Design and Performance of Property Gradient Ternary Nitride Coating Based on Process Control.
Yan, Pei; Chen, Kaijie; Wang, Yubin; Zhou, Han; Peng, Zeyu; Jiao, Li; Wang, Xibin
2018-05-09
Surface coating is an effective approach to improve cutting tool performance, and multiple or gradient coating structures have become a common development strategy. However, composition mutations at the interfaces decrease the performance of multi-layered coatings. The key mitigation technique has been to reduce the interface effect at the boundaries. This study proposes a structure design method for property-component gradient coatings based on process control. The method produces coatings with high internal cohesion and high external hardness, which could reduce the composition and performance mutations at the interface. A ZrTiN property gradient ternary nitride coating was deposited on cemented carbide by multi-arc ion plating with separated Ti and Zr targets. The mechanical properties, friction behaviors, and cutting performances were systematically investigated, compared with a single-layer coating. The results indicated that the gradient coating had better friction and wear performance with lower wear rate and higher resistance to peeling off during sliding friction. The gradient coating had better wear and damage resistance in cutting processes, with lower machined surface roughness Ra. Gradient-structured coatings could effectively inhibit micro crack initiation and growth under alternating force and temperature load. This method could be extended to similar ternary nitride coatings.
Development of Process Analytical Technology (PAT) methods for controlled release pellet coating.
Avalle, P; Pollitt, M J; Bradley, K; Cooper, B; Pearce, G; Djemai, A; Fitzpatrick, S
2014-07-01
This work focused on the control of the manufacturing process for a controlled release (CR) pellet product, within a Quality by Design (QbD) framework. The manufacturing process was Wurster coating: firstly layering active pharmaceutical ingredient (API) onto sugar pellet cores and secondly a controlled release (CR) coating. For each of these two steps, development of a Process Analytical Technology (PAT) method is discussed and also a novel application of automated microscopy as the reference method. Ultimately, PAT methods should link to product performance and the two key Critical Quality Attributes (CQAs) for this CR product are assay and release rate, linked to the API and CR coating steps respectively. In this work, the link between near infra-red (NIR) spectra and those attributes was explored by chemometrics over the course of the coating process in a pilot scale industrial environment. Correlations were built between the NIR spectra and coating weight (for API amount), CR coating thickness and dissolution performance. These correlations allow the coating process to be monitored at-line and so better control of the product performance in line with QbD requirements. Copyright © 2014 Elsevier B.V. All rights reserved.
Performance evaluation of one coat systems for new steel bridges.
DOT National Transportation Integrated Search
2011-06-01
In an effort to address cost issues associated with shop application of conventional three-coat systems, the Federal : Highway Administration completed a study to investigate the performance of eight one-coat systems and two control : coatings for co...
Black Molecular Adsorber Coatings for Spaceflight Applications
NASA Technical Reports Server (NTRS)
Abraham, Nithin Susan; Hasegawa, Mark Makoto; Straka, Sharon A.
2014-01-01
The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.
Black molecular adsorber coatings for spaceflight applications
NASA Astrophysics Data System (ADS)
Abraham, Nithin S.; Hasegawa, Mark M.; Straka, Sharon A.
2014-09-01
The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.
Metallized coatings for corrosion control of Naval ship structures and components
NASA Technical Reports Server (NTRS)
1983-01-01
In attempting to improve corrosion control, the U.S. Navy has undertaken a program of coating corrosion-susceptible shipboard components with thermally sprayed aluminum. In this report the program is reviewed in depth, including examination of processes, process controls, the nature and properties of the coatings, nondestructive examination, and possible hazards to personnel. The performance of alternative metallic coating materials is also discussed. It is concluded that thermally sprayed aluminum can provide effective long-term protection against corrosion, thereby obviating the need for chipping of rust and repainting by ship personnel. Such coatings are providing excellent protection to below-deck components such as steam valves, but improvements are needed to realize the full potential of coatings for above-deck service. Several recommendations are made regarding processes, materials, and research and development aimed at upgrading further the performance of these coatings.
Increased Reliability of Gas Turbine Components by Robust Coatings Manufacturing
NASA Astrophysics Data System (ADS)
Sharma, A.; Dudykevych, T.; Sansom, D.; Subramanian, R.
2017-08-01
The expanding operational windows of the advanced gas turbine components demand increasing performance capability from protective coating systems. This demand has led to the development of novel multi-functional, multi-materials coating system architectures over the last years. In addition, the increasing dependency of components exposed to extreme environment on protective coatings results in more severe penalties, in case of a coating system failure. This emphasizes that reliability and consistency of protective coating systems are equally important to their superior performance. By means of examples, this paper describes the effects of scatter in the material properties resulting from manufacturing variations on coating life predictions. A strong foundation in process-property-performance correlations as well as regular monitoring and control of the coating process is essential for robust and well-controlled coating process. Proprietary and/or commercially available diagnostic tools can help in achieving these goals, but their usage in industrial setting is still limited. Various key contributors to process variability are briefly discussed along with the limitations of existing process and product control methods. Other aspects that are important for product reliability and consistency in serial manufacturing as well as advanced testing methodologies to simplify and enhance product inspection and improve objectivity are briefly described.
Kondo, Keita; Kato, Shinsuke; Niwa, Toshiyuki
2017-10-30
We aimed to understand the factors controlling mechanical particle coating using polymethacrylate. The relationship between coating performance and the characteristics of polymethacrylate powders was investigated. First, theophylline crystals were treated using a mechanical powder processor to obtain theophylline spheres (<100μm). Second, five polymethacrylate latexes were powdered by spray freeze drying to produce colloidal agglomerates. Finally, mechanical particle coating was performed by mixing theophylline spheres and polymethacrylate agglomerates using the processor. The agglomerates were broken under mechanical stress to coat the spheres effectively. The coating performance of polymethacrylate agglomerates tended to increase as their pulverization progressed. Differences in the grindability of the agglomerates were attributed to differences in particle structure, resulting from consolidation between colloidal particles. High-grindability agglomerates exhibited higher pulverization as their glass transition temperature (T g ) increased and the further pulverization promoted coating. We therefore conclude that the minimization of polymethacrylate powder by pulverization is an important factor in mechanical particle coating using polymethacrylate with low deformability. Meanwhile, when product temperature during coating approaches T g of polymer, polymethacrylate was soften to show high coating performance by plastic deformation. The effective coating by this mechanism may be accomplished by adjusting the temperature in the processor to the T g . Copyright © 2017 Elsevier B.V. All rights reserved.
Review of End-of-Life Thermal Control Coating Performance
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.; Kline, Sara E.
2008-01-01
White thermal control coatings capable of long term performance are needed for Fission Surface Power (FSP) where heat from a nuclear reactor placed on the surface of the Moon must be rejected to the environment. The threats to thermal control coating durability on the lunar surface are electrons, protons, and ultraviolet radiation. The anticipated damage to the coating is a gradual darkening over time. The increase in solar absorptance would, in essence, add a cyclic heat load to the radiator. The greater the darkening, the greater the added heat load. The cyclic heat load could ultimately impart a cyclic influence on FSP system performance. No significant change in emittance is anticipated. Optical properties degradation data were found in the open literature for the Z-93 series of thermal control paints. Additional optical properties degradation data were found from the Lunar Orbiter V mission, the Optical Properties Monitor, and the Materials International Space Station Experiment. Anticipated end-of-life thermal control coating performance for a FSP installation is postulated. With the FSP installation located away from landing and launching areas, and out of line-of-sight, lunar dust from human activity may not be a threat. The benefits of investing in next generation thermal control paint chemistry are explored.
Correlation of Predicted and Observed Optical Properties of Multilayer Thermal Control Coatings
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.
1998-01-01
Thermal control coatings on spacecraft will be increasingly important, as spacecraft grow smaller and more compact. New thermal control coatings will be needed to meet the demanding requirements of next generation spacecraft. Computer programs are now available to design optical coatings and one such program was used to design several thermal control coatings consisting of alternating layers of WO3 and SiO2. The coatings were subsequently manufactured with electron beam evaporation and characterized with both optical and thermal techniques. Optical data were collected in both the visible region of the spectrum and the infrared. Predictions of solar absorptance and infrared emittance were successfully correlated to the observed thermal control properties. Functional performance of the coatings was verified in a bench top thermal vacuum chamber.
A Review of Tribological Coatings for Control Drive Mechanisms in Space Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
CJ Larkin; JD Edington; BJ Close
2006-02-21
Tribological coatings must provide lubrication for moving components of the control drive mechanism for a space reactor and prevent seizing due to friction or diffusion welding to provide highly reliable and precise control of reflector position over the mission lifetime. Several coatings were evaluated based on tribological performance at elevated temperatures and in ultrahigh vacuum environments. Candidates with proven performance in the anticipated environment are limited primarily to disulfide materials. Irradiation data for these coatings is nonexistent. Compatibility issues between coating materials and structural components may require the use of barrier layers between the solid lubricant and structural components tomore » prevent deleterious interactions. It would be advisable to consider possible lubricant interactions prior to down-selection of structural materials. A battery of tests was proposed to provide the necessary data for eventual solid lubricant/coating selection.« less
Horstman, Elizabeth M; Kafle, Prapti; Zhang, Fengjiao; Zhang, Yifu; Kenis, Paul J A; Diao, Ying
2018-03-28
Nanosizing is rapidly emerging as an alternative approach to enhance solubility and thus the bioavailability of poorly aqueous soluble active pharmaceutical ingredients (APIs). Although numerous techniques have been developed to perform nanosizing of API crystals, precise control and modulation of their size in an energy and material efficient manner remains challenging. In this study, we present meniscus-guided solution coating as a new technique to produce pharmaceutical thin films of nanoscale thickness with controlled morphology. We demonstrate control of aspirin film thickness over more than 2 orders of magnitude, from 30 nm to 1.5 μm. By varying simple process parameters such as the coating speed and the solution concentration, the aspirin film morphology can also be modulated by accessing different coating regimes, namely the evaporation regime and the Landau-Levich regime. Using ellipticine-a poorly water-soluble anticancer drug-as another model compound, we discovered a new polymorph kinetically trapped during solution coating. Furthermore, the polymorphic outcome can be controlled by varying coating conditions. We further performed layer-by-layer coating of multilayer nanocomposites, with alternating thin films of ellipticine and a biocompatible polymer, which demonstrate the potential of additive manufacturing of multidrug-personalized dosage forms using this approach.
2016-12-01
System for Steel Structures in Corrosive Environments Final Report on Project F12-AR06 Co ns tr uc tio n En gi ne er in g R es ea rc h La bo ra...Prevention and Control Program ERDC/CERL TR-16-27 December 2016 Demonstration and Validation of Two-Coat High- Performance Coating System for Steel ...Performance Coating System for Steel Structures in Corrosive Environments” ERDC/CERL TR-16-27 ii Abstract Department of Defense (DoD) installations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-19
... noted that the limit for baked extreme performance coatings in the rule is less stringent than the limit... the VOC limit for baked extreme performance coatings and the exemption for repair and touch-up operations. As to the emission limit for baked extreme performance coatings, the VOC limit in Rule 4603 is...
Temporal and spatial variation in the fouling of silicone coatings in Pearl Harbor, Hawaii.
Holm, E R; Nedved, B T; Phillips, N; Deangelis, K L; Hadfield, M G; Smith, C M
2000-01-01
An antifouling or foul-release coating cannot be globally effective if it does not perform well in a range of environmental conditions, against a diversity of fouling organisms. From 1996 to 1998, the field test sites participating in the United States Navy's Office of Naval Research 6.2 Biofouling program examined global variation in the performance of 3 silicone foul-release coatings, viz. GE RTV11, Dow Corning RTV 3140, and Intersleek (International Coatings Ltd), together with a control anticorrosive coating (Ameron Protective Coatings F-150 series). At the University of Hawaii's test site in Pearl Harbor, significant differences were observed among the coatings in the rate of accumulation of fouling. The control coating failed rapidly; after 180-220 d immersion a community dominated by molluscs and sponges developed that persisted for the remainder of the experiment. Fouling of the GE and Dow Corning silicone coatings was slower, but eventually reached a similar community structure and coverage as the control coatings. The Intersleek coating remained lightly fouled throughout the experiment. Spatial variation in the structure of the community fouling the coatings was observed, but not in the extent of fouling. The rate of accumulation of fouling reflected differences among the coatings in adhesion of the tubeworm Hydroides elegans. The surface properties of these coatings may have affected the rate of fouling and the structure of the fouling community through their influence on larval settlement and subsequent interactions with other residents, predators, and the physical environment.
Evaluation of metallized paint coatings for composite spacecraft structures
NASA Technical Reports Server (NTRS)
Brzuskiewicz, John E.
1990-01-01
The extreme temperature excursions of composite spacecraft structures in LEO must be minimized through the use of thermal-control coatings. Attention is presently given to tests of silicone resin coatings which were pigmented with either leafing aluminum or combinations of leafing aluminum with silicate-treated zinc oxide pigment. Atomic oxygen, UV/vacuum, and outgassing screening tests were conducted on several such coating formulations in order to characterize the performance characteristics of this coating concept. Performance was found to depend on pigment volume concentration.
Gevelber, Michael; Xu, Bing; Smith, Douglas
2006-03-01
A new deposition-rate-control and electron-beam-gun (e-gun) strategy was developed that significantly reduces the growth-rate variations for e-beam-deposited SiO2 coatings. The resulting improvements in optical performance are evaluated for multilayer bandpass filters. The adverse effect of uneven silica-source depletion on coating spectral performances during long deposition runs is discussed.
Performance improvement for solution-processed high-mobility ZnO thin-film transistors
NASA Astrophysics Data System (ADS)
Sha Li, Chen; Li, Yu Ning; Wu, Yi Liang; Ong, Beng S.; Loutfy, Rafik O.
2008-06-01
The fabrication technology of stable, non-toxic, transparent, high performance zinc oxide (ZnO) thin-film semiconductors via the solution process was investigated. Two methods, which were, respectively, annealing a spin-coated precursor solution and annealing a drop-coated precursor solution, were compared. The prepared ZnO thin-film semiconductor transistors have well-controlled, preferential crystal orientation and exhibit superior field-effect performance characteristics. But the ZnO thin-film transistor (TFT) fabricated by annealing a drop-coated precursor solution has a distinctly elevated linear mobility, which further approaches the saturated mobility, compared with that fabricated by annealing a spin-coated precursor solution. The performance of the solution-processed ZnO TFT was further improved when substituting the spin-coating process by the drop-coating process.
Radiation Control Coatings Installed on Federal Buildings at Tyndall Air Force Base
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaba, R.L.; Petrie, T.W.
1999-03-16
The technical objectives of this CRADA comprise technology deployment and energy conservation efforts with the radiation control coatings industry and the utility sector. The results of this collaboration include a high-level data reporting, analysis and management system to support the deployment efforts. The technical objectives include successfully install, commission, operate, maintain and document the performance of radiation control coatings on roofs at Tyndall AFB and the Buildings Technology Center at the Oak Ridge National Laboratory; determine the life cycle savings that can be achieved by using radiation control coatings on entire roofs at Tyndall AFB, based on documented installed costmore » and operating maintenance costs with and without the coatings; determine if any specific improvements are required in the coatings before they can be successfully deployed in the federal sector; determine the most effective way to facilitate the widespread and rapid deployment of radiation control coatings in the federal sector; and clearly define any barriers to deployment.« less
Applications of terahertz-pulsed technology in the pharmaceutical industry
NASA Astrophysics Data System (ADS)
Taday, Philip F.
2010-02-01
Coatings are applied to pharmaceutical tablets (or pills) to for either cosmetic or release control reasons. Cosmetic coatings control the colour or to mask the taste of an active ingredient; the thickness of these coating is not critical to the performance of the product. On the other hand the thickness and uniformity of a controlled release coating has been found affect the release of the active ingredient. In this work we have obtained from a pharmacy single brand of pantoprazole tablet and mapped them using terahertz pulsed imaging (TPI) prior to additional dissolution testing. Three terahertz parameters were derived for univariate analysis for each layer: coating thickness, terahertz electric field peak strength and terahertz interface index. These parameters were then correlated dissolution tested. The best fit was found to be with combined coating layer thickness of the inert layer and enteric coating. The commercial tablets showed a large variation in coating thickness.
In-Line Monitoring of a Pharmaceutical Pan Coating Process by Optical Coherence Tomography.
Markl, Daniel; Hannesschläger, Günther; Sacher, Stephan; Leitner, Michael; Buchsbaum, Andreas; Pescod, Russel; Baele, Thomas; Khinast, Johannes G
2015-08-01
This work demonstrates a new in-line measurement technique for monitoring the coating growth of randomly moving tablets in a pan coating process. In-line quality control is performed by an optical coherence tomography (OCT) sensor allowing nondestructive and contact-free acquisition of cross-section images of film coatings in real time. The coating thickness can be determined directly from these OCT images and no chemometric calibration models are required for quantification. Coating thickness measurements are extracted from the images by a fully automated algorithm. Results of the in-line measurements are validated using off-line OCT images, thickness calculations from tablet dimension measurements, and weight gain measurements. Validation measurements are performed on sample tablets periodically removed from the process during production. Reproducibility of the results is demonstrated by three batches produced under the same process conditions. OCT enables a multiple direct measurement of the coating thickness on individual tablets rather than providing the average coating thickness of a large number of tablets. This gives substantially more information about the coating quality, that is, intra- and intertablet coating variability, than standard quality control methods. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
40 CFR 63.3360 - What performance tests must I conduct?
Code of Federal Regulations, 2010 CFR
2010-07-01
... decimal point (for example, 0.763). (2) Method 24. For coatings, determine the volatile organic content as... National Emission Standards for Hazardous Air Pollutants: Paper and Other Web Coating General Requirements... control organic HAP on any individual web coating line or any group of web coating lines by: You must: (1...
40 CFR 63.3360 - What performance tests must I conduct?
Code of Federal Regulations, 2011 CFR
2011-07-01
... decimal point (for example, 0.763). (2) Method 24. For coatings, determine the volatile organic content as... National Emission Standards for Hazardous Air Pollutants: Paper and Other Web Coating General Requirements... control organic HAP on any individual web coating line or any group of web coating lines by: You must: (1...
NASA Technical Reports Server (NTRS)
Kessel, Kurt R.
2014-01-01
The purpose of this testing is to determine the suitability of trivalent chromium conversion coatings that meet the requirements of MIL-DTL-5541, Type II, for use in applications where high-frequency electrical performance is important. This project will evaluate the ability of coated aluminum to form adequate EMI seals. Testing will assess performance of the trivalent chromium coatings against the known control hexavalent chromium MIL-DTL-5541 Type I Class 3 before and after they have been exposed to a set of environmental conditions. Performance will be assessed by evaluating shielding effectiveness (SE) test data from a variety of test samples comprised of different aluminum types and/or conversion coatings.
Innovative approaches for converting a wood hydrolysate to high-quality barrier coatings.
Ryberg, Yingzhi Zhu; Edlund, Ulrica; Albertsson, Ann-Christine
2013-08-28
An advanced approach for the efficient and controllable production of softwood hydrolysate-based coatings with excellent oxygen-barrier performance is presented. An innovative conversion of the spray-drying technique into a coating applicator process allowed for a fast and efficient coating process requiring solely aqueous solutions of softwood hydrolysate, even without additives. Compared to analogous coatings prepared by manual application, the spray-drying produced coatings were more homogeneous and smooth, and they adhered more strongly to the substrate. The addition of glyoxal to the aqueous softwood hydrolysate solutions prior to coating formation allowed for hemicellulose cross-linking, which improved both the mechanical integrity and the oxygen-barrier performance of the coatings. A real-time scanning electron microscopy imaging assessment of the tensile deformation of the coatings allowed for a deeper understanding of the ability of the coating layer itself to withstand stress as well as the coating-to-substrate adhesion.
Huang, Yu-Ching; Tsao, Cheng-Si; Cha, Hou-Chin; Chuang, Chih-Min; Su, Chun-Jen; Jeng, U-Ser; Chen, Charn-Ying
2016-01-01
The formation mechanism of a spray-coated film is different from that of a spin-coated film. This study employs grazing incidence small- and wide-angle X-ray Scattering (GISAXS and GIWAXS, respectively) quantitatively and systematically to investigate the hierarchical structure and phase-separated behavior of a spray-deposited blend film. The formation of PCBM clusters involves mutual interactions with both the P3HT crystal domains and droplet boundary. The processing control and the formed hierarchical structure of the active layer in the spray-coated polymer/fullerene blend film are compared to those in the spin-coated film. How the different post-treatments, such as thermal and solvent vapor annealing, tailor the hierarchical structure of the spray-coated films is quantitatively studied. Finally, the relationship between the processing control and tailored BHJ structures and the performance of polymer solar cell devices is established here, taking into account the evolution of the device area from 1 × 0.3 and 1 × 1 cm2. The formation and control of the special networks formed by the PCBM cluster and P3HT crystallites, respectively, are related to the droplet boundary. These structures are favorable for the transverse transport of electrons and holes. PMID:26817585
Laboratory electron exposure of TSS-1 thermal control coating
NASA Technical Reports Server (NTRS)
Vaughn, J. A.; Mccollum, M.; Carruth, M. R., Jr.
1995-01-01
RM400, a conductive thermal control coating, was developed for use on the exterior shell of the tethered satellite. Testing was performed by the Engineering Physics Division to quantify effects of the space environment on this coating and its conductive and optical properties. Included in this testing was exposure of RM400 to electrons with energies ranging from 0.1 to 1 keV, to simulate electrons accelerated from the ambient space plasma when the tethered satellite is fully deployed. During this testing, the coating was found to luminesce, and a prolonged exposure of the coating to high-energy electrons caused the coating to darken. This report describes the tests done to quantify the degradation of the thermal control properties caused by electron exposure and to measure the luminescence as a function of electron energy and current density to the satellite.
Microencapsulation Technologies for Corrosion Protective Coating Applications
NASA Technical Reports Server (NTRS)
Li, Wenyan; Buhrow, Jerry; Jolley, Scott; Calle, Luz; Pearman, Benjamin; Zhang, Xuejun
2015-01-01
Microencapsulation technologies for functional smart Coatings for autonomous corrosion control have been a research area of strong emphasis during the last decade. This work concerns the development of pH sensitive micro-containers (microparticles and microcapsules) for autonomous corrosion control. This paper presents an overview of the state-of-the-art in the field of microencapsulation for corrosion control applications, as well as the technical details of the pH sensitive microcontainer approach, such as selection criteria for corrosion indicators and corrosion inhibitors; the development and optimization of encapsulation methods; function evaluation before and after incorporation of the microcontainers into coatings; and further optimization to improve coating compatibility and performance.
Zou, Qin; Li, Junfeng; Niu, Lulu; Zuo, Yi; Li, Jidong; Li, Yubao
2017-09-01
The dipping-drying procedure and cross-linking method were used to make drug-loaded chitosan (CS) coating on nano-hydroxyapatite/polyamide66 (nHA/PA66) composite porous scaffold, endowing the scaffold controlled drug release functionality. The prefabricated scaffold was immersed into an aqueous drug/CS solution in a vacuum condition and then crosslinked by vanillin. The structure, porosity, composition, compressive strength, swelling ratio, drug release and cytocompatibility of the pristine and coating scaffolds were investigated. After coating, the scaffold porosity and pore interconnection were slightly decreased. Cytocompatibility performance was observed through an in vitro experiment based on cell attachment and the MTT assay by MG63 cells which revealed positive cell viability and increasing proliferation over the 11-day period in vitro. The drug could effectively release from the coated scaffold in a controlled fashion and the release rate was sustained for a long period and highly dependent on coating swelling, suggesting the possibility of a controlled drug release. Our results demonstrate that the scaffold with drug-loaded crosslinked CS coating can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to be a promising high performance biomaterial in bone tissue engineering.
Control of volume resistivity in inorganic organic separators
NASA Technical Reports Server (NTRS)
Sheibley, D. W.; Manzo, M. A.
1979-01-01
Control of resistivity in NASA inorganic-organic separators is achieved by incorporating small percentages of high surface area, fine particle silica with other ingredients in the separator coating. The volume resistivity is predictable from the surface area of filler particles in the coating. The approach is applied to two polymer- plasticizer -filler coating systems, where the filler content of each is below the generally acknowledged critical pigment volume concentration of the coating. Application of these coating systems to 0.0254 cm thick (10-mil) fuel cell grade asbestos sheet produces inexpensive, flexible, microporous separators that perform as well as the original inorganic-organic concept, the Astropower separator.
Control of volume resistivity in inorganic-organic separators. [for alkaline batteries
NASA Technical Reports Server (NTRS)
Sheibley, D. W.; Manzo, M. A.
1980-01-01
Control of resistivity in NASA inorganic-organic separators is achieved by incorporating small percentages of high surface area, fine-particle silica with other ingredients in the separator coating. The volume resistivity appears to be predictable from coating composition, that is, from the surface area of filler particles in the coating. The approach has been applied to two polymer-'plasticizer'-filler coating systems, where the filler content of each is below the generally acknowledged critical pigment volume concentration of the coating. Application of these coating systems to 0.0254 cm thick (10 mil) fuel-cell grade asbestos sheet produces inexpensive, flexible, microporous separators that perform at least as well as the original inorganic-organic concept, the Astropower separator.
NASA Astrophysics Data System (ADS)
Bowman, Cheryl L.; Jaworske, Donald A.; Stanford, Malcolm K.; Persinger, Justin A.; Khorsandi, Behrooz; Blue, Thomas E.
2007-01-01
The development of a nuclear power system for space missions, such as the Jupiter Icy Moons Orbiter or a lunar outpost, requires substantially more compact reactor design than conventional terrestrial systems. In order to minimize shielding requirements and hence system weight, the radiation tolerance of component materials within the power conversion and heat rejection systems must be defined. Two classes of coatings, thermal control paints and solid lubricants, were identified as material systems for which limited radiation hardness information was available. Screening studies were designed to explore candidate coatings under a predominately fast neutron spectrum. The Ohio State Research Reactor Facility staff performed irradiation in a well characterized, mixed energy spectrum and performed post irradiation analysis of representative coatings for thermal control and solid lubricant applications. Thermal control paints were evaluated for 1 MeV equivalent fluences from 1013 to 1015 n/cm2. No optical degradation was noted although some adhesive degradation was found at higher fluence levels. Solid lubricant coatings were evaluated for 1 MeV equivalent fluences from 1015 to 1016 n/cm2 with coating adhesion and flexibility used for post irradiation evaluation screening. The exposures studied did not lead to obvious property degradation indicating the coatings would have survived the radiation environment for the previously proposed Jupiter mission. The results are also applicable to space power development programs such as fission surface power for future lunar and Mars missions.
NASA Technical Reports Server (NTRS)
Bowman, Cheryl L.; Jaworske, Donald A.; Stanford, Malcolm K.; Persinger, Justin A.; Khorsandi, Behrooz; Blue, Thomas E.
2007-01-01
The development of a nuclear power system for space missions, such as the Jupiter Icy Moons Orbiter or a lunar outpost, requires substantially more compact reactor design than conventional terrestrial systems. In order to minimize shielding requirements and hence system weight, the radiation tolerance of component materials within the power conversion and heat rejection systems must be defined. Two classes of coatings, thermal control paints and solid lubricants, were identified as material systems for which limited radiation hardness information was available. Screening studies were designed to explore candidate coatings under a predominately fast neutron spectrum. The Ohio State Research Reactor Facility staff performed irradiation in a well characterized, mixed energy spectrum and performed post irradiation analysis of representative coatings for thermal control and solid lubricant applications. Thermal control paints were evaluated for 1 MeV equivalent fluences from 10(exp 13) to 10(exp 15) n per square centimeters. No optical degradation was noted although some adhesive degradation was found at higher fluence levels. Solid lubricant coatings were evaluated for 1 MeV equivalent fluences from 10(exp 15) to 10(exp 16) n per square centimeters with coating adhesion and flexibility used for post irradiation evaluation screening. The exposures studied did not lead to obvious property degradation indicating the coatings would have survived the radiation environment for the previously proposed Jupiter mission. The results are also applicable to space power development programs such as fission surface power for future lunar and Mars missions.
van den Ban, Sander; Pitt, Kendal G; Whiteman, Marshall
2018-02-01
A scientific understanding of interaction of product, film coat, film coating process, and equipment is important to enable design and operation of industrial scale pharmaceutical film coating processes that are robust and provide the level of control required to consistently deliver quality film coated product. Thermodynamic film coating conditions provided in the tablet film coating process impact film coat formation and subsequent product quality. A thermodynamic film coating model was used to evaluate film coating process performance over a wide range of film coating equipment from pilot to industrial scale (2.5-400 kg). An approximate process-imposed transition boundary, from operating in a dry to a wet environment, was derived, for relative humidity and exhaust temperature, and used to understand the impact of the film coating process on product formulation and process control requirements. This approximate transition boundary may aid in an enhanced understanding of risk to product quality, application of modern Quality by Design (QbD) based product development, technology transfer and scale-up, and support the science-based justification of critical process parameters (CPPs).
Development of antimicrobial coating by later-by-layer dip coating of chlorhexidine-loaded micelles.
Tambunlertchai, Supreeda; Srisang, Siriwan; Nasongkla, Norased
2017-06-01
Layer-by-layer (LbL) dip coating, accompanying with the use of micelle structure, allows hydrophobic molecules to be coated on medical devices' surface via hydrogen bonding interaction. In addition, micelle structure also allows control release of encapsulated compound. In this research, we investigated methods to coat and maximize the amount of chlorhexidine (CHX) on silicone surface through LbL dip coating method utilizing hydrogen bonding interaction between PEG on micelle corona and PAA. The number of coated cycles was varied in the process and 90 coating cycles provided the maximum amount of CHX loaded onto the surface. In addition, pre-coating the surface with PAA enhanced the amount of coated CHX by 20%. Scanning electron microscope (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) were used to validate and characterize the coating. For control release aspect, the coated film tended to disrupt at physiological condition; hence chemical crosslinking was performed to minimize the disruption and maximize the release time. Chemical crosslinking at pH 2.5 and 4.5 were performed in the process. It was found that chemical crosslinking could help extend the release period up to 18 days. This was significantly longer when compared to the non-crosslinking silicone tube that could only prolong the release for 5 days. In addition, chemical crosslinking at pH 2.5 gave higher and better initial burst release, release period and antimicrobial properties than that of pH 4.5 or the normal used pH for chemical crosslinking process.
Incorporation of Nicotine into Silicone Coatings for Marine Applications
NASA Astrophysics Data System (ADS)
Jaramillo, Sandy Tuyet
PDMS-based marine coatings presently used are limited by their inability to mitigate microfouling which limits their application to high speed vessels. PDMS coatings are favored when viable, due to their foul release properties of macrofouling organisms. Natural products have been investigated for antifouling properties for potential use in these marine antifouling coatings but few have incorporated natural products into coatings or coating systems. The purpose of the research was to establish the corrosion inhibiting properties of nicotine and to incorporate nicotine, a biodegradable and readily available natural product, into a PDMS coating to demonstrate the use of a natural product in a coating for marine applications. The corrosion inhibiting properties of nicotine was examined using potentiodynamic polarization scans, material characterization techniques such as scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction, quartz crystal microbalance and electrochemical impedance spectroscopy. Nicotine was determined to be an anodic corrosion inhibitor for mild steel immersed in simulated seawater with the ability to precipitate a protective calcium carbonate film. Electrochemical impedance spectroscopy was used to evaluate the performance of the developed nicotine incorporated coatings on mild steel immersed in simulated seawater over 21 days of immersion. The coatings with 2 wt.% of nicotine incorporated in the coating with a ratio of 1:30 of additional platinum catalyst to nicotine exhibited the best performance for intact coatings. This coating had the most favorable balance of the amount of nicotine and platinum catalyst of all the coatings evaluated. Overall, all nicotine incorporated coatings had a performance improvement when compared to the control PDMS coating. Of the nicotine incorporated coatings that were tested with an artificial pin-hole defect, the 2PDMS coating also exhibited the best performance with significant improvement in the pore and polarization resistance.
Replacement for a Flex Hose Coating at the Space Shuttle Launch Pad
NASA Technical Reports Server (NTRS)
Whitten, Mary; Vinje, Rubiela; Curran, Jerome; Meneghelli, Barry; Calle, Luz Marina
2009-01-01
Aerocoat AR-7 is a coating that has been used to protect stainless steel flex hoses at NASA's Kennedy Space Center launch complex and hydraulic lines of the mobile launch platform (MLP). This coating has great corrosion control performance and low temperature application. AR-7 was developed by NASA and produced exclusively for NASA but its production has been discontinued due to its high content of volatile organic compounds (VOC) and significant environmental impact. The purpose of this project was to select and evaluate candidate coatings to find a replacement coating that is more environmentally friendly, with similar properties to AR-7. No coatings were identified that perform the same as AR-7 in all areas. Candidate coatings failed in comparison to AR-7 in salt fog, beachside atmospheric exposure, pencil hardness, Mandrel bend, chemical compatibility, adhesion, and ease of application tests. However, two coatings were selected for further evaluation.
Smart Nanocomposite Coatings with Chameleon Surface Adaptation in Tribological Applications
NASA Astrophysics Data System (ADS)
Voevodin, A. A.; Zabinski, J. S.
Smart nanocomposite tribological coatings were designed to respond to changing environmental conditions by self-adjustment of their surface properties to maintain good tribological performance in any environment. These coatings have been dubbed "chameleon" because of their ability to change their surface chemistry and structure to avoid wear. The first "chameleon" coatings were made of WC, WS2, and DLC; these coatings provided superior mechanical toughness and performance in dry/humid environmental cycling. In order to address temperature variation, the second generation of "chameleon" coatings were made of yttria stabilized zirconia (YSZ) in a gold matrix with encapsulated nano-sized reservoirs of MoS2 and DLC. High temperature lubrication with low melting point glassy ceramic phases was also explored. All coatings were produced using a combination of laser ablation and magnetron sputtering. They were thoroughly characterized by various analytical, mechanical, and tribological methods. Coating toughness was remarkably enhanced by activation of a grain boundary sliding mechanism. Friction and wear endurance measurements were performed in controlled humidity air, dry nitrogen, and vacuum environments, as well as at 500-600 °C in air. Unique friction and wear performance in environmental cycling was demonstrated.
Laskar, Masihhur R; Jackson, David H K; Guan, Yingxin; Xu, Shenzhen; Fang, Shuyu; Dreibelbis, Mark; Mahanthappa, Mahesh K; Morgan, Dane; Hamers, Robert J; Kuech, Thomas F
2016-04-27
Metal oxide coatings can improve the electrochemical stability of cathodes and hence, their cycle-life in rechargeable batteries. However, such coatings often impose an additional electrical and ionic transport resistance to cathode surfaces leading to poor charge-discharge capacity at high C-rates. Here, a mixed oxide (Al2O3)1-x(Ga2O3)x alloy coating, prepared via atomic layer deposition (ALD), on Li[Ni0.5Mn0.3Co0.2]O2 (NMC) cathodes is developed that has increased electron conductivity and demonstrated an improved rate performance in comparison to uncoated NMC. A "co-pulsing" ALD technique was used which allows intimate and controlled ternary mixing of deposited film to obtain nanometer-thick mixed oxide coatings. Co-pulsing allows for independent control over film composition and thickness in contrast to separate sequential pulsing of the metal sources. (Al2O3)1-x(Ga2O3)x alloy coatings were demonstrated to improve the cycle life of the battery. Cycle tests show that increasing Al-content in alloy coatings increases capacity retention; whereas a mixture of compositions near (Al2O3)0.5(Ga2O3)0.5 was found to produce the optimal rate performance.
Vallejo-Heligon, Suzana G; Brown, Nga L; Reichert, William M; Klitzman, Bruce
2016-01-01
Continuous glucose sensors offer the promise of tight glycemic control for insulin dependent diabetics; however, utilization of such systems has been hindered by issues of tissue compatibility. Here we report on the in vivo performance of implanted glucose sensors coated with Dexamethasone-loaded (Dex-loaded) porous coatings employed to mediate the tissue-sensor interface. Two animal studies were conducted to (1) characterize the tissue modifying effects of the porous Dex-loaded coatings deployed on sensor surrogate implants and (2) investigate the effects of the same coatings on the in vivo performance of Medtronic MiniMed SOF-SENSOR™ glucose sensors. The tissue response to implants was evaluated by quantifying macrophage infiltration, blood vessel formation, and collagen density around implants. Sensor function was assessed by measuring changes in sensor sensitivity and time lag, calculating the Mean Absolute Relative Difference (MARD) for each sensor treatment, and performing functional glucose challenge test at relevant time points. Implants treated with porous Dex-loaded coatings diminished inflammation and enhanced vascularization of the tissue surrounding the implants. Functional sensors with Dex-loaded porous coatings showed enhanced sensor sensitivity over a 21-day period when compared to controls. Enhanced sensor sensitivity was accompanied with an increase in sensor signal lag and MARD score. These results indicate that Dex-loaded porous coatings were able to elicit an attenuated tissue response, and that such tissue microenvironment could be conducive towards extending the performance window of glucose sensors in vivo. In the present article, a coating to extend the functionality of implantable glucose sensors in vivo was developed. Our study showed that the delivery of an anti-inflammatory agent with the presentation of micro-sized topographical cues from coatings may lead to improved long-term glucose sensor function in vivo. We believe that improved function of sensors treated with the novel coatings was a result of the observed decreases in inflammatory cell density and increases in vessel density of the tissue adjacent to the devices. Furthermore, extending the in vivo functionality of implantable glucose sensors may lead to greater adoption of these devices by diabetic patients. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Thin film coatings for improved alpha/epi
NASA Technical Reports Server (NTRS)
Krisl, M. E.; Sachs, I. M.
1985-01-01
New thin film coatings were developed for fused silica, ceria doped glass, and Corning 0211 microsheet which provide increased emissivity and/or decreased solar absorption. Emissivity is enhanced by suppression of the reststrahlen reflectance and solar absorption is reduced by externally reflecting the ultraviolet portion of the solar spectrum. Optical properties of these coatings make them suitable for both solar cell cover and thermal control mirror applications. Measurements indicate equivalent environmental performance to conventional solar cell cover and thermal control mirror products.
Electroless silver coating of rod-like glass particles.
Moon, Jee Hyun; Kim, Kyung Hwan; Choi, Hyung Wook; Lee, Sang Wha; Park, Sang Joon
2008-09-01
An electroless silver coating of rod-like glass particles was performed and silver glass composite powders were prepared to impart electrical conductivity to these non-conducting glass particles. The low density Ag-coated glass particles may be utilized for manufacturing conducting inorganic materials for electromagnetic interference (EMI) shielding applications and the techniques for controlling the uniform thickness of silver coating can be employed in preparation of biosensor materials. For the surface pretreatment, Sn sensitization was performed and the coating powders were characterized by scanning electron microscopy (SEM), focused ion beam microscopy (FIB), and atomic force microscopy (AFM) along with the surface resistant measurements. In particular, the use of FIB technique for determining directly the Ag-coating thickness was very effective on obtaining the optimum conditions for coating. The surface sensitization and initial silver loading for electroless silver coating could be found and the uniform and smooth silver-coated layer with thickness of 46 nm was prepared at 2 mol/l of Sn and 20% silver loading.
NASA Technical Reports Server (NTRS)
Wolfe, Douglas E.; Singh, Jogender
2005-01-01
Various advanced Hafnia-based thermal barrier coatings (TBC) were applied on nickel-based superalloy coupons by electron beam physical vapor deposition. In addition, microstructural modifications to the coating material were made in an effort to reduce the thermal conductivity of the coating materials. Various processing parameters and coating system modifications were made in order to deposit the alloyed TBC with the desired microstructure and thus coating performance, some of which include applying coatings at substrate temperatures of 1150 C on both PtAl and CoNiCrAlY bond coated samples, as well as using 8YSZ as a bond layer. In addition, various characterization techniques including thermal cyclic tests, scanning electron microscopy, x-ray diffraction, thermal conductivity, and reflectivity measurements were performed. Although the coating microstructure was never fully optimized due to funding being cut short, significant reductions in thermal conductivity were accomplished through both chemistry changes (composition) and microstructural modifications.
Yang, Zhibin; Chueh, Chu-Chen; Zuo, Fan; ...
2015-04-30
A fully printable perovskite solar cell (PVSC) is demonstrated using a blade-coating technique under ambient conditions with controlled humidity. The influence of humidity on perovskite's crystallization is systematically investigated to realize the ambient processing condition. A high power conversion efficiency of 10.44% is achieved after optimizing the blade-coating process and, more importantly, a high-performance flexible PVSC is demonstrated for the first time. A high efficiency of 7.14% is achieved.
Ding, Chunyan; Zhou, Weiwei; Wang, Bin; Li, Xin; Wang, Dong; Zhang, Yong; Wen, Guangwu
2017-08-25
Integration of carbon materials with benign iron oxides is blazing a trail in constructing high-performance anodes for lithium-ion batteries (LIBs). In this paper, a unique general, simple, and controllable strategy is developed toward in situ uniform coating of iron oxide nanostructures with graphitized carbon (GrC) layers. The basic synthetic procedure only involves a simple dip-coating process for the loading of Ni-containing seeds and a subsequent Ni-catalyzed chemical vapor deposition (CVD) process for the growth of GrC layers. More importantly, the CVD treatment is conducted at a quite low temperature (450 °C) and with extremely facile liquid carbon sources consisting of ethylene glycol (EG) and ethanol (EA). The GrC content of the resulting hybrids can be controllably regulated by altering the amount of carbon sources. The electrochemical results reveal remarkable performance enhancements of iron oxide@GrC hybrids compared with pristine iron oxides in terms of high specific capacity, excellent rate and cycling performance. This can be attributed to the network-like GrC coating, which can improve not only the electronic conductivity but also the structural integrity of iron oxides. Moreover, the lithium storage performance of samples with different GrC contents is measured, manifesting that optimized electrochemical property can be achieved with appropriate carbon content. Additionally, the superiority of GrC coating is demonstrated by the advanced performance of iron oxide@GrC compared with its corresponding counterpart, i.e., iron oxides with amorphous carbon (AmC) coating. All these results indicate the as-proposed protocol of GrC coating may pave the way for iron oxides to be promising anodes for LIBs.
Incorporation of capsaicin in silicone coatings for enhanced antifouling performance
NASA Astrophysics Data System (ADS)
Reddy Jaggari, Karunakar; Zhang Newby, Bi-Min
2002-03-01
Successful use of capsaicin as insect and animal repellant propelled us to use it as a possible antifouling agent. Its non-toxic, non-biocidal, non-leaching properties make it a viable alternative to organotin compounds. In order to optimize the anti-fouling performance of the coating, silicone, the most effective foul-release marine coating, was chosen as the carrier. We have incorporated capsaicin into silicone coating, by both bulk entrapment and surface immobilization. Contact angle measurements on capsaicin-incorporated silicone exhibited an increase in wettability, owing to the presence of capsaicin. FTIR study further confirmed the incorporation of capsaicin in silicone. Bacterial attachment studies were conducted using lake Erie water. While bacteria liberally inhabited the control coating, their presence on the capsaicin-incorporated coating was found to be minimal. These preliminary studies indicate that capsaicin incorporated silicone could be a viable environment friendly alternative to currently used antifouling coatings.
Finger materials for air cushion vehicles. Volume 1: Flexible coatings for finger materials
NASA Astrophysics Data System (ADS)
Conn, P. K.; Snell, I. C.; Klemens, W.
1984-12-01
Twenty polymer formulations from ten selected gum rubber polymers or polymer blends and fourteen formulations of castable liquid polyurethane polymers were characterized as coatings for the coated fabric that is the type material used to make flexible fingers for air cushion vehicles. The formulations were screened for crack growth and flexural fatigue resistance; the results were compared to results from a natural rubber/cisabutadiene blend control coating. In addition, selected polymers were evaluated with primary and secondary characterization tests and the results compared to results from the control formulation. One polymer also was used to evaluate the use of a reticulated carbon black to improve thermal conductivity. Several polymers had better crack growth resistance and a number had better flexural fatique resistance than the control polymer. A clorinated polyethylene polymer coated on nylon fabric had properties equivalent to the control polymer coated on nylon fabric. Hysteresis tests at different rates of deformation yielded results which suggested that the standard tests may not identify polymers with improved performance on air cushion vehicles. Woven fabric, knit, and mat structures were evaluated as reinforcements for polymer coatings; the knit and mat structures were not as efficient on a strength-to-weight basis as woven fabrics.
NASA Astrophysics Data System (ADS)
Bahtiar, A.; Rahmanita, S.; Inayatie, Y. D.
2017-05-01
Morphology of perovskite film is a key important for achieving high performance perovskite solar cells. Perovskite films are commonly prepared by two-step spin-coating method. However, pin-holes are frequently formed in perovskite films due to incomplete conversion of lead-iodide (PbI2) into perovskite CH3NH3PbI3. Pin-holes in perovskite film cause large hysteresis in current-voltage curve of solar cells due to large series resistance between perovskite layer-hole transport material. Moreover, crystal structure and grain size of perovskite crystal are also other important parameters for achieving high performance solar cells, which are significantly affected by preparation of perovskite film. We studied the effect of preparation of perovskite film using controlled spin-coating parameters on crystal structure and morphological properties of perovskite film. We used two-step spin-coating method for preparation of perovskite film with varied spinning speed, spinning time and temperature of spin-coating process to control growth of perovskite crystal aimed to produce high quality perovskite crystal with pin-hole free and large grain size. All experiment was performed in air with high humidity (larger than 80%). The best crystal structure, pin-hole free with large grain crystal size of perovskite film was obtained from film prepared at room temperature with spinning speed 1000 rpm for 20 seconds and annealed at 100°C for 300 seconds.
Evaluation of thermal control coatings for use on solar dynamic radiators in low earth orbit
NASA Technical Reports Server (NTRS)
Dever, Joyce A.; Rodriguez, Elvin; Slemp, Wayne S.; Stoyack, Joseph E.
1991-01-01
Thermal control coatings with high thermal emittance and low solar absorptance are needed for Space Station Freedom (SSF) solar dynamic power module radiator (SDR) surfaces for efficient heat rejection. Additionally, these coatings must be durable to low earth orbital (LEO) environmental effects of atomic oxygen, ultraviolet radiation and deep thermal cycles which occur as a result of start-up and shut-down of the solar dynamic power system. Eleven candidate coatings were characterized for their solar absorptance and emittance before and after exposure to ultraviolet (UV) radiation (200 to 400 nm), vacuum UV (VUV) radiation (100 to 200 nm) and atomic oxygen. Results indicated that the most durable and best performing coatings were white paint thermal control coatings Z-93, zinc oxide pigment in potassium silicate binder, and YB-71, zinc orthotitanate pigment in potassium silicate binder. Optical micrographs of these materials exposed to the individual environmental effects of atomic oxygen and vacuum thermal cycling showed that no surface cracking occurred.
Evaluation of thermal control coatings for use on solar dynamic radiators in low Earth orbit
NASA Technical Reports Server (NTRS)
Dever, Joyce A.; Rodriguez, Elvin; Slemp, Wayne S.; Stoyack, Joseph E.
1991-01-01
Thermal control coatings with high thermal emittance and low solar absorptance are needed for Space Station Freedom (SSF) solar dynamic power module radiator (SDR) surfaces for efficient heat rejection. Additionally, these coatings must be durable to low earth orbital (LEO) environmental effects of atomic oxygen, ultraviolet radiation and deep thermal cycles which occur as a result of start-up and shut-down of the solar dynamic power system. Eleven candidate coatings were characterized for their solar absorptance and emittance before and after exposure to ultraviolet (UV) radiation (200 to 400 nm), vacuum UV (VUV) radiation (100 to 200 nm) and atomic oxygen. Results indicated that the most durable and best performing coatings were white paint thermal control coatings Z-93, zinc oxide pigment in potassium silicate binder, and YB-71, zinc orthotitanate pigment in potassium silicate binder. Optical micrographs of these materials exposed to the individual environmental effects of atomic oxygen and vacuum thermal cycling showed that no surface cracking occurred.
The performance of thermal control coatings on LDEF and implications to future spacecraft
NASA Technical Reports Server (NTRS)
Wilkes, Donald R.; Miller, Edgar R.; Mell, Richard J.; Lemaster, Paul S.; Zwiener, James M.
1993-01-01
The stability of thermal control coatings over the lifetime of a satellite or space platform is crucial to the success of the mission. With the increasing size, complexity, and duration of future missions, the stability of these materials becomes even more important. The Long Duration Exposure Facility (LDEF) offered an excellent testbed to study the stability and interaction of thermal control coatings in the low-Earth orbit (LEO) space environment. Several experiments on LDEF exposed thermal control coatings to the space environment. This paper provides an overview of the different materials flown and their stability during the extended LDEF mission. The exposure conditions, exposure environment, and measurements of materials properties (both in-space and postflight) are described. The relevance of the results and the implications to the design and operation of future space vehicles are also discussed.
Use of hydrophilic polymer coatings for control of electroosmosis and protein adsorption
NASA Technical Reports Server (NTRS)
Harris, J. Milton
1987-01-01
The purpose of this project was to examine the utility of polyethylene glycol (PEG) and dextran coatings for control of electroosmosis and protein adsorption; electroosmosis is an important, deleterious process affecting electrophoretic separations, and protein adsorption is a factor which needs to be controlled during protein crystal growth to avoid multiple nucleation sites. Performance of the project required use of X-ray photoelectron spectroscopy to refine previously developed synthetic methods. The results of this spectroscopic examination are reported. Measurements of electroosmotic mobility of charged particles in appropriately coated capillaries reveals that a new, one-step route to coating capillaries gives a surface in which electroosmosis is dramatically reduced. Similarly, both PEG and dextran coatings were shown by protein adsorption measurements to be highly effective at reducing protein adsorption on solid surfaces. These results should have impact on future low-g electrophoretic and protein crystal growth experiments.
Santagata, Gabriella; Mallardo, Salvatore; Fasulo, Gabriella; Lavermicocca, Paola; Valerio, Francesca; Di Biase, Mariaelena; Di Stasio, Michele; Malinconico, Mario; Volpe, Maria Grazia
2018-08-30
In this paper, a novel and sustainable process for the fruit dehydration was described. Specifically, edible coatings based on pectin and honey were prepared and used as dehydrating and antimicrobial agents of cut fruit samples, in this way promoting the fruit preservation from irreversible deteriorative processes. Pectin-honey coating was tested on apple, cantaloupe melon, mango and pineapple. The analysis were performed also on uncoated dehydrated fruits (control). The coated fruit evidenced enhanced dehydration percentage, enriched polyphenol and vitamin C contents, improved antioxidant activity and volatile molecules profile. Moreover, the antimicrobial activity against Pseudomonas and Escherichia coli was assessed. Finally, morphological analysis performed on fruit fractured surface, highlighted the formation of a non-sticky and homogeneous thin layer. These outcomes suggested that the novel fruit dehydration process, performed by using pectin-honey coating, was able to both preserve the safety and quality of dehydrated fruits, and enhance their authenticity and naturalness. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Long; Zhang, Yidu; Wu, Qiong; Jie, Zhang
2018-02-01
A graphene coating anti-/de-icing experiment was proposed by employing water-borne and oily graphene coatings on the composite material anti-/de-icing component. Considering the characteristics of helicopter rotor sensitivity to icing, a new graphene coating enhancing thermal conductivity of anti-/de-icing component was proposed. The anti-/de-icing experiment was conducted to validate the effectiveness of graphene coating. The results of the experiment show that the graphene coatings play a prominent role in controlling the heat transfer of anti-/de-icing component. The anti-/de-icing effect of oily graphene coating is superior to water-borne graphene.
Superhydrophobic Post Treatment and Coating Extenders for Improved Asset Sustainability
NASA Technical Reports Server (NTRS)
Trigwell, Steven; Montgomery, Eliza L.; Calle, Luz M.
2015-01-01
Launch structures, hardware, and ground support equipment, at NASA's John F. Kennedy Space Center in Florida, are exposed to a highly corrosive natural coastal marine environment. In addition, during launches, rocket exhaust deposition is also highly corrosive. Superhydrophobic coatings are being considered for additional corrosion protection on existing structures to enhance corrosion resistance and add an additional layer of protection against harsh environmental elements. These coatings have come into their own recently, and are now being investigated as corrosion protective coatings due to their water repelling capability. These coatings can be used on existing coatings, newly coated materials, or used on bare substrates. The coatings are not suitable for permanent corrosion protection, but can be used where additional corrosion control is desired or only when temporary corrosion control is needed, such as in hardware sitting on a launch pad for 30-45 days prior to a launch. In this study, superhydrophobic coatings were applied on various coated and uncoated substrates and exposed to the spaceport environment for various times up to 60 days. This paper highlights the current results of the superhydrophobic coatings performance evaluated by X-ray photoelectron spectroscopy, and contact angle measurements.
NASA Technical Reports Server (NTRS)
Quijada, Manuel A.; Threat, Felix; Garrison, Matt; Perrygo, Chuck; Bousquet, Robert; Rashford, Robert
2008-01-01
The James Webb Space Telescope (JWST) consists of an infrared-optimized Optical Telescope Element (OTE) that is cooled down to 40 degrees Kelvin. A second adjacent component to the OTE is the Integrated Science Instrument Module, or ISIM. This module includes the electronic compartment, which provides the mounting surfaces and ambient thermally controlled environment for the instrument control electronics. Dissipating the 200 watts generated from the ISIM structure away from the OTE is of paramount importance so that the spacecraft's own heat does not interfere with the infrared light detected from distant cosmic sources. This technical challenge is overcome by a thermal subsystem unit that provides passive cooling to the ISIM control electronics. The proposed design of this thermal radiator consists of a lightweight structure made out of composite materials and low-emittance metal coatings. In this paper, we will present characterizations of the coating emittance, bidirectional reflectance, and mechanical structure design that will affect the performance of this passive cooling system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, J.; Allen, B.; Wriggins, W.
Coatings play multiple key roles in the proper functioning of mature and current ion implanters. Batch and serial implanters require strategic control of elemental and particulate contamination which often includes scrutiny of the silicon surface coatings encountering direct beam contact. Elastomeric Silicone Coatings must accommodate wafer loading and unloading as well as direct backside contact during implant plus must maintain rigid elemental and particulate specifications. The semiconductor industry has had a significant and continuous effort to obtain ultra-pure silicon coatings with sustained process performance and long life. Low particles and reduced elemental levels for silicon coatings are a major requirementmore » for process engineers, OEM manufacturers, and second source suppliers. Relevant data will be presented. Some emphasis and detail will be placed on the structure and characteristics of a relatively new PVD Silicon Coating process that is very dense and homogeneous. Wear rate under typical ion beam test conditions will be discussed. The PVD Silicon Coating that will be presented here is used on disk shields, wafer handling fingers/fences, exclusion zones of heat sinks, beam dumps and other beamline components. Older, legacy implanters can now provide extended process capability using this new generation PVD silicon - even on implanter systems that were shipped long before the advent of silicon coating for contamination control. Low particles and reduced elemental levels are critical performance criteria for the silicone elastomers used on disk heatsinks and serial implanter platens. Novel evaluation techniques and custom engineered tools are used to investigate the surface interaction characteristics of multiple Elastomeric Silicone Coatings currently in use by the industry - specifically, friction and perpendicular stiction. These parameters are presented as methods to investigate the critical wafer load and unload function. Unique tools and test methods have been developed that deliver accurate and repeatable data, which will be described.« less
NASA Astrophysics Data System (ADS)
Springer, J.; Allen, B.; Wriggins, W.; Kuzbyt, R.; Sinclair, R.
2012-11-01
Coatings play multiple key roles in the proper functioning of mature and current ion implanters. Batch and serial implanters require strategic control of elemental and particulate contamination which often includes scrutiny of the silicon surface coatings encountering direct beam contact. Elastomeric Silicone Coatings must accommodate wafer loading and unloading as well as direct backside contact during implant plus must maintain rigid elemental and particulate specifications. The semiconductor industry has had a significant and continuous effort to obtain ultra-pure silicon coatings with sustained process performance and long life. Low particles and reduced elemental levels for silicon coatings are a major requirement for process engineers, OEM manufacturers, and second source suppliers. Relevant data will be presented. Some emphasis and detail will be placed on the structure and characteristics of a relatively new PVD Silicon Coating process that is very dense and homogeneous. Wear rate under typical ion beam test conditions will be discussed. The PVD Silicon Coating that will be presented here is used on disk shields, wafer handling fingers/fences, exclusion zones of heat sinks, beam dumps and other beamline components. Older, legacy implanters can now provide extended process capability using this new generation PVD silicon - even on implanter systems that were shipped long before the advent of silicon coating for contamination control. Low particles and reduced elemental levels are critical performance criteria for the silicone elastomers used on disk heatsinks and serial implanter platens. Novel evaluation techniques and custom engineered tools are used to investigate the surface interaction characteristics of multiple Elastomeric Silicone Coatings currently in use by the industry - specifically, friction and perpendicular stiction. These parameters are presented as methods to investigate the critical wafer load and unload function. Unique tools and test methods have been developed that deliver accurate and repeatable data, which will be described.
Optimization of High Porosity Thermal Barrier Coatings Generated with a Porosity Former
NASA Astrophysics Data System (ADS)
Medřický, Jan; Curry, Nicholas; Pala, Zdenek; Vilemova, Monika; Chraska, Tomas; Johansson, Jimmy; Markocsan, Nicolaie
2015-04-01
Yttria-stabilized zirconia thermal barrier coatings are extensively used in turbine industry; however, increasing performance requirements have begun to make conventional air plasma sprayed coatings insufficient for future needs. Since the thermal conductivity of bulk material cannot be lowered easily; the design of highly porous coatings may be the most efficient way to achieve coatings with low thermal conductivity. Thus the approach of fabrication of coatings with a high porosity level based on plasma spraying of ceramic particles of dysprosia-stabilized zirconia mixed with polymer particles, has been tested. Both polymer and ceramic particles melt in plasma and after impact onto a substrate they form a coating. When the coating is subjected to heat treatment, polymer burns out and a complex structure of pores and cracks is formed. In order to obtain desired porosity level and microstructural features in coatings; a design of experiments, based on changes in spray distance, powder feeding rate, and plasma-forming atmosphere, was performed. Acquired coatings were evaluated for thermal conductivity and thermo-cyclic fatigue, and their morphology was assessed using scanning electron microscopy. It was shown that porosity level can be controlled by appropriate changes in spraying parameters.
Terahertz pulsed imaging as an advanced characterisation tool for film coatings--a review.
Haaser, Miriam; Gordon, Keith C; Strachan, Clare J; Rades, Thomas
2013-12-05
Solid dosage forms are the pharmaceutical drug delivery systems of choice for oral drug delivery. These solid dosage forms are often coated to modify the physico-chemical properties of the active pharmaceutical ingredients (APIs), in particular to alter release kinetics. Since the product performance of coated dosage forms is a function of their critical coating attributes, including coating thickness, uniformity, and density, more advanced quality control techniques than weight gain are required. A recently introduced non-destructive method to quantitatively characterise coating quality is terahertz pulsed imaging (TPI). The ability of terahertz radiation to penetrate many pharmaceutical materials enables structural features of coated solid dosage forms to be probed at depth, which is not readily achievable with other established imaging techniques, e.g. near-infrared (NIR) and Raman spectroscopy. In this review TPI is introduced and various applications of the technique in pharmaceutical coating analysis are discussed. These include evaluation of coating thickness, uniformity, surface morphology, density, defects and buried structures as well as correlation between TPI measurements and drug release performance, coating process monitoring and scale up. Furthermore, challenges and limitations of the technique are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
New method for evaluating high-quality fog protective coatings
NASA Astrophysics Data System (ADS)
Czeremuszkin, Grzegorz; Latreche, Mohamed; Mendoza-Suarez, Guillermo
2011-05-01
Fogging is commonly observed when humid-warm air contacts the cold surface of a transparent substrate, i.e. eyewear lenses, making the observed image blurred and hazy. To protect from fogging, the lens inner surfaces are protected with Anti-Fog coatings, which render them hydrophilic and induce water vapor condensation as a smooth, thin and invisible film, which uniformly flows down on the lens as the condensation progresses. Coatings differ in protection level, aging kinetics, and susceptibility to contamination. Some perform acceptably in limited conditions, beyond which the condensing water film becomes unstable, nonuniform, and scatters light or shows refractory distortions, both affecting the observed image. Quantifying the performance of Anti-Fog coated lenses is difficult: they may not show classical fogging and the existing testing methods, based on fog detection, are therefore inapplicable. The presented method for evaluating and quantifying AF properties is based on characterizing light scattering on lenses exposed to controlled humidity and temperature. Changes in intensity of laser light scattered at low angles (1, 2 4 and 8 degrees), observed during condensation of water on lenses, provide information on the swelling of Anti-Fog coatings, formation of uniform water film, going from an unstable to a steady state, and on the coalescence of discontinuous films. Real time observations/measurements allow for better understanding of factors controlling fogging and fog preventing phenomena. The method is especially useful in the development of new coatings for military-, sport-, and industrial protective eyewear as well as for medical and automotive applications. It allows for differentiating between coatings showing acceptable, good, and excellent performance.
Testing of materials for passive thermal control of space suits
NASA Technical Reports Server (NTRS)
Squire, Bernadette
1988-01-01
An effort is underway to determine the coating material of choice for the AX-5 prototype hard space suit. Samples of 6061 aluminum have been coated with one of 10 selected metal coatings, and subjected to corrosion, abrasion, and thermal testing. Changes in reflectance after exposure are documented. Plated gold exhibited minimal degradation of optical properties. A computer model is used in evaluating coating thermal performance in the EVA environment. The model is verified with an experiment designed to measure the heat transfer characteristics of coated space suit parts in a thermal vacuum chamber. Details of this experiment are presented.
NASA Astrophysics Data System (ADS)
Basu Majumder, Madhura
Air plasma sprayed (APS) abradable coatings are used in the turbine hot section to reduce the stator-rotor gap, minimizing gas leakage. These coatings are designed to exhibit controlled removal of material in thin layers when the turbine blades sweep through the coating, which protects the mechanical integrity of the turbine blade. In an effort to lower CO2 emissions, high H2 content fuel is being explored. This change in chemical composition of the fuel may affect the microstructure, abradability and durability of the coatings at turbine operational temperatures. The presence of high water vapor in the combustion chamber leads to accelerated degradation of the sacrificial coating materials. In this work, zirconia based composite materials with a machinable phase and varied porosity have been used to study microstructural evolution, thermal and chemical stability of the phases and abradable characteristics of baseline coating systems in both humid and dry environments. Investigation of the mechanisms that control the removal of materials and performance of abradable coatings through thermo-mechanical tests will be discussed.
Plasma-sprayed self-lubricating coatings
NASA Technical Reports Server (NTRS)
Nakamura, H. H.; Logan, W. R.; Harada, Y.
1982-01-01
One of the most important criterion for acceptable commercial application of a multiple phase composition is uniformity and reproducibility. This means that the performance characteristics of the coat - e.g., its lubricating properties, bond strength to the substrate, and thermal properties - can be readily predicted to give a desired performance. The improvement of uniformity and reproducibility of the coats, the oxidation behavior at three temperature ranges, the effect of bond coat and the effect of preheat treatment as measured by adhesive strength tests, coating examination procedures, and physical property measurements were studied. The following modifications improved the uniformity and reproducibility: (1) changes and closer control in the particle size range of the raw materials used, (2) increasing the binder content from 3.2% to 4.1% (dried weight), and (3) analytical processing procedures using step by step checking to assure consistency.
NASA Astrophysics Data System (ADS)
Caldwell, Ryan; Mandal, Himadri; Sharma, Rohit; Solzbacher, Florian; Tathireddy, Prashant; Rieth, Loren
2017-08-01
Objective. Performance of many dielectric coatings for neural electrodes degrades over time, contributing to loss of neural signals and evoked percepts. Studies using planar test substrates have found that a novel bilayer coating of atomic-layer deposited (ALD) Al2O3 and parylene C is a promising candidate for neural electrode applications, exhibiting superior stability to parylene C alone. However, initial results from bilayer encapsulation testing on non-planar devices have been less positive. Our aim was to evaluate ALD Al2O3-parylene C coatings using novel test paradigms, to rigorously evaluate dielectric coatings for neural electrode applications by incorporating neural electrode topography into test structure design. Approach. Five test devices incorporated three distinct topographical features common to neural electrodes, derived from the utah electrode array (UEA). Devices with bilayer (52 nm Al2O3 + 6 µm parylene C) were evaluated against parylene C controls (N ⩾ 6 per device type). Devices were aged in phosphate buffered saline at 67 °C for up to 311 d, and monitored through: (1) leakage current to evaluate encapsulation lifetimes (>1 nA during 5VDC bias indicated failure), and (2) wideband (1-105 Hz) impedance. Main results. Mean-times-to-failure (MTTFs) ranged from 12 to 506 d for bilayer-coated devices, versus 10 to >2310 d for controls. Statistical testing (log-rank test, α = 0.05) of failure rates gave mixed results but favored the control condition. After failure, impedance loss for bilayer devices continued for months and manifested across the entire spectrum, whereas the effect was self-limiting after several days, and restricted to frequencies <100 Hz for controls. These results correlated well with observations of UEAs encapsulated with bilayer and control films. Significance. We observed encapsulation failure modes and behaviors comparable to neural electrode performance which were undetected in studies with planar test devices. We found the impact of parylene C defects to be exacerbated by ALD Al2O3, and conclude that inferior bilayer performance arises from degradation of ALD Al2O3 when directly exposed to saline. This is an important consideration, given that neural electrodes with bilayer coatings are expected to have ALD Al2O3 exposed at dielectric boundaries that delineate electrode sites. Process improvements and use of different inorganic coatings to decrease dissolution in physiological fluids may improve performance. Testing frameworks which take neural electrode complexities into account will be well suited to reliably evaluate such encapsulation schemes.
Vapnek, Jonathan M; Maynard, Frederick M; Kim, Jiensup
2003-03-01
We compared the incidence of hematuria, pyuria and clinical urinary tract infection in patients who performed intermittent self-catheterization using a hydrophilic coated LoFric (Astra Tech AB, Mölndal, Sweden) or standard plastic catheter. A total of 62 male patients who performed intermittent self-catheterization to manage neurogenic bladder were randomized into 2 treatment groups at 3 American study sites. Outcome measures included urinary tract infection, microhematuria, pyuria and satisfaction rates. Of the 62 enrolled patients 49 completed the 12-month study. The withdrawal rate was not different in the 2 groups. At the end of the study there was statistically significantly less hematuria in the hydrophilic coated catheter group compared with controls. In addition, there was a significant decrease in the urinary tract infection rate from baseline in the hydrophilic coated catheter group but not in controls. Use of the hydrophilic coated catheter by patients on intermittent self-catheterization is associated with less hematuria and a significant decrease in the incidence of urinary tract infections. Therefore, it may be preferable for some patients, especially those with a history of difficult catheterization, urethral trauma or a high rate of urinary tract infection.
Engineered bio-inspired coating for reduction of flow separation
NASA Astrophysics Data System (ADS)
Bocanegra Evans, Humberto; Hamed, Ali M.; Gorumlu, Serdar; Doosttalab, Ali; Aksak, Burak; Chamorro, Leonardo P.; Castillo, Luciano
2017-11-01
Flow control using passive strategies has received notable attention in the last decades as a way to increase mixing and reduce skin drag, among others. Here, we present a bio-inspired coating, composed by uniformly distributed pillars with diverging tips, that is able to reduce the recirculation region in highly separated flows. This is demonstrated with laboratory experiments in a refractive index-matching flume at Reynolds number Reθ 1200 . The flow over an expanding channel following a S835 wing section was characterized with the coating and with smooth walls. High-resolution, wall-normal particle image velocimetry show a significant reduction of the reversed flow with the coating, where the region with reverse flow was reduced by 60 % . The performance of the micro-scale coating is surprising since the size of the fibers are nearly coincident with the viscous length scale (k+ 1). Additionally, the flow control properties of the surface do not depend on hydrophobicity, giving the coating the capability to work in both air and water media.
Evaluation of commercially supplied silver coated Teflon for spacecraft temperature control usage
NASA Technical Reports Server (NTRS)
Heaney, J. B.
1974-01-01
A series of tests are described which were performed to evaluate the acceptability of a commercially supplied silver backed teflon thermal control coating relative to teflon previously coated at GSFC. Optical measurements made on numerous samples indicate that the commercial material possesses an average solar absorptance of 0.085, an emittance of 0.76 and an average alpha/epsilon equal to 0.112, all of which are equivalent to the GSFC coated teflon. The emittance of the protective inconel backing was found to be 0.037. The coating is shown to have good adhesion at the Ag-teflon interface and exposure to UV irradiation uncovered no coating irregularities. Temperature cycling over the range -135 C to +200 C produced crazing in the evaporated Ag layer as expected but no delamination was observed. The suitability of Mystik no. 7366 and 3M no. 467 adhesives as bonding agents for the metallized polymer is demonstrated. Various problems associated with production reproducibility and selection of a proper bonding process are discussed.
Pu, Huayin; Chen, Ling; Li, Xiaoxi; Xie, Fengwei; Yu, Long; Li, Lin
2011-05-25
An oral colon-targeting controlled release system based on resistant starch acetate (RSA) as a film-coating material was developed. The RSA was successfully synthesized, and its digestion resistibility could be improved by increasing the degree of substitution (DS), which was favorable for the colon-targeting purpose. As a delivery carrier material, the characteristics of RSA were investigated by polarized light microscopy, FTIR spectroscopy, and X-ray diffraction. The results revealed a decrease of the crystallinity of RSA and a change of its crystalline structure from B + V hydrid type to V type. To evaluate the colon-targeting release performance, the RSA film-coated pellets loaded with different bioactive components were prepared by extrusion-spheronization and then by fluid bed coating. The effects of the DS, plasticizer content, and coating thickness of the RSA film and those of the content and molecular weight of the loaded bioactive component on the colon-targeting release performance of the resulting delivery system were investigated. By adjusting the DS, the coating thickness, and the plasticizer content of the RSA film, either the pellets loaded with a small molecular bioactive component such as 5-aminosalicylic acid or those with a macromolecular bioactive peptide or protein such as bovine serum albumin, hepatocyte growth-promoting factor, or insulin showed a desirable colon-targeting release performance. The release percentage was less than 12% in simulated upper gastrointestinal tract and went up to 70% over a period of 40 h in simulated colonic fluid. This suggests that the delivery system based on RSA film has an excellent colon-targeting release performance and the universality for a wide range of bioactive components.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-29
...; Cleaning of high precision optics; Stripping; Janitorial cleaning; cleaning of resin, coating, ink, and... laboratories; Cleaning operations in medical device or pharmaceutical manufacturing; and Cleaning operations related to performance or quality assurance testing of coatings, inks, or adhesives. COMAR 26.11.19.09-1...
NASA Applications of Molecular Adsorber Coatings
NASA Technical Reports Server (NTRS)
Abraham, Nithin S.
2015-01-01
The Molecular Adsorber Coating (MAC) is a new, innovative technology that was developed to reduce the risk of molecular contamination on spaceflight applications. Outgassing from materials, such as plastics, adhesives, lubricants, silicones, epoxies, and potting compounds, pose a significant threat to the spacecraft and the lifetime of missions. As a coating made of highly porous inorganic materials, MAC offers impressive adsorptive capabilities that help capture and trap contaminants. Past research efforts have demonstrated the coating's promising adhesion performance, optical properties, acoustic durability, and thermal stability. These results advocate its use near or on surfaces that are targeted by outgassed materials, such as internal optics, electronics, detectors, baffles, sensitive instruments, thermal control coatings, and vacuum chamber test environments. The MAC technology has significantly progressed in development over the recent years. This presentation summarizes the many NASA spaceflight applications of MAC and how the coatings technology has been integrated as a mitigation tool for outgassed contaminants. For example, this sprayable paint technology has been beneficial for use in various vacuum chambers for contamination control and hardware bake-outs. The coating has also been used in small instrument cavities within spaceflight instrument for NASA missions.
A review of materials for spectral design coatings in signature management applications
NASA Astrophysics Data System (ADS)
Andersson, Kent E.; Škerlind, Christina
2014-10-01
The current focus in Swedish policy towards national security and high-end technical systems, together with a rapid development in multispectral sensor technology, adds to the utility of developing advanced materials for spectral design in signature management applications. A literature study was performed probing research databases for advancements. Qualitative text analysis was performed using a six-indicator instrument: spectrally selective reflectance; low gloss; low degree of polarization; low infrared emissivity; non-destructive properties in radar and in general controllability of optical properties. Trends are identified and the most interesting materials and coating designs are presented with relevant performance metrics. They are sorted into categories in the order of increasing complexity: pigments and paints, one-dimensional structures, multidimensional structures (including photonic crystals), and lastly biomimic and metamaterials. The military utility of the coatings is assessed qualitatively. The need for developing a framework for assessing the military utility of incrementally increasing the performance of spectrally selective coatings is identified.
Hong, Seung Chan; Lee, Gunhee; Ha, Kyungyeon; Yoon, Jungjin; Ahn, Namyoung; Cho, Woohyung; Park, Mincheol; Choi, Mansoo
2017-03-08
Herein, we developed a novel electrospray coating system for continuous fabrication of perovskite solar cells with high performance. Our system can systemically control the size of CH 3 NH 3 PbI 3 precursor droplets by modulating the applied electrical potential, shown to be a crucial factor for the formation of perovskite films. As a result, we have obtained pinhole-free and large grain-sized perovskite solar cells, yielding the best PCE of 13.27% with little photocurrent hysteresis. Furthermore, the average PCE through the continuous coating process was 11.56 ± 0.52%. Our system demonstrates not only the high reproducibility but also a new way to commercialize high-quality perovskite solar cells.
Salta, Maria; Dennington, Simon P; Wharton, Julian A
2018-05-10
The use of natural products (NPs) as possible alternative biocidal compounds for use in antifouling coatings has been the focus of research over the past decades. Despite the importance of this field, the efficacy of a given NP against biofilm (mainly bacteria and diatoms) formation is tested with the NP being in solution, while almost no studies test the effect of an NP once incorporated into a coating system. The development of a novel bioassay to assess the activity of NP-containing and biocide-containing coatings against marine biofilm formation has been achieved using a high-throughput microplate reader and highly sensitive confocal laser scanning microscopy (CLSM), as well as nucleic acid staining. Juglone, an isolated NP that has previously shown efficacy against bacterial attachment, was incorporated into a simple coating matrix. Biofilm formation over 48 h was assessed and compared against coatings containing the NP and the commonly used booster biocide, cuprous oxide. Leaching of the NP from the coating was quantified at two time points, 24 h and 48 h, showing evidence of both juglone and cuprous oxide being released. Results from the microplate reader showed that the NP coatings exhibited antifouling efficacy, significantly inhibiting biofilm formation when compared to the control coatings, while NP coatings and the cuprous oxide coatings performed equally well. CLSM results and COMSTAT analysis on biofilm 3D morphology showed comparable results when the NP coatings were tested against the controls, with higher biofilm biovolume and maximum thickness being found on the controls. This new method proved to be repeatable and insightful and we believe it is applicable in antifouling and other numerous applications where interactions between biofilm formation and surfaces is of interest.
Improved corrosion control by coating in the splash zone and subsea
DOE Office of Scientific and Technical Information (OSTI.GOV)
John, R.C.; VanHooff, W.
1989-01-01
The splash zone around offshore structures is without doubt one of nature's most hostile and corrosive environments. Apart from the wave impacts, plentiful supplies of oxygen, lack of cathodic protection, and the salt spray that continually wets and then dries upon objects, the region is difficult and sometimes dangerous to access. This article reviews the performance of two new offshore repair coatings recently installed on North Sea and Gulf of Mexico installations. The first coating, a reinforced heat-shrinkable sleeve, is designed to be installed over properly cleaned and dried steel surfaces. Suitable conditions for the application of this coating existmore » during low tide and calm weather when certain exposed sections of the splash zone are accessible. Alternatively, by using a special remote-controlled cofferdam chamber to create an artificial local environment, subsea coating application can proceed under ideal conditions. Cofferdam chamber installations are diver-free and can be made throughout the entire splash zone, even during rough weather. When a remote-controlled cofferdam is not available and repairs are needed in subsea or wet areas, diver assistance is usually required. The second coating system, a gel-based, diver-applied tape, has been developed specifically for such applications.« less
NASA Technical Reports Server (NTRS)
Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory
2011-01-01
A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.
NASA Technical Reports Server (NTRS)
Kolody, Mark R.; Curran, Jerome P.; Calle, Luz Marina
2014-01-01
The launch facilities at the Kennedy Space Center (KSC) are located approximately 1000 feet from the Atlantic Ocean where they are exposed to salt deposits, high humidity, high UV degradation, and acidic exhaust from solid rocket boosters. These assets are constructed from carbon steel, which requires a suitable coating to provide long-term protection to reduce corrosion and its associated costs. While currently used coating systems provide excellent corrosion control performance, they are subject to occupational, safety, and environmental regulations at the Federal and State levels that limit their use. Many contain high volatile organic compounds (VOCs), hazardous air pollutants, and other hazardous materials. Hazardous waste from coating operations include vacuum filters, zinc dust, hazardous paint related material, and solid paint. There are also worker safety issues such as exposure to solvents and isocyanates. To address these issues, top-coated thermal spray zinc coating systems were investigated as a promising environmentally friendly corrosion protection for carbon steel in an acidic launch environment. Additional benefits of the combined coating system include a long service life, cathodic protection to the substrate, no volatile contaminants, and high service temperatures. This paper reports the results of a performance based study to evaluate low VOC topcoats (for thermal spray zinc coatings) on carbon steel for use in a space launch environment.
Jing, Wensen; Zhang, Minghua; Jin, Lei; Zhao, Jian; Gao, Qing; Ren, Min; Fan, Qingyu
2015-12-01
Surface modification and material improvement is now an important way to improve the osseointegration between bone and uncemented prothesis. The purpose of this study was to investigate the bone ingrowth potential of porous hydroxyapatite (HA) coatings prepared by micro-arc oxidation (MAO) on Ti-3Zr-2Sn-3Mo-25Nb, a new titanium alloy. HA-coated specimens were implanted in the left proximal femoral medullary canal of beagles for 4, 12, and 24 weeks, and uncoated specimens were implanted in the right as a control. The surface morphology and phase composition were investigated with environmental scanning electron microscopy and X-ray diffractometry. The bone ingrowth was assessed by histomorphometry. A pull-out test was performed to assess the mechanical performance of the bone-implant interface. A porous coating was well prepared on the new titanium alloy by using the MAO method. The bone-to-implant contact was significantly higher for the HA-coated group compared to that in the uncoated group. Mechanical tests showed that the HA-coated group had significantly higher maximum force at the bone-implant interface compared to the uncoated specimens. MAO is a suitable coating approach for this new titanium alloy. The HA coating prepared by this approach can significantly promote bone ingrowth and the mechanical performance of the bone-implant interface. Copyright © 2015. Published by Elsevier Ltd.
Whey protein solution coating for fat-uptake reduction in deep-fried chicken breast strips.
Dragich, Ann M; Krochta, John M
2010-01-01
This study investigated the use of whey protein, as an additional coating, in combination with basic, well-described predust, batter, and breading ingredients, for fat-uptake reduction in fried chicken. Chicken breasts were cut into strips (1 x 5 x 10 cm) and coated with wheat flour (WF) as a predust, dipped in batter, coated with WF as a breading, then dipped in 10% denatured whey protein isolate (DWPI) aqueous solution (wet basis). A WF-batter-WF treatment with no DWPI solution dip was included as a control. Coated chicken strips were deep-fried at 160 degrees C for 5 min. A Soxhlet-type extraction was performed to determine the fat content of the meat fraction of fried samples, the coating fraction of fried samples, raw chicken, and raw coating ingredients. The WF-batter-WF-10% DWPI solution had significantly lower fat uptake than the WF-batter-WF control, by 30.67% (dry basis). This article describes applied research involving fat reduction in coated deep-fried chicken. The methods used in this article were intended to achieve maximized fat reduction while maintaining a simple procedure applicable to actual food processing lines.
Jang, Chul Ho; Ahn, Seung Hyun; Kim, Geun Hyung
2016-12-01
Silicone sheet is a material which is commonly used in middle ear surgery to prevent the formation of adhesions between the tympanic membrane and the medial bony wall of the middle ear cavity. However, silicone sheet can induce a tight and hard fibrous capsule in the region of the stapes, and this is particularly common in cases of eustachian tube dysfunction. As a result of the fibrous encapsulation around the silicone sheet, postoperative aeration of the stapes can be interrupted causing poor hearing gain. In this study, we performed an in vitro and in vivo evaluation of the antifibrotic effects of a dexamethasone and alginate (Dx/alginate) coating on silicone sheet. The Dx/alginate-coated silicone sheets were fabricated using a plasma-treatment and coating method. The Dx/alginate-coated silicone sheets effectively limited in vitro fibroblast attachment and proliferation due to the controlled release of Dx, which can be modified by manipulation of the alginate coating. For the in-vivo evaluation, guinea pigs (albino, male, weighing 250g) were divided into two groups, with the control group (n=5) implanted with silicone sheet and the test group (n=5) receiving Dx/alginate-coated silicone sheet. Animals were sacrificed 3 weeks after implantation, and histological analysis was performed using hematoxylin and eosin (H&E) and immunohistochemical staining techniques. Dx/alginate-coated silicone sheets showed marked inhibition of fibrosis in both the in vitro and in vivo studies. Silicone sheet that incorporates a Dx/alginate coating can release Dx and inhibit fibrosis in the middle ear. This material could be utilized in middle ear surgery as a means of preserving proper aeration and hearing gain following ossiculoplasty. Copyright © 2016 Elsevier B.V. All rights reserved.
Elastomeric fluorinated polyurethane coatings for nontoxic fouling control.
Brady, Robert F; Aronson, Carl L
2003-04-01
Nontoxic antifouling coatings have been investigated for many years as possible successors to toxic antifouling paints. Polymers containing fluorine or silicone have been tested and each has been shown to be partially effective for different reasons. This paper describes a new coating which combines the best features of fluorinated and silicone coatings and is non-toxic. Four fluorinated elastomers were prepared and tested for fouling resistance during a full fouling season. The surface energy and mechanical properties of each polymer were measured and correlated to fouling performance. One of the elastomers was shown to foul slowly, clean easily, be durable in the marine environment and organisms bonded to it only weakly. The surface energy, elastic modulus, and thickness of the elastomer may be varied as desired over wide ranges to meet differing performance requirements.
NASA Astrophysics Data System (ADS)
Fatoba, Olawale S.; Akinlabi, Stephen A.; Akinlabi, Esther T.
2018-03-01
Aluminium and its alloys have been successful metal materials used for many applications like commodity roles, automotive and vital structural components in aircrafts. A substantial portion of Al-Fe-Si alloy is also used for manufacturing the packaging foils and sheets for common heat exchanger applications. The present research was aimed at studying the morphology and surface analyses of laser deposited Al-Sn-Si coatings on ASTM A29 steel. These Fe-intermetallic compounds influence the material properties during rapid cooling by laser alloying technique and play a crucial role for the material quality. Thus, it is of considerable technological interest to control the morphology and distribution of these phases in order to eliminate the negative effects on microstructure. A 3 kW continuous wave ytterbium laser system (YLS) attached to a KUKA robot which controls the movement of the alloying process was utilized for the fabrication of the coatings at optimum laser parameters. The fabricated coatings were investigated for its hardness and wear resistance performance. The field emission scanning electron microscope equipped with energy dispersive spectroscopy (SEM/EDS) was used to study the morphology of the fabricated coatings and X-ray diffractometer (XRD) for the identification of the phases present in the coatings. The coatings were free of cracks and pores with homogeneous and refined microstructures. The enhanced hardness and wear resistance performance were attributed to metastable intermetallic compounds formed.
Thermal design of the IMP-I and H spacecraft
NASA Technical Reports Server (NTRS)
Hoffman, R. H.
1974-01-01
A description of the thermal subsystem of the IMP-I and H spacecraft is presented. These two spacecraft were of a larger and more advanced type in the Explorer series and were successfully launched in March 1971 and September 1972. The thermal requirements, analysis, and design of each spacecraft are described including several specific designs for individual experiments. Techniques for obtaining varying degrees of thermal isolation and contact are presented. The thermal control coatings including the spaceflight performance of silver-coated FEP Teflon are discussed. Predicted performance is compared to measured flight data. The good agreement between them verifies the validity of the thermal model and the selection of coatings.
Precision Optical Coatings for Large Space Telescope Mirrors
NASA Astrophysics Data System (ADS)
Sheikh, David
This proposal “Precision Optical Coatings for Large Space Telescope Mirrors” addresses the need to develop and advance the state-of-the-art in optical coating technology. NASA is considering large monolithic mirrors 1 to 8-meters in diameter for future telescopes such as HabEx and LUVOIR. Improved large area coating processes are needed to meet the future requirements of large astronomical mirrors. In this project, we will demonstrate a broadband reflective coating process for achieving high reflectivity from 90-nm to 2500-nm over a 2.3-meter diameter coating area. The coating process is scalable to larger mirrors, 6+ meters in diameter. We will use a battery-driven coating process to make an aluminum reflector, and a motion-controlled coating technology for depositing protective layers. We will advance the state-of-the-art for coating technology and manufacturing infrastructure, to meet the reflectance and wavefront requirements of both HabEx and LUVOIR. Specifically, we will combine the broadband reflective coating designs and processes developed at GSFC and JPL with large area manufacturing technologies developed at ZeCoat Corporation. Our primary objectives are to: Demonstrate an aluminum coating process to create uniform coatings over large areas with near-theoretical aluminum reflectance Demonstrate a motion-controlled coating process to apply very precise 2-nm to 5- nm thick protective/interference layers to large areas, Demonstrate a broadband coating system (90-nm to 2500-nm) over a 2.3-meter coating area and test it against the current coating specifications for LUVOIR/HabEx. We will perform simulated space-environment testing, and we expect to advance the TRL from 3 to >5 in 3-years.
Durability of an inorganic polymer concrete coating
NASA Astrophysics Data System (ADS)
Wasserman, Kenneth
The objective of the research program reported in this thesis is to evaluate the durability of an inorganic polymer composite coating exposed to freeze/thaw cycling and wet-dry cycling. Freeze/thaw cycling is performed following ASTM D6944-09 Standard Practice for Resistance of Cured Coatings to Thermal Cycling and wet/dry cycling is performed following guidelines set forth in a thesis written by Ronald Garon at Rutgers University. For both sets of experiments, four coating mixture proportions were evaluated. The variables were: silica/alumina ratio, mixing protocol using high shear and normal shear mixing, curing temperatures of 70 and 120 degrees Fahrenheit and use of nano size constituent materials. The mix with highest silica/alumina ratio was designated as Mix 1 and mixes with lower ratios were designated as Mix 2 and Mix 3. Mix 4 had nano silica particles. Four prisms were used for each variable including control that had no coating. The performance of the coating was evaluated using adhesion strength measured using: ASTM D7234 Test Method for Pull-Off Strength of Coatings on Concrete Using Portable Adhesion Testers. Tests were performed after every five consecutive cycles of thermal conditioning and six consecutive cycles of wet-dry exposure. Results from the thermal cycling and wet-dry testing demonstrate that all coating formulations are durable. The minimum adhesion strength was 300 psi even though a relatively weak base concrete surface was chosen for the study. The weak surface was chosen to simulate aged concrete surfaces present in actual field conditions. Due to the inherent nature of the test procedure the variation in test results is high. However, based on the test results, high shear mixer and high temperature curing are not recommended. As expected nano size constituent materials provide better performance.
Structurally Integrated, Damage-Tolerant, Thermal Spray Coatings
NASA Astrophysics Data System (ADS)
Vackel, Andrew; Dwivedi, Gopal; Sampath, Sanjay
2015-07-01
Thermal spray coatings are used extensively for the protection and life extension of engineering components exposed to harsh wear and/or corrosion during service in aerospace, energy, and heavy machinery sectors. Cermet coatings applied via high-velocity thermal spray are used in aggressive wear situations almost always coupled with corrosive environments. In several instances (e.g., landing gear), coatings are considered as part of the structure requiring system-level considerations. Despite their widespread use, the technology has lacked generalized scientific principles for robust coating design, manufacturing, and performance analysis. Advances in process and in situ diagnostics have provided significant insights into the process-structure-property-performance correlations providing a framework-enhanced design. In this overview, critical aspects of materials, process, parametrics, and performance are discussed through exemplary studies on relevant compositions. The underlying connective theme is understanding and controlling residual stresses generation, which not only addresses process dynamics but also provides linkage for process-property relationship for both the system (e.g., fatigue) and the surface (wear and corrosion). The anisotropic microstructure also invokes the need for damage-tolerant material design to meet future goals.
40 CFR 60.453 - Performance test and compliance provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
....45 Manual electrostatic spray 0.60 Flow coat 0.85 Dip coat 0.85 Nonrotational automatic electrostatic... applied (G) during the calendar month for each affected facility by the following equation: EC16NO91.038... affected facility that uses a capture system and a control device that destroys VOC's (e.g., incinerator...
Siczek, Krzysztof; Zatorski, Hubert; Pawlak, Wojciech; Fichna, Jakub
2015-01-01
In search for novel effective treatments in inflammatory bowel diseases, a new strategy employing glass beads coated with rhenium nanolayer has been developed and validated in the mouse model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. Briefly, mice were randomly divided into 5 experimental groups: control (vehicle alone, Group 1); control treated with rhenium-coated glass beads (Group 2); TNBS (Group 3); TNBS treated with rhenium-coated glass beads (Group 4); and TNBS treated with uncoated glass beads (Group 5). Mice from Group 2, 4 and 5 were treated with respective beads (once daily, 5 beads / animal, i.c.) between D3-D6 post-TNBS/vehicle and evaluation of colonic damage was performed on D7, based on macroscopic scoring and clinical parameters. Severe colonic inflammation developed in post-TNBS mice (Group 3) [P <0.001 vs. control (Group 1) for macroscopic score], which was significantly attenuated by treatment with rhenium-coated glass beads (Group 4) [P <0.01 vs. TNBS (Group 3), for macroscopic score]. Neither rhenium-coated glass beads had any effect in control animals (Group 2), nor uncoated glass beads influenced TNBS-induced colitis (Group 5). In conclusion, a novel and attractive strategy for the treatment of colonic inflammation has been proposed; therapy with rhenium-coated glass beads already proved effective in the mouse model of TNBS-induced colitis, now requires further characterization in clinical conditions.
NASA Astrophysics Data System (ADS)
Tanaka, Teruya; Muroga, Takeo
2014-12-01
An Er2O3 ceramic coating fabricated using the metal-organic decomposition (MOD) method on a Cr2O3-covered low-activation ferritic steel JLF-1 substrate was examined to improve hydrogen permeation barrier performance of the coating. The Cr2O3 layer was obtained before coating by heat treating the substrate at 700 °C under reduced pressures of <5 × 10-3 Pa and 5 Pa. The Cr2O3 layer was significantly stable even with heat treatment at 700 °C in air. This layer prevented further production of Fe2O3, which has been considered to degrade coating performance. An MOD Er2O3 coating with a smooth surface was successfully obtained on a Cr2O3-covered JLF-1 substrate by dip coating followed by drying and baking. Preprocessing to obtain a Cr2O3 layer would provide flexibility in the coating process for blanket components and ducts. Moreover, the Cr2O3 layer suppressed hydrogen permeation through the JLF-1 substrate. While further optimization of the coating fabrication process is required, it would be possible to suppress hydrogen permeation significantly by multilayers of Cr2O3 and MOD oxide ceramic.
Development and Testing of Molecular Adsorber Coatings
NASA Technical Reports Server (NTRS)
Abraham, Nithin; Hasegawa, Mark; Straka, Sharon
2012-01-01
The effect of on-orbit molecular contamination has the potential to degrade the performance of spaceflight hardware and diminish the lifetime of the spacecraft. For example, sensitive surfaces, such as optical surfaces, electronics, detectors, and thermal control surfaces, are vulnerable to the damaging effects of contamination from outgassed materials. The current solution to protect these surfaces is through the use of zeolite coated ceramic adsorber pucks. However, these pucks and its additional complex mounting hardware requirements result in several disadvantages, such as size, weight, and cost related concerns, that impact the spacecraft design and the integration and test schedule. As a result, a new innovative molecular adsorber coating was developed as a sprayable alternative to mitigate the risk of on-orbit molecular contamination. In this study, the formulation for molecular adsorber coatings was optimized using various binders, pigment treatment methods, binder to pigment ratios, thicknesses, and spray application techniques. The formulations that passed coating adhesion and vacuum thermal cycling tests were further tested for its adsorptive capacity. Accelerated molecular capacitance tests were performed in an innovatively designed multi-unit system containing idealized contaminant sources. This novel system significantly increased the productivity of the testing phase for the various formulations that were developed. Work performed during the development and testing phases has demonstrated successful application of molecular adsorber coatings onto metallic substrates, as well as, very promising results for the adhesion performance and the molecular capacitance of the coating. Continued testing will assist in the qualification of molecular adsorber coatings for use on future contamination sensitive spaceflight missions.
Joint Test Report For Validation of Alternatives to Aliphatic Isocyanate Polyurethanes
NASA Technical Reports Server (NTRS)
Lewis, Pattie
2007-01-01
National Aeronautics and Space Administration (NASA) and Air Force Space Command (AFSPC) have similar missions and therefore similar facilities and structures in similar environments. The standard practice for protecting metallic substrates in atmospheric environments is the application of an applied coating system. The most common topcoats used in coating systems are polyurethanes that contain isocyanates. Isocyanates are classified as potential human carcinogens and are known to cause cancer in animals. The primary objective of this effort was to demonstrate and validate alternatives to aliphatic isocyanate polyurethanes resulting in one or more isocyanate-free coatings qualified for use at AFSPC and NASA installations participating in this project. This joint Test Report (JTR) documents the results of the laboratory and field testing as well as any test modifications made during the execution of the testing. The technical stakeholders agreed upon test procedure modifications documented in this document. This JTR is made available as a reference for future pollution prevention endeavors by other NASA centers, the Department of Defense and commercial users to minimize duplication of effort. All coating system candidates were tested using approved NASA and AFSPC standard coating systems as experimental controls. This study looked at eight alternative coating systems and two control coating systems and was divided into Phase I Screening Tests, Phase II Tests, and Field Testing. The Phase I Screening Tests were preliminary tests performed on all the selected candidate coating systems. Candidate coating systems that did not meet the acceptance criteria of the screening tests were eliminated from further testing. Phase I Screening Tests included: Ease of Application, Surface Appearance, Dry-To-Touch (Sanding), Accelerated Storage Stability, Pot Life (Viscosity), Cure Time (Solvent Rubs), Cleanability, Knife Test, Tensile (pull-off) Adhesion, and X-Cut Adhesion by Wet Tape After a review of the Phase I test results, four of the alternative coating systems showed substandard performance in relation to the Control Systems and were eliminated from the Phase II testing. Due to the interest of stakeholders and time constraints, however, all eight alternatives were subjected to the following Phase II tests, along with field testing at Stennis Space Center (SSC), Mississippi: Hypergol Compatibility, Liquid Oxygen Compatibility, 18-Month Marine Exposure (Gloss Retention, Color Retention, Blistering, Visual Corrosion, Creepage from Scribe, Heat Adhesion), and Field Exposure (6- and 12-month Evaluation for Coating Condition, Color Retention, Gloss Retention). The remaining four alternative coating systems determined to be the best viable alternatives were carried on to Phase II testing that included: Removability, Repairability, Abrasion Resistance, Gravelometer, Fungus Resistance, Accelerated Weathering, Mandrel Bend Flexibility, and Cyclic Corrosion Resistance. Of the systems that continued to Phase II, three (3) alternative coating systems meet the performance requirements as identified by stakeholders. Two (2) other systems, that were not included in Phase II testing, performed well enough on the 18-Month Marine Exposure, the primary requirement for NASA technical standard NASA-STD-5008, Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment, that they were also considered to be successful candidates. In total, five (5) alternative coating systems were approved for inclusion in the NASA-STD- 5008 Qualified Products List (QPL). The standard is intended to provide a common framework for consistent practices across NASA and is often used by other entities. The standard's QPL does not connote endorsement of the products by NASA, but lists those products that have been tested and meet the requirements as specified.
Instrumental color control for metallic coatings
NASA Astrophysics Data System (ADS)
Chou, W.; Han, Bing; Cui, Guihua; Rigg, Bryan; Luo, Ming R.
2002-06-01
This paper describes work investigating a suitable color quality control method for metallic coatings. A set of psychological experiments was carried out based upon 50 pairs of samples. The results were used to test the performance of various color difference formulae. Different techniques were developed by optimising the weights and/or the lightness parametric factors of colour differences calculated from the four measuring angles. The results show that the new techniques give a significant improvement compared to conventional techniques.
Environmentally Friendly Anticorrosion Coating for High Strength Fasteners
2011-01-01
phosphate Z24,zinc rich charcoal primer, black E-Coat. No red corrosion . Note: Cadmium controls were not included but expected to perform very well...also included as control . Several exposure environments were used including 500 hours B117 salt spray, 42 cycles GM9540P cyclic corrosion , and 1000...surface occurs, which limits corrosion . The potentiostat used here has an upper current density measurement of 1 x 10-3 A/cm2. Because the phosphate
NASA Astrophysics Data System (ADS)
Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati
2013-06-01
Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.
Effect of Carbon Coating on Li4TiO12 of Anode Material for Hybrid Capacitor.
Lee, Jong-Kyu; Lee, Byung-Gwan; Yoon, Jung-Rag
2015-11-01
The carbon-coated Li4Ti5O12 of anode material for hybrid capacitor was prepared by controlling carbonization time at 700 degrees C in nitrogen. With increasing of carbonization time, the discharge capacity and capacitance were decreased, while the equivalent series resistance was not changed remarkably. The rate capability and cycle performance of carbon-coated Li4Ti5O12 were larger than that of Li4Ti5O12. Carbon coating improved conductivity as well as Li-ion diffusion, and thus also resulted in good rate capabilities and cycle stability. The effects of carbon coating on the gas generation of hybrid capacitor were also discussed.
NASA Astrophysics Data System (ADS)
Shimazaki, Kazunori; Kawakita, Shirou; Imaizumi, Mitsuru; Kuwajima, Saburou; Sakurai, Keiichiro; Matsubara, Koji; Niki, Sigeru
2005-05-01
Optical coating on Cu(In, Ga)Se2 thin film solar cells, which have high radiation tolerance, is investigated in order to improve their radiative properties for thermal balance in space. Due to low thermal emissivity, the temperature of the CIGS solar cell is expected to exceed the allowable limit if no coating is applied. Evaporated single-layer coating of silicon dioxide and additional over-layer coatings on the CIGS solar cells increase the emissivity from 0.18 to 0.75. The coating with the over-layer coatings realizes higher emissivity with less thickness than that of the single SiO2 coating. In addition, optical coatings reflecting UV rays and infrared radiation are designed and evaporated on the cells to control solar input. The developed optical coatings could give the CIGS solar cells appropriate thermal radiative properties for space applications without any degradations of the cell performance.
Formation of Aluminide Coatings on Fe-Based Alloys by Chemical Vapor Deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ying; Pint, Bruce A; Cooley, Kevin M
2008-01-01
Aluminide and Al-containing coatings were synthesized on commercial ferritic (P91) and austenitic (304L) alloys via a laboratory chemical vapor deposition (CVD) procedure for rigorous control over coating composition, purity and microstructure. The effect of the CVD aluminizing parameters such as temperature, Al activity, and post-aluminizing anneal on coating growth was investigated. Two procedures involving different Al activities were employed with and without including Cr-Al pellets in the CVD reactor to produce coatings with suitable thickness and composition for coating performance evaluation. The phase constitution of the as-synthesized coatings was assessed with the aid of a combination of X-ray diffraction, electronmore » probe microanalysis, and existing phase diagrams. The mechanisms of formation of these CVD coatings on the Fe-based alloys are discussed, and compared with nickel aluminide coatings on Ni-base superalloys. In addition, Cr-Al pellets were replaced with Fe-Al metals in some aluminizing process runs and similar coatings were achieved.« less
Effects of silicon coating on bond strength of two different titanium ceramic to titanium.
Ozcan, Isil; Uysal, Hakan
2005-08-01
This study investigated the effect of silicon coating (SiO2) by magnetron sputtering on bond strength of two different titanium ceramics to titanium. Sixty cast titanium specimens were prepared following the protocol ISO 9693. Titanium specimens were divided into two test and control groups with 15 specimens in each. Test groups were silicon coated by the magnetron sputtering technique. Two titanium ceramics (Triceram and Duceratin) were applied on both test (coated) and control (uncoated) metal specimens. The titanium-ceramic specimens were subjected to a three point flexural test. The groups were compared for their bond strength. SEM and SEM/EDS analyses were performed on the delaminated titanium surfaces to ascertain bond failure. The mean bond strength of Ti-Duceratin, Ti-Triceram, Si-coated Ti-Duceratin and Si-coated Ti-Triceram were 17.22+/-2.43, 23.31+/-3.18, 23.21+/-3.81 and 24.91+/-3.70 MPa, respectively. While the improvement in bond strength was 30% for Duceratin, it was statistically insignificant for Triceram. An adhesive mode of failure was observed in the Duceratin control group. In the silicoated Duceratin specimen, the bonded ceramic boundaries were wider but less than in the silicoated Triceram specimen. In the coated Triceram specimen, the ceramic retained areas were frequent and the failure mode was generally cohesive. Silicon coating was significantly effective in both preventing titanium oxide layer formation and in improving bond strength for Duceratin. However, it was of less value for Triceram.
Skylab D024 thermal control coatings and polymeric films experiment
NASA Technical Reports Server (NTRS)
Lehn, William L.; Hurley, Charles J.
1992-01-01
The Skylab D024 Thermal Control Coatings and Polymeric Films Experiment was designed to determine the effects of the external Skylab space environment on the performance and properties of a wide variety of selected thermal control coatings and polymeric films. Three duplicate sets of thermal control coatings and polymeric films were exposed to the Skylab space environment for varying periods of time during the mission. The specimens were retrieved by the astronauts during extravehicular activities (EVA) and placed in hermetically sealed return containers, recovered, and returned to the Wright Laboratory/Materials Laboratory/WPAFB, Ohio for analysis and evaluation. Postflight analysis of the three sets of recovered thermal control coatings indicated that measured changes in specimen thermo-optical properties were due to a combination of excessive contamination and solar degradation of the contaminant layer. The degree of degradation experienced over-rode, obscured, and compromised the measurement of the degradation of the substrate coatings themselves. Results of the analysis of the effects of exposure on the polymeric films and the contamination observed are also presented. The D024 results were used in the design of the LDEF M0003-5 Thermal Control Materials Experiment. The results are presented here to call to the attention of the many other LDEF experimenters the wealth of directly related, low earth orbit, space environmental exposure data that is available from the ten or more separate experiments that were conducted during the Skylab mission. Results of these experiments offer data on the results of low altitude space exposure on materials recovered from space with exposure longer than typical STS experiments for comparison with the LDEF results.
Portable air pollution control equipment for the control of toxic particulate emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaurushia, A.; Odabashian, S.; Busch, E.
1997-12-31
Chromium VI (Cr VI) has been identified by the environmental regulatory agencies as a potent carcinogen among eleven heavy metals. A threshold level of 0.0001 lb/year for Cr VI emissions has been established by the California Air Resources Board for reporting under Assembly Bill 2588. A need for an innovative control technology to reduce fugitive emissions of Cr VI was identified during the Air Toxic Emissions Reduction Program at Northrop Grumman Military Aircraft Systems Division (NGMASD). NGMASD operates an aircraft assembly facility in El Segundo, CA. Nearly all of the aircraft components are coated with a protective coating (primer) priormore » to assembly. The primer has Cr VI as a component for its excellent corrosion resistance property. The complex assembly process requires fasteners which also need primer coating. Therefore, NGMASD utilizes High Volume Low Pressure (HVLP) guns for the touch-up spray coating operations. During the touch-up spray coating operations, Cr VI particles are atomized and transferred to the aircraft surface. The South Coast Air Quality Management District (SCAQMD) has determined that the HVLP gun transfers 65% of the paint particles onto the substrate and the remaining 35% are emitted as an overspray if air pollution controls are not applied. NGMASD has developed the Portable Air Pollution Control Equipment (PAPCE) to capture and control the overspray in order to reduce fugitive Cr VI emissions from the touch-up spray coating operations. A source test was performed per SCAQMD guidelines and the final report has been approved by the SCAQMD.« less
Preparation of Si-containing oxide coating and biomimetic apatite induction on magnesium alloy
NASA Astrophysics Data System (ADS)
Yu, Huijun; Dong, Qing; Dou, Jinhe; Pan, Yaokun; Chen, Chuanzhong
2016-12-01
Magnesium and its alloys are recently found important in the field of bone repairing for their ideal mechanical performance and excellent biocompatibility. Micro-arc oxidation (MAO) is a simple, controllable and efficient electrochemistry method that can prepare protective ceramic coatings on magnesium alloys. The properties of the MAO coating, such as thickness, microstructure, roughness and composition, can easily be controlled by adjusting the voltage, current density, duration or the electrolyte concentration. In this work, MAO coatings are prepared on ZK61 magnesium alloy at different voltages. The structure characteristics and element distributions of the coating are investigated by XRD, TEM, SEM and EPMA. The MAO samples are immersed in SBF for 7, 14 and 28 days respectively. The corrosion behaviors of the samples in SBF were also investigated by potentiodynamic polarization curves. The corrosion products were characterized by EDS and FT-IR. The MAO coated ZK61 alloy samples showed excellent corrosion resistance and bioactivity. The MAO method demonstrates a great potential in the preparation of degradable and bioactive orthopedic magnesium-based implants.
NASA Astrophysics Data System (ADS)
Zakharchenko, K. V.; Zubkov, V. P.; Kapustin, V. I.; Maksimovski, E. A.; Talanin, A. V.
2017-10-01
The article is devoted to the research on influence of coating technologies on stress-strain characteristics of a heterogeneous sample (the substrate-coating system) at periodic stress-controlled loading. The comparison of stress-strain characteristics of samples with three types of surface layer showed that the coatings lead to the change in stress at which inelastic phenomena appear in the material. Apart stress-strain characteristics of samples, microrelief on the samples’ surface and formation of a slipband in the grain structure of the coatings were studied in the experiment. It is stated that cold dynamic spraying, which is performed by centrifugal acceleration of particles in vacuum, makes it possible to obtain a coating with better strength and stress-strain characteristics in comparison with cladding.
Prasolova, L A; Trut, L N; Os'kina, I N; Gulevich, R G; Pliusnina, I Z; Vsevolodov, E B; Latypov, I F
2006-01-01
The effect of methyl supplements to the diet of pregnant homozygous (AAHH) female rats with agouti coat color mated with homozygous (aahh) males on the phenotypic modification of the coat color of their heterozygous offspring (AaHh) has been studied. Comparative morphological analysis of the main parameters of hair that determine coat color, including the total length of hairs of different types and the length of the upper black (eumelanin) and light (pheomelanin) parts of awn hairs has been performed. The pattern of pigment granule distribution among hair layers has been analyzed. The melanin content of the hair has been determined using electron spin resonance (ESR). Although all offspring have a typical agouti coat color (alternating black and light portions of hair), 39% of them have a darker coat color than control and other experimental rats have. The main differences between the offspring with darkened and standard coat colors are accounted for by the ratio between the eumelanin and pheomelanin portions of awn hairs. In darkened offspring, this ratio is significantly higher than in control rats. The possible mechanisms of the phenotypic modification of agouti coat color in experimental animals are discussed.
Turbomachinery Clearance Control
NASA Technical Reports Server (NTRS)
Chupp, Raymond E.; Hendricks, Robert C.; Lattime, Scott B.; Steinetz, Bruce M.; Aksit, Mahmut F.
2007-01-01
Controlling interface clearances is the most cost effective method of enhancing turbomachinery performance. Seals control turbomachinery leakages, coolant flows and contribute to overall system rotordynamic stability. In many instances, sealing interfaces and coatings are sacrificial, like lubricants, giving up their integrity for the benefit of the component. They are subjected to abrasion, erosion, oxidation, incursive rubs, foreign object damage (FOD) and deposits as well as extremes in thermal, mechanical, aerodynamic and impact loadings. Tribological pairing of materials control how well and how long these interfaces will be effective in controlling flow. A variety of seal types and materials are required to satisfy turbomachinery sealing demands. These seals must be properly designed to maintain the interface clearances. In some cases, this will mean machining adjacent surfaces, yet in many other applications, coatings are employed for optimum performance. Many seals are coating composites fabricated on superstructures or substrates that are coated with sacrificial materials which can be refurbished either in situ or by removal, stripping, recoating and replacing until substrate life is exceeded. For blade and knife tip sealing an important class of materials known as abradables permit blade or knife rubbing without significant damage or wear to the rotating element while maintaining an effective sealing interface. Most such tip interfaces are passive, yet some, as for the high-pressure turbine (HPT) case or shroud, are actively controlled. This work presents an overview of turbomachinery sealing. Areas covered include: characteristics of gas and steam turbine sealing applications and environments, benefits of sealing, types of standard static and dynamics seals, advanced seal designs, as well as life and limitations issues.
Water Vapor Permeation of Metal Oxide/Polymer Coated Plastic Films
NASA Astrophysics Data System (ADS)
Numata, Yukihiro; Oya, Toshiyuki; Kuwahara, Mitsuru; Ito, Katsuya
Barrier performance to water vapor permeation of ceramic coated layers deposited on flexible polymer films is of great interest to food packaging, medical device packaging and flat panel display industries. In this study, a new type film in which a ceramic layer is deposited on a polymer coated film was proposed for lower water vapor permeation. It is important how to control interfacial properties between each layer and film for good barrier performance. Several kinds of polymer coated materials were prepared for changing surface free energy of the films before and after depositing the ceramic layer. The ceramic layer, which is composed of mixed material of SiO2 and Al2O3, was adopted under the same conditions. The following results were obtained; 1) Water vapor permeation is not related to the surface energy of polymer coated films, 2) After depositing the ceramic layer, however, a strong correlation is observed between the water vapor permeation and surface free energy. 3) The phenomenon is considered that the polarity of the polymer layers plays a key role in changing the structure of ceramic coated layers.
Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding
NASA Astrophysics Data System (ADS)
Alat, Ece; Motta, Arthur T.; Comstock, Robert J.; Partezana, Jonna M.; Wolfe, Douglas E.
2016-09-01
In an attempt to develop an accident-tolerant fuel (ATF) that can delay the deleterious consequences of loss-of-coolant-accidents (LOCA), multilayer coatings were deposited onto ZIRLO® coupon substrates by cathodic arc physical vapor deposition (CA-PVD). Coatings were composed of alternating TiN (top) and Ti1-xAlxN (2-layer, 4-layer, 8-layer and 16-layer) layers. The minimum TiN top coating thickness and coating architecture were optimized for good corrosion and oxidation resistance. Corrosion tests were performed in static pure water at 360 °C and 18.7 MPa for up to 90 days. The optimized coatings showed no spallation/delamination and had a maximum of 6 mg/dm2 weight gain, which is 6 times smaller than that of a control sample of uncoated ZIRLO® which showed a weight gain of 40.2 mg/dm2. The optimized architecture features a ∼1 μm TiN top layer to prevent boehmite phase formation during corrosion and a TiN/TiAlN 8-layer architecture which provides the best corrosion performance.
Improvement of arthroscopic cartilage stiffness probe using amorphous diamond coating.
Töyräs, Juha; Korhonen, Rami K; Voutilainen, Tanja; Jurvelin, Jukka S; Lappalainen, Reijo
2005-04-01
During arthroscopic evaluation of articular cartilage unstable contact and even slipping of the measurement instrument on the tissue surface may degrade the reproducibility of the measurement. The main aim of the present study was to achieve more stable contact by controlling the friction between articular cartilage surface and the arthroscopic cartilage stiffness probe (Artscan 200, Artscan Oy, Helsinki, Finland) using amorphous diamond (AD) coating. In order to obtain surfaces with different average roughnesses (R(a)), polished stainless steel disks were coated with AD by using the filtered pulsed arc-discharge (FPAD) method. Dynamic coefficient of friction (mu) between the articular cartilage (n = 8) and the coated plates along one non-coated plate was then determined. The friction between AD and cartilage could be controlled over a wide range (mu = 0.027-0.728, p < 0.05, Wilcoxon test) by altering the roughness. Possible deterioration of cartilage was investigated by measuring surface roughness after friction tests and comparing it with the roughness of the adjacent, untested samples (n = 8). Importantly, even testing with the roughest AD (R(a) = 1250 nm) did not damage articular surface. On the basis of the friction measurements, a proper AD coating was selected for the stiffness probe. The performance of coated and non-coated probe was compared by measuring bovine osteochondral samples (n = 22) with both instruments. The reproducibility of the stiffness measurements was significantly better with the AD-coated probe (CV% = 4.7) than with the uncoated probe (CV% = 8.2). To conclude, AD coating can be used to safely control dynamic friction with articular surface. Sufficient friction between articular surface and reference plate of the arthroscopic probe improves significantly reproducibility of the stiffness measurements. (c) 2005 Wiley Periodicals, Inc.
Evaluation of Chemical Coating Processes for AXAF
NASA Technical Reports Server (NTRS)
Engelhaupt, Darell; Ramsey, Brian; Mendrek, Mitchell
1998-01-01
The need existed at MSFC for the development and fabrication of radioisotope calibration sources of cadmium 109 and iron 55 isotopes. This was in urgent response to the AXA-F program. Several issues persisted in creating manufacturing difficulties for the supplier. In order to meet the MSFC requirements very stringent control needed to be maintained for the coating quality, specific activity and thickness. Due to the difficulties in providing the precisely controlled devices for testing, the delivery of the sources was seriously delayed. It became imperative that these fabrication issues be resolved to avoid further delays in this AXA-F observatory key component. The objectives are: 1) Research and provide expert advice on coating materials and procedures. 2) Research and recommend solutions to problems that have been experienced with the coating process. 3) Provide recommendations on the selection and preparation of substrates. 4) Provide consultation on the actual coating process including the results of the qualification and acceptance test programs. 5) Perform independent tests at UAH or MSFC as necessary.
NASA Astrophysics Data System (ADS)
Xu, Nuo; Zhu, Meiping; Sun, Jian; Chai, Yingjie; Kui, Yi; Zhao, Yuanan; Shao, Jianda
2018-02-01
Two kinds of polarizer coatings were prepared by electron beam evaporation, using HfO2-SiO2 mixture and HfO2 as the high-refractive-index materials, respectively. The HfO2-SiO2 mixture layer was implemented by coevaporating SiO2 and metal Hf, the materials were deposited at an oxygen atmosphere to achieve stoichiometric coatings. The certain HfO2 and SiO2 content ratio is controlled by adjusting the deposition rate of HfO2 and SiO2 using individual quartz crystal monitor. The spectral performance, surface and interfacial properties, as well as the laser-induced damage performance were studied and compared. Comparing with polarizer coating using HfO2 as high-refractive-index material, the polarizer coating using HfO2-SiO2 mixture as high-refractive-index material shows better performance with broader polarizing bandwidth, lower surface roughness, better interfacial property while maintaining high laser-induced damage threshold.
Radunovic, Milena; De Colli, Marianna; De Marco, Patrizia; Di Nisio, Chiara; Fontana, Antonella; Piattelli, Adriano; Cataldi, Amelia; Zara, Susi
2017-08-01
Collagen membranes are used in oral surgery for bone defects treatment acting as a barrier that does not allow the invasion of soft tissue into the growing bone. To improve biocompatibility collagen membranes were coated with graphene oxide (GO), a graphene derivative. The aim of this study was to investigate the biocompatibility of GO coated collagen membranes on human dental pulp stem cells (DPSCs) focusing on biomaterial cytotoxicity, ability to promote DPSCs differentiation process and to control inflammation event induction. DPSCs were cultured on uncoated membranes and on both 2 and 10 μg mL -1 GO coated membranes up to 28 days. Alamar blue and LDH cytotocicity assay, PGE2 ELISA assay, real time RT-PCR for RUNX2, BMP2, SP7, TNFα and COX2 genes expression were performed. Proliferation is higher on GO coated membranes at days 14 and 28. LDH assay evidences no cytotoxicity. BMP2 and RUNX2 expression is higher on coated membranes, BMP2 at early and RUNX2 and SP7 at late experimental times. PGE2 levels are lower on GO coated membranes at days 14 and 28, both TNFα and COX2 expression is significantly decreased when GO is applied. GO coated membranes are not toxic for DPSCs, induce a faster DPSCs differentiation into odontoblasts/osteoblasts and may represent good alternative to conventional membranes thus ensuring more efficient bone formation and improving the clinical performance. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2312-2320, 2017. © 2017 Wiley Periodicals, Inc.
Antibacterial, anti-inflammatory and neuroprotective layer-by-layer coatings for neural implants.
Zhang, Zhiling; Nong, Jia; Zhong, Yinghui
2015-08-01
Infection, inflammation, and neuronal loss are common issues that seriously affect the functionality and longevity of chronically implanted neural prostheses. Minocycline hydrochloride (MH) is a broad-spectrum antibiotic and effective anti-inflammatory drug that also exhibits potent neuroprotective activities. In this study, we investigated the development of biocompatible thin film coatings capable of sustained release of MH for improving the long term performance of implanted neural electrodes. We developed a novel magnesium binding-mediated drug delivery mechanism for controlled and sustained release of MH from an ultrathin hydrophilic layer-by-layer (LbL) coating and characterized the parameters that control MH loading and release. The anti-biofilm, anti-inflammatory and neuroprotective potencies of the LbL coating and released MH were also examined. Sustained release of physiologically relevant amount of MH for 46 days was achieved from the Mg(2+)-based LbL coating at a thickness of 1.25 μm. In addition, MH release from the LbL coating is pH-sensitive. The coating and released MH demonstrated strong anti-biofilm, anti-inflammatory, and neuroprotective potencies. This study reports, for the first time, the development of a bioactive coating that can target infection, inflammation, and neuroprotection simultaneously, which may facilitate the translation of neural interfaces to clinical applications.
Antibacterial, anti-inflammatory and neuroprotective layer-by-layer coatings for neural implants
NASA Astrophysics Data System (ADS)
Zhang, Zhiling; Nong, Jia; Zhong, Yinghui
2015-08-01
Objective. Infection, inflammation, and neuronal loss are common issues that seriously affect the functionality and longevity of chronically implanted neural prostheses. Minocycline hydrochloride (MH) is a broad-spectrum antibiotic and effective anti-inflammatory drug that also exhibits potent neuroprotective activities. In this study, we investigated the development of biocompatible thin film coatings capable of sustained release of MH for improving the long term performance of implanted neural electrodes. Approach. We developed a novel magnesium binding-mediated drug delivery mechanism for controlled and sustained release of MH from an ultrathin hydrophilic layer-by-layer (LbL) coating and characterized the parameters that control MH loading and release. The anti-biofilm, anti-inflammatory and neuroprotective potencies of the LbL coating and released MH were also examined. Main results. Sustained release of physiologically relevant amount of MH for 46 days was achieved from the Mg2+-based LbL coating at a thickness of 1.25 μm. In addition, MH release from the LbL coating is pH-sensitive. The coating and released MH demonstrated strong anti-biofilm, anti-inflammatory, and neuroprotective potencies. Significance. This study reports, for the first time, the development of a bioactive coating that can target infection, inflammation, and neuroprotection simultaneously, which may facilitate the translation of neural interfaces to clinical applications.
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen J.; Yuko, James R.
2010-01-01
The active thermal control system (ATCS) of the crew exploration vehicle (Orion) uses radiator panels with fluid loops as the primary system to reject heat from spacecraft. The Lockheed Martin (LM) baseline Orion ATCS uses eight-panel radiator coated with silver Teflon coating (STC) for International Space Station (ISS) missions, and uses seven-panel radiator coated with AZ 93 white paint for lunar missions. As an option to increase the radiator area with minimal impact on other component locations and interfaces, the reduced-curvature (RC) radiator concept was introduced and investigated here for the thermal perspective. Each RC radiator panel has 15 percent more area than each Lockheed Martin (LM) baseline radiator panel. The objective was to determine if the RC seven-panel radiator concept could be used in the ATCS for both ISS and lunar missions. Three radiator configurations the LM baseline, an RC seven-panel radiator with STC, and an RC seven-panel radiator with AZ 93 coating were considered in the ATCS for ISS missions. Two radiator configurations the LM baseline and an RC seven-panel radiator with AZ 93 coating were considered in the ATCS for lunar missions. A Simulink/MATLAB model of the ATCS was used to compute the ATCS performance. Some major hot phases on the thermal timeline were selected because of concern about the large amount of water sublimated for thermal topping. It was concluded that an ATCS with an RC seven-panel radiator could be used for both ISS and lunar missions, but with two different coatings STC for ISS missions and AZ 93 for lunar missions to provide performance similar to or better than that of the LM baseline ATCS.
NASA Technical Reports Server (NTRS)
Lomness, Janice K.; Calle, Luz Marina
2006-01-01
Super Koropon primer (MB0125-055) plays a significant role in the corrosion protection of areas throughout the Orbiter. Because the Shuttle Program relies so heavily upon the performance of the Koropon primer, it is necessary to fully understand all aspects of the behavior of the coating. One area where little understanding of the Koropon primer still exists is the level of risk associated with age related degradation. Recently, efforts were undertaken to better understand the age life of the Koropon primer and to gain some insight into the aging process of this coating. In that study, an aluminum access panel from the Orbiter Enterprise was used to investigate the performance of the old Koropon film. A control panel was also used to study the performance of new Koropon coating. Preliminary investigations into the performance of aged Super Koropon primer indicated a significant decrease in corrosion protection. This investigation serves as an example of how Focused Ion Beam/Scanning Microscopy can be used to characterize the changes that occur as coatings age.
Excimer laser decoating of chromium titanium aluminium nitride to facilitate re-use of cutting tools
NASA Astrophysics Data System (ADS)
Sundar, M.; Whitehead, D.; Mativenga, P. T.; Li, L.; Cooke, K. E.
2009-11-01
This work reports on the technical feasibility and establishment of a process window for removing chromium titanium aluminium nitride (CrTiAlN) coating from steel substrates by laser irradiation. CrTiAlN coating has high hardness and oxidation resistance, with applications for use with cutting tools. The motivation for removing such coatings is to facilitate re-use of tooling by enabling regrinding or reshaping of a worn tool and hence promote sustainable material usage. In this work, laser decoating was performed using an excimer laser. The effect of laser fluence, number of pulses, frequency, scanning speed and laser beam overlap on the decoating performance was investigated in detail. The minimum threshold laser fluence for removing the CrTiAlN coating was lower than that of the steel substrate and this factor is beneficial in controlling the decoating process. Successful laser removal of CrTiAlN coating without noticeable damage to the steel substrate was demonstrated.
Atmospheric Plasma Spraying Low-Temperature Cathode Materials for Solid Oxide Fuel Cells
NASA Astrophysics Data System (ADS)
Harris, J.; Kesler, O.
2010-01-01
Atmospheric plasma spraying (APS) is attractive for manufacturing solid oxide fuel cells (SOFCs) because it allows functional layers to be built rapidly with controlled microstructures. The technique allows SOFCs that operate at low temperatures (500-700 °C) to be fabricated by spraying directly onto robust and inexpensive metallic supports. However, standard cathode materials used in commercial SOFCs exhibit high polarization resistances at low operating temperatures. Therefore, alternative cathode materials with high performance at low temperatures are essential to facilitate the use of metallic supports. Coatings of lanthanum strontium cobalt ferrite (LSCF) were fabricated on steel substrates using axial-injection APS. The thickness and microstructure of the coating layers were evaluated, and x-ray diffraction analysis was performed on the coatings to detect material decomposition and the formation of undesired phases in the plasma. These results determined the envelope of plasma spray parameters in which coatings of LSCF can be manufactured, and the range of conditions in which composite cathode coatings could potentially be manufactured.
Qiu, M C; Yang, L W; Qi, X; Li, Jun; Zhong, J X
2010-12-01
Highly ordered NiO coated Si nanowire array films are fabricated as electrodes for a high performance lithium ion battery via depositing Ni on electroless-etched Si nanowires and subsequently annealing. The structures and morphologies of as-prepared films are characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. When the potential window versus lithium was controlled, the coated NiO can be selected to be electrochemically active to store and release Li+ ions, while highly conductive crystalline Si cores function as nothing more than a stable mechanical support and an efficient electrical conducting pathway. The hybrid nanowire array films exhibit superior cyclic stability and reversible capacity compared to that of NiO nanostructured films. Owing to the ease of large-scale fabrication and superior electrochemical performance, these hybrid nanowire array films will be promising anode materials for high performance lithium-ion batteries.
Dereymaker, Aswin; Pelgrims, Jirka; Engelen, Frederik; Adriaensens, Peter; Van den Mooter, Guy
2017-04-03
This study aimed to investigate the pharmaceutical performance of an indomethacin-polyvinylpyrrolidone (PVP) glass solution applied using fluid bed processing as a layer on inert sucrose spheres and subsequently top-coated with a release rate controlling membrane consisting of either ethyl cellulose or Eudragit RL. The implications of the addition of a pore former (PVP) and the coating medium (ethanol or water) on the diffusion and release behavior were also considered. In addition, the role of a charge interaction between drug and controlled release polymer on the release was investigated. Diffusion experiments pointed to the influence of pore former concentration, rate controlling polymer type, and coating solvent on the permeability of the controlled release membranes. This can be translated to drug release tests, which show the potential of diffusion tests as a preliminary screening test and that diffusion is the main factor influencing release. Drug release tests also showed the effect of coating layer thickness. A charge interaction between INDO and ERL was demonstrated, but this had no negative effect on drug release. The higher diffusion and release observed in ERL-based rate controlling membranes was explained by a higher hydrophilicity, compared to EC.
NASA Technical Reports Server (NTRS)
Kessel, Kurt R.
2016-01-01
Determine the suitability of trivalent chromium conversion coatings that meet the requirements of MIL-DTL-5541, Type II, for use in applications where high-frequency electrical performance is important. Evaluate the ability of hexavalent chrome free pretreated aluminum to form adequate EMI seals, and maintain that seal while being subjected to harsh environmental conditions. Assess the performance of trivalent chromium pretreatments against a known control hexavalent chrome pretreatment before and after they have been exposed to a set of environmental conditions. It is known that environmental testing causes a decrease in shielding effectiveness when hexavalent chrome pretreatments are used (Alodine 1200s). Need to determine how shielding effectiveness will be affected with the use of hexavalent chrome free pretreatments. Performance will be assessed by evaluating shielding effectiveness (SE) test data from a variety of test samples comprised of different aluminum types and/or conversion coatings. The formation of corrosion will be evaluated between the mating surfaces and gasket to assess the corrosion resistant properties of the pretreatments, comparing the hexavalent control to the hexavalent chrome free pretreatments.
NASA Technical Reports Server (NTRS)
Ivosevic, M.; Knight, R.; Kalidindi, S. R.; Palmese, G. R.; Sutter, J. K.
2003-01-01
The use of polymer matrix composites (PMCs) in the gas flow path of advanced turbine engines offers significant benefits for aircraft engine performance but their useful lifetime is limited by their poor erosion resistance. High velocity oxy-fuel (HVOF) sprayed polymer/cermet functionally graded (FGM) coatings are being investigated as a method to address this technology gap by providing erosion and oxidation protection to polymer matrix composites. The FGM coating structures are based on a polyimide matrix filled with varying volume fractions of WC-Co. The graded coating architecture was produced using a combination of internal and external feedstock injection, via two computer-controlled powder feeders and controlled substrate preheating. Porosity, coating thickness and volume fraction of the WC-Co filler retained in the coatings were determined using standard metallographic techniques and computer image analysis. The pull-off strength (often referred to as the adhesive strength) of the coatings was evaluated according to the ASTM D 4541 standard test method, which measured the greatest normal tensile force that the coating could withstand. Adhesive/cohesive strengths were determined for three different types of coating structures and compared based on the maximum indicated load and the surface area loaded. The nature and locus of the fractures were characterized according to the percent of adhesive and/or cohesive failure, and the tested interfaces and layers involved were analyzed by Scanning Electron Microscopy.
Development of silane-hydrolysate binder for UV-resistant thermal control coatings
NASA Technical Reports Server (NTRS)
Patterson, W. J.
1981-01-01
Detailed characterizaton and formulation studies were performed on a methyltriakoxysilane hydrolysate as a binder for thermal control coatings. The binder was optimized by varying hydrolysis temperature, time, catalyst type, and water concentration. The candidate coating formulations, based on this binder with TiO2 pigment, were optimized via a detailed series of sprayed test panels that included the parameters of binder/pigment ratio, ethanol content, pigment particle size, coating thickness and cure conditions. A typical optimized coating was prepared by acetic acid catalyzed hydrolysis of methyltriethoxysilane with 3.25 mol-equivalents of water over a 24 hour period at room temperature. The resulting hydrolysate was directly mixed with pre-milled TiO2 (12 grams pigment/26 grams binder) to yield a sprayable consistency. Panels were sprayed to result in a nominal cure coating thickness of 2 mils. Cure was affected by air drying for 24 hr at room temperature plus 72 hr at 150 F. These coatings are typically extremely tough and abrasion-resistant, with an absorptance (alpha) of 0.20 and emittance (e) of 0.89. No significant coating damage was observed in the mandrel bend test, even after exposure to thermal cycling from -160 to 160 F. Vacuum exposure of the coatings for 930 hours at 1 equivalent UV sun resulted in no visible degradation and no significant increase in absorptance.
Metrology for Fuel Cell Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stocker, Michael; Stanfield, Eric
2015-02-04
The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. Themore » objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.« less
The effects of grooming on a copper ablative coating: a six year study.
Tribou, Melissa; Swain, Geoffrey
2017-07-01
More than 90% of US Navy Ships are coated with copper ablative paint. These ships may spend long periods of time pier-side, which makes them vulnerable to fouling. Hull grooming has been proposed as a means of maintaining the coatings in an operational condition. This study investigated the effect of grooming on a copper ablative coating exposed statically for six years. Grooming was performed weekly or monthly with controls left ungroomed. The fouling community was visually assessed, dry film thickness measurements were taken to monitor coating loss, and the copper leaching rates were measured. It was found that weekly and monthly groomed surfaces reduced fouling, and the ungroomed surfaces became fully fouled. Coating loss was similar for weekly, monthly and ungroomed surfaces. The results suggest that grooming is a viable method for maintaining copper ablative coatings in a fouling-free condition without adverse increases in the total copper output.
Ramirez-Arcos, Sandra; DiFranco, Caesar; McIntyre, Terri; Goldman, Mindy
2017-09-01
Canadian Blood Services screens 100% of platelet concentrates (PCs) for bacterial contamination with the BacT/ALERT system. Quality-control sterility testing of 1% (≥10 units) of outdated PCs is performed monthly. Data from routine screening, quality-control testing, and septic reactions obtained from 2010 to 2016 are presented herein. In total, 601,988 buffy coat PC pools and 186,737 apheresis PCs were routinely screened with aerobic cultures over 6 years. Outdate quality-control testing of 8535 buffy coat and 8498 apheresis PCs was performed using aerobic and anaerobic cultures during the same period. Results were classified as "true-positives" when the same bacterium was isolated in initial and confirmatory cultures or "false-negatives" when bacteria were missed in early screening and were captured during quality-control sterility testing or through investigation of sepsis cases. During routine screening, the true-positive rates between buffy coat (0.94 per 10,000) and apheresis (0.96 per 10,000) PCs were similar (p = 0.9473). Seventy-five bacteria isolated during PC screening included Gram-positive and Gram-negative organisms. Six false-negative septic reactions were reported that implicated coagulase-negative staphylococci (n = 3) and Staphylococcus aureus (n = 3) for approximate rates of 1 per 100,000 transfusion reactions and 1 per 500,000 fatalities. During quality-control testing, the false-negative rates between buffy coat (8 per 10,000) and apheresis (9 per 10,000) PCs were similar (p = 0.7897). All 15 quality-control isolates were Gram-positive bacteria. The current bacterial screening protocol is efficacious for identifying Gram-negative bacteria. However, the high proportion of Gram-positive organisms detected on outdate quality-control testing and septic transfusion events demonstrates a residual safety risk that merits further intervention. © 2017 AABB.
Anti-reflection coatings on large area glass sheets
NASA Technical Reports Server (NTRS)
Pastirik, E.
1980-01-01
Antireflective coatings which may be suitable for use on the covers of photovoltaic solar modules can be easily produced by a dipping process. The coatings are applied to glass by drawing sheets of glass vertically out of dilute aqueous sodium silicate solutions at a constant speed, allowing the adherent liquid film to dry, then exposing the dried film to concentrated sulfuric acid, followed by a water rinse and dry. The process produces coatings of good optical performance (96.7 percent peak transmission at 0.540 mu M wavelength) combined with excellent stain and soil resistance, and good resistance to abrasion. The process is reproduceable and easily controlled.
NASA Astrophysics Data System (ADS)
Dong, Siyu; Xie, Lingyun; He, Tao; Jiao, Hongfei; Bao, Ganghua; Zhang, Jinlong; Wang, Zhanshan; Cheng, Xinbin
2017-09-01
For the sol-gel method, it is still challenging to achieve excellent spectral performance when preparing antireflection (AR) coating by this way. The difficulty lies in controlling the film thickness accurately. To correct the thickness error of sol-gel coating, a hybrid approach that combined conventional sol-gel process with ion-beam etching technology was proposed in this work. The etching rate was carefully adjusted and calibrated to a relatively low value for removing the redundant material. Using atomic force microscope (AFM), it has been demonstrated that film surface morphology will not be changed in this process. After correcting the thickness error, an AR coating working at 1064 nm was prepared with transmittance higher than 99.5%.
The effect of number of nano structural coating containing Ti and Ru created by electro deposition
NASA Astrophysics Data System (ADS)
Ardi, Simin; Asl, Shahin Khamene; Hoseini, Mirghasem; Pouladvand, Iman
2018-01-01
TiO2 and RuO2 have many applications in the field of photocataliysis, environmental protection, high charge storage capacity devices and etc. Electro deposition offers advantages such as rigid control of film thickness, uniformity and deposition rate. Electro deposition of RuO2-TiO2 coatings on Ti substrates was performed via hydrolysis by electro generated based of TiCl4 and RuCl3 salts dissolved in mixed methyl alcohol-water solvent in presence of hydrogen peroxide for one, three and six layer. The obtained coatings have been heated in electric furnace at 500 ˚C. Results show that coating with six layers on Ti substrate is the useful coating
HVOF-Sprayed Nano TiO2-HA Coatings Exhibiting Enhanced Biocompatibility
NASA Astrophysics Data System (ADS)
Lima, R. S.; Dimitrievska, S.; Bureau, M. N.; Marple, B. R.; Petit, A.; Mwale, F.; Antoniou, J.
2010-01-01
Biomedical thermal spray coatings produced via high-velocity oxy-fuel (HVOF) from nanostructured titania (n-TiO2) and 10 wt.% hydroxyapatite (HA) (n-TiO2-10wt.%HA) powders have been engineered as possible future alternatives to HA coatings deposited via air plasma spray (APS). This approach was chosen due to (i) the stability of TiO2 in the human body (i.e., no dissolution) and (ii) bond strength values on Ti-6Al-4V substrates more than two times higher than those of APS HA coatings. To explore the bioperformance of these novel materials and coatings, human mesenchymal stem cells (hMSCs) were cultured from 1 to 21 days on the surface of HVOF-sprayed n-TiO2 and n-TiO2-10 wt.%HA coatings. APS HA coatings and uncoated Ti-6Al-4V substrates were employed as controls. The profiles of the hMSCs were evaluated for (i) cellular proliferation, (ii) biochemical analysis of alkaline phosphatase (ALP) activity, (iii) cytoskeleton organization (fluorescent/confocal microscopy), and (iv) cell/substrate interaction via scanning electron microscopy (SEM). The biochemical analysis indicated that the hMSCs cultured on n-TiO2-10 wt.%HA coatings exhibited superior levels of bioactivity than hMSCs cultured on APS HA and pure n-TiO2 coatings. The cytoskeleton organization demonstrated a higher degree of cellular proliferation on the HVOF-sprayed n-TiO2-10wt.%HA coatings when compared to the control coatings. These results are considered promising for engineering improved performance in the next generation of thermally sprayed biomedical coatings.
Adhesion of epoxy primer to hydrotalcite conversion coated AA2024
NASA Astrophysics Data System (ADS)
Leggat, Robert Benton, III
Hydrotalcite-based (HT) conversion coatings are being developed as an environmentally benign alternative to chromate conversion coatings (CCC). Accelerated exposure tests were conducted on epoxy primed, HT-modified AA2024 to gauge service performance. HT-based conversion coatings did not perform as well as the CCC when used with an epoxy primer. The current HT chemistries are optimized for stand-alone corrosion protection, however additional research into the primer/HT interactions is necessary before they can be implemented within a coating scheme. The relative contribution of mechanical and physico-chemical interactions in controlling adhesion has been investigated in this study. Practical adhesion tests were used to assess the dry and wet bond strength of epoxy primer on HT coatings using the pull-off tensile strength (POTS) as the figure of merit. The practical adhesion of HT coated samples generally fell between that observed for the CCC and bare AA2024. Laboratory testing was done to assess the physical and chemical properties of HT coatings. Contact angle measurements were performed using powders representative of different HT chemistries to evaluate the dispersive and acid-base character of the surface. The wet POTS correlated with the electrodynamic (dipole + dispersive) parameter of the surface tension. The HT surfaces were found to be predominantly basic. Given the basicity of epoxy, these results indicate that increasing the acidic character of HT coatings may increase the adhesion performance. This was supported by electrokinetic measurements in which the dry POTS was found to increase with decreasing conversion coating iso-electric point. The correlations with the dry and wet state adhesion are interpreted as indicating that dry state adhesion is optimized by minimizing unfavorable polar interactions between the basic epoxy and HT interfaces. Wet state adhesion, where polar interactions are disrupted, is dictated by non-polar bonding. FTIR spectroscopy suggested that covalent between HT coatings and epoxy primers may occur, but could not definitively indicate so. Present results suggest that the limited chemical interactions, as governed by substrate wetting and acid-base interactions between the epoxy and HT, have minimized the possible mechanical interactions between the resin and the conversion coating.
Microencapsulation of Self Healing Agents for Corrosion Control Coatings
NASA Technical Reports Server (NTRS)
Jolley, S. T.; Li, W.; Buhrow, J. W.; Calle, L. M.
2011-01-01
Corrosion, the environmentally induced degradation of materials, is a very costly problem that has a major impact on the global economy. Results from a 2-year breakthrough study released in 2002 by the U.S. Federal Highway Administration (FHWA) showed that the total annual estimated direct cost associated with metallic corrosion in nearly every U.S. industry sector was a staggering $276 billion, approximately 3.1% of the nation's Gross Domestic Product (GOP). Corrosion protective coatings are widely used to protect metallic structures from the detrimental effects of corrosion but their effectiveness can be seriously compromised by mechanical damage, such as a scratch, that exposes the metallic substrate. The incorporation of a self healing mechanism into a corrosion control coating would have the potential to significantly increase its effectiveness and useful lifetime. This paper describes work performed to incorporate a number of microcapsule-based self healing systems into corrosion control coatings. The work includes the preparation and evaluation of self-healing systems based on curable epoxy, acrylate, and siloxane resins, as well as, microencapsulated systems based on passive, solvent born, healing agent delivery. The synthesis and optimization of microcapsule-based self healing systems for thin coating (less than 100 micron) will be presented.
Tian, Ruiyuan; Liu, Haiqiang; Jiang, Yi; Chen, Jiankun; Tan, Xinghua; Liu, Guangyao; Zhang, Lina; Gu, Xiaohua; Guo, Yanjun; Wang, Hanfu; Sun, Lianfeng; Chu, Weiguo
2015-06-03
Application of LiFePO4 (LFP) to large current power supplies is greatly hindered by its poor electrical conductivity (10(-9) S cm(-1)) and sluggish Li+ transport. Carbon coating is considered to be necessary for improving its interparticle electronic conductivity and thus electrochemical performance. Here, we proposed a novel, green, low cost and controllable CVD approach using solid glucose as carbon source which can be extended to most cathode and anode materials in need of carbon coating. Hydrothermally synthesized LFP nanorods with optimized thickness of carbon coated by this recipe are shown to have superb high-rate performance, high energy, and power densities, as well as long high-rate cycle lifetime. For 200 C (18s) charge and discharge, the discharge capacity and voltage are 89.69 mAh g(-1) and 3.030 V, respectively, and the energy and power densities are 271.80 Wh kg(-1) and 54.36 kW kg(-1), respectively. The capacity retention of 93.0%, and the energy and power density retention of 93.6% after 500 cycles at 100 C were achieved. Compared to the conventional carbon coating through direct mixing with glucose (or other organic substances) followed by annealing (DMGA), the carbon phase coated using this CVD recipe is of higher quality and better uniformity. Undoubtedly, this approach enhances significantly the electrochemical performance of high power LFP and thus broadens greatly the prospect of its applications to large current power supplies such as electric and hybrid electric vehicles.
NASA Astrophysics Data System (ADS)
Tan, Yang; Srinivasan, Vasudevan; Nakamura, Toshio; Sampath, Sanjay; Bertrand, Pierre; Bertrand, Ghislaine
2012-09-01
The properties and performance of plasma-sprayed thermal barrier coatings (TBCs) are strongly dependent on the microstructural defects, which are affected by starting powder morphology and processing conditions. Of particular interest is the use of hollow powders which not only allow for efficient melting of zirconia ceramics but also produce lower conductivity and more compliant coatings. Typical industrial hollow spray powders have an assortment of densities resulting in masking potential advantages of the hollow morphology. In this study, we have conducted process mapping strategies using a novel uniform shell thickness hollow powder to control the defect microstructure and properties. Correlations among coating properties, microstructure, and processing reveal feasibility to produce highly compliant and low conductivity TBC through a combination of optimized feedstock and processing conditions. The results are presented through the framework of process maps establishing correlations among process, microstructure, and properties and providing opportunities for optimization of TBCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strecker, Ernst-Peter; Gabelmann, Andreas; Boos, Irene
1998-11-15
Purpose: Polymer-coated, dexamethasone (DXM)-releasing stents were tested in order to assess the efficacy of DXM released locally for the prevention of stent restenosis due to intimal hyperplasia. Methods: Strecker stents coated with a biodegradable membrane containing DXM were implanted percutaneously into the femoral artery in 14 dogs. The contralateral artery received a conventional non-coated stent serving as control. The drugs are eluted by degradation of the carrier membrane. Follow-up intraarterial digital subtraction angiography (DSA) was obtained at 3, 6, 9, 12, and 24 weeks with subsequent autopsy. Specimens for gross and microscopic pathology were obtained and histomorphometry was performed. Results:more » Four of 14 DXM-coated stents showed thrombotic occlusion within the first 3 weeks; ten DXM-coated stents remained patent. At follow-up DSA, DXM-coated stents showed a significantly wider lumen than the non-coated stents. At morphometry there was less intimal hyperplasia over DXM-coated stents than over non-coated stents (p < 0.05). Conclusion: DXM-coated stents reduce neointimal hyperplasia in dogs when compared with non-coated stents.« less
Gelfi, Marcello; Solazzi, Luigi; Poli, Sandro
2017-03-06
This study is a detailed failure analysis of galvanized high carbon steel wires, which developed coating cracks during the torsion test performed as a quality control at the end of the manufacturing process. Careful visual inspections showed that the cracks are already present in the coating before the torsion test. In order to explain the origin of these cracks, systematic metallographic investigations were performed by means of optical and scanning electron microscope on both the wires and the rods that have been cold drawn to produce the wire. The chemical composition of the galvanized coatings was evaluated by means of energy dispersive spectroscopy. Micro bidimensional X-ray diffraction experiments were also performed to measure the residual stresses in the galvanized coating. The results showed that the failure is related to two main factors: the relatively high content of silicon in the steel and the unsuitable cooling rate of the rods at the exit from the galvanizing bath. The mechanism proposed to explain the origin of the defects was supported by Finite Elements Methods simulations and verified with in-plant tests. The proper countermeasures were then applied and the problem successfully solved.
In vitro performance of ceramic coatings obtained by high velocity oxy-fuel spray.
Melero, H; Garcia-Giralt, N; Fernández, J; Díez-Pérez, A; Guilemany, J M
2014-01-01
Hydroxyapatite coatings obtained by plasma-spraying have been used for many years to improve biological performance of bone implants, but several studies have drawn attention to the problems arising from high temperatures and the lack of mechanical properties. In this study, plasma-spraying is substituted by high velocity oxy-fuel (HVOF) spray, with lower temperatures reached, and TiO2 is added in low amounts to hydroxyapatite in order to improve the mechanical properties. Four conditions have been tested to evaluate which are those with better biological properties. Viability and proliferation tests, as well as differentiation assays and morphology observation, are performed with human osteoblast cultures onto the studied coatings. The hydroxyapatite-TiO2 coatings maintain good cell viability and proliferation, especially the cases with higher amorphous phase amount and specific surface, and promote excellent differentiation, with a higher ALP amount for these cases than for polystyrene controls. Observation by SEM corroborates this excellent behaviour. In conclusion, these coatings are a good alternative to those used industrially, and an interesting issue would be improving biological behaviour of the worst cases, which in turn show the better mechanical properties.
Gelfi, Marcello; Solazzi, Luigi; Poli, Sandro
2017-01-01
This study is a detailed failure analysis of galvanized high carbon steel wires, which developed coating cracks during the torsion test performed as a quality control at the end of the manufacturing process. Careful visual inspections showed that the cracks are already present in the coating before the torsion test. In order to explain the origin of these cracks, systematic metallographic investigations were performed by means of optical and scanning electron microscope on both the wires and the rods that have been cold drawn to produce the wire. The chemical composition of the galvanized coatings was evaluated by means of energy dispersive spectroscopy. Micro bidimensional X-ray diffraction experiments were also performed to measure the residual stresses in the galvanized coating. The results showed that the failure is related to two main factors: the relatively high content of silicon in the steel and the unsuitable cooling rate of the rods at the exit from the galvanizing bath. The mechanism proposed to explain the origin of the defects was supported by Finite Elements Methods simulations and verified with in-plant tests. The proper countermeasures were then applied and the problem successfully solved. PMID:28772623
NASA Technical Reports Server (NTRS)
Addington, L. A.; Ownby, P. D.; Yu, B. B.; Barsoum, M. W.; Romero, H. V.; Zealer, B. G.
1979-01-01
The development and evaluation of proprietary coatings of pure silicon carbide, silicon nitride, and aluminum nitride on less pure hot pressed substrates of the respective ceramic materials, is described. Silicon sessile drop experiments were performed on coated test specimens under controlled oxygen partial pressure. Prior to testing, X-ray diffraction and SEM characterization was performed. The reaction interfaces were characterized after testing with optical and scanning electron microscopy and Auger electron spectroscopy. Increasing the oxygen partial pressure was found to increase the molten silicon contact angle, apparently because adsorbed oxygen lowers the solid-vapor interfacial free energy. It was also found that adsorbed oxygen increased the degree of attack of molten silicon upon the chemical vapor deposited coatings. Cost projections show that reasonably priced, coated, molten silicon resistant refractory material shapes are obtainable.
Measurement of Interfacial Adhesion in Glass-Epoxy Systems Using the Indentation Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchins, Karen Isabel
2015-07-01
The adhesion of coatings often controls the performance of the substrate-coating system. Certain engineering applications require an epoxy coating on a brittle substrate to protect and improve the performance of the substrate. Experimental observations and measurements of interfacial adhesion in glass-epoxy systems are described in this thesis. The Oliver and Pharr method was utilized to calculate the bulk epoxy hardness and elastic modulus. Spherical indentations were used to induce delaminations at the substrate-coating interface. The delamination sizes as a function of load were used to calculate the interfacial toughness. The interfacial fracture energy of my samples is an order ofmore » magnitude higher than a previous group who studied a similar glass-epoxy system. A comparison study of how different glass treatments affect adhesion was also conducted: smooth versus rough, clean versus dirty, stressed versus non-stressed.« less
Superfluid helium leak sealant study
NASA Technical Reports Server (NTRS)
Vorreiter, J. W.
1981-01-01
Twenty-one leak specimens were fabricated in the ends of stainless steel and aluminum tubes. Eighteen of these tubes were coated with a copolymer material to seal the leak. The other three specimens were left uncoated and served as control specimens. All 21 tubes were cold shocked in liquid helium 50 times and then the leak rate was measured while the tubes were submerged in superfluid helium at 1.7 K. During the cold shocks two of the coated specimens were mechanically damaged and eliminated from the test program. Of the remaining 16 coated specimens one suffered a total coating failure and resulting high leak rate. Another three of the coated specimens suffered partial coating failures. The leak rates of the uncoated specimens were also measured and reported. The significance of various leak rates is discussed in view of the infrared astronomical satellite (IRAS) Dewar performance.
Kolarcik, Christi L.; Catt, Kasey; Rost, Erika; Albrecht, Ingrid N.; Bourbeau, Dennis; Du, Zhanhong; Kozai, Takashi D.Y.; Luo, Xiliang; Weber, Douglas J.; Cui, X. Tracy
2015-01-01
Objective The dorsal root ganglion (DRG) is an attractive target for implanting neural electrode arrays that restore sensory function or provide therapy via stimulation. However, penetrating microelectrodes designed for these applications are small and deliver low currents. For long-term performance of microstimulation devices, novel coating materials are needed in part to decrease impedance values at the electrode-tissue interface and to increase charge storage capacity. Approach Conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and multiwall carbon nanotubes (CNTs) were coated on the electrode surface and doped with the anti-inflammatory drug, dexamethasone. Electrode characteristics and the tissue reaction around neural electrodes as the result of stimulation, coating and drug release were characterized. Hematoxylin and eosin staining along with antibodies recognizing Iba1 (microglia/macrophages), NF200 (neuronal axons), NeuN (neurons), vimentin (fibroblasts), caspase-3 (cell death) and L1 (neural cell adhesion molecule) were used. Quantitative image analyses were performed using MATLAB. Main Results Our results indicate that coated microelectrodes have lower in vitro and in vivo impedance values. Significantly less neuronal death/damage was observed with coated electrodes as compared to non-coated controls. The inflammatory response with the PEDOT/CNT-coated electrodes was also reduced. Significance This study is the first to report on the utility of these coatings in stimulation applications. Our results indicate PEDOT/CNT coatings may be valuable additions to implantable electrodes used as therapeutic modalities. PMID:25485675
NASA Astrophysics Data System (ADS)
Kolarcik, Christi L.; Catt, Kasey; Rost, Erika; Albrecht, Ingrid N.; Bourbeau, Dennis; Du, Zhanhong; Kozai, Takashi D. Y.; Luo, Xiliang; Weber, Douglas J.; Cui, X. Tracy
2015-02-01
Objective. The dorsal root ganglion is an attractive target for implanting neural electrode arrays that restore sensory function or provide therapy via stimulation. However, penetrating microelectrodes designed for these applications are small and deliver low currents. For long-term performance of microstimulation devices, novel coating materials are needed in part to decrease impedance values at the electrode-tissue interface and to increase charge storage capacity. Approach. Conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and multi-wall carbon nanotubes (CNTs) were coated on the electrode surface and doped with the anti-inflammatory drug, dexamethasone. Electrode characteristics and the tissue reaction around neural electrodes as a result of stimulation, coating and drug release were characterized. Hematoxylin and eosin staining along with antibodies recognizing Iba1 (microglia/macrophages), NF200 (neuronal axons), NeuN (neurons), vimentin (fibroblasts), caspase-3 (cell death) and L1 (neural cell adhesion molecule) were used. Quantitative image analyses were performed using MATLAB. Main results. Our results indicate that coated microelectrodes have lower in vitro and in vivo impedance values. Significantly less neuronal death/damage was observed with coated electrodes as compared to non-coated controls. The inflammatory response with the PEDOT/CNT-coated electrodes was also reduced. Significance. This study is the first to report on the utility of these coatings in stimulation applications. Our results indicate PEDOT/CNT coatings may be valuable additions to implantable electrodes used as therapeutic modalities.
Biomedical coatings on magnesium alloys - a review.
Hornberger, H; Virtanen, S; Boccaccini, A R
2012-07-01
This review comprehensively covers research carried out in the field of degradable coatings on Mg and Mg alloys for biomedical applications. Several coating methods are discussed, which can be divided, based on the specific processing techniques used, into conversion and deposition coatings. The literature review revealed that in most cases coatings increase the corrosion resistance of Mg and Mg alloys. The critical factors determining coating performance, such as corrosion rate, surface chemistry, adhesion and coating morphology, are identified and discussed. The analysis of the literature showed that many studies have focused on calcium phosphate coatings produced either using conversion or deposition methods which were developed for orthopaedic applications. However, the control of phases and the formation of cracks still appear unsatisfactory. More research and development is needed in the case of biodegradable organic based coatings to generate reproducible and relevant data. In addition to biocompatibility, the mechanical properties of the coatings are also relevant, and the development of appropriate methods to study the corrosion process in detail and in the long term remains an important area of research. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Thermal conductivity of zirconia thermal barrier coatings
NASA Technical Reports Server (NTRS)
Dinwiddie, R. B.; Beecher, S. C.; Nagaraj, B. A.; Moore, C. S.
1995-01-01
Thermal barrier coatings (TBC's) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBC's is of primary importance. Physical vapor description (PVD) and plasma spraying (PS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The PS coatings were applied with either standard power or hollow sphere particles. The hollow sphere particles yielded a lower density and lower thermal conductivity coating. The thermal conductivity of both fully and partially stabilized zirconia, before and after thermal aging, will be compared. The thermal conductivity of the coatings permanently increase upon being exposed to high temperatures. These increases are attributed to microstructural changes within the coatings. Sintering of the as fabricated plasma sprayed lamellar structure is observed by scanning electron microscopy of coatings isothermally heat treated at temperatures greater than 1100 C. During this sintering process the planar porosity between lamella is converted to a series of small spherical pores. The change in pore morphology is the primary reason for the observed increase in thermal conductivity. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the PVD coatings are less susceptible to thermal aging effects, preliminary results suggest that they have a higher thermal conductivity than PS coatings, both before and after thermal aging. The increases in thermal conductivity due to thermal aging for partially stabilized plasma sprayed zirconia have been found to be less than for fully stabilized plasma sprayed zirconia coatings. The high temperature thermal diffusivity data indicates that if these coatings reach a temperature above 1100 C during operation, they will begin to lose their effectiveness as a thermal barrier.
Thermal conductivity of zirconia thermal barrier coatings
NASA Technical Reports Server (NTRS)
Dinwiddie, R. B.; Beecher, S. C.; Nagaraj, B. A.; Moore, C. S.
1995-01-01
Thermal barrier coatings (TBC's) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBC's is of primary importance. Physical vapor deposition (PVD) and plasma spraying (PS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The PS coatings were applied with either standard powder or hollow sphere particles. The hollow sphere particles yielded a lower density and lower thermal conductivity coating. The thermal conductivity of both fully and partially stabilized zirconia, before and after thermal aging, will be compared. The thermal conductivity of the coatings permanently increases upon exposed to high temperatures. These increases are attributed to microstructural changes within the coatings. Sintering of the as-fabricated plasma sprayed lamellar structure is observed by scanning electron microscopy of coatings isothermally heat treated at temperatures greater than 1100 C. During this sintering process the planar porosity between lamella is converted to a series of small spherical pores. The change in pore morphology is the primary reason for the observed increase in thermal conductivity. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the PVD coatings are less susceptible to thermal aging effects, preliminary results suggest that they have a higher thermal conductivity than PS coatings, both before and after thermal aging. The increases in thermal conductivity due to thermal aging for partially stabilized plasma sprayed zirconia have been found to be less than for fully stabilized plasma sprayed zirconia coatings. The high temperature thermal diffusivity data indicate that if these coatings reach a temperature above 1100 C during operation, they will begin to lose their effectiveness as a thermal barrier.
Fischer, Avi; Klehn, Russell
2013-08-01
The insulation of St. Jude Medical Riata® leads contains a polytetrafluoroethylene (PTFE) liner, silicone tubing, and ethylenetetrafluoroethylene (ETFE) coating on individual cable conductors. ETFE has sufficient dielectric strength to assure electrical function. This investigation intended to analyze performance of leads with and without externalized conductors and with intact and breached ETFE. Testing was performed on ETFE-coated conductors to determine their ability to deliver high-voltage therapy. Tests were performed on samples under different conditions and current leakage was measured. A high-voltage test and a cyclic pulse test were performed, and the effect of lead modifications on the potential gradient from a high-voltage shock was used to determine functionality. Measurements from modified Riata® leads were compared with a control lead with all insulation and conducting elements intact. Current leakage for all conditions tested, was within the acceptance criteria for the high-voltage test and the cyclic pulse test. In conductors that underwent cyclic testing, the highest value of current leakage was within the limit of acceptability for both phases of the test. Testing of leads with externalized conductors and breached ETFE showed similar potential gradients compared with a control lead. Testing of ETFE-coated conductors following multiple preconditioning steps showed that ETFE serves as a redundant layer of insulation. In the event that the ETFE coating is breached, the potential gradient seen resulting from a high-voltage defibrillation shock was similar to a lead with no breach to the ETFE, even after 100 shocks.
Manabe, Kengo; Tanaka, Chie; Moriyama, Yukari; Tenjimbayashi, Mizuki; Nakamura, Chiaki; Tokura, Yuki; Matsubayashi, Takeshi; Kyung, Kyu-Hong; Shiratori, Seimei
2016-11-23
Reflection from various surfaces of many optical systems, such as photovoltaics and displays, is a critical issue for their performance, and antireflection coatings play a pivotal role in a wide variety of optical technologies, reducing light reflectance loss and hence maximizing light transmission. With the current movement toward optically transparent polymeric media and coatings for antireflection technology, the need for economical and environmentally friendly materials and methods without dependence on shape or size has clearly been apparent. Herein, we demonstrate novel antireflection coatings composed of chitin nanofibers (CHINFs), extracted from crab shell as a biomass material through an aqueous-based layer-by-layer self-assembly process to control the porosity. Increasing the number of air spaces inside the membrane led low refractive index, and precise control of refractive index derived from the stacking of the CHINFs achieved the highest transmittance with investigating the surface structure and the refractive index depending on the solution pH. At a wavelength of 550 nm, the transmittance of the coatings was 96.4%, which was 4.8% higher than that of a glass substrate, and their refractive index was 1.30. Further critical properties of the films were the durability and the antifogging performance derived from the mechanical stability and hydrophilicity of CHINFs, respectively. The present study may contribute to a development of systematically designed nanofibrous films which are suitable for optical applications operating at a broadband visible wavelength with durability and antifog surfaces.
Rojaee, Ramin; Fathi, Mohammadhossein; Raeissi, Keyvan
2014-12-01
Magnesium is one of the most critical elements in hard tissues regeneration and therefore causes speeding up the restoration of harmed bones, while high deterioration rate of magnesium in body fluid restricts it to be used as biodegradable implants. Alloying magnesium with some relatively nobler metals such as aluminium, zinc, rare earth elements, magnesium-bioceramics composites, and surface modification techniques are some of the routes to control magnesium corrosion rate. In this study AZ91 magnesium alloy had been coated by nanostructured hydroxyapatite via sol-gel dip coating and electrophoretical methods to survey the final barricade properties of the obtained coatings. In order to perform electrophoretic coating, powders were prepared by sol-gel method, and then the powders deposited on substrates utilizing direct current electricity. Zeta potentials of the electrophoresis suspensions were measured to determine a best mode for good quality coatings. Transmission Electron Microscopy (TEM), and Scanning Electron Microscopy (SEM) were used to confirm nanoscale dimension, and the uniformity of the nanostructured hydroxyapatite coating, respectively. Fourier Transform-Infrared and X-ray diffraction analysis were utilized for functional group and phase structure evaluation of the prepared coatings, correspondingly. Electrochemical corrosion tests were performed in SBF at 37±1 (°)C which revealed considerable increase in corrosion protection resistivity and corrosion current density for electrophoretic coated specimens versus sol-gel coated specimens. Results showed that both sol-gel and electrophoretical techniques seem to be suitable to coat magnesium alloys for biomedical applications but electrophoretic coating technique is a better choice due to the more homogeneity and more crystalline structure of the coating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, J; Brown, B; Bayles, B
The overall goal is to develop high-performance corrosion-resistant iron-based amorphous-metal coatings for prolonged trouble-free use in very aggressive environments: seawater & hot geothermal brines. The specific technical objectives are: (1) Synthesize Fe-based amorphous-metal coating with corrosion resistance comparable/superior to Ni-based Alloy C-22; (2) Establish processing parameter windows for applying and controlling coating attributes (porosity, density, bonding); (3) Assess possible cost savings through substitution of Fe-based material for more expensive Ni-based Alloy C-22; (4) Demonstrate practical fabrication processes; (5) Produce quality materials and data with complete traceability for nuclear applications; and (6) Develop, validate and calibrate computational models to enable lifemore » prediction and process design.« less
NASA Astrophysics Data System (ADS)
Yao, Shu-Wei; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu
2018-01-01
Interlamellar bonding within plasma-sprayed coatings is one of the most important factors dominating the properties and performance of coatings. The interface bonding between lamellae significantly influences the erosion behavior of plasma-sprayed ceramic coatings. In this study, TiO2 and Al2O3 coatings with different microstructures were deposited at different deposition temperatures based on the critical bonding temperature concept. The erosion behavior of ceramic coatings was investigated. It was revealed that the coatings prepared at room temperature exhibit a typical lamellar structure with numerous unbonded interfaces, whereas the coatings deposited at the temperature above the critical bonding temperature present a dense structure with well-bonded interfaces. The erosion rate decreases sharply with the improvement of interlamellar bonding when the deposition temperature increases to the critical bonding temperature. In addition, the erosion mechanisms of ceramic coatings were examined. The unbonded interfaces in the conventional coatings act as pre-cracks accelerating the erosion of coatings. Thus, controlling interlamellar bonding formation based on the critical bonding temperature is an effective approach to improve the erosion resistance of plasma-sprayed ceramic coatings.
Bagheri, Habib; Piri-Moghadam, Hamed; Ahdi, Tayebeh
2012-09-12
To evaluate the selectivity and efficiency of solid phase microextraction (SPME) fiber coatings, synthesized by sol-gel technology, roles of precursors and coating polymers were extensively investigated. An on-line combination of capillary microextraction (CME) technique and high performance liquid chromatography (HPLC) was set up to perform the investigation. Ten different fiber coatings were synthesized in which five of them contained only the precursor and the rests were prepared using both the precursor and coating polymer. All the coatings were chemically bonded to the inner surface of copper tubes, intended to be used as the CME device and already functionalized by self-assembly monolayers of 3-(mercaptopropyl)trimethoxysilane (3MPTMOS). The selected precursors included tetramethoxysilane (TMOS), 3-(trimethoxysilyl)propylmethacrylate (TMSPMA), 3-(triethoxysilyl)-propylamine (TMSPA), 3MPTMOS, [3-(2,3-epoxypropoxy)-propyl]-trimethoxysilane (EPPTMOS) while poly(ethyleneglycol) (PEG) was chosen as the coating polymer. The effects of different precursors on the extraction efficiency and selectivity, was studied by selecting a list of compounds ranging from non-polar to polar ones, i.e. polycyclic aromatic hydrocarbon, herbicides, estrogens and triazines. The results from CME-HPLC analysis revealed that there is no significant difference between precursors, except TMOS, in which has the lowest extraction efficiency. Most of the selected precursors have rather similar interactions toward the selected analytes which include Van der Walls, dipole-dipole and hydrogen bond while TMOS has only dipole-dipole interaction and therefore the least efficiency. TMOS is silica but the other sorbents are organically modified silica (ORMOSIL). Our investigation revealed that it is rather impossible to prepare a selective coating using conventional sol-gel methodologies. The comparison study performed among the fiber coatings contained only a precursor and those synthesized by a precursor along with coating polymer proved that the extraction efficiency obtained for all coatings are the same. This is an indication that by selecting the appropriate precursor there is no need to use any coating polymer. In overall, a fiber coating in sol-gel process could be synthesize with no coating polymer which leads to faster, easier, cheaper and more controllable synthesis. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Abdal-hay, Abdalla; Dewidar, Montasser; Lim, Jae Kyoo
2012-11-01
The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc-solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might widen the use of Mg based implants.
Kim, Jeong-Woo; Lee, Jin-Ju; Bae, Eun-Bin; Jeon, Young-Chan; Jeong, Chang-Mo; Yun, Mi-Jung; Lee, So-Hyoun; Huh, Jung-Bo
2017-01-01
This study was conducted to evaluate the effect of biphasic calcium phosphate (BCP) coated with reduced graphene oxide (rGO) as bone graft materials on bone regeneration. The rGO-coated BCP bone graft material was fabricatied by mixing rGO and BCP at various concentrations. The surface charge of rGO-coated BCP was measured to be −14.43 mV, which formed a static electrostatic interaction. Cell viabilities were significantly diminished at higher concentrations of ≥100 μg/mL. The calvarial defects of 48 rats were implanted rGO-coated BCPs at a weight ratio of 2:1000 (rGO2), 4:1000 (rGO4), and 10:1000 (rGO10), repectively. BCP was used as a control group. The micro-CT and histological analysis were performed to evaluate new bone formation at 2 and 8 weeks after surgery. The results showed that the new bone volume (mm3) was significantly higher in the experimental groups than in the control group. Histological analysis showed that new bone areas (%) were significantly higher in the rGO2 and rGO10 than in the control, and significantly higher in rGO4 than in the rGO2 and rGO10. Conclusively, the rGO-coated BCP was found to be effective on osteogenesis and the concentration of the composite was an important factor. PMID:28786931
Kim, Jeong-Woo; Shin, Yong Cheol; Lee, Jin-Ju; Bae, Eun-Bin; Jeon, Young-Chan; Jeong, Chang-Mo; Yun, Mi-Jung; Lee, So-Hyoun; Han, Dong-Wook; Huh, Jung-Bo
2017-08-08
This study was conducted to evaluate the effect of biphasic calcium phosphate (BCP) coated with reduced graphene oxide (rGO) as bone graft materials on bone regeneration. The rGO-coated BCP bone graft material was fabricatied by mixing rGO and BCP at various concentrations. The surface charge of rGO-coated BCP was measured to be -14.43 mV, which formed a static electrostatic interaction. Cell viabilities were significantly diminished at higher concentrations of ≥100 μg/mL. The calvarial defects of 48 rats were implanted rGO-coated BCPs at a weight ratio of 2:1000 (rGO2), 4:1000 (rGO4), and 10:1000 (rGO10), repectively. BCP was used as a control group. The micro-CT and histological analysis were performed to evaluate new bone formation at 2 and 8 weeks after surgery. The results showed that the new bone volume (mm³) was significantly higher in the experimental groups than in the control group. Histological analysis showed that new bone areas (%) were significantly higher in the rGO2 and rGO10 than in the control, and significantly higher in rGO4 than in the rGO2 and rGO10. Conclusively, the rGO-coated BCP was found to be effective on osteogenesis and the concentration of the composite was an important factor.
Film coatings for oral pulsatile release.
Maroni, Alessandra; Zema, Lucia; Loreti, Giulia; Palugan, Luca; Gazzaniga, Andrea
2013-12-05
Pulsatile delivery is generally intended as a release of the active ingredient that is delayed for a programmable period of time to meet particular chronotherapeutic needs and, in the case of oral administration, also target distal intestinal regions, such as the colon. Most oral pulsatile delivery platforms consist in coated formulations wherein the applied polymer serves as the release-controlling agent. When exposed to aqueous media, the coating initially performs as a protective barrier and, subsequently, undergoes a timely failure based on diverse mechanisms depending on its physico-chemical and formulation characteristics. Indeed, it may be ruptured because of the gradual expansion of the core, swell and/or erode due to the glassy-rubbery polymer transition or become permeable thus allowing the drug molecules to diffuse outwards. Otherwise, when the coating is a semipermeable membrane provided with one or more orifices, the drug is released through the latter as a result of an osmotic water influx. The vast majority of pulsatile delivery systems described so far have been prepared by spray-coating, which offers important versatility and feasibility advantages over other techniques such as press- and dip-coating. In the present article, the design, manufacturing and performance of spray-coated pulsatile delivery platforms is thus reviewed. Copyright © 2013 Elsevier B.V. All rights reserved.
Robotic weld overlay coatings for erosion control
NASA Astrophysics Data System (ADS)
The erosion of materials by the impact of solid particles has received increasing attention during the past twenty years. Recently, research has been initiated with the event of advanced coal conversion processes in which erosion plays an important role. The resulting damage, termed Solid Particle Erosion (SPE), is of concern primarily because of the significantly increased operating costs which result in material failures. Reduced power plant efficiency due to solid particle erosion of boiler tubes and waterfalls has led to various methods to combat SPE. One method is to apply coatings to the components subjected to erosive environments. Protective weld overlay coatings are particularly advantageous in terms of coating quality. The weld overlay coatings are essentially immune to spallation due to a strong metallurgical bond with the substrate material. By using powder mixtures, multiple alloys can be mixed in order to achieve the best performance in an erosive environment. However, a review of the literature revealed a lack of information on weld overlay coating performance in erosive environments which makes the selection of weld overlay alloys a difficult task. The objective of this project is to determine the effects of weld overlay coating composition and microstructure on erosion resistance. These results will lead to a better understanding of erosion mitigation in CFB's.
Qian, Mengke; Lu, Zhicen; Chen, Chen; Zhang, Huaiqin; Xie, Haifeng
Creating an alkaline environment prior to 10-methacryloyloxydecyldihydrogenphosphate (MDP) conditioning improves the resin bonding of zirconia. The present study evaluated the effects of four alkaline coatings with different water solubilities and pH values on resin bonding of MDP-conditioned zirconia. Two alkaline nanoparticle coatings were studied in particular. Thermodynamics calculations were performed to evaluate the strengths of MDP-tetragonal phase zirconia chemical bonds at different pH values. Zirconia surfaces with and without alkaline coatings were characterized by scanning electron microscope (SEM)/energy dispersive spectrometer and Fourier transform infrared spectroscopy; alkaline coatings included NaOH, Ca(OH) 2 , nano-MgO, and nano-Zr(OH) 4 . A shear bond strength (SBS) test was performed to evaluate the effects of the four alkaline coatings on bonding; the alkaline coatings were applied to the surfaces prior to conditioning the zirconia with MDP-containing primers. Gibbs free energies of the MDP-tetragonal zirconia crystal model coordination reaction in different pH environments were -583.892 (NaOH), -569.048 [Ca(OH) 2 ], -547.393 (MgO), and -530.279 kJ/mol [Zr(OH) 4 ]. Thermodynamic calculations indicated that the alkaline coatings improved bonding in the following order: NaOH > Ca(OH) 2 > MgO > Zr(OH) 4 . Statistical analysis of SBS tests showed a different result. SBSs were significantly different in groups that had different alkaline coatings, but it was not influenced by different primers. All four alkaline coatings increased SBS compared to control groups. Of the four coatings, nano-Zr(OH) 4 and -MgO showed higher SBS. Therefore, preparing nano-Zr(OH) 4 or -MgO coatings prior to conditioning with MDP-containing primers may potentially improve resin bonding of zirconia in the clinic.
Qian, Mengke; Lu, Zhicen; Chen, Chen; Zhang, Huaiqin; Xie, Haifeng
2016-01-01
Creating an alkaline environment prior to 10-methacryloyloxydecyldihydrogenphosphate (MDP) conditioning improves the resin bonding of zirconia. The present study evaluated the effects of four alkaline coatings with different water solubilities and pH values on resin bonding of MDP-conditioned zirconia. Two alkaline nanoparticle coatings were studied in particular. Thermodynamics calculations were performed to evaluate the strengths of MDP-tetragonal phase zirconia chemical bonds at different pH values. Zirconia surfaces with and without alkaline coatings were characterized by scanning electron microscope (SEM)/energy dispersive spectrometer and Fourier transform infrared spectroscopy; alkaline coatings included NaOH, Ca(OH)2, nano-MgO, and nano-Zr(OH)4. A shear bond strength (SBS) test was performed to evaluate the effects of the four alkaline coatings on bonding; the alkaline coatings were applied to the surfaces prior to conditioning the zirconia with MDP-containing primers. Gibbs free energies of the MDP-tetragonal zirconia crystal model coordination reaction in different pH environments were −583.892 (NaOH), −569.048 [Ca(OH)2], −547.393 (MgO), and −530.279 kJ/mol [Zr(OH)4]. Thermodynamic calculations indicated that the alkaline coatings improved bonding in the following order: NaOH > Ca(OH)2 > MgO > Zr(OH)4. Statistical analysis of SBS tests showed a different result. SBSs were significantly different in groups that had different alkaline coatings, but it was not influenced by different primers. All four alkaline coatings increased SBS compared to control groups. Of the four coatings, nano-Zr(OH)4 and -MgO showed higher SBS. Therefore, preparing nano-Zr(OH)4 or -MgO coatings prior to conditioning with MDP-containing primers may potentially improve resin bonding of zirconia in the clinic. PMID:27785013
Assessment of Thermal Control and Protective Coatings
NASA Technical Reports Server (NTRS)
Mell, Richard J.
2000-01-01
This final report is concerned with the tasks performed during the contract period which included spacecraft coating development, testing, and applications. Five marker coatings consisting of a bright yellow handrail coating, protective overcoat for ceramic coatings, and specialized primers for composites (or polymer) surfaces were developed and commercialized by AZ Technology during this program. Most of the coatings have passed space environmental stability requirements via ground tests and/or flight verification. Marker coatings and protective overcoats were successfully flown on the Passive Optical Sample Assembly (POSA) and the Optical Properties Monitor (OPM) experiments flown on the Russian space station MIR. To date, most of the coatings developed and/or modified during this program have been utilized on the International Space Station and other spacecraft. For ISS, AZ Technology manufactured the 'UNITY' emblem now being flown on the NASA UNITY node (Node 1) that is docked to the Russian Zarya (FGB) utilizing the colored marker coatings (white, blue, red) developed by AZ Technology. The UNITY emblem included the US American flag, the Unity logo, and NASA logo on a white background, applied to a Beta cloth substrate.
Evaluation of Thermal Control Coatings for Flexible Ceramic Thermal Protection Systems
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius; Carroll, Carol; Smith, Dane; Guzinski, Mike; Marschall, Jochen; Pallix, Joan; Ridge, Jerry; Tran, Duoc
1997-01-01
This report summarizes the evaluation and testing of high emissivity protective coatings applied to flexible insulations for the Reusable Launch Vehicle technology program. Ceramic coatings were evaluated for their thermal properties, durability, and potential for reuse. One of the major goals was to determine the mechanism by which these coated blanket surfaces become brittle and try to modify the coatings to reduce or eliminate embrittlement. Coatings were prepared from colloidal silica with a small percentage of either SiC or SiB6 as the emissivity agent. These coatings are referred to as gray C-9 and protective ceramic coating (PCC), respectively. The colloidal solutions were either brushed or sprayed onto advanced flexible reusable surface insulation blankets. The blankets were instrumented with thermocouples and exposed to reentry heating conditions in the Ames Aeroheating Arc Jet Facility. Post-test samples were then characterized through impact testing, emissivity measurements, chemical analysis, and observation of changes in surface morphology. The results show that both coatings performed well in arc jet tests with backface temperatures slightly lower for the PCC coating than with gray C-9. Impact testing showed that the least extensive surface destruction was experienced on blankets with lower areal density coatings.
Glass frits coated with silver nanoparticles for silicon solar cells
NASA Astrophysics Data System (ADS)
Li, Yingfen; Gan, Weiping; Zhou, Jian; Li, Biyuan
2015-06-01
Glass frits coated with silver nanoparticles were prepared by electroless plating. Gum Arabic (GA) was used as the activating agent of glass frits without the assistance of stannous chloride or palladium chloride. The silver-coated glass frits prepared with different GA dosages were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA). The characterization results indicated that silver-coated glass frits had the structures of both glass and silver. Spherical silver nanoparticles were distributed on the glass frits evenly. The density and particle size of silver nanoparticles on the glass frits can be controlled by adjusting the GA dosage. The silver-coated glass frits were applied to silver pastes to act as both the densification promoter and silver crystallite formation aid in the silver electrodes. The prepared silver-coated glass frits can improve the photovoltaic performances of solar cells.
Investigation of Al Coated Mg for Biomedical Applications
NASA Astrophysics Data System (ADS)
Elmrabet, Nabila; Roe, Martin; Neate, Nigel; Grant, David M.; Brown, Paul D.
The corrosion resistant properties of 1-2 μm thick Al coatings deposited by radio frequency magnetron sputtering on polished Mg surfaces, within Ar and Ar/H2 environments, have been appraised. The coatings were heat-treated at 300°C for 5 h to induce the formation of bioinert Al2O3, and samples were corroded within phosphate buffered saline solution at 37°C to mimic the biological environment. Both the as-deposited and heat-treated coatings were found to delay the onset of corrosion, but showed higher initial corrosion rates, once established, as compared with polished Mg surfaces. Slightly improved performance of the coatings was achieved through the addition of H2 to the system which acted to inhibit Al-Mg alloying and MgO formation. However, localized accelerated corrosion associated with substrate polishing damage emphasized the need for improved process control and coating uniformity.
Carbon decorative coatings by dip-, spin-, and spray-assisted layer-by-layer assembly deposition.
Hong, Jinkee; Kang, Sang Wook
2011-09-01
We performed a comparative surface analysis of all-carbon nano-objects (multiwall carbon nanotubes (MWNT) or graphene oxide (GO) sheets) based multilayer coatings prepared using three widely used nanofilm fabrication methods: dip-, spin-, and spray-assisted layer-by-layer (LbL) deposition. The resultant films showed a marked difference in their growth mechanisms and surface morphologies. Various carbon decorative coatings were synthesized with different surface roughness values, despite identical preparation conditions. In particular, smooth to highly rough all-carbon surfaces, as determined by atomic force microscopy (AFM) and scanning electron microscopy (SEM), were readily obtained by manipulating the LbL deposition methods. As was confirmed by the AFM and SEM analyses, this finding indicated the fundamental morphological evolution of one-dimensional nano-objects (MWNT) and two-dimensional nano-objects (GO) by control of the surface roughness through the deposition method. Therefore, an analysis of the three LbL-assembly methods presented herein may offer useful information about the industrial use of carbon decorative coatings and provide an insight into ways to control the structures of multilayer coatings by tuning the morphologies of carbon nano-objects.
Clarke, David; Tyuftin, Andrey A; Cruz-Romero, Malco C; Bolton, Declan; Fanning, Seamus; Pankaj, Shashi K; Bueno-Ferrer, Carmen; Cullen, Patrick J; Kerry, Joe P
2017-04-01
Two antimicrobial coatings, namely Sodium octanoate and Auranta FV (a commercial antimicrobial composed of bioflavonoids, citric, malic, lactic, and caprylic acids) were used. These two antimicrobials were surface coated onto the inner polyethylene layer of cold plasma treated polyamide films using beef gelatin as a carrier and coating polymer. This packaging material was then used to vacuum pack beef sub-primal cuts and stored at 4 °C. A control was prepared using the non-coated commercial laminate and the same vacuum packaged sub-primal beef cuts. During storage, microbial and quality assessments were carried out. Sodium octanoate treated packages significantly (p < 0.05) reduced microbial counts for all bacteria tested with an increase of 7 and 14 days, respectively compared to control samples. No significant effect on pH was observed with any treatment. The results suggested that these food grade antimicrobials have the potential to be used in antimicrobial active packaging applications for beef products. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fleutot, Benoit; Davoisne, Carine; Gachot, Grégory; Cavalaglio, Sébastien; Grugeon, Sylvie; Viallet, Virginie
2017-04-01
Li4Ti5O12 (LTO) based batteries have severe gassing behavior during charge/discharge and storage process, due to interfacial reactions between active material and electrolyte solution. In the same time, the electronic and ionic conductivity of pristine LTO is very poor and induces the use of nanoparticles which increase the outgassing phenomena. The coating of LTO particles could be a solution. For this the LTO spinel particles are modified with ionic conductor Li3PO4 coating using a spray-drying method. For the first time a homogeneous thin dense layer phosphate based conductor is obtained without nanoparticles, as a thin film material. It is so possible to study the influence of ionic conductor deposited on the negative electrode material on performances by the controlled layer thickness. This coating was characterized by XRD, SEM, XPS and TEM. The electrochemical performance of Li3PO4 coated Li4Ti5O12 is improved at high C-rate by the surface modification (improvement of 30 mAh g-1 at 5 C-rate compared to pristine LTO for 5 nm of coating), inducing by a modification of surface energy. An optimum coating thickness was studied. This type of coating allows a significant decrease of outgassing phenomena due the conformal coating and opens the way to a great number of studies and new technologies.
Nielsen, Karsten H.; Karlsson, Stefan; Limbach, Rene; Wondraczek, Lothar
2015-01-01
The abrasion resistance of coated glass surfaces is an important parameter for judging lifetime performance, but practical testing procedures remain overly simplistic and do often not allow for direct conclusions on real-world degradation. Here, we combine quantitative two-dimensional image analysis and mechanical abrasion into a facile tool for probing the abrasion resistance of anti-reflective (AR) coatings. We determine variations in the average coated area, during and after controlled abrasion. Through comparison with other experimental techniques, we show that this method provides a practical, rapid and versatile tool for the evaluation of the abrasion resistance of sol-gel-derived thin films on glass. The method yields informative data, which correlates with measurements of diffuse reflectance and is further supported by qualitative investigations through scanning electron microscopy. In particular, the method directly addresses degradation of coating performance, i.e., the gradual areal loss of antireflective functionality. As an exemplary subject, we studied the abrasion resistance of state-of-the-art nanoporous SiO2 thin films which were derived from 5–6 wt% aqueous solutions of potassium silicates, or from colloidal suspensions of SiO2 nanoparticles. It is shown how abrasion resistance is governed by coating density and film adhesion, defining the trade-off between optimal AR performance and acceptable mechanical performance. PMID:26656260
In-line monitoring of pellet coating thickness growth by means of visual imaging.
Oman Kadunc, Nika; Sibanc, Rok; Dreu, Rok; Likar, Boštjan; Tomaževič, Dejan
2014-08-15
Coating thickness is the most important attribute of coated pharmaceutical pellets as it directly affects release profiles and stability of the drug. Quality control of the coating process of pharmaceutical pellets is thus of utmost importance for assuring the desired end product characteristics. A visual imaging technique is presented and examined as a process analytic technology (PAT) tool for noninvasive continuous in-line and real time monitoring of coating thickness of pharmaceutical pellets during the coating process. Images of pellets were acquired during the coating process through an observation window of a Wurster coating apparatus. Image analysis methods were developed for fast and accurate determination of pellets' coating thickness during a coating process. The accuracy of the results for pellet coating thickness growth obtained in real time was evaluated through comparison with an off-line reference method and a good agreement was found. Information about the inter-pellet coating uniformity was gained from further statistical analysis of the measured pellet size distributions. Accuracy and performance analysis of the proposed method showed that visual imaging is feasible as a PAT tool for in-line and real time monitoring of the coating process of pharmaceutical pellets. Copyright © 2014 Elsevier B.V. All rights reserved.
2006-11-26
with controlled micro and nanostructure for highly selective, high sensitivity assays. The process was modeled and a procedure for fabricating SERS...small volumes with controlled micro and nanostructure for highly selective, high sensitivity assays. We proved the feasibility of the technique and...films templated by colloidal crystals. The control over the film structure allowed optimizing their performance for potential sensor applications. The
Huang, Lili; Xiao, Lyuwu; Wu, Lin; Zhou, Hao; Tan, Xiayou; Lin, Yimin
2014-04-01
To investigate the health status of painting and coating workers in an automobile manufacturing enterprise in Guangzhou, China and analyze the influential factors for the health status of these workers, and to provide health intervention measures and strategies. Typical sampling was used to select an automobile manufacturing enterprise; according to whether the subjects were in contact with paint and coatings, paint spraying workers in the painting workshop were selected as the exposed group, and the staff in the administration, procurement, and marketing departments as the control group. Physical examination was performed by doctors among these subjects. The exposed group had significantly higher positive rates of dizziness, headache, bleeding gums, chest tightness, and skin itching than the control group (P < 0.05). The exposed group had a nonsignificantly higher rate of abnormal ECG than the control group (P > 0.05), but the exposed group had a significantly higher incidence of various blocks (P = 0.020) and significantly lower leukocyte count, erythrocyte count, and male workers' hemoglobin level (P < 0.05), as compared with the control group. Volatile organic solvents have adverse effect on the health of paint spraying workers in the automobile manufacturing enterprise, so regular physical examination should be performed to strengthen health interventions and improve health.
Thermoresponsive PNIPAM Coatings on Nanostructured Gratings for Cell Alignment and Release
Zhernenkov, Mikhail; Ashkar, Rana; Feng, Hao; ...
2015-05-20
Thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) has been widely used as a surface coating to thermally control the detachment of adsorbed cells without the need for extreme stimuli such as enzyme treatment. Recently, the use of 2D and 3D scaffolds in controlling cell positioning, growth, spreading, and migration has been of a great interest in tissue engineering and cell biology. We use a PNIPAM polymer surface coating atop a nanostructured linear diffraction grating to controllably change the surface topography of 2D linear structures using temperature stimuli. Neutron reflectometry and surface diffraction are utilized to examine the conformity of the polymer coating to themore » grating surface, its hydration profile, and its evolution in response to temperature variations. Our results show that, in the collapsed state, the PNIPAM coating conforms to the grating structures and retains a uniform hydration of 63%. In the swollen state, the polymer expands beyond the grating channels and absorbs up to 87% water. Such properties are particularly desirable for 2D cell growth scaffolds with a built-in nonextreme tissue-release mechanism. Indeed, the current system demonstrates advanced performance in the effective alignment of cultured fibroblast cells and the easy release of the cells upon temperature change.« less
Thermoresponsive PNIPAM Coatings on Nanostructured Gratings for Cell Alignment and Release
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhernenkov, Mikhail; Ashkar, Rana; Feng, Hao
Thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) has been widely used as a surface coating to thermally control the detachment of adsorbed cells without the need for extreme stimuli such as enzyme treatment. Recently, the use of 2D and 3D scaffolds in controlling cell positioning, growth, spreading, and migration has been of a great interest in tissue engineering and cell biology. We use a PNIPAM polymer surface coating atop a nanostructured linear diffraction grating to controllably change the surface topography of 2D linear structures using temperature stimuli. Neutron reflectometry and surface diffraction are utilized to examine the conformity of the polymer coating to themore » grating surface, its hydration profile, and its evolution in response to temperature variations. Our results show that, in the collapsed state, the PNIPAM coating conforms to the grating structures and retains a uniform hydration of 63%. In the swollen state, the polymer expands beyond the grating channels and absorbs up to 87% water. Such properties are particularly desirable for 2D cell growth scaffolds with a built-in nonextreme tissue-release mechanism. Indeed, the current system demonstrates advanced performance in the effective alignment of cultured fibroblast cells and the easy release of the cells upon temperature change.« less
Enclothed Cognition and Controlled Attention during Insight Problem-Solving
ERIC Educational Resources Information Center
Van Stockum, Charles A., Jr.; DeCaro, Marci S.
2014-01-01
Individual differences in working memory capacity (WMC) increase the ability and tendency to devote greater attentional control to a task--improving performance on a wide range of skills. In addition, recent research on enclothed cognition demonstrates that the situational influence of wearing a white lab coat increases controlled attention, due…
Seo, Dong Seok; Chae, Hak Cheol; Lee, Jong Kook
2015-08-01
Hydroxyapatite coatings were fabricated on zirconia substrates by a room temperature spray process and were investigated with regards to their microstructure, composition and dissolution in water. An initial hydroxyapatite powder was prepared by heat treatment of bovine-bone derived powder at 1100 °C for 2 h, while dense zirconia substrates were fabricated by pressing 3Y-TZP powder and sintering it at 1350 °C for 2 h. Room temperature spray coating was performed using a slit nozzle in a low pressure-chamber with a controlled coating time. The phase composition of the resultant hydroxyapatite coatings was similar to that of the starting powder, however, the grain size of the hydroxyapatite particles was reduced to about 100 nm due to their formation by particle impaction and fracture. All areas of the coating had a similar morphology, consisting of reticulated structure with a high surface roughness. The hydroxyapatite coating layer exhibited biostability in a stimulated body fluid, with no severe dissolution being observed during in vitro experimentation.
Sol-gel chemistry-based Ucon-coated columns for capillary electrophoresis.
Hayes, J D; Malik, A
1997-07-18
A sol-gel chemistry-based novel approach for the preparation of a Ucon-coated fused-silica capillary column in capillary electrophoresis is presented. In this approach the sol-gel process is carried out inside 25 microm I.D. fused-silica capillaries. The sol solution contained appropriate quantities of an alkoxide-based sol-gel precursor, a polymeric coating material (Ucon), a crosslinking reagent, a surface derivatizing reagent, controlled amounts of water and a catalyst dissolved in a suitable solvent system. The coating procedure involves filling a capillary with the sol solution and allowing the sol-gel process to proceed for an optimum period. Hydrolysis of the alkoxide precursor and polycondensation of the hydrolyzed products with the surface silanol groups and the hydroxy-terminated Ucon molecules lead to the formation of a surface-bonded sol-gel coating on the inner walls of the capillary. The thickness of the coated film can be controlled by varying the reaction time, coating solution composition and experimental conditions. Commercial availability of high purity sol-gel precursors (e.g., TEOS 99.999%), the ease of coating, run-to-run and column-to-column reproducibility, and long column lifetimes make sol-gel coating chemistry very much suitable for being applied in analytical microseparations column technology. Test samples of basic proteins and nucleotides were used to evaluate the column performance. These results show that the sol-gel coating scheme has allowed for the generation of bio-compatible surfaces characterized by high separation efficiencies in CE. For different types of solutes, the sol-gel coated Ucon column consistently provided migration time R.S.D. values of the order of 0.5%.
NASA Astrophysics Data System (ADS)
Bongova, M.; Urgela, Stanislav
1999-07-01
Physicoacoustical properties of wood influenced by surface coating are studied by modal analysis. Resonant spruce plates were coated by stain, nitrocellulose varnish, special violin paint and shellac. The modal testing was performed by electronic speckle pattern interferometry. For this purpose, equipment called VIBROVIZER was used. The collected values of physicoacoustical characteristics (density, Young's modulus, acoustic constant) were compared using the graphic plots of data. The 3D plots help to evaluate wooden plates from a viewpoint of the quality control. This fact offers new opportunity for musical instrument manufacturers.
49 CFR 192.461 - External corrosion control: Protective coating.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Protective coating... for Corrosion Control § 192.461 External corrosion control: Protective coating. (a) Each external protective coating, whether conductive or insulating, applied for the purpose of external corrosion control...
49 CFR 192.461 - External corrosion control: Protective coating.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Protective coating... for Corrosion Control § 192.461 External corrosion control: Protective coating. (a) Each external protective coating, whether conductive or insulating, applied for the purpose of external corrosion control...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhuri, Ahsan; Love, Norman
High-velocity oxy–fuel (HVOF) thermal spraying was developed in 1930 and has been commercially available for twenty-five years. HVOF thermal spraying has several benefits over the more conventional plasma spray technique including a faster deposition rate which leads to quicker turn-around, with more durable coatings and higher bond strength, hardness and wear resistance due to a homogeneous distribution of the sprayed particles. HVOF thermal spraying is frequently used in engineering to deposit cermets, metallic alloys, composites and polymers, to enhance product life and performance. HVOF thermal spraying system is a highly promising technique for applying durable coatings on structural materials formore » corrosive and high temperature environments in advanced ultra-supercritical coal- fired (AUSC) boilers, steam turbines and gas turbines. HVOF thermal spraying is the preferred method for producing coatings with low porosity and high adhesion. HVOF thermal spray process has been shown to be one of the most efficient techniques to deposit high performance coatings at moderate cost. Variables affecting the deposit formation and coating properties include hardware characteristics such as nozzle geometry and spraying distance and process parameters such as equivalence ratio, gas flow density, and powder feedstock. In the spray process, the powder particles experience very high speeds combined with fast heating to the powder material melting point or above. This high temperature causes evaporation of the powder, dissolution, and phase transformations. Due to the complex nature of the HVOF technique, the control and optimization of the process is difficult. In general, good coating quality with suitable properties and required performance for specific applications is the goal in producing thermal spray coatings. In order to reach this goal, a deeper understanding of the spray process as a whole is needed. Although many researchers studied commercial HVOF thermal spray systems, there exists a lack of fundamental understanding of the effect of hardware characteristics and operating parameters on HVOF thermally sprayed coatings. Motivated by these issues, this study is devoted to investigate the effect of hardware characteristics (e.g. spraying distance) and operating parameters (e.g. combustion chamber pressure, equivalence ratio, and total gas flow rate) on HVOF sprayed coatings using Inconel 718 alloy. The current study provides extensive understanding of several key operating and process parameters to optimize the next generation of HVOF thermally sprayed coatings for high temperature and harsh environment applications. A facility was developed to support this endeavor in a safe and efficient way, including a HVOF thermal spray system with a Data Acquisition and Remote Controls system (DARCS). The coatings microstructure and morphology were examined using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Nanoindentation.« less
Huang, Qianli; Elkhooly, Tarek A; Liu, Xujie; Zhang, Ranran; Yang, Xing; Shen, Zhijian; Feng, Qingling
2016-10-01
The aims of the present study were to develop boron-incorporated TiO2 coating (B-TiO2 coating) through micro-arc oxidation (MAO) and subsequently evaluate the effect of boron incorporation on the in vitro biological performance of the coatings. The physicochemical properties of B-TiO2 coating and its response to osteoblast like cells (SaOS-2) were investigated compared to the control group without boron (TiO2 coating). The morphological and X-ray diffraction results showed that both coatings exhibited similar surface topography and phase composition, respectively. However, the incorporation of B led to an enhancement in the surface hydrophilicity of B-TiO2 coating. The spreading of SaOS-2 cells on B-TiO2 coating was faster than that on TiO2 coating. The proliferation rate of SaOS-2 cells cultured on B-TiO2 decreased after 5days of culture compared to that on TiO2 coating. SaOS-2 cells cultured on B-TiO2 coating exhibited an enhanced alkaline phosphatase (ALP) activity, Collagen I synthesis and in vitro mineralization compared to those on TiO2 coating. The present findings suggest that B-TiO2 coating is a promising candidate surface for orthopedic implants. Copyright © 2016 Elsevier B.V. All rights reserved.
Liquid Feedstock Plasma Spraying: An Emerging Process for Advanced Thermal Barrier Coatings
NASA Astrophysics Data System (ADS)
Markocsan, Nicolaie; Gupta, Mohit; Joshi, Shrikant; Nylén, Per; Li, Xin-Hai; Wigren, Jan
2017-08-01
Liquid feedstock plasma spraying (LFPS) involves deposition of ultrafine droplets of suspensions or solution precursors (typically ranging from nano- to submicron size) and permits production of coatings with unique microstructures that are promising for advanced thermal barrier coating (TBC) applications. This paper reviews the recent progress arising from efforts devoted to development of high-performance TBCs using the LFPS approach. Advancements in both suspension plasma spraying and solution precursor plasma spraying, which constitute the two main variants of LFPS, are presented. Results illustrating the different types of the microstructures that can be realized in LFPS through appropriate process parameter control, model-assisted assessment of influence of coating defects on thermo-mechanical properties and the complex interplay between pore coarsening, sintering and crystallite growth in governing thermal conductivity are summarized. The enhancement in functional performances/lifetime possible in LFPS TBCs with multilayered architectures and by incorporating new pyrochlore chemistries such as gadolinium zirconate, besides the conventional single 8 wt.% yttria-stabilized zirconia insulating ceramic layer, is specifically highlighted.
Electrostatic powder coating: Principles and pharmaceutical applications.
Prasad, Leena Kumari; McGinity, James W; Williams, Robert O
2016-05-30
A majority of pharmaceutical powders are insulating materials that have a tendency to accumulate charge. This phenomenon has contributed to safety hazards and issues during powder handling and processing. However, increased understanding of this occurrence has led to greater understanding and control of processing and product performance. More recently, the charging of pharmaceutical powders has been employed to adopt electrostatic powder coating as a pharmaceutical process. Electrostatic powder coating is a mature technology used in the finishing industry and much of that knowledge applies to its use in pharmaceutical applications. This review will serve to summarize the principles of electrostatic powder coating and highlight some of the research conducted on its use for the preparation of pharmaceutical dosage forms. Copyright © 2016 Elsevier B.V. All rights reserved.
Iridium-Coated Rhenium Radiation-Cooled Rockets
NASA Technical Reports Server (NTRS)
Reed, Brian D.; Biaglow, James A.; Schneider, Steven J.
1997-01-01
Radiation-cooled rockets are used for a range of low-thrust propulsion functions, including apogee insertion, attitude control, and repositioning of satellites, reaction control of launch vehicles, and primary propulsion for planetary space- craft. The key to high performance and long lifetimes for radiation-cooled rockets is the chamber temperature capability. The material system that is currently used for radiation-cooled rockets, a niobium alloy (C103) with a fused silica coating, has a maximum operating temperature of 1370 C. Temperature limitations of C103 rockets force the use of fuel film cooling, which degrades rocket performance and, in some cases, imposes a plume contamination issue from unburned fuel. A material system composed of a rhenium (Re) substrate and an iridium (Ir) coating has demonstrated operation at high temperatures (2200 C) and for long lifetimes (hours). The added thermal margin afforded by iridium-coated rhenium (Ir/Re) allows reduction or elimination of fuel film cooling. This, in turn, leads to higher performance and cleaner spacecraft environments. There are ongoing government- and industry-sponsored efforts to develop flight Ir/ Re engines, with the primary focus on 440-N, apogee insertion engines. Complementing these Ir/Re engine development efforts is a program to address specific concerns and fundamental characterization of the Ir/Re material system, including (1) development of Ir/Re rocket fabrication methods, (2) establishment of critical Re mechanical properly data, (3) development of reliable joining methods, and (4) characterization of Ir/Re life-limiting mechanisms.
NASA Astrophysics Data System (ADS)
de Luna, Martina Salzano; Buonocore, Giovanna; Di Carlo, Gabriella; Giuliani, Chiara; Ingo, Gabriel M.; Lavorgna, Marino
2016-05-01
Protective coatings based on polymers synthesized from renewable sources (chitosan or an amorphous vinyl alcohol based polymer) have been prepared for the protection of bronze artifacts from corrosion. Besides acting as an effective barrier against corrosive species present in the environment, the efficiency of the coatings has been improved by adding corrosion inhibitor compounds (benzotriazole or mercaptobenzothiazole) to the formulations. The liquid medium of the formulations has been carefully selected looking at maximizing the wettability on the bronze substrate and optimizing the solvent evaporation rate. The minimum amount of inhibitor compounds has been optimized by performing accelerated corrosion tests on coated bronze substrates. The inhibitors have been directly dissolved in the coating-forming solutions and/or introduced by means of nanocarriers, which allow to control the release kinetics. The free dissolved inhibitor molecules immediately provide a sufficient protection against corrosion. On the other hand, the inhibitor molecules contained in the nanocarriers serve as long-term reservoir, which can be activated by external corrosion-related stimuli in case of particularly severe conditions. Particular attention has been paid to other features which affect the coating performances. Specifically, the adhesion of the protective polymer layer to the bronze substrate has been assessed, as well as its permeability properties and transparency, the latter being a fundamental feature of protective coating for cultural heritages. Finally, the protective efficiency of the produced smart coatings has been assessed through accelerated corrosion tests.
Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings
NASA Astrophysics Data System (ADS)
Blink, J.; Farmer, J.; Choi, J.; Saw, C.
2009-06-01
Amorphous metal and ceramic thermal spray coatings have been developed with excellent corrosion resistance and neutron absorption. These coatings, with further development, could be cost-effective options to enhance the corrosion resistance of drip shields and waste packages, and limit nuclear criticality in canisters for the transportation, aging, and disposal of spent nuclear fuel. Iron-based amorphous metal formulations with chromium, molybdenum, and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials and their stability at high neutron doses enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for waste package and drip shield applications, although the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas-atomized powders and applied as near full density, nonporous coatings with the high-velocity oxy-fuel process. This article summarizes the performance of these coatings as corrosion-resistant barriers and as neutron absorbers. This article also presents a simple cost model to quantify the economic benefits possible with these new materials.
Tailoring nanocrystalline diamond coated on titanium for osteoblast adhesion.
Pareta, Rajesh; Yang, Lei; Kothari, Abhishek; Sirinrath, Sirivisoot; Xiao, Xingcheng; Sheldon, Brian W; Webster, Thomas J
2010-10-01
Diamond coatings with superior chemical stability, antiwear, and cytocompatibility properties have been considered for lengthening the lifetime of metallic orthopedic implants for over a decade. In this study, an attempt to tailor the surface properties of diamond films on titanium to promote osteoblast (bone forming cell) adhesion was reported. The surface properties investigated here included the size of diamond surface features, topography, wettability, and surface chemistry, all of which were controlled during microwave plasma enhanced chemical-vapor-deposition (MPCVD) processes using CH4-Ar-H2 gas mixtures. The hardness and elastic modulus of the diamond films were also determined. H2 concentration in the plasma was altered to control the crystallinity, grain size, and topography of the diamond coatings, and specific plasma gases (O2 and NH3) were introduced to change the surface chemistry of the diamond coatings. To understand the impact of the altered surface properties on osteoblast responses, cell adhesion tests were performed on the various diamond-coated titanium. The results revealed that nanocrystalline diamond (grain sizes <100 nm) coated titanium dramatically increased surface hardness, and the introduction of O2 and NH3 during the MPCVD process promoted osteoblast adhesion on diamond and, thus, should be further studied for improving orthopedic applications. Copyright 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.
Zhao, Sheng; Chen, Yingqi; Liu, Bo; Chen, Meiyun; Mao, Jinlong; He, Hairuo; Zhao, Yuancong; Huang, Nan; Wan, Guojiang
2015-05-01
Magnesium as well as its alloys appears increasingly as a revolutionary bio-metal for biodegradable implants application but the biggest challenges exist in its too fast bio-corrosion/degradation. Both corrosion-controllable and bio-compatible Mg-based bio-metal is highly desirable in clinic. In present work, hexamethylenediaminetetrakis (methylenephosphonic acid) [HDTMPA, (H2 O3 P-CH2 )2 -N-(CH2 )6 -N-(CH2 -PO3 H2 )2 ], as a natural and bioactive organic substance, was covalently immobilized and chelating-deposited onto Mg surface by means of chemical conversion process and dip-coating method, to fullfill dual-task performance of corrosion-protective and osteo-compatible functionalities. The chemical grafting of HDTMPA molecules, by participation of functional groups on pretreated Mg surface, ensured a firmly anchored base layer, and then sub-sequential chelating reactions of HDTMPA molecules guaranteed a homogenous and dense HDTMPA coating deposition on Mg substrate. Electrochemical corrosion and immersion degradation results reveal that the HDTMPA coated Mg provides a significantly better controlled bio-corrosion/degradation behavior in phosphate buffer saline solution as compared with untreated Mg from perspective of clinic requirement. Moreover, the HDTMPA coated Mg exhibits osteo-compatible in that it induces not only bioactivity of bone-like apatite precipitation but also promotes osteoblast cells adhesion and proliferation. Our well-controlled biodegradable and biocompatible HDTMPA modified Mg might bode well for next generation bone implant application. © 2014 Wiley Periodicals, Inc.
Proppant-flowback control in high-temperature wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-06-01
Proppant flowback following fracturing treatments can be controlled by use of resin-coated proppant, inorganic fibers, or polymer strips. Each of these technologies has limitations. Resin-coated proppants cannot be used above 374 F and require an activator below 158 F. Thermoplastic strips cannot be used at temperatures above their melting point. Glass fibers have been used successfully for proppant-flowback control, but they cannot be used at reservoir temperatures below 302 F, they provide only short-term control in carbonate reservoirs, and they cannot be used in an environment where they would be exposed to HF. A new high-performance fiber for proppant-flow-back controlmore » has been developed to overcome these limitations. In laboratory testing, these fibers were resistant to steam, diesel, xylene, HCl, and mud acid at temperatures up to 482 F for periods up to 7 months. Field testing in deep, hot, carbonate reservoirs confirmed the performance of the new fiber. Case histories of gas wells are given.« less
Evaluation of Surface Modification as a Lunar Dust Mitigation Strategy for Thermal Control Surfaces
NASA Technical Reports Server (NTRS)
Gaier, James R.; Waters, Deborah L.; Misconin, Robert M.; Banks, Bruce A.; Crowder, Mark
2011-01-01
Three surface treatments were evaluated for their ability to lower the adhesion between lunar simulant dust and AZ93, AlFEP, and AgFEP thermal control surfaces under simulated lunar conditions. Samples were dusted in situ and exposed to a standardized puff of nitrogen gas. Thermal performance before dusting, after dusting, and after part of the dust was removed by the puff of gas, were compared to perform the assessment. None of the surface treatments was found to significantly affect the adhesion of lunar simulants to AZ93 thermal control paint. Oxygen ion beam texturing also did not lower the adhesion of lunar simulant dust to AlFEP or AgFEP. But a workfunction matching coating and a proprietary Ball Aerospace surface treatment were both found to significantly lower the adhesion of lunar simulants to AlFEP and AgFEP. Based on these results, it is recommended that all these two techniques be further explored as dust mitigation coatings for AlFEP and AgFEP thermal control surfaces.
In Situ Real-Time Radiographic Study of Thin Film Formation Inside Rotating Hollow Spheres
Braun, Tom; Walton, Christopher C.; Dawedeit, Christoph; ...
2016-02-03
The hollow spheres with uniform coatings on the inner surface have applications in optical devices, time- or site-controlled drug release, heat storage devices, and target fabrication for inertial confinement fusion experiments. The fabrication of uniform coatings, which is often critical for the application performance, requires precise understanding and control over the coating process and its parameters. We report on in situ real-time radiography experiments that provide critical spatiotemporal information about the distribution of fluids inside hollow spheres during uniaxial rotation. Furthermore, image analysis and computer fluid dynamics simulations were used to explore the effect of liquid viscosity and rotational velocitymore » on the film uniformity. The data were then used to demonstrate the fabrication of uniform sol–gel chemistry derived porous polymer films inside 2 mm inner diameter diamond shells.« less
In Situ Real-Time Radiographic Study of Thin Film Formation Inside Rotating Hollow Spheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braun, Tom; Walton, Christopher C.; Dawedeit, Christoph
2016-02-03
Hollow spheres with uniform coatings on the inner surface have applications in optical devices, time- or site controlled drug release, heat storage devices, and target fabrication for inertial confinement fusion experiments. The fabrication of uniform coatings, which is often critical for the application performance, requires precise understanding and control over the coating process and its parameters. Here, we report on in-situ real-time radiography experiments that provide critical spatio-temporal information about the distribution of fluids inside hollow spheres during uniaxial rotation. Image analysis and computer fluid dynamics simulations were used to explore the effect of liquid viscosity and rotational velocity onmore » the film uniformity. The data were then used to demonstrate the fabrication of uniform sol-gel chemistry derived porous polymer films inside 2mm inner diameter diamond shells.« less
Evaluation of Glider Coatings Against Biofouling for Improved Flight Performance
2011-08-17
and used to conduct assays of survivorship with approximately 100 nauplii larvae ofArtemia sp. (brine shrimp ). The larvae were exposed to the...seal (D). These coatings showed higher mortality of brine shrimp as well as 100% mortality of cypris larvae during the settlement assay which...brine shrimp compared to the glass control; however these did not inhibit settlement and were evidently not toxic to the cypris larvae . All other
Development of multi-pixel x-ray source using oxide-coated cathodes.
Kandlakunta, Praneeth; Pham, Richard; Khan, Rao; Zhang, Tiezhi
2017-07-07
Multiple pixel x-ray sources facilitate new designs of imaging modalities that may result in faster imaging speed, improved image quality, and more compact geometry. We are developing a high-brightness multiple-pixel thermionic emission x-ray (MPTEX) source based on oxide-coated cathodes. Oxide cathodes have high emission efficiency and, thereby, produce high emission current density at low temperature when compared to traditional tungsten filaments. Indirectly heated micro-rectangular oxide cathodes were developed using carbonates, which were converted to semiconductor oxides of barium, strontium, and calcium after activation. Each cathode produces a focal spot on an elongated fixed anode. The x-ray beam ON and OFF control is performed by source-switching electronics, which supplies bias voltage to the cathode emitters. In this paper, we report the initial performance of the oxide-coated cathodes and the MPTEX source.
A pulsed mode electrolytic drug delivery device
NASA Astrophysics Data System (ADS)
Yi, Ying; Buttner, Ulrich; Carreno, Armando A. A.; Conchouso, David; Foulds, Ian G.
2015-10-01
This paper reports the design of a proof-of-concept drug delivery device that is actuated using the bubbles formed during electrolysis. The device uses a platinum (Pt) coated nickel (Ni) metal foam and a solid drug in reservoir (SDR) approach to improve the device’s performance. This electrochemically-driven pump has many features that are unlike conventional drug delivery devices: it is capable of pumping periodically and being refilled automatically; it features drug release control; and it enables targeted delivery. Pt-coated metal foam is used as a catalytic reforming element, which reduces the period of each delivery cycle. Two methods were used for fabricating the Pt-coated metal: sputtering and electroplating. Of these two methods, the sputtered Pt-coated metal foam has a higher pumping rate; it also has a comparable recombination rate when compared to the electroplated Pt-coated metal foam. The only drawback of this catalytic reformer is that it consumes nickel scaffold. Considering long-term applications, the electroplated Pt metal foam was selected for drug delivery, where a controlled drug release rate of 2.2 μg ± 0.3 μg per actuation pulse was achieved using 4 mW of power.
Simulation to coating weight control for galvanizing
NASA Astrophysics Data System (ADS)
Wang, Junsheng; Yan, Zhang; Wu, Kunkui; Song, Lei
2013-05-01
Zinc coating weight control is one of the most critical issues for continuous galvanizing line. The process has the characteristic of variable-time large time delay, nonlinear, multivariable. It can result in seriously coating weight error and non-uniform coating. We develop a control system, which can automatically control the air knives pressure and its position to give a constant and uniform zinc coating, in accordance with customer-order specification through an auto-adaptive empirical model-based feed forward adaptive controller, and two model-free adaptive feedback controllers . The proposed models with controller were applied to continuous galvanizing line (CGL) at Angang Steel Works. By the production results, the precise and stability of the control model reduces over-coating weight and improves coating uniform. The product for this hot dip galvanizing line does not only satisfy the customers' quality requirement but also save the zinc consumption.
A Multifunctional Coating for Autonomous Corrosion Control
NASA Technical Reports Server (NTRS)
Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.
2011-01-01
Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.
NASA Astrophysics Data System (ADS)
Castano, Carlos E.; Maddela, Surender; O'Keefe, Matthew J.; Wang, Yar-Ming
Cerium-based conversion coatings (CeCCs) were deposited onto AZ31B magnesium alloy substrates using a spontaneous reaction of CeCl3, H2O2 and gelatin in a water-based solution. The coating thickness was adjusted by controlling the immersion time in the deposition solution. Prior to deposition, the AZ31B substrates were treated using an acid pickling in nitric acid and then an alkaline cleaning in sodium metasilicate pentahydrate. After deposition, the coated samples were immersed in a phosphate bath that converted cerium oxide/hydroxide into cerium phosphate. Electrochemical impedance spectroscopy, potentiodynamic polarization and neutral salt spray testing studies indicated that 100 nm thick CeCC had better corrosion performance than 400 nm coatings. Characterization of the CeCCs by transmission electron microscopy (TEM) revealed a three layer structure with different compositions.
NASA Astrophysics Data System (ADS)
Rahe, Manfred; Ristau, Detlev; Schmidt, Holger
1993-06-01
In this paper, data of single layers of YbF3, BaF2, YF3, and NaF and multilayer coatings produced by conventional thermal evaporation (boat, e-beam) and ion assisted deposition (IAD) are compared. Hydrogen concentration depth profiling was performed using nuclear reaction analysis based on the reaction 1H(15N, (alpha) (gamma) )12C. Absorption was measured with the aid of a laser calorimeter and a cw CO2 laser. A computer-controlled test facility with a TEA CO2 laser was used for determining the 1-on-1 damage thresholds of the coatings. The results point out that the absorption and damage behavior of coatings for the CO2 laser wavelength are related to the total amount of species containing hydrogen. Most of the IAD coatings exhibit a lower hydrogen contamination than conventional thin films.
Lee, Yong-Soo; Ryou, Jae-Suk
2016-01-01
Various self-healing methods for concrete, such as the use of supplementary cementitious materials, adhesive agents, mineral admixtures, and bacteria, have been suggested to date, and each of these has merits and demerits. Among these, however, the use of cementitious materials may be appropriate due to their good healing efficiency, low cost, and compatibility with the cement matrix. In this study, granulation and coating methods were applied to a new cementitious composite material. The self-healing property of these materials was controlled by the polyvinyl alcohol (PVA) coating until cracks were created. Water dissolved the PVA coating after entering through the cracks, and reacted with the healing materials to generate healing products. The self-healing performance was evaluated at various elapsed times through the measurement of the crack widths, visual observation, and examination of the microscopic images. Simultaneously, a water permeability test was performed and the dynamic modulus of elasticity was measured to verify the recovery of the cracks. In addition, the healing products that had been formed in the cracks were analyzed via X-ray diffraction (XRD) and scanning electron microscopy (SEM). PMID:28773677
Lee, Yong-Soo; Ryou, Jae-Suk
2016-07-09
Various self-healing methods for concrete, such as the use of supplementary cementitious materials, adhesive agents, mineral admixtures, and bacteria, have been suggested to date, and each of these has merits and demerits. Among these, however, the use of cementitious materials may be appropriate due to their good healing efficiency, low cost, and compatibility with the cement matrix. In this study, granulation and coating methods were applied to a new cementitious composite material. The self-healing property of these materials was controlled by the polyvinyl alcohol (PVA) coating until cracks were created. Water dissolved the PVA coating after entering through the cracks, and reacted with the healing materials to generate healing products. The self-healing performance was evaluated at various elapsed times through the measurement of the crack widths, visual observation, and examination of the microscopic images. Simultaneously, a water permeability test was performed and the dynamic modulus of elasticity was measured to verify the recovery of the cracks. In addition, the healing products that had been formed in the cracks were analyzed via X-ray diffraction (XRD) and scanning electron microscopy (SEM).
Aesthetic coatings for concrete bridge components
NASA Astrophysics Data System (ADS)
Kriha, Brent R.
This thesis evaluated the durability and aesthetic performance of coating systems for utilization in concrete bridge applications. The principle objectives of this thesis were: 1) Identify aesthetic coating systems appropriate for concrete bridge applications; 2) Evaluate the performance of the selected systems through a laboratory testing regimen; 3) Develop guidelines for coating selection, surface preparation, and application. A series of site visits to various bridges throughout the State of Wisconsin provided insight into the performance of common coating systems and allowed problematic structural details to be identified. To aid in the selection of appropriate coating systems, questionnaires were distributed to coating manufacturers, bridge contractors, and various DOT offices to identify high performing coating systems and best practices for surface preparation and application. These efforts supplemented a literature review investigating recent publications related to formulation, selection, surface preparation, application, and performance evaluation of coating materials.
High efficiency protein separation with organosilane assembled silica coated magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Chang, Jeong Ho; Kang, Ki Ho; Choi, Jinsub; Jeong, Young Keun
2008-10-01
This work describes the development of high efficiency protein separation with functionalized organosilanes on the surface of silica coated magnetic nanoparticles. The magnetic nanoparticles were synthesized with average particle size of 9 nm and silica coated magnetic nanoparticles were obtained by controlling the coating thicknesses on magnetic nanoparticles. The silica coating thickness could be uniformly sized with a diameter of 10-40 nm by a sol-gel approach. The surface modification was performed with four kinds of functionalized organosilanes such as carboxyl, aldehyde, amine, and thiol groups. The protein separation work with organosilane assembled silica coated magnetic nanoparticles was achieved for model proteins such as bovine serum albumin (BSA) and lysozyme (LSZ) at different pH conditions. Among the various functionalities, the thiol group showed good separation efficiency due to the change of electrostatic interactions and protein conformational structure. The adsorption efficiency of BSA and LSZ was up to 74% and 90% corresponding pH 4.65 and pH 11.
Carbon-coated nanoparticle superlattices for energy applications
NASA Astrophysics Data System (ADS)
Li, Jun; Yiliguma, Affa; Wang, Yifei; Zheng, Gengfeng
2016-07-01
Nanoparticle (NP) superlattices represent a unique material architecture for energy conversion and storage. Recent reports on carbon-coated NP superlattices have shown exciting electrochemical properties attributed to their rationally designed compositions and structures, fast electron transport, short diffusion length, and abundant reactive sites via enhanced coupling between close-packed NPs, which are distinctive from their isolated or disordered NP or bulk counterparts. In this minireview, we summarize the recent developments of highly-ordered and interconnected carbon-coated NP superlattices featuring high surface area, tailorable and uniform doping, high conductivity, and structure stability. We then introduce the precisely-engineered NP superlattices by tuning/studying specific aspects, including intermetallic structures, long-range ordering control, and carbon coating methods. In addition, these carbon-coated NP superlattices exhibit promising characteristics in energy-oriented applications, in particular, in the fields of lithium-ion batteries, fuel cells, and electrocatalysis. Finally, the challenges and perspectives are discussed to further explore the carbon-coated NP superlattices for optimized electrochemical performances.
NASA Technical Reports Server (NTRS)
Dever, Joyce A.
1998-01-01
Many spacecraft thermal control coatings in low Earth orbit (LEO) can be affected by solar ultraviolet radiation and atomic oxygen. Ultraviolet radiation can darken some polymers and oxides commonly used in thermal control materials. Atomic oxygen can erode polymer materials, but it may reverse the ultraviolet-darkening effect on oxides. Maintaining the desired solar absorptance for thermal control coatings is important to assure the proper operating temperature of the spacecraft. Thermal control coatings to be used on the International Space Station (ISS) were evaluated for their performance after exposure in the NASA Lewis Research Center's Atomic Oxygen-Vacuum Ultraviolet Exposure (AO-VUV) facility. This facility simulated the LEO environments of solar vacuum ultraviolet (VUV) radiation (wavelength range, 115 to 200 nanometers (nm)) and VUV combined with atomic oxygen. Solar absorptance was measured in vacuo to eliminate the "bleaching" effects of ambient oxygen on VUV-induced degradation. The objective of these experiments was to determine solar absorptance increases of various thermal control materials due to exposure to simulated LEO conditions similar to those expected for ISS. Work was done in support of ISS efforts at the requests of Boeing Space and Defense Systems and Lockheed Martin Vought Systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
B.C. Winkleman; T.V. Giel; Jason Cunningham
1999-07-30
The recent achievements of critical currents in excess of 1 x 10{sup 6} amp/cm{sup 2} at 77 K in YBCO deposited over suitably textured buffer/substrate composites have stimulated interest in the potential fabrication of these coated conductors as wire. Numerous approaches and manufacturing schemes for producing coated conductor wire are currently being developed. Recently, under the US DOE's sponsorship, the University of Tennessee Space Institute performed an extensive evaluation of leading coated conductor processing options. In general, it is their feeling that the science and chemistry that are being developed in the coated conductor wire program now need proper engineeringmore » evaluation to define the most viable options for a commercial fabrication process. All fabrication processes will need process control measurements. This report provides a specific review of the needs and available technologies for process control for many of the coated conductor processing options. This report also addresses generic process monitoring areas in which additional research and development is needed. The concentration is on the two different approaches for obtaining the textured substrates that have been identified as viable candidates. These are the Los Alamos National Laboratory's ion-beam assisted deposition, called IBAD, to obtain a highly textured yttria-stabilized zirconia (YSZ) buffer on nickel alloy strips, and Oak Ridge National Laboratory's rolling assisted, bi-axially textured substrate option called RABiTS{trademark}.« less
Development of space-stable thermal control coatings for use on large space vehicles
NASA Technical Reports Server (NTRS)
Gilligan, J. E.; Harada, Y.
1976-01-01
The potential of zinc orthotitanate as a pigment for spacecraft thermal control was demonstrated. The properties and performance of pigments prepared by solid state, coprecipitation, and mixed oxalate methods were compared. Environmental tests and subsequent spectral analysis were given primary emphasis.
In vivo degradation of a new concept of magnesium-based rivet-screws in the minipig mandibular bone.
Schaller, Benoit; Saulacic, Nikola; Beck, Stefan; Imwinkelried, Thomas; Goh, Bee Tin; Nakahara, Ken; Hofstetter, Willy; Iizuka, Tateyuki
2016-12-01
Self-tapping of magnesium screws in hard bone may be a challenge due to the limited torsional strength of magnesium alloys in comparison with titanium. To avoid screw failure upon implantation, the new concept of a rivet-screw was applied to a WE43 magnesium alloy. Hollow cylinders with threads on the outside were expanded inside drill holes of minipig mandibles. During the expansion with a hexagonal mandrel, the threads engaged the surrounding bone and the inside of the screw transformed into a hexagonal screw drive to allow further screwing in or out of the implant. The in vivo degradation of the magnesium implants and the performance of the used coating were studied in a human standard-sized animal model. Four magnesium alloy rivet-screws were implanted in each mandible of 12 minipigs. Six animals received the plasmaelectrolytically coated magnesium alloy implants; another six received the uncoated magnesium alloy rivet-screws. Two further animals received one titanium rivet-screw each as control. In vivo radiologic examination was performed at one, four, and eight weeks. Euthanasia was performed for one group of seven animals (three animals with coated, three with uncoated magnesium alloy implants and one with titanium implant) at 12weeks and for the remaining seven animals at 24weeks. After euthanasia, micro-computed tomography and histological examination with histomorphometry were performed. Significantly less void formation as well as higher bone volume density (BV/TV) and bone-implant contact area (BIC) were measured around the coated implants compared to the uncoated ones. The surface coating was effective in delaying degradation despite plastic deformation. The results showed potential for further development of magnesium hollow coated screws for bone fixation. Copyright © 2016 Elsevier B.V. All rights reserved.
Manatunga, Danushika C; de Silva, Rohini M; de Silva, K M Nalin; de Silva, Nuwan; Bhandari, Shiva; Yap, Yoke Khin; Costha, N Pabakara
2017-08-01
Developing a drug carrier system which could perform targeted and controlled release over a period of time is utmost concern in the pharmaceutical industry. This is more relevant when designing drug carriers for poorly water soluble drug molecules such as curcumin and 6-gingerol. Development of a drug carrier system which could overcome these limitations and perform controlled and targeted drug delivery is beneficial. This study describes a promising approach for the design of novel pH sensitive sodium alginate, hydroxyapatite bilayer coated iron oxide nanoparticle composite (IONP/HAp-NaAlg) via the co-precipitation approach. This system consists of a magnetic core for targeting and a NaAlg/HAp coating on the surface to accommodate the drug molecules. The nanocomposite was characterized using FT-IR spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and thermogravimetric analysis. The loading efficiency and loading capacity of curcumin and 6-gingerol were examined. In vitro drug releasing behavior of curcumin and 6-gingerol was studied at pH 7.4 and pH 5.3 over a period of seven days at 37°C. The mechanism of drug release from the nanocomposite of each situation was studied using kinetic models and the results implied that, the release is typically via diffusion and a higher release was observed at pH 5.3. This bilayer coated system can be recognized as a potential drug delivery system for the purpose of curcumin and 6-gingerol release in targeted and controlled manner to treat diseases such as cancer. Copyright © 2017 Elsevier B.V. All rights reserved.
Han, Jing; Yang, Yi; Lu, Junren; Wang, Chenzhong; Xie, Youtao; Zheng, Xuebin; Yao, Zhenjun; Zhang, Chi
2017-07-24
In order to tackle the implant-related infection, a novel way was developed in this study to coat vancomycin particles mixed with controlled release coating materials onto the surface of titanium alloy by using an electrostatic dry powder coating technique. To characterize this sustained release antibacterial coating, surface morphology, in vitro and in vivo drug release were sequentially evaluated. In vitro cytotoxicity was tested by Cell Counting Kit-8 (CCK-8) assay and cytological changes were observed by inverted microscope. The antibacterial properties against MRSA, including a bacterial growth inhibition assay and a colony-counting test by spread plate method were performed. Results indicated that the vancomycin-coated sample was biocompatible for Human osteoblast cell line MG-63 and displayed effective antibacterial ability against MRSA. The coating film was revealed uniform by scanning electron microscopy. Both the in vitro and in vivo drug release kinetics showed an initially high release rate, followed by an extended period of sustained drug release over 7 days. These results suggest that with good biocompatibility and antibacterial ability, the sustained release antibacterial coating of titanium alloy using our novel electrostatic dry powder coating process may provide a promising candidate for the treatment of orthopedic implant-related infection.
NASA Astrophysics Data System (ADS)
Gagliardi, S.; Rondino, F.; D'Erme, C.; Persia, F.; Menchini, F.; Santarelli, M. L.; Paulke, B.-R.; Enayati, A. L.; Falconieri, M.
2017-08-01
Addiction of ceramic nanoparticles to acrylic polymers provides a simple and effective means to produce paints with important properties, such as mechanical resistance and tailored wettability, even though for optimal performances, an engineered nanoparticle distribution would be desirable. In this paper we report on the realization and on the morphological and functional characterization of nanocomposites where the nanophase is distributed on the surface of acrylic polymer films, in order to enhance the expression of surface-related properties. To this aim, commercial titanium oxide and silicon oxide nanopowders were dispersed in water and the suspensions were air-sprayed on polymeric films prepared by paint brushing, thus producing a nanostructured ceramic surface coating. Control of the pH of suspensions and acrylic acid functionalization of the surface of titania were used together with high power ultrasonic treatments in order to control dimension of the aggregates in the sprayed suspensions. Optical microscopy, mechanical profilometry, and atomic force microscopy were used to characterize the nanocomposite surface morphology and correlate it to the coating functional properties, evaluated through mechanical abrasion tests and contact angle measurements; also, colorimetry on coated stones was performed in order to test the impact of the coatings on the aesthetical appearance and their photostability under UV irradiation. Results show that the nanostructured ceramic layer slightly improves the resistance of coatings to mechanical abrasion in case of polymer films prepared from latexes. The nanocomposite surface layer does not affect the wettability of the polymer, which remained slightly hydrophilic; this behavior is likely due to inadequate distribution of the nanophase. On the other hand UV-induced superhydrophilicity was observed when the concentration of surface titania nanoparticles is about 0.6 mg/cm2. Colorimetric analysis on historical and Carrara marbles before and after coating evidenced the good transparency of the nanocomposites. Accelerated aging tests permitted to demonstrate that, on the historical marbles, the presence of the nanoparticles has a protective action against UV-induced damage of the underlying polymer film, preventing photodegradation.
NASA Astrophysics Data System (ADS)
Zhang, Chuan; Luo, Wenjun; Wen, Xin; Guan, Zhongjie; Zou, Zhigang
2017-11-01
P-type Cu(In,Ga)S2 semiconductors are promising candidates to be used as photocathodes for solar water splitting. Porous structures have been widely used to improve the performances of photoelectrodes due to good minority carrier transport. However, a porous photoelectrode has longer transport distance of majority carriers, which limits its performance. Controlling pore volume of a photoelectrode can balance minority and majority carrier transport and improve the performance. Here, a porous Cu(In,Ga)S2 film is prepared by facile spin-coating method. The pore volume of Cu(In,Ga)S2 film is controlled by adjusting relative humidity (RH) of air during spin-coating process. Further studies suggest that polyvinyl acetate (PVAc) in precursor solution is a humidity sensitive polymer and plays a key role to form different pore volume. The 40% RH sample has the best performance due to its optimum pore volume. After further coated with CdS surface passivation layer and Pt electrocatalyst on the surface, a 40% RH Cu(In,Ga)S2 photocathode indicates a photocurrent density of 8.6 mA cm-2 at 0 V RHE, which is one of the highest photocurrents of Cu(In,Ga)S2 photocathodes. This new strategy for adjusting pore volume is also suitable to prepare other solution-processed inorganic materials.
Nanocomposite tribological coatings with "chameleon" surface adaptation
NASA Astrophysics Data System (ADS)
Voevodin, A. A.; Fitz, T. A.; Hu, J. J.; Zabinski, J. S.
2002-07-01
Nanocomposite tribological coatings were designed to respond to changing environmental conditions by self-adjustment of their surface properties to maintain good tribological performance in any environment. These smart coatings have been dubbed "chameleon" because, analogous to a chameleon changing its skin color to avoid predators, the coating changes its "skin" chemistry and structure to avoid wear. The concept was originally developed using WC, diamondlike carbon, and WS2 material combination for adaptation to a humid/dry environment cycling. In order to address temperature variation, nanocomposite coatings made of yttria-stabilized zirconia (YSZ) in a gold matrix were developed with encapsulated nanosized reservoirs of MoS2 and diamondlike carbon (DLC). Coatings were produced using a combination of laser ablation and magnetron sputtering. They were characterized by x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, x-ray energy dispersive spectroscopy, and micro-Raman spectroscopy. Results were correlated with mechanical and tribological characterization. Coating hardness was evaluated using nanoindentation, while coating adhesion and toughness were estimated using scratch and Vickers indentation tests. Friction and wear endurance measurements of YSZ/Au/MoS2/DLC coatings against steel and Si3N4 balls were performed at room temperature in controlled humidity air, dry nitrogen, and vacuum environments, as well as at 500 degC in air. Depending on the environment, coating friction surface changed its chemistry and structure between (i) graphitic carbon for sliding in humid air [coating friction coefficients (c.o.f. 0.10-0.15)], (ii) hexagonal MoS2 for sliding in dry N2 and vacuum (c.o.f. 0.02-0.05), and (iii) metallic Au for sliding in air at 500 degC (c.o.f. 0.10-0.20). The unique coating skin adaptation realized with YSZ/Au/MoS2/DLC and WC/DLC/WS composites proves a universal applicability of the chameleon design concept. copyright 2002 American Vacuum Society.
NASA Astrophysics Data System (ADS)
Chi, Shuyan; Tan, Beiping; Dong, Xiaohui; Yang, Qihui; Liu, Hongyu
2014-11-01
We evaluated the effects of supplemental coated and crystalline methionine (Met) on the growth performance and feed utilization of juvenile cobia ( Rachycentron canadum Linnaeus) in a 60-d feeding trial. Fish groups were fed one of six isonitrogenous and isolipidic diets: 1) fishmeal control; 2) un-supplemented experimental (low-fish-meal diet deficient in Met); or 3) one of four Met diets supplemented with crystalline L-Met, cellulose-acetate-phthalate coated L-Met, acrylic-resin coated L-Met, or tripalmitin-polyvinyl alcohol coated L-Met. The test diets were fed to triplicate groups of cobia (initial body weight 5.40±0.07 g) twice a day. The weight gain and specific growth rate of the fish fed the RES diet were highest among the Met-supplemented groups and were 23.64% and 7.99%, respectively, higher than those of the fish fed with the un-supplemented experimental diet ( P<0.05). The protein efficiency ratio of the fish fed the MET diet was significantly higher than that of the fish fed the un-supplemented experimental diet and the fish in the other methionine supplementation groups ( P<0.05). Our results suggest that supplementation of crystalline Met in low-fish-meal diets promotes the growth performance of juvenile cobia.
Thin coatings for heavy industry: Advanced coatings for pipes and valves
NASA Astrophysics Data System (ADS)
Vernhes, Luc
Pipes and valves are pressure vessels that regulate the flow of materials (liquids, gases, and slurries) by controlling the passageways. To optimize processes, reduce costs, and comply with government regulations, original equipment manufacturers (OEMs) must maintain their products in state-of-the-art condition. The first valves were invented over 3,000 years ago to supply water to farms and cities. They were made with bronze alloys, providing good corrosion resistance and acceptable tribological performance. The industrial revolution drove manufacturers to develop new and improved tribological materials. In the 20th century, innovative alloys such as Monel copper-nickel and Stellite cobalt-chrome as well as hard chrome plating were introduced to better control tribological properties and maximize in-service life. Since then, new materials have been regularly introduced to extend the range of applications for valves. For example, Teflon fluoropolymers are used in corrosive chemical and petrochemical processes, the nickel-based superalloys Hastelloy and Inconel for petrochemical applications, and creep-resistant chromium-rich F91 steel for supercritical power plants. Recently, the valve industry has embraced the use of hard thermal sprayed coatings for the most demanding applications, and is investing heavily in research to develop the most suitable coatings for specific uses. There is increasing evidence that the optimal solution to erosive, corrosive, and fretting wear problems lies in the design and manufacture of multi-layer, graded, and/or nanostructured coatings and coating systems that combine controlled hardness with high elastic modulus, high toughness, and good adhesion. The overall objectives of this thesis were 1) to report on advances in the development of structurally controlled hard protective coatings with tailored mechanical, elastoplastic, and thermal properties; and 2) to describe enhanced wear-, erosion-, and corrosion-resistance and other characteristics suitable for applications such as pipes and valves. From these general objectives, three specific objectives were derived: 1) to select and assess the best candidates for alternatives to hard chromium electroplating, which has been classified by the U.S. Environmental Protection Agency (EPA) as an environmentally unfriendly process; 2) to investigate recurrent failures occurring in the field with thermal sprayed HVOF Cr3C 2-NiCr coating applied to Inconel 718 PH when exposed to supercritical steam lines and thermal shocks in supercritical power plants (determining the root causes of coating failures and assessing potential coating alternatives to alleviate these issues); and 3) to develop new coating architectures, including complex microstructures and interfaces, and to better understand and optimize complex tribomechanical properties. The main results are presented in the form of articles in peer-reviewed journals. In the first article, a variety of chromium-free protective coatings were assessed as alternatives to hard chromium (HC) electroplating, such as nanostructured cobalt-phosphor (NCP) deposited by electroplating and tungsten/tungsten carbide (W/WC) applied by chemical vapor deposition. In order to compare performance across the coatings, a series of laboratory tests were performed, including hardness, microscratch, pin-on-disk, and electrochemical polarization measurements. Mechanical and fatigue resistance were also determined using prototype valves with coated ball under severe tribocorrosion conditions. It was found that W/WC coating exhibits superior wear and corrosion resistance due to high hardness and high pitting resistance, respectively, whereas NCP exhibits better wear resistance than HC with alumina ball as well as low corrosion potential, making it suitable for use as sacrificial protective coating. Both nanostructured coatings exhibited superior tribomechanical and functional characteristics compared to HC. The second article presents an investigation of an HVOF 80/20 Cr 3C2-NiCr coating failure in an on-off metal-seated ball valve (MSBV) used in supercritical steam lines in a power plant, along with an assessment of alternative coating solutions that are less susceptible to this failure mode. HVOF 80/20 Cr3C2-NiCr coating has been used to protect thousands of MSBVs without incident. However, in this case the valves were challenged with exposure to rapid variations in high-pressure flow and temperature, resulting in a unique situation that caused the coating to undergo cracking and cohesive failure. Carbide precipitation was found to be a major factor, resulting in coating embrittlement. Reduced coating toughness and ductility allowed thermal, mechanical, and residual stresses to initiate cracks and propagate them more easily, leading to coating failure with exposure to thermal shock. To alleviate these issues, possible coating alternatives were assessed. The third article presents the mechanical, tribological, and corrosion properties of two novel hybrid coating systems: 1) a tungsten-tungsten carbide (W-WC) top layer and a laser cladded cobalt-chromium (Co-Cr) interlayer (StelliteRTM 6 superalloy) applied to a 316 stainless steel substrate; and 2) the same W-WC top layer and an HVOF spray-and-fused Ni-W-Cr-B interlayer (ColmonoyRTM 88 superalloy) applied to an InconelRTM 718 substrate. X-ray diffraction, energy dispersive spectroscopy, and scanning electron microscopy were used to analyze the microstructure of the coating layers. Microindentation was used to measure surface hardness and the hardness profile of the coating systems. Rockwell indentation was used to assess coating adhesion according to CEN/TS 1071-8. Surface load-carrying capacity was also assessed by measuring micro- and macrohardness at high loads. Tribological properties were assessed with a linear reciprocating ball-on-flat sliding wear test, and corrosion resistance was measured by potentiodynamic polarization and electrochemical impedance spectroscopy.
Karthikeya Sharma, T
2015-11-01
Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine's performance within the range studied.
Karthikeya Sharma, T.
2014-01-01
Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine’s performance within the range studied. PMID:26644918
Heydari, Azar; Tahmasbi, Soodeh; Badiee, Mohammadreza; Izadi, SeyedSadra; Mashhadi Abbas, Fatemeh; Mokhtari, Sepideh
2016-01-01
Introduction: Tooth avulsion is a real dental emergency. If immediate replantation is not performed, the avulsed tooth may be lost due to inflammatory or replacement resorption. This animal study aimed to evaluate the bone response to the titanium coating of the root surface as an artificial barrier, and prevention of resorption of avulsed teeth. Methods and Materials: This experimental study was conducted on four male dogs. The dogs were randomly divided into two groups for assessment at two and eight weeks. Four teeth were extracted in each animal. The root surfaces of the test group were coated with a titanium layer using the Electron Beam Deposition system. After 24 h, replantation of the teeth was performed. Two animals were sacrificed after two weeks and the remaining dogs were killed after eight weeks. The presence of inflammation, inflammatory resorption, replacement resorption, periodontal regeneration, periapical granuloma and ankylosis were evaluated through histological analyses. Results: Inflammatory root resorption was not present in any tooth except one tooth in the coated group after eight weeks. Replacement resorption was noted just in three of the non-coated teeth after two weeks and two teeth after eight weeks. The McNemar's test revealed that the frequency of replacement resorption in the non-coated group was significantly higher than the coated group (P=0.031). Conclusion: Based on the results of this study, it seems that coating the root surfaces of avulsed teeth with titanium may control the replacement root resorption. PMID:27790261
Turbomachine Interface Sealing
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.; Chupp, Raymond E.; Lattime, Scott B.; Steinetz, Bruce M.
2005-01-01
Sealing interfaces and coatings, like lubricants, are sacrificial, giving up their integrity for the benefit of the component. Clearance control is a major issue in power systems turbomachine design and operational life. Sealing becomes the most cost-effective way to enhance system performance. Coatings, films, and combined use of both metals and ceramics play a major role in maintaining interface clearances in turbomachine sealing and component life. This paper focuses on conventional and innovative materials and design practices for sealing interfaces.
Marković, Snežana; Kerč, Janez; Horvat, Matej
2017-03-01
We are presenting a new approach of identifying sources of variability within a manufacturing process by NIR measurements of samples of intermediate material after each consecutive unit operation (interprocess NIR sampling technique). In addition, we summarize the development of a multivariate statistical process control (MSPC) model for the production of enteric-coated pellet product of the proton-pump inhibitor class. By developing provisional NIR calibration models, the identification of critical process points yields comparable results to the established MSPC modeling procedure. Both approaches are shown to lead to the same conclusion, identifying parameters of extrusion/spheronization and characteristics of lactose that have the greatest influence on the end-product's enteric coating performance. The proposed approach enables quicker and easier identification of variability sources during manufacturing process, especially in cases when historical process data is not straightforwardly available. In the presented case the changes of lactose characteristics are influencing the performance of the extrusion/spheronization process step. The pellet cores produced by using one (considered as less suitable) lactose source were on average larger and more fragile, leading to consequent breakage of the cores during subsequent fluid bed operations. These results were confirmed by additional experimental analyses illuminating the underlying mechanism of fracture of oblong pellets during the pellet coating process leading to compromised film coating.
40 CFR 63.4360 - What are the general requirements for performance tests?
Code of Federal Regulations, 2010 CFR
2010-07-01
... obtain a waiver of the performance test according to the provisions in § 63.7(h). (1) Representative web... under representative operating conditions for the web coating/printing or dyeing/finishing operation...) Representative emission capture system and add-on control device operating conditions. You must conduct the...
Characterization of Porous, Dexamethasone-Releasing Polyurethane Coatings for Glucose Sensors
Vallejo-Heligon, Suzana G.; Klitzman, Bruce; Reichert, William M.
2014-01-01
Commercially available implantable needle-type glucose sensors for diabetes management are robust analytically but can be unreliable clinically primarily due to tissue-sensor interactions. Here, we present the physical, drug release, and bioactivity characterization of tubular, porous dexamethasone (Dex) releasing polyurethane coatings designed to attenuate local inflammation in the tissue-sensor interface. Porous polyurethane coatings were produced by the salt-leaching/gas-foaming method. Scanning electron microscopy (SEM) and Micro-computed tomography (Micro-CT) showed a controlled porosity and coating thickness. In vitro drug release from coatings monitored over two weeks presented an initial fast release followed by a slower release. Total release from coatings was highly dependent on initial drug loading amount. Functional in vitro testing of glucose sensors deployed with porous coatings against glucose standards demonstrated that highly porous coatings minimally affected signal strength and response rate. Bioactivity of the released drug was determined by monitoring Dex-mediated, dose-dependent apoptosis of human peripheral blood derived monocytes in culture. Acute animal studies were used to determine the appropriate Dex payload for the implanted porous coatings. Pilot short-term animal studies showed that Dex released from porous coatings implanted in rat subcutis attenuated the initial inflammatory response to sensor implantation. These results suggest that deploying sensors with the porous, Dex-releasing coatings is a promising strategy to improve glucose sensor performance. PMID:25065548
NASA Astrophysics Data System (ADS)
Schmid, M.; Willert-Porada, M.
2017-05-01
Silica coatings on zinc particles as anode material for alkaline zinc air batteries are expected to reduce early formation of irreversible ZnO passivation layers during discharge by controlling zinc dissolution and precipitation of supersaturated zincates, Zn(OH)42-. Zinc particles were coated with SiO2 (thickness: 15 nm) by chemical solution deposition and with Zn2SiO4 (thickness: 20 nm) by chemical vapor deposition. These coatings formed a Si(OH)4 gel in aqueous KOH and retarded hydrogen evolution by 40%. By treatment in aqueous KOH and drying afterwards, the silica coatings were changed into ZnO-K2O·SiO2 layers. In this work, the electrochemical performance of such coated zinc particles is investigated by different electrochemical methods in order to gain a deeper understanding of the mechanisms of the coatings, which reduce zinc passivation. In particular, zinc utilization and changes in internal resistance are investigated. Moreover, methods for determination of diffusion coefficients, charge carrier numbers and activation energies for electrochemical oxidation are determined. SiO2-coated zinc particles show improved discharge capacity (CVD-coated zinc: 69% zinc utilization, CSD-coated zinc: 62% zinc utilization) as compared to as-received zinc (57% zinc utilization) at C/20 rate, by reducing supersaturation of zincates. Additionally, KOH-modified SiO2-coated zinc particles enhance rechargeability after 100% depth-of-discharge.
Yang, Zi Yi; Lu, Yan; Tang, Xing
2008-12-01
Pseudoephedrine hydrochloride is an active very highly water soluble substance. In order to control release of a drug with this property, we developed the application of a combination of hot-melt subcoating and polymer coating was developed. The main objective was to investigate the influence of this combination on the release of highly water soluble drug and how it works. Hot-melt subcoating was achieved by using a coating pan. Subsequently, the outer polymer coating was prepared by fluidized bed, and the drug release was determined by high-performance liquid chromatograph (HPLC) method. Hot-melt subcoating can form a barrier between the drug-loaded pellets and the polymer coating layer, which prevents migration of the drug during film application. Consequently, the level of polymer coating can be reduced significantly, and the effectiveness of the polymer coating increased. In this study, the release profile of pellets with a 10% hot-melt subcoating and 5% polymer coating weight gain met the dissolution requirement of USP29 for pseudoephedrine hydrochloride extended-release capsules. Compared with pellets only polymer coated (10% level), the polymer coating level of pellets prepared by this technology was reduced by half due to hot-melt subcoating. By means of this hot-melt subcoating and polymer coating, sustained-release pellets containing pseudoephedrine hydrochloride were successfully prepared.
Investigation of space stable thermal control coating properties
NASA Technical Reports Server (NTRS)
Mookherji, T.
1971-01-01
A capability to study the nuclear magnetic resonance of spacecraft thermal control coating has been built utilizing an electromagnet and V-series and Wl-series electronics. The electronics associated with the electromagnet had to be modified to make it compatible with the resonance measuring system. Resonance measurements have been performed on ZnO, Zn2TiO4 and FEP Teflon. The failure to observe resonance in ZnO and Zn2TiO4 has been theoretically explained. The linewidth and second moment measurements on ultraviolet irradiated FEP Teflon showed that there was no measurable degradation of the material due to short term irradiation.
Comparing Biofouling Control Treatments for Use on Aquaculture Nets
Swain, Geoffrey; Shinjo, Nagahiko
2014-01-01
Test panels comprised of uncoated, copper coated and silicone coated 7/8'' (22 mm) mesh knitted nylon net were evaluated to compare their properties and the effectiveness to prevent biofouling. This paper describes test procedures that were developed to quantify the performance in terms of antifouling, cleanability, drag and cost. The copper treatment was the most effective at controlling fouling, however, the silicone treated nets were the easiest to clean. The drag forces on the net were a function of twine diameter, twine roughness and fouling. After immersion, the uncoated nets had the most drag followed by the silicone and copper treatments. The cost of applying silicone to nets is high; however, improved formulations may provide a non-toxic alternative to control fouling. PMID:25474085
Yang, Yong; Wang, Peng-peng; Zhang, Zhi-cheng; Liu, Hui-ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun
2013-01-01
Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants.
NASA Astrophysics Data System (ADS)
Yang, Yong; Wang, Peng-Peng; Zhang, Zhi-Cheng; Liu, Hui-Ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun
2013-04-01
Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants.
Space environmental effects on LDEF composites: A leading edge coated graphite epoxy panel
NASA Technical Reports Server (NTRS)
George, Pete E.; Dursch, Harry W.; Hill, Sylvester G.
1993-01-01
The electronics module cover for the leading edge (Row D 9) experiment M0003-8 was fabricated from T300 graphite/934 epoxy unidirectional prepreg tape in a (O(sub 2), +/- 45, O(sub 2), +/- 45, 90, 0)(sub s) layup. This 11.75 in x 16.75 in panel was covered with thermal control coatings in three of the four quadrants with the fourth quadrant uncoated. The composite panel experienced different thermal cycling extremes in each quadrant due to the different optical properties of the coatings and bare composite. The panel also experienced ultraviolet (UV) and atomic oxygen (AO) attack as well as micrometeoroid and space debris impacts. An AO reactivity of 0.99 x 10(exp -24) cm(sup 3)/atom was calculated for the bare composite based on thickness loss. The white urethane thermal control coatings (A276 and BMS 1060) prevented AO attack of the composite substrate. However, the black urethane thermal control coating (Z306) was severely eroded by AO, allowing some AO attack of the composite substrate. An interesting banding pattern on the AO eroded bare composite surface was investigated and found to match the dimensions of the graphite fiber tow widths as prepregged. Also, erosion depths were greater in the darker bands. Five micrometeoroid/space debris impacts were cross sectioned to investigate possible structural damage as well as impact/AO interactions. Local crushing and delaminations were found to some extent in all of the impacts. No signs of coating undercutting were observed despite the extensive AO erosion patterns seen in the exposed composite material at the impact sites. An extensive microcrack study was performed on the panel along with modeling of the thermal environment to estimate temperature extremes and thermal shock. The white coated composite substrate displayed almost no microcracking while the black coated and bare composite showed extensive microcracking. Significant AO erosion was seen in many of the cracks in the bare composite.
Preparation and Tribological Study of Biodegradable Lubrication Films on Si Substrate
Shi, Shih-Chen; Huang, Teng-Feng; Wu, Jhen-Yu
2015-01-01
A novel method for preparing eco-biodegradable lubricant based on hydroxypropyl methylcellulose (HPMC) via hydration process is demonstrated. The smooth and homogeneous HPMC coating has a uniform thickness (~35 μm). It has been demonstrated that the preparation parameters play a critical role in controlling the lubricating behavior of the coating; in addition, excess HPMC and water concentration suppress the tribology properties. Nevertheless, a remarkable friction-reduction and anti-wear performance has been obtained. Impressively, the preparation parameter of 5% HPMC + 30 mL water significantly improves lubricant performance and durability. A simple approach for the water-degradability evaluation of HPMC is proposed. PMID:28788029
Polydopamine-Coated Main-Chain Liquid Crystal Elastomer as Optically Driven Artificial Muscle.
Tian, Hongmiao; Wang, Zhijian; Chen, Yilong; Shao, Jinyou; Gao, Tong; Cai, Shengqiang
2018-03-07
Optically driven active materials have received much attention because their deformation and motion can be controlled remotely, instantly, and precisely in a contactless way. In this study, we investigated an optically actuated elastomer with rapid response: polydopamine (PDA)-coated liquid crystal elastomer (LCE). Because of the photothermal effect of PDA coating and thermal responsiveness of LCE, the elastomer film contracted significantly with near-infrared (NIR) irradiation. With a fixed strain, light-induced actuating stress in the film could be as large as 1.5 MPa, significantly higher than the maximum stress generated by most mammalian skeletal muscle (0.35 MPa). The PDA-coated LCE films could also bend or roll up by surface scanning of an NIR laser. The response time of the film to light exposure could be as short as 1/10 of a second, comparable to or even faster than that of mammalian skeletal muscle. Using the PDA-coated LCE film, we designed and fabricated a prototype of robotic swimmer that was able to swim near the water-air interface by performing "swimming strokes" through reversible bending and unbending motions induced and controlled by an NIR laser. The results presented in this study clearly demonstrated that PDA-coated LCE is a promising optically driven artificial muscle, which may have great potential for applications of soft robotics and optomechanical coupling devices.
Investigation of corrosion protection performance of sol-gel surface treatments on AA2024-T3
NASA Astrophysics Data System (ADS)
Voevodin, Natalia Nikolajevna
The dissertation research project addresses the technologically important problem of replacement of chromate based coatings for corrosion protection of aircraft. A review of corrosion processes in high-strength aluminum alloys indicated that the strengthening intermetallic precipitates provide local cathodic areas, which may initiate surface pitting. The mechanisms of chromate inhibition in these localized corrosion processes were identified. The environmental hazard of chromates was also highlighted, serves as the impetus for chromate coating replacement. Sol-gel coatings are shown as an excellent alternative, based on environment compliance, flexibility in the composition control, and reasonable costs. Several sol-gel coatings were formulated and applied to the surface of an AA2024-T3 alloy. The coating composition and bonding were analyzed with XPS and FTIR, surface morphology was studied with SEM and AFM, and corrosion protection properties were tested with EIS, PDS, salt water immersion, and salt-fog exposure. The results demonstrated that epoxy-zirconate sol-gel coatings can provide excellent barrier properties. A novel SVET technique was applied for studies of local electrochemical processes in the pitting formation. This technique was further refined in model studies of aluminum surfaces with artificially created local cathodic regions, experimental studies of chromate inhibition with pit formation, and pitting development studies in sol-gel coatings with artificially introduced defects. Mechanisms of pitting development and inhibition with the pit initiation and growth kinetics were established. The Zr-epoxy coatings are subjected to the pit development and undercutting in the absence of the corrosion inhibitors. Several organic and non-organic inhibitors were evaluated in the sol-gel coating composition. Organic inhibitors had a better compliance with sol-gel chemistry and were identified for future studies. Experiments were performed to verify that sol-gel coatings can be used as barrier layers in complex coating systems. The results clearly demonstrated that Zr-epoxy sol-gel coatings are a viable replacement for the currently used chromate-based surface treatments. This work expands the fundamental knowledge of chromate coating replacement with chromate-free sol-gel coatings and identifies possible ways to implement this goal.
Kao, Chia-Tze; Guo, Jia-Uei; Huang, Tsui-Hsien
2011-05-01
Titanium nitride (TiN) plating is a method to prevent metal corrosion and can increase the surface smoothness. The purpose of this study was to evaluate the friction forces between the orthodontic bracket, with or without TiN plating, and stainless steel wire after it was corroded in fluoride-containing solution. In total, 540 metal brackets were divided into a control group and a TiN-coated experimental group. The electrochemical corrosion was performed in artificial saliva with 1.23% acidulated phosphate fluoride (APF) as the electrolytes. Static and kinetic friction were measured by an EZ-test machine (Shimadazu, Tokyo, Japan) with a crosshead speed of 10 mm per minute over a 5-mm stretch of stainless steel archwire. The data were analyzed by using unpaired t test and analysis of variance (ANOVA). Both the control and TiN-coated groups' corrosion potential was higher with 1.23% APF solution than with artificial solution (P <0.05). In brackets without corrosion, both the static and kinetic friction force between the control and TiN-coated brackets groups showed a statistically significant difference (P <0.05). In brackets with corrosion, the control group showed no statistical difference on kinetic or static friction. The TiN-coated brackets showed a statistical difference (P <0.05) on kinetic and static friction in different solutions. TiN-coated metal brackets, with corrosion or without corrosion, cannot reduce the frictional force. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Micro/nanoreservoirs for controlled release of active species in smart functional coatings =
NASA Astrophysics Data System (ADS)
Maia, Frederico Calheiros
This work reports one possible way to develop new functional coatings used to increase the life time of metallic structures. The functionalities selected and attributed to model coatings in the frame of this work were corrosion protection, self-sensing and prevention of fouling (antifouling). The way used to confer those functionalities to coatings was based on the encapsulation of active compounds (corrosion inhibitors, pH indicators and biocides) in micro and nanocontainers followed by their incorporation into the coating matrices. To confer active corrosion protection, one corrosion inhibitor (2-mercaptobenzothiazole, MBT) was encapsulated in two different containers, firstly in silica nanocapsules (SiNC) and in polyurea microcapsules (PU-MC). The incorporation of both containers in different models coatings shows a significant improvement in the corrosion protection of aluminum alloy 2024 (AA2024). Following the same approach, SiNC and PU-MC were also used for the encapsulation of phenolphthalein (one well known pH indicator) to introduce sensing properties in polymeric coatings. SiNC and PU-MC containing phenolphthalein acted as corrosion sensor, showing a pink coloration due to the beginning of cathodic reaction, resulting in a pH increase identified by those capsules. Their sensing performance was proved in suspension and when integrated in coatings for aluminium alloy 2024 and magnesium alloy AZ31. In a similar way, the biocide activity (antifouling) was assigned to two polymeric matrices using SiNC for encapsulation of one biocide (Dichloro-2-octyl-2H-isothiazol-3-one, DCOIT) and also SiNC-MBT was tested as biocide. The antifouling activity of those two encapsulated compounds was assessed through inhibition and consequent decrease in the bioluminescence of modified E. coli. That effect was verified in suspension and when incorporated in coatings for AISI 1008 carbon steel. The developed micro and nanocontainers presented the desired performance, allowing the introduction of new functionalities to model coatings, showing potential to be used as functional additives in the next generation of multifunctional coatings.
Automated Plasma Spray (APS) process feasibility study
NASA Technical Reports Server (NTRS)
Fetheroff, C. W.; Derkacs, T.; Matay, I. M.
1981-01-01
An automated plasma spray (APS) process was developed to apply two layer (NiCrAlY and ZrO2-12Y2O3) thermal barrier coatings to aircraft and stationary gas turbine engine blade airfoils. The APS process hardware consists of four subsystems: a mechanical positioning subsystem incorporating two interlaced six degree of freedom assemblies (one for coating deposition and one for coating thickness monitoring); a noncoherent optical metrology subsystem (for in process gaging of the coating thickness buildup at specified points on the specimen); a microprocessor based adaptive system controller (to achieve the desired overall thickness profile on the specimen); and commerical plasma spray equipment. Over fifty JT9D first stage aircraft turbine blade specimens, ten W501B utility turbine blade specimens and dozens of cylindrical specimens were coated with the APS process in preliminary checkout and evaluation studies. The best of the preliminary turbine blade specimens achieved an overall coating thickness uniformity of 53 micrometers (2.1 mils), much better than is achievable manually. Comparative evaluations of coating thickness uniformity for manually sprayed and APS coated specimens were performed. One of the preliminary turbine blade evaluation specimens was subjected to a torch test and metallographic evaluation. Some cylindrical specimens coated with the APS process survived up to 2000 cycles in subsequent burner rig testing.
Requirements and test results for the qualification of thermal control coatings
NASA Technical Reports Server (NTRS)
Brzuskiewicz, J. E.; Zerlaut, G. A.; Lauder, K.; Miller, G. M.
1988-01-01
Paint type coatings are often used as engineering materials in critical satellite temperature control applications. The functional features of coatings used for temperature control purposes must remain stable throughout the satellite manufacturing process and the satellite mission. The selection of a particular coating depends on matching coating characteristics to mission requirements. The use of paint coatings on satellites, although having an extensive history, requires that the paint be qualified to each application on an individual basis. Thus, the qualification process through testing serves to ensure that paint coatings as engineering materials will fulfill design requirements.
Damage tolerant functionally graded materials for advanced wear and friction applications
NASA Astrophysics Data System (ADS)
Prchlik, Lubos
The research work presented in this dissertation focused on processing effects, microstructure development, characterization and performance evaluation of composite and graded coatings used for friction and wear control. The following issues were addressed. (1) Definition of prerequisites for a successful composite and graded coating formation by means of thermal spraying. (2) Improvement of characterization methods available for homogenous thermally sprayed coating and their extension to composite and graded materials. (3) Development of novel characterization methods specifically for FGMs, with a focus on through thickness property measurement by indentation and in-situ curvature techniques. (4) Design of composite materials with improved properties compared to homogenous coatings. (5) Fabrication and performance assessment of FGM with improved wear and impact damage properties. Materials. The materials studied included several material systems relevant to low friction and contact damage tolerant applications: MO-Mo2C, WC-Co cermets as materials commonly used sliding components of industrial machinery and NiCrAlY/8%-Yttria Partially Stabilized Zirconia composites as a potential solution for abradable sections of gas turbines and aircraft engines. In addition, uniform coatings such as molybdenum and Ni5%Al alloy were evaluated as model system to assess the influence of microstructure variation onto the mechanical property and wear response. Methods. The contact response of the materials was investigated through several techniques. These included methods evaluating the relevant intrinsic coating properties such as elastic modulus, residual stress, fracture toughness, scratch resistance and tests measuring the abrasion and friction-sliding behavior. Dry-sand and wet two-body abrasion testing was performed in addition to traditional ball on disc sliding tests. Among all characterization techniques the spherical indentation deserved most attention and enabled to measure elastic-plastic properties of uniform and graded structures. In-situ curvature method used for residual stress and elastic modulus measurement was extended from uniform coatings to coatings with compositional/property gradients. Properties of composite and graded materials were measured using the inverse analysis. Conclusions. The specifics of the elastic-plastic response for thermally sprayed coatings were demonstrated. These included the strain dependence of elastic modulus and damage accumulation related to unloading/reloading loop formation. The measurement of elastic-plastic characteristics of composite coatings revealed the mixing and bonding mechanisms unique for thermally sprayed materials. Microstructural and compositional factors governing the frictional vs. abrasion response of carbide-metallic composite coatings were described. The measurement of abrasion resistance and friction sliding properties demonstrated that grading of cermet and ceramic coatings by adding moderate amount of metallic alloys can enhance elastic-properties radically and have a beneficial effect onto the coating performance.
Prüller, F; Rosskopf, K; Mangge, H; Mahla, E; von Lewinski, D; Weiss, E C; Riegler, A; Enko, D
2017-12-01
Essentials In platelet function testing, standardized internal controls (IQC) are not commercially provided. Platelet function testing was performed daily on aliquoted pooled platelet concentrates. Pooled platelet concentrates showed stability for control purposes from Monday to Friday. Pooled platelet concentrates provide the necessary steadiness to serve as IQC material. Background Standardized commercially available control material for internal quality control (IQC) of light transmission aggregometry (LTA) is still lacking. Moreover, the availability of normal blood donors to provide fresh platelets is difficult in small laboratories, where 'volunteers' may be in short supply. Objectives To evaluate the implementation of buffy-coat-derived pooled platelet concentrates (PCs) for IQC material for LTA. Methods We used buffy-coat-derived pooled PCs from the blood bank as IQC material for LTA. On each weekend one PC was prepared (> 200 mL) and aliquoted from the original storage bag on a daily basis in four baby bags (40-50 mL), which were delivered from Monday to Friday to our laboratory. The IQC measurements of at least 85 work-weeks (from Monday to Friday) were evaluated with this new IQC material. LTA was performed on a four-channel Chronolog 700 Aggregometer (Chronolog Corporation, Havertown, PA, USA) (agonists: collagen, adenosine diphosphate [ADP], arachidonic acid [AA] and thrombin receptor activator peptide-6 [TRAP-6]). Results The medians of platelet aggregation from IQC measurements with collagen, ADP and AA from Monday to Friday were 68.0-59.5, 3.0-2.0 and 51.0-50.0%, respectively, and the mean of platelet aggregation with TRAP-6 was 71.2-66.4%. Conclusions Buffy-coat-derived pooled PCs serve as a reliable and robust IQC material for LTA measurements and would be beneficial for the whole laboratory procedure and employees' safety. © 2017 International Society on Thrombosis and Haemostasis.
Deposition of plasmon gold-fluoropolymer nanocomposites
NASA Astrophysics Data System (ADS)
Safonov, Alexey I.; Sulyaeva, Veronica S.; Timoshenko, Nikolay I.; Kubrak, Konstantin V.; Starinskiy, Sergey V.
2016-12-01
Degradation-resistant two-dimensional metal-fluoropolymer composites consisting of gold nanoparticles coated with a thin fluoropolymer film were deposited on a substrate by hot wire chemical vapour deposition (HWCVD) and ion sputtering. The morphology and optical properties of the obtained coatings were determined. The thickness of the thin fluoropolymer film was found to influence the position of the surface plasmon resonance peak. Numerical calculations of the optical properties of the deposited materials were performed using Mie theory and the finite-difference time-domain (FDTD) method. The calculation results are consistent with the experimental data. The study shows that the position of the resonance peak can be controlled by changing the surface concentration of particles and the thickness of the fluoropolymer coating. The protective coating was found to prevent the plasmonic properties of the nanoparticles from changing for several months.
Ultrasonically Absorptive Coatings for Hypersonic Laminar Flow Control
2007-12-01
integratt JAC and TPS functions. To aid in the design of UAC with regular microstructure to be tested the CUBRC LENS I tunnel, parametric studies of th...solid foundation for large-scale demonstration of the UAC-LFC performance the CUBRC LENS I -tnel as wel as fabrication of ceramic UAC samples...with regular microstructure to be tested the CUBRC LENS I tunnel, extensive parametric studies of the UAC laminar flow control performance were conducted
2008-01-01
phase biosensor. Zinc oxide (ZnO) yielded results far superior to the tantalum pentoxide ( Ta2O5 ) alternative that was attempted. Preliminary results...secondary crosslinking with GMBS was performed for ZnO surfaces coated with MTS and MPA. To provide visual confirmation of the density and uniformity of...contained 8 devices coated with the same antibody species. Fluoroscein Isothyocyanate (FITC) was selected as the negative control since FITC is a
Hydroxyapatite Coating on TiO₂ Nanotube by Sol-Gel Method for Implant Applications.
Lim, Hyun-Pil; Park, Sang-Won; Yun, Kwi-Dug; Park, Chan; Ji, Min-Kyung; Oh, Gye-Jeong; Lee, Jong-Tak; Lee, Kwangmin
2018-02-01
The aim of this study was to determine the effect of hydroxyapatite (HA) coating on titanium dioxide (TiO2) nanotube by sol-gel process on viability of osteoblast like cell (MC3T3-E1) and bone formation in rat tibia. Specimens were divided into three groups including commercially pure titanium (control group), TiO2 nanotubes (group N), and HA coated TiO2 nanotubes (group HN). Surface characteristics were determined using field emission scanning electron microscope (FE-SEM; S-4700, Hitachi, Japan) and contact angles were measured. Cell viability was investigated in vitro after 1 day, 3 days, and 7 days of incubation. Implants (2.0 mm in diameter and 5.0 mm in length) were inserted into the tibia of rats. After 4 weeks, histomorphometric analysis was performed. Both N and HN groups showed enhanced hydrophilicity compared to control group. After 7 days of implantation, group HN showed higher cell viability with marginal significance (0.05 < P < 0.1). Bone to implant contact (BIC) ratio in the control group, group N, and group HN were 32.5%, 33.1%, and 43.8%, respectively. Results of this study showed that HA coated TiO2 nanotube using sol-gel process could be used to enhance hydrophilicity and improve osseointegration of dental implant surface.
Zhang, Qi; Wang, Hua; Fan, Xinfei; Chen, Shuo; Yu, Hongtao; Quan, Xie
2016-01-01
In order to improve the permeate flux of photocatalytic membranes, we present an approach for coupling TiO2 with ceramic hollow fiber membranes. The ceramic hollow fiber membranes with high permeate flux were fabricated by a controlled wet-spinning process using polyethersulfone (PESf) and ceramic powder as precursors and 1-methyl-2-pyrrolidinone as solvent, and the subsequent TiO2 coating was performed by a dip-coating process using tetra-n-butyl titanate as precursor. It has been found that the PESf/ceramic powder ratio could influence the structure of the membranes. Here the as-prepared TiO2 hollow fiber membranes had a pure water flux of 4,450 L/(m(2)·h). The performance of the TiO2 hollow fiber membrane was evaluated using humic acid (HA) as a test substance. The results demonstrated that this membrane exhibited a higher permeate flux under UV irradiation than in the dark and the HA removal efficiency was enhanced. The approach described here provides an operable route to the development of high-permeable photocatalytic membranes for water treatment.
Erakovic, Sanja; Jankovic, Ana; Tsui, Gary C. P.; Tang, Chak-Yin; Miskovic-Stankovic, Vesna; Stevanovic, Tatjana
2014-01-01
Hydroxyapatite (HAP) is the most suitable biocompatible material for bone implant coatings; its brittleness, however, is a major obstacle, and the reason why research focuses on creating composites with biopolymers. Organosolv lignin (Lig) is used for the production of composite coatings, and these composites were examined in this study. Titanium substrate is a key biomedical material due to its well-known properties, but infections of the implantation site still impose a serious threat. One approach to prevent infection is to improve antimicrobial properties of the coating material. Silver doped hydroxyapatite (Ag/HAP) and HAP coatings on titanium were obtained by an electrophoretic deposition method in order to control deposited coating mass and morphology by varying applied voltage and deposition time. The effect of lignin on microstructure, morphology and thermal behavior of biocomposite coatings was investigated. The results showed that higher lignin concentrations protect the HAP lattice during sintering, improving coating stability. The corrosion stability was evaluated in simulated body fluid (SBF) at 37 °C. Newly formed plate-shaped carbonate-HAP was detected, indicating enhanced bioactive performance. The antimicrobial efficiency of Ag/HAP/Lig was confirmed by its higher reduction of bacteria Staphylococcus aureus TL (S. aureus TL) than of HAP/Lig coating. Cytotoxicity assay revealed that both coatings can be classified as non-toxic against healthy immunocompetent peripheral blood mononuclear cells (PBMC). PMID:25019343
Erakovic, Sanja; Jankovic, Ana; Tsui, Gary C P; Tang, Chak-Yin; Miskovic-Stankovic, Vesna; Stevanovic, Tatjana
2014-07-11
Hydroxyapatite (HAP) is the most suitable biocompatible material for bone implant coatings; its brittleness, however, is a major obstacle, and the reason why research focuses on creating composites with biopolymers. Organosolv lignin (Lig) is used for the production of composite coatings, and these composites were examined in this study. Titanium substrate is a key biomedical material due to its well-known properties, but infections of the implantation site still impose a serious threat. One approach to prevent infection is to improve antimicrobial properties of the coating material. Silver doped hydroxyapatite (Ag/HAP) and HAP coatings on titanium were obtained by an electrophoretic deposition method in order to control deposited coating mass and morphology by varying applied voltage and deposition time. The effect of lignin on microstructure, morphology and thermal behavior of biocomposite coatings was investigated. The results showed that higher lignin concentrations protect the HAP lattice during sintering, improving coating stability. The corrosion stability was evaluated in simulated body fluid (SBF) at 37 °C. Newly formed plate-shaped carbonate-HAP was detected, indicating enhanced bioactive performance. The antimicrobial efficiency of Ag/HAP/Lig was confirmed by its higher reduction of bacteria Staphylococcus aureus TL (S. aureus TL) than of HAP/Lig coating. Cytotoxicity assay revealed that both coatings can be classified as non-toxic against healthy immunocompetent peripheral blood mononuclear cells (PBMC).
In vivo osseointegration of dental implants with an antimicrobial peptide coating.
Chen, X; Zhou, X C; Liu, S; Wu, R F; Aparicio, C; Wu, J Y
2017-05-01
This study aimed to evaluate the in vivo osseointegration of implants with hydrophobic antimicrobial GL13K-peptide coating in rabbit femoral condyles by micro-CT and histological analysis. Six male Japanese Rabbits (4 months old and weighing 2.5 kg each) were included in this study. Twelve implants (3.75 mm wide, 7 mm long) were randomly distributed in two groups, with six implants in the experimental group coated with GL13K peptide and six implants in the control group without surface coating. Each implant in the test and the control group was randomly implanted in the left or right side of femoral condyles. On one side randomly-selected of the femur, each rabbit received a drill that was left without implant as control for the natural healing of bone. After 3 weeks of healing radiographic evaluation of the implant sites was taken. After 6 weeks of healing, rabbits were sacrificed for evaluation of the short-term osseointegration of the dental implants using digital radiography, micro-CT and histology analysis. To perform evaluation of osseointegration, implant location and group was double blinded for surgeon and histology/radiology researcher. Two rabbits died of wound infection in sites with non-coated implants 2 weeks after surgery. Thus, at least four rabbits per group survived after 6 weeks of healing. The wounds healed without suppuration and inflammation. No implant was loose after 6 weeks of healing. Radiography observations showed good osseointegration after 3 and 6 weeks postoperatively, which proved that the tissues followed a natural healing process. Micro-CT reconstruction and analysis showed that there was no statistically significant difference (P > 0.05) in volume of bone around the implant between implants coated with GL13K peptide and implants without coating. Histomorphometric analysis also showed that the mineralized bone area was no statistically different (P > 0.05) between implants coated with GL13K peptide and implants without coating. This study demonstrates that titanium dental implants with an antimicrobial GL13K coating enables in vivo implant osseointegration at similar bone growth rates than gold-standard non-coated dental implants up to 6 weeks of implantation in rabbit femurs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
B.C. Winkleman; T.V. Giel, Jr.; J. Cunningham
1999-06-30
The recent achievements of critical currents in excess of 1x10{sup 6}amp/cm{sup 2} at 77K in YBCO deposited over suitably textured buffer/substrate composites have stimulated interest in the potential fabrication of these coated conductors as wire. Numerous approaches and manufacturing schemes for producing coated conductor wire are currently being developed. Recently, under the U. S. Department of Energy (DOE's) sponsorship, the University of Tennessee Space Institute (UTSI) performed an extensive evaluation of leading coated conductor processing options. In general, it is our feeling that the science and chemistry that are being developed in the coated conductor wire program now need propermore » engineering evaluation to define the most viable options for a commercial fabrication process. All fabrication processes will need process control measurements. This report provides a specific review of the needs and available technologies for process control for many of the coated conductor processing options. This report also addresses generic process monitoring areas in which additional research and development is needed. The concentration is on the two different approaches for obtaining the textured substrates that have been identified as viable candidates. These are the Los Alamos National Laboratory's (LANL) ion-beam assisted deposition, called IBAD, to obtain a highly textured yttria-stabilized zirconia (YSZ) buffer on nickel alloy strips, and Oak Ridge National Laboratory's (ORNL) rolling assisted, bi-axially textured substrate option called RABiTS{trademark}.« less
Solventless LARC-160 Polyimide Matrix Resin. [applied for use in aerospace engineering
NASA Technical Reports Server (NTRS)
Stclair, T. L.; Jewell, R. A.
1978-01-01
The addition polyimide, LARC-160, which was originally synthesized from low cost liquid monomers as a laminating resin in ethanol, was prepared as a solventless, high viscosity, neat liquid resin. The resin was processed by hot-melt coating techniques into graphite prepreg with excellent tack and drape. Comparable data on graphite reinforced laminates made from solvent-coated and various hot-melt coated prepreg were generated. LARC-160, because of its liquid nature, can be easily autoclave processed to produce low void laminates. Liquid chromatographic fingerprints indicate good reaction control on resin scale ups. Minor changes in monomer ratios were also made to improve the thermal aging performance of graphite laminates.
Protein-resistant polymer coatings obtained by matrix assisted pulsed laser evaporation
NASA Astrophysics Data System (ADS)
Rusen, L.; Mustaciosu, C.; Mitu, B.; Filipescu, M.; Dinescu, M.; Dinca, V.
2013-08-01
Adsorption of proteins and polysaccharides is known to facilitate microbial attachment and subsequent formation of biofilm on surfaces that ultimately results in its biofouling. Therefore, protein repellent modified surfaces are necessary to block the irreversible attachment of microorganisms. Within this context, the feasibility of using the Poly(ethylene glycol)-block-poly(ɛ-caprolactone) methyl ether (PEG-block-PCL Me) copolymer as potential protein-resistant coating was explored in this work. The films were deposited using Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique that allows good control of composition, thickness and homogeneity. The chemical and morphological characteristics of the films were examined using Fourier Transform Infrared Spectroscopy (FTIR), contact angle measurements and Atomic Force Microscopy (AFM). The FTIR data demonstrates that the functional groups in the MAPLE-deposited films remain intact, especially for fluences below 0.5 J cm-2. Optical Microscopy and AFM images show that the homogeneity and the roughness of the coatings are related to both laser parameters (fluence, number of pulses) and target composition. Protein adsorption tests were performed on the PEG-block-PCL Me copolymer coated glass and on bare glass surface as a control. The results show that the presence of copolymer as coating significantly reduces the adsorption of proteins.
NASA Astrophysics Data System (ADS)
Yang, Gao; Li, Lihua; Lee, Wing Bun; Ng, Man Cheung; Chan, Chang Yuen
2018-03-01
A recently developed carbide-bonded graphene (CBG) coated silicon wafer was found to be an effective micro-patterned mold material for implementing rapid heating in hot embossing processes owing to its superior electrical and thermal conductivity, in addition to excellent mechanical properties. To facilitate the achievement of precision temperature control in the hot embossing, the heating behavior of a CBG coated silicon wafer sample was experimentally investigated. First, two groups of controlled experiments were conducted for quantitatively evaluating the influence of the main factors such as the vacuum pressure and gaseous environment (vacuum versus nitrogen) on its heating performance. The electrical and thermal responses of this sample under a voltage of 60 V were then intensively analyzed, and revealed that it had somewhat semi-conducting properties. Further, we compared its thermal profiles under different settings of the input voltage and current limiting threshold. Moreover, the strong temperature dependence of electrical resistance for this material was observed and determined. Ultimately, the surface temperature of CBG coated silicon wafer could be as high as 1300 ℃, but surprisingly the graphene coating did not detach from the substrate under such an elevated temperature due to its strong thermal coupling with the silicon wafer.
NASA Astrophysics Data System (ADS)
Körpe, Didem Aksoy; Malekghasemi, Soheil; Aydın, Uğur; Duman, Memed
2014-12-01
Biopolymers such as chitosan and alginate are widely used for controlled drug delivery systems. The present work aimed to develop a new protocol for preparation of monodisperse alginate-coated chitosan nanoparticles at nanoscale. Modifications of preparation protocol contain changing the pH of polymer solutions and adding extra centrifugation steps into the procedure. While chitosan nanoparticles were synthesized by ionic gelation method, they were coated with alginate by electrostatic interaction. The size, morphology, charge, and structural characterization of prepared core-shell nanoparticulated system were performed by AFM, Zeta sizer, and FTIR. BSA and DOX were loaded as test biomolecules to core and shell part of the nanoparticle, respectively. Release profiles of BSA and DOX were determined by spectrophotometry. The sizes of both chitosan and alginate-coated chitosan nanoparticles which were prepared by modified protocol were measured to be 50 ± 10 and 60 ± 3 nm, respectively. After loading BSA and DOX, the average size of the particles increased to 80 ± 7 nm. Moreover, while the zeta potential of chitosan nanoparticles was positive value, the value was inverted to negative after alginate coating. Release profile measurements of BSA and DOX were determined during 57 and 2 days, respectively. Our results demonstrated that monodisperse alginate-coated nanoparticles were synthesized and loaded successfully using our modified protocol.
Research progress of nano self - cleaning anti-fouling coatings
NASA Astrophysics Data System (ADS)
Liu, Y.; Zhao, Y. J.; Teng, J. L.; Wang, J. H.; Wu, L. S.; Zheng, Y. L.
2018-01-01
There are many methods of evaluating the performance of nano self-cleaning anti-fouling coatings, such as carbon blacking method, coating reflection coefficient method, glass microbead method, film method, contact angle and rolling angle method, organic degradation method, and the application of performance evaluation method in self-cleaning antifouling coating. For the more, the types of nano self-cleaning anti-fouling coatings based on aqueous media was described, such as photocatalytic self-cleaning coatings, silicone coatings, organic fluorine coatings, fluorosilicone coatings, fluorocarbon coatings, polysilazane self-cleaning coatings. The research and application of different kinds of nano self-cleaning antifouling coatings are anlysised, and the latest research results are summed.
Gao, Hao; Bao, Chunxiong; Li, Faming; Yu, Tao; Yang, Jie; Zhu, Weidong; Zhou, Xiaoxin; Fu, Gao; Zou, Zhigang
2015-05-06
Organic-inorganic lead halide perovskite compounds are very promising materials for high-efficiency perovskite solar cells. But how to fabricate high-quality perovksite films under controlled humidity conditions is still an important issue due to their sensitivity to moisture. In this study, we investigated the influence of ambient humidity on crystallization and surface morphology of one-step spin-coated perovskite films, as well as the performance of solar cells based on these perovskite films. On the basis of experimental analyses and thin film growth theory, we conclude that the influence of ambient humidity on nucleation at spin-coating stage is quite different from that on crystal growth at annealing stage. At the spin-coating stage, high nucleation density induced by high supersaturation prefers to appear under anhydrous circumstances, resulting in layer growth and high coverage of perovskite films. But at the annealing stage, the modest supersaturation benefits formation of perovskite films with good crystallinity. The films spin-coated under low relative humidity (RH) followed by annealing under high RH show an increase of crystallinity and improved performance of devices. Therefore, a mechanism of fast nucleation followed by modest crystal growth (high supersaturation at spin-coating stage and modest supersaturation at annealing stage) is suggested in the formation of high-quality perovskite films.
Enteric-coated epichlorohydrin crosslinked dextran microspheres for site-specific delivery to colon.
Rai, Gopal; Yadav, Awesh K; Jain, Narendra K; Agrawal, Govind P
2015-01-01
Enteric-coated epichlorohydrin crosslinked dextran microspheres containing 5-Fluorouracil (5-FU) for colon drug delivery was prepared by emulsification-crosslinking method. The formulation variables studied includes different molecular weights of dextran, volume of crosslinking agent, stirring speed, time and temperature. Dextran microspheres showed mean entrapment efficiencies ranging between 77 and 87% and mean particle size ranging between 10 and 25 µm. About 90% of drug was released from uncoated dextran microspheres within 8 h, suggesting the fast release and indicated the drug loaded in uncoated microspheres, released before they reached colon. Enteric coating (Eudragit-S-100 and Eudragit-L-100) of dextran microspheres was performed by oil-in-oil solvent evaporation method. The release study of 5-FU from coated dextran microspheres was complete retardation in simulated gastric fluid (pH 1.2) and once the coating layer of enteric polymer was dissolved at higher pH (7.4 and 6.8), a controlled release of the drug from the microspheres was observed. Further, the release of drug was found to be higher in the presence of dextranase and rat caecal contents, indicating the susceptibility of dextran microspheres to colonic enzymes. Organ distribution and pharmacokinetic study in albino rats was performed to establish the targeting potential of optimized formulation in the colon.
Chang, Wei-Chieh; Lan, Ding-Hung; Lee, Kun-Mu; Wang, Xiao-Feng; Liu, Cheng-Liang
2017-04-10
This study investigated a new film-deposition technique, ultrasonic spray-coating, for use in the production of a photoactive layer of perovskite solar cells. Stable atomization and facile fabrication of perovskite thin films by ultrasonic spray-coating were achieved in a one-step method through manipulating the ink formulation (e.g., solution concentration, precursor composition, and mixing solvent ratio) and the drying kinetics (e.g., post-annealing temperature). The performance of the perovskite solar cells was mainly influenced by the intrinsic film morphology and crystalline orientation of the deposited perovskite layer. By suitable optimization of the spreading and drying conditions of the ink, ultrasonic spray-coated perovskite photovoltaic devices were obtained with a maximum power conversion efficiency of 11.30 %, a fill factor of 73.6 %, a short-circuit current of 19.7 mA cm -1 , and an open-circuit voltage of 0.78 V, respectively. Notably, the average power efficiency reached above 10 %, attributed to the large flower-like perovskite crystal with orientation along the (1 1 2)/(2 0 0) and (2 2 4)/(4 0 0) directions. Thus, the ultrasonic spray-coating method for perovskite photoactive layers, combining advantages of good photovoltaic performance results and benefits from cost and processing, has the potential for large-scale commercial production. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermodynamics and kinetics of pack aluminide coating formation on IN-100
NASA Technical Reports Server (NTRS)
Levine, S. R.; Caves, R. M.
1973-01-01
An investigation of the effects of pack variables on the formation of aluminide coatings on nickel-base superalloy IN-100 was conducted. Also, the thermodynamics and kinetics of coating formation were analyzed. Observed coating weights were in good agreement with predictions made from the analysis. Pack temperature rather than pack aluminum activity controls the principal coating phase formed. In 1 weight percent aluminum packs, aluminum weight gains were related to the halide pack activator. Solid-state nickel diffusion controlled coating formation from sodium fluoride and chloride and ammonium fluoride activated packs. In other ammonium and sodium halide activated 1 weight percent aluminum packs, gaseous diffusion controlled coating formation.
Urea encapsulation in modified starch matrix for nutrients retention
NASA Astrophysics Data System (ADS)
Naz, Muhammad Yasin; Sulaiman, Shaharin Anwar; Ariff, Mohd. Hazwan Bin Mohd.; Ariwahjoedi, Bambang
2014-10-01
It has been estimated that 20-70% of the used urea goes to the environment via leaching, nitrification and volatilization which not only harms the environment but also reduces the urea efficiency. By coating the urea granules, the farmers can achieve high urea performance through controlling the excess release of nitrogen. Up until now, different materials have been tested for nutrients retention. However, most of them are either expensive or unfriendly to the environment. Being cheap and biodegradable materials, the starches may also be used to coat the urea fertilizer for controlling the nutrients release. However, the pure starches do not meet the standards set by many industrial processes due to their slow tacking and too low viscosities and should be modified for getting smooth, compact and mechanically stronger coatings. In these studies, the tapioca starch was modified by reacting it with urea and different masses of borax. The prepared solutions were used to coat the urea granules of 3.45 mm average diameter. Different volumes (1, 1.5 and 2 mL) of each solution were used to coat 30 g of urea fluidized above the minimum level of fluidization. It was noticed that the coating thickness, percent coating, dissolution rate and percent release follow an increasing trend with an increase of solution volume; however, some random results were obtained while investigating the solution volume effects on the percent release. It was seen that the nutrients percent release over time increases with an increase in solution volume from 1 to 1.5 mL and thereafter reaches to a steady state. It confirms that the 1.5 mL of solution for 30 g urea samples will give the optimized coating results.
Yuk, Soon Hong; Oh, Keun Sang; Park, Jinah; Kim, Soon-Joong; Kim, Jung Ho; Kwon, Il Keun
2012-04-01
The mixture of poly(lactide-co-glycolide) (PLGA) and poly(ethylene vinyl acetate) (PEVA) forms a homogeneous liquid in an organic solvent such as tetrahydrofuran, and a phase-separated PLGA/PEVA composite can be prepared from it by evaporating the organic solvent. Exploiting this phenomenon, we designed a novel method of preparing a drug-loaded PLGA/PEVA composite and used it for coating drug-eluting stents (DESs). Paclitaxel (PTX), an anticancer drug, was chosen as a model drug. PLGA acts as a microdepot for PTX, and PEVA provides mechanical strength to the coating material. The presence of PLGA in the PLGA/PEVA composite suppressed PTX crystallization in the coating material, and PTX showed a sustained release rate over more than 30 days. The mechanical strength of the PLGA/PEVA composite was better than that of PEVA used as a control. After coating the stent with a PLGA/PEVA composite using ultrasonic atomizing spray, the morphology of the coated material was observed by scanning electron microscopy, and the release pattern of PTX was measured by high-performance liquid chromatography.
Yuk, Soon Hong; Oh, Keun Sang; Park, Jinah; Kim, Soon-Joong; Kim, Jung Ho; Kwon, Il Keun
2012-01-01
The mixture of poly(lactide-co-glycolide) (PLGA) and poly(ethylene vinyl acetate) (PEVA) forms a homogeneous liquid in an organic solvent such as tetrahydrofuran, and a phase-separated PLGA/PEVA composite can be prepared from it by evaporating the organic solvent. Exploiting this phenomenon, we designed a novel method of preparing a drug-loaded PLGA/PEVA composite and used it for coating drug-eluting stents (DESs). Paclitaxel (PTX), an anticancer drug, was chosen as a model drug. PLGA acts as a microdepot for PTX, and PEVA provides mechanical strength to the coating material. The presence of PLGA in the PLGA/PEVA composite suppressed PTX crystallization in the coating material, and PTX showed a sustained release rate over more than 30 days. The mechanical strength of the PLGA/PEVA composite was better than that of PEVA used as a control. After coating the stent with a PLGA/PEVA composite using ultrasonic atomizing spray, the morphology of the coated material was observed by scanning electron microscopy, and the release pattern of PTX was measured by high-performance liquid chromatography. PMID:27877483
NASA Astrophysics Data System (ADS)
Yuk, Soon Hong; Oh, Keun Sang; Park, Jinah; Kim, Soon-Joong; Kim, Jung Ho; Kwon, Il Keun
2012-04-01
The mixture of poly(lactide-co-glycolide) (PLGA) and poly(ethylene vinyl acetate) (PEVA) forms a homogeneous liquid in an organic solvent such as tetrahydrofuran, and a phase-separated PLGA/PEVA composite can be prepared from it by evaporating the organic solvent. Exploiting this phenomenon, we designed a novel method of preparing a drug-loaded PLGA/PEVA composite and used it for coating drug-eluting stents (DESs). Paclitaxel (PTX), an anticancer drug, was chosen as a model drug. PLGA acts as a microdepot for PTX, and PEVA provides mechanical strength to the coating material. The presence of PLGA in the PLGA/PEVA composite suppressed PTX crystallization in the coating material, and PTX showed a sustained release rate over more than 30 days. The mechanical strength of the PLGA/PEVA composite was better than that of PEVA used as a control. After coating the stent with a PLGA/PEVA composite using ultrasonic atomizing spray, the morphology of the coated material was observed by scanning electron microscopy, and the release pattern of PTX was measured by high-performance liquid chromatography.
Specular reflectance of optical-black coatings in the far infrared
NASA Technical Reports Server (NTRS)
Smith, S. M.
1984-01-01
Far-infrared specular reflectance spectra of seven optically black coatings near normal incidence are presented. Seven photometric spectra were obtained using eleven bandpass transmission filters in the wavelength range between 12 and 500 microns, and three interferometric spectra were obtained for corroboration. Data on the construction, thickness, and rms surface roughness of the coatings are also presented. The chemical composition of three coatings can be distinguished from that of the others by a strong absorption feature between 20 and 40 microns, which can be largely attributed to amorphous silicate material. At 100 microns, the most and least reflective coatings differ by nearly 3 orders of magnitude. Inverse relationships observed between the spectra and the roughness and thickness of the coatings led to development of a reflecting-layer model for the measured reflectance. The model successfully describes the spectra at wavelengths outside the silicate absorption, and optical constants are deduced from a nonlinear least squares fit to the data. Parametric errors are estimated by chi-square analysis, and sensitivity tests are performed to determine which parameters control reflectance in different spectral regions.
Leaching of biocides used in façade coatings under laboratory test conditions.
Schoknecht, Ute; Gruycheva, Jana; Mathies, Helena; Bergmann, Hannelore; Burkhardt, Michael
2009-12-15
The European Biocidal Products Directive 98/8/EC requires a risk assessment concerning possible effects of active ingredients on the environment. Biocides can be leached from treated materials exposed to outdoor use. These emissions have to be estimated and evaluated during the authorization procedure. Different immersion and irrigation tests were performed to investigate leaching of biocides from façade coatings. Several marketed formulations of textured coatings and paints spiked with a mixture of commonly used active ingredients (OIT, DCOIT, IPBC, carbendazim, isoproturon, diuron, terbutryn, and Irgarol 1051) were investigated. The emission process can be described by time-dependent functions that depend on the test conditions. The results of all test procedures confirm that leachability is related to water solubility and n-octanol-water partition coefficient of the active ingredients and that leaching of biocides from façade coatings is mainly a diffusion controlled process. Other factors like the composition of the product, availability and transport of water, concentration of active ingredients in the coatings, as well as UV-exposure of the coatings influence biocide emissions.
Pishbin, Fatemehsadat; Mouriño, Viviana; Flor, Sabrina; Kreppel, Stefan; Salih, Vehid; Ryan, Mary P; Boccaccini, Aldo R
2014-06-11
Despite their widespread application, metallic orthopaedic prosthesis failure still occurs because of lack of adequate bone-bonding and the incidence of post-surgery infections. The goal of this research was to develop multifunctional composite chitosan/Bioglass coatings loaded with gentamicin antibiotic as a suitable strategy to improve the surface properties of metallic implants. Electrophoretic deposition (EPD) was applied as a single-step technology to simultaneously deposit the biopolymer, bioactive glass particles, and the antibiotic on stainless steel substrate. The microstructure and composition of the coatings were characterized using SEM/EDX, XRD, FTIR, and TGA/DSC, respectively. The in vitro bioactivity of the coatings was demonstrated by formation of hydroxyapatite after immersion in simulated body fluid (SBF) in a short period of 2 days. High-performance liquid chromatography (HPLC) measurements indicated the release of 40% of the loaded gentamicin in phosphate buffered saline (PBS) within the first 5 days. The developed composite coating supported attachment and proliferation of MG-63 cells up to 10 days. Moreover, disc diffusion test showed improved bactericidal effect of gentamicin-loaded composite coatings against S. aureus compared to control non-gentamicin-loaded coatings.
Qiu, Xun; Wan, Peng; Tan, Lili; Fan, Xinmin; Yang, Ke
2014-03-01
A silicon doped calcium phosphate coating was obtained successfully on AZ31 alloy substrate via pulse electrodeposition. A novel dual-layer structure was observed with a porous lamellar-like and outer block-like apatite layer. In vitro immersion tests were adopted in simulated body fluid within 28 days of immersion. Slow degradation rate obtained from weight loss was observed for the Si-doped Ca-P coating, which was also consistent with the results of electrochemical experiments showing an enhanced corrosion resistance for the coating. Further formation of an apatite-like layer on the surface after immersion proved better integrity and biomineralization performance of the coating. Biological characterization was carried out for viability, proliferation and differentiation of MG63 osteoblast-like cells. The coating showed a good cell growth and an enhanced cell proliferation. Moreover, an increased activity of osteogenic marker ALP was found. All the results demonstrated that the Si-doped calcium phosphate was perspective to be used as a coating for magnesium alloy implants to control the degradation rate and enhance the bioactivity, which would facilitate the rapidity of bone tissue repair. Copyright © 2013 Elsevier B.V. All rights reserved.
Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajendra Bordia
The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-firedmore » environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and processing techniques for these coatings. In addition, we investigated the effect of microstructure on the mechanical properties and oxidation protection ability of the coatings. Coatings were developed to provide oxidation protection to both ferritic and austentic alloys and Ni-based alloys. The coatings that we developed are based on low viscosity pre-ceramic polymers. Thus they can be easily applied to any shape by using a variety of techniques including dip-coating, spray-coating and painting. The polymers are loaded with a variety of nanoparticles. The nanoparticles have two primary roles: control of the final composition and phases (and hence the properties); and control of the shrinkage during thermal decomposition of the polymer. Thus the selection of the nanoparticles was the most critical aspect of this project. Based on the results of the processing studies, the performance of selected coatings in oxidizing conditions (both static and cyclic) was investigated.« less
Software framework for the upcoming MMT Observatory primary mirror re-aluminization
NASA Astrophysics Data System (ADS)
Gibson, J. Duane; Clark, Dusty; Porter, Dallan
2014-07-01
Details of the software framework for the upcoming in-situ re-aluminization of the 6.5m MMT Observatory (MMTO) primary mirror are presented. This framework includes: 1) a centralized key-value store and data structure server for data exchange between software modules, 2) a newly developed hardware-software interface for faster data sampling and better hardware control, 3) automated control algorithms that are based upon empirical testing, modeling, and simulation of the aluminization process, 4) re-engineered graphical user interfaces (GUI's) that use state-of-the-art web technologies, and 5) redundant relational databases for data logging. Redesign of the software framework has several objectives: 1) automated process control to provide more consistent and uniform mirror coatings, 2) optional manual control of the aluminization process, 3) modular design to allow flexibility in process control and software implementation, 4) faster data sampling and logging rates to better characterize the approximately 100-second aluminization event, and 5) synchronized "real-time" web application GUI's to provide all users with exactly the same data. The framework has been implemented as four modules interconnected by a data store/server. The four modules are integrated into two Linux system services that start automatically at boot-time and remain running at all times. Performance of the software framework is assessed through extensive testing within 2.0 meter and smaller coating chambers at the Sunnyside Test Facility. The redesigned software framework helps ensure that a better performing and longer lasting coating will be achieved during the re-aluminization of the MMTO primary mirror.
Exarchos, Dimitrios A; Dalla, Panagiota T; Tragazikis, Ilias K; Dassios, Konstantinos G; Zafeiropoulos, Nikolaos E; Karabela, Maria M; De Crescenzo, Carmen; Karatza, Despina; Musmarra, Dino; Chianese, Simeone; Matikas, Theodore E
2018-05-18
This paper presents an innovative approach, which enables control of the mechanical properties of metallic components by external stimuli to improve the mechanical behavior of aluminum structures in aeronautical applications. The approach is based on the exploitation of the shape memory effect of novel Shape Memory Alloy (SMA) coatings deposited on metallic structural components, for the purpose of relaxing the stress of underlying structures by simple heating at field-feasible temperatures, therefore enhancing their structural integrity and increasing their stiffness and rigidity while allowing them to withstand expected loading conditions safely. Numerical analysis provided an insight in the expected response of the SMA coating and of the SMA-coated element, while the dependence of alloy composition and heat treatment on the experienced shape memory effect were investigated experimentally. A two-phase process is proposed for deposition of the SMA coating in an order that induces beneficial stress relaxation to the underlying structure through the shape memory effect.
NASA Technical Reports Server (NTRS)
Fetheroff, C. W.; Derkacs, T.; Matay, I. M.
1979-01-01
An automated plasma spray (APS) process was developed to apply two layer (NiCrAlY and ZrO2-12Y2O3) thermal-barrier coatings to aircraft gas turbine engine blade airfoils. The APS process hardware consists of four subsystems: a mechanical blade positioner incorporating two interlaced six-degree-of-freedom assemblies; a noncoherent optical metrology subsystem; a microprocessor-based adaptive system controller; and commercial plasma spray equipment. Over fifty JT9D first stage turbine blades specimens were coated with the APS process in preliminary checkout and evaluation studies. The best of the preliminary specimens achieved an overall coating thickness uniformity of + or - 53 micrometers, much better than is achievable manually. Factors limiting this performance were identified and process modifications were initiated accordingly. Comparative evaluations of coating thickness uniformity for manually sprayed and APS coated specimens were initiated. One of the preliminary evaluation specimens was subjected to a torch test and metallographic evaluation.
Exarchos, Dimitrios A.; Dalla, Panagiota T.; Tragazikis, Ilias K.; Zafeiropoulos, Nikolaos E.; Karabela, Maria M.; De Crescenzo, Carmen; Karatza, Despina; Matikas, Theodore E.
2018-01-01
This paper presents an innovative approach, which enables control of the mechanical properties of metallic components by external stimuli to improve the mechanical behavior of aluminum structures in aeronautical applications. The approach is based on the exploitation of the shape memory effect of novel Shape Memory Alloy (SMA) coatings deposited on metallic structural components, for the purpose of relaxing the stress of underlying structures by simple heating at field-feasible temperatures, therefore enhancing their structural integrity and increasing their stiffness and rigidity while allowing them to withstand expected loading conditions safely. Numerical analysis provided an insight in the expected response of the SMA coating and of the SMA-coated element, while the dependence of alloy composition and heat treatment on the experienced shape memory effect were investigated experimentally. A two-phase process is proposed for deposition of the SMA coating in an order that induces beneficial stress relaxation to the underlying structure through the shape memory effect. PMID:29783626
Coatings from blends of Eudragit® RL and L55: a novel approach in pH-controlled drug release.
Wulff, R; Leopold, C S
2014-12-10
The aim of the present study was to investigate the drug release from theophylline pellets coated with blends of quaternary polymethacrylate and methacrylic acid-ethyl acrylate copolymers. Pellets were coated with blends of Eudragit(®) RL PO (RL) and Eudragit(®) L 100-55 (L55) in either organic solution or aqueous dispersion at various copolymer ratios. Generally, the coatings were less permeable for theophylline in phosphate buffer pH 6.8 than they were in hydrochloric acid pH 1.2. Further dissolution experiments revealed that the differences in drug release are caused by the different pH values. A design of experiments for historical data was performed on drug release data of pellets with different coating levels and blend ratios of RL and L55. Drug release in hydrochloric acid was predominantly affected by the coating level, whereas for drug release in phosphate buffer pH 6.8 the blend ratio was the determining factor. As expected, dissolution experiments at different pH values showed that drug release depends on the ratio of dissociated L55 to RL because ionization is a requirement for the functional groups to interact. With the dissolution test for delayed-release solid dosage forms (Ph. Eur.) it was demonstrated that the unique release behavior in neutral media is preserved after the exposition to hydrochloric acid. These findings indicate that the combination of RL and L55 in coatings prepared from solutions is a promising approach for controlled drug release. Copyright © 2014 Elsevier B.V. All rights reserved.
Reliability of ultra-thin insulation coatings for long-term electrophysiological recordings
NASA Astrophysics Data System (ADS)
Hooker, S. A.
2006-03-01
Improved measurement of neural signals is needed for research into Alzheimer's, Parkinson's, epilepsy, strokes, and spinal cord injuries. At the heart of such instruments are microelectrodes that measure electrical signals in the body. Such electrodes must be small, stable, biocompatible, and robust. However, it is also important that they be easily implanted without causing substantial damage to surrounding tissue. Tissue damage can lead to the generation of immune responses that can interfere with the electrical measurement, preventing long-term recording. Recent advances in microfabrication and nanotechnology afford the opportunity to dramatically reduce the physical dimensions of recording electrodes, thereby minimizing insertion damage. However, one potential cause for concern is the reliability of the insulating coatings, applied to these ultra-fine-diameter wires to precisely control impedance. Such coatings are often polymeric and are applied everywhere but the sharpened tips of the wires, resulting in nominal impedances between 0.5 MOhms and 2.0 MOhms. However, during operation, the polymer degrades, changing the exposed area and the impedance. In this work, ultra-thin ceramic coatings were deposited as an alternative to polymer coatings. Processing conditions were varied to determine the effect of microstructure on measurement stability during two-electrode measurements in a standard buffer solution. Coatings were applied to seven different metals to determine any differences in performance due to the surface characteristics of the underlying wire. Sintering temperature and wire type had significant effects on coating degradation. Dielectric breakdown was also observed at relatively low voltages, indicating that test conditions must be carefully controlled to maximize reliability.
49 CFR 195.559 - What coating material may I use for external corrosion control?
Code of Federal Regulations, 2011 CFR
2011-10-01
... corrosion control? 195.559 Section 195.559 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.559 What coating material may I use for external corrosion control? Coating material for external corrosion control under...
49 CFR 195.559 - What coating material may I use for external corrosion control?
Code of Federal Regulations, 2010 CFR
2010-10-01
... corrosion control? 195.559 Section 195.559 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.559 What coating material may I use for external corrosion control? Coating material for external corrosion control under...
49 CFR 195.559 - What coating material may I use for external corrosion control?
Code of Federal Regulations, 2014 CFR
2014-10-01
... corrosion control? 195.559 Section 195.559 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.559 What coating material may I use for external corrosion control? Coating material for external corrosion control under...
49 CFR 195.559 - What coating material may I use for external corrosion control?
Code of Federal Regulations, 2012 CFR
2012-10-01
... corrosion control? 195.559 Section 195.559 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.559 What coating material may I use for external corrosion control? Coating material for external corrosion control under...
49 CFR 195.559 - What coating material may I use for external corrosion control?
Code of Federal Regulations, 2013 CFR
2013-10-01
... corrosion control? 195.559 Section 195.559 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.559 What coating material may I use for external corrosion control? Coating material for external corrosion control under...
Yao, Sun-Hui; Su, Yen-Liang; Lai, Yu-Cheng
2017-01-01
Carbonitride (CNx) coatings have existed for several decades but are not well understood. Related studies have indicated that CNx coatings exhibit behaviors comparable to diamond-like carbon (DLC) coatings. Metal-doped CNx coatings are expected to show superior performance to single CNx coatings. In this study, a CNx coating and a group of CNx coatings with 6 at. % metal doping (W, Ti, Zr, or Cr) were prepared on biograde AISI 316L stainless steel (SS316L) substrates, and they were then characterized and studied for antibacterial and wear performance. The microstructure, constituent phase, nanohardness, adhesion, surface roughness, and contact angle were evaluated. The antimicrobial test used Staphylococcus aureus and followed the Japanese Industrial Standard JIS Z 2801:2010. Finally, the wear behavior was assessed. The results showed that the CNx coating was a composite of amorphous CNx and amorphous C structures. The metal doping caused crystalline metal carbides/nitrides to form in the CNx coatings, which weakened their overall integrity. All the coatings showed antimicrobial ability for the SS316L samples. The CNx-Zr coating, the surface of which had the highest hydrophilicity, produced the best antibacterial performance. However, the CNx-Zr coating showed lower wear resistance than the CNx-W and CNx-Ti coatings. The CNx-Ti coating with a highly hydrophilic surface exhibited the lowest antibacterial ability. PMID:29039782
Elmengaard, Brian; Bechtold, Joan E.; Chen, Xinqian; Søballe, Kjeld
2013-01-01
Revision joint replacement has poorer outcomes that have been associated with poorer mechanical fixation. We investigate a new bone-sparing surgical technique that locally cracks the sclerotic bone rim formed during aseptic loosening. We inserted 16 hydroxyapatite-coated implants bilaterally in the distal femur of eight dogs, using a controlled weight-bearing experimental model that replicates important features of a typical revision setting. At 8 weeks, a control revision procedure and a crack revision procedure were performed on contralateral implants. The crack procedure used a splined tool to perform a systematic local perforation of the sclerotic bone rim of the revision cavity. After 4 weeks, the hydroxyapatite-coated implants were evaluated for mechanical fixation by a push-out test and for tissue distribution by histomorphometry. The cracking revision procedure resulted in significantly improved mechanical fixation, significantly more bone ongrowth and bone volume in the gap, and reduced fibrous tissue compared to the control revision procedure. The study demonstrates that the sclerotic bone rim prevents bone ingrowth and promotes fixation by fibrous tissue. The effect of the cracking technique may be due to improved access to the vascular compartment of the bone. The cracking technique is a simple surgical method that potentially can improve the fixation of revision implants in sclerotic regions important for obtaining the fixation critical for overall implant stability. PMID:19148940
Hu, Jinghang; Zhang, Jianchi; Fu, Zongyuan; Weng, Junhui; Chen, Weibo; Ding, Shijin; Jiang, Yulong; Zhu, Guodong
2015-03-25
Organic semiconducting/ferroelectric blend films attracted much attention due to their electrical bistability and rectification properties and thereof the potential in resistive memory devices. During film deposition from the blend solution, spinodal decomposition induced phase separation, resulting in discrete semiconducting phase whose electrical property could be modulated by the continuous ferroelectric phase. However, blend films processed by common spin coating method showed extremely rough surfaces, even comparable to the film thickness, which caused large electrical leakage and thus compromised the resistive switching performance. To improve film roughness and thus increase the productivity of these resistive devices, we developed temperature controlled spin coating technique to carefully adjust the phase separation process. Here we reported our experimental results from the blend films of ferroelectric poly(vinylidene fluoride-trifluoroethylene (P(VDF-TrFE)) and semiconducting poly(3-hexylthiophene) (P3HT). We conducted a series of experiments at various deposition temperatures ranging from 20 to 90 °C. The resulting films were characterized by AFM, SEM, and VPFM to determine their structure and roughness. Film roughness first decreased and then increased with the increase of deposition temperature. Electrical performance was also characterized and obviously improved insulating property was obtained from the films deposited between 50 and 70 °C. By temperature control during film deposition, it is convenient to efficiently fabricate ferroelectric/semiconducting blend films with good electrical bistability.
López-Alvarez, M; Solla, E L; González, P; Serra, J; León, B; Marques, A P; Reis, R L
2009-05-01
The aim of this study consisted on investigating the influence of silicon substituted hydroxyapatite (Si-HA) coatings over the human osteoblast-like cell line (SaOS-2) behaviour. Diatomaceous earth and silica, together with commercial hydroxyapatite were respectively the silicon and HA sources used to produce the Si-HA coatings. HA coatings with 0 wt% of silicon were used as control of the experiment. Pulsed laser deposition (PLD) was the selected technique to deposit the coatings. The Si-HA thin films were characterized by Fourier Transformed Infrared Spectroscopy (FTIR) demonstrating the efficient transfer of Si to the HA structure. The in vitro cell culture was established to assess the cell attachment, proliferation and osteoblastic activity respectively by, Scanning Electron Microscopy (SEM), DNA and alkaline phosphatase (ALP) quantification. The SEM analysis demonstrated a similar adhesion behaviour of the cells on the tested materials and the maintenance of the typical osteoblastic morphology along the time of culture. The Si-HA coatings did not evidence any type of cytotoxic behaviour when compared with HA coatings. Moreover, both the proliferation rate and osteoblastic activity results showed a slightly better performance on the Si-HA coatings from diatoms than on the Si-HA from silica.
NASA Astrophysics Data System (ADS)
Li, Quanyi; Yang, Qi; Zhao, Yanhong; Wan, Bin
2017-10-01
Copper-supported MoO2-C composite as an integrated anode with excellent battery performance was synthesized by a facile knife coating technique followed by heat treatment in a vacuum. The obtained samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermal analysis, nitrogen adsorption and desorption analysis, field emission scanning microscopy (FESEM), and transmission electron microscopy (TEM). The results show the MoO2-C composite coating is comprised of a porous carbon matrix with a pore size of 1-3 nm and ultrafine MoO2 nanoparticles with a size of 5-10 nm encapsulated inside, the coating is tightly attached on the surface of copper foil, and the interface between them is free of cracks. Stable PAN-DMF-H2O system containing ammonium molybdate suitable for knife coating technique and the MoO2-C composite with ultrafine MoO2 nanoparticles encapsulated in the carbon matrix can be prepared through controlling amount of added ammonium molybdate solution. The copper-supported MoO2-C composite coating can be directly utilized as the integrated anode for lithium-ion batteries (LIBs). It delivers a capacity of 814 mA h g-1 at a current density of 100 mA g-1 after 100 cycles without apparent capacity fading. Furthermore, with increase of current densities to 200, 500, 1000, 2000, and 5000 mA g-1, it exhibits average capacities of 809, 697, 568, 383, and 188 mA h g-1. Its outstanding electrochemical performance is attributed to combined merits of integrated anode and structure with ultrafine MoO2 nanoparticles embedded in the porous carbon matrix.
Testing and Optimization of Electrically Conductive Spacecraft Coatings
NASA Technical Reports Server (NTRS)
Mell, R. J.; Wertz, G. E.; Edwards, D. L. (Technical Monitor)
2001-01-01
This is the final report discussing the work done for the Space Environments and Effects (SEE) Program. It discusses test chamber design, coating research, and test results on electrically thermal control coatings. These thermal control coatings are being developed to have several orders of magnitude higher electrical conductivity than most available thermal control coatings. Most current coatings tend to have a range in surface resistivity from 1,011 to 1,013 ohms/sq. Historically, spacecraft have had thermal control surfaces composed of dielectric materials of either polymers (paints and metalized films) or glasses (ceramic paints and optical solar reflectors). Very seldom has the thermal control surface of a spacecraft been a metal where the surface would be intrinsically electrically conductive. The poor thermal optical properties of most metals have, in most cases, stopped them from being used as a thermal control surface. Metals low infrared emittance (generally considered poor for thermal control surfaces) and/or solar absorptance, have resulted in the use of various dielectric coatings or films being applied over the substrate materials in order to obtain the required optical properties.
Mohammadi, H; Farzinpour, A; Vaziry, A
2017-04-01
The objective of this study was to investigate the effects of L-cysteine-coated iron oxide nanoparticles on reproductive performance in breeder quails. The five treatment diets consisted of (i) negative control diet not supplemented with iron, (ii) positive control diet supplemented with 60 mg/kg of Fe 3 O 4 and (iii) experimental diets supplemented with 0.6, 6 and 60 mg/kg of L-cysteine-coated iron oxide nanoparticles. A total of 100 seven-day-old quail chicks were weighed and randomly placed to five groups of five replicate cages. Four quails (one male and three females) were raised in each cage (50 × 15 × 17 cm). Egg production, feed consumption and egg weight were recorded daily and calculated on a hen per day basis. Egg components, fertility, hatchability and day-old chicks hatched from their eggs were measured at the end of the experiment. The percentage of egg production and egg mass of the 6 mg/kg Fe 3 O 4 -Cys NPs group were significantly higher than those of the control groups. Throughout the experimental period, the highest weekly egg weight was recorded for the 60 mg/kg Fe 3 O 4 -Cys NPs group. Fertility was improved by diet supplemented with iron, both FeSO 4 and Fe 3 O 4 -Cys NPs. The breeder fed Fe 3 O 4 -Cys NPs had the highest day-old chicks weight. The results of this study showed that Fe 3 O 4 nanoparticles that were coated by L-cysteine could improve availability and utilization of iron in diet. Finally, it was proposed that Fe 3 O 4 -Cys NPs could be used as feed additives in quails. © 2017 Blackwell Verlag GmbH.
Controlled release from drug microparticles via solventless dry-polymer coating.
Capece, Maxx; Barrows, Jason; Davé, Rajesh N
2015-04-01
A novel solvent-less dry-polymer coating process employing high-intensity vibrations avoiding the use of liquid plasticizers, solvents, binders, and heat treatments is utilized for the purpose of controlled release. The main hypothesis is that such process having highly controllable processing intensity and time may be effective for coating particularly fine particles, 100 μm and smaller via exploiting particle interactions between polymers and substrates in the dry state, while avoiding breakage yet achieving conformal coating. The method utilizes vibratory mixing to first layer micronized polymer onto active pharmaceutical ingredient (API) particles by virtue of van der Waals forces and to subsequently mechanically deform the polymer into a continuous film. As a practical example, ascorbic acid and ibuprofen microparticles, 50-500 μm, are coated with the polymers polyethylene wax or carnauba wax, a generally recognized as safe material, resulting in controlled release on the order of seconds to hours. As a novelty, models are utilized to describe the coating layer thickness and the controlled-release behavior of the API, which occurs because of a diffusion-based mechanism. Such modeling would allow the design and control of the coating process with application for the controlled release of microparticles, particularly those less than 100 μm, which are difficult to coat by conventional solvent coating methods. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Ion plated gold films: Properties, tribological behavior and performance
NASA Technical Reports Server (NTRS)
Spalvins, Talivaldis
1987-01-01
The glow discharge energizing favorably modifies and controls the coating/substrate adherence and the nucleation and growth sequence of ion plated gold films. As a result the adherence, coherence, internal stresses, and morphology of the films are significantly improved. Gold ion plated films because of their graded coating/substrate interface and fine uniform densely packed microstructure not only improve the tribological properties but also induce a surface strengthening effect which improves the mechanical properties such as yield, tensile, and fatigue strength. Consequently significant improvements in the tribological performance of ion plated gold films as compared to vapor deposited gold films are shown in terms of decreased friction/wear and prolonged endurance life.
OAO-3 end of mission tests report
NASA Technical Reports Server (NTRS)
Kalil, F.; Kull, F. J.; Mcintosh, R.; Ollendorf, S.; Margolies, D. L.; Gemmell, J.; Tasevoli, C. M.; Polidan, R. S.; Kochevar, H.; Chapman, C.
1981-01-01
Twelve engineering type tests were performed on several subsystems and experiment(s) of the OAO 3 spacecraft near its end of mission. The systems tested include: Princeton experiment package (PEP), fine error system guidance, inertial reference unit, star trackers, heat pipes, thermal control coatings, command and data handling, solar array; batteries, and onboard processor/power boost regulator. Generally, the systems performed well for the 8 1/2 years life of OAO 3, although some degradation was noted in the sensitivity of PEP and in the absorptivity of the skin coatings. Battery life was prolonged during the life of the mission in large part by carefully monitoring the charge-discharge cycle with careful attention not to overcharge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng Zhang
2012-04-19
Semprus Biosciences is developing environmentally benign and permanent modifications to prevent biofouling on Marine and Hydrokinetic (MHK) devices. Biofouling, including growth on external surfaces by bacteria, algae, barnacles, mussels, and other marine organisms, accumulate quickly on MHK devices, causing mechanical wear and changes in performance. Biofouling on crucial components of hydrokinetic devices, such as rotors, generators, and turbines, imposes substantial mass and hydrodynamic loading with associated efficiency loss and maintenance costs. Most antifouling coatings leach toxic ingredients, such as copper and tributyltin, through an eroding process, but increasingly stringent regulation of biocides has led to interest in the development ofmore » non-biocidal technologies to control fouling. Semprus Biosciences research team is developing modifications to prevent fouling from a broad spectrum of organisms on devices of all shapes, sizes, and materials for the life of the product. The research team designed and developed betaine-based polymers as novel underwater coatings to resist the attachment of marine organisms. Different betaine-based monomers and polymers were synthesized and incorporated within various coating formulations. The formulations and application methods were developed on aluminum panels with required adhesion strength and mechanical properties. The coating polymers were chemically stable under UV, hydrolytic and oxidative environments. The sulfobetaine formulations are applicable as nonleaching and stable underwater coatings. For the first time, coating formulations modified with highly packed sulfobetaine polymers were prepared and demonstrated resistance to a broad spectrum of marine organisms. Assays for comparing nonfouling performance were developed to evaluate protein adsorption and bacteria attachment. Barnacle settlement and removal were evaluated and a 60-day field test was performed. Silicone substrates including a commercial fouling release coating were used for comparison. Compared with the unmodified silicone substrates, the sulfobetaine-modified formulations were able to exhibit a 98% reduction in fibrinogen adsorption, 97.0% (E. coli), 99.6% (S. aureus), and 99.5% (C. lytica) reduction in bacteria attachment, and 100% reduction in barnacles cyprid attachment. In addition to the significant improvement in fouling resistance of various organisms, the 60-day field test also showed an evident efficacy from visual assessment, foul rating, and fouling removal test. The research confirmed that the novel antifouling mechanism of betaine polymers provides a new avenue for marine coating development. The developed coatings out-performed currently used nontoxic underwater coatings in a broad spectrum of fouling resistance. By further developing formulations and processing methods for specific devices, the technology is ready for the next stage of development with demonstration in MHK systems.« less
NASA Astrophysics Data System (ADS)
Fox-Rabinovich, G. S.; Endrino, J. L.; Aguirre, M. H.; Beake, B. D.; Veldhuis, S. C.; Kovalev, A. I.; Gershman, I. S.; Yamamoto, K.; Losset, Y.; Wainstein, D. L.; Rashkovskiy, A.
2012-03-01
Recently, a family of hard mono- and multilayer TiAlCrSiYN-based coatings have been introduced that exhibit adaptive behavior under extreme tribological conditions (in particular during dry ultrahigh speed machining of hardened tool steels). The major feature of these coatings is the formation of the tribo-films on the friction surface which possess high protective ability under operating temperatures of 1000 °C and above. These tribo-films are generated as a result of a self-organization process during friction. But the mechanism how these films affect adaptability of the hard coating is still an open question. The major mechanism proposed in this paper is associated with a strong gradient of temperatures within the layer of nano-scaled tribo-films. This trend was outlined by the performed thermodynamic analysis of friction phenomena combined with the developing of a numerical model of heat transfer within cutting zone based on the finite element method. The results of the theoretical studies show that the major physical-chemical processes during cutting are mostly concentrated within a layer of the tribo-films. This nano-tribological phenomenon produces beneficial heat distribution at the chip/tool interface which controls the tool life and wear behavior.Results of x-ray photoelectron spectroscopy studies indicate enhanced formation of protective sapphire- and mullite-like tribo-films on the friction surface of the multilayer TiAlCrSiYN/TiAlCrN coating. Comprehensive investigations of the structure and phase transformation within the coating layer under operation have been performed, using high resolution transmission electron microscopy, synchrotron radiation technique: x-ray absorption near-edge structure and XRD methods.The data obtained show that the tribo-films efficiently perform their thermal barrier functions preventing heat to penetrate into the body of coated cutting tool. Due to this the surface damaging process as well as non-beneficial phase transformation (formation of AlN hex phase) drastically diminishes within the layer of the adaptive coating. Micro-mechanical properties measurements performed at room and elevated temperatures show that the hardness of the multilayer TiAlCrSiYN/TiAlCrN coating appears stable to 500 °C and then drops a little at 600 °C but still remains high. It means that if the surface tribo-films can reduce actual temperature down to this level the coating underneath is able to efficiently withstand heavy loads under operation.
Preparation of MgO/B₂O₃ coatings by plasma spraying on SUS304 surface and effects of heat-resistant.
Song, Bo; Zhou, Ningning; Ju, Dongying
2013-12-01
This study mainly deals with the preparation of MgO/B2O3 coatings by plasma spraying on the SUS304 surface and the effects of heat-resistant. The power materials of low thermal conductivity were selected to control the heat divergent performance of high temperature parts. The reticular micro-structure between the cover thermal layer and the substrate was prepared by using the plasma spraying method. The powder mixture of MgO and B2O3 were selected as spraying materials and the SUS304 was used as the substrate material. The MgO/B2O3 coating was prepared on the surface of the SUS304 to provide better cover thermal performance. The properties of the microstructures and the morphologies were studied by Optical Microscope, Scanning Electron Microscope, Electron Probe Microanalyzer, and X-ray Diffraction. The results showed that the cover thermal performance has been improved. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Xin; Sun, Xiaohong; Gao, Zhiwen; Hu, Xudong; Guo, Jingdong; Cai, Shu; Guo, Ruisong; Ji, Huiming; Zheng, Chunming; Hu, Wenbin
2018-03-01
SnO2 has triggered lots of research efforts as anode for sodium-ion batteries. However, the volume expansion and poor conductivity lead to an unsatisfactory electrochemical performance for the practical application of SnO2. In this work, a novel carbon-coated SnO2 supported by porous carbon sphere composite is synthesized by hydrothermal process combining with annealing method. The porous carbon sphere@SnO2@carbon layer coating composite anode delivers a reversible capacity of 326 mAh g-1 over 80 cycles at a current density of 50 mA g-1. Even at 1600 mA g-1, a capacity of 82 mAh g-1 is still maintained after 550 cycles. Such excellent performance can be ascribed to the unique structure, which efficiently accommodates volume expansion, enhances conductivity and offers shortened sodium-ion transport pathway. The charge-storage mechanisms can be comprised of diffusion-controlled reaction and pseudocapacitance effect. At high scan rate of 1.0 mV s-1, the capacity contribution of pseudocapacitance effect could reach as high as 78%.
Statz, Andrea; Finlay, John; Dalsin, Jeffrey; Callow, Maureen; Callow, James A; Messersmith, Phillip B
2006-01-01
The marine antifouling and fouling-release performance of titanium surfaces coated with a bio-inspired polymer was investigated. The polymer consisted of methoxy-terminated poly(ethylene glycol) (mPEG) conjugated to the adhesive amino acid l-3,4-dihydroxyphenylalanine (DOPA) and was chosen based on its successful resistance to protein and mammalian cell fouling. Biofouling assays for the settlement and release of the diatom Navicula perminuta and settlement, growth and release of zoospores and sporelings (young plants) of the green alga Ulva linza were carried out. Results were compared to glass, a poly(dimethylsiloxane) elastomer (Silastic T2) and uncoated Ti. The mPEG-DOPA3 modified Ti surfaces exhibited a substantial decrease in attachment of both cells of N. perminuta and zoospores of U. linza as well as the highest detachment of attached cells under flow compared to control surfaces. The superior performance of this polymer over a standard silicone fouling-release coating in diatom assays and approximately equivalent performance in zoospore assays suggests that this bio-inspired polymer may be effective in marine antifouling and fouling-release applications.
40 CFR 52.222 - Negative declarations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... County Air Pollution Control District. (i) Industrial Wastewater, Plastic Parts Coating: Business... Pollution Control District. (i) Aerospace Coatings; Industrial Waste Water Treatment; Plastic Parts Coating..., 2011. (a) The following air pollution control districts submitted negative declarations for volatile...
Tsukamoto, Masatsugu; Miyamoto, Hiroshi; Ando, Yoshiki; Eto, Shuichi; Akiyama, Takayuki; Yonekura, Yutaka; Mawatari, Masaaki
2014-01-01
To reduce the incidence of implant-associated infection, we previously developed a novel coating technology using hydroxyapatite (HA) containing silver (Ag). This study examined in vivo acute and subacute toxicity associated with the Ag-HA coating in rat tibiae. Ten-week-old rats received implantation of HA-, 2% Ag-HA-, or 50% Ag-HA-coated titanium rods. Concentrations of silver in serum, brain, liver, kidneys, and spleen were measured in the acute phase (2–4 days after treatment) and subacute phase (4–12 weeks after treatment). Biochemical and histological examinations of those organs were also performed. Mean serum silver concentration peaked in the acute phase and then gradually decreased. Mean silver concentrations in all examined organs from the 2% Ag-HA coating groups showed no significant differences compared with the HA coating group. No significant differences in mean levels of glutamic-oxaloacetic transaminase, glutamic-pyruvic transaminase, lactate dehydrogenase, creatinine, or blood urea nitrogen were seen between the three groups and controls. Histological examinations of all organs revealed no abnormal pathologic findings. No acute or subacute toxicity was seen in vivo for 2% Ag-HA coating or HA coating. Ag-HA coatings on implants may represent biologically safe antibacterial biomaterials and may be of value for reducing surgical-site infections related to implantation. PMID:24779019
Blister Test for Measurements of Adhesion and Adhesion Degradation of Organic Polymers on AA2024-T3
NASA Astrophysics Data System (ADS)
Rincon Troconis, Brendy Carolina
A key parameter for the performance of corrosion protective coatings applied to metals is adhesion. Surface preparation prior to coating application is known to be critical, but there is a lack of understanding of what controls adhesion. Numerous techniques have been developed in the last decades to measure the adhesion strength of coatings to metals. Nonetheless, they are generally non-quantitative, non-reproducible, performed in dry conditions, or overestimate adhesion. In this study, a quantitative and reproducible technique, the Blister Test (BT), is used. The BT offers the ability to study the effects of a range of parameters, including the presence or absence of a wetting liquid, and simulates the stress situation in the coating/substrate interface. The effects of roughness and surface topography were studied by the BT and Optical Profilometry, using AA2024-T3 substrates coated with polyvinyl butyral (PVB). Random abrasion generated a surface with lower average roughness than aligned abrasion due to the continual cross abrasion of the grooves. The BT could discern the effects of different mechanical treatments. An adhesion strength indicator was defined and found to be a useful parameter. The effectiveness of standard adhesion techniques such as ASTM D4541 (Pull-off Test) and ASTM D3359 (Tape Test) was compared to the BT. Also, different attempts to measure adhesion and adhesion degradation of organic polymers to AA2024-T3 were tested. The pull-off test does not produce adhesive failure across the entire interface, while the tape test is a very qualitative technique and does not discern between the effects of different coating systems on the adhesion performance. The BT produces adhesive failure of the primer studied, is very reproducible, and is able to rank different coating systems. Therefore, it was found to be superior to the others. The approaches tested for adhesion degradation were not aggressive enough to have a measurable effect. The effects of cleaning/desmutting and conversion coating (CC) on the adhesion strength of acetoacetate to AA2024-T3 and the effects of improper water rinse temperature after cleaner were assessed using the BT. The results showed that pretreatments improve the adhesion strength of acetoacetate primer on AA2024-T3, but the comparative behavior depends on the specific treatment. Process control is of paramount importance for the performance of acetoacetate coated systems applied on AA2024-T3. The lack of thermal activity in the water rinse after cleaning step produces deleterious effects on the adhesion and blistering resistance of CC. Finally, a test sample incorporating a coated and scribed Al alloy panel and uncoated through-hole fasteners (Ti, SS316, AA2024-T3) was designed to provide accelerated response during atmospheric corrosion testing in the field (long-term beach exposure) or in laboratory chambers (ASTM B117). The results after only three weeks of exposure to ASTM B117 correlated well with long-term beach exposure, allowing rapid ranking of different coating systems. Of the fastener materials studied, visual observation and volume lost determination indicated that the worst attack occurred near SS316 fasteners its effect was explained by Scanning Kelvin Probe measurements and the available cathodic current measured in chloride solution.
Zaatreh, Sarah; Haffner, David; Strauss, Madlen; Dauben, Thomas; Zamponi, Christiane; Mittelmeier, Wolfram; Quandt, Eckhard; Kreikemeyer, Bernd; Bader, Rainer
2017-04-01
Implant-associated infections commonly result from biofilm‑forming bacteria and present severe complications in total joint arthroplasty. Therefore, there is a requirement for the development of biocompatible implant surfaces that prevent bacterial biofilm formation. The present study coated titanium samples with a thin, rapidly corroding layer of magnesium, which were subsequently investigated with respect to their antibacterial and cytotoxic surface properties using a Staphylococcus epidermidis (S. epidermidis) and human osteoblast (hOB) co‑culture model. Primary hOBs and S. epidermidis were co‑cultured on cylindrical titanium samples (Ti6Al4V) coated with pure magnesium via magnetron sputtering (5 µm thickness) for 7 days. Uncoated titanium test samples served as controls. Vital hOBs were identified by trypan blue staining at days 2 and 7. Planktonic S. epidermidis were quantified by counting the number of colony forming units (CFU). The quantification of biofilm‑bound S. epidermidis on the surfaces of test samples was performed by ultrasonic treatment and CFU counting at days 2 and 7. The number of planktonic and biofilm‑bound S. epidermidis on the magnesium‑coated samples decreased by four orders of magnitude when compared with the titanium control following 7 days of co‑culture. The number of vital hOBs on the magnesium‑coated samples was observed to increase (40,000 cells/ml) when compared with the controls (20,000 cells/ml). The results of the present study indicate that rapidly corroding magnesium‑coated titanium may be a viable coating material that possesses antibacterial and biocompatible properties. A co‑culture test is more rigorous than a monoculture study, as it accounts for confounding effects and assesses additional interactions that are more representative of in vivo situations. These results provide a foundation for the future testing of this type of surface in animals.
Zaatreh, Sarah; Haffner, David; Strauss, Madlen; Dauben, Thomas; Zamponi, Christiane; Mittelmeier, Wolfram; Quandt, Eckhard; Kreikemeyer, Bernd; Bader, Rainer
2017-01-01
Implant-associated infections commonly result from biofilm-forming bacteria and present severe complications in total joint arthroplasty. Therefore, there is a requirement for the development of biocompatible implant surfaces that prevent bacterial biofilm formation. The present study coated titanium samples with a thin, rapidly corroding layer of magnesium, which were subsequently investigated with respect to their antibacterial and cytotoxic surface properties using a Staphylococcus epidermidis (S. epidermidis) and human osteoblast (hOB) co-culture model. Primary hOBs and S. epidermidis were co-cultured on cylindrical titanium samples (Ti6Al4V) coated with pure magnesium via magnetron sputtering (5 µm thickness) for 7 days. Uncoated titanium test samples served as controls. Vital hOBs were identified by trypan blue staining at days 2 and 7. Planktonic S. epidermidis were quantified by counting the number of colony forming units (CFU). The quantification of biofilm-bound S. epidermidis on the surfaces of test samples was performed by ultrasonic treatment and CFU counting at days 2 and 7. The number of planktonic and biofilm-bound S. epidermidis on the magnesium-coated samples decreased by four orders of magnitude when compared with the titanium control following 7 days of co-culture. The number of vital hOBs on the magnesium-coated samples was observed to increase (40,000 cells/ml) when compared with the controls (20,000 cells/ml). The results of the present study indicate that rapidly corroding magnesium-coated titanium may be a viable coating material that possesses antibacterial and biocompatible properties. A co-culture test is more rigorous than a monoculture study, as it accounts for confounding effects and assesses additional interactions that are more representative of in vivo situations. These results provide a foundation for the future testing of this type of surface in animals. PMID:28260022
Thammarakcharoen, Faungchat; Suvannapruk, Waraporn; Suwanprateeb, Jintamai
2014-10-01
In this study, a statistical design of experimental methodology based on Taguchi orthogonal design has been used to study the effect of various processing parameters on the amount of calcium phosphate coating produced by such technique. Seven control factors with three levels each including sodium hydroxide concentration, pretreatment temperature, pretreatment time, cleaning method, coating time, coating temperature and surface area to solution volume ratio were studied. X-ray diffraction revealed that all the coatings consisted of the mixture of octacalcium phosphate (OCP) and hydroxyapatite (HA) and the presence of each phase depended on the process conditions used. Various content and size (-1-100 μm) of isolated spheroid particles with nanosized plate-like morphology deposited on the titanium surface or a continuous layer of plate-like nanocrystals having the plate thickness in the range of -100-300 nm and the plate width in the range of 3-8 μm were formed depending on the process conditions employed. The optimum condition of using sodium hydroxide concentration of 1 M, pretreatment temperature of 70 degrees C, pretreatment time of 24 h, cleaning by ultrasonic, coating time of 6 h, coating temperature of 50 degrees C and surface area to solution volume ratio of 32.74 for producing the greatest amount of the coating formed on the titanium surface was predicted and validated. In addition, coating temperature was found to be the dominant factor with the greatest contribution to the coating formation while coating time and cleaning method were significant factors. Other factors had negligible effects on the coating performance.
Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants
Uddin, M S; Hall, Colin; Murphy, Peter
2015-01-01
Due to their excellent biodegradability characteristics, Mg and Mg-based alloys have become an emerging material in biomedical implants, notably for repair of bone as well as coronary arterial stents. However, the main problem with Mg-based alloys is their rapid corrosion in aggressive environments such as human bodily fluids. Previously, many approaches such as control of alloying materials, composition and surface treatments, have been attempted to regulate the corrosion rate. This article presents a comprehensive review of recent research focusing on surface treatment techniques utilised to control the corrosion rate and surface integrity of Mg-based alloys in both in vitro and in vivo environments. Surface treatments generally involve the controlled deposition of thin film coatings using various coating processes, and mechanical surfacing such as machining, deep rolling or low plasticity burnishing. The aim is to either make a protective thin layer of a material or to change the micro-structure and mechanical properties at the surface and sub-surface levels, which will prevent rapid corrosion and thus delay the degradation of the alloys. We have organised the review of past works on coatings by categorising the coatings into two classes—conversion and deposition coatings—while works on mechanical treatments are reviewed based on the tool-based processes which affect the sub-surface microstructure and mechanical properties of the material. Various types of coatings and their processing techniques under two classes of coating and mechanical treatment approaches have been analysed and discussed to investigate their impact on the corrosion performance, biomechanical integrity, biocompatibility and cell viability. Potential challenges and future directions in designing and developing the improved biodegradable Mg/Mg-based alloy implants were addressed and discussed. The literature reveals that no solutions are yet complete and hence new and innovative approaches are required to leverage the benefit of Mg-based alloys. Hybrid treatments combining innovative biomimetic coating and mechanical processing would be regarded as a potentially promising way to tackle the corrosion problem. Synergetic cutting-burnishing integrated with cryogenic cooling may be another encouraging approach in this regard. More studies focusing on rigorous testing, evaluation and characterisation are needed to assess the efficacy of the methods. PMID:27877829
NASA Astrophysics Data System (ADS)
Tsai, Rung-Ywan; Ho, Fang C.
1994-11-01
Ion-assisted deposition (IAD) processes configured with a well-controlled plasma source at the center base of a vacuum chamber, which accommodates two independent e-gun sources, is used to deposition TiO2MgF2 and TiO2-SiO2 composite films of selected component ratios. Films prepared by this technology are found durable, uniform, and nonabsorbing in visible and near-IR regions. Single- and multilayer antireflection coatings with refractive index from 1.38 to 2.36 at (lambda) equals 550 nm are presented. Methods of enhancement in optical performance of these coatings are studied. The advantages of AR coatings formed by TiO2-MgF2 composite films over those similar systems consisting of TiO2-SiO2 composite films in both visible and near-IR regions are also presented.
Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks.
Sergeant, Nicholas P; Pincon, Olivier; Agrawal, Mukul; Peumans, Peter
2009-12-07
Spectral control of the emissivity of surfaces is essential in applications such as solar thermal and thermophotovoltaic energy conversion in order to achieve the highest conversion efficiencies possible. We investigated the spectral performance of planar aperiodic metal-dielectric multilayer coatings for these applications. The response of the coatings was optimized for a target operational temperature using needle-optimization based on a transfer matrix approach. Excellent spectral selectivity was achieved over a wide angular range. These aperiodic metal-dielectric stacks have the potential to significantly increase the efficiency of thermophotovoltaic and solar thermal conversion systems. Optimal coatings for concentrated solar thermal conversion were modeled to have a thermal emissivity <7% at 720K while absorbing >94% of the incident light. In addition, optimized coatings for solar thermophotovoltaic applications were modeled to have thermal emissivity <16% at 1750K while absorbing >85% of the concentrated solar radiation.
Tribological Effects on DNA Translocation in a Nanochannel Coated with a Self-Assembled Monolayer
Luan, Binquan; Afzali, Ali; Harrer, Stefan; Peng, Hongbo; Waggoner, Philip; Polonsky, Stas; Stolovitzky, Gustavo; Martyna, Glenn
2010-01-01
A biomimetic nanochannel coated with a self-assembled monolayer (SAM) can be used for sensing and analyzing biomolecules. The interaction between a transported biomolecule and a SAM governs the mechanically or electrically driven motion of the molecule. To investigate the translocation dynamics of a biomolecule, we performed all-atom molecular dynamics simulations on a single-stranded DNA in a solid-state nanochannel coated with a SAM that consists of octane or octanol polymers. Simulation results demonstrate that the interaction between DNA and a hydrophobic or a hydrophilic SAM is effectively repulsive or adhesive, respectively, resulting in different translocation dynamics of DNA. Therefore, with proper designs of SAMs coated on a channel surface, it is possible to control the translocation dynamics of a biomolecule. This work also demonstrates that traditional tribology methods can be deployed to study a biological or bio-mimetic transport process. PMID:21128651
Petoukhoff, Christopher E.; O'Carroll, Deirdre M.
2015-01-01
Interactions between absorbers and plasmonic metasurfaces can give rise to unique optical properties not present for either of the individual materials and can influence the performance of a host of optical sensing and thin-film optoelectronic applications. Here we identify three distinct mode types of absorber-coated plasmonic metasurfaces: localized and propagating surface plasmons and a previously unidentified optical mode type called absorption-induced scattering. The extinction of the latter mode type can be tuned by controlling the morphology of the absorber coating and the spectral overlap of the absorber with the plasmonic modes. Furthermore, we show that surface plasmons are backscattered when the crystallinity of the absorber is low but are absorbed for more crystalline absorber coatings. This work furthers our understanding of light–matter interactions between absorbers and surface plasmons to enable practical optoelectronic applications of metasurfaces. PMID:26271900
Powder-Coated Towpreg: Avenues to Near Net Shape Fabrication of High Performance Composites
NASA Technical Reports Server (NTRS)
Johnston, N. J.; Cano, R. J.; Marchello, J. M.; Sandusky, D. A.
1995-01-01
Near net shape parts were fabricated from powder-coated preforms. Key issues including powder loss during weaving and tow/tow friction during braiding were addressed, respectively, by fusing the powder to the fiber prior to weaving and applying a water-based gel to the towpreg prior to braiding. A 4:1 debulking of a complex 3-D woven powder-coated preform was achieved in a single step utilizing expansion rubber molding. Also, a process was developed for using powder-coated towpreg to fabricate consolidated ribbon having good dimensional integrity and low voids. Such ribbon will be required for in situ fabrication of structural components via heated head advanced tow placement. To implement process control and ensure high quality ribbon, the ribbonizer heat transfer and pulling force were modeled from fundamental principles. Most of the new ribbons were fabricated from dry polyarylene ether and polymide powders.
Maghsoodi, Sina; Brophy, Brenor L.; Abrams, Ze'ev R.; Gonsalves, Peter R.
2016-06-28
Disclosed herein are coating materials and methods for applying a top-layer coating that is durable, abrasion resistant, highly transparent, hydrophobic, low-friction, moisture-sealing, anti-soiling, and self-cleaning to an existing conventional high temperature anti-reflective coating. The top coat imparts superior durability performance and new properties to the under-laying conventional high temperature anti-reflective coating without reducing the anti-reflectiveness of the coating. Methods and data for optimizing the relative thickness of the under-layer high temperature anti-reflective coating and the top-layer thickness for optimizing optical performance are also disclosed.
Characterizing Sintered Nano-Hydroxyapatite Sol-Gel Coating Deposited on a Biomedical Ti-Zr-Nb Alloy
NASA Astrophysics Data System (ADS)
Jafari, Hassan; Hessam, Hamid; Shahri, Seyed Morteza Ghaffari; Assadian, Mahtab; Shairazifard, Shahin Hamtaie Pour; Idris, Mohd Hasbullah
2016-03-01
In this study, sol-gel dip-coating method was used to coat nano-hydroxyapatite on specimens of Ti-14Zr-13Nb alloy for orthopedic applications. The coated specimens were sintered at three different temperatures and time spans to evaluate the impact of sintering process on microstructure, mechanical, bio-corrosion, and bioactivity properties of the coating. Field-emission scanning electron microscopy and x-ray diffraction were used to analyze the coating microstructure. Coating adhesion and mechanical performance were also investigated by scratch testing. Besides, electrochemical corrosion and immersion tests were performed in simulated body fluid to examine the sintering effect on corrosion performance and bioactivity of the coatings, respectively. The evaluations of coated specimens displayed that sintering at elevated temperatures leads to higher surface integrity and improves crystallinity of the nano-hydroxyapatite to approximately 89% which brings about distinctively enhanced mechanical properties. Similarly, it improved the corrosion rate for about 17 times through sintering at 700 °C. Immersion test proved that the coating increased the bioactivity resulted from the dissolution of calcium phosphates into the corresponding environment. It is noticeable that sintering the dip-coated specimens in the nano-hydroxyapatite improves corrosion performance and maintains bioactive behaviors as well.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
2008-01-01
Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.
Advanced Low Conductivity Thermal Barrier Coatings: Performance and Future Directions
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
2008-01-01
Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and performance will be emphasized. Advanced thermal barrier coatings have been developed using a multi-component defect clustering approach, and shown to have improved thermal stability and lower conductivity. The coating systems have been demonstrated for high temperature combustor applications. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the toughened thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion, impact and high heat-flux damage mechanisms of the thermal barrier coatings will also be described.
NASA Astrophysics Data System (ADS)
Wang, Xuefei; Zhu, Zongtao; Li, Yuanxing; Chen, Hui
2018-03-01
The micro-arc oxidation coatings of 6N01 aluminum alloy produced under different control modes of the electrolyte temperature are discussed in detail. Compared to those coated by a thermostatically controlled treatment, the coatings had different surface characterizations when they were coated without controlling the electrolyte temperature, particularly after treatment involving boiling electrolytes. Scanning electron microscopy and confocal laser scanning microscopy were used to observe the morphology of the coatings. Energy-dispersive spectrometry and x-ray diffractometer were used to characterize their elemental and crystalline phase compositions. The results indicate that the treatment without a controlled electrolyte temperature ultimately led to a thicker and rougher film with a respectably thick inner barrier film, a lower content of γ-Al2O3 and better corrosion resistance.
[Clinical utility of home blood pressure monitoring in patients under treatment].
Bauk, L; Costa, H A; Caligiuri, S I
2015-01-01
A low number of patients who are treated with antihypertensive drugs achieve therapeutic goals. Home blood pressure monitoring is an excellent tool for studying this population. To determine the prevalence of patients with controlled and uncontrolled hypertension, as well as white-coat-effect and masked hypertension, and to evaluate the relationship with target organ damage in different groups. Blood pressure readings were performed simultaneously in the clinic and in the home using the same validated oscillometric equipment on 83 hypertensive patients on treatment with 2 or more antihypertensive drugs. They were then classified into 4 groups according to the cut-off values of the clinic and home blood pressure measurements. Left ventricular mass index, carotid intima media thickness, and microalbuminuria as markers of target organ damage, were also evaluated. Controlled blood pressure was present in 32.5%, 30.2% had sustained hypertension. The white coat effect was seen in 26.5%, while 10.8% were masked uncontrolled hypertension. Left ventricular mass index was higher in patients with no ambulatory control compared to controlled patients, and carotid IMT was also higher too in uncontrolled and white coat effect groups than controlled patients. More than one third of our patients who were treated with 2 or more drugs were not properly controlled, and they had significantly greater target organ damage than controlled patients. Copyright © 2014 SEHLELHA. Published by Elsevier Espana. All rights reserved.
Er, Nilay; Alkan, Alper; Ilday, Serim; Bengu, Erman
2018-06-01
The dental implant drilling procedure is an essential step for implant surgery, and frictional heat in bone during drilling is a key factor affecting the success of an implant. The aim of this study was to increase the dental implant drill lifetime and performance by using heat- and wear-resistant protective coatings to decrease the alveolar bone temperature caused by the dental implant drilling procedure. Commercially obtained stainless steel drills were coated with titanium aluminum nitride, diamond-like carbon, titanium boron nitride, and boron nitride coatings via magnetron-sputter deposition. Drilling was performed on bovine femoral cortical bone under the conditions mimicking clinical practice. Tests were performed under water-assisted cooling and under the conditions when no cooling was applied. Coated drill performances and durabilities were compared with those of three commonly used commercial drills with surfaces made from zirconia, black diamond. and stainless steel. Protective coatings with boron nitride, titanium boron nitride, and diamond-like carbon have significantly improved drill performance and durability. In particular, boron nitride-coated drills have performed within safe bone temperature limits for 50 drillings even when no cooling is applied. Titanium aluminium nitride coated drills did not show any improvement over commercially obtained stainless steel drills. Surface modification using heat- and wear-resistant coatings is an easy and highly effective way to improve implant drill performance and durability, which can improve the surgical procedure and the postsurgical healing period. The noteworthy success of different types of coatings is novel and likely to be applicable to various other medical systems.
Design colloidal particle morphology and self-assembly for coating applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Shan; Van Dyk, Antony; Maurice, Alvin
The progressive replacement of organic solvent-based coatings by waterborne latex polymer coatings has substantially renovated the coating industry, and generated huge environmental and health benefits. Today, on top of the continuing demand for higher performance and lower costs, the coating industry faces tighter regulation and higher sustainability standards. In addition, the new waterborne coatings have created unique opportunities and challenges in terms of fundamental understanding and research development. To address these challenges, polymer latex binders with diverse particle morphologies have been developed to improve coating performance. Furthermore, colloidal self-assembly has been utilized to help manufacturers make better paint with lessmore » cost. In this report, we review the recent progress in both fundamental study and industrial application in the context of developing new generation architectural coating materials. We introduce the basic concepts in coating materials and showcase several key technologies that have been implemented to improve coating performance. As a result, these technologies also represent the most important considerations in architectural coating design.« less
Design colloidal particle morphology and self-assembly for coating applications
Jiang, Shan; Van Dyk, Antony; Maurice, Alvin; ...
2017-05-04
The progressive replacement of organic solvent-based coatings by waterborne latex polymer coatings has substantially renovated the coating industry, and generated huge environmental and health benefits. Today, on top of the continuing demand for higher performance and lower costs, the coating industry faces tighter regulation and higher sustainability standards. In addition, the new waterborne coatings have created unique opportunities and challenges in terms of fundamental understanding and research development. To address these challenges, polymer latex binders with diverse particle morphologies have been developed to improve coating performance. Furthermore, colloidal self-assembly has been utilized to help manufacturers make better paint with lessmore » cost. In this report, we review the recent progress in both fundamental study and industrial application in the context of developing new generation architectural coating materials. We introduce the basic concepts in coating materials and showcase several key technologies that have been implemented to improve coating performance. As a result, these technologies also represent the most important considerations in architectural coating design.« less
Potyrailo, Radislav A; Chisholm, Bret J; Morris, William G; Cawse, James N; Flanagan, William P; Hassib, Lamyaa; Molaison, Chris A; Ezbiansky, Karin; Medford, George; Reitz, Hariklia
2003-01-01
Coupling of combinatorial chemistry methods with high-throughput (HT) performance testing and measurements of resulting properties has provided a powerful set of tools for the 10-fold accelerated discovery of new high-performance coating materials for automotive applications. Our approach replaces labor-intensive steps with automated systems for evaluation of adhesion of 8 x 6 arrays of coating elements that are discretely deposited on a single 9 x 12 cm plastic substrate. Performance of coatings is evaluated with respect to their resistance to adhesion loss, because this parameter is one of the primary considerations in end-use automotive applications. Our HT adhesion evaluation provides previously unavailable capabilities of high speed and reproducibility of testing by using a robotic automation, an expanded range of types of tested coatings by using the coating tagging strategy, and an improved quantitation by using high signal-to-noise automatic imaging. Upon testing, the coatings undergo changes that are impossible to quantitatively predict using existing knowledge. Using our HT methodology, we have developed several coatings leads. These HT screening results for the best coating compositions have been validated on the traditional scales of coating formulation and adhesion loss testing. These validation results have confirmed the superb performance of combinatorially developed coatings over conventional coatings on the traditional scale.
Innovative Flow Control Concepts for Drag Reduction
NASA Technical Reports Server (NTRS)
Lin, John C.; Whalen, Edward A.; Eppink, Jenna L.; Siochi, Emilie J.; Alexander, Michael G.; Andino, Marlyn Y.
2016-01-01
This paper highlights the technology development of two flow control concepts for aircraft drag reduction. The NASA Environmentally Responsible Aviation (ERA) project worked with Boeing to demonstrate these two concepts on a specially outfitted Boeing 757 ecoDemonstrator during the spring of 2015. The first flow control concept used Active Flow Control (AFC) to delay flow separation on a highly deflected rudder and increase the side force that it generates. This may enable a smaller vertical tail to provide the control authority needed in the event of an engine failure during takeoff and landing, while still operating in a conventional manner over the rest of the flight envelope. Thirty-one sweeping jet AFC actuators were installed and successfully flight-tested on the vertical tail of the 757 ecoDemonstrator. Pilot feedback, flow cone visualization, and analysis of the flight test data confirmed that the AFC is effective, as a smoother flight and enhanced rudder control authority were reported. The second flow control concept is the Insect Accretion Mitigation (IAM) innovation where surfaces were engineered to mitigate insect residue adhesion on a wing's leading edge. This is necessary because something as small as an insect residue on the leading edge of a laminar flow wing design can cause turbulent wedges that interrupt laminar flow, resulting in an increase in drag and fuel use. Several non-stick coatings were developed by NASA and applied to panels that were mounted on the leading edge of the wing of the 757 ecoDemonstrator. The performance of the coated surfaces was measured and validated by the reduction in the number of bug adhesions relative to uncoated control panels flown simultaneously. Both flow control concepts (i.e., sweeping jet actuators and non-stick coatings) for drag reduction were the culmination of several years of development, from wind tunnel tests to flight tests, and produced valuable data for the advancement of modern aircraft designs. The ERA systems analysis studies performed by NASA indicated that AFC-enhanced vertical tail could produce approximately 0.9% drag reduction for a large twin aisle aircraft and IAM coatings could enable approximately 1.2% drag reduction recovery for a potential total drag reduction of approximately 3.3% for a single aisle aircraft with a natural laminar flow (NLF) wing design.
Daudt, Renata Moschini; Back, Patrícia Inês; Cardozo, Nilo Sérgio Medeiros; Marczak, Ligia Damasceno Ferreira; Külkamp-Guerreiro, Irene Clemes
2015-12-10
The objective of this study was to use pinhão derivatives, starch and coat extract, as new natural ingredients to develop cosmetic formulations. Two types of formulation, gel and emulgel, and their controls were developed. The formulations were characterized by stability studies using thermal stress. The parameters analyzed were resistance to centrifugation, pH, spreadability, rheology, content of phenolic compounds and antioxidant activity. Sensory analysis was also performed to verify the acceptability of the ingredients to potential consumers. The pH was kept the same after heating/freezing cycles for all formulations, and the formulations showed stability by resistance to centrifugation. The formulations did not induce any skin irritation or cutaneous pH alteration. The pinhão starch addition improved spreadability stability and increased viscosity when compared with control formulations. The pinhão coat extract used in these formulations is a good source of phenolic compounds and antioxidant activity. Moreover, sensory analysis indicates that the emulgel formulation is the best vehicle for adding pinhão starch and pinhão coat extract. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ordikhani, F; Tamjid, E; Simchi, A
2014-08-01
Orthopaedic implant-associated infections are one of the most serious complications in orthopaedic surgery and a major cause of implant failure. In the present work, drug-eluting coatings based on chitosan containing various amounts of vancomycin were prepared by a cathodic electrophoretic deposition process on titanium foils. A three-step release mechanism of the antibiotic from the films in a phosphate-buffered saline solution was noticed. At the early stage, physical encapsulation of the drug in the hydrogel network controlled the release rate. At the late stage, however, in vitro degradation/deattachment of chitosan was responsible for the controlled release. Cytotoxicity evaluation of the drug-eluting coatings via culturing in human osteosarcoma cells (MG-63 osteoblast-like cell line) showed no adverse effect on the biocompatibility. Antibacterial tests against Gram-positive Staphylococcus aureus also demonstrated that the infection risk of titanium foils was significantly reduced due to the antibiotic release. Additionally, in vitro electrochemical corrosion studies by polarization technique revealed that the corrosion current density was significantly lower for the titanium foils with drug-eluting coatings compared to that of uncoated titanium. Copyright © 2014 Elsevier B.V. All rights reserved.
Factors affecting the sticking of insects on modified aircraft wings
NASA Technical Reports Server (NTRS)
Yi, O.; Chitsaz-Z, M. R.; Eiss, N. S.; Wightman, J. P.
1987-01-01
Past studies have shown that the surface energy of a polymer coating has an important effect on the sticking of insects to the surface. However, mechanical properties of polymer coatings such as elasticity may also be important. A further study is suggested using polymer coatings of known surface energy and modulus so that a better understanding of the mechanism of the sticking of insects to surfaces can be achieved. As the first step for the study, surface analysis and road tests were performed using elastomers having different energies and different moduli. The number of insects sticking to each elastomer was counted and compared from sample to sample and with a control (aluminum). An average height moment was also calculated and comparisons made between samples.
NASA Technical Reports Server (NTRS)
Barr, Lawrence D. (Editor)
1990-01-01
The present conference on the current status of large, advanced-technology optical telescope development and construction projects discusses topics on such factors as their novel optical system designs, the use of phased arrays, seeing and site performance factors, mirror fabrication and testing, pointing and tracking techniques, mirror thermal control, structural design strategies, mirror supports and coatings, and the control of segmented mirrors. Attention is given to the proposed implementation of the VLT Interferometer, the first diffraction-limited astronomical images with adaptive optics, a fiber-optic telescope using a large cross-section image-transmitting bundle, the design of wide-field arrays, Hartmann test data reductions, liquid mirrors, inertial drives for telescope pointing, temperature control of large honeycomb mirrors, evaporative coatings for very large telescope mirrors, and the W. M. Keck telescope's primary mirror active control system software.
Tribological performance of Zinc soft metal coatings in solid lubrication
NASA Astrophysics Data System (ADS)
Regalla, Srinivasa Prakash; Krishnan Anirudh, V.; Reddy Narala, Suresh Kumar
2018-04-01
Solid lubrication by soft coatings is an important technique for superior tribological performance in machine contacts involving high pressures. Coating with soft materials ensures that the subsurface machine component wear decreases, ensuring longer life. Several soft metal coatings have been studied but zinc coatings have not been studied much. This paper essentially deals with the soft coating by zinc through electroplating on hard surfaces, which are subsequently tested in sliding experiments for tribological performance. The hardness and film thickness values have been found out, the coefficient of friction of the zinc coating has been tested using a pin on disc wear testing machine and the results of the same have been presented.
Yazici, Cemal; Yanoso, Laura; Xie, Chao; Reynolds, David G; Samulski, R Jude; Samulski, Jade; Yannariello-Brown, Judith; Gertzman, Arthur A; Zhang, Xinping; Awad, Hani A; Schwarz, Edward M
2008-10-01
Freeze-dried recombinant adeno-associated virus (rAAV) coated structural allografts have emerged as an approach to engender necrotic cortical bone with host factors that will persist for weeks following surgery to facilitate revascularization, osteointegration, and remodeling. However, one major limitation is the nonporous cortical surface that prohibits uniform distribution of the rAAV coating prior to freeze-drying. To overcome this we have developed a demineralization method to increase surface absorbance while retaining the structural integrity of the allograft. Demineralized bone wafers (DBW) made from human femoral allograft rings demonstrated a significant 21.1% (73.6+/-3.9% versus 52.5+/-2.6%; p<0.001) increase in percent surface area coating versus mineralized controls. Co-incubation of rAAV-luciferase (rAAV-Luc) coated DBW with a monolayer of C3H10T1/2 cells in culture led to peak luciferase levels that were not significantly different from soluble rAAV-Luc controls (p>0.05), although the peaks occurred at 60h and 12h, respectively. To assess the transduction efficiency of rAAV-Luc coated DBW in vivo, we first performed a dose response with allografts containing 10(7), 10(9) or 10(10) particles that were surgically implanted into the quadriceps of mice, and assayed by in vivo bioluminescence imaging (BLI) on days 1, 3, 5, 7, 10, 14, and 21. The results demonstrated a dose response in which the DBW coated with 10(10) rAAV-Luc particles achieved peak gene expression levels on day 3, which persisted until day 21, and was significantly greater than the 10(7) dose throughout this time period (p<0.01). A direct comparison of mineralized versus DBW coated with 10(10) rAAV-Luc particles failed to demonstrate any significant differences in transduction kinetics or efficiency in vivo. Thus, surface demineralization of human cortical bone allograft increases its absorbance for uniform rAAV coating, without affecting vector transduction efficiency.
Current status and approaches to developing press-coated chronodelivery drug systems.
Lin, Shan-Yang; Kawashima, Yoshiaki
2012-02-10
The past several decades have seen the development of many controlled-release preparations featuring constant release rates to maintain drug concentrations in the human body, regardless of the patient's physiological condition. However, long-term constant drug concentrations in the blood and tissue can cause problems such as resistance, tolerability, and drug side effects. People vary considerably in their physiological and biochemical conditions during any 24 h period, due to the circadian rhythm, and thus, the constant delivery of a drug into the body seems both unnecessary and undesirable. If the drug release profile mimics a living system's pulsatile hormone secretion, then it may improve drug efficacy, and reduce the toxicity of a specific drug administration schedule. Medication and treatments provided according to the body's circadian rhythms will result in better outcomes. This may be provided by a chronopharmaceutical dosage regimen with pulsatile release that matches the circadian rhythm resulting from a disease state, so optimizing the therapeutic effect while minimizing side effects. The press coating technique is a simple and unique technology used to provide tablets with a programmable lag phase, followed by a fast, or rate-controlled, drug release after administration. The technique offers many advantages, and no special coating solvent or coating equipment is required for manufacturing this type of tablet. The present review article introduces chronopharmaceutical press-coated products from a patient physiological needs perspective. The contents of this article include biological rhythms and pulsatile hormone secretion in humans, the reasons for using pulsatile drug delivery for disease treatment, recent chronopharmaceutical preparations appearing on the market, updated compilation of all research articles and press-coated delivery techniques, factors affecting the performance and drug release characteristics of press-coated delivery systems, and recent challenges for the press coating technique. We also provide a brief overview of press-coating approaches intended for chronotherapy. Copyright © 2011 Elsevier B.V. All rights reserved.
Huang, Yi; Song, Lei; Liu, Xiaoguang; Xiao, Yanfeng; Wu, Yao; Chen, Jiyong; Wu, Fang; Gu, Zhongwei
2010-12-01
Hydroxyapatite coatings were deposited on Ti-6Al-4V substrates by a novel plasma spraying process, the liquid precursor plasma spraying (LPPS) process. X-ray diffraction results showed that the coatings obtained by the LPPS process were mainly composed of hydroxyapatite. The LPPS process also showed excellent control on the coating microstructure, and both nearly fully dense and highly porous hydroxyapatite coatings were obtained by simply adjusting the solid content of the hydroxyapatite liquid precursor. Scanning electron microscope observations indicated that the porous hydroxyapatite coatings had pore size in the range of 10-200 µm and an average porosity of 48.26 ± 0.10%. The osteoblastic cell responses to the dense and porous hydroxyapatite coatings were evaluated with human osteoblastic cell MG-63, in respect of the cell morphology, proliferation and differentiation, with the hydroxyapatite coatings deposited by the atmospheric plasma spraying (APS) process as control. The cell experiment results indicated that the heat-treated LPPS coatings with a porous structure showed the best cell proliferation and differentiation among all the hydroxyapatite coatings. Our results suggest that the LPPS process is a promising plasma spraying technique for fabricating hydroxyapatite coatings with a controllable microstructure, which has great potential in bone repair and replacement applications.
Irradiation experiment on ZrC-coated fuel particles for high-temperature gas-cooled reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minato, Kazuo; Ogawa, Toru; Sawa, Kazuhiro
2000-06-01
The ZrC coating layer is a candidate to replace the SiC coating layer of the Triso-coated fuel particle. To compare the irradiation performance of the ZrC Triso-coated fuel particles with that of the normal Triso-coated fuel particles at high temperatures, a capsule irradiation experiment was performed, where both types of the coated fuel particles were irradiated under identical conditions. The burnup was 4.5% FIMA and the irradiation temperature was 1,400 to 1,650 C. The postirradiation measurement of the through-coating failure fractions of both types of coated fuel particles revealed better irradiation performance of the ZrC Triso-coated fuel particles. The opticalmore » microscopy and electron probe microanalysis on the polished cross section of the ZrC Triso-coated fuel particles revealed no interaction of palladium with the ZrC coating layer nor accumulation of palladium at the inner surface of the ZrC coating layer, whereas severe corrosion of the SiC coating layer was observed in the normal Triso-coated fuel particles. Although no corrosion of the ZrC coating layer was observed, additional evaluations need to be made of this layer's ability to satisfactorily retain the fission product palladium.« less
Dissipation factor as a predictor of anodic coating performance
Panitz, Janda K. G.
1995-01-01
A dissipation factor measurement is used to predict as-anodized fixture performance prior to actual use of the fixture in an etching environment. A dissipation factor measurement of the anodic coating determines its dielectric characteristics and correlates to the performance of the anodic coating in actual use. The ability to predict the performance of the fixture and its anodized coating permits the fixture to be repaired or replaced prior to complete failure.
Compressor coating effects on gas turbine engine performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacLeod, J.D.; Laflamme, J.C.
1991-10-01
In an attempt to increase the time between maintenance actions and to improve performance retention of turboprop engines installed in transport and maritime patrol aircraft, the Canadian Department of National Defence is evaluating an erosion and corrosion-resistance blade coating, for use on compressors. As coatings could appreciably alter engine performance by virtue of their application thickness and surface quality, the National Research Council of Canada was asked to quantify any performance changes that could occur. A project was initiated, utilizing a new Allison T56 turboprop engine, to assess not only the performance changes resulting from the coating, but also thosemore » from dismantling and reassembling the compressor, since the compressor must be completely disassembled to apply the coating. This paper describes the project objectives, the experimental installation, and the measured effects of the coating application on compressor performance.« less
NASA Astrophysics Data System (ADS)
Hussain, T.; Dudziak, T.; Simms, N. J.; Nicholls, J. R.
2013-06-01
This article presents a systematic evaluation of coatings for advanced fossil fuel plants and addresses fireside corrosion in coal/biomass-derived flue gases. A selection of four candidate coatings: alloy 625, NiCr, FeCrAl and NiCrAlY were deposited onto superheaters/reheaters alloy (T91) using high-velocity oxy-fuel (HVOF) and plasma spraying. A series of laboratory-based fireside corrosion exposures were carried out on these coated samples in furnaces under controlled atmosphere for 1000 h at 650 °C. The tests were carried out using the "deposit-recoat" test method to simulate the environment that was anticipated from air-firing 20 wt.% cereal co-product mixed with a UK coal. The exposures were carried out using a deposit containing Na2SO4, K2SO4, and Fe2O3 to produce alkali-iron tri-sulfates, which had been identified as the principal cause of fireside corrosion on superheaters/reheaters in pulverized coal-fired power plants. The exposed samples were examined in an ESEM with EDX analysis to characterize the damage. Pre- and post-exposure dimensional metrologies were used to quantify the metal damage in terms of metal loss distributions. The thermally sprayed coatings suffered significant corrosion attack from a combination of aggressive combustion gases and deposit mixtures. In this study, all the four plasma-sprayed coatings studied performed better than the HVOF-sprayed coatings because of a lower level of porosity. NiCr was found to be the best performing coating material with a median metal loss of ~87 μm (HVOF sprayed) and ~13 μm (plasma sprayed). In general, the median metal damage for coatings had the following ranking (in the descending order: most to the least damage): NiCrAlY > alloy 625 > FeCrAl > NiCr.
NASA Astrophysics Data System (ADS)
Hassani, Salim
Solid particle erosion (SPE) is a serious problem in gas turbines, pumps, heat exchangers and piping systems in aircrafts and other applications. Sand and dust ingested by gas turbine engines may cause major damage to compressor gas path components, leading to severe performance degradation, excessive wear, increased maintenance and eventually premature failure of the engines. For the compressor section of aerospace gas turbine engines, in addition to the complex filtration systems used to screen the eroding particles, tribological coatings, such as TiN, Ti/TiN, CrN and TiAlN are used as protective layers of the base titanium alloy (Ti-6Al-4V) or stainless steels (17-4PH and 410) materials (substrates) against erosive wear. Such coatings can extend the service life of the components, but their performance still remains insufficient due to the complexity of failure mechanisms occurring upon SPE. Therefore, aerospace industry seeks to develop high performance coatings for the protection against erosion by solid particles. However, with many new materials used and tested for different applications and operation under different conditions, conducting experiments for each one of them is becoming increasingly difficult. Presently, coating selection criteria to prevent damage caused by erosion are based on trial and error experiments instead of prior design of coating's architecture and properties to maximize erosion resistance. The present work focuses on the use of advanced finite element (FE) methods to design erosion resistant (ER) coatings. It contributes a new methodology based on the analysis of transient stresses generated by a single impact event. Identification of coating architectures in which such stresses are minimized and crack propagation suppressed, allows one to predict and possibly minimize the erosion rate. Erosion mechanisms and governing erosion parameters are investigated to predict the coating behavior in simulated erosion conditions. The calculation variables include impact velocity (in the range of 50--300 m/s), particle size and the mechanical properties of both the target and the impacting particle. Specifically, we investigate the impact response of coatings fabricated by physical vapor deposition (PVD) and plasma enhanced chemical vapor deposition (PECVD). This includes single and multilayer TiN and nanocomposite nc-TiN/a-SiN1.3 and nc-TiCN/a-SiCN systems on titanium alloy and stainless steel substrates. In particular, we correlate the thickness and the coating macroscopic properties, such as hardness, Young's modulus, and toughness with the erosion. The calculations confirmed earlier findings that for a single layer coating, a combination of low modulus and a high thickness lead to local stress reduction and hence possible erosion resistance enhancement. The FE simulations have further shown that a tensile stress exceeding a critical stress sigmacrit = 3.95 GPa can be easily produced by a single particle impact. For each combination of particle velocity and size, a map of tensile stresses in the TiN coating, corresponding to the predicted erosion performance, was produced. The FE model has then been extended to multilayer coating systems containing superhard nanocomposite materials. These coatings configurations, when combined with tailored mechanical properties have shown to provide an improvement of the performance over comparable single layer configurations. The development of high performance erosion-resistant coatings also requires understanding of stress propagation upon particle impact. In the second part of this work, we apply a finite element methodology to enhance and optimize the resistance of protective coatings to erosion by solid particles with appropriate stress management. A controlled distribution of the initial residual stress in the coating was used to counteract impact stress, while a Young's modulus distribution was applied to optimize impact energy spreading throughout the coating system. Considering both tensile stress reduction and energy absorption, a multi-layer configuration with specific Young's modulus and residual stress distributions along the coating depth is suggested as an optimal coating architecture. In the third part of this work, we propose practical semi-empirical and numerical predictive methods to determine erosion resistance of tribological coatings. The study presents data obtained by FE calculations that can be compared with those obtained by classical theories developed for the erosion of materials. The simulation-based approach allows one to express the functional dependence of erosion on the coating properties, and to quantitatively predict the erosion rate. We determined a proportionality coefficient for a wide range of hard coatings. This coefficient was then used, in combination with the semi-empirical expression derived from FE simulations, to determine the erosion rate of different coatings. The existing erosion theories tend to emphasize hardness, H, and Young's modulus, E, as the main parameters defining erosion resistance. In this context, we specifically focus here on the role of the H/E and H3/E 2 ratios. We demonstrate that the latter characteristics allow one to rank coatings with respect to their erosion performance. Target values for these two ratios were determined for an optimal erosion resistance. We demonstrate that the FE design of the coating architecture, combined with the tailored mechanical properties of individual components of the coating systems, opens new opportunities as a predictive tool for high performance erosion coatings. The present thesis also includes a complementary experimental study of a new kind of ER coatings. We modify the surface profile of hard coatings such as diamond like carbon (DLC) and chrome silicon nitride CrSiN in attempt to correlate the surface characteristics to the functional performance. A specific surface texture (or pattern), designed to enhance erosion resistance, was obtained using a simple and cost effective method consisting of a masking operation, followed by conventional film fabrication techniques PVD or PECVD. Micro-patterned coatings (MPC) possessing specific 3D profiles were produced. In addition to a high potential for several tribological applications, MPC allowed to provide erosion resistance enhancement by a factor of 30 compared to the non-coated stainless steel and of 3--5 times compared to that of the same coating without micro pattern.
Yuan, Youling; Chesnutt, Betsy M; Wright, Lee; Haggard, Warren O; Bumgardner, Joel D
2008-07-01
Chitosan has shown promise as a coating for dental/craniofacial and orthopaedic implants. However, the effects of degree of deacetylation (DDA) of chitosan on coating bond strength, degradation, and biological performance is not known. The aim of this project was to evaluate bonding, degradation, and bone cell growth on titanium coated with chitosans of different DDA and from different manufacturers. Three different chitosans, 80.6%, 81.7%, and 92.3% DDA were covalently bonded to titanium coupons via silane-glutaraldehyde molecules. Bond strengths were evaluated in mechanical tensile tests, and degradation, over 5 weeks, was conducted in cell culture medium with and without 100 microg/mL lysozyme. Cytocompatibility was evaluated for 10 days using UMR 106 osteoblastic cells. Results showed that mean chitosan coating bond strengths ranged from 2.2-3.8 MPa, and that there was minimal affect of DDA on coating bond strengths. The coatings exhibited little dissolution over 5 weeks in medium with or without lysozyme. However, the molecular weight (MW) of the chitosan coatings remaining on the titanium samples after 5 weeks decreased by 69-85% with the higher DDA chitosan coatings exhibiting less percent change in MW than the lower DDA materials. The growth of the UMR 106 osteoblast cells on the 81.7% DDA chitosan coating was lower on days 3 and 5, as compared with the other two coatings, but by day 10, there were no differences in growth among three coatings or to the uncoated titanium controls. Differences in growth were attributed to differences in manufacturer source material, though all coatings were judged to be osteocompatible in vitro. 2007 Wiley Periodicals, Inc.
Yang, Yong; Wang, Peng-peng; Zhang, Zhi-cheng; Liu, Hui-ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun
2013-01-01
Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants. PMID:23603809
Sun, F Q; Li, M Q; Peng, S H; Zhang, H M; Liu, M; Qu, X Y
2018-06-09
Objective: To investigate the antibacterial property and biological activity of Ti dental implant with antimicrobial peptide Pac-525 coatings, and to study the effect of peptide Pac-525 coatings on Porphyromonas gingivalis 's antibacterial performance and osteoblast proliferation and adhesion. Methods: After ultrasonic micro arc oxidation, alkali treatment and silane treatment, forty-five pure titanium specimens were exposed to antibacterial peptide Pac-525 in different concentration (0.25, 0.50, 0.75 g/L). The titanium specimens in the control group were only treated with ultrasonic micro arc oxidation, alkali treatment and silane treatment. The morphologies of coatings were observed by scanning electron microscope (SEM), and the element changes were detected by energy spectrum analyzer. Orange acridine-ethidium bromide double staining was used to detect the average percentage of live bacteria and biofilm thickness, after the specimens in each group and Porphyromonas gingivalis were co-cultured for 72 hours. Cell counting Kit-8 method and immunofluorescence staining were used to test the proliferation of osteoblasts, the number and growth morphologies of adherent cells, respectively. Results: SEM and energy spectrum analysis showed that the Pac-525 particles loaded on the surface of the coating, and the C and N elements in the Pac-525 coating group were significantly more than those in the control group. The average percentage of living bacteria in the control group, 0.25, 0.50 and 0.75 g/L antimicrobial peptides were 0.58%, 0.45%, 0.34% and 0.28%, respectively, and the difference between each group was statistically significant ( P< 0.05). The biofilm thickness of Porphyromonas gingivalis in 0.50 and 0.75 g/L antibacterial peptide group were (98.3±1.2) and (94.5±2.5) μm respectively, which were significantly less than those in control group and 0.25 g/L antibacterial peptide group [(117.6±1.5) and (118.0±1.3) μm] ( P< 0.05), respectively. The number of bone cell adhesion and proliferation of all antimicrobial peptides were significantly greater than those in the control group ( P< 0.05), and the cells stretched better. Conclusions: The antibacterial peptide coating of titanium implants could inhibit the formation of bacterial biofilm. It had good antibacterial properties and could promote the adhesion and proliferation of osteoblasts.
Bahari, Leila Azharshekoufeh; Javadzadeh, Yousef; Jalali, Mohammad Barzegar; Johari, Peyvand; Nokhodchi, Ali; Shokri, Javad
2017-05-01
In controlled porosity osmotic pumps (CPOP), usually finding a single solvent with a capability to dissolve both film former (hydrophobic) and pore former (hydrophilic) is extremely challenging. Therefore, the aim of the present investigation was to tackle the issue associated with controlled porosity osmotic pump (CPOP) system using nano-suspension coating method. In the present study 4-Amino pyridine was used as a highly water soluble drug. In this method, a hydrophilic pore former (sucrose or mannitol) in nano range was suspended in polymeric coating solution using ball-mill. The performance of the prepared formulations was assessed in terms of D 12h (cumulative release percent after 12h), Dev zero (mean percent deviation of drug release from zero order kinetic), t L (lag time of the drug release) and RSQ zero . The results revealed that gelling agent amount (HPMC E 15LV ) in core and pore former concentration in SPM had crucial effect on SPM integrity. All the optimised formulations showed a burst drug release due to fast dissolving nature of the pore formers. Results obtained from scanning electron microscopy demonstrated the formation of nanopores in the membrane where the drug release takes place via these nanopores. Nano suspension coating method can be introduced as novel method in formulation of CPOPs. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bhardwaj, Garima; Yazici, Hilal; Webster, Thomas J.
2015-04-01
Reducing bacterial density on titanium implant surfaces has been a major concern because of the increasing number of nosocomial infections. Controlling the inflammatory response post implantation has also been an important issue for medical devices due to the detrimental effects of chronic inflammation on device performance. It has recently been demonstrated that manipulating medical device surface properties including chemistry, roughness and wettability can control both infection and inflammation. Here, we synthesized nanophase (that is, materials with one dimension in the nanoscale) hydroxyapatite coatings on titanium to reduce bacterial adhesion and inflammatory responses (as measured by macrophage functions) and compared such results to bare titanium and plasma sprayed hydroxyapatite titanium coated surfaces used clinically today. This approach is a pharmaceutical-free approach to inhibit infection and inflammation due to the detrimental side effects of any drug released in the body. Here, nanophase hydroxyapatite was synthesized in sizes ranging from 110-170 nm and was subsequently coated onto titanium samples using electrophoretic deposition. Results indicated that smaller nanoscale hydroxyapatite features on titanium surfaces alone decreased bacterial attachment in the presence of gram negative (P. aeruginosa), gram positive (S. aureus) and ampicillin resistant gram-negative (E. coli) bacteria as well as were able to control inflammatory responses; properties which should lead to their further investigation for improved medical applications.
49 CFR 195.561 - When must I inspect pipe coating used for external corrosion control?
Code of Federal Regulations, 2010 CFR
2010-10-01
... corrosion control? 195.561 Section 195.561 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.561 When must I inspect pipe coating used for external corrosion control? (a) You must inspect all external pipe coating...
49 CFR 195.561 - When must I inspect pipe coating used for external corrosion control?
Code of Federal Regulations, 2011 CFR
2011-10-01
... corrosion control? 195.561 Section 195.561 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.561 When must I inspect pipe coating used for external corrosion control? (a) You must inspect all external pipe coating...
49 CFR 195.561 - When must I inspect pipe coating used for external corrosion control?
Code of Federal Regulations, 2013 CFR
2013-10-01
... corrosion control? 195.561 Section 195.561 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.561 When must I inspect pipe coating used for external corrosion control? (a) You must inspect all external pipe coating...
49 CFR 195.561 - When must I inspect pipe coating used for external corrosion control?
Code of Federal Regulations, 2014 CFR
2014-10-01
... corrosion control? 195.561 Section 195.561 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.561 When must I inspect pipe coating used for external corrosion control? (a) You must inspect all external pipe coating...
49 CFR 195.561 - When must I inspect pipe coating used for external corrosion control?
Code of Federal Regulations, 2012 CFR
2012-10-01
... corrosion control? 195.561 Section 195.561 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.561 When must I inspect pipe coating used for external corrosion control? (a) You must inspect all external pipe coating...
Status and directions of modified tribological surfaces by ion processes
NASA Technical Reports Server (NTRS)
Spalvins, Talivaldis
1988-01-01
An overview is presented of recent advances in modifying contacting surfaces in motion by the various ion assisted surface coating/modification processes to reduce and control tribological failures. The ion assisted coating processes and the surface modification processes offer the greatest potential to custom tailor and optimize the tribological performance. Hard, wear resistant and low shear coatings deposited by the ion assisted processes are discussed. Primarily the recent advances of sputtered MoS2 ion plated Au, Ag, Pb lubricating films and sputtered and ion plated hard, wear resistant TiN, HfN, TiC films are described in terms of structural property performance interrelationships which lead to improved adhesion, cohesion, nucleation, morphological growth, density, film thickness as determined by structural and chemical characterization and frictional and wear behavior. Also, the recent tribological advances using the surface modification processes such as ion implantation, ion beam mixing is discussed with emphasis on the development of lubricous high temperature ceramic surfaces.
NASA Astrophysics Data System (ADS)
Fan, Fuqiang; Fang, Guoqing; Zhang, Ruixue; Xu, Yanhui; Zheng, Junwei; Li, Decheng
2014-08-01
A series of core-shell carbon coated amorphous CoSnO3 (CoSnO3@C) with different carbon content are synthesized. Effects of carbon content and coating carbon thickness on the physical and electrochemical performances of the samples were studied in detail. The samples were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), galvanostatic charge-discharge and AC impedance spectroscopy, respectively. The results indicate that controlling the concentration of aqueous glucose solution influences the generation of in-situ carbon layer thickness. The optimal concentration of aqueous glucose solution, carbon content and carbon layer thickness are suggested as 0.25 M, 35.1% and 20 nm, respectively. CoSnO3@C composite prepared under the optimal conditions exhibits excellent cycling performance, whose reversible capacity could reach 491 mA h g-1 after 100 cycles.
Marciello, Marzia; Filice, Marco; Olea, David; Velez, Marisela; Guisan, José M; Mateo, Cesar
2014-12-16
The preparation and performance of a suitable chimeric biosensor based on antibodies (Abs) immobilized on lipase-coated magnetic particles by means of a standing orienting strategy are presented. This novel system is based on hydrophobic magnetic particles coated with modified lipase molecules able to orient and further immobilize different Abs in a covalent way without any previous site-selective chemical modification of biomacromolecules. Different key parameters attending the process were studied and optimized. The optimal preparation was performed using a controlled loading (1 nmol Ab g(-1) chimeric support) at pH 9 and a short reaction time to recover a biological activity of about 80%. AFM microscopy was used to study and confirm the Abs-oriented immobilization on lipase-coated magnetic particles and the final achievement of a highly active and recyclable chimeric immune sensor. This direct technique was demonstrated to be a powerful alternative to the indirect immunoactivity assay methods for the study of biomacromolecule-oriented immobilizations.
Lim, Ho-Kyung; Byun, Soo-Hwan; Lee, Jin-Yong; Lee, Jung-Woo; Kim, Sae-Mi; Lee, Sung-Mi; Kim, Hyoun-Ee; Lee, Jong-Ho
2017-08-01
Titanium (Ti) screw has excellent mechanical property, and osseointegration capacity. However, they require surgery for removal. In contrast, polymer screws are resorbable, but they have poor mechanical properties. In this research, magnesium alloy screws (WE43: Mg-Y-Nd-Zr) that have advantages of titanium and polymer were manufactured. In addition, to increase biocompatibility and control degradation rate, the Mg alloy was coated with hydroxyapatite (HA). Torsion test and corrosion test were performed in vitro. For clinical, radiological and histological evaluation, on the eight rabbits, two HA-coated screws were installed in left tibia, and two noncoated screws were installed in right tibia. Each four rabbits were sacrificed 6 and 12 weeks postoperatively. For hematological evaluation, the same type of screws were installed on both legs. Complete blood count (CBC), Mg 2+ concentrate were sampled from the ear central artery on the operation day for a control point, and at 1, 2, 4, 6, 8, and 12 weeks. Mg alloy screws have no differences of biocompatibility according to the HA coating. However, resorption of screw was slower in case of the HA coating. The hematological problem related releasing of Mg was not found. The results suggest that Mg alloy screws have feasibility for clinical application. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1636-1644, 2017. © 2016 Wiley Periodicals, Inc.
Hsu, Hsin-Yun; Toth, Scott; Simpson, Garth J.; Harris, Michael T.
2016-01-01
Solid dispersions have been used to enhance the bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs). However, the solid state phase, compositional uniformity, and scale-up problems are issues that need to be addressed. To allow for highly controllable products, the Drop Printing (DP) technique can provide precise dosages and predictable compositional uniformity of APIs in two/three dimensional structures. In this study, DP was used to prepare naproxen (NAP)/polyethylene glycol 3350 (PEG3350) solid dispersions with PEG coatings of different molecular weights (MW). A comparison of moisture-accelerated crystallization inhibition by different PEG coatings was assessed. Scanning electron microscopy (SEM), second harmonic generation (SHG) microscopy, and differential scanning calorimetry (DSC) analysis were performed to characterize the morphology and quantify the apparent crystallinity of NAP within the solid dispersions. Thermogravimetric analysis (TGA) was employed to measure the water content within each sample. The results suggest that the moisture-accelerated crystallization inhibition capability of the PEG coatings increased with increasing MW of the PEG coating. Besides, to demonstrate the flexibility of DP technology on manufacturing formulation, multilayer tablets with different PEG serving as barrier layers were also constructed, and their dissolution behavior was examined. By applying DP and appropriate materials, it is possible to design various carrier devices used to control the release dynamics of the API. PMID:27041744
Hsu, Hsin-Yun; Toth, Scott; Simpson, Garth J; Harris, Michael T
2015-12-01
Solid dispersions have been used to enhance the bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs). However, the solid state phase, compositional uniformity, and scale-up problems are issues that need to be addressed. To allow for highly controllable products, the Drop Printing (DP) technique can provide precise dosages and predictable compositional uniformity of APIs in two/three dimensional structures. In this study, DP was used to prepare naproxen (NAP)/polyethylene glycol 3350 (PEG3350) solid dispersions with PEG coatings of different molecular weights (MW). A comparison of moisture-accelerated crystallization inhibition by different PEG coatings was assessed. Scanning electron microscopy (SEM), second harmonic generation (SHG) microscopy, and differential scanning calorimetry (DSC) analysis were performed to characterize the morphology and quantify the apparent crystallinity of NAP within the solid dispersions. Thermogravimetric analysis (TGA) was employed to measure the water content within each sample. The results suggest that the moisture-accelerated crystallization inhibition capability of the PEG coatings increased with increasing MW of the PEG coating. Besides, to demonstrate the flexibility of DP technology on manufacturing formulation, multilayer tablets with different PEG serving as barrier layers were also constructed, and their dissolution behavior was examined. By applying DP and appropriate materials, it is possible to design various carrier devices used to control the release dynamics of the API.
Wang, Yapei; Pitet, Louis M; Finlay, John A; Brewer, Lenora H; Cone, Gemma; Betts, Douglas E; Callow, Maureen E; Callow, James A; Wendt, Dean E; Hillmyer, Marc A; DeSimonea, Joseph M
2011-01-01
The facile preparation of amphiphilic network coatings having a hydrophobic dimethacryloxy-functionalized perfluoropolyether (PFPE-DMA; M(w) = 1500 g mol(-1)) crosslinked with hydrophilic monomethacryloxy functionalized poly(ethylene glycol) macromonomers (PEG-MA; M(w) = 300, 475, 1100 g mol(-1)), intended as non-toxic high-performance marine coatings exhibiting antifouling characteristics is demonstrated. The PFPE-DMA was found to be miscible with the PEG-MA. Photo-cured blends of these materials containing 10 wt% of PEG-MA oligomers did not swell significantly in water. PFPE-DMA crosslinked with the highest molecular weight PEG oligomer (ie PEG1100) deterred settlement (attachment) of algal cells and cypris larvae of barnacles compared to a PFPE control coating. Dynamic mechanical analysis of these networks revealed a flexible material. Preferential segregation of the PEG segments at the polymer/air interface resulted in enhanced antifouling performance. The cured amphiphilic PFPE/PEG films showed decreased advancing and receding contact angles with increasing PEG chain length. In particular, the PFPE/PEG1100 network had a much lower advancing contact angle than static contact angle, suggesting that the PEG1100 segments diffuse to the polymer/water interface quickly. The preferential interfacial aggregation of the larger PEG segments enables the coating surface to have a substantially enhanced resistance to settlement of spores of the green seaweed Ulva, cells of the diatom Navicula and cypris larvae of the barnacle Balanus amphitrite as well as low adhesion of sporelings (young plants) of Ulva, adhesion being lower than to a polydimethyl elastomer, Silastic T2.
Measuring the Photocatalytic Breakdown of Crystal Violet Dye using a Light Emitting Diode Approach
NASA Technical Reports Server (NTRS)
Ryan, Robert E.; Underwood, Lauren W.; O'Neal, Duane; Pagnutti, Mary; Davis, Bruce A.
2009-01-01
A simple method to estimate the photocatalytic reactivity performance of spray-on titanium dioxide coatings for transmissive glass surfaces was developed. This novel technique provides a standardized method to evaluate the efficiency of photocatalytic material systems over a variety of illumination levels. To date, photocatalysis assessments have generally been conducted using mercury black light lamps. Illumination levels for these types of lamps are difficult to vary, consequently limiting their use for assessing material performance under a diverse range of simulated environmental conditions. This new technique uses an ultraviolet (UV) gallium nitride (GaN) light emitting diode (LED) array instead of a traditional black light to initiate and sustain photocatalytic breakdown. This method was tested with a UV-resistant dye (crystal violet) applied to a titanium dioxide coated glass slide. Experimental control is accomplished by applying crystal violet to both titanium dioxide coated slides and uncoated control slides. A slide is illuminated by the UV LED array, at various light levels representative of outdoor and indoor conditions, from the dye side of the slide. To monitor degradation of the dye over time, a temperature-stabilized white light LED, whose emission spectrum overlaps with the dye absorption spectrum, is used to illuminate the opposite side of the slide. Using a spectrometer, the amount of light from the white light LED transmitted through the slide as the dye degrades is monitored as a function of wavelength and time and is subsequently analyzed. In this way, the rate of degradation for photocatalytically coated versus uncoated slide surfaces can be compared. Results demonstrate that the dye absorption decreased much more rapidly on the photocatalytically coated slides than on the control uncoated slides, and that dye degradation is dependent on illumination level. For photocatalytic activity assessment purposes, this experimental configuration and methodology minimizes many external variable effects and enables small changes in absorption to be measured. This research also compares the advantages of this innovative LED light source design over traditional mercury black light systems and non- LED lamp approaches. This novel technology begins to address the growing need for a standard method that can assess the performance of photocatalytic materials before deployment for large scale, real world use.
Melimine-Coated Antimicrobial Contact Lenses Reduce Microbial Keratitis in an Animal Model.
Dutta, Debarun; Vijay, Ajay K; Kumar, Naresh; Willcox, Mark D P
2016-10-01
To determine the ability of antimicrobial peptide melimine-coated contact lenses to reduce the incidence of microbial keratitis (MK) in a rabbit model of contact lens wear. In vitro antimicrobial activity of melimine-coated contact lenses was determined against Pseudomonas aeruginosa by viable count and a radiolabeled assay. The amount of lipopolysaccharide (LPS) associated with bacteria bound to melimine-coated and control lenses was determined. Ocular swabs from rabbit eyes were collected for assessment of ocular microflora. A rabbit model for MK was developed that used overnight wear of contact lenses colonized by P. aeruginosa in the absence of a corneal scratch. During lens wear, detailed ocular examinations were performed, and the incidence of MK was investigated. Bacteria associated with worn lenses and infected corneas were determined by viable plate count. Inhibition in viable and total P. aeruginosa adhesion by melimine-coated contact lenses was 3.1 log10 and 0.4 log10, respectively. After colonization, the amount of LPS on lenses was approximately the same with or without melimine. Gram-positive bacteria were found in all the ocular swabs followed by fungus (42%). Melimine-coated lens wear was protective and significantly (odds ratio 10.12; P = 0.012) reduced the incidence of P. aeruginosa-driven MK in the rabbit model. The antimicrobial lenses were associated with significantly (P < 0.001) lower ocular scores, indicating improved ocular signs compared with controls. This study showed that contaminated contact lenses can produce MK without corneal epithelial defect in an animal model. Melimine-coated contact lenses reduced the incidence of MK associated with P. aeruginosa in vivo. Development of MK requires viable bacteria adherent to contact lenses, and bacterial debris adherent at the lens surface did not cause keratitis.
Yew, M C; Ramli Sulong, N H; Yew, M K; Amalina, M A; Johan, M R
2014-01-01
This paper aims to synthesize and characterize an effective intumescent fire protective coating that incorporates eggshell powder as a novel biofiller. The performances of thermal stability, char formation, fire propagation, water resistance, and adhesion strength of coatings have been evaluated. A few intumescent flame-retardant coatings based on these three ecofriendly fire retardant additives ammonium polyphosphate phase II, pentaerythritol and melamine mixed together with flame-retardant fillers, and acrylic binder have been prepared and designed for steel. The fire performance of the coatings has conducted employing BS 476: Part 6-Fire propagation test. The foam structures of the intumescent coatings have been observed using field emission scanning electron microscopy. On exposure, the coated specimens' B, C, and D had been certified to be Class 0 due to the fact that their fire propagation indexes were less than 12. Incorporation of ecofriendly eggshell, biofiller into formulation D led to excellent performance in fire stopping (index value, (I) = 4.3) and antioxidation of intumescent coating. The coating is also found to be quite effective in water repellency, uniform foam structure, and adhesion strength.
Yew, M. C.; Ramli Sulong, N. H.; Yew, M. K.; Amalina, M. A.; Johan, M. R.
2014-01-01
This paper aims to synthesize and characterize an effective intumescent fire protective coating that incorporates eggshell powder as a novel biofiller. The performances of thermal stability, char formation, fire propagation, water resistance, and adhesion strength of coatings have been evaluated. A few intumescent flame-retardant coatings based on these three ecofriendly fire retardant additives ammonium polyphosphate phase II, pentaerythritol and melamine mixed together with flame-retardant fillers, and acrylic binder have been prepared and designed for steel. The fire performance of the coatings has conducted employing BS 476: Part 6-Fire propagation test. The foam structures of the intumescent coatings have been observed using field emission scanning electron microscopy. On exposure, the coated specimens' B, C, and D had been certified to be Class 0 due to the fact that their fire propagation indexes were less than 12. Incorporation of ecofriendly eggshell, biofiller into formulation D led to excellent performance in fire stopping (index value, (I) = 4.3) and antioxidation of intumescent coating. The coating is also found to be quite effective in water repellency, uniform foam structure, and adhesion strength. PMID:25136687
NASA Astrophysics Data System (ADS)
Kumar, A. Madhan; Babu, R. Suresh; Obot, I. B.; Adesina, Akeem Yusuf; Ibrahim, Ahmed; de Barros, A. L. F.
2018-05-01
Protecting the surface of metals and alloys against corrosion and wear is of abundant importance owing to their widespread applications. In the present work, we report the improved anticorrosion and tribo-mechanical performance of copper (Cu) by a hard carbon (HC) coating synthesized in different pyrolysis temperature. Structural and surface characterization with roughness measurements was systematically investigated using various techniques. Effect of pyrolysis temperature on the corrosion behavior of coated Cu substrates in 0.6 M NaCl solution was evaluated via electrochemical impedance spectroscopy, potentiodynamic polarization. Pin-on-disk wear test of coated Cu substrate showed the influence of the pyrolysis temperature on the wear resistance performance of the HC coatings. According to the obtained results, it could be concluded that the HC coatings synthesized at 1100 °C revealed an enhanced comprehensive performance, revealing their possible utilization as a protective coating for Cu substrates in chloride environment. Monte Carlo simulations have been utilized to elucidate the interaction between the Cu surface and HC coatings.
NASA Astrophysics Data System (ADS)
Kumar, A. Madhan; Babu, R. Suresh; Obot, I. B.; Adesina, Akeem Yusuf; Ibrahim, Ahmed; de Barros, A. L. F.
2018-01-01
Protecting the surface of metals and alloys against corrosion and wear is of abundant importance owing to their widespread applications. In the present work, we report the improved anticorrosion and tribo-mechanical performance of copper (Cu) by a hard carbon (HC) coating synthesized in different pyrolysis temperature. Structural and surface characterization with roughness measurements was systematically investigated using various techniques. Effect of pyrolysis temperature on the corrosion behavior of coated Cu substrates in 0.6 M NaCl solution was evaluated via electrochemical impedance spectroscopy, potentiodynamic polarization. Pin-on-disk wear test of coated Cu substrate showed the influence of the pyrolysis temperature on the wear resistance performance of the HC coatings. According to the obtained results, it could be concluded that the HC coatings synthesized at 1100 °C revealed an enhanced comprehensive performance, revealing their possible utilization as a protective coating for Cu substrates in chloride environment. Monte Carlo simulations have been utilized to elucidate the interaction between the Cu surface and HC coatings.
A new measurement method of coatings thickness based on lock-in thermography
NASA Astrophysics Data System (ADS)
Zhang, Jin-Yu; Meng, Xiang-bin; Ma, Yong-chao
2016-05-01
Coatings have been widely used in modern industry and it plays an important role. Coatings thickness is directly related to the performance of the functional coatings, therefore, rapid and accurate coatings thickness inspection has great significance. Existing coatings thickness measurement method is difficult to achieve fast and accurate on-site non-destructive coatings inspection due to cost, accuracy, destruction during inspection and other reasons. This paper starts from the introduction of the principle of lock-in thermography, and then performs an in-depth study on the application of lock-in thermography in coatings inspection through numerical modeling and analysis. The numerical analysis helps explore the relationship between coatings thickness and phase, and the relationship lays the foundation for accurate calculation of coatings thickness. The author sets up a lock-in thermography inspection system and uses thermal barrier coatings specimens to conduct an experiment. The specimen coatings thickness is measured and calibrated to verify the quantitative inspection. Experiment results show that the lock-in thermography method can perform fast coatings inspection and the inspection accuracy is about 95%. Therefore, the method can meet the field testing requirements for engineering projects.
A Multifunctional Smart Coating for Autonomous Corrosion Control
NASA Technical Reports Server (NTRS)
Calle, Luz Marina; Buhrow, Jerry W.; Jolley, Scott T.
2012-01-01
Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on micro-encapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy. This
A Multifunctional Coating for Autonomous Corrosion Control
NASA Technical Reports Server (NTRS)
Calle, Luz M.; Hintze, Paul E.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.
2010-01-01
Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where they are needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into the microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy.
Examination of a carton sealing line using a thermographic scanner
NASA Astrophysics Data System (ADS)
Kleinfeld, Jack M.
1999-03-01
The study of the operation and performance of natural gas fired sealing lines for polyethylene coated beverage containers was performed. Both thermal and geometric data was abstracted from the thermal scans and used to characterize the performance of the sealing line. The impact of process operating variables such as line speed and carton to carton spacing was studied. Recommendations for system improvements, instrumentation and process control were made.
Zhou, Qi Tony; Qu, Li; Gengenbach, Thomas; Larson, Ian; Stewart, Peter J; Morton, David A V
2013-03-01
The objective of this study was to investigate the effect of particle surface coating with magnesium stearate on the aerosolization of dry powder inhaler formulations. Micronized salbutamol sulphate as a model drug was dry coated with magnesium stearate using a mechanofusion technique. The coating quality was characterized by X-ray photoelectron spectroscopy. Powder bulk and flow properties were assessed by bulk densities and shear cell measurements. The aerosol performance was studied by laser diffraction and supported by a twin-stage impinger. High degrees of coating coverage were achieved after mechanofusion, as measured by X-ray photoelectron spectroscopy. Concomitant significant increases occurred in powder bulk densities and in aerosol performance after coating. The apparent optimum performance corresponded with using 2% w/w magnesium stearate. In contrast, traditional blending resulted in no significant changes in either bulk or aerosolization behaviour compared to the untreated sample. It is believed that conventional low-shear blending provides insufficient energy levels to expose host micronized particle surfaces from agglomerates and to distribute guest coating material effectively for coating. A simple ultra-high-shear mechanical dry powder coating step was shown as highly effective in producing ultra-thin coatings on micronized powders and to substantially improve the powder aerosolization efficiency.
Laminin coatings on implant surfaces promote osseointegration: Fact or fiction?
Javed, Fawad; Al Amri, Mohammad D; Kellesarian, Sergio Varela; Al-Askar, Mansour; Al-Kheraif, Abdulaziz A; Romanos, Georgios E
2016-08-01
To our knowledge from indexed literature, the role of laminins in the expression of osteogenic biomarkers and osseointegration enhancement has not been systematically reviewed. The aim of the present systematic review was to assess the role of laminin coatings on implant surfaces in promoting osseointegration. To address the focused question, "Do laminin coatings on implant surfaces influence osseointegration?", indexed databases were searched from 1965 up to and including November 2015 using various combination of the following keywords: "Bone to implant contact"; "implant"; "laminins"; and "osseointegration". Letters to the Editor, case-reports/case-series, historic reviews, and commentaries were excluded. The pattern of the present systematic review was customized to primarily summarize the pertinent data. Nine studies were included. Six studies were prospective and were performed in animals and 5 studies were in vitro. Results from 8 studies showed that laminin coatings enhanced new bone formation around implants and/or bone-to-implant contact. One study showed that laminin coated implants surfaces did not improve osseointegration. On experimental grounds, laminin coatings seem to enhance osteogenic biomarkers expression and/or osseointegration; however, from a clinical perspective, further randomized control trials are needed to assess the role of laminin coatings in promoting osseointegration around dental implants. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Abdal-Hay, Abdalla; Hasan, Anwarul; Kim, Yu-Kyoung; Yu-Kyoung; Lee, Min-Ho; Hamdy, Abdel Salam; Khalil, Khalil Abdelrazek
2016-01-01
This article demonstrates the use of hybrid nanofibers to improve the biodegradation rate and biocompatibility of AM50 magnesium alloy. Biodegradable hybrid membrane fiber layers containing nano-hydroxyapatite (nHA) particles and poly(lactide)(PLA) nanofibers were coated layer-by-layer (LbL) on AM50 coupons using a facile single-step air jet spinning (AJS) approach. The corrosion performance of coated and uncoated coupon samples was investigated by means of electrochemical measurements. The results showed that the AJS 3D membrane fiber layers, particularly the hybrid membrane layers containing a small amount of nHA (3 wt.%), induce a higher biocorrosion resistance and effectively decrease the initial degradation rate compared with the neat AM50 coupon samples. The adhesion strength improved highly due to the presence of nHA particles in the AJS layer. Furthermore, the long biodegradation rates of AM50 alloy in Hank's balanced salt solution (HBSS) were significantly controlled by the AJS-coatings. The results showed a higher cytocompatibility for AJS-coatings compared to that for neat Mg alloys. The nanostructured nHA embedded hybrid PLA nanofiber coating can therefore be a suitable coating material for Mg alloy as a potential material for biodegradable metallic orthopedic implants. Copyright © 2015 Elsevier B.V. All rights reserved.
Corrosion Performance of Nano-ZrO₂ Modified Coatings in Hot Mixed Acid Solutions.
Xu, Wenhua; Wang, Zhenyu; Han, En-Hou; Wang, Shuai; Liu, Qian
2018-06-01
A nano-ZrO₂ modified coating system was prepared by incorporation of nano-ZrO₂ concentrates into phenolic-epoxy resin. The corrosion performance of the coatings was evaluated in hot mixed acid solution, using electrochemical methods combined with surface characterization, and the effects of nano-ZrO₂ content were specially focused on. The results showed that 1% and 3% nano-ZrO₂ addition enhanced the corrosion resistance of the coatings, while 5% nano-ZrO₂ addition declined it. The coating with 3% nano-ZrO₂ presented the minimum amount of species diffusion, the lowest average roughness (5.94 nm), and the highest C/O ratio (4.55) and coating resistance, and it demonstrated the best corrosion performance among the coating specimens.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Arkadeb; Duari, Santanu; Barman, Tapan Kumar; Sahoo, Prasanta
2017-10-01
The present study aims to evaluate the friction and wear behaviour of electroless Ni-P coatings sliding against hardened chromium coated steel under lubrication. Tribological tests are carried out on a block-on-roller configuration multi tribotester. The effect of variation of applied normal load, rotation speed of the counterface roller and test duration on the coefficient of friction and wear depth is analyzed using Taguchi's robust design philosophy and design of experiments. Optimal setting of the tribo-testing parameters is evaluated using a hybrid grey fuzzy reasoning analysis in a quest to achieve optimal tribological performance of the coatings under lubrication. Analysis of variance reveals the highest contribution by applied normal load in controlling the tribological behaviour under lubrication. Whereas the interaction effect of load and time is also seen to cast a significant effect. Surface morphology studies reveal a typical nodular structure of the deposits. The coatings are seen to be amorphous in its as-deposited condition which becomes crystalline on heat treatment. Further, the synergistic effects of test parameters, microstructure of the coatings, lubrication, etc. on the tribological behaviour are assessed.
Ring, Andrej; Langer, Stefan; Tilkorn, Daniel; Goertz, Ole; Henrich, Lena; Stricker, Ingo; Steinau, Hans-Ulrich; Steinstraesser, Lars; Hauser, Joerg
2010-09-28
Formation of encapsulating, avascular fibrous tissue is deemed to decrease implant's biocompatibility and versatility. We investigated whether plasma-mediated collagen coating possesses the ability to enhance neovascularization in the vicinity of silicone implants. Plasma-treated collagen-I-coated silicone samples were placed into the dorsal skinfold chambers of female balb/c mice (n = 10). Conventional silicone served as control (n = 10). Intravital microscopy was performed within implant's surrounding tissue on days 1, 5, and 10. Functional vessel density, intervascular distance, vessel diameter, microvascular permeability, red blood cell velocity, and leukocyte-endothelium interaction were determined. Enhanced angiogenesis in the tissue surrounding plasma-pretreated collagen-coated implants was noted. Significant increase of functional vessel density due to vascular new development was observed (t test, P < .05). Analyses of microvascular permeability and red blood cell velocity displayed stable perfusion of the vascular network neighboring the surface-modified implants. Intensified vascularity due to induced angiogenesis and neovascularization in the tissue surrounding plasma-collagen-coated samples were observed. These results indicate that plasma-mediated collagen coating might be a promising technology in order to improve the biocompatibility and versatility of silicone implants.
Ring, Andrej; Langer, Stefan; Tilkorn, Daniel; Goertz, Ole; Henrich, Lena; Stricker, Ingo; Steinau, Hans-Ulrich; Steinstraesser, Lars; Hauser, Joerg
2010-01-01
Objective: Formation of encapsulating, avascular fibrous tissue is deemed to decrease implant's biocompatibility and versatility. We investigated whether plasma-mediated collagen coating possesses the ability to enhance neovascularization in the vicinity of silicone implants. Methods: Plasma-treated collagen-I–coated silicone samples were placed into the dorsal skinfold chambers of female balb/c mice (n = 10). Conventional silicone served as control (n = 10). Intravital microscopy was performed within implant's surrounding tissue on days 1, 5, and 10. Functional vessel density, intervascular distance, vessel diameter, microvascular permeability, red blood cell velocity, and leukocyte-endothelium interaction were determined. Results: Enhanced angiogenesis in the tissue surrounding plasma-pretreated collagen-coated implants was noted. Significant increase of functional vessel density due to vascular new development was observed (t test, P < .05). Analyses of microvascular permeability and red blood cell velocity displayed stable perfusion of the vascular network neighboring the surface-modified implants. Conclusion: Intensified vascularity due to induced angiogenesis and neovascularization in the tissue surrounding plasma-collagen–coated samples were observed. These results indicate that plasma-mediated collagen coating might be a promising technology in order to improve the biocompatibility and versatility of silicone implants. PMID:20936137
NASA Astrophysics Data System (ADS)
Herbert, P. A. F.; Jaroszyńska-Wolińska, J.
2011-07-01
An atmospheric pressure non-thermal equilibrium pin corona plasma jet was used to deposit polymeric coatings from monomer precursor in both vapour and liquid aerosol states to allow a direct comparison of the quality and performance of the as-deposited coatings, specifically with respect to the achievement of soft plasma polymerisation (SPP) where the coating exhibits minimal fragmentation or damage to the monomer molecule while, at the same time, being highly cross-linked. A long chain perfluorocarbon molecule was introduced into the helium plasma and coatings deposited at rates of up to 50 nm/min. XPS, FTIR, contact angle and ellipsometric measurements indicated that a controlled polymerisation reaction had taken place in the case of the vapour deposited samples through the vinyl group of the monomer, with only minor fragmentation of the functional perfluoro chain. Furthermore, a high level of cross-linking was achieved and the coatings were stable to a toluene wash. In contrast, while the liquid deposition samples showed good retention of monomer molecular structure, they exhibited negligible cross-linking and were readily removed by immersion in toluene rendering them functionally useless.
Evaluation of Antibacterial Effects of Silver-Coated Stainless Steel Orthodontic Brackets.
Arash, Valiollah; Keikhaee, Fatemeh; Rabiee, Sayed Mahmood; Rajabnia, Ramazan; Khafri, Soraya; Tavanafar, Saeid
2016-01-01
White spots and enamel demineralization around orthodontic brackets are among the most important complications resulting from orthodontic treatments. Since the antibacterial properties of metals and metallic particles have been well documented, the aim of this study was to assess the antibacterial effect of stainless steel orthodontic brackets coated with silver (Ag) particles. In this study, 40 standard metal brackets were divided into two groups of 20 cases and 20 controls. The brackets in the case group were coated with Ag particles using an electroplating method. Atomic force microscopy and scanning electron microscopy were used to assess the adequacy of the coating process. In addition, antibacterial tests, i.e., disk diffusion and direct contact tests were performed at three, six, 24, and 48 hours, and 15 and 30 days using a Streptococcus mutans strain. The results were analyzed using Student's t-test and repeated measures ANOVA. Analyses via SEM and AFM confirmed that excellent coatings were obtained by using an electroplating method. The groups exhibited similar behavior when subjected to the disk diffusion test in the agar medium. However, the bacterial counts of the Ag-coated brackets were, in general, significantly lower (P<0.001) than those of their non-coated counterparts. Brackets coated with Ag, via an electroplating method, exhibited antibacterial properties when placed in direct contact with Streptococcus mutans. This antibacterial effect persisted for 30 days after contact with the bacteria.
Development of nanostructured antireflection coatings for infrared technologies and applications
NASA Astrophysics Data System (ADS)
Pethuraja, Gopal G.; Zeller, John W.; Welser, Roger E.; Efstathiadis, Harry; Haldar, Pradeep; Wijewarnasuriya, Priyalal S.; Dhar, Nibir K.; Sood, Ashok K.
2017-09-01
Infrared (IR) sensing technologies and systems operating from the near-infrared (NIR) to long-wave infrared (LWIR) spectra are being developed for a variety of defense and commercial systems applications. Reflection losses affecting a significant portion of the incident signal limits the performance of IR sensing systems. One of the critical technologies that will overcome this limitation and enhance the performance of IR sensing systems is the development of advanced antireflection (AR) coatings. Magnolia is actively involved in the development and advancement of ultrahigh performance AR coatings for a wide variety of defense and commercial applications. Ultrahigh performance nanostructured AR coatings have been demonstrated for UV to LWIR spectral bands using various substrates. The AR coatings enhance the optical transmission through optical components and devices by significantly minimizing reflection losses, a substantial improvement over conventional thin-film AR coating technologies. Nanostructured AR coatings are fabricated using a tunable self-assembly process on substrates that are transparent for a given spectrum of interest ranging from UV to LWIR. The nanostructured multilayer structures have been designed, developed and optimized for various optoelectronic applications. The optical properties of the AR-coated optical components and sensor substrates have been measured and fine-tuned to achieve a predicted high level of performance of the coatings. In this paper, we review our latest work on high quality nanostructure-based AR coatings, including recent efforts towards the development of nanostructured AR coatings on IR-transparent substrates.
49 CFR 192.461 - External corrosion control: Protective coating.
Code of Federal Regulations, 2012 CFR
2012-10-01
... protective coating, whether conductive or insulating, applied for the purpose of external corrosion control... or damage from supporting blocks. (e) If coated pipe is installed by boring, driving, or other...
49 CFR 192.461 - External corrosion control: Protective coating.
Code of Federal Regulations, 2014 CFR
2014-10-01
... protective coating, whether conductive or insulating, applied for the purpose of external corrosion control... or damage from supporting blocks. (e) If coated pipe is installed by boring, driving, or other...
Preparation and Electrochemical Properties of Graphene/Epoxy Resin Composite Coating
NASA Astrophysics Data System (ADS)
Liao, Zijun; Zhang, Tianchi; Qiao, Sen; Zhang, Luyihang
2017-11-01
The multilayer graphene powder as filler, epoxy modified silicone resin as film-forming agent, anticorrosion composite coating has been created using sand dispersion method, the electrochemical performance was compared with different content of graphene composite coating and pure epoxy resin coating. The open circuit potential (OCP), potentiodynamic polarization curves (Tafel Plot) and electrochemical impedance spectroscopy (EIS) were tested. The test results showed that the anti-corrosion performance of multilayer graphene added has improved greatly, and the content of the 5% best corrosion performance of graphene composite coating.
Du, Xiao-Guang; Fang, Zhao-Lun
2005-12-01
A simple and robust static adsorptive (dynamic) coating process using 2% hydroxyethylcellulose was developed for surface modification of poly(methyl methacrylate) (PMMA) microfluidic chips for DNA separations, suitable for usage over extended periods, involving hundreds of runs. The coating medium was also used as a sieving matrix for the DNA separations following the coating process. Four consecutive static treatments, by simply filling the PMMA chip channels with sieving matrix once every day, were required for obtaining a stable coating and optimum performance. The performance of the coated chips at different phases of the coating process was studied by consecutive gel electrophoretic separations with LIF detection using a PhiX-174/HaeIII DNA digest sample. The coated chip, with daily renewal of the sieving matrix, showed high stability in performance during a 25-day period of systematic study, involving more than 100 individual runs. The performance of the coated chip also remained almost the same after 3 months of continuous usage, during which over 200 separations were performed. The average precision of migration time for the 603-bp fragment was 1.31% RSD (n = 6) during the 25-day study, with a separation efficiency of 6.5 x 10(4) plates (effective separation length 5.4 cm).
Caudill, Cassie L; Perry, Jillian L; Tian, Shaomin; Luft, J Christopher; DeSimone, Joseph M
2018-06-09
Microneedle patches, arrays of micron-scale projections that penetrate skin in a minimally invasive manner, are a promising tool for transdermally delivering therapeutic proteins. However, current microneedle fabrication techniques are limited in their ability to fabricate microneedles rapidly and with a high degree of control over microneedle design parameters. We have previously demonstrated the ability to fabricate microneedle patches with a range of compositions and geometries using the novel additive manufacturing technique Continuous Liquid Interface Production (CLIP). Here, we establish a method for dip coating CLIP microneedles with protein cargo in a spatially controlled manner. Microneedle coating mask devices were fabricated with CLIP and utilized to coat polyethylene glycol-based CLIP microneedles with model proteins bovine serum albumin, ovalbumin, and lysozyme. The design of the coating mask device was used to control spatial deposition and loading of coated protein cargo on the microneedles. CLIP microneedles rapidly released coated protein cargo both in solution and upon insertion into porcine skin. The model enzyme lysozyme was shown to retain its activity throughout the CLIP microneedle coating process, and permeation of bovine serum albumin across full thickness porcine skin was observed after application with coated CLIP microneedles. Protein-coated CLIP microneedles were applied to live mice and showed sustained retention of protein cargo in the skin over 72 h. These results demonstrate the utility of a versatile coating platform for preparation of precisely coated microneedles for transdermal therapeutic delivery. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Osborne, Stephen; Smith, Eryn; Woster, Eric; Pelayo, Anthony
2002-03-01
As integrated circuits require smaller lines to provide the memory and processing capability for tomorrow's marketplace, the photomask industry is adopting higher contrast resists to improve photomask lithography. Photomask yield for several high-contrast resist recipes may be improved by coating masks at the mask shop. When coating at a mask shop, an effective method is available that uses coat/bake cluster tools to ensure blanks are clean prior to coating. Many high-contrast resists are available, and some are more susceptible to time-dependent performance factors than conventional resists. One of these factors is the time between coating and writing. Although future methods may reduce the impact of this factor, one current trend is to reduce this time by coating plates at the mask shop just prior to writing. Establishing an effective process to clean blanks prior to coating is necessary for product quality control and is a new task that is critical for maskmakers who previously purchased mask plates but have decided to begin coating them within their facility. This paper provides a strategy and method to be used within coat/bake cluster tools to remove particle contamination from mask blanks. The process uses excimer-UV ionizing radiation and ozone to remove organic contaminants, and then uses a wet process combined with megasonic agitation, surfactant, and spin forces. Megasonic agitation with surfactant lifts up particles, while the convective outflow of water enhances centripetal shear without accumulating harmful charge.
Ion Diffusion-Directed Assembly Approach to Ultrafast Coating of Graphene Oxide Thick Multilayers.
Zhao, Xiaoli; Gao, Weiwei; Yao, Weiquan; Jiang, Yanqiu; Xu, Zhen; Gao, Chao
2017-10-24
The layer-by-layer (LbL) assembly approach has been widely used to fabricate multilayer coatings on substrates with multiple cycles, whereas it is hard to access thick films efficiently. Here, we developed an ion diffusion-directed assembly (IDDA) strategy to rapidly make multilayer thick coatings in one step on arbitrary substrates. To achieve multifunctional coatings, graphene oxide (GO) and metallic ions were selected as the typical building blocks and diffusion director in IDDA, respectively. With diffusion of metallic ions from substrate to negatively charged GO dispersion spontaneously (i.e., from high-concentration region to low-concentration region), GO was assembled onto the substrate sheet-by-sheet via sol-gel transformation. Because metallic ions with size of subnanometers can diffuse directionally and freely in the aqueous dispersion, GO was coated on the substrate efficiently, giving rise to films with desired thickness up to 10 μm per cycle. The IDDA approach shows three main merits: (1) high efficiency with a μm-scale coating rate; (2) controllability over thickness and evenness; and (3) generality for substrates of plastics, metals and ceramics with any shapes and morphologies. With these merits, IDDA strategy was utilized in the efficient fabrication of functional graphene coatings that exhibit outstanding performance as supercapacitors, electromagnetic interference shielding textiles, and anticorrosion coatings. This IDDA approach can be extended to other building blocks including polymers and colloidal nanoparticles, promising for the scalable production and application of multifunctional coatings.
Perovskite ink with wide processing window for scalable high-efficiency solar cells
Yang, Mengjin; Li, Zhen; Reese, Matthew O.; ...
2017-03-20
Perovskite solar cells have made tremendous progress using laboratory-scale spin-coating methods in the past few years owing to advances in controls of perovskite film deposition. However, devices made via scalable methods are still lagging behind state-of-the-art spin-coated devices because of the complicated nature of perovskite crystallization from a precursor state. Here we demonstrate a chlorine-containing methylammonium lead iodide precursor formulation along with solvent tuning to enable a wide precursor-processing window (up to ~8 min) and a rapid grain growth rate (as short as ~1 min). Coupled with antisolvent extraction, this precursor ink delivers high-quality perovskite films with large-scale uniformity. Themore » ink can be used by both spin-coating and blade-coating methods with indistinguishable film morphology and device performance. Using a blade-coated absorber, devices with 0.12-cm 2 and 1.2-cm 2 areas yield average efficiencies of 18.55% and 17.33%, respectively. As a result, we further demonstrate a 12.6-cm 2 four-cell module (88% geometric fill factor) with 13.3% stabilized active-area efficiency output.« less
Application of TiN/TiO2 coatings on stainless steel: composition and mechanical reliability
NASA Astrophysics Data System (ADS)
Nikolova, M. P.; Genov, A.; Valkov, S.; Yankov, E.; Dechev, D.; Ivanov, N.; Bezdushnyi, R.; Petrov, P.
2018-03-01
The paper reports on the effect of the substrate temperature (350 °C, 380 °C and 420 °C) during reactive magnetron sputtering of a TiN film on the phase composition, texture and mechanical properties of TiN/TiO2 coatings on 304L stainless steel substrates. Pure Ti was used as a cathode source of Ti. The texture and unit cell parameters of both TiN and TiO2 phases of the coating are discussed in relation with the tribological properties and adhesion of the coating. The scratch tests performed showed that the nitride deposited at 380 °C, having the highest unit cell parameter and a predominant (111) texture, possessed the lowest friction coefficient (μ), tangential force and brittleness. The anatase-type TiO2 with predominant (101) pole density and increased c unit cell parameter showed the highest stability on the nitride deposited at 420 °C. The results indicated that the friction coefficient, tangential force and critical forces of fracture could be varied by controlling the coating deposition temperature.
Perovskite ink with wide processing window for scalable high-efficiency solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Mengjin; Li, Zhen; Reese, Matthew O.
Perovskite solar cells have made tremendous progress using laboratory-scale spin-coating methods in the past few years owing to advances in controls of perovskite film deposition. However, devices made via scalable methods are still lagging behind state-of-the-art spin-coated devices because of the complicated nature of perovskite crystallization from a precursor state. Here we demonstrate a chlorine-containing methylammonium lead iodide precursor formulation along with solvent tuning to enable a wide precursor-processing window (up to ~8 min) and a rapid grain growth rate (as short as ~1 min). Coupled with antisolvent extraction, this precursor ink delivers high-quality perovskite films with large-scale uniformity. Themore » ink can be used by both spin-coating and blade-coating methods with indistinguishable film morphology and device performance. Using a blade-coated absorber, devices with 0.12-cm 2 and 1.2-cm 2 areas yield average efficiencies of 18.55% and 17.33%, respectively. As a result, we further demonstrate a 12.6-cm 2 four-cell module (88% geometric fill factor) with 13.3% stabilized active-area efficiency output.« less
NASA Astrophysics Data System (ADS)
Izadi, M.; Shahrabi, T.; Ramezanzadeh, B.
2018-05-01
In this study the corrosion resistance, active protection, and cathodic disbonding performance of an epoxy coating were improved through surface modification of steel by a hybrid sol-gel system filled with green corrosion inhibitors loaded nanocontainer as intermediate layer on mild steel substrate. The green inhibitor loaded nanocontainers (GIN) were used to induce active inhibition performance in the protective coating system. The corrosion protection performance of the coated panels was investigated by electrochemical impedance spectroscopy (EIS), salt spray, and cathodic disbonding tests. It was observed that the corrosion inhibition performance of the coated mild steel panels was significantly improved by utilization of active multilayer coating system. The inhibitor release from nanocontainers at the epoxy-silane film/steel interface resulted in the anodic and cathodic reactions restriction, leading to the lower coating delamination from the substrate and corrosion products progress. Also, the active inhibition performance of the coating system was approved by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and energy dispersive X-ray (EDS) analysis on the panels with artificial defects. The inhibitive agents were released to the scratch region and blocked the active sites on the metal surface.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-02
... Guidelines in Lieu of Regulations for Miscellaneous Metal Products Coatings, Plastic Parts Coatings, Auto and... Pleasure Craft portion of the Control Techniques Guidelines (CTG) for Miscellaneous Metal and Plastic Parts... and Plastic Parts Coatings regulations based on EPA's 2008 guidance titled ``Control Techniques...
Progressive freezing and sweating in a test unit
NASA Astrophysics Data System (ADS)
Ulrich, J.; Özoğuz, Y.
1990-01-01
Crystallization from melts is applied in several fields like waste water treatment, fruit juice or liquid food concentration and purification of organic chemicals. Investigations to improve the understanding, the performance and the control of the process have been carried out. The experimental unit used a vertical tube with a falling film on the outside. With an specially designed measuring technique process controlling parameters have been studied. The results demonstrate the dependency of those parameters upon each other and indicate the way to control the process by controlling the dominant parameter. This is the growth rate of the crystal coat. A further purification of the crystal layer can be achieved by introducing the procedure of sweating, which is a controlled partial melting of the crystal coat. Here again process parameters have been varied and results are presented. The strong effect upon the final purity of the product by an efficient executed sweating which is effectively tuned on the crystallization procedure should save crystallization steps, energy and time.
Catt, Kasey; Li, Huaxiu; Cui, X Tracy
2017-01-15
Magnesium (Mg) is a promising biodegradable implant material because of its appropriate mechanical properties and safe degradation products. However, in vivo corrosion speed and hydrogen gas production need to be controlled for uses in biomedical applications. Here we report the development of a conducting polymer 3,4-ethylenedioxythiphene (PEDOT) and graphene oxide (GO) composite coating as a corrosion control layer. PEDOT/GO was electropolymerized on Mg samples in ethanol media. The coated Mg samples were subjected to various corrosion tests. The PEDOT/GO coating significantly reduced the rate of corrosion as evidenced by lower Mg ion concentration and pH of the corrosion media. In addition, the coating decreased the evolved hydrogen. Electrochemical analysis of the corroding samples showed more positive corrosion potential, a decreased corrosion current, and an increase in the polarization resistance. PEDOT/GO corrosion protection is attributed to three factors; an initial passive layer preventing solution ingress, buildup of negative charges in the film, and formation of corrosion protective Mg phosphate layer through redox coupling with Mg corrosion. To explore the biocompatibility of the coated implants in vitro, corrosion media from PEDOT/GO coated or uncoated Mg samples were exposed to cultured neurons where PEDOT/GO coated samples showed decreased toxicity. These results suggest that PEDOT/GO coating will be an effective treatment for controlling corrosion of Mg based medical implants. Coating Mg substrates with a PEDOT/GO composite coating showed a significant decrease in corrosion rate. While conducting polymer coatings have been used to prevent corrosion on various metals, there has been little work on the use of these coatings for Mg. Additionally, to our knowledge, there has not been a report of the combined used of conducting polymer and GO as a corrosion control layer. Corrosion control is attributed to an initial barrier layer followed by electrochemical coupling of the PEDOT/GO coating with the substrate to facilitate the formation of a protective phosphate layer. This coupling also resulted in a decrease in hydrogen produced during corrosion, which could further improve the host tissue integration of Mg implants. This work elaborates on the potential for electroactive polymers to serve as corrosion control methods. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
In-pile test results of U-silicide or U-nitride coated U-7Mo particle dispersion fuel in Al
NASA Astrophysics Data System (ADS)
Kim, Yeon Soo; Park, J. M.; Lee, K. H.; Yoo, B. O.; Ryu, H. J.; Ye, B.
2014-11-01
U-silicide or U-nitride coated U-Mo particle dispersion fuel in Al (U-Mo/Al) was in-pile tested to examine the effectiveness of the coating as a diffusion barrier between the U-7Mo fuel kernels and Al matrix. This paper reports the PIE data and analyses focusing on the effectiveness of the coating in terms of interaction layer (IL) growth and general fuel performance. The U-silicide coating showed considerable success, but it also provided evidence for additional improvement for coating process. The U-nitride coated specimen showed largely inefficient results in reducing IL growth. From the test, important observations were also made that can be utilized to improve U-Mo/Al fuel performance. The heating process for coating turned out to be beneficial to suppress fuel swelling. The use of larger fuel particles confirmed favorable effects on fuel performance.
Maver, Uroš; Xhanari, Klodian; Žižek, Marko; Korte, Dorota; Gradišnik, Lidija; Franko, Mladen; Finšgar, Matjaž
2018-05-03
In this comprehensive study several analytical techniques were used in order to evaluate multi--layered biomedical surface coatings composed of a drug (diclofenac) and a polymer (chitosan). Such a thorough examination is of paramount importance in order to assure safety and prove efficiency of potential biomedical materials already at the in vitro level, hence leading to their potentially faster introduction to clinical trials. For the first time a novel technique based on thermal diffusivity and conductivity measurement (photothermal beam deflection spectroscopy - BDS) was employed in order to analyse in a non-destructive way the thickness of respective layers, together with their thermal diffusivity and conductivity. In addition to attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR), BDS confirmed successive surface layers of the prepared coatings. Scanning electron microscopy and atomic force microscopy were used to examine structural information on the macro- and micro/nano-scale, respectively. Surface hydrophilicity was measured with the contact angle analysis, which clearly showed differences in hydrophilicity between coated and non-coated samples. Considering the targeted application of the prepared coatings (as implant in orthopaedic treatments), the in vitro drug release was analysed spectrophotometrically to examine the coatings potential for a controlled drug release. Furthermore, the material was also tested by electrochemical impedance spectroscopy and cyclic polarisation techniques, which were able to detect even minor differences between the performance of the coated and non-coated materials. As the final test, the biocompatibility of the coatings with human osteoblasts was determined. Copyright © 2018. Published by Elsevier B.V.
High Absorptance Coatings for THz Applications
NASA Technical Reports Server (NTRS)
Wollack, Edward J.
2012-01-01
High absorptance materials find application throughout the electromagnetic spectrum as radiation terminations, calibration standards, and glint reduction coatings. Successful use of materials at millimeter through submillimeter wavelengths requires an accurate knowledge and control over their thermal, mechanical, and electromagnetic properties in order to achieve the desired response while minimizing mass and volume. In practice, the achieved blackness is intimately linked to the material properties and geometry. Here, we summarize the characteristics of a variety of tunable artificial dielectric mixtures appropriate for THz applications at room and cryogenic temperatures. Theoretical guidelines for their application will be provided in the context of the effective-medium mean-field-approximation. The performance of these coatings as elements of reflectance standards, radiometric flux calibrators, passive thermal radiators, and stray light suppression baffles for imaging systems will be reviewed.
Improvement on the Fatigue Performance of 2024-T4 Alloy by Synergistic Coating Technology
Wang, Xi-Shu; Guo, Xing-Wu; Li, Xu-Dong; Ge, Dong-Yun
2014-01-01
In this paper, rotating bending fatigue tests of 2024-T4 Al alloy with different oxide coatings were carried out. Compared to the uncoated and previously reported oxide coatings of aluminum alloys, the fatigue strength is able to be enhanced by using a novel oxide coating with sealing pore technology. These results indicate that the better the coating surface quality is, the more excellent the fatigue performance under rotating bending fatigue loading is. The improvement on the fatigue performance is mainly because the fatigue crack initiation and the early stage of fatigue crack growth at the coating layer can be delayed after PEO coating with pore sealing. Therefore, it is a so-called synergistic coating technology for various uses, including welding thermal cracks and filling micro-pores. The effects of different oxide coatings on surface hardness, compressive residual stress, morphology and fatigue fracture morphology are discussed. A critical compressive residual stress of about 95–100 MPa is proposed. PMID:28788634
NASA Astrophysics Data System (ADS)
Shang, Kedong; Zheng, Shaoxian; Ren, Siming; Pu, Jibin; He, Dongqing; Liu, Shuan
2018-04-01
The pure MoS2 coating always performs high friction coefficient and short service life when used in high humidity or after long-time storage in humid atmospheric environment. In this study, the MoS2/Pb-Ti composite and MoS2/Pb-Ti multilayer coatings are deposited to improve the corrosion resistance in 3.5 wt% NaCl solution and tribological performance in high humidity condition. The electrochemical impedance spectra and salt spray test shown that the MoS2/Pb-Ti composite and multilayer coatings can inhibit the permeation of oxygen and other corrosive elements, thus resulting a high corrosion resistance. Furthermore, compared with pure MoS2 coating, the tribological performance of the MoS2/Pb-Ti composite and multilayer coatings is also improved significantly owing to the high mechanical properties and compact structure. Moreover, the heterogenous interfaces in MoS2/Pb-Ti multilayer coating play an important role to improve the corrosion resistance and tribological performance of coatings. Overall, the dual-doping and multilayer construction are promising approaches to design the MoS2 coatings as the environmentally adaptive lubricants.
NASA Astrophysics Data System (ADS)
Zhu, Wen; Li, Wenfang; Mu, Songlin; Fu, Nianqing; Liao, Zhongmiao
2017-05-01
In this study, a Ti/Zr/V conversion coating (TZVCC) was deposited on the surface of aluminum alloy 6063 (AA6063) as an alternative of the chromate conversion coating (CCC). Both the TZVCC treated AA6063 (TZVCC/AA6063) and CCC treated AA6063 (CCC/AA6063) were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM) and contact angle measuring device. The anti-corrosion performance of the TZVCC/AA6063 and CCC/AA6063 was evaluated by electrochemical measurements and neutral salt spray tests. It showed that both the surface roughness and surface free energy of the AA6063 were significantly increased after TZVCC treatment. The anti-corrosion performance of TZVCC/AA6063 was superior to that of CCC/AA6063. In addition, the effects of the TZVCC and CCC on the adhesion properties and anti-corrosion performance of epoxy coating applied on samples were examined by pull-off tests and electrochemical impedance spectroscopy (EIS). The dry, wet and recovery adhesive strengths of the epoxy coating on TZVCC treated samples (epoxy coated TZVCC/AA6063) were very close to those of epoxy coating on CCC treated ones (epoxy coated CCC/AA6063). The epoxy coated TZVCC/AA6063 showed better corrosion resistance than the epoxy coated CCC/AA6063 and epoxy coated AA6063.
40 CFR 63.4951 - How do I demonstrate initial compliance with the emission limitations?
Code of Federal Regulations, 2010 CFR
2010-07-01
... without add-on controls option for any individual coating operation, for any group of coating operations in the affected source, or for all the coating operations in the affected source to demonstrate... emission rate with add-on controls option for any coating operation in the affected source for which you do...
NASA Astrophysics Data System (ADS)
Tomás, S. A.; Bosquez-Molina, E.; Stolik, S.; Sánchez, F.
2005-06-01
The ability of composite edible coatings to preserve the quality of guava fruit (Psidium guajava L.) at 20ºC was studied for a period of 15 days. The edible coatings were formulated with candelilla wax blended with white mineral oil as the lipid phase and mesquite gum as the structural material. The use of edible coatings prolonged the shelf life of treated fruits by retarding ethylene emission and enhancing texture as compared to control samples. At the sixth day, the ethylene produced by the control samples was fivefold higher than the ethylene produced by the coated samples. In addition, the physiological weight loss of coated fruits was nearly 30% lower than the control samples.
NASA Technical Reports Server (NTRS)
Howard, David F.; Perry, Jay L.; Knox, James C.; Junaedi, Christian; Roychoudhury, Subir
2011-01-01
Engineered structured (ES) sorbents are being developed to meet the technical challenges of future crewed space exploration missions. ES sorbents offer the inherent performance and safety attributes of zeolite and other physical adsorbents but with greater structural integrity and process control to improve durability and efficiency over packed beds. ES sorbent techniques that are explored include thermally linked and pressure-swing adsorption beds for water-save dehumidification and sorbent-coated metal meshes for residual drying, trace contaminant control, and carbon dioxide control. Results from sub-scale performance evaluations of a thermally linked pressure-swing adsorbent bed and an integrated sub-scale ES sorbent system are discussed.
Code of Federal Regulations, 2011 CFR
2011-07-01
... performance test of one representative magnet wire coating machine for each group of identical or very similar... you complete the performance test of a representative magnet wire coating machine. The requirements in... operations, you may, with approval, conduct a performance test of a single magnet wire coating machine that...
Coating-Free, Air-Stable Silver Nanowires for High-performance Transparent Conductive Film.
Tang, Long; Zhang, Jiajia; Dong, Lei; Pan, Yunmei; Yang, Chongyang; Li, Mengxiong; Ruan, Yingbo; Ma, Jianhua; Lu, Hongbin
2018-06-21
Silver nanowires (Ag NWs) based films are considered as a promising alternative for traditional indium tin oxide (ITO) but still suffer from some limitations, including insufficient conductivity, transparency and environmental instability. We here report a novel etching synthesis strategy to improve the performance of Ag NW films. Different from the traditional methods to synthesize high aspect ratios of NWs or employ electrically conductive coatings, we find it effective to reduce the high-reactivity defects of NWs for optimizing the comprehensive performance of Ag NW films. In this strategy etching can suppress the generation of high-reactivity defects and meanwhile the etching growth of NWs can be accomplished in an uneven ligand distribution environment. The resulting Ag NWs are uniformly straight and sharp-edged structure. The transparent conductive film (TCF) obtained exhibits simultaneous improvements in electrical conductivity, transparency and air-stability. Even after exposure in air for 200 days and no any protective coatings, the film can still meet the highest requirement of practical applications, with a figure of merit 361 (i.e., FoM > 350). These results not only demonstrate the importance of defect control in the synthesis of Ag NWs, but also pave a way for further optimizing the performance of Ag NW-based films. © 2018 IOP Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Mingquan; Li, Zhitao; Wang, Chen
2016-04-15
Highlights: • SEM, XRD, EDS and MMW attenuation performances of alloys coated CFs were studied. • Resistivity and P content in alloys were main factors on MMW attenuation property. • The weight gain of coated CFs has effects on the MMW attenuation performance. - Abstract: Carbon fibers (CFs) coated with Ni–X–P (X = W, Co–W or none) alloys were prepared by electroless plating. The morphology, crystal structure, and element composition of alloy-coated CFs were characterized by scanning electron microscopy, X-ray diffractometry, energy-dispersive spectrometry and microwave attenuation. The results showed that CFs were coated with a layer of alloy particles. Pmore » content in Ni–Co–W–P or Ni–W–P alloys was lower than that in Ni–P alloy, and coating alloy Ni–P was amorphous. After W or Co introduction, coating alloys exhibited crystal characteristics. MMW-attenuation performance analysis showed that the 3 mm wave attenuation performance of CFs/Ni–Co–W–P, CFs/Ni–W–P and CFs/Ni–P increased by 7.27 dBm, 4.88 dBm and 3.55 dBm, and the 8 mm wave attenuation effects increased by 11.61 dBm, 6.11 dBm, and 4.06 dBm respectively, compared with those of CFs. MMW-attenuation performance is attributable to the sample bulk resistivity and P content in the alloy. Moreover, an optimal weight gain value existed for the MMW-attenuation performance of alloy-coated CFs.« less
Optical properties of ITO nanocoatings for photovoltaic and energy building applications
NASA Astrophysics Data System (ADS)
Kaplani, E.; Kaplanis, S.; Panagiotaras, D.; Stathatos, E.
2014-10-01
Targeting energy savings in buildings, photovoltaics and other sectors, significant research activity is nowadays focused on the production of spectral selective nanocoatings. In the present study an ITO coating on glass substrate is prepared from ITO powder, characterized and analysed. The spectral transmittance and reflectance of the ITO coated glass and of two other commercially developed ITO coatings on glass substrate were measured and compared. Furthermore, a simulation algorithm was developed to determine the optical properties of the ITO coatings in the visible, solar and near infrared regions in order to assess the impact of the ITO coatings in the energy performance of buildings, and particularly the application in smart windows. In addition, the current density produced by a PV assuming each of the ITO coated glass served as a cover was computed, in order to assess their effect in PV performance. The preliminary ITO coating prepared and the two other coatings exhibit different optical properties and, thus, have different impact on energy performance. The analysis assists in a better understanding of the desired optical properties of nanocoatings for improved energy performance in PV and buildings.
NASA Technical Reports Server (NTRS)
Zhu, Dongming
2014-01-01
Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is a key to enable the applications of the envisioned CMC components to help achieve next generation engine performance and durability goals. This paper will primarily address the performance requirements and design considerations of environmental barrier coatings for turbine engine applications. The emphasis is placed on current candidate environmental barrier coating systems for SiCSiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing advanced environmental barrier coating systems, the coating integrations with next generation CMC turbine components having improved environmental stability, cyclic durability and system performance will be described. The development trends for turbine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be discussed.
NASA Astrophysics Data System (ADS)
Bernard, Benjamin; Quet, Aurélie; Bianchi, Luc; Schick, Vincent; Joulia, Aurélien; Malié, André; Rémy, Benjamin
2017-08-01
Suspension plasma spraying (SPS) is identified as promising for the enhancement of thermal barrier coating (TBC) systems used in gas turbines. Particularly, the emerging columnar microstructure enabled by the SPS process is likely to bring about an interesting TBC lifetime. At the same time, the SPS process opens the way to a decrease in thermal conductivity, one of the main issues for the next generation of gas turbines, compared to the state-of-the-art deposition technique, so-called electron beam physical vapor deposition (EB-PVD). In this paper, yttria-stabilized zirconia (YSZ) coatings presenting columnar structures, performed using both SPS and EB-PVD processes, were studied. Depending on the columnar microstructure readily adaptable in the SPS process, low thermal conductivities can be obtained. At 1100 °C, a decrease from 1.3 W m-1 K-1 for EB-PVD YSZ coatings to about 0.7 W m-1 K-1 for SPS coatings was shown. The higher content of porosity in the case of SPS coatings increases the thermal resistance through the thickness and decreases thermal conductivity. The lifetime of SPS YSZ coatings was studied by isothermal cyclic tests, showing equivalent or even higher performances compared to EB-PVD ones. Tests were performed using classical bond coats used for EB-PVD TBC coatings. Thermal cyclic fatigue performance of the best SPS coating reached 1000 cycles to failure on AM1 substrates with a β-(Ni,Pt)Al bond coat. Tests were also performed on AM1 substrates with a Pt-diffused γ-Ni/γ'-Ni3Al bond coat for which more than 2000 cycles to failure were observed for columnar SPS YSZ coatings. The high thermal compliance offered by both the columnar structure and the porosity allowed the reaching of a high lifetime, promising for a TBC application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sickafus, Kurt E.; Wirth, Brian; Miller, Larry
The goal of this NEUP-IRP project is to develop a fuel concept based on an advanced ceramic coating for Zr-alloy cladding. The coated cladding must exhibit demonstrably improved performance compared to conventional Zr-alloy clad in the following respects: During normal service, the ceramic coating should decrease cladding oxidation and hydrogen pickup (the latter leads to hydriding and embrittlement). During a reactor transient (e.g., a loss of coolant accident), the ceramic coating must minimize or at least significantly delay oxidation of the Zr-alloy cladding, thus reducing the amount of hydrogen generated and the oxygen ingress into the cladding. The specific objectivesmore » of this project are as follows: To produce durable ceramic coatings on Zr-alloy clad using two possible routes: (i) MAX phase ceramic coatings or similar nitride or carbide coatings; and (ii) graded interface architecture (multilayer) ceramic coatings, using, for instance, an oxide such as yttria-stabilized zirconia (YSZ) as the outer protective layer. To characterize the structural and physical properties of the coated clad samples produced in 1. above, especially the corrosion properties under simulated normal and transient reactor operating conditions. To perform computational analyses to assess the effects of such coatings on fuel performance and reactor neutronics, and to perform fuel cycle analyses to assess the economic viability of modifying conventional Zr-alloy cladding with ceramic coatings. This project meets a number of the goals outlined in the NEUP-IRP call for proposals, including: Improve the fuel/cladding system through innovative designs (e.g. coatings/liners for zirconium-based cladding) Reduce or eliminate hydrogen generation Increase resistance to bulk steam oxidation Achievement of our goals and objectives, as defined above, will lead to safer light-water reactor (LWR) nuclear fuel assemblies, due to improved cladding properties and built-in accident resistance, as well as the possibilities for enhanced fuel/clad system performance and longevity.« less
NASA Astrophysics Data System (ADS)
Wang, Z. B.; Wang, Z. Y.; Hu, H. X.; Liu, C. B.; Zheng, Y. G.
2016-09-01
Five kinds of nano-SiO2/epoxy composite coatings were prepared on mild steels, and their corrosion protection performance was evaluated at room temperature (RT) and 50 °C (HT) using electrochemical methods combined with scanning electron microscopy (SEM). The effects of preparation and sealing processes on the corrosion protection performance of epoxy coatings were specially focused on. The results showed that it was favorable for the corrosion protection and durable performance to add the modified nano-SiO2 during rather than after the synthesis of epoxy coatings. Furthermore, the employment of sealer varnish also had beneficial effects. The two better coatings still exhibited higher impedance values even after immersion tests for up to 1000 h at RT and 500 h at HT. SEM revealed that the improvement of corrosion protection performance mainly resulted from the enhancement of coating density. Moreover, the evolution of electrochemical behavior of the two better coatings with immersion time was also discussed by means of fitting the electrochemical impedance spectroscopy results using equivalent circuits with different physical meanings.
pH Sensitive Microcapsules for Delivery of Corrosion Inhibitors
NASA Technical Reports Server (NTRS)
Li, Wenyan; Calle, Luz M.
2006-01-01
A considerable number of corrosion problems can be solved by coatings. However, even the best protective coatings can fail by allowing the slow diffusion of oxygen and moisture to the metal surface. Corrosion accelerates when a coating delaminates. Often, the problems start when microscopic nicks or pits on the surface develop during manufacturing or through wear and tear. This problem can be solved by the incorporation of a self-healing function into the coating. Several new concepts are currently under development to incorporate this function into a coating. Conductive polymers, nanoparticles, and microcapsules are used to release corrosion-inhibiting ions at a defect site. The objective of this investigation is to develop a smart coating for the early detection and inhibition of corrosion. The dual function of this new smart coating system is performed by pH-triggered release microcapsules. The microcapsules can be used to deliver healing agents to terminate the corrosion process at its early stage or as corrosion indicators by releasing dyes at the localized corrosion sites. The dyes can be color dyes or fluorescent dyes, with or without pH sensitivity. Microcapsules were formed through the interfacial polymerization process. The average size of the microcapsules can be adjusted from 1 to 100 micron by adjusting the emulsion formula and the microcapsule forming conditions. A typical microcapsule size is around 10 microns with a narrow size distribution. The pH sensitivity of the microcapsule can also be controlled by adjusting the emulsion formula and the polymerization reaction time. Both corrosion indicator (pH indicator) and corrosion inhibitor containing microcapsules were formed and incorporated into paint systems. Test panels of selected steels and aluminum alloys were painted using these paints. Testing of compatibility between the microcapsule system and different paint systems are in progress. Initial experiments with the microcapsule containing paint show visible color changes at induced corrosion sites and improvement of corrosion protection. Further investigation of the performance of the coating using electrochemical techniques and long term exposure are currently underway.
40 CFR 63.4291 - What are my options for meeting the emission limits?
Code of Federal Regulations, 2010 CFR
2010-07-01
... emission capture systems and add-on controls, the organic HAP emission rate for the web coating/printing... demonstrate that all capture systems and control devices for the web coating/printing operation(s) meet the... capture systems and control devices for the web coating/printing operation(s) meet the operating limits...
Ultraviolet and visible BRDF data on spacecraft thermal control and optical baffle materials
NASA Technical Reports Server (NTRS)
Viehmann, W.; Predmore, R. E.
1987-01-01
Bidirectional scattering functions of numerous optical baffle materials and of spacecraft thermal control coatings and surfaces are presented. Measurements were made at 254 nm and at 633 nm. The coatings and surfaces include high-reflectance white paints, low-reflectance optical blacks, thermal control blankets, and various conversion coatings on aluminum.
NASA Astrophysics Data System (ADS)
Park, Joung-Man; Wang, Zuo-Jia; Kwon, Dong-Jun; DeVries, Lawrence
2011-02-01
Nano- and hetero-structures of carbon nanotube (CNT) and indium tin oxide (ITO) can control significantly piezoelectric and optoelectronic properties in Microelectromechanical Systems (MEMS) as sensing and actuator under cyclic loading. Optimized preparing conditions were obtained for multi-functional purpose of the specimen by obtaining the best dispersion and turbidity in the solution. Optical transmittance and electrical properties were investigated for CNT and ITO dipping and spraying coating on boro-silicate glass and polyethylene terephthalate (PET) substrates by electrical resistance measurement under cyclic loading and wettability test. Uniform dip-coating was performed using Wilhelmy plate method due to its simple and convenience. Spraying coating was applied to the specimen additionally. The change in the electrical resistance and optical properties of coated layer were mainly dependent upon the number of dip-coating, the concentration of CNT and ITO solutions, and the surface treatment condition. Electric properties of coating layers were measured using four-point probe method, and surface resistance was calculated using a dual configuration method. Optical transmittance of CNT and ITO coated PET film was also evaluated using UV spectrum. Surface energy and their hydrophilic and hydrophobic properties of CNT and ITO coated substrates were investigated by wettability test via static and dynamic contact angle measurements. As the elapsing time of cyclic loading passed, the stability of surface resistance and thus comparative interfacial adhesion between coated layer and substrates was evaluated to compare the thermodynamic work of adhesion, Wa. As dip-coating number increased, surface resistance of coated CNT decreased, whereas the transmittance decreased step-by-step due to the thicker CNT and ITO networked layer. Nano- and heterostructural effects of CNT and ITO solution on the optical and electrical effects have been studied continuously.
Biocompatibility of antimicrobial melimine lenses: rabbit and human studies.
Dutta, Debarun; Ozkan, Jerome; Willcox, Mark D P
2014-05-01
Covalent immobilization of antimicrobial peptide melimine onto contact lenses can produce broad-spectrum antimicrobial lenses. The purpose of this study was to investigate the performance of melimine-coated contact lenses in an animal model and human clinical trial. Melimine was covalently attached onto the surface of contact lenses via EDC (1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride) coupling. A rabbit model of daily contralateral wear of lenses for 22 days was conducted to assess the lens safety. A prospective, randomized, double-masked, one-day human clinical trial was used to evaluate subjective responses and ocular physiology during contralateral wear of melimine-coated (test) and uncoated (control) lenses. Delayed reactions were monitored during follow-up visits after 1 and 4 weeks. Ex vivo retention of antimicrobial activity of worn lenses was assessed by reduction in numbers of viable Pseudomonas aeruginosa and Staphylococcus aureus. Melimine-coated lenses produced no ocular signs or symptoms that would indicate cytotoxicity during the lens wear of rabbits. No histological changes were found in rabbit corneas. During the human trial, no differences were observed in wettability, surface deposition, lens-fitting centration, movement, tightness, and corneal coverage between test and control lenses (p > 0.05). There were no significant differences in bulbar, limbal, or palpebral redness or conjunctival staining (p > 0.05). Mean corneal (extent, depth, and type) staining was higher for test lenses compared with that for control lenses (p < 0.05). There was no significant difference in subjective responses for lens comfort, dryness, and awareness (p > 0.05). No delayed reactions were associated with the test lenses. Worn test lenses retained more than 1.5 log inhibition against both bacterial types. Melimine-coated contact lenses were worn safely by humans. However, they were associated with higher corneal staining. The melimine-coated lenses retained high antibacterial activity after wear.
PAINT ADHESION AND CORROSION PERFORMANCE OF CHROMIUM-FREE PRETREATMENTS OF 55% AL-ZN-COATED STEEL
The adhesion and corrosion performances for several pretreatments of 55% Al-Zn-coated steels which were coil-coated with polyester paint systems were determined. The objective of this study was to evaluate new, silane-based metal pretreatments and to compare their performance wit...
Shi, Kaiyuan; Zhitomirsky, Igor
2013-12-26
A conceptually new approach to the fabrication of polypyrrole (PPy)-coated multiwalled carbon nanotubes (MWCNT) for application in electrodes of electrochemical supercapacitors (ES) is proposed. Cetrimonium persulfate (CTA)2S2O8 in the form of nanocrystals is used as an oxidant for the chemical polymerization of PPy. Ponceau S (PS) dye is investigated as a new anionic dopant. Testing results show that PS allows reduced PPy particle size and improved electrochemical performance, whereas (CTA)2S2O8 nanocrystals promote the formation of PPy nanofibers. We demonstrate for the first time that MWCNT can be efficiently dispersed using (CTA)2S2O8 nanocrystals. The analysis of the dispersion mechanism indicates that (CTA)2S2O8 dissociation is catalyzed by MWCNT. This new finding opens a new and promising strategy in MWCNT dispersion for colloidal processing of nanomaterials and electrophoretic nanotechnology. Uniformly coated MWCNT are obtained using (CTA)2S2O8 as a dispersant for MWCNT and oxidant for PPy polymerization and utilizing advantages of PS as an efficient dopant and nanostructure controlling agent. The analysis of the testing results provides an insight into the influence of PS molecular structure on PPy nanostructure and electrochemical properties. The PPy-coated MWCNT show superior electrochemical performance compared to PPy nanoparticles. The proof-of-principle is demonstrated by the fabrication of ES electrodes with excellent electrochemical performance at high active material loadings, good capacitance retention at high charge-discharge rates, and excellent cycling stability.
Optical coating design for the annular mirrors of the Alpha I HF laser
NASA Astrophysics Data System (ADS)
Shellan, Jeffrey B.
The dielectric-coating design for the annular mirrors of the Alpha I HF laser is described along with the numerous other designs that were considered. The coatings were required to produce a 0-deg phase shift after one round trip, which involved reflections from six surfaces. Although novel high-reflectivity multilayer dielectric coatings satisfied this requirement, single-layer phase control coatings were preferred because the use of these greatly reduced coating layer-thickness control and thus resulted in significant program savings. Among the single-layer designs investigated, a coating consisting of a 0.06-micron-thick SiO layer was found to be sufficient for all surfaces except those of the rear cone, for which a 0.515-micron thick SiO layer was recommended. The metallic substrate selected was Au. These coatings were found to have a high damage threshold, provide the necessary polarization phase control, and to be quite forgiving to thickness deposition errors that were anticipated using existing chambers.
Biocatalytic coatings for air pollution control: a proof of concept study on VOC biodegradation.
Estrada, José M; Bernal, Oscar I; Flickinger, Michael C; Muñoz, Raúl; Deshusses, Marc A
2015-02-01
Although biofilm-based biotechnologies exhibit a large potential as solutions for off-gas treatment, the high water content of biofilms often causes pollutant mass transfer limitations, which ultimately limit their widespread application. The present study reports on the proof of concept of the applicability of bioactive latex coatings for air pollution control. Toluene vapors served as a model volatile organic compound (VOC). The results showed that Pseudomonas putida F1 cells could be successfully entrapped in nanoporous latex coatings while preserving their toluene degradation activity. Bioactive latex coatings exhibited toluene specific biodegradation rates 10 times higher than agarose-based biofilms, because the thin coatings were less subject to diffusional mass transfer limitations. Drying and pollutant starvation were identified as key factors inducing a gradual deterioration of the biodegradation capacity in these innovative coatings. This study constitutes the first application of bioactive latex coatings for VOC abatement. These coatings could become promising means for air pollution control. © 2014 Wiley Periodicals, Inc.
40 CFR 63.4961 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2014 CFR
2014-07-01
... controlled coating operation during the compliance period, kg. AI = Total mass of organic HAP in the coatings... the controlled coating operation in Equation 1D of this section. ER23MY03.028 Where: AI = Total mass...
40 CFR 63.4961 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2012 CFR
2012-07-01
... controlled coating operation during the compliance period, kg. AI = Total mass of organic HAP in the coatings... the controlled coating operation in Equation 1D of this section. ER23MY03.028 Where: AI = Total mass...
NASA Technical Reports Server (NTRS)
Stewart, D. A.; Goldstein, H. E.; Leiser, D. B. (Inventor)
1983-01-01
A high temperature stable and solar radiation stable thermal control coating is described which is useful either as such, applied directly to a member to be protected, or applied as a coating on a re-usable surface insulation (RSI). It has a base coat layer and an overlay glass layer. The base coat layer has a high emittance, and the overlay layer is formed from discrete, but sintered together glass particles to give the overlay layer a high scattering coefficient. The resulting two-layer space and thermal control coating has an absorptivity-to-emissivity ratio of less than or equal to 0.4 at room temperature, with an emittance of 0.8 at 1200 F. It is capable of exposure to either solar radiation or temperatures as high as 2000 F without significant degradation. When used as a coating on a silica substrate to give an RSI structure, the coatings of this invention show significantly less reduction in emittance after long term convective heating and less residual strain than prior art coatings for RSI structures.
NASA Astrophysics Data System (ADS)
Zhang, Haiquan; Yuan, Yanping; Zhang, Nan; Sun, Qingrong; Cao, Xiaoling
2016-11-01
The adjustment of temperature and humidity is of great importance in a variety of fields. Composites that can perform both functions are prepared by mixing phase change materials (PCMs) with hygroscopic materials. However, the contact area between the adsorbent and humid air is inevitably decreased in such structures, which reduces the number of mass transfer channels for water vapor. An approach entailing the increase in the mass ratio of the adsorbent is presented here to improve the adsorption capacity. A core-shell CuSO4/polyethylene glycol (PEG) nanomaterial was developed to satisfy the conflicting requirements of temperature control and dehumidification. The results show that the equilibrium adsorption capacity of the PEG coating layer was enhanced by a factor of 188 compared with that of the pure PEG powder. The coating layer easily concentrates vapor, providing better adsorption properties for the composite. Furthermore, the volume modification of the CuSO4 matrix was reduced by 80% by the PEG coated layer, a factor that increases the stability of the composite. For the phase change process, the crystallization temperature of the coating layer was adjusted between 37.2 and 46.3 °C by interfacial tension. The core-shell CuSO4/PEG composite reported here provides a new general approach for the simultaneous control of temperature and humidity.
Novel β-TCP Coated Titanium Nanofiber Surface for Enhanced Bone Growth.
Lim, Hyun-Pil; Park, Sang-Won; Yun, Kwi-Dug; Park, Chan; Ji, Min-Kyung; Oh, Gye-Jeong; Lee, Jong-Tak; Lee, Kwangmin
2018-02-01
In this study, we examined the effect of β-tricalcium phosphate (β-TCP) coating on alkali-treated CP Grade II titanium surface via RF magnetron sputtering on osteoblast like cell (MC3T3-E1) viability and bone formation in rat tibia. The specimens were divided into three groups; commercially pure titanium (control group), alkali-treated titanium with nanofiber structure (NF group) and β-TCP coating on alkali-treated titanium with nanofiber structure (TNF group). The surface characteristics of specimens were observed under a field emission scanning electron microscope (FE-SEM), and contact angle was measured. The cell viability was assessed in vitro after 1 day, 3 days and 7 days. Implants of 2.0 mm diameter and 5.0 mm length were inserted into the tibia of rats. After 4 wks, the histomorphometric analysis was performed. Group NF and group TNF showed improved hydrophilicity of Ti. Group TNF showed significantly higher cell viability (P < 0.05) after 7 days. The bone to implant contact (BIC) ratio of the control group, NF group, and TNF group were 32.3%, 35.5%, and 63.9%, respectively. The study results suggested that β-TCP coated alkali-treated titanium surface via RF magnetron sputtering might be effective in implant dentistry due to enhanced hydrophilicity, improved cell response, and better osseointegration.
Ferreira, Mariana S L; Fai, Ana Elizabeth C; Andrade, Cristina T; Picciani, Paulo H; Azero, Edwin G; Gonçalves, Édira C B A
2016-03-30
This study aimed to produce and characterize edible films and coatings from fruit and vegetable residue (FVR) flour and potato peel (P) flour. Two coating approaches (immersion and film) were studied on the quality of acerolas. Film-forming solutions (FFS) presented a viscoelastic behavior and a gelation process occurring at 70 °C. Maximum density (1.018 g cm(-3) ), viscosity (44.404 cP) and starch content were obtained for FFS based on 8% FVR flour with 4% P flour. This same film presented enhanced mechanical properties such as tensile strength and elongation at break (0.092 MPa and 36% respectively). Solubility of the films averaged 87%, demonstrating high hydrophilicity. Improved performance was obtained for film-packaged acerolas, which exhibited an increase in shelf life of 50% compared with control fruits. A lower loss of weight was observed for these samples by about 30-57% compared with control fruits, but minor modifications of pH, titratable acidity and soluble solid content occurred during storage. This study demonstrated the potential of FVR flour for edible coating and film formulation. Practical application on acerolas constituted a motivating route to evaluate and optimize this process; however, microbiological and sensory analyses are necessary to assess the material acceptability and safety. © 2015 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Esmeryan, Karekin D.; Castano, Carlos E.; Mohammadi, Reza; Lazarov, Yuliyan; Radeva, Ekaterina I.
2018-02-01
Condensation frosting is an undesired natural phenomenon that could be impeded efficiently using appropriate wettability and morphologically patterned surfaces. The icephobic properties of carbon soot and the fabrication scalability of its synthesis method are a good foundation for anti-frosting applications; however, the fundamentals of frost growth and spreading on sooted surfaces have not been examined yet. In this study, we investigate the anti-frosting performance of three groups of superhydrophobic soot coatings by means of 16 MHz quartz crystal microbalances (QCMs). The analysis of the real-time sensor signal of each soot coated QCM pattern shows that frost formation and its propagation velocity depend on the quantity of oxygen functionalities and structural defects in the material. In turn, the reduction of both parameters shifts the onset of frost growth to temperatures below -20 °C, whereas the interdroplet ice bridging is slowed by a factor of four. Moreover, high-resolution scanning electron micrographs of the samples imply delamination upon defrosting of the soot with spherical-like morphology via polar interactions driven mechanism. These results reveal an opportunity for control of frost incipiency on sooted surfaces by adjusting the synthesis conditions and depositing soot coatings with as low as possible content of hydrophilic active sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, J; Haslam, J; Wong, F
2007-09-19
The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoingmore » corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent.« less
Cyclic Fiber Push-In Test Monitors Evolution of Interfacial Behavior in Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.
1998-01-01
SiC fiber-reinforced ceramic matrix composites are being developed for high-temperature advanced jet engine applications. Obtaining a strong, tough composite material depends critically on optimizing the mechanical coupling between the reinforcing fibers and the surrounding matrix material. This has usually been accomplished by applying a thin C or BN coating onto the surface of the reinforcing fibers. The performance of these fiber coatings, however, may degrade under cyclic loading conditions or exposure to different environments. Degradation of the coating-controlled interfacial behavior will strongly affect the useful service lifetime of the composite material. Cyclic fiber push-in testing was applied to monitor the evolution of fiber sliding behavior in both C- and BN-coated small-diameter (15-mm) SiC-fiber-reinforced ceramic matrix composites. The cyclic fiber push-in tests were performed using a desktop fiber push-out apparatus. At the beginning of each test, the fiber to be tested was aligned underneath a 10- mm-diameter diamond punch; then, the applied load was cycled between selected maximum and minimum loads. From the measured response, the fiber sliding distance and frictional sliding stresses were determined for each cycle. Tests were performed in both room air and nitrogen. Cyclic fiber push-in tests of C-coated, SiC-fiber-reinforced SiC showed progressive increases in fiber sliding distances along with decreases in frictional sliding stresses for continued cycling in room air. This rapid degradation in interfacial response was not observed for cycling in nitrogen, indicating that moisture exposure had a large effect in immediately lowering the frictional sliding stresses of C-coated fibers. These results indicate that matrix cracks bridged by C-coated fibers will not be stable, but will rapidly grow in moisture-containing environments. In contrast, cyclic fiber push-in tests of both BN-coated, SiC-fiber-reinforced SiC and BNcoated, SiC-fiber-reinforced barium strontium aluminosilicate showed no significant changes in fiber sliding behavior with continued short-term cycling in either room air or nitrogen. Although the composites with BN-coated fibers showed stable short-term cycling behavior in both environments, long-term (several-week) exposure of debonded fibers to room air resulted in dramatically increased fiber sliding distances and decreased frictional sliding stresses. These results indicate that although matrix cracks bridged by BNcoated fibers will show short-term stability, such cracks will show substantial growth with long-term exposure to moisture-containing environments. Newly formulated BN coatings, with higher moisture resistance, will be tested in the near future.
Qiu, Cheng-Wei; Hu, Li; Zhang, Baile; Wu, Bae-Ian; Johnson, Steven G; Joannopoulos, John D
2009-08-03
Two novel classes of spherical invisibility cloaks based on nonlinear transformation have been studied. The cloaking characteristics are presented by segmenting the nonlinear transformation based spherical cloak into concentric isotropic homogeneous coatings. Detailed investigations of the optimal discretization (e.g., thickness control of each layer, nonlinear factor, etc.) are presented for both linear and nonlinear spherical cloaks and their effects on invisibility performance are also discussed. The cloaking properties and our choice of optimal segmentation are verified by the numerical simulation of not only near-field electric-field distribution but also the far-field radar cross section (RCS).
Magnetically Responsive Optical Nanoprobes (MagRONs) and Systems
2004-02-28
5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER The regents of the University of...research. MagMOON Architechtures I Controlled deposition of magnetic materials onto any nanosensor Prism coated nanoparticles Electric field sensors...into a predefined pattern has been the focus of many investigations.[7-11] For example, strawberry-like composite materials using organic -inorganic
Bacterial adhesion to protein-coated surfaces: An AFM and QCM-D study
NASA Astrophysics Data System (ADS)
Strauss, Joshua; Liu, Yatao; Camesano, Terri A.
2009-09-01
Bacterial adhesion to biomaterials, mineral surfaces, or other industrial surfaces is strongly controlled by the way bacteria interact with protein layers or organic matter and other biomolecules that coat the materials. Despite this knowledge, many studies of bacterial adhesion are performed under clean conditions, instead of in the presence of proteins or organic molecules. We chose fetal bovine serum (FBS) as a model protein, and prepared FBS films on quartz crystals. The thickness of the FBS layer was characterized using atomic force microscopy (AFM) imaging under liquid and quartz crystal microbalance with dissipation (QCM-D). Next, we characterized how the model biomaterial surface would interact with the nocosomial pathogen Staphylococcus epidermidis. An AFM probe was coated with S. epidermidis cells and used to probe a gold slide that had been coated with FBS or another protein, fibronectin (FN). These experiments show that AFM and QCM-D can be used in complementary ways to study the complex interactions between bacteria, proteins, and surfaces.
Enhancement of Cr(VI) Ion Removal Using Nanochitosan Coated on Bituminous Activated Carbon.
Chooaksorn, Wanida; Nitisoravut, Rachnarin; Polprasert, Chongrak; Babel, Sandhya; Laohhasurayotin, Kritapas; Kangwansupamonkon, Wiyong
2016-11-01
Bituminous activated carbon (AC) has been widely used as a sorbent for adsorption of non-polar species, but its performance for removal of ionic species such as heavy metals has not been as efficient. In this study, AC was modified with chitosan nanoparticles (CN) using facile methods of dip coating and wet impregnation. The CN-coated AC demonstrated an increase in Cr(VI) removal efficiency in both kinetics and adsorption capacity. The adsorption capacity of the CN-coated AC (mg/g) was more than twice that of the uncoated AC (36.36 mg/g), or pure chitosan (32.57 mg/g). The sizes of the synthesized CN (160-2,000 nm) can be controlled by varying the concentration of the chitosan/reagents used. The adsorption isotherms are better described using the Freundlich rather than the Langmuir model and are in agreement with the heterogeneity of the surfaces. Adsorption kinetics followed that of the pseudo-second-order kinetics, suggesting chemisorption as a rate limiting step.
Inorganic-Organic Coating via Molecular Layer Deposition Enables Long Life Sodium Metal Anode.
Zhao, Yang; Goncharova, Lyudmila V; Zhang, Qian; Kaghazchi, Payam; Sun, Qian; Lushington, Andrew; Wang, Biqiong; Li, Ruying; Sun, Xueliang
2017-09-13
Metallic Na anode is considered as a promising alternative candidate for Na ion batteries (NIBs) and Na metal batteries (NMBs) due to its high specific capacity, and low potential. However, the unstable solid electrolyte interphase layer caused by serious corrosion and reaction in electrolyte will lead to big challenges, including dendrite growth, low Coulombic efficiency and even safety issues. In this paper, we first demonstrate the inorganic-organic coating via advanced molecular layer deposition (alucone) as a protective layer for metallic Na anode. By protecting Na anode with controllable alucone layer, the dendrites and mossy Na formation have been effectively suppressed and the lifetime has been significantly improved. Moreover, the molecular layer deposition alucone coating shows better performances than the atomic layer deposition Al 2 O 3 coating. The novel design of molecular layer deposition protected Na metal anode may bring in new opportunities to the realization of the next-generation high energy-density NIBs and NMBs.
Particle control and plasma performance in the Lithium Tokamak eXperimenta)
NASA Astrophysics Data System (ADS)
Majeski, R.; Abrams, T.; Boyle, D.; Granstedt, E.; Hare, J.; Jacobson, C. M.; Kaita, R.; Kozub, T.; LeBlanc, B.; Lundberg, D. P.; Lucia, M.; Merino, E.; Schmitt, J.; Stotler, D.; Biewer, T. M.; Canik, J. M.; Gray, T. K.; Maingi, R.; McLean, A. G.; Kubota, S.; Peebles, W. A.; Beiersdorfer, P.; Clementson, J. H. T.; Tritz, K.
2013-05-01
The Lithium Tokamak eXperiment is a small, low aspect ratio tokamak [Majeski et al., Nucl. Fusion 49, 055014 (2009)], which is fitted with a stainless steel-clad copper liner, conformal to the last closed flux surface. The liner can be heated to 350 °C. Several gas fueling systems, including supersonic gas injection and molecular cluster injection, have been studied and produce fueling efficiencies up to 35%. Discharges are strongly affected by wall conditioning. Discharges without lithium wall coatings are limited to plasma currents of order 10 kA, and discharge durations of order 5 ms. With solid lithium coatings discharge currents exceed 70 kA, and discharge durations exceed 30 ms. Heating the lithium wall coating, however, results in a prompt degradation of the discharge, at the melting point of lithium. These results suggest that the simplest approach to implementing liquid lithium walls in a tokamak—thin, evaporated, liquefied coatings of lithium—does not produce an adequately clean surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seong, Hee Je; Choi, Seungmok
2015-10-09
This is a 3-way CRADA project working together with Corning, Inc. and Hyundai Motor Co. (HMC). The project is to understand particulate emissions from gasoline direct-injection engines (GDI) and their physico-chemical properties. In addition, this project focuses on providing fundamental information about filtration and regeneration mechanisms occurring in gasoline particulate filter (GPF) systems. For the work, Corning provides most advanced filter substrates for GPF applications and HMC provides three-way catalyst (TWC) coating services of these filter by way of a catalyst coating company. Then, Argonne National Laboratory characterizes fundamental behaviors of filtration and regeneration processes as well as evaluated TWCmore » functionality for the coated filters. To examine aging impacts on TWC and GPF performance, the research team evaluates gaseous and particulate emissions as well as back-pressure increase with ash loading by using an engine-oil injection system to accelerate ash loading in TWC-coated GPFs.« less
Cermet coating tribological behavior in high temperature helium
DOE Office of Scientific and Technical Information (OSTI.GOV)
CACHON, Lionel; ALBALADEJO, Serge; TARAUD, Pascal
As the CEA is highly involved in the Generation IV Forum, a comprehensive research and development program has been conducted for several years, in order to establish the feasibility of Gas Cooled Reactor (GCR) technology projects using helium as a cooling fluid. Within this framework, a tribology program was launched in order to select and qualify coatings and materials, and to provide recommendations for the sliding components operating in GCRs. The purpose of this paper is to describe the CEA Helium tribology study on several GCR components (thermal barriers, control rod drive mechanisms, reactor internals, ..) requiring protection against wearmore » and bonding. Tests in helium atmosphere are necessary to be fully representative of tribological environments and to assess the material or coating candidates which can provide a reliable answer to these situations. This paper focuses on the tribology tests performed on CERMET (Cr{sub 3}C-2- NiCr) coatings within a temperature range of between 800 and 1000 deg C.« less
The Thickness Effect of the Functional Film for the Fabrication of Photovoltaic Module.
Shan, Bowen; Kim, Jung Hyun; Choi, Wonseok
2018-09-01
In this study, a functional coating technology to improve the anti-fouling properties of the photo-voltaic module is introduced. The coating was applied on the cover glass, which is the same material as the photovoltaic module. After coating the cover glass once, twice, and three times in the horizontal and vertical directions respectively, the anti-fouling properties was tested according to the coating times and the thickness of the coating film. To ensure the durability of the coating film, the annealing process was performed for 1 hour at 200 °C in a furnace after coating. Finally, the photovoltaic module will be coated with the best coating method. Compared to uncoated modules, the coated photovoltaic modules showed significantly improved anti-fouling properties and also good performance in hardness and adhesion.
The realuminizing of the 7-meter-diameter solar simulator collimating mirror
NASA Technical Reports Server (NTRS)
Noller, E. W.
1994-01-01
This paper describes the modification of a three-electron-beam (EB) gun system for vacuum depositing a highly reflective aluminum coating on a 7.01-m (23-ft) -diam nickel-plated aluminum collimating mirror. The mirror is part of the JPL 7.62-m space simulator that was recently modernized with a new high vacuum pumping system, solar lamp power supplies, solar optic lens system, and refurbished collimating mirror. The 7.01-m 12,700-kg (14-ton) spherical collimating mirror was removed from this facility for replating with 381 micron (0.015 in.) of electroless nickel and polished to a specular finish for realuminizing. The space chamber served as the vacuum coating vessel for the realuminizing coating process. The mirror is the primary reflector for the solar simulation system and the aluminized reflective surface is its most critical performance element. The uniformity of thickness and high reflectivity of the coating in visible and near-ultraviolet (UV) light governs the accuracy of the beam for solar testing. The uniformity of the thin-film thickness also controls the durability of the mirror over time. The mirror was polished to a 64-percent reflectivity with a uniformity of 1.5 percent. The performance goal for the aluminizing was 89 percent with +/- 0.5-percent variation over the mirror.
NASA Astrophysics Data System (ADS)
Bedoya, Felipe; Allain, Jean Paul; Kaita, Robert; Lucia, Matthew; St-Onge, Denis; Ellis, Robert; Majeski, Richard
2014-10-01
The Materials Analysis Particle Probe (MAPP) is an in-situ diagnostic designed to characterize plasma-facing components (PFCs) in tokamak devices. MAPP is installed in LTX at Princeton Plasma Physics Laboratory. MAPP's capabilities include remotely operated XPS acquisition and temperature control of four samples. The recent addition of a focused ion beam allows XPS depth profiling analysis. Recent published results show an apparent correlation between hydrogen retention and temperature of Li coated stainless steel (SS) PFCs exposed to plasmas like those of LTX. According to XPS data, the retention of hydrogen by the coated surfaces decreases at above 180 °C. In the present study MAPP will be used to study the oxidation of Li coatings as a function of time and temperature of the walls when Li coatings are applied. Experiments in the ion-surface interaction experiment (IIAX) varying the hydrogen fluence on the SS samples will be also performed. Conclusions resulting from this study will be key to explain the PFC temperature-dependent variation of plasma performance observed in LTX. This work was supported by U.S. DOE Contracts DE-AC02-09CH11466, DE-AC52-07NA27344 and DE-SC0010717.
Structure and corrosion properties of PVD Cr-N coatings
NASA Astrophysics Data System (ADS)
Liu, C.; Bi, Q.; Ziegele, H.; Leyland, A.; Matthews, A.
2002-05-01
PVD Cr-N coatings produced by physical vapor deposition (PVD) are increasingly used for mechanical and tribological applications in various industrial sectors. These coatings are particularly attractive for their excellent corrosion resistance, which further enhances the lifetime and service quality of coated components. PVD Cr-N coated steels in an aqueous solution are usually corroded by galvanic attack via through-coating ``permeable'' defects (e.g., pores). Therefore, the corrosion performance of Cr-N coated steel is determined by a number of variables of the coating properties and corrosive environment. These variables include: (i) surface continuity and uniformity; (ii) through-coating porosity; (iii) film density and chemical stability; (iv) growth stresses; (v) interfacial and intermediate layers; (vi) coating thickness; (vii) coating composition; and (viii) substrate properties. In this article, PVD Cr-N coatings were prepared, by electron-beam PVD and sputter deposition, with different compositions, thicknesses, and surface roughnesses, by changing the N2 flow rate, applying multilayering techniques and changing the substrate finish prior to coating. The microstructure of such coatings is investigated by various analytical techniques such as glancing angle x-ray diffraction and scanning electron microscopy, which are also correlated with the corrosion performance of the coated steel. Both dc polarization and ac impedance spectroscopy were employed to investigate the corrosion resistance of Cr-N coated steel in a 0.5N NaCl solution. It has been found that the N2 flow rate during reactive deposition strongly determines the microstructure of Cr-N coatings (due to the changing nitrogen content in the film) and can thus affect the corrosion resistance of coated systems. The surface finish of the steel substrate also affects the uniformity and coverage of PVD coatings; grooves and inclusions on the original substrate can raise the susceptibility of coated systems to crevice corrosion. Increased coating thickness can also greatly reduce the incidence of through-coating porosity such that the improvement in corrosion performance of thicker Cr-N coatings is significant.
Hinüber, C; Kleemann, C; Friederichs, R J; Haubold, L; Scheibe, H J; Schuelke, T; Boehlert, C; Baumann, M J
2010-11-01
Diamond-like carbon (DLC) films are favored for wear components because of diamond-like hardness, low friction, low wear, and high corrosion resistance (Schultz et al., Mat-wiss u Werkstofftech 2004;35:924-928; Lappalainen et al., J Biomed Mater Res B Appl Biomater 2003;66B:410-413; Tiainen, Diam Relat Mater 2001;10:153-160). Several studies have demonstrated their inertness, nontoxicity, and the biocompatibility, which has led to interest among manufacturers of surgical implants (Allen et al., J Biomed Mater Res B Appl Biomater 2001;58:319-328; Uzumaki et al., Diam Relat Mater 2006;15:982-988; Hauert, Diam Relat Mater 2003;12:583-589; Grill, Diam Relat Mater 2003;12:166-170). In this study, hydrogen-free amorphous, tetrahedrally bonded DLC films (ta-C) were deposited at low temperatures by physical vapor deposition on medical grade Co28Cr6Mo steel and the titanium alloy Ti6Al4V (Scheibe et al., Surf Coat Tech 1996;85:209-214). The mechanical performance of the ta-C was characterized by measuring its surface roughness, contact angle, adhesion, and wear behavior, whereas the biocompatibility was assessed by osteoblast (OB) attachment and cell viability via Live/Dead assay. There was no statistical difference found in the wettability as measured by contact angle measurements for the ta-C coated and the uncoated samples of either Co28Cr6Mo or Ti6Al4V. Rockwell C indentation and dynamic scratch testing on 2-10 μm thick ta-C films on Co28Cr6Mo substrates showed excellent adhesion with HF1 grade and up to 48 N for the critical load L(C2) during scratch testing. The ta-C coating reduced the wear from 3.5 × 10(-5) mm(3)/Nm for an uncoated control sample (uncoated Co28Cr6Mo against uncoated stainless steel) to 1.1 × 10(-7) mm(3)/Nm (coated Co28Cr6Mo against uncoated stainless steel) in reciprocating pin-on-disk testing. The lowest wear factor of 3.9 × 10(-10) mm(3)/Nm was measured using a ta-C coated steel ball running against a ta-C coated and polished Co28Cr6Mo disk. Student's t-test found that the ta-C coating had no statistically significant (p < 0.05) effect on OB attachment, when compared with the uncoated control samples. There was no significant difference (p < 0.05) in the Live/Dead assay results in cell death between the ta-C coated Co28Cr6Mo and Ti6Al4V samples and the uncoated controls. Therefore, these ta-C coatings show improved wear and corrosion (Dorner-Reisel et al., Diam Relat Mater 2003;11:823-827; Affato et al., J Biomed Mater Res B Appl Biomater 2000;53:221-226; Dorner-Reisel et al., Surf Coat Tech 2004;177-178:830-837; Kim et al., Diam Relat Mater 2004;14:35-41) performance and excellent in vitro cyto-compatibility, when compared with currently used uncoated Co28Cr6Mo and Ti6Al4V implant materials.
El-Zahaby, Sally A; AbouGhaly, Mohamed H H; Abdelbary, Ghada A; El-Gazayerly, Omaima N
2017-06-08
Solid self-nanoemulsifying (S-SNEDDS) asymmetrically coated osmotic tablets of the poorly water-soluble drug Vinpocetine (VNP) were designed. The aim was to control the release of VNP by the osmotic technology taking advantage of the solubility and bioavailability-enhancing capacity of S-SNEDDS. Liquid SNEDDS loaded with 2.5 mg VNP composed of Maisine™ 35-1, Transcutol ® HP, and Cremophor ® EL was adsorbed on the solid carrier Aeroperl ® . S-SNEDDS was mixed with the osmotic tablet excipients (sodium chloride, Avicel ® , HPMC-K4M, PVP-K30, and Lubripharm ® ), then directly compressed to form the core tablet. The tablets were dip coated and mechanically drilled. A 3 2 *2 1 full factorial design was adopted. The independent variables were: type of coating material (X 1 ), concentration of coating solution (X 2 ), and number of drills (X 3 ). The dependent variables included % release at 2 h (Y 1 ), at 4 h (Y 2 ), and at 8 h (Y 3 ). The in vivo performance of the optimum formula was assessed in rabbits. Zero-order VNP release was obtained by the single drilled 1.5% Opadry ® CA coated osmotic tablets and twofold increase in VNP bioavailability was achieved. The combination of SNEDDS and osmotic pump tablet system was successful in enhancing the solubility and absorption of VNP as well as controlling its release.
40 CFR 60.713 - Compliance provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... operator of the affected coating operation shall perform a liquid-liquid VOC material balance over each and... emission control device (other than a fixed-bed carbon adsorption system with individual exhaust stacks for...) when a fixed-bed carbon adsorption system with individual exhaust stacks for each adsorber vessel is...
40 CFR 60.713 - Compliance provisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... operator of the affected coating operation shall perform a liquid-liquid VOC material balance over each and... emission control device (other than a fixed-bed carbon adsorption system with individual exhaust stacks for...) when a fixed-bed carbon adsorption system with individual exhaust stacks for each adsorber vessel is...
40 CFR 60.713 - Compliance provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... operator of the affected coating operation shall perform a liquid-liquid VOC material balance over each and... emission control device (other than a fixed-bed carbon adsorption system with individual exhaust stacks for...) when a fixed-bed carbon adsorption system with individual exhaust stacks for each adsorber vessel is...
DOT National Transportation Integrated Search
1975-01-01
Various curing and/or protective coatings were evaluated under three conditions: (1) accelerated laboratory freezing and thawing of specimens in 2 percent sodium chloride solution, (2) exposure in an outdoor area of slabs subjected to controlled appl...
Environmentally Friendly Coating Technology for Autonomous Corrosion Control
NASA Technical Reports Server (NTRS)
Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Johnsey, Marissa N.; Jolley, Scott T.; Pearman, Benjamin P.; Zhang, Xuejun; Fitzpatrick, Lilliana; Gillis, Mathew; Blanton, Michael;
2016-01-01
This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry.
MAPLE deposited polymeric blends coatings for controlled drug delivery
NASA Astrophysics Data System (ADS)
Paun, Irina Alexandra; Ion, Valentin; Moldovan, Antoniu; Dinescu, Maria
2012-07-01
We report on the use of Matrix Assisted Pulsed Laser Evaporation (MAPLE) for producing coatings of polymer blends for controlled drug delivery. The coatings consisting of blends of polyethylene glycol: poly(lactide-co-glycolide) (PEG: PLGA blends) are compared with those consisting of individual polymers (PEG, PLGA) in terms of chemical composition, morphology, hydrophilicity and optical constants. The release kinetics of an anti-inflammatory drug (indomethacin) through the polymeric coatings is monitored and possible mechanisms of the drug release are discussed. Furthermore, the compatibility of the polymeric coatings with blood constituents is investigated. Finally, the perspectives for employing MAPLE for producing coatings of polymer blends to be used in implants that deliver drugs in a controlled manner, along with the routes to be followed for elucidating the mechanism of drug release, are revealed.
NASA Astrophysics Data System (ADS)
Singh, Harpal
This dissertation is divided into two categories based upon lubrication functionality and its application. The categories are: Dry film lubrication and Fluid film lubrication with thin film coatings. Thin film coatings examined in this work were deposited using closed field unbalanced magnetron sputtering and RF-DC coupled magnetron sputtering systems. In Dry/Solid film lubrication, the mechanical, structural and tribological properties of two Molybdenum disulphide (MoS2) based coatings are examined and evaluated. Among the two coatings, one coating is doped with Ti (Ti-MoS2) and the other is a combination of metal, lubricant and oxide (Sb2O3/Au - MoS2). These coatings are known to provide low friction in vacuum environments. The goal of this work was to evaluate friction and wear performance of MoS2 doped coatings in unidirectional and reciprocating sliding contact under different environmental conditions. Sliding contact results showed friction and wear dependence on temperature and humidity. The formation and removal of transfer films and the recrystallization and reorientation of basal layers on the steel counterface was observed as the mechanism for low friction. Structural analysis revealed a relationship between the microstructural properties and tribological performance. It was also observed that the addition of dopants (Ti, Au, Sb 2O3) improved the mechanical properties as compared to pure MoS2 coatings. Further, the rolling contact performance of the coatings was measured on a five ball on rod tribometer and a Thrust bearing tribometer under vacuum and air environments. The rolling contact experiments indicated that life of the rolling components depend on the amount of material present between the contacts. Fluid film lubrication with thin film coatings investigates the possibilities to improve the performance and durability of tribological components when oils and thin films are synergistically coupled. In this work, the ability of a Diamond Like Carbon coating to increase the durability of contacting surfaces under boundary lubrication were studied. The performance of highly hydrogenated Diamond Like Carbon (DLC) was evaluated in a mixed sliding and rolling contact. Experimental results show significant improvement in fatigue life of steel specimens after coating with a highly hydrogenated Diamond Like Carbon coating. The improved fatigue life is attributed to the coating microstructure and the mechanical properties.
NASA Technical Reports Server (NTRS)
Simon, F. F.
1975-01-01
A performance evaluation was made of two, black nickel coated, flat plate solar collectors. Collector performance was determined under a simulated sun for a wide range of inlet temperatures, including the temperature required for solar powered absorption air conditioning. For a basis of comparison a performance test was made on a traditional, two glass, nonselective, black paint coated, flat plate collector. Performance curves and performance parameters are presented to point out the importance of the design variables which determine an efficient collector. A black nickel coated collector was found to be a good performer at the conditions expected for solar powered absorption air conditioning. This collector attained a thermal efficiency of 50 percent at an inlet temperature of 366 K (200 F) and an incident flux of 946 watts/sq m (300 Btu/hr-sq ft).
NASA Technical Reports Server (NTRS)
Deadmore, D. L.
1972-01-01
Embedded-alumina-particle aluminide (EAPA) coated and CoCrAlY coated IN-100 and NASA-TRW-VIA specimens were cyclically oxidation tested in a high velocity (approximately Mach 1) gas flame at 1093 C (2000 F). The EAPA coatings on both alloys performed very similarly to commercial pack aluminide coatings with respect to weight change and thermal fatigue cracking. The CoCrAlY coating on IN-100 had weight changes similar to commercial pack aluminide coatings but no thermal fatigue cracks appeared at 300 hours. The CoCrAlY coating on VIA performed significantly better than the commercial aluminide coatings, providing oxidation protection (based on weight change) to 450 hours and thermal fatigue crack prevention to at least 600 hours.
Evaluation of colorless polyimide film for thermal control coating applications
NASA Technical Reports Server (NTRS)
St.clair, A. K.; Slemp, W. S.
1985-01-01
A series of essentially colorless aromatic polyimide films was synthesized and characterized with the objective of obtaining maximum optical transparency for applications in space. Optical transparency is a requirement for high performance polymeric films used in second surface mirror coatings on thermal control systems. The intensity in color of aromatic polyimide films was lowered by reducing the electronic interaction between chromophoric centers in the polymer molecular structure and by using highly purified monomers. The resulting lightly colored to colorless polyimide films were characterized by UV-visible and infrared spectroscopy before and after exposure to 300 equivalent solar hours UV irradiation and varying doses of 1 MeV electron irradiation. After irradiation, the films were found to be 2 to 2.5 times more transparent than commercial polyimide film of the same thickness.
Oza, Goldie; Pandey, Sunil; Gupta, Arvind; Shinde, Sachin; Mewada, Ashmi; Jagadale, Pravin; Sharon, Maheshwar; Sharon, Madhuri
2013-10-01
A porous ceramic was coated with vertically aligned multi-walled carbon nanotubes (MWCNTs) by spray pyrolysis. Titanium dioxide (TiO2) nanoparticles were then coated onto this densely aligned MWCNT. The presence of TiO2/MWCNT interfacial arrays was confirmed by X-ray diffraction (XRD), scanning electron microscope-energy dispersive analysis of X-ray (SEM-EDAX) and transmission electron microscope (TEM). This is a novel report in which water loaded with a most dreadful enterohemorrhagic pathogenic strain of Escherichia coli O157:H7 was filtered through TiO2/MWCNT coated porous ceramic filter and then analysed. Bacterial removal performance was found to be significantly lower in control i.e. plain porous ceramic (P<0.05) as compared to TiO2/MWCNT coated ceramic. The photocatalytic killing rate constant for TiO2-ceramic and MWCNT/TiO2-ceramic under fluorescent light was found be 1.45×10(-2) min(-1) and 2.23×10(-2) min(-1) respectively. Further, when I-V characteristics were performed for TiO2/MWCNT composite, it was corroborated that the current under light irradiation is comparatively higher than that in dark, thus proving it to be photocatalytically efficient system. The enhanced photocatalysis may be a contribution of increased surface area and charge transfer rate as a consequence of aligned MWCNT network. © 2013 Elsevier B.V. All rights reserved.
Improving biocompatibility by surface modification techniques on implantable bioelectronics.
Lin, Peter; Lin, Chii-Wann; Mansour, Raafat; Gu, Frank
2013-09-15
For implantable bioelectronic devices, the interface between the device and the biological environment requires significant attention as it dictates the device performance in vivo. Non-specific protein adsorption onto the device surface is the initial stage of many degradation mechanisms that will ultimately compromise the functionality of the device. In order to preserve the functionality of any implanted bioelectronics overtime, protein adsorption must be controlled. This review paper outlines two major approaches to minimize protein adsorption onto the surface of implantable electronics. The first approach is surface coating, which minimizes close proximity interactions between proteins and device surfaces by immobilizing electrically neutral hydrophilic polymers as surface coating. These coatings reduce protein fouling by steric repulsion and formation of a hydration layer which acts as both a physical and energetic barrier that minimize protein adsorption onto the device. Relevant performances of various conventional hydrophilic coatings are discussed. The second approach is surface patterning using arrays of hydrophobic nanostructures through photolithography techniques. By establishing a large slip length via super hydrophobic surfaces, the amount of proteins adsorbed to the surface of the device can be reduced. The last section discusses emerging surface coating techniques utilizing zwitterionic polymers where ultralow-biofouling surfaces have been demonstrated. These surface modification techniques may significantly improve the long-term functionality of implantable bioelectronics, thus allowing researchers to overcome challenges to diagnose and treat chronic neurological and cardiovascular diseases. Copyright © 2013 Elsevier B.V. All rights reserved.
Genet, Clément; Menu, Marie-Joëlle; Gavard, Olivier; Ansart, Florence; Gressier, Marie; Montpellaz, Robin
2018-05-10
The aim of our study is to improve the aluminium alloy corrosion resistance with Organic-Inorganic Hybrid (OIH) sol-gel coating. Coatings are obtained from unusual formulation with precursors mixing: glycidoxypropyltrimethoxysilane (GPTMS), zirconium (IV) propoxide (TPOZ) and aluminium tri-sec-butoxide (ASB). This formulation was characterized and compared with sol formulations GPTMS/TPOZ and GPTMS/ASB. In each formulation, a corrosion inhibitor, cerium (III) nitrate hexahydrate, is employed to improve the corrosion performance. Coatings obtained from sol based on GPTMS/TPOZ/ASB have good anti-corrosion performances with Natural Salt Spray (NSS) resistance of 500 h for a thickness lower than 4 µm. Contact angle measurement showed a coating hydrophobic behaviour. To understand these performances, nuclear magnetic resonance (NMR) analyses were performed, results make sol-gel coating condensation evident and are in very good agreement with previous results.
Lee, Doug-Youn; Spångberg, Larz S W; Bok, Young-Bin; Lee, Chang-Young; Kum, Kee-Yeon
2005-07-01
The aim of this in vitro study was to evaluate the suitability of using chitosan, poly (lactide-co-glycolide) (PLGA), and polymethyl methacrylate (PMMA) to control the release of chlorhexidine digluconate (CHX) from a prototype of controlled release drug device for root canal disinfection. Four different prototypes with different formulations were prepared. Group A (n = 12): the device (absorbent paper point) was loaded with CHX as control. Group B (n = 12): same as group A, but the device was coated with chitosan (Texan MedTech). In Groups C and D, the device was treated in the same way as group A and then coated 3 times with 5% PMMA (Group C, n = 12, Aldrich), or coated 3 times with 3% PLGA (Group D, n = 12, Sigma). The devices were randomly allocated to experimental groups of 12 each. All the prototypes of controlled release drug device were soaked in 3 mL distilled water. The concentrations of CHX were determined using a UV spectrophotometer. The surface characteristics of each prototype were observed using a scanning electron microscope. The result showed that release rate of CHX was the greatest in the noncoated group, followed by the chitosan-coated group, the PLGA-coated group, and the PMMA-coated group (P < 0.05). Pores were observed on the surface of the prototypes that were coated with PLGA and PMMA. When the pore size was smaller, the release rate was lower. These data indicate that polymer coating can control the release rate of CHX from the prototypes of controlled release drug device.
NASA Astrophysics Data System (ADS)
Xiao, Jie
Polymer nanocomposites have a great potential to be a dominant coating material in a wide range of applications in the automotive, aerospace, ship-making, construction, and pharmaceutical industries. However, how to realize design sustainability of this type of nanostructured materials and how to ensure the true optimality of the product quality and process performance in coating manufacturing remain as a mountaintop area. The major challenges arise from the intrinsic multiscale nature of the material-process-product system and the need to manipulate the high levels of complexity and uncertainty in design and manufacturing processes. This research centers on the development of a comprehensive multiscale computational methodology and a computer-aided tool set that can facilitate multifunctional nanocoating design and application from novel function envisioning and idea refinement, to knowledge discovery and design solution derivation, and further to performance testing in industrial applications and life cycle analysis. The principal idea is to achieve exceptional system performance through concurrent characterization and optimization of materials, product and associated manufacturing processes covering a wide range of length and time scales. Multiscale modeling and simulation techniques ranging from microscopic molecular modeling to classical continuum modeling are seamlessly coupled. The tight integration of different methods and theories at individual scales allows the prediction of macroscopic coating performance from the fundamental molecular behavior. Goal-oriented design is also pursued by integrating additional methods for bio-inspired dynamic optimization and computational task management that can be implemented in a hierarchical computing architecture. Furthermore, multiscale systems methodologies are developed to achieve the best possible material application towards sustainable manufacturing. Automotive coating manufacturing, that involves paint spay and curing, is specifically discussed in this dissertation. Nevertheless, the multiscale considerations for sustainable manufacturing, the novel concept of IPP control, and the new PPDE-based optimization method are applicable to other types of manufacturing, e.g., metal coating development through electroplating. It is demonstrated that the methodological development in this dissertation can greatly facilitate experimentalists in novel material invention and new knowledge discovery. At the same time, they can provide scientific guidance and reveal various new opportunities and effective strategies for sustainable manufacturing.
Lee, Heui C.; Gaire, Janak; Currlin, Seth W.; McDermott, Matthew D.; Park, Kinam; Otto, Kevin J.
2017-01-01
Poly(ethylene glycol) (PEG) is a frequently used polymer for neural implants due to its biocompatible property. As a follow-up to our recent study that used PEG for stiffening flexible neural probes, we have evaluated the biological implications of using devices dip-coated with PEG for chronic neural implants. Mice (wild-type and CX3CR1-GFP) received bilateral implants within the sensorimotor cortex, one hemisphere with a PEG-coated probe and the other with a non-coated probe for 4 weeks. Quantitative analyses were performed using biomarkers for activated microglia/macrophages, astrocytes, blood-brain barrier leakage, and neuronal nuclei to determine the degree of foreign body response (FBR) resulting from the implanted microelectrodes. Despite its well-known acute anti-biofouling property, we observed that PEG-coated devices caused no significantly different FBR compared to non-coated controls at 4 weeks. A repetition using CX3CR1-GFP mice cohort showed similar results. Our histological findings suggest that there is no significant impact of acute delivery of PEG on the FBR in the long-term, and that temporary increase in the device footprint due to the coating of PEG also does not have a significant impact. Large variability seen within the same treatment group also implies that avoiding large superficial vasculature during implantation is not sufficient to minimize inter-animal variability. PMID:28959183
Sörensen, Jan H; Lilja, Mirjam; Åstrand, Maria; Sörensen, Torben C; Procter, Philip; Strømme, Maria; Steckel, Hartwig
2014-01-01
The migration, loosening and cut-out of implants and nosocomial infections are current problems associated with implant surgery. New innovative strategies to overcome these issues are emphasized in today's research. The current work presents a novel strategy involving co-precipitation of tobramycin with biomimetic hydroxyapatite (HA) formation to produce implant coatings that control local drug delivery to prevent early bacterial colonization of the implant. A submicron- thin HA layer served as seed layer for the co-precipitation process and allowed for incorporation of tobramycin in the coating from a stock solution of antibiotic concentrations as high as 20 mg/ml. Concentrations from 0.5 to 20 mg/ml tobramycin and process temperatures of 37 °C and 60 °C were tested to assess the optimal parameters for a thin tobramycin- delivering HA coating on discs and orthopedic fixation pins. The morphology and thickness of the coating and the drug-release profile were evaluated via scanning electron microscopy and high performance liquid chromatography. The coatings delivered pharmaceutically relevant amounts of tobramycin over a period of 12 days. To the best of our knowledge, this is the longest release period ever observed for a fast-loaded biomimetic implant coating. The presented approach could form the foundation for development of combination device/antibiotic delivery vehicles tailored to meet well-defined clinical needs while combating infections and ensuring fast implant in-growth.
Hoornenborg, Daniel; Sierevelt, Inger N; Spuijbroek, Joost A; Cheung, John; van der Vis, Harm M; Beimers, Lijkele; Haverkamp, Daniel
2017-09-11
An ongoing discussion is whether using a hydroxyapatite coating enhances the ingrowth and longevity of a femoral stem in total hip arthroplasty. The best way to predict speed of ingrowth and long-term outcome is by evaluating micromotion by radiostereometric analysis. To study the effect of hydroxyapatite (HA) coating on the migration of the SL-PLUS hip stem, we performed a prospective double blind randomised controlled trial comparing the early migration of the hydroxyapatite (HA)-coated SL-PLUS stem compared to the Standard (non-coated) SL-PLUS stem. 51 patients were randomly assigned to receive either an uncoated or a HA-coated femoral component during total hip replacement. RSA images were obtained direct postoperatively and at 6 weeks, 12 weeks, 6 months, 12 months and 24 months. HOOS scores were obtained preoperative and at final follow-up. RSA evaluation demonstrated significant migration up to 3 months postoperatively in both groups. After initial setting no significant migration was observed. There was no significant difference in migration between the HA-coated group and the uncoated group.Both Harris Hip Score (HHS) and HOOS domain scores (pain and ADL) significantly improved compared to baseline at 24 months after surgery in both treatment groups (p<0.001 for all comparisons). Improvement did not differ significantly between the 2 groups. At 2 years follow-up, the HA-coated and uncoated Zweymuller type, distal fitting stem do not show different migration patterns.
Evaluation of Antibacterial Effects of Silver-Coated Stainless Steel Orthodontic Brackets
Arash, Valiollah; Keikhaee, Fatemeh; Rajabnia, Ramazan; Khafri, Soraya; Tavanafar, Saeid
2016-01-01
Objectives: White spots and enamel demineralization around orthodontic brackets are among the most important complications resulting from orthodontic treatments. Since the antibacterial properties of metals and metallic particles have been well documented, the aim of this study was to assess the antibacterial effect of stainless steel orthodontic brackets coated with silver (Ag) particles. Materials and Methods: In this study, 40 standard metal brackets were divided into two groups of 20 cases and 20 controls. The brackets in the case group were coated with Ag particles using an electroplating method. Atomic force microscopy and scanning electron microscopy were used to assess the adequacy of the coating process. In addition, antibacterial tests, i.e., disk diffusion and direct contact tests were performed at three, six, 24, and 48 hours, and 15 and 30 days using a Streptococcus mutans strain. The results were analyzed using Student’s t-test and repeated measures ANOVA. Results: Analyses via SEM and AFM confirmed that excellent coatings were obtained by using an electroplating method. The groups exhibited similar behavior when subjected to the disk diffusion test in the agar medium. However, the bacterial counts of the Ag-coated brackets were, in general, significantly lower (P<0.001) than those of their non-coated counterparts. Conclusions: Brackets coated with Ag, via an electroplating method, exhibited antibacterial properties when placed in direct contact with Streptococcus mutans. This antibacterial effect persisted for 30 days after contact with the bacteria. PMID:27536328
Pan, Jialiang; Hu, Yuling; Liang, Tingan; Li, Gongke
2012-11-02
A novel and simple in-mold coating strategy was proposed for the preparation of uniform solid-phase microextraction (SPME) coatings. Such a strategy is based on the direct synthesis of the polymer coating on the surface of a solid fiber using a glass capillary as the mold. The capillary was removed and the polymer with well-controlled thickness could be coated on the silica fiber reproductively. Following the strategy, a new poly(acrylamide-co-ethylene glycol dimethacrylate) (poly(AM-co-EGDMA)) coating was prepared for the preconcentration of 24-epibrassinolide (24-epiBL) from plant matrix. The coating had the enrichment factor of 32 folds, and the extraction efficiency per unit thickness was 5 times higher than that of the commercial polydimethylsiloxane/divinylbenzene (PDMS/DVB) coating. A novel method based on SPME coupled with derivatization and large volume injection-high performance liquid chromatography (LVI-HPLC) was developed for the analysis of 24-epiBL. The linear range was 0.500-20.0 μg/L with the detection limit of 0.13 μg/L. The amounts of endogenous 24-epiBL in rape and sunflower breaking-wall pollens samples were determined with satisfactory recovery (77.8-104%) and reproducibility (3.9-7.9%). The SPME-DE/LVI-HPLC method is rapid, reliable, convenient and applicable for complicated plant samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Petersen, Svea; Kaule, Sebastian; Stein, Florian; Minrath, Ingo; Schmitz, Klaus-Peter; Kragl, Udo; Sternberg, Katrin
2013-10-01
Drug-coated balloons (DCB), which have emerged as therapeutic alternative to drug-eluting stents in percutaneous cardiovascular intervention, are well described with regard to clinical efficiency and safety within a number of clinical studies. In vitro studies elucidating the correlation of coating method and composition with DCB performance are however rare but considered important for the understanding of DCB requirements and the improvement of established DCB. In this context, we evaluated the applicability of a pipetting, dip-coating, and spray-coating process for the establishment of DCB based on paclitaxel (PTX) and the ionic liquid cetylpyridinium salicylate (Cetpyrsal) as novel innovative additive in three different compositions. Among tested methods and compositions, the pipetting process with 50 wt.% PTX resulted in most promising coatings as drug load was less controllable by the other processes and higher PTX contents led to considerable drug crystallization, as visualized by electron microscopy, accelerating PTX loss during short-term elution. Applying these conditions, homogeneous coatings could be applied on balloon catheter, whose simulated use in an in vitro vessel model revealed percental drug losses of 36 and 28% during transit and percental drug transfers of 12 and 40% under expansion for coatings applied in expanded and folded balloon condition, respectively. In comparison to literature values, these results support the high potential of Cetpyrsal as novel DCB matrix regarding low drug loss and efficient drug transfer. © 2013.
Thick resist for MEMS processing
NASA Astrophysics Data System (ADS)
Brown, Joe; Hamel, Clifford
2001-11-01
The need for technical innovation is always present in today's economy. Microfabrication methods have evolved in support of the demand for smaller and faster integrated circuits with price performance improvements always in the scope of the manufacturing design engineer. The dispersion of processing technology spans well beyond IC fabrication today with batch fabrication and wafer scale processing lending advantages to MEMES applications from biotechnology to consumer electronics from oil exploration to aerospace. Today the demand for innovative processing techniques that enable technology is apparent where only a few years ago appeared too costly or not reliable. In high volume applications where yield and cost improvements are measured in fractions of a percent it is imperative to have process technologies that produce consistent results. Only a few years ago thick resist coatings were limited to thickness less than 20 microns. Factors such as uniformity, edge bead and multiple coatings made high volume production impossible. New developments in photoresist formulation combined with advanced coating equipment techniques that closely controls process parameters have enable thick photoresist coatings of 70 microns with acceptable uniformity and edge bead in one pass. Packaging of microelectronic and micromechanical devices is often a significant cost factor and a reliability issue for high volume low cost production. Technologies such as flip- chip assembly provide a solution for cost and reliability improvements over wire bond techniques. The processing for such technology demands dimensional control and presents a significant cost savings if it were compatible with mainstream technologies. Thick photoresist layers, with good sidewall control would allow wafer-bumping technologies to penetrate the barriers to yield and production where costs for technology are the overriding issue. Single pass processing is paramount to the manufacturability of packaging technology. Uniformity and edge bead control defined the success of process implementation. Today advanced packaging solutions are created with thick photoresist coatings. The techniques and results will be presented.
Aesthetic coatings for steel bridge components.
DOT National Transportation Integrated Search
2013-11-01
The effectiveness of aesthetic coating systems for steel bridges was studied. Twelve 2-coat, 3-coat, and duplex : coating systems were selected and subjected to a series of accelerated weathering and mechanical tests to : determine their performance....
NASA Technical Reports Server (NTRS)
Zhu, Dongming
2015-01-01
Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is a key to enable the applications of the envisioned 2700-3000F EBC - CMC systems to help achieve next generation engine performance and durability goals. This paper will primarily address the performance requirements and design considerations of environmental barrier coatings for turbine engine applications. The emphasis is placed on current NASA candidate environmental barrier coating systems for SiCSiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. The efforts have been also directed to developing prime-reliant, self-healing 2700F EBC bond coat; and high stability, lower thermal conductivity, and durable EBC top coats. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, cyclic durability, erosion-impact resistance, and long-term system performance will be described. The research and development opportunities for turbine engine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be discussed.
Wang, Sibo; Ren, Zheng; Song, Wenqiao; ...
2015-04-24
Here, a hydrothermal strategy combined with colloidal deposition synthesis was successfully used to grow ZnO/perovskite (LaBO 3, B=Mn, Co, Ni) core-shell nanorod arrays within three dimensional (3-D) honeycomb cordierite substrates. A facile sonication assisted colloidal wash coating process is able to coat a uniformly dispersed perovskite nanoparticles onto the large scale ZnO nanorod arrays rooted on the channel surfaces of the 3D cordierite substrate achieved by hydrothermal synthesis. Compared to traditional wash-coated perovskite catalysts, an enhanced catalytic performance was observed for propane oxidation with 25°C lower light-off temperature than wash-coated perovskite catalyst of similar LaMnO 3 loading (4.3mg). Temperature programmedmore » reduction and desorption under H 2 and O 2 atmosphere, respectively, were used to study the reducibility and oxygen activity of these core-shell nanorod arrays based monolithic catalysts, revealing a catalytic activity sequence of LaCoO 3>LaMnO 3>La 2NiO 4 at the initial stage of catalytic reaction. The good dispersion and size control in La-based perovskite nanoparticles and their interfaces to ZnO nanorod arrays support may contribute to the enhancement of catalytic performance. Lastly, this work may provide a new type of Pt-group metals (PGM) free catalysts with improved catalytic performance for hydrocarbon oxidations at low temperatures.« less
Paiva, Jose Mario; Fox-Rabinovich, German; Locks Junior, Edinei; Stolf, Pietro; Seid Ahmed, Yassmin; Matos Martins, Marcelo; Bork, Carlos; Veldhuis, Stephen
2018-02-28
In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,Al)N deposited by physical vapor deposition (PVD) have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel) by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC) and one central rotating cathode (CERC). The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM) and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si₃N₄ nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds.
Liu, Ling; Li, Nianfeng; Lei, Ting; Li, Kaimo; Zhang, Yangde
2014-01-01
Background Magnesium (Mg) alloy is a metal-based biodegradable material that has received increasing attention in the field of clinical surgery, but it is currently seldom used in intestinal anastomosis. This study was conducted to comprehensively assess a ternary magnesium (Mg)-zinc (Zn)-strontium (Sr) alloy’s biological superiorities as a preparation material for intestinal anastomosis ring. Material/Methods Mouse L-929 fibroblasts were cultured with Mg-Zn-Sr alloy extract and compared with both positive (0.64% phenol) and negative (original broth culture) controls. The cell morphology of different groups was examined using microscopy, and a cytotoxicity assessment was performed. Fresh anticoagulated human blood was mixed with Mg-Zn-Sr alloy extract and compared with both positive (distilled water) and negative (normal saline) controls. The absorbance of each sample at 570 nm was used to calculate the Mg-Zn-Sr alloy hemolysis ratio in order to test the Mg alloy’s blood compatibility. Bacterial cultures of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus were added to Mg-Zn-Sr alloy block samples and compared with positive (Ceftazidime), negative (316LSS stainless steel), and blank controls. The broth cultures were sampled to compare their bacterial colony counts so as to evaluate the antibacterial properties of the Mg-Zn-Sr alloy. The Mg-Zn-Sr alloy was surface-coated with a layer of poly(lactic-co-glycolic acid) carrying everolimus. The surface morphology and degradability of the coating were examined so as to demonstrate feasibility of coating, which can release the drug evenly. Results The experiments proved that Mg-Zn-Sr alloy has good biocompatible, antibacterial, and drug-loaded coating performances, which are lacking in existing intestinal anastomosis devices/materials. Conclusions The Mg-Zn-Sr alloy increases biocompatibility, and yields a safer and better therapeutic effect; therefore, it is a novel biomaterial that is feasible for use when preparing biodegradable intestinal anastomosis rings. PMID:24957079
Environmentally benign sol-gel antifouling and foul-releasing coatings.
Detty, Michael R; Ciriminna, Rosaria; Bright, Frank V; Pagliaro, Mario
2014-02-18
Biofouling on ships and boats, characterized by aquatic bacteria and small organisms attaching to the hull, is an important global issue, since over 80000 tons of antifouling paint is used annually. This biofilm, which can form in as little as 48 hours depending on water temperature, increases drag on watercraft, which greatly reduces their fuel efficiency. In addition, biofouling can lead to microbially induced corrosion (MIC) due to H2S formed by the bacteria, especially sulfate-reducing bacteria. When the International Maritime Organization (IMO) international convention banned the use of effective but environmentally damaging coatings containing tributyl tin in 2008, the development of clean and effective antifouling systems became more important than ever. New nonbiocidal coatings are now in high demand. Scientists have developed new polymers, materials, and biocides, including new elastomeric coatings that they have obtained by improving the original silicone (polydimethylsiloxane) formulation patented in 1975. However, the high cost of silicones, especially of fluoropolymer-modified silicones, has generally prevented their large-scale diffusion. In 2009, traditional antifouling coatings using cuprous oxide formulated in copolymer paints still represented 95% of the global market volume of anti-fouling paints. The sol-gel nanochemistry approach to functional materials has emerged as an attractive candidate for creating low fouling surfaces due to the unique structure and properties of silica-based coatings and of hybrid inorganic-organic silicas in particular. Sol-gel formulations easily bind to all types of surfaces, such as steel, fiberglass, aluminum, and wood. In addition, they can cure at room temperature and form thin glassy coatings that are markedly different from thick silicone elastomeric foul-releasing coatings. Good to excellent performance against biofouling, low cure temperatures, enhanced and prolonged chemical and physical stability, ease of application, and the waterborne nature of sol-gel coatings all support the diffusion of these paints to efficiently reduce the accumulation of fouling layers on valued surfaces immersed in marine or fluvial waters. Furthermore, sol-gel glassy coatings are transparent and can be effectively applied to optical devices, windows, and solar panels used in lake, fluvial, or marine environments. Sol-gel technology is eminently versatile, and the first generation sol-gel paints have already shown good performance. Even so, vast opportunities still exist for chemists to develop novel sol-gel derived coatings to both prevent biofouling and enhance the hydrodynamic properties of boat and ship hulls. Moreover, researchers have prepared and applied multifunctional sol-gel coatings providing protection against both biofouling and corrosion. They have tested these in the marine environment with good preliminary results. In this Account, we discuss some of our new strategies for the controlled functionalization of surfaces for the development of efficient antifouling and foul-releasing systems and summarize the main achievements with biocidal and nonbiocidal sol-gel coatings. We conclude by giving insight into the marine coatings and sol-gel products markets, providing arguments to justify our conclusion that the sol-gel coatings technology is now a mature platform for the development of economically viable and environmentally friendly antifouling and foul-release formulations of enhanced performance.
40 CFR 63.3531 - How do I demonstrate initial compliance with the emission limitations?
Code of Federal Regulations, 2010 CFR
2010-07-01
... without add-on controls option for any coating operation, for any group of coating operations within a subcategory or coating type segment, or for all of the coating operations within a subcategory or coating type... option, the coating operation or group of coating operations must meet the applicable emission limit in...
Ma, Huilian; Winslow, Charles J; Logan, Bruce E
2008-04-01
Coatings developed to reduce biofouling of engineered surfaces do not always perform as expected based on their native properties. One reason is that a relatively small number of highly adhesive sites, or the heterogeneity of the coated surface, may control the overall response of the system to initial bacterial deposition. It is shown here using an approach we call spectral force analysis (SFA), based on force volume imaging of the surface with atomic force microscopy, that the behavior of surfaces and coatings can be better understood relative to bacterial adhesion. The application of vapor deposited TiO(2) metal oxide increased bacterial and colloid adhesion, but coating the surface with silica oxide reduced adhesion in a manner consistent with SFA based on analysis of the "stickiest" sites. Application of a TiO(2)-based paint to a surface produced a relatively non-fouling surface. Addition of a hydrophilic layer coating to this surface should have decreased fouling. However, it was observed that this coating actually increased fouling. Using SFA it was shown that the reason for the increased adhesion of bacteria and particles to the hydrophilic layer was that the surface produced by this coating was highly heterogeneous, resulting in a small number of sites that created a stickier surface. These results show that while it is important to manufacture surfaces with coatings that are relatively non-adhesive to bacteria, it is also essential that these coatings have a highly uniform surface chemistry.
Biodegradable tocopherol acetate as a drug carrier to prevent ureteral stent-associated infection.
Elayarajah; Rajendran, R; Venkatrajah; Sreekumar, Sweda; Sudhakar, Asa; Janiga; Sreekumar, Soumya
2011-03-01
Biomaterial-centred bacterial infections present common and challenging complications with medical implants like ureteral stent which provide substratum for the biofilm formation. Hence the purpose of this study is to make antibacterial stent surface with biodegradable polymer (tocopherol acetate) and anti-infective agents (norfloxacin and metronidazole) using a modified dip-coating procedure. This is done by impregnating the stent pieces in the anti-infective solution (a mixture of norfloxacin-metronidazole and polymer) for uniform surface coating (drug-carrier-coated stents). After coating, agar diffusion test was performed as qualitative test to find out the sensitivity of coated stents against the clinical isolates, Staphylococcus epidermidis and Escherichia coli. Quantitative test was measured by calculating the numbers of adhered bacteria on coated and uncoated stents by incubating the stent pieces in artificial urine. Difference in the number of viable bacteria adhered on the surface of coated and uncoated stents were statistically calculated using chi square test with p < 0.05 considered significant. The stent colonising ability of Staphylococcus epidermidis and Escherichia coli in a controlled environment chamber was determined using two-challenge dose of the isolates by in vitro challenge test. In qualitative test, the zone of inhibition around the coated stents showed sensitivity against the clinical isolates. In quantitative test, the number of adhered bacteria on the surface of coated stents was reduced to a significant level (p < 0.05). The polymer, tocopherol acetate is highly biodegradable in nature. Due to its degrading ability in body tissues, it releases the anti-infective drugs at a constant and sustained rate.
TiN coated aluminum electrodes for DC high voltage electron guns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys
Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloymore » (Ti-6AI-4V). Following gas conditioning, each TiN-coated aluminum electrode reached -225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ~22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.« less
TiN coated aluminum electrodes for DC high voltage electron guns
Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; ...
2015-05-01
Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloymore » (Ti-6AI-4V). Following gas conditioning, each TiN-coated aluminum electrode reached -225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ~22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes.« less
Thermal and Environmental Barrier Coatings for Advanced Propulsion Engine Systems
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Miller, Robert A.
2004-01-01
Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. For future high performance engines, the development of advanced ceramic barrier coating systems will allow these coatings to be used to simultaneously increase engine operating temperature and reduce cooling requirements, thereby leading to significant improvements in engine power density and efficiency. In order to meet future engine performance and reliability requirements, the coating systems must be designed with increased high temperature stability, lower thermal conductivity, and improved thermal stress and erosion resistance. In this paper, ceramic coating design and testing considerations will be described for high temperature and high-heat-flux engine applications in hot corrosion and oxidation, erosion, and combustion water vapor environments. Further coating performance and life improvements will be expected by utilizing advanced coating architecture design, composition optimization, and improved processing techniques, in conjunction with modeling and design tools.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.
2012-01-01
Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future rotorcraft engine higher fuel efficiency and lower emission goals. For thermal barrier coatings designed for rotorcraft turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability, because the rotorcraft are often operated in the most severe sand erosive environments. Advanced low thermal conductivity and erosion-resistant thermal barrier coatings are being developed, with the current emphasis being placed on thermal barrier coating toughness improvements using multicomponent alloying and processing optimization approaches. The performance of the advanced thermal barrier coatings has been evaluated in a high temperature erosion burner rig and a laser heat-flux rig to simulate engine erosion and thermal gradient environments. The results have shown that the coating composition and architecture optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic oxidation durability
Development of YAG:Dy Thermographic Phosphor Coatings for Turbine Engine Applications
NASA Technical Reports Server (NTRS)
Eldridge, J. I.; Jenkins, T. P.; Allison, S. W.; Wolfe, D. E.; Jordan, E. H.
2012-01-01
The selection and development of thermographic phosphor coatings were pursued to meet the objective of demonstrating luminescence-decay-based temperature measurements up to 1300C on the surface of a vane in an operating demonstrator turbine engine. To meet this objective, YAG:Dy was selected based on the desirable luminescence performance observed for YAG:Dy powder: (1) excellent temperature sensitivity and intensity at operating turbine engine temperatures, (2) an emission peak at the relatively short wavelength of 456 nm, where the interference from background blackbody radiation is fairly low, and (3) its nearly single exponential decay which makes for a simple, reliable temperature calibration. However, implementation of YAG:Dy for surface temperature measurements required application of YAG:Dy as a coating onto the surface of a superalloy component with a preexisting yttria-stabilized zirconia (YSZ) thermal barrier coating (TBC). An inherent dilemma in producing a YAG:Dy coating is that coating processing is constrained to be performed at temperatures below (less than 1200C) what is considered safe for the superalloy component, much lower than temperatures used to produce the high quality crystalline powder. Therefore, YAG:Dy coatings tend to exhibit lower luminescence performance compared to well prepared YAG:Dy powder, and the luminescence performance of the coating will depend on the method of coating deposition. In this presentation, the luminescence performance of YAG:Dy coatings prepared by the different methods of (1) application of a binder-based YAG:Dy-containing paint, (2) solution precursor plasma spray (SPPS), and (3) electron-beam physical vapor deposition (EB-PVD) and the effect of post-deposition heat treatments will be discussed.
Accelerated Test Method for Corrosion Protective Coatings Project
NASA Technical Reports Server (NTRS)
Falker, John; Zeitlin, Nancy; Calle, Luz
2015-01-01
This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as accurately and reliably as current long-term atmospheric exposure tests. This new accelerated test method will shorten the time needed to evaluate the corrosion protection performance of coatings for NASA's critical ground support structures. Lifetime prediction for spaceport structure coatings has a 5-year qualification cycle using atmospheric exposure. Current accelerated corrosion tests often provide false positives and negatives for coating performance, do not correlate to atmospheric corrosion exposure results, and do not correlate with atmospheric exposure timescales for lifetime prediction.
A novel surface modification approach for protein and cell microarrays
NASA Astrophysics Data System (ADS)
Kurkuri, Mahaveer D.; Driever, Chantelle; Thissen, Helmut W.; Voelcker, Nicholas H.
2007-01-01
Tissue engineering and stem cell technologies have led to a rapidly increasing interest in the control of the behavior of mammalian cells growing on tissue culture substrates. Multifunctional polymer coatings can assist research in this area in many ways, for example, by providing low non-specific protein adsorption properties and reactive functional groups at the surface. The latter can be used for immobilization of specific biological factors that influence cell behavior. In this study, glass slides were coated with copolymers of glycidyl methacrylate (GMA) and poly(ethylene glycol) methacrylate (PEGMA). The coatings were prepared by three different methods based on dip and spin coating as well as polymer grafting procedures. Coatings were characterized by X-ray photoelectron spectroscopy, surface sensitive infrared spectroscopy, ellipsometry and contact angle measurements. A fluorescently labelled protein was deposited onto reactive coatings using a contact microarrayer. Printing of a model protein (fluorescein labeled bovine serum albumin) was performed at different protein concentrations, pH, temperature, humidity and using different micropins. The arraying of proteins was studied with a microarray scanner. Arrays printed at a protein concentration above 50 μg/mL prepared in pH 5 phosphate buffer at 10°C and 65% relative humidity gave the most favourable results in terms of the homogeneity of the printed spots and the fluorescence intensity.
NASA Astrophysics Data System (ADS)
Perez-Zúñiga, M. G.; Sánchez-Arévalo, F. M.; Hernández-Cordero, J.
2017-10-01
A simple way to enhance the activation of shape memory effects with light in a Ni-Ti alloy is demonstrated. Using polydimethylsiloxane-carbon nanopowder (PDMS+CNP) composites as coatings, the one-way shape memory effect (OWSME) of the alloy can be triggered using low power IR light from a laser diode. The PDMS+CNP coatings serve as photothermal materials capable to absorb light, and subsequently generate and dissipate heat in a highly efficient manner, thereby reducing the optical powers required for triggering the OWSME in the Ni-Ti alloy. Experimental results with a cantilever flexural test using both, bare Ni-Ti and coated samples, show that the PDMS+CNP coatings perform as thermal boosters, and therefore the temperatures required for phase transformation in the alloy can be readily obtained with low laser powers. It is also shown that the two-way shape memory effect (TWSME) can be set in the Ni-Ti alloy through cycling the TWSME by simply modulating the laser diode signal. This provides a simple means for training the material, yielding a light driven actuator capable to provide forces in the mN range. Hence, the use of photothermal coatings on Ni-Ti shape memory alloys may offer new possibilities for developing light-controlled smart actuators.
Computational design and experimental validation of new thermal barrier systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Shengmin
2015-03-31
The focus of this project is on the development of a reliable and efficient ab initio based computational high temperature material design method which can be used to assist the Thermal Barrier Coating (TBC) bond-coat and top-coat design. Experimental evaluations on the new TBCs are conducted to confirm the new TBCs’ properties. Southern University is the subcontractor on this project with a focus on the computational simulation method development. We have performed ab initio density functional theory (DFT) method and molecular dynamics simulation on screening the top coats and bond coats for gas turbine thermal barrier coating design and validationmore » applications. For experimental validations, our focus is on the hot corrosion performance of different TBC systems. For example, for one of the top coatings studied, we examined the thermal stability of TaZr 2.75O 8 and confirmed it’s hot corrosion performance.« less
Performance of Diffusion Aluminide Coatings Applied on Alloy CF8C-Plus at 800oC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Deepak; Dryepondt, Sebastien N; Zhang, Ying
2012-01-01
High performance cast stainless steel, CF8C-Plus, is a low cost alloy with prospective applications ranging from covers and casings of small and medium size gas turbines to turbocharger housing and manifolds in internal combustion engines. Diffusion aluminide coatings were applied on this alloy as a potential strategy for improved oxidation resistance, particularly in wet air and steam. In this paper the performance of the aluminide coatings evaluated by cyclic oxidation experiments in air containing 10 vol.% H2O at 800 C and conventional tension-compression low-cycle-fatigue tests in air at 800 C with a strain range of 0.5% is presented. The resultsmore » show that specimens coated by a chemical vapor deposition process provide better oxidation resistance than those coated by an Al-slurry coating process. The application of a coating by pack cementation reduced the fatigue life by 15%.« less
Epoxy-coated reinforcement : a historical performance review.
DOT National Transportation Integrated Search
1996-01-01
This report is a historical performance review of epoxy-coated reinforcement. The information in this report is presented in chronological order starting from the early 1970's, when the first bridge with epoxy-coated reinforcement was built, and endi...
Performance evaluation of seal coat materials and designs.
DOT National Transportation Integrated Search
2011-01-01
"This project presents an evaluation of seal coat materials and design method. The primary objectives of this research are 1) to evaluate seal coat performance : from various combinations of aggregates and emulsions in terms of aggregate loss; 2) to ...
Trajkovski, Branko; Petersen, Ansgar; Strube, Patrick; Mehta, Manav; Duda, Georg N
2012-09-01
Bone is one of the few tissues in the human body with high endogenous healing capacity. However, failure of the healing process presents a significant clinical challenge; it is a tremendous burden for the individual and has related health and economic consequences. To overcome such healing deficits, various concepts for a local drug delivery to bone have been developed during the last decades. However, in many cases these concepts do not meet the specific requirements of either surgeons who must use these strategies or individual patients who might benefit from them. We describe currently available methods for local drug delivery and their limitations in therapy. Various solutions for drug delivery to bone focusing on clinical applications and intra-operative constraints are discussed and drug delivery by implant coating is highlighted. Finally, a new set of design and performance requirements for intra-operatively customized implant coatings for controlled drug delivery is proposed. In the future, these requirements may improve approaches for local and intra-operative treatment of patients. Copyright © 2012 Elsevier B.V. All rights reserved.
Dávila-Aviña, Jorge E; Villa-Rodríguez, José A; Villegas-Ochoa, Mónica A; Tortoledo-Ortiz, Orlando; Olivas, Guadalupe I; Ayala-Zavala, J Fernando; González-Aguilar, Gustavo A
2014-10-01
This work evaluated the effect of carnauba and mineral oil coatings on the bioactive compounds and antioxidant capacity of tomato fruits (cv. "Grandela"). Carnauba and mineral oil coatings were applied on fresh tomatoes at two maturity stages (breaker and pink) over 28 day of storage at 10 °C was evaluated. Bioactive compound and antioxidant activity assays included total phenols, total flavonoids, ascorbic acid (ASA), lycopene, DPPH radical scavenging activity (%RSA), trolox equivalent antioxidant capacity (TEAC) and oxygen radical absorbance capacity assay (ORAC). The total phenolic, flavonoid and lycopene contents were significantly lower for coated fruit than control fruits. However, ascorbic acid content was highest in fruits treated with carnauba, followed by mineral oil coating and control fruits. The ORAC values were highest in breaker tomatoes coated with carnauba wax, followed by mineral oil-coated fruits and controls. No significant differences in ORAC values were observed in pink tomatoes. % RSA and TEAC values were higher for controls than for coated fruit. Edible coatings preserve the overall quality of tomatoes during storage without affecting the nutritional quality of fruit. We found that the physiological response to the coatings is in function of the maturity stage of tomatoes. The information obtained in this study support to use of edible coating as a safe and good alternative to preserve tomato quality, and that the changes of bioactive compounds and antioxidant activity of tomato fruits, was not negatively affected. This approach can be used by producers to preserve tomato quality.
High-Performance Molybdenum Coating by Wire–HVOF Thermal Spray Process
NASA Astrophysics Data System (ADS)
Tailor, Satish; Modi, Ankur; Modi, S. C.
2018-04-01
Coating deposition on many industrial components with good microstructural, mechanical properties, and better wear resistance is always a challenge for the thermal spray community. A number of thermal spray methods are used to develop such promising coatings for many industrial applications, viz. arc spray, flame spray, plasma, and HVOF. All these processes have their own limitations to achieve porous free, very dense, high-performance wear-resistant coatings. In this work, an attempt has been made to overcome this limitation. Molybdenum coatings were deposited on low-carbon steel substrates using wire-high-velocity oxy-fuel (W-HVOF; WH) thermal spray system (trade name HIJET 9610®). For a comparison, Mo coatings were also fabricated by arc spray, flame spray, plasma spray, and powder-HVOF processes. As-sprayed coatings were analyzed using x-ray diffraction, scanning electron microscopy for phase, and microstructural analysis, respectively. Coating microhardness, surface roughness, and porosity were also measured. Adhesion strength and wear tests were conducted to determine the mechanical and wear properties of the as-sprayed coatings. Results show that the coatings deposited by W-HVOF have better performance in terms of microstructural, mechanical, and wear resistance properties, in comparison with available thermal spray process (flame spray and plasma spray).
Material-Process-Performance Relationships for Roll-to-Roll Coated PEM Electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauger, Scott; Neyerlin, K.C.; Stickel, Jonathan
2017-04-26
Roll-to-roll (R2R) coating is the most economical and highest throughput method for producing fuel cell electrodes. R2R coating encompasses many different methodologies to create uniform films on a moving web substrate. Here we explore two coating methods, gravure and slot die, to understand the impacts of each on film uniformity and performance.
Benoit, M A; Mousset, B; Delloye, C; Bouillet, R; Gillard, J
1997-01-01
Plaster of Paris implants containing vancomycin (60 mg/g of carrier) were prepared in order to be used as local delivery system for the treatment of bone infections. The regulation of the release rate was performed by coating the carrier with a polylactide-co-glycolide polymer composed by 10% (w/w) polyglycolic acid and 90% (w/w) racemic poly (D,L-lactic acid). The release of the antibiotic from the biodegradable matrix was evaluated in vitro. From this investigation, it is clear that the drug elution depends on the coating depth. After a burst effect occurring on the first day of the experiment, therapeutic concentrations were measured during one week when uncoated implants were used. The coating allowed decrease of the burst effect and extended efficient release to more than five weeks when the implants were embedded with six layers (162 microns) of PLA45GA10. This delivery system was implanted into the femoral condyle of rabbits. It was shown that the in vivo release was also closely regulated by the coating depth. In all bone tissues (bone marrow and cortical bone) surrounding the pellets, the drug concentration exceeded the Minimum Inhibitory Concentration for the common causative organisms of bone infections (Staphylococcus aureus) for at least four weeks without inducing serum toxic levels. Due to its cheapness, facility of use and sterilization, biocompatibility and biodegradability, plaster of Paris coated with PLA45GA10 polymer giving a controlled release of vancomycin appears to be a promising sustained release delivery system of antibiotics for the treatment of bone and joint infections.
Edge coating apparatus with movable roller applicator for solar cell substrates
Pavani, Luca; Abas, Emmanuel
2012-12-04
A non-contact edge coating apparatus includes an applicator for applying a coating material on an edge of a solar cell substrate and a control system configured to drive the applicator. The control system may drive the applicator along an axis to maintain a distance with an edge of the substrate as the substrate is rotated to have the edge coated with a coating material. The applicator may include a recessed portion into which the edge of the substrate is received for edge coating. For example, the applicator may be a roller with a groove. Coating material may be introduced into the groove for application onto the edge of the substrate. A variety of coating materials may be employed with the apparatus including hot melt ink and UV curable plating resist.
A Study of Dip-Coatable, High-Capacitance Ion Gel Dielectrics for 3D EWOD Device Fabrication
Clement, Carlos E.; Jiang, Dongyue; Thio, Si Kuan; Park, Sung-Yong
2017-01-01
We present a dip-coatable, high-capacitance ion gel dielectric for scalable fabrication of three-dimensional (3D) electrowetting-on-dielectric (EWOD) devices such as an n × n liquid prism array. Due to the formation of a nanometer-thick electric double layer (EDL) capacitor, an ion gel dielectric offers two to three orders higher specific capacitance (c ≈ 10 μF/cm2) than that of conventional dielectrics such as SiO2. However, the previous spin-coating method used for gel layer deposition poses several issues for 3D EWOD device fabrication, particularly when assembling multiple modules. Not only does the spin-coating process require multiple repetitions per module, but the ion gel layer also comes in risks of damage or contamination due to handling errors caused during assembly. In addition, it was observed that the chemical formulation previously used for the spin-coating method causes the surface defects on the dip-coated gel layers and thus leads to poor EWOD performance. In this paper, we alternatively propose a dip-coating method with modified gel solutions to obtain defect-free, functional ion gel layers without the issues arising from the spin-coating method for 3D device fabrication. A dip-coating approach offers a single-step coating solution with the benefits of simplicity, scalability, and high throughput for deposition of high-capacitance gel layers on non-planar EWOD devices. An ion gel solution was prepared by combining the [EMIM][TFSI] ionic liquid and the [P(VDF-HFP)] copolymer at various wt % ratios in acetone solvent. Experimental studies were conducted to fully understand the effects of chemical composition ratios in the gel solution and how varying thicknesses of ion gel and Teflon layers affects EWOD performance. The effectiveness and potentiality of dip-coatable gel layers for 3D EWOD devices have been demonstrated through fabricating 5 × 1 arrayed liquid prisms using a single-step dip-coating method. Each prism module has been individually controlled to achieve spatial beam steering without the need for bulky mechanical moving parts. PMID:28772400
A Study of Dip-Coatable, High-Capacitance Ion Gel Dielectrics for 3D EWOD Device Fabrication.
Clement, Carlos E; Jiang, Dongyue; Thio, Si Kuan; Park, Sung-Yong
2017-01-05
We present a dip-coatable, high-capacitance ion gel dielectric for scalable fabrication of three-dimensional (3D) electrowetting-on-dielectric (EWOD) devices such as an n × n liquid prism array. Due to the formation of a nanometer-thick electric double layer (EDL) capacitor, an ion gel dielectric offers two to three orders higher specific capacitance ( c ≈ 10 μF/cm²) than that of conventional dielectrics such as SiO₂. However, the previous spin-coating method used for gel layer deposition poses several issues for 3D EWOD device fabrication, particularly when assembling multiple modules. Not only does the spin-coating process require multiple repetitions per module, but the ion gel layer also comes in risks of damage or contamination due to handling errors caused during assembly. In addition, it was observed that the chemical formulation previously used for the spin-coating method causes the surface defects on the dip-coated gel layers and thus leads to poor EWOD performance. In this paper, we alternatively propose a dip-coating method with modified gel solutions to obtain defect-free, functional ion gel layers without the issues arising from the spin-coating method for 3D device fabrication. A dip-coating approach offers a single-step coating solution with the benefits of simplicity, scalability, and high throughput for deposition of high-capacitance gel layers on non-planar EWOD devices. An ion gel solution was prepared by combining the [EMIM][TFSI] ionic liquid and the [P(VDF-HFP)] copolymer at various wt % ratios in acetone solvent. Experimental studies were conducted to fully understand the effects of chemical composition ratios in the gel solution and how varying thicknesses of ion gel and Teflon layers affects EWOD performance. The effectiveness and potentiality of dip-coatable gel layers for 3D EWOD devices have been demonstrated through fabricating 5 × 1 arrayed liquid prisms using a single-step dip-coating method. Each prism module has been individually controlled to achieve spatial beam steering without the need for bulky mechanical moving parts.
Performance Evaluation of a Commercial Polyurethane Coating in Marine Environment
NASA Astrophysics Data System (ADS)
Mobin, M.; Malik, A. U.; Al-Muaili, F.; Al-Hajri, M.
2012-07-01
A material evaluation study has been carried out to determine corrosion behavior of a commercial polyurethane coating system (Souplethane 5) in the marine environment. The coating system is solvent free, two-component polyurethane protective coating. The performance of the coating on steel and rebar concrete was evaluated by conducting different types of tests which include atmospheric exposure, immersion in 5% sodium chloride solution, exposure to splash zone in seawater, salt fog, sabkha soil burial, and electrochemical tests, which include potentiodynamic polarization and AC impedance measurements. Uncoated, coated, and coated scribed specimens were used in each study. In general, the coating showed good corrosion resistance in marine environment. However, the coated samples, when subjected to break under applied compressive load, showed partial or complete detachment from the substrate, e.g., steel and rebar concrete. This appears to be the major drawback of the coating while applying on steel and concrete structures.
Jones, V C; Barton, D C; Auger, D D; Hardaker, C; Stone, M H; Fisher, J
2001-01-01
A multidirectional pin-on-plate reciprocating machine was used to compare the wear performance of UHMWPE sliding against cast cobalt chrome (CoCr) plates that were either untreated or coated with Amorphous Diamond Like Carbon (ADLC). The test conditions were based on a 1/5 scale model representative of in vivo motion at the tibial counterfaces of unconstrained mobile bearing knees. The average +/- STERR wear rates were 13.78+/-1.06 mm3/Mcycles for the ADLC counterfaces and 0.504+/-0.12 mm3/Mcycles for the control CoCr counterfaces. All of the pins run on the ADLC counterfaces exhibited the same patterns of blistering along the central axis, and severe abrasion elsewhere to the extent that all of the original machining marks were removed after just one week of testing. The average value of friction coefficient was 0.24 for the ADLC counterfaces and 0.073 for the control CoCr counterfaces. The factor of 3.5 increase was statistically significant at p < 0.05. In the tribological evaluation of ADLC coatings for tibial trays in mobile bearing knees, this study shows that this specific Physical Vapour Deposition (PVD) ADLC showed significantly poorer frictional and wear performance than uncoated surfaces which was sufficient to negate any potential benefits of improved resistance to third body damage.
Optical property degradation of anodic coatings in the Space Station low earth orbit
NASA Technical Reports Server (NTRS)
David, Kaia E.; Babel, Hank W.
1992-01-01
The anodic coatings and optical properties to be used for passive thermal control of the SSF are studied. Particular attention is given to the beginning-of-life optical properties for aluminum alloys suitable for structural and radiator applications, the statistical variation in the beginning-of-life properties, and estimates of the end-of-life properties of the alloys based on ultraviolet radiation testing and flight test results. It is concluded that anodic coatings can be used for thermal control of long life, low earth orbit spacecraft. Some use restrictions are defined for specific cases. Anodic coatings have been selected as baseline thermal control coating for large portions of the SSF.
Khalaf, Salah; Ariffin, Zaihan; Husein, Adam; Reza, Fazal
2015-07-01
This study aimed to compare the surface roughness of maxillofacial silicone elastomers fabricated in noncoated and coated gypsum materials. This study was also conducted to characterize the silicone elastomer specimens after surfaces were modified. A gypsum mold was coated with clear acrylic spray. The coated mold was then used to produce modified silicone experimental specimens (n = 35). The surface roughness of the modified silicone elastomers was compared with that of the control specimens, which were prepared by conventional flasking methods (n = 35). An atomic force microscope (AFM) was used for surface roughness measurement of silicone elastomer (unmodified and modified), and a scanning electron microscope (SEM) was used to evaluate the topographic conditions of coated and noncoated gypsum and silicone elastomer specimens (unmodified and modified) groups. After the gypsum molds were characterized, the fabricated silicone elastomers molded on noncoated and coated gypsum materials were evaluated further. Energy-dispersive X-ray spectroscopy (EDX) analysis of gypsum materials (noncoated and coated) and silicone elastomer specimens (unmodified and modified) was performed to evaluate the elemental changes after coating was conducted. Independent t test was used to analyze the differences in the surface roughness of unmodified and modified silicone at a significance level of p < 0.05. Roughness was significantly reduced in the silicone elastomers processed against coated gypsum materials (p < 0.001). The AFM and SEM analysis results showed evident differences in surface smoothness. EDX data further revealed the presence of the desired chemical components on the surface layer of unmodified and modified silicone elastomers. Silicone elastomers with lower surface roughness of maxillofacial prostheses can be obtained simply by coating a gypsum mold. © 2014 by the American College of Prosthodontists.
NASA Astrophysics Data System (ADS)
Li, Hao
In SiC/SiC ceramic matrix composites, toughness is obtained by adding a fiber coating, which provides a weak interface for crack deflection and debonding between the fiber and the matrix. However, the most commonly used fiber coatings, carbon and boron nitride, are unstable in oxidative environments. In the present study, the feasibility of using a chemically vapor deposited zirconia (CVD-ZrO2) fiber coating as an oxidation-resistant interphase for SiC/SiC composites was investigated. A study of morphological evolution in the CVD-ZrO2 coating suggested that a size-controlled displacive phase transformation from tetragonal ZrO2 ( t-ZrO2) to monoclinic ZrO2 (m-ZrO 2) was the key mechanism responsible for the weak interface behavior exhibited by the ZrO2 coating. It appeared that a low oxygen partial pressure in the CVD reactor chamber was essential for the nucleation of t-ZrO2 and therefore was responsible for the delamination behavior. With this understanding of the weak interface mechanism, minicomposite specimens containing various ZrO2 fiber coating morphologies were fabricated and tested. A fractographic analysis showed that in-situ fiber strength and minicomposite failure loads were strongly dependent on the phase contents and microstructure of the ZrO2 coating. We determined that an optimum microstructure of the ZrO2 coating should contain a predelaminated interface surrounded by a dense outer layer. The outer layer was needed to protect the fiber from degradation during the subsequent SiC matrix infiltration procedure. A preliminary tensile stress-rupture study indicated that the ZrO2 coating exhibited promising performance in terms of providing the weak interface behavior and maintaining the thermal and oxidative stability at elevated temperatures.
Bonin, L; Bains, N; Vitry, V; Cobley, A J
2017-05-01
The effect of ultrasound on the properties of Nickel-Boron (NiB) coatings was investigated. NiB coatings were fabricated by electroless deposition using either ultrasonic or mechanical agitation. The deposition of Ni occurred in an aqueous bath containing a reducible metal salt (nickel chloride), reducing agent (sodium borohydride), complexing agent (ethylenediamine) and stabilizer (lead tungstate). Due to the instability of the borohydride in acidic, neutral and slightly alkaline media, pH was controlled at pH 12±1 in order to avoid destabilizing the bath. Deposition was performed in three different configurations: one with a classical mechanical agitation at 300rpm and the other two employing ultrasound at a frequency of either 20 or 35kHz. The microstructures of the electroless coatings were characterized by a combination of optical Microscopy and Scanning Electron Microscope (SEM). The chemistry of the coatings was determined by ICP-AES (Inductively Coupled Plasma - Atomic Emission Spectrometry) after dissolution in aqua regia. The mechanical properties of the coatings were established by a combination of roughness measurements, Vickers microhardness and pin-on-disk tribology tests. Lastly, the corrosion properties were analysed by potentiodynamic polarization. The results showed that low frequency ultrasonic agitation could be used to produce coatings from an alkaline NiB bath and that the thickness of coatings obtained could be increased by over 50% compared to those produced using mechanical agitation. Although ultrasonic agitation produced a smoother coating and some alteration of the deposit morphology was observed, the mechanical and corrosion properties were very similar to those found when using mechanical agitation. Copyright © 2017 Elsevier B.V. All rights reserved.
193-nm multilayer imaging systems
NASA Astrophysics Data System (ADS)
Meador, James D.; Holmes, Doug; DiMenna, William; Nagatkina, Mariya I.; Rich, Michael D.; Flaim, Tony D.; Bennett, Randy; Kobayashi, Ichiro
2003-06-01
This paper highlights the performance of new materials that have been developed for use in 193-nm trilayer microlithography. The products are embedded etch masking layers (EMLs) and bottom antireflective coatings (BARCs). Both coatings are spin applied from organic solvent(s) and then thermoset during a hot plate bake. The EMLs (middle layers) are imaging compatible with JSR, Sumitomo, and TOK 193-nm photoresists. Best-case trilayer film stacks have given 100-nm dense and semi-dense L/S. Plasma etching, selectivities and solution compatibility performance of the EMLs meet or exceed proposed product targets. In addition, the EMLs exhibit both solution and plasma etching properties that should lead to successful rework processes for photoresists. The multiplayer BARCs offer good thick film coating quality and contribute to excellent images when used in trilayer applications. Combining the EMLs, which are nearly optically transparent (k=0.04) at 193-nm, with the new trilayer BARCs results in outstanding Prolith simulated reflectance control. In one modeling example, reflectance is a flat line at 0.5% on five different substrates for BARC thicknesses between 300 and 700-nm.
In Vitro and In Vivo Evaluation of Zinc-Modified Ca–Si-Based Ceramic Coating for Bone Implants
Zheng, Xuebin; He, Dannong; Ye, Xiaojian; Wang, Meiyan
2013-01-01
The host response to calcium silicate ceramic coatings is not always favorable because of their high dissolution rates, leading to high pH within the surrounding physiological environment. Recently, a zinc-incorporated calcium silicate-based ceramic Ca2ZnSi2O7 coating, developed on a Ti-6Al-4V substrate using plasma-spray technology, was found to exhibit improved chemical stability and biocompatibility. This study aimed to investigate and compare the in vitro response of osteoblastic MC3T3-E1 cells cultured on Ca2ZnSi2O7 coating, CaSiO3 coating, and uncoated Ti-6Al-4V titanium control at cellular and molecular level. Our results showed Ca2ZnSi2O7 coating enhanced MC3T3-E1 cell attachment, proliferation, and differentiation compared to CaSiO3 coating and control. In addition, Ca2ZnSi2O7 coating increased mRNA levels of osteoblast-related genes (alkaline phosphatase, procollagen α1(I), osteocalcin), insulin-like growth factor-I (IGF-I), and transforming growth factor-β1 (TGF-β1). The in vivo osteoconductive properties of Ca2ZnSi2O7 coating, compared to CaSiO3 coating and control, was investigated using a rabbit femur defect model. Histological and histomorphometrical analysis demonstrated new bone formation in direct contact with the Ca2ZnSi2O7 coating surface in absence of fibrous tissue and higher bone-implant contact rate (BIC) in the Ca2ZnSi2O7 coating group, indicating better biocompatibility and faster osseointegration than CaSiO3 coated and control implants. These results indicate Ca2ZnSi2O7 coated implants have applications in bone tissue regeneration, since they are biocompatible and able to osseointegrate with host bone. PMID:23483914
In vitro and in vivo evaluation of zinc-modified ca-si-based ceramic coating for bone implants.
Yu, Jiangming; Li, Kai; Zheng, Xuebin; He, Dannong; Ye, Xiaojian; Wang, Meiyan
2013-01-01
The host response to calcium silicate ceramic coatings is not always favorable because of their high dissolution rates, leading to high pH within the surrounding physiological environment. Recently, a zinc-incorporated calcium silicate-based ceramic Ca2ZnSi2O7 coating, developed on a Ti-6Al-4V substrate using plasma-spray technology, was found to exhibit improved chemical stability and biocompatibility. This study aimed to investigate and compare the in vitro response of osteoblastic MC3T3-E1 cells cultured on Ca2ZnSi2O7 coating, CaSiO3 coating, and uncoated Ti-6Al-4V titanium control at cellular and molecular level. Our results showed Ca2ZnSi2O7 coating enhanced MC3T3-E1 cell attachment, proliferation, and differentiation compared to CaSiO3 coating and control. In addition, Ca2ZnSi2O7 coating increased mRNA levels of osteoblast-related genes (alkaline phosphatase, procollagen α1(I), osteocalcin), insulin-like growth factor-I (IGF-I), and transforming growth factor-β1 (TGF-β1). The in vivo osteoconductive properties of Ca2ZnSi2O7 coating, compared to CaSiO3 coating and control, was investigated using a rabbit femur defect model. Histological and histomorphometrical analysis demonstrated new bone formation in direct contact with the Ca2ZnSi2O7 coating surface in absence of fibrous tissue and higher bone-implant contact rate (BIC) in the Ca2ZnSi2O7 coating group, indicating better biocompatibility and faster osseointegration than CaSiO3 coated and control implants. These results indicate Ca2ZnSi2O7 coated implants have applications in bone tissue regeneration, since they are biocompatible and able to osseointegrate with host bone.
The effect of the coating layer thickness on VOC extraction performance of a ceramic polymer composite membrane has been investigated. It was found, under experimental condiitons representing typical field operation, the overall mass transfer rates of feed components were control...
Magnetite Nanoparticles Coated with Rifampicin and Chlortetracycline for Drug Delivery Applications
NASA Astrophysics Data System (ADS)
Nǎdejde, Claudia; Ciurlicǎ, Ecaterina Foca-nici; Creangǎ, Dorina; Cârlescu, Aurelian; Bǎdescu, Vasile
2010-12-01
Four types of biocompatible magnetic fluids based on superparamagnetic nanoparticles with Fe3O4 cores were functionalized with antibiotics (rifampicin or chlortetracycline) as potential candidates for in vivo biomedical applications, such as magnetically controlled drug delivery. The synthesis consisted in coprecipitation of iron oxide in basic, as well as in acid medium, followed by the dispersion of the resulted magnetite nanoparticles in aqueous solution containing the antibiotic. The chosen method to prepare the magnetite-core/drug-shell systems avoided intermediate organic coating of the magnetic nanoparticles. Comparative analysis of the rheological features of the aqueous magnetic fluid samples was performed. The structural features of the coated magnetic particles were investigated by X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and Vibrating Sample Magnetometry (VSM). Good crystallinity and adequate stability in time were evidenced. Drug delivery curves were spectrophotometrically provided.
2013-01-01
An intuitionistic method is proposed to design shadow masks to achieve thickness profile control for evaporation coating processes. The proposed method is based on the concept of the shadow matrix, which is a matrix that contains coefficients that build quantitive relations between shape parameters of masks and shadow quantities of substrate directly. By using the shadow matrix, shape parameters of shadow masks could be derived simply by solving a matrix equation. Verification experiments were performed on a special case where coating materials have different condensation characteristics. By using the designed mask pair with complementary shapes, thickness uniformities of better than 98% are demonstrated for MgF2 (m = 1) and LaF3 (m = 0.5) simultaneously on a 280 mm diameter spherical substrate with the radius curvature of 200 mm. PMID:24227996
NASA Astrophysics Data System (ADS)
Bai, Xiao
Hydroxyapatite [Ca10(PO4)6(OH) 2, HA] has been widely applied as a coating on various biomedical bone/dental implants to improve biocompatibility and bioactivity. It has been observed that primary reasons leading to implantation failure of commercial HA coated implants processed by plasma spraying are the poor mechanical properties of coatings and infections accompanied by implantation. It has been also reported an ideal coating should be able to stimulate new bone growth at the initial stage of implantation and stay stable both mechanically and chemically thereafter. This research has investigated a functionally graded hydroxyapatite (FGHA) coating that is capable of improving the stability of implants, facilitating recovery, and preventing infections after implantation. A series of FGHA coatings with incorporated Ag 0 ˜ 13.53 wt. % has been deposited onto Ti substrate using ion beam assisted deposition (IBAD) with in-situ heat treatment. The compositional, microstructural, mechanical, and biological properties of coatings have been analyzed via various tests. The relationship among processing parameters, coating properties and biological behaviors has been established and the processing parameters for processing FGHA coatings with/without incorporated Ag have been optimized. Microstructure observations of coating cross section via transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) for set temperature coatings deposited at 450°C ˜ 750°C reveals that in-situ substrate temperature is the primary factor controlling the crystallinity of the coatings. The microstructure observation of cross section via TEM/STEM for both FGHA coatings with/without incorporated Ag has shown that coatings are dense and have a gradually decreased crystallinity from substrate/coating interface to top surface. In particular, the interface has an atomically intermixed structure; the region near the interface has a columnar grain structure whereas the region near coating top surface is mostly amorphous. TEM/STEM observation of FGHA coating with incorporated Ag has also demonstrated that the metallic silver particles in size of 10 ˜ 50 nm distribute at the coating cross section throughout the coating thickness. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis have shown that coatings consist of HA and various calcium phosphate compounds. The pull off tests have shown that the average adhesion strength of FGHA coatings (both with and without Ag) to substrate are in the range of 83.44 +/- 5.71 ˜ 89.36 +/- 5.13 MPa. Further optical observation of pull off area of coating shows that no coating delamination is observed and epoxy failure is dominant, indicating a well-boned interface and a strong coating itself. It has been concluded that the high adhesion strength of coating to substrate is attributed to the atomic intermixed interface and dense structure of coating, which is resulted from the increased mobility of coating atoms at high substrate temperature under bombardment of assisted ion beam. Culture tests have shown a distinct increase in osteoblast cell attachment to FGHA surface after 24 hours culture test when compared to blank Ti controls. Both calcium and silver release tests of Ag-doped FGHA coatings have shown the release rate is high at the initial stage and it steadily decreases, which is the expected performance of FGHA coatings. Antibacterial test using S. aureus has revealed that Ag doped FGHA coatings show an inhibitory effect when compared to coating without Ag and blank Ti. In particular, with higher amounts of Ag in coatings, the inhibition of S. aureus is stronger. Cytotoxicity test indicates that the FGHA coating with the highest amounts of Ag shows a negative effect on the osteoblast response.
Siddique, Sabahuddin; Khanam, Jasmina; Bigoniya, Papiya
2010-09-01
The objective of this investigation was to prepare sustained release capsule containing coated matrix granules of metoprolol tartrate and to study its in vitro release and in vivo absorption. The design of dosage form was performed by choosing hydrophilic hydroxypropyl methyl cellulose (HPMC K100M) and hydrophobic ethyl cellulose (EC) polymers as matrix builders and Eudragit® RL/RS as coating polymers. Granules were prepared by composing drug with HPMC K100M, EC, dicalcium phosphate by wet granulation method with subsequent coating. Optimized formulation of metoprolol tartrate was formed by using 30% HPMC K100M, 20% EC, and ratio of Eudragit® RS/RL as 97.5:2.5 at 25% coating level. Capsules were filled with free flowing optimized granules of uniform drug content. This extended the release period upto 12 h in vitro study. Similarity factor and mean dissolution time were also reported to compare various dissolution profiles. The network formed by HPMC and EC had been coupled satisfactorily with the controlled resistance offered by Eudragit® RS. The release mechanism of capsules followed Korsemeyer-Peppas model that indicated significant contribution of erosion effect of hydrophilic polymer. Biopharmaceutical study of this optimized dosage form in rabbit model showed 10 h prolonged drug release in vivo. A close correlation (R(2) = 0.9434) was established between the in vitro release and the in vivo absorption of drug. The results suggested that wet granulation with subsequent coating by fluidized bed technique, is a suitable method to formulate sustained release capsules of metoprolol tartrate and it can perform therapeutically better than conventional immediate release dosage form.
Properties of AlF3 and LaF3 films at 193nm
NASA Astrophysics Data System (ADS)
Xue, Chunrong; Shao, Jianda
2010-10-01
In order to develop low loss, high-performance 193nm Fluoride HR mirrors and anti-reflection coatings, LaF3 and AlF3 materials, used for a single-layer coating, were deposited by a molybdenum boat evaporation process. Various microstructures that formed under different substrate temperatures and with deposition rates were investigated. The relation between these microstructures (including cross section morphology, surface roughness and crystalline structure), the optical properties (including refractive index and optical loss) and mechanical properties (stress) were investigated. Furthermore, AlF3 used as a low-index material and LaF3 used as a high-index material were designed and deposited for multilayer coatings. Transmittance, reflectance, stress, and the laser-induced damage threshold (LIDT) were studied. It is shown that AlF3 and LaF3 thin films, deposited on the substrate at a temperature of 300 °C, obtained good quality thin films with high transmittance and little optical loss at 193 nm. For multilayer coatings, the absorption mainly comes from LaF3. Based on these studies, The thickness of 193nm films was controled by a 1/3 baffle with pre-coating technology. the LaF3/AlF3 AR coantings and HR mirrors at 193nm were designed and deposited. Under the present experimental conditions, the reflectance of LaF3/AlF3 HR mirror is up to 96%, and its transmittance is 1.5%. the LaF3/AlF3 AR coanting's residual reflectance is less than 0.14%, and single-sided transmittance is 93.85%. To get a high-performance 193nm AR coating, super-polished substrate is the best choice.
Tribological performance of quaternary CrSiCN coatings under dry and lubricated conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenzo-Martin, C.; Ajayi, O.; Erdemir, A.
This paper presents an experimental study of friction and wear performance of quaternary CrSiCN coatings deposited on a hardened H-13 steel substrate by a plasma enhanced magnetron sputtering (PEMS) technique. Friction and wear tests were conducted with a reciprocating line contact between a hardened 4370 steel roller and coated and uncoated flat specimens under dry and lubricated conditions. The effects of coating thickness (1, 3.5 and 7.5 μm) on the mechanical properties, friction and wear performance were also assessed. In dry sliding, the friction of coated surfaces was about the same as for uncoated surfaces, except for the 1-μm coating,more » which had higher friction. Friction for coated surfaces under lubricated contact was in general higher than for uncoated surfaces. There was no measurable wear on any of the coated surfaces, under either dry or lubricated conditions. However, wear was higher on the steel roller counterface sliding against the coated surfaces, with the amount of wear proportional to the mating coating thickness. The effectiveness of formulated lubricant additives was also modified by the coating, resulting in major effects on friction and wear behavior. Finally, this reduction in lubricant additive efficacy is due to the fact that the additives were designed and optimized for ferrous surfaces.« less
Tribological performance of quaternary CrSiCN coatings under dry and lubricated conditions
Lorenzo-Martin, C.; Ajayi, O.; Erdemir, A.; ...
2017-06-15
This paper presents an experimental study of friction and wear performance of quaternary CrSiCN coatings deposited on a hardened H-13 steel substrate by a plasma enhanced magnetron sputtering (PEMS) technique. Friction and wear tests were conducted with a reciprocating line contact between a hardened 4370 steel roller and coated and uncoated flat specimens under dry and lubricated conditions. The effects of coating thickness (1, 3.5 and 7.5 μm) on the mechanical properties, friction and wear performance were also assessed. In dry sliding, the friction of coated surfaces was about the same as for uncoated surfaces, except for the 1-μm coating,more » which had higher friction. Friction for coated surfaces under lubricated contact was in general higher than for uncoated surfaces. There was no measurable wear on any of the coated surfaces, under either dry or lubricated conditions. However, wear was higher on the steel roller counterface sliding against the coated surfaces, with the amount of wear proportional to the mating coating thickness. The effectiveness of formulated lubricant additives was also modified by the coating, resulting in major effects on friction and wear behavior. Finally, this reduction in lubricant additive efficacy is due to the fact that the additives were designed and optimized for ferrous surfaces.« less
NASA Technical Reports Server (NTRS)
Patterson, W. J.
1976-01-01
The development of a methyl cellulose based coating system for control of electro-osmotic flow at the walls of electrophoresis cells is described. Flight electrophoresis columns were coated with this system, resulting in a flight set of six columns. In flight photography of MA-011 electrophoretic separations verified control of electro-osmotic flow.
Pixelated coatings and advanced IR coatings
NASA Astrophysics Data System (ADS)
Pradal, Fabien; Portier, Benjamin; Oussalah, Meihdi; Leplan, Hervé
2017-09-01
Reosc developed pixelated infrared coatings on detector. Reosc manufactured thick pixelated multilayer stacks on IR-focal plane arrays for bi-spectral imaging systems, demonstrating high filter performance, low crosstalk, and no deterioration of the device sensitivities. More recently, a 5-pixel filter matrix was designed and fabricated. Recent developments in pixelated coatings, shows that high performance infrared filters can be coated directly on detector for multispectral imaging. Next generation space instrument can benefit from this technology to reduce their weight and consumptions.
NASA Astrophysics Data System (ADS)
Wang, Jing; Liu, Song; Qin, Yukun; Chen, Xiaolin; Xing, Rong'e.; Yu, Huahua; Li, Kecheng; Li, Pengcheng
2017-09-01
Encapsulation of water-soluble nitrogen fertilizers by membranes can be used to control the release of nutrients to maximize the fertilization effect and reduce environmental pollution. In this research, we formulated a new double-coated controlled-release fertilizer (CRF) by using food-grade microcrystalline wax (MW) and marine polysaccharide derivatives (calcium alginate and chitosan-glutaraldehyde copolymer). The pellets of water-soluble nitrogen fertilizer were coated with the marine polysaccharide derivatives and MW. A convenient and eco-friendly method was used to prepare the CRF. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the morphology and composition of the products. The nitrogen-release properties were determined in water using UV-Vis spectrophotometry. The controlled-release properties of the fertilizer were improved dramatically after coating with MW and the marine polysaccharide derivatives. The results show that the double-coated CRFs can release nitrogen in a controlled manner, have excellent controlled-release features, and meet the European Standard for CRFs.
NASA Astrophysics Data System (ADS)
Cook, David James
The increased need for automotive weight reduction has necessitated the use of aluminum for engine blocks. Conventional aluminum alloys cannot survive the constant wear from a piston ring reciprocating on the surface. However, a wear resistant thermal spray coating can be applied on the internal surface of the cylinder bore, which has significant advantages over other available options. Thermal spray is a well-established process for depositing molten, semi-molten, or solid particles onto a substrate to form a protective coating. For this application, the two main challenges were obtaining good wear resistance, and achieving good adhesion. To design a system capable of producing a well-adhered, wear resistant coating for this high volume application it is necessary to identify the overall processing, structure, properties, and performance relationships. The results will demonstrate that very important relationships exist among particle characteristics, substrate conditions, and the properties of the final coating. However, it is the scientific studies to understand some of the process physics in these relationships that allow recognition of the critical processing conditions that need to be controlled to ensure a consistent, reliable thermal spray coating. In this investigation, it will be shown that the critical microstructural aspect of the coating that produced the required tribological properties was the presence of wuestite (FeO). It was found that by using a low carbon steel material with compressed air atomizing gas, it was possible to create an Fe/FeO structure that exhibited excellent tribological properties. This study will also show that traditional thermal spray surface preparation techniques were not ideal for this application, therefore a novel alternative approach was developed. The application of a flux to the aluminum surface prior to thermal spray promotes excellent bond strengths to non-roughened aluminum. Analysis will show that this flux strips the oxide from the aluminum and allows for chemical bonding of the NiAl coating to the aluminum via the formation of intermetallics. By developing processing, structure, property, and performance relationships for the full process, it was possible to design a complete coating process to succeed in this application. The determination of these relationships and the underlying process physics improves reliability and instills confidence in the process.
Reflection/suppression coatings for 900 - 1200 A radiation
NASA Technical Reports Server (NTRS)
Edelstein, Jerry
1989-01-01
The design and performance of multiple-layer, selective-reflection, selective-suppression coatings for the 900 - 1200 A band are described. These coatings are designed to optimize both high reflectivity at a desirable wavelength and low reflectivity at an undesirable wavelength. The minimum structure for a selective coating consists of a thin metal or metal oxide layer (50 - 150 A thickness) over an aluminum substrate protected with a semi-transparent dielectric (100 - 1000 A thickness). Predicted coating performance is strongly effected by varying the layer combination and thickness. A graphical method of optimizing the coating layer structure is developed. Aluminum, silicon, their oxides, and gold have been investigated as coating layer materials. A very simple coating with a 1026 to 1216 A reflectivity ratio greater than 100 was fabricated. Such reflection/suppression coatings may be of great utility to spaceborne EUV spectrographs.
NASA Astrophysics Data System (ADS)
Yıldız, Pınar Oǧuzhan
2017-04-01
The effects of chitosan coating enriched with cinnamon oil on proximate composition of rainbow trout (Oncorhynchus mykiss) during storage at 4°C was investigated. The treatments included the following: C1 (control samples), C2 (chitosan coating) and C3 (chitosan + 1 % [v/w] cinnamon EO added). The control and the coated fish samples were analysed for chemical (moisture, protein, lipid and ash) composition. The mean of moisture, protein, lipid and ash in the control samples (C1) were 70.3%, 20.1%, 2.6% and 1.2%, in coated samples (C2) 69.70%, 24.21%, 2.4% and 2.2% and coated+cinnamon oil samples (C3) 69.70%, 25.05%, 2.5% and 2.2%, respectively. Moisture and lipid contents in control groups were higher than other groups, but protein and ash contents were lower. Significant increases (p<0.05) in protein content were observed between samples, which subsequently decreased the moisture content of these samples.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-23
..., C R Associates, Syncreon, Robinson Solutions and Dupont Performance Coatings Fenton, MO; Amended... produce performance coating solutions for vehicles. The company reports that workers leased from DuPont Performance Coatings, a wholly-owned subsidiary of E.I. DuPont de Nemours Company, OEM, were employed on-site...
Chanard, Jacques; Lavaud, Sylvie; Maheut, Hervé; Kazes, Isabelle; Vitry, Fabien; Rieu, Philippe
2008-06-01
The AN69 ST haemodialysis membrane, a new membrane resulting from coating polyethyleneimine upon the polyacrylonitrile surface, binds heparin. In patients at risk of bleeding, a pilot study has demonstrated the efficient anticoagulant effect of this heparin-coated membrane. Study design. In chronic haemodialyzed patients, we evaluated whether this anticoagulant effect can be validated in a controlled, prospective, open study. Pragmatically, we tested the hypothesis of no difference of the massive clotting rate in two groups of patients haemodialyzed either with 50% reduced standard doses of nonfractionated heparin using the heparin-coated AN69 ST or with a full dose of heparin (100%) using another type of dialysis membrane that does not bind heparin. Secondary objectives included evaluation of partial clotting, changes in haemoglobin levels, erythropoietin consumption and dialyzer performances. One hundred and eighty-four patients were elected and 170 finally included in an 18-month follow-up study. They were allocated to one of the two arms of the study. In the heparin-reduced group (n = 85, mean age: 73 +/- 11 years), 12 472 sessions were performed after priming the AN69 ST dialyzer with 2 L of heparinized saline (5000 IU/L heparin) and using 50% reduced doses of previously administered heparin. In the control group with standard heparin (n = 85, mean age: 74 +/- 13 years), 14 154 sessions were analysed (NS), and mean heparin doses were 2718 +/- 1388 and 4800 +/- 1564 IU per session, respectively (P < 0.001). In the heparin-reduced group, massive clotting occurred in 1.4 per 1000 sessions, whereas it occurred in 1.6 per 1000 sessions in the standard heparin group (P < 0.05). Mild to moderate partial clotting in the venous drip chamber and in the dialyzer was evaluated in a subset of patients, on a visual scale. It was more frequent in the experimental group than in the control group (P < 0.001). Platelets, haemoglobin levels, erythropoietin needs and dialyzer performances remained unchanged in both groups. The global mean death rate was 16.8% per year and did not differ significantly between groups. The use of the heparin-coated AN69 ST membrane allows a 50% reduction of standard doses of nonfractionated heparin administration for routine haemo- dialysis without increasing the risk of massive clotting of the extracorporeal circuit. This result needs confirmation since massive clotting questions clinical practice and is team dependent.