Lessons learned in command environment development
NASA Astrophysics Data System (ADS)
Wallace, Daniel F.; Collie, Brad E.
2000-11-01
As we consider the issues associated with the development of an Integrated Command Environment (ICE), we must obviously consider the rich history in the development of control rooms, operations centers, information centers, dispatch offices, and other command and control environments. This paper considers the historical perspective of control environments from the industrial revolution through the information revolution, and examines the historical influences and the implications that that has for us today. Environments to be considered are military command and control spaces, emergency response centers, medical response centers, nuclear reactor control rooms, and operations centers. Historical 'lessons learned' from the development and evolution of these environments will be examined to determine valuable models to use, and those to be avoided. What are the pitfalls? What are the assumptions that drive the environment design? Three case histories will be presented, examining (1) the control room of the Three Mile Island power plant, (2) the redesign of the US Naval Space Command operations center, and (3) a testbed for an ICE aboard a naval surface combatant.
ERIC Educational Resources Information Center
Bishop, Catharine F.; Caston, Michael I.; King, Cheryl A.
2014-01-01
Learner-centered environments effectively implement multiple teaching techniques to enhance students' higher education experience and provide them with greater control over their academic learning. This qualitative study involves an exploration of the eight reasons for learner-centered teaching found in Terry Doyle's 2008 book, "Helping…
New Mission Control Center Briefing
NASA Technical Reports Server (NTRS)
1995-01-01
Live footage shows panelists, Chief Center Systems Division John Muratore, and Acting Chief, Control Center Systems Division, Linda Uljon, giving an overview of the new Mission Control Center. Muratore and Uljon talk about the changes and modernization of the new Center. The panelists mention all the new capabilities of the new Center. They emphasize the Distributed real time command and control environment, the reduction in operation costs, and even the change from coaxial cables to fiber optic cables. Uljon also tells us that the new Control Center will experience its first mission after the launch of STS-70 and its first complete mission (both launching and landing) during STS-71.
Intelligent tutoring in the spacecraft command/control environment
NASA Technical Reports Server (NTRS)
Truszkowski, Walter F.
1988-01-01
The spacecraft command/control environment is becoming increasingly complex. As we enter the era of Space Station and the era of more highly automated systems, it is evident that the critical roles played by operations personnel in supervising the many required control center system components is becoming more cognitively demanding. In addition, the changing and emerging roles in the operations picture have far-reaching effects on the achievement of mission objectives. Thus highly trained and competent operations personnel are mandatory for success. Keeping pace with these developments has been computer-aided instruction utilizing various artificial intelligence technologies. The impacts of this growing capability on the stringent requirements for efficient and effective control center operations personnel is an area of much concentrated study. Some of the research and development of automated tutoring systems for the spacecraft command/control environment is addressed.
2000-10-25
At the test observation periscope in the Test Control Center exhibit in StenniSphere at the John C. Stennis Space Center in Hancock County, Miss., visitors can observe a test of a Space Shuttle Main Engine exactly as test engineers might see it during a real engine test. The Test Control Center exhibit exactly simulates not only the test control environment, but also the procedure of testing a rocket engine. Designed to entertain while educating, StenniSphere includes informative dispays and exhibits from NASA's lead center for rocket propulsion and remote sensing applications. StenniSphere is open free of charge from 9 a.m. to 5 p.m. daily.
Adaptation of a Control Center Development Environment for Industrial Process Control
NASA Technical Reports Server (NTRS)
Killough, Ronnie L.; Malik, James M.
1994-01-01
In the control center, raw telemetry data is received for storage, display, and analysis. This raw data must be combined and manipulated in various ways by mathematical computations to facilitate analysis, provide diversified fault detection mechanisms, and enhance display readability. A development tool called the Graphical Computation Builder (GCB) has been implemented which provides flight controllers with the capability to implement computations for use in the control center. The GCB provides a language that contains both general programming constructs and language elements specifically tailored for the control center environment. The GCB concept allows staff who are not skilled in computer programming to author and maintain computer programs. The GCB user is isolated from the details of external subsystem interfaces and has access to high-level functions such as matrix operators, trigonometric functions, and unit conversion macros. The GCB provides a high level of feedback during computation development that improves upon the often cryptic errors produced by computer language compilers. An equivalent need can be identified in the industrial data acquisition and process control domain: that of an integrated graphical development tool tailored to the application to hide the operating system, computer language, and data acquisition interface details. The GCB features a modular design which makes it suitable for technology transfer without significant rework. Control center-specific language elements can be replaced by elements specific to industrial process control.
Role and interest of new technologies in data processing for space control centers
NASA Astrophysics Data System (ADS)
Denier, Jean-Paul; Caspar, Raoul; Borillo, Mario; Soubie, Jean-Luc
1990-10-01
The ways in which a multidisplinary approach will improve space control centers is discussed. Electronic documentation, ergonomics of human computer interfaces, natural language, intelligent tutoring systems and artificial intelligence systems are considered and applied in the study of the Hermes flight control center. It is concluded that such technologies are best integrated into a classical operational environment rather than taking a revolutionary approach which would involve a global modification of the system.
Technologies for the marketplace from the Centers for Disease Control
NASA Technical Reports Server (NTRS)
Reid-Sanden, Frances L.; Greene, R. Eric; Malvitz, Dolores M.
1991-01-01
The Centers for Disease Control, a Public Health Service agency, is responsible for the prevention and control of disease and injury. Programs range from surveillance and prevention of chronic and infectious diseases to occupational health and injury control. These programs have produced technologies in a variety of fields, including vaccine development, new methods of disease diagnosis, and new tools to ensure a safer work environment.
Advanced technologies for Mission Control Centers
NASA Technical Reports Server (NTRS)
Dalton, John T.; Hughes, Peter M.
1991-01-01
Advance technologies for Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: technology needs; current technology efforts at GSFC (human-machine interface development, object oriented software development, expert systems, knowledge-based software engineering environments, and high performance VLSI telemetry systems); and test beds.
Al-Namazi, Ali A; El-Bana, Magdy I; Bonser, Stephen P
2017-04-01
Nurse plant facilitation in stressful environments can produce an environment with relatively low stress under its canopy. These nurse plants may produce the conditions promoting intense competition between coexisting species under the canopy, and canopies may establish stress gradients, where stress increases toward the edge of the canopy. Competition and facilitation on these stress gradients may control species distributions in the communities under canopies. We tested the following predictions: (1) interactions between understory species shift from competition to facilitation in habitats experiencing increasing stress from the center to the edge of canopy of a nurse plant, and (2) species distributions in understory communities are controlled by competitive interactions at the center of canopy, and facilitation at the edge of the canopy. We tested these predictions using a neighbor removal experiment under nurse trees growing in arid environments. Established individuals of each of four of the most common herbaceous species in the understory were used in the experiment. Two species were more frequent in the center of the canopy, and two species were more frequent at the edge of the canopy. Established individuals of each species were subjected to neighbor removal or control treatments in both canopy center and edge habitats. We found a shift from competitive to facilitative interactions from the center to the edge of the canopy. The shift in the effect of neighbors on the target species can help to explain species distributions in these canopies. Canopy-dominant species only perform well in the presence of neighbors in the edge microhabitat. Competition from canopy-dominant species can also limit the performance of edge-dominant species in the canopy microhabitat. The shift from competition to facilitation under nurse plant canopies can structure the understory communities in extremely stressful environments.
Customizing graphical user interface technology for spacecraft control centers
NASA Technical Reports Server (NTRS)
Beach, Edward; Giancola, Peter; Gibson, Steven; Mahmot, Ronald
1993-01-01
The Transportable Payload Operations Control Center (TPOCC) project is applying the latest in graphical user interface technology to the spacecraft control center environment. This project of the Mission Operations Division's (MOD) Control Center Systems Branch (CCSB) at NASA Goddard Space Flight Center (GSFC) has developed an architecture for control centers which makes use of a distributed processing approach and the latest in Unix workstation technology. The TPOCC project is committed to following industry standards and using commercial off-the-shelf (COTS) hardware and software components wherever possible to reduce development costs and to improve operational support. TPOCC's most successful use of commercial software products and standards has been in the development of its graphical user interface. This paper describes TPOCC's successful use and customization of four separate layers of commercial software products to create a flexible and powerful user interface that is uniquely suited to spacecraft monitoring and control.
Voice Over Internet Protocol (VoIP) in a Control Center Environment
NASA Technical Reports Server (NTRS)
Pirani, Joseph; Calvelage, Steven
2010-01-01
The technology of transmitting voice over data networks has been available for over 10 years. Mass market VoIP services for consumers to make and receive standard telephone calls over broadband Internet networks have grown in the last 5 years. While operational costs are less with VoIP implementations as opposed to time division multiplexing (TDM) based voice switches, is it still advantageous to convert a mission control center s voice system to this newer technology? Marshall Space Flight Center (MSFC) Huntsville Operations Support Center (HOSC) has converted its mission voice services to a commercial product that utilizes VoIP technology. Results from this testing, design, and installation have shown unique considerations that must be addressed before user operations. There are many factors to consider for a control center voice design. Technology advantages and disadvantages were investigated as they refer to cost. There were integration concerns which could lead to complex failure scenarios but simpler integration for the mission infrastructure. MSFC HOSC will benefit from this voice conversion with less product replacement cost, less operations cost and a more integrated mission services environment.
Optimizing Flight Control Software With an Application Platform
NASA Technical Reports Server (NTRS)
Smith, Irene Skupniewicz; Shi, Nija; Webster, Christopher
2012-01-01
Flight controllers in NASA s mission control centers work day and night to ensure that missions succeed and crews are safe. The IT goals of NASA mission control centers are similar to those of most businesses: to evolve IT infrastructure from basic to dynamic. This paper describes Mission Control Technologies (MCT), an application platform that is powering mission control today and is designed to meet the needs of future NASA control centers. MCT is an extensible platform that provides GUI components and a runtime environment. The platform enables NASA s IT goals through its use of lightweight interfaces and configurable components, which promote standardization and incorporate useful solution patterns. The MCT architecture positions mission control centers to reach the goal of dynamic IT, leading to lower cost of ownership, and treating software as a strategic investment.
PILOT: An intelligent distributed operations support system
NASA Technical Reports Server (NTRS)
Rasmussen, Arthur N.
1993-01-01
The Real-Time Data System (RTDS) project is exploring the application of advanced technologies to the real-time flight operations environment of the Mission Control Centers at NASA's Johnson Space Center. The system, based on a network of engineering workstations, provides services such as delivery of real time telemetry data to flight control applications. To automate the operation of this complex distributed environment, a facility called PILOT (Process Integrity Level and Operation Tracker) is being developed. PILOT comprises a set of distributed agents cooperating with a rule-based expert system; together they monitor process operation and data flows throughout the RTDS network. The goal of PILOT is to provide unattended management and automated operation under user control.
Plant growth chamber based on space proven controlled environment technology
NASA Astrophysics Data System (ADS)
Ignatius, Ronald W.; Ignatius, Matt H.; Imberti, Henry J.
1997-01-01
Quantum Devices, Inc., in conjunction with Percival Scientific, Inc., and the Wisconsin Center for Space Automation and Robotics (WCSAR) have developed a controlled environment plant growth chamber for terrestrial agricultural and scientific applications. This chamber incorporates controlled environment technology used in the WCSAR ASTROCULTURE™ flight unit for conducting plant research on the Space Shuttle. The new chamber, termed CERES 2010, features air humidity, temperature, and carbon dioxide control, an atmospheric contaminant removal unit, an LED lighting system, and a water and nutrient delivery system. The advanced environment control technology used in this chamber will increase the reliability and repeatability of environmental physiology data derived from plant experiments conducted in this chamber.
Emergency Medical Treatment Needs: Chronic and Acute Exposure to Hazardous Materials.
1982-06-01
II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Federal Emergency Management Agency June 1982 Washington, D.C. 20472 IS. NUMBER OF PAGES 109...and Centers for Disease Control / NIOSHl . Local or regional (within state) providers/ coordinators of medical care for chemical casualties, i.e...from Poison Control Centers; from Ecology and Environment, Incorporated; and from the Medical University of South Carolina. The major computerized data
Influence of the social environment on children's school travel.
McDonald, Noreen C; Deakin, Elizabeth; Aalborg, Annette E
2010-01-01
To analyze the association between parental perceptions of the social environment and walking and biking to school among 10-14-year-olds. Surveys were conducted with 432 parents of 10-14-year-olds in the San Francisco Bay Area during 2006 and 2007; the final sample size was 357. The social environment was measured with a 3-item scale assessing child-centered social control. Unadjusted and adjusted differences in rates of active travel to school were compared between families reporting high levels of social control in their neighborhood and those reporting low or neutral levels of social control. Adjusted differences were computed by matching respondents on child and household characteristics and distance to school. Of children whose parents reported high levels of social control, 37% walked or biked to school, compared with 24% of children whose parents reported low or neutral levels. The adjusted difference between the two groups was 10 percentage points (p=0.04). The association was strongest for girls and non-Hispanic whites. Higher levels of parent-perceived child-centered social control are associated with more walking and biking to school. Increasing physical activity through active travel to school may require intervention programs to address the social environment.
Decision support automation research in the en route air traffic control environment
DOT National Transportation Integrated Search
2002-01-01
This study examined the effect of automated decision support on Certified Professional Controller (CPC) behavior. : Sixteen CPCs from Air Route Traffic Control Centers participated in human-in-the-loop simulations. CPCs controlled : two levels of tra...
75 FR 54351 - Statement of Organization, Functions, and Delegations of Authority
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-07
... helping staff create a safe, healthful workplace environment, by assisting in the prevention of work... Health and Safety (CAJP), and insert the following: Office of Safety, Health, and Environment (CAJP). The mission of the Office of Safety, Health, and Environment (OSHE) of the Centers for Disease Control and...
Glenn Extreme Environments Rig (GEER) Independent Review
NASA Technical Reports Server (NTRS)
Jankovsky, Robert S.; Smiles, Michael D.; George, Mark A.; Ton, Mimi C.; Le, Son K.
2015-01-01
The Chief of the Space Science Project Office at Glenn Research Center (GRC) requested support from the NASA Engineering and Safety Center (NESC) to satisfy a request from the Science Mission Directorate (SMD) Associate Administrator and the Planetary Science Division Chief to obtain an independent review of the Glenn Extreme Environments Rig (GEER) and the operational controls in place for mitigating any hazard associated with its operation. This document contains the outcome of the NESC assessment.
An Analysis of En Route Controller-Pilot Voice Communications
DOT National Transportation Integrated Search
1993-03-01
The purposes of this analysis were to examine current pilot-controller communication practices in the en route : environment. Forty-eight hours of voice tapes from eight different Air Route Traffic Control Centers (ARTCCs) were : examined. There were...
NASA Astrophysics Data System (ADS)
Randler, Christoph; Kummer, Barbara; Wilhelm, Christian
2012-06-01
The aim of this study was to assess the outcome of a zoo visit in terms of learning and retention of knowledge concerning the adaptations and behavior of vertebrate species. Basis of the work was the concept of implementing zoo visits as an out-of-school setting for formal, curriculum based learning. Our theoretical framework centers on the self-determination theory, therefore, we used a group-based, hands-on learning environment. To address this questions, we used a treatment—control design (BACI) with different treatments and a control group. Pre-, post- and retention tests were applied. All treatments led to a substantial increase of learning and retention knowledge compared to the control group. Immediately after the zoo visit, the zoo-guide tour provided the highest scores, while after a delay of 6 weeks, the learner-centered environment combined with a teacher-guided summarizing scored best. We suggest incorporating the zoo as an out-of-school environment into formal school learning, and we propose different methods to improve learning in zoo settings.
National Center for Nuclear Security - NCNS
None
2018-01-16
As the United States embarks on a new era of nuclear arms control, the tools for treaty verification must be accurate and reliable, and must work at stand-off distances. The National Center for Nuclear Security, or NCNS, at the Nevada National Security Site, is poised to become the proving ground for these technologies. The center is a unique test bed for non-proliferation and arms control treaty verification technologies. The NNSS is an ideal location for these kinds of activities because of its multiple environments; its cadre of experienced nuclear personnel, and the artifacts of atmospheric and underground nuclear weapons explosions. The NCNS will provide future treaty negotiators with solid data on verification and inspection regimes and a realistic environment in which future treaty verification specialists can be trained. Work on warhead monitoring at the NCNS will also support future arms reduction treaties.
2013-01-01
damage control; LHD flight deck and well deck operations; fleet surgical team; Afloat Training Group; Assault Craft Unit; Naval Surface Warfare Center ...Biological, Radiological and Nuclear School, and U.S. Army Edgewood Chemical Biological Center , Guidelines for Mass Casualty Decontamination During a HAZMAT...Policy Center of the RAND National Defense Research Institute, a federally funded research and development center sponsored by OSD, the Joint Staff
NASA Technical Reports Server (NTRS)
Chappell, Steve P.; Gernhardt, Michael L.
2009-01-01
Center of gravity (CG) is likely to be an important variable in astronaut performance during partial gravity extravehicular activity (EVA). The Apollo Lunar EVA experience revealed challenges with suit stability and control. The EVA Physiology, Systems and Performance Project (EPSP) in conjunction with the Constellation EVA Systems Project Office have developed plans to systematically understand the role of suit weight, CG and suit pressure on astronaut performance in partial gravity environments. This presentation based upon CG studies seeks to understand the impact of varied CG on human performance in lunar gravity.
Research References Related to Indoor Air Quality in Schools
A healthy school environment is one of the keys to keeping young minds and bodies strong. In fact, a healthy school environment is one of eight core components in the Centers for Disease Control and Prevention (CDC) model Healthy Youth!
Frequently Asked Questions about Improved Academic Performance
A healthy school environment is one of the keys to keeping young minds and bodies strong. In fact, a healthy school environment is one of eight core components in the Centers for Disease Control and Prevention (CDC) model “Healthy Youth! Coordinated
NASA Technical Reports Server (NTRS)
Hanson, Curt
2014-01-01
An adaptive augmenting control algorithm for the Space Launch System has been developed at the Marshall Space Flight Center as part of the launch vehicles baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a proposed manual steering mode were investigated by giving the pilot trajectory deviation cues and pitch rate command authority.
Center for the Built Environment: Research on Controls and Information
and Control Sustainability and Whole Building Energy Publications Research Area : Research on Human Interactions Contributing to the next generation of high-performance building control systems. New information for sensing and control of buildings using wireless communications technology, micro-electromechancial
TSAFE Interface Control Document v 2.0
NASA Technical Reports Server (NTRS)
Paielli, Russell A.; Bach, Ralph E.
2013-01-01
This document specifies the data interface for TSAFE, the Tactical Separation-Assured Flight Environment. TSAFE is a research prototype of a software application program for alerting air traffic controllers to imminent conflicts in enroute airspace. It is intended for Air Route Traffic Control Centers ("Centers") in the U.S. National Airspace System. It predicts trajectories for approximately 3 minutes into the future, searches for conflicts, and sends data about predicted conflicts to the client, which uses the data to alert an air traffic controller of conflicts. TSAFE itself does not provide a graphical user interface.
2016-12-01
isolate the breach. “At the company level, direct fire control measures are effective only if the entire unit has a common understanding of what they mean... units must have the same control measures , and these measures must be shared with 66 CENTER FOR ARMY LESSONS LEARNED adjacent units for them to be...Graphic control measures • Adjacent unit coordination • CCIRs • Command and signal • Rules of engagement (ROE) Mission Orders in Practice During
Research into language concepts for the mission control center
NASA Technical Reports Server (NTRS)
Dellenback, Steven W.; Barton, Timothy J.; Ratner, Jeremiah M.
1990-01-01
A final report is given on research into language concepts for the Mission Control Center (MCC). The Specification Driven Language research is described. The state of the image processing field and how image processing techniques could be applied toward automating the generation of the language known as COmputation Development Environment (CODE or Comp Builder) are discussed. Also described is the development of a flight certified compiler for Comps.
Chenoweth, Lynn; Vickland, Victor; Stein-Parbury, Jane; Jeon, Yun-Hee; Kenny, Patricia; Brodaty, Henry
2015-10-01
To answer questions on the essential components (services, operations and resources) of a person-centered aged care home (iHome) using computer simulation. iHome was developed with AnyLogic software using extant study data obtained from 60 Australian aged care homes, 900+ clients and 700+ aged care staff. Bayesian analysis of simulated trial data will determine the influence of different iHome characteristics on care service quality and client outcomes. Interim results: A person-centered aged care home (socio-cultural context) and care/lifestyle services (interactional environment) can produce positive outcomes for aged care clients (subjective experiences) in the simulated environment. Further testing will define essential characteristics of a person-centered care home.
NASA Technical Reports Server (NTRS)
Hughes, Mark S.; Davis, Dawn M.; Bakker, Henry J.; Jensen, Scott L.
2007-01-01
This viewgraph presentation reviews the design of the electrical systems that are required for the testing of rockets at the Rocket Propulsion Facility at NASA Stennis Space Center (NASA SSC). NASA/SSC s Mission in Rocket Propulsion Testing Is to Acquire Test Performance Data for Verification, Validation and Qualification of Propulsion Systems Hardware. These must be accurate reliable comprehensive and timely. Data acquisition in a rocket propulsion test environment is challenging: severe temporal transient dynamic environments, large thermal gradients, vacuum to 15 ksi pressure regimes SSC has developed and employs DAS, control systems and control systems and robust instrumentation that effectively satisfies these challenges.
NASA Astrophysics Data System (ADS)
Schlicker, Lukas; Doran, Andrew; Schneppmüller, Peter; Gili, Albert; Czasny, Mathias; Penner, Simon; Gurlo, Aleksander
2018-03-01
This work describes a device for time-resolved synchrotron-based in situ and operando X-ray powder diffraction measurements at elevated temperatures under controllable gaseous environments. The respective gaseous sample environment is realized via a gas-tight capillary-in-capillary design, where the gas flow is achieved through an open-end 0.5 mm capillary located inside a 0.7 mm capillary filled with a sample powder. Thermal mass flow controllers provide appropriate gas flows and computer-controlled on-the-fly gas mixing capabilities. The capillary system is centered inside an infrared heated, proportional integral differential-controlled capillary furnace allowing access to temperatures up to 1000 °C.
International Space Station (ISS)
2001-02-01
The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows a Payload Rack Officer (PRO) at a work station. The PRO is linked by a computer to all payload racks aboard the ISS. The PRO monitors and configures the resources and environment for science experiments including EXPRESS Racks, multiple-payload racks designed for commercial payloads.
A Virtual Mission Operations Center: Collaborative Environment
NASA Technical Reports Server (NTRS)
Medina, Barbara; Bussman, Marie; Obenschain, Arthur F. (Technical Monitor)
2002-01-01
The Virtual Mission Operations Center - Collaborative Environment (VMOC-CE) intent is to have a central access point for all the resources used in a collaborative mission operations environment to assist mission operators in communicating on-site and off-site in the investigation and resolution of anomalies. It is a framework that as a minimum incorporates online chat, realtime file sharing and remote application sharing components in one central location. The use of a collaborative environment in mission operations opens up the possibilities for a central framework for other project members to access and interact with mission operations staff remotely. The goal of the Virtual Mission Operations Center (VMOC) Project is to identify, develop, and infuse technology to enable mission control by on-call personnel in geographically dispersed locations. In order to achieve this goal, the following capabilities are needed: Autonomous mission control systems Automated systems to contact on-call personnel Synthesis and presentation of mission control status and history information Desktop tools for data and situation analysis Secure mechanism for remote collaboration commanding Collaborative environment for remote cooperative work The VMOC-CE is a collaborative environment that facilitates remote cooperative work. It is an application instance of the Virtual System Design Environment (VSDE), developed by NASA Goddard Space Flight Center's (GSFC) Systems Engineering Services & Advanced Concepts (SESAC) Branch. The VSDE is a web-based portal that includes a knowledge repository and collaborative environment to serve science and engineering teams in product development. It is a "one stop shop" for product design, providing users real-time access to product development data, engineering and management tools, and relevant design specifications and resources through the Internet. The initial focus of the VSDE has been to serve teams working in the early portion of the system/product lifecycle - concept development, proposal preparation, and formulation. The VMOC-CE expands the application of the VSDE into the operations portion of the system lifecycle. It will enable meaningful and real-time collaboration regardless of the geographical distribution of project team members. Team members will be able to interact in satellite operations, specifically for resolving anomalies, through access to a desktop computer and the Internet. Mission Operations Management will be able to participate and monitor up to the minute status of anomalies or other mission operations issues. In this paper we present the VMOC-CE project, system capabilities, and technologies.
Advanced automation in space shuttle mission control
NASA Technical Reports Server (NTRS)
Heindel, Troy A.; Rasmussen, Arthur N.; Mcfarland, Robert Z.
1991-01-01
The Real Time Data System (RTDS) Project was undertaken in 1987 to introduce new concepts and technologies for advanced automation into the Mission Control Center environment at NASA's Johnson Space Center. The project's emphasis is on producing advanced near-operational prototype systems that are developed using a rapid, interactive method and are used by flight controllers during actual Shuttle missions. In most cases the prototype applications have been of such quality and utility that they have been converted to production status. A key ingredient has been an integrated team of software engineers and flight controllers working together to quickly evolve the demonstration systems.
LWS/SET End-to-End Data System
NASA Technical Reports Server (NTRS)
Giffin, Geoff; Sherman, Barry; Colon, Gilberto (Technical Monitor)
2002-01-01
This paper describes the concept for the End-to-End Data System that will support NASA's Living With a Star Space Environment Testbed missions. NASA has initiated the Living With a Star (LWS) Program to develop a better scientific understanding to address the aspects of the connected Sun-Earth system that affect life and society. A principal goal of the program is to bridge the gap.between science, engineering, and user application communities. The Space Environment Testbed (SET) Project is one element of LWS. The Project will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The End-to-end data system allows investigators to access the SET control center, command their experiments, and receive data from their experiments back at their home facility, using the Internet. The logical functioning of major components of the end-to-end data system are described, including the GSFC Payload Operations Control Center (POCC), SET Payloads, the GSFC SET Simulation Lab, SET Experiment PI Facilities, and Host Systems. Host Spacecraft Operations Control Centers (SOCC) and the Host Spacecraft are essential links in the end-to-end data system, but are not directly under the control of the SET Project. Formal interfaces will be established between these entities and elements of the SET Project. The paper describes data flow through the system, from PI facilities connecting to the SET operations center via the Internet, communications to SET carriers and experiments via host systems, to telemetry returns to investigators from their flight experiments. It also outlines the techniques that will be used to meet mission requirements, while holding development and operational costs to a minimum. Additional information is included in the original extended abstract.
NASA Technical Reports Server (NTRS)
Jamshidi, M. (Editor); Lumia, R. (Editor); Tunstel, E., Jr. (Editor); White, B. (Editor); Malone, J. (Editor); Sakimoto, P. (Editor)
1997-01-01
This first volume of the Autonomous Control Engineering (ACE) Center Press Series on NASA University Research Center's (URC's) Advanced Technologies on Space Exploration and National Service constitute a report on the research papers and presentations delivered by NASA Installations and industry and Report of the NASA's fourteen URC's held at the First National Conference in Albuquerque, New Mexico from February 16-19, 1997.
2012-05-07
The Controlled Environment Agriculture unit at the INFINITY at NASA Stennis Space Center visitor center and museum grows butterhead lettuce using an aeroponic process that involves no soil and advance LED lighting techniques. Students from Benjamin E. Mays Preparatory School in New Orleans helped to harvest the first crop of lettuce during a visit to the facility May 7, 2012.
Emergency Medical Operations at Kennedy Space Center in Support of Space Shuttle
NASA Technical Reports Server (NTRS)
Myers, K. Jeffrey; Tipton, David A.; Woodard, Daniel; Long, Irene D.
1992-01-01
The unique environment of the Kennedy Space Center includes a wide variety of industrial processes culminating in launch and spaceflight. Many are potentially hazardous to the work force and the astronauts. Technology, planning, training, and quality control are utilized to prevent contingencies and expedite response should a contingency occur.
Remote Science Operation Center research
NASA Technical Reports Server (NTRS)
Banks, P. M.
1986-01-01
Progress in the following areas is discussed: the design, planning and operation of a remote science payload operations control center; design and planning of a data link via satellite; and the design and prototyping of an advanced workstation environment for multi-media (3-D computer aided design/computer aided engineering, voice, video, text) communications and operations.
Emergency medical operations at Kennedy Space Center in support of space shuttle
NASA Technical Reports Server (NTRS)
Myers, K. J.; Tipton, D. A.; Woodard, D.; Long, I. D.
1992-01-01
The unique environment of the Kennedy Space Center includes a wide variety of industrial processes culminating in launch and spaceflight. Many are potentially hazardous to the work force and the astronauts. Technology, planning, training, and quality control are utilized to prevent contingencies and expedite response should a contingency occur.
Automated support for system's engineering and operations - The development of new paradigms
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Hall, Gardiner A.; Jaworski, Allan; Zoch, David
1992-01-01
Technological developments in spacecraft ground operations are reviewed. The technological, operations-oriented, managerial, and economic factors driving the evolution of the Mission Operations Control Center (MOCC), and its predecessor the Operational Control Center are examined. The functional components of the various MOCC subsystems are outlined. A brief overview is given of the concepts behind the The Knowledge-Based Software Engineering Environment, the Generic Spacecraft Analysis Assistant, and the Knowledge From Pictures tool.
CM and DM in an ISO R and D Environment
NASA Technical Reports Server (NTRS)
Crowley, Sandra L.
2000-01-01
ISO 9000 - a common buzz word in industry is making inroads to government agencies. The National Aeronautics and Space Agency (NASA) achieved ISO 9001 certification at each of its nine (9) Centers and Headquarters in 1998-1999. NASA Glenn Research Center (GRC) was recommended for certification in September 1999. Since then, each of the Centers has been going through the semi-annual surveillance audits. Growing out of the manufacturing industry, successful application of the international quality standard to a research and development (R&D) environment has had its challenges. This paper will address how GRC applied Configuration Management (CM) and Data (or Document) Management (DM) to meet challenges to achieve ISO certification. One of the first challenges was to fit the ISO 9001-1994 elements to the GRC environment. Some of the elements fit well-Management Responsibility (4.1), Internal Audits (4.17), Document and Data Control (4.5). Other elements were not suited or applied easily to the R&D environment-Servicing (4.19), Statistical Techniques (4.20). Since GRC "builds" only one or two items at a time, these elements were considered not applicable to the environment.
A facility for training Space Station astronauts
NASA Technical Reports Server (NTRS)
Hajare, Ankur R.; Schmidt, James R.
1992-01-01
The Space Station Training Facility (SSTF) will be the primary facility for training the Space Station Freedom astronauts and the Space Station Control Center ground support personnel. Conceptually, the SSTF will consist of two parts: a Student Environment and an Author Environment. The Student Environment will contain trainers, instructor stations, computers and other equipment necessary for training. The Author Environment will contain the systems that will be used to manage, develop, integrate, test and verify, operate and maintain the equipment and software in the Student Environment.
NASA Lighting Research, Test, & Analysis
NASA Technical Reports Server (NTRS)
Clark, Toni
2015-01-01
The Habitability and Human Factors Branch, at Johnson Space Center, in Houston, TX, provides technical guidance for the development of spaceflight lighting requirements, verification of light system performance, analysis of integrated environmental lighting systems, and research of lighting-related human performance issues. The Habitability & Human Factors Lighting Team maintains two physical facilities that are integrated to provide support. The Lighting Environment Test Facility (LETF) provides a controlled darkroom environment for physical verification of lighting systems with photometric and spetrographic measurement systems. The Graphics Research & Analysis Facility (GRAF) maintains the capability for computer-based analysis of operational lighting environments. The combined capabilities of the Lighting Team at Johnson Space Center have been used for a wide range of lighting-related issues.
Virtual Environments in Scientific Visualization
NASA Technical Reports Server (NTRS)
Bryson, Steve; Lisinski, T. A. (Technical Monitor)
1994-01-01
Virtual environment technology is a new way of approaching the interface between computers and humans. Emphasizing display and user control that conforms to the user's natural ways of perceiving and thinking about space, virtual environment technologies enhance the ability to perceive and interact with computer generated graphic information. This enhancement potentially has a major effect on the field of scientific visualization. Current examples of this technology include the Virtual Windtunnel being developed at NASA Ames Research Center. Other major institutions such as the National Center for Supercomputing Applications and SRI International are also exploring this technology. This talk will be describe several implementations of virtual environments for use in scientific visualization. Examples include the visualization of unsteady fluid flows (the virtual windtunnel), the visualization of geodesics in curved spacetime, surface manipulation, and examples developed at various laboratories.
Ran, Weiguang; Wang, Lili; Tan, Lingling; Qu, Dan; Shi, Jinsheng
2016-01-01
Luminescent properties are affected by lattice environment of luminescence centers. The lattice environment of emission centers can be effectively changed due to the diversity of lattice environment in multiple site structure. But how precisely control the doped ions enter into different sites is still very difficult. Here we proposed an example to demonstrate how to control the doped ions into the target site for the first time. Alkali metal ions doped ZnMoO4:Bi3+, Eu3+ phosphors were prepared by the conventional high temperature solid state reaction method. The influence of alkali metal ions as charge compensators and remote control devices were respectively observed. Li+ and K+ ions occupy the Zn(2) sites, which impede Eu and Bi enter the adjacent Zn(2) sites. However, Na+ ions lie in Zn(1) sites, which greatly promoted the Bi and Eu into the adjacent Zn(2) sites. The Bi3+ and Eu3+ ions which lie in the immediate vicinity Zn(2) sites set off intense exchange interaction due to their short relative distance. This mechanism provides a mode how to use remote control device to enhance the energy transfer efficiency which expected to be used to design efficient luminescent materials. PMID:27278286
Background/Question/Methods In December, 2010, a consortium of EPA, Centers for Disease Control, and state and local health officials convened in Austin, Texas for a “participatory modeling workshop” on climate change effects on human health and health-environment interactions. ...
Background/Question/Methods In December, 2010, a consortium of EPA, Centers for Disease Control, and state and local health officials convened in Austin, Texas for a “participatory modeling workshop” on climate change effects on human health and health-environment int...
Who Speaks for Wolf? Not Project WILD.
ERIC Educational Resources Information Center
Horwood, Bert
Project WILD, a Canadian elementary school curriculum supplement about wildlife and the environment, is seriously flawed in that it presents a human-centered view of the world while purporting to be unbiased. This anthropocentric perspective, in which humans are alienated from the environment and in control of nature by technological means, is in…
2001 Flight Mechanics Symposium
NASA Technical Reports Server (NTRS)
Lynch, John P. (Editor)
2001-01-01
This conference publication includes papers and abstracts presented at the Flight Mechanics Symposium held on June 19-21, 2001. Sponsored by the Guidance, Navigation and Control Center of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to attitude/orbit determination, prediction and control; attitude simulation; attitude sensor calibration; theoretical foundation of attitude computation; dynamics model improvements; autonomous navigation; constellation design and formation flying; estimation theory and computational techniques; Earth environment mission analysis and design; and, spacecraft re-entry mission design and operations.
Continuation of research into language concepts for the mission support environment
NASA Technical Reports Server (NTRS)
1991-01-01
A concept for a more intuitive and graphically based Computation (Comp) Builder was developed. The Graphical Comp Builder Prototype was developed, which is an X Window based graphical tool that allows the user to build Comps using graphical symbols. Investigation was conducted to determine the availability and suitability of the Ada programming language for the development of future control center type software. The Space Station Freedom Project identified Ada as the desirable programming language for the development of Space Station Control Center software systems.
2003-01-12
The Center for Advanced Microgravity Materials Processing (CAMMP), a NASA-sponsored Research Partnership Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Shown here are zeolite crystals (top) grown in a ground control experiment and grown in microgravity on the USML-2 mission (bottom). Zeolite experiments have also been conducted aboard the International Space Station.
Adaptation of Control Center Software to Commerical Real-Time Display Applications
NASA Technical Reports Server (NTRS)
Collier, Mark D.
1994-01-01
NASA-Marshall Space Flight Center (MSFC) is currently developing an enhanced Huntsville Operation Support Center (HOSC) system designed to support multiple spacecraft missions. The Enhanced HOSC is based upon a distributed computing architecture using graphic workstation hardware and industry standard software including POSIX, X Windows, Motif, TCP/IP, and ANSI C. Southwest Research Institute (SwRI) is currently developing a prototype of the Display Services application for this system. Display Services provides the capability to generate and operate real-time data-driven graphic displays. This prototype is a highly functional application designed to allow system end users to easily generate complex data-driven displays. The prototype is easy to use, flexible, highly functional, and portable. Although this prototype is being developed for NASA-MSFC, the general-purpose real-time display capability can be reused in similar mission and process control environments. This includes any environment depending heavily upon real-time data acquisition and display. Reuse of the prototype will be a straight-forward transition because the prototype is portable, is designed to add new display types easily, has a user interface which is separated from the application code, and is very independent of the specifics of NASA-MSFC's system. Reuse of this prototype in other environments is a excellent alternative to creation of a new custom application, or for environments with a large number of users, to purchasing a COTS package.
Does Intervening in Childcare Settings Impact Fundamental Movement Skill Development?
Adamo, Kristi B; Wilson, Shanna; Harvey, Alysha L J; Grattan, Kimberly P; Naylor, Patti-Jean; Temple, Viviene A; Goldfield, Gary S
2016-05-01
Knowing that motor skills will not develop to their full potential without opportunities to practice in environments that are stimulating and supportive, we evaluated the effect of a physical activity (PA)-based intervention targeting childcare providers on fundamental movement skills (FMS) in preschoolers attending childcare centers. In this two-arm cluster-randomized controlled trial, six licensed childcare centers in Ottawa, Canada, were randomly allocated into one of two groups (three controls, n = 43; three interventions, n = 40). Participants were between the ages of 3 and 5 yr. Childcare providers in the experimental condition received two 3-h workshops and a training manual at program initiation aimed at increasing PA through active play and several in-center "booster" sessions throughout the 6-month intervention. Control childcare centers implemented their standard curriculum. FMS were measured at baseline and 6 months using the Test of Gross Motor Development-2. Groups did not differ on sociodemographic variables. Compared with control, children in the intervention group demonstrated significantly greater improvement in their standardized gross motor quotient (score, 5.70; 95% confidence interval [95% CI], 0.74-10.67; P = 0.025 and gross motor quotient percentile, 13.33; 95% CI, 2.17-24.49; P = 0.020). Over the 6-month study period, the intervention group showed a significantly greater increase in locomotor skills score (1.20; 95% CI, 0.18-2.22; P = 0.022) than the control group. There was a significant decrease in the object control scores in the control group over the study period. A childcare provider-led PA-based intervention increased the FMS in preschoolers, driven by the change in locomotor skills. The childcare environment may represent a viable public health approach for promoting motor skill development to support future engagement in PA.
Design controls for large order systems
NASA Technical Reports Server (NTRS)
Doane, George B., III
1991-01-01
The output of this task will be a program plan which will delineate how MSFC will support and implement its portion of the Inter-Center Computational Controls Program Plan. Another output will be the results of looking at various multibody/multidegree of freedom computer programs in various environments.
ERIC Educational Resources Information Center
Journal of Environmental Health, 1972
1972-01-01
Discusses legislative action regarding national environmental centers, Water Pollution Control Act Amendments of 1971, ocean dumping, pesticides, fisheries, Alaskan lands, motor vehicles, environmental impact statements, air pollutants, energy, and federal department activities. (BL)
Real-time automated failure identification in the Control Center Complex (CCC)
NASA Technical Reports Server (NTRS)
Kirby, Sarah; Lauritsen, Janet; Pack, Ginger; Ha, Anhhoang; Jowers, Steven; Mcnenny, Robert; Truong, The; Dell, James
1993-01-01
A system which will provide real-time failure management support to the Space Station Freedom program is described. The system's use of a simplified form of model based reasoning qualifies it as an advanced automation system. However, it differs from most such systems in that it was designed from the outset to meet two sets of requirements. First, it must provide a useful increment to the fault management capabilities of the Johnson Space Center (JSC) Control Center Complex (CCC) Fault Detection Management system. Second, it must satisfy CCC operational environment constraints such as cost, computer resource requirements, verification, and validation, etc. The need to meet both requirement sets presents a much greater design challenge than would have been the case had functionality been the sole design consideration. The choice of technology, discussing aspects of that choice and the process for migrating it into the control center is overviewed.
Flight Research Center, Edwards, California. Environmental Impact Statement
NASA Technical Reports Server (NTRS)
1971-01-01
This is an institutional environmental impact statement relating to the overall operation of the NASA, Flight Research Center. The Center is located in Kern County, California, approximately 100 miles northeast of Los Angeles. Flight activities relate primarily to areas in the vicinity of Los Angeles, Kern, Inyo and San Bernardino counties in Southern California; and to areas in Southern Nevada (principally Nye and Clark counties. Operations of the Flight Research Center have a very neglibible impact on the environment; and they are planned and controlled to eliminate or minimize effects on water, air and noise.
Analysis of mental workload of electrical power plant operators of control and operation centers.
Vitório, Daiana Martins; Masculo, Francisco Soares; Melo, Miguel O B C
2012-01-01
Electrical systems can be categorized as critical systems where failure can result in significant financial loss, injury or threats to human life. The operators of the electric power control centers perform an activity in a specialized environment and have to carry it out by mobilizing knowledge and reasoning to which they have adequate training under the terms of the existing rules. To reach this there is a common mental request of personnel involved in these centers due the need to maintain attention, memory and reasoning request. In this sense, this study aims to evaluate the Mental Workload of technical workers of the Control Centers of Electrical Energy. It was undertaken a research on operators control centers of the electricity sector in Northeast Brazil. It was used for systematic observations, followed by interview and application of the instrument National Aeronautics and Space Administration Task Load Index known as NASA-TLX. As a result there will be subsidies for an assessment of mental workload of operators, and a contribution to improving the processes of managing the operation of electric utilities and the quality of workers.
A Novel Cloud-Based Service Robotics Application to Data Center Environmental Monitoring
Russo, Ludovico Orlando; Rosa, Stefano; Maggiora, Marcello; Bona, Basilio
2016-01-01
This work presents a robotic application aimed at performing environmental monitoring in data centers. Due to the high energy density managed in data centers, environmental monitoring is crucial for controlling air temperature and humidity throughout the whole environment, in order to improve power efficiency, avoid hardware failures and maximize the life cycle of IT devices. State of the art solutions for data center monitoring are nowadays based on environmental sensor networks, which continuously collect temperature and humidity data. These solutions are still expensive and do not scale well in large environments. This paper presents an alternative to environmental sensor networks that relies on autonomous mobile robots equipped with environmental sensors. The robots are controlled by a centralized cloud robotics platform that enables autonomous navigation and provides a remote client user interface for system management. From the user point of view, our solution simulates an environmental sensor network. The system can easily be reconfigured in order to adapt to management requirements and changes in the layout of the data center. For this reason, it is called the virtual sensor network. This paper discusses the implementation choices with regards to the particular requirements of the application and presents and discusses data collected during a long-term experiment in a real scenario. PMID:27509505
A Field Study of Control Systems in Environments with Ill-Defined Technology and Output
1989-12-01
Care Center B was a privately owned, client- funded, profit-seeking child care center. It was a certified Montessori school established in 1978. The...third, provide a quality, Montessori education. Of these three goals, only the third was written in the organization’s literature (in the Parent’s...that Child Care Center B generated its own SOPs. The director/owner stated that the state-regulations binder, along with the Montessori manuals
Virtual interface environment workstations
NASA Technical Reports Server (NTRS)
Fisher, S. S.; Wenzel, E. M.; Coler, C.; Mcgreevy, M. W.
1988-01-01
A head-mounted, wide-angle, stereoscopic display system controlled by operator position, voice and gesture has been developed at NASA's Ames Research Center for use as a multipurpose interface environment. This Virtual Interface Environment Workstation (VIEW) system provides a multisensory, interactive display environment in which a user can virtually explore a 360-degree synthesized or remotely sensed environment and can viscerally interact with its components. Primary applications of the system are in telerobotics, management of large-scale integrated information systems, and human factors research. System configuration, research scenarios, and research directions are described.
Exploring the Food Environment on the Spirit Lake Reservation
ERIC Educational Resources Information Center
Pattanaik, Swaha; Gold, Abby; McKay, Lacey; Azure, Lane; Larson, Mary
2014-01-01
The purpose of this research project was to understand the food environment of the Fort Totten community on the Spirit Lake reservation in east-central North Dakota, as perceived by tribal members and employees at Cankdeska Cikana Community College (CCCC). According to a 2010 report from the Center for Disease Control and Prevention, the food…
Cross Support Transfer Service (CSTS) Framework Library
NASA Technical Reports Server (NTRS)
Ray, Timothy
2014-01-01
Within the Consultative Committee for Space Data Systems (CCSDS), there is an effort to standardize data transfer between ground stations and control centers. CCSDS plans to publish a collection of transfer services that will each address the transfer of a particular type of data (e.g., tracking data). These services will be called Cross Support Transfer Services (CSTSs). All of these services will make use of a common foundation that is called the CSTS Framework. This library implements the User side of the CSTS Framework. "User side" means that the library performs the role that is typically expected of the control center. This library was developed in support of the Goddard Data Standards program. This technology could be applicable for control centers, and possibly for use in control center simulators needed to test ground station capabilities. The main advantages of this implementation are its flexibility and simplicity. It provides the framework capabilities, while allowing the library user to provide a wrapper that adapts the library to any particular environment. The main purpose of this implementation was to support the inter-operability testing required by CCSDS. In addition, it is likely that the implementation will be useful within the Goddard mission community (for use in control centers).
2012-05-07
Janice Hueschen of Innovative Imaging & Research Corp. at Stennis Space Center helps students from Benjamin E. Mays Preparatory School in New Orleans harvest lettuce at the INFINITY at NASA Stennis Space Center facility May 7, 2012. The Louisiana students assisted in the first harvest of lettuce from the Controlled Environment Agriculture unit, which uses an aeroponic process that involves no soil and advance LED lighting techniques.
A model of neuro-musculo-skeletal system for human locomotion under position constraint condition.
Ni, Jiangsheng; Hiramatsu, Seiji; Kato, Atsuo
2003-08-01
The human locomotion was studied on the basis of the interaction of the musculo-skeletal system, the neural system and the environment. A mathematical model of human locomotion under position constraint condition was established. Besides the neural rhythm generator, the posture controller and the sensory system, the environment feedback controller and the stability controller were taken into account in the model. The environment feedback controller was proposed for two purposes, obstacle avoidance and target position control of the swing foot. The stability controller was proposed to imitate the self-balancing ability of a human body and improve the stability of the model. In the stability controller, the ankle torque was used to control the velocity of the body gravity center. A prediction control algorithm was applied to calculate the torque magnitude of the stability controller. As an example, human stairs climbing movement was simulated and the results were given. The simulation result proved that the mathematical modeling of the task was successful.
Code of Federal Regulations, 2012 CFR
2012-07-01
... control technology. 408.207 Section 408.207 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... degree of effluent reduction attainable by the application of the best conventional pollutant control... processing facility located in population or processing centers including but not limited to Anchorage...
Code of Federal Regulations, 2010 CFR
2010-07-01
... control technology. 408.207 Section 408.207 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... degree of effluent reduction attainable by the application of the best conventional pollutant control... processing facility located in population or processing centers including but not limited to Anchorage...
Code of Federal Regulations, 2011 CFR
2011-07-01
... control technology. 408.297 Section 408.297 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... of effluent reduction attainable by the application of the best conventional pollutant control... facility located in population or processing centers including but not limited to Anchorage, Cordova...
Code of Federal Regulations, 2013 CFR
2013-07-01
... control technology. 408.207 Section 408.207 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... degree of effluent reduction attainable by the application of the best conventional pollutant control... processing facility located in population or processing centers including but not limited to Anchorage...
Code of Federal Regulations, 2011 CFR
2011-07-01
... control technology. 408.207 Section 408.207 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... degree of effluent reduction attainable by the application of the best conventional pollutant control... processing facility located in population or processing centers including but not limited to Anchorage...
Code of Federal Regulations, 2012 CFR
2012-07-01
... control technology. 408.297 Section 408.297 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... of effluent reduction attainable by the application of the best conventional pollutant control... facility located in population or processing centers including but not limited to Anchorage, Cordova...
Code of Federal Regulations, 2014 CFR
2014-07-01
... control technology. 408.207 Section 408.207 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... degree of effluent reduction attainable by the application of the best conventional pollutant control... processing facility located in population or processing centers including but not limited to Anchorage...
Code of Federal Regulations, 2013 CFR
2013-07-01
... control technology. 408.297 Section 408.297 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... of effluent reduction attainable by the application of the best conventional pollutant control... facility located in population or processing centers including but not limited to Anchorage, Cordova...
Code of Federal Regulations, 2014 CFR
2014-07-01
... control technology. 408.297 Section 408.297 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... of effluent reduction attainable by the application of the best conventional pollutant control... facility located in population or processing centers including but not limited to Anchorage, Cordova...
Code of Federal Regulations, 2010 CFR
2010-07-01
... control technology. 408.297 Section 408.297 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... of effluent reduction attainable by the application of the best conventional pollutant control... facility located in population or processing centers including but not limited to Anchorage, Cordova...
Controlling multiple security robots in a warehouse environment
NASA Technical Reports Server (NTRS)
Everett, H. R.; Gilbreath, G. A.; Heath-Pastore, T. A.; Laird, R. T.
1994-01-01
The Naval Command Control and Ocean Surveillance Center (NCCOSC) has developed an architecture to provide coordinated control of multiple autonomous vehicles from a single host console. The multiple robot host architecture (MRHA) is a distributed multiprocessing system that can be expanded to accommodate as many as 32 robots. The initial application will employ eight Cybermotion K2A Navmaster robots configured as remote security platforms in support of the Mobile Detection Assessment and Response System (MDARS) Program. This paper discusses developmental testing of the MRHA in an operational warehouse environment, with two actual and four simulated robotic platforms.
U.S. academic medical centers under the managed health care environment.
Guo, K
1999-06-01
This research investigates the impact of managed health care on academic medical centers in the United States. Academic medical centers hold a unique position in the U.S. health care system through their missions of conducting cutting-edge biomedical research, pursuing clinical and technological innovations, providing state-of-the-art medical care and producing highly qualified health professionals. However, policies to control costs through the use of managed care and limiting resources are detrimental to academic medical centers and impede the advancement of medical science. To survive the threats of managed care in the health care environment, academic medical centers must rely on their upper level managers to derive successful strategies. The methods used in this study include qualitative approaches in the form of key informants and case studies. In addition, a survey questionnaire was sent to 108 CEOs in all the academic medical centers in the U.S. The findings revealed that managers who perform the liaison, monitor, entrepreneur and resource allocator roles are crucial to ensure the survival of academic medical centers, so that academic medical centers can continue their missions to serve the general public and promote their well-being.
NASA Technical Reports Server (NTRS)
Hanson, Curt; Miller, Chris; Wall, John H.; Vanzwieten, Tannen S.; Gilligan, Eric; Orr, Jeb S.
2015-01-01
An adaptive augmenting control algorithm for the Space Launch System has been developed at the Marshall Space Flight Center as part of the launch vehicles baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a proposed manual steering mode were investigated by giving the pilot trajectory deviation cues and pitch rate command authority. Two NASA research pilots flew a total of twenty five constant pitch-rate trajectories using a prototype manual steering mode with and without adaptive control.
1971-08-01
The Apollo Telescope Mount (ATM), designed and developed by the Marshall Space Flight Center, was one of four major components comprising the Skylab (1973-1979). The ATM housed the first manned scientific telescope in space. This photograph is of the ATM thermal systems unit undergoing testing in the Space Environment Simulation Laboratory of the Manned Spacecraft Center (MSC). The ATM thermal systems unit was used to control the temperatures of space instrument's subsystems during a mission. The MSC was renamed the Johnson Space Center (JSC) in early 1973.
DOT National Transportation Integrated Search
2001-01-01
This report is part of a continuing effort to develop human factors measures for different operational environments in the Federal Aviation Administration Air Traffic Control (ATC) system. Previous research at the William J. Hughes Technical Center R...
NASA Technical Reports Server (NTRS)
Calhoun, Philip C.; Hampton, R. David
2002-01-01
The acceleration environment on the International Space Station (ISS) will likely exceed the requirements of many micro-gravity experiments. The Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) is being built by the NASA Marshall Space Flight Center to attenuate the nominal acceleration environment and provide some isolation for microgravity science experiments. G-LIMIT uses Lorentz (voice-coil) magnetic actuators to isolate a platform for mounting science payloads from the nominal acceleration environment. The system utilizes payload acceleration, relative position, and relative orientation measurements in a feedback controller to accomplish the vibration isolation task. The controller provides current commands to six magnetic actuators, producing the required experiment isolation from the ISS acceleration environment. This paper presents the development of a candidate control law to meet the acceleration attenuation requirements for the g-LIMIT experiment platform. The controller design is developed using linear optimal control techniques for frequency-weighted H(sub 2) norms. Comparison of the performance and robustness to plant uncertainty for this control design approach is included in the discussion.
NASA Technical Reports Server (NTRS)
Calhoun, Philip C.; Hampton, R. David
2004-01-01
The acceleration environment on the International Space Station (ISS) exceeds the requirements of many microgravity experiments. The Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) has been built by the NASA Marshall Space Flight Center to attenuate the nominal acceleration environment and provide some isolation for microgravity science experiments. The g-LIMIT uses Lorentz (voice-coil) magnetic actuators to isolate a platform, for mounting science payloads, from the nominal acceleration environment. The system utilizes payload-acceleration, relative-position, and relative-orientation measurements in a feedback controller to accomplish the vibration isolation task. The controller provides current commands to six magnetic actuators, producing the required experiment isolation from the ISS acceleration environment. The present work documents the development of a candidate control law to meet the acceleration attenuation requirements for the g-LIMIT experiment platform. The controller design is developed using linear optimal control techniques for frequency-weighted H2 norms. Comparison of performance and robustness to plant uncertainty for this control design approach is included in the discussion. System performance is demonstrated in the presence of plant modeling error.
NASA Technical Reports Server (NTRS)
Calhoun, Phillip C.; Hampton, R. David; Whorton, Mark S.
2001-01-01
The acceleration environment on the International Space Station (ISS) will likely exceed the requirements of many micro-gravity experiments. The Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) is being built by the NASA Marshall Space Flight Center to attenuate the nominal acceleration environment and provide some isolation for micro-gravity science experiments. G-LIMIT uses Lorentz (voice-coil) magnetic actuators to isolate a platform for mounting science payloads from the nominal acceleration environment. The system utilizes payload acceleration, relative position, and relative orientation measurements in a feedback controller to accomplish the vibration isolation task. The controller provides current command to six magnetic actuators, producing the required experiment isolation from the ISS acceleration environment. This paper presents the development of a candidate control law to meet the acceleration attenuation requirements for the g-LIMIT experiment platform. The controller design is developed using linear optimal control techniques for both frequency-weighted H(sub 2) and H(sub infinity) norms. Comparison of the performance and robustness to plant uncertainty for these two optimal control design approaches are included in the discussion.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-109
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-110
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-105
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-104
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-108
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.
NASA Technical Reports Server (NTRS)
Roberts, Barry C.; McGrath, Kevin; Starr, Brett; Brandon, Jay
2009-01-01
During the launch countdown of the Ares I-X test vehicle, engineers from Langley Research Center will use profiles of atmospheric density and winds in evaluating vehicle ascent loads and controllability. A schedule for the release of balloons to measure atmospheric density and winds has been developed by the Natural Environments Branch at Marshall Space Flight Center to help ensure timely evaluation of the vehicle ascent loads and controllability parameters and support a successful launch of the Ares I-X vehicle.
Zeolite Crystal Growth in Microgravity and on Earth
NASA Technical Reports Server (NTRS)
2003-01-01
The Center for Advanced Microgravity Materials Processing (CAMMP), a NASA-sponsored Research Partnership Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Shown here are zeolite crystals (top) grown in a ground control experiment and grown in microgravity on the USML-2 mission (bottom). Zeolite experiments have also been conducted aboard the International Space Station.
[Microbiological study of sanitary feature of Perinatal Center of Makhachkala City].
Omarova, S M; Alieva, A I; Abserkhanova, D U; Medzhidova, D Sh; Isaeva, R I; Gorelova, V G
2010-01-01
Evaluation of bacterial contamination of six hospital environment of Perinatal Center of Makhachkala as part of epidemiologic surveillance for nosocomial infections. One hundred twenty-eight air samples from different hospital units and 344 swabs from hospital equipment, instruments, and inventory were tested. Dry nutrient media manufactured by Scientific Manufacturing Organization "Pitatelnye Sredy" were used for isolation and identification of microorganisms. Species of microorganisms was determined on the basis of complex of tinctorial, morphological, biochemical, and serologic tests. Significant species diversity of opportunistic microorganisms was established. Cultures of Staphylococcus epidermidis (46; 18.5%) and Staphylococcus saprophyticus (44; 17.7%) were significantly more frequently isolated from swabs from environment. Microbiological monitoring of sanitary conditions of perinatal center assists sanitary-epidemiologic control for circulation of microorganisms--potential agents of nosocomial infections.
International Space Station (ISS)
2001-02-01
The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows the Timeline Change Officer (TCO) at a work station. The TCO maintains the daily schedule of science activities and work assignments, and works with planners at Mission Control at Johnson Space Center in Houston, Texas, to ensure payload activities are accommodated in overall ISS plans and schedules.
de Miranda, C T; de Paula, C S; Palma, D; da Silva, E M; Martin, D; de Nóbrega, F J
1999-03-04
Of the members of a family, the mother is without doubt the most important one, which provides justification for including an evaluation of her mental health as one of the variables to be considered as determining factors in each child's level of development. To assess the impact of the application of Neurolinguistic Programming (NLP) on child development, home environment and maternal mental health. Randomised controlled trial. The study included children enrolled in the municipal day care center of a shantytown in the City of São Paulo. 45 pairs of mothers and respective children between 18 and 36 months of age. Children's development (Bayley scales); home environment variation (HOME); and maternal mental health (SRQ). Comparison between before and after the intervention was made in terms of children's psychomotor development, home environment and maternal mental health. Application of the NLP technique to the experimental group and comparison with a control group. 1--Experimental (EG), consisting of 23 children submitted to intervention by NLP; and 2--Control (CG), with 22 children with no intervention. Length of intervention: 15 sessions of NLP. 37 children remained in the study (EG = 10, CG = 27). Variations in mental development (OR 1.21, IC 95% 0.0 to 23.08) in their home environment (Wilcoxon): p = 0.96 (before) and p = 0.09 (after); in maternal mental health: p = 0.26, 2 df. There was a trend that indicated positive effects on the home environment from the intervention.
A Virtual Environment for Resilient Infrastructure Modeling and Design
2015-09-01
Security CI Critical Infrastructure CID Center for Infrastructure Defense CSV Comma Separated Value DAD Defender-Attacker-Defender DHS Department...responses to disruptive events (e.g., cascading failure behavior) in a context- rich , controlled environment for exercises, education, and training...The general attacker-defender (AD) and defender-attacker-defender ( DAD ) models for CI are defined in Brown et al. (2006). These models help
ERIC Educational Resources Information Center
Rifkin, Kenneth I.; And Others
The purpose of the simulated maintenance task environment is to provide a means for training and job performance testing of the flight line weapon control systems mechanic/technician for the F-111A aircraft. It provides practice in flight line equipment checkout, troubleshooting, and removal and replacement of line replaceable units in the…
ERIC Educational Resources Information Center
Jones, Sherry Everett; Fisher, Carolyn J.; Greene, Brenda Z.; Hertz, Marci F.; Pritzl, Jane
2007-01-01
Background: Policies set at the state, district, and school levels can support and enhance a healthy and safe school environment. Methods: The Centers for Disease Control and Prevention conducts the School Health Policies and Programs Study every 6 years. In 2006, computer-assisted telephone interviews or self-administered mail questionnaires were…
78 FR 41071 - Center for Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-09
...: Physical Activity and Weight Control Interventions among Cancer Survivors. Date: July 29, 2013. Time: 11:00...; Member Conflict: Environment, Development and Reproductive Biology. Date: August 8-9, 2013. Time: 7:00 a...
Leveraging Executable Architectures in a Joint Environment
2009-01-01
Support of Type 2/3 Terminal Attack Control Call Wing Operations Center (WOC) to Task On-Call Aircraft Call Air Command and Control Agency ( ACCA ) to...MIDS MIDS MIDS X = Existing capability P1 = Partial - requires voice ack P2 = Partial - only some F/A-18s None P3 = remarks only TARGET LOCATION
Code of Federal Regulations, 2014 CFR
2014-07-01
... control technology. 408.167 Section 408.167 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... control technology. (a) [Reserved] (b) Except as provided in §§ 125.30 through 125.32, any hand-butchered salmon processing facility located in population or processing centers including but not limited to...
Code of Federal Regulations, 2012 CFR
2012-07-01
... control technology. 408.167 Section 408.167 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... control technology. (a) [Reserved] (b) Except as provided in §§ 125.30 through 125.32, any hand-butchered salmon processing facility located in population or processing centers including but not limited to...
Code of Federal Regulations, 2013 CFR
2013-07-01
... control technology. 408.167 Section 408.167 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... control technology. (a) [Reserved] (b) Except as provided in §§ 125.30 through 125.32, any hand-butchered salmon processing facility located in population or processing centers including but not limited to...
[Factors predicting sensory profile of 4 to 18 month old infants].
Pedrosa, Carina; Caçola, Priscila; Carvalhal, Maria Isabel Martins Mourão
2015-01-01
To identify environment factors predicting sensory profile of infants between 4 and 18 months old. This cross-sectional study evaluated 97 infants (40 females e 57 males), with a mean age of 1.05±0.32 years with the Test of Sensory Functions in Infants (TSFI) and also asked 97 parents and 11 kindergarten teachers of seven daycare centers to answer the Affordances in the Home Environment for Motor Development- Infant Scale (AHEMD-IS). The AHEMD-IS is a questionnaire that characterizes the opportunities in the home environment for infants between 3 and 18 months of age. We tested the association between affordances and the sensory profile of infants. Significant variables were entered into a regression model to determine predictors of sensory profile. The majority of infants (66%) had a normal sensory profile and 34% were at risk or deficit. Affordances in the home were classified as adequate and they were good in the studied daycare centers. The results of the regression revealed that only daily hours in daycare center and daycare outside space influenced the sensory profile of infants, in particular the Ocular-Motor Control component. The sensory profile of infants was between normal and at risk. While the family home offered adequate affordances for motor development, the daycare centers of the infants involved demonstrated a good quantity and quality of affordances. Overall, we conclude that daily hours in the daycare center and daycare outside space were predictors of the sensory profile, particular on Ocular-Motor Control component. Copyright © 2015 Associação de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.
An Analysis of the Navy Regional Data Automation Center (NARDAC) chargeback System
1986-09-01
addition, operational control is concerned with performing predefined activities whereas management control relates to the organiza- tion’s goals and...In effect, the management control system monitors the progress of operations and alerts the "appropriate management level" when performance as measured...architecture, the financial control processes, and the audit function ( Brandon , 1978; Anderson, 1983). In an operating DP environment, however, non-financial
A comparison of force control algorithms for robots in contact with flexible environments
NASA Technical Reports Server (NTRS)
Wilfinger, Lee S.
1992-01-01
In order to perform useful tasks, the robot end-effector must come into contact with its environment. For such tasks, force feedback is frequently used to control the interaction forces. Control of these forces is complicated by the fact that the flexibility of the environment affects the stability of the force control algorithm. Because of the wide variety of different materials present in everyday environments, it is necessary to gain an understanding of how environmental flexibility affects the stability of force control algorithms. This report presents the theory and experimental results of two force control algorithms: Position Accommodation Control and Direct Force Servoing. The implementation of each of these algorithms on a two-arm robotic test bed located in the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE) is discussed in detail. The behavior of each algorithm when contacting materials of different flexibility is experimentally determined. In addition, several robustness improvements to the Direct Force Servoing algorithm are suggested and experimentally verified. Finally, a qualitative comparison of the force control algorithms is provided, along with a description of a general tuning process for each control method.
NASA Technical Reports Server (NTRS)
Cooper, Beth A.
1995-01-01
NASA Lewis Research Center is home to more than 100 experimental research testing facilities and laboratories, including large wind tunnels and engine test cells, which in combination create a varied and complex noise environment. Much of the equipment was manufactured prior to the enactment of legislation limiting product noise emissions or occupational noise exposure. Routine facility maintenance and associated construction also contributes to a noise exposure management responsibility which is equal in magnitude and scope to that of several small industrial companies. The Noise Program, centrally managed within the Office of Environmental Programs at LRC, maintains overall responsibility for hearing conservation, community noise control, and acoustical and noise control engineering. Centralized management of the LRC Noise Program facilitates the timely development and implementation of engineered noise control solutions for problems identified via either the Hearing Conservation of Community Noise Program. The key element of the Lewis Research Center Noise Program, Acoustical and Noise Control Engineering Services, is focused on developing solutions that permanently reduce employee and community noise exposure and maximize research productivity by reducing or eliminating administrative and operational controls and by improving the safety and comfort of the work environment. The Hearing Conservation Program provides noise exposure assessment, medical monitoring, and training for civil servant and contractor employees. The Community Noise Program aims to maintain the support of LRC's neighboring communities while enabling necessary research operations to accomplish their programmatic goals. Noise control engineering capability resides within the Noise Program. The noise control engineering, based on specific exposure limits, is a fundamental consideration throughout the design phase of new test facilities, labs, and office buildings. In summary, the Noise Program addresses hearing conservation, community noise control, and acoustical and noise control engineering.
Integrating Automation into a Multi-Mission Operations Center
NASA Technical Reports Server (NTRS)
Surka, Derek M.; Jones, Lori; Crouse, Patrick; Cary, Everett A, Jr.; Esposito, Timothy C.
2007-01-01
NASA Goddard Space Flight Center's Space Science Mission Operations (SSMO) Project is currently tackling the challenge of minimizing ground operations costs for multiple satellites that have surpassed their prime mission phase and are well into extended mission. These missions are being reengineered into a multi-mission operations center built around modern information technologies and a common ground system infrastructure. The effort began with the integration of four SMEX missions into a similar architecture that provides command and control capabilities and demonstrates fleet automation and control concepts as a pathfinder for additional mission integrations. The reengineered ground system, called the Multi-Mission Operations Center (MMOC), is now undergoing a transformation to support other SSMO missions, which include SOHO, Wind, and ACE. This paper presents the automation principles and lessons learned to date for integrating automation into an existing operations environment for multiple satellites.
Adaptation of SUBSTOR for controlled-environment potato production with elevated carbon dioxide
NASA Technical Reports Server (NTRS)
Fleisher, D. H.; Cavazzoni, J.; Giacomelli, G. A.; Ting, K. C.; Janes, H. W. (Principal Investigator)
2003-01-01
The SUBSTOR crop growth model was adapted for controlled-environment hydroponic production of potato (Solanum tuberosum L. cv. Norland) under elevated atmospheric carbon dioxide concentration. Adaptations included adjustment of input files to account for cultural differences between the field and controlled environments, calibration of genetic coefficients, and adjustment of crop parameters including radiation use efficiency. Source code modifications were also performed to account for the absorption of light reflected from the surface below the crop canopy, an increased leaf senescence rate, a carbon (mass) balance to the model, and to modify the response of crop growth rate to elevated atmospheric carbon dioxide concentration. Adaptations were primarily based on growth and phenological data obtained from growth chamber experiments at Rutgers University (New Brunswick, N.J.) and from the modeling literature. Modified-SUBSTOR predictions were compared with data from Kennedy Space Center's Biomass Production Chamber for verification. Results show that, with further development, modified-SUBSTOR will be a useful tool for analysis and optimization of potato growth in controlled environments.
To Meet or Not To Meet Physical vs. Virtual Configuration Control Board
NASA Technical Reports Server (NTRS)
Rice, Shelley
2017-01-01
This presentation will define the CCB, discuss its functions and members. We will look into traditional processes of managing change control via the CCB meeting and advanced practices utilizing enhanced product tools and technologies. Well step through a summary of the feedback from the community of CM professionals at NASA Goddard Space Flight Center of best practices as well as pros and cons for facilitating both a physical CCB and managing stakeholder approvals in a virtual environment. Attendees will come away with current industry strategies to determine if process for managing change control and approvals can be streamlined within their local work environments.
Ground Systems Development Environment (GSDE) interface requirements analysis: Operations scenarios
NASA Technical Reports Server (NTRS)
Church, Victor E.; Phillips, John
1991-01-01
This report is a preliminary assessment of the functional and data interface requirements to the link between the GSDE GS/SPF (Amdahl) and the Space Station Control Center (SSCC) and Space Station Training Facility (SSTF) Integration, Verification, and Test Environments (IVTE's). These interfaces will be involved in ground software development of both the control center and the simulation and training systems. Our understanding of the configuration management (CM) interface and the expected functional characteristics of the Amdahl-IVTE interface is described. A set of assumptions and questions that need to be considered and resolved in order to complete the interface functional and data requirements definitions are presented. A listing of information items defined to describe software configuration items in the GSDE CM system is included. It also includes listings of standard reports of CM information and of CM-related tools in the GSDE.
2003-09-24
KENNEDY SPACE CENTER, FLA. - Japanese astronaut Koichi Wakata (left) works with a tray extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.
2003-09-24
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata looks over the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.
2003-09-24
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians on the floor watch as a tray is extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.
2003-09-24
KENNEDY SPACE CENTER, FLA. - Japanese astronaut Koichi Wakata (right) works with a tray extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.
Cost Analysis In A Multi-Mission Operations Environment
NASA Technical Reports Server (NTRS)
Newhouse, M.; Felton, L.; Bornas, N.; Botts, D.; Roth, K.; Ijames, G.; Montgomery, P.
2014-01-01
Spacecraft control centers have evolved from dedicated, single-mission or single missiontype support to multi-mission, service-oriented support for operating a variety of mission types. At the same time, available money for projects is shrinking and competition for new missions is increasing. These factors drive the need for an accurate and flexible model to support estimating service costs for new or extended missions; the cost model in turn drives the need for an accurate and efficient approach to service cost analysis. The National Aeronautics and Space Administration (NASA) Huntsville Operations Support Center (HOSC) at Marshall Space Flight Center (MSFC) provides operations services to a variety of customers around the world. HOSC customers range from launch vehicle test flights; to International Space Station (ISS) payloads; to small, short duration missions; and has included long duration flagship missions. The HOSC recently completed a detailed analysis of service costs as part of the development of a complete service cost model. The cost analysis process required the team to address a number of issues. One of the primary issues involves the difficulty of reverse engineering individual mission costs in a highly efficient multimission environment, along with a related issue of the value of detailed metrics or data to the cost model versus the cost of obtaining accurate data. Another concern is the difficulty of balancing costs between missions of different types and size and extrapolating costs to different mission types. The cost analysis also had to address issues relating to providing shared, cloud-like services in a government environment, and then assigning an uncertainty or risk factor to cost estimates that are based on current technology, but will be executed using future technology. Finally the cost analysis needed to consider how to validate the resulting cost models taking into account the non-homogeneous nature of the available cost data and the decreasing flight rate. This paper presents the issues encountered during the HOSC cost analysis process, and the associated lessons learned. These lessons can be used when planning for a new multi-mission operations center or in the transformation from a dedicated control center to multi-center operations, as an aid in defining processes that support future cost analysis and estimation. The lessons can also be used by mature serviceoriented, multi-mission control centers to streamline or refine their cost analysis process.
Cost Analysis in a Multi-Mission Operations Environment
NASA Technical Reports Server (NTRS)
Felton, Larry; Newhouse, Marilyn; Bornas, Nick; Botts, Dennis; Ijames, Gayleen; Montgomery, Patty; Roth, Karl
2014-01-01
Spacecraft control centers have evolved from dedicated, single-mission or single mission-type support to multi-mission, service-oriented support for operating a variety of mission types. At the same time, available money for projects is shrinking and competition for new missions is increasing. These factors drive the need for an accurate and flexible model to support estimating service costs for new or extended missions; the cost model in turn drives the need for an accurate and efficient approach to service cost analysis. The National Aeronautics and Space Administration (NASA) Huntsville Operations Support Center (HOSC) at Marshall Space Flight Center (MSFC) provides operations services to a variety of customers around the world. HOSC customers range from launch vehicle test flights; to International Space Station (ISS) payloads; to small, short duration missions; and has included long duration flagship missions. The HOSC recently completed a detailed analysis of service costs as part of the development of a complete service cost model. The cost analysis process required the team to address a number of issues. One of the primary issues involves the difficulty of reverse engineering individual mission costs in a highly efficient multi-mission environment, along with a related issue of the value of detailed metrics or data to the cost model versus the cost of obtaining accurate data. Another concern is the difficulty of balancing costs between missions of different types and size and extrapolating costs to different mission types. The cost analysis also had to address issues relating to providing shared, cloud-like services in a government environment, and then assigning an uncertainty or risk factor to cost estimates that are based on current technology, but will be executed using future technology. Finally the cost analysis needed to consider how to validate the resulting cost models taking into account the non-homogeneous nature of the available cost data and the decreasing flight rate. This paper presents the issues encountered during the HOSC cost analysis process, and the associated lessons learned. These lessons can be used when planning for a new multi-mission operations center or in the transformation from a dedicated control center to multi-center operations, as an aid in defining processes that support future cost analysis and estimation. The lessons can also be used by mature service-oriented, multi-mission control centers to streamline or refine their cost analysis process.
Protocol: a multi-level intervention program to reduce stress in 9-1-1 telecommunicators.
Meischke, Hendrika; Lilly, Michelle; Beaton, Randal; Calhoun, Rebecca; Tu, Ann; Stangenes, Scott; Painter, Ian; Revere, Debra; Baseman, Janet
2018-05-02
Nationwide, emergency response systems depend on 9-1-1 telecommunicators to prioritize, triage, and dispatch assistance to those in distress. 9-1-1 call center telecommunicators (TCs) are challenged by acute and chronic workplace stressors: tense interactions with citizen callers in crisis; overtime; shift-work; ever-changing technologies; and negative work culture, including co-worker conflict. This workforce is also subject to routine exposures to secondary traumatization while handling calls involving emergency situations and while making time urgent, high stake decisions over the phone. Our study aims to test the effectiveness of a multi-part intervention to reduce stress in 9-1-1 TCs through an online mindfulness training and a toolkit containing workplace stressor reduction resources. The study employs a randomized controlled trial design with three data collection points. The multi-part intervention includes an individual-level online mindfulness training and a call center-level organizational stress reduction toolkit. 160 TCs will be recruited from 9-1-1 call centers, complete a baseline survey at enrollment, and are randomly assigned to an intervention or a control group. Intervention group participants will start a 7-week online mindfulness training developed in-house and tailored to 9-1-1 TCs and their call center environment; control participants will be "waitlisted" and start the training after the study period ends. Following the intervention group's completion of the mindfulness training, all participants complete a second survey. Next, the online toolkit with call-center wide stress reduction resources is made available to managers of all participating call centers. After 3 months, a third survey will be completed by all participants. The primary outcome is 9-1-1 TCs' self-reported symptoms of stress at three time points as measured by the C-SOSI (Calgary Symptoms of Stress Inventory). Secondary outcomes will include: perceptions of social work environment (measured by metrics of social support and network conflict); mindfulness; and perceptions of social work environment and mindfulness as mediators of stress reduction. This study will evaluate the effectiveness of an online mindfulness training and call center-wide stress reduction toolkit in reducing self-reported stress in 9-1-1 TCs. The results of this study will add to the growing body of research on worksite stress reduction programs. ClinicalTrials.gov Registration Number: NCT02961621 Registered on November 7, 2016 (retrospectively registered).
Lai, Jinxing; Qiu, Junling; Chen, Jianxun; Wang, Yaqiong; Fan, Haobo
2014-01-01
Because of the particularity of the environment in the tunnel, the rational tunnel illumination system should be developed, so as to optimize the tunnel environment. Considering the high cost of traditional tunnel illumination system with high-pressure sodium (HPS) lamps as well as the effect of a single light source on tunnel entrance, the energy-saving illumination system with HPS lamps and LEDs combined illumination in road tunnel, which could make full use of these two kinds of lamps, was proposed. The wireless intelligent control system based on HPS lamps and LEDs combined illumination and microcontrol unit (MCU) Si1000 wireless communication technology was designed. And the remote monitoring, wireless communication, and PWM dimming module of this system were designed emphatically. Intensity detector and vehicle flow detector can be configured in wireless intelligent control system, which gather the information to the master control unit, and then the information is sent to the monitoring center through the Ethernet. The control strategies are got by the monitoring center according to the calculated results, and the control unit wirelessly sends parameters to lamps, which adjust the luminance of each segment of the tunnel and realize the wireless intelligent control of combined illumination in road tunnel. PMID:25587266
ERIC Educational Resources Information Center
Martin, Caren S.
2016-01-01
In 2010, the Centers for Disease Control (CDC) reported a 1600% increase in the number of individuals between the ages of 6 and 22 years with autism spectrum disorder (ASD). Knowledge about educational interventions for children with ASD is substantial; however, less is known about the design of supportive classroom environments where they learn.…
Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-45
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley
1992-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center (KSC) Photo/Video Analysis, reports from Johnson Space Center, Marshall Space Flight Center, and Rockwell International-Downey are also included to provide an integrated assessment of each Shuttle mission.
NASA Technical Reports Server (NTRS)
1976-01-01
System specifications to be used by the mission control center (MCC) for the shuttle orbital flight test (OFT) time frame were described. The three support systems discussed are the communication interface system (CIS), the data computation complex (DCC), and the display and control system (DCS), all of which may interfere with, and share processing facilities with other applications processing supporting current MCC programs. The MCC shall provide centralized control of the space shuttle OFT from launch through orbital flight, entry, and landing until the Orbiter comes to a stop on the runway. This control shall include the functions of vehicle management in the area of hardware configuration (verification), flight planning, communication and instrumentation configuration management, trajectory, software and consumables, payloads management, flight safety, and verification of test conditions/environment.
Validation of Force Limited Vibration Testing at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Rice, Chad; Buehrle, Ralph D.
2003-01-01
Vibration tests were performed to develop and validate the forced limited vibration testing capability at the NASA Langley Research Center. The force limited vibration test technique has been utilized at the Jet Propulsion Laboratory and other NASA centers to provide more realistic vibration test environments for aerospace flight hardware. In standard random vibration tests, the payload is mounted to a rigid fixture and the interface acceleration is controlled to a specified level based on a conservative estimate of the expected flight environment. In force limited vibration tests, both the acceleration and force are controlled at the mounting interface to compensate for differences between the flexible flight mounting and rigid test fixture. This minimizes the over test at the payload natural frequencies and results in more realistic forces being transmitted at the mounting interface. Force and acceleration response data was provided by NASA Goddard Space Flight Center for a test article that was flown in 1998 on a Black Brant sounding rocket. The measured flight interface acceleration data was used as the reference acceleration spectrum. Using this acceleration spectrum, three analytical methods were used to estimate the force limits. Standard random and force limited vibration tests were performed and the results are compared with the flight data.
The MITy micro-rover: Sensing, control, and operation
NASA Technical Reports Server (NTRS)
Malafeew, Eric; Kaliardos, William
1994-01-01
The sensory, control, and operation systems of the 'MITy' Mars micro-rover are discussed. It is shown that the customized sun tracker and laser rangefinder provide internal, autonomous dead reckoning and hazard detection in unstructured environments. The micro-rover consists of three articulated platforms with sensing, processing and payload subsystems connected by a dual spring suspension system. A reactive obstacle avoidance routine makes intelligent use of robot-centered laser information to maneuver through cluttered environments. The hazard sensors include a rangefinder, inclinometers, proximity sensors and collision sensors. A 486/66 laptop computer runs the graphical user interface and programming environment. A graphical window displays robot telemetry in real time and a small TV/VCR is used for real time supervisory control. Guidance, navigation, and control routines work in conjunction with the mapping and obstacle avoidance functions to provide heading and speed commands that maneuver the robot around obstacles and towards the target.
VEVI: A Virtual Reality Tool For Robotic Planetary Explorations
NASA Technical Reports Server (NTRS)
Piguet, Laurent; Fong, Terry; Hine, Butler; Hontalas, Phil; Nygren, Erik
1994-01-01
The Virtual Environment Vehicle Interface (VEVI), developed by the NASA Ames Research Center's Intelligent Mechanisms Group, is a modular operator interface for direct teleoperation and supervisory control of robotic vehicles. Virtual environments enable the efficient display and visualization of complex data. This characteristic allows operators to perceive and control complex systems in a natural fashion, utilizing the highly-evolved human sensory system. VEVI utilizes real-time, interactive, 3D graphics and position / orientation sensors to produce a range of interface modalities from the flat panel (windowed or stereoscopic) screen displays to head mounted/head-tracking stereo displays. The interface provides generic video control capability and has been used to control wheeled, legged, air bearing, and underwater vehicles in a variety of different environments. VEVI was designed and implemented to be modular, distributed and easily operated through long-distance communication links, using a communication paradigm called SYNERGY.
A Framework for WWW Query Processing
NASA Technical Reports Server (NTRS)
Wu, Binghui Helen; Wharton, Stephen (Technical Monitor)
2000-01-01
Query processing is the most common operation in a DBMS. Sophisticated query processing has been mainly targeted at a single enterprise environment providing centralized control over data and metadata. Submitting queries by anonymous users on the web is different in such a way that load balancing or DBMS' accessing control becomes the key issue. This paper provides a solution by introducing a framework for WWW query processing. The success of this framework lies in the utilization of query optimization techniques and the ontological approach. This methodology has proved to be cost effective at the NASA Goddard Space Flight Center Distributed Active Archive Center (GDAAC).
Inspiring the Next Generation in Space Life Sciences
NASA Technical Reports Server (NTRS)
Hayes, Judith
2010-01-01
Competitive summer internships in space life sciences at NASA are awarded to college students every summer. Each student is aligned with a NASA mentor and project that match his or her skills and interests, working on individual projects in ongoing research activities. The interns consist of undergraduate, graduate, and medical students in various majors and disciplines from across the United States. To augment their internship experience, students participate in the Space Life Sciences Summer Institute (SLSSI). The purpose of the Institute is to offer a unique learning environment that focuses on the current biomedical issues associated with human spaceflight; providing an introduction of the paradigms, problems, and technologies of modern spaceflight cast within the framework of life sciences. The Institute faculty includes NASA scientists, physicians, flight controllers, engineers, managers, and astronauts; and fosters a multi-disciplinary science approach to learning with a particular emphasis on stimulating experimental creativity and innovation within an operational environment. This program brings together scientists and students to discuss cutting-edge solutions to problems in space physiology, environmental health, and medicine; and provides a familiarization of the various aspects of space physiology and environments. In addition to the lecture series, behind-the-scenes tours are offered that include the Neutral Buoyancy Laboratory, Mission Control Center, space vehicle training mockups, and a hands-on demonstration of the Space Shuttle Advanced Crew Escape Suit. While the SLSSI is managed and operated at the Johnson Space Center in Texas, student interns from the other NASA centers (Glenn and Ames Research Centers, in Ohio and California) also participate through webcast distance learning capabilities.
Homeostasis control of building environment using sensor agent robot
NASA Astrophysics Data System (ADS)
Nagahama, Eri; Mita, Akira
2012-04-01
A human centered system for building is demanded to meet variety of needs due to the diversification and maturation of society. Smart buildings and smart houses have been studied to satisfy this demand. However, it is difficult for such systems to respond flexibly to unexpected events and needs that are caused by aging and complicate emotion changes. With this regards, we suggest "Biofied Buildings". The goal for this research is to realize buildings that are safer, more comfortable and more energy-efficient by embedding adaptive functions of life into buildings. In this paper, we propose a new control system for building environments, focused on physiological adaptation, particularly homeostasis, endocrine system and immune system. Residents are used as living sensors and controllers in the control loop. A sensor agent robot is used to acquire resident's discomfort feeling, and to output hormone-like signals to activate devices to control the environments. The proposed system could control many devices without establishing complicated scenarios. Results obtained from some simulations and the demonstration experiments using an LED lighting system showed that the proposed system were able to achieve robust and stable control of environments without complicated scenarios.
A general-purpose development environment for intelligent computer-aided training systems
NASA Technical Reports Server (NTRS)
Savely, Robert T.
1990-01-01
Space station training will be a major task, requiring the creation of large numbers of simulation-based training systems for crew, flight controllers, and ground-based support personnel. Given the long duration of space station missions and the large number of activities supported by the space station, the extension of space shuttle training methods to space station training may prove to be impractical. The application of artificial intelligence technology to simulation training can provide the ability to deliver individualized training to large numbers of personnel in a distributed workstation environment. The principal objective of this project is the creation of a software development environment which can be used to build intelligent training systems for procedural tasks associated with the operation of the space station. Current NASA Johnson Space Center projects and joint projects with other NASA operational centers will result in specific training systems for existing space shuttle crew, ground support personnel, and flight controller tasks. Concurrently with the creation of these systems, a general-purpose development environment for intelligent computer-aided training systems will be built. Such an environment would permit the rapid production, delivery, and evolution of training systems for space station crew, flight controllers, and other support personnel. The widespread use of such systems will serve to preserve task and training expertise, support the training of many personnel in a distributed manner, and ensure the uniformity and verifiability of training experiences. As a result, significant reductions in training costs can be realized while safety and the probability of mission success can be enhanced.
Erinosho, Temitope; Vaughn, Amber; Hales, Derek; Mazzucca, Stephanie; Gizlice, Ziya; Treadway, Cayla; Kelly, Alexandra; Ward, Dianne
2018-04-29
This cross-sectional study assessed the quality of nutrition and physical activity environments of child-care centers in three southern states and examined differences by rural versus urban location, participation in the Child and Adult Care Food Program, and Head Start status. The sample included 354 centers that enroll children aged 2-5: 154 centers from Georgia, 103 from Kentucky, and 97 centers from Mississippi. Directors and 1-2 teachers per center completed the Environment and Policy Assessment and Observation Self-Report (EPAO-SR) tool that assesses nutrition and physical activity environments of child-care centers. The EPAO-SR items were scored to capture six nutrition domains and six physical activity domains that were averaged and then summed to create a combined nutrition and physical activity environment score (range = 0-36); higher scores indicated that centers met more best practices, which translated to higher-quality environments. Overall, the centers had an average combined nutrition and physical activity environment score of 20.2 out of 36. The scores did not differ between rural and urban centers (mean = 20.3 versus 20.2, p = 0.98). Centers in the Child and Adult Care Food Program had higher combined nutrition and physical activity environment scores than non-participating centers (mean = 20.6 versus 19.1, p < 0.01). Head Start centers also had higher combined environment scores than non-Head Start centers (mean = 22.3 versus 19.6, p < 0.01). Findings highlight the vital role of federal programs in supporting healthy child-care environments. Providing technical assistance and training to centers that are not enrolled in well-regulated, federally-funded programs might help to enhance the quality of their nutrition and physical activity environments. Copyright © 2017. Published by Elsevier Inc.
ONAV - An Expert System for the Space Shuttle Mission Control Center
NASA Technical Reports Server (NTRS)
Mills, Malise; Wang, Lui
1992-01-01
The ONAV (Onboard Navigation) Expert System is being developed as a real-time console assistant to the ONAV flight controller for use in the Mission Control Center at the Johnson Space Center. Currently, Oct. 1991, the entry and ascent systems have been certified for use on console as support tools, and were used for STS-48. The rendezvous system is in verification with the goal to have the system certified for STS-49, Intelsat retrieval. To arrive at this stage, from a prototype to real-world application, the ONAV project has had to deal with not only Al issues but operating environment issues. The Al issues included the maturity of Al languages and the debugging tools, verification, and availability, stability and size of the expert pool. The environmental issues included real time data acquisition, hardware suitability, and how to achieve acceptance by users and management.
A real-time navigation monitoring expert system for the Space Shuttle Mission Control Center
NASA Technical Reports Server (NTRS)
Wang, Lui; Fletcher, Malise
1993-01-01
The ONAV (Onboard Navigation) Expert System has been developed as a real time console assistant for use by ONAV flight controllers in the Mission Control Center at the Johnson Space Center. This expert knowledge based system is used to monitor the Space Shuttle onboard navigation system, detect faults, and advise flight operations personnel. This application is the first knowledge-based system to use both telemetry and trajectory data from the Mission Operations Computer (MOC). To arrive at this stage, from a prototype to real world application, the ONAV project has had to deal with not only AI issues but operating environment issues. The AI issues included the maturity of AI languages and the debugging tools, verification, and availability, stability and size of the expert pool. The environmental issues included real time data acquisition, hardware suitability, and how to achieve acceptance by users and management.
Flow Control Device Evaluation for an Internal Flow with an Adverse Pressure Gradient
NASA Technical Reports Server (NTRS)
Jenkins, Luther N.; Gorton, Susan Althoff; Anders, Scott G.
2002-01-01
The effectiveness of several active and passive devices to control flow in an adverse pressure gradient with secondary flows present was evaluated in the 15 Inch Low Speed Tunnel at NASA Langley Research Center. In this study, passive micro vortex generators, micro bumps, and piezoelectric synthetic jets were evaluated for their flow control characteristics using surface static pressures, flow visualization, and 3D Stereo Digital Particle Image Velocimetry. Data also were acquired for synthetic jet actuators in a zero flow environment. It was found that the micro vortex generator is very effective in controlling the flow environment for an adverse pressure gradient, even in the presence of secondary vortical flow. The mechanism by which the control is effected is a re-energization of the boundary layer through flow mixing. The piezoelectric synthetic jet actuators must have sufficient velocity output to produce strong longitudinal vortices if they are to be effective for flow control. The output of these devices in a laboratory or zero flow environment will be different than the output in a flow environment. In this investigation, the output was higher in the flow environment, but the stroke cycle in the flow did not indicate a positive inflow into the synthetic jet.
Automation software for a materials testing laboratory
NASA Technical Reports Server (NTRS)
Mcgaw, Michael A.; Bonacuse, Peter J.
1990-01-01
The software environment in use at the NASA-Lewis Research Center's High Temperature Fatigue and Structures Laboratory is reviewed. This software environment is aimed at supporting the tasks involved in performing materials behavior research. The features and capabilities of the approach to specifying a materials test include static and dynamic control mode switching, enabling multimode test control; dynamic alteration of the control waveform based upon events occurring in the response variables; precise control over the nature of both command waveform generation and data acquisition; and the nesting of waveform/data acquisition strategies so that material history dependencies may be explored. To eliminate repetitive tasks in the coventional research process, a communications network software system is established which provides file interchange and remote console capabilities.
Payload vibration isolation in a microgravity environment
NASA Technical Reports Server (NTRS)
Alexander, Richard M.
1990-01-01
Many in-space research experiments require the microgravity environment attainable near the center of mass of the Space Station. Disturbances to the structure surrounding an experiment may lead to vibration levels that will degrade the microgravity environment and undermine the experiment's validity. In-flight disturbances will include vibration transmission from nearby equipment and excitation from crew activity. Isolation of these vibration-sensitive experiments is required. Analytical and experimental work accomplished to develop a payload (experiment) isolation system for use in space is described. The isolation scheme allows the payload to float freely within a prescribed boundary while being kept centered with forces generated by small jets of air. The vibration criterion was a maximum payload acceleration of 10 micro-g's (9.81x10(exp -5)m/s(exp 2), independent of frequency. An experimental setup, composed of a cart supported by air bearings on a flat granite slab, was designed and constructed to simulate the microgravity environment in the horizontal plane. Experimental results demonstrate that the air jet control system can effectively manage payload oscillatory response. An analytical model was developed and verified by comparing predicted and measured payload response. The mathematical model, which includes payload dynamics, control logic, and air jet forces, is used to investigate payload response to disturbances likely to be present in the Space Station.
Distributed computing testbed for a remote experimental environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butner, D.N.; Casper, T.A.; Howard, B.C.
1995-09-18
Collaboration is increasing as physics research becomes concentrated on a few large, expensive facilities, particularly in magnetic fusion energy research, with national and international participation. These facilities are designed for steady state operation and interactive, real-time experimentation. We are developing tools to provide for the establishment of geographically distant centers for interactive operations; such centers would allow scientists to participate in experiments from their home institutions. A testbed is being developed for a Remote Experimental Environment (REE), a ``Collaboratory.`` The testbed will be used to evaluate the ability of a remotely located group of scientists to conduct research on themore » DIII-D Tokamak at General Atomics. The REE will serve as a testing environment for advanced control and collaboration concepts applicable to future experiments. Process-to-process communications over high speed wide area networks provide real-time synchronization and exchange of data among multiple computer networks, while the ability to conduct research is enhanced by adding audio/video communication capabilities. The Open Software Foundation`s Distributed Computing Environment is being used to test concepts in distributed control, security, naming, remote procedure calls and distributed file access using the Distributed File Services. We are exploring the technology and sociology of remotely participating in the operation of a large scale experimental facility.« less
The materials processing research base of the Materials Processing Center
NASA Technical Reports Server (NTRS)
Latanision, R. M.
1986-01-01
An annual report of the research activities of the Materials Processing Center of the Massachusetts Institute of Technology is given. Research on dielectrophoresis in the microgravity environment, phase separation kinetics in immiscible liquids, transport properties of droplet clusters in gravity-free fields, probes and monitors for the study of solidification of molten semiconductors, fluid mechanics and mass transfer in melt crystal growth, and heat flow control and segregation in directional solidification are discussed.
Morpheus Lander Roll Control System and Wind Modeling
NASA Technical Reports Server (NTRS)
Gambone, Elisabeth A.
2014-01-01
The Morpheus prototype lander is a testbed capable of vertical takeoff and landing developed by NASA Johnson Space Center to assess advanced space technologies. Morpheus completed a series of flight tests at Kennedy Space Center to demonstrate autonomous landing and hazard avoidance for future exploration missions. As a prototype vehicle being tested in Earth's atmosphere, Morpheus requires a robust roll control system to counteract aerodynamic forces. This paper describes the control algorithm designed that commands jet firing and delay times based on roll orientation. Design, analysis, and testing are supported using a high fidelity, 6 degree-of-freedom simulation of vehicle dynamics. This paper also details the wind profiles generated using historical wind data, which are necessary to validate the roll control system in the simulation environment. In preparation for Morpheus testing, the wind model was expanded to create day-of-flight wind profiles based on data delivered by Kennedy Space Center. After the test campaign, a comparison of flight and simulation performance was completed to provide additional model validation.
Gao, Yang; Yang, Tiantian; Jin, Jin
2015-12-01
The aims of this study are (1) to discuss the mechanism of nanoparticle lifecycle and estimate the impacts of its associated pollution on environment and human health; and (2) to provide recommendation to policy makers on how to leverage nanopollution and human health along with the rapid development of economics in China. Manufactured nanoparticles (MNPs) could either directly or indirectly impair human health and the environment. Exposures to MNP include many ways, such as via inhalation, ingestion, direct contact, or the use of consumer products over the lifecycle of the product. In China, the number of people exposed to MNP has been increasing year by year. To better provide medical care to people exposed to MNP, the Chinese government has established many disease control and prevention centers over China. However, the existing facilities and resources for controlling MNP are still not enough considering the number of people impacted by MNP and the number of ordinary workers in the MNP related industry applying for their occupational identification through the Center for Disease Control and Prevention. China should assess the apparent risk environment and human health being exposed to MNP and develop action plans to reduce the possibility of direct contacts between human beings and the emerging nanomaterials. In addition, we suggest more comprehensive studies on the MNP behavior and the development of quantitative approaches to measure MNP transport, and persistence should be carried out.
NASA Technical Reports Server (NTRS)
Calle, Luz Marina
2015-01-01
The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in North America. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the highly corrosive hydrochloric acid (HCl) generated by the solid rocket boosters (SRBs). Numerous failures at the launch pads are caused by corrosion. The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. NASA has over fifty years of experience dealing with unexpected failures caused by corrosion and has developed expertise in corrosion control in the launch and other environments. The Corrosion Technology Laboratory at KSC evolved, from what started as an atmospheric exposure test site near NASAs launch pads, into a capability that provides technical innovations and engineering services in all areas of corrosion for NASA, external partners, and customers.This paper provides a chronological overview of NASAs role in anticipating, managing, and preventing corrosion in highly corrosive environments. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.
International Space Station (ISS)
2001-02-01
The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows the Operations Controllers (OC) at their work stations. The OC coordinates the configuration of resources to enable science operations, such as power, cooling, commanding, and the availability of items like tools and laboratory equipment.
Recent Developments in Hardware-in-the-Loop Formation Navigation and Control
NASA Technical Reports Server (NTRS)
Mitchell, Jason W.; Luquette, Richard J.
2005-01-01
The Formation Flying Test-Bed (FFTB) at NASA Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-tc-end guidance, navigation, and control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, are reviewed with a focus on many recent improvements. Two significant upgrades to the FFTB are a message-oriented middleware (MOM) architecture, and a software crosslink for inter-spacecraft ranging. The MOM architecture provides a common messaging bus for software agents, easing integration, arid supporting the GSFC Mission Services Evolution Center (GMSEC) architecture via software bridge. Additionally, the FFTB s hardware capabilities are expanding. Recently, two Low-Power Transceivers (LPTs) with ranging capability have been introduced into the FFTB. The LPT crosslinks will be connected to a modified Crosslink Channel Simulator (CCS), which applies realistic space-environment effects to the Radio Frequency (RF) signals produced by the LPTs.
Postflight balance control recovery in an elderly astronaut: a case report
NASA Technical Reports Server (NTRS)
Paloski, William H.; Black, F. Owen; Metter, E. Jeffrey
2004-01-01
OBJECTIVE: To examine the sensorimotor adaptive response of a 77-year-old man exposed to the gravito-inertial challenges of orbital space flight. STUDY DESIGN: Prospective case study with retrospective comparisons. SETTING: NASA Neurosciences Laboratory (Johnson Space Center) and Baseline Data Collection Facility (Kennedy Space Center). PRIMARY PARTICIPANT: One 77-year-old male shuttle astronaut. INTERVENTION: Insertion into low Earth orbit was used to remove gravitational stimuli and thereby trigger sensorimotor adaptation to the microgravity environment. Graviceptor stimulation was reintroduced at landing, and sensorimotor readaptation to the terrestrial environment was tracked to completion. MAIN OUTCOME MEASURES: Computerized dynamic posturography tests were administered before and after orbital flight to determine the magnitude and time course of recovery. RESULTS: The elderly astronaut exhibited balance control performance decrements on landing day; however, there were no significant differences between his performance and that of younger astronauts tested on the same shuttle mission or on previous shuttle missions of similar duration. CONCLUSIONS: These results demonstrate that the physiological changes attributed to aging do not necessarily impair adaptive sensorimotor control processes.
A new intelligent curtain control system based on 51 single chip microcomputer
NASA Astrophysics Data System (ADS)
Sun, Tuan; Wang, Yanhua; Wu, Mengmeng
2017-04-01
This paper uses 51 (single chip microcomputer) SCM as the operation and data processing center. According to the change of sunshine intensity and ambient temperature, a new type of intelligent curtain control system is designed by adopting photosensitive element and temperature sensor. In addition, the design also has a manual control mode. In the rain, when the light intensity is weak, the open position of the curtain can be set by the user. The system can maximize the user to provide user-friendly operation and comfortable living environment. The system can be applied to home or office environment, with a wide range of applications and simple operation and so on.
Virtual Machine Language Controls Remote Devices
NASA Technical Reports Server (NTRS)
2014-01-01
Kennedy Space Center worked with Blue Sun Enterprises, based in Boulder, Colorado, to enhance the company's virtual machine language (VML) to control the instruments on the Regolith and Environment Science and Oxygen and Lunar Volatiles Extraction mission. Now the NASA-improved VML is available for crewed and uncrewed spacecraft, and has potential applications on remote systems such as weather balloons, unmanned aerial vehicles, and submarines.
Acceptability of Flight Deck-Based Interval Management Crew Procedures
NASA Technical Reports Server (NTRS)
Murdock, Jennifer L.; Wilson, Sara R.; Hubbs, Clay E.; Smail, James W.
2013-01-01
The Interval Management for Near-term Operations Validation of Acceptability (IM-NOVA) experiment was conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) in support of the NASA Next Generation Air Transportation System (NextGen) Airspace Systems Program's Air Traffic Management Technology Demonstration - 1 (ATD-1). ATD-1 is intended to showcase an integrated set of technologies that provide an efficient arrival solution for managing aircraft using NextGen surveillance, navigation, procedures, and automation for both airborne and ground-based systems. The goal of the IM-NOVA experiment was to assess if procedures outlined by the ATD-1 Concept of Operations, when used with a minimum set of Flight deck-based Interval Management (FIM) equipment and a prototype crew interface, were acceptable to and feasible for use by flight crews in a voice communications environment. To investigate an integrated arrival solution using ground-based air traffic control tools and aircraft automatic dependent surveillance broadcast (ADS-B) tools, the LaRC FIM system and the Traffic Management Advisor with Terminal Metering and Controller Managed Spacing tools developed at the NASA Ames Research Center (ARC) were integrated in LaRC's Air Traffic Operations Laboratory. Data were collected from 10 crews of current, qualified 757/767 pilots asked to fly a high-fidelity, fixed based simulator during scenarios conducted within an airspace environment modeled on the Dallas-Fort Worth (DFW) Terminal Radar Approach Control area. The aircraft simulator was equipped with the Airborne Spacing for Terminal Area Routes algorithm and a FIM crew interface consisting of electronic flight bags and ADS-B guidance displays. Researchers used "pseudo-pilot" stations to control 24 simulated aircraft that provided multiple air traffic flows into DFW, and recently retired DFW air traffic controllers served as confederate Center, Feeder, Final, and Tower controllers. Pilot participant feedback indicated that the procedures used by flight crews to receive and execute interval management (IM) clearances in a voice communications environment were logical, easy to follow, did not contain any missing or extraneous steps, and required the use of an acceptable level of workload. The majority of the pilot participants found the IM concept, in addition to the proposed FIM crew procedures, to be acceptable and indicated that the ATD-1 procedures can be successfully executed in a near-term NextGen environment.
G2 Autonomous Control for Cryogenic Delivery Systems
NASA Technical Reports Server (NTRS)
Dito, Scott J.
2014-01-01
The Independent System Health Management-Autonomous Control (ISHM-AC) application development for cryogenic delivery systems is intended to create an expert system that will require minimal operator involvement and ultimately allow for complete autonomy when fueling a space vehicle in the time prior to launch. The G2-Autonomous Control project is the development of a model, simulation, and ultimately a working application that will control and monitor the cryogenic fluid delivery to a rocket for testing purposes. To develop this application, the project is using the programming language/environment Gensym G2. The environment is an all-inclusive application that allows development, testing, modeling, and finally operation of the unique application through graphical and programmatic methods. We have learned G2 through training classes and subsequent application development, and are now in the process of building the application that will soon be used to test on cryogenic loading equipment here at the Kennedy Space Center Cryogenics Test Laboratory (CTL). The G2 ISHM-AC application will bring with it a safer and more efficient propellant loading system for the future launches at Kennedy Space Center and eventually mobile launches from all over the world.
NASA Technical Reports Server (NTRS)
Jordan, Eric A.
2004-01-01
Upgrade of data acquisition and controls systems software at Johnson Space Center's Space Environment Simulation Laboratory (SESL) involved the definition, evaluation and selection of a system communication architecture and software components. A brief discussion of the background of the SESL and its data acquisition and controls systems provides a context for discussion of the requirements for each selection. Further framework is provided as upgrades to these systems accomplished in the 1990s and in 2003 are compared to demonstrate the role that technological advances have had in their improvement. Both of the selections were similar in their three phases; 1) definition of requirements, 2) identification of candidate products and their evaluation and testing and 3) selection by comparison of requirement fulfillment. The candidates for the communication architecture selection embraced several different methodologies which are explained and contrasted. Requirements for this selection are presented and the selection process is described. Several candidates for the software component of the data acquisition and controls system are identified, requirements for evaluation and selection are presented, and the evaluation process is described.
Active Combustion Control for Aircraft Gas Turbine Engines
NASA Technical Reports Server (NTRS)
DeLaat, John C.; Breisacher, Kevin J.; Saus, Joseph R.; Paxson, Daniel E.
2000-01-01
Lean-burning combustors are susceptible to combustion instabilities. Additionally, due to non-uniformities in the fuel-air mixing and in the combustion process, there typically exist hot areas in the combustor exit plane. These hot areas limit the operating temperature at the turbine inlet and thus constrain performance and efficiency. Finally, it is necessary to optimize the fuel-air ratio and flame temperature throughout the combustor to minimize the production of pollutants. In recent years, there has been considerable activity addressing Active Combustion Control. NASA Glenn Research Center's Active Combustion Control Technology effort aims to demonstrate active control in a realistic environment relevant to aircraft engines. Analysis and experiments are tied to aircraft gas turbine combustors. Considerable progress has been shown in demonstrating technologies for Combustion Instability Control, Pattern Factor Control, and Emissions Minimizing Control. Future plans are to advance the maturity of active combustion control technology to eventual demonstration in an engine environment.
Artificial intelligence in a mission operations and satellite test environment
NASA Technical Reports Server (NTRS)
Busse, Carl
1988-01-01
A Generic Mission Operations System using Expert System technology to demonstrate the potential of Artificial Intelligence (AI) automated monitor and control functions in a Mission Operations and Satellite Test environment will be developed at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL). Expert system techniques in a real time operation environment are being studied and applied to science and engineering data processing. Advanced decommutation schemes and intelligent display technology will be examined to develop imaginative improvements in rapid interpretation and distribution of information. The Generic Payload Operations Control Center (GPOCC) will demonstrate improved data handling accuracy, flexibility, and responsiveness in a complex mission environment. The ultimate goal is to automate repetitious mission operations, instrument, and satellite test functions by the applications of expert system technology and artificial intelligence resources and to enhance the level of man-machine sophistication.
Bélanger, Mathieu; Humbert, Louise; Vatanparast, Hassan; Ward, Stéphanie; Muhajarine, Nazeem; Chow, Amanda Froehlich; Engler-Stringer, Rachel; Donovan, Denise; Carrier, Natalie; Leis, Anne
2016-04-12
Childhood obesity is a growing concern for public health. Given a majority of children in many countries spend approximately 30 h per week in early childcare centers, this environment represents a promising setting for implementing strategies to foster healthy behaviours for preventing and controlling childhood obesity. Healthy Start-Départ Santé was designed to promote physical activity, physical literacy, and healthy eating among preschoolers. The objectives of this study are to assess the effectiveness of the Healthy Start-Départ Santé intervention in improving physical activity levels, physical literacy, and healthy eating among preschoolers attending early childcare centers. This study follows a cluster randomized controlled trial design in which the childcare centers are randomly assigned to receive the intervention or serve as usual care controls. The Healthy Start-Départ Santé intervention is comprised of interlinked components aiming to enable families and educators to integrate physical activity and healthy eating in the daily lives of young children by influencing factors at the intrapersonal, interpersonal, organizational, community, physical environment and policy levels. The intervention period, spanning 6-8 months, is preceded and followed by data collections. Participants are recruited from 61 childcare centers in two Canadian provinces, New Brunswick and Saskatchewan. Centers eligible for this study have to prepare and provide meals for lunch and have at least 20 children between the ages of 3 and 5. Centers are excluded if they have previously received a physical activity or nutrition promoting intervention. Eligible centers are stratified by province, geographical location (urban or rural) and language (English or French), then recruited and randomized using a one to one protocol for each stratum. Data collection is ongoing. The primary study outcomes are assessed using accelerometers (physical activity levels), the Test of Gross Motor Development-II (physical literacy), and digital photography-assisted weighted plate waste (food intake). The multifaceted approach of Healthy Start-Départ Santé positions it well to improve the physical literacy and both dietary and physical activity behaviors of children attending early childcare centers. The results of this study will be of relevance given the overwhelming prevalence of overweight and obesity in children worldwide. NCT02375490 (ClinicalTrials.gov registry).
Control Room Training for the Hyper-X Project Utilizing Aircraft Simulation
NASA Technical Reports Server (NTRS)
Lux-Baumann, Jesica; Dees, Ray; Fratello, David
2006-01-01
The NASA Dryden Flight Research Center flew two Hyper-X research vehicles and achieved hypersonic speeds over the Pacific Ocean in March and November 2004. To train the flight and mission control room crew, the NASA Dryden simulation capability was utilized to generate telemetry and radar data, which was used in nominal and emergency mission scenarios. During these control room training sessions personnel were able to evaluate and refine data displays, flight cards, mission parameter allowable limits, and emergency procedure checklists. Practice in the mission control room ensured that all primary and backup Hyper-X staff were familiar with the nominal mission and knew how to respond to anomalous conditions quickly and successfully. This report describes the technology in the simulation environment and the Mission Control Center, the need for and benefit of control room training, and the rationale and results of specific scenarios unique to the Hyper-X research missions.
Control Room Training for the Hyper-X Program Utilizing Aircraft Simulation
NASA Technical Reports Server (NTRS)
Lux-Baumann, Jessica R.; Dees, Ray A.; Fratello, David J.
2006-01-01
The NASA Dryden Flight Research Center flew two Hyper-X Research Vehicles and achieved hypersonic speeds over the Pacific Ocean in March and November 2004. To train the flight and mission control room crew, the NASA Dryden simulation capability was utilized to generate telemetry and radar data, which was used in nominal and emergency mission scenarios. During these control room training sessions, personnel were able to evaluate and refine data displays, flight cards, mission parameter allowable limits, and emergency procedure checklists. Practice in the mission control room ensured that all primary and backup Hyper-X staff were familiar with the nominal mission and knew how to respond to anomalous conditions quickly and successfully. This paper describes the technology in the simulation environment and the mission control center, the need for and benefit of control room training, and the rationale and results of specific scenarios unique to the Hyper-X research missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mcguckin, Theodore
2008-10-01
The Jefferson Lab Accelerator Controls Environment (ACE) was predominantly based on the HP-UX Unix platform from 1987 through the summer of 2004. During this period the Accelerator Machine Control Center (MCC) underwent a major renovation which included introducing Redhat Enterprise Linux machines, first as specialized process servers and then gradually as general login servers. As computer programs and scripts required to run the accelerator were modified, and inherent problems with the HP-UX platform compounded, more development tools became available for use with Linux and the MCC began to be converted over. In May 2008 the last HP-UX Unix login machinemore » was removed from the MCC, leaving only a few Unix-based remote-login servers still available. This presentation will explore the process of converting an operational Control Room environment from the HP-UX to Linux platform as well as the many hurdles that had to be overcome throughout the transition period (including a discussion of« less
Case Management: Service or Symptom?
ERIC Educational Resources Information Center
Netting, F. Ellen
1992-01-01
Provides overview of case management, its history, and contemporary models. Examines challenges that case management poses for social work profession: covering up issue that health and human services delivery system is nonsystem; maintaining client-centered perspective in cost-obsessed environment; dealing with quality control; coping with…
Real-time automated failure analysis for on-orbit operations
NASA Technical Reports Server (NTRS)
Kirby, Sarah; Lauritsen, Janet; Pack, Ginger; Ha, Anhhoang; Jowers, Steven; Mcnenny, Robert; Truong, The; Dell, James
1993-01-01
A system which is to provide real-time failure analysis support to controllers at the NASA Johnson Space Center Control Center Complex (CCC) for both Space Station and Space Shuttle on-orbit operations is described. The system employs monitored systems' models of failure behavior and model evaluation algorithms which are domain-independent. These failure models are viewed as a stepping stone to more robust algorithms operating over models of intended function. The described system is designed to meet two sets of requirements. It must provide a useful failure analysis capability enhancement to the mission controller. It must satisfy CCC operational environment constraints such as cost, computer resource requirements, verification, and validation. The underlying technology and how it may be used to support operations is also discussed.
Design of supply chain in fuzzy environment
NASA Astrophysics Data System (ADS)
Rao, Kandukuri Narayana; Subbaiah, Kambagowni Venkata; Singh, Ganja Veera Pratap
2013-05-01
Nowadays, customer expectations are increasing and organizations are prone to operate in an uncertain environment. Under this uncertain environment, the ultimate success of the firm depends on its ability to integrate business processes among supply chain partners. Supply chain management emphasizes cross-functional links to improve the competitive strategy of organizations. Now, companies are moving from decoupled decision processes towards more integrated design and control of their components to achieve the strategic fit. In this paper, a new approach is developed to design a multi-echelon, multi-facility, and multi-product supply chain in fuzzy environment. In fuzzy environment, mixed integer programming problem is formulated through fuzzy goal programming in strategic level with supply chain cost and volume flexibility as fuzzy goals. These fuzzy goals are aggregated using minimum operator. In tactical level, continuous review policy for controlling raw material inventories in supplier echelon and controlling finished product inventories in plant as well as distribution center echelon is considered as fuzzy goals. A non-linear programming model is formulated through fuzzy goal programming using minimum operator in the tactical level. The proposed approach is illustrated with a numerical example.
NASA Technical Reports Server (NTRS)
Dunbar, Melisa; McGann, Alison; Mackintosh, Margaret-Anne; Lozito, Sandra; Ashford, Rose (Technical Monitor)
2001-01-01
A simulation in the B747-400 was conducted at NASA Ames Research Center that compared how crews handled voice and data link air traffic control (ATC) messages in a single medium versus a mixed voice and data link ATC environment The interval between ATC messages was also varied to examine the influence of time pressure in voice, data link, and mixed ATC environments. For messages sent via voice, transaction times were lengthened in the mixed media environment for closely spaced messages. The type of environment did not affect data link times. However, messages times were lengthened in both single and mixed-modality environments under time pressure. Closely spaced messages also increased the number of requests for clarification for voice messages in the mixed environment and review menu use for data link messages. Results indicated that when time pressure is introduced, the mix of voice and data link does not necessarily capitalize on the advantages of both media. These findings emphasize the need to develop procedures for managing communication in mixed voice and data link environments.
1978-01-01
of the poet Lord Byron, and Babbage ’s "programmer." For reasons of historical accuracy, the use of the working title "DODi" has been retained in the...Surface Weapons Center Al Irvine, SofTech, Inc. Rob Kling, UC - Irvine John C. Knight, NASA Langley Research Center Charles L. Lawson, Jet Propulsion
NASA Technical Reports Server (NTRS)
Calle, Luz Marina
2014-01-01
Corrosion is the degradation of a material that results from its interaction with the environment. The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the United States. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the 70 tons of highly corrosive hydrochloric acid that were generated by the solid rocket boosters. Numerous failures at the launch pads are caused by corrosion.The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. As a result of fifty years of experience with launch and ground operations in a natural marine environment that is highly corrosive, NASAs Corrosion Technology Laboratory at KSC is a major source of corrosion control expertise in the launch and other environments. Throughout its history, the Laboratory has evolved from what started as an atmospheric exposure facility near NASAs launch pads into a world-wide recognized capability that provides technical innovations and engineering services in all areas of corrosion for NASA and external customers.This presentation will provide a historical overview of the role of NASAs Corrosion Technology in anticipating, managing, and preventing corrosion. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.
Land Application Training Center - A Field Based Classroom
NASA Astrophysics Data System (ADS)
Godfrey, Jonathan; Lindbo, David L.; McLaughlin, Rich
2015-04-01
More and more professionals have to be licensed or certified to perform activities related to soil and the environment. Many certification programs have been solely based on classroom instruction with no field experience. We saw this as a gap in training that could lead to problems with implementation and job performance. As a result we developed a field based training center to assist with both certification training and continuing education of environmental professionals. The center broke ground in 1997 and has expanded over the years to include soils and waste application, wetland restoration, and sediment and erosion control demonstrations. This presentation describes the individual components and outlines the courses offered at the training center.
NASA Technical Reports Server (NTRS)
Yates, Amy M.; Torres-Pomales, Wilfredo; Malekpour, Mahyar R.; Gonzalez, Oscar R.; Gray, W. Steven
2010-01-01
Safety-critical distributed flight control systems require robustness in the presence of faults. In general, these systems consist of a number of input/output (I/O) and computation nodes interacting through a fault-tolerant data communication system. The communication system transfers sensor data and control commands and can handle most faults under typical operating conditions. However, the performance of the closed-loop system can be adversely affected as a result of operating in harsh environments. In particular, High-Intensity Radiated Field (HIRF) environments have the potential to cause random fault manifestations in individual avionic components and to generate simultaneous system-wide communication faults that overwhelm existing fault management mechanisms. This paper presents the design of an experiment conducted at the NASA Langley Research Center's HIRF Laboratory to statistically characterize the faults that a HIRF environment can trigger on a single node of a distributed flight control system.
NASA Technical Reports Server (NTRS)
Zeller, Mary V.; Lei, Jih-Fen
2002-01-01
The Instrumentation and Controls Division is responsible for planning, conducting and directing basic and applied research on advanced instrumentation and controls technologies for aerospace propulsion and power applications. The Division's advanced research in harsh environment sensors, high temperature high power electronics, MEMS (microelectromechanical systems), nanotechnology, high data rate optical instrumentation, active and intelligent controls, and health monitoring and management will enable self-feeling, self-thinking, self-reconfiguring and self-healing Aerospace Propulsion Systems. These research areas address Agency challenges to deliver aerospace systems with reduced size and weight, and increased functionality and intelligence for future NASA missions in advanced aeronautics, economical space transportation, and pioneering space exploration. The Division also actively supports educational and technology transfer activities aimed at benefiting all humankind.
NASA Technical Reports Server (NTRS)
Pham, Kim; Bialas, Thomas
2012-01-01
The DDS SDOGS Integration Manager (DSIM) provides translation between native control and status formats for systems within DDS and SDOGS, and the ASIST (Advanced Spacecraft Integration and System Test) control environment in the SDO MOC (Solar Dynamics Observatory Mission Operations Center). This system was created in response for a need to centralize remote monitor and control of SDO Ground Station equipments using ASIST control environment in SDO MOC, and to have configurable table definition for equipment. It provides translation of status and monitoring information from the native systems into ASIST-readable format to display on pages in the MOC. The manager is lightweight, user friendly, and efficient. It allows data trending, correlation, and storing. It allows using ASIST as common interface for remote monitor and control of heterogeneous equipments. It also provides failover capability to back up machines.
Implications of acceleration environments on scaling materials processing in space to production
NASA Technical Reports Server (NTRS)
Demel, Ken
1990-01-01
Some considerations regarding materials processing in space are covered from a commercial perspective. Key areas include power, proprietary data, operational requirements (including logistics), and also the center of gravity location, and control of that location with respect to materials processing payloads.
NASA Technical Reports Server (NTRS)
Massa, Gioia D.
2013-01-01
This is the station report for the national controlled environments meeting. Topics to be discussed will include the Veggie and Advanced Plant Habitat ISS hardware. The goal is to introduce this hardware to a potential user community.
Commercial involvement in the development of space-based plant growing technology
NASA Astrophysics Data System (ADS)
Bula, R. J.; Tibbitts, T. W.; Morrow, R. C.; Dinauer, W. R.
1992-07-01
Considerable technological progress has been made in the development of controlled environment facilities for plant growth. Although not all of the technology used for terrestrial facilities is applicable to space-based plant growth facilities, the information resident in the commercial organizations that market these facilities can provide a significant resource for the development of the plant growing component of a CELSS. In 1985, NASA initiated an effort termed the Centers for the Commercial Development of Space (CCDS). This program endeavors to develop cooperative research and technology development programs with industrial companies that capitalize on the strengths of industry-university working relationships. One of the these CCDSs, the Wisconsin Center for Space Automation and Robotics (WCSAR), deals with developing automated plant growth facilities for space, in cooperation with several industrial partners. Concepts have been developed with industrial partners for the irradiation, water and nutrient delivery, nutrient composition control and automation and robotics subsystems of plant growing units. Space flight experiments are planned for validation of the concepts in a space environment.
NASA Johnson Space Center Usability Testing and Analysis Facility (UTAF) Overview
NASA Technical Reports Server (NTRS)
Whitmore, M.
2004-01-01
The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility provides support to the Office of Biological and Physical Research, the Space Shuttle Program, the International Space Station Program, and other NASA organizations. In addition, there are ongoing collaborative research efforts with external businesses and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes. This presentation will provide an overview of ongoing activities, and will address how the projects will evolve to meet new space initiatives.
NASA Johnson Space Center Usability Testing and Analysis Facility (WAF) Overview
NASA Technical Reports Server (NTRS)
Whitmore, M.
2004-01-01
The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility provides support to the Office of Biological and Physical Research, the Space Shuttle Program, the International Space Station Program, and other NASA organizations. In addition, there are ongoing collaborative research efforts with external businesses and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes. This presentation will provide an overview of ongoing activities, and will address how the projects will evolve to meet new space initiatives.
NASA Technical Reports Server (NTRS)
Chen, Alexander Y.
1990-01-01
Scientific research associates advanced robotic system (SRAARS) is an intelligent robotic system which has autonomous learning capability in geometric reasoning. The system is equipped with one global intelligence center (GIC) and eight local intelligence centers (LICs). It controls mainly sixteen links with fourteen active joints, which constitute two articulated arms, an extensible lower body, a vision system with two CCD cameras and a mobile base. The on-board knowledge-based system supports the learning controller with model representations of both the robot and the working environment. By consecutive verifying and planning procedures, hypothesis-and-test routines and learning-by-analogy paradigm, the system would autonomously build up its own understanding of the relationship between itself (i.e., the robot) and the focused environment for the purposes of collision avoidance, motion analysis and object manipulation. The intelligence of SRAARS presents a valuable technical advantage to implement robotic systems for space exploration and space station operations.
2003-09-24
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata, dressed in blue protective clothing (at right), looks at the inside of the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM), along with technicians. The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.
Commercial involvement in the development of space-based plant growing technology.
Bula, R J; Tibbitts, T W; Morrow, R C; Dinauer, W R
1992-01-01
Considerable technological progress has been made in the development of controlled environment facilities for plant growth. Although not all of the technology used for terrestrial facilities is applicable to space-based plant growth facilities, the information resident in the commercial organizations that market these facilities can provide a significant resource for the development of the plant growing component of a CELSS. In 1985, NASA initiated an effort termed the Centers for the Commercial Development of Space (CCDS). This program endeavors to develop cooperative research and technology development programs with industrial companies that capitalize on the strengths of industry-university working relationships. One of the these CCDSs, the Wisconsin Center for Space Automation and Robotics (WCSAR), deals with developing automated plant growth facilities for space, in cooperation with several industrial partners. Concepts have been developed with industrial partners for the irradiation, water and nutrient delivery, nutrient composition control and automation and robotics subsystems of plant growing units. Space flight experiments are planned for validation of the concepts in a space environment.
A roundtable discussion: home healthcare-not a hospital in the home.
Logan, Mary K; Parker, Chuck; Gardner-Bonneau, Daryle; Treu, Denny; Keller, James; Winstel, Lisa; Weick-Brady, Mary; Kramer, Nancy; Cyrus, Reginald; Thiel, Scott; Lewis, Vicki R; Rogers, Wendy
2013-01-01
Home healthcare is vital for a large percentage of the population. According to data from the U.S. Food and Drug Administration (FDA) and the Centers for Disease Control (CDC), 7 million people in the United States receive home healthcare annually. The use of medical devices in the home and other nonclinical environments is increasing dramatically. By the year 2050, an estimated 27 million people will need continuing care in the home or in the community and not in a controlled clinical environment. 1 The FDA recently announced its Home Use Devices Initiative and issued the document, "Draft Guidance for Industry and FDA Staff-Design Considerations for Devices Intended for Home Use" on Dec. 12, 2012. 2 The Center for Devices and Radiological Health (CDRH) regulates medical devices, but that regulatory authority alone is not enough to ensure safe and effective use of devices in the home. To address these and other issues, AAMI and FDA will co-host a summit on healthcare technology in nonclinical settings Oct. 9-10, 2013.
2003-09-24
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata (top left) and technicians watch as a tray is extended from inside the Pressurized Module, or PM, part of the Japanese Experiment Module (JEM). The PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.
2003-09-24
KENNEDY SPACE CENTER, FLA. - Japanese astronaut Koichi Wakata (left) releases a tray extended from inside the Pressurized Module, or PM, that he was working with. Part of the Japanese Experiment Module (JEM), the PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions. The JEM/PM is in the Space Station Processing Facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chizhov, K.; Simakov, A.; Seregin, V.
2013-07-01
The report is an overview of the information-analytical system designed to assure radiation safety of workers. The system was implemented in the Northwest Radioactive Waste Management Center 'SevRAO' (which is a branch of the Federal State Unitary Enterprise 'Radioactive Waste Management Enterprise RosRAO'). The center is located in the Northwest Russia. In respect to 'SevRAO', the Federal Medical-Biological Agency is the regulatory body, which deals with issues of radiation control. The main document to regulate radiation control is 'Reference levels of radiation factors in radioactive wastes management center'. This document contains about 250 parameters. We have developed a software toolmore » to simplify control of these parameters. The software includes: input interface, the database, dose calculating module and analytical block. Input interface is used to enter radiation environment data. Dose calculating module calculates the dose on the route. Analytical block optimizes and analyzes radiation situation maps. Much attention is paid to the GUI and graphical representation of results. The operator can enter the route at the industrial site or watch the fluctuations of the dose rate field on the map. Most of the results are presented in a visual form. Here we present some analytical tasks, such as comparison of the dose rate in some point with control levels at this point, to be solved for the purpose of radiation safety control. The program helps to identify points making the largest contribution to the collective dose of the personnel. The tool can automatically calculate the route with the lowest dose, compare and choose the best route. The program uses several options to visualize the radiation environment at the industrial site. This system will be useful for radiation monitoring services during the operation, planning of works and development of scenarios. The paper presents some applications of this system on real data over three years - from March 2009 to February 2012. (authors)« less
Internet Protocol Display Sharing Solution for Mission Control Center Video System
NASA Technical Reports Server (NTRS)
Brown, Michael A.
2009-01-01
With the advent of broadcast television as a constant source of information throughout the NASA manned space flight Mission Control Center (MCC) at the Johnson Space Center (JSC), the current Video Transport System (VTS) characteristics provides the ability to visually enhance real-time applications as a broadcast channel that decision making flight controllers come to rely on, but can be difficult to maintain and costly. The Operations Technology Facility (OTF) of the Mission Operations Facility Division (MOFD) has been tasked to provide insight to new innovative technological solutions for the MCC environment focusing on alternative architectures for a VTS. New technology will be provided to enable sharing of all imagery from one specific computer display, better known as Display Sharing (DS), to other computer displays and display systems such as; large projector systems, flight control rooms, and back supporting rooms throughout the facilities and other offsite centers using IP networks. It has been stated that Internet Protocol (IP) applications are easily readied to substitute for the current visual architecture, but quality and speed may need to be forfeited for reducing cost and maintainability. Although the IP infrastructure can support many technologies, the simple task of sharing ones computer display can be rather clumsy and difficult to configure and manage to the many operators and products. The DS process shall invest in collectively automating the sharing of images while focusing on such characteristics as; managing bandwidth, encrypting security measures, synchronizing disconnections from loss of signal / loss of acquisitions, performance latency, and provide functions like, scalability, multi-sharing, ease of initial integration / sustained configuration, integration with video adjustments packages, collaborative tools, host / recipient controllability, and the utmost paramount priority, an enterprise solution that provides ownership to the whole process, while maintaining the integrity of the latest technological displayed image devices. This study will provide insights to the many possibilities that can be filtered down to a harmoniously responsive product that can be used in today's MCC environment.
NASA Technical Reports Server (NTRS)
Dennehy, Cornelius J.; VanZwieten, Tannen S.; Hanson, Curtis E.; Wall, John H.; Miller, Chris J.; Gilligan, Eric T.; Orr, Jeb S.
2014-01-01
The Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an adaptive augmenting control (AAC) algorithm for launch vehicles that improves robustness and performance on an as-needed basis by adapting a classical control algorithm to unexpected environments or variations in vehicle dynamics. This was baselined as part of the Space Launch System (SLS) flight control system. The NASA Engineering and Safety Center (NESC) was asked to partner with the SLS Program and the Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP) to flight test the AAC algorithm on a manned aircraft that can achieve a high level of dynamic similarity to a launch vehicle and raise the technology readiness of the algorithm early in the program. This document reports the outcome of the NESC assessment.
2004-02-18
KENNEDY SPACE CENTER, FLA. - In the Launch Control Center, officials monitor the “Mode VII” emergency landing simulation being conducted at Kennedy Space Center and managed and directed from the LCC. From left are Dr. Luis Moreno and Dr. David Reed, with Bionetics Life Sciences, and Dr. Philip Scarpa, with the KSC Safety, Occupational Health and Environment Division. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer “astronauts” who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
Interim Land Use Control Implementation Plan
NASA Technical Reports Server (NTRS)
Applegate, Joseph L.
2014-01-01
This Interim Land Use Control Implementation Plan (LUCIP) has been prepared to inform current and potential future users of the Kennedy Space Center (KSC) Contractors Road Heavy Equipment (CRHE) Area (SWMU 055; "the Site") of institutional controls that have been implemented at the Site1. Although there are no current unacceptable risks to human health or the environment associated with the CRHE Area, an interim institutional land use control (LUC) is necessary to prevent human health exposure to volatile organic compound (VOC)-affected groundwater at the Site. Controls will include periodic inspection, condition certification, and agency notification.
NASA Technical Reports Server (NTRS)
Hanson, Curt; Miller, Chris; Wall, John H.; VanZwieten, Tannen S.; Gilligan, Eric T.; Orr, Jeb S.
2015-01-01
An Adaptive Augmenting Control (AAC) algorithm for the Space Launch System (SLS) has been developed at the Marshall Space Flight Center (MSFC) as part of the launch vehicle's baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a potential manual steering mode were also investigated by giving the pilot trajectory deviation cues and pitch rate command authority, which is the subject of this paper. Two NASA research pilots flew a total of 25 constant pitch rate trajectories using a prototype manual steering mode with and without adaptive control, evaluating six different nominal and off-nominal test case scenarios. Pilot comments and PIO ratings were given following each trajectory and correlated with aircraft state data and internal controller signals post-flight.
K. Delaney; E. Espeland; A. Norton; S. Sing; K. Keever; J. L. Baker; M. Cristofaro; R. Jashenko; J. Gaskin; U. Schaffner
2013-01-01
Projects to develop biological control solutions against invasive plants are midto long-term endeavors that require considerable financial support over several years. Discussions of concerns and potential conflicts of interests often occur when biological control agents are first being proposed for release into the environment. Such late discussion, which in some cases...
NASA Technical Reports Server (NTRS)
Homan, Jonathan L.; Lauterbach, John; Garcia, Sam
2016-01-01
Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. The chamber was originally built to support testing of the Apollo Service and Command Module for lunar missions, but underwent major modifications to be able to test the James Webb Space Telescope in a simulated deep space environment. To date seven tests have been performed in preparation of testing the flight optics for the James Webb Space Telescope (JWST). Each test has had a uniquie thermal profile and set of thermal requirements for cooling down and warming up, controlling contamination, and releasing condensed air. These range from temperatures from 335K to 15K, with tight uniformity and controllability for maintining thermal stability and pressure control. One unique requirement for two test was structurally proof loading hardware by creating thermal gradients at specific temperatures. This paper will discuss the thermal requirements and goals of the tests, the original requirements of the chamber thermal systems for planned operation, and how the new requirements were met by the team using the hardware, system flexiblilty, and engineering creativity. It will also discuss the mistakes and successes to meet the unique goals, especially when meeting the thermal proof load.
NASA Technical Reports Server (NTRS)
Hebert, Phillip W.
2008-01-01
NASA/SSC's Mission in Rocket Propulsion Testing Is to Acquire Test Performance Data for Verification, Validation and Qualification of Propulsion Systems Hardware: Accurate, Reliable, Comprehensive, and Timely. Data Acquisition in a Rocket Propulsion Test Environment Is Challenging: a) Severe Temporal Transient Dynamic Environments; b) Large Thermal Gradients; c) Vacuum to high pressure regimes. A-3 Test Stand Development is equally challenging with respect to accommodating vacuum environment, operation of a CSG system, and a large quantity of data system and control channels to determine proper engine performance as well as Test Stand operation. SSC is currently in the process of providing modernized DAS, Control Systems, Video, and network systems for the A-3 Test Stand to overcome these challenges.
NASA Technical Reports Server (NTRS)
2003-01-01
The Center for Advanced Microgravity Materials Processing (CAMMP) in Cambridge, MA, a NASA-sponsored Commercial Space Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Depicted here is one of the many here complex geometric shapes which make them highly absorbent. Zeolite experiments have also been conducted aboard the International Space Station
The Implementation of Payload Safety in an Operational Environment
NASA Technical Reports Server (NTRS)
Cissom, R. D.; Horvath, Tim J.; Watson, Kristi S.; Rogers, Mark N. (Technical Monitor); Vanhooser, T. (Technical Monitor)
2002-01-01
The objective of this paper is to define the safety life-cycle process for a payload beginning with the output of the Payload Safety Review Panel and continuing through the life of the payload on-orbit. It focuses on the processes and products of the operations safety implementation through the increment preparations and real-time operations processes. In addition, the paper addresses the role of the Payload Operations and Integration Center and the interfaces to the International Partner Payload Control Centers.
2003-01-12
The Center for Advanced Microgravity Materials Processing (CAMMP) in Cambridge, MA, a NASA-sponsored Commercial Space Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Depicted here is one of the many here complex geometric shapes which make them highly absorbent. Zeolite experiments have also been conducted aboard the International Space Station
Dust control research for SEI. [Space Exploration Initiative
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.; Harris, Jeffrey R.
1992-01-01
A study, at NASA Johnson Space Center, of dust control requirements for surface habitats has focused on identification of the dust problem, identifying dust control techniques and dust control technology areas requiring research development. This research was performed for the Surface Habitats and Construction (SHAC) technology area. Dust control consists of two problems: (1) how to keep it out of the habitat; and (2) once the habitat or airlock is contaminated with dust, how to collect it. This paper describes the dust environment, the Apollo experience and dust control methods used, future EVA operational considerations, and dust control concepts for surface habitats.
Modulating Cancer Risk: The Gut Takes Control | Center for Cancer Research
Cancer risk is influenced by a number of factors, including exposure to chemicals in food and drugs and other molecules in the environment. Some of these chemicals may increase risk of developing cancer, while others, including many chemicals in vegetables, may confer protection.
Remote Operation of the ExoGeoLab Lander at ESTEC and Lunares Base
NASA Astrophysics Data System (ADS)
Lillo, A.; Foing, B. H.; Evellin, P.; Kołodziejczyk, A.; Jonglez, C.; Heinicke, C.; Harasymczuk, M.; Authier, L.; Blanc, A.; Chahla, C.; Tomic, A.; Mirino, M.; Schlacht, I.; Hettrich, S.; Pacher, T.
2017-10-01
The ExoGeoLab Lander is a prototype developed to demonstrate joint use of remote operation and EVA astronaut work in analogue lunar environment. It was recently deployed in the new analogue base Lunares in Poland and controlled from ESA ESTEC center.
Money Management in a Media Resources Environment.
ERIC Educational Resources Information Center
Kent, Alvin
1983-01-01
Director of Iowa State University's Media Resources Center argues that fiscal progress is the most reliable measure of functional progress or growth. How money is controlled to allow for allocation of funds and manipulation of service priorities is described as well as how service functions are managed. (MBR)
Karaveli, Sinan; Gaathon, Ophir; Wolcott, Abraham; Sakakibara, Reyu; Shemesh, Or A.; Peterka, Darcy S.; Boyden, Edward S.; Owen, Jonathan S.; Yuste, Rafael; Englund, Dirk
2016-01-01
The negatively charged nitrogen vacancy (NV−) center in diamond has attracted strong interest for a wide range of sensing and quantum information processing applications. To this end, recent work has focused on controlling the NV charge state, whose stability strongly depends on its electrostatic environment. Here, we demonstrate that the charge state and fluorescence dynamics of single NV centers in nanodiamonds with different surface terminations can be controlled by an externally applied potential difference in an electrochemical cell. The voltage dependence of the NV charge state can be used to stabilize the NV− state for spin-based sensing protocols and provides a method of charge state-dependent fluorescence sensing of electrochemical potentials. We detect clear NV fluorescence modulation for voltage changes down to 100 mV, with a single NV and down to 20 mV with multiple NV centers in a wide-field imaging mode. These results suggest that NV centers in nanodiamonds could enable parallel optical detection of biologically relevant electrochemical potentials. PMID:27035935
Karaveli, Sinan; Gaathon, Ophir; Wolcott, Abraham; Sakakibara, Reyu; Shemesh, Or A; Peterka, Darcy S; Boyden, Edward S; Owen, Jonathan S; Yuste, Rafael; Englund, Dirk
2016-04-12
The negatively charged nitrogen vacancy (NV(-)) center in diamond has attracted strong interest for a wide range of sensing and quantum information processing applications. To this end, recent work has focused on controlling the NV charge state, whose stability strongly depends on its electrostatic environment. Here, we demonstrate that the charge state and fluorescence dynamics of single NV centers in nanodiamonds with different surface terminations can be controlled by an externally applied potential difference in an electrochemical cell. The voltage dependence of the NV charge state can be used to stabilize the NV(-) state for spin-based sensing protocols and provides a method of charge state-dependent fluorescence sensing of electrochemical potentials. We detect clear NV fluorescence modulation for voltage changes down to 100 mV, with a single NV and down to 20 mV with multiple NV centers in a wide-field imaging mode. These results suggest that NV centers in nanodiamonds could enable parallel optical detection of biologically relevant electrochemical potentials.
NASA Astrophysics Data System (ADS)
Karaveli, Sinan; Gaathon, Ophir; Wolcott, Abraham; Sakakibara, Reyu; Shemesh, Or A.; Peterka, Darcy S.; Boyden, Edward S.; Owen, Jonathan S.; Yuste, Rafael; Englund, Dirk
2016-04-01
The negatively charged nitrogen vacancy (NV-) center in diamond has attracted strong interest for a wide range of sensing and quantum information processing applications. To this end, recent work has focused on controlling the NV charge state, whose stability strongly depends on its electrostatic environment. Here, we demonstrate that the charge state and fluorescence dynamics of single NV centers in nanodiamonds with different surface terminations can be controlled by an externally applied potential difference in an electrochemical cell. The voltage dependence of the NV charge state can be used to stabilize the NV- state for spin-based sensing protocols and provides a method of charge state-dependent fluorescence sensing of electrochemical potentials. We detect clear NV fluorescence modulation for voltage changes down to 100 mV, with a single NV and down to 20 mV with multiple NV centers in a wide-field imaging mode. These results suggest that NV centers in nanodiamonds could enable parallel optical detection of biologically relevant electrochemical potentials.
Attitude Control Performance of IRVE-3
NASA Technical Reports Server (NTRS)
Dillman, Robert A.; Gsell, Valerie T.; Bowden, Ernest L.
2013-01-01
The Inflatable Reentry Vehicle Experiment 3 (IRVE-3) launched July 23, 2012, from NASA Wallops Flight Facility and successfully performed its mission, demonstrating both the survivability of a hypersonic inflatable aerodynamic decelerator in the reentry heating environment and the effect of an offset center of gravity on the aeroshell's flight L/D. The reentry vehicle separated from the launch vehicle, released and inflated its aeroshell, reoriented for atmospheric entry, and mechanically shifted its center of gravity before reaching atmospheric interface. Performance data from the entire mission was telemetered to the ground for analysis. This paper discusses the IRVE-3 mission scenario, reentry vehicle design, and as-flown performance of the attitude control system in the different phases of the mission.
New multivariable capabilities of the INCA program
NASA Technical Reports Server (NTRS)
Bauer, Frank H.; Downing, John P.; Thorpe, Christopher J.
1989-01-01
The INteractive Controls Analysis (INCA) program was developed at NASA's Goddard Space Flight Center to provide a user friendly, efficient environment for the design and analysis of control systems, specifically spacecraft control systems. Since its inception, INCA has found extensive use in the design, development, and analysis of control systems for spacecraft, instruments, robotics, and pointing systems. The (INCA) program was initially developed as a comprehensive classical design analysis tool for small and large order control systems. The latest version of INCA, expected to be released in February of 1990, was expanded to include the capability to perform multivariable controls analysis and design.
The Effect of Planetariums on Teaching Specific Astronomy Concepts
NASA Astrophysics Data System (ADS)
Türk, Cumhur; Kalkan, Hüseyin
2015-02-01
This study aimed to determine students' knowledge levels related to specific astronomy concepts and the effect of a planetarium environment on teaching. The study sample included seventh-grade (12-13 years old) students. For this purpose, 240 students of various socioeconomic and cultural levels from six schools (two in the city center, two in the districts and two in the villages) were enrolled in the study. The pretest-posttest control group quasi-experimental design was used in the study. The experimental and control groups were generated by random assignment. The "Solar System and Beyond" unit was selected. In the experimental group, the unit was taught with the use of a planetarium environment, whereas the same unit was taught to the control group students in a classroom environment. A test consisting of 14 multiple-choice questions was used as the pretest and posttest at the beginning and end of the unit. The data obtained were evaluated using the SPSS 20.0 software package program. The study results showed that teaching astronomical concepts in a planetarium environment was more effective than in a classroom environment. The study also revealed that students in the planetarium-assisted group were more successful in comprehending subjects that require 3D thinking, a reference system, changing the time and observation of periodic motion than those in control group.
Haardörfer, Regine; Alcantara, Iris C.; Gazmararian, Julie A.; Veluswamy, J. K.; Hodge, Tarccara L.; Addison, Ann R.; Hotz, James A.
2016-01-01
Objectives. We assessed the effectiveness of an intervention targeting home food and activity environments to reduce energy intake and increase physical activity among overweight and obese patients from 3 community health centers in rural Georgia. Methods. We conducted a randomized controlled trial (n = 349) from 2011 to 2013, with follow-up at 6 and 12 months. Health coaches delivered the 16-week intervention by using tailored home environment profiles showing areas in need of improvement and positive aspects of the home environment, behavioral contracts for healthy actions, and mailed support materials. Results. Participants were mostly African American women (84.8%), with a mean age of 50.2 years and a mean body mass index (weight in kilograms divided by the square of height in meters) of 38.3. Daily energy intake decreased more for the intervention than control group at 6 (–274 vs –69 kcal) and 12 months (–195 vs –76 kcal). We observed no change for either objective or self-reported physical activity. At 12 months, 82.6% of intervention participants had not gained weight compared with 71.4% of control participants. Conclusions. The intervention was effective in changing home environments and reducing energy intake. PMID:26696290
2012-05-07
Students from Benjamin E. Mays Preparatory School in New Orleans enjoyed a hands-on experience at the INFINITY at NASA Stennis Space Center facility May 7, 2012. The Louisiana students assisted in the first harvest of lettuce from the Controlled Environment Agriculture unit, which uses an aeroponic process that involves no soil and advance LED lighting techniques.
Managing Archival Collections in an Automated Environment: The Joys of Barcoding
ERIC Educational Resources Information Center
Hamburger, Susan; Charles, Jane Veronica
2006-01-01
In a desire for automated collection control, archival repositories are adopting barcoding from their library and records center colleagues. This article discusses the planning, design, and implementation phases of barcoding. The authors focus on reasons for barcoding, security benefits, in-room circulation tracking, potential for gathering…
Center for the Built Environment: Research on Controls and Information
Foundation Complex Case Study Publications Research Area : Sustainability, Whole Building Energy, and Other commercial building energy use. Krege Foundation Complex Case Study Analyzing performance of LEED platinum criteria for high performance buildings. Building test equipment The first in-depth case study was
NASA Astrophysics Data System (ADS)
Reuter, Stephan
2012-10-01
The novel approach of using plasmas in order to alter the local chemistry of cells and cell environment presents a significant development in biomedical applications. The plasmatis center for innovation competence at the INP Greifswald e.V. performs fundamental research in plasma medicine in two interdisciplinary research groups. The aim of our plasma physics research group ``Extracellular Effects'' is (a) quantitative space and time resolved diagnostics and modelling of plasmas and liquids to determine distribution and composition of reactive species (b) to control the plasma and apply differing plasma source concepts in order to produce a tailored output of reactive components and design the chemical composition of the liquids/cellular environment and (c) to identify and understand the interaction mechanisms of plasmas with liquids and biological systems. Methods to characterize the plasma generated reactive species from plasma-, gas- and liquid phase and their biological effects will be presented. The diagnostic spectrum ranges from absorption/emission/laser spectroscopy and molecular beam mass spectrometry to electron paramagnetic resonance spectroscopy and cell biological diagnostic techniques. Concluding, a presentation will be given of the comprehensive approach to plasma medicine in Greifswald where the applied and clinical research of the Campus PlasmaMed association is combined with the fundamental research at plasmatis center.
Smart City Environmental Pollution Prevention and Control Design Based on Internet of Things
NASA Astrophysics Data System (ADS)
Peng, He; Bohong, Zheng; Qinpei, Kuang
2017-11-01
Due to increasingly serious urban pollution, this paper proposes an environmental pollution prevention and control system in combination with Internet of things. The system transfers data through the Internet, which also utilizes sensor, pH sensor and smoke sensor to obtain environmental data. Besides, combined with the video data acquired through monitoring, the data are transferred to data center to analyze the haze pollution, water pollution and fire disaster in environment. According to the results, multi-purpose vehicles are mobilized to complete the tasks such as spraying water to relieve haze, water source purification and fire fighting in city environment. Experiments show that the environmental pollution prevention and control system designed in this paper can automatically complete the urban environmental pollution detection, prevention and control, which thus reduces human and material resources and improves the efficiency of pollution prevention and control. Therefore, it possesses greatly practical significance to the construction of smart city.
Shift changes, updates, and the on-call architecture in space shuttle mission control.
Patterson, E S; Woods, D D
2001-01-01
In domains such as nuclear power, industrial process control, and space shuttle mission control, there is increased interest in reducing personnel during nominal operations. An essential element in maintaining safe operations in high risk environments with this 'on-call' organizational architecture is to understand how to bring called-in practitioners up to speed quickly during escalating situations. Targeted field observations were conducted to investigate what it means to update a supervisory controller on the status of a continuous, anomaly-driven process in a complex, distributed environment. Sixteen shift changes, or handovers, at the NASA Johnson Space Center were observed during the STS-76 Space Shuttle mission. The findings from this observational study highlight the importance of prior knowledge in the updates and demonstrate how missing updates can leave flight controllers vulnerable to being unprepared. Implications for mitigating risk in the transition to 'on-call' architectures are discussed.
Shift changes, updates, and the on-call architecture in space shuttle mission control
NASA Technical Reports Server (NTRS)
Patterson, E. S.; Woods, D. D.
2001-01-01
In domains such as nuclear power, industrial process control, and space shuttle mission control, there is increased interest in reducing personnel during nominal operations. An essential element in maintaining safe operations in high risk environments with this 'on-call' organizational architecture is to understand how to bring called-in practitioners up to speed quickly during escalating situations. Targeted field observations were conducted to investigate what it means to update a supervisory controller on the status of a continuous, anomaly-driven process in a complex, distributed environment. Sixteen shift changes, or handovers, at the NASA Johnson Space Center were observed during the STS-76 Space Shuttle mission. The findings from this observational study highlight the importance of prior knowledge in the updates and demonstrate how missing updates can leave flight controllers vulnerable to being unprepared. Implications for mitigating risk in the transition to 'on-call' architectures are discussed.
2004-03-10
KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, NASA’s MESSENGER spacecraft from NASA’s Goddard Space Flight Center in Greenbelt, Md., is offloaded. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
2004-03-10
KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, a lift helps offload NASA’s MESSENGER spacecraft shipped from NASA’s Goddard Space Flight Center in Greenbelt, Md. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
Testing the equipment for the cryogenic optical test of the James Webb Space Telescope
NASA Astrophysics Data System (ADS)
Whitman, Tony L.; Dziak, K. J.; Huguet, Jesse; Knight, J. Scott; Reis, Carl; Wilson, Erin
2014-08-01
After integration of the Optical Telescope Element (OTE) to the Integrated Science Instrument Module (ISIM) to become the OTIS, the JWST optics are tested at NASA's Johnson Space Center (JSC) in the cryogenic vacuum Chamber A for alignment and optical performance. Tens of trucks full of custom test equipment are being delivered to the JSC, in addition to the large pieces built at the Center, and the renovation of the chamber itself. The facility is tested for the thermal stability control for optical measurements and contamination control during temperature transitions. The support for the OTIS is also tested for thermal stability control, load tested in the cryogenic environment, and tested for isolation of the background vibration for the optical measurements. The Center of Curvature Optical Assembly (COCOA) is tested for the phasing and wavefront error (WFE) measurement of an 18 segment mirror and for cryogenic operation. A photogrammetry system is tested for metrology performance and cryogenic operation. Test mirrors for auto-collimation measurements are tested for optical performance and cryogenic operation. An assembly of optical test sources are calibrated and tested in a cryogenic environment. A Pathfinder telescope is used as a surrogate telescope for cryogenic testing of the OTIS optical test configuration. A Beam Image Analyzer (BIA) is used as a surrogate ISIM with the Pathfinder in this test. After briefly describing the OTIS optical test configuration, the paper will overview the list and configuration of significant tests of the equipment leading up to the OTIS test.
NASA Technical Reports Server (NTRS)
Williams, David H.; Green, Steven M.
1993-01-01
Historically, development of airborne flight management systems (FMS) and ground-based air traffic control (ATC) systems has tended to focus on different objectives with little consideration for operational integration. A joint program, between NASA's Ames Research Center (Ames) and Langley Research Center (Langley), is underway to investigate the issues of, and develop systems for, the integration of ATC and airborne automation systems. A simulation study was conducted to evaluate a profile negotiation process (PNP) between the Center/TRACON Automation System (CTAS) and an aircraft equipped with a four-dimensional flight management system (4D FMS). Prototype procedures were developed to support the functional implementation of this process. The PNP was designed to provide an arrival trajectory solution which satisfies the separation requirements of ATC while remaining as close as possible to the aircraft's preferred trajectory. Results from the experiment indicate the potential for successful incorporation of aircraft-preferred arrival trajectories in the CTAS automation environment. Fuel savings on the order of 2 percent to 8 percent, compared to fuel required for the baseline CTAS arrival speed strategy, were achieved in the test scenarios. The data link procedures and clearances developed for this experiment, while providing the necessary functionality, were found to be operationally unacceptable to the pilots. In particular, additional pilot control and understanding of the proposed aircraft-preferred trajectory, and a simplified clearance procedure were cited as necessary for operational implementation of the concept.
Environment sanitation handbook
NASA Technical Reports Server (NTRS)
1973-01-01
The environmental Sanitation handbook provides guidance in the implementation of the basic provisions of occupational medicine and environmental health programs to environmental sanitation. It presents methods and procedures useful for the control of those sanitation factors which could create discomfort and illness in man or do harm to his environment. The provisions of this handbook are applicable to all organizational elements of the Kennedy Space Center (KSC),NASA, and to its associated contractors located at KSC in accordance with the terms of their respective contracts.
NASA Technical Reports Server (NTRS)
Hwang, James; Campbell, Perry; Ross, Mike; Price, Charles R.; Barron, Don
1989-01-01
An integrated operating environment was designed to incorporate three general purpose robots, sensors, and end effectors, including Force/Torque Sensors, Tactile Array sensors, Tactile force sensors, and Force-sensing grippers. The design and implementation of: (1) the teleoperation of a general purpose PUMA robot; (2) an integrated sensor hardware/software system; (3) the force-sensing gripper control; (4) the host computer system for dual Robotic Research arms; and (5) the Ethernet integration are described.
Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18
NASA Technical Reports Server (NTRS)
VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Orr, Jeb S.; Miller, Christopher J.; Hanson, Curtis E.
2014-01-01
The NASA Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an Adaptive Augmenting Control (AAC) algorithm for launch vehicles that improves robustness and performance by adapting an otherwise welltuned classical control algorithm to unexpected environments or variations in vehicle dynamics. This AAC algorithm is currently part of the baseline design for the SLS Flight Control System (FCS), but prior to this series of research flights it was the only component of the autopilot design that had not been flight tested. The Space Launch System (SLS) flight software prototype, including the adaptive component, was recently tested on a piloted aircraft at Dryden Flight Research Center (DFRC) which has the capability to achieve a high level of dynamic similarity to a launch vehicle. Scenarios for the flight test campaign were designed specifically to evaluate the AAC algorithm to ensure that it is able to achieve the expected performance improvements with no adverse impacts in nominal or nearnominal scenarios. Having completed the recent series of flight characterization experiments on DFRC's F/A-18, the AAC algorithm's capability, robustness, and reproducibility, have been successfully demonstrated. Thus, the entire SLS control architecture has been successfully flight tested in a relevant environment. This has increased NASA's confidence that the autopilot design is ready to fly on the SLS Block I vehicle and will exceed the performance of previous architectures.
Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Mount, Frances; Carreon, Patricia; Torney, Susan E.
2001-01-01
The Engineering and Mission Operations Directorates at NASA Johnson Space Center are combining laboratories and expertise to establish the Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations. This is a testbed for human centered design, development and evaluation of intelligent autonomous and assistant systems that will be needed for human exploration and development of space. This project will improve human-centered analysis, design and evaluation methods for developing intelligent software. This software will support human-machine cognitive and collaborative activities in future interplanetary work environments where distributed computer and human agents cooperate. We are developing and evaluating prototype intelligent systems for distributed multi-agent mixed-initiative operations. The primary target domain is control of life support systems in a planetary base. Technical approaches will be evaluated for use during extended manned tests in the target domain, the Bioregenerative Advanced Life Support Systems Test Complex (BIO-Plex). A spinoff target domain is the International Space Station (ISS) Mission Control Center (MCC). Prodl}cts of this project include human-centered intelligent software technology, innovative human interface designs, and human-centered software development processes, methods and products. The testbed uses adjustable autonomy software and life support systems simulation models from the Adjustable Autonomy Testbed, to represent operations on the remote planet. Ground operations prototypes and concepts will be evaluated in the Exploration Planning and Operations Center (ExPOC) and Jupiter Facility.
Reinforcement Learning with Autonomous Small Unmanned Aerial Vehicles in Cluttered Environments
NASA Technical Reports Server (NTRS)
Tran, Loc; Cross, Charles; Montague, Gilbert; Motter, Mark; Neilan, James; Qualls, Garry; Rothhaar, Paul; Trujillo, Anna; Allen, B. Danette
2015-01-01
We present ongoing work in the Autonomy Incubator at NASA Langley Research Center (LaRC) exploring the efficacy of a data set aggregation approach to reinforcement learning for small unmanned aerial vehicle (sUAV) flight in dense and cluttered environments with reactive obstacle avoidance. The goal is to learn an autonomous flight model using training experiences from a human piloting a sUAV around static obstacles. The training approach uses video data from a forward-facing camera that records the human pilot's flight. Various computer vision based features are extracted from the video relating to edge and gradient information. The recorded human-controlled inputs are used to train an autonomous control model that correlates the extracted feature vector to a yaw command. As part of the reinforcement learning approach, the autonomous control model is iteratively updated with feedback from a human agent who corrects undesired model output. This data driven approach to autonomous obstacle avoidance is explored for simulated forest environments furthering autonomous flight under the tree canopy research. This enables flight in previously inaccessible environments which are of interest to NASA researchers in Earth and Atmospheric sciences.
NASA Technical Reports Server (NTRS)
Mitchell, C. M.
1982-01-01
The NASA-Goddard Space Flight Center is responsible for the control and ground support for all of NASA's unmanned near-earth satellites. Traditionally, each satellite had its own dedicated mission operations room. In the mid-seventies, an integration of some of these dedicated facilities was begun with the primary objective to reduce costs. In this connection, the Multi-Satellite Operations Control Center (MSOCC) was designed. MSOCC represents currently a labor intensive operation. Recently, Goddard has become increasingly aware of human factors and human-machine interface issues. A summary is provided of some of the attempts to apply human factors considerations in the design of command and control environments. Current and future activities with respect to human factors and systems design are discussed, giving attention to the allocation of tasks between human and computer, and the interface for the human-computer dialogue.
NASA Technical Reports Server (NTRS)
Chu, Rose W.; Mitchell, Christine M.
1993-01-01
In supervisory control systems such as satellite ground control, there is a need for human-centered automation where the focus is to understand and enhance the human-system interaction experience in the complex task environment. Operator support in the form of off-line intelligent tutoring and on-line intelligent aiding is one approach towards this effort. The tutor/aid paradigm is proposed here as a design approach that integrates the two aspects of operator support in one system for technically oriented adults in complex domains. This paper also presents GT-VITA, a proof-of-concept graphical, interactive, intelligent tutoring system that is a first attempt to illustrate the tutoring aspect of the tutor/aid paradigm in the domain of satellite ground control. Evaluation on GT-VITA is conducted with NASA personnel with very positive results. GT-VITA is presented being fielded as it is at Goddard Space Flight Center.
Anderson, Nancy
2015-11-15
As of January 1, 2016, microbiology laboratories can choose to adopt a new quality control option, the Individualized Quality Control Plan (IQCP), under the Clinical Laboratory Improvement Amendments of 1988 (CLIA). This voluntary approach increases flexibility for meeting regulatory requirements and provides laboratories the opportunity to customize QC for their testing in their unique environments and by their testing personnel. IQCP is an all-inclusive approach to quality based on risk management to address potential errors in the total testing process. It includes three main steps, (1) performing a risk assessment, (2) developing a QC plan, and (3) monitoring the plan through quality assessment. Resources are available from the Centers for Medicare & Medicaid Services, Centers for Disease Control and Prevention, American Society for Microbiology, Clinical and Laboratory Standards Institute, and accrediting organizations, such as the College of American Pathologists and Joint Commission, to assist microbiology laboratories implementing IQCP.
NASA Technical Reports Server (NTRS)
Doreswamy, Rajiv
1990-01-01
The Marshall Space Flight Center (MSFC) owns and operates a space station module power management and distribution (SSM-PMAD) testbed. This system, managed by expert systems, is used to analyze and develop power system automation techniques for Space Station Freedom. The Lewis Research Center (LeRC), Cleveland, Ohio, has developed and implemented a space station electrical power system (EPS) testbed. This system and its power management controller are representative of the overall Space Station Freedom power system. A virtual link is being implemented between the testbeds at MSFC and LeRC. This link would enable configuration of SSM-PMAD as a load center for the EPS testbed at LeRC. This connection will add to the versatility of both systems, and provide an environment of enhanced realism for operation of both testbeds.
Water Immersion Affects Episodic Memory and Postural Control in Healthy Older Adults.
Bressel, Eadric; Louder, Talin J; Raikes, Adam C; Alphonsa, Sushma; Kyvelidou, Anastasia
2018-05-04
Previous research has reported that younger adults make fewer cognitive errors on an auditory vigilance task while in chest-deep water compared with on land. The purpose of this study was to extend this previous work to include older adults and to examine the effect of environment (water vs land) on linear and nonlinear measures of postural control under single- and dual-task conditions. Twenty-one older adult participants (age = 71.6 ± 8.34 years) performed a cognitive (auditory vigilance) and motor (standing balance) task separately and simultaneously on land and in chest-deep water. Listening errors (n = count) from the auditory vigilance test and sample entropy (SampEn), center of pressure area, and velocity for the balance test served as dependent measures. Environment (land vs water) and task (single vs dual) comparisons were made with a Wilcoxon matched-pair test. Listening errors were 111% greater during land than during water environments (single-task = 4.0 ± 3.5 vs 1.9 ± 1.7; P = .03). Conversely, SampEn values were 100% greater during water than during land environments (single-task = 0.04 ± 0.01 vs 0.02 ± 0.01; P < .001). Center of pressure area and velocity followed a similar trend to SampEn with respect to environment differences, and none of the measures were different between single- and dual-task conditions (P > .05). The findings of this study expand current support for the potential use of partial aquatic immersion as a viable method for challenging both cognitive and motor abilities in older adults.
Taking advantage of ground data systems attributes to achieve quality results in testing software
NASA Technical Reports Server (NTRS)
Sigman, Clayton B.; Koslosky, John T.; Hageman, Barbara H.
1994-01-01
During the software development life cycle process, basic testing starts with the development team. At the end of the development process, an acceptance test is performed for the user to ensure that the deliverable is acceptable. Ideally, the delivery is an operational product with zero defects. However, the goal of zero defects is normally not achieved but is successful to various degrees. With the emphasis on building low cost ground support systems while maintaining a quality product, a key element in the test process is simulator capability. This paper reviews the Transportable Payload Operations Control Center (TPOCC) Advanced Spacecraft Simulator (TASS) test tool that is used in the acceptance test process for unmanned satellite operations control centers. The TASS is designed to support the development, test and operational environments of the Goddard Space Flight Center (GSFC) operations control centers. The TASS uses the same basic architecture as the operations control center. This architecture is characterized by its use of distributed processing, industry standards, commercial off-the-shelf (COTS) hardware and software components, and reusable software. The TASS uses much of the same TPOCC architecture and reusable software that the operations control center developer uses. The TASS also makes use of reusable simulator software in the mission specific versions of the TASS. Very little new software needs to be developed, mainly mission specific telemetry communication and command processing software. By taking advantage of the ground data system attributes, successful software reuse for operational systems provides the opportunity to extend the reuse concept into the test area. Consistency in test approach is a major step in achieving quality results.
NASA Technical Reports Server (NTRS)
Applegate, Joseph L.
2014-01-01
This Land Use Control Implementation Plan (LUCIP) has been prepared to inform current and potential future users of the Kennedy Space Center (KSC) Shuttle Flight Operations Contract Generator Maintenance Facility (SFOC; SWMU 081; "the Site") of institutional controls that have been implemented at the Site1. Although there are no current unacceptable risks to human health or the environment associated with the SFOC, an institutional land use control (LUC) is necessary to prevent human health exposure to antimony-affected groundwater at the Site. Controls will include periodic inspection, condition certification, and agency notification.
Control system design and analysis using the INteractive Controls Analysis (INCA) program
NASA Technical Reports Server (NTRS)
Bauer, Frank H.; Downing, John P.
1987-01-01
The INteractive Controls Analysis (INCA) program was developed at the Goddard Space Flight Center to provide a user friendly efficient environment for the design and analysis of linear control systems. Since its inception, INCA has found extensive use in the design, development, and analysis of control systems for spacecraft, instruments, robotics, and pointing systems. Moreover, the results of the analytic tools imbedded in INCA have been flight proven with at least three currently orbiting spacecraft. This paper describes the INCA program and illustrates, using a flight proven example, how the package can perform complex design analyses with relative ease.
Air Defense: A Computer Game for Research in Human Performance.
1981-07-01
warfare (ANW) threat analysis. M’ajor elements of the threat analysis problem \\\\,erc eoibedded in an interactive air detoense game controlled by a...The game requires sustained attention to a complex and interactive "hostile" environment, provides proper experimental control of relevant variables...AD-A102 725 NAVY PERSONNEL RESEARCH AND DEVELOPMENT CENTER SAN DETC F/6 5/10 AIR DEFENSE: A COMPUTER GAME FOR RESEARCH IN HUMAN PERFORMANCE.(U) JUL
NASA Technical Reports Server (NTRS)
Lindsey, Patricia F.
1993-01-01
In its search for higher level computer interfaces and more realistic electronic simulations for measurement and spatial analysis in human factors design, NASA at MSFC is evaluating the functionality of virtual reality (VR) technology. Virtual reality simulation generates a three dimensional environment in which the participant appears to be enveloped. It is a type of interactive simulation in which humans are not only involved, but included. Virtual reality technology is still in the experimental phase, but it appears to be the next logical step after computer aided three-dimensional animation in transferring the viewer from a passive to an active role in experiencing and evaluating an environment. There is great potential for using this new technology when designing environments for more successful interaction, both with the environment and with another participant in a remote location. At the University of North Carolina, a VR simulation of a the planned Sitterson Hall, revealed a flaw in the building's design that had not been observed during examination of the more traditional building plan simulation methods on paper and on computer aided design (CAD) work station. The virtual environment enables multiple participants in remote locations to come together and interact with one another and with the environment. Each participant is capable of seeing herself and the other participants and of interacting with them within the simulated environment.
Navigation of a care and welfare robot
NASA Astrophysics Data System (ADS)
Yukawa, Toshihiro; Hosoya, Osamu; Saito, Naoki; Okano, Hideharu
2005-12-01
In this paper, we propose the development of a robot that can perform nursing tasks in a hospital. In a narrow environment such as a sickroom or a hallway, the robot must be able to move freely in arbitrary directions. Therefore, the robot needs to have high controllability and the capability to make precise movements. Our robot can recognize a line by using cameras, and can be controlled in the reference directions by means of comparison with original cell map information; furthermore, it moves safely on the basis of an original center-line established permanently in the building. Correspondence between the robot and a centralized control center enables the robot's autonomous movement in the hospital. Through a navigation system using cell map information, the robot is able to perform nursing tasks smoothly by changing the camera angle.
Image-based tracking and sensor resource management for UAVs in an urban environment
NASA Astrophysics Data System (ADS)
Samant, Ashwin; Chang, K. C.
2010-04-01
Coordination and deployment of multiple unmanned air vehicles (UAVs) requires a lot of human resources in order to carry out a successful mission. The complexity of such a surveillance mission is significantly increased in the case of an urban environment where targets can easily escape from the UAV's field of view (FOV) due to intervening building and line-of-sight obstruction. In the proposed methodology, we focus on the control and coordination of multiple UAVs having gimbaled video sensor onboard for tracking multiple targets in an urban environment. We developed optimal path planning algorithms with emphasis on dynamic target prioritizations and persistent target updates. The command center is responsible for target prioritization and autonomous control of multiple UAVs, enabling a single operator to monitor and control a team of UAVs from a remote location. The results are obtained using extensive 3D simulations in Google Earth using Tangent plus Lyapunov vector field guidance for target tracking.
Testing of an Amine-Based Pressure-Swing System for Carbon Dioxide and Humidity Control
NASA Technical Reports Server (NTRS)
Lin, Amy; Smith, Frederick; Sweterlitsch, Jeffrey; Graf, John; Nalette, Tim; Papale, William; Campbell, Melissa; Lu, Sao-Dung
2007-01-01
In a crewed spacecraft environment, atmospheric carbon dioxide (CO2) and moisture control is crucial. Hamilton Sundstrand has developed a stable and efficient amine-based CO2 and water vapor sorbent, SA9T, that is well-suited for use in a spacecraft environment. The sorbent is efficiently packaged in pressure-swing regenerable beds that are thermally linked to improve removal efficiency and minimize vehicle thermal loads. Flows are all controlled with a single spool valve. This technology has been baselined for the new Orion spacecraft. However, more data was needed on the operational characteristics of the package in a simulated spacecraft environment. A unit was therefore tested with simulated metabolic loads in a closed chamber at Johnson Space Center during the last third of 2006. Tests were run at a variety of cabin temperatures and with a range of operating conditions varying cycle time, vacuum pressure, air flow rate, and crew activity levels. Results of this testing are presented and potential flight operational strategies discussed.
NASA Technical Reports Server (NTRS)
Bula, R. J.
1997-01-01
The ASTROCULTURE(trademark) plant growth unit flown as part on the STS-63 mission in February 1995, represented the first time plants were flown in microgravity in a enclosed controlled environment plant growth facility. In addition to control of the major environmental parameters, nutrients were provided to the plants with the ZEOPONICS system developed by NASA Johnson Space Center scientists. Two plant species were included in this space experiment, dwarf wheat (Triticum aestivum) and a unique mustard called "Wisconsin Fast Plants" (Brassica rapa). Extensive post-flight analyses have been performed on the plant material and it has been concluded that plant growth and development was normal during the period the plants were in the microgravity environment of space. However, adequate plant growth and development control data were not available for direct comparisons of plant responses to the microgravity environment with those of plants grown at 1 g. Such data would allow for a more complete interpretation of the extent that microgravity affects plant growth and development.
Improving User Notification on Frequently Changing HPC Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuson, Christopher B; Renaud, William A
2016-01-01
Today s HPC centers user environments can be very complex. Centers often contain multiple large complicated computational systems each with their own user environment. Changes to a system s environment can be very impactful; however, a center s user environment is, in one-way or another, frequently changing. Because of this, it is vital for centers to notify users of change. For users, untracked changes can be costly, resulting in unnecessary debug time as well as wasting valuable compute allocations and research time. Communicating frequent change to diverse user communities is a common and ongoing task for HPC centers. This papermore » will cover the OLCF s current processes and methods used to communicate change to users of the center s large Cray systems and supporting resources. The paper will share lessons learned and goals as well as practices, tools, and methods used to continually improve and reach members of the OLCF user community.« less
Wingbeat frequency-sweep and visual stimuli for trapping male Aedes aegypti (Diptera: Culicidae)
USDA-ARS?s Scientific Manuscript database
Combinations of female wingbeat acoustic cues and visual cues were evaluated to determine their potential for use in male Aedes aegypti (L.) traps in peridomestic environments. A modified Centers for Disease control (CDC) light trap using a 350-500 Hz frequency-sweep broadcast from a speaker as an a...
Real-Time Courseware Design: The LAVAC Video Sequencer[R].
ERIC Educational Resources Information Center
Toma, Tony
Teachers have acknowledged the richer learning environment and interactivity of multimedia teaching, its flexibility to different learning styles, and learner control that allows the learner to fully engage in the learning process. However, they still have problems in courseware design because their work is mainly centered on exercises and not on…
2012-05-07
Lauren Lombard from Benjamin E. Mays Preparatory School in New Orleans enjoys lettuce she helped to harvest at the INFINITY at NASA Stennis Space Center facility May 7, 2012. The Louisiana students assisted in the first harvest of lettuce from the Controlled Environment Agriculture unit, which uses an aeroponic process that involves no soil and advance LED lighting techniques
2012-05-07
Shania Etheridge from Benjamin E. Mays Preparatory School in New Orleans shows off the head of lettuce she harvested at the INFINITY at NASA Stennis Space Center facility May 7, 2012. The Louisiana students assisted in the first harvest of lettuce from the Controlled Environment Agriculture unit, which uses an aeroponic process that involves no soil and advance LED lighting techniques.
1971-01-01
This 1971 photograph was taken during the assembly of the Flight Article of the Skylab Airlock Module (AM). The Am, fabricated by McDornell Douglas under the direction of the Marshall Flight Center, allowed Skylab crew members an exit to perform extravehicular activities. The Module also contained many of the supplies and control panels for electrical power distribution and internal environment.
Seed Planting in Veggie Pillows
2017-08-08
Outredgeous red leaf lettuce, Mizuna mustard and Waldmann's green lettuce are growing in the Veggie control system in the ISS environment simulator chamber in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Growth in the chamber mimics the growth of plant experiments in the Veggie plant growth system on the International Space Station.
Johnson Space Center's regenerative life support systems test bed
NASA Technical Reports Server (NTRS)
Henninger, Donald L.; Tri, Terry O.; Barta, Daniel J.; Stahl, Randal S.
1991-01-01
The Regenerative Life Support System (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for the evaluation of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. When completed, the facility will be comprised of two large scale plant growth chambers, each with approximately 10 m(exp 2) growing area. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), will be capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in Lunar or Martian habitats; the other chamber, the Ambient Pressure Growth Chamber (APGC) will operate at ambient atmospheric pressure. The root zone in each chamber will be configurable for hydroponic or solid state media systems. Research will focus on: (1) in situ resource utilization for CELSS systems, in which simulated lunar soils will be used in selected crop growth studies; (2) integration of biological and physicochemical air and water revitalization systems; (3) effect of atmospheric pressure on system performance; and (4) monitoring and control strategies.
Thermal System Upgrade of the Space Environment Simulation Test Chamber
NASA Technical Reports Server (NTRS)
Desai, Ashok B.
1997-01-01
The paper deals with the refurbishing and upgrade of the thermal system for the existing thermal vacuum test facility, the Space Environment Simulator, at NASA's Goddard Space Flight Center. The chamber is the largest such facility at the center. This upgrade is the third phase of the long range upgrade of the chamber that has been underway for last few years. The first phase dealt with its vacuum system, the second phase involved the GHe subsystem. The paper describes the considerations of design philosophy options for the thermal system; approaches taken and methodology applied, in the evaluation of the remaining "life" in the chamber shrouds and related equipment by conducting special tests and studies; feasibility and extent of automation, using computer interfaces and Programmable Logic Controllers in the control system and finally, matching the old components to the new ones into an integrated, highly reliable and cost effective thermal system for the facility. This is a multi-year project just started and the paper deals mainly with the plans and approaches to implement the project successfully within schedule and costs.
NASA Technical Reports Server (NTRS)
Benavides, Jose
2014-01-01
SPHERES is a facility of the ISS National Laboratory with three IVA nano-satellites designed and delivered by MIT to research estimation, control, and autonomy algorithms. Since Fall 2010, The SPHERES system is now operationally supported and managed by NASA Ames Research Center (ARC). A SPHERES Program Office was established and is located at NASA Ames Research Center. The SPHERES Program Office coordinates all SPHERES related research and STEM activities on-board the International Space Station (ISS), as well as, current and future payload development. By working aboard ISS under crew supervision, it provides a risk tolerant Test-bed Environment for Distributed Satellite Free-flying Control Algorithms. If anything goes wrong, reset and try again! NASA has made the capability available to other U.S. government agencies, schools, commercial companies and students to expand the pool of ideas for how to test and use these bowling ball-sized droids. For many of the researchers, SPHERES offers the only opportunity to do affordable on-orbit characterization of their technology in the microgravity environment. Future utilization of SPHERES as a facility will grow its capabilities as a platform for science, technology development, and education.
The Astroculture (tm)-1 experiment on the USML-1 mission
NASA Technical Reports Server (NTRS)
Tibbitts, Theodore; Bula, R. J.; Morrow, R. C.
1994-01-01
Permanent human presence in space will require a life support system that minimizes athe need for resupply of consumables from Earth resources. Plants that convert radiant energy to chemical energy via photosynthesis are a key component of a bioregenerative life support system. Providing the proper root environment for plants in reduced gravity is an essential aspect of the development of facilities for growing plants in a space environment. The ASTROCULTURE(TM)-1 experiment, included in the USML-1 mission, successfully demonstrated the ability of the Wisconsin Center for Space Automation and Robotics porous tube water delivery system to control water movement through a rooting matrix in a microgravity environment.
Crew behavior and performance in space analog environments
NASA Technical Reports Server (NTRS)
Kanki, Barbara G.
1992-01-01
The objectives and the current status of the Crew Factors research program conducted at NASA-Ames Research Center are reviewed. The principal objectives of the program are to determine the effects of a broad class of input variables on crew performance and to provide guidance with respect to the design and management of crews assigned to future space missions. A wide range of research environments are utilized, including controlled experimental settings, high fidelity full mission simulator facilities, and fully operational field environments. Key group processes are identified, and preliminary data are presented on the effect of crew size, type, and structure on team performance.
Rathert, Cheryl; May, Douglas R
2008-01-01
We propose that in order to systematically improve healthcare quality, healthcare organizations (HCOs) need work environments that are person-centered: environments that support the careprovider as well as the patient. We further argue that HCOs have a moral imperative to provide a workplace where professional care standards can be achieved. We draw upon a large body of research from several disciplines to propose and articulate a theoretical framework that explains how the work environment should be related to the well-being of patients and careproviders, that is, the potential mediating mechanisms. Person-centered work environments include: 1. Climates for patient-centered care. 2. Climates for quality improvement. 3. Benevolent ethical climates. Such a work environment should support the provision of patient-centered care, and should lead to positive psychological states for careproviders, including psychological safety and positive affect. The model contributes to theory by specifying relationships between important organizational variables. The model can potentially contribute to practice by linking specific work environment attributes to outcomes for careproviders and patients.
The Minnesota Center for Twin and Family Research Genome-Wide Association Study
Miller, Michael B.; Basu, Saonli; Cunningham, Julie; Eskin, Eleazar; Malone, Steven M.; Oetting, William S.; Schork, Nicholas; Sul, Jae Hoon; Iacono, William G.; Mcgue, Matt
2012-01-01
As part of the Genes, Environment and Development Initiative (GEDI), the Minnesota Center for Twin and Family Research (MCTFR) undertook a genome-wide association study (GWAS), which we describe here. A total of 8405 research participants, clustered in 4-member families, have been successfully genotyped on 527,829 single nucleotide polymorphism (SNP) markers using Illumina’s Human660W-Quad array. Quality control screening of samples and markers as well as SNP imputation procedures are described. We also describe methods for ancestry control and how the familial clustering of the MCTFR sample can be accounted for in the analysis using a Rapid Feasible Generalized Least Squares algorithm. The rich longitudinal MCTFR assessments provide numerous opportunities for collaboration. PMID:23363460
Metamorphoses of ONAV console operations: From prototype to real time application
NASA Technical Reports Server (NTRS)
Millis, Malise; Wang, Lui
1991-01-01
The ONAV (Onboard Navigation) Expert System is being developed as a real time console assistant to the ONAV flight controller for use in the Mission Control Center at the Johnson Space Center. Currently the entry and rendezvous systems are in verification, and the ascent is being prototyped. To arrive at this stage, from a prototype to real world application, the ONAV project has had to deal with not only AI issues but operating environment issues. The AI issues included the maturity of AI languages and the debugging tools, what is verification, and availability, stability, and the size of the expert pool. The environmental issues included real time data acquisition, hardware stability, and how to achieve acceptance by users and management.
Environmental Control and Life Support Systems Test Facility at MSFC
NASA Technical Reports Server (NTRS)
2001-01-01
The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This photograph shows the development Water Processor located in two racks in the ECLSS test area at the Marshall Space Flight Center. Actual waste water, simulating Space Station waste, is generated and processed through the hardware to evaluate the performance of technologies in the flight Water Processor design.
NASA Technical Reports Server (NTRS)
1997-01-01
I-FORCE, a computer peripheral from Immersion Corporation, was derived from virtual environment and human factors research at the Advanced Displays and Spatial Perception Laboratory at Ames Research Center in collaboration with Stanford University Center for Design Research. Entrepreneur Louis Rosenberg, a former Stanford researcher, now president of Immersion, collaborated with Dr. Bernard Adelstein at Ames on studies of perception in virtual reality. The result was an inexpensive way to incorporate motors and a sophisticated microprocessor into joysticks and other game controllers. These devices can emulate the feel of a car on the skid, a crashing plane, the bounce of a ball, compressed springs, or other physical phenomenon. The first products incorporating I-FORCE technology include CH- Products' line of FlightStick and CombatStick controllers.
Construct mine environment monitoring system based on wireless mesh network
NASA Astrophysics Data System (ADS)
Chen, Xin; Ge, Gengyu; Liu, Yinmei; Cheng, Aimin; Wu, Jun; Fu, Jun
2018-04-01
The system uses wireless Mesh network as a network transmission medium, and strive to establish an effective and reliable underground environment monitoring system. The system combines wireless network technology and embedded technology to monitor the internal data collected in the mine and send it to the processing center for analysis and environmental assessment. The system can be divided into two parts: the main control network module and the data acquisition terminal, and the SPI bus technology is used for mutual communication between them. Multi-channel acquisition and control interface design Data acquisition and control terminal in the analog signal acquisition module, digital signal acquisition module, and digital signal output module. The main control network module running Linux operating system, in which the transplant SPI driver, USB card driver and AODV routing protocol. As a result, the internal data collection and reporting of the mine are realized.
NASA Technical Reports Server (NTRS)
Grugel, Richard N.; Anilkumar, A. V.; Lee, C. P.
2004-01-01
Detailed studies on the controlled melting and subsequent re-solidification of succinonitrile were conducted in the microgravity environment aboard the International Space Station (ISS) using the PFMI apparatus (Pore Formation and Mobility Investigation) located in the ISS glovebox facility (GBX). Samples were initially prepared on ground by filling glass tubes, 1 cm ID and approximately 30 cm in length, with pure succinonitrile (SCN) under 450 millibar of nitrogen. During Space processing, experimental parameters like temperature gradient and translation speed, for melting and solidification, were remotely monitored and controlled from the ground Telescience Center (TSC) at the Marshall Space Flight Center. Real time visualization during controlled melting revealed bubbles of different sizes initiating at the solid/liquid interface, and traveling up the temperature gradient ahead of them. Subsequent controlled re-solidification of the SCN revealed the details of porosity formation and evolution. A preliminary analysis of the melt back and re- solidification and its implications to future microgravity materials processing is presented and discussed.
Dropping In a Microgravity Environment (DIME) contest
NASA Technical Reports Server (NTRS)
2001-01-01
The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Here Jose Carrion, a lab mechanic with AKAC, starts the orange-colored drag shield, and the experiment apparatus inside, on the hoist upward to the control station at the top of the drop tower. This image is from a digital still camera; higher resolution is not available.
Magnet Architectures and Active Radiation Shielding Study - SR2S Workshop
NASA Technical Reports Server (NTRS)
Westover, Shane; Meinke, Rainer; Burger, William; Ilin, Andrew; Nerolich, Shaun; Washburn, Scott
2014-01-01
Analyze new coil configurations with maturing superconductor technology -Develop vehicle-level concept solutions and identify engineering challenges and risks -Shielding performance analysis Recent advances in superconducting magnet technology and manufacturing have opened the door for re-evaluating active shielding solutions as an alternative to mass prohibitive passive shielding.Publications on static magnetic field environments and its bio-effects were reviewed. Short-term exposure information is available suggesting long term exposure may be okay. Further research likely needed. center dotMagnetic field safety requirements exist for controlled work environments. The following effects have been noted with little noted adverse effects -Magnetohydrodynamic (MHD) effects on ionized fluids (e.g. blood) creating an aortic voltage change -MHD interaction elevates blood pressure (BP) center dot5 Tesla equates to 5% BP elevation -Prosthetic devises and pacemakers are an issue (access limit of 5 gauss).
Human Factors Report: TMA Operational Evaluations 1996 and 1998
NASA Technical Reports Server (NTRS)
Lee, Katharine K.; Quinn, Cheryl M.; Hoang, Ty; Sanford, Beverly D.
2000-01-01
The Traffic Management Advisor (TMA) is a component of the Center-TRACON Automation System (CTAS), a suite of decision-support tools for the air traffic control (ATC) environment which is being developed at NASA Ames Research Center. TMA has been operational at the ATC facilities in Dallas/Fort Worth, Texas, since an operational field evaluation in 1996. The Operational Evaluation demonstrated significant benefits, including an approximately 5 percent increase in airport capacity. This report describes the human factors results from the 1996 Operational Evaluation and an investigation of TMA usage performed two years later, during the 1998 TMA Daily Use Field Survey. The results described are instructive for CTAS focused development, and provide valuable lessons for future research in ATC decision-support tools where it is critical to merge a well-defined, complex work environment with advanced automation.
L(sub 1) Adaptive Control Design for NASA AirSTAR Flight Test Vehicle
NASA Technical Reports Server (NTRS)
Gregory, Irene M.; Cao, Chengyu; Hovakimyan, Naira; Zou, Xiaotian
2009-01-01
In this paper we present a new L(sub 1) adaptive control architecture that directly compensates for matched as well as unmatched system uncertainty. To evaluate the L(sub 1) adaptive controller, we take advantage of the flexible research environment with rapid prototyping and testing of control laws in the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. We apply the L(sub 1) adaptive control laws to the subscale turbine powered Generic Transport Model. The presented results are from a full nonlinear simulation of the Generic Transport Model and some preliminary pilot evaluations of the L(sub 1) adaptive control law.
NASA Technical Reports Server (NTRS)
Beach, R. F.; Kimnach, G. L.; Jett, T. A.; Trash, L. M.
1989-01-01
The Lewis Research Center's Power Management and Distribution (PMAD) System testbed and its use in the evaluation of control concepts applicable to the NASA Space Station Freedom electric power system (EPS) are described. The facility was constructed to allow testing of control hardware and software in an environment functionally similar to the space station electric power system. Control hardware and software have been developed to allow operation of the testbed power system in a manner similar to a supervisory control and data acquisition (SCADA) system employed by utility power systems for control. The system hardware and software are described.
SES cupola interactive display design environment
NASA Technical Reports Server (NTRS)
Vu, Bang Q.; Kirkhoff, Kevin R.
1989-01-01
The Systems Engineering Simulator, located at the Lyndon B. Johnson Space Center in Houston, Texas, is tasked with providing a real-time simulator for developing displays and controls targeted for the Space Station Freedom. These displays and controls will exist inside an enclosed workstation located on the space station. The simulation is currently providing the engineering analysis environment for NASA and contractor personnel to design, prototype, and test alternatives for graphical presentation of data to an astronaut while he performs specified tasks. A highly desirable aspect of this environment is to have the capability to rapidly develop and bring on-line a number of different displays for use in determining the best utilization of graphics techniques in achieving maximum efficiency of the test subject fulfilling his task. The Systems Engineering Simulator now has available a tool which assists in the rapid development of displays for these graphic workstations. The Display Builder was developed in-house to provide an environment which allows easy construction and modification of displays within minutes of receiving requirements for specific tests.
Innovation for integrated command environments
NASA Astrophysics Data System (ADS)
Perry, Amie A.; McKneely, Jennifer A.
2000-11-01
Command environments have rarely been able to easily accommodate rapid changes in technology and mission. Yet, command personnel, by their selection criteria, experience, and very nature, tend to be extremely adaptive and flexible, and able to learn new missions and address new challenges fairly easily. Instead, the hardware and software components of the systems do no provide the needed flexibility and scalability for command personnel. How do we solve this problem? In order to even dream of keeping pace with a rapidly changing world, we must begin to think differently about the command environment and its systems. What is the correct definition of the integrated command environment system? What types of tasks must be performed in this environment, and how might they change in the next five to twenty-five years? How should the command environment be developed, maintained, and evolved to provide needed flexibility and scalability? The issues and concepts to be considered as new Integrated Command/Control Environments (ICEs) are designed following a human-centered process. A futuristic model, the Dream Integrated Command Environment (DICE) will be described which demonstrates specific ICE innovations. The major paradigm shift required to be able to think differently about this problem is to center the DICE around the command personnel from its inception. Conference participants may not agree with every concept or idea presented, but will hopefully come away with a clear understanding that to radically improve future systems, designers must focus on the end users.
Autonomous Agents and Intelligent Assistants for Exploration Operations
NASA Technical Reports Server (NTRS)
Malin, Jane T.
2000-01-01
Human exploration of space will involve remote autonomous crew and systems in long missions. Data to earth will be delayed and limited. Earth control centers will not receive continuous real-time telemetry data, and there will be communication round trips of up to one hour. There will be reduced human monitoring on the planet and earth. When crews are present on the planet, they will be occupied with other activities, and system management will be a low priority task. Earth control centers will use multi-tasking "night shift" and on-call specialists. A new project at Johnson Space Center is developing software to support teamwork between distributed human and software agents in future interplanetary work environments. The Engineering and Mission Operations Directorates at Johnson Space Center (JSC) are combining laboratories and expertise to carry out this project, by establishing a testbed for hWl1an centered design, development and evaluation of intelligent autonomous and assistant systems. Intelligent autonomous systems for managing systems on planetary bases will commuicate their knowledge to support distributed multi-agent mixed-initiative operations. Intelligent assistant agents will respond to events by developing briefings and responses according to instructions from human agents on earth and in space.
Engineered diamond nanopillars as mobile probes for high sensitivity metrology in fluid
NASA Astrophysics Data System (ADS)
Andrich, P.; de Las Casas, C. F.; Heremans, F. J.; Awschalom, D. D.; Aleman, B. J.; Ohno, K.; Lee, J. C.; Hu, E. L.
2015-03-01
The nitrogen-vacancy (NV) center`s optical addressability and exceptional spin coherence properties at room temperature, along with diamond`s biocompatibility, has put this defect at the frontier of metrology applications in biological environments. To push the spatial resolution to the nanoscale, extensive research efforts focus on using NV centers embedded in nanodiamonds (NDs). However, this approach has been hindered by degraded spin coherence properties in NDs and the lack of a platform for spatial control of the nanoparticles in fluid. In this work, we combine the use of high quality diamond membranes with a top-down patterning technique to fabricate diamond nanoparticles with engineered and highly reproducible shape, size, and NV center density. We obtain NDs, easily releasable from the substrate into a water suspension, which contain single NV centers exhibiting consistently long spin coherence times (up to 700 μs). Additionally, we demonstrate highly stable, three-dimensional optical trapping of the nanoparticles within a microfluidic circuit. This level of control enables a bulk-like DC magnetic sensitivity and gives access to dynamical decoupling techniques on contactless, miniaturized diamond probes. This work was supported by DARPA, AFOSR, and the DIAMANT program.
Coherent control of diamond defects for quantum information science and quantum sensing
NASA Astrophysics Data System (ADS)
Maurer, Peter
Quantum mechanics, arguably one of the greatest achievements of modern physics, has not only fundamentally changed our understanding of nature but is also taking an ever increasing role in engineering. Today, the control of quantum systems has already had a far-reaching impact on time and frequency metrology. By gaining further control over a large variety of different quantum systems, many potential applications are emerging. Those applications range from the development of quantum sensors and new quantum metrological approaches to the realization of quantum information processors and quantum networks. Unfortunately most quantum systems are very fragile objects that require tremendous experimental effort to avoid dephasing. Being able to control the interaction between a quantum system with its local environment embodies therefore an important aspect for application and hence is at the focus of this thesis. Nitrogen Vacancy (NV) color centers in diamond have recently attracted attention as a room temperature solid state spin system that expresses long coherence times. The electronic spin associated with NV centers can be efficiently manipulated, initialized and readout using microwave and optical techniques. Inspired by these extraordinary properties, much effort has been dedicated to use NV centers as a building block for scalable room temperature quantum information processing and quantum communication as well as a quantum sensing. In the first part of this thesis we demonstrate that by decoupling the spin from the local environment the coherence time of a NV quantum register can be extended by three order of magnitudes. Employing a novel dissipative mechanism in combination with dynamical decoupling, memory times exceeding one second are observed. The second part shows that, based on quantum control, NV centers in nano-diamonds provide a nanoscale temperature sensor with unprecedented accuracy enabling local temperature measurements in living biological cells. This opens the door for the engineering of nano-scaled chemical reactions to the study of temperature dependent biological processes. Finally, a novel technique is introduced that facilitates optical spin detection with nanoscale resolution based on an optical far-field technique; by combining this with a 'quantum Zeno' like effect coherent manipulation of nominally identical spins at a nanoscale is achieved.
ERIC Educational Resources Information Center
Roof, Patty L.
2012-01-01
Nursing education is calling for transformation in teaching practices which includes learner-centered environments. The purpose of this qualitative phenomenological study was to explore 15 nursing faculty life experiences as they relate to the choice of a learning environment. Participants expressed their life experiences through interview…
Hetzl, Martin; Wierzbowski, Jakob; Hoffmann, Theresa; Kraut, Max; Zuerbig, Verena; Nebel, Christoph E; Müller, Kai; Finley, Jonathan J; Stutzmann, Martin
2018-06-13
Solid-state quantum emitters embedded in a semiconductor crystal environment are potentially scalable platforms for quantum optical networks operated at room temperature. Prominent representatives are nitrogen-vacancy (NV) centers in diamond showing coherent entanglement and interference with each other. However, these emitters suffer from inefficient optical outcoupling from the diamond and from fluctuations of their charge state. Here, we demonstrate the implementation of regular n-type gallium nitride nanowire arrays on diamond as photonic waveguides to tailor the emission direction of surface-near NV centers and to electrically control their charge state in a p-i-n nanodiode. We show that the electrical excitation of single NV centers in such a diode can efficiently replace optical pumping. By the engineering of the array parameters, we find an optical read-out efficiency enhanced by a factor of 10 and predict a lateral NV-NV coupling 3 orders of magnitude stronger through evanescently coupled nanowire antennas compared to planar diamond not covered by nanowires, which opens up new possibilities for large-scale on-chip quantum-computing applications.
Pack, Allan I.
2015-01-01
Recent changes in policies by insurance companies with respect to mandating home sleep apnea testing rather than in-laboratory studies have a large impact on the financial viability of clinical sleep centers. Coping with this disruptive change requires forward planning. First, it is important to be well positioned with respect to facilities so that these can be quickly downsized to control costs. There is also a need to develop, in advance, an accredited home sleep study program so that centers can respond to the rapidly changing environment. Following the change there is a need to control costs by rapidly downsizing the technology workforce. Technologists can be retrained for other essential roles. Centralizing the precertification process with knowledgeable, well-trained staff and a robust auditing process is an essential component. The approach taken at the University of Pennsylvania to this change is described as is how one can ensure continued financial viability of a comprehensive sleep center program in a major academic medical center. Citation: Pack AI. Dealing with a paradigm shift. J Clin Sleep Med 2015;11(8):925–929. PMID:26094918
Using Web 2.0 (and Beyond?) in Space Flight Operations Control Centers
NASA Technical Reports Server (NTRS)
Scott, David W.
2010-01-01
Word processing was one of the earliest uses for small workstations, but we quickly learned that desktop computers were far more than e-typewriters. Similarly, "Web 2.0" capabilities, particularly advanced search engines, chats, wikis, blogs, social networking, and the like, offer tools that could significantly improve our efficiency at managing the avalanche of information and decisions needed to operate space vehicles in realtime. However, could does not necessarily equal should. We must wield two-edged swords carefully to avoid stabbing ourselves. This paper examines some Web 2.0 tools, with an emphasis on social media, and suggests which ones might be useful or harmful in real-time space operations co rnotl environments, based on the author s experience as a Payload Crew Communicator (PAYCOM) at Marshall Space Flight Center s (MSFC) Payload Operations Integration Center (POIC) for the International Space Station (ISS) and on discussions with other space flight operations control organizations and centers. There is also some discussion of an offering or two that may come from beyond the current cyber-horizon.
Science Learning Outcomes in Alignment with Learning Environment Preferences
NASA Astrophysics Data System (ADS)
Chang, Chun-Yen; Hsiao, Chien-Hua; Chang, Yueh-Hsia
2011-04-01
This study investigated students' learning environment preferences and compared the relative effectiveness of instructional approaches on students' learning outcomes in achievement and attitude among 10th grade earth science classes in Taiwan. Data collection instruments include the Earth Science Classroom Learning Environment Inventory and Earth Science Learning Outcomes Inventory. The results showed that most students preferred learning in a classroom environment where student-centered and teacher-centered instructional approaches coexisted over a teacher-centered learning environment. A multivariate analysis of covariance also revealed that the STBIM students' cognitive achievement and attitude toward earth science were enhanced when the learning environment was congruent with their learning environment preference.
NASA Technical Reports Server (NTRS)
Kibler, Jennifer L.; Wilson, Sara R.; Hubbs, Clay E.; Smail, James W.
2015-01-01
The Interval Management for Near-term Operations Validation of Acceptability (IM-NOVA) experiment was conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) in support of the NASA Airspace Systems Program's Air Traffic Management Technology Demonstration-1 (ATD-1). ATD-1 is intended to showcase an integrated set of technologies that provide an efficient arrival solution for managing aircraft using Next Generation Air Transportation System (NextGen) surveillance, navigation, procedures, and automation for both airborne and ground-based systems. The goal of the IMNOVA experiment was to assess if procedures outlined by the ATD-1 Concept of Operations were acceptable to and feasible for use by flight crews in a voice communications environment when used with a minimum set of Flight Deck-based Interval Management (FIM) equipment and a prototype crew interface. To investigate an integrated arrival solution using ground-based air traffic control tools and aircraft Automatic Dependent Surveillance-Broadcast (ADS-B) tools, the LaRC FIM system and the Traffic Management Advisor with Terminal Metering and Controller Managed Spacing tools developed at the NASA Ames Research Center (ARC) were integrated into LaRC's Air Traffic Operations Laboratory (ATOL). Data were collected from 10 crews of current 757/767 pilots asked to fly a high-fidelity, fixed-based simulator during scenarios conducted within an airspace environment modeled on the Dallas-Fort Worth (DFW) Terminal Radar Approach Control area. The aircraft simulator was equipped with the Airborne Spacing for Terminal Area Routes (ASTAR) algorithm and a FIM crew interface consisting of electronic flight bags and ADS-B guidance displays. Researchers used "pseudo-pilot" stations to control 24 simulated aircraft that provided multiple air traffic flows into the DFW International Airport, and recently retired DFW air traffic controllers served as confederate Center, Feeder, Final, and Tower controllers. Analyses of qualitative data revealed that the procedures used by flight crews to receive and execute interval management (IM) clearances in a voice communications environment were logical, easy to follow, did not contain any missing or extraneous steps, and required the use of an acceptable workload level. The majority of the pilot participants found the IM concept, in addition to the proposed FIM crew procedures, to be acceptable and indicated that the ATD-1 procedures could be successfully executed in a nearterm NextGen environment. Analyses of quantitative data revealed that the proposed procedures were feasible for use by flight crews in a voice communications environment. The delivery accuracy at the achieve-by point was within +/-5 sec, and the delivery precision was less than 5 sec. Furthermore, FIM speed commands occurred at a rate of less than one per minute, and pilots found the frequency of the speed commands to be acceptable at all times throughout the experiment scenarios.
2004-03-10
KENNEDY SPACE CENTER, FLA. - Doors are open on the air-conditioned transportation van that carried NASA’s MESSENGER spacecraft from NASA’s Goddard Space Flight Center in Greenbelt, Md., to the Astrotech Space Operations processing facilities near KSC. After offloading, MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
Chaudhury, Habib; Hung, Lillian; Rust, Tiana; Wu, Sarah
2017-10-01
Purpose Drawing on therapeutic physical environmental design principles and Kitwood's theoretical view of person-centered care, this study examined the impact of environmental renovations in dining spaces of a long-term care facility on residents' mealtime experience and staff practice in two care units. Method The research design involved pre- and post-renovation ethnographic observations in the dining spaces of the care units and a post-renovation staff survey. The objective physical environmental features pre- and post-renovations were assessed with a newly developed tool titled Dining Environment Audit Protocol. We collected observational data from 10 residents and survey responses from 17 care aides and nurses. Findings Based on a systematic analysis of observational data and staff survey responses, five themes were identified: (a) autonomy and personal control, (b) comfort of homelike environment, (c) conducive to social interaction, (d) increased personal support, and (e) effective teamwork. Implications Although the physical environment can play an influential role in enhancing the dining experience of residents, the variability in staff practices reveals the complexity of mealtime environment and points to the necessity of a systemic approach to foster meaningful culture change.
A Robust Head Tracking System Based on Monocular Vision and Planar Templates
Caballero, Fernando; Maza, Iván; Molina, Roberto; Esteban, David; Ollero, Aníbal
2009-01-01
This paper details the implementation of a head tracking system suitable for its use in teleoperation stations or control centers, taking into account the limitations and constraints usually associated to those environments. The paper discusses and justifies the selection of the different methods and sensors to build the head tracking system, detailing also the processing steps of the system in operation. A prototype to validate the proposed approach is also presented along with several tests in a real environment with promising results. PMID:22291546
NASA Technical Reports Server (NTRS)
Perkey, D. J.; Kreitzberg, C. W.
1984-01-01
The dynamic prediction model along with its macro-processor capability and data flow system from the Drexel Limited-Area and Mesoscale Prediction System (LAMPS) were converted and recorded for the Perkin-Elmer 3220. The previous version of this model was written for Control Data Corporation 7600 and CRAY-1a computer environment which existed until recently at the National Center for Atmospheric Research. The purpose of this conversion was to prepare LAMPS for porting to computer environments other than that encountered at NCAR. The emphasis was shifted from programming tasks to model simulation and evaluation tests.
NASA Technical Reports Server (NTRS)
Homola, J.; Prevot, Thomas; Mercer, Joey S.; Brasil, Connie L.; Martin, Lynne Hazel; Cabrall, C.
2010-01-01
A controller-in-the-loop simulation was conducted in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center to investigate the functional allocation aspects associated with ground-based automated separation assurance in a far-term NextGen environment. In this concept, ground-based automation handled the detection and resolution of strategic and tactical conflicts and alerted the controller to deferred situations. The controller was responsible for monitoring the automation and managing situations by exception. This was done in conditions both with and without arrival time constraints across two levels of traffic density. Results showed that although workload increased with an increase in traffic density, it was still manageable in most situations. The number of conflicts increased similarly with a related increase in the issuance of resolution clearances. Although over 99% of conflicts were resolved, operational errors did occur but were tied to local sector complexities. Feedback from the participants revealed that they thought they maintained reasonable situation awareness in this environment, felt that operations were highly acceptable at the lower traffic density level but were less so as it increased, and felt overall that the concept as it was introduced here was a positive step forward to accommodating the more complex environment envisioned as part of NextGen.
Shved, D M; Gushchin, V I; Ehmann, B; Balazs, L
2013-01-01
The 520-day experimental simulation of an exploration mission provided an opportunity to apply content analysis for studying the patterns of crew--Control center (CC) communication impeded by lag times. The period of high autonomy was featured by drastic reduction of the number of crew questions and requests which was judged as a marker of adaptation to the simulated space mission environment. The "key" events in the experiment changed the content of crew messages radically attesting to misperception of time, emotional involvement, want of CC feedback and draining out negative emotions. After the period of high autonomy with full loss of communication with controllers the traffic of crew messages onto the outside was noted to become very light which could also point to temporal changes in the communication style developed in the conditions of isolation and autonomous existence.
International Space Station (ISS)
2001-02-01
The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This is a view of the ECLSS and the Internal Thermal Control System (ITCS) Test Facility in building 4755, MSFC. In the foreground is the 3-module ECLSS simulator comprised of the U.S. Laboratory Module Simulator, Node 1 Simulator, and Node 3/Habitation Module Simulator. At center left is the ITCS Simulator. The main function of the ITCS is to control the temperature of equipment and hardware installed in a typical ISS Payload Rack.
Formation Control for Water-Jet USV Based on Bio-Inspired Method
NASA Astrophysics Data System (ADS)
Fu, Ming-yu; Wang, Duan-song; Wang, Cheng-long
2018-03-01
The formation control problem for underactuated unmanned surface vehicles (USVs) is addressed by a distributed strategy based on virtual leader strategy. The control system takes account of disturbance induced by external environment. With the coordinate transformation, the advantage of the proposed scheme is that the control point can be any point of the ship instead of the center of gravity. By introducing bio-inspired model, the formation control problem is addressed with backstepping method. This avoids complicated computation, simplifies the control law, and smoothes the input signals. The system uniform ultimate boundness is proven by Lyapunov stability theory with Young inequality. Simulation results are presented to verify the effectiveness and robust of the proposed controller.
Structured analysis and modeling of complex systems
NASA Technical Reports Server (NTRS)
Strome, David R.; Dalrymple, Mathieu A.
1992-01-01
The Aircrew Evaluation Sustained Operations Performance (AESOP) facility at Brooks AFB, Texas, combines the realism of an operational environment with the control of a research laboratory. In recent studies we collected extensive data from the Airborne Warning and Control Systems (AWACS) Weapons Directors subjected to high and low workload Defensive Counter Air Scenarios. A critical and complex task in this environment involves committing a friendly fighter against a hostile fighter. Structured Analysis and Design techniques and computer modeling systems were applied to this task as tools for analyzing subject performance and workload. This technology is being transferred to the Man-Systems Division of NASA Johnson Space Center for application to complex mission related tasks, such as manipulating the Shuttle grappler arm.
Human Factors Assessment: The Passive Final Approach Spacing Tool (pFAST) Operational Evaluation
NASA Technical Reports Server (NTRS)
Lee, Katharine K.; Sanford, Beverly D.
1998-01-01
Automation to assist air traffic controllers in the current terminal and en route air traff ic environments is being developed at Ames Research Center in conjunction with the Federal Aviation Administration. This automation, known collectively as the Center-TRACON Automation System (CTAS), provides decision- making assistance to air traffic controllers through computer-generated advisories. One of the CTAS tools developed specifically to assist terminal area air traffic controllers is the Passive Final Approach Spacing Tool (pFAST). An operational evaluation of PFAST was conducted at the Dallas/Ft. Worth, Texas, Terminal Radar Approach Control (TRACON) facility. Human factors data collected during the test describe the impact of the automation upon the air traffic controller in terms of perceived workload and acceptance. Results showed that controller self-reported workload was not significantly increased or reduced by the PFAST automation; rather, controllers reported that the levels of workload remained primarily the same. Controller coordination and communication data were analyzed, and significant differences in the nature of controller coordination were found. Controller acceptance ratings indicated that PFAST was acceptable. This report describes the human factors data and results from the 1996 Operational Field Evaluation of Passive FAST.
Operational radiological support for the US manned space program
NASA Technical Reports Server (NTRS)
Golightly, Michael J.; Hardy, Alva C.; Atwell, William; Weyland, Mark D.; Kern, John; Cash, Bernard L.
1993-01-01
Radiological support for the manned space program is provided by the Space Radiation Analysis Group at NASA/JSC. This support ensures crew safety through mission design analysis, real-time space environment monitoring, and crew exposure measurements. Preflight crew exposure calculations using mission design information are used to ensure that crew exposures will remain within established limits. During missions, space environment conditions are continuously monitored from within the Mission Control Center. In the event of a radiation environment enhancement, the impact to crew exposure is assessed and recommendations are provided to flight management. Radiation dosimeters are placed throughout the spacecraft and provided to each crewmember. During a radiation contingency, the crew could be requested to provide dosimeter readings. This information would be used for projecting crew dose enhancements. New instrumentation and computer technology are being developed to improve the support. Improved instruments include tissue equivalent proportional counter (TEPC)-based dosimeters and charged particle telescopes. Data from these instruments will be telemetered and will provide flight controllers with unprecedented information regarding the radiation environment in and around the spacecraft. New software is being acquired and developed to provide 'smart' space environmental data displays for use by flight controllers.
Lunar Atmosphere and Dust Environment Explorer Integration and Test
NASA Technical Reports Server (NTRS)
Wright, Michael R.; McCormick, John L.
2010-01-01
The Lunar Atmosphere and Dust Environment Explorer (LADEE) is a NASA collaborative flight project to explore the lunar exosphere. It is being developed through a unique partnership between NASA's Ames Research Center (ARC) and Goddard Space Flight Center (GSFC). Each center brings its own experience and flight systems heritage to the task of integrating and testing the LADEE subsystems, instruments, and spacecraft. As an "in-house" flight project being implemented at low-cost and moderate risk, LADEE relies on single-string subsystems and protoflight hardware to accomplish its mission. Integration and test (l&T) of the LADEE spacecraft with the instruments will be performed at GSFC, and includes assembly, integration, functional testing, and flight qualification and acceptance testing. Due to the nature of the LADEE mission, l&T requirements include strict contamination control measures and instrument calibration procedures. Environmental testing will include electromagnetic compatibility (EMC), vibro-acoustic testing, and thermal-balance/vacuum. Upon successful completion of spacecraft l&T, LADEE will be launched from NASA's Wallops Flight Facility. Launch of the LADEE spacecraft is currently scheduled for December 2012.
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2018-04-01
Powerful jets emitted from the centers of distant galaxies make for spectacular signposts in the radio sky. Can observations of these jets reveal information about the environments that surround them?Signposts in the SkyVLA FIRST images of seven bent double-lobed radio galaxies from the authors sample. [Adapted from Silverstein et al. 2018]An active supermassive black hole lurking in a galactic center can put on quite a show! These beasts fling out accreting material, often forming intense jets that punch their way out of their host galaxies. As the jets propagate, they expand into large lobes of radio emission that we can spot from Earth observable signs of the connection between distant supermassive black holes and the galaxies in which they live.These distinctive double-lobed radio galaxies (DLRGs) dont all look the same. In particular, though the jets are emitted from the black holes two poles, the lobes of DLRGs dont always extend perfectly in opposite directions; often, the jets become bent on larger scales, appearing to us to subtend angles of less than 180 degrees.Can we use our observations of DLRG shapes and distributions to learn about their surroundings? A new study led by Ezekiel Silverstein (University of Michigan) has addressed this question by exploring DLRGs living in dense galaxy-cluster environments.Projected density of DLRGcentral galaxy matches (black) compared to a control sample of random positionscentral galaxy matches (red) for different distances from acluster center. DLRGs have a higher likelihood of being located close to a cluster center. [Silverstein et al. 2018]Living Near the HubTo build a sample of DLRGs in dense environments, Silverstein and collaborators started from a large catalog of DLRGs in Sloan Digital Sky Survey quasars with radio lobes visible in Very Large Array data. They then cross-matched these against three galaxy catalogs to produce a sample of 44 DLRGs that are each paired to a nearby massive galaxy, galaxy group, or galaxy cluster.To determine if these DLRGs locations are unusual, the authors next constructed a control sample of random galaxies using the same selection biases as their DLRG sample.Silverstein and collaborators found that the density of DLRGs as a function of distance from a cluster center drops off more rapidly than the density of galaxies in a typical cluster. Observed DLRGs are therefore more likely than random galaxies to be found near galaxy groups and clusters. The authors speculate that this may be a selection effect: DLRGs further from cluster centers may be less bright, preventing their detection.Bent Under PressureThe angle subtended by the DLRG radio lobes, plotted against the distance of the DLRG to the cluster center. Central galaxies (red circle) experience different physics and are therefore excluded from the sample. In the remaining sample, bent DLRGs appear to favor cluster centers, compared to unbent DLRGs. [Silverstein et al. 2018]In addition, Silverstein and collaborators found that location appears to affect the shape of a DLRG. Bent DLRGs (those with a measured angle between their lobes of 170 or smaller) are more likely to be found near a cluster center than unbent DLRGs (those with angles of 170180). The fraction of bent DLRGs is 78% within 3 million light-years of the cluster center, and 56% within double that distance compared to a typical fraction of just 29% in the field.These results support the idea that ram pressure the pressure experienced by a galaxy as it moves through the higher density environment closer to the center of a cluster is what bends the DLRGs.Whats next to learn? This study relies on a fairly small sample, so Silverstein and collaborators hope that future deep optical surveys will increase the completeness of cluster catalogs, enabling further testing of these outcomes and the exploration of other physics of galaxy-cluster environments.CitationEzekiel M Silverstein et al 2018 AJ 155 14. doi:10.3847/1538-3881/aa9d2e
What do we mean by Human-Centered Design of Life-Critical Systems?
Boy, Guy A
2012-01-01
Human-centered design is not a new approach to design. Aerospace is a good example of a life-critical systems domain where participatory design was fully integrated, involving experimental test pilots and design engineers as well as many other actors of the aerospace engineering community. This paper provides six topics that are currently part of the requirements of the Ph.D. Program in Human-Centered Design of the Florida Institute of Technology (FIT.) This Human-Centered Design program offers principles, methods and tools that support human-centered sustainable products such as mission or process control environments, cockpits and hospital operating rooms. It supports education and training of design thinkers who are natural leaders, and understand complex relationships among technology, organizations and people. We all need to understand what we want to do with technology, how we should organize ourselves to a better life and finally find out whom we are and have become. Human-centered design is being developed for all these reasons and issues.
Gong, Zhenxing; Li, Miaomiao; Qi, Yaoyuan; Zhang, Na
2017-01-01
In the formation mechanism of the feedback environment, the existing research pays attention to external feedback sources and regards individuals as objects passively accepting feedback. Thus, the external source fails to realize the individuals' need for feedback, and the feedback environment cannot provide them with useful information, leading to a feedback vacuum. The aim of this study is to examine the effect of feedback-seeking by different strategies on the supervisor-feedback environment through supervisor identification. The article consists of an empirical study with a sample of 264 employees in China; here, participants complete a series of questionnaires in three waves. After controlling for the effects of demography, the results indicate that supervisor identification partially mediates the relationship between feedback-seeking (including feedback monitoring and feedback inquiry) and the supervisor-feedback environment. Implications are also discussed.
Stratagems of popular homes in the desertic climate…now, in the process of perdition
NASA Astrophysics Data System (ADS)
Benslimane, Nawal; Biara, Ratiba Wided
2017-02-01
The built environment of man has never been and is still not controlled by specialists (architect, planner, etc.). This environment was the result of a popular architecture, which is the product of mass culture nourished by everydayness, the environment and local engineering. This habitat expresses the relationship between environmental constraints and local values, because it reasons in terms of ecosystems and environmental constraints. But, these days in a climate that is increasingly changing, the genius of the physical environment (from city to home) fades. The city, the home succumb simultaneously to an environmental crisis, man at the center of concerns is undermined, subject to climatic discomfort. This paper aims to show the ingenuity of the ancestral production in the most difficult environments to live, facing the passivity of contemporary production in relation to climate and climatic change..
NASA Astrophysics Data System (ADS)
Hamilton, Marvin J.; Sutton, Stewart A.
A prototype integrated environment, the Advanced Satellite Workstation (ASW), which was developed and delivered for evaluation and operator feedback in an operational satellite control center, is described. The current ASW hardware consists of a Sun Workstation and Macintosh II Workstation connected via an ethernet Network Hardware and Software, Laser Disk System, Optical Storage System, and Telemetry Data File Interface. The central objective of ASW is to provide an intelligent decision support and training environment for operator/analysis of complex systems such as satellites. Compared to the many recent workstation implementations that incorporate graphical telemetry displays and expert systems, ASW provides a considerably broader look at intelligent, integrated environments for decision support, based on the premise that the central features of such an environment are intelligent data access and integrated toolsets.
Remote Operations and Ground Control Centers
NASA Technical Reports Server (NTRS)
Bryant, Barry S.; Lankford, Kimberly; Pitts, R. Lee
2004-01-01
The Payload Operations Integration Center (POIC) at the Marshall Space Flight Center supports the International Space Station (ISS) through remote interfaces around the world. The POIC was originally designed as a gateway to space for remote facilities; ranging from an individual user to a full-scale multiuser environment. This achievement was accomplished while meeting program requirements and accommodating the injection of modern technology on an ongoing basis to ensure cost effective operations. This paper will discuss the open POIC architecture developed to support similar and dissimilar remote operations centers. It will include technologies, protocols, and compromises which on a day to day basis support ongoing operations. Additional areas covered include centralized management of shared resources and methods utilized to provide highly available and restricted resources to remote users. Finally, the effort of coordinating the actions of participants will be discussed.
2011-05-28
CAPE CANAVERAL, Fla. -- At NASA Kennedy Space Center's Apollo/Saturn V Center, Kennedy Center Director Bob Cabana speaks to university students at the award ceremony for NASA's second annual Lunabotics Mining Competition. Thirty-six teams of undergraduate and graduate students from the United States, Bangladesh, Canada, Colombia and India participated in NASA's Lunabotics Mining Competition May 26 - 28 at the agency's Kennedy Space Center in Florida. The competition is designed to engage and retain students in science, technology, engineering and mathematics (STEM). Teams will maneuver their remote controlled or autonomous excavators, called lunabots, in about 60 tons of ultra-fine simulated lunar soil, called BP-1. The competition is an Exploration Systems Mission Directorate project managed by Kennedy's Education Division. The event also provides a competitive environment that could result in innovative ideas and solutions for NASA's future excavation of the moon. Photo credit: NASA/Jack Pfaller
NASA Technical Reports Server (NTRS)
Roberts, Barry C.; Batts, Wade
1997-01-01
The National Aeronautics and Space Administration (NASA) designated Marshall Space Flight Center (MSFC) the center of excellence for space transportation. The Aerospace Environments and Effects (AEE) team of the Electromagnetics and Aerospace Environments Branch (EL23) in the Systems Analysis and Integration Laboratory at MSFC, supports the center of excellence designation by providing near-Earth space, deep space, planetary, and terrestrial environments expertise to projects as required. The Terrestrial Environment (TE) group within the AEE team maintains an extensive TE data base. Statistics and models derived from this data are applied to the design and development of new aerospace vehicles, as well as performance enhancement of operational vehicles such as the Space Shuttle. The TE is defined as the Earth's atmospheric environment extending from the surface to orbital insertion altitudes (approximately 90 km).
Electro-Mechanical Systems for Extreme Space Environments
NASA Technical Reports Server (NTRS)
Mojarradi, Mohammad M.; Tyler, Tony R.; Abel, Phillip B.; Levanas, Greg
2011-01-01
Exploration beyond low earth orbit presents challenges for hardware that must operate in extreme environments. The current state of the art is to isolate and provide heating for sensitive hardware in order to survive. However, this protection results in penalties of weight and power for the spacecraft. This is particularly true for electro-mechanical based technology such as electronics, actuators and sensors. Especially when considering distributed electronics, many electro-mechanical systems need to be located in appendage type locations, making it much harder to protect from the extreme environments. The purpose of this paper to describe the advances made in the area of developing electro-mechanical technology to survive these environments with minimal protection. The Jet Propulsion Lab (JPL), the Glenn Research Center (GRC), the Langley Research Center (LaRC), and Aeroflex, Inc. over the last few years have worked to develop and test electro-mechanical hardware that will meet the stringent environmental demands of the moon, and which can also be leveraged for other challenging space exploration missions. Prototype actuators and electronics have been built and tested. Brushless DC actuators designed by Aeroflex, Inc have been tested with interface temperatures as low as 14 degrees Kelvin. Testing of the Aeroflex design has shown that a brushless DC motor with a single stage planetary gearbox can operate in low temperature environments for at least 120 million cycles (measured at motor) if long life is considered as part of the design. A motor control distributed electronics concept developed by JPL was built and operated at temperatures as low as -160 C, with many components still operational down to -245 C. Testing identified the components not capable of meeting the low temperature goal of -230 C. This distributed controller is universal in design with the ability to control different types of motors and read many different types of sensors. The controller form factor was designed to surround or be at the actuator. Communication with the slave controllers is accomplished by a bus, thus limiting the number of wires that must be routed to the extremity locations. Efforts have also been made to increase the power capability of these electronics for the ability to power and control actuators up to 2.5KW and still meet the environmental challenges. For commutation and control of the actuator, a resolver was integrated and tested with the actuator. Testing of this resolver demonstrated temperature limitations. Subsequent failure analysis isolated the low temperature failure mechanism and a design solution was negotiated with the manufacturer. Several years of work have resulted in specialized electro-mechanical hardware to meet extreme space exploration environments, a test history that verifies and finds limitations of the designs and a growing knowledge base that can be leveraged by future space exploration missions.
The Crop Growth Research Chamber - A ground-based facility for CELSS research
NASA Technical Reports Server (NTRS)
Bubenheim, David L.; Luna, Phil M.; Wagenbach, Kimberly M.; Haslerud, Mark; Straight, Christian L.
1989-01-01
Crop Growth Research Chambers (CGRCs) are being developed as CELSS research facilities for the NASA/Ames Research Center. The history of the CGRC project is reviewed, noting the applications of CGRC research for the development of the Space Station. The CGRCs are designed for CELSS research and development, system control and integration, and flight hardware design and experimentation. The atmospheric and hydroponic environments of the CGRC system are described and the science requirements for CGRC environmental control are listed.
2011-05-24
CAPE CANAVERAL, Fla. -- Inside the "Lunarena" at the Kennedy Space Center Visitor Complex is a remote controlled or autonomous excavator, called a lunabot. Thirty-six teams of undergraduate and graduate students from the United States, Bangladesh, Canada, Colombia and India will participate in NASA's Lunabotics Mining Competition May 26 - 28 at the agency's Kennedy Space Center in Florida. The competition is designed to engage and retain students in science, technology, engineering and mathematics (STEM). Teams will maneuver their remote controlled or autonomous excavators, called lunabots, in about 60 tons of ultra-fine simulated lunar soil, called BP-1. The competition is an Exploration Systems Mission Directorate project managed by Kennedy's Education Division. The event also provides a competitive environment that could result in innovative ideas and solutions for NASA's future excavation of the moon. Photo credit: NASA/Jack Pfaller
2011-05-24
CAPE CANAVERAL, Fla. -- Inside the "Lunarena" at the Kennedy Space Center Visitor Complex is a remote controlled or autonomous excavator, called a lunabot. Thirty-six teams of undergraduate and graduate students from the United States, Bangladesh, Canada, Colombia and India will participate in NASA's Lunabotics Mining Competition May 26 - 28 at the agency's Kennedy Space Center in Florida. The competition is designed to engage and retain students in science, technology, engineering and mathematics (STEM). Teams will maneuver their remote controlled or autonomous excavators, called lunabots, in about 60 tons of ultra-fine simulated lunar soil, called BP-1. The competition is an Exploration Systems Mission Directorate project managed by Kennedy's Education Division. The event also provides a competitive environment that could result in innovative ideas and solutions for NASA's future excavation of the moon. Photo credit: NASA/Jack Pfaller
CESAR research in intelligent machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisbin, C.R.
1986-01-01
The Center for Engineering Systems Advanced Research (CESAR) was established in 1983 as a national center for multidisciplinary, long-range research and development in machine intelligence and advanced control theory for energy-related applications. Intelligent machines of interest here are artificially created operational systems that are capable of autonomous decision making and action. The initial emphasis for research is remote operations, with specific application to dexterous manipulation in unstructured dangerous environments where explosives, toxic chemicals, or radioactivity may be present, or in other environments with significant risk such as coal mining or oceanographic missions. Potential benefits include reduced risk to man inmore » hazardous situations, machine replication of scarce expertise, minimization of human error due to fear or fatigue, and enhanced capability using high resolution sensors and powerful computers. A CESAR goal is to explore the interface between the advanced teleoperation capability of today, and the autonomous machines of the future.« less
Overview of Stirling Technology Research at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Schifer, Nicholas A.; Williams, Zachary D.; Metscher, Jonathan F.
2016-01-01
Stirling Radioisotope Power Systems (RPSs) are under development to provide power on future space science missions where robotic spacecraft will orbit, fly by, land, or rove using less than a quarter of the plutonium the currently available RPS uses to produce about the same power. NASA Glenn Research Center's newly formulated Stirling Cycle Technology Development Project (SCTDP) continues development of Stirling-based systems and subsystems, which include a flight-like generator and related housing assembly, controller, and convertors. The project also develops less mature technologies under Stirling Technology Research, with a focus on demonstration in representative environments to increase the technology readiness level (TRL). Matured technologies are evaluated for selection in future generator designs. Stirling Technology Research tasks focus on a wide variety of objectives, including increasing temperature capability to enable new environments, reducing generator mass and/or size, improving reliability and system fault tolerance, and developing alternative designs. The task objectives and status are summarized.
Overview of Stirling Technology Research at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Schifer, Nicholas A.; Williams, Zachary D.; Metscher, Jonathan F.
2015-01-01
Stirling Radioisotope Power Systems (RPS) are under development to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove using less than a quarter of the plutonium the currently available RPS uses to produce about the same power. Glenn Research Center's (GRC's) newly formulated Stirling Cycle Technology Development Project (SCTDP) continues development of Stirling-based systems and subsystems, which include a flight-like generator and related housing assembly, controller, and convertors. The project also develops less mature technologies under Stirling Technology Research, with a focus on demonstration in representative environments to increase the technology readiness level (TRL). Matured technologies are evaluated for selection in future generator designs. Stirling Technology Research tasks focus on a wide variety of objectives, including increasing temperature capability to enable new environments, reducing generator mass and/or size, improving reliability or system fault tolerance, and developing alternative designs. The task objectives and status are summarized.
NASA Technical Reports Server (NTRS)
1973-01-01
Data are presented to support the environmental impact statement on space shuttle actions at Kennedy Space Center. Studies indicate that land use to accommodate space shuttle operations may have the most significant impact. The impacts on air, water and noise quality are predicted to be less on the on-site environment. Considerations of operating modes indicate that long and short term land use will not affect wildlife productivity. The potential for adverse environmental impact is small and such impacts will be local, short in duration, controllable, and environmentally acceptable.
2014-08-15
CAPE CANAVERAL, Fla. – Former astronaut Greg Johnson, at left, executive director of the Center for the Advancement of Science in Space, and NASA Kennedy Space Center Director Bob Cabana, visit with Florida middle school students and their teachers before the start of the Zero Robotics finals competition at NASA Kennedy Space Center's Space Station Processing Facility in Florida. Students designed software to control Synchronized Position Hold Engage and Reorient Experimental Satellites, or SPHERES, and competed with other teams locally. The Zero Robotics is a robotics programming competition where the robots are SPHERES. The competition starts online, where teams program the SPHERES to solve an annual challenge. After several phases of virtual competition in a simulation environment that mimics the real SPHERES, finalists are selected to compete in a live championship aboard the space station. Students compete to win a technically challenging game by programming their strategies into the SPHERES satellites. The programs are autonomous and the students cannot control the satellites during the test. Photo credit: NASA/Daniel Casper
Development of a Test Facility for Air Revitalization Technology Evaluation
NASA Technical Reports Server (NTRS)
Lu, Sao-Dung; Lin, Amy; Campbell, Melissa; Smith, Frederick; Curley, Su
2007-01-01
Development of new air revitalization system (ARS) technology can initially be performed in a subscale laboratory environment, but in order to advance the maturity level, the technology must be tested in an end-to-end integrated environment. The Air Revitalization Technology Evaluation Facility (ARTEF) at the NASA Johnson Space Center serves as a ground test bed for evaluating emerging ARS technologies in an environment representative of spacecraft atmospheres. At the center of the ARTEF is a hypobaric chamber which serves as a sealed atmospheric chamber for closed loop testing. A Human Metabolic Simulator (HMS) was custom-built to simulate the consumption of oxygen, and production of carbon dioxide, moisture and heat of up to eight persons. A multitude of gas analyzers and dew point sensors are used to monitor the chamber atmosphere upstream and downstream of a test article. A robust vacuum system is needed to simulate the vacuum of space. A reliable data acquisition and control system is required to connect all the subsystems together. This paper presents the capabilities of the integrated test facility and some of the issues encountered during the integration.
NASA Astrophysics Data System (ADS)
Tjahjaningsih, Wahju; Pursetyo, Kustiawan Tri; Sulmartiwi, Laksmi
2017-02-01
This study aims to determine the potential of melanomacrophage centers (MMCs) as a bioindicators of environment polluted with mercury chloride. This study used the carp fish that were kept in an environment that contained mercury chloride with a concentration of 0.01, 0.05 and 0.1 ppm for 21 days. The rate of accumulation of macrophages in the tissue of kidney, spleen and liver were measured by the activity of N-acetylglucosaminidase. The results showed that the MMCs in the spleen and liver tissue of the carp fish potential as the bio-indicators of polluted environment ≥0.1 ppm of mercury chloride. The increased in accumulation of macrophages found in the kidney tissue of carp fish exposed to mercury chloride concentration of 0.01, 0.05 and 0.1 ppm, although no significant difference with control (0 ppm). The suppressive effect of the accumulation of immune response showed at the carp fish liver tissue macrophages which were exposed to mercury chloride lower than carp fish that were not exposed.
Engineering for Autonomous Seismic Stations at the IRIS PASSCAL Instrument Center
NASA Astrophysics Data System (ADS)
Anderson, K. R.; Carpenter, P.; Beaudoin, B. C.; Parker, T.; Hebert, J.; Childs, D.; Chung, P.; Reusch, A. M.
2015-12-01
The NSF funded Incorporated Research Institutions for Seismology (IRIS) through New Mexico Tech operates the PASSCAL Instrument Center (PIC) in Socorro New Mexico. The engineering effort at the PIC seeks to optimize seismic station operations for all portable experiments, include those in extremely remote and harsh polar environments. Recent advances have resulted in improved station design, allowing improved operational efficiencies, data quality return and reduction in station logistics associated with installation, maintenance and decommissioning of stations. These include: Battery and power system designs. Incorporating primary Lithium Thionyl Chloride (LTC) technology with rechargeable Lithium Iron Phosphate (LiFePO4) batteries allows systems to operate in areas with long-term solar autonomy (high latitudes). Development includes charge controller systems to switch between primary and secondary technologies efficiently. Enclosures: Engineered solutions to efficiently manage waste heat, maintain operational environment and provide light-weight and durable housing for seismic instrumentation. Communications: In collaboration with Xeos Technologies Inc., we deliver Iridium-based SOH/Command and Control telemetry as well as full bandwidth seismic data communications in high latitude environments at low power requirements. Smaller-lighter-instrumentation: Through the GEOICE MRI, we are working with Nanometrics on next generation "all-in-one" seismic systems that can be deployed in polar environments - easing logistics, minimizing installation time and improving data quality return for these expensive deployments. All autonomous station designs are openly and freely available at the IRIS PASSCAL webpage (www.passcal.nmt.edu/polar/design-drawings). More information on GEOICE and data quality from various seismometer emplacements will be presented in other posters at this AGU meeting.
The Next Generation of Ground Operations Command and Control; Scripting in C no. and Visual Basic
NASA Technical Reports Server (NTRS)
Ritter, George; Pedoto, Ramon
2010-01-01
Scripting languages have become a common method for implementing command and control solutions in space ground operations. The Systems Test and Operations Language (STOL), the Huntsville Operations Support Center (HOSC) Scripting Language Processor (SLP), and the Spacecraft Control Language (SCL) offer script-commands that wrap tedious operations tasks into single calls. Since script-commands are interpreted, they also offer a certain amount of hands-on control that is highly valued in space ground operations. Although compiled programs seem to be unsuited for interactive user control and are more complex to develop, Marshall Space flight Center (MSFC) has developed a product called the Enhanced and Redesign Scripting (ERS) that makes use of the graphical and logical richness of a programming language while offering the hands-on and ease of control of a scripting language. ERS is currently used by the International Space Station (ISS) Payload Operations Integration Center (POIC) Cadre team members. ERS integrates spacecraft command mnemonics, telemetry measurements, and command and telemetry control procedures into a standard programming language, while making use of Microsoft's Visual Studio for developing Visual Basic (VB) or C# ground operations procedures. ERS also allows for script-style user control during procedure execution using a robust graphical user input and output feature. The availability of VB and C# programmers, and the richness of the languages and their development environment, has allowed ERS to lower our "script" development time and maintenance costs at the Marshall POIC.
NASA Technical Reports Server (NTRS)
Scheuring, R. A.; Jones, J. A.; Lee, P.; Comtois, J. M.; Chappell, S.; Rafiq, A.; Braham, S.; Hodgson, E.; Sullivan, P.; Wilkinson, N.;
2007-01-01
The lunar architecture for future sortie and outpost missions will require humans to serve on the lunar surface considerably longer than the Apollo moon missions. Although the Apollo crewmembers sustained few injuries during their brief lunar surface activity, injuries did occur and are a concern for the longer lunar stays. Interestingly, lunar medical contingency plans were not developed during Apollo. In order to develop an evidence-base for handling a medical contingency on the lunar surface, a simulation using the moon-Mars analog environment at Devon Island, Nunavut, high Canadian Arctic was conducted. Objectives of this study included developing an effective management strategy for dealing with an incapacitated crewmember on the lunar surface, establishing audio/visual and biomedical data connectivity to multiple centers, testing rescue/extraction hardware and procedures, and evaluating in suit increased oxygen consumption. Methods: A review of the Apollo lunar surface activities and personal communications with Apollo lunar crewmembers provided the knowledge base of plausible scenarios that could potentially injure an astronaut during a lunar extravehicular activity (EVA). Objectives were established to demonstrate stabilization and transfer of an injured crewmember and communication with ground controllers at multiple mission control centers. Results: The project objectives were successfully achieved during the simulation. Among these objectives were extraction from a sloped terrain by a two-member crew in a 1 g analog environment, establishing real-time communication to multiple centers, providing biomedical data to flight controllers and crewmembers, and establishing a medical diagnosis and treatment plan from a remote site. Discussion: The simulation provided evidence for the types of equipment and methods for performing extraction of an injured crewmember from a sloped terrain. Additionally, the necessary communications infrastructure to connect multiple centers worldwide was established from a remote site. The surface crewmembers were confronted with a number of unexpected scenarios including environmental, communications, EVA suit, and navigation challenges during the course of the simulation which provided insight into the challenges of carrying out a medical contingency in an austere environment. The knowledge gained from completing the objectives will be incorporated into the exploration medical requirements involving an incapacitated astronaut on the lunar surface.
Pushing the Limits of Cubesat Attitude Control: A Ground Demonstration
NASA Technical Reports Server (NTRS)
Sanders, Devon S.; Heater, Daniel L.; Peeples, Steven R.; Sules. James K.; Huang, Po-Hao Adam
2013-01-01
A cubesat attitude control system (ACS) was designed at the NASA Marshall Space Flight Center (MSFC) to provide sub-degree pointing capabilities using low cost, COTS attitude sensors, COTS miniature reaction wheels, and a developmental micro-propulsion system. The ACS sensors and actuators were integrated onto a 3D-printed plastic 3U cubesat breadboard (10 cm x 10 cm x 30 cm) with a custom designed instrument board and typical cubesat COTS hardware for the electrical, power, and data handling and processing systems. In addition to the cubesat development, a low-cost air bearing was designed and 3D printed in order to float the cubesat in the test environment. Systems integration and verification were performed at the MSFC Small Projects Rapid Integration & Test Environment laboratory. Using a combination of both the miniature reaction wheels and the micro-propulsion system, the open and closed loop control capabilities of the ACS were tested in the Flight Robotics Laboratory. The testing demonstrated the desired sub-degree pointing capability of the ACS and also revealed the challenges of creating a relevant environment for development testin
Vogt, Susanne; Mielck, Andreas; Berger, Ursula; Grill, Eva; Peters, Annette; Döring, Angela; Holle, Rolf; Strobl, Ralf; Zimmermann, Anja-Kerstin; Linkohr, Birgit; Wolf, Kathrin; Kneißl, Klaus; Maier, Werner
2015-12-01
The composition of the residential environment may have an independent influence on health, especially in older adults. In this cross-sectional study, we examined the associations between proximity to two features of the residential environment (green space and senior service centers) and three aspects of healthy aging (self-rated physical constitution, disability, and health-related quality of life). We included 1711 inhabitants from the city of Augsburg, Germany, aged 65 years or older, who participated in the KORA-Age study conducted in 2008/2009. We calculated the Euclidian distances between each participant's residential address and the nearest green space or senior service center, using a geographic information system. Multilevel logistic regression models were fitted to analyze the associations, controlling for demographic and socioeconomic factors. Contrary to expectations, we did not find clear associations between the distances to the nearest green space or senior service center and any of the examined aspects of healthy aging. The importance of living close to green space may largely depend on the study location. The city of Augsburg is relatively small (about 267,000 inhabitants) and has a high proportion of greenness. Thus, proximity to green space may not be as important as in a densely populated metropolitan area. Moreover, an objectively defined measure of access such as Euclidian distance may not reflect the actual use. Future studies should try to assess the importance of resources of the residential environment not only objectively, but also from the resident's perspective.
Electromechanical actuation for cryogenic valve control
NASA Technical Reports Server (NTRS)
Lister, M. J.; Reichmuth, D. M.
1993-01-01
The design and analysis of the electromechanical actuator (EMA) being developed for the NASA/Marshall Space Flight Center as part of the National Launch System (NLS) Propellant Control Effector Advanced Development Program (ADP) are addressed. The EMA design uses several proven technologies combined into a single modular package which includes single stage high ratio gear reduction, redundant electric motors mounted on a common drive shaft, redundant drive and control electronics, and digital technology for performing the closed loop position feedback, communication, and health monitoring functions. Results of tests aimed at evaluating both component characteristics and overall system performance demonstrated that the goal of low cost, reliable control in a cryogenic environment is feasible.
ERIC Educational Resources Information Center
Wijnen, Marit; Loyens, Sofie M. M.; Smeets, Guus; Kroeze, Maarten; van der Molen, Henk
2017-01-01
In educational theory, deep processing (i.e., connecting different study topics together) and self-regulation (i.e., taking control over one's own learning process) are considered effective learning strategies. These learning strategies can be influenced by the learning environment. Problem-based learning (PBL), a student-centered educational…
Lyn, Rodney; Maalouf, Joyce; Evers, Sarah; Davis, Justin; Griffin, Monica
2013-05-23
The child care environment has emerged as an ideal setting in which to implement policies that promote healthy body weight of children. The purpose of this study was to assess the effect of a wellness policy and training program on the physical activity and nutrition environment in 24 child care centers in Georgia. We used the Environment and Policy Assessment and Observation instrument to identify changes to foods served, staff behaviors, and physical activity opportunities. Observations were performed over 1 day, beginning with breakfast and concluding when the program ended for the day. Observations were conducted from February 2010 through April 2011 for a total of 2 observations in each center. Changes to nutrition and physical activity in centers were assessed on the basis of changes in scores related to the physical activity and nutrition environment documented in the observations. Paired t test analyses were performed to determine significance of changes. Significant improvements to total nutrition (P < .001) and physical activity scores (P < .001) were observed. Results indicate that centers significantly improved the physical activity environments of centers by enhancing active play (P = .02), the sedentary environment (P = .005), the portable environment (P = .002), staff behavior (P = .004), and physical activity training and education (P < .001). Significant improvements were found for the nutrition environment (P < .001), and nutrition training and education (P < .001). Findings from this study suggest that implementing wellness policies and training caregivers in best practices for physical activity and nutrition can promote healthy weight for young children in child care settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pin, F.G.; de Saussure, G.; Spelt, P.F.
1988-01-01
This paper describes recent research activities at the Center for Engineering Systems Advanced Research (CESAR) in the area of sensor based reasoning, with emphasis being given to their application and implementation on our HERMIES-IIB autonomous mobile vehicle. These activities, including navigation and exploration in a-priori unknown and dynamic environments, goal recognition, vision-guided manipulation and sensor-driven machine learning, are discussed within the framework of a scenario in which an autonomous robot is asked to navigate through an unknown dynamic environment, explore, find and dock at the panel, read and understand the status of the panel's meters and dials, learn the functioningmore » of a process control panel, and successfully manipulate the control devices of the panel to solve a maintenance emergency problems. A demonstration of the successful implementation of the algorithms on our HERMIES-IIB autonomous robot for resolution of this scenario is presented. Conclusions are drawn concerning the applicability of the methodologies to more general classes of problems and implications for future work on sensor-driven reasoning for autonomous robots are discussed. 8 refs., 3 figs.« less
NASA Johnson Space Center Usability Testing and Analysis facility (UTAF) Overview
NASA Technical Reports Server (NTRS)
Whitmore, Mihriban; Holden, Kritina L.
2005-01-01
The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility performs research for NASA's HumanSystems Integration Program, under the HumanSystems Research and Technology Division. Specifically, the UTAF provides human factors support for space vehicles, including the International Space Station, the Space Shuttle, and the forthcoming Crew Exploration Vehicle. In addition, there are ongoing collaborative research efforts with external corporations and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes and requirements. This presentation will provide an overview of ongoing activities, and will address how the UTAF projects will evolve to meet new space initiatives.
Closed-Loop Control for Sonic Fatigue Testing Systems
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Bossaert, Guido
2001-01-01
This article documents recent improvements to the acoustic control system of the Thermal Acoustic Fatigue Apparatus (TAFA), a progressive wave tube test facility at the NASA Langley Research Center, Hampton, VA. A brief summary of past acoustic performance is first given to serve as a basis of comparison with the new performance data using a multiple-input, closed-loop, narrow-band controller. Performance data in the form of test section acoustic power spectral densities and coherence are presented for a variety of input spectra including uniform, band-limited random and an expendable launch vehicle payload bay environment.
Telepresence master glove controller for dexterous robotic end-effectors
NASA Technical Reports Server (NTRS)
Fisher, Scott S.
1987-01-01
This paper describes recent research in the Aerospace Human Factors Research Division at NASA's Ames Research Center to develop a glove-like, control and data-recording device (DataGlove) that records and transmits to a host computer in real time, and at appropriate resolution, a numeric data-record of a user's hand/finger shape and dynamics. System configuration and performance specifications are detailed, and current research is discussed investigating its applications in operator control of dexterous robotic end-effectors and for use as a human factors research tool in evaluation of operator hand function requirements and performance in other specialized task environments.
Object Creation and Human Factors Evaluation for Virtual Environments
NASA Technical Reports Server (NTRS)
Lindsey, Patricia F.
1998-01-01
The main objective of this project is to provide test objects for simulated environments utilized by the recently established Army/NASA Virtual Innovations Lab (ANVIL) at Marshall Space Flight Center, Huntsville, Al. The objective of the ANVIL lab is to provide virtual reality (VR) models and environments and to provide visualization and manipulation methods for the purpose of training and testing. Visualization equipment used in the ANVIL lab includes head-mounted and boom-mounted immersive virtual reality display devices. Objects in the environment are manipulated using data glove, hand controller, or mouse. These simulated objects are solid or surfaced three dimensional models. They may be viewed or manipulated from any location within the environment and may be viewed on-screen or via immersive VR. The objects are created using various CAD modeling packages and are converted into the virtual environment using dVise. This enables the object or environment to be viewed from any angle or distance for training or testing purposes.
User-centered virtual environment assessment and design for cognitive rehabilitation applications
NASA Astrophysics Data System (ADS)
Fidopiastis, Cali Michael
Virtual environment (VE) design for cognitive rehabilitation necessitates a new methodology to ensure the validity of the resulting rehabilitation assessment. We propose that benchmarking the VE system technology utilizing a user-centered approach should precede the VE construction. Further, user performance baselines should be measured throughout testing as a control for adaptive effects that may confound the metrics chosen to evaluate the rehabilitation treatment. To support these claims we present data obtained from two modules of a user-centered head-mounted display (HMD) assessment battery, specifically resolution visual acuity and stereoacuity. Resolution visual acuity and stereoacuity assessments provide information about the image quality achieved by an HMD based upon its unique system parameters. When applying a user-centered approach, we were able to quantify limitations in the VE system components (e.g., low microdisplay resolution) and separately point to user characteristics (e.g., changes in dark focus) that may introduce error in the evaluation of VE based rehabilitation protocols. Based on these results, we provide guidelines for calibrating and benchmarking HMDs. In addition, we discuss potential extensions of the assessment to address higher level usability issues. We intend to test the proposed framework within the Human Experience Modeler (HEM), a testbed created at the University of Central Florida to evaluate technologies that may enhance cognitive rehabilitation effectiveness. Preliminary results of a feasibility pilot study conducted with a memory impaired participant showed that the HEM provides the control and repeatability needed to conduct such technology comparisons. Further, the HEM affords the opportunity to integrate new brain imaging technologies (i.e., functional Near Infrared Imaging) to evaluate brain plasticity associated with VE based cognitive rehabilitation.
2004-03-10
KENNEDY SPACE CENTER, FLA. - Shipped in an air-conditioned transportation van from NASA’s Goddard Space Flight Center in Greenbelt, Md., NASA’s MESSENGER spacecraft, the first Mercury orbiter, arrives at the Astrotech Space Operations processing facilities near KSC. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be offloaded and taken into a high bay clean room. After the spacecraft is removed from its shipping container, employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
2003-08-21
KENNEDY SPACE CENTER, FLA. - Louis MacDowell (right), Testbed manager, explains to Center Director Jim Kennedy the use of astmospheric calibration specimens. Placed at various locations, they can rank the corrosivity of the given environment. The KSC Beach Corrosion Test Site was established in the 1960s and has provided more than 30 years of historical information on the long-term performance of many materials in use at KSC and other locations around the world. Located 100 feet from the Atlantic Ocean approximately 1 mile south of the Space Shuttle launch sites, the test facility includes an atmospheric exposure site, a flowing seawater exposure site, and an on-site electrochemistry laboratory and monitoring station. The beach laboratory is used to conduct real-time corrosion experiments and provides for the remote monitoring of surrounding weather conditions. The newly added flowing seawater immersion facility provides for the immersion testing of materials and devices under controlled conditions.
Marshall Space Flight Center Telescience Resource Kit
NASA Technical Reports Server (NTRS)
Wade, Gina
2016-01-01
Telescience Resource Kit (TReK) is a suite of software applications that can be used to monitor and control assets in space or on the ground. The Telescience Resource Kit was originally developed for the International Space Station program. Since then it has been used to support a variety of NASA programs and projects including the WB-57 Ascent Vehicle Experiment (WAVE) project, the Fast Affordable Science and Technology Satellite (FASTSAT) project, and the Constellation Program. The Payloads Operations Center (POC), also known as the Payload Operations Integration Center (POIC), provides the capability for payload users to operate their payloads at their home sites. In this environment, TReK provides local ground support system services and an interface to utilize remote services provided by the POC. TReK provides ground system services for local and remote payload user sites including International Partner sites, Telescience Support Centers, and U.S. Investigator sites in over 40 locations worldwide. General Capabilities: Support for various data interfaces such as User Datagram Protocol, Transmission Control Protocol, and Serial interfaces. Data Services - retrieve, process, record, playback, forward, and display data (ground based data or telemetry data). Command - create, modify, send, and track commands. Command Management - Configure one TReK system to serve as a command server/filter for other TReK systems. Database - databases are used to store telemetry and command definition information. Application Programming Interface (API) - ANSI C interface compatible with commercial products such as Visual C++, Visual Basic, LabVIEW, Borland C++, etc. The TReK API provides a bridge for users to develop software to access and extend TReK services. Environments - development, test, simulations, training, and flight. Includes standalone training simulators.
Display Sharing: An Alternative Paradigm
NASA Technical Reports Server (NTRS)
Brown, Michael A.
2010-01-01
The current Johnson Space Center (JSC) Mission Control Center (MCC) Video Transport System (VTS) provides flight controllers and management the ability to meld raw video from various sources with telemetry to improve situational awareness. However, maintaining a separate infrastructure for video delivery and integration of video content with data adds significant complexity and cost to the system. When considering alternative architectures for a VTS, the current system's ability to share specific computer displays in their entirety to other locations, such as large projector systems, flight control rooms, and back supporting rooms throughout the facilities and centers must be incorporated into any new architecture. Internet Protocol (IP)-based systems also support video delivery and integration. IP-based systems generally have an advantage in terms of cost and maintainability. Although IP-based systems are versatile, the task of sharing a computer display from one workstation to another can be time consuming for an end-user and inconvenient to administer at a system level. The objective of this paper is to present a prototype display sharing enterprise solution. Display sharing is a system which delivers image sharing across the LAN while simultaneously managing bandwidth, supporting encryption, enabling recovery and resynchronization following a loss of signal, and, minimizing latency. Additional critical elements will include image scaling support, multi -sharing, ease of initial integration and configuration, integration with desktop window managers, collaboration tools, host and recipient controls. This goal of this paper is to summarize the various elements of an IP-based display sharing system that can be used in today's control center environment.
Maintaining a Class M 5.5 environment in a Class M 6.5 cleanroom
NASA Astrophysics Data System (ADS)
Hughes, David W.; Hedgeland, Randy J.; Geer, Wayne C.; Greenberg, Barry N.
1994-10-01
During Kennedy Space Center processing of the Hubble Space Telescope First Servicing Mission, critical optical components were integrated in a Class 100,000 (M 6.5 at 0.5 micrometers and 5.0 micrometers , per Fed-Std 209E) cleanroom. A Class 10,000 (M 5.5) environment was mandated by the 400B (per Mil-Std 1246B) surface cleanliness requirement of the Scientific Instruments. To maintain a Class M 5.5 environment, a contamination control plan was implemented which addressed personnel constraints, operations, and site management. This plan limited personnel access, imposed strict gowning requirements, and increased cleanroom janitorial operations, prohibited operations known to generate contamination while sensitive hardware was exposed to the environment, and controlled roadwork, insecticide spraying, and similar activities. Facility preparations included a ceiling to floor cleaning, sealing of vents and doors, and revising the garment change room entry patterns. The cleanroom was successfully run below Class 5000 while the instruments were present; certain operations, however, were observed to cause local contamination levels to increase above Class M 5.5.
Gong, Zhenxing; Li, Miaomiao; Qi, Yaoyuan; Zhang, Na
2017-01-01
In the formation mechanism of the feedback environment, the existing research pays attention to external feedback sources and regards individuals as objects passively accepting feedback. Thus, the external source fails to realize the individuals’ need for feedback, and the feedback environment cannot provide them with useful information, leading to a feedback vacuum. The aim of this study is to examine the effect of feedback-seeking by different strategies on the supervisor-feedback environment through supervisor identification. The article consists of an empirical study with a sample of 264 employees in China; here, participants complete a series of questionnaires in three waves. After controlling for the effects of demography, the results indicate that supervisor identification partially mediates the relationship between feedback-seeking (including feedback monitoring and feedback inquiry) and the supervisor-feedback environment. Implications are also discussed. PMID:28919872
Providing a Learning-Centered Instructional Environment.
ERIC Educational Resources Information Center
Evans, Ruby
This paper describes efforts made by the faculty at Santa Fe Community College (Florida) to provide a learning-centered instructional environment for students in an introductory statistics class. Innovation in instruction has been stressed as institutions switch from "teacher-centered classrooms" to "student-centered…
Telemetry distribution and processing for the second German Spacelab Mission D-2
NASA Technical Reports Server (NTRS)
Rabenau, E.; Kruse, W.
1994-01-01
For the second German Spacelab Mission D-2 all activities related to operating, monitoring and controlling the experiments on board the Spacelab were conducted from the German Space Operations Control Center (GSOC) operated by the Deutsche Forschungsanstalt fur Luft- und Raumfahrt (DLR) in Oberpfaffenhofen, Germany. The operational requirements imposed new concepts on the transfer of data between Germany and the NASA centers and the processing of data at the GSOC itself. Highlights were the upgrade of the Spacelab Data Processing Facility (SLDPF) to real time data processing, the introduction of packet telemetry and the development of the high-rate data handling front end, data processing and display systems at GSOC. For the first time, a robot on board the Spacelab was to be controlled from the ground in a closed loop environment. A dedicated forward channel was implemented to transfer the robot manipulation commands originating from the robotics experiment ground station to the Spacelab via the Orbiter's text and graphics system interface. The capability to perform telescience from an external user center was implemented. All interfaces proved successful during the course of the D-2 mission and are described in detail in this paper.
He, Guang Xue; van denHof, Susan; van der Werf, Marieke J; Wang, Guo Jie; Ma, Shi Wen; Zhao, Dong Yang; Hu, Yuan Lian; Yu, Shi Cheng; Borgdorff, Martien W
2010-10-28
Hospitals with inadequate infection control are risky environments for the emergence and transmission of tuberculosis (TB). We evaluated TB infection control practices, and the prevalence of latent TB infection (LTBI) and TB disease and risk factors in health care workers (HCW) in TB centers in Henan province in China. A cross-sectional survey was conducted in 2005. To assess TB infection control practices in TB centers, checklists were used. HCW were tuberculin skin tested (TST) to measure LTBI prevalence, and were asked for sputum smears and chest X-rays to detect TB disease, and questionnaires to assess risk factors. Differences between groups for categorical variables were analyzed by binary logistic regression. The clustered design of the study was taken into account by using a multilevel logistic model. The assessment of infection control practices showed that only in a minority of the centers the patient consultation areas and X-ray areas were separated from the waiting areas and administrative areas. Mechanical ventilation was not available in any of the TB centers. N95 respirators were not available for HCW and surgical masks were not available for TB patients and suspects. The LTBI prevalence of HCW with and without BCG scar was 55.6% (432/777) and 49.0% (674/1376), respectively (P = 0.003). Older HCW, HCW with longer duration of employment, and HCW who worked in departments with increased contact with TB patients had a higher prevalence of LTBI. HCW who work in TB centers at the prefecture level, or with an inpatient ward also had a higher prevalence of LTBI. Twenty cases of pulmonary TB were detected among 3746 HCW. The TB prevalence was 6.7/1000 among medical staff and 2.5/1000 among administrative/logistic staff. TB infection control in TB centers in Henan, China, appears to be inadequate and the prevalence of LTBI and TB disease among HCW was high. TB infection control practices in TB centers should be strengthened in China, including administrative measures, renovation of buildings, and use of respirators and masks. Regular screening of HCW for TB disease and LTBI needs to be considered, offering preventive therapy to those with TST conversions.
Environments for Lifelong Learning in Senior Centers
ERIC Educational Resources Information Center
Eaton, Jacqueline; Salari, Sonia
2005-01-01
Senior-center learning opportunities must adapt, as new retirees are better educated than their predecessors. We examined 3 multipurpose senior centers using 120 hours of observations and 30 participant interviews. Variation existed in the ability to maximize synomorphic relationships, where the physical environment supported educational…
Trajectory Assessment and Modification Tools for Next Generation Air Traffic Management Operations
NASA Technical Reports Server (NTRS)
Brasil, Connie; Lee, Paul; Mainini, Matthew; Lee, Homola; Lee, Hwasoo; Prevot, Thomas; Smith, Nancy
2011-01-01
This paper reviews three Next Generation Air Transportation System (NextGen) based high fidelity air traffic control human-in-the-loop (HITL) simulations, with a focus on the expected requirement of enhanced automated trajectory assessment and modification tools to support future air traffic flow management (ATFM) planning positions. The simulations were conducted at the National Aeronautics and Space Administration (NASA) Ames Research Centers Airspace Operations Laboratory (AOL) in 2009 and 2010. The test airspace for all three simulations assumed the mid-term NextGenEn-Route high altitude environment utilizing high altitude sectors from the Kansas City and Memphis Air Route Traffic Control Centers. Trajectory assessment, modification and coordination decision support tools were developed at the AOL in order to perform future ATFM tasks. Overall tool usage results and user acceptability ratings were collected across three areas of NextGen operatoins to evaluate the tools. In addition to the usefulness and usability feedback, feasibility issues, benefits, and future requirements were also addressed. Overall, the tool sets were rated very useful and usable, and many elements of the tools received high scores and were used frequently and successfully. Tool utilization results in all three HITLs showed both user and system benefits including better airspace throughput, reduced controller workload, and highly effective communication protocols in both full Data Comm and mixed-equipage environments.
NASA Technical Reports Server (NTRS)
Taylor, Edith C.; Ross, Michael
1989-01-01
The Shuttle Remote Manipulator System is a mature system which has successfully completed 18 flights. Its primary functional design driver was the capability to deploy and retrieve payloads from the Orbiter cargo bay. The Space Station Freedom Mobile Servicing Center is still in the requirements definition and early design stage. Its primary function design drivers are the capabilities: to support Space Station construction and assembly tasks; to provide external transportation about the Space Station; to provide handling capabilities for the Orbiter, free flyers, and payloads; to support attached payload servicing in the extravehicular environment; and to perform scheduled and un-scheduled maintenance on the Space Station. The differences between the two systems in the area of geometric configuration, mobility, sensor capabilities, control stations, control algorithms, handling performance, end effector dexterity, and fault tolerance are discussed.
2011-05-25
CAPE CANAVERAL, Fla. -- University students prepare their remote controlled or autonomous excavator, called a lunabot, in a tent next to the "Lunarena" at the Kennedy Space Center Visitor Complex. Thirty-six teams of undergraduate and graduate students from the United States, Bangladesh, Canada, Colombia and India will participate in NASA's Lunabotics Mining Competition May 26 - 28 at the agency's Kennedy Space Center in Florida. The competition is designed to engage and retain students in science, technology, engineering and mathematics (STEM). Teams will maneuver their remote controlled or autonomous excavators, called lunabots, in about 60 tons of ultra-fine simulated lunar soil, called BP-1. The competition is an Exploration Systems Mission Directorate project managed by Kennedy's Education Division. The event also provides a competitive environment that could result in innovative ideas and solutions for NASA's future excavation of the moon. Photo credit: NASA/Frankie Martin
2011-05-25
CAPE CANAVERAL, Fla. -- University students prepare their remote controlled or autonomous excavator, called a lunabot, in a tent next to the "Lunarena" at the Kennedy Space Center Visitor Complex. Thirty-six teams of undergraduate and graduate students from the United States, Bangladesh, Canada, Colombia and India will participate in NASA's Lunabotics Mining Competition May 26 - 28 at the agency's Kennedy Space Center in Florida. The competition is designed to engage and retain students in science, technology, engineering and mathematics (STEM). Teams will maneuver their remote controlled or autonomous excavators, called lunabots, in about 60 tons of ultra-fine simulated lunar soil, called BP-1. The competition is an Exploration Systems Mission Directorate project managed by Kennedy's Education Division. The event also provides a competitive environment that could result in innovative ideas and solutions for NASA's future excavation of the moon. Photo credit: NASA/Frankie Martin
2014-08-15
CAPE CANAVERAL, Fla. – Kennedy Space Center Director and former astronaut Bob Cabana, talks to Florida middle school students and their teachers during the Zero Robotics finals competition at the center's Space Station Processing Facility in Florida. Students designed software to control Synchronized Position Hold Engage and Reorient Experimental Satellites, or SPHERES, and competed with other teams locally. The Zero Robotics is a robotics programming competition where the robots are SPHERES. The competition starts online, where teams program the SPHERES to solve an annual challenge. After several phases of virtual competition in a simulation environment that mimics the real SPHERES, finalists are selected to compete in a live championship aboard the space station. Students compete to win a technically challenging game by programming their strategies into the SPHERES satellites. The programs are autonomous and the students cannot control the satellites during the test. Photo credit: NASA/Daniel Casper
2014-08-15
CAPE CANAVERAL, Fla. – Kennedy Space Center Director and former astronaut Bob Cabana, talks to Florida middle school students and their teachers during the Zero Robotics finals competition at the center's Space Station Processing Facility in Florida. Students designed software to control Synchronized Position Hold Engage and Reorient Experimental Satellites, or SPHERES, and competed with other teams locally. The Zero Robotics is a robotics programming competition where the robots are SPHERES. The competition starts online, where teams program the SPHERES to solve an annual challenge. After several phases of virtual competition in a simulation environment that mimics the real SPHERES, finalists are selected to compete in a live championship aboard the space station. Students compete to win a technically challenging game by programming their strategies into the SPHERES satellites. The programs are autonomous and the students cannot control the satellites during the test. Photo credit: NASA/Daniel Casper
2014-08-15
CAPE CANAVERAL, Fla. – Kennedy Space Center Director and former astronaut Bob Cabana, talks to Florida middle school students and their teachers during the Zero Robotics finals competition at the center's Space Station Processing Facility in Florida. Students designed software to control Synchronized Position Hold Engage and Reorient Experimental Satellites, or SPHERES, and competed with other teams locally. The Zero Robotics is a robotics programming competition where the robots are SPHERES. The competition starts online, where teams program the SPHERES to solve an annual challenge. After several phases of virtual competition in a simulation environment that mimics the real SPHERES, finalists are selected to compete in a live championship aboard the space station. Students compete to win a technically challenging game by programming their strategies into the SPHERES satellites. The programs are autonomous and the students cannot control the satellites during the test. Photo credit: NASA/Daniel Casper
NASA Astrophysics Data System (ADS)
Sanwarwalla, M. H.; Alsammarae, A. J.
1995-08-01
Many nuclear power plants have motor control centers (MCCs) installed in a harsh, radiation only, environment. Procurement of safety-related replacement devices for these MCCs is an economic burden for the stations if these MCCs have become obsolete. Identical replacement components for many MCCs installed in older plants (ITE Gould, Allis-Chalmers, Klockner-Moeller, Cutler-Hammer, etc.) are no longer available. Plants are left with the option of either retrofitting these MCCs or finding ways to extend the qualified lives of the safety-related components to minimize replacement costs. ComEd nuclear station has embarked on a program to minimize the economic burden for the replacement of Klockner-Moeller (K-M) MCC components. This paper discusses the program adopted by this station and its economic benefits to ComEd.
Integrating Learning, Problem Solving, and Engagement in Narrative-Centered Learning Environments
ERIC Educational Resources Information Center
Rowe, Jonathan P.; Shores, Lucy R.; Mott, Bradford W.; Lester, James C.
2011-01-01
A key promise of narrative-centered learning environments is the ability to make learning engaging. However, there is concern that learning and engagement may be at odds in these game-based learning environments. This view suggests that, on the one hand, students interacting with a game-based learning environment may be engaged but unlikely to…
Po’e, Eli K.; Heerman, William J.; Mistry, Rishi S.; Barkin, Shari L.
2013-01-01
Growing Right Onto Wellness (GROW) is a randomized controlled trial that tests the efficacy of a family-centered, community-based, behavioral intervention to prevent childhood obesity among preschool-aged children. Focusing on parent-child pairs, GROW utilizes a multi-level framework, which accounts for macro (i.e., built-environment) and micro (i.e., genetics) level systems that contribute to the childhood obesity epidemic. Six hundred parent-child pairs will be randomized to a 3-year healthy lifestyle intervention or a 3-year school readiness program. Eligible children are enrolled between ages 3 and 5, are from minority communities, and are not obese. The principal site for the GROW intervention is local community recreation centers and libraries. The primary outcome is childhood Body Mass Index (BMI) trajectory at the end of the three-year study period. In addition to other anthropometric measurements, mediators and moderators of growth are considered, including genetics, accelerometry, and diet recall. GROW is a staged intensity intervention, consisting of intensive, maintenance, and sustainability phases. Throughout the study, parents build skills in nutrition, physical activity, and parenting, concurrently forming new social networks. Participants are taught goal-setting, self-monitoring, and problem solving techniques to facilitate sustainable behavior change. The GROW curriculum uses low health literacy communication and social media to communicate key health messages. The control arm is administered to both control and intervention participants. By conducting this trial in public community centers, and by implementing a family-centered approach to sustainable healthy childhood growth, we aim to develop an exportable community-based intervention to address the expanding public health crisis of pediatric obesity. PMID:24012890
LETS: Lunar Environments Test System
NASA Technical Reports Server (NTRS)
Vaughn, Jason A.; Schneider, Todd; Craven, Paul; Norwood, Joey
2008-01-01
The Environmental Effects Branch (EM50) at the Marshall Space Flight Center has developed a unique capability within the agency, namely the Lunar Environment Test System (LETS). LETS is a cryo-pumped vacuum chamber facility capable of high vacuum (10-7 Torr). LETS is a cylindrical chamber, 30 in. (0.8 m) diameter by 48 in. (1.2 m) long thermally controlled vacuum system. The chamber is equipped with a full array of radiation sources including vacuum ultraviolet, electron, and proton radiation. The unique feature of LETS is that it contains a large lunar simulant bed (18 in. x 40 in. x 6 in.) holding 75 kg of JSC-1a simulant while operating at a vacuum of 10-7 Torr. This facility allows three applications: 1) to study the charging, levitation and migration of dust particles, 2) to simulate the radiation environment on the lunar surface, and 3) to electrically charge the lunar simulant enhancing the attraction and adhesion of dust particles to test articles more closely simulating the lunar surface dust environment. LETS has numerous diagnostic instruments including TREK electrostatic probes, residual gas analyzer (RGA), temperature controlled quartz crystal microbalance (TQCM), and particle imaging velocimeter (PIV). Finally, LETS uses continuous Labview data acquisition for computer monitoring and system control.
Haughton-Mars Project (HMP)/NASA 2006 Lunar Medical Contingency Simulation: An Overview
NASA Technical Reports Server (NTRS)
Scheuring, R. A.; Jones, J. A.; Lee, P.; Comtois, J. M.; Chappell, S.; Rafiq, A.; Braham, S.; Hodgson, E.; Sullivan, P.; Wilkinson, N.
2006-01-01
Medical requirements are currently being developed for NASA's space exploration program. Lunar surface operations for crews returning to the moon will be performed on a daily basis to conduct scientific research and construct a lunar habitat. Inherent to aggressive surface activities is the potential risk of injury to crew members. To develop an evidence-base for handling medical contingencies on the lunar surface, a simulation project was conducted using the moon-Mars analog environment at Devon Island, Nunavut, high Canadian Arctic. A review of the Apollo lunar surface activities and personal communications with Apollo lunar crew members provided a knowledge base of plausible scenarios that could potentially injure an astronaut during a lunar extravehicular activity. Objectives were established to 1) demonstrate stabilization, field extraction and transfer an injured crew member to the habitat and 2) evaluate audio, visual and biomedical communication capabilities with ground controllers at multiple mission control centers. The simulation project s objectives were achieved. Among these objectives were 1) extracting a crew member from a sloped terrain by a two-member team in a 1-g analog environment, 2) establishing real-time communication to multiple space centers, 3) providing biomedical data to flight controllers and crew members, and 4) establishing a medical diagnosis and treatment plan from a remote site. The simulation project provided evidence for the types of equipment and methods needed for planetary space exploration. During the project, the crew members were confronted with a number of unexpected scenarios including environmental, communications, EVA suit, and navigation challenges. These trials provided insight into the challenges of carrying out a medical contingency in an austere environment. The knowledge gained from completing the objectives of this project will be incorporated into the exploration medical requirements involving an incapacited astronaut on the lunar surface.
NASA Technical Reports Server (NTRS)
Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.
2007-01-01
The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and. control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for inter-spacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of medium, moving platforms, and radiated power. The Path Emulator for RF Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.
NASA Technical Reports Server (NTRS)
Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.
2007-01-01
The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for interspacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of the medium, moving platforms, and radiated power. The Path Emulator for Radio Frequency Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.
Ares I-X Vibroacoustic Environments
NASA Technical Reports Server (NTRS)
Larsen, Curtis E.; Schuster, David M.; Kaufman, Daniel S.
2009-01-01
This paper provides a summary of the NASA Engineering and Safety Center (NESC) team recommendations and observations following participation with the Ares I-X Vibroacoustic (VA) Environments Panel in meetings at the Kennedy Space Center (KSC) and the Marshall Space Flight Center (MSFC) in March and April 2008, respectively.
Proposed Development of NASA Glenn Research Center's Aeronautical Network Research Simulator
NASA Technical Reports Server (NTRS)
Nguyen, Thanh C.; Kerczewski, Robert J.; Wargo, Chris A.; Kocin, Michael J.; Garcia, Manuel L.
2004-01-01
Accurate knowledge and understanding of data link traffic loads that will have an impact on the underlying communications infrastructure within the National Airspace System (NAS) is of paramount importance for planning, development and fielding of future airborne and ground-based communications systems. Attempting to better understand this impact, NASA Glenn Research Center (GRC), through its contractor Computer Networks & Software, Inc. (CNS, Inc.), has developed an emulation and test facility known as the Virtual Aircraft and Controller (VAC) to study data link interactions and the capacity of the NAS to support Controller Pilot Data Link Communications (CPDLC) traffic. The drawback of the current VAC test bed is that it does not allow the test personnel and researchers to present a real world RF environment to a complex airborne or ground system. Fortunately, the United States Air Force and Navy Avionics Test Commands, through its contractor ViaSat, Inc., have developed the Joint Communications Simulator (JCS) to provide communications band test and simulation capability for the RF spectrum through 18 GHz including Communications, Navigation, and Identification and Surveillance functions. In this paper, we are proposing the development of a new and robust test bed that will leverage on the existing NASA GRC's VAC and the Air Force and Navy Commands JCS systems capabilities and functionalities. The proposed NASA Glenn Research Center's Aeronautical Networks Research Simulator (ANRS) will combine current Air Traffic Control applications and physical RF stimulation into an integrated system capable of emulating data transmission behaviors including propagation delay, physical protocol delay, transmission failure and channel interference. The ANRS will provide a simulation/stimulation tool and test bed environment that allow the researcher to predict the performance of various aeronautical network protocol standards and their associated waveforms under varying density conditions. The system allows the user to define human-interactive and scripted aircraft and controller models of various standards, such as (but not limited to) Very High Frequency Digital Link (VDL) of various modes.
An Analysis of Economic Retention Models for Excess Stock in a Stochastic Demand Environment
1994-03-01
then begin getkar kcadle; -2: It tins! -- 0.25 then got~arkCoide: .0; end; end; pmocodaze inItIasleAxrays Waer oboaen. thQAirY. kOtevel. SSADtW. SSALM...1837 Tularosa Rd. Lompoc, California 12. LCDR Kevin Maher, Code 041 Navy Ships Parts Control Center 5450 Carlisle Pike P.O. Box 2020 Mechanicsburg, Pennsylvania 17055-0788 183
İ. Esra Büyüktahtakın; Robert G. Haight
2017-01-01
Invasive species are a major threat to the economy, the environment, health, and thus human well-being. The international community, including the United Nations' Global Invasive Species Program (GISP), National Invasive Species Council (NISC), and Center for Invasive Species Management (CISM), has called for a rapid control of invaders in order to minimize their...
Microgravity Simulation Facility (MSF)
NASA Technical Reports Server (NTRS)
Richards, Stephanie E. (Compiler); Levine, Howard G.; Zhang, Ye
2016-01-01
The Microgravity Simulator Facility (MSF) at Kennedy Space Center (KSC) was established to support visiting scientists for short duration studies utilizing a variety of microgravity simulator devices that negate the directional influence of the "g" vector (providing simulated conditions of micro or partial gravity). KSC gravity simulators can be accommodated within controlled environment chambers allowing investigators to customize and monitor environmental conditions such as temperature, humidity, CO2, and light exposure.
Thermal control surfaces on the MSFC LDEF experiments
NASA Technical Reports Server (NTRS)
Wilkes, Donald R.; Whitaker, Ann F.; Zwiener, James M.; Linton, Roger C.; Shular, David; Peters, Palmer N.; Gregory, John C.
1992-01-01
There were five Marshall Space Flight Center (MSFC) experiments on the LDEF. Each of those experiments carried thermal control surfaces either as test samples or as operational surfaces. These materials experienced varying degrees of mechanical and optical damage. Some materials were virtually unchanged by the extended exposure while others suffered extensive degradation. The synergistic effects due to the constituents of the space environment are evident in the diversity of these material changes. The sample complement for the MSFC experiments is described along with results of the continuing analyses efforts.
NASA Technical Reports Server (NTRS)
Johnson, Chris; Hinkle, R. Kenneth (Technical Monitor)
2002-01-01
The specific heater control requirements for the thermal vacuum and thermal balance testing of the Microwave Anisotropy Probe (MAP) Observatory at the Goddard Space Flight Center (GSFC) in Greenbelt, Maryland are described. The testing was conducted in the 10m wide x 18.3m high Space Environment Simulator (SES) Thermal Vacuum Facility. The MAP thermal testing required accurate quantification of spacecraft and fixture power levels while minimizing heater electrical emissions. The special requirements of the MAP test necessitated construction of five (5) new heater racks.
Soft X-Ray Exposure Testing of FEP Teflon for the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
deGroh, Kim K.
1998-01-01
The FEP Teflon (DuPont) multilayer insulation (MLI) thermal-control blanket material on the Hubble Space Telescope is degrading in the space environment. During the first Hubble servicing mission in 1993, after 3.6 years in low Earth orbit, aluminized and silvered FEP Teflon MLI thermal-control blanket materials were retrieved. These materials have been jointly analyzed by the NASA Lewis Research Center and the NASA Goddard Space Flight Center for degradation induced in the space environment (ref. 1). Solar-facing blanket materials were found to be embrittled with through-the-thickness cracking in the 5-mil FEP. During the second Hubble servicing mission in 1997, astronauts noticed that several blankets had large areas with tears. The torn FEP was curled up in some areas, exposing the underlying materials to the space environment. This tearing problem, and the associated curling up of torn areas, could lead to over-heating of the telescope and to particulate contamination. A Hubble Space Telescope MLI Failure Review Board was assembled by Goddard to investigate and identify the degradation mechanism of the FEP, to identify and characterize replacement materials, and to estimate the extent of damage at the time of the third servicing mission in 1999. A small piece of FEP retrieved during the second servicing mission is being evaluated by this failure review board along with materials from the first servicing mission. Since the first servicing mission, and as part of the failure review board, Lewis has been exposing FEP to soft x-rays to help determine the damage mechanisms of FEP in the space environment. Soft x-rays, which can penetrate into the bulk of FEP, are generated during solar flares and appear to be contributing to the degradation of the Hubble MLI.
Design and Control of Compliant Tensegrity Robots Through Simulation and Hardware Validation
NASA Technical Reports Server (NTRS)
Caluwaerts, Ken; Despraz, Jeremie; Iscen, Atil; Sabelhaus, Andrew P.; Bruce, Jonathan; Schrauwen, Benjamin; Sunspiral, Vytas
2014-01-01
To better understand the role of tensegrity structures in biological systems and their application to robotics, the Dynamic Tensegrity Robotics Lab at NASA Ames Research Center has developed and validated two different software environments for the analysis, simulation, and design of tensegrity robots. These tools, along with new control methodologies and the modular hardware components developed to validate them, are presented as a system for the design of actuated tensegrity structures. As evidenced from their appearance in many biological systems, tensegrity ("tensile-integrity") structures have unique physical properties which make them ideal for interaction with uncertain environments. Yet these characteristics, such as variable structural compliance, and global multi-path load distribution through the tension network, make design and control of bio-inspired tensegrity robots extremely challenging. This work presents the progress in using these two tools in tackling the design and control challenges. The results of this analysis includes multiple novel control approaches for mobility and terrain interaction of spherical tensegrity structures. The current hardware prototype of a six-bar tensegrity, code-named ReCTeR, is presented in the context of this validation.
Predictions of the Space Environment Services Center
NASA Technical Reports Server (NTRS)
Heckman, G. R.
1979-01-01
The types of users of the Space Environment Services Center are identified. All the data collected by the Center are listed and a short description of each primary index or activity summary is given. Each type of regularly produced forecast is described, along with the methods used to produce each prediction.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-04
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [ Docket No. EL13-33-000] ENE (Environment Northeast); Greater Boston Real Estate Board; National Consumer Law Center; NEPOOL Industrial... Federal Energy Regulatory Commission (Commission), 18 CFR 385.206, ENE (Environment Northeast), Greater...
International Space Station (ISS)
2002-07-10
This is a photo of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.
2011-05-28
CAPE CANAVERAL, Fla. -- A remote controlled or autonomous excavator, called a lunabot, is on display outside of the "Lunarena" at the Kennedy Space Center Visitor Complex in Florida where university students maneuver their remote controlled lunabots, in a "sand box" of ultra-fine simulated lunar soil during NASA's second annual Lunabotics Mining Competition. Thirty-six teams of undergraduate and graduate students from the United States, Bangladesh, Canada, Colombia and India will participate in NASA's Lunabotics Mining Competition May 26 - 28 at the agency's Kennedy Space Center in Florida. The competition is designed to engage and retain students in science, technology, engineering and mathematics (STEM). Teams will maneuver their remote controlled or autonomous excavators, called lunabots, in about 60 tons of ultra-fine simulated lunar soil, called BP-1. The competition is an Exploration Systems Mission Directorate project managed by Kennedy's Education Division. The event also provides a competitive environment that could result in innovative ideas and solutions for NASA's future excavation of the moon. Photo credit: NASA/Jack Pfaller
Lomax, Terri L; Findlay, Kirk A; White, T J; Winner, William E
2003-06-01
Plants will play an essential role in providing life support for any long-term space exploration or habitation. We are evaluating the feasibility of an adaptable system for measuring the response of plants to any unique space condition and optimizing plant performance under those conditions. The proposed system is based on a unique combination of systems including the rapid advances in the field of plant genomics, microarray technology for measuring gene expression, bioinformatics, gene pathways and networks, physiological measurements in controlled environments, and advances in automation and robotics. The resulting flexible module for monitoring and optimizing plant responses will be able to be inserted as a cassette into a variety of platforms and missions for either experimental or life support purposes. The results from future plant functional genomics projects have great potential to be applied to those plant species most likely to be used in space environments. Eventually, it will be possible to use the plant genetic assessment and control system to optimize the performance of any plant in any space environment. In addition to allowing the effective control of environmental parameters for enhanced plant productivity and other life support functions, the proposed module will also allow the selection or engineering of plants to thrive in specific space environments. The proposed project will advance human exploration of space in the near- and mid-term future on the International Space Station and free-flying satellites and in the far-term for longer duration missions and eventual space habitation.
... pit in the center. Molluscum Contagiosum in Special Environments Swimming Pools Day Care Centers and Schools At ... Risk Factors Treatment Prevention Long-Term Effects Special Environments Swimming Pools Swimming Pool Safety Recommendations Day Care ...
Unsteady Analyses of Valve Systems in Rocket Engine Testing Environments
NASA Technical Reports Server (NTRS)
Shipman, Jeremy; Hosangadi, Ashvin; Ahuja, Vineet
2004-01-01
This paper discusses simulation technology used to support the testing of rocket propulsion systems by performing high fidelity analyses of feed system components. A generalized multi-element framework has been used to perform simulations of control valve systems. This framework provides the flexibility to resolve the structural and functional complexities typically associated with valve-based high pressure feed systems that are difficult to deal with using traditional Computational Fluid Dynamics (CFD) methods. In order to validate this framework for control valve systems, results are presented for simulations of a cryogenic control valve at various plug settings and compared to both experimental data and simulation results obtained at NASA Stennis Space Center. A detailed unsteady analysis has also been performed for a pressure regulator type control valve used to support rocket engine and component testing at Stennis Space Center. The transient simulation captures the onset of a modal instability that has been observed in the operation of the valve. A discussion of the flow physics responsible for the instability and a prediction of the dominant modes associated with the fluctuations is presented.
Active Learning Environment with Lenses in Geometric Optics
ERIC Educational Resources Information Center
Tural, Güner
2015-01-01
Geometric optics is one of the difficult topics for students within physics discipline. Students learn better via student-centered active learning environments than the teacher-centered learning environments. So this study aimed to present a guide for middle school teachers to teach lenses in geometric optics via active learning environment…
The Center for Nanophase Materials Sciences
NASA Astrophysics Data System (ADS)
Lowndes, Douglas
2005-03-01
The Center for Nanophase Materials Sciences (CNMS) located at Oak Ridge National Laboratory (ORNL) will be the first DOE Nanoscale Science Research Center to begin operation, with construction to be completed in April 2005 and initial operations in October 2005. The CNMS' scientific program has been developed through workshops with the national community, with the goal of creating a highly collaborative research environment to accelerate discovery and drive technological advances. Research at the CNMS is organized under seven Scientific Themes selected to address challenges to understanding and to exploit particular ORNL strengths (see http://cnms.ornl.govhttp://cnms.ornl.gov). These include extensive synthesis and characterization capabilities for soft, hard, nanostructured, magnetic and catalytic materials and their composites; neutron scattering at the Spallation Neutron Source and High Flux Isotope Reactor; computational nanoscience in the CNMS' Nanomaterials Theory Institute and utilizing facilities and expertise of the Center for Computational Sciences and the new Leadership Scientific Computing Facility at ORNL; a new CNMS Nanofabrication Research Laboratory; and a suite of unique and state-of-the-art instruments to be made reliably available to the national community for imaging, manipulation, and properties measurements on nanoscale materials in controlled environments. The new research facilities will be described together with the planned operation of the user research program, the latter illustrated by the current ``jump start'' user program that utilizes existing ORNL/CNMS facilities.
Test and Analysis Capabilities of the Space Environment Effects Team at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Finckenor, M. M.; Edwards, D. L.; Vaughn, J. A.; Schneider, T. A.; Hovater, M. A.; Hoppe, D. T.
2002-01-01
Marshall Space Flight Center has developed world-class space environmental effects testing facilities to simulate the space environment. The combined environmental effects test system exposes temperature-controlled samples to simultaneous protons, high- and low-energy electrons, vacuum ultraviolet (VUV) radiation, and near-ultraviolet (NUV) radiation. Separate chambers for studying the effects of NUV and VUV at elevated temperatures are also available. The Atomic Oxygen Beam Facility exposes samples to atomic oxygen of 5 eV energy to simulate low-Earth orbit (LEO). The LEO space plasma simulators are used to study current collection to biased spacecraft surfaces, arcing from insulators and electrical conductivity of materials. Plasma propulsion techniques are analyzed using the Marshall magnetic mirror system. The micro light gas gun simulates micrometeoroid and space debris impacts. Candidate materials and hardware for spacecraft can be evaluated for durability in the space environment with a variety of analytical techniques. Mass, solar absorptance, infrared emittance, transmission, reflectance, bidirectional reflectance distribution function, and surface morphology characterization can be performed. The data from the space environmental effects testing facilities, combined with analytical results from flight experiments, enable the Environmental Effects Group to determine optimum materials for use on spacecraft.
Bonvin, Antoine; Barral, Jérôme; Kakebeeke, Tanja H; Kriemler, Susi; Longchamp, Anouk; Schindler, Christian; Marques-Vidal, Pedro; Puder, Jardena J
2013-07-08
To assess the effect of a governmentally-led center based child care physical activity program (Youp'là Bouge) on child motor skills. We conducted a single blinded cluster randomized controlled trial in 58 Swiss child care centers. Centers were randomly selected and 1:1 assigned to a control or intervention group. The intervention lasted from September 2009 to June 2010 and included training of the educators, adaptation of the child care built environment, parental involvement and daily physical activity. Motor skill was the primary outcome and body mass index (BMI), physical activity and quality of life secondary outcomes. The intervention implementation was also assessed. At baseline, 648 children present on the motor test day were included (age 3.3 ± 0.6, BMI 16.3 ± 1.3 kg/m2, 13.2% overweight, 49% girls) and 313 received the intervention. Relative to children in the control group (n = 201), children in the intervention group (n = 187) showed no significant increase in motor skills (delta of mean change (95% confidence interval: -0.2 (-0.8 to 0.3), p = 0.43) or in any of the secondary outcomes. Not all child care centers implemented all the intervention components. Within the intervention group, several predictors were positively associated with trial outcomes: (1) free-access to a movement space and parental information session for motor skills (2) highly motivated and trained educators for BMI (3) free-access to a movement space and purchase of mobile equipment for physical activity (all p < 0.05). This "real-life" physical activity program in child care centers confirms the complexity of implementing an intervention outside a study setting and identified potentially relevant predictors that could improve future programs. Clinical trials.gov NCT00967460.
Allosteric control in a metalloprotein dramatically alters function
Baxter, Elizabeth Leigh; Zuris, John A.; Wang, Charles; Vo, Phu Luong T.; Axelrod, Herbert L.; Cohen, Aina E.; Paddock, Mark L.; Nechushtai, Rachel; Onuchic, Jose N.; Jennings, Patricia A.
2013-01-01
Metalloproteins (MPs) comprise one-third of all known protein structures. This diverse set of proteins contain a plethora of unique inorganic moieties capable of performing chemistry that would otherwise be impossible using only the amino acids found in nature. Most of the well-studied MPs are generally viewed as being very rigid in structure, and it is widely thought that the properties of the metal centers are primarily determined by the small fraction of amino acids that make up the local environment. Here we examine both theoretically and experimentally whether distal regions can influence the metal center in the diabetes drug target mitoNEET. We demonstrate that a loop (L2) 20 Å away from the metal center exerts allosteric control over the cluster binding domain and regulates multiple properties of the metal center. Mutagenesis of L2 results in significant shifts in the redox potential of the [2Fe-2S] cluster and orders of magnitude effects on the rate of [2Fe-2S] cluster transfer to an apo-acceptor protein. These surprising effects occur in the absence of any structural changes. An examination of the native basin dynamics of the protein using all-atom simulations shows that twisting in L2 controls scissoring in the cluster binding domain and results in perturbations to one of the cluster-coordinating histidines. These allosteric effects are in agreement with previous folding simulations that predicted L2 could communicate with residues surrounding the metal center. Our findings suggest that long-range dynamical changes in the protein backbone can have a significant effect on the functional properties of MPs. PMID:23271805
Programmable Automated Welding System (PAWS)
NASA Technical Reports Server (NTRS)
Kline, Martin D.
1994-01-01
An ambitious project to develop an advanced, automated welding system is being funded as part of the Navy Joining Center with Babcock & Wilcox as the prime integrator. This program, the Programmable Automated Welding System (PAWS), involves the integration of both planning and real-time control activities. Planning functions include the development of a graphical decision support system within a standard, portable environment. Real-time control functions include the development of a modular, intelligent, real-time control system and the integration of a number of welding process sensors. This paper presents each of these components of the PAWS and discusses how they can be utilized to automate the welding operation.
Human exposures to pesticides in the United States.
Langley, Ricky L; Mort, Sandra Amiss
2012-01-01
Pesticides are used in most homes, businesses, and farms to control a variety of pests, including insects, weeds, fungi, rodents, and even microbial organisms. Inappropriate use of pesticides can lead to adverse effects to humans and the environment. This study provides updated information on the magnitude of adverse pesticide exposures in the United States. Data on pesticide exposure were obtained from calls to poison control centers (PCCs) reported by the American Association of Poison Control Centers. Estimates of emergency department visits, hospitalizations, and health care costs were reported by the Agency for Healthcare Research and Quality (AHRQ), and deaths from pesticide poisonings reported by the Centers for Disease Control and Prevention (CDC) WONDER (Wide-ranging Online Data for Epidemiologic Research). An average of 23 deaths occur each year with pesticides as the underlying cause of death, most due to suicidal ingestions. An average of 130,136 calls to poison control centers were reported from 2006 to 2010, with an average of 20,116 cases (17.8%) treated in health care facilities annually. AHQR reported an annual average of 7385 emergency room visits during 2006 to 2008, and 1419 annual hospitalizations during 2005 to 2009. Excluding cost from lost work time, hospital physician fees, and pesticide-induced cancers, the annual national cost associated with pesticide exposures was estimated as nearly $200 million USD based on data from emergency department visits, hospitalizations, and for deaths. Pesticide exposures remain a significant public health issue. Health care providers, cooperative extension agents, and pesticide manufactures can help prevent exposures by increasing education of parents and workers, encourage use of less toxic agents, and encourage the practice of integrated pest management.
Profile negotiation: An air/ground automation integration concept for managing arrival traffic
NASA Technical Reports Server (NTRS)
Williams, David H.; Arbuckle, P. Douglas; Green, Steven M.; Denbraven, Wim
1993-01-01
NASA Ames Research Center and NASA Langley Research Center conducted a joint simulation study to evaluate a profile negotiation process (PNP) between a time-based air traffic control ATC system and an airplane equipped with a four dimensional flight management system (4D FMS). Prototype procedures were developed to support the functional implementation of this process. The PNP was designed to provide an arrival trajectory solution that satisfies the separation requirements of ATC while remaining as close as possible to the airplane's preferred trajectory. The Transport Systems Research Vehicle cockpit simulator was linked in real-time to the Center/TRACON Automation System (CTAS) for the experiment. Approximately 30 hours of simulation testing were conducted over a three week period. Active airline pilot crews and active Center controller teams participated as test subjects. Results from the experiment indicate the potential for successful incorporation of airplane preferred arrival trajectories in the CTAS automation environment. Controllers were able to consistently and effectively negotiate nominally conflict-free trajectories with pilots flying a 4D-FMS-equipped airplane. The negotiated trajectories were substantially closer to the airplane's preference than would have otherwise been possible without the PNP. Airplane fuel savings relative to baseline CTAS were achieved in the test scenarios. The datalink procedures and clearances developed for this experiment, while providing the necessary functionality, were found to be operationally unacceptable to the pilots. Additional pilot control and understanding of the proposed airplane-preferred trajectory and a simplified clearance procedure were cited as necessary for operational implementation of the concept. From the controllers' perspective, the main concerns were the ability of the 4D airplane to accurately track the negotiated trajectory and the workload required to support the PNP as implemented in this study.
University of Massachusetts Amherst | Water Resources Research Center
Center for Agriculture, Food and the Environment UMass Amherst College of Natural Sciences logo USDA NIFA logo United States Department of Agriculture National Institute of Food and Agriculture ©2018 is maintained by The Center for Agriculture, Food and the Environment in the College of Natural
DOT National Transportation Integrated Search
2015-12-01
This report covers the period between the initial establishment of the FAA Center of Excellence for Alternative Jet Fuels and Environment on September 13, 2013 through September 30, 2015. The Center was established by the authority of FAA solicitatio...
NASA Technical Reports Server (NTRS)
McGalliard, James
2008-01-01
A viewgraph describing the use of multiple frameworks by NASA, GSA, and U.S. Government agencies is presented. The contents include: 1) Federal Systems Integration and Management Center (FEDSIM) and NASA Center for Computational Sciences (NCCS) Environment; 2) Ruling Frameworks; 3) Implications; and 4) Reconciling Multiple Frameworks.
NASA Technical Reports Server (NTRS)
1998-01-01
This handbook establishes NASA program requirements for evaluation, testing, and selection of materials to preclude unsafe conditions related to flammability, odor, offgassing, and fluid compatibility. Materials intended for use in space vehicles, specified test facilities, and specified ground support equipment (GSE) must meet the requirements of this document. Additional materials performance requirements may be specified in other program or NASA center specific documentation. Responsible NASA centers materials organizations must include applicable requirements of this document in their materials control programs. Materials used in habitable areas of spacecraft, including the materials of the spacecraft, stowed equipment, and experiments, must be evaluated for flammability, odor, and offgassing characteristics. All materials used in other areas must be evaluated for flammability characteristics. In addition, materials that are exposed to liquid oxygen (LOX), gaseous oxygen (GOX), and other reactive fluids' must be evaluated for compatibility with the fluid in their use application. Materials exposed to pressurized breathing gases also must be evaluated for odor and offgassing characteristics. The worst-case anticipated use environment (most hazardous pressure, temperature, material thickness, and fluid exposure conditions) must be used in the evaluation process. Materials that have been shown to meet the criteria of the required tests are acceptable for further consideration in design. Whenever possible, materials should be selected that have already been shown to meet the test criteria in the use environment. Existing test data are compiled in the NASA Marshall Space Flight Center (MSFC) Materials and Processes Technical Information System (MAPTIS) and published periodically as the latest revision of a joint document with Johnson Space Center (JSC), MSFC-HDBK-527/JSC 09604. MAPTIS can be accessed by computer datalink. Systems containing materials that have not been tested or do not meet the criteria of the required tests must be verified to be acceptable in the use configuration by analysis or testing. This verification rationale must be documented and submitted to the responsible NASA center materials organization for approval.
Shi, Xiaofei; Chen, Rui; Huo, Lingling; Zhao, Lin; Bai, Ru; Long, Dingxin; Pui, David Y H; Rang, Weiqing; Chen, Chunying
2015-12-01
Indoor air quality has great impact on the human health. An increasing number of studies have shown that printers could release particulate matters and pose adverse effects on indoor air quality. In this study, a thorough investigation was designed to assess the aerosol printer particle total number concentration (TNC) and size distribution in normal office environment, one copy center, and a clean chamber. Particle analyzers, SMPS, OPS, and CPC3007 were used to monitor the total printing process. In normal office environment, 37 laser printers out of all surveyed 55 printers were classified as high particle emitters. Comparing to laser printers, 5 inkjet printers showed no particle emission. Particle emission level in a copy center increased slightly with TNC elevating to about 2 times of the aerosol background. Simulating test in a clean chamber indicated that printer-emitted particles were dominated by particles in nanoscale (diameter of particle, D(p) < 100 nm). These particles in a sealed clean chamber attenuated so slowly that it still held at high level with the concentration of 1.5 x 10(4) particles/cm3 after printing for 2.5 hours. Our present results demonstrate that printers indeed release particulates which keeping at a high concentration level in the indoor environment. Special care should be taken to this kind of widely applied machines and effective controls of particle emission at printing processes are necessary.
SpaceOps 2012 Plus 2: Social Tools to Simplify ISS Flight Control Communications and Log Keeping
NASA Technical Reports Server (NTRS)
Cowart, Hugh S.; Scott, David W.
2014-01-01
A paper written for the SpaceOps 2012 Conference (Simplify ISS Flight Control Communications and Log Keeping via Social Tools and Techniques) identified three innovative concepts for real time flight control communications tools based on social mechanisms: a) Console Log Tool (CoLT) - A log keeping application at Marshall Space Flight Center's (MSFC) Payload Operations Integration Center (POIC) that provides "anywhere" access, comment and notifications features similar to those found in Social Networking Systems (SNS), b) Cross-Log Communication via Social Techniques - A concept from Johnsson Space Center's (JSC) Mission Control Center Houston (MCC-H) that would use microblogging's @tag and #tag protocols to make information/requests visible and/or discoverable in logs owned by @Destination addressees, and c) Communications Dashboard (CommDash) - A MSFC concept for a Facebook-like interface to visually integrate and manage basic console log content, text chat streams analogous to voice loops, text chat streams dedicated to particular conversations, generic and position-specific status displays/streams, and a graphically based hailing display. CoLT was deployed operationally at nearly the same time as SpaceOps 2012, the Cross- Log Communications idea is currently waiting for a champion to carry it forward, and CommDash was approved as a NASA Iinformation Technoloby (IT) Labs project. This paper discusses lessons learned from two years of actual CoLT operations, updates CommDash prototype development status, and discusses potential for using Cross-Log Communications in both MCC-H and/or POIC environments, and considers other ways for synergizing console applcations.
Development of a HIPAA-compliant environment for translational research data and analytics.
Bradford, Wayne; Hurdle, John F; LaSalle, Bernie; Facelli, Julio C
2014-01-01
High-performance computing centers (HPC) traditionally have far less restrictive privacy management policies than those encountered in healthcare. We show how an HPC can be re-engineered to accommodate clinical data while retaining its utility in computationally intensive tasks such as data mining, machine learning, and statistics. We also discuss deploying protected virtual machines. A critical planning step was to engage the university's information security operations and the information security and privacy office. Access to the environment requires a double authentication mechanism. The first level of authentication requires access to the university's virtual private network and the second requires that the users be listed in the HPC network information service directory. The physical hardware resides in a data center with controlled room access. All employees of the HPC and its users take the university's local Health Insurance Portability and Accountability Act training series. In the first 3 years, researcher count has increased from 6 to 58.
ODISEES Data Portal Announcement
Atmospheric Science Data Center
2015-11-13
... larger image The Ontology-Driven Interactive Search Environment for Earth Science, developed at the Atmospheric Science Data Center ... The Ontology-Driven Interactive Search Environment for Earth Science, developed at the Atmospheric Science Data Center ...
Fernandes, Amanda Paula; Andrade, Amanda Cristina de Souza; Ramos, Cynthia Graciane Carvalho; Friche, Amélia Augusta de Lima; Dias, Maria Angélica de Salles; Xavier, César Coelho; Proietti, Fernando Augusto; Caiaffa, Waleska Teixeira
2015-11-01
This study analyzed leisure-time physical activity among 1,621 adults who were non-users of the Academias da Cidade Program in Belo Horizonte, Minas Gerais State, Brazil, but who lived in the vicinity of a fitness center in operation (exposed Group I) or in the vicinity of two sites reserved for future installation of centers (control Groups II and III). The dependent variable was leisure-time physical activity, and linear distance from the households to the fitness centers was the exposure variable, categorized in radial buffers: < 500m; 500-1,000m; and 1,000-1,500m. Binary logistic regression was performed with the Generalized Estimation Equations method. Residents living within < 500m of the fitness center gave better ratings to the physical environment when compared to those living in the 1,000 and 1,500m buffers and showed higher odds of leisure-time physical activity (OR = 1.16; 95%CI: 1.03-1.30), independently of socio-demographic factors; the same was not observed in the control groups (II and III). The findings suggests the program's potential for influencing physical activity in the population living closer to the fitness center and thus provide a strategic alternative for mitigating inequalities in leisure-time physical activity.
Keller, M David; Ziriax, John M; Barns, William; Sheffield, Benjamin; Brungart, Douglas; Thomas, Tony; Jaeger, Bobby; Yankaskas, Kurt
2017-06-01
Noise, hearing loss, and electronic signal distortion, which are common problems in military environments, can impair speech intelligibility and thereby jeopardize mission success. The current study investigated the impact that impaired communication has on operational performance in a command and control environment by parametrically degrading speech intelligibility in a simulated shipborne Combat Information Center. Experienced U.S. Navy personnel served as the study participants and were required to monitor information from multiple sources and respond appropriately to communications initiated by investigators playing the roles of other personnel involved in a realistic Naval scenario. In each block of the scenario, an adaptive intelligibility modification system employing automatic gain control was used to adjust the signal-to-noise ratio to achieve one of four speech intelligibility levels on a Modified Rhyme Test: No Loss, 80%, 60%, or 40%. Objective and subjective measures of operational performance suggested that performance systematically degraded with decreasing speech intelligibility, with the largest drop occurring between 80% and 60%. These results confirm the importance of noise reduction, good communication design, and effective hearing conservation programs to maximize the operational effectiveness of military personnel. Published by Elsevier B.V.
Deep Space Network (DSN), Network Operations Control Center (NOCC) computer-human interfaces
NASA Technical Reports Server (NTRS)
Ellman, Alvin; Carlton, Magdi
1993-01-01
The Network Operations Control Center (NOCC) of the DSN is responsible for scheduling the resources of DSN, and monitoring all multi-mission spacecraft tracking activities in real-time. Operations performs this job with computer systems at JPL connected to over 100 computers at Goldstone, Australia and Spain. The old computer system became obsolete, and the first version of the new system was installed in 1991. Significant improvements for the computer-human interfaces became the dominant theme for the replacement project. Major issues required innovating problem solving. Among these issues were: How to present several thousand data elements on displays without overloading the operator? What is the best graphical representation of DSN end-to-end data flow? How to operate the system without memorizing mnemonics of hundreds of operator directives? Which computing environment will meet the competing performance requirements? This paper presents the technical challenges, engineering solutions, and results of the NOCC computer-human interface design.
2011-05-27
CAPE CANAVERAL, Fla. -- Inside the "Lunarena" at the Kennedy Space Center Visitor Complex in Florida, university students maneuver their remote controlled or autonomous excavators, called lunabots, in a "sand box" of ultra-fine simulated lunar soil during NASA's second annual Lunabotics Mining Competition. Thirty-six teams of undergraduate and graduate students from the United States, Bangladesh, Canada, Colombia and India will participate in NASA's Lunabotics Mining Competition May 26 - 28 at the agency's Kennedy Space Center in Florida. The competition is designed to engage and retain students in science, technology, engineering and mathematics (STEM). Teams will maneuver their remote controlled or autonomous excavators, called lunabots, in about 60 tons of ultra-fine simulated lunar soil, called BP-1. The competition is an Exploration Systems Mission Directorate project managed by Kennedy's Education Division. The event also provides a competitive environment that could result in innovative ideas and solutions for NASA's future excavation of the moon. Photo credit: NASA/Jack Pfaller
2011-05-28
CAPE CANAVERAL, Fla. -- Inside the "Lunarena" at the Kennedy Space Center Visitor Complex in Florida, university students maneuver their remote controlled or autonomous excavators, called lunabots, in a "sand box" of ultra-fine simulated lunar soil during NASA's second annual Lunabotics Mining Competition. Thirty-six teams of undergraduate and graduate students from the United States, Bangladesh, Canada, Colombia and India will participate in NASA's Lunabotics Mining Competition May 26 - 28 at the agency's Kennedy Space Center in Florida. The competition is designed to engage and retain students in science, technology, engineering and mathematics (STEM). Teams will maneuver their remote controlled or autonomous excavators, called lunabots, in about 60 tons of ultra-fine simulated lunar soil, called BP-1. The competition is an Exploration Systems Mission Directorate project managed by Kennedy's Education Division. The event also provides a competitive environment that could result in innovative ideas and solutions for NASA's future excavation of the moon. Photo credit: NASA/Jack Pfaller
2011-05-28
CAPE CANAVERAL, Fla. -- Inside the "Lunarena" at the Kennedy Space Center Visitor Complex in Florida, university students give their "thumbs up" after maneuvering their remote controlled or autonomous excavators, called lunabots, in a "sand box" of ultra-fine simulated lunar soil during NASA's second annual Lunabotics Mining Competition. Thirty-six teams of undergraduate and graduate students from the United States, Bangladesh, Canada, Colombia and India will participate in NASA's Lunabotics Mining Competition May 26 - 28 at the agency's Kennedy Space Center in Florida. The competition is designed to engage and retain students in science, technology, engineering and mathematics (STEM). Teams will maneuver their remote controlled or autonomous excavators, called lunabots, in about 60 tons of ultra-fine simulated lunar soil, called BP-1. The competition is an Exploration Systems Mission Directorate project managed by Kennedy's Education Division. The event also provides a competitive environment that could result in innovative ideas and solutions for NASA's future excavation of the moon. Photo credit: NASA/Jack Pfaller
2011-05-27
CAPE CANAVERAL, Fla. -- University students monitor their team's remote controlled or autonomous excavator, called a lunabot, as it is maneuvered in a "sand box" of ultra-fine simulated lunar soil during NASA's second annual Lunabotics Mining Competition at the Kennedy Space Center Visitor Complex in Florida. Thirty-six teams of undergraduate and graduate students from the United States, Bangladesh, Canada, Colombia and India will participate in NASA's Lunabotics Mining Competition May 26 - 28 at the agency's Kennedy Space Center in Florida. The competition is designed to engage and retain students in science, technology, engineering and mathematics (STEM). Teams will maneuver their remote controlled or autonomous excavators, called lunabots, in about 60 tons of ultra-fine simulated lunar soil, called BP-1. The competition is an Exploration Systems Mission Directorate project managed by Kennedy's Education Division. The event also provides a competitive environment that could result in innovative ideas and solutions for NASA's future excavation of the moon. Photo credit: NASA/Jack Pfaller
2011-05-26
CAPE CANAVERAL, Fla. -- Inside the "Lunarena" at the Kennedy Space Center Visitor in Florida, university students maneuver their remote controlled or autonomous excavators, called lunabots, in a "sand box" of ultra-fine simulated lunar soil during NASA's second annual Lunabotics Mining Competition. Thirty-six teams of undergraduate and graduate students from the United States, Bangladesh, Canada, Colombia and India will participate in NASA's Lunabotics Mining Competition May 26 - 28 at the agency's Kennedy Space Center in Florida. The competition is designed to engage and retain students in science, technology, engineering and mathematics (STEM). Teams will maneuver their remote controlled or autonomous excavators, called lunabots, in about 60 tons of ultra-fine simulated lunar soil, called BP-1. The competition is an Exploration Systems Mission Directorate project managed by Kennedy's Education Division. The event also provides a competitive environment that could result in innovative ideas and solutions for NASA's future excavation of the moon. Photo credit: NASA/Jim Grossmann
2011-05-27
CAPE CANAVERAL, Fla. -- University students monitor their team's remote controlled or autonomous excavator, called a lunabot, as it is maneuvered in a "sand box" of ultra-fine simulated lunar soil during NASA's second annual Lunabotics Mining Competition at the Kennedy Space Center Visitor Complex in Florida. Thirty-six teams of undergraduate and graduate students from the United States, Bangladesh, Canada, Colombia and India will participate in NASA's Lunabotics Mining Competition May 26 - 28 at the agency's Kennedy Space Center in Florida. The competition is designed to engage and retain students in science, technology, engineering and mathematics (STEM). Teams will maneuver their remote controlled or autonomous excavators, called lunabots, in about 60 tons of ultra-fine simulated lunar soil, called BP-1. The competition is an Exploration Systems Mission Directorate project managed by Kennedy's Education Division. The event also provides a competitive environment that could result in innovative ideas and solutions for NASA's future excavation of the moon. Photo credit: NASA/Jack Pfaller
2011-05-28
CAPE CANAVERAL, Fla. -- University students monitor their team's remote controlled or autonomous excavator, called a lunabot, as it is maneuvered in a "sand box" of ultra-fine simulated lunar soil during NASA's second annual Lunabotics Mining Competition at the Kennedy Space Center Visitor Complex in Florida. Thirty-six teams of undergraduate and graduate students from the United States, Bangladesh, Canada, Colombia and India will participate in NASA's Lunabotics Mining Competition May 26 - 28 at the agency's Kennedy Space Center in Florida. The competition is designed to engage and retain students in science, technology, engineering and mathematics (STEM). Teams will maneuver their remote controlled or autonomous excavators, called lunabots, in about 60 tons of ultra-fine simulated lunar soil, called BP-1. The competition is an Exploration Systems Mission Directorate project managed by Kennedy's Education Division. The event also provides a competitive environment that could result in innovative ideas and solutions for NASA's future excavation of the moon. Photo credit: NASA/Jack Pfaller
2011-05-26
CAPE CANAVERAL, Fla. -- University students monitor their team's remote controlled or autonomous excavator, called a lunabot, as it is maneuvered in a "sand box" of ultra-fine simulated lunar soil during NASA's second annual Lunabotics Mining Competition at the Kennedy Space Center Visitor Complex in Florida. Thirty-six teams of undergraduate and graduate students from the United States, Bangladesh, Canada, Colombia and India will participate in NASA's Lunabotics Mining Competition May 26 - 28 at the agency's Kennedy Space Center in Florida. The competition is designed to engage and retain students in science, technology, engineering and mathematics (STEM). Teams will maneuver their remote controlled or autonomous excavators, called lunabots, in about 60 tons of ultra-fine simulated lunar soil, called BP-1. The competition is an Exploration Systems Mission Directorate project managed by Kennedy's Education Division. The event also provides a competitive environment that could result in innovative ideas and solutions for NASA's future excavation of the moon. Photo credit: NASA/Jim Grossmann
An Advanced Framework for Improving Situational Awareness in Electric Power Grid Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yousu; Huang, Zhenyu; Zhou, Ning
With the deployment of new smart grid technologies and the penetration of renewable energy in power systems, significant uncertainty and variability is being introduced into power grid operation. Traditionally, the Energy Management System (EMS) operates the power grid in a deterministic mode, and thus will not be sufficient for the future control center in a stochastic environment with faster dynamics. One of the main challenges is to improve situational awareness. This paper reviews the current status of power grid operation and presents a vision of improving wide-area situational awareness for a future control center. An advanced framework, consisting of parallelmore » state estimation, state prediction, parallel contingency selection, parallel contingency analysis, and advanced visual analytics, is proposed to provide capabilities needed for better decision support by utilizing high performance computing (HPC) techniques and advanced visual analytic techniques. Research results are presented to support the proposed vision and framework.« less
2014-08-15
CAPE CANAVERAL, Fla. – Former astronaut Greg Johnson, executive director of the Center for the Advancement of Science in Space, talks to Florida middle school students and their teachers before the start of the Zero Robotics finals competition at NASA Kennedy Space Center's Space Station Processing Facility in Florida. Students designed software to control Synchronized Position Hold Engage and Reorient Experimental Satellites, or SPHERES, and competed with other teams locally. The Zero Robotics is a robotics programming competition where the robots are SPHERES. The competition starts online, where teams program the SPHERES to solve an annual challenge. After several phases of virtual competition in a simulation environment that mimics the real SPHERES, finalists are selected to compete in a live championship aboard the space station. Students compete to win a technically challenging game by programming their strategies into the SPHERES satellites. The programs are autonomous and the students cannot control the satellites during the test. Photo credit: NASA/Daniel Casper
2014-08-15
CAPE CANAVERAL, Fla. – Former astronaut Greg Johnson, executive director of the Center for the Advancement of Science in Space, talks to Florida middle school students and their teachers before the start of the Zero Robotics finals competition at NASA Kennedy Space Center's Space Station Processing Facility in Florida. Students designed software to control Synchronized Position Hold Engage and Reorient Experimental Satellites, or SPHERES, and competed with other teams locally. The Zero Robotics is a robotics programming competition where the robots are SPHERES. The competition starts online, where teams program the SPHERES to solve an annual challenge. After several phases of virtual competition in a simulation environment that mimics the real SPHERES, finalists are selected to compete in a live championship aboard the space station. Students compete to win a technically challenging game by programming their strategies into the SPHERES satellites. The programs are autonomous and the students cannot control the satellites during the test. Photo credit: NASA/Daniel Casper
2014-08-15
CAPE CANAVERAL, Fla. – Former astronaut Greg Johnson, executive director of the Center for the Advancement of Science in Space, talks to Florida middle school students and their teachers before the start of the Zero Robotics finals competition at NASA Kennedy Space Center's Space Station Processing Facility in Florida. Students designed software to control Synchronized Position Hold Engage and Reorient Experimental Satellites, or SPHERES, and competed with other teams locally. The Zero Robotics is a robotics programming competition where the robots are SPHERES. The competition starts online, where teams program the SPHERES to solve an annual challenge. After several phases of virtual competition in a simulation environment that mimics the real SPHERES, finalists are selected to compete in a live championship aboard the space station. Students compete to win a technically challenging game by programming their strategies into the SPHERES satellites. The programs are autonomous and the students cannot control the satellites during the test. Photo credit: NASA/Daniel Casper
Alshammari, Sulaiman A.; Alamri, Yousif S.; Rabhan, Fatimah S.; Alabdullah, Aljoharah A.; Alsanie, Noura A.; Almarshad, Fatma A.; Alhaqbani, Amal N.
2018-01-01
There is high public health alert in the Kingdom of Saudi Arabia concerning Zika virus infection. So far, there is no reported outbreak. So are we at risk of this disease? Reviewing the literature of recent outbreaks of other infectious diseases in Saudi Arabia may clarify the situation. It is evident that there is some similarity between Zika and dengue regarding vector (Aedes aegypti) which is available in the Kingdom of Saudi Arabia. Furthermore, they have similar transmission process and the required environment for infection. It seems that the Kingdom has learned from previous outbreaks, so they are well prepared to face such challenges. The Saudi Ministry of Health built the command and control center to deal with the pandemic flues. Furthermore, they are trying to create a center for disease control, and they are recruiting local and international experts in monitoring the emerging infections. PMID:29623022
2011-05-27
CAPE CANAVERAL, Fla. -- Inside the "Lunarena" at the Kennedy Space Center Visitor Complex in Florida, university students maneuver their remote controlled or autonomous excavators, called lunabots, in a "sand box" of ultra-fine simulated lunar soil during NASA's second annual Lunabotics Mining Competition. Thirty-six teams of undergraduate and graduate students from the United States, Bangladesh, Canada, Colombia and India will participate in NASA's Lunabotics Mining Competition May 26 - 28 at the agency's Kennedy Space Center in Florida. The competition is designed to engage and retain students in science, technology, engineering and mathematics (STEM). Teams will maneuver their remote controlled or autonomous excavators, called lunabots, in about 60 tons of ultra-fine simulated lunar soil, called BP-1. The competition is an Exploration Systems Mission Directorate project managed by Kennedy's Education Division. The event also provides a competitive environment that could result in innovative ideas and solutions for NASA's future excavation of the moon. Photo credit: NASA/Jack Pfaller
2011-05-26
CAPE CANAVERAL, Fla. -- Inside the "Lunarena" at the Kennedy Space Center Visitor in Florida, university students maneuver their remote controlled or autonomous excavators, called lunabots, in a "sand box" of ultra-fine simulated lunar soil during NASA's second annual Lunabotics Mining Competition. Thirty-six teams of undergraduate and graduate students from the United States, Bangladesh, Canada, Colombia and India will participate in NASA's Lunabotics Mining Competition May 26 - 28 at the agency's Kennedy Space Center in Florida. The competition is designed to engage and retain students in science, technology, engineering and mathematics (STEM). Teams will maneuver their remote controlled or autonomous excavators, called lunabots, in about 60 tons of ultra-fine simulated lunar soil, called BP-1. The competition is an Exploration Systems Mission Directorate project managed by Kennedy's Education Division. The event also provides a competitive environment that could result in innovative ideas and solutions for NASA's future excavation of the moon. Photo credit: NASA/Jim Grossmann
Children's health and the environment: an overview.
Landrigan, Philip J; Miodovnik, Amir
2011-01-01
Environmental pediatrics, the branch of pediatric medicine that studies the influence of the environment on children's health, has in the past decade grown exponentially. Rising rates of pediatric chronic disease and growing recognition of children's extensive exposures and great vulnerabilities to toxic hazards in the environment have catalyzed this expansion. New scientific initiatives have resulted. They include 14 Centers for Children's Environmental Health and Disease Prevention Research supported by the US National Institutes of Health and the US Environmental Protection Agency; a global network of Pediatric Environmental Health Specialty Units supported by the US Centers for Disease Control and Prevention/Agency for Toxic Substances and Disease Registry; new postdoctoral training programs in pediatric environmental medicine; and the National Children's Study, the largest prospective epidemiological study of children's health ever undertaken in the United States, which launched in 2009 and will follow 100,000 children from conception to age 21 to assess environmental influences on health and development. These research initiatives have delineated the exquisite vulnerability of fetuses, infants, and children to toxic hazards in the environment. They have led to discovery of new environmental causes of disease and disability in children. This issue of The Mount Sinai Journal of Medicine focuses on children's health and the environment. We have brought together thought leaders in children's environmental health to critically examine new research findings, to explore new opportunities for translating research to treatment and prevention, and to offer a vision for the future of this rapidly expanding field. © 2011 Mount Sinai School of Medicine.
Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds
Horowitz, Viva R.; Alemán, Benjamín J.; Christle, David J.; Cleland, Andrew N.; Awschalom, David D.
2012-01-01
Using an optical tweezers apparatus, we demonstrate three-dimensional control of nanodiamonds in solution with simultaneous readout of ground-state electron-spin resonance (ESR) transitions in an ensemble of diamond nitrogen-vacancy color centers. Despite the motion and random orientation of nitrogen-vacancy centers suspended in the optical trap, we observe distinct peaks in the measured ESR spectra qualitatively similar to the same measurement in bulk. Accounting for the random dynamics, we model the ESR spectra observed in an externally applied magnetic field to enable dc magnetometry in solution. We estimate the dc magnetic field sensitivity based on variations in ESR line shapes to be approximately . This technique may provide a pathway for spin-based magnetic, electric, and thermal sensing in fluidic environments and biophysical systems inaccessible to existing scanning probe techniques. PMID:22869706
2011-05-28
CAPE CANAVERAL, Fla. -- At NASA Kennedy Space Center's Apollo/Saturn V Center, participants applaud the winning team of the competition during the NASA's second annual Lunabotics Mining Competition award ceremony. Thirty-six teams of undergraduate and graduate students from the United States, Bangladesh, Canada, Colombia and India participated in NASA's Lunabotics Mining Competition May 26 - 28 at the agency's Kennedy Space Center in Florida. The competition is designed to engage and retain students in science, technology, engineering and mathematics (STEM). Teams will maneuver their remote controlled or autonomous excavators, called lunabots, in about 60 tons of ultra-fine simulated lunar soil, called BP-1. The competition is an Exploration Systems Mission Directorate project managed by Kennedy's Education Division. The event also provides a competitive environment that could result in innovative ideas and solutions for NASA's future excavation of the moon. Photo credit: NASA/Jack Pfaller
2011-05-28
CAPE CANAVERAL, Fla. -- At NASA Kennedy Space Center's Apollo/Saturn V Center, university students take part in an award ceremony for NASA's second annual Lunabotics Mining Competition. Thirty-six teams of undergraduate and graduate students from the United States, Bangladesh, Canada, Colombia and India participated in NASA's Lunabotics Mining Competition May 26 - 28 at the agency's Kennedy Space Center in Florida. The competition is designed to engage and retain students in science, technology, engineering and mathematics (STEM). Teams will maneuver their remote controlled or autonomous excavators, called lunabots, in about 60 tons of ultra-fine simulated lunar soil, called BP-1. The competition is an Exploration Systems Mission Directorate project managed by Kennedy's Education Division. The event also provides a competitive environment that could result in innovative ideas and solutions for NASA's future excavation of the moon. Photo credit: NASA/Jack Pfaller
2011-05-28
CAPE CANAVERAL, Fla. -- At NASA Kennedy Space Center's Apollo/Saturn V Center, university students take part in an award ceremony for NASA's second annual Lunabotics Mining Competition. Thirty-six teams of undergraduate and graduate students from the United States, Bangladesh, Canada, Colombia and India participated in NASA's Lunabotics Mining Competition May 26 - 28 at the agency's Kennedy Space Center in Florida. The competition is designed to engage and retain students in science, technology, engineering and mathematics (STEM). Teams will maneuver their remote controlled or autonomous excavators, called lunabots, in about 60 tons of ultra-fine simulated lunar soil, called BP-1. The competition is an Exploration Systems Mission Directorate project managed by Kennedy's Education Division. The event also provides a competitive environment that could result in innovative ideas and solutions for NASA's future excavation of the moon. Photo credit: NASA/Jack Pfaller
ERIC Educational Resources Information Center
Coogle, Christan Grygas; Floyd, Kim; Hanline, Mary Frances; Kellner-Hiczewski, Jacquie
2013-01-01
The Centers for Disease Control and Prevention (CDC) has documented that 1 in every 88 children is identified with an autism spectrum disorder (ASD; CDC, 2012). Autism is now recognized in children at an earlier age because most researchers agree autism can be reliably identified by the time children reach 24 months (Cox et al., 1999; Stone et…
National Defense Center for Energy and Environment 2007 Annual Report
2007-01-01
Catcher does this and more. Using a unique, self - healing elastomeric top cover that keeps out moisture and minimizes oxygen content, the Bullet...claw to enable remote-controlled excavation of UXO. In this effort the NDCEE teamed with the Air Force Research Laboratory (AFRL) Robotic Research...Group, whose mission is to “develop and advance robotic technologies that will protect, support, and augment the warfighter in the accomplishment of
Assessing Sustainment Operations in a Decisive Action Training Environment
2017-05-01
The findings in this Research Product are not to be construed as an official Department of the Army position, unless so designated by other authorized...Combat Training Center (CTC) rotations. The research design allowed for comparison of a control and experimental group. The experimental group received...CP Operations performance. The pocket-sized guide was designed as a quick reference for the proper planning, execution, and follow up of CP
NASA Technical Reports Server (NTRS)
Duncan, K. M.; Harm, D. L.; Crosier, W. G.; Worthington, J. W.
1993-01-01
A unique training device is being developed at the Johnson Space Center Neurosciences Laboratory to help reduce or eliminate Space Motion Sickness (SMS) and spatial orientation disturbances that occur during spaceflight. The Device for Orientation and Motion Environments Preflight Adaptation Trainer (DOME PAT) uses virtual reality technology to simulate some sensory rearrangements experienced by astronauts in microgravity. By exposing a crew member to this novel environment preflight, it is expected that he/she will become partially adapted, and thereby suffer fewer symptoms inflight. The DOME PAT is a 3.7 m spherical dome, within which a 170 by 100 deg field of view computer-generated visual database is projected. The visual database currently in use depicts the interior of a Shuttle spacelab. The trainee uses a six degree-of-freedom, isometric force hand controller to navigate through the virtual environment. Alternatively, the trainee can be 'moved' about within the virtual environment by the instructor, or can look about within the environment by wearing a restraint that controls scene motion in response to head movements. The computer system is comprised of four personal computers that provide the real time control and user interface, and two Silicon Graphics computers that generate the graphical images. The image generator computers use custom algorithms to compensate for spherical image distortion, while maintaining a video update rate of 30 Hz. The DOME PAT is the first such system known to employ virtual reality technology to reduce the untoward effects of the sensory rearrangement associated with exposure to microgravity, and it does so in a very cost-effective manner.
2004-03-10
KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities, NASA’s MESSENGER spacecraft is secure after transfer to the work stand. There employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
2004-03-10
KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities, NASA’s MESSENGER spacecraft is lifted off the pallet for transfer to a work stand. There employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
2004-03-10
KENNEDY SPACE CENTER, FLA. - In the high bay clean room at the Astrotech Space Operations processing facilities near KSC, workers remove the protective cover from NASA’s MESSENGER spacecraft. Employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
2004-03-10
KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities, workers check the placement of NASA’s MESSENGER spacecraft on a work stand. There employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
2004-03-10
KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, workers move NASA’s MESSENGER spacecraft into a high bay clean room. Employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
2004-03-10
KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities, an overhead crane moves NASA’s MESSENGER spacecraft toward a work stand. There employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
2004-03-10
KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities, an overhead crane lowers NASA’s MESSENGER spacecraft onto a work stand. There employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
2004-03-10
KENNEDY SPACE CENTER, FLA. - In the high bay clean room at the Astrotech Space Operations processing facilities near KSC, NASA’s MESSENGER spacecraft is revealed. Employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
Shih, Fu-Yu; Wu, Yueh-Chun; Shih, Yi-Siang; Shih, Ming-Chiuan; Wu, Tsuei-Shin; Ho, Po-Hsun; Chen, Chun-Wei; Chen, Yang-Fang; Chiu, Ya-Ping; Wang, Wei-Hua
2017-03-21
Two-dimensional (2D) materials are composed of atomically thin crystals with an enormous surface-to-volume ratio, and their physical properties can be easily subjected to the change of the chemical environment. Encapsulation with other layered materials, such as hexagonal boron nitride, is a common practice; however, this approach often requires inextricable fabrication processes. Alternatively, it is intriguing to explore methods to control transport properties in the circumstance of no encapsulated layer. This is very challenging because of the ubiquitous presence of adsorbents, which can lead to charged-impurity scattering sites, charge traps, and recombination centers. Here, we show that the short-circuit photocurrent originated from the built-in electric field at the MoS 2 junction is surprisingly insensitive to the gaseous environment over the range from a vacuum of 1 × 10 -6 Torr to ambient condition. The environmental insensitivity of the short-circuit photocurrent is attributed to the characteristic of the diffusion current that is associated with the gradient of carrier density. Conversely, the photocurrent with bias exhibits typical persistent photoconductivity and greatly depends on the gaseous environment. The observation of environment-insensitive short-circuit photocurrent demonstrates an alternative method to design device structure for 2D-material-based optoelectronic applications.
A distributed computing model for telemetry data processing
NASA Astrophysics Data System (ADS)
Barry, Matthew R.; Scott, Kevin L.; Weismuller, Steven P.
1994-05-01
We present a new approach to distributing processed telemetry data among spacecraft flight controllers within the control centers at NASA's Johnson Space Center. This approach facilitates the development of application programs which integrate spacecraft-telemetered data and ground-based synthesized data, then distributes this information to flight controllers for analysis and decision-making. The new approach combines various distributed computing models into one hybrid distributed computing model. The model employs both client-server and peer-to-peer distributed computing models cooperating to provide users with information throughout a diverse operations environment. Specifically, it provides an attractive foundation upon which we are building critical real-time monitoring and control applications, while simultaneously lending itself to peripheral applications in playback operations, mission preparations, flight controller training, and program development and verification. We have realized the hybrid distributed computing model through an information sharing protocol. We shall describe the motivations that inspired us to create this protocol, along with a brief conceptual description of the distributed computing models it employs. We describe the protocol design in more detail, discussing many of the program design considerations and techniques we have adopted. Finally, we describe how this model is especially suitable for supporting the implementation of distributed expert system applications.
A distributed computing model for telemetry data processing
NASA Technical Reports Server (NTRS)
Barry, Matthew R.; Scott, Kevin L.; Weismuller, Steven P.
1994-01-01
We present a new approach to distributing processed telemetry data among spacecraft flight controllers within the control centers at NASA's Johnson Space Center. This approach facilitates the development of application programs which integrate spacecraft-telemetered data and ground-based synthesized data, then distributes this information to flight controllers for analysis and decision-making. The new approach combines various distributed computing models into one hybrid distributed computing model. The model employs both client-server and peer-to-peer distributed computing models cooperating to provide users with information throughout a diverse operations environment. Specifically, it provides an attractive foundation upon which we are building critical real-time monitoring and control applications, while simultaneously lending itself to peripheral applications in playback operations, mission preparations, flight controller training, and program development and verification. We have realized the hybrid distributed computing model through an information sharing protocol. We shall describe the motivations that inspired us to create this protocol, along with a brief conceptual description of the distributed computing models it employs. We describe the protocol design in more detail, discussing many of the program design considerations and techniques we have adopted. Finally, we describe how this model is especially suitable for supporting the implementation of distributed expert system applications.
Vista goes online: Decision-analytic systems for real-time decision-making in mission control
NASA Technical Reports Server (NTRS)
Barry, Matthew; Horvitz, Eric; Ruokangas, Corinne; Srinivas, Sampath
1994-01-01
The Vista project has centered on the use of decision-theoretic approaches for managing the display of critical information relevant to real-time operations decisions. The Vista-I project originally developed a prototype of these approaches for managing flight control displays in the Space Shuttle Mission Control Center (MCC). The follow-on Vista-II project integrated these approaches in a workstation program which currently is being certified for use in the MCC. To our knowledge, this will be the first application of automated decision-theoretic reasoning techniques for real-time spacecraft operations. We shall describe the development and capabilities of the Vista-II system, and provide an overview of the use of decision-theoretic reasoning techniques to the problems of managing the complexity of flight controller displays. We discuss the relevance of the Vista techniques within the MCC decision-making environment, focusing on the problems of detecting and diagnosing spacecraft electromechanical subsystems component failures with limited information, and the problem of determining what control actions should be taken in high-stakes, time-critical situations in response to a diagnosis performed under uncertainty. Finally, we shall outline our current research directions for follow-on projects.
AVESTAR Center for Operational Excellence of Electricity Generation Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zitney, Stephen
2012-08-29
To address industry challenges in attaining operational excellence for electricity generation plants, the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTARTM). This presentation will highlight the AVESTARTM Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission electricity generation plants. The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with full-scope operator training systems (OTSs) and 3D virtual immersive training systems (ITSs) into an integrated energy plant and control room environment. AVESTAR’s initial offeringmore » combines--for the first time--a “gasification with CO2 capture” process simulator with a “combined-cycle” power simulator together in a single OTS/ITS solution for an integrated gasification combined cycle (IGCC) power plant with carbon dioxide (CO2) capture. IGCC systems are an attractive technology option for power generation, especially when capturing and storing CO2 is necessary to satisfy emission targets. The AVESTAR training program offers a variety of courses that merge classroom learning, simulator-based OTS learning in a control-room operations environment, and immersive learning in the interactive 3D virtual plant environment or ITS. All of the courses introduce trainees to base-load plant operation, control, startups, and shutdowns. Advanced courses require participants to become familiar with coordinated control, fuel switching, power-demand load shedding, and load following, as well as to problem solve equipment and process malfunctions. Designed to ensure work force development, training is offered for control room and plant field operators, as well as engineers and managers. Such comprehensive simulator-based instruction allows for realistic training without compromising worker, equipment, and environmental safety. It also better prepares operators and engineers to manage the plant closer to economic constraints while minimizing or avoiding the impact of any potentially harmful, wasteful, or inefficient events. The AVESTAR Center is also used to augment graduate and undergraduate engineering education in the areas of process simulation, dynamics, control, and safety. Students and researchers gain hands-on simulator-based training experience and learn how the commercial-scale power plants respond dynamically to changes in manipulated inputs, such as coal feed flow rate and power demand. Students also analyze how the regulatory control system impacts power plant performance and stability. In addition, students practice start-up, shutdown, and malfunction scenarios. The 3D virtual ITSs are used for plant familiarization, walk-through, equipment animations, and safety scenarios. To further leverage the AVESTAR facilities and simulators, NETL and its university partners are pursuing an innovative and collaborative R&D program. In the area of process control, AVESTAR researchers are developing enhanced strategies for regulatory control and coordinated plant-wide control, including gasifier and gas turbine lead, as well as advanced process control using model predictive control (MPC) techniques. Other AVESTAR R&D focus areas include high-fidelity equipment modeling using partial differential equations, dynamic reduced order modeling, optimal sensor placement, 3D virtual plant simulation, and modern grid. NETL and its partners plan to continue building the AVESTAR portfolio of dynamic simulators, immersive training systems, and advanced research capabilities to satisfy industry’s growing need for training and experience with the operation and control of clean energy plants. Future dynamic simulators under development include natural gas combined cycle (NGCC) and supercritical pulverized coal (SCPC) plants with post-combustion CO2 capture. These dynamic simulators are targeted for use in establishing a Virtual Carbon Capture Center (VCCC), similar in concept to the DOE’s National Carbon Capture Center for slipstream testing. The VCCC will enable developers of CO2 capture technologies to integrate, test, and optimize the operation of their dynamic capture models within the context of baseline power plant dynamic models. The objective is to provide hands-on, simulator-based “learn-by-operating” test platforms to accelerate the scale-up and deployment of CO2 capture technologies. Future AVESTAR plans also include pursuing R&D on the dynamics, operation, and control of integrated electricity generation and storage systems for the modern grid era. Special emphasis will be given to combining load-following energy plants with renewable and distributed generating supplies and fast-ramping energy storage systems to provide near constant baseload power.« less
UAV formation control design with obstacle avoidance in dynamic three-dimensional environment.
Chang, Kai; Xia, Yuanqing; Huang, Kaoli
2016-01-01
This paper considers the artificial potential field method combined with rotational vectors for a general problem of multi-unmanned aerial vehicle (UAV) systems tracking a moving target in dynamic three-dimensional environment. An attractive potential field is generated between the leader and the target. It drives the leader to track the target based on the relative position of them. The other UAVs in the formation are controlled to follow the leader by the attractive control force. The repulsive force affects among the UAVs to avoid collisions and distribute the UAVs evenly on the spherical surface whose center is the leader-UAV. Specific orders or positions of the UAVs are not required. The trajectories of avoidance obstacle can be obtained through two kinds of potential field with rotation vectors. Every UAV can choose the optimal trajectory to avoid the obstacle and reconfigure the formation after passing the obstacle. Simulations study on UAV are presented to demonstrate the effectiveness of proposed method.
Patient Perceptions of the Environment of Care in Which Their Healthcare is Delivered.
LaVela, Sherri L; Etingen, Bella; Hill, Jennifer N; Miskevics, Scott
2016-04-01
To measure patients' perceptions of the environment of care (EOC), with a focus on the physical environment, in which healthcare is delivered. The EOC may impact patient experiences, care perceptions, and health outcomes. EOC may be improved through redesign of existing physical structures or spaces or by adding nurturing amenities. Demographics, health status, hospital use, and data on the environment (physical, comfort, orientation, and privacy) were collected via a mailed cross-sectional survey sent to patients seen at four hospital Centers of Innovation (COIs; that implemented many modifications to the healthcare environment to address physical, comfort, orientation, and privacy factors) and four matched controls, supplemented with checklist and VA administrative data. A modified Perceived Hospital Environment Quality Indicators instrument was used to measure patients' EOC perceptions. Respondents (3,321/5,117; 65% response) rated, [mean (SD)], exterior space highest, 3.09 (0.73), followed by interior space, 2.96 (0.74), and privacy, 2.44 (1.01). COIs had significantly higher ratings than controls on interior space (2.99 vs. 2.96, p = .02) and privacy (2.48 vs. 2.38, p = .005) but no differences for exterior space. Subscales with significantly higher ratings in COIs (vs. controls) in interior space were "spatial-physical comfort" and "orientation," for example, clean, good signage, spacious rooms, and for privacy included "not too crowded" and "able to talk without being overheard." Checklist findings confirmed the presence of EOC innovations rated highly by patients. Patients identified cleanliness, good signs/information points, adequate seating, nonovercrowding, and privacy for conversations as important. Hospital design modifications, with particular attention to the physical environment, can improve patient EOC perceptions. © The Author(s) 2015.
Academic health centers: their future in a changing economic environment.
Nash, D B
1985-10-01
In order to survive, academic health centers will have to learn new ways of coping with the changing health environment. Explored here are the trends affecting academic health centers and speculation on how to meet the challenges presented. The author outlines a new dimension to the classical tripod of teaching, research, and patient care.
Quantum control and engineering of single spins in diamond
NASA Astrophysics Data System (ADS)
Toyli, David M.
The past two decades have seen intensive research efforts aimed at creating quantum technologies that leverage phenomena such as coherence and entanglement to achieve device functionalities surpassing those attainable with classical physics. While the range of applications for quantum devices is typically limited by their cryogenic operating temperatures, in recent years point defects in semiconductors have emerged as potential candidates for room temperature quantum technologies. In particular, the nitrogen vacancy (NV) center in diamond has gained prominence for the ability to measure and control its spin under ambient conditions and for its potential applications in magnetic sensing. Here we describe experiments that probe the thermal limits to the measurement and control of single NV centers to identify the origin of the system's unique temperature dependence and that define novel thermal sensing applications for single spins. We demonstrate the optical measurement and coherent control of the spin at temperatures exceeding 600 K and show that its addressability is eventually limited by thermal quenching of the optical spin readout. These measurements provide important information for the electronic structure responsible for the optical spin initialization and readout processes and, moreover, suggest that the coherence of the NV center's spin states could be harnessed for thermometry applications. To that end, we develop novel quantum control techniques that selectively probe thermally induced shifts in the spin resonance frequencies while minimizing the defect's interactions with nearby nuclear spins. We use these techniques to extend the NV center's spin coherence for thermometry by 45-fold to achieve thermal sensitivities approaching 10 mK Hz-1/2 . We show the versatility of these techniques by performing measurements in a range of magnetic environments and at temperatures as high as 500 K. Together with diamond's ideal thermal, mechanical, and chemical properties, these measurements suggest that NV center sensors could be employed in a diverse range of applications such as intracellular thermometry, microfuidic thermometry, and scanning thermal microscopy. Finally, while the development of NV center technologies is motivated by the desirable properties of isolated defects in bulk diamond, the realization of many of these technologies, such as those using the spin as a proximal sensor, require a means to control the placement of NV centers within the diamond lattice. We demonstrate a method to pattern defect formation on sub-100-nm length scales using ion implantation and electron beam lithography techniques. The ability to engineer large scale arrays of NV centers with this method holds promise for a variety of applications in quantum information science and nanoscale sensing.
The Software Element of the NASA Portable Electronic Device Radiated Emissions Investigation
NASA Technical Reports Server (NTRS)
Koppen, Sandra V.; Williams, Reuben A. (Technical Monitor)
2002-01-01
NASA Langley Research Center's (LaRC) High Intensity Radiated Fields Laboratory (HIRF Lab) recently conducted a series of electromagnetic radiated emissions tests under a cooperative agreement with Delta Airlines and an interagency agreement with the FAA. The frequency spectrum environment at a commercial airport was measured on location. The environment survey provides a comprehensive picture of the complex nature of the electromagnetic environment present in those areas outside the aircraft. In addition, radiated emissions tests were conducted on portable electronic devices (PEDs) that may be brought onboard aircraft. These tests were performed in both semi-anechoic and reverberation chambers located in the HIRF Lab. The PEDs included cell phones, laptop computers, electronic toys, and family radio systems. The data generated during the tests are intended to support the research on the effect of radiated emissions from wireless devices on aircraft systems. Both tests systems relied on customized control and data reduction software to provide test and instrument control, data acquisition, a user interface, real time data reduction, and data analysis. The software executed on PC's running MS Windows 98 and 2000, and used Agilent Pro Visual Engineering Environment (VEE) development software, Common Object Model (COM) technology, and MS Excel.
NASA Technical Reports Server (NTRS)
Fernandez, J. P.; Mills, D.
1991-01-01
A Vibroacoustic Payload Environment Prediction System (VAPEPS) Management Center was established at the JPL. The center utilizes the VAPEPS software package to manage a data base of Space Shuttle and expendable launch vehicle payload flight and ground test data. Remote terminal access over telephone lines to the computer system, where the program resides, was established to provide the payload community a convenient means of querying the global VAPEPS data base. This guide describes the functions of the VAPEPS Management Center and contains instructions for utilizing the resources of the center.
A Triboelectric Sensor Array for Electrostatic Studies on the Lunar Surface
NASA Technical Reports Server (NTRS)
Johansen, Michael R.; Mackey, Paul J.; Calle, C. I.
2015-01-01
The moons electrostatic environment requires careful consideration in the development of future lunar landers. Electrostatically charged dust was well documented during the Apollo missions to cause thermal control, mechanical, and visibility issues. The fine dust particles that make up the surface are electrostatically charged as a result of numerous charging mechanisms. The relatively dry conditions on the moon creates a prime tribocharging environment during surface operations. The photoelectric effect is dominant for lunar day static charging, while plasma electrons are the main contributor for lunar night electrostatic effects. Electrostatic charging is also dependent on solar intensity, Earth-moon relative positions, and cosmic ray flux. This leads to a very complex and dynamic electrostatic environment that must be studied for the success of long term lunar missions.In order to better understand the electrostatic environment of planetary bodies, Kennedy Space Center, in previous collaboration with the Jet Propulsion Laboratory, has developed an electrostatic sensor suite. One of the instruments included in this package is the triboelectric sensor array. It is comprised of strategically selected materials that span the triboelectric series and that also have previous spaceflight history. In this presentation, we discuss detailed testing with the triboelectric sensor array performed at Kennedy Space Center. We will discuss potential benefits and use cases of this low mass, low cost sensor package, both for science and for mission success.
Johnson Space Center's Regenerative Life Support Systems Test Bed
NASA Technical Reports Server (NTRS)
Barta, D. J.; Henninger, D. L.
1996-01-01
The Regenerative Life Support Systems (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for human testing of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. The facility supports NASA's Advanced Life Support (ALS) Program. The facility is comprised of two large scale plant growth chambers, each with approximately 11 m2 growing area. The root zone in each chamber is configurable for hydroponic or solid media plant culture systems. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), is capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in a planetary surface habitat; the other chamber, the Ambient Pressure Growth Chamber (APGC) operates at ambient atmospheric pressure. The air lock of the VPGC is currently being outfitted for short duration (1 to 15 day) human habitation at ambient pressures. Testing with and without human subjects will focus on 1) integration of biological and physicochemical air and water revitalization systems; 2) effect of atmospheric pressure on system performance; 3) planetary resource utilization for ALS systems, in which solid substrates (simulated planetary soils or manufactured soils) are used in selected crop growth studies; 4) environmental microbiology and toxicology; 5) monitoring and control strategies; and 6) plant growth systems design. Included are descriptions of the overall design of the test facility, including discussions of the atmospheric conditioning, thermal control, lighting, and nutrient delivery systems.
Johnson Space Center's Regenerative Life Support Systems Test Bed
NASA Astrophysics Data System (ADS)
Barta, D. J.; Henninger, D. L.
1996-01-01
The Regenerative Life Support Systems (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for human testing of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. The facility supports NASA's Advanced Life Support (ALS) Program. The facility is comprised of two large scale plant growth chambers, each with approximately 11 m^2 growing area. The root zone in each chamber is configurable for hydroponic or solid media plant culture systems. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), is capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in a planetary surface habitat; the other chamber, the Ambient Pressure Growth Chamber (APGC) operates at ambient atmospheric pressure. The air lock of the VPGC is currently being outfitted for short duration (1 to 15 day) human habitation at ambient pressures. Testing with and without human subjects will focus on 1) integration of biological and physicochemical air and water revitalization systems; 2) effect of atmospheric pressure on system performance; 3) planetary resource utilization for ALS systems, in which solid substrates (simulated planetary soils or manufactured soils) are used in selected crop growth studies; 4) environmental microbiology and toxicology; 5) monitoring and control strategies; and 6) plant growth systems design. Included are descriptions of the overall design of the test facility, including discussions of the atmospheric conditioning, thermal control, lighting, and nutrient delivery systems.
Rippin, Allyn S; Zimring, Craig; Samuels, Owen; Denham, Megan E
2015-01-01
This comparative study of two adult neuro critical care units examined the impact of patient- and family-centered design on nurse-family interactions in a unit designed to increase family involvement. A growing evidence base suggests that the built environment can facilitate the delivery of patient- and family-centered care (PFCC). However, few studies examine how the PFCC model impacts the delivery of care, specifically the role of design in nurse-family interactions in the adult intensive care unit (ICU) from the perspective of the bedside nurse. Two neuro ICUs with the same patient population and staff, but with different layouts, were compared. Structured observations were conducted to assess changes in the frequency, location, and content of interactions between the two units. Discussions with staff provided additional insights into nurse attitudes, perceptions, and experiences caring for families. Nurses reported challenges balancing the needs of many stakeholders in a complex clinical environment, regardless of unit layout. However, differences in communication patterns between the clinician- and family-centered units were observed. More interactions were observed in nurse workstations in the PFCC unit, with most initiated by family. While the new unit was seen as more conducive to the delivery of PFCC, some nurses reported a loss of workspace control. Patient- and family-centered design created new spatial and temporal opportunities for nurse-family interactions in the adult ICU, thus supporting PFCC goals. However, greater exposure to unplanned family encounters may increase nurse stress without adequate spatial and organizational support. © The Author(s) 2015.
Intelligent control of a planning system for astronaut training.
Ortiz, J; Chen, G
1999-07-01
This work intends to design, analyze and solve, from the systems control perspective, a complex, dynamic, and multiconstrained planning system for generating training plans for crew members of the NASA-led International Space Station. Various intelligent planning systems have been developed within the framework of artificial intelligence. These planning systems generally lack a rigorous mathematical formalism to allow a reliable and flexible methodology for their design, modeling, and performance analysis in a dynamical, time-critical, and multiconstrained environment. Formulating the planning problem in the domain of discrete-event systems under a unified framework such that it can be modeled, designed, and analyzed as a control system will provide a self-contained theory for such planning systems. This will also provide a means to certify various planning systems for operations in the dynamical and complex environments in space. The work presented here completes the design, development, and analysis of an intricate, large-scale, and representative mathematical formulation for intelligent control of a real planning system for Space Station crew training. This planning system has been tested and used at NASA-Johnson Space Center.
Lightweight UDP Pervasive Protocol in Smart Home Environment Based on Labview
NASA Astrophysics Data System (ADS)
Kurniawan, Wijaya; Hannats Hanafi Ichsan, Mochammad; Rizqika Akbar, Sabriansyah; Arwani, Issa
2017-04-01
TCP (Transmission Control Protocol) technology in a reliable environment was not a problem, but not in an environment where the entire Smart Home network connected locally. Currently employing pervasive protocols using TCP technology, when data transmission is sent, it would be slower because they have to perform handshaking process in advance and could not broadcast the data. On smart home environment, it does not need large size and complex data transmission between monitoring site and monitoring center required in Smart home strain monitoring system. UDP (User Datagram Protocol) technology is quick and simple on data transmission process. UDP can broadcast messages because the UDP did not require handshaking and with more efficient memory usage. LabVIEW is a programming language software for processing and visualization of data in the field of data acquisition. This paper proposes to examine Pervasive UDP protocol implementations in smart home environment based on LabVIEW. UDP coded in LabVIEW and experiments were performed on a PC and can work properly.
James Webb Space Telescope Out of Chamber “A” on This Week @NASA – December 1, 2017
2017-12-01
Our James Webb Space Telescope is now out of the historic Chamber A vacuum facility at our Johnson Space Center in Houston, after completing cryogenic testing designed to ensure the telescope works well in the cold, airless environment of space. Set to launch in 2019, Webb will study every phase in the history of our Universe, starting with the first luminous glows following the Big Bang. Also, NASA’s Next Mars Rover Mission, New Space Station Crew Trains for Launch, Update for Next SpaceX Launch to Space Station, Giant Black Hole Pair Photobombs Andromeda Galaxy, and Historic Apollo Mission Control Center Will Be Restored!
Kashlev Named First Deputy Chief, GRCBL | Poster
By Nancy Parrish, Staff Writer Editor’s note: The text for this article was adapted from an e-mail announcement to the Center for Cancer Research community from Robert Wiltrout, Ph.D., on September 8, 2014. Robert Wiltrout, Ph.D., director, NCI Center for Cancer Research (CCR), recently announced the appointment of Mikhail Kashlev, Ph.D., to deputy chief of the Gene Regulation and Chromosome Biology Laboratory (GRCBL). The first deputy chief to be named in the GRCBL, Kashlev joins Jeff Strathern, Ph.D., GRCBL chief, in leading the laboratory in an active research environment that focuses on chromosome dynamics (recombination, chromosome segregation, and transposable elements) and regulation (transcription, silencing, and cell cycle control).
Strain engineering of the silicon-vacancy center in diamond
NASA Astrophysics Data System (ADS)
Meesala, Srujan; Sohn, Young-Ik; Pingault, Benjamin; Shao, Linbo; Atikian, Haig A.; Holzgrafe, Jeffrey; Gündoǧan, Mustafa; Stavrakas, Camille; Sipahigil, Alp; Chia, Cleaven; Evans, Ruffin; Burek, Michael J.; Zhang, Mian; Wu, Lue; Pacheco, Jose L.; Abraham, John; Bielejec, Edward; Lukin, Mikhail D.; Atatüre, Mete; Lončar, Marko
2018-05-01
We control the electronic structure of the silicon-vacancy (SiV) color-center in diamond by changing its static strain environment with a nano-electro-mechanical system. This allows deterministic and local tuning of SiV optical and spin transition frequencies over a wide range, an essential step towards multiqubit networks. In the process, we infer the strain Hamiltonian of the SiV revealing large strain susceptibilities of order 1 PHz/strain for the electronic orbital states. We identify regimes where the spin-orbit interaction results in a large strain susceptibility of order 100 THz/strain for spin transitions, and propose an experiment where the SiV spin is strongly coupled to a nanomechanical resonator.
NASA Astrophysics Data System (ADS)
Johnson, K.; Kim, R.; Echeverry, J.
The Joint Space Operations Center (JSpOC) is a command and control center focused on executing the Space Control mission of the Joint Functional Component Command for Space (JFCC-SPACE) to ensure freedom of action of United States (US) space assets, while preventing adversary use of space against the US. To accomplish this, the JSpOC tasks a network of space surveillance sensors to collect Space Situational Awareness (SSA) data on resident space objects (RSOs) in near earth and deep space orbits. SSA involves the ingestion of data sources and use of algorithms and tools to build, maintain, and disseminate situational awareness of RSOs in space. On the heels of emergent and complex threats to space assets, the JSpOC's capabilities are limited by legacy systems and CONOPs. The JSpOC Mission System (JMS) aims to consolidate SSA efforts across US agencies, international partners, and commercial partners. The JMS program is intended to deliver a modern service-oriented architecture (SOA) based infrastructure with increased process automation and improved tools to remove the current barriers to JSpOC operations. JMS has been partitioned into several developmental increments. Increment 1, completed and operational in early 2013, and Increment 2, which is expected to be completed in 2016, will replace the legacy Space Defense Operations Center (SPADOC) and Astrodynamics Support Workstation (ASW) capabilities. In 2017 JMS Increment 3 will continue to provide additional SSA and C2 capabilities that will require development of new applications and procedures as well as the exploitation of new data sources. Most importantly, Increment 3 is uniquely postured to evolve the JSpOC into the centralized and authoritative source for all Space Control applications by using its SOA to aggregate information and capabilities from across the community. To achieve this goal, Scitor Corporation has supported the JMS Program Office as it has entered into a partnership with AFRL/RD (Directed Energy) and AFRL/RV (Space Vehicles) to create the Advanced Research, Collaboration, and Application Development Environment (ARCADE). The ARCADE formalizes capability development processes that hitherto have been ad hoc, slow to address the evolving space threat environment, and not easily repeatable. Therefore, the purpose of the ARCADE is to: (1) serve as a centralized testbed for all research and development (R&D) activities related to JMS applications, including algorithm development, data source exposure, service orchestration, and software services, and provide developers reciprocal access to relevant tools and data to accelerate technology development, (2) allow the JMS program to communicate user capability priorities and requirements to developers, (3) facilitate collaboration among developers who otherwise would not collaborate due to organizational, policy, or geographical barriers, and (4) support market research efforts by identifying outstanding performers that are available to shepherd into the formal transition process. Over the last several years Scitor Corporation has provided systems engineering support to the JMS Increment 3 Program Office, and has worked with AFRL/RV and AFRL/RD to create a high performance computing environment and SOA at both unclassified and classified levels that together allow developers to develop applications in an environment similar to the version of JMS currently in use by the JSpOC operators. Currently the ARCADE is operational in an unclassified environment via the High Performance Computing Modernization Program (HPCMP) Portal on DREN. The ARCADE also exists on SECRET and TOP SECRET environments on multiple networks. This presentation will cover the following topics: (1) Scitors role in shaping the ARCADE into its current form, (2) ARCADEs value proposition for potential technology developers, and (3) ARCADEs value proposition for the Government. These topics will be discussed by way of several case studies: a JMS Prototype activity, integration of the Search and Determine Integrated Environment (SADIE) system into the ARCADE, and developer challenge opportunities using the ARCADE. The contents of this presentation will be UNCLASSIFIED.
On the Planning and Design of Hospital Circulation Zones.
Jiang, Shan; Verderber, Stephen
2017-01-01
This present literature review explores current issues and research inconsistencies regarding the design of hospital circulation zones and the associated health-related outcomes. Large general hospitals are immense, highly sophisticated institutions. Empirical studies have indicated excessively institutional environments in large medical centers are a cause of negative effects to occupants, including stress, anxiety, wayfinding difficulties and spatial disorientation, lack of cognitional control, and stress associated with inadequate access to nature. The rise of patient-centered and evidence-based movements in healthcare planning and design has resulted in a general rise in the quality of hospital physical environments. However, as a core component of any healthcare delivery system, hospital circulation zones have tended to remain neglected within the comparatively broad palette of research conducted and reported to date. A systematic literature review was conducted based upon combinations of key words developed vis-à-vis a literature search in 11 major databases in the realm of the health sciences and the planning and design of built environments for healthcare. Eleven peer-reviewed articles were included in the analysis. Six research themes were identified according to associated health-related outcomes, including wayfinding difficulties and spatial disorientation, communication and socialization patterns, measures and control of excessive noise, patient fall incidents, and occupants' stress and satisfaction levels. Several knowledge gaps as well as commonalities in the pertinent research literature were identified. Perhaps the overriding finding is that occupants' meaningful exposure to views of nature from within hospital circulation zones can potentially enhance wayfinding and spatial navigation. Future research priories on this subject are discussed.
Adaptive Control for Microgravity Vibration Isolation System
NASA Technical Reports Server (NTRS)
Yang, Bong-Jun; Calise, Anthony J.; Craig, James I.; Whorton, Mark S.
2005-01-01
Most active vibration isolation systems that try to a provide quiescent acceleration environment for space science experiments have utilized linear design methods. In this paper, we address adaptive control augmentation of an existing classical controller that employs a high-gain acceleration feedback together with a low-gain position feedback to center the isolated platform. The control design feature includes parametric and dynamic uncertainties because the hardware of the isolation system is built as a payload-level isolator, and the acceleration Sensor exhibits a significant bias. A neural network is incorporated to adaptively compensate for the system uncertainties, and a high-pass filter is introduced to mitigate the effect of the measurement bias. Simulations show that the adaptive control improves the performance of the existing acceleration controller and keep the level of the isolated platform deviation to that of the existing control system.
Equations of Motion for the g-LIMIT Microgravity Vibration Isolation System
NASA Technical Reports Server (NTRS)
Kim, Y. K.; Whorton, M. S.
2001-01-01
A desirable microgravity environment for experimental science payloads may require an active vibration isolation control system. A vibration isolation system named g-LIMIT (GLovebox Integrated Microgravity Isolation Technology) is being developed by NASA Marshall Space Flight Center to support microgravity science experiments using the microgravity science glovebox. In this technical memorandum, the full six-degree-of-freedom nonlinear equations of motion for g-LIMIT are derived. Although the motivation for this model development is control design and analysis of g-LIMIT, the equations are derived for a general configuration and may be used for other isolation systems as well.
Incubator Display Software Cost Reduction Toolset Software Requirements Specification
NASA Technical Reports Server (NTRS)
Moran, Susanne; Jeffords, Ralph
2005-01-01
The Incubator Display Software Requirements Specification was initially developed by Intrinsyx Technologies Corporation (Intrinsyx) under subcontract to Lockheed Martin, Contract Number NAS2-02090, for the National Aeronautics and Space Administration (NASA) Ames Research Center (ARC) Space Station Biological Research Project (SSBRP). The Incubator Display is a User Payload Application (UPA) used to control an Incubator subrack payload for the SSBRP. The Incubator Display functions on-orbit as part of the subrack payload laptop, on the ground as part of the Communication and Data System (CDS) ground control system, and also as part of the crew training environment.
Environmental Control Subsystem Development
NASA Technical Reports Server (NTRS)
Laidlaw, Jacob; Zelik, Jonathan
2017-01-01
Kennedy Space Center's Launch Pad 39B, part of Launch Complex 39, is currently undergoing construction to prepare it for NASA's Space Launch System missions. The Environmental Control Subsystem, which provides the vehicle with an air or nitrogen gas environment, required development of its local and remote display screens. The remote displays, developed by NASA contractors and previous interns, were developed without complete functionality; the remote displays were revised, adding functionality to over 90 displays. For the local displays, multiple test procedures were developed to assess the functionality of the screens, as well as verify requirements. One local display screen was also developed.
Sakaguchi, Keiko; Takemi, Yukari
2017-01-01
Objectives Creating a healthy food environment is crucial for healthful longevity in Japan. This study aimed to provide an overview of the status and challenges related to creating that environment through prefectural public health centers.Methods Public health dieticians working at 489 prefectural public health centers in March 2015 individually completed an anonymous self-administered questionnaire. Berelson's content analysis was utilized for response analysis.Results Data from 359 (response rate: 74.3%) prefectural public health centers, involving 599 public health dieticians, were included in the analysis. More than 80% of the prefectural public health centers implemented a registration system for dining facilities such as restaurants. Furthermore, greater than 80% of the public health dietitians thought that creating a healthy food environment was an important aspect of their work mission. On the other hand, more than 50% of these dieticians expressed dissatisfaction in their role. In terms of evaluation, the public health centers only monitored the number of registered facilities, with few other evaluations conducted. Approximately 80% of the participants requested national guidelines and/or some legal support from the Ministry of Health, Labor, and Welfare and/or the prefectural administration.Conclusion This study demonstrated that there are challenges related to creating a healthy food environment through prefectural health centers. Improving the evaluation methods and government/administrative provision of national guidelines and/or legal supports were identified as courses of action.
NASA Technical Reports Server (NTRS)
Hindson, W. S.; Hardy, G.
1980-01-01
Several different flight research programs carried out by NASA and the Canadian Government using the Augmentor Wing Jet STOL Research Aircraft to investigate the design, operational, and systems requirements for powered-lift STOL aircraft are summarized. Some of these programs considered handling qualities and certification criteria for this class of aircraft, and addressed pilot control techniques, control system design, and improved cockpit displays for the powered-lift STOL approach configuration. Other programs involved exploiting the potential of STOL aircraft for constrained terminal-area approaches within the context of present or future air traffic control environments. Both manual and automatic flight control investigations are discussed, and an extensive bibliography of the flight programs is included.
Predictive Thermal Control Applied to HabEx
NASA Technical Reports Server (NTRS)
Brooks, Thomas E.
2017-01-01
Exoplanet science can be accomplished with a telescope that has an internal coronagraph or with an external starshade. An internal coronagraph architecture requires extreme wavefront stability (10 pm change/10 minutes for 10(exp -10) contrast), so every source of wavefront error (WFE) must be controlled. Analysis has been done to estimate the thermal stability required to meet the wavefront stability requirement. This paper illustrates the potential of a new thermal control method called predictive thermal control (PTC) to achieve the required thermal stability. A simple development test using PTC indicates that PTC may meet the thermal stability requirements. Further testing of the PTC method in flight-like environments will be conducted in the X-ray and Cryogenic Facility (XRCF) at Marshall Space Flight Center (MSFC).
Predictive thermal control applied to HabEx
NASA Astrophysics Data System (ADS)
Brooks, Thomas E.
2017-09-01
Exoplanet science can be accomplished with a telescope that has an internal coronagraph or with an external starshade. An internal coronagraph architecture requires extreme wavefront stability (10 pm change/10 minutes for 10-10 contrast), so every source of wavefront error (WFE) must be controlled. Analysis has been done to estimate the thermal stability required to meet the wavefront stability requirement. This paper illustrates the potential of a new thermal control method called predictive thermal control (PTC) to achieve the required thermal stability. A simple development test using PTC indicates that PTC may meet the thermal stability requirements. Further testing of the PTC method in flight-like environments will be conducted in the X-ray and Cryogenic Facility (XRCF) at Marshall Space Flight Center (MSFC).
Improving UXO Detection and Discrimination in Magnetic Environments
2010-05-01
Krahenbuhl, Todd Meglich Center for Gravity, Electrical , & Magnetic Studies Department of Geophysics Colorado School of Mines Doug Oldenburg, Len...NAME(S) AND ADDRESS(ES) Colorado School of Mines,Department of Geophysics,Center for Gravity, Electrical , & Magnetic Studies,Golden,CO,80401 8...SERDP Project MM-1414 Improving UXO Detection and Discrimination in Magnetic Environments Final Report Center for Gravity, Electrical , & Magnetic Studies
Maryland House Environment & Transportation Committee Visit
2016-11-15
Center Director Chris Scolese welcomed the Maryland House Environment & Transportation Committee to Goddard on November 15, 2016. The group visited the James Webb Space Telescope JWST and saw the mirrors open, then they toured the Robotic Operations Center - ROC.
Game Analysis of Water Pollution Control in China’s Watershed
NASA Astrophysics Data System (ADS)
Li, Shu Wen
2018-05-01
Water pollution in the river basin is an important environmental management problem in China. At present, China’s environmental governance has entered the policy game stage centered on related interests. There are two main focus areas. First, it aims to resolve the conflict between the central government, local governments, and enterprises in terms of the utilization of basin resources and the environment. Second, it is responsible for the implementation of environmental policy. By analyzing the relationships between the central government, local governments, and enterprises in the process of water pollution control in the river basin, this study examines the environmental regulation of the central government and the collusion between local governments and enterprises to pollute the environment. To achieve this, game theory is applied from the perspective of information economics. Lastly, the study proposes corresponding policy recommendations in order to get out of the “prisoner’s dilemma”.
Rathert, Cheryl; May, Douglas R
2007-01-01
Experts continue to decry the lack of progress made in decreasing the alarming frequency of medical errors in health care organizations (Leape, L. L., & Berwick, D. M. (2005). Five years after to err is human: What have we learned?. Journal of the American Medical Association, 293(19), 2384-2390). At the same time, other experts are concerned about the lack of job satisfaction and turnover among nurses (. Keeping patients safe: Transforming the work environment of nurses. Washington, DC: National Academy Press). Research and theory suggest that a work environment that facilitates patient-centered care should increase patient safety and nurse satisfaction. The present study began with a conceptual model that specifies how work environment variables should be related to both nurse and patient outcomes. Specifically, we proposed that health care work units with climates for patient-centered care should have nurses who are more satisfied with their jobs. Such units should also have higher levels of patient safety, with fewer medication errors. We examined perceptions of nurses from three acute care hospitals in the eastern United States. Nurses who perceived their work units as more patient centered were significantly more satisfied with their jobs than were those whose units were perceived as less patient centered. Those whose work units were more patient centered reported that medication errors occurred less frequently in their units and said that they felt more comfortable reporting errors and near-misses than those in less patient-centered units. Patients and quality leaders continue to call for delivery of patient-centered care. If climates that facilitate such care are also related to improved patient safety and nurse satisfaction, proactive, patient-centered management of the work environment could result in improved patient, employee, and organizational outcomes.
Poudel, Rishi R; Tiwari, Vivek; Kumar, Venkatesan S; Bakhshi, Sameer; Gamanagatti, Shivanand; Khan, Shah Alam; Rastogi, Shishir
2017-04-01
Local control of disease is one of the main goals of osteosarcoma management. We conducted a retrospective evaluation of 95 operated cases of osteosarcoma over 7 years to know about the factors associated with local recurrence in resource-challenged environment of the developing world. The factors which were evaluated and compared between local recurrence and non-local recurrence groups included demographic profile, site of tumor, whether biopsy done outside, type of surgery (limb salvage or amputation), presence of pathological fracture, vicinity of neurovascular bundle, tumor volume, histological subtype, chemotherapy induced necrosis, surgical margins, and delay in surgery. The time to local recurrence after surgery was also noted in the local recurrence group. At a mean follow-up of 2.8 years, biopsy done from outside the treating center and delay in surgery after completion of neo-adjuvant chemotherapy emerged as significant risk factors for local recurrence. Most of the local recurrences (80%) occurred within 12 months of the primary surgery. Lack of financial resources and availability of few tertiary care centers dealing with musculoskeletal oncology in the developing countries, lead to overburden with a long waiting list for tumor surgery making the scenario different from the Western world. © 2017 Wiley Periodicals, Inc.
Age Effect on Autonomic Cardiovascular Control in Pilots
2000-08-01
Nantcheva**, M. Vukov *** *National Center of Hygiene, Medical Ecology and Nutrition 15 Dimitar Nestorov Blvd. 1431 Sofia, Bulgaria "**Military Medical...values and critique. Inter. Physiol. Behav. Sci. 1997, 3, of health risk compared with referents. 202-219. 14. Fluckiger L., Boivin J ., Quilliot D...during flight. Aviat. Space Chapman and Hall. 1991, 590 pp. Environ Med. 1998,4, 360-367. 4. Berntson G., Cacioppo J ., Quigley K. Autonomic 18. Hellman J
NASA Technical Reports Server (NTRS)
Chappell, Steven P.; Norcross, Jason R.; Gernhardt, Michael L.
2010-01-01
The Apollo lunar EVA experience revealed challenges with suit stability and control-likely a combination of mass, mobility, and center of gravity (CG) factors. The EVA Physiology, Systems and Performence (EPSP) Project is systematically working with other NASA projects, labs, and facilities to lead a series of studies to understand the role of suit mass, weight, CG, and other parameters on astronaut performance in partial gravity environments.
Directory of Solar-Terrestrial Physics Monitoring Stations.
1984-09-06
5/-- ---- I sources Toc ated.ADDRE SO , ip j NFUAkTION A0/IT STATIO N . Space Environment Services Center EATA ROU TINIL P/BLISHED N............. O N...SENT TO ARC-C---- ------ DAA oEN TOC _a-A- - - - - - - - - - - - - - - - - - -DATA ARILARLE ON REQUEST--------- YES DATA -EN To-W...FOR INFORMATIOM ABOUT STATION --- N UOSI Dept of Con e Direction d Control de Oeratio Wal Field Station de Sistemas Redioelectritcos P.O. Box S8
Hypermedia and intelligent tutoring applications in a mission operations environment
NASA Technical Reports Server (NTRS)
Ames, Troy; Baker, Clifford
1990-01-01
Hypermedia, hypertext and Intelligent Tutoring System (ITS) applications to support all phases of mission operations are investigated. The application of hypermedia and ITS technology to improve system performance and safety in supervisory control is described - with an emphasis on modeling operator's intentions in the form of goals, plans, tasks, and actions. Review of hypermedia and ITS technology is presented as may be applied to the tutoring of command and control languages. Hypertext based ITS is developed to train flight operation teams and System Test and Operation Language (STOL). Specific hypermedia and ITS application areas are highlighted, including: computer aided instruction of flight operation teams (STOL ITS) and control center software development tools (CHIMES and STOL Certification Tool).
The Next Generation of Ground Operations Command and Control; Scripting in C Sharp and Visual Basic
NASA Technical Reports Server (NTRS)
Ritter, George; Pedoto, Ramon
2010-01-01
This slide presentation reviews the use of scripting languages in Ground Operations Command and Control. It describes the use of scripting languages in a historical context, the advantages and disadvantages of scripts. It describes the Enhanced and Redesigned Scripting (ERS) language, that was designed to combine the features of a scripting language and the graphical and IDE richness of a programming language with the utility of scripting languages. ERS uses the Microsoft Visual Studio programming environment and offers custom controls that enable an ERS developer to extend the Visual Basic and C sharp language interface with the Payload Operations Integration Center (POIC) telemetry and command system.
Design and control of compliant tensegrity robots through simulation and hardware validation
Caluwaerts, Ken; Despraz, Jérémie; Işçen, Atıl; Sabelhaus, Andrew P.; Bruce, Jonathan; Schrauwen, Benjamin; SunSpiral, Vytas
2014-01-01
To better understand the role of tensegrity structures in biological systems and their application to robotics, the Dynamic Tensegrity Robotics Lab at NASA Ames Research Center, Moffett Field, CA, USA, has developed and validated two software environments for the analysis, simulation and design of tensegrity robots. These tools, along with new control methodologies and the modular hardware components developed to validate them, are presented as a system for the design of actuated tensegrity structures. As evidenced from their appearance in many biological systems, tensegrity (‘tensile–integrity’) structures have unique physical properties that make them ideal for interaction with uncertain environments. Yet, these characteristics make design and control of bioinspired tensegrity robots extremely challenging. This work presents the progress our tools have made in tackling the design and control challenges of spherical tensegrity structures. We focus on this shape since it lends itself to rolling locomotion. The results of our analyses include multiple novel control approaches for mobility and terrain interaction of spherical tensegrity structures that have been tested in simulation. A hardware prototype of a spherical six-bar tensegrity, the Reservoir Compliant Tensegrity Robot, is used to empirically validate the accuracy of simulation. PMID:24990292
NASA Technical Reports Server (NTRS)
Thomas, V. C.
1986-01-01
A Vibroacoustic Data Base Management Center has been established at the Jet Propulsion Laboratory (JPL). The center utilizes the Vibroacoustic Payload Environment Prediction System (VAPEPS) software package to manage a data base of shuttle and expendable launch vehicle flight and ground test data. Remote terminal access over telephone lines to a dedicated VAPEPS computer system has been established to provide the payload community a convenient means of querying the global VAPEPS data base. This guide describes the functions of the JPL Data Base Management Center and contains instructions for utilizing the resources of the center.
2011-05-28
CAPE CANAVERAL, Fla. -- At NASA Kennedy Space Center's Apollo/Saturn V Center, Eric Reiners, manager with the Product Development and Global Technology Division of Caterpillar Inc., speaks to university students at the award ceremony for NASA's second annual Lunabotics Mining Competition. Thirty-six teams of undergraduate and graduate students from the United States, Bangladesh, Canada, Colombia and India participated in NASA's Lunabotics Mining Competition May 26 - 28 at the agency's Kennedy Space Center in Florida. The competition is designed to engage and retain students in science, technology, engineering and mathematics (STEM). Teams will maneuver their remote controlled or autonomous excavators, called lunabots, in about 60 tons of ultra-fine simulated lunar soil, called BP-1. The competition is an Exploration Systems Mission Directorate project managed by Kennedy's Education Division. The event also provides a competitive environment that could result in innovative ideas and solutions for NASA's future excavation of the moon. Photo credit: NASA/Jack Pfaller
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In the Launch Control Center, officials monitor the Mode VII emergency landing simulation being conducted at Kennedy Space Center and managed and directed from the LCC. From left are Dr. Luis Moreno and Dr. David Reed, with Bionetics Life Sciences, and Dr. Philip Scarpa, with the KSC Safety, Occupational Health and Environment Division. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
2011-05-26
CAPE CANAVERAL, Fla. -- Pat Simpkins, Kennedy Space Center engineering director talks to university students gathered for the opening ceremony of NASA's second annual Lunabotics Mining Competition at the Kennedy Space Center Visitor Complex in Florida. Thirty-six teams of undergraduate and graduate students from the United States, Bangladesh, Canada, Colombia and India will participate in NASA's Lunabotics Mining Competition May 26 - 28 at the agency's Kennedy Space Center in Florida. The competition is designed to engage and retain students in science, technology, engineering and mathematics (STEM). Teams will maneuver their remote controlled or autonomous excavators, called lunabots, in about 60 tons of ultra-fine simulated lunar soil, called BP-1. The competition is an Exploration Systems Mission Directorate project managed by Kennedy's Education Division. The event also provides a competitive environment that could result in innovative ideas and solutions for NASA's future excavation of the moon. Photo credit: NASA/Jim Grossmann
2011-05-27
CAPE CANAVERAL, Fla. -- Outside the "Lunarena" at the Kennedy Space Center Visitor Complex in Florida, NASA astronaut John McBride (center) discusses the day's events with event leaders during NASA's second annual Lunabotics Mining Competition. Thirty-six teams of undergraduate and graduate students from the United States, Bangladesh, Canada, Colombia and India will participate in NASA's Lunabotics Mining Competition May 26 - 28 at the agency's Kennedy Space Center in Florida. The competition is designed to engage and retain students in science, technology, engineering and mathematics (STEM). Teams will maneuver their remote controlled or autonomous excavators, called lunabots, in about 60 tons of ultra-fine simulated lunar soil, called BP-1. The competition is an Exploration Systems Mission Directorate project managed by Kennedy's Education Division. The event also provides a competitive environment that could result in innovative ideas and solutions for NASA's future excavation of the moon. Photo credit: NASA/Jack Pfaller
2011-05-28
CAPE CANAVERAL, Fla. -- At NASA Kennedy Space Center's Apollo/Saturn V Center, the Laurentian University Team from Ontario, accepts a check for its "lunabot," which came in first place at NASA's second annual Lunabotics Mining Competition. Thirty-six teams of undergraduate and graduate students from the United States, Bangladesh, Canada, Colombia and India participated in NASA's Lunabotics Mining Competition May 26 - 28 at the agency's Kennedy Space Center in Florida. The competition is designed to engage and retain students in science, technology, engineering and mathematics (STEM). Teams will maneuver their remote controlled or autonomous excavators, called lunabots, in about 60 tons of ultra-fine simulated lunar soil, called BP-1. The competition is an Exploration Systems Mission Directorate project managed by Kennedy's Education Division. The event also provides a competitive environment that could result in innovative ideas and solutions for NASA's future excavation of the moon. Photo credit: NASA/Jack Pfaller
Applied high-speed imaging for the icing research program at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Slater, Howard; Owens, Jay; Shin, Jaiwon
1992-01-01
The Icing Research Tunnel at NASA Lewis Research Center provides scientists a scaled, controlled environment to simulate natural icing events. The closed-loop, low speed, refrigerated wind tunnel offers the experimental capability to test for icing certification requirements, analytical model validation and calibration techniques, cloud physics instrumentation refinement, advanced ice protection systems, and rotorcraft icing methodology development. The test procedures for these objectives all require a high degree of visual documentation, both in real-time data acquisition and post-test image processing. Information is provided to scientific, technical, and industrial imaging specialists as well as to research personnel about the high-speed and conventional imaging systems will be on the recent ice protection technology program. Various imaging examples for some of the tests are presented. Additional imaging examples are available from the NASA Lewis Research Center's Photographic and Printing Branch.
2011-05-28
CAPE CANAVERAL, Fla. -- At NASA Kennedy Space Center's Apollo/Saturn V Center, Bill Moore, Visitor Complex chief operating officer speaks to university students at the award ceremony for NASA's second annual Lunabotics Mining Competition. Thirty-six teams of undergraduate and graduate students from the United States, Bangladesh, Canada, Colombia and India participated in NASA's Lunabotics Mining Competition May 26 - 28 at the agency's Kennedy Space Center in Florida. The competition is designed to engage and retain students in science, technology, engineering and mathematics (STEM). Teams will maneuver their remote controlled or autonomous excavators, called lunabots, in about 60 tons of ultra-fine simulated lunar soil, called BP-1. The competition is an Exploration Systems Mission Directorate project managed by Kennedy's Education Division. The event also provides a competitive environment that could result in innovative ideas and solutions for NASA's future excavation of the moon. Photo credit: NASA/Jack Pfaller
2011-05-28
CAPE CANAVERAL, Fla. -- At NASA Kennedy Space Center's Apollo/Saturn V Center, Rob Mueller Kennedy's chief of the Surface Systems Office speaks to university students at the award ceremony for NASA's second annual Lunabotics Mining Competition. Thirty-six teams of undergraduate and graduate students from the United States, Bangladesh, Canada, Colombia and India participated in NASA's Lunabotics Mining Competition May 26 - 28 at the agency's Kennedy Space Center in Florida. The competition is designed to engage and retain students in science, technology, engineering and mathematics (STEM). Teams will maneuver their remote controlled or autonomous excavators, called lunabots, in about 60 tons of ultra-fine simulated lunar soil, called BP-1. The competition is an Exploration Systems Mission Directorate project managed by Kennedy's Education Division. The event also provides a competitive environment that could result in innovative ideas and solutions for NASA's future excavation of the moon. Photo credit: NASA/Jack Pfaller
Applied high-speed imaging for the icing research program at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Slater, Howard; Owens, Jay; Shin, Jaiwon
1991-01-01
The Icing Research Tunnel at NASA Lewis Research Center provides scientists a scaled, controlled environment to simulate natural icing events. The closed-loop, low speed, refrigerated wind tunnel offers the experimental capability to test for icing certification requirements, analytical model validation and calibration techniques, cloud physics instrumentation refinement, advanced ice protection systems, and rotorcraft icing methodology development. The test procedures for these objectives all require a high degree of visual documentation, both in real-time data acquisition and post-test image processing. Information is provided to scientific, technical, and industrial imaging specialists as well as to research personnel about the high-speed and conventional imaging systems will be on the recent ice protection technology program. Various imaging examples for some of the tests are presented. Additional imaging examples are available from the NASA Lewis Research Center's Photographic and Printing Branch.
Bridging the PSI Knowledge Gap: A Multi-Scale Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wirth, Brian D.
2015-01-08
Plasma-surface interactions (PSI) pose an immense scientific hurdle in magnetic confinement fusion and our present understanding of PSI in confinement environments is highly inadequate; indeed, a recent Fusion Energy Sciences Advisory Committee report found that 4 out of the 5 top five fusion knowledge gaps were related to PSI. The time is appropriate to develop a concentrated and synergistic science effort that would expand, exploit and integrate the wealth of laboratory ion-beam and plasma research, as well as exciting new computational tools, towards the goal of bridging the PSI knowledge gap. This effort would broadly advance plasma and material sciences,more » while providing critical knowledge towards progress in fusion PSI. This project involves the development of a Science Center focused on a new approach to PSI science; an approach that both exploits access to state-of-the-art PSI experiments and modeling, as well as confinement devices. The organizing principle is to develop synergistic experimental and modeling tools that treat the truly coupled multi-scale aspect of the PSI issues in confinement devices. This is motivated by the simple observation that while typical lab experiments and models allow independent manipulation of controlling variables, the confinement PSI environment is essentially self-determined with few outside controls. This means that processes that may be treated independently in laboratory experiments, because they involve vastly different physical and time scales, will now affect one another in the confinement environment. Also, lab experiments cannot simultaneously match all exposure conditions found in confinement devices typically forcing a linear extrapolation of lab results. At the same time programmatic limitations prevent confinement experiments alone from answering many key PSI questions. The resolution to this problem is to usefully exploit access to PSI science in lab devices, while retooling our thinking from a linear and de-coupled extrapolation to a multi-scale, coupled approach. The PSI Plasma Center consisted of three equal co-centers; one located at the MIT Plasma Science and Fusion Center, one at UC San Diego Center for Energy Research and one at the UC Berkeley Department of Nuclear Engineering, which moved to the University of Tennessee, Knoxville (UTK) with Professor Brian Wirth in July 2010. The Center had three co-directors: Prof. Dennis Whyte led the MIT co-center, the UCSD co-center was led by Dr. Russell Doerner, and Prof. Brian Wirth led the UCB/UTK center. The directors have extensive experience in PSI and material research, and have been internationally recognized in the magnetic fusion, materials and plasma research fields. The co-centers feature keystone PSI experimental and modeling facilities dedicated to PSI science: the DIONISOS/CLASS facility at MIT, the PISCES facility at UCSD, and the state-of-the-art numerical modeling capabilities at UCB/UTK. A collaborative partner in the center is Sandia National Laboratory at Livermore (SNL/CA), which has extensive capabilities with low energy ion beams and surface diagnostics, as well as supporting plasma facilities, including the Tritium Plasma Experiment, all of which significantly augment the Center. Interpretive, continuum material models are available through SNL/CA, UCSD and MIT. The participating institutions of MIT, UCSD, UCB/UTK, SNL/CA and LLNL brought a formidable array of experimental tools and personnel abilities into the PSI Plasma Center. Our work has focused on modeling activities associated with plasma surface interactions that are involved in effects of He and H plasma bombardment on tungsten surfaces. This involved performing computational material modeling of the surface evolution during plasma bombardment using molecular dynamics modeling. The principal outcomes of the research efforts within the combined experimental – modeling PSI center are to provide a knowledgebase of the mechanisms of surface degradation, and the influence of the surface on plasma conditions.« less
EEGLAB, SIFT, NFT, BCILAB, and ERICA: new tools for advanced EEG processing.
Delorme, Arnaud; Mullen, Tim; Kothe, Christian; Akalin Acar, Zeynep; Bigdely-Shamlo, Nima; Vankov, Andrey; Makeig, Scott
2011-01-01
We describe a set of complementary EEG data collection and processing tools recently developed at the Swartz Center for Computational Neuroscience (SCCN) that connect to and extend the EEGLAB software environment, a freely available and readily extensible processing environment running under Matlab. The new tools include (1) a new and flexible EEGLAB STUDY design facility for framing and performing statistical analyses on data from multiple subjects; (2) a neuroelectromagnetic forward head modeling toolbox (NFT) for building realistic electrical head models from available data; (3) a source information flow toolbox (SIFT) for modeling ongoing or event-related effective connectivity between cortical areas; (4) a BCILAB toolbox for building online brain-computer interface (BCI) models from available data, and (5) an experimental real-time interactive control and analysis (ERICA) environment for real-time production and coordination of interactive, multimodal experiments.
Using OPC technology to support the study of advanced process control.
Mahmoud, Magdi S; Sabih, Muhammad; Elshafei, Moustafa
2015-03-01
OPC, originally the Object Linking and Embedding (OLE) for Process Control, brings a broad communication opportunity between different kinds of control systems. This paper investigates the use of OPC technology for the study of distributed control systems (DCS) as a cost effective and flexible research tool for the development and testing of advanced process control (APC) techniques in university research centers. Co-Simulation environment based on Matlab, LabVIEW and TCP/IP network is presented here. Several implementation issues and OPC based client/server control application have been addressed for TCP/IP network. A nonlinear boiler model is simulated as OPC server and OPC client is used for closed loop model identification, and to design a Model Predictive Controller. The MPC is able to control the NOx emissions in addition to drum water level and steam pressure. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Multi-modal virtual environment research at Armstrong Laboratory
NASA Technical Reports Server (NTRS)
Eggleston, Robert G.
1995-01-01
One mission of the Paul M. Fitts Human Engineering Division of Armstrong Laboratory is to improve the user interface for complex systems through user-centered exploratory development and research activities. In support of this goal, many current projects attempt to advance and exploit user-interface concepts made possible by virtual reality (VR) technologies. Virtual environments may be used as a general purpose interface medium, an alternative display/control method, a data visualization and analysis tool, or a graphically based performance assessment tool. An overview is given of research projects within the division on prototype interface hardware/software development, integrated interface concept development, interface design and evaluation tool development, and user and mission performance evaluation tool development.
IntelliTable: Inclusively-Designed Furniture with Robotic Capabilities.
Prescott, Tony J; Conran, Sebastian; Mitchinson, Ben; Cudd, Peter
2017-01-01
IntelliTable is a new proof-of-principle assistive technology system with robotic capabilities in the form of an elegant universal cantilever table able to move around by itself, or under user control. We describe the design and current capabilities of the table and the human-centered design methodology used in its development and initial evaluation. The IntelliTable study has delivered robotic platform programmed by a smartphone that can navigate around a typical home or care environment, avoiding obstacles, and positioning itself at the user's command. It can also be configured to navigate itself to pre-ordained places positions within an environment using ceiling tracking, responsive optical guidance and object-based sonar navigation.
Government regulations and other influences on the medical use of computers.
Mishelevich, D J; Grams, R R; Mize, S G; Smith, J P
1979-01-01
This paper presents points brought out in a panel discussion held at the 12th Hawaiian International Conference on System Sciences, January 1979. The session was attended by approximately two dozen interested parties from various segments of the academic, government, and health care communities. The broad categories covered include the specific problems of government regulations and their impact on specific clinical information systems installed at The University of Texas Health Science Center at Dallas, opportunities in a regulated environment, problems in a regulated environment, vendor-related issues in the marketing and manufacture of computer-based information systems, rational approaches to government control, and specific issues related to medical computer science.
Reliable transfer of data from ground to space
NASA Technical Reports Server (NTRS)
Brosi, Fred
1993-01-01
This paper describes the problems involved in uplink of data from control centers on the ground to spacecraft, and explores the solutions to those problems, past. present. and future. The evolution of this process, from simple commanding to transfer of large volumes of data and commands is traced. The need for reliable end-to-end protocols for commanding and file transfer is demonstrated, and the shortcomings of both existing telecommand protocols and commercial products to meet this need are discussed. Recent developments in commercial protocols that may be adaptable to the mentioned operations environment are surveyed, and current efforts to develop a suite of protocols for reliable transfer in this environment are presented.
Children's health and the environment: a new agenda for prevention research.
Landrigan, P J; Carlson, J E; Bearer, C F; Cranmer, J S; Bullard, R D; Etzel, R A; Groopman, J; McLachlan, J A; Perera, F P; Reigart, J R; Robison, L; Schell, L; Suk, W A
1998-01-01
Patterns of illness in American children have changed dramatically in this century. The ancient infectious diseases have largely been controlled. The major diseases confronting children now are chronic and disabling conditions termed the "new pediatric morbidity"--asthma mortality has doubled; leukemia and brain cancer have increased in incidence; neurodevelopmental dysfunction is widespread; hypospadias incidence has doubled. Chemical toxicants in the environment as well as poverty, racism, and inequitable access to medical care are factors known and suspected to contribute to causation of these pediatric diseases. Children are at risk of exposure to over 15,000 high-production-volume synthetic chemicals, nearly all of them developed in the past 50 years. These chemicals are used widely in consumer products and are dispersed in the environment. More than half are untested for toxicity. Children appear uniquely vulnerable to chemical toxicants because of their disproportionately heavy exposures and their inherent biological susceptibility. To prevent disease of environmental origin in America's children, the Children's Environmental Health Network (CEHN) calls for a comprehensive, national, child-centered agenda. This agenda must recognize children's vulnerabilities to environmental toxicants. It must encompass a) a new prevention-oriented research focus; b) a new child-centered paradigm for health risk assessment and policy formulation; and c) a campaign to educate the public, health professionals, and policy makers that environmental disease is caused by preventable exposures and is therefore avoidable. To anchor the agenda, CEHN calls for long-term, stable investment and for creation of a national network of pediatric environmental health research and prevention centers. PMID:9646038
International Space Station (ISS)
2002-07-10
Expedition Five crewmember and flight engineer Peggy Whitson displays the progress of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.
NASA Astrophysics Data System (ADS)
Keene, Samuel T.; Cerussi, Albert E.; Warren, Robert V.; Hill, Brian; Roblyer, Darren; Leproux, AnaÑ--s.; Durkin, Amanda F.; O'Sullivan, Thomas D.; Haghany, Hosain; Mantulin, William W.; Tromberg, Bruce J.
2013-03-01
Instrument equivalence and quality control are critical elements of multi-center clinical trials. We currently have five identical Diffuse Optical Spectroscopic Imaging (DOSI) instruments enrolled in the American College of Radiology Imaging Network (ACRIN, #6691) trial located at five academic clinical research sites in the US. The goal of the study is to predict the response of breast tumors to neoadjuvant chemotherapy in 60 patients. In order to reliably compare DOSI measurements across different instruments, operators and sites, we must be confident that the data quality is comparable. We require objective and reliable methods for identifying, correcting, and rejecting low quality data. To achieve this goal, we developed and tested an automated quality control algorithm that rejects data points below the instrument noise floor, improves tissue optical property recovery, and outputs a detailed data quality report. Using a new protocol for obtaining dark-noise data, we applied the algorithm to ACRIN patient data and successfully improved the quality of recovered physiological data in some cases.
Lunar Atmosphere and Dust Environment Explorer Integration and Test
NASA Technical Reports Server (NTRS)
Wright, Michael R.; McCormick, John L.; Hoffman, Richard G.
2010-01-01
Integration and test (I&T) of the Lunar Atmosphere and Dust Environment Explorer (LADEE) is presented. A collaborative NASA project between Goddard Space Flight Center and Ames Research Center, LADEE's mission is to explore the low lunar orbit environment and exosphere for constituents. Its instruments include two spectrometers, a dust detector, and a laser communication technology demonstration. Although a relatively low-cost spacecraft, LADEE has I&T requirements typical of most planetary probes, such as prelaunch contamination control, sterilization, and instrument calibration. To lead to a successful mission, I&T at the spacecraft, instrument, and observatory level must include step-by-step and end-to-end functional, environmental, and performance testing. Due to its compressed development schedule, LADEE I&T planning requires adjusting test flows and sequences to account for long-lead critical-path items and limited spares. A protoflight test-level strategy is also baselined. However, the program benefits from having two independent but collaborative teams of engineers, managers, and technicians that have a wealth of flight project experience. This paper summarizes the LADEE I&T planning, flow, facilities, and probe-unique processes. Coordination of requirements and approaches to I&T when multiple organizations are involved is discussed. Also presented are cost-effective approaches to I&T that are transferable to most any spaceflight project I&T program.
[Association between psychosocial work environment and workplace bullying among office workers].
Hua, Y J; Dai, J M; Gao, J L; Lu, X Y; Liu, J Y; Fu, H
2016-04-20
To assess the prevalence of bullying in companies and health care center and identify the association between psychosocial environment and workplace bullying. A total of 847 employees at in business building companies and 146 employees at one community health service center were invited to this survey by cluster sampling during October to December 2014, using anonymous questionnaires including the general demographic information, job characteristics, job stress core scale, the social capital scale, and NAQ-R. The rate of targets of bullying in the two kinds of workplaces were 13.1% and 5.6% respectively. Workplace bullying was associated with employee's education level(χ(2)=11.17, P=0.019)and the area his or her families live in(χ(2)=5.66, P=0.017). In addition, workplace bullying was significantly associated with psychosocial work environment. Job demand was positively correlated with workplace bullying (OR=2.24, 95% CI=1.34~3.74), and workplace social support was negatively associated with workplace bullying (OR= 0.33, 95% CI=0.18~0.60). Workplace bullying can be reduced by adjusting certain working conditions that negatively affect employees who are susceptible to being bullied, giving their individual and job characteristic. Moreover, workplace bullying could also be reduced if job demands are limited and job control and social capital are increased.
NASA Technical Reports Server (NTRS)
Demange, Jeffrey J.; Taylor, Shawn C.; Dunlap, Patrick H.; Steinetz, Bruce M.; Finkbeiner, Joshua R.; Proctor, Margaret P.
2014-01-01
The NASA Glenn Research Center (GRC), partnering with the University of Toledo, has a long history of developing and testing seal technologies for high-temperature applications. The GRC Seals Team has conducted research and development on high-temperature seal technologies for applications including advanced propulsion systems, thermal protection systems (airframe and control surface thermal seals), high-temperature preloading technologies, and other extreme-environment seal applications. The team has supported several high-profile projects over the past 30 years and has partnered with numerous organizations, including other government entities, academic institutions, and private organizations. Some of these projects have included the National Aerospace Space Plane (NASP), Space Shuttle Space Transport System (STS), the Multi-Purpose Crew Vehicle (MPCV), and the Dream Chaser Space Transportation System, as well as several high-speed vehicle programs for other government organizations. As part of the support for these programs, NASA GRC has developed unique seal-specific test facilities that permit evaluations and screening exercises in relevant environments. The team has also embarked on developing high-temperature preloaders to help maintain seal functionality in extreme environments. This paper highlights several propulsion-related projects that the NASA GRC Seals Team has supported over the past several years and will provide an overview of existing testing capabilities
Search and Determine Integrated Environment (SADIE)
NASA Astrophysics Data System (ADS)
Sabol, C.; Schumacher, P.; Segerman, A.; Coffey, S.; Hoskins, A.
2012-09-01
A new and integrated high performance computing software applications package called the Search and Determine Integrated Environment (SADIE) is being jointly developed and refined by the Air Force and Naval Research Laboratories (AFRL and NRL) to automatically resolve uncorrelated tracks (UCTs) and build a more complete space object catalog for improved Space Situational Awareness (SSA). The motivation for SADIE is to respond to very challenging needs identified and guidance received from Air Force Space Command (AFSPC) and other senior leaders to develop this technology to support the evolving Joint Space Operations Center (JSpOC) and Alternate Space Control Center (ASC2)-Dahlgren. The JSpOC and JMS SSA mission requirements and threads flow down from the United States Strategic Command (USSTRATCOM). The SADIE suite includes modification and integration of legacy applications and software components that include Search And Determine (SAD), Satellite Identification (SID), and Parallel Catalog (Parcat), as well as other utilities and scripts to enable end-to-end catalog building and maintenance in a parallel processing environment. SADIE is being developed to handle large catalog building challenges in all orbit regimes and includes the automatic processing of radar, fence, and optical data. Real data results are provided for the processing of Air Force Space Surveillance System fence observations and for the processing of Space Surveillance Telescope optical data.
NASA Technical Reports Server (NTRS)
Myer, Spencer S., Jr.
2005-01-01
On Oct. 1, 2001 Cleveland State University and NASA Glenn Research Center embarked on the above named cooperative agreement. Because NASA's research facilities often exhibit instances where the failure to use state-of-the-art technologies and methods to improve on outmoded systems of interface and control, and this runs contrary to the NASA philosophy of "faster, better, and cheaper", it was deemed an ideal opportunity for this collaboration. The main objectives of the proposed effort were to research and investigate the use of the latest technologies, methods, techniques, etc. which pertain to control and interface with industrial and research systems and facilities. The work was done in large part at NASA Glenn Research Center, using selected research facilities as real-world laboratories; such as certain Microgravity Science Division and Space Station projects. Microgravity Science Division at Glenn Research Center designs and builds experiments to be flown on the Space Shuttle and eventually on the International Space Station. Economy of space, weight, complexity, data storage, ergonomics, and many other factors present problems that also exist in industry. Many of the solutions can come from the same areas of study mentioned above.
NASA Technical Reports Server (NTRS)
D'Souza, Christopher; Milenkovich, Zoran; Wilson, Zachary; Huich, David; Bendle, John; Kibler, Angela
2011-01-01
The Space Operations Simulation Center (SOSC) at the Lockheed Martin (LM) Waterton Campus in Littleton, Colorado is a dynamic test environment focused on Autonomous Rendezvous and Docking (AR&D) development testing and risk reduction activities. The SOSC supports multiple program pursuits and accommodates testing Guidance, Navigation, and Control (GN&C) algorithms for relative navigation, hardware testing and characterization, as well as software and test process development. The SOSC consists of a high bay (60 meters long by 15.2 meters wide by 15.2 meters tall) with dual six degree-of-freedom (6DOF) motion simulators and a single fixed base 6DOF robot. The large testing area (maximum sensor-to-target effective range of 60 meters) allows for large-scale, flight-like simulations of proximity maneuvers and docking events. The facility also has two apertures for access to external extended-range outdoor target test operations. In addition, the facility contains four Mission Operations Centers (MOCs) with connectivity to dual high bay control rooms and a data/video interface room. The high bay is rated at Class 300,000 (. 0.5 m maximum particles/m3) cleanliness and includes orbital lighting simulation capabilities.
Consolidated Environmental Resource Database Information Process (CERDIP)
2015-11-19
Secretary of the Army for Installations, Energy and Environment [OASA(IE&E)] ESOH 5850 21st Street, Bldg 211, Second Floor Fort Belvoir, VA 22060-5938...Elizabeth J. Keysar 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) National Defense Center for Energy and Environment Operated by Concurrent...Markup Language NDCEE National Defense Center for Energy and Environment NFDD National Geospatial–Intelligence Agency Feature Data Dictionary
ERIC Educational Resources Information Center
Rizzo, Susan Kay
2013-01-01
As one-to-one laptop environments are becoming more commonplace in the educational system, teachers are often expected to provide a student-centered environment that incorporates 21st century skills in effort to better prepare students for the future. Teaching in this type of environment is a difficult pedagogical shift for classroom educators.…
Ong, Xueyuan; Wang, Yi-Chen; Sithithaworn, Paiboon; Namsanor, Jutamas; Taylor, David; Laithavewat, Luxana
2016-12-01
Helminth infections have proven recalcitrant to control by chemotherapy in many parts of Southeast Asia and indeed farther afield. This study isolates and examines the influence of different aspects of the physical and social environment, and uneven intervention effort contributing to the pathogenic landscape of human Opisthorchis viverrini infections. A cross-sectional survey, involving 632 participants, was conducted in four villages in northeast Thailand to examine the impact on prevalence and parasite burden of the reservoir dam environment, socio-economic, demographic, and behavioral factors, and health center intervention efforts. Formalin-ether concentration technique was used for diagnoses, and multivariate models were used for analyses. The importance attributed to O. viverrini infections varied among health centers in the four study villages. Villages where O. viverrini infections were not prioritized by the health centers as the healthcare focus were at a higher risk of infection (prevalence) with odds ratio (risk factor) of 5.73 (3.32-10.27) and p-value < 0.01. Priority of healthcare focus, however, did not appear to influence behavior, as the consumption of raw fish, the main source of O. viverrini infections in the study area, was 11.4% higher in villages that prioritized O. viverrini infections than those that did not (p-value = 0.01). Landscape variation, notably proximity to reservoir, affects vulnerability of local population to infection. Infection intensity was higher in population located closer to the reservoir with risk ratio of 2.09 (1.12-4.02) and p-value < 0.01. Patterns of infection intensities among humans were found to match fish infection intensity, where higher infection intensities were associated with fish obtained from the reservoir waterbody type (p-value = 0.023). This study demonstrated the importance of environmental influence and healthcare focus as risk factors of infections in addition to the socio-economic, demographic, and behavioral factors commonly explored in existing studies. The reservoir was identified as a crucial source to target for opisthorchiasis intervention efforts and the need to consider infection intensity in disease control efforts was highlighted. The holistic approach in this study, which underscores the close relationship between the environment, animals, and humans in development of human infections or diseases, is an important contribution to the framework of One Health approach, where consideration of helminth diseases has largely been overlooked.
Academic integrity in the online learning environment for health sciences students.
Azulay Chertok, Ilana R; Barnes, Emily R; Gilleland, Diana
2014-10-01
The online learning environment not only affords accessibility to education for health sciences students, but also poses challenges to academic integrity. Technological advances contribute to new modes of academic dishonesty, although there may be a lack of clarity regarding behaviors that constitute academic dishonesty in the online learning environment. To evaluate an educational intervention aimed at increasing knowledge and improving attitudes about academic integrity in the online learning environment among health sciences students. A quasi-experimental study was conducted using a survey of online learning knowledge and attitudes with strong reliability that was developed based on a modified version of a previously developed information technology attitudes rating tool with an added knowledge section based on the academic integrity statement. Blended-learning courses in a university health sciences center. 355 health sciences students from various disciplines, including nursing, pre-medical, and exercise physiology students, 161 in the control group and 194 in the intervention group. The survey of online learning knowledge and attitudes (SOLKA) was used in a pre-post test study to evaluate the differences in scores between the control group who received the standard course introduction and the intervention group who received an enhanced educational intervention about academic integrity during the course introduction. Post-intervention attitude scores were significantly improved compared to baseline scores for the control and intervention groups, indicating a positive relationship with exposure to the information, with a greater improvement among intervention group participants (p<0.001). There was a significant improvement in the mean post-intervention knowledge score of the intervention group compared to the control group (p=0.001). Recommendations are provided for instructors in promoting academic integrity in the online environment. Emphasis should be made about the importance of academic integrity in the online learning environment in preparation for professional behavior in the technologically advancing health sciences arena. Copyright © 2013 Elsevier Ltd. All rights reserved.
Small satellite multi mission C2 for maximum effect
Miller, E.; Medina, O.; Lane, C.R.; Kirkham, A.; Ivancic, W.; Jones, B.; Risty, R.
2006-01-01
This paper discusses US Air Force, US Army, US Navy, and NASA demonstrations based around the Virtual Mission Operations Center (VMOC) and its application in fielding a Multi Mission Satellite Operations Center (MMSOC) designed to integrate small satellites into the inherently tiered system environment of operations. The intent is to begin standardizing the spacecraft to ground interfaces needed to reduce costs, maximize space effects to the user, and allow the generation of Tactics, Techniques and Procedures (TTPs) that lead to Responsive Space employment. Combining the US Air Force/Army focus of theater command and control of payloads with the US Navy's user collaboration and FORCEnet consistent approach lays the groundwork for the fundamental change needed to maximize responsive space effects.
International Space Station (ISS)
2001-02-01
The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This photograph shows the development Water Processor located in two racks in the ECLSS test area at the Marshall Space Flight Center. Actual waste water, simulating Space Station waste, is generated and processed through the hardware to evaluate the performance of technologies in the flight Water Processor design.
Thin-Film Thermocouple Technology Demonstrated for Reliable Heat Transfer Measurements
NASA Technical Reports Server (NTRS)
1996-01-01
Exploratory work is in progress to apply thin-film thermocouples to localized heat transfer measurements on turbine engine vanes and blades. The emerging thin-film thermocouple technology shows great potential to improve the accuracy of local heat transfer measurements. To verify and master the experimental methodology of thin-film thermocouples, the NASA Lewis Research Center conducted a proof-of-concept experiment in a controlled environment before applying the thin-film sensors to turbine tests.
2003-09-24
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Japanese astronaut Koichi Wakata is dressed in protective clothing before entering the Pressurized Module, or PM, behind him. Part of the Japanese Experiment Module (JEM), the PM provides a shirt-sleeve environment in which astronauts on the International Space Station can conduct microgravity experiments. There are a total of 23 racks, including 10 experiment racks, inside the PM providing a power supply, communications, air conditioning, hardware cooling, water control and experiment support functions.
2006-06-01
scenarios. The demonstration planned for May 2006, in Chiang Mai , Thailand, will have a first-responder, law enforcement, and counter-terrorism and counter...to local ( Chiang Mai ), theater (Bangkok), and global (Alameda, California) command and control centers. This fusion of information validates using...network performance to be tested during moderate environmental conditions. The third and fourth scenarios were conducted in Chiang Mai , Thailand
2014-12-26
and Ergonomics Society 54th Annual Meeting (pp. 284-288). Human Factors and Ergonomics Society. Miller, C. A., & Parasuraman, R. (2007). Designing ...Factors and Ergonomics Society, 37 (1), 32-64. Gould, J. (1988). How to design usable systems (excerpt). IBM Research Center Hawthorne. In M...Research Past, Present, and Future. Ergonomics in Design : The Quarterly of Human Factors Applications , 21(2), pp. 9-14. Handal, C., & Ikuma, L. H
Using robotics construction kits as metacognitive tools: a research in an Italian primary school.
La Paglia, Filippo; Caci, Barbara; La Barbera, Daniele; Cardaci, Maurizio
2010-01-01
The present paper is aimed at analyzing the process of building and programming robots as a metacognitive tool. Quantitative data and qualitative observations from a research performed in a sample of children attending an Italian primary school are described in this work. Results showed that robotics activities may be intended as a new metacognitive environment that allows children to monitor themselves and control their learning actions in an autonomous and self-centered way.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Niskar, Amanda Sue
2005-01-01
The Centers for Disease Control and Prevention (CDC) is coordinating HELIX- Atlanta to provide information regarding the five-county Metropolitan Atlanta Area (Clayton, Cobb, DeKalb, Fulton, and Gwinett) via a network of integrated environmental monitoring and public health data systems so that all sectors can take action to prevent and control environmentally related health effects. The HELIX-Atlanta Network is a tool to access interoperable information systems with optional information technology linkage functionality driven by scientific rationale. HELIX-Atlanta is a collaborative effort with local, state, federal, and academic partners, including the NASA Marshall Space Flight Center. The HELIX-Atlanta Partners identified the following HELIX-Atlanta initial focus areas: childhood lead poisoning, short-latency cancers, developmental disabilities, birth defects, vital records, respiratory health, age of housing, remote sensing data, and environmental monitoring, HELIX-Atlanta Partners identified and evaluated information systems containing information on the above focus areas. The information system evaluations resulted in recommendations for what resources would be needed to interoperate selected information systems in compliance with the CDC Public Health Information Network (PHIN). This presentation will discuss the collaborative process of building a network that links health and environment data for information exchange, including NASA remote sensing data, for use in HELIX-Atlanta.
2004-03-10
KENNEDY SPACE CENTER, FLA. - In the high bay clean room at the Astrotech Space Operations processing facilities near KSC, workers prepare NASA’s MESSENGER spacecraft for transfer to a work stand. There employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
2004-03-10
KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, workers begin moving NASA’s MESSENGER spacecraft into the building MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - is being taken into a high bay clean room where employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
2004-03-10
KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, a lift begins lowering NASA’s MESSENGER spacecraft onto the ground. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
2004-03-10
KENNEDY SPACE CENTER, FLA. - In the high bay clean room at the Astrotech Space Operations processing facilities near KSC, workers get ready to remove the protective cover from NASA’s MESSENGER spacecraft. Employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
2004-03-10
KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, workers check the moveable pallet holding NASA’s MESSENGER spacecraft. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
Engage States on Energy Assurance and Energy Security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kara Colton; John Ratliff; Sue Gander
2008-09-30
The NGA Center's 'Engaging States on Energy Security and Energy Assurance' has been successful in achieving the stated project purposes and objectives both in the initial proposal as well as in subsequent revisions to it. Our activities, which involve the NGA Center for Best Practices (The NGA Center) Homeland Security and Technology Division, included conducting tabletop exercises to help federal and state homeland security and energy officials determine roles and actions for various emergency scenarios. This included efforts to education state official on developing an energy assurance plan, harmonizing approaches to controlling price volatility, implementing reliability standards, understanding short andmore » long-term energy outlooks and fuel diversification, and capitalizing on DOE's research and development activities. Regarding our work on energy efficiency and renewable energy, the NGA Center's Environment, Energy and Natural Resources Division hosted three workshops which engaged states on the clean energy and alternative transportation fuel and also produced several reports on related topics. In addition, we convened 18 meetings, via conference call, of the Energy Working Group. Finally, through the NGA Center's Front and Center newsletter articles, the NGA Center disseminated promising practices to a wide audience of state policymakers. The NGA Center also hosted a number of workshops and web conferences designed to directly engage states on the deliverables under this Cooperative Agreement. Through the NGA Center's written products and newsletter articles, the NGA Center was able to disseminate promising practices to a wide audience of state policymakers.« less
Yang, Yun Jeong; Kwon, In Soo
2017-12-01
This study was performed to develop an infection prevention education program for child care teachers and to verify its effects. The study was conducted using a nonequivalent control group with a pretest-posttest design. Four private daycare centers (2 centers per city) that were alike in terms of the number of children by age, number of child care teachers, and child care environment were chosen. Participants were assigned to the experimental group (n=20) or control group (n=20). As a part of the program, visiting education (90 min) was provided in the 1st week, and smartphone application education (10 min) was provided thrice a week, in the 2nd and 3rd weeks. Child care teachers' self-efficacy for infection prevention revealed a significant interaction effect between the group and time of measurement (F=21.62, p<.001). In terms of infection prevention behavior, a significant difference was observed between the experimental and control groups (z=-5.36, p<.001). The program implemented in this study was effective in improving the infection prevention self-efficacy and infection prevention behavior of child care teachers. Thus, this program may be effective in enhancing their infection control. © 2017 Korean Society of Nursing Science
NASA Technical Reports Server (NTRS)
Baker, L. R.; Sulyma, P. R.; Tevepaugh, J. A.; Penny, M. M.
1976-01-01
Since exhaust plumes affect vehicle base environment (pressure and heat loads) and the orbiter vehicle aerodynamic control surface effectiveness, an intensive program involving detailed analytical and experimental investigations of the exhaust plume/vehicle interaction was undertaken as a pertinent part of the overall space shuttle development program. The program, called the Plume Technology program, has as its objective the determination of the criteria for simulating rocket engine (in particular, space shuttle propulsion system) plume-induced aerodynamic effects in a wind tunnel environment. The comprehensive experimental program was conducted using test facilities at NASA's Marshall Space Flight Center and Ames Research Center. A post-test examination of some of the experimental results obtained from NASA-MSFC's 14 x 14-inch trisonic wind tunnel is presented. A description is given of the test facility, simulant gas supply system, nozzle hardware, test procedure and test matrix. Analysis of exhaust plume flow fields and comparison of analytical and experimental exhaust plume data are presented.
A molecular dynamics simulation study on trapping ions in a nanoscale Paul trap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Xiongce; Krstic, Predrag S
2008-01-01
We found by molecular dynamics simulations that a low energy ion can be trapped effectively in a nanoscale Paul trap in both vacuum and in aqueous environment when appropriate AC/DC electric fields are applied to the system. Using the negatively charged chlorine ion as an example, we show that the trapped ion oscillates around the center of the nanotrap with the amplitude dependent on the parameters of the system and applied voltage. Successful trapping of the ion within nanoseconds requires electric bias of GHz frequency, in the range of hundreds of mV. The oscillations are damped in the aqueous environment,more » but polarization of the water molecules requires application of the higher voltage biases to reach the improved stability of the trapping. Application of a supplemental DC driving field along the trap axis can effectively drive the ion off the trap center and out of the trap, opening a possibility of studying DNA and other biological molecules using embedded probes while achieving a full control of their translocation and localization in the trap.« less
How differential deflection of the inboard and outboard leading-edge flaps affected the handling qua
NASA Technical Reports Server (NTRS)
2002-01-01
How differential deflection of the inboard and outboard leading-edge flaps affected the handling qualities of this modified F/A-18A was evaluated during the first check flight in the Active Aeroelastic Wing program at NASA's Dryden Flight Research Center. The Active Aeroelastic Wing program at NASA's Dryden Flight Research Center seeks to determine the advantages of twisting flexible wings for primary maneuvering roll control at transonic and supersonic speeds, with traditional control surfaces such as ailerons and leading-edge flaps used to aerodynamically induce the twist. From flight test and simulation data, the program intends to develop structural modeling techniques and tools to help design lighter, more flexible high aspect-ratio wings for future high-performance aircraft, which could translate to more economical operation or greater payload capability. AAW flight tests began in November, 2002 with checkout and parameter-identification flights. Based on data obtained during the first flight series, new flight control software will be developed and a second series of research flights will then evaluate the AAW concept in a real-world environment. The program uses wings that were modified to the flexibility of the original pre-production F-18 wing. Other modifications include a new actuator to operate the outboard leading edge flap over a greater range and rate, and a research flight control system to host the aeroelastic wing control laws. The Active Aeroelastic Wing Program is jointly funded and managed by the Air Force Research Laboratory and NASA Dryden Flight Research Center, with Boeing's Phantom Works as prime contractor for wing modifications and flight control software development. The F/A-18A aircraft was provided by the Naval Aviation Systems Test Team and modified for its research role by NASA Dryden technicians.
NASA Technical Reports Server (NTRS)
Petro, Andrew J.
1990-01-01
This paper will summarize a range of techniques which have been proposed for controlling the growth of man-made debris in earth orbit. Several techniques developed in studies at the Johnson Space Center will be described in detail. These techniques include the retrieval of inoperative satellites with an orbital maneuvering vehicle and self-disposal devices for satellites and upper stages. Self-disposal devices include propulsive deorbit motors and passive drag-augmentation devices. Concepts for sweeping small debris from the orbital environment will also be described. An evaluation of the technical feasibility and economic practicality of the various control methods will be summarized. In general, methods which prevent the accumulation of large debris objects were found to provide greater promise for control of the debris problem than methods of removing small debris particles.
Messiah, Sarah E; Lebron, Cynthia; Moise, Rhoda; Sunil Mathew, M; Sardinas, Krystal; Chang, Catherina; Palenzuela, Joanne; Walsh, Jennifer; Shelnutt, Karla P; Spector, Rachel; Altare, Fiorella; Natale, Ruby
2017-02-01
Despite the high prevalence of obesity among preschool-aged children, most states lack childcare center (CCC) nutrition and physical activity policies. The Healthy Caregivers, Healthy Children (HC) Phase 2 project is examining the relationship between the CCC nutrition and physical activity environment and child dietary intake/physical activity patterns and body mass index (BMI). A total of 24 "Quality Counts" (Miami Dade County, Florida's Quality Rating Improvement System [QRIS)]) CCCs serving low resource families with ≥50 2-to-5year olds attending have been randomized to either intervention (n=12) or control (n=12). The HC2 intervention arm CCCs receive implementation of a daily curricula for (1) teachers/parents; (2) children; (3) snack, beverage, physical activity, and screen time policies; and (4) technical assistance with menu modifications. Control arm schools receive an attention control safety curriculum. HC2 is delivered once a month in year 1, quarterly in year 2 and will be disseminated throughout the Quality Counts network in year 3. Primary outcome measures include the Environment and Policy Assessment and Observation tool (EPAO), standardized dietary intake and physical activity patterns surveys, and child BMI. The 'Reach, Effectiveness, Adoption, Implementation, and Maintenance (RE-AIM)' framework will guide the interpretation of outcome measures. CCCs are in need of evidence-based standardized nutrition and physical activity policies. The intersection of RE-AIM and early childhood obesity prevention in the childcare setting could generate robust and new information to the field about potential barriers, facilitators, adoption, and sustainability in this setting. Copyright © 2016 Elsevier Inc. All rights reserved.
Development of the L-1011 four-dimensional flight management system
NASA Technical Reports Server (NTRS)
Lee, H. P.; Leffler, M. F.
1984-01-01
The development of 4-D guidance and control algorithms for the L-1011 Flight Management System is described. Four-D Flight Management is a concept by which an aircraft's flight is optimized along the 3-D path within the constraints of today's ATC environment, while its arrival time is controlled to fit into the air traffic flow without incurring or causing delays. The methods developed herein were designed to be compatible with the time-based en route metering techniques that were recently developed by the Dallas/Fort Worth and Denver Air Route Traffic Control Centers. The ensuing development of the 4-D guidance algorithms, the necessary control laws and the operational procedures are discussed. Results of computer simulation evaluation of the guidance algorithms and control laws are presented, along with a description of the software development procedures utilized.
JPL Contamination Control Engineering
NASA Technical Reports Server (NTRS)
Blakkolb, Brian
2013-01-01
JPL has extensive expertise fielding contamination sensitive missions-in house and with our NASA/industry/academic partners.t Development and implementation of performance-driven cleanliness requirements for a wide range missions and payloads - UV-Vis-IR: GALEX, Dawn, Juno, WFPC-II, AIRS, TES, et al - Propulsion, thermal control, robotic sample acquisition systems. Contamination control engineering across the mission life cycle: - System and payload requirements derivation, analysis, and contamination control implementation plans - Hardware Design, Risk trades, Requirements V-V - Assembly, Integration & Test planning and implementation - Launch site operations and launch vehicle/payload integration - Flight ops center dot Personnel on staff have expertise with space materials development and flight experiments. JPL has capabilities and expertise to successfully address contamination issues presented by space and habitable environments. JPL has extensive experience fielding and managing contamination sensitive missions. Excellent working relationship with the aerospace contamination control engineering community/.
ERIC Educational Resources Information Center
Read, Marilyn A.
2003-01-01
Compared the use of color in physical design features associated with the exterior and interior designs of 101 child care centers in Alabama. Found that color was evidenced on the exterior of the centers at just over half of the sample. The interior environments had warm colors and bright accents in the setting; however, the majority of centers…
Air Circulation and Heat Exchange under Reduced Pressures
NASA Astrophysics Data System (ADS)
Rygalov, Vadim; Wheeler, Raymond; Dixon, Mike; Hillhouse, Len; Fowler, Philip
Low pressure atmospheres were suggested for Space Greenhouses (SG) design to minimize sys-tem construction and re-supply materials, as well as system manufacturing and deployment costs. But rarified atmospheres modify heat exchange mechanisms what finally leads to alter-ations in thermal control for low pressure closed environments. Under low atmospheric pressures (e.g., lower than 25 kPa compare to 101.3 kPa for normal Earth atmosphere), convection is becoming replaced by diffusion and rate of heat exchange reduces significantly. During a period from 2001 to 2009, a series of hypobaric experiments were conducted at Space Life Sciences Lab (SLSLab) NASA's Kennedy Space Center and the Department of Space Studies, University of North Dakota. Findings from these experiments showed: -air circulation rate decreases non-linearly with lowering of total atmospheric pressure; -heat exchange slows down with pressure decrease creating risk of thermal stress (elevated leaf tem-peratures) for plants in closed environments; -low pressure-induced thermal stress could be reduced by either lowering system temperature set point or increasing forced convection rates (circulation fan power) within certain limits; Air circulation is an important constituent of controlled environments and plays crucial role in material and heat exchange. Theoretical schematics and mathematical models are developed from a series of observations. These models can be used to establish optimal control algorithms for low pressure environments, such as a space greenhouse, as well as assist in fundamental design concept developments for these or similar habitable structures.
Testing and checkout experiences in the National Transonic Facility since becoming operational
NASA Technical Reports Server (NTRS)
Bruce, W. E., Jr.; Gloss, B. B.; Mckinney, L. W.
1988-01-01
The U.S. National Transonic Facility, constructed by NASA to meet the national needs for High Reynolds Number Testing, has been operational in a checkout and test mode since the operational readiness review (ORR) in late 1984. During this time, there have been problems centered around the effect of large temperature excursions on the mechanical movement of large components, the reliable performance of instrumentation systems, and an unexpected moisture problem with dry insulation. The more significant efforts since the ORR are reviewed and NTF status concerning hardware, instrumentation and process controls systems, operating constraints imposed by the cryogenic environment, and data quality and process controls is summarized.
Ancient techniques for new materials
NASA Technical Reports Server (NTRS)
2000-01-01
NASA is looking to biological techniques that are millions of years old to help it develop new materials and technologies for the 21st century. Sponsored by NASA, Viola Vogel, director of Washington University's Center for Nanotechnology and a principal investigator for the microgravity biotechnology program, is researching a monorail on a nanoscale to learn how to control translational motion of motor proteins in nonbiological environments in order to transport cargo between user-specified locations. Shear-deposition of Teflon on glass (top) is used in Viola Vogel's lab to create a nanogrooved surface. The topography controls the path that microtubules take as they shuttle nano-sized cargo between user-defined destinations.
2000-12-15
NASA is looking to biological techniques that are millions of years old to help it develop new materials and technologies for the 21st century. Sponsored by NASA, Viola Vogel, director of Washington University's Center for Nanotechnology and a principal investigator for the microgravity biotechnology program, is researching a monorail on a nanoscale to learn how to control translational motion of motor proteins in nonbiological environments in order to transport cargo between user-specified locations. Shear-deposition of Teflon on glass (top) is used in Viola Vogel's lab to create a nanogrooved surface. The topography controls the path that microtubules take as they shuttle nano-sized cargo between user-defined destinations.