmonella typhimurium is controlled.

    PubMed

    Searles, L L; Wessler, S R; Calvo, J M

    1983-01-25

    Three mutations, each causing constitutive expression of the Salmonella typhimurium leu operon, were cloned into phage vector lambda gt4 on EcoRI DNA fragments carrying all of that operon except for part of the promoter-distal last gene. Sequence analysis of DNA from these phage demonstrated that each contains a single base change in the leu attenuator. Transcription of mutant DNA in vitro resulted in transcription beyond the usual site of termination. The level of beta-IPM dehydrogenase, the leuB enzyme, was elevated 40-fold in a strain carrying one of these mutations, and starvation of this strain for leucine had little effect on the amount of activity expressed. Using a strain with a wild-type promoter-leader region of the leu operon, the rates of synthesis and degradation of leu leader RNA and readthrough RNA (leu mRNA) were measured by DNA-RNA hybridizations with specific DNA probes. The rate of synthesis of the leu leader was about the same in cells grown with excess or with limiting leucine. On the other hand, the rate of synthesis of leu mRNA was 12-fold higher for cells grown in limiting leucine as opposed to excess leucine. The rate of degradation of these RNA species was the same under both conditions of growth. Thus, the variation in expression of the leu operon observed for cells grown in minimal medium is, for the most part, not caused by control over the frequency of initiation or by the differential stability of these RNA species. Rather, the variation is a direct result of the frequency of transcription termination at an attenuator site. These results taken together suggest that transcription attenuation is the major mechanism by which leucine regulates expression of the leu operon of S. typhimurium for cells growing in a minimal medium.

  17. Comparison of Water Management in Container-Grown Nursery Crops using Leaching Fraction or Weight-Based On Demand Irrigation Control.

    USDA-ARS?s Scientific Manuscript database

    Water management should be the foundation of container nursery production as it is linked directly to both water and nutrient uptake efficiency and ultimately, environmental impact. In this study gravimetric water management technique was used by means of load cell/computer interface to determine i...

  18. A Middleware Platform for Providing Mobile and Embedded Computing Instruction to Software Engineering Students

    ERIC Educational Resources Information Center

    Mattmann, C. A.; Medvidovic, N.; Malek, S.; Edwards, G.; Banerjee, S.

    2012-01-01

    As embedded software systems have grown in number, complexity, and importance in the modern world, a corresponding need to teach computer science students how to effectively engineer such systems has arisen. Embedded software systems, such as those that control cell phones, aircraft, and medical equipment, are subject to requirements and…

  19. Chalkbrood Transmission in the Alfalfa Leafcutting Bee: The Impact of Disinfecting Bee Cocoons in Loose Cell Management Systems

    USDA-ARS?s Scientific Manuscript database

    A good understanding of pathogen transmission in a host population should illuminate methods for disease prevention and control. A case in point for this is the alfalfa leafcutting bee (Megachile rotundata), a solitary bee which is used extensively for pollination of alfalfa grown for seed. Propaga...

  20. The novel long intergenic noncoding RNA UCC promotes colorectal cancer progression by sponging miR-143

    PubMed Central

    Huang, Feng-Ting; Chen, Wen-Ying; Gu, Zhi-Qiang; Zhuang, Yan-Yan; Li, Chu-Qiang; Wang, Ling-Yun; Peng, Juan-Fei; Zhu, Zhe; Luo, Xin; Li, Yuan-Hua; Yao, He-Rui; Zhang, Shi-Neng

    2017-01-01

    The human genome contains thousands of long intergenic noncoding RNAs (lincRNAs). However, the functional roles of these transcripts and the mechanisms responsible for their deregulation in colorectal cancer (CRC) remain elusive. A novel lincRNA termed upregulated in CRC (UCC) was found to be highly expressed in human CRC tissues and cell lines. UCC levels correlated with lymph node metastasis, Dukes’ stage, and patient outcomes. In SW480 and SW620 cells, knockdown of UCC inhibited proliferation, invasion, and cell cycle progression and induced apoptosis in vitro. Xenograft tumors grown from UCC-silenced SW620 cells had smaller mean volumes and formed more slowly than xenograft tumors grown from control cells. Inversely, overexpression of UCC in HCT116 promoted cell growth and invasion in vitro. Bioinformatics analysis, dual-luciferase reporter assays, and RNA immunoprecipitation assays showed that miR-143 can interact with UCC, and we found that UCC expression inversely correlates with miR-143 expression in CRC specimens. Moreover, mechanistic investigations showed that UCC may act as an endogenous sponge by competing for miR-143, thereby regulating the targets of this miRNA. Our results suggest that UCC and miR-143 may be promising molecular targets for CRC therapy. PMID:28492554

  1. The novel long intergenic noncoding RNA UCC promotes colorectal cancer progression by sponging miR-143.

    PubMed

    Huang, Feng-Ting; Chen, Wen-Ying; Gu, Zhi-Qiang; Zhuang, Yan-Yan; Li, Chu-Qiang; Wang, Ling-Yun; Peng, Juan-Fei; Zhu, Zhe; Luo, Xin; Li, Yuan-Hua; Yao, He-Rui; Zhang, Shi-Neng

    2017-05-11

    The human genome contains thousands of long intergenic noncoding RNAs (lincRNAs). However, the functional roles of these transcripts and the mechanisms responsible for their deregulation in colorectal cancer (CRC) remain elusive. A novel lincRNA termed upregulated in CRC (UCC) was found to be highly expressed in human CRC tissues and cell lines. UCC levels correlated with lymph node metastasis, Dukes' stage, and patient outcomes. In SW480 and SW620 cells, knockdown of UCC inhibited proliferation, invasion, and cell cycle progression and induced apoptosis in vitro. Xenograft tumors grown from UCC-silenced SW620 cells had smaller mean volumes and formed more slowly than xenograft tumors grown from control cells. Inversely, overexpression of UCC in HCT116 promoted cell growth and invasion in vitro. Bioinformatics analysis, dual-luciferase reporter assays, and RNA immunoprecipitation assays showed that miR-143 can interact with UCC, and we found that UCC expression inversely correlates with miR-143 expression in CRC specimens. Moreover, mechanistic investigations showed that UCC may act as an endogenous sponge by competing for miR-143, thereby regulating the targets of this miRNA. Our results suggest that UCC and miR-143 may be promising molecular targets for CRC therapy.

  2. Manipulation of morphology and structure of the top of GaAs nanowires grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Li, Lixia; Pan, Dong; Yu, Xuezhe; So, Hyok; Zhao, Jianhua

    2017-10-01

    Self-catalyzed GaAs nanowires (NWs) are grown on Si (111) substrates by molecular-beam epitaxy. The effect of different closing sequences of the Ga and As cell shutters on the morphology and structural phase of GaAs NWs is investigated. For the sequences of closing the Ga and As cell shutters simultaneously or closing the As cell shutter 1 min after closing the Ga cell shutter, the NWs grow vertically to the substrate surface. In contrast, when the As cell shutter is closed first, maintaining the Ga flux is found to be critical for the following growth of GaAs NWs, which can change the growth direction from [111] to < 11\\bar{1}> . The evolution of the morphology and structural phase transition at the tips of these GaAs NWs confirm that the triple-phase-line shift mode is at work even for the growth with different cell shutter closing sequences. Our work will provide new insights for better understanding of the growth mechanism and realizing of the morphology and structure control of the GaAs NWs. Project supported partly by the MOST of China (No. 2015CB921503), the National Natural Science Foundation of China (Nos. 61504133, 61334006, 61404127), and Youth Innovation Promotion Association, CAS (No. 2017156).

  3. Isolation, growth, and metabolism of an obligately anaerobic, selenate- respiring bacterium, strain SES-3

    USGS Publications Warehouse

    Oremland, R.S.; Blum, J.S.; Culbertson, C.W.; Visscher, P.T.; Miller, L.G.; Dowdle, P.; Strohmaier, F.E.

    1994-01-01

    A gram-negative, strictly anaerobic, motile vibrio was isolated from a selenate-respiring enrichment culture. The isolate, designated strain SES-3, grew by coupling the oxidation of lactate to acetate plus CO2 with the concomitant reduction of selenate to selenite or of nitrate to ammonium. No growth was observed on sulfate or selenite, but cell suspensions readily reduced selenite to elemental selenium (Se0). Hence, SES-3 can carry out a complete reduction of selenate to Se0. Washed cell suspensions of selenate- grown cells did not reduce nitrate, and nitrate-grown cells did not reduce selenate, indicating that these reductions are achieved by separate inducible enzyme systems. However, both nitrate-grown and selenate-grown cells have a constitutive ability to reduce selenite or nitrite. The oxidation of [14C]lactate to 14CO2 coupled to the reduction of selenate or nitrate by cell suspensions was inhibited by CCCP (carbonyl cyanide m- chlorophenylhydrazone), cyanide, and azide. High concentrations of selenite (5 mM) were readily reduced to Se0 by selenate-grown cells, but selenite appeared to block the synthesis of pyruvate dehydrogenase. Tracer experiments with [75Se]selenite indicated that cell suspensions could achieve a rapid and quantitative reduction of selenite to Se0. This reduction was totally inhibited by sulfite, partially inhibited by selenate or nitrite, but unaffected by sulfate or nitrate. Cell suspensions could reduce thiosulfate, but not sulfite, to sulfide. These results suggest that reduction of selenite to Se0 may proceed, in part, by some of the components of a dissimilatory system for sulfur oxyanions.

  4. Nanomaterials' Influences on the Emergence of Life and Their Toxic Effects on Bacteria and Protozoa

    NASA Astrophysics Data System (ADS)

    Mielke, Randall Edward

    This research investigates the unique properties of nanomaterials (NMs) with highly catalytic surfaces that make them ideal for the production of organic molecules but also confer toxic properties of some NMs. Iron-sulphide NMs were used in a hydrothermal reactor that released hydrogen sulphide and other metal ions in the effluent, as analyzed by inductively-coupled plasma (ICP) spectrometry. Using an environmental scanning electron microscope (ESEM), iron sulphide NM surfaces indicate severe weathering as a result of environmental conditions including high pressure (100 bar H2) and moderate temperatures (130°C). The effluent's chemical properties from the reactor experiment generated chimney structures from newly formed iron-sulphide NMs in a ferrous rich 'Hadean Ocean' solution. Using ESEM, we show that structural changes occur under different pHs, temperatures, and silicate concentrations. The presence of 5-mer peptides also shows distinct structural differences during the formation of iron-sulphide NM chimneys. Nano-titanium dioxide NMs (nTiO2) were used to show the toxicity of nTiO2 encrusted Pseudomonas aeruginosa (PA) fed to Tetrahymena thermophila (TT) protozoa under aerobic conditions. The control TT showed limited toxicity when grown in the presence of nTiO2, and scanning transmission electron microscopy (STEM) revealed the initial accumulation of nTiO2 in food vacuoles (FVs) of control TT cells that were not observed in the TT grown with nTiO2-encrusted PA. After 22 h, very little nTiO2 is observed in the control TT FVs as compared with the TT grown with nTiO2-encrusted PA FVs which had about 30% of the FV filled with nTiO2. Toxicity to nTiO2 was observed as reduced growth yields for both the control and the PA fed TT, but also as a reduction in growth rate for TT grown with nTiO2-encrusted PA. To understand biological weathering of NMs, the use of STEM energy dispersive spectroscopy (EDS) was enhanced to analyze single nano-sized particles. Contamination studies using cadmium selenide (CdSe) and cadmium telluride (CdTe) NMs with PA showed that CdSe weathering occurred in the cytoplasm while CdTe weathering predominantly occurred when associated with the PA cell wall. PA was shown to produce CdSe NMs in the cytoplasm when grown with cadmium and selenite salts as revealed by STEM-EDS. The use of STEM-EDS on embedded samples makes it possible to analyze NM structures while in their experimental location.

  5. Expression patterns of poliovirus receptor, erythrocyte protein band 4.1-like 3, regulator of g-protein signaling 11, and oxytocin receptor in mouse ovarian cells during follicle growth and early luteinization in vitro and in vivo.

    PubMed

    Segers, Ingrid; Adriaenssens, Tom; Smitz, Johan

    2012-01-01

    Poliovirus receptor (Pvr), erythrocyte protein band 4.1-like 3 (Epb4.1l3), regulator of G-protein signaling 11 (Rgs11), and oxytocin receptor (Oxtr) expression were quantified in in vitro- and in vivo-grown mouse follicles. The expression of all genes was increased during antral growth in in vitro-grown cumulus cells, whereas only Rgs11 and Oxtr were increased and Pvr and Epb4.1l3 were decreased in in vivo grown cumulus cells. In vivo mural granulosa cells showed the highest expression of Pvr, Rgs11, and Oxtr. The in vitro granulosa + theca compartment responded to human chorionic gonadotropinduring early luteinization by either an upregulation (Pvr, Oxtr) or downregulation (Epb41l3, Rgs11). Oocytes expressed Epb4.1l3, not Rgs11, and Pvr only in in vitro-grown oocytes. Translation into protein was confirmed for Epb4.1l3 in in vitro-grown follicles and in vivo-grown cumulus-oocyte complexes. Protein 4.1B was present during antral growth in cumulus, granulosa cells, and oocytes. Hypothetical functions of Epb4.1l3 and Pvr involve cell adhesion regulation and Rgs11 could be involved in cAMP production in the follicle. Oxtr is known to be important during and after the ovulatory stimulus, but, as in bovine, was also regulated during folliculogenesis. High expression of Pvr and Epb4.1l3 with culture duration in cumulus cells might mark inappropriate differentiation into a mural granulosa-like cell type and function as negative follicle development marker. Rgs11 and Oxtr are both in vivo and in vitro upregulated in cumulus cells during antral follicle growth and might be considered positive markers for follicle development.

  6. A Model for Spheroid versus Monolayer Response of SK-N-SH Neuroblastoma Cells to Treatment with 15-Deoxy-PGJ 2

    PubMed Central

    Dunham, Ann; Chen, Paula X.; Chen, Michelle; Huynh, Milan; Rheingold, Evan; Prosper, Olivia

    2016-01-01

    Researchers have observed that response of tumor cells to treatment varies depending on whether the cells are grown in monolayer, as in vitro spheroids or in vivo. This study uses data from the literature on monolayer treatment of SK-N-SH neuroblastoma cells with 15-deoxy-PGJ 2 and couples it with data on growth rates for untreated SK-N-SH neuroblastoma cells grown as multicellular spheroids. A linear model is constructed for untreated and treated monolayer data sets, which is tuned to growth, death, and cell cycle data for the monolayer case for both control and treatment with 15-deoxy-PGJ 2. The monolayer model is extended to a five-dimensional nonlinear model of in vitro tumor spheroid growth and treatment that includes compartments of the cell cycle (G 1, S, G 2/M) as well as quiescent (Q) and necrotic (N) cells. Monolayer treatment data for 15-deoxy-PGJ 2 is used to derive a prediction of spheroid response under similar treatments. For short periods of treatment, spheroid response is less pronounced than monolayer response. The simulations suggest that the difference in response to treatment of monolayer versus spheroid cultures observed in laboratory studies is a natural consequence of tumor spheroid physiology rather than any special resistance to treatment. PMID:28044089

  7. Nucleolar chromatin organization at different activities of soybean root meristematic cell nucleoli.

    PubMed

    Stępiński, Dariusz

    2013-06-01

    Nucleolar chromatin, including nucleolus-associated chromatin as well as active and inactive condensed ribosomal DNA (rDNA) chromatin, derives mostly from secondary constrictions known as nucleolus organizer regions containing rDNA genes on nucleolus-forming chromosomes. This chromatin may occupy different nucleolar positions being in various condensation states which may imply different rDNA transcriptional competence. Sections of nucleoli originating from root meristematic cells of soybean seedlings grown at 25 °C (the control), then subjected to chilling stress (10 °C), and next transferred again to 25 °C (the recovery) were used to measure profile areas occupied by nucleolar condensed chromatin disclosed with sodium hydroxide methylation-acetylation plus uranyl acetate technique. The biggest total area of condensed chromatin was found in the nucleoli of chilled plants, while the smallest was found in those of recovered plants in relation to the amounts of chromatin in the control nucleoli. The condensed nucleolar chromatin, in the form of different-sized and different-shaped clumps, was mainly located in fibrillar centers. One can suppose that changes of condensed rDNA chromatin amounts might be a mechanism controlling the number of transcriptionally active rDNA genes as the nucleoli of plants grown under these experimental conditions show different transcriptional activity and morphology.

  8. Triglycidylamine Crosslinking of Porcine Aortic Valve Cusps or Bovine Pericardium Results in Improved Biocompatibility, Biomechanics, and Calcification Resistance

    PubMed Central

    Connolly, Jeanne M.; Alferiev, Ivan; Clark-Gruel, Jocelyn N.; Eidelman, Naomi; Sacks, Michael; Palmatory, Elizabeth; Kronsteiner, Allyson; DeFelice, Suzanne; Xu, Jie; Ohri, Rachit; Narula, Navneet; Vyavahare, Narendra; Levy, Robert J.

    2005-01-01

    We investigated a novel polyepoxide crosslinker that was hypothesized to confer both material stabilization and calcification resistance when used to prepare bioprosthetic heart valves. Triglycidylamine (TGA) was synthesized via reacting epichlorhydrin and NH3. TGA was used to crosslink porcine aortic cusps, bovine pericardium, and type I collagen. Control materials were crosslinked with glutaraldehyde (Glut). TGA-pretreated materials had shrink temperatures comparable to Glut fixation. However, TGA crosslinking conferred significantly greater collagenase resistance than Glut pretreatment, and significantly improved biomechanical compliance. Sheep aortic valve interstitial cells grown on TGA-pretreated collagen did not calcify, whereas sheep aortic valve interstitial cells grown on control substrates calcified extensively. Rat subdermal implants (porcine aortic cusps/bovine pericardium) pretreated with TGA demonstrated significantly less calcification than Glut pretreated implants. Investigations of extracellular matrix proteins associated with calcification, matrix metalloproteinases (MMPs) 2 and 9, tenascin-C, and osteopontin, revealed that MMP-9 and tenascin-C demonstrated reduced expression both in vitro and in vivo with TGA crosslinking compared to controls, whereas osteopontin and MMP-2 expression were not affected. TGA pretreatment of heterograft biomaterials results in improved stability compared to Glut, confers biomechanical properties superior to Glut crosslinking, and demonstrates significant calcification resistance. PMID:15631995

  9. Influence of carbon source on cell surface topology of Thermomonospora curvata.

    PubMed Central

    Hostalka, F; Moultrie, A; Stutzenberger, F

    1992-01-01

    The appearance of cell surface protuberances in Thermomonospora curvata correlated with cell-bound exoenzymes which could be removed by brief sonication. Mycelia grown on cellulose or xylan had numerous protuberances and retained 20 to 25% of endoglucanase and endoxylanase at cell surfaces, while those grown on pectin or starch had few protuberances and negligible bound pectinase or amylase. Images PMID:1400256

  10. Ultrastructure of the root cap of Arabidopsis Thaliana L. Heynh under spaceflight conditions

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Peculiarities of the ultrastructural organization of Arabidopsis root cap cells grown from the stage of two cotyledonous leaves in the Svetoblok-1 apparatus aboard the Salyut 6 research orbital station and in the laboratory are assessed. It is established that under conditions of real space flight vacuolization of the root cap cells increses considerably compared to the control variant. Changes in the topography and ulstrastructure of amyloplasts as well as lysis of cell walls are observed in the material under study. An assumption is advanced on analogous cell responses observed at the ultrastructural level to weightlessness and clinostatic conditions.

  11. Bifunctional Alkylating Agent-Induced p53 and Nonclassical Nuclear Factor kB Responses and Cell Death are Altered by Caffeic Acid Phenethyl Ester: A Potential Role for Antioxidant/Electrophilic Response-Element Signaling

    DTIC Science & Technology

    2007-01-01

    Methods. To establish the maximal LDH 2,3,7,8-tetrachloro- activity achievable from these cells, untreated control cells were grown dibenzo-p- dioxin to the...to modulated by AhR (Miao et al., 2005). Curcumin has been induce apoptosis. CAPE may be involved in anoikis, that is, shown to compete with dioxin ...the AhR directly binds (Miao et al., 2005). adhesion kinase (Weyant et al., 2000). Also, CAPE-induced Exposure of Hepalclc7 cells to dioxin results in

  12. Scanning electron microscopic studies and growth response of the plants of Helianthus annuus L. grown on tannery sludge amended soil.

    PubMed

    Singh, Shraddha; Sinha, Sarita

    2004-05-01

    The plants of Helianthus annuus L. var. modern were grown in the soil amended with different amounts of tannery sludge (10%, 25%, 35%, 50%, 75% and 100%), collected from Wastewater Treatment Plant Jajmau, Kanpur (Uttar Pradesh, India) under field conditions. The effect of tannery sludge amendments was studied on the growth performance of the plant, i.e. root length, shoot length, leaf area and number of leaves after 30, 60 and 90 days of exposures. The root length of the plant increased up to 35% tannery sludge followed by significant (p<0.01) decrease at higher amendments, whereas the shoot length of the plant increased with increase in sludge amendment ratio at all the exposure periods, compared to their respective controls. The number of leaves and leaf area in the plants of H. annuus increased at all the amendments of tannery sludge at initial exposure periods (30 and 60 days); however, it decreased at higher sludge amendments at highest exposure period (90 days) as compared to their respective controls. The analysis of scanning electron micrographs of the leaf surface of H. annuus grown on 50% and 100% tannery sludge after 90 days showed an increase in the frequency of stomata and trichomes, closure of stomata and degeneration of certain cells in the sludge grown plants.

  13. Can genetically modified Escherichia coli with neutral buoyancy induced by gas vesicles be used as an alternative method to clinorotation for microgravity studies?

    PubMed

    Benoit, Michael; Klaus, David

    2005-01-01

    Space flight has been shown to affect various bacterial growth parameters. It is proposed that weightlessness allows the cells to remain evenly distributed, consequently altering the chemical makeup of their surrounding fluid, and hence indirectly affecting their physiological behaviour. In support of this argument, ground-based studies using clinostats to partially simulate the quiescent environment attained in microgravity have generally been successful in producing bacterial growth characteristics that mimic responses reported under actual space conditions. A novel approach for evaluating the effects of reduced cell sedimentation is presented here through use of Escherichia coli cultures genetically modified to be neutrally buoyant. Since clinorotation would not (or would only minimally) affect cell distribution of this already near-colloidal cell system, it was hypothesized that the effects on final population density would be eliminated relative to a static control. Gas-vesicle-producing E. coli cultures were grown under clinostat and static conditions and the culture densities at 60 h were compared. As a control, E. coli that do not produce gas vesicles, but were otherwise identical to the experimental strain, were also grown under clinostat and static conditions. As hypothesized, no significant difference was observed in cell populations at 60 h between the clinorotated and static gas-vesicle-producing E. coli cultures, while the cells that did not produce gas vesicles showed a mean increase in population density of 10.5 % (P = 0.001). These results further suggest that the lack of cumulative cell sedimentation is the dominant effect of space flight on non-stirred, in vitro E. coli cultures.

  14. Aerobic and anaerobic degradation of a range of alkyl sulfides by a denitrifying marine bacterium

    USGS Publications Warehouse

    Visscher, P.T.; Taylor, B.F.

    1993-01-01

    A pure culture of a bacterium was obtained from a marine microbial mat by using an anoxic medium containing dimethyl sulfide (DMS) and nitrate. The isolate grew aerobically or anaerobically as a denitrifier on alkyl sulfides, including DMS, dimethyl disulfide, diethyl sulfide (DES), ethyl methyl sulfide, dipropyl sulfide, dibutyl sulfide, and dibutyl disulfide. Cells grown on an alkyl sulfide or disulfide also oxidized the corresponding thiols, namely, methanethiol, ethanethiol, propanethiol, or butanethiol. Alkyl sulfides were metabolized by induced or derepressed cells with oxygen, nitrate, or nitrite as electron acceptor. Cells grown on DMS immediately metabolized DMS, but there was a lag before DES was consumed; with DES-grown cells, DES was immediately used but DMS was used only after a lag. Chloramphenicol prevented the eventual use of DES by DMS-grown cells and DMS use by DES-grown cells, respectively, indicating separate enzymes for the metabolism of methyl and ethyl groups. Growth was rapid on formate, acetate, propionate, and butyrate but slow on methanol. The organism also grew chemolithotrophically on thiosulfate with a decrease in pH; growth required carbonate in the medium. Growth on sulfide was also carbonate dependent but slow. The isolate was identified as a Thiobacillus sp. and designated strain ASN-1. It may have utility for removing alkyl sulfides, and also nitrate, nitrite, and sulfide, from wastewaters.

  15. Escherichia coli growth under modeled reduced gravity

    NASA Technical Reports Server (NTRS)

    Baker, Paul W.; Meyer, Michelle L.; Leff, Laura G.

    2004-01-01

    Bacteria exhibit varying responses to modeled reduced gravity that can be simulated by clino-rotation. When Escherichia coli was subjected to different rotation speeds during clino-rotation, significant differences between modeled reduced gravity and normal gravity controls were observed only at higher speeds (30-50 rpm). There was no apparent affect of removing samples on the results obtained. When E. coli was grown in minimal medium (at 40 rpm), cell size was not affected by modeled reduced gravity and there were few differences in cell numbers. However, in higher nutrient conditions (i.e., dilute nutrient broth), total cell numbers were higher and cells were smaller under reduced gravity compared to normal gravity controls. Overall, the responses to modeled reduced gravity varied with nutrient conditions; larger surface to volume ratios may help compensate for the zone of nutrient depletion around the cells under modeled reduced gravity.

  16. Effect of Levonorgestrel (NORPLANT) on the Immune Regulation of Bone Morphogenesis in Calvarial Cultures from the Laboratory Mouse (Mus muscularis).

    DTIC Science & Technology

    1995-10-01

    continually releases a synthetic progestin, levonorgestrel , for five years. In order to assess the impact of levonorgestrel on bone cells, murine calvarial...cell cultures were harvested, grown to confluence and treated with levonorgestrel , progesterone and estrogen. The majority of the cells grown in these

  17. Carboxylate metabolism in sugar beet plants grown with excess Zn.

    PubMed

    Sagardoy, R; Morales, F; Rellán-Álvarez, R; Abadía, A; Abadía, J; López-Millán, A F

    2011-05-01

    The effects of Zn excess on carboxylate metabolism were investigated in sugar beet (Beta vulgaris L.) plants grown hydroponically in a growth chamber. Root extracts of plants grown with 50 or 100μM Zn in the nutrient solution showed increases in several enzymatic activities related to organic acid metabolism, including citrate synthase and phosphoenolpyruvate carboxylase, when compared to activities in control root extracts. Root citric and malic acid concentrations increased in plants grown with 100μM Zn, but not in plants grown with 50μM Zn. In the xylem sap, plants grown with 50 and 100μM Zn showed increases in the concentrations of citrate and malate compared to the controls. Leaves of plants grown with 50 or 100μM Zn showed increases in the concentrations of citric and malic acid and in the activities of citrate synthase and fumarase. Leaf isocitrate dehydrogenase increased only in plants grown with 50μM Zn when compared to the controls. In plants grown with 300μM Zn, the only enzyme showing activity increases in root extracts was citrate synthase, whereas the activities of other enzymes decreased compared to the controls, and root citrate concentrations increased. In the 300μM Zn-grown plants, the xylem concentrations of citric and malic acids were higher than those of controls, whereas in leaf extracts the activity of fumarase increased markedly, and the leaf citric acid concentration was higher than in the controls. Based on our data, a metabolic model of the carboxylate metabolism in sugar beet plants grown under Zn excess is proposed. Copyright © 2010 Elsevier GmbH. All rights reserved.

  18. Improvement of the respiration efficiency of Lactococcus lactis by decreasing the culture pH.

    PubMed

    Shi, Weijia; Li, Yu; Gao, Xueling; Fu, Ruiyan

    2016-03-01

    The growth characteristics and intracellular hemin concentrations of Lactococcus lactis grown under different culture pH and aeration conditions were examined to investigate the effect of culture pH on the respiration efficiency of L. lactis NZ9000 (pZN8148). Cell biomass and biomass yield of L. lactis grown with 4 μg hemin/ml and O2 were higher than those without aeration when the culture pH was controlled at 5-6.5. The culture pH affected the respiratory efficiency in the following order of pH: 5 > 5.5 > 6 > 6.5; the lag phase increased as the culture pH decreased. Hemin accumulation was sensitive to culture pH. Among the four pH conditions, pH 5.5 was optimal for hemin accumulation in the cells. The highest intracellular hemin level in L. lactis resting cells incubated at different pH saline levels (5-6.5) was at pH 5.5. The respiration efficiency of L. lactis under respiration-permissive conditions increases markedly as the culture pH decreases. These results may help develop high cell-density L. lactis cultures. Thus, this microorganism may be used for industrial applications.

  19. Mode of Action Studies on a Chiral Diphenyl Ether Peroxidizing Herbicide

    PubMed Central

    Hallahan, Beverly J.; Camilleri, Patrick; Smith, Alison; Bowyer, John R.

    1992-01-01

    The nitrodiphenyl ether herbicide 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitroacetophenone oxime-O-(acetic acid, methyl ester) (DPEI) induced an abnormal accumulation of protoporphyrin IX in darkness in the green alga Chlamydomonas reinhardtii, as determined by high-performance liquid chromatography and spectrofluorimetry. It also inhibited the increase in cell density of the alga in light-grown cultures with an I50 (concentration required to decrease cell density increase to 50% of the noninhibited control value) of 0.16 μm. The relative ability of four peroxidizing diphenyl ether herbicides to cause tetrapyrrole accumulation in C. reinhardtii correlated qualitatively with their ability to inhibit the increase in cell density in light-grown cultures. The purified S(−) enantiomer of the optically active phthalide DPE 5-[2-chloro-4-(trifluoromethyl)phenoxy]-3-methylphthalide (DPEIII), which has greater herbicidal activity than the R(+) isomer, induces a 4- to 5-fold greater tetrapyrrole accumulation than the R(+) isomer. The I50 for inhibition of increase in cell density in light-grown cultures of C. reinhardtii by the S(−) isomer (0.019 μm) is less than 25% of that for the R(+) isomer. DPEIII inhibits protoporphyrinogen IX oxidase activity in pea (Pisum sativum) etioplast lysates, with the S(−) enantiomer showing considerably greater potency than the R(+) isomer and the racemic mixture showing a potency intermediate between the two. The results indicate that the site at which DPEs inhibit protoporphyrinogen IX oxidase shows chiral discrimination and provide further evidence for the link between inhibition of this enzyme, protoporphyrin IX accumulation, and the phytotoxicity of DPE herbicides. PMID:16653107

  20. The effect of growth phase and medium on the use of the firefly adenosine triphosphate (ATP) assay for the quantitation of bacteria

    NASA Technical Reports Server (NTRS)

    Bush, V. N.; Picciolo, G. L.; Chappelle, E. W.

    1975-01-01

    Luciferase assay for adenosine triphosphate (ATP) was used as a rapid method to determine the number of bacteria in a urine sample after nonbacterial components were removed. Accurate cellular ATP values, determined when bacteria were grown in an environment similar to that in which they were found, were necessary for the calculation of bacterial titer in urine. Cellular ATP values vary depending on the extraction method, the cell growth phase, and cell growth conditions. ATP per cell values of stationary E. coli grown in urine were two times greater than ATP per cell values of cells grown in trypticase soy broth. Glucose and urea were examined as possible components responsible for the cellular ATP variation.

  1. Performance Evaluation of III-V Hetero/Homojunction Esaki Tunnel Diodes on Si and Lattice Matched Substrates

    NASA Astrophysics Data System (ADS)

    Thomas, Paul M.

    Understanding of quantum tunneling phenomenon in semiconductor systems is increasingly important as CMOS replacement technologies are investigated. This work studies a variety of heterojunction materials and types to increase tunnel currents to CMOS competitive levels and to understand how integration onto Si substrates affects performance. Esaki tunnel diodes were grown by Molecular Beam Epitaxy (MBE) on Si substrates via a graded buffer and control Esaki tunnel diodes grown on lattice matched substrates for this work. Peak current density for each diode is extracted and benchmarked to build an empirical data set for predicting diode performance. Additionally, statistics are used as tool to show peak to valley ratio for the III-V on Si sample and the control perform similarly below a threshold area. This work has applications beyond logic, as multijunction solar cell, heterojunction bipolar transistor, and light emitting diode designs all benefit from better tunnel contact design.

  2. Cytochrome components of nitrate- and sulfate-respiring Desulfovibrio desulfuricans ATCC 27774.

    PubMed Central

    Liu, M C; Costa, C; Coutinho, I B; Moura, J J; Moura, I; Xavier, A V; LeGall, J

    1988-01-01

    Three multiheme c-type cytochromes--the tetraheme cytochrome c3 (molecular weight [MW] 13,500), a dodecaheme cytochrome c (MW 40,800), and a "split-Soret" cytochrome c (MW 51,540), which is a dimer with 2 hemes per subunit (MW 26,300)--were isolated from the soluble fraction of Desulfovibrio desulfuricans (ATCC 27774) grown under nitrate- or sulfate-respiring conditions. Two of them, the dodecaheme and the split-Soret cytochromes, showed no similarities to any of the c-type cytochromes isolated from other sulfate-reducing bacteria, while the tetraheme cytochrome c3 appeared to be analogous to the cytochrome c3 found in other sulfate-reducing bacteria. For all three multiheme c-type cytochromes isolated, the homologous proteins from nitrate- and sulfate-grown cells were indistinguishable in amino acid composition, physical properties, and spectroscopic characteristics. It therefore appears that the same c-type cytochrome components are present when D. desulfuricans ATCC 27774 cells are grown under either condition. This is in contrast to the considerable difference found in Pseudomonas perfectomarina (Liu et al., J. Bacteriol. 154:278-286, 1983), a marine denitrifier, when the cells are grown on nitrate or oxygen as the terminal electron acceptor. In addition, two spectroscopy methods capable of revealing minute structural variations in proteins provided identical information about the tetraheme cytochrome c3 from nitrate-grown and sulfate-grown cells. PMID:2848008

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    den Hollander, J.A.; Ugurbil, K.; Brown, T.R.

    Glucose metabolism was followed in suspensions of Saccharomyces cerevisiae by using 13C NMR and 14C radioactive labeling techniques and by Warburg manometer experiments. These experiments were performed for cells grown with various carbon sources in the growth medium, so as to evaluate the effect of catabolite repression. The rate of glucose utilization was most conveniently determined by the 13C NMR experiments, which measured the concentration of (1-13C)glucose, whereas the distribution of end products was determined from the 13C and the 14C experiments. By combining these measurements the flows into the various pathways that contribute to glucose catabolism were estimated, andmore » the effect of oxygen upon glucose catabolism was evaluated. From these measurements, the Pasteur quotient (PQ) for glucose catabolism was calculated to be 2.95 for acetate-grown cells and 1.89 for cells grown on glucose into saturation. The Warburg experiments provided an independent estimate of glucose catabolism. The PQ estimated from Warburg experiments was 2.9 for acetate-grown cells in excellent agreement with the labeled carbon experiments and 4.6 for cells grown into saturation, which did not agree. Possible explanations of these differences are discussed. From these data an estimate is obtained of the net flow through the Embden-Meyerhof-Parnas pathway. The backward flow through fructose-1,6-bisphosphatase (Fru-1,6-P2-ase) was calculated from the scrambling of the 13C label of (1-13C)glucose into the C1 and C6 positions of trehalose. Combining these data allowed us to calculate the net flux through phosphofructokinase (PFK). For acetate-grown cells we found that the relative flow through PFK is a factor of 1.7 faster anaerobically than aerobically.« less

  4. Growth Substrate- and Phase-Specific Expression of Biphenyl, Benzoate, and C1 Metabolic Pathways in Burkholderia xenovorans LB400

    PubMed Central

    Denef, V. J.; Patrauchan, M. A.; Florizone, C.; Park, J.; Tsoi, T. V.; Verstraete, W.; Tiedje, J. M.; Eltis, L. D.

    2005-01-01

    Recent microarray experiments suggested that Burkholderia xenovorans LB400, a potent polychlorinated biphenyl (PCB)-degrading bacterium, utilizes up to three apparently redundant benzoate pathways and a C1 metabolic pathway during biphenyl and benzoate metabolism. To better characterize the roles of these pathways, we performed quantitative proteome profiling of cells grown on succinate, benzoate, or biphenyl and harvested during either mid-logarithmic growth or the transition between the logarithmic and stationary growth phases. The Bph enzymes, catabolizing biphenyl, were ∼16-fold more abundant in biphenyl- versus succinate-grown cells. Moreover, the upper and lower bph pathways were independently regulated. Expression of each benzoate pathway depended on growth substrate and phase. Proteins specifying catabolism via benzoate dihydroxylation and catechol ortho-cleavage (ben-cat pathway) were approximately an order of magnitude more abundant in benzoate- versus biphenyl-grown cells at the same growth phase. The chromosomal copy of the benzoyl-coenzyme A (CoA) (boxC) pathway was also expressed during growth on biphenyl: BoxC proteins were approximately twice as abundant as Ben and Cat proteins under these conditions. By contrast, proteins of the megaplasmid copy of the benzoyl-CoA (boxM) pathway were only detected in transition-phase benzoate-grown cells. Other proteins detected at increased levels in benzoate- and biphenyl-grown cells included general stress response proteins potentially induced by reactive oxygen species formed during aerobic aromatic catabolism. Finally, C1 metabolic enzymes were present in biphenyl-grown cells during transition phase. This study provides insights into the physiological roles and integration of apparently redundant catabolic pathways in large-genome bacteria and establishes a basis for investigating the PCB-degrading abilities of this strain. PMID:16291673

  5. DNA microarray analysis of the cyanotroph Pseudomonas pseudoalcaligenes CECT5344 in response to nitrogen starvation, cyanide and a jewelry wastewater.

    PubMed

    Luque-Almagro, V M; Escribano, M P; Manso, I; Sáez, L P; Cabello, P; Moreno-Vivián, C; Roldán, M D

    2015-11-20

    Pseudomonas pseudoalcaligenes CECT5344 is an alkaliphilic bacterium that can use cyanide as nitrogen source for growth, becoming a suitable candidate to be applied in biological treatment of cyanide-containing wastewaters. The assessment of the whole genome sequence of the strain CECT5344 has allowed the generation of DNA microarrays to analyze the response to different nitrogen sources. The mRNA of P. pseudoalcaligenes CECT5344 cells grown under nitrogen limiting conditions showed considerable changes when compared against the transcripts from cells grown with ammonium; up-regulated genes were, among others, the glnK gene encoding the nitrogen regulatory protein PII, the two-component ntrBC system involved in global nitrogen regulation, and the ammonium transporter-encoding amtB gene. The protein coding transcripts of P. pseudoalcaligenes CECT5344 cells grown with sodium cyanide or an industrial jewelry wastewater that contains high concentration of cyanide and metals like iron, copper and zinc, were also compared against the transcripts of cells grown with ammonium as nitrogen source. This analysis revealed the induction by cyanide and the cyanide-rich wastewater of four nitrilase-encoding genes, including the nitC gene that is essential for cyanide assimilation, the cyanase cynS gene involved in cyanate assimilation, the cioAB genes required for the cyanide-insensitive respiration, and the ahpC gene coding for an alkyl-hydroperoxide reductase that could be related with iron homeostasis and oxidative stress. The nitC and cynS genes were also induced in cells grown under nitrogen starvation conditions. In cells grown with the jewelry wastewater, a malate quinone:oxidoreductase mqoB gene and several genes coding for metal extrusion systems were specifically induced. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Influence of in vivo growth on human glioma cell line gene expression: Convergent profiles under orthotopic conditions

    PubMed Central

    Camphausen, Kevin; Purow, Benjamin; Sproull, Mary; Scott, Tamalee; Ozawa, Tomoko; Deen, Dennis F.; Tofilon, Philip J.

    2005-01-01

    Defining the molecules that regulate tumor cell survival is an essential prerequisite for the development of targeted approaches to cancer treatment. Whereas many studies aimed at identifying such targets use human tumor cells grown in vitro or as s.c. xenografts, it is unclear whether such experimental models replicate the phenotype of the in situ tumor cell. To begin addressing this issue, we have used microarray analysis to define the gene expression profile of two human glioma cell lines (U251 and U87) when grown in vitro and in vivo as s.c. or as intracerebral (i.c.) xenografts. For each cell line, the gene expression profile generated from tissue culture was significantly different from that generated from the s.c. tumor, which was significantly different from those grown i.c. The disparity between the i.c gene expression profiles and those generated from s.c. xenografts suggests that whereas an in vivo growth environment modulates gene expression, orthotopic growth conditions induce a different set of modifications. In this study the U251 and U87 gene expression profiles generated under the three growth conditions were also compared. As expected, the profiles of the two glioma cell lines were significantly different when grown as monolayer cultures. However, the glioma cell lines had similar gene expression profiles when grown i.c. These results suggest that tumor cell gene expression, and thus phenotype, as defined in vitro is affected not only by in vivo growth but also by orthotopic growth, which may have implications regarding the identification of relevant targets for cancer therapy. PMID:15928080

  7. Simulated microgravity does not alter epithelial cell adhesion to matrix and other molecules

    NASA Technical Reports Server (NTRS)

    Jessup, J. M.; Brown, K.; Ishii, S.; Ford, R.; Goodwin, T. J.; Spaulding, G.

    1994-01-01

    Microgravity has advantages for the cultivation of tissues with high fidelity; however, tissue formation requires cellular recognition and adhesion. We tested the hypothesis that simulated microgravity does not affect cell adhesion. Human colorectal carcinoma cells were cultured in the NASA Rotating Wall Vessel (RWV) under low shear stress with randomization of the gravity vector that simulates microgravity. After 6 - 7 days, cells were assayed for binding to various substrates and compared to cells grown in standard tissue culture flasks and static suspension cultures. The RWV cultures bound as well to basement membrane proteins and to Carcinoembryonic Antigen (CEA), an intercellular adhesion molecule, as control cultures did. Thus, microgravity does not alter epithelial cell adhesion and may be useful for tissue engineering.

  8. Respiration-linked proton translocation coupled to anaerobic reduction of manganese(IV) and iron(III) in Shewanella putrefaciens MR-1.

    PubMed Central

    Myers, C R; Nealson, K H

    1990-01-01

    An oxidant pulse technique, with lactate as the electron donor, was used to study respiration-linked proton translocation in the manganese- and iron-reducing bacterium Shewanella putrefaciens MR-1. Cells grown anaerobically with fumarate or nitrate as the electron acceptor translocated protons in response to manganese (IV), fumarate, or oxygen. Cells grown anaerobically with fumarate also translocated protons in response to iron(III) and thiosulfate, whereas those grown with nitrate did not. Aerobically grown cells translocated protons only in response to oxygen. Proton translocation with all electron acceptors was abolished in the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone (20 microM) and was partially to completely inhibited by the electron transport inhibitor 2-n-heptyl-4-hydroxyquinoline N-oxide (50 microM). PMID:2172208

  9. Cell Culture in Microgravity: Opening the Door to Space Cell Biology

    NASA Technical Reports Server (NTRS)

    Pellis, Neal R.; Dawson, David L. (Technical Monitor)

    1999-01-01

    Adaptational response of human cell populations to microgravity is investigated using simulation, short-term Shuttle experiments, and long-term microgravity. Simulation consists of a clinostatically-rotated cell culture system. The system is a horizontally-rotated cylinder completely filled with culture medium. Low speed rotation results in continuous-fall of the cells through the fluid medium. In this setting, cells: 1) aggregate, 2) propagate in three dimensions, 3) synthesize matrix, 4) differentiate, and 5) form sinusoids that facilitate mass transfer. Space cell culture is conducted in flight bioreactors and in static incubators. Cells grown in microgravity are: bovine cartilage, promyelocytic leukemia, kidney proximal tubule cells, adrenal medulla, breast and colon cancer, and endothelium. Cells were cultured in space to test specific hypotheses. Cartilage cells were used to determine structural differences in cartilage grown in space compared to ground-based bioreactors. Results from a 130-day experiment on Mir revealed that cartilage grown in space was substantially more compressible due to insufficient glycosaminoglycan in the matrix. Interestingly, earth-grown cartilage conformed better to the dimensions of the scaffolding material, while the Mir specimens were spherical. The other cell populations are currently being analyzed for cell surface properties, gene expression, and differentiation. Results suggest that some cells spontaneously differentiate in microgravity. Additionally, vast changes in gene expression may occur in response to microgravity. In conclusion, the transition to microgravity may constitute a physical perturbation in cells resulting in unique gene expressions, the consequences of which may be useful in tissue engineering, disease modeling, and space cell biology.

  10. Novel instrumentation for multifield time-lapse cinemicrography.

    PubMed

    Kallman, R F; Blevins, N; Coyne, M A; Prionas, S D

    1990-04-01

    The most significant feature of the system that is described is its ability to image essentially simultaneously the growth of up to 99 single cells into macroscopic colonies, each in its own microscope field. Operationally, fields are first defined and programmed by a trained observer. All subsequent steps are automatic and under computer control. Salient features of the hardware are stepper motor-controlled movement of the stage and fine adjustment of an inverted microscope, a high-quality 16-mm cine camera with light meter and controls, and a miniature incubator in which cells may be grown under defined conditions directly on the microscope stage. This system, termed MUTLAS, necessitates reordering of the primary images by rephotographing them on fresh film. Software developed for the analysis of cell and colony growth requires frame-by-frame examination of the secondary film and the use of a mouse-driven cursor to trace microscopically visible (4X objective magnification) events.

  11. Production of deuterated switchgrass by hydroponic cultivation

    DOE PAGES

    Evans, Barbara R.; Bali, Garima; Foston, Marcus B.; ...

    2015-04-21

    Deuterium enrichment of biological materials can potential enable expanded experimental use of small angle neutron scattering (SANS) to investigate molecular structural transitions of complex systems such as plant cell walls. Two key advances have been made that facilitate cultivation of switchgrass, an important forage and biofuel crop, for controlled isotopic enrichment: (1) perfusion system with individual chambers and (2) hydroponic growth from tiller cuttings. Plants were grown and maintained for several months with periodic harvest. Photosynthetic activity was monitored by measurement of CO 2 in outflow from the growth chambers. Plant morphology and composition appeared normal compared to matched controlsmore » grown with H 2O. Using this improved method, gram quantities of switchgrass leaves and stems were produced by continuous hydroponic cultivation using growth medium consisting of basal mineral salts in 50% D 2O. Deuterium incorporation was confirmed by detection of the O-D and C-D stretching peaks with FTIR and quantified by 1H- and 2H-NMR. Lastly, this capability to produce deuterated lignocellulosic biomass under controlled conditions will enhance investigation of cell wall structure and its deconstruction by neutron scattering and NMR techniques.« less

  12. Cyclopropanation of membrane unsaturated fatty acids is not essential to the acid stress response of Lactococcus lactis subsp. cremoris.

    PubMed

    To, Thi Mai Huong; Grandvalet, Cosette; Tourdot-Maréchal, Raphaëlle

    2011-05-01

    Cyclopropane fatty acids (CFAs) are synthetized in situ by the transfer of a methylene group from S-adenosyl-L-methionine to a double bond of unsaturated fatty acid chains of membrane phospholipids. This conversion, catalyzed by the Cfa synthase enzyme, occurs in many bacteria and is recognized to play a key role in the adaptation of bacteria in response to a drastic perturbation of the environment. The role of CFAs in the acid tolerance response was investigated in the lactic acid bacterium Lactococcus lactis MG1363. A mutant of the cfa gene was constructed by allelic exchange. The cfa gene encoding the Cfa synthase was cloned and introduced into the mutant to obtain the complemented strain for homologous system studies. Data obtained by gas chromatography (GC) and GC-mass spectrometry (GC-MS) validated that the mutant could not produce CFA. The CFA levels in both the wild-type and complemented strains increased upon their entry to stationary phase, especially with acid-adapted cells or, more surprisingly, with ethanol-adapted cells. The results obtained by performing quantitative reverse transcription-PCR (qRT-PCR) experiments showed that transcription of the cfa gene was highly induced by acidity (by 10-fold with cells grown at pH 5.0) and by ethanol (by 9-fold with cells grown with 6% ethanol) in comparison with that in stationary phase. Cell viability experiments were performed after an acidic shock on the mutant strain, the wild-type strain, and the complemented strain, as a control. The higher viability level of the acid-adapted cells of the three strains after 3 h of shock proved that the cyclopropanation of unsaturated fatty acids is not essential for L. lactis subsp. cremoris survival under acidic conditions. Moreover, fluorescence anisotropy data showed that CFA itself could not maintain the membrane fluidity level, particularly with ethanol-grown cells.

  13. The rate of uptake of cardiac glycosides into human cultured cells and the effects of chloroquine on it.

    PubMed

    Algharably, N; Owler, D; Lamb, J F

    1986-10-15

    HeLa cells grown on Petri dishes were either pulse labelled with various cardiac glycosides or grown in low concentrations of them for up to 2 days; either in the presence of chloroquine or not. The cells were then homogenised and the cell free homogenate layered on a continuous sucrose gradient; and the glycoside content and that of various markers measured. In another series of experiments HeLa cells were grown on plastic beads under the above conditions and then the content of glycosides and of some marker enzymes measured. The rate of internalisation of ouabain, digoxin and digitoxin from the plasma membrane preparation produced by the bead method is at 9% hr-1, similar to the rate of loss of digoxin and digitoxin from whole cells but much faster than that of ouabain. In the sucrose gradient experiments it was found that [3H]ouabain, digoxin and digitoxin all initially co-distribute with the plasma membrane marker, 5'-nucleotidase, and then leave this fraction of the homogenate at a fast rate when kept at 37 degrees, to co-distribute with the lysosomal marker, beta-hexosaminidase. At 2 degrees the ouabain remains co-distributed with the plasma membrane marker. The rate of transfer is estimated to be some 90% hr-1, much faster than previously thought. Chloroquine causes an increased retention of digoxin and digitoxin in the lysosomal fraction of the homogenate. These results are best explained by supposing that the sodium pump-glycoside complex rapidly enters a region of the peripheral cytoplasm, and that this region then controls the subsequent exit of digoxin and digitoxin from the cell. The main barrier for ouabain occurs at a stage later than this. The consequences of this model on other aspects of pump activity is discussed.

  14. Cyclopropanation of Membrane Unsaturated Fatty Acids Is Not Essential to the Acid Stress Response of Lactococcus lactis subsp. cremoris ▿

    PubMed Central

    To, Thi Mai Huong; Grandvalet, Cosette; Tourdot-Maréchal, Raphaëlle

    2011-01-01

    Cyclopropane fatty acids (CFAs) are synthetized in situ by the transfer of a methylene group from S-adenosyl-l-methionine to a double bond of unsaturated fatty acid chains of membrane phospholipids. This conversion, catalyzed by the Cfa synthase enzyme, occurs in many bacteria and is recognized to play a key role in the adaptation of bacteria in response to a drastic perturbation of the environment. The role of CFAs in the acid tolerance response was investigated in the lactic acid bacterium Lactococcus lactis MG1363. A mutant of the cfa gene was constructed by allelic exchange. The cfa gene encoding the Cfa synthase was cloned and introduced into the mutant to obtain the complemented strain for homologous system studies. Data obtained by gas chromatography (GC) and GC-mass spectrometry (GC-MS) validated that the mutant could not produce CFA. The CFA levels in both the wild-type and complemented strains increased upon their entry to stationary phase, especially with acid-adapted cells or, more surprisingly, with ethanol-adapted cells. The results obtained by performing quantitative reverse transcription-PCR (qRT-PCR) experiments showed that transcription of the cfa gene was highly induced by acidity (by 10-fold with cells grown at pH 5.0) and by ethanol (by 9-fold with cells grown with 6% ethanol) in comparison with that in stationary phase. Cell viability experiments were performed after an acidic shock on the mutant strain, the wild-type strain, and the complemented strain, as a control. The higher viability level of the acid-adapted cells of the three strains after 3 h of shock proved that the cyclopropanation of unsaturated fatty acids is not essential for L. lactis subsp. cremoris survival under acidic conditions. Moreover, fluorescence anisotropy data showed that CFA itself could not maintain the membrane fluidity level, particularly with ethanol-grown cells. PMID:21421775

  15. Tissue grown in space in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    For 5 days on the STS-70 mission, a bioreactor cultivated human colon cancer cells, such as the culture section shown here, which grew to 30 times the volume of control specimens grown on Earth. This significant result was reproduced on STS-85 which grew mature structures that more closely match what are found in tumors in humans. The two white circles within the tumor are part of a plastic lattice that helped the cells associate. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  16. Human alveolar bone cell proliferation, expression of osteoblastic phenotype, and matrix mineralization on porous titanium produced by powder metallurgy.

    PubMed

    Rosa, Adalberto Luiz; Crippa, Grasiele Edilaine; de Oliveira, Paulo Tambasco; Taba, Mario; Lefebvre, Louis-Philippe; Beloti, Marcio Mateus

    2009-05-01

    This study aimed at investigating the influence of the porous titanium (Ti) structure on the osteogenic cell behaviour. Porous Ti discs were fabricated by the powder metallurgy process with the pore size typically between 50 and 400 microm and a porosity of 60%. Osteogenic cells obtained from human alveolar bone were cultured until subconfluence and subcultured on dense Ti (control) and porous Ti for periods of up to 17 days. Cultures grown on porous Ti exhibited increased cell proliferation and total protein content, and lower levels of alkaline phosphatase (ALP) activity than on dense Ti. In general, gene expression of osteoblastic markers-runt-related transcription factor 2, collagen type I, alkaline phosphatase, bone morphogenetic protein-7, and osteocalcin was lower at day 7 and higher at day 17 in cultures grown on porous Ti compared with dense Ti, a finding consistent with the enhanced growth rate for such cultures. The amount of mineralized matrix was greater on porous Ti compared with the dense one. These results indicate that the porous Ti is an appropriate substrate for osteogenic cell adhesion, proliferation, and production of a mineralized matrix. Because of the three-dimensional environment it provides, porous Ti should be considered an advantageous substrate for promoting desirable implant surface-bone interactions.

  17. Cell growth and protein expression of Shewanella oneidensis in biofilms and hydrogel-entrapped cultures.

    PubMed

    Zhang, Yingdan; Ng, Chun Kiat; Cohen, Yehuda; Cao, Bin

    2014-05-01

    The performance of biofilm-based bioprocesses is difficult to predict and control because of the intrinsic heterogeneous and dynamic properties of microbial biofilms. Biofilm mimics, such as microbial cells entrapped in polymeric scaffolds that are permeable for nutrients, have been proposed to replace real biofilms to achieve long-term robust performance in engineering applications. However, the physiological differences between cells that are physically entrapped in a synthetic polymeric matrix and biofilm cells that are encased in a self-produced polymeric matrix remain unknown. In this study, using Shewanella oneidensis as a model organism and alginate hydrogel as a model synthetic matrix, we compared the cell growth and protein expression in entrapped cultures and biofilms. The hydrogel-entrapped cultures were found to exhibit a growth rate comparable with biofilms. There was no substantial difference in cell viability, surface charge, as well as hydrophobicity between the cells grown in alginate hydrogel and those grown in biofilms. However, the gel-entrapped cultures were found to be physiologically different from biofilms. The gel-entrapped cultures had a higher demand for metabolic energy. The siderophore-mediated iron uptake was repressed in the gel-entrapped cells. The presence of the hydrogel matrix decreased the expression of proteins involved in biofilm formation, while inducing the production of extracellular DNA (eDNA) in the gel-entrapped cultures. These results advance the fundamental understanding of the physiology of hydrogel-entrapped cells, which can lead to more efficient biofilm mimic-based applications.

  18. Nanofibrous substrates support colony formation and maintain stemness of human embryonic stem cells

    PubMed Central

    Gauthaman, Kalamegam; Venugopal, Jayarama Reddy; Yee, Fong Chui; Peh, Gary Swee Lim; Ramakrishna, Seeram; Bongso, Ariff

    2009-01-01

    Inadequate cell numbers in culture is one of the hurdles currently delaying the application of human embryonic stem cells (hESCs) for transplantation therapy. Nanofibrous scaffolds have been effectively used to expand and differentiate non-colony forming multipotent mesenchymal stem cells (MSC) for the repair of tissues or organs. In the present study, we evaluated the influence of nanofibrous scaffolds for hESC proliferation, increase in colony formation, self-renewal properties, undifferentiation and retention of ‘stemness’. Polycaprolactone/collagen (PCL/collagen) and PCL/gelatin nanofibrous scaffolds were fabricated using electrospinning technology. The hESCs were seeded on the nanofibrous scaffolds in the presence or absence of mitomycin-C treated mouse embryonic fibroblasts (MEFs). The hESCs grown on both scaffolds in the presence of the MEFs produced an increase in cell growth of 47.58% (P≤ 0.006) and 40.18% (P≤ 0.005), respectively, over conventional controls of hESCs on MEFs alone. The hESC colonies were also larger in diameter on the scaffolds compared to controls (PCL/collagen, 156.25 ± 7 μM and PCL/gelatin, 135.42 ± 5 μM). Immunohistochemistry of the hESCs grown on the nanofibrous scaffolds with MEFs, demonstrated positive staining for the various stemness-related markers (octamer 4 [OCT-4], tumour rejection antigen-1–60, GCTM-2 and TG-30), and semi-quantitative RT-PCR for the pluripotent stemness genomic markers (NANOG, SOX-2, OCT-4) showed that they were also highly expressed. Continued successful propagation of hESC colonies from nanofibrous scaffolds back to conventional culture on MEFs was also possible. Nanofibrous scaffolds support hESC expansion in an undifferentiated state with retention of stemness characteristics thus having tremendous potential in scaling up cell numbers for transplantation therapy. PMID:19228268

  19. Perfluorocarbon-Loaded Lipid Nanocapsules to Assess the Dependence of U87-Human Glioblastoma Tumor pO2 on In Vitro Expansion Conditions

    PubMed Central

    Lemaire, Laurent; Nel, Janske; Franconi, Florence; Bastiat, Guillaume; Saulnier, Patrick

    2016-01-01

    Growing tumor cell lines, such as U87-MG glioma cells, under mild hypoxia (3% O2) leads to a ca. 40% reduction in growth rate once implanted in the brain of nude mice, as compared to normoxia (21% O2) grown cells, wherein the former over-express HIF-1 and VEGF-A. Despite developing differently, the tumors have similar: blood perfusion, oxygen consumption, and vascular surface area parameters, whereas the number of blood vessels is nearly doubled in the tumor arising from normoxia cultured cells. Interestingly, tumor oxygen tension, measured using 19F-oximetry, showed that the normoxia grown cells led to tumors characterized by mild hypoxic environment (approximately 4%) conditions, whilst the hypoxia grown cells led to tumors characterized by physioxic environment (approximately 6%) conditions. This reversal in oxygen concentration may be responsible for the apparent paradoxical growth profiles. PMID:27788227

  20. Methods for imaging Shewanella oneidensis MR-1 nanofilaments.

    PubMed

    Ray, R; Lizewski, S; Fitzgerald, L A; Little, B; Ringeisen, B R

    2010-08-01

    Nanofilament production by Shewanella oneidensis MR-1 was evaluated as a function of lifestyle (planktonic vs. sessile) under aerobic and anaerobic conditions using different sample preparation techniques prior to imaging with scanning electron microscopy. Nanofilaments could be imaged on MR-1 cells grown in biofilms or planktonically under both aerobic and anaerobic batch culture conditions after fixation, critical point drying and coating with a conductive metal. Critical point drying was a requirement for imaging nanofilaments attached to planktonically grown MR-1 cells, but not for cells grown in a biofilm. Techniques described in this paper cannot be used to differentiate nanowires from pili or flagella.

  1. Role of L-lysine-alpha-ketoglutarate aminotransferase in catabolism of lysine as a nitrogen source for Rhodotorula glutinis.

    PubMed Central

    Kinzel, J J; Winston, M K; Bhattacharjee, J K

    1983-01-01

    Wild-type and saccharopine dehydrogenaseless mutant strains of Rhodotorula glutinis grew in minimal medium containing lysine as the sole nitrogen source and simultaneously accumulated, in the culture supernatant, large amounts of a product identified as alpha-aminoadipic-delta-semialdehyde. The saccharopine dehydrogenase and pipecolic acid oxidase levels remained unchanged in wild-type cells grown in the presence of ammonium or lysine as the nitrogen source. Lysine-alpha-ketoglutarate aminotransferase activity was demonstrated in ammonium-grown cells. This activity was depressed in cells grown in the presence of lysine as the sole source of nitrogen. PMID:6408065

  2. Heterologous expression of a rice metallothionein isoform (OsMTI-1b) in Saccharomyces cerevisiae enhances cadmium, hydrogen peroxide and ethanol tolerance.

    PubMed

    Ansarypour, Zahra; Shahpiri, Azar

    Metallothioneins are a superfamily of low-molecular-weight, cysteine (Cys)-rich proteins that are believed to play important roles in protection against metal toxicity and oxidative stress. The main purpose of this study was to investigate the effect of heterologous expression of a rice metallothionein isoform (OsMTI-1b) on the tolerance of Saccharomyces cerevisiae to Cd 2+ , H 2 O 2 and ethanol stress. The gene encoding OsMTI-1b was cloned into p426GPD as a yeast expression vector. The new construct was transformed to competent cells of S. cerevisiae. After verification of heterologous expression of OsMTI-1b, the new strain and control were grown under stress conditions. In comparison to control strain, the transformed S. cerevisiae cells expressing OsMTI-1b showed more tolerance to Cd 2+ and accumulated more Cd 2+ ions when they were grown in the medium containing CdCl 2 . In addition, the heterologous expression of GST-OsMTI-1b conferred H 2 O 2 and ethanol tolerance to S. cerevisiae cells. The results indicate that heterologous expression of plant MT isoforms can enhance the tolerance of S. cerevisiae to multiple stresses. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  3. Effect of Selenate on Viability and Selenomethionine Accumulation of Chlorella sorokiniana Grown in Batch Culture

    PubMed Central

    Vílchez, Carlos; Torronteras, Rafael; Vigara, Javier; Gómez-Jacinto, Veronica; Janzer, Nora; Gómez-Ariza, José-Luis; Márová, Ivana

    2014-01-01

    The aim of this work was to study the effect of Se(+VI) on viability, cell morphology, and selenomethionine accumulation of the green alga Chlorella sorokiniana grown in batch cultures. Culture exposed to sublethal Se concentrations of 40 mg·L−1 (212 μM) decreased growth rates for about 25% compared to control. A selenate EC50 value of 45 mg·L−1 (238.2 μM) was determined. Results showed that chlorophyll and carotenoids contents were not affected by Se exposure, while oxygen evolution decreased by half. Ultrastructural studies revealed granular stroma, fingerprint-like appearance of thylakoids which did not compromise cell activity. Unlike control cultures, SDS PAGE electrophoresis of crude extracts from selenate-exposed cell cultures revealed appearance of a protein band identified as 53 kDa Rubisco large subunit of Chlorella sorokiniana, suggesting that selenate affects expression of the corresponding chloroplast gene as this subunit is encoded in the chloroplast DNA. Results revealed that the microalga was able to accumulate up to 140 mg·kg−1 of SeMet in 120 h of cultivation. This paper shows that Chlorella sorokiniana biomass can be enriched in the high value aminoacid SeMet in batch cultures, while keeping photochemical viability and carbon dioxide fixation activity intact, if exposed to suitable sublethal concentrations of Se. PMID:24688385

  4. Multilayer-Grown Ultrathin Nanostructured GaAs Solar Cells as a Cost-Competitive Materials Platform for III-V Photovoltaics.

    PubMed

    Gai, Boju; Sun, Yukun; Lim, Haneol; Chen, Huandong; Faucher, Joseph; Lee, Minjoo L; Yoon, Jongseung

    2017-01-24

    Large-scale deployment of GaAs solar cells in terrestrial photovoltaics demands significant cost reduction for preparing device-quality epitaxial materials. Although multilayer epitaxial growth in conjunction with printing-based materials assemblies has been proposed as a promising route to achieve this goal, their practical implementation remains challenging owing to the degradation of materials properties and resulting nonuniform device performance between solar cells grown in different sequences. Here we report an alternative approach to circumvent these limitations and enable multilayer-grown GaAs solar cells with uniform photovoltaic performance. Ultrathin single-junction GaAs solar cells having a 300-nm-thick absorber (i.e., emitter and base) are epitaxially grown in triple-stack releasable multilayer assemblies by molecular beam epitaxy using beryllium as a p-type impurity. Microscale (∼500 × 500 μm 2 ) GaAs solar cells fabricated from respective device layers exhibit excellent uniformity (<3% relative) of photovoltaic performance and contact properties owing to the suppressed diffusion of p-type dopant as well as substantially reduced time of epitaxial growth associated with ultrathin device configuration. Bifacial photon management employing hexagonally periodic TiO 2 nanoposts and a vertical p-type metal contact serving as a metallic back-surface reflector together with specialized epitaxial design to minimize parasitic optical losses for efficient light trapping synergistically enable significantly enhanced photovoltaic performance of such ultrathin absorbers, where ∼17.2% solar-to-electric power conversion efficiency under simulated AM1.5G illumination is demonstrated from 420-nm-thick single-junction GaAs solar cells grown in triple-stack epitaxial assemblies.

  5. Palisade cell shape affects the light-induced chloroplast movements and leaf photosynthesis.

    PubMed

    Gotoh, Eiji; Suetsugu, Noriyuki; Higa, Takeshi; Matsushita, Tomonao; Tsukaya, Hirokazu; Wada, Masamitsu

    2018-01-24

    Leaf photosynthesis is regulated by multiple factors that help the plant to adapt to fluctuating light conditions. Leaves of sun-light-grown plants are thicker and contain more columnar palisade cells than those of shade-grown plants. Light-induced chloroplast movements are also essential for efficient leaf photosynthesis and facilitate efficient light utilization in leaf cells. Previous studies have demonstrated that leaves of most of the sun-grown plants exhibited no or very weak chloroplast movements and could accomplish efficient photosynthesis under strong light. To examine the relationship between palisade cell shape, chloroplast movement and distribution, and leaf photosynthesis, we used an Arabidopsis thaliana mutant, angustifolia (an), which has thick leaves that contain columnar palisade cells similar to those in the sun-grown plants. In the highly columnar cells of an mutant leaves, chloroplast movements were restricted. Nevertheless, under white light condition (at 120 µmol m -2 s -1 ), the an mutant plants showed higher chlorophyll content per unit leaf area and, thus, higher light absorption by the leaves than the wild type, which resulted in enhanced photosynthesis per unit leaf area. Our findings indicate that coordinated regulation of leaf cell shape and chloroplast movement according to the light conditions is pivotal for efficient leaf photosynthesis.

  6. Applications of novel effects derived from Si ingot growth inside Si melt without contact with crucible wall using noncontact crucible method to high-efficiency solar cells

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuo; Ono, Satoshi; Kaneko, Yuzuru; Murai, Ryota; Shirasawa, Katsuhiko; Fukuda, Tetsuo; Takato, Hidetaka; Jensen, Mallory A.; Youssef, Amanda; Looney, Erin E.; Buonassisi, Tonio; Martel, Benoit; Dubois, Sèbastien; Jouini, Anis

    2017-06-01

    The noncontact crucible (NOC) method was proposed for obtaining Si single bulk crystals with a large diameter and volume using a cast furnace and solar cells with high conversion efficiency and yield. This method has several novel characteristics that originate from its key feature that ingots can be grown inside a Si melt without contact with a crucible wall. Si ingots for solar cells were grown by utilizing the merits resulting from these characteristics. Single ingots with high quality were grown by the NOC method after furnace cleaning, and the minority carrier lifetime was measured to investigate reduction of the number of impurities. A p-type ingot with a convex growth interface in the growth direction was also grown after furnace cleaning. For p-type solar cells prepared using wafers cut from the ingot, the highest and average conversion efficiencies were 19.14% and 19.0%, respectively, which were obtained using the same solar cell structure and process as those employed to obtain a conversion efficiency of 19.1% for a p-type Czochralski (CZ) wafer. Using the cast furnace, solar cells with a conversion efficiency and yield as high as those of CZ solar cells were obtained by the NOC method.

  7. Control of ingot quality and solar cell appearance of cast mono-like silicon by using seed partitions

    NASA Astrophysics Data System (ADS)

    Lan, C. Y.; Wu, Y. C.; Lan, A.; Yang, C. F.; Hsu, C.; Lu, C. M.; Yang, A.; Lan, C. W.

    2017-10-01

    The growth of mono-like ingot by directional solidification has suffered serious problems in defect control. We proposed a simple approach by using seed partitions, and the grown crystal had much lower defects and better orientation uniformity. Furthermore, the partitions allowed the much easier seed preparation, which had a significant advantage in production. The concept was demonstrated by a G1 experiment, and the detailed defect analyses were carried out. The wafers after gettering had the best lifetime of more than 1 ms after surface passivation. The color mismatch in the appearance of the solar cells made from the wafer was also significantly mitigated.

  8. ZnO nanotube waveguide arrays on graphene films for local optical excitation on biological cells

    NASA Astrophysics Data System (ADS)

    Baek, Hyeonjun; Kwak, Hankyul; Song, Minho S.; Ha, Go Eun; Park, Jongwoo; Tchoe, Youngbin; Hyun, Jerome K.; Park, Hye Yoon; Cheong, Eunji; Yi, Gyu-Chul

    2017-04-01

    We report on scalable and position-controlled optical nanoprobe arrays using ZnO nanotube waveguides on graphene films for use in local optical excitation. For the waveguide fabrication, position-controlled and well-ordered ZnO nanotube arrays were grown on chemical vapor deposited graphene films with a submicron patterned mask layer and Au prepared between the interspace of nanotubes. Mammalian cells were cultured on the nanotube waveguide arrays and were locally excited by light illuminated through the nanotubes. Fluorescence and optogenetic signals could be excited through the optical nanoprobes. This method offers the ability to investigate cellular behavior with a high spatial resolution that surpasses the current limitation.

  9. Quantification of confocal images of biofilms grown on irregular surfaces

    PubMed Central

    Ross, Stacy Sommerfeld; Tu, Mai Han; Falsetta, Megan L.; Ketterer, Margaret R.; Kiedrowski, Megan R.; Horswill, Alexander R.; Apicella, Michael A.; Reinhardt, Joseph M.; Fiegel, Jennifer

    2014-01-01

    Bacterial biofilms grow on many types of surfaces, including flat surfaces such as glass and metal and irregular surfaces such as rocks, biological tissues and polymers. While laser scanning confocal microscopy can provide high-resolution images of biofilms grown on any surface, quantification of biofilm-associated bacteria is currently limited to bacteria grown on flat surfaces. This can limit researchers studying irregular surfaces to qualitative analysis or quantification of only the total bacteria in an image. In this work, we introduce a new algorithm called modified connected volume filtration (MCVF) to quantify bacteria grown on top of an irregular surface that is fluorescently labeled or reflective. Using the MCVF algorithm, two new quantification parameters are introduced. The modified substratum coverage parameter enables quantification of the connected-biofilm bacteria on top of the surface and on the imaging substratum. The utility of MCVF and the modified substratum coverage parameter were shown with Pseudomonas aeruginosa and Staphylococcus aureus biofilms grown on human airway epithelial cells. A second parameter, the percent association, provides quantified data on the colocalization of the bacteria with a labeled component, including bacteria within a labeled tissue. The utility of quantifying the bacteria associated with the cell cytoplasm was demonstrated with Neisseria gonorrhoeae biofilms grown on cervical epithelial cells. This algorithm provides more flexibility and quantitative ability to researchers studying biofilms grown on a variety of irregular substrata. PMID:24632515

  10. Quiescence of human muscle stem cells is favored by culture on natural biopolymeric films.

    PubMed

    Monge, Claire; DiStasio, Nicholas; Rossi, Thomas; Sébastien, Muriel; Sakai, Hiroshi; Kalman, Benoit; Boudou, Thomas; Tajbakhsh, Shahragim; Marty, Isabelle; Bigot, Anne; Mouly, Vincent; Picart, Catherine

    2017-05-02

    Satellite cells are quiescent resident muscle stem cells that present an important potential to regenerate damaged tissue. However, this potential is diminished once they are removed from their niche environment in vivo, prohibiting the long-term study and genetic investigation of these cells. This study therefore aimed to provide a novel biomaterial platform for the in-vitro culture of human satellite cells that maintains their stem-like quiescent state, an important step for cell therapeutic studies. Human muscle satellite cells were isolated from two donors and cultured on soft biopolymeric films of controlled stiffness. Cell adhesive phenotype, maintenance of satellite cell quiescence and capacity for gene manipulation were investigated using FACS, western blotting, fluorescence microscopy and electron microscopy. About 85% of satellite cells cultured in vitro on soft biopolymer films for 3 days maintained expression of the quiescence marker Pax7, as compared with 60% on stiffer films and 50% on tissue culture plastic. The soft biopolymeric films allowed satellite cell culture for up to 6 days without renewing the media. These cells retained their stem-like properties, as evidenced by the expression of stem cell markers and reduced expression of differentiated markers. In addition, 95% of cells grown on these soft biopolymeric films were in the G0/G1 stage of the cell cycle, as opposed to those grown on plastic that became activated and began to proliferate and differentiate. Our study identifies a new biomaterial made of a biopolymer thin film for the maintenance of the quiescence state of muscle satellite cells. These cells could be activated at any point simply by replating them onto a plastic culture dish. Furthermore, these cells could be genetically manipulated by viral transduction, showing that this biomaterial may be further used for therapeutic strategies.

  11. Automorphogenesis and gravitropism of plant seedlings grown under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Hoson, T.; Saiki, M.; Kamisaka, S.; Yamashita, M.

    Plant seedlings exhibit automorphogenesis on clinostats. The occurrence of automorphogenesis was confirmed under microgravity in Space Shuttle STS-95 flight. Rice coleoptiles showed an inclination toward the caryopsis in the basal region and a spontaneous curvature in the same adaxial direction in the elongating region both on a three-dimensional (3-D) clinostat and in space. Both rice roots and Arabidopsis hypocotyls also showed a similar morphology in space and on the 3-D clinostat. In rice coleoptiles, the mechanisms inducing such an automorphic curvature were studied. The faster-expanding convex side of rice coleoptiles showed a higher extensibility of the cell wall than the opposite side. Also, in the convex side, the cell wall thickness was smaller, the turnover of the matrix polysaccharides was more active, and the microtubules oriented more transversely than the concave side, and these differences appear to be causes of the curvature. When rice coleoptiles grown on the 3-D clinostat were placed horizontally, the gravitropic curvature was delayed as compared with control coleoptiles. In clinostatted coleoptiles, the corresponding suppression of the amyloplast development was also observed. Similar results were obtained in Arabidopsis hypocotyls. Thus, the induction of automorphogenesis and a concomitant decrease in graviresponsiveness occurred in plant shoots grown under microgravity conditions.

  12. Effect of carbon source on the accumulation of cytochrome P-450 in the yeast Saccharomyces cerevisiae.

    PubMed

    Kärenlampi, S O; Marin, E; Hänninen, O O

    1981-02-15

    The appearance of cytochrome P-450 in the yeast Saccharomyces cerevisiae depended on the substrate supporting growth. Cytochrome P-450 was apparent in yeast cells grown on a strongly fermentable sugar such as D-glucose, D-fructose or sucrose. When yeast was grown on D-galactose, D-mannose or maltose, where fermentation and respiration occurred concomitantly, cytochrome P-450 was also formed. The cytochrome P-450 concentration was maximal at the beginning of the stationary phase of the culture. Thereafter the concentration decreased, reaching zero at a late-stationary phase. When the yeast was grown on a medium that contained lactose or pentoses (L-arabinose, L-rhamnose, D-ribose and D-xylose), cytochrome P-450 did not occur. When a non-fermentable energy source (glycerol, lactate or ethanol) was used, no cytochrome P-450 was detectable. Transfer of cells from D-glucose medium to ethanol medium caused a slow disappearance of cytochrome P-450, although the amount of the haemoprotein still continued to increase in the control cultures. Cytochrome P-450 appeared thus to accumulate in conditions where the rate of growth was fast and fermentation occurred. Occurrence of this haemoprotein is not necessarily linked, however, with the repression of mitochondrial haemoprotein synthesis.

  13. High performance microbiological transformation of L-tyrosine to L-dopa by Yarrowia lipolytica NRRL-143

    PubMed Central

    Ali, Sikander; Shultz, Jeffry L; Ikram-ul-Haq

    2007-01-01

    Background The 3,4-dihydroxy phenyl L-alanine (L-dopa) is a drug of choice for Parkinson's disease, controlling changes in energy metabolism enzymes of the myocardium following neurogenic injury. Aspergillus oryzae is commonly used for L-dopa production; however, potential improvements in ease of handling, growth rate and environmental impact have led to an interest in exploiting alternative yeasts. The two important elements required for L-dopa production are intracellular tyrosinases (thus pre-grown yeast cells are required for the transformation of L-tyrosine to L-dopa) and L-ascorbate, which acts as a reducing agent. Results Pre-grown cells of Yarrowia lipolytica NRRL-143 were used for the microbiological transformation of L-tyrosine to L-dopa. Different diatomite concentrations (0.5–3.0 mg/ml) were added to the acidic (pH 3.5) reaction mixture. Maximum L-dopa biosynthesis (2.96 mg/ml L-dopa from 2.68 mg/ml L-tyrosine) was obtained when 2.0 mg/ml diatomite was added 15 min after the start of the reaction. After optimizing reaction time (30 min), and yeast cell concentration (2.5 mg/ml), an overall 12.5 fold higher L-dopa production rate was observed when compared to the control. Significant enhancements in Yp/s, Qs and qs over the control were observed. Conclusion Diatomite (2.0 mg/ml) addition 15 min after reaction commencement improved microbiological transformation of L-tyrosine to L-dopa (3.48 mg/ml; p ≤ 0.05) by Y. lipolytica NRRL-143. A 35% higher substrate conversion rate was achieved when compared to the control. PMID:17705832

  14. Hypergravity Stimulates the Extracellular Matrix/Integrin-Signaling Axis and Proliferation in Primary Osteoblasts

    NASA Technical Reports Server (NTRS)

    Parra, M.; Vercoutere, W.; Roden, C.; Banerjee, I.; Krauser, W.; Holton, E.; Searby, N.; Globus, R.; Almeida, E.

    2003-01-01

    We set out to determine the molecular mechanisms involved in the proliferative response of primary rat osteoblasts to mechanical stimulation using cell culture centrifugation as a model for hypergravity. We hypothesized that this proliferative response is mediated by specific integrin/Extracellular Matrix (ECM) interactions. To investigate this question we developed a cell culture centrifuge and an automated system that performs cell fixation during hypergravity loading. We generated expression vectors for various focal adhesion and cytoskeletal proteins fused to GFP or dsRed and visualized these structures in transfected (or infected) osteoblasts. The actin cytoskeleton was also visualized using rhodamine-phalloidin staining and Focal Adhesion Kinase (FAK) levels were assessed biochemically. We observed that a 24 hour exposure to 50-g stimulated proliferation compared to the 1-g control when cells were plated on fibronectin, collagen Type I , and collagen Type IV, but not on uncoated tissue culture plastic surfaces. This proliferative response was greatest for osteoblasts grown on fibronectin (2-fold increase over 1-g control) and collagen Type I (1.4 fold increase over 1-g control), suggesting that specific matrices and integrins are involved in the signaling pathways required for proliferation. Exposing osteoblasts grown on different matrices to 10-g or 25-g showed that effects on proliferation depended on both matrix type and loading level. We found that osteoblasts exposed to a short pulse of hypergravity during adhesion spread further and had more GFP-FAK containing focal adhesions compared to their 1-g controls. While overall levels of FAK did not change, more FAK was in the active (phosphorylated) form under hypergravity than in the 1-g controls. Cytoskeletal F-actin organization into filaments was also more prominent after brief exposures to hypergravity during the first five minutes of adhesion. These results suggest that specific integrins sense hypergravity and activate distinct matrix-dependent FAK signaling pathways that can enhance proliferation. Our results also imply that brief exposures to hypergravity accelerate cell adhesion and spreading processes via the focal adhesion-signaling axis. These results support the role of the ECM/integrin-signaling axis in osteoblast response to hypergravity loading.

  15. Nanocrystalline silicon thin films and grating structures for solar cells

    NASA Astrophysics Data System (ADS)

    Juneja, Sucheta; Sudhakar, Selvakumar; Khonina, Svetlana N.; Skidanov, Roman V.; Porfirevb, Alexey P.; Moissev, Oleg Y.; Kazanskiy, Nikolay L.; Kumar, Sushil

    2016-03-01

    Enhancement of optical absorption for achieving high efficiencies in thin film silicon solar cells is a challenge task. Herein, we present the use of grating structure for the enhancement of optical absorption. We have made grating structures and same can be integrated in hydrogenated micro/nanocrystalline silicon (μc/nc-Si: H) thin films based p-i-n solar cells. μc/nc-Si: H thin films were grown using plasma enhanced chemical vapor deposition method. Grating structures integrated with μc/nc-Si: H thin film solar cells may enhance the optical path length and reduce the reflection losses and its characteristics can be probed by spectroscopic and microscopic technique with control design and experiment.

  16. Enhanced phytate dephosphorylation by using Candida melibiosica yeast-based biofuel cell.

    PubMed

    Hubenova, Yolina; Georgiev, Danail; Mitov, Mario

    2014-10-01

    We report for the first time that Candida melibiosica expresses enhanced phytase activity when grown under biofuel cell polarization in a nutrient-poor medium, containing only fructose as a carbohydrate source. Phytase activity during the cultivation under polarization reached up to 25 U per g dry biomass, exceeding with 20 ± 3 % those of the control. A participation of the enzyme in the adaptation processes to the stress conditions is proposed. In addition, steady-state electrical outputs were achieved during biofuel cell operation at continuous polarization under constant load. The obtained results show that C. melibiosica yeast-based biofuel cell could be used for simultaneous electricity generation and phytate bioremediation.

  17. Photovoltaic investigation of minority carrier lifetime in the heavily-doped emitter layer of silicon junction solar cell

    NASA Technical Reports Server (NTRS)

    Ho, C.-T.

    1982-01-01

    The results of experiments on the recombination lifetime in a phosphorus diffused N(+) layer of a silicon solar cell are reported. The cells studied comprised three groups of Czochralski grown crystals: boron doped to one ohm-cm, boron doped to 6 ohm-cm, and aluminum doped to one ohm-cm, all with a shunt resistance exceeding 500 kilo-ohms. The characteristic bulk diffusion length of a cell sample was determined from the short circuit current response to light at a wavelength of one micron. The recombination rates were obtained by measurement of the open circuit voltage as a function of the photogeneration rate. The recombination rate was found to be dependent on the photoinjection level, and is positive-field controlled at low photoinjection, positive-field influence Auger recombination at a medium photoinjection level, and negative-field controlled Auger recombination at a high photoinjection level.

  18. Effects of resource supplements on mature ciliate biofilms: an empirical test using a new type of flow cell.

    PubMed

    Norf, Helge; Arndt, Hartmut; Weitere, Markus

    2009-11-01

    Biofilm-dwelling consumer communities play an important role in the matter flux of many aquatic ecosystems. Due to their poor accessibility, little is as yet known about the regulation of natural biofilms. Here, a new type of flow cell is presented which facilitates both experimental manipulation and live observation of natural, pre-grown biofilms. These flow cells were used to study the dynamics of mature ciliate biofilms in response to supplementation of planktonic bacteria. The results suggest that enhanced ciliate productivity could be quickly transferred to micrometazoans (ciliate grazers), making the effects on the standing stock of the ciliates detectable only for a short time. Likewise, no effect on ciliates appeared when micrometazoan consumers were ab initio abundant. This indicates the importance of 'top-down' control of natural ciliate biofilms. The flow cells used here offer great potential for experimentally testing such control mechanisms within naturally cultivated biofilms.

  19. Effect of growth temperature on outer membrane components and virulence of Aeromonas hydrophila strains of serotype O:34.

    PubMed Central

    Merino, S; Camprubí, S; Tomás, J M

    1992-01-01

    Growth of Aeromonas hydrophila strains from serotype O:34 at 20 and 37 degrees C in tryptic soy broth resulted in changes in the lipids, lipopolysaccharide (LPS), and virulence of the strains tested. Cells grown at 20 degrees C contained, relative to those cultured at 37 degrees C, increased levels of the phospholipid fatty acids hexadecanoate and octadecanoate and reduced levels of the corresponding saturated fatty acids. Furthermore, the lipid A fatty acids also showed thermoadaptation. In addition, LPS extracted from cells cultivated at 20 degrees C was smooth, while the LPS extracted from the same cells cultivated at 37 degrees C was rough. Finally, the strains were more virulent for fish and mice when they were grown at 20 degrees C than when they were grown at 37 degrees C and also showed increased different extracellular activities when they were grown at 20 degrees C. Images PMID:1398945

  20. Cryptococcus neoformans responds to mannitol by increasing capsule size in vitro and in vivo

    PubMed Central

    Guimarães, Allan Jefferson; Frases, Susana; Cordero, Radamés J. B.; Nimrichter, Leonardo; Casadevall, Arturo; Nosanchuk, Joshua D.

    2010-01-01

    The polysaccharide capsule of the fungus Cryptococcus neoformans is its main virulence factor. In this study, we determined the effects of mannitol and glucose on the capsule and exopolysaccharide production. Growth in mannitol significantly increased capsular volume compared to cultivation in glucose. However, cells grown in glucose concentrations higher than 62.5mM produced more exopolysaccharide than cells grown in mannitol. The fiber lengths and glycosyl composition of capsular polysaccharide from yeast grown in mannitol was structurally different from that of yeast grown in glucose. Furthermore, mannitol treatment of mice infected intratracheally with C. neoformans resulted in fungal cells with significantly larger capsules and the mice had reduced fungal dissemination to the brain. Our results demonstrate the capacity of carbohydrate source and concentration to modify the expression of a major virulence factor of C. neoformans. These findings may impact the clinical management of cryptococcosis. PMID:20070311

  1. Antigenic Protein In Microgravity-Grown Human Mixed Mullerian Tumor (LN1) Cells Preserved In RNA Stabilizing Agent

    NASA Technical Reports Server (NTRS)

    Hammond, Dianne K.; Becker, Jeanne; Elliott, T. F.; Holubec, K.; Baker, T. L.; Love, J. E.

    2004-01-01

    Cells treated with RNAlater(TradeMark) have previously been shown to contain antigenic proteins that can be visualized using Western blot analysis. These proteins seem to be stable for several months when stored in RNA stabilizer at 4 C. Antigenic protein can be recovered from cells that have been processed using an Ambion RNAqueous(Registered TradeMark) kit to remove RNA. In this set of experiments, human mixed Mullerian tumor (LNI) cells grown on the International Space Station during Expedition 3 were examined for antigenic stability after removal of RNA. The cells were stored for three months in RNAlater(TradeMark) and RNA was extracted. The RNA filtrate containing the protein was precipitated, washed, and suspended in buffer containing sodium dodecyl sulfate (SDS). Samples containing equal concentrations of protein were loaded onto SDS-polyacrylamide gels. Proteins were separated by electrophoresis and transferred by Western blot to polyvinylidene fluoride (PVDF) membrane. The Western blots were stained with an enhanced chemiluminescent ECL(Registered Trademark) Plus detection kit (Amersham) and scanned using a Storm 840 gel image analyzer (Amersham, Molecular Dynamics). ImageQuant(Registered TradeMark) software was used to quantify the densities of the protein bands. The ground control and flight LN1 cell samples showed a similar staining pattern over time with antibodies to vimentin, glyceraldehyde-3-phosphate dehydrogenase, and epithelial membrane antigens.

  2. Antigenic Protein In Microgravity-Grown Human Mixed Mullerian Tumor (LN1) Cells Preserved In RNA Stabilizing Agent

    NASA Technical Reports Server (NTRS)

    Hammond, Dianne K.; Becker, Jeanne; Holubec, K.; Baker, T. L.; Love, J. E.

    2004-01-01

    Cells treated with RNAlater(TradeMark) have previously been shown to contain antigenic proteins that can be visualized using Western blot analysis. These proteins seem to be stable for several months when stored in RNA stabilizer at 4 C. Antigenic protein can be recovered from cells that have been processed using an Ambion RNAqueous(Registered TradeMark) kit to remove RNA. In this set of experiments, human mixed Mullerian tumor (LN1) cells grown on the International Space Station during Expedition 3 were examined for antigenic stability after removal of RNA. The cells were stored for three months in RNAlater(TradeMark) and RNA was extracted. The RNA filtrate Containing the protein was precipitated, washed, and suspended in buffer containing sodium dodecyl sulfate (SDS). Samples containing equal concentrations of protein were loaded onto SDS-polyacrylamide gels. Proteins were separated by electrophoresis and transferred by Western blot to polyvinylidene fluoride (PVDF) membrane. The Western blots were stained with an enhanced chemiluminescent ECL(Registered TradeMark)Plus detection kit (Amersham) and scanned using a Storm 840 gel image analyzer (Amersham, Molecular Dynamics). ImageQuant(Registered TradeMark)a software was used to quantify the densities of the protein bands. The ground control and flight LN1 cell samples showed a similar staining pattern over time with antibodies to vimentin, glyceraldehyde-3-phosphate dehydrogenase, and epithelial membrane antigens.

  3. Growth Enhancement and Developmental Modifications of in Vitro Grown Potato (Solanum tuberosum spp. tuberosum) as Affected by a Nonfluorescent Pseudomonas sp. 1

    PubMed Central

    Frommel, Marcos I.; Nowak, Jerzy; Lazarovits, George

    1991-01-01

    A plant growth-promoting rhizobacterium, designated Ps JN and isolated from onion roots, was identified as a nonfluorescent Pseudomonas sp. The percentage of similarity of Ps JN to P. gladioli (NCPPB 1891), P. cichorii (NCPPB 943), and P. viridiflava (NCPPB 635), as determined from 135 biochemical and physiological tests was 77, 70, and 66%, respectively. Ps JN persisted through successive generations of in vitro cultured potato plantlets, both as endophytic and epiphytic populations. In vitro inoculated potato (Solanum tuberosum) nodal explants produced plantlets with significant increases in root number (24-196%), root dry weight (44-201%), haulm dry weight (14-151%), and stem length (26-28%) as compared with noninoculated control plants. Bacterization also enhanced leaf hair formation (55-110%), secondary root branching, and total plant lignin content (43%). Other root colonizing bacteria or heat-killed cells of Ps JN had no significant effect on plant growth. Detached leaves from in vitro grown control plants, when exposed to 19°C and 50% relative humidity, lost 55% of their moisture content in 2.5 hours. Moisture loss by leaves of in vitro grown, bacterized plants, as well as greenhouse-acclimated, bacterized plants, and control plants, was less than 20%. Changes in stomatal closure appear to account for this difference. ImagesFigure 2Figure 4 PMID:16668277

  4. Medullospheres from DAOY, UW228 and ONS-76 cells: increased stem cell population and proteomic modifications.

    PubMed

    Zanini, Cristina; Ercole, Elisabetta; Mandili, Giorgia; Salaroli, Roberta; Poli, Alice; Renna, Cristiano; Papa, Valentina; Cenacchi, Giovanna; Forni, Marco

    2013-01-01

    Medulloblastoma (MB) is an aggressive pediatric tumor of the Central Nervous System (CNS) usually treated according to a refined risk stratification. The study of cancer stem cells (CSC) in MB is a promising approach aimed at finding new treatment strategies. The CSC compartment was studied in three characterized MB cell lines (DAOY, UW228 and ONS-76) grown in standard adhesion as well as being grown as spheres, which enables expansion of the CSC population. MB cell lines, grown in adherence and as spheres, were subjected to morphologic analysis at the light and electron microscopic level, as well as cytofluorimetric determinations. Medullospheres (MBS) were shown to express increasingly immature features, along with the stem cells markers: CD133, Nestin and β-catenin. Proteomic analysis highlighted the differences between MB cell lines, demonstrating a unique protein profile for each cell line, and minor differences when grown as spheres. In MBS, MALDI-TOF also identified some proteins, that have been linked to tumor progression and resistance, such as Nucleophosmin (NPM). In addition, immunocytochemistry detected Sox-2 as a stemness marker of MBS, as well as confirming high NPM expression. Culture conditioning based on low attachment flasks and specialized medium may provide new data on the staminal compartment of CNS tumors, although a proteomic profile of CSC is still elusive for MB.

  5. Medullospheres from DAOY, UW228 and ONS-76 Cells: Increased Stem Cell Population and Proteomic Modifications

    PubMed Central

    Zanini, Cristina; Ercole, Elisabetta; Mandili, Giorgia; Salaroli, Roberta; Poli, Alice; Renna, Cristiano; Papa, Valentina; Cenacchi, Giovanna; Forni, Marco

    2013-01-01

    Background Medulloblastoma (MB) is an aggressive pediatric tumor of the Central Nervous System (CNS) usually treated according to a refined risk stratification. The study of cancer stem cells (CSC) in MB is a promising approach aimed at finding new treatment strategies. Methodology/Principal Findings The CSC compartment was studied in three characterized MB cell lines (DAOY, UW228 and ONS-76) grown in standard adhesion as well as being grown as spheres, which enables expansion of the CSC population. MB cell lines, grown in adherence and as spheres, were subjected to morphologic analysis at the light and electron microscopic level, as well as cytofluorimetric determinations. Medullospheres (MBS) were shown to express increasingly immature features, along with the stem cells markers: CD133, Nestin and β-catenin. Proteomic analysis highlighted the differences between MB cell lines, demonstrating a unique protein profile for each cell line, and minor differences when grown as spheres. In MBS, MALDI-TOF also identified some proteins, that have been linked to tumor progression and resistance, such as Nucleophosmin (NPM). In addition, immunocytochemistry detected Sox-2 as a stemness marker of MBS, as well as confirming high NPM expression. Conclusions/Significance Culture conditioning based on low attachment flasks and specialized medium may provide new data on the staminal compartment of CNS tumors, although a proteomic profile of CSC is still elusive for MB. PMID:23717474

  6. Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue

    PubMed Central

    Lee, Eun Jung; Luo, Jianwen; Duan, Yi; Yeager, Keith; Konofagou, Elisa; Vunjak-Novakovic, Gordana

    2012-01-01

    Maintenance of normal myocardial function depends intimately on synchronous tissue contraction driven by electrical activation and on adequate nutrient perfusion in support thereof. Bioreactors have been used to mimic aspects of these factors in vitro to engineer cardiac tissue, but due to design limitations, previous bioreactor systems have yet to simultaneously support nutrient perfusion, electrical stimulation, and unconstrained (i.e., not isometric) tissue contraction. To the best of our knowledge, the bioreactor system described herein is the first to integrate in concert these three key factors. We present the design of our bioreactor and characterize its capability in integrated experimental and mathematical modeling studies. We then culture cardiac cells obtained from neonatal rats in porous, channeled elastomer scaffolds with the simultaneous application of perfusion and electrical stimulation, with controls excluding either one or both of these two conditions. After eight days of culture, constructs grown with the simultaneous perfusion and electrical stimulation exhibited substantially improved functional properties, as evidenced by a significant increase in contraction amplitude (0.23±0.10% vs. 0.14±0.05, 0.13±0.08, or 0.09±0.02% in control constructs grown without stimulation, without perfusion, or either stimulation or perfusion, respectively). Consistently, these constructs had significantly improved DNA contents, cell distribution throughout the scaffold thickness, cardiac protein expression, cell morphology and overall tissue organization than either control group. Thus, the simultaneous application of medium perfusion and electrical conditioning enabled by the use of the novel bioreactor system may accelerate the generation of fully functional, clinically sized cardiac tissue constructs. PMID:22170772

  7. Diagnosis of ambient air pollution injury to red maple leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krause, C.R.

    1981-01-01

    Ramets of red maple, Acer rubrum L. (cv 'Scarlet Sentinel') were grown under ambient field conditions for 5 months (May-Sept) in either clean air (i.e. minimum background of ozone (O/sub 3/) and sulfur dioxide (SO/sub 2/)) or were grown in polluted air containing phytotoxic combinations of O/sub 3/ and SO/sub 2/. At the end of the growing season leaf samples from each site were fixed in glutaraldehyde, washed in buffer (3X) post-fixed in O/sub s/O/sub 4/, dehydrated in ethanol and critically-point-dried. Samples were fractured with a razor blade, mounted either abaxially or adaxially or in cross-section, and sputter-coated with Au.more » While plants from either site failed to exhibit macroscopic air pollutant-induced symptoms, SEM examination revealed significant microscopic differences between prepared samples from different sites. Epidermal cells of leaves grown in clean air were uniformly turgid with fluffy epicuticular wax. Leaf samples from ramets that were grown in polluted air exhibited collapsed epidermal cells and lacked fluffy epicuticular wax. Cross-sections revealed increased vesicular activity in leaf mesophyll cells of plants exposed to high ambient pollution while cells of plants grown in clean air appeared normal. 10 references, 6 figures.« less

  8. Understanding Strategy of Nitrate and Urea Assimilation in a Chinese Strain of Aureococcus anophagefferens through RNA-Seq Analysis

    PubMed Central

    Dong, Hong-Po; Huang, Kai-Xuan; Wang, Hua-Long; Lu, Song-Hui; Cen, Jing-Yi; Dong, Yue-Lei

    2014-01-01

    Aureococcus anophagefferens is a harmful alga that dominates plankton communities during brown tides in North America, Africa, and Asia. Here, RNA-seq technology was used to profile the transcriptome of a Chinese strain of A. anophagefferens that was grown on urea, nitrate, and a mixture of urea and nitrate, and that was under N-replete, limited and recovery conditions to understand the molecular mechanisms that underlie nitrate and urea utilization. The number of differentially expressed genes between urea-grown and mixture N-grown cells were much less than those between urea-grown and nitrate-grown cells. Compared with nitrate-grown cells, mixture N-grown cells contained much lower levels of transcripts encoding proteins that are involved in nitrate transport and assimilation. Together with profiles of nutrient changes in media, these results suggest that A. anophagefferens primarily feeds on urea instead of nitrate when urea and nitrate co-exist. Furthermore, we noted that transcripts upregulated by nitrate and N-limitation included those encoding proteins involved in amino acid and nucleotide transport, degradation of amides and cyanates, and nitrate assimilation pathway. The data suggest that A. anophagefferens possesses an ability to utilize a variety of dissolved organic nitrogen. Moreover, transcripts for synthesis of proteins, glutamate-derived amino acids, spermines and sterols were upregulated by urea. Transcripts encoding key enzymes that are involved in the ornithine-urea and TCA cycles were differentially regulated by urea and nitrogen concentration, which suggests that the OUC may be linked to the TCA cycle and involved in reallocation of intracellular carbon and nitrogen. These genes regulated by urea may be crucial for the rapid proliferation of A. anophagefferens when urea is provided as the N source. PMID:25338000

  9. Using space-based investigations to inform cancer research on Earth.

    PubMed

    Becker, Jeanne L; Souza, Glauco R

    2013-05-01

    Experiments conducted in the microgravity environment of space are not typically at the forefront of the mind of a cancer biologist. However, space provides physical conditions that are not achievable on Earth, as well as conditions that can be exploited to study mechanisms and pathways that control cell growth and function. Over the past four decades, studies have shown how exposure to microgravity alters biological processes that may be relevant to cancer. In this Review, we explore the influence of microgravity on cell biology, focusing on tumour cells grown in space together with work carried out using models in ground-based investigations.

  10. Homojunction GaAs solar cells grown by close space vapor transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boucher, Jason W.; Ritenour, Andrew J.; Greenaway, Ann L.

    2014-06-08

    We report on the first pn junction solar cells grown by homoepitaxy of GaAs using close space vapor transport (CSVT). Cells were grown both on commercial wafer substrates and on a CSVT absorber film, and had efficiencies reaching 8.1%, open circuit voltages reaching 909 mV, and internal quantum efficiency of 90%. The performance of these cells is partly limited by the electron diffusion lengths in the wafer substrates, as evidenced by the improved peak internal quantum efficiency in devices fabricated on a CSVT absorber film. Unoptimized highly-doped n-type emitters also limit the photocurrent, indicating that thinner emitters with reduced doping,more » and ultimately wider band gap window or surface passivation layers, are required to increase the efficiency.« less

  11. A possible role of actin in the mechanical control of the cell cycle.

    PubMed

    Tripathi, S C

    1989-01-01

    Sail-sheet Cultures (SSC) are those in which the cells are i) grown within the meshes of inert grids ii) exposed to nutrients from most sides iii) attached to one another only at the edges like sail of a yacht (hence, the name 'sail-sheet') and iv) have the advantage of three-dimensional structure similar to an in vivo situation. We grew fibroblasts from chicken heart explants as SSC and studied the effect of mechanical stretching on the F-actin content of these cells. This study was designed to investigate the hypothesis that the effect of tension on the cell cycle may be channeled through the microfilaments. Data from this preliminary study suggested that short-term mechanical stretching of sail-sheets, using low frequency tension (1.0 Hz), diminishes F-actin. Thus, it may be possible to relate the decrease in the F-actin content of these cells to the slowing down of their locomotory activity, possible rounding up, and division. This study might contribute to the understanding of the mechanical control of the cell cycle and be of relevance in the phenomena such as healing of wounds and control of the cell division in tumors.

  12. Growth of BaSi2 film on Ge(100) by vacuum evaporation and its photoresponse properties

    NASA Astrophysics Data System (ADS)

    Trinh, Cham Thi; Nakagawa, Yoshihiko; Hara, Kosuke O.; Kurokawa, Yasuyoshi; Takabe, Ryota; Suemasu, Takashi; Usami, Noritaka

    2017-05-01

    We have successfully grown a polycrystalline orthorhombic BaSi2 film on a Ge(100) substrate by an evaporation method. Deposition of an amorphous Si (a-Si) film on the Ge substrate prior to BaSi2 evaporation plays a critical role in obtaining a high-quality BaSi2 film. By controlling substrate temperature and the thickness of the a-Si film, a crack-free and single-phase polycrystalline orthorhombic BaSi2 film with a long carrier lifetime of 1.5 µs was obtained on Ge substrates. The photoresponse property of the ITO/BaSi2/Ge/Al structure was clearly observed, and photoresponsivity was found to increase with increasing substrate temperature during deposition of a-Si. Furthermore, the BaSi2 film grown on Ge showed a higher photoresponsivity than that grown on Si, indicating the potential application of evaporated BaSi2 on Ge to thin-film solar cells.

  13. RHEED oscillations in spinel ferrite epitaxial films grown by conventional planar magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ojima, T.; Tainosho, T.; Sharmin, S.; Yanagihara, H.

    2018-04-01

    Real-time in situ reflection high energy electron diffraction (RHEED) observations of Fe3O4, γ-Fe2O3, and (Co,Fe)3O4 films on MgO(001) substrates grown by a conventional planar magnetron sputtering was studied. The change in periodical intensity of the specular reflection spot in the RHEED images of three different spinel ferrite compounds grown by two different sputtering systems was examined. The oscillation period was found to correspond to the 1/4 unit cell of each spinel ferrite, similar to that observed in molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) experiments. This suggests that the layer-by-layer growth of spinel ferrite (001) films is general in most physical vapor deposition (PVD) processes. The surfaces of the films were as flat as the surface of the substrate, consistent with the observed layer-by-layer growth process. The observed RHEED oscillation indicates that even a conventional sputtering method can be used to control film thickness during atomic layer depositions.

  14. Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO2.

    PubMed

    Zhu, Xiancan; Song, Fengbin; Liu, Shengqun; Liu, Fulai

    2016-02-01

    Effects of the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis on plant growth, carbon (C) and nitrogen (N) accumulation, and partitioning was investigated in Triticum aestivum L. plants grown under elevated CO2 in a pot experiment. Wheat plants inoculated or not inoculated with the AM fungus were grown in two glasshouse cells with different CO2 concentrations (400 and 700 ppm) for 10 weeks. A (15)N isotope labeling technique was used to trace plant N uptake. Results showed that elevated CO2 increased AM fungal colonization. Under CO2 elevation, AM plants had higher C concentration and higher plant biomass than the non-AM plants. CO2 elevation did not affect C and N partitioning in plant organs, while AM symbiosis increased C and N allocation into the roots. In addition, plant C and N accumulation, (15)N recovery rate, and N use efficiency (NUE) were significantly higher in AM plants than in non-AM controls under CO2 enrichment. It is concluded that AM symbiosis favors C and N partitioning in roots, increases C accumulation and N uptake, and leads to greater NUE in wheat plants grown at elevated CO2.

  15. Microarray Data Analysis of Space Grown Arabidopsis Leaves for Genes Important in Vascular Patterning

    NASA Technical Reports Server (NTRS)

    Weitzeal, A. J.; Wyatt, S. E.; Parsons-Wingerter, P.

    2016-01-01

    Venation patterning in leaves is a major determinant of photosynthesis efficiency because of its dependency on vascular transport of photoassimilates, water, and minerals. Arabidopsis thaliana grown in microgravity show delayed growth and leaf maturation. Gene expression data from the roots, hypocotyl, and leaves of A. thaliana grown during spaceflight vs. ground control analyzed by Affymetrix microarray are available through NASAs GeneLab (GLDS-7). We analyzed the data for differential expression of genes in leaves resulting from the effects of spaceflight on vascular patterning. Two genes were found by preliminary analysis to be upregulated during spaceflight that may be related to vascular formation. The genes are responsible for coding an ARGOS like protein (potentially affecting cell elongation in the leaves), and an F-boxkelch-repeat protein (possibly contributing to protoxylem specification). Further analysis that will focus on raw data quality assessment and a moderated t-test may further confirm upregulation of the two genes and/or identify other gene candidates. Plants defective in these genes will then be assessed for phenotype by the mapping and quantification of leaf vascular patterning by NASAs VESsel GENeration (VESGEN) software to model specific vascular differences of plants grown in spaceflight.

  16. Microarray Data Analysis of Space Grown Arabidopsis Leaves for Genes Important in Vascular Patterning

    NASA Technical Reports Server (NTRS)

    Weitzeal, A. J.; Wyatt, S. E.; Parsons-Wingerter, P.

    2016-01-01

    Venation patterning in leaves is a major determinant of photosynthesis efficiency because of its dependency on vascular transport of photoassimilates, water, and minerals. Arabidopsis thaliana grown in microgravity show delayed growth and leaf maturation. Gene expression data from the roots, hypocotyl, and leaves of A. thaliana grown during spaceflight vs. ground control analyzed by Affymetrix microarray are available through NASA's GeneLab (GLDS-7). We analyzed the data for differential expression of genes in leaves resulting from the effects of spaceflight on vascular patterning. Two genes were found by preliminary analysis to be upregulated during spaceflight that may be related to vascular formation. The genes are responsible for coding an ARGOS like protein (potentially affecting cell elongation in the leaves), and an F-box/kelch-repeat protein (possibly contributing to protoxylem specification). Further analysis that will focus on raw data quality assessment and a moderated t-test may further confirm upregulation of the two genes and/or identify other gene candidates. Plants defective in these genes will then be assessed for phenotype by the mapping and quantification of leaf vascular patterning by NASA's VESsel GENeration (VESGEN) software to model specific vascular differences of plants grown in spaceflight.

  17. Serum depletion induces changes in protein expression in the trophoblast-derived cell line HTR-8/SVneo.

    PubMed

    Novoa-Herran, Susana; Umaña-Perez, Adriana; Canals, Francesc; Sanchez-Gomez, Myriam

    2016-01-01

    How nutrition and growth factor restriction due to serum depletion affect trophoblast function remains poorly understood. We performed a proteomic differential study of the effects of serum depletion on a first trimester human immortalized trophoblast cell line. The viability of HTR-8/SVneo trophoblast cells in culture with 0, 0.5 and 10 % fetal bovine serum (FBS) were assayed via MTT at 24, 48 and 64 h. A comparative proteomic analysis of the cells grown with those FBS levels for 24 h was performed using two-dimensional electrophoresis (2DE), followed by mass spectrometry for protein spot identification, and a database search and bioinformatics analysis of the expressed proteins. Differential spots were identified using the Kolmogorov-Smirnov test ( n  = 3, significance level 0.10, D > 0.642) and/or ANOVA ( n  = 3, p  < 0.05). The results showed that low serum doses or serum depletion differentially affect cell growth and protein expression. Differential expression was seen in 25 % of the protein spots grown with 0.5 % FBS and in 84 % of those grown with 0 % FBS, using 10 % serum as the physiological control. In 0.5 % FBS, this difference was related with biological processes typically affected by the serum, such as cell cycle, regulation of apoptosis and proliferation. In addition to these changes, in the serum-depleted proteome we observed downregulation of keratin 8, and upregulation of vimentin, the glycolytic enzymes enolase and pyruvate kinase (PKM2) and tumor progression-related inosine-5'-monophosphate dehydrogenase 2 (IMPDH2) enzyme. The proteins regulated by total serum depletion, but not affected by growth in 0.5 % serum, are members of the glycolytic and nucleotide metabolic pathways and the epithelial-to-mesenchymal transition (EMT), suggesting an adaptive switch characteristic of malignant cells. This comparative proteomic analysis and the identified proteins are the first evidence of a protein expression response to serum depletion in a trophoblast cell model. Our results show that serum depletion induces specific changes in protein expression concordant with main cell metabolic adaptations and EMT, resembling the progression to a malignant phenotype.

  18. Intracellular concentrations and metabolism of carbon compounds in tobacco callus cultures: Effects of light and auxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawyer, A.L.; Grady, K.L.; Bassham, J.A.

    1981-10-01

    Callus cultures derived from pith tissue of Nicotiana tobacum were grown on two media either under continuous illumination or in complete darkness. The first medium limited greening ability of callus grown in the light (3 milligrams per liter naphthalene acetic acid, 0.3 milligram per liter 2-isopentenylaminopurine, Murashige and Skoog salts, and 2% sucrose). The second medium encouraged chlorophyll synthesis (greening) though not shoot formation (0.3 milligram per liter naphthalene acetic acid; 0.3 milligrams per liter 2-isopentylaminopurine). To measure intracellular concentrations, calli were grown for 15 days on these standard media containing (U-/sup 14/C)sucrose. The dry weight proportions of the callimore » (as a fraction of fresh weight) and many metabolite concentrations nearly doubled in light-grown cells compared to dark-grown cells and increase 30 to 40% on low-auxin media relative to high-auxin media. Glutamine concentrations (from 4 to 26 millimolar) were very high, probably due to the NH/sub 3/ content of the media. Proline concentrations were 20-fold higher in calli grown on low-auxin media in the light (green cells), possibly a stress response to high osmotic potentials in these cells. To analyze sucrose metabolism, callus cells were allowed to take up 0.2% (weight per volume) (U-/sup 14/C)sucrose for up to 90 minutes. In callus tissues and in pith sections from stems of tobacco plants, sucrose was primarily metabolized through invertase activity, producing equal amounts of labeling glucose and fructose. Respiration of /sup 14/CO/sub 2/ followed the labeling patterns of tricarboxylic acid cycle intermediates. Photorespiration activity was low.« less

  19. Genotoxic Effects of Low- and High-LET Radiation on Human Epithelial Cells Grown in 2-D Versus 3-D Culture

    NASA Technical Reports Server (NTRS)

    Patel, Z. S.; Cucinotta, F. A.; Huff, J. L.

    2011-01-01

    Risk estimation for radiation-induced cancer relies heavily on human epidemiology data obtained from terrestrial irradiation incidents from sources such as medical and occupational exposures as well as from the atomic bomb survivors. No such data exists for exposures to the types and doses of high-LET radiation that will be encountered during space travel; therefore, risk assessment for space radiation requires the use of data derived from cell culture and animal models. The use of experimental models that most accurately replicate the response of human tissues is critical for precision in risk projections. This work compares the genotoxic effects of radiation on normal human epithelial cells grown in standard 2-D monolayer culture compared to 3-D organotypic co-culture conditions. These 3-D organotypic models mimic the morphological features, differentiation markers, and growth characteristics of fully-differentiated normal human tissue and are reproducible using defined components. Cultures were irradiated with 2 Gy low-LET gamma rays or varying doses of high-LET particle radiation and genotoxic damage was measured using a modified cytokinesis block micronucleus assay. Our results revealed a 2-fold increase in residual damage in 2 Gy gamma irradiated cells grown under organotypic culture conditions compared to monolayer culture. Irradiation with high-LET particle radiation gave similar results, while background levels of damage were comparable under both scenarios. These observations may be related to the phenomenon of "multicellular resistance" where cancer cells grown as 3-D spheroids or in vivo exhibit an increased resistance to killing by chemotherapeutic agents compared to the same cells grown in 2-D culture. A variety of factors are likely involved in mediating this process, including increased cell-cell communication, microenvironment influences, and changes in cell cycle kinetics that may promote survival of damaged cells in 3-D culture that would otherwise die or be rendered reproductively inactive in 2-D culture.

  20. Hydrostatic pressure affects in vitro maturation of oocytes and follicles and increases granulosa cell death.

    PubMed

    Rashidi, Zahra; Azadbakht, Mehri; Amini, Ali; Karimi, Isac

    2014-01-01

    This study examines the effects of hydrostatic pressure on in vitro maturation (IVM) of oocytes derived from in vitro grown follicles. In this experimental study, preantral follicles were isolated from 12-day-old female NMRI mice. Each follicle was cultured individually in Alpha Minimal Essential Medium (α-MEM) under mineral oil for 12 days. Then, follicles were induced for IVM and divided into two groups, control and experiment. In the experiment group follicles were subjected to 20 mmHg pressure for 30 minutes and cultured for 24-48 hours. We assessed for viability and IVM of the oocytes. The percentage of apoptosis in cumulus cells was determined by the TUNEL assay. A comparison between groups was made using the student's t test. The percentage of metaphase II oocytes (MII) increased in hydrostatic pressuretreated follicles compared to controls (p<0.05). Cumulus cell viability reduced in hydrostatic pressure-treated follicles compared to controls (p<0.05). Exposure of follicles to pressure increased apoptosis in cumulus cells compared to controls (p<0.05). Hydrostatic pressure, by inducing apoptosis in cumulus cells, participates in the cumulus oocyte coupled relationship with oocyte maturation.

  1. Microgravity

    NASA Image and Video Library

    1994-02-01

    The comparison of protein crystal, Recombiant Human Insulin; space-grown (left) and earth-grown (right). On STS-60, Spacehab II indicated that space-grown crystals are larger and of greater optical clarity than their earth-grown counterparts. Recombiant Human Insulin facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  2. Microgravity effects on leaf morphology, cell structure, carbon metabolism and mRNA expression of dwarf wheat.

    PubMed

    Stutte, G W; Monje, O; Hatfield, R D; Paul, A-L; Ferl, R J; Simone, C G

    2006-10-01

    The use of higher plants as the basis for a biological life support system that regenerates the atmosphere, purifies water, and produces food has been proposed for long duration space missions. The objective of these experiments was to determine what effects microgravity (microg) had on chloroplast development, carbohydrate metabolism and gene expression in developing leaves of Triticum aestivum L. cv. USU Apogee. Gravity naive wheat plants were sampled from a series of seven 21-day experiments conducted during Increment IV of the International Space Station. These samples were fixed in either 3% glutaraldehyde or RNAlater or frozen at -25 degrees C for subsequent analysis. In addition, leaf samples were collected from 24- and 14-day-old plants during the mission that were returned to Earth for analysis. Plants grown under identical light, temperature, relative humidity, photoperiod, CO(2), and planting density were used as ground controls. At the morphological level, there was little difference in the development of cells of wheat under microg conditions. Leaves developed in mug have thinner cross-sectional area than the 1g grown plants. Ultrastructurally, the chloroplasts of microg grown plants were more ovoid than those developed at 1g, and the thylakoid membranes had a trend to greater packing density. No differences were observed in the starch, soluble sugar, or lignin content of the leaves grown in microg or 1g conditions. Furthermore, no differences in gene expression were detected leaf samples collected at microg from 24-day-old leaves, suggesting that the spaceflight environment had minimal impact on wheat metabolism.

  3. Effect of Plant Species and Environmental Conditions on Ice Nucleation Activity of Pseudomonas syringae on Leaves.

    PubMed

    O'brien, R D; Lindow, S E

    1988-09-01

    Selected plant species and environmental conditions were investigated for their influences on expression of ice nucleation activity by 15 Pseudomonas syringae strains grown on plants in constant-temperature growth chamber studies. Ice nucleation frequencies (INFs), the fraction of cells that expressed ice nucleation at -5 or -9 degrees C, of individual strains varied greatly, both on plants and in culture. This suggests that the probability of frost injury, which is proportional to the number of ice nuclei on leaf surfaces, is strongly determined by the particular bacterial strains that are present on a leaf surface. The INFs of strains were generally higher when they were grown on plants than when they were grown in culture. In addition, INFs in culture did not correlate closely with INFs on plants, suggesting that frost injury prediction should be based on INF measurements of cells grown on plants rather than in culture. The relative INFs of individual strains varied with plant host and environment. However, none of seven plant species tested optimized the INFs of all 15 strains. Similarly, incubation for 48 h at near 100% relative humidity with short photoperiods did not always decrease the INF when compared with a 72 h, 40% relative humidity, long-photoperiod incubation. Pathogenic strains on susceptible hosts were not associated with higher or lower INFs relative to their INFs on nonsusceptible plant species. The ice nucleation activity of individual bacterial strains on plants therefore appears to be controlled by complex and interacting factors such as strain genotype, environment, and host plant species.

  4. Wall extensibility and cell hydraulic conductivity decrease in enlarging stem tissues at low water potentials. [Glycine max L. Merr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nonami, Hiroshi; Boyer, J.S.

    1990-08-01

    Measurements with a guillotine psychrometer indicate that the inhibition of stem growth at low water potentials (low {psi}{sub w}) is accompanied by decreases in cell wall extensibility and tissue hydraulic conductance to water that eventually limit growth rate in soybean (Glycine max L. Merr.). To check this conclusion, we measured cell wall properties and cell hydraulic conductivities with independent techniques in soybean seedlings grown and treated the same way, i.e. grown in the dark and exposed to low {psi}{sub w} by transplanting dark grown seedlings to vermiculite of low water content. Results suggest that the plastic properties of the cellmore » walls and the conductance of the cells to water were decreased at low {psi}{sub w} but that the elastic properties of the walls were of little consequence in this response.« less

  5. Nitrogen balancing and xylose addition enhances growth capacity and protein content in Chlorella minutissima cultures.

    PubMed

    Freitas, B C B; Esquível, M G; Matos, R G; Arraiano, C M; Morais, M G; Costa, J A V

    2016-10-01

    This study aimed to examine the metabolic changes in Chlorella minutissima cells grown under nitrogen-deficient conditions and with the addition of xylose. The cell density, maximum photochemical efficiency, and chlorophyll and lipid levels were measured. The expression of two photosynthetic proteins, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and the beta subunit (AtpB) of adenosine triphosphate synthase, were measured. Comparison of cells grown in medium with a 50% reduction in the nitrogen concentration versus the traditional medium solution revealed that the cells grown under nitrogen-deficient conditions exhibited an increased growth rate, higher maximum cell density (12.7×10(6)cellsmL(-1)), optimal PSII efficiency (0.69) and decreased lipid level (25.08%). This study has taken the first steps toward protein detection in Chlorella minutissima, and the results can be used to optimize the culturing of other microalgae. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Evaluating acetaldehyde synthesis from L-/sup 14/C(U)) threonine by Streptococcus thermophilus and Lactobacillus bulgaricus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkins, D.W.; Schmidt, R.H.; Shireman, R.B.

    To evaluate the synthesis of acetaldehyde from threonine during growth of yogurt cultures, Streptococcus thermophilus MS1 and Lactobacillus bulgaricus MR1 were grown in defined medium in which 10% of the total threonine was composed of L-(carbon-14(U))threonine. Acetaldehyde production was monitored by formation of 2,4-dinitrophenylhydrazone followed by separation and analysis using high performance liquid chromatography. After growth for 8 h at 42/sup 0/C, approximately 2.0% of the total acetaldehyde (780.4 nmol) produced was from L-(carbon-14)threonine. Threonine aldolase activity was determined in cell-free extracts from S. thermophilus and L. bulgaricus grown in Elliker broth. Increasing incubation temperature from 30 to 42/sup 0/Cmore » decreased threonine aldolase activity in cells of the streptococcus harvested after 8 h of incubation. Effect of incubation temperature was more dramatic in cells harvested after 18 h where the activity of cells grown at 48/sup 0/C was 89% lower than that of cells grown at 30/sup 0/C. Cell extracts from S. thermophilus MS1 possessed higher threonine aldolase activity than did those from L. bulgaricus MR1. Increased assay temperature from 30 to 42/sup 0/C increased threonine aldolase activity in S. thermophilus MS1.« less

  7. Variation in stem morphology and movement of amyloplasts in white spruce grown in the weightless environment of the International Space Station

    NASA Astrophysics Data System (ADS)

    Rioux, Danny; Lagacé, Marie; Cohen, Luchino Y.; Beaulieu, Jean

    2015-01-01

    One-year-old white spruce (Picea glauca) seedlings were studied in microgravity conditions in the International Space Station (ISS) and compared with seedlings grown on Earth. Leaf growth was clearly stimulated in space whereas data suggest a similar trend for the shoots. Needles on the current shoots of ground-based seedlings were more inclined towards the stem base than those of seedlings grown in the ISS. Amyloplasts sedimented in specialized cells of shoots and roots in seedlings grown on Earth while they were distributed at random in similar cells of seedlings tested in the ISS. In shoots, such amyloplasts were found in starch sheath cells located between leaf traces and cortical cells whereas in roots they were constituents of columella cells of the cap. Nuclei were regularly observed just above the sedimented amyloplasts in both organs. It was also frequent to detect vacuoles with phenolic compounds and endoplasmic reticulum (ER) close to the sedimented amyloplasts. The ER was mainly observed just under these amyloplasts. Thus, when amyloplasts sediment, the pressure exerted on the ER, the organelle that can for instance secrete proteins destined for the plasma membrane, might influence their functioning and play a role in signaling pathways involved in gravity-sensing white spruce cells.

  8. Comparative studies on cellular behaviour of carnation (Dianthus caryophyllus Linn. cv. Grenadin) grown in vivo and in vitro for early detection of somaclonal variation.

    PubMed

    Yaacob, Jamilah Syafawati; Taha, Rosna Mat; Khorasani Esmaeili, Arash

    2013-01-01

    The present study deals with the cytological investigations on the meristematic root cells of carnation (Dianthus caryophyllus Linn.) grown in vivo and in vitro. Cellular parameters including the mitotic index (MI), chromosome count, ploidy level (nuclear DNA content), mean cell and nuclear areas, and cell doubling time (Cdt) were determined from the 2 mm root tip segments of this species. The MI value decreased when cells were transferred from in vivo to in vitro conditions, perhaps due to early adaptations of the cells to the in vitro environment. The mean chromosome number was generally stable (2n = 2x = 30) throughout the 6-month culture period, indicating no occurrence of early somaclonal variation. Following the transfer to the in vitro environment, a significant increase was recorded for mean cell and nuclear areas, from 26.59 ± 0.09  μm² to 35.66 ± 0.10  μm² and 142.90 ± 0.59  μm² to 165.05 ± 0.58  μm², respectively. However, the mean cell and nuclear areas of in vitro grown D. caryophyllus were unstable and fluctuated throughout the tissue culture period, possibly due to organogenesis or rhizogenesis. Ploidy level analysis revealed that D. caryophyllus root cells contained high percentage of polyploid cells when grown in vivo and maintained high throughout the 6-month culture period.

  9. Comparative Studies on Cellular Behaviour of Carnation (Dianthus caryophyllus Linn. cv. Grenadin) Grown In Vivo and In Vitro for Early Detection of Somaclonal Variation

    PubMed Central

    Yaacob, Jamilah Syafawati; Taha, Rosna Mat; Khorasani Esmaeili, Arash

    2013-01-01

    The present study deals with the cytological investigations on the meristematic root cells of carnation (Dianthus caryophyllus Linn.) grown in vivo and in vitro. Cellular parameters including the mitotic index (MI), chromosome count, ploidy level (nuclear DNA content), mean cell and nuclear areas, and cell doubling time (Cdt) were determined from the 2 mm root tip segments of this species. The MI value decreased when cells were transferred from in vivo to in vitro conditions, perhaps due to early adaptations of the cells to the in vitro environment. The mean chromosome number was generally stable (2n = 2x = 30) throughout the 6-month culture period, indicating no occurrence of early somaclonal variation. Following the transfer to the in vitro environment, a significant increase was recorded for mean cell and nuclear areas, from 26.59 ± 0.09 μm2 to 35.66 ± 0.10 μm2 and 142.90 ± 0.59 μm2 to 165.05 ± 0.58 μm2, respectively. However, the mean cell and nuclear areas of in vitro grown D. caryophyllus were unstable and fluctuated throughout the tissue culture period, possibly due to organogenesis or rhizogenesis. Ploidy level analysis revealed that D. caryophyllus root cells contained high percentage of polyploid cells when grown in vivo and maintained high throughout the 6-month culture period. PMID:23766703

  10. Silicon solar cell process development, fabrication and analysis

    NASA Technical Reports Server (NTRS)

    Minahan, J. A.

    1981-01-01

    The fabrication of solar cells from several unconventional silicon materials is described, and cell performance measured and analyzed. Unconventional materials evaluated are edge defined film fed grown (EFG), heat exchanger method (HEM), dendritic web grown, and continuous CZ silicons. Resistivity, current voltage, and spectral sensitivity of the cells were measured. Current voltage was measured under AM0 and AM1 conditions. Maximum conversion efficiencies of cells fabricated from these and other unconventional silicons were compared and test results analyzed. The HEM and continuous CZ silicon were found to be superior to silicon materials considered previously.

  11. Enzymatic defenses against the toxicity of oxygen and of streptonigrin in Escherichia coli.

    PubMed

    Hassan, H M; Fridovich, I

    1977-03-01

    Anaerobically grown Escherichia coli K-12 contain only one superoxide dismutase and that is the iron-containing isozyme found in the periplasmic space. Exposure to oxygen caused the induction of a manganese-containing superoxide dismutase and of another, previously undescribed, superoxide dismutase, as well as of catalase and peroxidase. These inductions differed in their responsiveness towards oxygen. Thus the very low levels of oxygen present in deep, static, aerobic cultures were enough for nearly maximal induction of the manganese-superoxide dismutase. In contrast, induction of the new superoxide dismutase, catalase, and peroxidase required the much higher levels of oxygen achieved in vigorously agitated aerobic cultures. Anaerobically grown cells showed a much greater oxygen enhancement of the lethality of streptonigrin than did aerobically grown cells, in accord with the proposal that streptonigrin can serve as an intracellular source of superoxide. Anaerobically grown cells in which enzyme inductions were prevented by puromycin were damaged by exposure to air. This damage was evidenced both as a decline in viable cell count and as structural abnormalities evident under an electron microscope.

  12. The polar lipids of Clostridium psychrophilum, an anaerobic psychrophile

    PubMed Central

    Guan, Ziqiang; Tian, Bing; Perfumo, Amedea; Goldfine, Howard

    2013-01-01

    We have examined the polar lipids of Clostridium psychrophilum, a recently characterized psychrophilic Clostridium isolated from an Antarctic microbial mat. Lipids were extracted from cells grown near the optimal growth temperature (+5 °C) and at −5 °C, and analyzed by two-dimensional thin layer chromatography and liquid chromatography coupled with mass spectrometry. The major phospholipids of this species are: cardiolipin, phosphatidylethanolamine, and phosphatidylglycerol. Phosphatidylserine and lyso-phosphatidylethanolamine were found as minor components. The most abundant glycolipids are a monoglycosyldiradylglycerol (MGDRG) and a diglycosyldiradylglycerol (DGDRG). The latter was only seen in cells grown at −5 °C. An ethanolamine-phosphate derivative of N-acetylglucosaminyldiradylglycerol was seen in cells grown at −5 °C and an ethanolamine-phosphate derivative of MGDRG was found in cells grown at +5 °C. All lipids were present in both the all acyl and plasmalogen (alk-1′-enyl acyl) forms with the exception of PS and MGDRG, which were predominantly in the diacyl form. The significance of lipid changes at the two growth temperatures is discussed. PMID:23454375

  13. [Influence of glucose and galactose on the morphology and biological properties of Yersinia pseudotuberculosis].

    PubMed

    Bakholdina, S I; Solov'eva, T F; Shubin, F N; Timchenko, N F

    2005-01-01

    When cultivated in the presence of glucose, irrespective of temperature and the degree of aeration, Y. pseudotuberculosis cells have the ovoid form, constant size and low hydrophobic properties of their surface. Meanwhile the characteristics of the bacteria grown in the medium, carbohydrate-free or with galactose added, essentially depend on the conditions of medium aeration. Under the conditions of intensive stirring at both temperatures these bacteria acquire the coccoid form, not typical for Yersinia, they have a smaller area (approximately 2 times) and more hydrophobic surface in comparison with the cells grown in the presence of glucose. Under stationary conditions the differences between the cells, cultivated in the presence of galactose and glucose, in form and area disappear, but the differences in the hydrophobic properties of the surface are retained. As revealed in this study, the cells grown in the presence of galactose and under the conditions of intensive medium stirring, in contrast to those grown with glucose, have 1.5-fold greater invasive activity, irrespective of aeration conditions, eightfold greater resistance to ampicillin and twofold greater resistance to streptomycin and erythromycin.

  14. Cytochemical localization of reserves during seed development in Arabidopsis thaliana under spaceflight conditions

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Xiao, Y.; Musgrave, M. E.

    1996-01-01

    Successful development of seeds under spaceflight conditions has been an elusive goal of numerous long-duration experiments with plants on orbital spacecraft. Because carbohydrate metabolism undergoes changes when plants are grown in microgravity, developing seed storage reserves might be detrimentally affected during spaceflight. Seed development in Arabidopsis thaliana plants that flowered during 11 d in space on shuttle mission STS-68 has been investigated in this study. Plants were grown to the rosette stage (13 d) on a nutrient agar medium on the ground and loaded into the Plant Growth Unit flight hardware 18 h prior to lift-off. Plants were retrieved 3 h after landing and siliques were immediately removed from plants. Young seeds were fixed and processed for microscopic observation. Seeds in both the ground control and flight plants are similar in their morphology and size. The oldest seeds from these plants contain completely developed embryos and seed coats. These embryos developed radicle, hypocotyl, meristematic apical tissue, and differentiated cotyledons. Protoderm, procambium, and primary ground tissue had differentiated. Reserves such as starch and protein were deposited in the embryos during tissue differentiation. The aleurone layer contains a large quantity of storage protein and starch grains. A seed coat developed from integuments of the ovule with gradual change in cell composition and cell material deposition. Carbohydrates were deposited in outer integument cells especially in the outside cell walls. Starch grains decreased in number per cell in the integument during seed coat development. All these characteristics during seed development represent normal features in the ground control plants and show that the spaceflight environment does not prevent normal development of seeds in Arabidopsis.

  15. Planktonic and biofilm-grown nitrogen-cycling bacteria exhibit different susceptibilities to copper nanoparticles.

    PubMed

    Reyes, Vincent C; Opot, Stephen O; Mahendra, Shaily

    2015-04-01

    Proper characterization of nanoparticle (NP) interactions with environmentally relevant bacteria under representative conditions is necessary to enable their sustainable manufacture, use, and disposal. Previous nanotoxicology research based on planktonic growth has not adequately explored biofilms, which serve as the predominant mode of bacterial growth in natural and engineered environments. Copper nanoparticle (Cu-NP) impacts on biofilms were compared with respective planktonic cultures of the ammonium-oxidizing Nitrosomonas europaea, nitrogen-fixing Azotobacter vinelandii, and denitrifying Paracoccus denitrificans using a suite of independent toxicity diagnostics. Median inhibitory concentration (IC50) values derived from adenosine triphosphate (ATP) for Cu-NPs were lower in N. europaea biofilms (19.6 ± 15.3 mg/L) than in planktonic cells (49.0 ± 8.0 mg/L). However, in absorbance-based growth assays, compared with unexposed controls, N. europaea growth rates in biofilms were twice as resilient to inhibition than those in planktonic cultures. Similarly, relative to unexposed controls, growth rates and yields of P. denitrificans in biofilms exposed to Cu-NPs were 40-fold to 50-fold less inhibited than those in planktonic cells. Physiological evaluation of ammonium oxidation and nitrate reduction suggested that biofilms were also less inhibited by Cu-NPs than planktonic cells. Furthermore, functional gene expression for ammonium oxidation (amoA) and nitrite reduction (nirK) showed lower inhibition by NPs in biofilms relative to planktonic-grown cells. These results suggest that biofilms mitigate NP impacts, and that nitrogen-cycling bacteria in wastewater, wetlands, and soils might be more resilient to NPs than planktonic-based assessments suggest. © 2014 SETAC.

  16. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light

    NASA Technical Reports Server (NTRS)

    Schuerger, A. C.; Brown, C. S.; Stryjewski, E. C.

    1997-01-01

    Pepper plants (Capsicum annuum L. cv., Hungarian Wax) were grown under metal halide (MH) lamps or light-emitting diode (LED) arrays with different spectra to determine the effects of light quality on plant anatomy of leaves and stems. One LED (660) array supplied 90% red light at 660 nm (25nm band-width at half-peak height) and 1% far-red light between 700-800nm. A second LED (660/735) array supplied 83% red light at 660nm and 17% far-red light at 735nm (25nm band-width at half-peak height). A third LED (660/blue) array supplied 98% red light at 660nm, 1% blue light between 350-550nm, and 1% far-red light between 700-800nm. Control plants were grown under broad spectrum metal halide lamps. Plants were gron at a mean photon flux (300-800nm) of 330 micromol m-2 s-1 under a 12 h day-night photoperiod. Significant anatomical changes in stem and leaf morphologies were observed in plants grown under the LED arrays compared to plants grown under the broad-spectrum MH lamp. Cross-sectional areas of pepper stems, thickness of secondary xylem, numbers of intraxylary phloem bundles in the periphery of stem pith tissues, leaf thickness, numbers of choloplasts per palisade mesophyll cell, and thickness of palisade and spongy mesophyll tissues were greatest in peppers grown under MH lamps, intermediate in plants grown under the 660/blue LED array, and lowest in peppers grown under the 660 or 660/735 LED arrays. Most anatomical features of pepper stems and leaves were similar among plants grown under 660 or 660/735 LED arrays. The effects of spectral quality on anatomical changes in stem and leaf tissues of peppers generally correlate to the amount of blue light present in the primary light source.

  17. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light.

    PubMed

    Schuerger, A C; Brown, C S; Stryjewski, E C

    1997-03-01

    Pepper plants (Capsicum annuum L. cv., Hungarian Wax) were grown under metal halide (MH) lamps or light-emitting diode (LED) arrays with different spectra to determine the effects of light quality on plant anatomy of leaves and stems. One LED (660) array supplied 90% red light at 660 nm (25nm band-width at half-peak height) and 1% far-red light between 700-800nm. A second LED (660/735) array supplied 83% red light at 660nm and 17% far-red light at 735nm (25nm band-width at half-peak height). A third LED (660/blue) array supplied 98% red light at 660nm, 1% blue light between 350-550nm, and 1% far-red light between 700-800nm. Control plants were grown under broad spectrum metal halide lamps. Plants were gron at a mean photon flux (300-800nm) of 330 micromol m-2 s-1 under a 12 h day-night photoperiod. Significant anatomical changes in stem and leaf morphologies were observed in plants grown under the LED arrays compared to plants grown under the broad-spectrum MH lamp. Cross-sectional areas of pepper stems, thickness of secondary xylem, numbers of intraxylary phloem bundles in the periphery of stem pith tissues, leaf thickness, numbers of choloplasts per palisade mesophyll cell, and thickness of palisade and spongy mesophyll tissues were greatest in peppers grown under MH lamps, intermediate in plants grown under the 660/blue LED array, and lowest in peppers grown under the 660 or 660/735 LED arrays. Most anatomical features of pepper stems and leaves were similar among plants grown under 660 or 660/735 LED arrays. The effects of spectral quality on anatomical changes in stem and leaf tissues of peppers generally correlate to the amount of blue light present in the primary light source.

  18. Auxin efflux facilitator and auxin dynamism responsible for the gravity-regulated development of peg in cucumber seedlings

    NASA Astrophysics Data System (ADS)

    Takahashi, Hideyuki; Watanabe, Chiaki; Fujii, Nobuharu; Miyazawa, Yutaka

    Cucumber seedlings develop a protuberance, peg, by which seed coats are pulled out just af-ter germination. The peg is usually formed on the lower side of the transition zone between hypocotyl and root of the seedlings grown in a horizontal position. Our previous spaceflight experiment showed that unilateral positioning of a peg in cucumber seedlings occurred due to its suppression on the upper side of the transition zone because seedlings grown in microgravity developed a peg on each side of the transition zone. We also showed that auxin was a major factor responsible for peg development. There was a redistribution of auxin in the gravistimu-lated transition zone, decreasing IAA level on the upper side, and IAA application induced a peg on both lower and upper sides of the transition zone. In addition, peg was released from its suppression in the seedlings treated with inhibitors of auxin efflux. Namely, two pegs devel-oped in the TIBA-treated seedlings even when they were grown in a horizontal position. These results imply that a reduction of auxin level due to its efflux is required for the suppression of peg development on the upper side of the transition zone in a horizontal position. To under-stand molecular mechanism underlying the negative control of morphogenesis by graviresponse in cucumber seedlings, we isolated cDNAs of auxin efflux facilitators, CsPINs, from cucumber and examined the expressions of their proteins, in relation to the redistribution of endogenous auxin and peg development. We isolated six cDNAs of PIN homologues CsPIN1 to CsPIN6 from cucumber. By immunohistochemical study using some of their anti-bodies, we revealed that CsPIN1 was localized in endodermis, vascular tissue and pith around the transition zone of cucumber seedlings. In cucumber seedlings grown in a vertical position with radicles pointing down, CsPIN1 in endodermal cells was mainly localized on the plasma membrane neighboring vascular bundle but not on the plasma membrane next to the cortex. This CsPIN1 localization could play a role in transporting auxin from cortex to vascular bundle. In both vascular and pith tissues, CsPIN1 was localized on the bottom plasma membrane of the cells, which could allow auxin to move toward the roots. In the seedlings grown in a horizontal position, endoder-mal cells situated above the vascular bundle localized CsPIN1 on the lower plasma membrane, whereas the polarized localization of CsPIN1 in endodermal cells situated below the vascular bundle became less clear. This differential expression of CsPIN1 in the endodermis commenced within 30 min after gravistimulation. We measured endogenous IAA contents in the transi-tion zone of the 24-hour-old seedlings. In the longitudinally halved transition zone of seedlings grown in a horizontal position, free IAA content was significantly lowered in the upper side, compared to that of the lower side or either side of the transition zone in a vertical position. When 24-hour-old seedlings grown in a vertical position were gravistimulated by reorienting them to the horizontal, free IAA in the lower side of the transition zone increased by 30 min after gravistimulation and eventually decreased to the control level by 180 min after gravistim-ulation. IAA content in the upper side of the transition zone did not change much and was comparable to that in the vertical transition zone during 180 min after gravistimulation. Thus, it appears that gravistimulation causes an immediate increase of IAA level in the lower side and its eventual decrease in the upper side of the transition zone. The gravity-induced changes in CsPIN1 localization in endodermal cells could be involved in auxin redistribution that leads to unilateral positioning of a peg in cucumber seedlings.

  19. Substrate effects on endothelial cell adherence rates.

    PubMed

    Scott, W J; Mann, P

    1990-01-01

    Endothelial cell attachment to a synthetic substrate was studied using an in vitro model system. Attachment rate was defined as the number of tritium-labeled endothelial cells attached to a synthetic substrate after 30 minutes. The surface of the synthetic substrate was chemically modified with either laminin or fibronectin. Labeled endothelial cells attached more rapidly to synthetic substrate, chemically modified with biomolecules, as compared with the untreated substrate controls. Unlabeled endothelial cells were grown to confluency on a second set of modified and untreated substrates. The cells were removed with 1% Triton, and the rate of re-endothelialization with tritium-labeled endothelial cells was determined. The rate was 11-13 times that of the same cells on untreated substrate. These data confirm that biomolecules increase the attachment rate of endothelial cells to synthetic substrate, and also suggest that endothelial cells may secrete a Triton-insoluble product (Sigma, St. Louis, MO) into subendothelial matrix that increases re-endothelialization.

  20. Microarray Data Analysis of Space Grown Arabidopsis Leaves for Genes Important in Vascular Patterning. Analysis of Space Grown Arabidopsis with Microarray Data from GeneLab: Identification of Genes Important in Vascular Patterning

    NASA Technical Reports Server (NTRS)

    Weitzel, A. J.; Wyatt, S. E.; Parsons-Wingerter, P.

    2016-01-01

    Venation patterning in leaves is a major determinant of photosynthesis efficiency because of its dependency on vascular transport of photo-assimilates, water, and minerals. Arabidopsis thaliana grown in microgravity show delayed growth and leaf maturation. Gene expression data from the roots, hypocotyl, and leaves of A. thaliana grown during spaceflight vs. ground control analyzed by Affymetrix microarray are available through NASA's GeneLab (GLDS-7). We analyzed the data for differential expression of genes in leaves resulting from the effects of spaceflight on vascular patterning. Two genes were found by preliminary analysis to be up-regulated during spaceflight that may be related to vascular formation. The genes are responsible for coding an ARGOS (Auxin-Regulated Gene Involved in Organ Size)-like protein (potentially affecting cell elongation in the leaves), and an F-box/kelch-repeat protein (possibly contributing to protoxylem specification). Further analysis that will focus on raw data quality assessment and a moderated t-test may further confirm up-regulation of the two genes and/or identify other gene candidates. Plants defective in these genes will then be assessed for phenotype by the mapping and quantification of leaf vascular patterning by NASA's VESsel GENeration (VESGEN) software to model specific vascular differences of plants grown in spaceflight.

  1. Fabrication and evaluation of novel zeolite membranes to control the neoplastic activity and anti-tumoral drug treatments in human breast cancer cells. Part 1: Synthesis and characterization of Pure Zeolite Membranes and Mixed Matrix Membranes for adhesion and growth of cancer cells.

    PubMed

    Tavolaro, Palmira; Martino, Guglielmo; Andò, Sebastiano; Tavolaro, Adalgisa

    2016-12-01

    Novel pure and hybrid zeolite membranes were prepared with appropriate different physicochemical characteristics such as frameworks, hydrophilicity, crystal size, chemical composition, acid-base properties (Point of Zero Charge, PZC) and surface morphology and used in inorganic cell/scaffold constructs. Because the control of cell interactions, as the adhesion, proliferation, remodelling and mobility, is important for differentiation and progression of tumors, this work focused on response of cancer cells adhered and grown on synthesized zeolite surfaces in order to study the influence of these scaffolds in controlled conditions. We have selected the MCF-7 and MDA-MB-231 human breast cancer cell line as model tumor cell lines. This study showed that all the zeolite membranes synthesized are excellent scaffolds because they are very selective materials to support the adhesion and growth of neoplastic cells. All zeolite scaffolds were characterized by FESEM, FTIR ATR, XRD, AFM, PZC and contact angle analyses. Cell adhesion, viability and morphology were measured by count, MTT assay and FESEM microphotography analysis, at various incubation times. Copyright © 2016. Published by Elsevier B.V.

  2. Optically enhanced photon recycling in mechanically stacked multijunction solar cells

    DOE PAGES

    Steiner, Myles A.; Geisz, John F.; Ward, J. Scott; ...

    2015-11-09

    Multijunction solar cells can be fabricated by mechanically bonding together component cells that are grown separately. Here, we present four-junction four-terminal mechanical stacks composed of GaInP/GaAs tandems grown on GaAs substrates and GaInAsP/GaInAs tandems grown on InP substrates. The component cells were bonded together with a low-index transparent epoxy that acts as an angularly selective reflector to the GaAs bandedge luminescence, while simultaneously transmitting nearly all of the subbandgap light. As determined by electroluminescence measurements and optical modeling, the GaAs subcell demonstrates a higher internal radiative limit and, thus, higher subcell voltage, compared with GaAs subcells without the epoxy reflector.more » The best cells demonstrate 38.8 ± 1.0% efficiency under the global spectrum at 1000 W/m 2 and ~ 42% under the direct spectrum at ~100 suns. As a result, eliminating the series resistance is the key challenge for further improving the concentrator cells.« less

  3. Protein Crystal Recombinant Human Insulin

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The comparison of protein crystal, Recombiant Human Insulin; space-grown (left) and earth-grown (right). On STS-60, Spacehab II indicated that space-grown crystals are larger and of greater optical clarity than their earth-grown counterparts. Recombiant Human Insulin facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  4. Design of a three-layer antireflection coating for high efficiency indium phosphide solar cells using a chemical oxide as first layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moulot, J.; Faur, M.; Faur, M.

    1995-10-01

    It is well known that the behavior of III-V compound based solar cells is largely controlled by their surface, since the majority of light generated carriers (63% for GaAs and 79% for InP) are created within 0.2 mu m of the surface of the illuminated cell. Consequently, the always observed high surface recombination velocity (SRV) on these cells is a serious limiting factor for their high efficiency performance, especially for those with p-n junction made by either thermal diffusion or ion implantation. A good surface passivation layer, ideally a grown oxide as opposed to a deposited one, will cause amore » significant reduction in the SRV without adding interface problems, thus improving the performance of III-V compound based solar cells. Another significant benefit to the overall performance of the solar cells can be achieved by a substantial reduction of their large surface optical reflection by the use of a well designed antireflection (AR) coating. In this paper, the authors demonstrate the effectiveness of using a chemically grown thermally and chemically stable oxide, not only for surface passivation but also as an integral part of a 3-layer AR coating for thermally diffused p+n InP solar cells. A phosphorus-rich interfacial oxide, In(PO3)3, is grown at the surface of the p+ emitter using an etchant based on HNO3, o-H3PO4 and H2O2. This oxide has the unique properties of passivating the surface as well as serving as an efficient antireflective layer yielding a measured record high AMO open-circuit voltage of 890.3 mV on a thermally diffused InP(Cd,S) solar cell. Unlike conventional single layer AR coatings such as ZnS, Sb2O3, SiO or double layer AR coatings such as ZnS/MgF2 deposited by e-beam or resistive evaporation, this oxide preserves the stoichiometry of the InP surface.« less

  5. Light Spectral Quality Effects on the Growth of Potato (Solanum Tuberosum L.) Nodal Cuttings in Vitro

    NASA Technical Reports Server (NTRS)

    Wilson, Deborah A.; Weigel, Russell C.; Wheeler, Raymond M.; Sager, John C.

    1993-01-01

    The effects of light spectral quality on the growth of in vitro nodal cuttings of potato (Solanum tuberosum L.) cultivars Norland, Superior, Kennebec, and Denali were examined. The different light spectra were provided by Vita-Lite fluorescent (VF) (a white light control), blue fluorescent (BF), red fluorescent (RF), low-pressure sodium (LPS), and a combination of low-pressure sodium plus cool-white fluorescent lamps (LPS/CWF). For cultivars, stem lengths after 4 wks were longest under LPS, follow by RF, LPS/CWF, VF, and BF (in descending order). Microscopic studies revealed that cells were shortest when cultured in BF or VF environments, and were longest in RF or LPS lamp environments. The highest number axillary branches occurred on plantlets grown with LPS or LPS/CWF, whereas the lowest number occurred with BF. No leaf or stem edema (callus or gall-like growths) occurred iwth LPS or LPS/cwf lighting, and no edema occurred on cv. Norland plantlets, regardless of lighting. Results suggest that shoot morphologic development of in vitro grown potato plants can be controlled by controlling irradiant spectral quality.

  6. Patterns of Proteins that Associate with p53 or with p53 Binding Sites Present in the Ribosomal Gene Cluster and MDM2 (P2) Promoter

    DTIC Science & Technology

    2000-08-01

    Spodoptera frugiperda (Sf21) cells were infected with a recombinant baculovirus expressing the wild-type human p53. 3-4 and 10-1 cells were grown at 37 ’C in...for further use. Spodoptera fugiperda (Sf21) cells were grown at 27 0C in TC-100 medium (GIBCO), supplemented with 10% of heat inactivated Fetal

  7. The fertilization ability and developmental competence of bovine oocytes grown in vitro

    PubMed Central

    MAKITA, Miho; UEDA, Mayuko; MIYANO, Takashi

    2016-01-01

    In vitro growth culture systems for oocytes are being developed in several mammalian species. In these growth culture systems, in vitro grown oocytes usually have lower blastocyst formation than in vivo grown oocytes after in vitro fertilization. Furthermore, there have been a few reports that investigated the fertilization ability of in vitro grown oocytes in large animals. The purpose of this study was to investigate the fertilization process and developmental competence of bovine oocytes grown in vitro. Oocyte-granulosa cell complexes collected from bovine early antral follicles (0.4−0.7 mm in diameter) were cultured for growth with 17β-estradiol and androstenedione for 14 days and matured in vitro. These oocytes were then inseminated for 6 or 12 h, and further cultured for development up to 8 days in vitro. After growth culture, oocytes grew from 95 µm to around 120 µm and acquired maturation competence (79%). Although fertilization rates of in vitro grown oocytes were low after 6 h of insemination, 34% of in vitro grown oocytes fertilized normally after 12 h of insemination, having two polar bodies and two pronuclei with a sperm tail, and 22% of these oocytes developed into blastocysts after 8 days of culture. The fertilization and blastocyst formation rates were similar to those of in vivo grown oocytes. In addition, blastocyst cell numbers were also similar between in vitro and in vivo grown oocytes. In conclusion, in vitro grown bovine oocytes are similar to in vivo grown oocytes in fertilization ability and can develop into blastocysts. PMID:27151093

  8. The fertilization ability and developmental competence of bovine oocytes grown in vitro.

    PubMed

    Makita, Miho; Ueda, Mayuko; Miyano, Takashi

    2016-08-25

    In vitro growth culture systems for oocytes are being developed in several mammalian species. In these growth culture systems, in vitro grown oocytes usually have lower blastocyst formation than in vivo grown oocytes after in vitro fertilization. Furthermore, there have been a few reports that investigated the fertilization ability of in vitro grown oocytes in large animals. The purpose of this study was to investigate the fertilization process and developmental competence of bovine oocytes grown in vitro. Oocyte-granulosa cell complexes collected from bovine early antral follicles (0.4-0.7 mm in diameter) were cultured for growth with 17β-estradiol and androstenedione for 14 days and matured in vitro. These oocytes were then inseminated for 6 or 12 h, and further cultured for development up to 8 days in vitro. After growth culture, oocytes grew from 95 µm to around 120 µm and acquired maturation competence (79%). Although fertilization rates of in vitro grown oocytes were low after 6 h of insemination, 34% of in vitro grown oocytes fertilized normally after 12 h of insemination, having two polar bodies and two pronuclei with a sperm tail, and 22% of these oocytes developed into blastocysts after 8 days of culture. The fertilization and blastocyst formation rates were similar to those of in vivo grown oocytes. In addition, blastocyst cell numbers were also similar between in vitro and in vivo grown oocytes. In conclusion, in vitro grown bovine oocytes are similar to in vivo grown oocytes in fertilization ability and can develop into blastocysts.

  9. Ultrastructure of meristem and root cap of pea seedlings under spaceflight conditions

    NASA Technical Reports Server (NTRS)

    Sytnyk, K. M.; Kordyum, E. L.; Bilyavska, N. O.; Tarasenko, V. O.

    1983-01-01

    Data of electron microscopic analysis of meristem and root cap of pea seedlings grown aboard the Salyut-6 orbital research station in the Oazis apparatus and in the laboratory are presented. The main morphological and anatomical characteristics of the test and control plants are shown to be similar. At the same time, some differences are found in the structural and functional organization of the experimental cells as compared to the controls. They concern first of all the plastic apparatus, mitochondria and Golgi apparatus. It is assumed that cell function for certain periods of weightlessness on the whole ensures execution of the cytodifferentiation programs genetically determined on the Earth. Biochemical and physiological processes vary rather markedly due to lack of initially rigorous determination.

  10. Hybrid solar cells based on dc magnetron sputtered films of n-ITO on APMOVPE grown p-InP

    NASA Technical Reports Server (NTRS)

    Coutts, T. J.; Li, X.; Wanlass, M. W.; Emery, K. A.; Gessert, T. A.

    1988-01-01

    Hybrid indium-tin-oxide (ITO)/InP solar cells are discussed. The cells are constructed by dc magnetron sputter deposition of ITO onto high-quality InP films grown by atmospheric pressure metal-organic vapor-phase epitaxy (APMOVPE). A record efficiency of 18.9 percent, measured under standard Solar Energy Research Institute reporting conditions, has been obtained. The p-InP surface is shown to be type converted, principally by the ITO, but with the extent of conversion being modified by the nature of the sputtering gas. The deposition process, in itself, is not responsible for the type conversion. Dark currents have been suppressed by more than three orders of magnitude by the addition of hydrogen to the sputtering gas during deposition of a thin (5 nm) interface layer. Without this layer, and using only the more usual argon/oxygen mixture, the devices had poorer efficiencies and were unstable. A discussion of associated quantum efficiencies and capacitance/voltage measurements is also presented from which it is concluded that further improvements in efficiency will result from better control over the type-conversion process.

  11. Regulation of galactokinase gene expression in Tetrahymena thermophila. II. Identification of 3,4-dihydroxyphenylalanine as a primary effector of adrenergic control of galactokinase expression.

    PubMed

    Ness, J C; Morse, D E

    1985-08-25

    Intracellular concentrations of catecholamines were determined in wild-type and mutant Tetrahymena thermophila, using the highly sensitive techniques of high-performance liquid chromatography and electro-chemical detection. Catecholamines were determined in these cell strains grown under various steady-state conditions, including those which initiate and maintain repression of galactokinase gene expression. Wild-type cells grown in defined minimal medium supplemented with 1% glycerol, exhibiting derepressed galactokinase synthesis, were found to contain considerable quantities of dopa (3,4-dihydroxyphenylalanine) and dopamine, but no detectable levels of either norepinephrine or epinephrine. Analyses of wild-type cells revealed a strong positive correlation between the internal concentration of dopa and expression of the galactokinase gene, both of which are regulated by exogenous carbohydrates, catecholamine agonists, or dibutyryl-cAMP; an analogous relationship between intracellular dopamine concentrations and galactokinase activity was not found. In addition, a correlation between intracellular dopa content and the phenotypic expression of galactokinase in various mutants deficient in the catecholamine biosynthetic pathway or in glucokinase further confirms the role of dopa as a primary effector in the regulation of galactokinase gene expression.

  12. Plasticity of Total and Intracellular Phosphorus Quotas in Microcystis aeruginosa Cultures and Lake Erie Algal Assemblages

    PubMed Central

    Saxton, Matthew A.; Arnold, Robert J.; Bourbonniere, Richard A.; McKay, Robert Michael L.; Wilhelm, Steven W.

    2011-01-01

    Blooms of the potentially toxic cyanobacterium Microcystis are common events globally, and as a result significant resources continue to be dedicated to monitoring and controlling these events. Recent studies have shown that a significant proportion of total cell-associated phosphorus (P) in marine phytoplankton can be surface adsorbed; as a result studies completed to date do not accurately report the P demands of these organisms. In this study we measure the total cell-associated and intracellular P as well as growth rates of two toxic strains of Microcystis aeruginosa Kütz grown under a range of P concentrations. The results show that the intracellular P pool in Microcystis represents a percentage of total cell-associated P (50–90%) similar to what has been reported for actively growing algae in marine systems. Intracellular P concentrations (39–147 fg cell−1) generally increased with increasing P concentrations in the growth medium, but growth rate and the ratio of total cell-associated to intracellular P remained generally stable. Intracellular P quotas and growth rates in cells grown under the different P treatments illustrate the ability of this organism to successfully respond to changes in ambient P loads, and thus have implications for ecosystem scale productivity models employing P concentrations to predict algal bloom events. PMID:22279445

  13. Copper microlocalisation and changes in leaf morphology, chloroplast ultrastructure and antioxidative response in white lupin and soybean grown in copper excess.

    PubMed

    Sánchez-Pardo, Beatriz; Fernández-Pascual, Mercedes; Zornoza, Pilar

    2014-01-01

    The microlocalisation of Cu was examined in the leaves of white lupin and soybean grown hydroponically in the presence of 1.6 (control) or 192 μM (excess) Cu, along with its effect on leaf morphology, (ultra)structure and the antioxidative response. The 192 μM dose led to a reduction in the total leaf area and leaf thickness in both species, although more strongly so in white lupin. In the latter species it was also associated with smaller spongy parenchyma cells, and smaller spaces between them, while in the soybean it more strongly reduced the size of the palisade parenchyma and epidermal cells. Energy-dispersive X-ray microanalysis showed that under Cu excess the metal was mainly localised inside the spongy parenchyma cells of the white lupin leaves, and in the lower epidermis cell walls in those of the soybean. Cu excess also promoted ultrastructural chloroplast alterations, reducing the photosynthetic capacity index and the green area of the leaves, especially in the soybean. Despite this, soybean appeared to be more tolerant to Cu excess than white lupin, because soybean displayed (1) lower accumulation of Cu in the leaves, (2) enhanced microlocalisation of Cu in the cell walls and (3) greater levels of induced total -SH content and superoxide dismutase and catalase activities that are expected for better antioxidative responses.

  14. Fatty aldehyde dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecanol metabolism.

    PubMed Central

    Singer, M E; Finnerty, W R

    1985-01-01

    The role of fatty aldehyde dehydrogenases (FALDHs) in hexadecane and hexadecanol metabolism was studied in Acinetobacter sp. strain HO1-N. Two distinct FALDHs were demonstrated in Acinetobacter sp. strain HO1-N: a membrane-bound, NADP-dependent FALDH activity induced 5-, 15-, and 9-fold by growth on hexadecanol, dodecyl aldehyde, and hexadecane, respectively, and a constitutive, NAD-dependent, membrane-localized FALDH. The NADP-dependent FALDH exhibited apparent Km and Vmax values for decyl aldehyde of 5.0, 13.0, 18.0, and 18.3 microM and 537.0, 500.0, 25.0, and 38.0 nmol/min in hexadecane-, hexadecanol-, ethanol-, palmitate-grown cells, respectively. FALDH isozymes ald-a, ald-b, and ald-c were demonstrated by gel electrophoresis in extracts of hexadecane- and hexadecanol-grown cells. ald-a, ald-b, and ald-d were present in dodecyl aldehyde-grown cells, while palmitate-grown control cells contained ald-b and ald-d. Dodecyl aldehyde-negative mutants were isolated and grouped into two phenotypic classes based on growth: class 1 mutants were hexadecane and hexadecanol negative and class 2 mutants were hexadecane and hexadecanol positive. Specific activity of NADP-dependent FALDH in Ald21 (class 1 mutant) was 85% lower than that of wild-type FALDH, while the specific activity of Ald24 (class 2 mutant) was 55% greater than that of wild-type FALDH. Ald21R, a dodecyl aldehyde-positive revertant able to grow on hexadecane, hexadecanol, and dodecyl aldehyde, exhibited a 100% increase in the specific activity of the NADP-dependent FALDH. The oxidation of [3H]hexadecane byAld21 yielded the accumulation of 61% more fatty aldehyde than the wild type, while Ald24 accumulated 27% more fatty aldehyde, 95% more fatty alcohol, and 65% more wax ester than the wild type. This study provides genetic and physiological evidence for the role of fatty aldehyde as an essential metabolic intermediate and NADP-dependent FALDH as a key enzyme in the dissimilation of hexadecane, hexadecanol, and dodecyl aldehyde in Acinetobactor sp. strain HO1-N. Images PMID:4066609

  15. Characterization and purification of bile salt hydrolase from Lactobacillus sp. strain 100-100

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundeen, S.G.; Savage, D.C.

    1990-08-01

    The authors have characterized and purified the bile salt hydrolase from Lactobacillus sp. strain 100-100. Bile salt hydrolase from cells of the strain was purified with column and high-performance liquid chromatography. The activity was assayed in whole cells and cell-free extracts with either a radiochemical assay involving ({sup 14}C)taurocholic acid or a nonradioactive assay involving trinitrobenzene sulfonate. The activity was detectable only in stationary-phase cells. Within 20 min after conjugated bile acids were added to stationary-phase cultures of strain 100-100, the activity in whole cells increased to levels three- to fivefold higher than in cells from cultures grown in mediummore » free of bile salts. In cell-free extracts, however, the activity was about equal whether or not the cells have been grown with bile salts present. When supernatant solutions from cultures grown in medium containing taurocholic acid were used to suspend cells grown in medium free of the bile salt, the bile salt hydrolase activity detected in whole cells increased two- to threefold. Two forms of the hydrolase were purified from the cells and designated hydrolases A and B. They eluted from anion-exchange high-performance liquid chromatography in two sets of fractions, A at 0.15 M NaCl and B at 0.18 M NaCl. Their apparent molecular weights in nondenaturing polyacrylamide gel electrophoresis were 115,000 and 105,000, respectively. However, discrepancies existed in the apparent molecular weights and number of peptides detected in sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the two forms. Whether the enzyme exists in two forms in the cells remains to be determined.« less

  16. Osteogenic potential of in situ TiO2 nanowire surfaces formed by thermal oxidation of titanium alloy substrate

    NASA Astrophysics Data System (ADS)

    Tan, A. W.; Ismail, R.; Chua, K. H.; Ahmad, R.; Akbar, S. A.; Pingguan-Murphy, B.

    2014-11-01

    Titanium dioxide (TiO2) nanowire surface structures were fabricated in situ by a thermal oxidation process, and their ability to enhance the osteogenic potential of primary osteoblasts was investigated. Human osteoblasts were isolated from nasal bone and cultured on a TiO2 nanowires coated substrate to assess its in vitro cellular interaction. Bare featureless Ti-6Al-4V substrate was used as a control surface. Initial cell adhesion, cell proliferation, cell differentiation, cell mineralization, and osteogenic related gene expression were examined on the TiO2 nanowire surfaces as compared to the control surfaces after 2 weeks of culturing. Cell adhesion and cell proliferation were assayed by field emission scanning electron microscope (FESEM) and Alamar Blue reduction assay, respectively. The nanowire surfaces promoted better cell adhesion and spreading than the control surface, as well as leading to higher cell proliferation. Our results showed that osteoblasts grown onto the TiO2 nanowire surfaces displayed significantly higher production levels of alkaline phosphatase (ALP), extracellular (ECM) mineralization and genes expression of runt-related transcription factor (Runx2), bone sialoprotein (BSP), ostoepontin (OPN) and osteocalcin (OCN) compared to the control surfaces. This suggests the potential use of such surface modification on Ti-6Al-4V substrates as a promising means to improve the osteointegration of titanium based implants.

  17. High-efficiency indium tin oxide/indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Li, X.; Wanlass, M. W.; Gessert, T. A.; Emery, K. A.; Coutts, T. J.

    1989-01-01

    Improvements in the performance of indium tin oxide (ITO)/indium phosphide solar cells have been realized by the dc magnetron sputter deposition of n-ITO onto an epitaxial p/p(+) structure grown on commercial p(+) bulk substrates. The highest efficiency cells were achieved when the surface of the epilayer was exposed to an Ar/H2 plasma before depositing the bulk of the ITO in a more typical Ar/O2 plasma. With H2 processing, global efficiencies of 18.9 percent were achieved. It is suggested that the excellent performance of these solar cells results from the optimization of the doping, thickness, transport, and surface properties of the p-type base, as well as from better control over the ITO deposition procedure.

  18. Reduced calcification decreases photoprotective capability in the coccolithophorid Emiliania huxleyi.

    PubMed

    Xu, Kai; Gao, Kunshan

    2012-07-01

    Intracellular calcification of coccolithophores generates CO₂ and consumes additional energy for acquisition of calcium and bicarbonate ions; therefore, it may correlate with photoprotective processes by influencing the energetics. To address this hypothesis, a calcifying Emiliania huxleyi strain (CS-369) was grown semi-continuously at reduced (0.1 mM, LCa) and ambient Ca²⁺ concentrations (10 mM, HCa) for 150 d (>200 generations). The HCa-grown cells had higher photosynthetic and calcification rates and higher contents of Chl a and carotenoids compared with the naked (bearing no coccoliths) LCa-grown cells. When exposed to stressfull levels of photosynthetically active radiation (PAR), LCa-grown cells displayed lower photochemical yield and less efficient non-photochemical quenching (NPQ). When the LCa- or HCa-grown cells were inversely shifted to their counterpart medium, LCa to HCa transfer increased photosynthetic carbon fixation (P), calcification rate (C), the C/P ratio, NPQ and pigment contents, whereas those shifted from HCa to LCa exhibited the opposite effects. Increased NPQ, carotenoids and quantum yield were clearly linked with increased or sustained calcification in E. huxleyi. The calcification must have played a role in dissipating excessive energy or as an additional drainage of electrons absorbed by the photosynthetic antennae. This phenomenon was further supported by testing two non-calcifying strains, which showed insignificant changes in photosynthetic carbon fixation and NPQ when transferred to LCa conditions.

  19. Automatic Control of Gene Expression in Mammalian Cells.

    PubMed

    Fracassi, Chiara; Postiglione, Lorena; Fiore, Gianfranco; di Bernardo, Diego

    2016-04-15

    Automatic control of gene expression in living cells is paramount importance to characterize both endogenous gene regulatory networks and synthetic circuits. In addition, such a technology can be used to maintain the expression of synthetic circuit components in an optimal range in order to ensure reliable performance. Here we present a microfluidics-based method to automatically control gene expression from the tetracycline-inducible promoter in mammalian cells in real time. Our approach is based on the negative-feedback control engineering paradigm. We validated our method in a monoclonal population of cells constitutively expressing a fluorescent reporter protein (d2EYFP) downstream of a minimal CMV promoter with seven tet-responsive operator motifs (CMV-TET). These cells also constitutively express the tetracycline transactivator protein (tTA). In cells grown in standard growth medium, tTA is able to bind the CMV-TET promoter, causing d2EYFP to be maximally expressed. Upon addition of tetracycline to the culture medium, tTA detaches from the CMV-TET promoter, thus preventing d2EYFP expression. We tested two different model-independent control algorithms (relay and proportional-integral (PI)) to force a monoclonal population of cells to express an intermediate level of d2EYFP equal to 50% of its maximum expression level for up to 3500 min. The control input is either tetracycline-rich or standard growth medium. We demonstrated that both the relay and PI controllers can regulate gene expression at the desired level, despite oscillations (dampened in the case of the PI controller) around the chosen set point.

  20. Early root cap development and graviresponse in white clover (Trifolium repens) grown in space and on a two-axis clinostat

    NASA Technical Reports Server (NTRS)

    Smith, J. D.; Staehelin, L. A.; Todd, P.

    1999-01-01

    White clover (Trifolium repens) was germinated and grown in microgravity aboard the Space Shuttle (STS-60, 1994; STS-63, 1995), on Earth in stationary racks and in a slow-rotating two-axis clinostat. The objective of this study was to determine if normal root cap development and early plant gravity responses were dependent on gravitational cues. Seedlings were germinated in space and chemically fixed in orbit after 21, 40, and 72 h. Seedlings 96 h old were returned viable to earth. Germination and total seedling length were not dependent on gravity treatment. In space-flown seedlings, the number of cell stories in the root cap and the geometry of central columella cells did not differ from those of the Earth-grown seedlings. The root cap structure of clinorotated plants appeared similar to that of seedlings from microgravity, with the exception of three-day rotated plants, which displayed significant cellular damage in the columella region. Nuclear polarity did not depend on gravity; however, the positions of amyloplasts in the central columella cells were dependent on both the gravity treatment and the age of the seedlings. Seedlings from space, returned viable to earth, responded to horizontal stimulation as did 1 g controls, but seedlings rotated on the clinostat for the same duration had a reduced curvature response. This study demonstrates that initial root cap development is insensitive to either chronic clinorotation or microgravity. Soon after differentiation, however, clinorotation leads to loss of normal root cap structure and plant graviresponse while microgravity does not.

  1. Novel device for continuous spatial control and temporal delivery of nitric oxide for in vitro cell culture☆

    PubMed Central

    Romanowicz, Genevieve E.; He, Weilue; Nielsen, Matthew; Frost, Megan C.

    2013-01-01

    Nitric oxide (NO) is an ubiquitous signaling molecule of intense interest in many physiological processes. Nitric oxide is a highly reactive free radical gas that is difficult to deliver with precise control over the level and timing that cells actually experience. We describe and characterize a device that allows tunable fluxes and patterns of NO to be generated across the surface upon which cells are cultured. The system is based on a quartz microscope slide that allows for controlled light levels to be applied to a previously described photosensitive NO-releasing polydimethylsiloxane (PDMS). Cells are cultured in separate wells that are either NO-releasing or a chemically similar PDMS that does not release NO. Both wells are then top coated with DowCorning RTV-3140 PDMS and a polydopamine/gelatin layer to allow cells to grow in the culture wells. When the waveguide is illuminated, the surface of the quartz slide propagates light such that the photosensitive polymer is evenly irradiated and generates NO across the surface of the cell culture well and no light penetrates into the volume of the wells where cells are growing. Mouse smooth muscle cells (MOVAS) were grown in the system in a proof of principle experiment, whereby 60% of the cells were present in the NO-releasing well compared to control wells after 17 h. The compelling advantage of illuminating the NO-releasing polymers with the waveguide system is that light can be used to tunably control NO release while avoiding exposing cells to optical radiation. This device provides means to quantitatively control the surface flux, timing and duration of NO cells experience and allows for systematic study of cellular response to NO generated at the cell/surface interface in a wide variety of studies. PMID:24024168

  2. Evaluation and verification of epitaxial process sequence for silicon solar-cell production

    NASA Technical Reports Server (NTRS)

    Redfield, D.

    1981-01-01

    To achieve the program goals, 28 minimodules were fabricated and tested, using 600 cells made from three-inch-diameter wafers processed by the sequence chosen for this purpose. Of these 600 cells, half were made from epitaxially grown layers on potentially low-cost substrates. The other half were made from commercial semiconductor-grade (SG), single-crystal silicon wafers that served as controls. Cell processing was normally performed on mixed lots containing significant numbers of each of these two types of wafers. After evaluation of the performance of all cells, they were separated by types for incorporation into modules that were to be tested for electrical performance and response to environmental stress. A simplified flow chart displaying this scheme, for quantities representing half of the planned total to be processed, is presented.

  3. Combinatorial control of gene expression in Aspergillus niger grown on sugar beet pectin.

    PubMed

    Kowalczyk, Joanna E; Lubbers, Ronnie J M; Peng, Mao; Battaglia, Evy; Visser, Jaap; de Vries, Ronald P

    2017-09-27

    Aspergillus niger produces an arsenal of extracellular enzymes that allow synergistic degradation of plant biomass found in its environment. Pectin is a heteropolymer abundantly present in the primary cell wall of plants. The complex structure of pectin requires multiple enzymes to act together. Production of pectinolytic enzymes in A. niger is highly regulated, which allows flexible and efficient capture of nutrients. So far, three transcriptional activators have been linked to regulation of pectin degradation in A. niger. The L-rhamnose-responsive regulator RhaR controls the production of enzymes that degrade rhamnogalacturonan-I. The L-arabinose-responsive regulator AraR controls the production of enzymes that decompose the arabinan and arabinogalactan side chains of rhamnogalacturonan-II. The D-galacturonic acid-responsive regulator GaaR controls the production of enzymes that act on the polygalacturonic acid backbone of pectin. This project aims to better understand how RhaR, AraR and GaaR co-regulate pectin degradation. For that reason, we constructed single, double and triple disruptant strains of these regulators and analyzed their growth phenotype and pectinolytic gene expression in A. niger grown on sugar beet pectin.

  4. Surface Position, Not Signaling from Surrounding Maternal Tissues, Specifies Aleurone Epidermal Cell Fate in Maize[OA

    PubMed Central

    Gruis, Darren (Fred); Guo, Hena; Selinger, David; Tian, Qing; Olsen, Odd-Arne

    2006-01-01

    Maize (Zea mays) endosperm consists of an epidermal-like surface layer of aleurone cells, an underlying body of starchy endosperm cells, and a basal layer of transfer cells. To determine whether surrounding maternal tissues perform a role in specifying endosperm cell fates, a maize endosperm organ culture technique was established whereby the developing endosperm is completely removed from surrounding maternal tissues. Using cell type-specific fluorescence markers, we show that aleurone cell fate specification occurs exclusively in response to surface position and does not require specific, continued maternal signal input. The starchy endosperm and aleurone cell fates are freely interchangeable throughout the lifespan of the endosperm, with internalized aleurone cells converting to starchy endosperm cells and with starchy endosperm cells that become positioned at the surface converting to aleurone cells. In contrast to aleurone and starchy endosperm cells, transfer cells fail to develop in in vitro-grown endosperm, supporting earlier indications that maternal tissue interaction is required to fully differentiate this cell type. Several parameters confirm that the maize endosperm organ cultures described herein retain the main developmental features of in planta endosperm, including fidelity of aleurone mutant phenotypes, temporal and spatial control of cell type-specific fluorescent markers, specificity of cell type transcripts, and control of mitotic cell divisions. PMID:16698897

  5. Expression Profile of Drug and Nutrient Absorption Related Genes in Madin-Darby Canine Kidney (MDCK) Cells Grown under Differentiation Conditions.

    PubMed

    Quan, Yong; Jin, Yisheng; Faria, Teresa N; Tilford, Charles A; He, Aiqing; Wall, Doris A; Smith, Ronald L; Vig, Balvinder S

    2012-06-18

    The expression levels of genes involved in drug and nutrient absorption were evaluated in the Madin-Darby Canine Kidney (MDCK) in vitro drug absorption model. MDCK cells were grown on plastic surfaces (for 3 days) or on Transwell® membranes (for 3, 5, 7, and 9 days). The expression profile of genes including ABC transporters, SLC transporters, and cytochrome P450 (CYP) enzymes was determined using the Affymetrix® Canine GeneChip®. Expression of genes whose probe sets passed a stringent confirmation process was examined. Expression of a few transporter (MDR1, PEPT1 and PEPT2) genes in MDCK cells was confirmed by RT-PCR. The overall gene expression profile was strongly influenced by the type of support the cells were grown on. After 3 days of growth, expression of 28% of the genes was statistically different (1.5-fold cutoff, p < 0.05) between the cells grown on plastic and Transwell® membranes. When cells were differentiated on Transwell® membranes, large changes in gene expression profile were observed during the early stages, which then stabilized after 5-7 days. Only a small number of genes encoding drug absorption related SLC, ABC, and CYP were detected in MDCK cells, and most of them exhibited low hybridization signals. Results from this study provide valuable reference information on endogenous gene expression in MDCK cells that could assist in design of drug-transporter and/or drug-enzyme interaction studies, and help interpret the contributions of various transporters and metabolic enzymes in studies with MDCK cells.

  6. Expression Profile of Drug and Nutrient Absorption Related Genes in Madin-Darby Canine Kidney (MDCK) Cells Grown under Differentiation Conditions

    PubMed Central

    Quan, Yong; Jin, Yisheng; Faria, Teresa N.; Tilford, Charles A.; He, Aiqing; Wall, Doris A.; Smith, Ronald L.; Vig, Balvinder S.

    2012-01-01

    The expression levels of genes involved in drug and nutrient absorption were evaluated in the Madin-Darby Canine Kidney (MDCK) in vitro drug absorption model. MDCK cells were grown on plastic surfaces (for 3 days) or on Transwell® membranes (for 3, 5, 7, and 9 days). The expression profile of genes including ABC transporters, SLC transporters, and cytochrome P450 (CYP) enzymes was determined using the Affymetrix® Canine GeneChip®. Expression of genes whose probe sets passed a stringent confirmation process was examined. Expression of a few transporter (MDR1, PEPT1 and PEPT2) genes in MDCK cells was confirmed by RT-PCR. The overall gene expression profile was strongly influenced by the type of support the cells were grown on. After 3 days of growth, expression of 28% of the genes was statistically different (1.5-fold cutoff, p < 0.05) between the cells grown on plastic and Transwell® membranes. When cells were differentiated on Transwell® membranes, large changes in gene expression profile were observed during the early stages, which then stabilized after 5–7 days. Only a small number of genes encoding drug absorption related SLC, ABC, and CYP were detected in MDCK cells, and most of them exhibited low hybridization signals. Results from this study provide valuable reference information on endogenous gene expression in MDCK cells that could assist in design of drug-transporter and/or drug-enzyme interaction studies, and help interpret the contributions of various transporters and metabolic enzymes in studies with MDCK cells. PMID:24300234

  7. A comparison of orbitally-shaken and stirred-tank bioreactors: pH modulation and bioreactor type affect CHO cell growth and protein glycosylation.

    PubMed

    Monteil, Dominique T; Juvet, Valentin; Paz, Jonathan; Moniatte, Marc; Baldi, Lucia; Hacker, David L; Wurm, Florian M

    2016-09-01

    Orbitally shaken bioreactors (OSRs) support the suspension cultivation of animal cells at volumetric scales up to 200 L and are a potential alternative to stirred-tank bioreactors (STRs) due to their rapid and homogeneous mixing and high oxygen transfer rate. In this study, a Chinese hamster ovary cell line producing a recombinant antibody was cultivated in a 5 L OSR and a 3 L STR, both operated with or without pH control. Effects of bioreactor type and pH control on cell growth and metabolism and on recombinant protein production and glycosylation were determined. In pH-controlled bioreactors, the glucose consumption and lactate production rates were higher relative to cultures grown in bioreactors without pH control. The cell density and viability were higher in the OSRs than in the STRs, either with or without pH control. Volumetric recombinant antibody yields were not affected by the process conditions, and a glycan analysis of the antibody by mass spectrometry did not reveal major process-dependent differences in the galactosylation index. The results demonstrated that OSRs are suitable for recombinant protein production from suspension-adapted animal cells. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1174-1180, 2016. © 2016 American Institute of Chemical Engineers.

  8. Biogenic production of cyanide and its application to gold recovery.

    PubMed

    Campbell, S C; Olson, G J; Clark, T R; McFeters, G

    2001-03-01

    Chromobacterium violaceum is a cyanogenic (cyanide-producing) microorganism. Cyanide is used on an industrial scale to complex and recover gold from ores or concentrates of ores bearing the precious metal. A potentially useful approach in gold mining operations could be to produce cyanide biologically in relatively small quantities at the ore surface. In this study, C. violaceum grown in nutrient broth formed a biofilm and could complex and solubilize 100% of the gold on glass test slides within 4-7 days. Approximately 50% of the cyanide- recoverable gold could be mobilized from a biooxidized sulfidic-ore concentrate. Complexation of cyanide in solution by gold appeared to have a beneficial effect on cell growth--viable cell counts were nearly two orders of magnitude greater in the presence of gold-coated slides or biooxidized ore substrates than in their absence. C. violaceum was cyanogenic when grown in alternative feedstocks. When grown in a mineral salt solution supplemented with 13.3% v/v swine fecal material (SFM), cells exhibited pigmentation and suspended cell concentrations comparable to cultures grown in nutrient broth. Glycine supplements stimulated production of cyanide in 13.3% v/v SFM. In contrast, glycine was inhibitory when added at the time of inoculation in the more concentrated SFM, decreasing cell numbers and reducing ultimate bulk-solution cyanide concentrations. However, aeration and addition of glycine to stationary phase cells grown on 13.3% v/v SFM anaerobically resulted in rapid production and high concentrations (up to 38 mg l(-1)) of cyanide. This indicates that biogenesis of cyanide may be supported in remote areas using locally produced and inexpensive agricultural feedstocks in place of commercial media.

  9. Caffeine toxicity is inversely related to DNA repair in simian virus 40-transformed xeroderma pigmentosum cells irradiated with ultraviolet light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleaver, J.E.

    1989-01-01

    Human cells transformed by simian virus 40 (SV40) are more sensitive to killing by ultraviolet light when grown in caffeine after irradiation. The degree of sensitization at 2 mM caffeine (expressed as the ratio of the 37% survival dose for control cells divided by the 37% survival dose for cells grown in caffeine, i.e., the dose modification factor) was approximately 1.9 in transformed normal cells and 3.8-5.8 in excision-defective xeroderma pigmentosum (XP) groups A, C, and D cells. A large dose modification factor of 12 was observed in a transformed XP variant cell line. Chinese hamster ovary cells were notmore » significantly different from transformed normal human cells, with a maximum dose modification factor of 1.5. Two radioresistant XP revertants that do not excise cyclobutane dimers gave different responses; one resembled its group A parent in being sensitized by caffeine, and one did not. These results can be interpreted on the basis of a single hypothesis that cells are killed as a result of attempts to replicate damaged DNA. Increased replication rates caused by transformation, increased numbers of replication forks in DNA caused by caffeine, and increased numbers of damaged sites ahead of replication forks in excision-defective cells are all processes that will consequently increase killing according to this hypothesis. A corollary is that the XP variant may be highly sensitized to caffeine because of excision defects at the DNA replication forks, an idea that may be important in designing cloning strategies for the XP variant gene.« less

  10. Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae

    PubMed Central

    Salusjärvi, Laura; Kankainen, Matti; Soliymani, Rabah; Pitkänen, Juha-Pekka; Penttilä, Merja; Ruohonen, Laura

    2008-01-01

    Background Considerable interest in the bioconversion of lignocellulosic biomass into ethanol has led to metabolic engineering of Saccharomyces cerevisiae for fermentation of xylose. In the present study, the transcriptome and proteome of recombinant, xylose-utilising S. cerevisiae grown in aerobic batch cultures on xylose were compared with those of glucose-grown cells both in glucose repressed and derepressed states. The aim was to study at the genome-wide level how signalling and carbon catabolite repression differ in cells grown on either glucose or xylose. The more detailed knowledge whether xylose is sensed as a fermentable carbon source, capable of catabolite repression like glucose, or is rather recognised as a non-fermentable carbon source is important for further engineering this yeast for more efficient anaerobic fermentation of xylose. Results Genes encoding respiratory proteins, proteins of the tricarboxylic acid and glyoxylate cycles, and gluconeogenesis were only partially repressed by xylose, similar to the genes encoding their transcriptional regulators HAP4, CAT8 and SIP1-2 and 4. Several genes that are repressed via the Snf1p/Mig1p-pathway during growth on glucose had higher expression in the cells grown on xylose than in the glucose repressed cells but lower than in the glucose derepressed cells. The observed expression profiles of the transcription repressor RGT1 and its target genes HXT2-3, encoding hexose transporters suggested that extracellular xylose was sensed by the glucose sensors Rgt2p and Snf3p. Proteome analyses revealed distinct patterns in phosphorylation of hexokinase 2, glucokinase and enolase isoenzymes in the xylose- and glucose-grown cells. Conclusion The results indicate that the metabolism of yeast growing on xylose corresponds neither to that of fully glucose repressed cells nor that of derepressed cells. This may be one of the major reasons for the suboptimal fermentation of xylose by recombinant S. cerevisiae strains. Phosphorylation of different isoforms of glycolytic enzymes suggests that regulation of glycolysis also occurred at a post-translational level, supporting prior findings. PMID:18533012

  11. Creation of Polyvalent Decoys of Protein Cytotoxins as Therapeutics and Vaccines

    DTIC Science & Technology

    2008-01-01

    encapsidation.Materials and methods Cell culture Spodoptera frugiperda cells (line IPLB-Sf21) were grown at 27 °C in TC100 medium (Invitrogen, Carlsbad, CA...At the end of the modeling run, the reference subunits (A, B, and C) were extracted and used for the subsequent analysis. Cell culture. Spodoptera ... frugiperda cells (line IPLB-Sf21) were grown at 27°C in TC100 medium (Invitrogen, Carlsbad, CA) supplemented with 0.35 g of NaHCO3 per liter, 2.6 g of

  12. 3D time-lapse analysis of Rab11/FIP5 complex: spatiotemporal dynamics during apical lumen formation.

    PubMed

    Mangan, Anthony; Prekeris, Rytis

    2015-01-01

    Fluorescent imaging of fixed cells grown in two-dimensional (2D) cultures is one of the most widely used techniques for observing protein localization and distribution within cells. Although this technique can also be applied to polarized epithelial cells that form three-dimensional (3D) cysts when grown in a Matrigel matrix suspension, there are still significant limitations in imaging cells fixed at a particular point in time. Here, we describe the use of 3D time-lapse imaging of live cells to observe the dynamics of apical membrane initiation site (AMIS) formation and lumen expansion in polarized epithelial cells.

  13. Chemical beam epitaxy growth of AlGaAs/GaAs tunnel junctions using trimethyl aluminium for multijunction solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paquette, B.; DeVita, M.; Turala, A.

    AlGaAs/GaAs tunnel junctions for use in high concentration multijunction solar cells were designed and grown by chemical beam epitaxy (CBE) using trimethyl aluminium (TMA) as the p-dopant source for the AlGaAs active layer. Controlled hole concentration up to 4⋅10{sup 20} cm{sup −3} was achieved through variation in growth parameters. Fabricated tunnel junctions have a peak tunneling current up to 6140 A/cm{sup 2}. These are suitable for high concentration use and outperform GaAs/GaAs tunnel junctions.

  14. Morphogenetic responses of cultured totipotent cells of carrot /Daucus carota var. carota/ at zero gravity

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.; Steward, F. C.

    1978-01-01

    An experiment designed to test whether embryos capable of developing from isolated somatic carrot cells could do so under conditions of weightlessness in space was performed aboard the unmanned Soviet biosatellite Kosmos 782 under the auspices of the joint United States-Soviet Biological Satellite Mission. Space flight and weightlessness seem to have had no adverse effects on the induction of embryoids or on the development of their organs. A portion of the crop of carrot plantlets originated in space and grown to maturity were not morphologically different from controls.

  15. SOX2 and nestin expression in human melanoma: an immunohistochemical and experimental study

    PubMed Central

    Laga, Alvaro C.; Zhan, Qian; Weishaupt, Carsten; Ma, Jie; Frank, Markus H.; Murphy, George F.

    2012-01-01

    SOX2 is an embryonic neural crest stem-cell transcription factor recently shown to be expressed in human melanoma and to correlate with experimental tumor growth. SOX2 binds to an enhancer region of the gene that encodes for nestin, also a neural progenitor cell biomarker. To define further the potential relationship between SOX2 and nestin, we examined co-expression patterns in 135 melanomas and 37 melanocytic nevi. Immunohistochemical staining in 27 melanoma tissue sections showed an association between SOX2 positivity, spindle cell shape and a peripheral nestin distribution pattern. In contrast, SOX2-negative cells were predominantly epithelioid, and exhibited a cytoplasmic pattern for nestin. In tissue microarrays, co-expression correlated with tumor progression, with only 11% of nevi co-expressing SOX2 and nestin in contrast to 65% of metastatic melanomas, and preliminarily, with clinical outcome. Human melanoma lines that differentially expressed constitutive SOX2 revealed a positive correlation between SOX2 and nestin expression. Experimental melanomas grown from these respective cell lines in murine subcutis and dermis of xenografted human skin maintained the association between SOX2-positivity, spindle cell shape, and peripheral nestin distribution. Moreover, the cytoplasmic pattern of nestin distribution was observed in xenografts generated from SOX2-knockdown A2058 melanoma cells, in contrast to the periperhal nestin pattern seen in tumors grown from A2058 control cells transfected with non-target shRNA. In aggregate, these data further support a biologically significant linkage between SOX2 and nestin expression in human melanoma. PMID:21410764

  16. The secreted protein ANGPTL2 promotes metastasis of osteosarcoma cells through integrin α5β1, p38 MAPK, and matrix metalloproteinases.

    PubMed

    Odagiri, Haruki; Kadomatsu, Tsuyoshi; Endo, Motoyoshi; Masuda, Tetsuro; Morioka, Masaki Suimye; Fukuhara, Shigetomo; Miyamoto, Takeshi; Kobayashi, Eisuke; Miyata, Keishi; Aoi, Jun; Horiguchi, Haruki; Nishimura, Naotaka; Terada, Kazutoyo; Yakushiji, Toshitake; Manabe, Ichiro; Mochizuki, Naoki; Mizuta, Hiroshi; Oike, Yuichi

    2014-01-21

    The tumor microenvironment can enhance the invasive capacity of tumor cells. We showed that expression of angiopoietin-like protein 2 (ANGPTL2) in osteosarcoma (OS) cell lines increased and the methylation of its promoter decreased with time when grown as xenografts in mice compared with culture. Compared with cells grown in normal culture conditions, the expression of genes encoding DNA demethylation-related enzymes increased in tumor cells implanted into mice or grown in hypoxic, serum-starved culture conditions. ANGPTL2 expression in OS cell lines correlated with increased tumor metastasis and decreased animal survival by promoting tumor cell intravasation mediated by the integrin α5β1, p38 mitogen-activated protein kinase, and matrix metalloproteinases. The tolloid-like 1 (TLL1) protease cleaved ANGPTL2 into fragments in vitro that did not enhance tumor progression when overexpressed in xenografts. Expression of TLL1 was weak in OS patient tumors, suggesting that ANGPTL2 may not be efficiently cleaved upon secretion from OS cells. These findings demonstrate that preventing ANGPTL2 signaling stimulated by the tumor microenvironment could inhibit tumor cell migration and metastasis.

  17. Carbon storage regulator A contributes to the virulence of Haemophilus ducreyi in humans by multiple mechanisms.

    PubMed

    Gangaiah, Dharanesh; Li, Wei; Fortney, Kate R; Janowicz, Diane M; Ellinger, Sheila; Zwickl, Beth; Katz, Barry P; Spinola, Stanley M

    2013-02-01

    The carbon storage regulator A (CsrA) controls a wide variety of bacterial processes, including metabolism, adherence, stress responses, and virulence. Haemophilus ducreyi, the causative agent of chancroid, harbors a homolog of csrA. Here, we generated an unmarked, in-frame deletion mutant of csrA to assess its contribution to H. ducreyi pathogenesis. In human inoculation experiments, the csrA mutant was partially attenuated for pustule formation compared to its parent. Deletion of csrA resulted in decreased adherence of H. ducreyi to human foreskin fibroblasts (HFF); Flp1 and Flp2, the determinants of H. ducreyi adherence to HFF cells, were downregulated in the csrA mutant. Compared to its parent, the csrA mutant had a significantly reduced ability to tolerate oxidative stress and heat shock. The enhanced sensitivity of the mutant to oxidative stress was more pronounced in bacteria grown to stationary phase compared to that in bacteria grown to mid-log phase. The csrA mutant also had a significant survival defect within human macrophages when the bacteria were grown to stationary phase but not to mid-log phase. Complementation in trans partially or fully restored the mutant phenotypes. These data suggest that CsrA contributes to virulence by multiple mechanisms and that these contributions may be more profound in bacterial cell populations that are not rapidly dividing in the human host.

  18. Phytochrome mediated gravimorphogenesis in the moss protonemata

    NASA Astrophysics Data System (ADS)

    Demkiv, O.; Khorkavtsiv, Y.

    Moss protonemata are among the few cell types known that both sense and respond to gravity and light. Apical cells of moss protonemata grow by oriented tip growth which is negatively gravitropic in the dark or positively phototropic in unilateral light. Gametophore buds always arise some 4 - 6 cells behind the apical cells of main protonemal filaments differentiating from apical cells of shortened side branches. It has been shown, however, that in Pohlia nutans, as in Pottia intermedia (Ripetskyj et al, 1997) the apical cells of main filaments of dark grown protonemata differentiate buds under the influence of light. We tested the effectiveness of white and monochromatic light of the visible spectrum on the bud formation of Pohlia nutans which had been grown in darkness. The most morphogenetically effective light was red light, but green, yellow and white light were also active. Blue light alone completely inhibits bud formation but supplemented with red light this inhibitory effect of blue light is couneracted and buds are formed, provided a minimum exposure of red light is maintained. M.Bopp (1985) had demosnrated that exclusively cell that had not reached 80 μm in length initiated bud formation. Red light seemed to inhibit growth of apical cells and to promote bud formation. The action spectra for the induction of buds formation are, as expected, very similar to the absorption spectra of Pf r . The relatively small effectivity of quanta in the short-wave spectral range is caused by the strong absorption of radiation of < 520 nm by carotenoids and flavines. Red light might act as a triger for morphogenetic processes in dark-grown cells. The white or red light stopped an elongation of main filaments apical cells of protonema grown in the dark for 7 days retaining the rate of the cell divisions practically constant. As a result short apical cells are formed ready for a transition to new morphogenetic pathway of gametophore buds formation. The reaction proved to be reversible one. Transfering of the moss protonemata after 2 days illumination back into the dark leads to dedifferentiation of the apical bud cells into apical protonemal cells. Clinostat rotation of the dark-grown protonemata partially ihibited the light- dependent transformation of their apical cells into gameophore buds. The mechanisms of transformation of apical into the gametophore buds in the Pohlia nutans protonemata are discussed.

  19. Towards the Ultimate Multi-Junction Solar Cell using Transfer Printing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumb, Matthew P.; Meitl, Matt; Schmieder, Kenneth J.

    2016-11-21

    Transfer printing is a uniquely enabling technology for the heterogeneous integration of III-V materials grown on dissimilar substrates. In this paper, we present experimental results for a mechanically stacked tandem cell using GaAs and GaSb-based materials capable of harvesting the entire solar spectrum with 44.5% efficiency. We also present the latest results toward developing an ultra-high performance heterogeneous cell, integrating materials grown on GaAs, InP and GaSb platforms.

  20. Oxygen Partial Pressure Is a Rate-Limiting Parameter for Cell Proliferation in 3D Spheroids Grown in Physioxic Culture Condition.

    PubMed

    Gomes, Aurélie; Guillaume, Ludivine; Grimes, David Robert; Fehrenbach, Jérôme; Lobjois, Valérie; Ducommun, Bernard

    2016-01-01

    The in situ oxygen partial pressure in normal and tumor tissues is in the range of a few percent. Therefore, when studying cell growth in 3D culture systems, it is essential to consider how the physiological oxygen concentration, rather than the one in the ambient air, influences the proliferation parameters. Here, we investigated the effect of reducing oxygen partial pressure from 21% to 5% on cell proliferation rate and regionalization in a 3D tumor spheroid model. We found that 5% oxygen concentration strongly inhibited spheroid growth, changed the proliferation gradient and reduced the 50% In Depth Proliferation index (IDP50), compared with culture at 21% oxygen. We then modeled the oxygen partial pressure profiles using the experimental data generated by culturing spheroids in physioxic and normoxic conditions. Although hypoxia occurred at similar depth in spheroids grown in the two conditions, oxygen partial pressure was a major rate-limiting factor with a critical effect on cell proliferation rate and regionalization only in spheroids grown in physioxic condition and not in spheroids grown at atmospheric normoxia. Our findings strengthen the need to consider conducting experiment in physioxic conditions (i.e., tissue normoxia) for proper understanding of cancer cell biology and the evaluation of anticancer drugs in 3D culture systems.

  1. Variation in stem morphology and movement of amyloplasts in white spruce grown in the weightless environment of the International Space Station.

    PubMed

    Rioux, Danny; Lagacé, Marie; Cohen, Luchino Y; Beaulieu, Jean

    2015-01-01

    One-year-old white spruce (Picea glauca) seedlings were studied in microgravity conditions in the International Space Station (ISS) and compared with seedlings grown on Earth. Leaf growth was clearly stimulated in space whereas data suggest a similar trend for the shoots. Needles on the current shoots of ground-based seedlings were more inclined towards the stem base than those of seedlings grown in the ISS. Amyloplasts sedimented in specialized cells of shoots and roots in seedlings grown on Earth while they were distributed at random in similar cells of seedlings tested in the ISS. In shoots, such amyloplasts were found in starch sheath cells located between leaf traces and cortical cells whereas in roots they were constituents of columella cells of the cap. Nuclei were regularly observed just above the sedimented amyloplasts in both organs. It was also frequent to detect vacuoles with phenolic compounds and endoplasmic reticulum (ER) close to the sedimented amyloplasts. The ER was mainly observed just under these amyloplasts. Thus, when amyloplasts sediment, the pressure exerted on the ER, the organelle that can for instance secrete proteins destined for the plasma membrane, might influence their functioning and play a role in signaling pathways involved in gravity-sensing white spruce cells. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  2. Matrix stiffness reverses the effect of actomyosin tension on cell proliferation.

    PubMed

    Mih, Justin D; Marinkovic, Aleksandar; Liu, Fei; Sharif, Asma S; Tschumperlin, Daniel J

    2012-12-15

    The stiffness of the extracellular matrix exerts powerful effects on cell proliferation and differentiation, but the mechanisms transducing matrix stiffness into cellular fate decisions remain poorly understood. Two widely reported responses to matrix stiffening are increases in actomyosin contractility and cell proliferation. To delineate their relationship, we modulated cytoskeletal tension in cells grown across a physiological range of matrix stiffnesses. On both synthetic and naturally derived soft matrices, and across a panel of cell types, we observed a striking reversal of the effect of inhibiting actomyosin contractility, switching from the attenuation of proliferation on rigid substrates to the robust promotion of proliferation on soft matrices. Inhibiting contractility on soft matrices decoupled proliferation from cytoskeletal tension and focal adhesion organization, but not from cell spread area. Our results demonstrate that matrix stiffness and actomyosin contractility converge on cell spreading in an unexpected fashion to control a key aspect of cell fate.

  3. Matrix stiffness reverses the effect of actomyosin tension on cell proliferation

    PubMed Central

    Mih, Justin D.; Marinkovic, Aleksandar; Liu, Fei; Sharif, Asma S.; Tschumperlin, Daniel J.

    2012-01-01

    Summary The stiffness of the extracellular matrix exerts powerful effects on cell proliferation and differentiation, but the mechanisms transducing matrix stiffness into cellular fate decisions remain poorly understood. Two widely reported responses to matrix stiffening are increases in actomyosin contractility and cell proliferation. To delineate their relationship, we modulated cytoskeletal tension in cells grown across a physiological range of matrix stiffnesses. On both synthetic and naturally derived soft matrices, and across a panel of cell types, we observed a striking reversal of the effect of inhibiting actomyosin contractility, switching from the attenuation of proliferation on rigid substrates to the robust promotion of proliferation on soft matrices. Inhibiting contractility on soft matrices decoupled proliferation from cytoskeletal tension and focal adhesion organization, but not from cell spread area. Our results demonstrate that matrix stiffness and actomyosin contractility converge on cell spreading in an unexpected fashion to control a key aspect of cell fate. PMID:23097048

  4. Growth of cultured corneal endothelial cells onto a vitreous carbon matrix.

    PubMed

    Wickham, M G; Cleveland, P H; Binder, P S; Akers, P H

    1983-01-01

    Fourth passage cells of a rabbit corneal endothelial line were grown for 1 week in flasks containing pieces of a reticulated vitreous carbon matrix. The rate of cell growth in flasks containing the matrix was consistent with that in control flasks. Small fragments of the vitreous carbon material lying on the flask floor were covered by the monolayers as the cells grew to confluency. Vertical growth of cells onto larger pieces of the matrix proceeded in a staged fashion with maximum cell density on pieces of the matrix closest to the floor of the flask. As defined by scanning electron microscopy, cell growth occurred to a level at least 600 microns above the floor of the flask and the confluent monolayer. This novel culture procedure should be a model situation for study of many different aspects of the in vitro capabilities of corneal endothelial cells.

  5. Induced compression wood formation in Douglas fir (Pseudotsuga menziesii) in microgravity

    NASA Technical Reports Server (NTRS)

    Kwon, M.; Bedgar, D. L.; Piastuch, W.; Davin, L. B.; Lewis, N. G.

    2001-01-01

    In the microgravity environment of the Space Shuttle Columbia (Life and Microgravity Mission STS-78), were grown 1-year-old Douglas fir and loblolly pine plants in a NASA plant growth facility. Several plants were harnessed (at 45 degrees ) to establish if compression wood biosynthesis, involving altered cellulose and lignin deposition and cell wall structure would occur under those conditions of induced mechanical stress. Selected plants were harnessed at day 2 in orbit, with stem sections of specific plants harvested and fixed for subsequent microscopic analyses on days 8, 10 and 15. At the end of the total space mission period (17 days), the remaining healthy harnessed plants and their vertical (upright) controls were harvested and fixed on earth. All harnessed (at 45 degrees ) plant specimens, whether grown at 1 g or in microgravity, formed compression wood. Moreover, not only the cambial cells but also the developing tracheid cells underwent significant morphological changes. This indicated that the developing tracheids from the primary cell wall expansion stage to the fully lignified maturation stage are involved in the perception and transduction of the stimuli stipulating the need for alteration of cell wall architecture. It is thus apparent that, even in a microgravity environment, woody plants can make appropriate corrections to compensate for stress gradients introduced by mechanical bending, thereby enabling compression wood to be formed. The evolutionary implications of these findings are discussed in terms of "variability" in cell wall biosynthesis.

  6. Cup-Shaped Superparamagnetic Hemispheres for Size-Selective Cell Filtration

    PubMed Central

    Kim, Hyonchol; Terazono, Hideyuki; Takei, Hiroyuki; Yasuda, Kenji

    2014-01-01

    We propose a new method of size separation of cells exploiting precisely size-controlled hemispherical superparamagnetic microparticles. A three-layered structure of a 2-nm nickel layer inserted between 15-nm silicon dioxide layers was formed on polystyrene cast spheres by vapor deposition. The polystyrene was then removed by burning and the hemispherical superparamagnetic microparticles, “magcups”, were obtained. The standard target cells (CCRF-CEM, 12 ± 2 μm) were mixed with a set of different sizes of the fabricated magcups, and we confirmed that the cells were captured in the magcups having cavities larger than 15 μm in diameter, and then gathered by magnetic force. The collected cells were grown in a culture medium without any damage. The results suggest that this method is quick, simple and non-invasive size separation of target cells. PMID:25219418

  7. Effect of annealing temperature on the thermal stress and dislocation density of mc-Si ingot grown by DS process for solar cell application

    NASA Astrophysics Data System (ADS)

    Sanmugavel, S.; Srinivasan, M.; Aravinth, K.; Ramasamy, P.

    2018-04-01

    90% of the solar industries are using crystalline silicon. Cost wise the multi-crystalline silicon solar cells are better compared to mono crystalline silicon. But because of the presence of grain boundaries, dislocations and impurities, the efficiency of the multi-crystalline silicon solar cells is lower than that of mono crystalline silicon solar cells. By reducing the defect and dislocation we can achieve high conversion efficiency. The velocity of dislocation motion increases with stress. By annealing the grown ingot at proper temperature we can decrease the stress and dislocation. Our simulation results show that the value of stress and dislocation density is decreased by annealing the grown ingot at 1400K and the input parameters can be implemented in real system to grow a better mc-Si ingot for energy harvesting applications.

  8. Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue.

    PubMed

    Maidhof, Robert; Tandon, Nina; Lee, Eun Jung; Luo, Jianwen; Duan, Yi; Yeager, Keith; Konofagou, Elisa; Vunjak-Novakovic, Gordana

    2012-11-01

    Maintenance of normal myocardial function depends intimately on synchronous tissue contraction, driven by electrical activation and on adequate nutrient perfusion in support thereof. Bioreactors have been used to mimic aspects of these factors in vitro to engineer cardiac tissue but, due to design limitations, previous bioreactor systems have yet to simultaneously support nutrient perfusion, electrical stimulation and unconstrained (i.e. not isometric) tissue contraction. To the best of our knowledge, the bioreactor system described herein is the first to integrate these three key factors in concert. We present the design of our bioreactor and characterize its capability in integrated experimental and mathematical modelling studies. We then cultured cardiac cells obtained from neonatal rats in porous, channelled elastomer scaffolds with the simultaneous application of perfusion and electrical stimulation, with controls excluding either one or both of these two conditions. After 8 days of culture, constructs grown with simultaneous perfusion and electrical stimulation exhibited substantially improved functional properties, as evidenced by a significant increase in contraction amplitude (0.23 ± 0.10% vs 0.14 ± 0.05%, 0.13 ± 0.08% or 0.09 ± 0.02% in control constructs grown without stimulation, without perfusion, or either stimulation or perfusion, respectively). Consistently, these constructs had significantly improved DNA contents, cell distribution throughout the scaffold thickness, cardiac protein expression, cell morphology and overall tissue organization compared to control groups. Thus, the simultaneous application of medium perfusion and electrical conditioning enabled by the use of the novel bioreactor system may accelerate the generation of fully functional, clinically sized cardiac tissue constructs. Copyright © 2011 John Wiley & Sons, Ltd.

  9. The effects of rearing light level and duration differences on the optic nerve, brain, and associated structures in developing zebrafish larvae: a light and transmission electron microscope study.

    PubMed

    Chapman, George B; Tarboush, Rania; Connaughton, Victoria P

    2012-03-01

    The ultrastructure of the optic nerve, brain, and some associated structures of larval zebrafish, grown under three different light regimens were studied. Fish grown under cyclic light (control), constant dark (CD), and constant light (CL) were studied for 4 and 8 days postfertilization (dpf). We also studied the control and CD fish at 15 dpf. The brains of the control and CL fish were larger at 4 dpf than at 8 dpf. In all 4 dpf fish, the brain occupied the entire expanse between the two retinas and the optic nerve extended the shortest distance between the retina and the brain. The 15 dpf zebrafish had the smallest brain size. Groups of skeletal muscle cells associated with the optic nerves became visible in all older larvae. In the 15 dpf larvae, bulges and dilations in the optic nerve occurred as it reached the brain and optic chiasms occurred proximal to the brain. Electron microscopy yielded information about myelinated and unmyelinated axons in the optic nerve, the dimensions of neurotubules, neurofilaments, and myofilaments, including a unique variation in actin myofilaments, and a confirmation of reported myosin myofilament changes (but with dimensions). We also describe the ultrastructure of a sheath-like structure that is confluent over the optic nerve and the brain, which has not been described before in zebrafish. Also presented are images of associated fibroblasts, epithelial cells lining the mouth, cartilage plates, blood vessels, nerve bundles, and skeletal muscle cells, most of which have not been previously described in the literature. Copyright © 2012 Wiley Periodicals, Inc.

  10. Effect of Agave tequilana juice on cell wall polysaccharides of three Saccharomyces cerevisiae strains from different origins.

    PubMed

    Aguilar-Uscanga, Blanca; Arrizon, Javier; Ramirez, Jesús; Solis-Pacheco, Josué

    2007-02-01

    In this study, a characterization of cell wall polysaccharide composition of three yeasts involved in the production of agave distilled beverages was performed. The three yeast strains were isolated from different media (tequila, mezcal and bakery) and were evaluated for the beta(1,3)-glucanase lytic activity and the beta-glucan/ mannan ratio during the fermentation of Agave tequilana juice and in YPD media (control). Fermentations were performed in shake flasks with 30 g l(-1) sugar concentration of A. tequilana juice and with the control YPD using 30 g l(-1) of glucose. The three yeasts strains showed different levels of beta-glucan and mannan when they were grown in A. tequilana juice in comparison to the YPD media. The maximum rate of cell wall lyses was 50% lower in fermentations with A. tequilana juice for yeasts isolated from tequila and mezcal than compared to the bakery yeast.

  11. Phosphate Starvation Inducible Metabolism in Lycopersicon esculentum1

    PubMed Central

    Goldstein, Alan H.; Baertlein, Dawn A.; McDaniel, Robert G.

    1988-01-01

    Both tomato (Lycopersicon esculentum cv VF 36) plants and suspension cultured cells show phosphate starvation inducible (psi) excretion of acid phosphatase (Apase). Apase excretion in vitro was proportional to the level of exogenous orthophosphate (Pi). Intracellular Apase activity remained the same in both Pi-starved and sufficient cells, while Apase excreted by the starved cells increased by as much as six times over unstressed control cells on a dry weight basis. At peak induction, 50% of total Apase was excreted. Ten day old tomato seedlings grown without Pi showed slight growth reduction versus unstressed control plants. The Pi-depleted roots showed psi enhancement of Apase activity. Severely starved seedlings (17 days) reached only one-third of the biomass of unstressed control plants but, because of a combination of psi Apase excretion by roots and a shift in biomass to this organ, they excreted 5.5 times the Apase activity of the unstressed control. Observed psi Apase excretion may be part of a phosphate starvation rescue system in plants. The utility of the visible indicator dye 5-bromo-4-chloro-3-indolyl-phosphate-p-toluidine as a phenotypic marker for plant Apase excretion is demonstrated. Images Fig. 5 PMID:16666212

  12. Human respiratory syncytial virus Memphis 37 grown in HEp-2 cells causes more severe disease in lambs than virus grown in vero cells

    USDA-ARS?s Scientific Manuscript database

    Respiratory syncytial virus (RSV) is the most common cause of bronchiolitis in infants and young children. A small percentage of these individuals develop severe and even fatal disease. To better understand the pathogenesis of severe disease and develop therapies unique to the less-developed infan...

  13. Cellulose promotes extracellular assembly of Clostridium cellulovorans cellulosomes.

    PubMed Central

    Matano, Y; Park, J S; Goldstein, M A; Doi, R H

    1994-01-01

    Cellulosome synthesis by Clostridium cellulovorans was investigated by growing the cells in media containing different carbon sources. Supernatant from cells grown with cellobiose contained no cellulosomes and only the free forms of cellulosomal major subunits CbpA, P100, and P70 and the minor subunits with enzymatic activity. Supernatant from cells grown on pebble-milled cellulose and Avicel contained cellulosomes capable of degrading crystalline cellulose. Supernatants from cells grown with cellobiose, pebble-milled cellulose, and Avicel contained about the same amount of carboxymethyl cellulase activity. Although the supernatant from the medium containing cellobiose did not initially contain active cellulosomes, the addition of crystalline cellulose to the cell-free supernatant fraction converted the free major forms to cellulosomes with the ability to degrade crystalline cellulose. The binding of P100 and P70 to crystalline cellulose was dependent on their attachment to the endoglucanase-binding domains of CbpA. These data strongly indicate that crystalline cellulose promotes cellulosome assembly. Images PMID:7961457

  14. Respiration of 2,4,6-Trinitrotoluene by Pseudomonas sp. Strain JLR11

    PubMed Central

    Esteve-Nuñez, Abraham; Lucchesi, Gloria; Philipp, Bodo; Schink, Bernhard; Ramos, Juan L.

    2000-01-01

    Under anoxic conditions Pseudomonas sp. strain JLR11 can use 2,4,6-trinitrotoluene (TNT) as the sole N source, releasing nitrite from the aromatic ring and subsequently reducing it to ammonium and incorporating it into C skeletons. This study shows that TNT can also be used as a terminal electron acceptor in respiratory chains under anoxic conditions by Pseudomonas sp. strain JLR11. TNT-dependent proton translocation coupled to the reduction of TNT to aminonitrotoluenes has been observed in TNT-grown cells. This extrusion did not occur in nitrate-grown cells or in anaerobic TNT-grown cells treated with cyanide, a respiratory chain inhibitor. We have shown that in a membrane fraction prepared from Pseudomonas sp. strain JLR11 grown on TNT under anaerobic conditions, the synthesis of ATP was coupled to the oxidation of molecular hydrogen and to the reduction of TNT. This phosphorylation was uncoupled by gramicidin. Respiration by Pseudomonas sp. strain JLR11 is potentially useful for the biotreatment of TNT in polluted waters and soils, particularly in phytorhizoremediation, in which bacterial cells are transported to the deepest root zones, which are poor in oxygen. PMID:10671458

  15. Sodium chloride-induced filamentation and alternative gene expression of fts, murZ, and gnd in Listeria monocytogenes 08-5923 on vacuum-packaged ham.

    PubMed

    Liu, Xiaoji; Miller, Petr; Basu, Urmila; McMullen, Lynn M

    2014-11-01

    The aim of this study was to examine the filament formation and differential gene expression of Listeria monocytogenes 08-5923 grown on refrigerated vacuum-packaged ham products with various NaCl concentrations. Filament formation of L. monocytogenes was observed on ham products with 1.35% and 2.35% NaCl, which was monitored using flow cytometry by measuring forward light scatter. Quantitative real-time PCR was used to study the differential expression of genes in filamented cells of L. monocytogenes grown on hams following 2 or 3 months of storage at 4 °C. The genes involved in cell division (ftsX/lmo2506), cell wall synthesis (murZ/lmo2552), and NADPH production (gnd/lmo1376) were significantly downregulated in filamented cells of L. monocytogenes grown on ham with 2.35% NaCl stored at 4 °C. To our knowledge, this study reports the first evidence of filament formation of Listeria grown on meat products, which could impact the food safety risk and tolerance levels of L. monocytogenes set by regulatory agencies. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  16. Does vector-free gravity simulate microgravity? Functional and morphologic attributes of clinorotated nerve and muscle grown in cell culture

    NASA Technical Reports Server (NTRS)

    Gruener, R.; Hoeger, G.

    1988-01-01

    Cocultured Xenopus neurons and myocytes were subjected to non-vectorial gravity by clinostat rotation to determine if microgravity, during space flights, may affect cell development and communications. Clinorotated cells showed changes consistent with the hypothesis that cell differentiation, in microgravity, is altered by interference with cytoskeleton-related mechanisms. We found: increases in the myocyte and its nuclear area, "fragmentation" of nucleoli, appearance of neuritic "aneurysms", decreased growth in the presence of "trophic" factors, and decreased yolk utilization. The effects were most notable at 1-10 rpm and depended on the onset and duration of rotation. Some parameters returned to near control values within 48 hrs after cessation of rotation. Cells from cultures rotated at higher speeds (>50 rpm) appeared comparable to controls. Compensation by centrifugal forces may account for this finding. Our data are consistent, in principle, with effects on other, flighted cells and suggest that "vector-free" gravity may simulate certain aspects of microgravity. The distribution of acetylcholine receptor aggregates, on myocytes, was also altered. This indicates that brain development, in microgravity, may also be affected.

  17. The effect of retinal pigment epithelial cell patch size on growth factor expression

    DOE PAGES

    Vargis, Elizabeth A.; Peterson, Cristen B.; Morrell-Falvey, Jennifer L.; ...

    2014-01-30

    The spatial organization of retinal pigment epithelial (RPE) cells grown in culture was controlled using micropatterning techniques in order to examine the effect of patch size on cell health and differentiation. Understanding this effect is a critical step in the development of multiplexed high throughput fluidic assays and provides a model for replicating disease states associated with the deterioration of retinal tissue during age-related macular degeneration (AMD). Microcontact printing of fibronectin on polystyrene and glass substrates was used to promote cell attachment, forming RPE patches of controlled size and shape. These colonies mimic the effect of atrophy and loss-of-function thatmore » occurs in the retina during degenerative diseases such as AMD. After 72 hours of cell growth, levels of vascular endothelial growth factor (VEGF), an important biomarker of AMD, were measured. Cells were counted and morphological indicators of cell viability and tight junction formation were assessed via fluorescence microscopy. As a result, up to a twofold increase of VEGF expression per cell was measured as colony size decreased, suggesting that the local microenvironment of, and connections between, RPE cells influences growth factor expression leading to the initiation and progression of diseases such as AMD.« less

  18. Epithelial Cell Culture from Human Adenoids: A Functional Study Model for Ciliated and Secretory Cells

    PubMed Central

    González, Claudia; Espinosa, Marisol; Sánchez, María Trinidad; Droguett, Karla; Ríos, Mariana; Fonseca, Ximena; Villalón, Manuel

    2013-01-01

    Background. Mucociliary transport (MCT) is a defense mechanism of the airway. To study the underlying mechanisms of MCT, we have both developed an experimental model of cultures, from human adenoid tissue of ciliated and secretory cells, and characterized the response to local chemical signals that control ciliary activity and the secretion of respiratory mucins in vitro. Materials and Methods. In ciliated cell cultures, ciliary beat frequency (CBF) and intracellular Ca2+ levels were measured in response to ATP, UTP, and adenosine. In secretory cultures, mucin synthesis and secretion were identified by using immunodetection. Mucin content was taken from conditioned medium and analyzed in the presence or absence of UTP. Results. Enriched ciliated cell monolayers and secretory cells were obtained. Ciliated cells showed a basal CBF of 10.7 Hz that increased significantly after exposure to ATP, UTP, or adenosine. Mature secretory cells showed active secretion of granules containing different glycoproteins, including MUC5AC. Conclusion. Culture of ciliated and secretory cells grown from adenoid epithelium is a reproducible and feasible experimental model, in which it is possible to observe ciliary and secretory activities, with a potential use as a model to understand mucociliary transport control mechanisms. PMID:23484122

  19. Regulation of xanthine dehydrogensase gene expression and uric acid production in human airway epithelial cells

    PubMed Central

    Huff, Ryan D.; Hsu, Alan C-Y.; Nichol, Kristy S.; Jones, Bernadette; Knight, Darryl A.; Wark, Peter A. B.; Hansbro, Philip M.

    2017-01-01

    Introduction The airway epithelium is a physical and immunological barrier that protects the pulmonary system from inhaled environmental insults. Uric acid has been detected in the respiratory tract and can function as an antioxidant or damage associated molecular pattern. We have demonstrated that human airway epithelial cells are a source of uric acid. Our hypothesis is that uric acid production by airway epithelial cells is induced by environmental stimuli associated with chronic respiratory diseases. We therefore examined how airway epithelial cells regulate uric acid production. Materials and methods Allergen and cigarette smoke mouse models were performed using house dust mite (HDM) and cigarette smoke exposure, respectively, with outcome measurements of lung uric acid levels. Primary human airway epithelial cells isolated from clinically diagnosed patients with asthma and chronic obstructive pulmonary disease (COPD) were grown in submerged cultures and compared to age-matched healthy controls for uric acid release. HBEC-6KT cells, a human airway epithelial cell line, were grown under submerged monolayer conditions for mechanistic and gene expression studies. Results HDM, but not cigarette smoke exposure, stimulated uric acid production in vivo and in vitro. Primary human airway epithelial cells from asthma, but not COPD patients, displayed elevated levels of extracellular uric acid in culture. In HBEC-6KT, production of uric acid was sensitive to the xanthine dehydrogenase (XDH) inhibitor, allopurinol, and the ATP Binding Cassette C4 (ABCC4) inhibitor, MK-571. Lastly, the pro-inflammatory cytokine combination of TNF-α and IFN-γ elevated extracellular uric acid levels and XDH gene expression in HBEC-6KT cells. Conclusions Our results suggest that the active production of uric acid from human airway epithelial cells may be intrinsically altered in asthma and be further induced by pro-inflammatory cytokines. PMID:28863172

  20. The effects of anode material type on the optoelectronic properties of electroplated CdTe thin films and the implications for photovoltaic application

    NASA Astrophysics Data System (ADS)

    Echendu, O. K.; Dejene, B. F.; Dharmadasa, I. M.

    2018-03-01

    The effects of the type of anode material on the properties of electrodeposited CdTe thin films for photovoltaic application have been studied. Cathodic electrodeposition of two sets of CdTe thin films on glass/fluorine-doped tin oxide (FTO) was carried out in two-electrode configuration using graphite and platinum anodes. Optical absorption spectra of films grown with graphite anode displayed significant spread across the deposition potentials compared to those grown with platinum anode. Photoelectrochemical cell result shows that the CdTe grown with graphite anode became p-type after post-deposition annealing with prior CdCl2 treatment, as a result of carbon incorporation into the films, while those grown with platinum anode remained n-type after annealing. A review of recent photoluminescence characterization of some of these CdTe films reveals the persistence of a defect level at (0.97-0.99) eV below the conduction band in the bandgap of CdTe grown with graphite anode after annealing while films grown with platinum anode showed the absence of this defect level. This confirms the impact of carbon incorporation into CdTe. Solar cell made with CdTe grown with platinum anode produced better conversion efficiency compared to that made with CdTe grown using graphite anode, underlining the impact of anode type in electrodeposition.

  1. The biocompatibility of modified experimental Portland cements with potential for use in dentistry.

    PubMed

    Camilleri, J

    2008-12-01

    To evaluate the biocompatibility of a group of new potential dental materials and their eluants by assessing cell viability. Calcium sulpho-aluminate cement (CSA), calcium fluoro-aluminate cement (CFA) and glass-ionomer cement (GIC; Ketac Molar), used as the control, were tested for biocompatibility. Using a direct test method cell viability was measured quantitatively using alamarBluetrade mark dye, and an indirect test method where cells were grown on material elutions and cell viability was assessed using methyltetrazolium (MTT) assay as recommended by ISO 10 993-Part 5 for in vitro testing. Statistical analysis was performed by analysis of variance and Tukey multi-comparison test method. Elution collected from the prototype cements and the GIC cured for 1 and 7 days allowed high cell activity after 24 h cell exposure, which reduced after 48 h when compared to the nontoxic glass-ionomer control, but increased significantly after 72 h cell contact. Elutions collected after 28 days revealed reduced cell activity at all cell exposure times. Cells placed in direct contact with the prototype materials showed reduced cell activity when compared with the control. Cell growth was poor when seeded in direct contact with the prototype cements. GIC encouraged cell growth after 1 day of contact. The eluted species for all the cements tested exhibited adequate cell viability in the early ages with reduced cell activity at 28 days. Changes in the production of calcium hydroxide as a by-product of cement hydration affect the material biocompatibility adversely.

  2. ZnSe Window Layers for GaAs and GaInP2 Solar Cells

    NASA Technical Reports Server (NTRS)

    Olsen, Larry C.

    1997-01-01

    This report concerns studies of the use of n-type ZnSe as a window layer for n/p GaAs and GaInP2 solar cells. Emphasis was placed in this phase of the project on characterizing the interface between n-type ZnSe films grown on epi-GaAs films grown onto single crystal GaAs. Epi-GaAs and heteroepitaxial ZnSe films were grown by MOCVD with a Spire 50OXT Reactor. After growing epitaxial GaAs films on single crystal GaAs wafers, well-oriented crystalline ZnSe films were grown by MOCVD. ZnSe films were grown with substrate temperatures ranging from 250 C to 450 C. Photoluminescence studies carried out by researchers at NASA Lewis determined that the surface recombination velocity at a GaAs surface was significantly reduced after the deposition of a heteroepitaxial layer of ZnSe. The optimum temperature for ZnSe deposition appears to be on the order of 350 C.

  3. Thin film bioreactors in space

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Scheld, H. W.

    1989-01-01

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization, and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers an opportunity to learn more about basic biological systems with one inmportant variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would make it possible to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  4. Helix handedness of Leptospira interrogans as determined by scanning electron microscopy.

    PubMed Central

    Carleton, O; Charon, N W; Allender, P; O'Brien, S

    1979-01-01

    Representative serovars and strains of the seven genetic groups of Leptospira interrogans, and two previously studied serovars, were all found to form exclusively right-handed helices as determined by scanning electron microscopy. No change in handedness occurred in cells grown in a minimal medium (Tween-80 albumin) compared to cells grown in a rich medium (rabbit serum). The right-handedness of the organisms was related to the evolution, cell wall structure, and the mechanism of motility of L. interrogans. Images PMID:438122

  5. The regulation of delta-opiate receptor density on 108CC15 neuroblastoma X glioma hybrid cells.

    PubMed Central

    Moses, M. A.; Snell, C. R.

    1984-01-01

    The effect of exogenous substances on the expression of opiate receptors on 108CC15 neuroblastoma X glioma hybrid cells has been studied. Cell differentiation by culture in the presence of N6-O2-dibutyryl adenosine 3',5'-cyclic monophosphate induced a three fold increase in opiate receptor density. When the cells were grown in the presence of 10(-5) M morphine hydrochloride for up to 23 days, opiate receptor densities were reduced by only 30% when compared with matched controls. Culture in the presence of 10(-7) M D-Ala2-D-Leu5-enkephalin produced opiate receptor down regulation of 73% compared to controls after only 4 h of treatment. The down regulation process could be inhibited by continued exposure to D-Ala2 D-Leu5-enkephalin at concentrations greater than 4 nM; below this concentration down regulation was rapid and irreversible. A model to explain these observations is described. PMID:6322893

  6. Differential Radiosensitizing Effect of Valproic Acid in Differentiation Versus Self-Renewal Promoting Culture Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debeb, Bisrat G.; Xu Wei; Mok, Henry

    2010-03-01

    Purpose: It has been shown that valproic acid (VA) enhances the proliferation and self-renewal of normal hematopoietic stem cells and that breast cancer stem/progenitor cells can be resistant to radiation. From these data, we hypothesized that VA would fail to radiosensitize breast cancer stem/progenitor cells grown to three-dimensional (3D) mammospheres. Methods and Materials: We used the MCF7 breast cancer cell line grown under stem cell-promoting culture conditions (3D mammosphere) and standard nonstem cell monolayer culture conditions (two-dimensional) to examine the effect of pretreatment with VA on radiation sensitivity in clonogenic survival assays and on the expression of embryonic stem cellmore » transcription factors. Results: 3D-cultured MCF-7 cells expressed higher levels of Oct4, Nanog, and Sox2. The 3D passage enriched self-renewal and increased radioresistance in the 3D mammosphere formation assays. VA radiosensitized adherent cells but radioprotected 3D cells in single-fraction clonogenic assays. Moreover, fractionated radiation sensitized VA-treated adherent MCF7 cells but did not have a significant effect on VA-treated single cells grown to mammospheres. Conclusion: We have concluded that VA might preferentially radiosensitize differentiated cells compared with those expressing stem cell surrogates and that stem cell-promoting culture is a useful tool for in vitro evaluation of novel cancer therapeutic agents and radiosensitizers.« less

  7. Accumulation of Polyhydroxyalkanoic Acid Containing Large Amounts of Unsaturated Monomers in Pseudomonas fluorescens BM07 Utilizing Saccharides and Its Inhibition by 2-Bromooctanoic Acid

    PubMed Central

    Lee, Ho-Joo; Choi, Mun Hwan; Kim, Tae-Un; Yoon, Sung Chul

    2001-01-01

    A psychrotrophic bacterium, Pseudomonas fluorescens BM07, which is able to accumulate polyhydroxyalkanoic acid (PHA) containing large amounts of 3-hydroxy-cis-5-dodecenoate unit up to 35 mol% in the cell from unrelated substrates such as fructose, succinate, etc., was isolated from an activated sludge in a municipal wastewater treatment plant. When it was grown on heptanoic acid (C7) to hexadecanoic acid (C16) as the sole carbon source, the monomer compositional characteristics of the synthesized PHA were similar to those observed in other fluorescent pseudomonads belonging to rRNA homology group I. However, growth on stearic acid (C18) led to no PHA accumulation, but instead free stearic acid was stored in the cell. The existence of the linkage between fatty acid de novo synthesis and PHA synthesis was confirmed by using inhibitors such as acrylic acid and two other compounds, 2-bromooctanoic acid and 4-pentenoic acid, which are known to inhibit β-oxidation enzymes in animal cells. Acrylic acid completely inhibited PHA synthesis at a concentration of 4 mM in 40 mM octanoate-grown cells, but no inhibition of PHA synthesis occurred in 70 mM fructose-grown cells in the presence of 1 to 5 mM acrylic acid. 2-Bromooctanoic acid and 4-pentenoic acid were found to much inhibit PHA synthesis much more strongly in fructose-grown cells than in octanoate-grown cells over concentrations ranging from 1 to 5 mM. However, 2-bromooctanoic acid and 4-pentenoic acid did not inhibit cell growth at all in the fructose media. Especially, with the cells grown on fructose, 2-bromooctanoic acid exhibited a steep rise in the percent PHA synthesis inhibition over a small range of concentrations below 100 μM, a finding indicative of a very specific inhibition, whereas 4-pentenoic acid showed a broad, featureless concentration dependence, suggesting a rather nonspecific inhibition. The apparent inhibition constant Ki (the concentration for 50% inhibition of PHA synthesis) for 2-bromooctanoic acid was determined to be 60 μM, assuming a single-site binding of the inhibitor at a specific inhibition site. Thus, it seems likely that a coenzyme A thioester derivative of 2-bromooctanoic acid specifically inhibits an enzyme linking the two pathways, fatty acid de novo synthesis and PHA synthesis. We suggest that 2-bromooctanoic acid can substitute for the far more expensive (2,000 times) and cell-growth-inhibiting PHA synthesis inhibitor, cerulenin. PMID:11679314

  8. Upright and Inverted Single-Junction GaAs Solar Cells Grown by Hydride Vapor Phase Epitaxy

    DOE PAGES

    Simon, John; Schulte, Kevin L.; Jain, Nikhil; ...

    2016-10-19

    Hydride vapor phase epitaxy (HVPE) is a low-cost alternative to conventional metal-organic vapor phase epitaxy (MOVPE) growth of III-V solar cells. In this work, we show continued improvement of the performance of HVPE-grown single-junction GaAs solar cells. We show over an order of magnitude improvement in the interface recombination velocity between GaAs and GaInP layers through the elimination of growth interrupts, leading to increased short-circuit current density and open-circuit voltage compared with cells with interrupts. One-sun conversion efficiencies as high as 20.6% were achieved with this improved growth process. Solar cells grown in an inverted configuration that were removed frommore » the substrate showed nearly identical performance to on-wafer cells, demonstrating the viability of HVPE to be used together with conventional wafer reuse techniques for further cost reduction. As a result, these devices utilized multiple heterointerfaces, showing the potential of HVPE for the growth of complex and high-quality III-V devices.« less

  9. The Nitrogenase in a Methanogenic Archaebacterium and Its Regulation.

    DTIC Science & Technology

    1987-08-31

    strain 227. Initial studies centered on the growth physiology of M. barker! u’nder diazotrophic conditions. We have also demonstrated that crude...of a few minor control experiments. Among the highlights are that molybdate at levels as low as 10 nM stimulated diazotrophic growth while tungstate... diazotrophs . We showed that activity was only found in dinitrogen-grown cells, and that addition of ammonia or glutamine caused a switchoff of the

  10. Recent advances towards development and commercialization of plant cell culture processes for synthesis of biomolecules

    PubMed Central

    Wilson, Sarah A.; Roberts, Susan C.

    2011-01-01

    (1) Summary Plant cell culture systems were initially explored for use in commercial synthesis of several high value secondary metabolites, allowing for sustainable production that was not limited by the low yields associated with natural harvest or the high cost associated with complex chemical synthesis. Although there have been some commercial successes, most notably paclitaxel production from Taxus sp., process limitations exist with regards to low product yields and inherent production variability. A variety of strategies are being developed to overcome these limitations including elicitation strategies, in situ product removal and metabolic engineering with single genes and transcription factors. Recently, the plant cell culture production platform has been extended to pharmaceutically active heterologous proteins. Plant systems are beneficial because they are able to produce complex proteins that are properly glycosylated, folded and assembled without the risk of contamination by toxins that are associated with mammalian or microbial production systems. Additionally, plant cell culture isolates transgenic material from the environment, allows for more controllable conditions over field grown crops and promotes secretion of proteins to the medium, reducing downstream purification costs. Despite these benefits, the increase in cost of heterologous protein synthesis in plant cell culture as opposed to field grown crops is significant and therefore processes must be optimized with regards to maximizing secretion and enhancing protein stability in the cell culture media. This review discusses recent advancements in plant cell culture processing technology, focusing on progress towards overcoming the problems associated with commercialization of these production systems and highlighting recent commercial successes. PMID:22059985

  11. Effects of growth temperature and strictly anaerobic recovery on the survival of Listeria monocytogenes during pasteurization.

    PubMed Central

    Knabel, S J; Walker, H W; Hartman, P A; Mendonca, A F

    1990-01-01

    Listeria monocytogenes F5069 was suspended in either Trypticase soy broth-0.6% yeast extract (TSBYE) or sterile, whole milk and heated at 62.8 degrees C in sealed thermal death time tubes. Severely heat-injured cells were recovered in TSBYE within sealed thermal death time tubes because of the formation of reduced conditions in the depths of the TSBYE. Also, the use of strictly anaerobic Hungate techniques significantly increased recovery in TSBYE containing 1.5% agar compared with aerobically incubated controls. The exogenous addition of catalase, but not superoxide dismutase, slightly increased the recovery of heat-injured cells in TSBYE containing 1.5% agar incubated aerobically. Growth of cells at 43 degrees C caused a greater increase in heat resistance as compared with cells heat shocked at 43 degrees C or cells grown at lower temperatures. Growth of L. monocytogenes at 43 degrees C and enumeration by the use of strictly anaerobic Hungate techniques resulted in D62.8 degrees C values that were at least sixfold greater than those previously obtained by using cells grown at 37 degrees C and aerobic plating. Results indicate that, under the conditions of the present study, high levels of L. monocytogenes would survive the minimum low-temperature, long-time treatment required by the U.S. Food and Drug Administration for pasteurizing milk. The possible survival of low levels of L. monocytogenes during high-temperature, short-time pasteurization and enumeration of injured cells by recovery on selective media under strictly anaerobic conditions are discussed. PMID:2106284

  12. Impact of growth conditions on resistance of Klebsiella pneumoniae to chloramines.

    PubMed Central

    Stewart, M H; Olson, B H

    1992-01-01

    The resistance of Klebsiella pneumoniae to inorganic monochloramine (1.5 mg/liter; 3:1 Cl2:N ratio, pH 8.0) was examined in relation to growth phase, temperature of growth, and growth under decreased nutrient conditions. Growth phase did not impact resistance to chloramines. Mid-exponential and stationary-phase cells, grown in a yeast extract-based medium, had CT99 values and standard deviations of 4.8 +/- 0.1 and 4.6 +/- 0.2 mg.min/liter, respectively. Growth temperature did not alter chloramine resistance at short contact times. CT99 values of cells grown at 15 and 23 degrees C were 4.5 +/- 0.2 and 4.6 +/- 0.2 mg.min/liter, respectively. However, at longer contact times, CT99.99 values of cells grown at 15 and 23 degrees C were 14 and 8 mg.min/liter, respectively, suggesting a small resistant subpopulation for cells grown at the lower temperature. Growth under decreased nutrient conditions resulted in a concomitant increase in resistance to chloramines. When K. pneumoniae was grown in undiluted Ristroph medium and Ristroph medium diluted by 1:100 and 1:1,000, the CT99 values were 4.6 +/- 0.2, 9.6 +/- 0.4, and 24 +/- 7.0 mg.min/liter, respectively. These results indicate that nutrient availability has a greater impact than growth phase or growth temperature in promoting the resistance of K. pneumoniae to inorganic monochloramine. PMID:1514811

  13. CHEMISTRY OF OXIDATION OF POLYCYCLIC AROMATIC HYDROCARBONS BY SOIL PSEUDOMONADS

    PubMed Central

    Rogoff, Martin H.

    1962-01-01

    Rogoff, Martin H. (U.S. Bureau of Mines, Pittsburgh, Pa.). Oxidation of polycyclic aromatic hydrocarbons by soil pseudomonads. J. Bacteriol. 83:998–1004. 1962.—Substitution of phenanthrene by a methyl group at the 9-carbon blocks oxidation of the compound by a resting-cell suspension of a phenanthrene-grown soil pseudomonad. When 2-methylphenanthrene is provided, the oxidation rate is considerably higher; 3-methylphenanthrene is oxidized at a rate intermediate between the other two, even though the methyl group is attached to a carbon directly involved in ring splitting. Cells grown on naphthalene or anthracene oxidize phenanthrene at a much lower rate than cells grown with phenanthrene or 2-methylnaphthalene as the source of carbon. Naphthalene-grown cells also absorb less phenanthrene from aqueous solution than do their phenanthrene-grown counterparts. The data are in keeping with the hypothesis that polynuclear aromatic hydrocarbons attach to the relevant bacterial enzymes at carbon-carbon bonds of high electron density (K regions; localized double bonds), and that the ring-splitting reactions then occur at other bonds on the substrate molecule. The actual bond that undergoes fission is determined by the electronic and steric configurations of the enzyme-substrate complex. When linearly arranged aromatic compounds such as naphthalene or anthracene are attacked, attachment to an enzyme and ring splitting may take place on the same ring; angular aromatic compounds such as phenanthrene afford attachment to an enzyme at a bond in a ring other than the one containing the ring-splitting site. PMID:14493381

  14. Selenium in particulates and gaseous fractions of smoke from cigarettes prepared from tobacco grown on fly-ash-amended soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutemann, W.H.; Lisk, D.J.; Hoffman, D.

    Cigarettes prepared from tobacco grown in pots of soils amended with soft coal fly ash were smoked, and the mainstream and gaseous fractions were analyzed for total selenium concentration. Fly-ash-grown and control (soil-grown) tobaccos contained, respectively, 0.79 and 0.03 ppm selenium. The quantities of selenium (ng per cigarette) found in the mainstream particulate and gaseous fractions were, respectively, 62.4 and 246.0 for the fly-ash-grown and 8.6 and 12.0 for the control treatments. Studies of the absorption, retention, effects, metabolism, and excretion of selenium in the body are reviewed.

  15. Proteomic Retrieval from Nucleic Acid Depleted Space-Flown Human Cells

    NASA Technical Reports Server (NTRS)

    Hammond, D. K.; Elliott, T. F.; Holubec, K.; Baker, T. L.; Allen, P. L.; Hammond, T. G.; Love, J. E.

    2006-01-01

    Compared to experiments utilizing humans in microgravity, cell-based approaches to questions about subsystems of the human system afford multiple advantages, such as crew safety and the ability to achieve statistical significance. To maximize the science return from flight samples, an optimized method was developed to recover protein from samples depleted of nucleic acid. This technique allows multiple analyses on a single cellular sample and when applied to future cellular investigations could accelerate solutions to significant biomedical barriers to human space exploration. Cell cultures grown in American Fluoroseal bags were treated with an RNA stabilizing agent (RNAlater - Ambion), which enabled both RNA and immunoreactive protein analyses. RNA was purified using an RNAqueous(registered TradeMark) kit (Ambion) and the remaining RNA free supernatant was precipitated with 5% trichloroacetic acid. The precipitate was dissolved in SDS running buffer and tested for protein content using a bicinchoninic acid assay (1) (Sigma). Equal loads of protein were placed on SDS-PAGE gels and either stained with CyproOrange (Amersham) or transferred using Western Blotting techniques (2,3,4). Protein recovered from RNAlater-treated cells and stained with protein stain, was measured using Imagequant volume measurements for rectangles of equal size. BSA treated in this way gave quantitative data over the protein range used (Fig 1). Human renal cortical epithelial (HRCE) cells (5,6,7) grown onboard the International Space Station (ISS) during Increment 3 and in ground control cultures exhibited similar immunoreactivity profiles for antibodies to the Vitamin D receptor (VDR) (Fig 2), the beta isoform of protein kinase C (PKC ) (Fig 3), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Fig 4). Parallel immunohistochemical studies on formalin-fixed flight and ground control cultures also showed positive immunostaining for VDR and other biomarkers (Fig 5). These results are consistent with data from additional antigenic recovery experiments performed on human Mullerian tumor cells cultured in microgravity (8).

  16. Relationship between Legionella pneumophila and Acanthamoeba polyphaga: Physiological status and susceptibility to chemical inactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, J.; Farrell, I.; Brown, M.R.W.

    1992-08-01

    Survival studies were conducted on Legionella pneumophila cells that had been grown intracellulary in Acanthamoeba polyphaga and then exposed to polyhexamethylene biguanide (PHMB), benzisothiazolone (BIT), and 5-chloro-N-methylisothiazolone (CMIT). Susceptibilities were also determined for L. pneumophila grown under iron-sufficient and iron-depleted conditions. BIT was relatively ineffective against cells to PHMB and CMIT. The activities of all three biocides were greatly reduced against L. pneumophila grown in amoebae. PHMB (1 [times] MIC) gave 99.99% reductions in viability for cultures grown in broth within 6 h and no detectable survivors at 24 h but only 90 and 99.9% killing at 6 h andmore » 24 h, respectively, for cells grown in amoebae. The antimicrobial properties of the three biocides against A. polyphaga were also determined. The majority of amoebae recovered from BIT treatment, but few, if any, survived CMIT treatment or exposure of PHMB. This study not only shows the profound effect that intra-amoebal growth has on the physiological status and antimicrobial susceptibility of L. pneumophila but also reveals PHMB to be a potential biocide for effective water treatment. In this respect, PHMB has significant activity, below its recommended use concentrations, against both the host amoeba and L. pneumophila.« less

  17. Reduction of ferric iron by acidophilic heterotrophic bacteria: evidence for constitutive and inducible enzyme systems in Acidiphilium spp.

    PubMed

    Johnson, D B; Bridge, T A M

    2002-01-01

    To compare the abilities of two obligately acidophilic heterotrophic bacteria, Acidiphilium acidophilum and Acidiphilium SJH, to reduce ferric iron to ferrous when grown under different culture conditions. Bacteria were grown in batch culture, under different aeration status, and in the presence of either ferrous or ferric iron. The specific rates of ferric iron reduction by fermenter-grown Acidiphilium SJH were unaffected by dissolved oxygen (DO) concentrations, while iron reduction by A. acidophilum was highly dependent on DO concentrations in the growth media. The ionic form of iron present (ferrous or ferric) had a minimal effect on the abilities of harvested cells to reduce ferric iron. Whole cell protein profiles of Acidiphilium SJH were very similar, regardless of the DO status of the growth medium, while additional proteins were present in A. acidophilum grown microaerobically compared with aerobically-grown cells. The dissimilatory reduction of ferric iron is constitutive in Acidiphilium SJH while it is inducible in A. acidophilum. Ferric iron reduction by Acidiphilium spp. may occur in oxygen-containing as well as anoxic acidic environments. This will detract from the effectiveness of bioremediation systems where removal of iron from polluted waters is mediated via oxidation and precipitation of the metal.

  18. Thin film solar cells grown by organic vapor phase deposition

    NASA Astrophysics Data System (ADS)

    Yang, Fan

    Organic solar cells have the potential to provide low-cost photovoltaic devices as a clean and renewable energy resource. In this thesis, we focus on understanding the energy conversion process in organic solar cells, and improving the power conversion efficiencies via controlled growth of organic nanostructures. First, we explain the unique optical and electrical properties of organic materials used for photovoltaics, and the excitonic energy conversion process in donor-acceptor heterojunction solar cells that place several limiting factors of their power conversion efficiency. Then, strategies for improving exciton diffusion and carrier collection are analyzed using dynamical Monte Carlo models for several nanostructure morphologies. Organic vapor phase deposition is used for controlling materials crystallization and film morphology. We improve the exciton diffusion efficiency while maintaining good carrier conduction in a bulk heterojunction solar cell. Further efficiency improvement is obtained in a novel nanocrystalline network structure with a thick absorbing layer, leading to the demonstration of an organic solar cell with 4.6% efficiency. In addition, solar cells using simultaneously active heterojunctions with broad spectral response are presented. We also analyze the efficiency limits of single and multiple junction organic solar cells, and discuss the challenges facing their practical implementations.

  19. Expansion of mesenchymal stem cells under atmospheric carbon dioxide.

    PubMed

    Brodsky, Arthur Nathan; Zhang, Jing; Visconti, Richard P; Harcum, Sarah W

    2013-01-01

    Stem cells are needed for an increasing number of scientific applications, including both fundamental research and clinical disease treatment. To meet this rising demand, improved expansion methods to generate high quantities of high quality stem cells must be developed. Unfortunately, the bicarbonate buffering system - which relies upon an elevated CO2 environment - typically used to maintain pH in stem cell cultures introduces several unnecessary limitations in bioreactor systems. In addition to artificially high dissolved CO2 levels negatively affecting cell growth, but more importantly, the need to sparge CO2 into the system complicates the ability to control culture parameters. This control is especially important for stem cells, whose behavior and phenotype is highly sensitive to changes in culture conditions such as dissolved oxygen and pH. As a first step, this study developed a buffer to support expansion of mesenchymal stem cells (MSC) under an atmospheric CO2 environment in static cultures. MSC expanded under atmospheric CO2 with this buffer achieved equivalent growth rates without adaptation compared to those grown in standard conditions and also maintained a stem cell phenotype, self-renewal properties, and the ability to differentiate into multiple lineages after expansion. © 2013 American Institute of Chemical Engineers.

  20. Growth characteristics of Lactobacillus brevis KB290 in the presence of bile.

    PubMed

    Kimoto-Nira, Hiromi; Suzuki, Shigenori; Suganuma, Hiroyuki; Moriya, Naoko; Suzuki, Chise

    2015-10-01

    Live Lactobacillus brevis KB290 have several probiotic activities, including immune stimulation and modulation of intestinal microbial balance. We investigated the adaptation of L. brevis KB290 to bile as a mechanism of intestinal survival. Strain KB290 was grown for 5 days at 37 °C in tryptone-yeast extract-glucose (TYG) broth supplemented with 0.5% sodium acetate (TYGA) containing 0.15%, 0.3%, or 0.5% bile. Growth was determined by absorbance at 620 nm or by dry weight. Growth was enhanced as the broth's bile concentration increased. Bile-enhanced growth was not observed in TYG broth or with xylose or fructose as the carbon source, although strain KB290 could assimilate these sugars. Compared with cells grown without bile, cells grown with bile had twice the cell yield (dry weight) and higher hydrophobicity, which may improve epithelial adhesion. Metabolite analysis revealed that bile induced more lactate production by glycolysis, thus enhancing growth efficiency. Scanning electron microscopy revealed that cells cultured without bile for 5 days in TYGA broth had a shortened rod shape and showed lysis and aggregation, unlike cells cultured for 1 day; cells grown with bile for 5 days had an intact rod shape and rarely appeared damaged. Cellular material leakage through autolysis was lower in the presence of bile than in its absence. Thus lysis of strain KB290 cells cultured for extended periods was suppressed in the presence of bile. This study provides new role of bile and sodium acetate for retaining an intact cell shape and enhancing cell yield, which are beneficial for intestinal survival. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Comparative Transcriptomic Analysis of Race 1 and Race 4 of Fusarium oxysporum f. sp. cubense Induced with Different Carbon Sources

    PubMed Central

    Qin, Shiwen; Ji, Chunyan; Li, Yunfeng; Wang, Zhenzhong

    2017-01-01

    The fungal pathogen Fusarium oxysporum f. sp. cubense causes Fusarium wilt, one of the most destructive diseases in banana and plantain cultivars. Pathogenic race 1 attacks the “Gros Michel” banana cultivar, and race 4 is pathogenic to the Cavendish banana cultivar and those cultivars that are susceptible to Foc1. To understand the divergence in gene expression modules between the two races during degradation of the host cell wall, we performed RNA sequencing to compare the genome-wide transcriptional profiles of the two races grown in media containing banana cell wall, pectin, or glucose as the sole carbon source. Overall, the gene expression profiles of Foc1 and Foc4 in response to host cell wall or pectin appeared remarkably different. When grown with host cell wall, a much larger number of genes showed altered levels of expression in Foc4 in comparison with Foc1, including genes encoding carbohydrate-active enzymes (CAZymes) and other virulence-related genes. Additionally, the levels of gene expression were higher in Foc4 than in Foc1 when grown with host cell wall or pectin. Furthermore, a great majority of genes were differentially expressed in a variety-specific manner when induced by host cell wall or pectin. More specific CAZymes and other pathogenesis-related genes were expressed in Foc4 than in Foc1 when grown with host cell wall. The first transcriptome profiles obtained for Foc during degradation of the host cell wall may provide new insights into the mechanism of banana cell wall polysaccharide decomposition and the genetic basis of Foc host specificity. PMID:28468818

  2. Comparative Transcriptomic Analysis of Race 1 and Race 4 of Fusarium oxysporum f. sp. cubense Induced with Different Carbon Sources.

    PubMed

    Qin, Shiwen; Ji, Chunyan; Li, Yunfeng; Wang, Zhenzhong

    2017-07-05

    The fungal pathogen Fusarium oxysporum f. sp. cubense causes Fusarium wilt, one of the most destructive diseases in banana and plantain cultivars. Pathogenic race 1 attacks the "Gros Michel" banana cultivar, and race 4 is pathogenic to the Cavendish banana cultivar and those cultivars that are susceptible to Foc1. To understand the divergence in gene expression modules between the two races during degradation of the host cell wall, we performed RNA sequencing to compare the genome-wide transcriptional profiles of the two races grown in media containing banana cell wall, pectin, or glucose as the sole carbon source. Overall, the gene expression profiles of Foc1 and Foc4 in response to host cell wall or pectin appeared remarkably different. When grown with host cell wall, a much larger number of genes showed altered levels of expression in Foc4 in comparison with Foc1, including genes encoding carbohydrate-active enzymes (CAZymes) and other virulence-related genes. Additionally, the levels of gene expression were higher in Foc4 than in Foc1 when grown with host cell wall or pectin. Furthermore, a great majority of genes were differentially expressed in a variety-specific manner when induced by host cell wall or pectin. More specific CAZymes and other pathogenesis-related genes were expressed in Foc4 than in Foc1 when grown with host cell wall. The first transcriptome profiles obtained for Foc during degradation of the host cell wall may provide new insights into the mechanism of banana cell wall polysaccharide decomposition and the genetic basis of Foc host specificity. Copyright © 2017 Qin et al.

  3. The gravireaction of Ceratodon protonemata treated with gibberellic acid

    NASA Astrophysics Data System (ADS)

    Chaban, C. I.; Kordyum, E. L.; Demkiv, O. T.; Khorkavtsiv, O. Ya.; Khorkavtsiv, Ya. D.

    1999-01-01

    Moss protonemata exhibit negative gravitropism and the amyloplasts of the apical cell seem to play a key role in protonemal gravisensitivity. However, the mechanisms of this process are still poorly understood. Previously, we have shown that Ceratodon protonemata grown on agar-medium demonstrated greater gravicurvature than protonemata grown on medium with 11 mM glucose. In this study, we have examined whether gibberellic acid (GA), which promotes α-amylase expression, influences graviresponse of C. purpureus protonemata (strains WT-4 and WT-U) and how this event interacts with exogenous soluble sugars. After gravistimulation the WT-4 strain curved about twice as fast as the WT-U strain. However, responses of both strains to added substances were similar. High concentration of glucose (0.11 M) caused a decrease in protonema curvature, while the same concentration of sucrose did not significantly change the angles of curvature compared with controls. GA at 0.1 mM and higher concentrations inhibited gravitropism, and caused some apical cells to swell. The possible involvement of the carbohydrates in gravitropism is discussed.

  4. pH regulators in invadosomal functioning: proton delivery for matrix tasting.

    PubMed

    Brisson, Lucie; Reshkin, Stephan J; Goré, Jacques; Roger, Sébastien

    2012-01-01

    Invadosomes are actin-rich finger-like cellular structures sensing and interacting with the surrounding extracellular matrix (ECM) and involved in its proteolytic remodeling. Invadosomes are structures distinct from other adhesion complexes, and have been identified in normal cells that have to cross tissue barriers to fulfill their function such as leukocytes, osteoclasts and endothelial cells. They also represent features of highly aggressive cancer cells, allowing them to escape from the primary tumor, to invade surrounding tissues and to reach systemic circulation. They are localized to the ventral membrane of cells grown under 2-dimensional conditions and are supposed to be present all around cells grown in 3-dimensional matrices. Indeed invadosomes are key structures in physiological processes such as inflammation and the immune response, bone remodeling, tissue repair, but also in pathological conditions such as osteopetrosis and the development of metastases. Invadosomes are subdivided into podosomes, found in normal cells, and into invadopodia specific for cancer cells. While these two structures exhibit differences in organization, size, number and half-life, they share similarities in molecular composition, participation in cell-matrix adhesion and promoting matrix degradation. A key determinant in invadosomal function is the recruitment and release of proteases, such as matrix metalloproteinases (MMPs), serine proteases and cysteine cathepsins, together with their activation in a tightly controlled and highly acidic microenvironment. Therefore numerous pH regulators such as V-ATPases and Na(+)/H(+) exchangers, are found in invadosomes and are directly involved in their constitution as well as their functioning. This review focuses on the participation of pH regulators in invadosome function in physiological and pathological conditions, with a particular emphasis on ECM remodeling by osteoclasts during bone resorption and by cancer cells. Copyright © 2012 Elsevier GmbH. All rights reserved.

  5. Organically Grown Architectures: Creating Decentralized, Autonomous Systems by Embryomorphic Engineering

    NASA Astrophysics Data System (ADS)

    Doursat, René

    Exploding growth growth in computational systems forces us to gradually replace rigid design and control with decentralization and autonomy. Information technologies will progress, instead, by"meta-designing" mechanisms of system self-assembly, self-regulation and evolution. Nature offers a great variety of efficient complex systems, in which numerous small elements form large-scale, adaptive patterns. The new engineering challenge is to recreate this self-organization and let it freely generate innovative designs under guidance. This article presents an original model of artificial system growth inspired by embryogenesis. A virtual organism is a lattice of cells that proliferate, migrate and self-pattern into differentiated domains. Each cell's fate is controlled by an internal gene regulatory network network. Embryomorphic engineering emphasizes hyperdistributed architectures, and their development as a prerequisite of evolutionary design.

  6. Growth and Metabolism of the Green Alga, Chlorella Pyrenoidosa, in Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Mills, W. Ronald

    2003-01-01

    The effect of microgravity on living organisms during space flight has been a topic of interest for some time, and a substantial body of knowledge on the subject has accumulated. Despite this, comparatively little information is available regarding the influence of microgravity on algae, even though it has been suggested for long duration flight or occupancy in space that plant growth systems, including both higher plants and algae, are likely to be necessary for bioregenerative life support systems. High-Aspect-Ratio Rotating-Wall Vessel or HARV bioreactors developed at Johnson Space Center provide a laboratory-based approach to investigating the effects of microgravity on cellular reactions. In this study, the HARV bioreactor was used to examine the influence of simulated microgravity on the growth and metabolism of the green alga, Chlorella pyrenoidosa. After the first 2 days of culture, cell numbers increased more slowly in simulated microgravity than in the HARV gravity control; after 7 days, growth in simulated microgravity was just over half (58%) that of the gravity control and at 14 days it was less than half (42%). Chlorophyll and protein were also followed as indices of cell competence and function; as with growth, after 2-3 days, protein and chlorophyll levels were reduced in modeled microgravity compared to gravity controls. Photosynthesis is a sensitive biochemical index of the fitness of photosynthetic organisms; thus, CO2-dependent O2 evolution was tested as a measure of photosynthetic capacity of cells grown in simulated microgravity. When data were expressed with respect to cell number, modeled microgravity appeared to have little effect on CO2 fixation. Thus, even though the overall growth rate was lower for cells cultured in microgravity, the photosynthetic capacity of the cells appears to be unaffected. Cells grown in simulated microgravity formed loose clumps or aggregates within about 2 days of culture, with aggregation increasing over time. Presently, the basis for, or significance of, the cell aggregation is unknown. The results from this study suggest that cell growth and morphological characteristics of green algae may be altered by culture in simulated microgravity. The data obtained to date should provide a solid basis for additional experimentation regarding the influence of modeled microgravity on cell morphology, physiological activity, protein production and possibly gene expression in algal and plant cell systems. The final aim of the study is to provide useful information to elucidate the underlying mechanism for the biological effects of microgravity on cells.

  7. Effect of growth conditions on production of rhamnose-containing cell wall and capsular polysaccharides by strains of Lactobacillus casei subsp. rhamnosus.

    PubMed

    Wicken, A J; Ayres, A; Campbell, L K; Knox, K W

    1983-01-01

    Strains of Lactobacillus casei subsp. rhamnosus possessing two cell wall polysaccharides, a hexosamine-containing H-polysaccharide and a rhamnose-containing R-polysaccharide, were examined for the effect of growth conditions on the production of these two components. In strain NCTC 6375, R- and H-polysaccharides accounted for an estimated 44 and 20%, respectively, of the cell wall for organisms grown in batch culture with glucose as the carbohydrate source. Growth on fructose-containing media reduced the amount of R-polysaccharide by approximately 50% without affecting the amount of H-polysaccharide. Subculture of fructose-grown organisms in glucose restored the original proportions of the two polysaccharides. Galactose- and sucrose-grown cells behaved similarly to glucose-grown cells with respect to polysaccharide production, whereas growth in rhamnose or ribose showed values close to those for fructose-grown cells. Continuous culture of strain NCTC 6375 for more than 100 generations showed a gradual and irreversible reduction of the R-polysaccharide to less than 5% of the cell wall and an increase of the H-polysaccharide to 40% of the cell wall. Other type culture strains of L. casei subsp. rhamnosus, NCIB 7473 and ATCC 7469, behaved similarly in batch and continuous culture. In contrast, strains of L. casei subsp. rhamnosus isolated at the Institute of Dental Research showed phenotypic stability with respect to the relative proportions of R- and H-polysaccharides in both batch and continuous culture. Changes in polysaccharide composition of type culture strains were also mirrored in changes in the immunogenicity of the two components and resistance to the rate of enzymic lysis of whole organisms. For L. casei subsp. rhamnosus strain NCTC 10302 the R-polysaccharide is present entirely as capsular material. The amount of R-polysaccharide produced was also markedly dependent on the carbohydrate component of the medium in batch culture and both dilution rate and nature of the limiting carbohydrate in continuous culture, varying over a 10-fold range, whereas the cell wall H-polysaccharide remained constant.

  8. Effect of growth conditions on production of rhamnose-containing cell wall and capsular polysaccharides by strains of Lactobacillus casei subsp. rhamnosus.

    PubMed Central

    Wicken, A J; Ayres, A; Campbell, L K; Knox, K W

    1983-01-01

    Strains of Lactobacillus casei subsp. rhamnosus possessing two cell wall polysaccharides, a hexosamine-containing H-polysaccharide and a rhamnose-containing R-polysaccharide, were examined for the effect of growth conditions on the production of these two components. In strain NCTC 6375, R- and H-polysaccharides accounted for an estimated 44 and 20%, respectively, of the cell wall for organisms grown in batch culture with glucose as the carbohydrate source. Growth on fructose-containing media reduced the amount of R-polysaccharide by approximately 50% without affecting the amount of H-polysaccharide. Subculture of fructose-grown organisms in glucose restored the original proportions of the two polysaccharides. Galactose- and sucrose-grown cells behaved similarly to glucose-grown cells with respect to polysaccharide production, whereas growth in rhamnose or ribose showed values close to those for fructose-grown cells. Continuous culture of strain NCTC 6375 for more than 100 generations showed a gradual and irreversible reduction of the R-polysaccharide to less than 5% of the cell wall and an increase of the H-polysaccharide to 40% of the cell wall. Other type culture strains of L. casei subsp. rhamnosus, NCIB 7473 and ATCC 7469, behaved similarly in batch and continuous culture. In contrast, strains of L. casei subsp. rhamnosus isolated at the Institute of Dental Research showed phenotypic stability with respect to the relative proportions of R- and H-polysaccharides in both batch and continuous culture. Changes in polysaccharide composition of type culture strains were also mirrored in changes in the immunogenicity of the two components and resistance to the rate of enzymic lysis of whole organisms. For L. casei subsp. rhamnosus strain NCTC 10302 the R-polysaccharide is present entirely as capsular material. The amount of R-polysaccharide produced was also markedly dependent on the carbohydrate component of the medium in batch culture and both dilution rate and nature of the limiting carbohydrate in continuous culture, varying over a 10-fold range, whereas the cell wall H-polysaccharide remained constant. PMID:6401290

  9. Adaptive responses of Bacillus cereus ATCC14579 cells upon exposure to acid conditions involve ATPase activity to maintain their internal pH

    PubMed Central

    Senouci-Rezkallah, Khadidja; Jobin, Michel P; Schmitt, Philippe

    2015-01-01

    This study examined the involvement of ATPase activity in the acid tolerance response (ATR) of Bacillus cereus ATCC14579 strain. In the current work, B. cereus cells were grown in anaerobic chemostat culture at external pH (pHe) 7.0 or 5.5 and at a growth rate of 0.2 h−1. Population reduction and internal pH (pHi) after acid shock at pH 4.0 was examined either with or without ATPase inhibitor N,N’-dicyclohexylcarbodiimide (DCCD) and ionophores valinomycin and nigericin. Population reduction after acid shock at pH 4.0 was strongly limited in cells grown at pH 5.5 (acid-adapted cells) compared with cells grown at pH 7.0 (unadapted cells), indicating that B. cereus cells grown at low pHe were able to induce a significant ATR and Exercise-induced increase in ATPase activity. However, DCCD and ionophores had a negative effect on the ability of B. cereus cells to survive and maintain their pHi during acid shock. When acid shock was achieved after DCCD treatment, pHi was markedly dropped in unadapted and acid-adapted cells. The ATPase activity was also significantly inhibited by DCCD and ionophores in acid-adapted cells. Furthermore, transcriptional analysis revealed that atpB (ATP beta chain) transcripts was increased in acid-adapted cells compared to unadapted cells before and after acid shock. Our data demonstrate that B. cereus is able to induce an ATR during growth at low pH. These adaptations depend on the ATPase activity induction and pHi homeostasis. Our data demonstrate that the ATPase enzyme can be implicated in the cytoplasmic pH regulation and in acid tolerance of B. cereus acid-adapted cells. PMID:25740257

  10. Regulation of Pseudomonas aeruginosa chemotaxis by the nitrogen source.

    PubMed Central

    Craven, R; Montie, T C

    1985-01-01

    The regulation of amino acid chemotaxis by nitrogen was investigated in the gram-negative bacterium Pseudomonas aeruginosa. The quantitative capillary tube technique was used to measure chemotactic responses of bacteria to spatial gradients of amino acids and other attractants. Chemotaxis toward serine, arginine, and alpha-aminoisobutyrate was sharply dependent on the form in which nitrogen was presented to the bacteria. Bacteria grown on mineral salts-succinate with potassium nitrate gave responses to amino acids that were 2 to 3 times those of cells grown on ammonium sulfate and 10 to 20 times those of cells grown in mineral salts-succinate with Casamino Acids as the nitrogen source. A combination of ammonium sulfate and glutamate was as effective as Casamino Acids in depressing serine taxis. The threshold concentration for alpha-aminoisobutyrate taxis was consistently lower in nitrate-grown bacteria than in ammonia-grown bacteria. Responsiveness to sodium succinate, however, was not subject to regulation by nitrogen, and glucose chemotaxis was inhibited, rather than enhanced, in nitrate-grown bacteria. These results indicate that chemotaxis of P. aeruginosa toward amino acids is subject to regulation by nitrogen and that this regulation probably is expressed at the level of the chemoreceptors or transducers. PMID:3932326

  11. Characteristics of the Freshwater Cyanobacterium Microcystis aeruginosa Grown in Iron-Limited Continuous Culture

    PubMed Central

    Dang, T. C.; Fujii, M.; Rose, A. L.; Bligh, M.

    2012-01-01

    A continuous culturing system (chemostat) made of metal-free materials was successfully developed and used to maintain Fe-limited cultures of Microcystis aeruginosa PCC7806 at nanomolar iron (Fe) concentrations (20 to 50 nM total Fe). EDTA was used to maintain Fe in solution, with bioavailable Fe controlled by absorption of light by the ferric EDTA complex and resultant reduction of Fe(III) to Fe(II). A kinetic model describing Fe transformations and biological uptake was applied to determine the biologically available form of Fe (i.e., unchelated ferrous iron) that is produced by photoreductive dissociation of the ferric EDTA complex. Prediction by chemostat theory modified to account for the light-mediated formation of bioavailable Fe rather than total Fe was in good agreement with growth characteristics of M. aeruginosa under Fe limitation. The cellular Fe quota increased with increasing dilution rates in a manner consistent with the Droop theory. Short-term Fe uptake assays using cells maintained at steady state indicated that M. aeruginosa cells vary their maximum Fe uptake rate (ρmax) depending on the degree of Fe stress. The rate of Fe uptake was lower for cells grown under conditions of lower Fe availability (i.e., lower dilution rate), suggesting that cells in the continuous cultures adjusted to Fe limitation by decreasing ρmax while maintaining a constant affinity for Fe. PMID:22210212

  12. A Hypergravity Environment Induced by Centrifugation Alters Plant Cell Proliferation and Growth in an Opposite Way to Microgravity

    NASA Astrophysics Data System (ADS)

    Manzano, Ana I.; Herranz, Raúl; van Loon, Jack J. W. A.; Medina, F. Javier

    2012-12-01

    Seeds of Arabidopsis thaliana were exposed to hypergravity environments (2 g and 6 g) and germinated during centrifugation. Seedlings grew for 2 and 4 days before fixation. In all cases, comparisons were performed against an internal (subjected to rotational vibrations and other factors of the machine) and an external control at 1 g. On seedlings grown in hypergravity the total length and the root length were measured. The cortical root meristematic cells were analyzed to investigate the alterations in cell proliferation, which were quantified by counting the number of cells per millimeter in the specific cell files, and cell growth, which were appraised through the rate of ribosome biogenesis, assessed by morphological and morphometrical parameters of the nucleolus. The expression of cyclin B1, a key regulator of entry in mitosis, was assessed by the use of a CYCB1:GUS genetic construction. The results showed significant differences in some of these parameters when comparing the 1 g internal rotational control with the 1 g external control, indicating that the machine by itself was a source of alterations. When the effect of hypergravity was isolated from other environmental factors, by comparing the experimental conditions with the rotational control, cell proliferation appeared depleted, cell growth was increased and there was an enhanced expression of cyclin B1. The functional meaning of these effects is that cell proliferation and cell growth, which are strictly associated functions under normal 1 g ground conditions, are uncoupled under hypergravity. This uncoupling was also described by us in previous experiments as an effect of microgravity, but in an opposite way. Furthermore, root meristems appear thicker in hypergravity-treated than in control samples, which can be related to changes in the cell wall induced by altered gravity.

  13. Phenotypic Changes Exhibited by E. coli Cultured in Space.

    PubMed

    Zea, Luis; Larsen, Michael; Estante, Frederico; Qvortrup, Klaus; Moeller, Ralf; Dias de Oliveira, Sílvia; Stodieck, Louis; Klaus, David

    2017-01-01

    Bacteria will accompany humans in our exploration of space, making it of importance to study their adaptation to the microgravity environment. To investigate potential phenotypic changes for bacteria grown in space, Escherichia coli was cultured onboard the International Space Station with matched controls on Earth. Samples were challenged with different concentrations of gentamicin sulfate to study the role of drug concentration on the dependent variables in the space environment. Analyses included assessments of final cell count, cell size, cell envelope thickness, cell ultrastructure, and culture morphology. A 13-fold increase in final cell count was observed in space with respect to the ground controls and the space flight cells were able to grow in the presence of normally inhibitory levels of gentamicin sulfate. Contrast light microscopy and focused ion beam/scanning electron microscopy showed that, on average, cells in space were 37% of the volume of their matched controls, which may alter the rate of molecule-cell interactions in a diffusion-limited mass transport regime as is expected to occur in microgravity. TEM imagery showed an increase in cell envelope thickness of between 25 and 43% in space with respect to the Earth control group. Outer membrane vesicles were observed on the spaceflight samples, but not on the Earth cultures. While E. coli suspension cultures on Earth were homogenously distributed throughout the liquid medium, in space they tended to form a cluster, leaving the surrounding medium visibly clear of cells. This cell aggregation behavior may be associated with enhanced biofilm formation observed in other spaceflight experiments.

  14. Phenotypic Changes Exhibited by E. coli Cultured in Space

    PubMed Central

    Zea, Luis; Larsen, Michael; Estante, Frederico; Qvortrup, Klaus; Moeller, Ralf; Dias de Oliveira, Sílvia; Stodieck, Louis; Klaus, David

    2017-01-01

    Bacteria will accompany humans in our exploration of space, making it of importance to study their adaptation to the microgravity environment. To investigate potential phenotypic changes for bacteria grown in space, Escherichia coli was cultured onboard the International Space Station with matched controls on Earth. Samples were challenged with different concentrations of gentamicin sulfate to study the role of drug concentration on the dependent variables in the space environment. Analyses included assessments of final cell count, cell size, cell envelope thickness, cell ultrastructure, and culture morphology. A 13-fold increase in final cell count was observed in space with respect to the ground controls and the space flight cells were able to grow in the presence of normally inhibitory levels of gentamicin sulfate. Contrast light microscopy and focused ion beam/scanning electron microscopy showed that, on average, cells in space were 37% of the volume of their matched controls, which may alter the rate of molecule–cell interactions in a diffusion-limited mass transport regime as is expected to occur in microgravity. TEM imagery showed an increase in cell envelope thickness of between 25 and 43% in space with respect to the Earth control group. Outer membrane vesicles were observed on the spaceflight samples, but not on the Earth cultures. While E. coli suspension cultures on Earth were homogenously distributed throughout the liquid medium, in space they tended to form a cluster, leaving the surrounding medium visibly clear of cells. This cell aggregation behavior may be associated with enhanced biofilm formation observed in other spaceflight experiments. PMID:28894439

  15. α2β1 integrin affects metastatic potential of ovarian carcinoma spheroids by supporting disaggregation and proteolysis

    PubMed Central

    Shield, Kristy; Riley, Clyde; Quinn, Michael A; Rice, Gregory E; Ackland, Margaret L; Ahmed, Nuzhat

    2007-01-01

    Background Ovarian cancer is characterized by a wide-spread intra-abdominal metastases which represents a major clinical hurdle in the prognosis and management of the disease. A significant proportion of ovarian cancer cells in peritoneal ascites exist as multicellular aggregates or spheroids. We hypothesize that these cellular aggregates or spheroids are invasive with the capacity to survive and implant on the peritoneal surface. This study was designed to elucidate early inherent mechanism(s) of spheroid survival, growth and disaggregation required for peritoneal metastases Methods In this study, we determined the growth pattern and adhesive capacity of ovarian cancer cell lines (HEY and OVHS1) grown as spheroids, using the well established liquid overlay technique, and compared them to a normal ovarian cell line (IOSE29) and cancer cells grown as a monolayer. The proteolytic capacity of these spheroids was compared with cells grown as a monolayer using a gelatin zymography assay to analyze secreted MMP-2/9 in conditioned serum-free medium. The disaggregation of cancer cell line spheroids was determined on extracellular matrices (ECM) such as laminin (LM), fibronectin (FN) and collagen (CI) and the expression of α2, α3, αv, α6 and β1 interin was determined by flow cytometric analysis. Neutralizing antibodies against α2, β1 subunits and α2β1 integrin was used to inhibit disaggregation as well as activation of MMPs in spheroids. Results We demonstrate that ovarian cancer cell lines grown as spheroids can sustain growth for 10 days while the normal ovarian cell line failed to grow beyond 2 days. Compared to cells grown as a monolayer, cancer cells grown as spheroids demonstrated no change in adhesion for up to 4 days, while IOSE29 cells had a 2–4-fold loss of adhesion within 2 days. Cancer cell spheroids disaggregated on extracellular matrices (ECM) and demonstrated enhanced expression of secreted pro-MMP2 as well as activated MMP2/MMP9 with no such activation of MMP's observed in monolayer cells. Flow cytometric analysis demonstrated enhanced expression of α2 and diminution of α6 integrin subunits in spheroids versus monolayer cells. No change in the expression of α3, αv and β1 subunits was evident. Conversely, except for αv integrin, a 1.5–7.5-fold decrease in α2, α3, α6 and β1 integrin subunit expression was observed in IOSE29 cells within 2 days. Neutralizing antibodies against α2, β1 subunits and α2β1 integrin inhibited disaggregation as well as activation of MMPs in spheroids. Conclusion Our results suggest that enhanced expression of α2β1 integrin may influence spheroid disaggregation and proteolysis responsible for the peritoneal dissemination of ovarian carcinoma. This may indicate a new therapeutic target for the suppression of the peritoneal metastasis associated with advanced ovarian carcinomas. PMID:17567918

  16. Zeolite Crystal Growth (ZCG) Flight on USML-2

    NASA Technical Reports Server (NTRS)

    Sacco, Albert, Jr.; Bac, Nurcan; Warzywoda, Juliusz; Guray, Ipek; Marceau, Michelle; Sacco, Teran L.; Whalen, Leah M.

    1997-01-01

    The extensive use of zeolites and their impact on the world's economy has resulted in many efforts to characterize their structure, and improve the knowledge base for nucleation and growth of these crystals. The zeolite crystal growth (ZCG) experiment on USML-2 aimed to enhance the understanding of nucleation and growth of zeolite crystals, while attempting to provide a means of controlling the defect concentration in microgravity. Zeolites A, X, Beta, and Silicalite were grown during the 16 day - USML-2 mission. The solutions where the nucleation event was controlled yielded larger and more uniform crystals of better morphology and purity than their terrestrial/control counterparts. The external surfaces of zeolite A, X, and Silicalite crystals grown in microgravity were smoother (lower surface roughness) than their terrestrial controls. Catalytic studies with zeolite Beta indicate that crystals grown in space exhibit a lower number of Lewis acid sites located in micropores. This suggests fewer structural defects for crystals grown in microgravity. Transmission electron micrographs (TEM) of zeolite Beta crystals also show that crystals grown in microgravity were free of line defects while terrestrial/controls had substantial defects.

  17. Neutron Exposures in Human Cells: Bystander Effect and Relative Biological Effectiveness

    PubMed Central

    Seth, Isheeta; Schwartz, Jeffrey L.; Stewart, Robert D.; Emery, Robert; Joiner, Michael C.; Tucker, James D.

    2014-01-01

    Bystander effects have been observed repeatedly in mammalian cells following photon and alpha particle irradiation. However, few studies have been performed to investigate bystander effects arising from neutron irradiation. Here we asked whether neutrons also induce a bystander effect in two normal human lymphoblastoid cell lines. These cells were exposed to fast neutrons produced by targeting a near-monoenergetic 50.5 MeV proton beam at a Be target (17 MeV average neutron energy), and irradiated-cell conditioned media (ICCM) was transferred to unirradiated cells. The cytokinesis-block micronucleus assay was used to quantify genetic damage in radiation-naïve cells exposed to ICCM from cultures that received 0 (control), 0.5, 1, 1.5, 2, 3 or 4 Gy neutrons. Cells grown in ICCM from irradiated cells showed no significant increase in the frequencies of micronuclei or nucleoplasmic bridges compared to cells grown in ICCM from sham irradiated cells for either cell line. However, the neutron beam has a photon dose-contamination of 5%, which may modulate a neutron-induced bystander effect. To determine whether these low doses of contaminating photons can induce a bystander effect, cells were irradiated with cobalt-60 at doses equivalent to the percent contamination for each neutron dose. No significant increase in the frequencies of micronuclei or bridges was observed at these doses of photons for either cell line when cultured in ICCM. As expected, high doses of photons induced a clear bystander effect in both cell lines for micronuclei and bridges (p<0.0001). These data indicate that neutrons do not induce a bystander effect in these cells. Finally, neutrons had a relative biological effectiveness of 2.0±0.13 for micronuclei and 5.8±2.9 for bridges compared to cobalt-60. These results may be relevant to radiation therapy with fast neutrons and for regulatory agencies setting standards for neutron radiation protection and safety. PMID:24896095

  18. Neutron exposures in human cells: bystander effect and relative biological effectiveness.

    PubMed

    Seth, Isheeta; Schwartz, Jeffrey L; Stewart, Robert D; Emery, Robert; Joiner, Michael C; Tucker, James D

    2014-01-01

    Bystander effects have been observed repeatedly in mammalian cells following photon and alpha particle irradiation. However, few studies have been performed to investigate bystander effects arising from neutron irradiation. Here we asked whether neutrons also induce a bystander effect in two normal human lymphoblastoid cell lines. These cells were exposed to fast neutrons produced by targeting a near-monoenergetic 50.5 MeV proton beam at a Be target (17 MeV average neutron energy), and irradiated-cell conditioned media (ICCM) was transferred to unirradiated cells. The cytokinesis-block micronucleus assay was used to quantify genetic damage in radiation-naïve cells exposed to ICCM from cultures that received 0 (control), 0.5, 1, 1.5, 2, 3 or 4 Gy neutrons. Cells grown in ICCM from irradiated cells showed no significant increase in the frequencies of micronuclei or nucleoplasmic bridges compared to cells grown in ICCM from sham irradiated cells for either cell line. However, the neutron beam has a photon dose-contamination of 5%, which may modulate a neutron-induced bystander effect. To determine whether these low doses of contaminating photons can induce a bystander effect, cells were irradiated with cobalt-60 at doses equivalent to the percent contamination for each neutron dose. No significant increase in the frequencies of micronuclei or bridges was observed at these doses of photons for either cell line when cultured in ICCM. As expected, high doses of photons induced a clear bystander effect in both cell lines for micronuclei and bridges (p<0.0001). These data indicate that neutrons do not induce a bystander effect in these cells. Finally, neutrons had a relative biological effectiveness of 2.0 ± 0.13 for micronuclei and 5.8 ± 2.9 for bridges compared to cobalt-60. These results may be relevant to radiation therapy with fast neutrons and for regulatory agencies setting standards for neutron radiation protection and safety.

  19. Progressive Transverse Microtubule Array Organization in Hormone-Induced Arabidopsis Hypocotyl Cells[W

    PubMed Central

    Vineyard, Laura; Elliott, Andrew; Dhingra, Sonia; Lucas, Jessica R.; Shaw, Sidney L.

    2013-01-01

    The acentriolar cortical microtubule arrays in dark-grown hypocotyl cells organize into a transverse coaligned pattern that is critical for axial plant growth. In light-grown Arabidopsis thaliana seedlings, the cortical array on the outer (periclinal) cell face creates a variety of array patterns with a significant bias (>3:1) for microtubules polymerizing edge-ward and into the side (anticlinal) faces of the cell. To study the mechanisms required for creating the transverse coalignment, we developed a dual-hormone protocol that synchronously induces ∼80% of the light-grown hypocotyl cells to form transverse arrays over a 2-h period. Repatterning occurred in two phases, beginning with an initial 30 to 40% decrease in polymerizing plus ends prior to visible changes in the array pattern. Transverse organization initiated at the cell’s midzone by 45 min after induction and progressed bidirectionally toward the apical and basal ends of the cell. Reorganization corrected the edge-ward bias in polymerization and proceeded without transiting through an obligate intermediate pattern. Quantitative comparisons of uninduced and induced microtubule arrays showed a limited deconstruction of the initial periclinal array followed by a progressive array reorganization to transverse coordinated between the anticlinal and periclinal cell faces. PMID:23444330

  20. Oxygen Partial Pressure Is a Rate-Limiting Parameter for Cell Proliferation in 3D Spheroids Grown in Physioxic Culture Condition

    PubMed Central

    Gomes, Aurélie; Guillaume, Ludivine; Grimes, David Robert; Fehrenbach, Jérôme; Lobjois, Valérie; Ducommun, Bernard

    2016-01-01

    The in situ oxygen partial pressure in normal and tumor tissues is in the range of a few percent. Therefore, when studying cell growth in 3D culture systems, it is essential to consider how the physiological oxygen concentration, rather than the one in the ambient air, influences the proliferation parameters. Here, we investigated the effect of reducing oxygen partial pressure from 21% to 5% on cell proliferation rate and regionalization in a 3D tumor spheroid model. We found that 5% oxygen concentration strongly inhibited spheroid growth, changed the proliferation gradient and reduced the 50% In Depth Proliferation index (IDP50), compared with culture at 21% oxygen. We then modeled the oxygen partial pressure profiles using the experimental data generated by culturing spheroids in physioxic and normoxic conditions. Although hypoxia occurred at similar depth in spheroids grown in the two conditions, oxygen partial pressure was a major rate-limiting factor with a critical effect on cell proliferation rate and regionalization only in spheroids grown in physioxic condition and not in spheroids grown at atmospheric normoxia. Our findings strengthen the need to consider conducting experiment in physioxic conditions (i.e., tissue normoxia) for proper understanding of cancer cell biology and the evaluation of anticancer drugs in 3D culture systems. PMID:27575790

  1. Roles of curli, cellulose and BapA in Salmonella biofilm morphology studied by atomic force microscopy.

    PubMed

    Jonas, Kristina; Tomenius, Henrik; Kader, Abdul; Normark, Staffan; Römling, Ute; Belova, Lyubov M; Melefors, Ojar

    2007-07-24

    Curli, cellulose and the cell surface protein BapA are matrix components in Salmonella biofilms. In this study we have investigated the roles of these components for the morphology of bacteria grown as colonies on agar plates and within a biofilm on submerged mica surfaces by applying atomic force microscopy (AFM) and light microscopy. AFM imaging was performed on colonies of Salmonella Typhimurium grown on agar plates for 24 h and on biofilms grown for 4, 8, 16 or 24 h on mica slides submerged in standing cultures. Our data show that in the wild type curli were visible as extracellular material on and between the cells and as fimbrial structures at the edges of biofilms grown for 16 h and 24 h. In contrast to the wild type, which formed a three-dimensional biofilm within 24 h, a curli mutant and a strain mutated in the global regulator CsgD were severely impaired in biofilm formation. A mutant in cellulose production retained some capability to form cell aggregates, but not a confluent biofilm. Extracellular matrix was observed in this mutant to almost the same extent as in the wild type. Overexpression of CsgD led to a much thicker and a more rapidly growing biofilm. Disruption of BapA altered neither colony and biofilm morphology nor the ability to form a biofilm within 24 h on the submerged surfaces. Besides curli, the expression of flagella and pili as well as changes in cell shape and cell size could be monitored in the growing biofilms. Our work demonstrates that atomic force microscopy can efficiently be used as a tool to monitor the morphology of bacteria grown as colonies on agar plates or within biofilms formed in a liquid at high resolution.

  2. Far-red light photoacclimation (FaRLiP) in Synechococcus sp. PCC 7335. II.Characterization of phycobiliproteins produced during acclimation to far-red light.

    PubMed

    Ho, Ming-Yang; Gan, Fei; Shen, Gaozhong; Bryant, Donald A

    2017-02-01

    Phycobilisomes (PBS) are antenna complexes that harvest light for photosystem (PS) I and PS II in cyanobacteria and some algae. A process known as far-red light photoacclimation (FaRLiP) occurs when some cyanobacteria are grown in far-red light (FRL). They synthesize chlorophylls d and f and remodel PS I, PS II, and PBS using subunits paralogous to those produced in white light. The FaRLiP strain, Leptolyngbya sp. JSC-1, replaces hemidiscoidal PBS with pentacylindrical cores, which are produced when cells are grown in red or white light, with PBS with bicylindrical cores when cells are grown in FRL. This study shows that the PBS of another FaRLiP strain, Synechococcus sp. PCC 7335, are not remodeled in cells grown in FRL. Instead, cells grown in FRL produce bicylindrical cores that uniquely contain the paralogous allophycocyanin subunits encoded in the FaRLiP cluster, and these bicylindrical cores coexist with red-light-type PBS with tricylindrical cores. The bicylindrical cores have absorption maxima at 650 and 711 nm and a low-temperature fluorescence emission maximum at 730 nm. They contain ApcE2:ApcF:ApcD3:ApcD2:ApcD5:ApcB2 in the approximate ratio 2:2:4:6:12:22, and a structural model is proposed. Time course experiments showed that bicylindrical cores were detectable about 48 h after cells were transferred from RL to FRL and that synthesis of red-light-type PBS continued throughout a 21-day growth period. When considered in comparison with results for other FaRLiP cyanobacteria, the results here show that acclimation responses to FRL can differ considerably among FaRLiP cyanobacteria.

  3. The expression of native and cultured human retinal pigment epithelial cells grown in different culture conditions.

    PubMed

    Tian, J; Ishibashi, K; Honda, S; Boylan, S A; Hjelmeland, L M; Handa, J T

    2005-11-01

    To determine the transcriptional proximity of retinal pigment epithelium (RPE) cells grown under different culture conditions and native RPE. ARPE-19 cells were grown under five conditions in 10% CO(2): "subconfluent" in DMEM/F12+10% FBS, "confluent" in serum and serum withdrawn, and "differentiated" for 2.5 months in serum and serum withdrawn medium. Native RPE was laser microdissected. Total RNA was extracted, reverse transcribed, and radiolabelled probes were hybridised to an array containing 5,353 genes. Arrays were evaluated by hierarchical cluster analysis and significance analysis of microarrays. 78% of genes were expressed by native RPE while 45.3--47.7% were expressed by ARPE-19 cells, depending on culture condition. While the most abundant genes were expressed by native and cultured cells, significant differences in low abundance genes were seen. Hierarchical cluster analysis showed that confluent and differentiated, serum withdrawn cultures clustered closest to native RPE, and that serum segregated cultured cells from native RPE. The number of differentially expressed genes and their function, and profile of expressed and unexpressed genes, demonstrate differences between native and cultured cells. While ARPE-19 cells have significant value for studying RPE behaviour, investigators must be aware of how culture conditions can influence the mRNA phenotype of the cell.

  4. Growth and behavior of chondrocytes on nano engineered surfaces and construction of micropatterned co-culture platforms using layer-by-layer platforms using layer-by-layer assembly lift-off method

    NASA Astrophysics Data System (ADS)

    Shaik, Jameel

    Several approaches such as self-assembled monolayers and layer-by-layer assembled multilayer films are being used as tools to study the interactions of cells with biomaterials in vitro. In this study, the layer-by-layer assembly approach was used to create monolayer, bilayer, trilayer, five, ten and twenty-bilayer beds of eleven different biomaterials. The various biomaterials used were poly(styrene-sulfonate), fibronectin, poly-L-lysine, poly-D-lysine, laminin, bovine serum albumin, chondroitin sulfate, poly(ethyleneimine), polyethylene glycol amine, collagen and poly(dimethyldiallyl-ammonium chloride) with unmodified tissue-culture polystyrene as standard control. Three different cell lines---primary bovine articular chondrocytes, and two secondary cell lines, human chondrosarcoma cells and canine chondrocytes were used in these studies. Chondrocyte morphology and attachment, viability, proliferation, and functionality were determined using bright field microscopy, the Live/Dead viability assay, MTT assay, and immunocytochemistry, respectively. Atomic force microscopy of the nanofilms indicated an increase in surface roughness with increasing number of layers. The most important observations from the studies on primary bovine articular chondrocytes were that these cells exhibited increasing viability and cell metabolic activity with increasing number of bilayers. The increase in viability was more pronounced than the increase in cell metabolic activity. Also, bovine chondrocytes on bilayers of poly(dimethyldiallyl-ammonium chloride, poly-L-lysine, poly(styrene-sulfonate), and bovine serum albumin were substantially bigger in size and well-attached when compared to the cells grown on monolayer and trilayers. Lactate dehydrogenase assay performed on chondrosarcoma cells grown on 5- and 10-bilayer multilayer beds indicated that the 10-bilayer beds had reduced cytotoxicity compared to the 5-bilayer beds. MTT assay performed on canine chondrocytes grown on 5-, 10-, and 20-bilayer nanofilm beds revealed increasing cell metabolic activity for BSA with increasing bilayers. Micropatterned multilayer beds having poly-L-lysine, poly-D-lysine, laminin poly(dimethyldiallyl-ammonium chloride) and poly(ethyleneimine) as the terminating layers were fabricated using the Layer-by-layer Lift-off (LbL-LO) method that combines photolithography and LbL self-assembly. Most importantly, micropatterned co-culture platforms consisting of anti-CD 44 rat monoclonal and anti-rat osteopontin (MPIIIB101) antibodies were constructed using the LbL-LO method for the first time. These co-culture platforms have several applications especially for studies of stem and progenitor cells. Co-culture platforms exhibiting spatiotempora-based differentiation can be built with LbL-LO for the differentiation of stem cells into the desired cell lineage.

  5. Controlled Spalling in (100)-Oriented Germanium by Electroplating

    NASA Astrophysics Data System (ADS)

    Crouse, Dustin Ray

    This work investigates controlled spalling as a method to exfoliate thin films of various thickness from rigid, crystalline germanium (Ge) substrates and to enable substrate reuse for III-V single junction photovoltaic devices. Technological limitations impeding wide-spread adoption of flexible electronics and high-material-cost photovoltaic devices have motivated significant interest in a method to remove devices from their substrates. DC magnetron sputtering has been previously utilized to remove semiconductor devices of various thicknesses from Ge substrates, but this method is expensive and time-consuming. Controlled spalling via high-speed electrodeposition is a fast, inexpensive exfoliation method that utilizes a tensile-stressed metal layer deposited on a (100)-oriented Ge substrate and an external force to mechanically propagate a crack parallel to the surface at a desired depth in the substrate material. Suo and Hutchinson's quantitative models describe critical combinations of film thickness and strain mismatch between a film and substrate at which a stressed bilayer system spontaneously spalls; however, fine control over a wide steady-state spall depth range has been limited by the ability to experimentally tailor strain mismatch caused by residual stress within deposited stressor layers. This work investigates the effect of tuning electroplating current density and electrolyte chemistry on the residual stress in a nickel stressor film and their impact on the achievable spall depth range. Steady-state spall depth is found to increase with increasing stressor layer thickness and decrease with increasing residual stress. By tailoring residual stress through adjusting plating conditions and the electrolyte's phosphorous concentration, wide control over spall depth within Ge substrates from sub-micron to 76microm-thicknesses were achieved. To assess the viability of utilizing controlled spalling for substrate reuse, this dissertation demonstrates the first III-V solar cells (GaInAsP, Eg 1.7 eV) grown directly on a spalled-Ge substrate without any additional surface preparation. Widespread adoption of high-efficiency III-V solar cells has been limited by expensive deposition processes and high material cost of substrates. Substrate reuse offers a promising route towards enabling III-V devices to become cost-competitive for one-sun terrestrial applications. In this study, the quality of spalled Ge surfaces is characterized to assess lattice matching capability between the device layer materials and the substrate. GaAs films grown on spalled Ge substrates by hydride vapor phase epitaxy were single-crystal in nature. III-V solar cells grown on spalled and pristine Ge substrates show nearly equivalent efficiency of 8%, despite the roughness of the spalled-Ge substrate. Principles of fractography were used to deduce that surface roughness originated from non-uniform crack propagation and mixed-mode loading during the spalling process.

  6. Photo Inactivation of Streptococcus mutans Biofilm by Violet-Blue light.

    PubMed

    Gomez, Grace F; Huang, Ruijie; MacPherson, Meoghan; Ferreira Zandona, Andrea G; Gregory, Richard L

    2016-09-01

    Among various preventive approaches, non-invasive phototherapy/photodynamic therapy is one of the methods used to control oral biofilm. Studies indicate that light at specific wavelengths has a potent antibacterial effect. The objective of this study was to determine the effectiveness of violet-blue light at 380-440 nm to inhibit biofilm formation of Streptococcus mutans or kill S. mutans. S. mutans UA159 biofilm cells were grown for 12-16 h in 96-well flat-bottom microtiter plates using tryptic soy broth (TSB) or TSB with 1 % sucrose (TSBS). Biofilm was irradiated with violet-blue light for 5 min. After exposure, plates were re-incubated at 37 °C for either 2 or 6 h to allow the bacteria to recover. A crystal violet biofilm assay was used to determine relative densities of the biofilm cells grown in TSB, but not in TSBS, exposed to violet-blue light. The results indicated a statistically significant (P < 0.05) decrease compared to the non-treated groups after the 2 or 6 h recovery period. Growth rates of planktonic and biofilm cells indicated a significant reduction in the growth rate of the violet-blue light-treated groups grown in TSB and TSBS. Biofilm viability assays confirmed a statistically significant difference between violet-blue light-treated and non-treated groups in TSB and TSBS. Visible violet-blue light of the electromagnetic spectrum has the ability to inhibit S. mutans growth and reduce the formation of S. mutans biofilm. This in vitro study demonstrated that violet-blue light has the capacity to inhibit S. mutans biofilm formation. Potential clinical applications of light therapy in the future remain bright in preventing the development and progression of dental caries.

  7. Myo-inositol metabolism in appropriately grown and growth-restricted fetuses: a proton magnetic resonance spectroscopy study.

    PubMed

    Story, Lisa; Damodaram, Mellisa S; Supramaniam, Veena; Allsop, Joanna M; Mcguinness, Amy; Patel, Abhilasha; Wylezinska, Marzena; Kumar, Sailesh; Rutherford, Mary A

    2013-09-01

    Myo-inositol (Myo-ins) is a marker of neuroglial cells, being present in the astrocytes of brain tissue, but also functions as an osmolyte. Numbers of astrocytes are known to increase following injury to the brain. Growth-restricted fetuses are at increased risk of later neurodevelopmental impairments even in the absence of overt lesions and despite preserved/increased cerebral blood flow. This study aims to investigate brain Myo-ins metabolism in fetuses with intrauterine growth restriction (IUGR) and evidence of cerebral redistribution using magnetic resonance spectroscopy (MRS) at a short echo time. Biometry and Doppler assessment of blood flow was assessed using ultrasound in 28 fetuses with IUGR and 47 appropriately grown control subjects. MRI was used to exclude overt brain injury. Proton magnetic resonance spectroscopy of the fetal brain was then performed at an echo time of 42 ms to examine the Myo-ins:Choline (Cho), Myo-ins:Creatine (Cr) and Cho:Cr ratios. No alterations in brain Myo-ins:Cho, Myo-ins:Cr or Cho:Cr ratios were detected between appropriately grown and growth restricted fetuses. IUGR is not associated with a measureable difference in brain myo-inositol ratios. This may be due to the protective effects of preserved cerebral blood flow in growth restriction and comparable astrocyte numbers when compared to controls. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Magneto-Hydrodynamic Damping of Convection During Vertical Bridgman-Stockbarger Growth of HgCdTe

    NASA Technical Reports Server (NTRS)

    Watring, D. A.; Lehoczky, S. L.

    1996-01-01

    In order to quantify the effects of convection on segregation, Hg(0.8)Cd(0.2)Te crystals were grown by the vertical Bridgman-Stockbarger method in the presence of an applied axial magnetic field of 50 kG. The influence of convection, by magneto-hydrodynamic damping, on mass transfer in the melt and segregation at the solid-liquid interface was investigated by measuring the axial and radial compositional variations in the grown samples. The reduction of convective mixing in the melt through the application of the magnetic field is found to decrease radial segregation to the diffusion-limited regime. It was also found that the suppression of the convective cell near the solid-liquid interface results in an increase in the slope of the diffusion-controlled solute boundary layer, which can lead to constitutional supercooling.

  9. Survival of cheese-ripening microorganisms in a dynamic simulator of the gastrointestinal tract.

    PubMed

    Adouard, Nadège; Magne, Laurent; Cattenoz, Thomas; Guillemin, Hervé; Foligné, Benoît; Picque, Daniel; Bonnarme, Pascal

    2016-02-01

    A mixture of nine microorganisms (six bacteria and three yeasts) from the microflora of surface-ripened cheeses were subjected to in vitro digestive stress in a three-compartment "dynamic gastrointestinal digester" (DIDGI). We studied the microorganisms (i) grown separately in culture medium only (ii) grown separately in culture medium and then mixed, (iii) grown separately in culture medium and then included in a rennet gel and (iv) grown together in smear-ripened cheese. The yeasts Geotrichum candidum, Kluyveromyces lactis and Debaryomyces hansenii, were strongly resistant to the whole DIDGI process (with a drop in viable cell counts of less than <1 log CFU mL(-1)) and there were no significant differences between lab cultures and cheese-grown cultures. Ripening bacteria such as Hafnia alvei survived gastric stress less well when grown in cheese (with no viable cells after 90 min of exposure of the cheese matrix, compared with 6 CFU mL(-1) in lab cultures). The ability of Corynebacterium casei and Staphylococcus equorum to withstand digestive stress was similar for cheese and pure culture conditions. When grow in a cheese matrix, Brevibacterium aurantiacum and Arthrobacter arilaitensis were clearly more sensitive to the overall digestive process than when grown in pure cultures. Lactococcus lactis displayed poorer survival in gastric and duodenal compartments when it had been grown in cheese. In vivo experiments in BALB/c mice agreed with the DIDGI experiments and confirmed the latter's reliability. Copyright © 2015. Published by Elsevier Ltd.

  10. Difference in light-induced increase in ploidy level and cell size between adaxial and abaxial epidermal pavement cells of Phaseolus vulgaris primary leaves.

    PubMed

    Kinoshita, Isao; Sanbe, Akiko; Yokomura, E-iti

    2008-01-01

    Changes in nuclear DNA content and cell size of adaxial and abaxial epidermal pavement cells were investigated using bright light-induced leaf expansion of Phaseolus vulgaris plants. In primary leaves of bean plants grown under high (sunlight) or moderate (ML; photon flux density, 163 micromol m(-2) s(-1)) light, most adaxial epidermal pavement cells had a nucleus with the 4C amount of DNA, whereas most abaxial pavement cells had a 2C nucleus. In contrast, plants grown under low intensity white light (LL; 15 micromol m(-2) s(-1)) for 13 d, when cell proliferation of epidermal pavement cells had already finished, had a 2C nuclear DNA content in most adaxial pavement cells. When these LL-grown plants were transferred to ML, the increase in irradiance raised the frequency of 4C nuclei in adaxial but not in abaxial pavement cells within 4 d. On the other hand, the size of abaxial pavement cells increased by 53% within 4 d of transfer to ML and remained unchanged thereafter, whereas adaxial pavement cells continuously enlarged for 12 d. This suggests that the increase in adaxial cell size after 4 d is supported by the nuclear DNA doubling. The different responses between adaxial and abaxial epidermal cells were not induced by the different light intensity at both surfaces. It was shown that adaxial epidermal cells have a different property than abaxial ones.

  11. Effects of space flight and mixing on bacterial growth in low volume cultures

    NASA Technical Reports Server (NTRS)

    Kacena, M. A.; Manfredi, B.; Todd, P.

    1999-01-01

    Previous investigations have shown that liquid suspension bacterial cultures grow to higher cell concentrations in spaceflight than on Earth. None of these studies included ground-control experiments designed to evaluate the fluid effects potentially responsible for the reported increases. Therefore, the emphasis of this research was to both confirm differences in final cell concentration between 1g and microgravity cultures, and to examine the effects of mixing as a partial explanation for this difference. Flight experiments were performed in the Fluid Processing Apparatus (FPA), aboard Space Shuttle Missions STS-63 and STS-69, with simultaneous 1g static and agitated controls. Additional static 1g, agitated, and clino-rotated controls were performed in 9-ml culture tubes. This research revealed that both E. coli and B. subtilis samples cultured in space flight grew to higher final cell densities (120-345% increase) than simultaneous static 1g controls. The final cell concentration of E. coli cells cultured under agitation was 43% higher than in static 1g cultures and was 102% higher with clino-rotation. However, for B. subtilis cultures grown while being agitated on a shaker or clino-rotated, the final cell concentrations were nearly identical to those of the simultaneous static 1g controls. Therefore, these data suggest that the unique fluid quiescence in the microgravity environment (lack of sedimentation, creating unique transfer of nutrients and waste products), was responsible for the enhanced bacterial proliferation reported in this and other studies.

  12. Differential regulation of glutathione peroxidase by selenomethionine and hyperoxia in endothelial cells.

    PubMed Central

    Jornot, L; Junod, A F

    1995-01-01

    We have studied the effect of selenomethionine (SeMet) and hyperoxia on the expression of glutathione peroxidase (GP) in human umbilical vein endothelial cells. Incubation of HUVEC with 1 x 10(-6) M SeMet for 24 h and 48 h caused a 65% and 86% increase in GP activity respectively. The same treatment did not result in significant changes in GP gene transcription and mRNA levels. Pactamycin, a specific inhibitor of the initiation step of translation, prevented the rise in GP activity induced by SeMet and caused an increase in GP mRNA in both cells grown in normal and SeMet-supplemented medium. Interestingly, SeMet supplementation stimulated the recruitment of GP mRNA from an untranslatable pool on to polyribosomes, so that the concentration of GP mRNA in polyribosomal translatable pools was 50% higher in cells grown in SeMet-supplemented medium than in cells grown in normal medium. On the other hand, cells exposed to 95% O2 for 3 days in normal medium showed a 60%, 394% and 81% increase in GP gene transcription rate, mRNA levels and activity respectively. Hyperoxia also stabilized GP mRNA. Hyperoxic cells grown in SeMet-supplemented medium did not show any change in GP gene transcription and mRNA levels, but expressed an 81% and 100% increase in GP activity and amount of GP mRNA associated with polyribosomes respectively, when compared with hyperoxic cells maintained in normal medium. Thus, GP appeared to be regulated post-transcriptionally, most probably co-translationally, in response to selenium availability, and transcriptionally and post-transcriptionally in response to oxygen. Images Figure 1 Figure 2 Figure 4 Figure 7 Figure 8 PMID:7887914

  13. Differences In Early T-Cell Signaling In Cultures Grown In a Rotating Clinostat vs. Static Controls

    NASA Technical Reports Server (NTRS)

    Alexamder. M.; Nelman-Gonzales, M.; Penkala, J.; Sams, C.

    1999-01-01

    Altered gravity has previously been demonstrated to be a stress that can influence components of the immune system. Specifically, T-cell activation has been shown to be affected by changes in gravity, exhibiting a decrease in proliferative response to in vitro stimulation in microgravity. Subsequent ground based studies utilizing a rotating clinostat to model some of the effects of microgravity have been consistent with earlier flight based experiments. These ground and flight experiments have examined T-cell activation by measuring various responses including production of cytokines, DNA synthesis and the production of various cell surface activation markers. These indicators of T-cell activation were measured anywhere from 4 to 72 hours after stimulation. Prior to the work described here, the initial signaling events in T-cell activation had not been directly examined. The goal of this project was to determine how the process of early signal transduction was affected by growth in a rotating clinostat. Here we directly show a defect in signaling from TCR to MAPK in purified peripheral T-cells activated in the clinostat by OKT3/antiCD28 coated microbeads as compared to static controls.

  14. cAMP-dependent chloride secretion mediates tubule enlargement and cyst formation by cultured mammalian collecting duct cells.

    PubMed

    Montesano, Roberto; Ghzili, Hafida; Carrozzino, Fabio; Rossier, Bernard C; Féraille, Eric

    2009-02-01

    Polycystic kidney diseases result from disruption of the genetically defined program that controls the size and geometry of renal tubules. Cysts which frequently arise from the collecting duct (CD) result from cell proliferation and fluid secretion. From mCCD(cl1) cells, a differentiated mouse CD cell line, we isolated a clonal subpopulation (mCCD-N21) that retains morphogenetic capacity. When grown in three-dimensional gels, mCCD-N21 cells formed highly organized tubular structures consisting of a palisade of polarized epithelial cells surrounding a cylindrical lumen. Subsequent addition of cAMP-elevating agents (forskolin or cholera toxin) or of membrane-permeable cAMP analogs (CPT-cAMP) resulted in rapid and progressive dilatation of existing tubules, leading to the formation of cystlike structures. When grown on filters, mCCD-N21 cells exhibited a high transepithelial resistance as well as aldosterone- and/or vasopressin-induced amiloride-sensitive and -insensitive current. The latter was in part inhibited by Na(+)-K(+)-2Cl(-) cotransporter (bumetanide) and chloride channel (NPPB) inhibitors. Real-time PCR analysis confirmed the expression of NKCC1, the ubiquitous Na(+)-K(+)-2Cl(-) cotransporter and cystic fibrosis transmembrane regulator (CFTR) in mCCD-N21 cells. Tubule enlargement and cyst formation were prevented by inhibitors of Na(+)-K(+)-2Cl(-) cotransporters (bumetanide or ethacrynic acid) or CFTR (NPPB or CFTR inhibitor-172). These results further support the notion that cAMP signaling plays a key role in renal cyst formation, at least in part by promoting chloride-driven fluid secretion. This new in vitro model of tubule-to-cyst conversion affords a unique opportunity for investigating the molecular mechanisms that govern the architecture of epithelial tubes, as well as for dissecting the pathophysiological processes underlying cystic kidney diseases.

  15. Paradoxical Growth of Candida albicans in the Presence of Caspofungin Is Associated with Multiple Cell Wall Rearrangements and Decreased Virulence

    PubMed Central

    Rueda, Cristina; Cuenca-Estrella, Manuel

    2014-01-01

    In the last decade, echinocandins have emerged as an important family of antifungal drugs because of their fungicidal activity against Candida spp. Echinocandins inhibit the enzyme β-1,3-d-glucan synthase, encoded by the FKS genes, and resistance to echinocandins is associated with mutations in this gene. In addition, echinocandin exposure can produce paradoxical growth, defined as the ability to grow at high antifungal concentrations but not at intermediate concentrations. In this work, we have demonstrated that paradoxical growth of Candida albicans in the presence of caspofungin is not due to antifungal degradation or instability. Media with high caspofungin concentrations recovered from wells where C. albicans showed paradoxical growth inhibited the growth of a Candida krusei reference strain. Cells exhibiting paradoxical growth at high caspofungin concentrations showed morphological changes such as enlarged size, abnormal septa, and absence of filamentation. Chitin content increased from the MIC to high caspofungin concentrations. Despite the high chitin levels, around 23% of cells died after treatment with caspofungin, indicating that chitin is required but not sufficient to protect the cells from the fungicidal effect of caspofungin. Moreover, we found that after paradoxical growth, β-1,3-glucan was exposed at the cell wall surface. Cells grown at high caspofungin concentrations had decreased virulence in the invertebrate host Galleria mellonella. Cells grown at high caspofungin concentrations also induced a proinflammatory response in murine macrophages compared to control cells. Our work highlights important aspects about fungal adaptation to caspofungin, and although this adaptation is associated with reduced virulence, the clinical implications remain to be elucidated. PMID:24295973

  16. The influence of space flight factors on viability and mutability of plants.

    PubMed

    Kostina, L; Anikeeva, I; Vaulina, E

    1984-01-01

    The experiments with air-dried Crepis capillaris seeds aboard the Soyuz 16 spaceship and the orbital stations Salyut 5, 6, 7 have revealed an increase in the frequency of aberrant cells in seedlings grown from flight-exposed seeds during the flight (experiment) and after the flight on Earth (flight control) as compared to the ground-based control. The increase in seedlings grown during the flight is more significant than in the flight control. During the flight Arabidopsis thaliana developed from cotyledons to the flowering stage. Analysis of seeds setting on these plants after the flight has shown a reduction in the fertility of these plants and an increase in the frequency of recessive mutants ("Light block-1"). An increased frequency of mutants was also retained in the progeny of plants which had passed through a complete cycle of development during the flight ("Fiton-3"). Suppression of embryo viability was observed in all experiments and expressed itself in reduced germinating ability of seeds from the exposed plants and in the early death of seedlings. Damages resulting from chromosome aberrations are eliminated in the first postflight generation and damages resulting from gene mutations and micro-aberrations are preserved for a longer time.

  17. Effect of microgravity on plant growth

    NASA Technical Reports Server (NTRS)

    Lewis, Norman G.

    1994-01-01

    The overall goal of this research is to determine the effect of microgravity proper on plant growth (metabolism and cell wall formation). In addressing this goal, the work conducted during this grant period was divided into three components: analyses of various plant tissues previously grown in space aboard MIR Space Station; analyses of wheat tissues grown on Shuttle flight STS-51; and Phenylpropanoid metabolism and plant cell wall synthesis (earth-based investigations).

  18. Accumulation of a novel glycolipid and a betaine lipid in cells of Rhodobacter sphaeroides grown under phosphate limitation.

    PubMed

    Benning, C; Huang, Z H; Gage, D A

    1995-02-20

    Cells of the photosynthetic bacterium Rhodobacter sphaeroides grown under phosphate-limiting conditions accumulated nonphosphorous glycolipids and lipids carrying head groups derived from amino acids. Concomitantly, the relative amount of phosphoglycerolipids decreased from 90 to 22 mol% of total polar lipids in the membranes. Two lipids, not detectable in cells grown under standard conditions, were synthesized during phosphate-limited growth. Fast atom bombardment mass spectroscopy, exact mass measurements, 1H NMR spectroscopy, sugar composition analysis, and methylation analysis of the predominant glycolipid led to the identification of the novel compound 1,2-di-O-acyl-3-O-[alpha-D-glucopyranosyl-(1-->4)-O-beta-D-galactopyr anosyl]glycerol. The second lipid was identified as the betaine lipid 1,2-di-O-acyl-[4'-(N,N,N-trimethyl)-homoserine]glycerol by cochromatography employing an authentic standard from Chlamydomonas reinhardtii, fast atom bombardment mass spectroscopy, exact mass measurements, and 1H NMR spectroscopy. Prior to this observation, the occurrence of this lipid was thought to be restricted to lower plants and algae. Apparently, these newly synthesized nonphosphorous lipids, in addition to the sulfo- and the ornithine lipid also found in R. sphaeroides grown under optimal conditions, take over the role of phosphoglycerolipids in phosphate-deprived cells.

  19. 7 CFR 989.157 - Raisins produced from grapes grown outside of California.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Raisins produced from grapes grown outside of... AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN IN CALIFORNIA Administrative Rules and Regulations Quality Control § 989.157 Raisins produced from grapes grown outside of California. (a) Any raisins produced from...

  20. 7 CFR 989.157 - Raisins produced from grapes grown outside of California.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Raisins produced from grapes grown outside of... AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN IN CALIFORNIA Administrative Rules and Regulations Quality Control § 989.157 Raisins produced from grapes grown outside of California. (a) Any raisins produced from...

  1. 7 CFR 989.157 - Raisins produced from grapes grown outside of California.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Raisins produced from grapes grown outside of... AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN IN CALIFORNIA Administrative Rules and Regulations Quality Control § 989.157 Raisins produced from grapes grown outside of California. (a) Any raisins produced from...

  2. 7 CFR 989.157 - Raisins produced from grapes grown outside of California.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Raisins produced from grapes grown outside of... AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN IN CALIFORNIA Administrative Rules and Regulations Quality Control § 989.157 Raisins produced from grapes grown outside of California. (a) Any raisins produced from...

  3. 7 CFR 989.157 - Raisins produced from grapes grown outside of California.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Raisins produced from grapes grown outside of... AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN IN CALIFORNIA Administrative Rules and Regulations Quality Control § 989.157 Raisins produced from grapes grown outside of California. (a) Any raisins produced from...

  4. Use of MALDI-TOF mass spectrometry to analyze the molecular profile of Pseudomonas aeruginosa biofilms grown on glass and plastic surfaces.

    PubMed

    Pereira, Flávio D E S; Bonatto, Cínthia C; Lopes, Cláudio A P; Pereira, Alex L; Silva, Luciano P

    2015-09-01

    Biofilms are microbial sessile communities attached to surfaces that are known for causing many medical problems. A bacterial biofilm of clinical relevance is formed by the gram-negative bacteria Pseudomonas aeruginosa. During the formation of a biofilm, the initial adhesion of the cells is of crucial importance, and the characteristics of the contact surface have great influence on this step. In the present study, we aimed to use matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling as a new methodology to monitor P. aeruginosa biofilm development. Biofilms were grown within polypropylene tubes containing a glass slide, and were harvested after 3, 5, 7, 9, or 12 days of inoculation. Planktonic cells were obtained separately by centrifugation as control. Two independent MALDI-TOF experiments were performed, one by collecting biofilms from both the glass slide and the polypropylene tube internal surface, and the other by acquiring biofilms from these surfaces separately. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to evaluate the morphological progression of the biofilm. The molecular results showed that MALDI profiling is able not only to distinguish between different biofilm stages, but it is also appropriate to indicate when the biofilm cells are released at the dispersion stage, which occurred first on polypropylene surface. Finally, the present study pointed out that MALDI profiling may emerge as a promising tool for the clinical diagnostic and prognostic workup of biofilms formation and control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Pine seed germination under weightlessness (a study of the Kosmos 782 satellite)

    NASA Technical Reports Server (NTRS)

    Platonova, R. N.; Parfenov, G. P.; Olkhovenko, V. P.; Karpova, N. I.; Pichugov, M. Y.

    1977-01-01

    Orientation of the above and underground organs of pine plants, grown from seeds under weightlessness, was found to be determined by seed position on the substrate. Normal plant growth was observed only if the seed embryos were oriented toward the substrate. Some differences were noted between the experimental and control plants concerning the amount of nucleoli in the root meristematic cells and the cell shape in cotyledonous leaves. No complete similarity was found in experimental results obtained with plants under weightlessness and under compensated gravity. The seeds were obtained from Pinus silvestris, considered to be particularly suitable for this experiment.

  6. A multiple p-n junction structure obtained from as-grown Czochralski silicon crystals by heat treatment - Application to solar cells

    NASA Technical Reports Server (NTRS)

    Chi, J. Y.; Gatos, H. C.; Mao, B. Y.

    1980-01-01

    Multiple p-n junctions have been prepared in as-grown Czochralski p-type silicon through overcompensation near the oxygen periodic concentration maxima by oxygen thermal donors generated during heat treatment at 450 C. Application of the multiple p-n-junction configuration to photovoltaic energy conversion has been investigated. A new solar-cell structure based on multiple p-n-junctions was developed. Theoretical analysis showed that a significant increase in collection efficiency over the conventional solar cells can be achieved.

  7. Cultivation of recombinant Chinese hamster ovary cells grown as suspended aggregates in stirred vessels.

    PubMed

    Han, Yi; Liu, Xing-Mao; Liu, Hong; Li, Shi-Chong; Wu, Ben-Chuan; Ye, Ling-Ling; Wang, Qu-Wei; Chen, Zhao-Lie

    2006-11-01

    Recombinant Chinese hamster ovary (rCHO) cells capable of producing a prourokinase mutant (mPro-uk) grown as suspended aggregates in stirred vessels were described and characterized. The addition of chitosan to a mixture of DMEM and Ham's F12 (D-MEM/F-12) medium promoted cell aggregation and spheroid formation efficiently. Multicellular aggregates formed immediately after the rCHO cells were inoculated into the chitosan-added medium, and the mean diameter of the cell aggregates reflecting the aggregate size increased with culture time, shifting from 65 to 163 mum after 2 and 9 d of culture in spinner flasks. No significant difference in the metabolism performance of the rCHO cells was observed between suspended aggregates and anchored monolayers. However, the cells cultured as suspended aggregates showed a marked decrease in growth rate as evaluated from specific growth rate (mu). Replacing D-MEM/F-12 medium with CD 293 medium caused compact spherical cell aggregates to dissociate into small irregular aggregates and single cells without apparent effects on cell performance in subcultures. The perfusion culture of the rCHO cells grown as suspended aggregates in a 2-l stirred tank bioreactor for 15 d resulted in a maximum viable cell density of 5.6 x 10(6) cells ml(-1) and an mPro-uk concentration of about 2.6 x 10(3) IU ml(-1), and cell viability was remained at roughly 90% during the entire run.

  8. Expression Profiling-Based Identification of CO2-Responsive Genes Regulated by CCM1 Controlling a Carbon-Concentrating Mechanism in Chlamydomonas reinhardtii1

    PubMed Central

    Miura, Kenji; Yamano, Takashi; Yoshioka, Satoshi; Kohinata, Tsutomu; Inoue, Yoshihiro; Taniguchi, Fumiya; Asamizu, Erika; Nakamura, Yasukazu; Tabata, Satoshi; Yamato, Katsuyuki T.; Ohyama, Kanji; Fukuzawa, Hideya

    2004-01-01

    Photosynthetic acclimation to CO2-limiting stress is associated with control of genetic and physiological responses through a signal transduction pathway, followed by integrated monitoring of the environmental changes. Although several CO2-responsive genes have been previously isolated, genome-wide analysis has not been applied to the isolation of CO2-responsive genes that may function as part of a carbon-concentrating mechanism (CCM) in photosynthetic eukaryotes. By comparing expression profiles of cells grown under CO2-rich conditions with those of cells grown under CO2-limiting conditions using a cDNA membrane array containing 10,368 expressed sequence tags, 51 low-CO2 inducible genes and 32 genes repressed by low CO2 whose mRNA levels were changed more than 2.5-fold in Chlamydomonas reinhardtii Dangeard were detected. The fact that the induction of almost all low-CO2 inducible genes was impaired in the ccm1 mutant suggests that CCM1 is a master regulator of CCM through putative low-CO2 signal transduction pathways. Among low-CO2 inducible genes, two novel genes, LciA and LciB, were identified, which may be involved in inorganic carbon transport. Possible functions of low-CO2 inducible and/or CCM1-regulated genes are discussed in relation to the CCM. PMID:15235119

  9. Growth and characterization of low composition Ge, x in epi-Si1‑x Gex (x  ⩽  10%) active layer for fabrication of hydrogenated bottom solar cell

    NASA Astrophysics Data System (ADS)

    Ajmal Khan, M.; Sato, R.; Sawano, K.; Sichanugrist, P.; Lukianov, A.; Ishikawa, Y.

    2018-05-01

    Semiconducting epi-Si1‑x Ge x alloys have promising features as solar cell materials and may be equally important for some other semiconductor device applications. Variation of the germanium compositional, x in epi-Si1‑x Ge x , makes it possible to control the bandgap between 1.12 eV and 0.68 eV for application in bottom solar cells. A low proportion of Ge in SiGe alloy can be used for photovoltaic application in a bottom cell to complete the four-terminal tandem structure with wide bandgap materials. In this research, we aimed to use a low proportion of Ge—about 10%—in strained or relaxed c-Si1‑x Ge x /c-Si heterojunctions (HETs), with or without insertion of a Si buffer layer grown by molecular beam epitaxy, to investigate the influence of the relaxed or strained SiGe active layer on the performance of HET solar cells grown using the plasma enhanced chemical vapor deposition system. Thanks to the c-Si buffer layer at the hetero-interface, the efficiency of these SiGe based HET solar cells was improved from 2.3% to 3.5% (fully strained and with buffer layer). The Jsc was improved, from 8 mA cm‑2 to 15.46 mA cm‑2, which might be supported by strained c-Si buffer layer at the hetero-interface, by improving the crystalline quality.

  10. Bacterial Chemotaxis to Naphthalene and Nitroarene Compounds

    DTIC Science & Technology

    2008-07-31

    Qualitative capillary assays showing chemotaxis of succinate-grown 17 (uninduced) and induced (succinate plus salicylate -grown) Acidovorax sp. JS42...succinate plus 2NT- or succinate plus salicylate -grown) wild-type Acidovorax sp. JS42 cells List of Tables Table 1. Summary of chemotaxis...mM salicylate , or naphthalene crystals. Noble agar (1.8%; Difco) was used to solidify MSB medium for plates. For plasmid selection and maintenance

  11. Occurrence of squalene in methanol-grown bacteria.

    PubMed Central

    Goldberg, I; Shechter, I

    1978-01-01

    The nonpolar lipids of methanol-grown bacteria which utilize one-carbon (C1) compounds via the RMP pathway (Pseudomonas C, Pseudomonas methylotropha, and Methylomonas methanolica) were found to contain squalene in concentrations between 0.1 to 1.16 mg/g of cell (dry weight). Squalene could not be detected in lipid extracts of methanol-grown bacteria which utilize C1 compounds via the serine pathway. PMID:98521

  12. High-efficiency thin-film GaAs solar cells, phase2

    NASA Technical Reports Server (NTRS)

    Yeh, Y. C. M.

    1981-01-01

    Thin GaAs epi-layers with good crystallographic quality were grown using a (100) Si-substrate on which a thin Ge epi-interlayer was grown by CVD from germane. Both antireflection-coated metal oxide semiconductor (AMOS) and n(+)/p homojunction structures were studied. The AMOS cells were fabricated on undoped-GaAs epi-layers deposited on bulk poly-Ge substrates using organo-metallic CVD film-growth, with the best achieved AM1 conversion efficiency being 9.1%. Both p-type and n(+)-type GaAs growth were optimized using 50 ppm dimethyl zinc and 1% hydrogen sulfide, respectively. A direct GaAs deposition method in fabricating ultra-thin top layer, epitaxial n(+)/p shallow homojunction solar cells on (100) GaAs substrates (without anodic thinning) was developed to produce large area (1 sq/cm) cells, with 19.4% AM1 conversion efficiency achieved. Additionally, an AM1 conversion efficiency of 18.4% (17.5% with 5% grid coverage) was achieved for a single crystal GaAs n(+)/p cell grown by OM-CVD on a Ge wafer.

  13. Fate of Escherichia coli O157:H7 in manure compost-amended soil and on carrots and onions grown in an environmentally controlled growth chamber.

    PubMed

    Islam, Mahbub; Morgan, Jennie; Doyle, Michael P; Jiang, Xiuping

    2004-03-01

    Studies were done to determine the fate of Escherichia coli O157:H7 in manure compost-amended soil and on carrots and green onions grown in an environmentally controlled growth chamber. Commercial dairy cattle manure compost was inoculated with a five-strain mixture of green fluorescent protein-labeled E. coli O157:H7 at 10(7) CFU g(-1) and mixed with unsterilized Tifton sandy loam soil at a ratio of 1:5. Baby carrot or green onion seedlings were planted into the manure compost-amended soil in pots, and soil samples surrounding the plant, edible carrot roots and onion bulb samples, and soil immediately beneath the roots were assayed for E. coli O157:H7 in triplicate at weekly intervals for the first 4 weeks, and every 2 weeks for the remainder of the plant growth cycle (up to 3 months). E. coli O157:H7 cell numbers decreased within 64 days by 3 log CFU/g in soil and soil beneath the roots of green onions and by more than 2 log CFU/g on onions. E. coli O157:H7 survived better during the production of carrots, with a 2.3-log CFU/g reduction in soil and a 1.7-log CFU/g reduction on carrots within 84 days. These results indicate that the type of plant grown is an important factor influencing the survival of E. coli O157:H7 both on the vegetable and in the soil in which the vegetable is grown.

  14. Losartan Slows Pancreatic Tumor Progression and Extends Survival of SPARC-Null Mice by Abrogating Aberrant TGFβ Activation

    PubMed Central

    Arnold, Shanna A.; Rivera, Lee B.; Carbon, Juliet G.; Toombs, Jason E.; Chang, Chi-Lun; Bradshaw, Amy D.; Brekken, Rolf A.

    2012-01-01

    Pancreatic adenocarcinoma, a desmoplastic disease, is the fourth leading cause of cancer-related death in the Western world due, in large part, to locally invasive primary tumor growth and ensuing metastasis. SPARC is a matricellular protein that governs extracellular matrix (ECM) deposition and maturation during tissue remodeling, particularly, during wound healing and tumorigenesis. In the present study, we sought to determine the mechanism by which lack of host SPARC alters the tumor microenvironment and enhances invasion and metastasis of an orthotopic model of pancreatic cancer. We identified that levels of active TGFβ1 were increased significantly in tumors grown in SPARC-null mice. TGFβ1 contributes to many aspects of tumor development including metastasis, endothelial cell permeability, inflammation and fibrosis, all of which are altered in the absence of stromal-derived SPARC. Given these results, we performed a survival study to assess the contribution of increased TGFβ1 activity to tumor progression in SPARC-null mice using losartan, an angiotensin II type 1 receptor antagonist that diminishes TGFβ1 expression and activation in vivo. Tumors grown in SPARC-null mice progressed more quickly than those grown in wild-type littermates leading to a significant reduction in median survival. However, median survival of SPARC-null animals treated with losartan was extended to that of losartan-treated wild-type controls. In addition, losartan abrogated TGFβ induced gene expression, reduced local invasion and metastasis, decreased vascular permeability and altered the immune profile of tumors grown in SPARC-null mice. These data support the concept that aberrant TGFβ1-activation in the absence of host SPARC contributes significantly to tumor progression and suggests that SPARC, by controlling ECM deposition and maturation, can regulate TGFβ availability and activation. PMID:22348081

  15. Quantitative protein expression and cell surface characteristics of Escherichia coli MG1655 biofilms.

    PubMed

    Mukherjee, Joy; Ow, Saw Yen; Noirel, Josselin; Biggs, Catherine A

    2011-02-01

    Cell surface physicochemical characterization techniques were combined with quantitative changes in protein expression, to investigate the biological and biophysical changes of Escherichia coli MG1655 cells when grown as a biofilm (BIO). The overall surface charge of BIO cells was found to be less negative, highlighting the need for a lower electrophoretic mobility for attachment to occur. Comparison of the chemical functional groups on the cell surface showed similar profiles, with the absorbance intensity higher for proteins and carbohydrates in the BIO cells. Quantitative proteomic analysis demonstrated that 3 proteins were significantly increased, and 9 proteins significantly decreased in abundance, in cells grown as a BIO compared to their planktonic counterparts, with 7 of these total 12 proteins unique to this study. Proteins showing significant increased or decreased abundance include proteins involved in acid resistance, DNA protection and binding and ABC transporters. Further predictive analysis of the metabolic pathways showed an increased abundance of the amino acid metabolism and tricarboxylic acid (TCA) cycle, with a decrease in expression within the pentose phosphate and glycolysis pathways. It is therefore hypothesized that cells grown as a BIO are still energetically viable potentially using amino acids as an indirect carbon backbone source into the TCA cycle. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Growing Neural PC-12 Cell on Crosslinked Silica Aerogels Increases Neurite Extension in the Presence of an Electric Field.

    PubMed

    Lynch, Kyle J; Skalli, Omar; Sabri, Firouzeh

    2018-04-20

    Externally applied electrical stimulation (ES) has been shown to enhance the nerve regeneration process and to influence the directionality of neurite outgrowth. In addition, the physical and chemical properties of the substrate used for nerve-cell regeneration is critical in fostering regeneration. Previously, we have shown that polyurea-crosslinked silica aerogels (PCSA) exert a positive influence on the extension of neurites by PC-12 cells, a cell-line model widely used to study neurite extension and electrical excitability. In this work, we have examined how an externally applied electric field (EF) influences the extension of neurites in PC-12 cells grown on two substrates: collagen-coated dishes versus collagen-coated crosslinked silica aerogels. The externally applied direct current (DC) bias was applied in vitro using a custom-designed chamber containing polydimethysiloxane (PDMS) embedded copper electrodes to create an electric field across the substrate for the cultured PC-12 cells. Results suggest orientation preference towards the anode, and, on average, longer neurites in the presence of the applied DC bias than with 0 V DC bias. In addition, neurite length was increased in cells grown on silica-crosslinked aerogel when compared to cells grown on regular petri-dishes. These results further support the notion that PCSA is a promising material for nerve regeneration.

  17. Chlorine, Chloramine, Chlorine Dioxide, and Ozone Susceptibility of Mycobacterium avium

    PubMed Central

    Taylor, Robert H.; Falkinham, Joseph O.; Norton, Cheryl D.; LeChevallier, Mark W.

    2000-01-01

    Environmental and patient isolates of Mycobacterium avium were resistant to chlorine, monochloramine, chlorine dioxide, and ozone. For chlorine, the product of the disinfectant concentration (in parts per million) and the time (in minutes) to 99.9% inactivation for five M. avium strains ranged from 51 to 204. Chlorine susceptibility of cells was the same in washed cultures containing aggregates and in reduced aggregate fractions lacking aggregates. Cells of the more slowly growing strains were more resistant to chlorine than were cells of the more rapidly growing strains. Water-grown cells were 10-fold more resistant than medium-grown cells. Disinfectant resistance may be one factor promoting the persistence of M. avium in drinking water. PMID:10742264

  18. Optical cell separation from three-dimensional environment in photodegradable hydrogels for pure culture techniques.

    PubMed

    Tamura, Masato; Yanagawa, Fumiki; Sugiura, Shinji; Takagi, Toshiyuki; Sumaru, Kimio; Matsui, Hirofumi; Kanamori, Toshiyuki

    2014-05-07

    Cell sorting is an essential and efficient experimental tool for the isolation and characterization of target cells. A three-dimensional environment is crucial in determining cell behavior and cell fate in biological analysis. Herein, we have applied photodegradable hydrogels to optical cell separation from a 3D environment using a computer-controlled light irradiation system. The hydrogel is composed of photocleavable tetra-arm polyethylene glycol and gelatin, which optimized cytocompatibility to adjust a composition of crosslinker and gelatin. Local light irradiation could degrade the hydrogel corresponding to the micropattern image designed on a laptop; minimum resolution of photodegradation was estimated at 20 µm. Light irradiation separated an encapsulated fluorescent microbead without any contamination of neighbor beads, even at multiple targets. Upon selective separation of target cells in the hydrogels, the separated cells have grown on another dish, resulting in pure culture. Cell encapsulation, light irradiation and degradation products exhibited negligible cytotoxicity in overall process.

  19. Enhanced mutagenesis parallels enhanced reactivation of herpes virus in a human cell line.

    PubMed Central

    Lytle, C D; Knott, D C

    1982-01-01

    U.v. irradiation of human NB-E cells results in enhanced mutagenesis and enhanced reactivation of u.v.-irradiated H-1 virus grown in those cells ( Cornelis et al., 1982). This paper reports a similar study using herpes simplex virus (HSV) in NB-E cells. The mutation frequency of HSV (resistance of virus plaque formation to 40 micrograms/ml iododeoxycytidine ) increased approximately linearly with exposure of the virus to u.v. radiation. HSV grown in unirradiated cells gave a slope of 1.8 X 10(-5)m2/J, with 3.2 X 10(-5)m2/J for HSV grown in cells irradiated (3 J/m2) 24 h before infection. There was no evidence for mutagenesis of unirradiated virus by irradiated cells, as seen with H-1 virus. Enhanced reactivation of irradiated HSV in parallel cultures increased virus survival, manifested as a change in slope of the final component of the two-component survival curve from a D0 of 27 J/m2 in unirradiated cells to 45 J/m2 in irradiated cells. Thus, enhanced mutagenesis and enhanced reactivation occurred for irradiated HSV in NB-E cells. The difference in the enhanced mutagenesis of HSV (dependent on damaged DNA sites) and of H-1 virus (primarily independent of damaged DNA sites) is discussed in terms of differences in DNA polymerases. PMID:6329698

  20. Culture on 3D Chitosan-Hyaluronic Acid Scaffolds Enhances Stem Cell Marker Expression and Drug Resistance in Human Glioblastoma Cancer Stem Cells.

    PubMed

    Wang, Kui; Kievit, Forrest M; Erickson, Ariane E; Silber, John R; Ellenbogen, Richard G; Zhang, Miqin

    2016-12-01

    The lack of in vitro models that support the growth of glioblastoma (GBM) stem cells (GSCs) that underlie clinical aggressiveness hinders developing new, effective therapies for GBM. While orthotopic patient-derived xenograft models of GBM best reflect in vivo tumor behavior, establishing xenografts is a time consuming, costly, and frequently unsuccessful endeavor. To address these limitations, a 3D porous scaffold composed of chitosan and hyaluronic acid (CHA) is synthesized. Growth and expression of the cancer stem cell (CSC) phenotype of the GSC GBM6 taken directly from fresh xenogratfs grown on scaffolds or as adherent monolayers is compared. While 2D adherent cultures grow as monolayers of flat epitheliod cells, GBM6 cells proliferate within pores of CHA scaffolds as clusters of self-adherent ovoid cells. Growth on scaffolds is accompanied by greater expression of genes that mediate epithelial-mesenchymal transition and maintain a primitive, undifferentiated phenotype, hallmarks of CSCs. Scaffold-grown cells also display higher expression of genes that promote resistance to hypoxia-induced oxidative stress. In accord, scaffold-grown cells show markedly greater resistance to clinically utilized alkylating agents compared to adherent cells. These findings suggest that our CHA scaffolds better mimic in vivo biological and clinical behavior and provide insights for developing novel individualized treatments. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Encystment of Azotobacter nigricans grown diazotrophically on kerosene as sole carbon source.

    PubMed

    García-Esquivel, Gabriela; Calva-Calva, Graciano; Ferrera-Cerrato, Ronald; Fernández-Linares, Luis Carlos; Vázquez, Refugio Rodríguez; Esparza-García, Fernando José

    2009-03-01

    Encystment of Azotobacter nigricans was induced by its diazotrophic cultivation on kerosene. Its growth and nitrogenase activity were affected by kerosene in comparison to cultures grown on sucrose. Electron microscopy of vegetative cells showed that when nitrogenase activity was higher and the poly-beta-hydroxybutyrate granules were not present to a significant extent, peripheral bodies were abundant. After 8 days of culture on kerosene, the presence of cysts with intracellular bunches of poly-beta-hydroxybutyrate granules was observed. Germination of cysts bears germinating multicelled yet unbroken capsule cysts with up to three cells inside. This is the first report of encystment induction of Azotobacter species grown on kerosene.

  2. How Posttranslational Modification of Nitrogenase Is Circumvented in Rhodopseudomonas palustris Strains That Produce Hydrogen Gas Constitutively

    PubMed Central

    Heiniger, Erin K.; Oda, Yasuhiro; Samanta, Sudip K.

    2012-01-01

    Nitrogenase catalyzes the conversion of dinitrogen gas (N2) and protons to ammonia and hydrogen gas (H2). This is a catalytically difficult reaction that requires large amounts of ATP and reducing power. Thus, nitrogenase is not normally expressed or active in bacteria grown with a readily utilized nitrogen source like ammonium. nifA* mutants of the purple nonsulfur phototrophic bacterium Rhodopseudomonas palustris have been described that express nitrogenase genes constitutively and produce H2 when grown with ammonium as a nitrogen source. This raised the regulatory paradox of why these mutants are apparently resistant to a known posttranslational modification system that should switch off the activity of nitrogenase. Microarray, mutation analysis, and gene expression studies showed that posttranslational regulation of nitrogenase activity in R. palustris depends on two proteins: DraT2, an ADP-ribosyltransferase, and GlnK2, an NtrC-regulated PII protein. GlnK2 was not well expressed in ammonium-grown NifA* cells and thus not available to activate the DraT2 nitrogenase modification enzyme. In addition, the NifA* strain had elevated nitrogenase activity due to overexpression of the nif genes, and this increased amount of expression overwhelmed a basal level of activity of DraT2 in ammonium-grown cells. Thus, insufficient levels of both GlnK2 and DraT2 allow H2 production by an nifA* mutant grown with ammonium. Inactivation of the nitrogenase posttranslational modification system by mutation of draT2 resulted in increased H2 production by ammonium-grown NifA* cells. PMID:22179236

  3. Growth and microtopographic study of CuInSe{sub 2} single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauhan, Sanjaysinh M.; Chaki, Sunil, E-mail: sunilchaki@yahoo.co.in; Deshpande, M. P.

    2016-05-23

    The CuInSe{sub 2} single crystals were grown by chemical vapour transport (CVT) technique using iodine as transporting agent. The elemental composition of the as-grown CuInSe{sub 2} single crystals was determined by energy dispersive analysis of X-ray (EDAX). The unit cell crystal structure and lattice parameters were determined by X-ray diffraction (XRD) technique. The surface microtopographic study of the as-grown CuInSe{sub 2} single crystals surfaces were done to study the defects, growth mechanism, etc. of the CVT grown crystals.

  4. Bacterial Cell Production from Hexadecane at High Temperatures

    PubMed Central

    Sukatsch, Dieter A.; Johnson, Marvin J.

    1972-01-01

    On mineral medium with hexadecane as the sole carbon source, stable mixed bacterial enrichment cultures were obtained from soil inoculum at 25, 35, 45, 55, and 65 C. Cell yields (grams of dry cells per gram of hexadecane) were determined for each of the enrichment cultures grown at the temperature at which they were enriched, and also for the 55 and 65 C cultures grown at various temperatures. In all cases, cell yields decreased with increasing growth temperature. The highest yield obtained at 65 C was 0.26, and the lowest yield obtained at 25 or 35 C was 1.02. Slower growth was observed at higher temperatures. PMID:5021971

  5. Influence of Growth Temperature on the Characteristics of Single-Junction p–i–n InGaP Solar Cells.

    PubMed

    Jung, Sang Hyun; Kim, Youngjo; Kim, Chang Zoo; Jun, Dong-Hwan; Kim, Kangho; Shin, Hyun-Beom; Choi, JeHyuk; Park, Won-Kyu; Lee, Jaejin; Kang, Ho Kwan

    2017-04-01

    Single-junction p–i–n InGaP solar cells are grown at various temperatures from 620 to 700 °C by low pressure metalorganic chemical vapor deposition on GaAs (001) substrates. The short circuit current density of the p–i–n InGaP solar cells increases by up to 38.8% when the growth temperature is reduced from 700 to 620 °C, while the open circuit voltage and fill factor show relatively small changes. The external quantum efficiency, especially, in the wavelength regime below 500 nm, is improved for the p–i–n InGaP solar cells grown at lower temperatures. The improvement might be attributed to the reduced absorption loss of the photons in the n-InGaP emitter region. The highest conversion efficiency of 11.01% is attributed from the p–i–n InGaP solar cell grown at 640 °C. Electron mobility and concentration of undoped InGaP layers are investigated as a function of the growth temperature and correlated with the p–i–n InGaP solar cell performance.

  6. Effects of NaCl and CaCl2 on Water Transport across Root Cells of Maize (Zea mays L.) Seedlings 1

    PubMed Central

    Azaizeh, Hassan; Gunse, Benito; Steudle, Ernst

    1992-01-01

    The effect of salinity and calcium levels on water flows and on hydraulic parameters of individual cortical cells of excised roots of young maize (Zea mays L. cv Halamish) plants have been measured using the cell pressure probe. Maize seedlings were grown in one-third strength Hoagland solution modified by additions of NaCl and/or extra calcium so that the seedlings received one of four treatments: control; +100 millimolar NaCl; +10 millimolar CaCl2; +100 millimolar NaCl + 10 millimolar CaCl2. From the hydrostatic and osmotic relaxations of turgor, the hydraulic conductivity (Lp) and the reflection coefficient (σs) of cortical cells of different root layers were determined. Mean Lp values in the different layers (first to third, fourth to sixth, seventh to ninth) of the four different treatments ranged from 11.8 to 14.5 (Control), 2.5 to 3.8 (+NaCl), 6.9 to 8.7 (+CaCl2), and 6.6 to 7.2 · 10−7 meter per second per megapascal (+NaCl + CaCl2). These results indicate that salinization of the growth media at regular calcium levels (0.5 millimolar) decreased Lp significantly (three to six times). The addition of extra calcium (10 millimolar) to the salinized media produced compensating effects. Mean cell σs values of NaCl ranged from 1.08 to 1.16, 1.15 to 1.22, 0.94 to 1.00, and 1.32 to 1.46 in different root cell layers of the four different treatments, respectively. Some of these σs values were probably overestimated due to an underestimation of the elastic modulus of cells, σs values of close to unity were in line with the fact that root cell membranes were practically not permeable to NaCl. However, the root cylinder exhibited some permeability to NaCl as was demonstrated by the root pressure probe measurements that resulted in σsr of less than unity. Compared with the controls, salinity and calcium increased the root cell diameter. Salinized seedlings grown at regular calcium levels resulted in shorter cell length compared with control (by a factor of 2). The results demonstrate that NaCl has adverse effects on water transport parameters of root cells. Extra calcium could, in part, compensate for these effects. The data suggest a considerable apoplasmic water flow in the root cortex. However, the cell-to-cell path also contributed to the overall water transport in maize roots and appeared to be responsible for the decrease in root hydraulic conductivity reported earlier (Azaizeh H, Steudle E [1991] Plant Physiol 97: 1136-1145). Accordingly, the effect of high salinity on the cell Lp was much larger than that on root Lpr. PMID:16669016

  7. Alkane-grown Beauveria bassiana produce mycelial pellets displaying peroxisome proliferation, oxidative stress, and cell surface alterations.

    PubMed

    Huarte-Bonnet, Carla; Paixão, Flávia R S; Ponce, Juan C; Santana, Marianela; Prieto, Eduardo D; Pedrini, Nicolás

    2018-06-01

    The entomopathogenic fungus Beauveria bassiana is able to grow on insect cuticle hydrocarbons, inducing alkane assimilation pathways and concomitantly increasing virulence against insect hosts. In this study, we describe some physiological and molecular processes implicated in growth, nutritional stress response, and cellular alterations found in alkane-grown fungi. The fungal cytology was investigated using light and transmission electron microscopy while the surface topography was examined using atomic force microscopy. Additionally, the expression pattern of several genes associated with oxidative stress, peroxisome biogenesis, and hydrophobicity were analysed by qPCR. We found a novel type of growth in alkane-cultured B. bassiana similar to mycelial pellets described in other alkane-free fungi, which were able to produce viable conidia and to be pathogenic against larvae of the beetles Tenebrio molitor and Tribolium castaneum. Mycelial pellets were formed by hyphae cumulates with high peroxidase activity, exhibiting peroxisome proliferation and an apparent surface thickening. Alkane-grown conidia appeared to be more hydrophobic and cell surfaces displayed different topography than glucose-grown cells. We also found a significant induction in several genes encoding for peroxins, catalases, superoxide dismutases, and hydrophobins. These results show that both morphological and metabolic changes are triggered in mycelial pellets derived from alkane-grown B. bassiana. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  8. B-Lymphocytes from a Population of Children with Autism Spectrum Disorder and Their Unaffected Siblings Exhibit Hypersensitivity to Thimerosal

    PubMed Central

    Sharpe, Martyn A.; Gist, Taylor L.; Baskin, David S.

    2013-01-01

    The role of thimerosal containing vaccines in the development of autism spectrum disorder (ASD) has been an area of intense debate, as has the presence of mercury dental amalgams and fish ingestion by pregnant mothers. We studied the effects of thimerosal on cell proliferation and mitochondrial function from B-lymphocytes taken from individuals with autism, their nonautistic twins, and their nontwin siblings. Eleven families were examined and compared to matched controls. B-cells were grown with increasing levels of thimerosal, and various assays (LDH, XTT, DCFH, etc.) were performed to examine the effects on cellular proliferation and mitochondrial function. A subpopulation of eight individuals (4 ASD, 2 twins, and 2 siblings) from four of the families showed thimerosal hypersensitivity, whereas none of the control individuals displayed this response. The thimerosal concentration required to inhibit cell proliferation in these individuals was only 40% of controls. Cells hypersensitive to thimerosal also had higher levels of oxidative stress markers, protein carbonyls, and oxidant generation. This suggests certain individuals with a mild mitochondrial defect may be highly susceptible to mitochondrial specific toxins like the vaccine preservative thimerosal. PMID:23843785

  9. LIM kinase function and renal growth: Potential role for LIM kinases in fetal programming of kidney development.

    PubMed

    Sparrow, Alexander J; Sweetman, Dylan; Welham, Simon J M

    2017-10-01

    Maternal dietary restriction during pregnancy impairs nephron development and results in offspring with fewer nephrons. Cell turnover in the early developing kidney is altered by exposure to maternal dietary restriction and may be regulated by the LIM-kinase family of enzymes. We set out to establish whether disturbance of LIM-kinase activity might play a role in the impairment of nephron formation. E12.5 metanephric kidneys and HK2 cells were grown in culture with the pharmacological LIM-kinase inhibitor BMS5. Organs were injected with DiI, imaged and cell numbers measured over 48h to assess growth. Cells undergoing mitosis were visualised by pH3 labelling. Growth of cultured kidneys reduced to 83% of controls after exposure to BMS5 and final cell number to 25% of control levels after 48h. Whilst control and BMS5 treated organs showed cells undergoing mitosis (100±11 cells/field vs 113±18 cells/field respectively) the proportion in anaphase was considerably diminished with BMS5 treatment (7.8±0.8% vs 0.8±0.6% respectively; P<0.01). This was consistent with effects on HK2 cells highlighting a severe impact of BMS5 on formation of the mitotic spindle and centriole positioning. DiI labelled cells migrated in 100% of control cultures vs 0% BMS5 treated organs. The number of nephrogenic precursor cells appeared depleted in whole organs and formation of new nephrons was blocked by exposure to BMS5. Pharmacological blockade of LIM-kinase function in the early developing kidney results in failure of renal development. This is likely due to prevention of dividing cells from completion of mitosis with their resultant loss. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Histamine-releasing factor/translationally controlled tumor protein (HRF/TCTP)-induced histamine release is enhanced with SHIP-1 knockdown in cultured human mast cell and basophil models

    PubMed Central

    Langdon, Jacqueline M.; Schroeder, John T.; Vonakis, Becky M.; Bieneman, Anja P.; Chichester, Kristin; MacDonald, Susan M.

    2008-01-01

    Previously, we demonstrated a negative correlation between histamine release to histamine-releasing factor/translationally controlled tumor protein (HRF/TCTP) and protein levels of SHIP-1 in human basophils. The present study was conducted to investigate whether suppressing SHIP-1 using small interfering (si)RNA technology would alter the releasability of culture-derived mast cells and basophils, as determined by HRF/TCTP histamine release. Frozen CD34+ cells were obtained from the Fred Hutchinson Cancer Research Center (Seattle, WA, USA). Cells were grown in StemPro-34 medium containing cytokines: mast cells with IL-6 and stem cell factor (100 ng/ml each) for 6–8 weeks and basophils with IL-3 (6.7 ng/ml) for 2–3 weeks. siRNA transfections were performed during Week 6 for mast cells and Week 2 for basophils with siRNA for SHIP-1 or a negative control siRNA. Changes in SHIP-1 expression were determined by Western blot. The functional knockdown was measured by HRF/TCTP-induced histamine release. siRNA knockdown of SHIP-1 in mast cells ranged from 31% to 82%, mean 65 ± 12%, compared with control (n=4). Histamine release to HRF/TCTP was increased only slightly in two experiments. SHIP-1 knockdown in basophils ranged from 34% to 69%, mean 51.8 ± 7% (n=4). Histamine release to HRF/TCTP in these basophils was dependent on the amount of SHIP knockdown. Mast cells and basophils derived from CD34+ precursor cells represent suitable models for transfection studies. Reducing SHIP-1 protein in cultured mast cells and in cultured basophils increases releasability of the cells. PMID:18625911

  11. Plants and somatic embryos in space: what have we learned?

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.

    1998-01-01

    Space provides a unique environment that can affect the interplay between cell cycle controls and environment and can thus modify the processes of cell division, development and growth. It is proposed that the chromosomal and nuclear abnormalities frequently encountered in cells of various plants exposed to space are due to a combination of factors including the biological status of the systems and the way in which they are grown, exposed to, and ultimately, the way in which they experience multiple stresses. The extent to which space-specific changes become manifest is dependent on the extent of pre-existing stresses in the system. This has become evident in a variety of plant species grown in space but has been particularly amenable to study using in vitro systems, especially in developing embryoids. The following observations allow us to harmonize disparate results from a variety of space experiments:- (a) the more completely developed a system, the less likely it is to show cell stress during growth; the less morphologically complex, the greater the vulnerability; (b) the size/"packaging" of the genome (karyotype) are significant experimental variables; plants with larger genomes (e.g. polyploids) seem to be more space-stress tolerant; (c) a single space-associated stress is inadequate to produce a significant adverse response unless the stress is severe, or a biological parameter necessary to 'amplify' it exists. On this view, an appropriate "stress match" with other non-equilibrium determinants, much like a 'tug of war', can result in genomic variations in space. All this emphasizes that fastidiously-controlled growing environments must be devised if one is to resolve the matter of direct versus indirect effects of space. Better understanding of the novel physico-chemical equilibrium phenomena associated with space will allow those interested in space cell and developmental biology to pick and choose procedures best suited to their exploitation for specific objectives.

  12. Transcriptional and epigenetic control in mouse pluripotency: lessons from in vivo and in vitro studies.

    PubMed

    Habibi, Ehsan; Stunnenberg, Hendrik G

    2017-10-01

    Pluripotent cells were first derived from mouse blastocysts several decades ago. Since then, our knowledge of the molecular events that occur in the pre-implantation embryo has been vastly progressing. The emergence of epigenetics has revolutionized stem cell and developmental biology and further deepened our understanding of the underlying molecular mechanisms controlling the early embryo development. In particular, the emergence of massive parallel sequencing technologies has opened new avenues and became indispensable tools in modern biology. Additionally, development of new and exciting techniques for genome manipulation (TALEN and CRISPR/Cas9) and in vivo imaging provide unique opportunities to perturb and trace biological systems at very high resolution. Finally, recent single-cell - omics combined with sophisticated computational methodologies allow accurate, quantitative measurements for deconvolution of cellular variation in complex cell populations. Collectively, these achievements enabled the detailed characterization and monitoring of various cell states and trajectories during early stages of embryonic development. Here we review recent studies of the transcriptional and epigenetic changes during very early stages of mouse embryo development and compare these with pluripotent cells grown in vitro under different culture conditions. We discuss whether the in vitro cell states have an 'epi-phenocopy' in the embryo and refine our understanding of the circuitries controlling pluripotency and lineage commitment during early stages of mouse development. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Metabolism of Acrylate to β-Hydroxypropionate and Its Role in Dimethylsulfoniopropionate Lyase Induction by a Salt Marsh Sediment Bacterium, Alcaligenes faecalis M3A

    PubMed Central

    Ansede, John H.; Pellechia, Perry J.; Yoch, Duane C.

    1999-01-01

    Dimethylsulfoniopropionate (DMSP) is degraded to dimethylsulfide (DMS) and acrylate by the enzyme DMSP lyase. DMS or acrylate can serve as a carbon source for both free-living and endophytic bacteria in the marine environment. In this study, we report on the mechanism of DMSP-acrylate metabolism by Alcaligenes faecalis M3A. Suspensions of citrate-grown cells expressed a low level of DMSP lyase activity that could be induced to much higher levels in the presence of DMSP, acrylate, and its metabolic product, β-hydroxypropionate. DMSP was degraded outside the cell, resulting in an extracellular accumulation of acrylate, which in suspensions of citrate-grown cells was then metabolized at a low endogenous rate. The inducible nature of acrylate metabolism was evidenced by both an increase in the rate of its degradation over time and the ability of acrylate-grown cells to metabolize this molecule at about an eight times higher rate than citrate-grown cells. Therefore, acrylate induces both its production (from DMSP) and its degradation by an acrylase enzyme. 1H and 13C nuclear magnetic resonance analyses were used to identify the products resulting from [1-13C]acrylate metabolism. The results indicated that A. faecalis first metabolized acrylate to β-hydroxypropionate outside the cell, which was followed by its intracellular accumulation and subsequent induction of DMSP lyase activity. In summary, the mechanism of DMSP degradation to acrylate and the subsequent degradation of acrylate to β-hydroxypropionate in the aerobic β-Proteobacterium A. faecalis has been described. PMID:10543825

  14. In-depth investigation of spin-on doped solar cells with thermally grown oxide passivation

    NASA Astrophysics Data System (ADS)

    Ahmad, Samir Mahmmod; Cheow, Siu Leong; Ludin, Norasikin A.; Sopian, K.; Zaidi, Saleem H.

    Solar cell industrial manufacturing, based largely on proven semiconductor processing technologies supported by significant advancements in automation, has reached a plateau in terms of cost and efficiency. However, solar cell manufacturing cost (dollar/watt) is still substantially higher than fossil fuels. The route to lowering cost may not lie with continuing automation and economies of scale. Alternate fabrication processes with lower cost and environmental-sustainability coupled with self-reliance, simplicity, and affordability may lead to price compatibility with carbon-based fuels. In this paper, a custom-designed formulation of phosphoric acid has been investigated, for n-type doping in p-type substrates, as a function of concentration and drive-in temperature. For post-diffusion surface passivation and anti-reflection, thermally-grown oxide films in 50-150-nm thickness were grown. These fabrication methods facilitate process simplicity, reduced costs, and environmental sustainability by elimination of poisonous chemicals and toxic gases (POCl3, SiH4, NH3). Simultaneous fire-through contact formation process based on screen-printed front surface Ag and back surface through thermally grown oxide films was optimized as a function of the peak temperature in conveyor belt furnace. Highest efficiency solar cells fabricated exhibited efficiency of ∼13%. Analysis of results based on internal quantum efficiency and minority carried measurements reveals three contributing factors: high front surface recombination, low minority carrier lifetime, and higher reflection. Solar cell simulations based on PC1D showed that, with improved passivation, lower reflection, and high lifetimes, efficiency can be enhanced to match with commercially-produced PECVD SiN-coated solar cells.

  15. Thigmomorphogenesis: anatomical, morphological and mechanical analysis of genetically different sibs of Pinus taeda in response to mechanical perturbation.

    PubMed

    Telewski, F W; Jaffe, M J

    1986-01-01

    Twenty-three open pollinated families (half-sibs) and four controlled pollinated families (full-sibs) of Pinus taeda L. (loblolly pine) were grown in a greenhouse and analyzed for changes induced by mechanical perturbation (MP). These changes included inhibition of stem and needle elongation, bracing of branch nodes, and increased radial growth in the direction of the MP. Inhibition of stem elongation was the least variable feature measured. Leaf extension and stem diameter were highly variable between half-sibs. MP induced increased drag in greenhouse grown P. taeda in wind-tunnel tests. In P. taeda, MP induced decreased flexibility and increased elasticity and plasticity of the stem. The increased radial growth of the stems overrode the increase in elasticity, resulting in an overall decrease in flexibility. MP trees had a higher rupture point than non-MP controls. Increased radial growth is a result of more rapid cell divisions of the vascular cambium, resulting in increased numbers of tracheids. The decreased leader growth is partly due to a decreased tracheid length in response to MP.

  16. Thigmomorphogenesis: anatomical, morphological and mechanical analysis of genetically different sibs of Pinus taeda in response to mechanical perturbation

    NASA Technical Reports Server (NTRS)

    Telewski, F. W.; Jaffe, M. J.

    1986-01-01

    Twenty-three open pollinated families (half-sibs) and four controlled pollinated families (full-sibs) of Pinus taeda L. (loblolly pine) were grown in a greenhouse and analyzed for changes induced by mechanical perturbation (MP). These changes included inhibition of stem and needle elongation, bracing of branch nodes, and increased radial growth in the direction of the MP. Inhibition of stem elongation was the least variable feature measured. Leaf extension and stem diameter were highly variable between half-sibs. MP induced increased drag in greenhouse grown P. taeda in wind-tunnel tests. In P. taeda, MP induced decreased flexibility and increased elasticity and plasticity of the stem. The increased radial growth of the stems overrode the increase in elasticity, resulting in an overall decrease in flexibility. MP trees had a higher rupture point than non-MP controls. Increased radial growth is a result of more rapid cell divisions of the vascular cambium, resulting in increased numbers of tracheids. The decreased leader growth is partly due to a decreased tracheid length in response to MP.

  17. Effects of method of detachment on electrophoretic mobility of mammalian cells grown in monolayer culture

    NASA Technical Reports Server (NTRS)

    Plank, L. D.; Kunze, M. E.; Todd, P. W.

    1985-01-01

    A variety of proteolytic and micolytic enzumes, mechanical procedures, and changes in the ionic environment, especially Ca chelation, are used for dispersal of monolayer grown cells. If either chelating agents or mechanical dispersion are used alone, the cell yield is often low and suspensions of single cells are difficult to obtain. Confluent monolayers treated with EDTA tend to be released from their surfaces in sheets, and clumps of cells remain even after further incubation in EDTA. Crude trypsin is the most popular dispersal agent and is known to contain a variety of contaminating enzymes which contribute to the dispersal of cells. A variety of cell injuries resulting from the activity of proteolytic enzymes are reported. It is shown that crystalline trypsin is least harmful to cell integrity as judged by trypan blue uptake.

  18. Cold Osmotic Shock in Saccharomyces cerevisiae

    PubMed Central

    Patching, J. W.; Rose, A. H.

    1971-01-01

    Saccharomyces cerevisiae NCYC 366 is susceptible to cold osmotic shock. Exponentially growing cells from batch cultures grown in defined medium at 30 C, after being suspended in 0.8 m mannitol containing 10 mm ethylenedia-minetetraacetic acid and then resuspended in ice-cold 0.5 mm MgCl2, accumulated the nonmetabolizable solutes d-glucosamine-hydrochloride and 2-aminoisobutyrate at slower rates than unshocked cells; shocked cells retained their viability. Storage of unshocked batch-grown cells in buffer at 10 C led to an increase in ability to accumulate glucosamine, and further experiments were confined to cells grown in a chemostat under conditions of glucose limitation, thereby obviating the need for storing cells before use. A study was made of the effect of the different stages in the cold osmotic shock procedure, including the osmotic stress, the chelating agent, and the cold Mg2+-containing diluent, on viability and solute-accumulating ability. Growth of shocked cells in defined medium resembled that of unshocked cells; however, in malt extract-yeast extract-glucose-peptone medium, the shocked cells had a longer lag phase of growth and initially grew at a slower rate. Cold osmotic shock caused the release of low-molecular-weight compounds and about 6 to 8% of the cell protein. Neither the cell envelope enzymes, invertase, acid phosphatase and l-leucine-β-naphthylamidase, nor the cytoplasmic enzyme, alkaline phosphatase, were released when yeast cells were subjected to cold osmotic shock. PMID:5001201

  19. Controlling Morphological Parameters of Anodized Titania Nanotubes for Optimized Solar Energy Applications

    PubMed Central

    Haring, Andrew; Morris, Amanda; Hu, Michael

    2012-01-01

    Anodized TiO2 nanotubes have received much attention for their use in solar energy applications including water oxidation cells and hybrid solar cells [dye-sensitized solar cells (DSSCs) and bulk heterojuntion solar cells (BHJs)]. High surface area allows for increased dye-adsorption and photon absorption. Titania nanotubes grown by anodization of titanium in fluoride-containing electrolytes are aligned perpendicular to the substrate surface, reducing the electron diffusion path to the external circuit in solar cells. The nanotube morphology can be optimized for the various applications by adjusting the anodization parameters but the optimum crystallinity of the nanotube arrays remains to be realized. In addition to morphology and crystallinity, the method of device fabrication significantly affects photon and electron dynamics and its energy conversion efficiency. This paper provides the state-of-the-art knowledge to achieve experimental tailoring of morphological parameters including nanotube diameter, length, wall thickness, array surface smoothness, and annealing of nanotube arrays.

  20. Upgraded metallurgical-grade silicon solar cells with efficiency above 20%

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, P.; Rougieux, F. E.; Samundsett, C.

    We present solar cells fabricated with n-type Czochralski–silicon wafers grown with strongly compensated 100% upgraded metallurgical-grade feedstock, with efficiencies above 20%. The cells have a passivated boron-diffused front surface, and a rear locally phosphorus-diffused structure fabricated using an etch-back process. The local heavy phosphorus diffusion on the rear helps to maintain a high bulk lifetime in the substrates via phosphorus gettering, whilst also reducing recombination under the rear-side metal contacts. The independently measured results yield a peak efficiency of 20.9% for the best upgraded metallurgical-grade silicon cell and 21.9% for a control device made with electronic-grade float-zone silicon. The presencemore » of boron-oxygen related defects in the cells is also investigated, and we confirm that these defects can be partially deactivated permanently by annealing under illumination.« less

  1. Cracking the egg: virtual embryogenesis of real robots.

    PubMed

    Cussat-Blanc, Sylvain; Pollack, Jordan

    2014-01-01

    All multicellular living beings are created from a single cell. A developmental process, called embryogenesis, takes this first fertilized cell down a complex path of reproduction, migration, and specialization into a complex organism adapted to its environment. In most cases, the first steps of the embryogenesis take place in a protected environment such as in an egg or in utero. Starting from this observation, we propose a new approach to the generation of real robots, strongly inspired by living systems. Our robots are composed of tens of specialized cells, grown from a single cell using a bio-inspired virtual developmental process. Virtual cells, controlled by gene regulatory networks, divide, migrate, and specialize to produce the robot's body plan (morphology), and then the robot is manually built from this plan. Because the robot is as easy to assemble as Lego, the building process could be easily automated.

  2. Enhancing effects of gamma interferon on phagocytic cell association with and killing of Trypanosoma cruzi

    NASA Technical Reports Server (NTRS)

    Wirth, J. J.; Kierszenbaum, F.; Sonnenfeld, G.; Zlotnik, A.

    1985-01-01

    Results are reported from a study of the influence gamma interferon (GIFN) and interleukin 2 (IL2) have on the capability of P388D1 cells and mouse resident peritoneal macrophages (MPM) to attach to the blood-resident parasites Trypanosoma cruzi and kill them. Cultures of trypomastigote forms of the Tulahuen strain of T. cruzi grown in bovine serum were introduced into peritoneal cells of mice, along with P388D1 cells incubated with GIFN, IL2 and both. Control cells were also maintained. Statistical analysis were then performed on data on counts of the number of dead T. Cruzi cells. The GIFN enhanced the interaction of MPM and P388D1 cells with the surface of T. Cruzi, provided the interaction was given over 12 hr to take place. A depression of the cytotoxicity of P388D1 cells was attributed to mediation by H2O2, an effect partially offset by incubation with the lymphokine GIFN.

  3. Transport of EDTA into cells of the EDTA-degrading bacterial strain DSM 9103.

    PubMed

    Witschel, M; Egli, T; Zehnder, A J; Wehrli, E; Spycher, M

    1999-04-01

    In the bacterial strain DSM 9103, which is able to grow with the complexing agent EDTA as the sole source of carbon, nitrogen and energy, the transport of EDTA into whole cells was investigated. EDTA uptake was found to be dependent on speciation: free EDTA and metal-EDTA complexes with low stability constants were readily taken up, whereas those with stability constants higher than 1016 were not transported. In EDTA-grown cells, initial transport rates of CaEDTA showed substrate-saturation kinetics with a high apparent affinity for CaEDTA (affinity constant Kt= 0.39 microM). Several uncouplers had an inhibitory effect on CaEDTA transport. CaEDTA uptake was also significantly reduced in the presence of an inhibitor of ATPase and the ionophore nigericin, which dissipates the proton gradient. Valinomycin, however, which affects the electrical potential, had little effect on uptake, indicating that EDTA transport is probably driven by the proton gradient. Of various structurally related compounds tested only Ca2+-complexed diethylenetriaminepentaacetate (CaDTPA) competitively inhibited CaEDTA transport. Uptake in fumarate-grown cells was low compared to that measured in EDTA-grown bacteria. These results strongly suggest that the first step in EDTA degradation by strain DSM 9103 consists of transport by an inducible energy-dependent carrier. Uptake experiments with 45Ca2+ in the presence and absence of EDTA indicated that Ca2+ is transported together with EDTA into the cells. In addition, these transport studies and electron-dispersive X-ray analysis of electron-dense intracellular bodies present in EDTA-grown cells suggest that two mechanisms acting simultaneously allow the cells to cope with the large amounts of metal ions taken up together with EDTA. In one mechanism the metal ions are excreted, in the other they are inactivated intracellularly in polyphosphate granules.

  4. Electrochemical synthesis of formic acid from CO2 catalyzed by Shewanella oneidensis MR-1 whole-cell biocatalyst.

    PubMed

    Le, Quang Anh Tuan; Kim, Hee Gon; Kim, Yong Hwan

    2018-09-01

    The electro-biocatalytic conversion of CO 2 into formic acid using whole-cell and isolated biocatalysts is useful as an alternative route for CO 2 sequestration. In this study, Shewanella oneidensis MR-1 (S. oneidensis MR-1), a facultative aerobic bacterium that has been extensively studied for its utility as biofuel cells as well as for the detoxification of heavy metal oxides (i.e., MnO 2 , uranium), has been applied for the first time as a whole-cell biocatalyst for formic acid synthesis from gaseous CO 2 and electrons supplied from an electrode. S. oneidensis MR-1, when aerobically grown in Luria-Bertani (LB) medium, exhibited its ability as a whole-cell biocatalyst for the conversion of CO 2 into formic acid with moderate productivity of 0.59 mM h -1 for 24 h. In addition, an optimization of growth conditions of S. oneidensis MR-1 resulted in a remarkable increase in productivity. The CO 2 reduction reaction catalyzed by S. oneidensis MR-1, when anaerobically grown in newly optimized LB medium supplemented with fumarate and nitrate, exhibited 3.2-fold higher productivity (1.9 mM h -1 for 72 h) compared to that grown aerobically in only LB medium. Furthermore, the average conversion rate of formic acid synthesis catalyzed by S. oneidensis MR-1 when grown in the optimal medium over a period of 72 h was 3.8 mM h -1  g -1 wet-cell, which is 9.6-fold higher than that catalyzed by Methylobacterium extorquens AM1 whole-cells in our previous study. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. High targeted migration of human mesenchymal stem cells grown in hypoxia is associated with enhanced activation of RhoA

    PubMed Central

    2013-01-01

    Introduction A feature which makes stem cells promising candidates for cell therapy is their ability to migrate effectively into damaged or diseased tissues. Recent reports demonstrated the increased motility of human mesenchymal stem cells (hMSC) grown under hypoxic conditions compared to normoxic cells. However, the directional migration of hMSC cultured in hypoxia has not been investigated. In this study we examined the in vitro transmembrane migration of hMSC permanently cultured in hypoxia in response to various cytokines. We also studied the involvement of RhoA, a molecule believed to play an essential role in the migration of MSC via reorganization of the cytoskeleton. Methods We compared the directional migration of human hMSCs grown permanently under normal (21%, normoxic) and low O2 (5%, hypoxic) conditions until passage 4 using an in vitro transmembrane migration assay. A series of 17 cytokines was used to induce chemotaxis. We also compared the level of GTP-bound RhoA in the cell extracts of calpeptin-activated hypoxic and normoxic hMSC. Results We found that hMSC cultured in hypoxia demonstrate markedly higher targeted migration activity compared to normoxic cells, particularly towards wound healing cytokines, including those found in ischemic and myocardial infarction. We also demonstrated for the first time that hMSC are dramatically more sensitive to activation of RhoA. Conclusions The results of this study indicate that high directional migration of hMSCs permanently grown in hypoxia is associated with the enhanced activation of RhoA. The enhanced migratory capacity of hypoxic hMSC would further suggest their potential advantages for clinical applications. PMID:23295150

  6. Constant Applied Force Stimulates Osteoblast Proliferation Via Matrix-Integrin-Signaling Pathways

    NASA Technical Reports Server (NTRS)

    Vercoutere, W.; Parra, M.; Roden, C.; DaCosta, M.; Wing, A.; Damsky, C.; Holton, E.; Searby, N.; Globus, R.; Almeida, E. A. C.

    2003-01-01

    Reduced weight-bearing caused by immobilization, bed-rest or microgravity leads to atrophy in mechanosensitive tissue such as muscle and bone. We hypothesize that bone tissue requires earth s gravity (1-g) for the maintenance of extracellular matrix, integrin, and kinase-mediated cell growth and survival pathways. We investigate the role of matrix-integrin signaling in bone cells using cell culture centrifugation to provide different levels of hypergravity mechanostimulation. The 10-50-g range we use also mimics physiological intermedullary pressure (1.2 - 5 kPa). 24 hours at 50-g increased primary rat osteoblast proliferation on collagen Type I and fibronectin, but not laminin or uncoated plastic. BrdU incorporation in primary osteoblasts over 24 h showed hypergravity increased the number of cells actively synthesizing DNA from about 60% at 1-g to over 90% at 25-g. Primary rat fibroblasts grown at 50-g (24 h) showed no proliferation increase, suggesting this is a tissue-specific phenomenon. These results suggest that the betal and alpha4 integrins may be involved. To further test this, we used osteocytic-like MLO-Y4 cells that showed increased proliferation at 1-g with stable expression of a betal integrin cytoplasmic tail and transmembrane domain construct. At 50-g, MLO-Y4/betal cells showed greater MAPK activation than MLO-Y4 vector controls, suggesting that betal integrin is involved in transducing mitogenic signals in response to hypergravity. Preliminary results also show that interfering with the alpha4 integrin in primary osteoblasts grown on fibronectin blocked the proliferation response. These results indicate that cells from mechanosensitive bone tissue can respond to gravity-generated forces, and this response involves specific matrix and integrin-dependent signaling pathways.

  7. Enhanced Expansion and Sustained Inductive Function of Skin‐Derived Precursor Cells in Computer‐Controlled Stirred Suspension Bioreactors

    PubMed Central

    Agabalyan, Natacha A.; Borys, Breanna S.; Sparks, Holly D.; Boon, Kathryn; Raharjo, Eko W.; Abbasi, Sepideh; Kallos, Michael S.

    2016-01-01

    Abstract Endogenous dermal stem cells (DSCs) reside in the adult hair follicle mesenchyme and can be isolated and grown in vitro as self‐renewing colonies called skin‐derived precursors (SKPs). Following transplantation into skin, SKPs can generate new dermis and reconstitute the dermal papilla and connective tissue sheath, suggesting they could have important therapeutic value for the treatment of skin disease (alopecia) or injury. Controlled cell culture processes must be developed to efficiently and safely generate sufficient stem cell numbers for clinical use. Compared with static culture, stirred‐suspension bioreactors generated fivefold greater expansion of viable SKPs. SKPs from each condition were able to repopulate the dermal stem cell niche within established hair follicles. Both conditions were also capable of inducing de novo hair follicle formation and exhibited bipotency, reconstituting the dermal papilla and connective tissue sheath, although the efficiency was significantly reduced in bioreactor‐expanded SKPs compared with static conditions. We conclude that automated bioreactor processing could be used to efficiently generate large numbers of autologous DSCs while maintaining their inherent regenerative function. Stem Cells Translational Medicine 2017;6:434–443 PMID:28191777

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tingting; Kirchhoff, Helmut; Gargouri, Mahmoud

    Mixotrophic growth of microalgae offers great potential as an efficient strategy for biofuel production. In this study, photosynthetic regulation of mixotrophically cultured Chlorella sorokiniana cells was systematically evaluated. Mixotrophic cells in the exponential growth phase showed the highest photosynthetic activity, where maximum photosynthetic O 2 evolution was approximately 3- and 4-fold higher than cells in the same phase grown photoautotrophically in 1% CO 2 (in air) and air, respectively. Additionally, characteristic chlorophyll fluorescence parameters demonstrated that no limitation in electron transport downstream of PSII was detected in mixotrophic cells. Up-regulation of photosynthetic activity was associated with high total ribulose-1, 5-bisphosphatemore » carboxylase/oxygenase (Rubisco) carboxylase activity and expression level of phosphoribulokinase (PRK). After 3 days, photosynthetic O 2 evolution of mixotrophic cells that went to the stationary phase, was strongly reduced, with reduced photochemical efficiency and reorganization of the PSII complex. Simultaneously, enzymatic activity for Rubisco carboxylase and mRNA levels of Rubisco and PRK diminished. Importantly, there was almost no non-photochemical quenching for mixotrophic cells, whether grown in log or stationary phase. A decline in the quantum efficiency of PSII and an oxidized plastoquinone pool (PQ pool) was observed under N-depleted conditions during mixotrophic growth. Finally, these results demonstrate that photosynthesis is regulated differently in mixotrophically cultured C. sorokiniana cells than in cells grown under photoautotrophic conditions, with a particularly strong impact by nitrogen levels in the cells.« less

  9. Adaptational changes in the lipids and fatty acid profile of the cell and thylakoid membrane of rice plants exposed to sunlight.

    PubMed

    Vaz, Janet F; Sharma, Prabhat Kumar

    2010-07-01

    Adaptational changes occurring in the lipids and fatty acids of the cell and the thylakoid membrane in response to high light treatment, was studied in 30 days old rice (Oryza sativa L. cv. Jyothi) plants grown under low (150-200 μmol m(-2) s(-1)) or moderate (600-800 μmol m(-2) s(-1)) light conditions. Results were compared with rice plants grown in high (1200-2200 μmol m(-2) s(-1)) light conditions. Exposure of rice plants and isolated chloroplast to high light, resulted in an increase in the amount of malonaldehyde, indicating oxidation of membrane lipids. Qualitative and quantitative changes in the phosphoglycolipids and quantitative changes in neutral lipids were observed in rice plants grown under the different growth conditions. A few of the phosphoglycolipids and neutral lipids were present exclusively in plants grown at low or moderate or high light, indicating requirement of different type of lipid composition of rice plants in response to their different growth irradiances. However, no significant quantitative changes were observed in the different saturated and unsaturated fatty acid groups of total lipids in low, moderate and high light grown rice plants, as a result of exposure to high light. No qualitative changes in the fatty acid composition due to difference in growth irradiance or high light treatment were seen. The changes observed in the phosphoglycolipids and neutral lipid composition of cell and thylakoid membrane of low, moderate and high light grown rice plants in response to high light, are probably the result of physiological changes in the rice plants, to sustain optimum structure and function of the cell and thylakoid membrane to maintain active physiological functions to endure high light conditions.

  10. Somatic mutation frequencies in the stamen hairs of Tradescantia grown in soil samples from the Bikini Island.

    PubMed

    Ichikawa, S; Ishii, C

    1991-02-01

    Somatic pink mutation frequencies in the stamen hairs of Tradescantia BNL 02 clone grown for 76 days in two soil samples taken from the Bikini Island (where a hydrogen bomb explosion test had been conducted in 1954) were investigated. A significantly high mutation frequency (2.58 +/- 0.17 pink mutant events per 10(3) hairs or 1.34 +/- 0.09 pink mutant events per 10(4) hair-cell divisions) was observed for the plant grown in one of the two Bikini soil samples, as compared to the control plants (1.70 +/- 0.14 or 0.88 +/- 0.07, respectively) grown in the field soil of Saitama University. The soil sample which caused the significant increase in mutation frequency contained 6,880 +/- 330 mBq/g 137Cs, 62.5 +/- 4.4 mBq/g 60Co, and some other nuclides; a 150 microR/hr exposure rate being measured on the surface of the soil sample. The effective cumulative external exposures measured for the inflorescences of the plant grown in this soil sample averaged at most 60.8 mR, being too small to explain the significant elevation in mutation frequency observed. On the other hand, internal exposure due to uptake of radioactive nuclides was estimated to be 125 mrad (1.25 mGy) as an accumulated effective dose, mainly based on a gamma-spectrometrical analysis. However, it seemed highly likely that this value of internal exposure was a considerable underestimate, and the internal exposure was considered to be more significant than the external exposure.

  11. Vertical growth of ZnO nanorods on ZnO seeded FTO substrate for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Marimuthu, T.; Anandhan, N.

    2018-04-01

    Zinc oxide (ZnO) nanorods (NRs) were electrochemically grown on fluorine doped tin oxide (FTO) and ZnO seeded FTO substrates. X-ray diffraction (XRD) patterns, Raman spectra and photoluminescence (PL) spectra reveal that the hexagonal wurtzite structured ZnO grown on a seeded FTO substrate has a high crystallinity, crystal quality and less atomic defects. Felid emission scanning electron microscope (FE-SEM) images display a high growth density of NRs grown on seeded FTO substrate compared to NRs grown on FTO substrate. The efficiency of the DSSCs based on NRs grown on FTO and seeded FTO substrates is 0.85 and 1.52 %, respectively. UV-Vis absorption spectra and electrochemical impedance spectra depict that the NRs grown on seeded FTO photoanode have higher dye absorption and charge recombination resistance than that of the NRs grown on FTO substrate.

  12. Structural, spectral and birefringence studies of semiorganic nonlinear optical single crystal: Calcium5-sulfosalicylate

    NASA Astrophysics Data System (ADS)

    Shalini, D.; Kalainathan, S.; Ambika, V. Revathi; Hema, N.; Jayalakshmi, D.

    2017-11-01

    Semi-organic nonlinear optical crystal Calcium5-Sulfosalicylate (CA5SS) was grown by slow evaporation solution growth technique. The cell parameters and molecular structure of the grown crystal were studied by single crystal x-ray diffraction analysis. The presence of various functional groups of the grown crystal was confirmed using Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman) analysis. UV-Visible spectrum shows that CA5SS crystals have high transmittance in the range of 330-900 nm. The refractive index, birefringence and transient photoluminescence properties of the grown crystal were analyzed. The frequency doubling of the grown crystal (CA5SS) were studied and compared with that of KDP.

  13. Multiple reaction monitoring targeted LC-MS analysis of potential cell death marker proteins for increased bioprocess control.

    PubMed

    Albrecht, Simone; Kaisermayer, Christian; Reinhart, David; Ambrose, Monica; Kunert, Renate; Lindeberg, Anna; Bones, Jonathan

    2018-05-01

    The monitoring of protein biomarkers for the early prediction of cell stress and death is a valuable tool for process characterization and efficient biomanufacturing control. A representative set of six proteins, namely GPDH, PRDX1, LGALS1, CFL1, TAGLN2 and MDH, which were identified in a previous CHO-K1 cell death model using discovery LC-MS E was translated into a targeted liquid chromatography multiple reaction monitoring mass spectrometry (LC-MRM-MS) platform and verified. The universality of the markers was confirmed in a cell growth model for which three Chinese hamster ovary host cell lines (CHO-K1, CHO-S, CHO-DG44) were grown in batch culture in two different types of basal media. LC-MRM-MS was also applied to spent media (n = 39) from four perfusion biomanufacturing series. Stable isotope-labelled peptide analogues and a stable isotope-labelled monoclonal antibody were used for improved protein quantitation and simultaneous monitoring of the workflow reproducibility. Significant increases in protein concentrations were observed for all viability marker proteins upon increased dead cell numbers and allowed for discrimination of spent media with dead cell densities below and above 1 × 10 6  dead cells/mL which highlights the potential of the selected viability marker proteins in bioprocess control. Graphical abstract Overview of the LC-MRM-MS workflow for the determination of proteomic markers in conditioned media from the bioreactor that correlate with CHO cell death.

  14. Excretion of extracellular lipids by Streptococcus mutans BHT and FA-1.

    PubMed Central

    Cabacungan, E; Pieringer, R A

    1980-01-01

    Streptococcus mutans BHT and FA-1, when grown to log phase on chemically defined medium containing [14C]glycerol, excreted 15% of the total biosynthesized 14C-lipid into the medium. When grown to early stationary phase, 28 to 33% of the 14C-lipid was found in the medium. The radioactive lipids of these varieties of S. mutans were identified as diacylglycerol, diglucosyl diacylglycerol (DGD), monoglucosyl diacylglycerol, diphosphatidylglycerol, phosphatidylglycerol (PG), and smaller amounts of two other lipids tentatively were identified as amino acyl-PG and glycerol phosphoryl-DGD. All lipids were found as extracellular and intracellular components from cells grown to either log or stationary phase. However, there were some shifts in the relative percentage of these lipids as the cells changed from log to stationary phase. For example, the intracellular lipid content of log-phase S. mutans BHT was composed of 49% PG and 19% DGD, but these percents shifted to 18% PG and 57% DGD when the cells were grown to stationary phase. However, the extracellular lipids of this organism contained 50 to 60% PG and 20% DGD in both log and stationary phases. PMID:7380539

  15. Formation of the formate-nitrate electron transport pathway from inactive components in Escherichia coli.

    PubMed Central

    Scott, R H; DeMoss, J A

    1976-01-01

    When Escherichia coli was grown on medium containing 10 mM tungstate the formation of active formate dehydrogenase, nitrate reductase, and the complete formate-nitrate electron transport pathway was inhibited. Incubation of the tungstate-grown cells with 1 mM molybdate in the presence of chloramphenicol led to the rapid activation of both formate dehydrogenase and nitrate reductase, and, after a considerable lag, the complete electron transport pathway. Protein bands which corresponded to formate dehydrogenase and nitrate reductase were identified on polyacrylamide gels containing Triton X-100 after the activities were released from the membrane fraction and partially purified Cytochrome b1 was associated with the protein band corresponding to formate dehydrogenase but was not found elsewhere on the gels. When a similar fraction was prepared from cells grown on 10 mM tungstate, an inactive band corresponding to formate dehydrogenase was not observed on polyacrylamide gels; rather, a new faster migrating band was present. Cytochrome b1 was not associated with this band nor was it found anywhere else on the gels. This new band disappeared when the tungstate-grown cells were incubated with molybdate in the presence of chloramphenicol. The formate dehydrogenase activity which was formed, as well as a corresponding protein band, appeared at the original position on the gels. Cytochrome b1 was again associated with this band. The protein band which corresponded to nitrate reductase also was severely depressed in the tungstate-grown cells and a new faster migrating band appeared on the polyacrylamide gels. Upon activation of the nitrate reductase by incubation of the cells with molybdate, the new band diminished and protein reappeared at the original position. Most of the nitrate reductase activity which was formed appeared at the original position of nitrate reductase on gels although some was present at the position of the inactive band formed by tungstate-grown cells. Apparently, inactive forms of both formate dehydrogenase and nitrate reductase accumulate during growth on tungstate which are electrophoretically distinct from the active enzymes. Activation by molybdate results in molecular changes which include the reassociation of cytochrome b1 with formate dehydrogenase and restoration of both enzymes to their original electrophoretic mobilities. Images PMID:770433

  16. The BaeSR Two-Component Regulatory System Mediates Resistance to Condensed Tannins in Escherichia coli▿ †

    PubMed Central

    Zoetendal, Erwin G.; Smith, Alexandra H.; Sundset, Monica A.; Mackie, Roderick I.

    2008-01-01

    The gene expression profiles of Escherichia coli strains grown anaerobically with or without Acacia mearnsii (black wattle) extract were compared to identify tannin resistance strategies. The cell envelope stress protein gene spy and the multidrug transporter-encoding operon mdtABCD, both under the control of the BaeSR two-component regulatory system, were significantly up-regulated in the presence of tannins. BaeSR mutants were more tannin sensitive than their wild-type counterparts. PMID:18039828

  17. 3D X-Ray Nanotomography of Cells Grown on Electrospun Scaffolds.

    PubMed

    Bradley, Robert S; Robinson, Ian K; Yusuf, Mohammed

    2017-02-01

    Here, it is demonstrated that X-ray nanotomography with Zernike phase contrast can be used for 3D imaging of cells grown on electrospun polymer scaffolds. The scaffold fibers and cells are simultaneously imaged, enabling the influence of scaffold architecture on cell location and morphology to be studied. The high resolution enables subcellular details to be revealed. The X-ray imaging conditions were optimized to reduce scan times, making it feasible to scan multiple regions of interest in relatively large samples. An image processing procedure is presented which enables scaffold characteristics and cell location to be quantified. The procedure is demonstrated by comparing the ingrowth of cells after culture for 3 and 6 days. © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Properties of high quality GaP single crystals grown by computer controlled liquid encapsulated Czochralski technique

    NASA Astrophysics Data System (ADS)

    Kokubun, Y.; Washizuka, S.; Ushizawa, J.; Watanabe, M.; Fukuda, T.

    1982-11-01

    The properties of GaP single crystals grown by an automatically diameter controlled liquid encapsulated Czochralski technique using a computer have been studied. A dislocation density less than 5×104 cm-2 has been observed for crystal grown in a temperature gradient lower than 70 °C/cm near the solid-liquid interface. Crystals have about 10% higher electron mobility than that of commercially available coracle controlled crystals and have 0.2˜0.5 compensation ratios. Yellow light emitting diodes using computer controlled (100) substrates have shown extremely high external quantum efficiency of 0.3%.

  19. Novel nanofluidic chemical cells based on self-assembled solid-state SiO2 nanotubes.

    PubMed

    Zhu, Hao; Li, Haitao; Robertson, Joseph W F; Balijepalli, Arvind; Krylyuk, Sergiy; Davydov, Albert V; Kasianowicz, John J; Suehle, John S; Li, Qiliang

    2017-10-27

    Novel nanofluidic chemical cells based on self-assembled solid-state SiO 2 nanotubes on silicon-on-insulator (SOI) substrate have been successfully fabricated and characterized. The vertical SiO 2 nanotubes with a smooth cavity are built from Si nanowires which were epitaxially grown on the SOI substrate. The nanotubes have rigid, dry-oxidized SiO 2 walls with precisely controlled nanotube inner diameter, which is very attractive for chemical-/bio-sensing applications. No dispersion/aligning procedures were involved in the nanotube fabrication and integration by using this technology, enabling a clean and smooth chemical cell. Such a robust and well-controlled nanotube is an excellent case of developing functional nanomaterials by leveraging the strength of top-down lithography and the unique advantage of bottom-up growth. These solid, smooth, clean SiO 2 nanotubes and nanofluidic devices are very encouraging and attractive in future bio-medical applications, such as single molecule sensing and DNA sequencing.

  20. Novel nanofluidic chemical cells based on self-assembled solid-state SiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Zhu, Hao; Li, Haitao; Robertson, Joseph W. F.; Balijepalli, Arvind; Krylyuk, Sergiy; Davydov, Albert V.; Kasianowicz, John J.; Suehle, John S.; Li, Qiliang

    2017-10-01

    Novel nanofluidic chemical cells based on self-assembled solid-state SiO2 nanotubes on silicon-on-insulator (SOI) substrate have been successfully fabricated and characterized. The vertical SiO2 nanotubes with a smooth cavity are built from Si nanowires which were epitaxially grown on the SOI substrate. The nanotubes have rigid, dry-oxidized SiO2 walls with precisely controlled nanotube inner diameter, which is very attractive for chemical-/bio-sensing applications. No dispersion/aligning procedures were involved in the nanotube fabrication and integration by using this technology, enabling a clean and smooth chemical cell. Such a robust and well-controlled nanotube is an excellent case of developing functional nanomaterials by leveraging the strength of top-down lithography and the unique advantage of bottom-up growth. These solid, smooth, clean SiO2 nanotubes and nanofluidic devices are very encouraging and attractive in future bio-medical applications, such as single molecule sensing and DNA sequencing.

  1. Comparison of the efficiency of transplantation of bone marrow multipotent mesenchymal stromal cells cultured under normoxic and hypoxic conditions and their conditioned media on the model of acute lung injury.

    PubMed

    Chailakhyan, R K; Aver'yanov, A V; Zabozlaev, F G; Sobolev, P A; Sorokina, A V; Akul'shin, D A; Gerasimov, Yu V

    2014-05-01

    The therapeutic efficiency of intravenous injection of rat bone marrow multipotent mesenchymal stromal cells grown under conditions of normoxia and hypoxia (3% O2) and conditioned media from these cultures were compared on the rat model of acute lung injury induced by intraperitoneal injection of lipopolysaccharide. The best therapeutic efficiency was demonstrated by cells grown under hypoxic conditions. The effect of conditioned media was less pronounced and did not depend on the culturing conditions.

  2. Magnesium doping of efficient GaAs and Ga(0.75)In(0.25)As solar cells grown by metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Lewis, C. R.; Ford, C. W.; Werthen, J. G.

    1984-01-01

    Magnesium has been substituted for zinc in GaAs and Ga(0.75)In(0.25)As solar cells grown by metalorganic chemical vapor deposition (MOCVD). Bis(cyclopentadienyl)magnesium (Cp2Mg) is used as the MOCVD transport agent for Mg. Full retention of excellent material quality and efficient cell performance results. The substitution of Mg for Zn would enhance the abruptness and reproducibility of doping profiles, and facilitate high temperature processing and operation, due to the much lower diffusion coefficient of Mg, relative to Zn, in these materials.

  3. Effect of Electrical Stimulation on Beta-Adrenergic Receptor Population and Coupling Efficiency in Chicken and Rat Skeleton Muscle Cell Cultures

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, Kristin Y.; Strietzel, Catherine J.

    1999-01-01

    Expression of the beta-adrenergic receptor (bAR) and its coupling to cyclic AMP (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the bAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically, chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for seven days in culture were subjected to electrical stimulation for an additional two days at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the bAR population was not significantly affected by electrical stimulation; however, the ability of these cells to synthesize cyclic AMP was reduced by approximately one-half. Thus, in chicken muscle cells an enhanced level of contraction reduced the coupling efficiency of bAR for cyclic AMP production by approximately 55% compared to controls. In contrast, the bAR population in rat muscle cells was increased by approximately 25% by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was also increased by almost two-fold. Thus, in rat muscle cells an enhanced level of contraction increased the coupling efficiency of bAR for cyclic AMP production by approximately 50% compared to controls. The basal levels of intracellular cyclic AMP in both rat muscle cells and chicken muscle cells were not affected by electrical stimulation.

  4. Control of 5-aminolaevulinate synthetase activity in Rhodopseudomonas spheroides. The involvement of sulphur metabolism

    PubMed Central

    Neuberger, Albert; Sandy, John D.; Tait, George H.

    1973-01-01

    1. The `initial' 5-aminolaevulinate synthetase activity, that is the activity observed immediately after cell disruption, in extracts prepared from unharvested semianaerobically grown Rhodopseudomonas spheroides, was twice that observed under the same assay conditions in extracts prepared from harvested cells. 2. The effect of oxygenation of a culture on the `maximum' aminolaevulinate synthetase activity, that is the activity observed 1h after disruption of harvested cells, is markedly influenced by the contents of the growth medium. Oxygenation of organisms for 1h in the medium in which they have grown produces an 80–90% decrease in maximum activity, whereas similar treatment of organisms resuspended in fresh medium produces less than a 40% decrease. 3. This protective effect of fresh medium is absolutely dependent on the presence of sulphate. When cells are suspended in sulphate-deficient fresh medium, the maximum activity falls by 65–75% even without oxygenation. A high maximum activity is regenerated when sulphate is resupplied. 4. When organisms are oxygenated in the medium in which they have grown, the cellular contents of GSH+GSSG and cysteine+cystine fall very markedly and homolanthionine is formed. Both the fall in aminolaevulinate synthetase activity and the changes in sulphur metabolism are largely prevented by the addition of compounds which stimulate synthesis of cysteine de novo or inhibit the conversion of cysteine S into homocysteine S. 5. The maximum aminolaevulinate synthetase activity was directly proportional to the GSH+GSSG content of all cell preparations. In glutathione-depleted extracts the `low'-activity enzyme could be re-activated in vitro by the addition of GSH, GSSG, cysteine or cystine, whereas in extracts with a high glutathione content the `high'-activity enzyme was unaffected by these sulphur compounds. 6. The activation of low-activity enzyme with exogenous sulphur compounds was prevented by excluding air or by adding NADH. Studies with purified enzyme indicate that sulphur compounds do not interact directly with the enzyme, but that their effect is mediated by a number of other endogenous factors. PMID:4544404

  5. Advanced Protein Crystallization Facility (APCF)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This section of the Life and Microgravity Spacelab (LMS) publication contains articles entitled: (1) Crystallization of EGFR-EGF; (2) Crystallization of Apocrustacyanin C1; (3) Crystallization and X-ray Analysis of 5S rRNA and the 5S rRNA Domain A; (4) Growth of Lysozyme Crystals at Low Nucleation Density; (5) Comparative Analysis of Aspartyl tRNA-synthetase and Thaumatin Crystals Grown on Earth and In Microgravity; (6) Lysosome Crystal Growth in the Advanced Protein Crystallization Facility Monitored via Mach-Zehnder Interferometry and CCD Video; (7) Analysis of Thaumatin Crystals Grown on Earth and in Microgravity; (8) Crystallization of the Nucleosome Core Particle; (9) Crystallization of Photosystem I; (10) Mechanism of Membrane Protein Crystal Growth: Bacteriorhodopsin-mixed Micelle Packing at the Consolution Boundary, Stabilized in Microgravity; (11) Crystallization in a Microgravity Environment of CcdB, a Protein Involved in the Control of Cell Death; and (12) Crystallization of Sulfolobus Solfataricus

  6. Single crystal growth of the Er2PdSi3 intermetallic compound

    NASA Astrophysics Data System (ADS)

    Mazilu, I.; Frontzek, M.; Löser, W.; Behr, G.; Teresiak, A.; Schultz, L.

    2005-02-01

    Single crystals of the Er2PdSi3 intermetallic compound melting congruently at 1648 ∘C, were grown by a floating zone method with radiation heating. The control of oxygen content was the key factor to avoid oxide precipitates, which can affect effective grain selection in the crystal growth process. Crystals grown at velocities of 5 mm/h with a preferred direction close to (1 0 0) with inclination angles of about 12 ∘ against the rod axis show very distinct facets at the rod surface. The crystals are Pd-depleted and Si-rich with respect to the nominal Er2PdSi3 stoichiometry, but exhibit inferior element segregation. Measurements on oriented single crystalline samples revealed antiferromagnetic ordering below 7 K, a magnetic easy axis parallel to the (0 0 1) axis of the AlB2-type hexagonal unit cell, and anisotropic electric properties.

  7. A new paradigm for producing astaxanthin from the unicellular green alga Haematococcus pluvialis.

    PubMed

    Zhang, Zhen; Wang, Baobei; Hu, Qiang; Sommerfeld, Milton; Li, Yuanguang; Han, Danxiang

    2016-10-01

    The unicellular green alga Haematococcus pluvialis has been exploited as a cell factory to produce the high-value antioxidant astaxanthin for over two decades, due to its superior ability to synthesize astaxanthin under adverse culture conditions. However, slow vegetative growth under favorable culture conditions and cell deterioration or death under stress conditions (e.g., high light, nitrogen starvation) has limited the astaxanthin production. In this study, a new paradigm that integrated heterotrophic cultivation, acclimation of heterotrophically grown cells to specific light/nutrient regimes, followed by induction of astaxanthin accumulation under photoautotrophic conditions was developed. First, the environmental conditions such as pH, carbon source, nitrogen regime, and light intensity, were optimized to induce astaxanthin accumulation in the dark-grown cells. Although moderate astaxanthin content (e.g., 1% of dry weight) and astaxanthin productivity (2.5 mg L(-1)  day(-1) ) were obtained under the optimized conditions, a considerable number of cells died off when subjected to stress for astaxanthin induction. To minimize the susceptibility of dark-grown cells to light stress, the algal cells were acclimated, prior to light induction of astaxanthin biosynthesis, under moderate illumination in the presence of nitrogen. Introduction of this strategy significantly reduced the cell mortality rate under high-light and resulted in increased cellular astaxanthin content and astaxanthin productivity. The productivity of astaxanthin was further improved to 10.5 mg L(-1)  day(-1) by implementation of such a strategy in a bubbling column photobioreactor. Biochemical and physiological analyses suggested that rebuilding of photosynthetic apparatus including D1 protein and PsbO, and recovery of PSII activities, are essential for acclimation of dark-grown cells under photo-induction conditions. Biotechnol. Bioeng. 2016;113: 2088-2099. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  8. A new paradigm for producing astaxanthin from the unicellular green alga Haematococcus pluvialis

    PubMed Central

    Zhang, Zhen; Wang, Baobei; Hu, Qiang; Sommerfeld, Milton

    2016-01-01

    ABSTRACT The unicellular green alga Haematococcus pluvialis has been exploited as a cell factory to produce the high‐value antioxidant astaxanthin for over two decades, due to its superior ability to synthesize astaxanthin under adverse culture conditions. However, slow vegetative growth under favorable culture conditions and cell deterioration or death under stress conditions (e.g., high light, nitrogen starvation) has limited the astaxanthin production. In this study, a new paradigm that integrated heterotrophic cultivation, acclimation of heterotrophically grown cells to specific light/nutrient regimes, followed by induction of astaxanthin accumulation under photoautotrophic conditions was developed. First, the environmental conditions such as pH, carbon source, nitrogen regime, and light intensity, were optimized to induce astaxanthin accumulation in the dark‐grown cells. Although moderate astaxanthin content (e.g., 1% of dry weight) and astaxanthin productivity (2.5 mg L−1 day−1) were obtained under the optimized conditions, a considerable number of cells died off when subjected to stress for astaxanthin induction. To minimize the susceptibility of dark‐grown cells to light stress, the algal cells were acclimated, prior to light induction of astaxanthin biosynthesis, under moderate illumination in the presence of nitrogen. Introduction of this strategy significantly reduced the cell mortality rate under high‐light and resulted in increased cellular astaxanthin content and astaxanthin productivity. The productivity of astaxanthin was further improved to 10.5 mg L−1 day−1 by implementation of such a strategy in a bubbling column photobioreactor. Biochemical and physiological analyses suggested that rebuilding of photosynthetic apparatus including D1 protein and PsbO, and recovery of PSII activities, are essential for acclimation of dark‐grown cells under photo‐induction conditions. Biotechnol. Bioeng. 2016;113: 2088–2099. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:27563850

  9. Polyol concentrations in Aspergillus repens grown under salt stress.

    PubMed

    Kelavkar, U P; Chhatpar, H S

    1993-09-01

    Na(+), K(+) and the ratio of Na(+)/K(+) were higher in cells of the halotolerant Aspergillus repens grown with 2 M NaCl than without NaCl. The osmolytes, proline, glycerol, betaine and glutamate, did not affect the Na(+)/K(+) ratio, nor the polyol content of cells under any conditions. The concentrations of polyols, consisting of glycerol, arabitol, erythritol and mannitol, changed markedly during growth, indicating that they have a crucial role in osmotic adaptation.

  10. In Vitro Assessment of Cadmium Bioavailability in Chinese Cabbage Grown on Different Soils and Its Toxic Effects on Human Health

    PubMed Central

    Rafiq, Muhammad Tariq; He, Zhenli; Sun, Kewang; Xiaoe, Yang

    2015-01-01

    The minimum concentration of cadmium (Cd), by Chinese cabbage grown on Cd contaminated soils that can initiate toxicity in human liver cells using in vitro digestion coupled with Caco-2/HL-7702 cell models was studied. Cadmium bioaccessibility in the gastric phase for yellow soil (YS) cabbage (40.84%) and calcareous soil (CS) cabbage (21.54%) was significantly higher than small intestinal phase with the corresponding values of 21.2% and 11.11%, respectively. Cadmium bioavailability was higher in YS cabbage (5.27%–14.66%) than in CS cabbage (1.12%–9.64%). Cadmium concentrations (>0.74 μg) transported from YS and CS cabbage were able to induce oxidative (MDA, H2O2) stress by inhibiting antioxidant (SOD, GPx) enzyme activities in human liver cells (HL-7702). Additionally the study revealed that the ingestion of Cd contaminated Chinese cabbage grown in acidic soil (yellow soil) weakened the antioxidant defense system under all levels of contamination (2, 6, and 9 mg·kg−1) which ultimately escalated the oxidative stress in liver cells; however, in case of CS cabbage, a marked oxidative stress was observed only at 9 mg kg−1 Cd level of soil. Therefore, it is necessary to monitor Cd concentrations in leafy vegetables grown on acidic soils to minimize human health risk. PMID:26167479

  11. Protein Crystal Bovine Insulin

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The comparison of protein crystal, Bovine Insulin space-grown (left) and earth-grown (right). Facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  12. Full-grown oocytes from Xenopus laevis resume growth when placed in culture

    PubMed Central

    Wallace, Robin A.; Misulovin, Ziva; Etkin, Laurence D.

    1981-01-01

    When most full-grown, follicle cell-invested oocytes from Xenopus laevis are placed in an appropriate culture medium, they resume growth and remain physiologically healthy for at least 2-3 weeks. Rates of growth by full-grown oocytes in vitro generally approximate and can even exceed the most rapid growth rate achieved by vitellogenic oocytes in vivo. Resumption of oocyte growth can be correlated with the loss of investing follicle cells, which under normal conditions appear to interfere with vitellogenin and nutrient access to the oocyte. The final size reached by the oocyte within the ovary is thus not an intrinsic property of the oocyte but is extrinsically imposed by the somatic environment. Images PMID:16593019

  13. Process for selection of oxygen-tolerant algal mutants that produce H{sub 2}

    DOEpatents

    Ghirardi, M.L.; Seibert, M.

    1999-02-16

    A process for selection of oxygen-tolerant, H{sub 2}-producing algal mutant cells comprises: (a) growing algal cells photoautotrophically under fluorescent light to mid log phase; (b) inducing algal cells grown photoautotrophically under fluorescent light to mid log phase in step (a) anaerobically by (1) resuspending the cells in a buffer solution and making said suspension anaerobic with an inert gas and (2) incubating the suspension in the absence of light at ambient temperature; (c) treating the cells from step (b) with metronidazole, sodium azide, and added oxygen to controlled concentrations in the presence of white light; (d) washing off metronidazole and sodium azide to obtain final cell suspension; (e) plating said final cell suspension on a minimal medium and incubating in light at a temperature sufficient to enable colonies to appear; (f) counting the number of colonies to determine the percent of mutant survivors; and (g) testing survivors to identify oxygen-tolerant H{sub 2}-producing mutants. 5 figs.

  14. Process for selection of Oxygen-tolerant algal mutants that produce H.sub.2

    DOEpatents

    Ghirardi, Maria L.; Seibert, Michael

    1999-01-01

    A process for selection of oxygen-tolerant, H.sub.2 -producing algal mutant cells comprising: (a) growing algal cells photoautotrophically under fluorescent light to mid log phase; (b) inducing algal cells grown photoautrophically under fluorescent light to mid log phase in step (a) anaerobically by (1) resuspending the cells in a buffer solution and making said suspension anaerobic with an inert gas; (2) incubating the suspension in the absence of light at ambient temperature; (c) treating the cells from step (b) with metronidazole, sodium azide, and added oxygen to controlled concentrations in the presence of white light. (d) washing off metronidazole and sodium azide to obtain final cell suspension; (e) plating said final cell suspension on a minimal medium and incubating in light at a temperature sufficient to enable colonies to appear; (f) counting the number of colonies to determine the percent of mutant survivors; and (g) testing survivors to identify oxygen-tolerant H.sub.2 -producing mutants.

  15. Effects of soya fatty acids on cassava ethanol fermentation.

    PubMed

    Xiao, Dongguang; Wu, Shuai; Zhu, Xudong; Chen, Yefu; Guo, Xuewu

    2010-01-01

    Ethanol tolerance is a key trait of microbes in bioethanol production. Previous studies have shown that soya flour contributed to the increase of ethanol tolerance of yeast cells. In this paper, the mechanism of this ethanol tolerance improvement was investigated in cassava ethanol fermentation supplemented with soya flour or defatted soya flour, respectively. Experiment results showed that ethanol tolerance of cells from soya flour supplemented medium increased by 4-6% (v/v) than the control with defatted soya flour. Microscopic observation found that soya flour can retain the cell shape while dramatic elongations of cells were observed with the defatted soya flour supplemented medium. Unsaturated fatty acids (UFAs) compositions of cell membrane were analyzed and the UFAs amounts increased significantly in all tested strains grown in soya flour supplemented medium. Growth study also showed that soya flour stimulated the cell growth rate by approximately tenfolds at 72-h fermentation. All these results suggested that soya fatty acids play an important role to protect yeast cells from ethanol stress during fermentation process.

  16. Pyrimidine Biosynthesis in Lactobacillus leichmannii

    PubMed Central

    Hutson, Judith Y.; Downing, Mancourt

    1968-01-01

    Tracer studies of pyrimidine biosynthesis in Lactobacillus leichmannii (ATCC 7830) indicated that, while aspartate is utilized in the usual manner, the guanido carbon of arginine, rather than carbon dioxide, is utilized as a pyrimidine precursor. The guanido carbon of arginine also contributes, to some extent, to the carbon dioxide pool utilized for purine biosynthesis. The enzyme of the first reaction leading from arginine to pyrimidines, arginine deiminase, was investigated in crude bacterial extracts. It was inhibited by thymidylic acid and purine ribonucleotides, and to a lesser extent by purine deoxynucleotides and deoxycytidylic acid. Under the assay conditions employed, a number of nucleotides had no effect on the enzyme activity of the aspartate transcarbamylase of L. leichmannii. Growth of the cells in media containing uracil, compared to growth in media without uracil, resulted in a four- to fivefold decrease in the concentrations of aspartate transcar-bamylase and dihydroorotase and a twofold increase in the concentration of arginine deiminase, as estimated from specific enzyme activity in crude extracts of the cells. A small increase in specific enzyme activity of ornithine transcarbamylase and carbamate kinase was also observed in extracts obtained from cells grown on uracil. No appreciable change in concentration of any of the five enzymes studied was detected when the cells were grown in media containing thymidine or guanylic acid. A hypothetical scheme which suggests a relationship between the control of purine and pyrimidine biosynthesis in this bacterium and which is consistent with the experimental results obtained is presented. PMID:5686000

  17. In situ characterization and analysis of Salmonella biofilm formation under meat processing environments using a combined microscopic and spectroscopic approach.

    PubMed

    Wang, Huhu; Ding, Shijie; Wang, Guangyu; Xu, Xinglian; Zhou, Guanghong

    2013-11-01

    Salmonella biofilm on food-contact surfaces present on food processing facilities may serve as a source of cross-contamination. In our work, biofilm formation by multi-strains of meat-borne Salmonella incubated at 20 °C, as well as the composition and distribution of extracellular polymeric substances (EPS), were investigated in situ by combining confocal laser scanning microscopy (CLSM), scanning electron microscope (SEM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and Raman spectroscopy. A standard laboratory culture medium (tryptic soy broth, TSB) was used and compared with an actual meat substrate (meat thawing-loss broth, MTLB). The results indicated that Salmonella grown in both media were able to form biofilms on stainless steel surfaces via building a three-dimensional structure with multilayers of cells. Although the number of biofilm cells grown in MTLB was less than that in TSB, the cell numbers in MTLB was adequate to form a steady and mature biofilm. Salmonella grown in MTLB showed "cloud-shaped" morphology in the mature biofilm, whereas when grown in TSB appeared "reticular-shaped". The ATR-FTIR and Raman analysis revealed a completely different chemical composition between biofilms and the corresponding planktonic cells, and some important differences in biofilms grown in MTLB and in TSB. Importantly, our findings suggested that the progress towards a mature Salmonella biofilm on stainless steel surfaces may be associated with the production of the EPS matrix, mainly consisting of polysaccharides and proteins, which may serve as useful markers of biofilm formation. Our work indicated that a combination of these non-destructive techniques provided new insights into the formation of Salmonella biofilm matrix. © 2013.

  18. Investigation of ZnSe-coated silicon substrates for GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Huber, Daniel A.; Olsen, Larry C.; Dunham, Glen; Addis, F. William

    1993-01-01

    Studies are being carried out to determine the feasibility of using ZnSe as a buffer layer for GaAs solar cells grown on silicon. This study was motivated by reports in the literature indicating ZnSe films had been grown by metallorganic chemical vapor deposition (MOCVD) onto silicon with EPD values of 2 x 10(exp 5) cm(sup -2), even though the lattice mismatch between silicon and ZnSe is 4.16 percent. These results combined with the fact that ZnSe and GaAs are lattice matched to within 0.24 percent suggest that the prospects for growing high efficiency GaAs solar cells onto ZnSe-coated silicon are very good. Work to date has emphasized development of procedures for MOCVD growth of (100) ZnSe onto (100) silicon wafers, and subsequent growth of GaAs films on ZnSe/Si substrates. In order to grow high quality single crystal GaAs with a (100) orientation, which is desirable for solar cells, one must grow single crystal (100) ZnSe onto silicon substrates. A process for growth of (100) ZnSe was developed involving a two-step growth procedure at 450 C. Single crystal, (100) GaAs films were grown onto the (100) ZnSe/Si substrates at 610 C that are adherent and specular. Minority carrier diffusion lengths for the GaAs films grown on ZnSe/Si substrates were determined from photoresponse properties of Al/GaAs Schottky barriers. Diffusion lengths for n-type GaAs films are currently on the order of 0.3 microns compared to 2.0 microns for films grown simultaneously by homoepitaxy.

  19. Atmospheric pressure reaction cell for operando sum frequency generation spectroscopy of ultrahigh vacuum grown model catalysts

    NASA Astrophysics Data System (ADS)

    Roiaz, Matteo; Pramhaas, Verena; Li, Xia; Rameshan, Christoph; Rupprechter, Günther

    2018-04-01

    A new custom-designed ultrahigh vacuum (UHV) chamber coupled to a UHV and atmospheric-pressure-compatible spectroscopic and catalytic reaction cell is described, which allows us to perform IR-vis sum frequency generation (SFG) vibrational spectroscopy during catalytic (kinetic) measurements. SFG spectroscopy is an exceptional tool to study vibrational properties of surface adsorbates under operando conditions, close to those of technical catalysis. This versatile setup allows performing surface science, SFG spectroscopy, catalysis, and electrochemical investigations on model systems, including single crystals, thin films, and deposited metal nanoparticles, under well-controlled conditions of gas composition, pressure, temperature, and potential. The UHV chamber enables us to prepare the model catalysts and to analyze their surface structure and composition by low energy electron diffraction and Auger electron spectroscopy, respectively. Thereafter, a sample transfer mechanism moves samples under UHV to the spectroscopic cell, avoiding air exposure. In the catalytic cell, SFG spectroscopy and catalytic tests (reactant/product analysis by mass spectrometry or gas chromatography) are performed simultaneously. A dedicated sample manipulation stage allows the model catalysts to be examined from LN2 temperature to 1273 K, with gaseous reactants in a pressure range from UHV to atmospheric. For post-reaction analysis, the SFG cell is rapidly evacuated and samples are transferred back to the UHV chamber. The capabilities of this new setup are demonstrated by benchmark results of CO adsorption on Pt and Pd(111) single crystal surfaces and of CO adsorption and oxidation on a ZrO2 supported Pt nanoparticle model catalyst grown by atomic layer deposition.

  20. Modulation of Cell Proliferation and Differentiation through Substrate-dependent Changes in Fibronectin Conformation

    PubMed Central

    García, Andrés J.; Vega, María D.; Boettiger, David

    1999-01-01

    Integrin-mediated cell adhesion to extracellular matrices provides signals essential for cell cycle progression and differentiation. We demonstrate that substrate-dependent changes in the conformation of adsorbed fibronectin (Fn) modulated integrin binding and controlled switching between proliferation and differentiation. Adsorption of Fn onto bacterial polystyrene (B), tissue culture polystyrene (T), and collagen (C) resulted in differences in Fn conformation as indicated by antibody binding. Using a biochemical method to quantify bound integrins in cultured cells, we found that differences in Fn conformation altered the quantity of bound α5 and β1 integrin subunits but not αv or β3. C2C12 myoblasts grown on these Fn-coated substrates proliferated to different levels (B > T > C). Immunostaining for muscle-specific myosin revealed minimal differentiation on B, significant levels on T, and extensive differentiation on C. Differentiation required binding to the RGD cell binding site in Fn and was blocked by antibodies specific for this site. Switching between proliferation and differentiation was controlled by the levels of α5β1 integrin bound to Fn, and differentiation was inhibited by anti-α5, but not anti-αv, antibodies, suggesting distinct integrin-mediated signaling pathways. Control of cell proliferation and differentiation through conformational changes in extracellular matrix proteins represents a versatile mechanism to elicit specific cellular responses for biological and biotechnological applications. PMID:10069818

Top