Sample records for control coatings installed

  1. Radiation Control Coatings Installed on Federal Buildings at Tyndall Air Force Base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaba, R.L.; Petrie, T.W.

    1999-03-16

    The technical objectives of this CRADA comprise technology deployment and energy conservation efforts with the radiation control coatings industry and the utility sector. The results of this collaboration include a high-level data reporting, analysis and management system to support the deployment efforts. The technical objectives include successfully install, commission, operate, maintain and document the performance of radiation control coatings on roofs at Tyndall AFB and the Buildings Technology Center at the Oak Ridge National Laboratory; determine the life cycle savings that can be achieved by using radiation control coatings on entire roofs at Tyndall AFB, based on documented installed costmore » and operating maintenance costs with and without the coatings; determine if any specific improvements are required in the coatings before they can be successfully deployed in the federal sector; determine the most effective way to facilitate the widespread and rapid deployment of radiation control coatings in the federal sector; and clearly define any barriers to deployment.« less

  2. Improved corrosion control by coating in the splash zone and subsea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John, R.C.; VanHooff, W.

    1989-01-01

    The splash zone around offshore structures is without doubt one of nature's most hostile and corrosive environments. Apart from the wave impacts, plentiful supplies of oxygen, lack of cathodic protection, and the salt spray that continually wets and then dries upon objects, the region is difficult and sometimes dangerous to access. This article reviews the performance of two new offshore repair coatings recently installed on North Sea and Gulf of Mexico installations. The first coating, a reinforced heat-shrinkable sleeve, is designed to be installed over properly cleaned and dried steel surfaces. Suitable conditions for the application of this coating existmore » during low tide and calm weather when certain exposed sections of the splash zone are accessible. Alternatively, by using a special remote-controlled cofferdam chamber to create an artificial local environment, subsea coating application can proceed under ideal conditions. Cofferdam chamber installations are diver-free and can be made throughout the entire splash zone, even during rough weather. When a remote-controlled cofferdam is not available and repairs are needed in subsea or wet areas, diver assistance is usually required. The second coating system, a gel-based, diver-applied tape, has been developed specifically for such applications.« less

  3. 49 CFR 192.461 - External corrosion control: Protective coating.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... protective coating, whether conductive or insulating, applied for the purpose of external corrosion control... or damage from supporting blocks. (e) If coated pipe is installed by boring, driving, or other...

  4. 49 CFR 192.461 - External corrosion control: Protective coating.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... protective coating, whether conductive or insulating, applied for the purpose of external corrosion control... or damage from supporting blocks. (e) If coated pipe is installed by boring, driving, or other...

  5. Review of End-of-Life Thermal Control Coating Performance

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Kline, Sara E.

    2008-01-01

    White thermal control coatings capable of long term performance are needed for Fission Surface Power (FSP) where heat from a nuclear reactor placed on the surface of the Moon must be rejected to the environment. The threats to thermal control coating durability on the lunar surface are electrons, protons, and ultraviolet radiation. The anticipated damage to the coating is a gradual darkening over time. The increase in solar absorptance would, in essence, add a cyclic heat load to the radiator. The greater the darkening, the greater the added heat load. The cyclic heat load could ultimately impart a cyclic influence on FSP system performance. No significant change in emittance is anticipated. Optical properties degradation data were found in the open literature for the Z-93 series of thermal control paints. Additional optical properties degradation data were found from the Lunar Orbiter V mission, the Optical Properties Monitor, and the Materials International Space Station Experiment. Anticipated end-of-life thermal control coating performance for a FSP installation is postulated. With the FSP installation located away from landing and launching areas, and out of line-of-sight, lunar dust from human activity may not be a threat. The benefits of investing in next generation thermal control paint chemistry are explored.

  6. 40 CFR 63.800 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and products surface coating (subpart MMMM of this part). (2) Surface coating of plastic parts and products other than plastic components of wood furniture that meets the applicability criteria for plastic... costs associated with the purchase and installation of air pollution control equipment (e.g...

  7. 40 CFR 63.800 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and products surface coating (subpart MMMM of this part). (2) Surface coating of plastic parts and products other than plastic components of wood furniture that meets the applicability criteria for plastic... costs associated with the purchase and installation of air pollution control equipment (e.g...

  8. 40 CFR 63.800 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and products surface coating (subpart MMMM of this part). (2) Surface coating of plastic parts and products other than plastic components of wood furniture that meets the applicability criteria for plastic... costs associated with the purchase and installation of air pollution control equipment (e.g...

  9. Radiological, histological, and hematological evaluation of hydroxyapatite-coated resorbable magnesium alloy screws placed in rabbit tibia.

    PubMed

    Lim, Ho-Kyung; Byun, Soo-Hwan; Lee, Jin-Yong; Lee, Jung-Woo; Kim, Sae-Mi; Lee, Sung-Mi; Kim, Hyoun-Ee; Lee, Jong-Ho

    2017-08-01

    Titanium (Ti) screw has excellent mechanical property, and osseointegration capacity. However, they require surgery for removal. In contrast, polymer screws are resorbable, but they have poor mechanical properties. In this research, magnesium alloy screws (WE43: Mg-Y-Nd-Zr) that have advantages of titanium and polymer were manufactured. In addition, to increase biocompatibility and control degradation rate, the Mg alloy was coated with hydroxyapatite (HA). Torsion test and corrosion test were performed in vitro. For clinical, radiological and histological evaluation, on the eight rabbits, two HA-coated screws were installed in left tibia, and two noncoated screws were installed in right tibia. Each four rabbits were sacrificed 6 and 12 weeks postoperatively. For hematological evaluation, the same type of screws were installed on both legs. Complete blood count (CBC), Mg 2+ concentrate were sampled from the ear central artery on the operation day for a control point, and at 1, 2, 4, 6, 8, and 12 weeks. Mg alloy screws have no differences of biocompatibility according to the HA coating. However, resorption of screw was slower in case of the HA coating. The hematological problem related releasing of Mg was not found. The results suggest that Mg alloy screws have feasibility for clinical application. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1636-1644, 2017. © 2016 Wiley Periodicals, Inc.

  10. Demonstration and Validation of Two Coat High Performance Coating System for Steel Structures in Corrosive Environments

    DTIC Science & Technology

    2016-12-01

    System for Steel Structures in Corrosive Environments Final Report on Project F12-AR06 Co ns tr uc tio n En gi ne er in g R es ea rc h La bo ra...Prevention and Control Program ERDC/CERL TR-16-27 December 2016 Demonstration and Validation of Two-Coat High- Performance Coating System for Steel ...Performance Coating System for Steel Structures in Corrosive Environments” ERDC/CERL TR-16-27 ii Abstract Department of Defense (DoD) installations

  11. Bioactive Coating Systems for Protection Against Bio-Threats: Antimicrobial Coatings for Medical Shelters

    DTIC Science & Technology

    2013-12-23

    the CnC drive, building and integration of the plasma head, installation of gas distribution system, and control systems for the machine. The machine...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 antimicrobial coatings, atmospheric pressure plasma liquid deposition...polyester fabric using Triton Systems novel atmospheric pressure plasma deposition process (Invexus™). It is envisioned that these new antimicrobial

  12. RDX/HMX Plant Design

    DTIC Science & Technology

    1981-05-01

    coating process in Explosives Manufacturing Line 2. The end products of the initial design effort are process flow diagrams, piping and...instrumentation diagrams, motor control schedules, interlock logic diagrams, piping installation drawings, typical instrument Installation details, equipment...structures, equipment, utilities, and process piping extending 1.5 m (5 ft) beyond the building or area were not included in the scope of work. Nitrolysis

  13. Long life high reliability thermal control systems study data handbook

    NASA Technical Reports Server (NTRS)

    Scollon, T. R., Jr.; Carpitella, M. J.

    1971-01-01

    The development of thermal control systems with high reliability and long service life is discussed. Various passive and semi-active thermal control systems which have been installed on space vehicles are described. The properties of the various coatings are presented in tabular form.

  14. 49 CFR 192.455 - External corrosion control: Buried or submerged pipelines installed after July 31, 1971.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Buried or submerged... SAFETY STANDARDS Requirements for Corrosion Control § 192.455 External corrosion control: Buried or... against external corrosion, including the following: (1) It must have an external protective coating...

  15. 49 CFR 192.457 - External corrosion control: Buried or submerged pipelines installed before August 1, 1971.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Buried or submerged... SAFETY STANDARDS Requirements for Corrosion Control § 192.457 External corrosion control: Buried or... areas in which active corrosion is found: (1) Bare or ineffectively coated transmission lines. (2) Bare...

  16. 49 CFR 192.457 - External corrosion control: Buried or submerged pipelines installed before August 1, 1971.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Buried or submerged... SAFETY STANDARDS Requirements for Corrosion Control § 192.457 External corrosion control: Buried or... areas in which active corrosion is found: (1) Bare or ineffectively coated transmission lines. (2) Bare...

  17. 49 CFR 192.457 - External corrosion control: Buried or submerged pipelines installed before August 1, 1971.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Buried or submerged... SAFETY STANDARDS Requirements for Corrosion Control § 192.457 External corrosion control: Buried or... areas in which active corrosion is found: (1) Bare or ineffectively coated transmission lines. (2) Bare...

  18. 49 CFR 192.455 - External corrosion control: Buried or submerged pipelines installed after July 31, 1971.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Buried or submerged... SAFETY STANDARDS Requirements for Corrosion Control § 192.455 External corrosion control: Buried or... against external corrosion, including the following: (1) It must have an external protective coating...

  19. 49 CFR 192.455 - External corrosion control: Buried or submerged pipelines installed after July 31, 1971.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Buried or submerged... SAFETY STANDARDS Requirements for Corrosion Control § 192.455 External corrosion control: Buried or... against external corrosion, including the following: (1) It must have an external protective coating...

  20. 49 CFR 192.455 - External corrosion control: Buried or submerged pipelines installed after July 31, 1971.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Buried or submerged... SAFETY STANDARDS Requirements for Corrosion Control § 192.455 External corrosion control: Buried or... against external corrosion, including the following: (1) It must have an external protective coating...

  1. 49 CFR 192.457 - External corrosion control: Buried or submerged pipelines installed before August 1, 1971.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Buried or submerged... SAFETY STANDARDS Requirements for Corrosion Control § 192.457 External corrosion control: Buried or... areas in which active corrosion is found: (1) Bare or ineffectively coated transmission lines. (2) Bare...

  2. 49 CFR 192.457 - External corrosion control: Buried or submerged pipelines installed before August 1, 1971.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Buried or submerged... SAFETY STANDARDS Requirements for Corrosion Control § 192.457 External corrosion control: Buried or... areas in which active corrosion is found: (1) Bare or ineffectively coated transmission lines. (2) Bare...

  3. Second generation heliostat development for solar central receiver systems. Volume 4, appendices F-J: Control software test results manufacturing pile installation pile coatings

    NASA Astrophysics Data System (ADS)

    1981-03-01

    Support documentation for a second generation heliostat project is presented. Flowcharts of control software are included. Numerical and graphic test results are provided. Project management information is also provided.

  4. Measure Guideline. Transitioning From Three-Coat Stucco to One-Coat Stucco With EPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brozyna, K.; Davis, G.; Rapport, A.

    2012-04-01

    This measure guideline has been developed to help builders transition from using a traditional three-coat stucco wall-cladding system to a one-coat stucco wall-cladding system with expanded polystyrene (EPS) insulated sheathing. The one-coat system maintains the look of a traditional stucco system but uses only a base layer and a finish coat over EPS insulation that achieves higher levels of energy efficiency. Potential risks associated with the installation of a one-coat stucco system are addressed in terms of design, installation, and warranty concerns such as cracking and delamination, along with mitigation strategies to reduce these risks.

  5. Physical stability of arginine-glycine-aspartic acid peptide coated on anodized implants after installation.

    PubMed

    Huh, Jung-Bo; Lee, Jeong-Yeol; Jeon, Young-Chan; Shin, Sang-Wan; Ahn, Jin-Soo; Ryu, Jae-Jun

    2013-05-01

    The aim of this study was to evaluate the stability of arginine-glycine-aspartic acid (RGD) peptide coatings on implants by measuring the amount of peptide remaining after installation. Fluorescent isothiocyanate (FITC)-fixed RGD peptide was coated onto anodized titanium implants (width 4 mm, length 10 mm) using a physical adsorption method (P) or a chemical grafting method (C). Solid Rigid Polyurethane Foam (SRPF) was classified as either hard bone (H) or soft bone (S) according to its density. Two pieces of artificial bone were fixed in a customized jig, and coated implants were installed at the center of the boundary between two pieces of artificial bone. The test groups were classified as: P-H, P-S, C-H, or C-S. After each installation, implants were removed from the SRPF, and the residual amounts and rates of RGD peptide in implants were measured by fluorescence spectrometry. The Kruskal-Wallis test was used for the statistical analysis (α=0.05). Peptide-coating was identified by fluorescence microscopy and XPS. Total coating amount was higher for physical adsorption than chemical grafting. The residual rate of peptide was significantly larger in the P-S group than in the other three groups (P<.05). The result of this study suggests that coating doses depend on coating method. Residual amounts of RGD peptide were greater for the physical adsorption method than the chemical grafting method.

  6. Measure Guideline: Transitioning from Three-Coat Stucco to One-Coat Stucco with EPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brozyna, K.; Davis, G.; Rapport, A.

    2012-04-01

    This Measure Guideline has been developed to help builders transition from using a traditional three-coat stucco wall-cladding system to a one-coat stucco wall-cladding system with expanded polystyrene (EPS) insulated sheathing. The three-coat system uses a base layer, a fill layer, and a finish layer. The one-coat system maintains the look of a traditional stucco system but uses only a base layer and a finish coat over EPS insulation that achieves higher levels of energy efficiency. Potential risks associated with the installation of a one-coat stucco system are addressed in terms of design, installation, and warranty concerns such as cracking andmore » delamination, along with mitigation strategies to reduce these risks.« less

  7. The first aluminum coating of the 3700mm primary mirror of the Devasthal Optical Telescope

    NASA Astrophysics Data System (ADS)

    Bheemireddy, Krishna Reddy; Gopinathan, Maheswar; Pant, Jayshreekar; Omar, Amitesh; Kumar, Brijesh; Uddin, Wahab; Kumar, Nirmal

    2016-07-01

    Initially the primary mirror of the 3.6m Devasthal Optical Telescope is uncoated polished zerodur glass supplied by Lytkarino Optical Glass Factory, Russia/Advanced Mechanical and Optical Systems, Belgium. In order to do the aluminium coating on the primary mirror the coating plant including washing unit is installed near the telescope (extension building of telescope) by Hind High Vacuum (HHV) Bangalore, India. Magnetron sputtering technique is used for the coating. Several coating trials are done before the primary mirror coating; samples are tested for reflectivity, uniformity, adhesivity and finally commissioned. The primary mirror is cleaned, coated by ARIES. We present here a brief description of the coating plant installation, Mirror cleaning and coating procedures and the testing results of the samples.

  8. Heat Recovery System

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Ball Metal's design of ducting and controls for series of roof top heat exchangers was inspired by Tech Briefs. Heat exchangers are installed on eight press and coating lines used to decorate sheet metal. The heat recovery system provides an estimated energy savings of more than $250,000 per year.

  9. Simulated Solar Heat Tests of M.U.S.T. Air-Inflatable, Double-Wall Hospital Ward Shelters

    DTIC Science & Technology

    1974-05-01

    fro« Controlling Off! CO.) R3AD INSTRUCTIONS BEFORE COMPLETING FORM S. RECIPIENT’S CATALOO NUMBER TYRE OF REPORT ft PERIOD COVERED S. PERFORMING...tape to coated side of web. 3. All pressure relief valves have the 1.75 ± .25 psi springs installed, 4. Pressure relief valve collars are rubber discs...pressure relief valve collars are of the fabric patch design in lieu of specified rubber disc. Each patch was installed using 52544 advesive. 5. All

  10. Wear-resistance investigation of electro-screen coatings obtained using electroerosive powders of micro and nanofractions

    NASA Astrophysics Data System (ADS)

    Ageev, E. V.; Altukhov, A. Yu; Malneva, Yu V.; Novikov, A. N.

    2018-03-01

    The results of the wear resistance investigation of electro sparking coatings, applied using electrode material from electroerosive powders of hard alloy VK-8 (90%) with the addition of powder of high-speed steel of grade R6M5 (10%), are presented. Electro spark coatings were formed on samples of 30KhGSA steel using these electrodes and installation UR-121. The coefficient of friction and the wear rate of the surface of the sample and counterbody were measured on an automated friction machine “Tribometer” (CSM Instruments, Switzerland), controlled by a computer, according to the standard “ball-disk” test scheme.

  11. Automation of the micro-arc oxidation process

    NASA Astrophysics Data System (ADS)

    Golubkov, P. E.; Pecherskaya, E. A.; Karpanin, O. V.; Shepeleva, Y. V.; Zinchenko, T. O.; Artamonov, D. V.

    2017-11-01

    At present the significantly increased interest in micro-arc oxidation (MAO) encourages scientists to look for the solution of the problem of this technological process controllability. To solve this problem an automated technological installation MAO was developed, its structure and control principles are presented in this article. This device will allow to provide the controlled synthesis of MAO coatings and to identify MAO process patterns which contributes to commercialization of this technology.

  12. Compressor coating effects on gas turbine engine performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLeod, J.D.; Laflamme, J.C.

    1991-10-01

    In an attempt to increase the time between maintenance actions and to improve performance retention of turboprop engines installed in transport and maritime patrol aircraft, the Canadian Department of National Defence is evaluating an erosion and corrosion-resistance blade coating, for use on compressors. As coatings could appreciably alter engine performance by virtue of their application thickness and surface quality, the National Research Council of Canada was asked to quantify any performance changes that could occur. A project was initiated, utilizing a new Allison T56 turboprop engine, to assess not only the performance changes resulting from the coating, but also thosemore » from dismantling and reassembling the compressor, since the compressor must be completely disassembled to apply the coating. This paper describes the project objectives, the experimental installation, and the measured effects of the coating application on compressor performance.« less

  13. Evaluation of epoxy-coated reinforcing steel.

    DOT National Transportation Integrated Search

    1993-01-01

    Virginia's first installation of epoxy-coated reinforcing steel, which was opened to traffic in 1977, was evaluated during construction and through 13 years of service. It was apparent at the time of construction that the integrity of the coating app...

  14. X-15A-2 with full scale ablative and external tanks installed parked in front of hangar

    NASA Image and Video Library

    1967-08-04

    X-15A-2 with full scale ablative and external tanks installed parked in front of hangar. In June 1967, the X-15A-2 rocket-powered research aircraft received a full-scale ablative coating to protect the craft from the high temperatures associated with hypersonic flight (above Mach 5). This pink eraser-like substance, applied to the X-15A-2 aircraft (56-6671), was then covered with a white sealant coat before flight. This coating would help the #2 aircraft reach the record speed of 4,520 mph (Mach 6.7).

  15. Portable Spray Booth

    NASA Technical Reports Server (NTRS)

    Hansen, Timothy D.; Bardwell, Micheal J.

    1996-01-01

    Portable spray booth provides for controlled application of coating materials with high solvent contents. Includes contoured shroud and carbon filter bed limiting concentration of fumes in vicinity. Designed to substitute spraying for brush application of solvent-based adhesive prior to installing rubber waterproof seals over joints between segments of solid-fuel rocket motor. With minor adjustments and modifications, used to apply other solvent-based adhesives, paints, and like.

  16. Liquefied Petroleum Gas Monitoring System Based on Polystyrene Coated Long Period Grating

    PubMed Central

    Zotti, Aldobenedetto; Palumbo, Giovanna; Zuppolini, Simona; Consales, Marco; Cutolo, Antonello; Borriello, Anna; Zarrelli, Mauro; Iadicicco, Agostino

    2018-01-01

    In this work, we report the in-field demonstration of a liquefied petroleum gas monitoring system based on optical fiber technology. Long-period grating coated with a thin layer of atactic polystyrene (aPS) was employed as a gas sensor, and an array comprising two different fiber Bragg gratings was set for the monitoring of environmental conditions such as temperature and humidity. A custom package was developed for the sensors, ensuring their suitable installation and operation in harsh conditions. The developed system was installed in a real railway location scenario (i.e., a southern Italian operative railway tunnel), and tests were performed to validate the system performances in operational mode. Daytime normal working operations of the railway line and controlled gas expositions, at very low concentrations, were the searched realistic conditions for an out-of-lab validation of the developed system. Encouraging results were obtained with a precise indication of the gas concentration and external conditioning of the sensor. PMID:29734731

  17. A deep look into the spray coating process in real-time—the crucial role of x-rays

    NASA Astrophysics Data System (ADS)

    Roth, Stephan V.

    2016-10-01

    Tailoring functional thin films and coating by rapid solvent-based processes is the basis for the fabrication of large scale high-end applications in nanotechnology. Due to solvent loss of the solution or dispersion inherent in the installation of functional thin films and multilayers the spraying and drying processes are strongly governed by non-equilibrium kinetics, often passing through transient states, until the final structure is installed. Therefore, the challenge is to observe the structural build-up during these coating processes in a spatially and time-resolved manner on multiple time and length scales, from the nanostructure to macroscopic length scales. During installation, the interaction of solid-fluid interfaces and between the different layers, the flow and evaporation themselves determine the structure of the coating. Advanced x-ray scattering methods open a powerful pathway for observing the involved processes in situ, from the spray to the coating, and allow for gaining deep insight in the nanostructuring processes. This review first provides an overview over these rapidly evolving methods, with main focus on functional coatings, organic photovoltaics and organic electronics. Secondly the role and decisive advantage of x-rays is outlined. Thirdly, focusing on spray deposition as a rapidly emerging method, recent advances in investigations of spray deposition of functional materials and devices via advanced x-ray scattering methods are presented.

  18. Engineered bio-inspired coating for passive flow control

    PubMed Central

    Bocanegra Evans, Humberto; Hamed, Ali M.; Gorumlu, Serdar; Doosttalab, Ali; Aksak, Burak; Castillo, Luciano

    2018-01-01

    Flow separation and vortex shedding are some of the most common phenomena experienced by bluff bodies under relative motion with the surrounding medium. They often result in a recirculation bubble in regions with adverse pressure gradient, which typically reduces efficiency in vehicles and increases loading on structures. Here, the ability of an engineered coating to manipulate the large-scale recirculation region was tested in a separated flow at moderate momentum thickness Reynolds number, Reθ=1,200. We show that the coating, composed of uniformly distributed cylindrical pillars with diverging tips, successfully reduces the size of, and shifts downstream, the separation bubble. Despite the so-called roughness parameter, k+≈1, falling within the hydrodynamic smooth regime, the coating is able to modulate the large-scale recirculating motion. Remarkably, this modulation does not induce noticeable changes in the near-wall turbulence levels. Supported with experimental data and theoretical arguments based on the averaged equations of motion, we suggest that the inherent mechanism responsible for the bubble modulation is essentially unsteady suction and blowing controlled by the increasing cross-section of the tips. The coating can be easily fabricated and installed and works under dry and wet conditions, increasing its potential impact on a diverse range of applications. PMID:29367420

  19. Biomaterial Property Effects on Platelets and Macrophages: An in Vitro Study.

    PubMed

    Fernandes, Kelly R; Zhang, Yang; Magri, Angela M P; Renno, Ana C M; van den Beucken, Jeroen J J P

    2017-12-11

    The purpose of this study was to evaluate the effects of surface properties of bone implants coated with hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) on platelets and macrophages upon implant installation and compare them to grit-blasted Ti and Thermanox used as a control. Surface properties were characterized using scanning electron microscopy, profilometry, crystallography, Fourier transform infrared spectroscopy, and coating stability. For platelets, platelet adherence and morphology were assessed. For macrophages, morphology, proliferation, and polarization were evaluated. Surface characterization showed similar roughness of ∼2.5 μm for grit-blasted Ti discs, both with and without coating. Coating stability assessment showed substantial dissolution of HA and β-TCP coatings. Platelet adherence was significantly higher for grit-blasted Ti, Ti-HA, and Ti-β-TCP coatings compared to that of cell culture control Thermanox. Macrophage cultures revealed a decreased proliferation on both HA and β-TCP coated discs compared to both Thermanox and grit-blasted Ti. In contrast, secretion of pro-inflammatory cytokine TNF-α and anti-inflammatory cytokine TGF-β were marginal for grit-blasted Ti and Thermanox, while a coating-dependent increased secretion of pro- and anti-inflammatory cytokines was observed for HA and β-TCP coatings. The results demonstrated a significantly upregulated pro-inflammatory and anti-inflammatory cytokine secretion and marker gene expression of macrophages on HA and β-TCP coatings. Furthermore, HA induced an earlier M1 macrophage polarization but more M2 phenotype potency than β-TCP. In conclusion, our data showed that material surface affects the behaviors of first cell types attached to implants. Due to the demonstrated crucial roles of platelets and macrophages in bone healing and implant integration, this information will greatly aid the design of metallic implants for a higher rate of success in patients.

  20. Osseointegration of implants with dendrimers surface characteristics installed conventionally or with Piezosurgery®. A comparative study in the dog.

    PubMed

    Bengazi, Franco; Lang, Niklaus P; Canciani, Elena; Viganò, Paolo; Velez, Joaquin Urbizo; Botticelli, Daniele

    2014-01-01

    The first aim of the present experiment was to compare bone healing at implants installed in recipient sites prepared with conventional drills or a piezoelectric device. The second aim was to compare implant osseointegration onto surfaces with and without dendrimers coatings. Six Beagles dogs were used in this study. Five implants with two different surfaces, three with a ZirTi(®) surface (zirconia sand blasted, acid etched), and two with a ZirTi(®)-modified surface with dendrimers of phosphoserine and polylysine were installed in the right side of the mandible. In the most anterior region (P2, P3), two recipient sites were prepared with drills, and one implant ZirTi(®) surface and one coated with dendrimers implants were installed at random. In the posterior region (P4 and M1), three recipient sites were randomly prepared: two sites with a Piezosurgery(®) instrument and one site with drill and two ZirTi(®) surface and one coated with dendrimers implants installed. Three months after the surgery, the animals were sacrificed for histological analysis. No complications occurred during the healing period. Three implants were found not integrated and were excluded from analysis. However, n = 6 was obtained. The distance IS-B at the buccal aspect was 2.2 ± 0.8 and 1.8 ± 0.5 mm, while IS-C was 1.5 ± 0.9 and 1.4 ± 0.6 mm at the Piezosurgery(®) and drill groups, respectively. Similar values were obtained between the dendrimers-coated and ZirTi(®) surface implants. The BIC% values were higher at the drill (72%) compared to the Piezosurgery(®) (67%) sites. The BIC% were also found to be higher at the ZirTi(®) (74%) compared to the dendrimers-coated (65%) implants, the difference being statistically significant. This study has revealed that oral implants may osseointegrate equally well irrespective of whether their bed was prepared utilizing conventional drills with abundant cooling or Piezosurgery(®). Moreover, the surface coating of implants with dendrimers phosphoserine and polylysine did not improve osseointegration. © 2012 John Wiley & Sons A/S.

  1. Galvanic Liquid Applied Coating System for Protection of Embedded Steel Surfaces from Corrosion

    NASA Technical Reports Server (NTRS)

    Curran, Joseph; MacDowell, Louis; Voska, N. (Technical Monitor)

    2002-01-01

    The corrosion of reinforcing steel in concrete is an insidious problem for the Kennedy Space Center, government agencies, and the general public. Existing corrosion protection systems on the market are costly, complex, and time-consuming to install, require continuous maintenance and monitoring, and require specialized skills for installation. NASA's galvanic liquid-applied coating offers companies the ability to conveniently protect embedded steel rebar surfaces from corrosion. Liquid-applied inorganic galvanic coating contains one ore more of the following metallic particles: magnesium, zinc, or indium and may contain moisture attracting compounds that facilitate the protection process. The coating is applied to the outer surface of reinforced concrete so that electrical current is established between metallic particles and surfaces of embedded steel rebar; and electric (ionic) current is responsible for providing the necessary cathodic protection for embedded rebar surfaces.

  2. Demonstration of Corrosion-Resistant Fire Hydrant Retrofits for Military Installations

    DTIC Science & Technology

    2013-10-01

    diene M-class rubber ( EPDM )/powder coated steel sleeve inserted into the top of the hy- drant barrel at the traffic breakaway allowing the seat for...The insert seat of the valve shall be made of a ethylene propylene diene M-class rubber ( EPDM )/powder coated steel sleeve in- serted into the top of...intentional water-supply contamination. The technology was installed on 90 fire hy- drants of various makes, models, and ages at Fort Leonard Wood, MO. To

  3. Defending Against Biological and Chemical Attacks

    DTIC Science & Technology

    2010-08-01

    addition, we field integrated installation consequence management response capabilities to select installations both at home and abroad. Just as...decon- tamination, like self-decontaminating or strippable coat- ings for vehicles; we are developing technologies to focus decontamination on the

  4. Selected hydrologic data for the field demonstration of three permeable reactive barriers near Fry Canyon, Utah, 1996-2000

    USGS Publications Warehouse

    Wilkowske, Chris D.; Rowland, Ryan C.; Naftz, David L.

    2001-01-01

    Three permeable reactive barriers (PRBs) were installed near Fry Canyon, Utah, in August 1997 to demonstrate the use of PRBs to control the migration of uranium in ground water. Reactive material included (1) bone-char phosphate, (2) zero-valent iron pellets, and (3) amorphous ferric oxyhydroxide coated gravel. An extensive monitoring network was installed in and around each PRB for collection of water samples, analysis of selected water-quality parameters, and monitoring of water levels. Water temperature, specific conductance, pH, Eh (oxidation-reduction potential), and dissolved oxygen were measured continuously within three different barrier materials, and in two monitoring wells. Water temperature and water level below land surface were electronically recorded every hour with pressure transducers. Data were collected from ground-water monitoring wells installed in and around the PRBs during 1996-98 and from surface-water sites in Fry Creek.

  5. Corrosion Control of Central Vehicle Wash Facility Pump Components Using Alternative Alloy Coatings

    DTIC Science & Technology

    2016-07-01

    military installations are es- sential for supporting the readiness of tactical vehicles. Steel wash-rack pumps are vulnerable to accelerated...Management Command (IMCOM). The technical monitors were Daniel J. Dunmire (OUSD(AT&L)), Bernie Rodriguez (IMPW-FM), and Valerie D. Hines (DAIM-ODF...statement Large steel water pumps are used to pump water into the Central Vehicle Wash Facility (CVWF) for vehicle washing at Fort Polk, LA. The interior

  6. 40 CFR 265.444 - Inspections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... § 265.444 Inspections. (a) During construction or installation, liners and cover systems (e.g., membranes, sheets, or coatings) must be inspected for uniformity, damage and imperfections (e.g., holes, cracks, thin spots, or foreign materials). Immediately after construction or installation, liners must be...

  7. 40 CFR 265.444 - Inspections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... § 265.444 Inspections. (a) During construction or installation, liners and cover systems (e.g., membranes, sheets, or coatings) must be inspected for uniformity, damage and imperfections (e.g., holes, cracks, thin spots, or foreign materials). Immediately after construction or installation, liners must be...

  8. 40 CFR 265.444 - Inspections.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... § 265.444 Inspections. (a) During construction or installation, liners and cover systems (e.g., membranes, sheets, or coatings) must be inspected for uniformity, damage and imperfections (e.g., holes, cracks, thin spots, or foreign materials). Immediately after construction or installation, liners must be...

  9. 40 CFR 265.444 - Inspections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... § 265.444 Inspections. (a) During construction or installation, liners and cover systems (e.g., membranes, sheets, or coatings) must be inspected for uniformity, damage and imperfections (e.g., holes, cracks, thin spots, or foreign materials). Immediately after construction or installation, liners must be...

  10. Easy and safe coated optical fiber direct connection without handling bare optical fiber

    NASA Astrophysics Data System (ADS)

    Saito, Kotaro; Kihara, Mitsuru; Shimizu, Tomoya; Kurashima, Toshio

    2015-06-01

    We propose a novel field installable splicing technique for the direct connection of 250 μm diameter coated optical fiber that does not require bare optical fiber to be handled. Our proposed technique can realize a low insertion loss over a wide field installation temperature range of -10-40 °C. The keys to coated optical fiber direct connection are a cleaving technique and a technique for removing coated optical fiber. As the cleaving technique, we employed a method where the fiber is stretched and then a blade is pushed perpendicularly against the stretched fiber. As a result we confirmed that fiber endfaces cleaved at -10-40 °C were all mirror endfaces. With the removal technique, the coating is removed inside the connecting component by incorporating a circular cone shaped coating removal part. A mechanical splice based on these techniques successfully achieved a low insertion loss of less than 0.11 dB and a return loss of more than 50 dB at -10, 20, and 40 °C. In addition, the temperature cycle characteristics were stable over a wide temperature range of -40-75 °C.

  11. Electron Cloud in Steel Beam Pipe vs Titanium Nitride Coated and Amorphous Carbon Coated Beam Pipes in Fermilab's Main Injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backfish, Michael

    This paper documents the use of four retarding field analyzers (RFAs) to measure electron cloud signals created in Fermilab’s Main Injector during 120 GeV operations. The first data set was taken from September 11, 2009 to July 4, 2010. This data set is used to compare two different types of beam pipe that were installed in the accelerator. Two RFAs were installed in a normal steel beam pipe like the rest of the Main Injector while another two were installed in a one meter section of beam pipe that was coated on the inside with titanium nitride (TiN). A secondmore » data run started on August 23, 2010 and ended on January 10, 2011 when Main Injector beam intensities were reduced thus eliminating the electron cloud. This second run uses the same RFA setup but the TiN coated beam pipe was replaced by a one meter section coated with amorphous carbon (aC). This section of beam pipe was provided by CERN in an effort to better understand how an aC coating will perform over time in an accelerator. The research consists of three basic parts: (a) continuously monitoring the conditioning of the three different types of beam pipe over both time and absorbed electrons (b) measurement of the characteristics of the surrounding magnetic fields in the Main Injector in order to better relate actual data observed in the Main Injector with that of simulations (c) measurement of the energy spectrum of the electron cloud signals using retarding field analyzers in all three types of beam pipe.« less

  12. 49 CFR 192.327 - Cover.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... State or municipality: (1) Establishes a minimum cover of less than 24 inches (610 millimeters); (2... accepted practices). (f) All pipe installed offshore, except in the Gulf of Mexico and its inlets, under... concrete coating, or protected by an equivalent means. (g) All pipelines installed under water in the Gulf...

  13. 49 CFR 192.327 - Cover.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... State or municipality: (1) Establishes a minimum cover of less than 24 inches (610 millimeters); (2... accepted practices). (f) All pipe installed offshore, except in the Gulf of Mexico and its inlets, under... concrete coating, or protected by an equivalent means. (g) All pipelines installed under water in the Gulf...

  14. Collector surface for a microwave tube comprising a carbon-bonded carbon-fiber composite

    DOEpatents

    Lauf, Robert J.; McMillan, April D.; Johnson, Arvid C.; Moorhead, Arthur J.

    1998-01-01

    In a microwave tube, an improved collector surface coating comprises a porous carbon composite material, preferably a carbon-bonded carbon fiber composite having a bulk density less than about 2 g/cc. Installation of the coating is readily adaptable as part of the tube manufacturing process.

  15. Operational Characteristics of Liquid Lithium Divertor in NSTX

    NASA Astrophysics Data System (ADS)

    Kaita, R.; Kugel, H.; Abrams, T.; Bell, M. G.; Bell, R. E.; Gerhardt, S.; Jaworski, M. A.; Kallman, J.; Leblanc, B.; Mansfield, D.; Mueller, D.; Paul, S.; Roquemore, A. L.; Scotti, F.; Skinner, C. H.; Timberlake, J.; Zakharov, L.; Maingi, R.; Nygren, R.; Raman, R.; Sabbagh, S.; Soukhanovskii, V.

    2010-11-01

    Lithium coatings on plasma-facing components (PFC's) have resulted in improved plasma performance on NSTX in deuterium H-mode plasmas with neutral beam heating.^ Salient results included improved electron confinement and ELM suppression. In CDX-U, the use of lithium-coated PFC's and a large-area liquid lithium limiter resulted in a six-fold increase in global energy confinement time. A Liquid Lithium Divertor (LLD) has been installed in NSTX for the 2010 run campaign. The LLD PFC consists of a thin film of lithium on a temperature-controlled substrate to keep the lithium liquefied between shots, and handle heat loads during plasmas. This capability was demonstrated when the LLD withstood a strike point on its surface during discharges with up to 4 MW of neutral beam heating.

  16. Collector surface for a microwave tube comprising a carbon-bonded carbon-fiber composite

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Johnson, A.C.; Moorhead, A.J.

    1998-07-28

    In a microwave tube, an improved collector surface coating comprises a porous carbon composite material, preferably a carbon-bonded carbon fiber composite having a bulk density less than about 2 g/cc. Installation of the coating is readily adaptable as part of the tube manufacturing process. 4 figs.

  17. Remote Neural Pendants In A Welding-Control System

    NASA Technical Reports Server (NTRS)

    Venable, Richard A.; Bucher, Joseph H.

    1995-01-01

    Neural network integrated circuits enhance functionalities of both remote terminals (called "pendants") and communication links, without necessitating installation of additional wires in links. Makes possible to incorporate many features into pendant, including real-time display of critical welding parameters and other process information, capability for communication between technician at pendant and host computer or technician elsewhere in system, and switches and potentiometers through which technician at pendant exerts remote control over such critical aspects of welding process as current, voltage, rate of travel, flow of gas, starting, and stopping. Other potential manufacturing applications include control of spray coating and of curing of composite materials. Potential nonmanufacturing uses include remote control of heating, air conditioning, and lighting in electrically noisy and otherwise hostile environments.

  18. Cadmium stannate selective optical films for solar energy applications

    NASA Technical Reports Server (NTRS)

    Haacke, G.

    1975-01-01

    Efforts concentrated on reducing the electrical sheet resistance of sputtered cadmium stannate films, installing and testing equipment for spray coating experiments, and sputter deposition of thin cadmium sulfide layers onto cadmium stannate electrodes. In addition, single crystal silicon wafers were coated with cadmium stannate. Work also continued on the development of the backwall CdS solar cell.

  19. Electro-Osmotic Pulse Technology: A Novel Solution to Severe Water Intrusion Problems in Earth Covered Magazines

    DTIC Science & Technology

    2006-11-01

    The situation was deemed ideal for ElectroOsmotic Pulse (EOP) technology. A Return-on-Investment (ROI) study concluded that EOP is also the most...various steps in the EOP system installation: Figure 15 shows the chipping operation for installing a ¾-inch wide mixed metal-oxide coated titanium

  20. Solar energy retrofit for Clarksville Middle School, Clarksville, Indiana

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar energy retrofit heating system installed to provide heating for two gymnasiums at the Clarksville Middle School located in Clarksville, Indiana is described in detail. The system type is hot water using existing chilled water piping and chilled water coils in an air handler system. Flat plate, single-glazed selectively coated solar collectors were installed on the roof of each gymnasium. Total collector area covers 6,520 square feet. The liquid is stored in a 10,000 gallon steel tank installed below grade.

  1. The Effects of Infrared-Blocking Pigments and Deck Venting on Stone-Coated Metal Residential Roofs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, William A

    2006-01-01

    Field data show that stone-coated metal shakes and S-mission tile, which exploit the use of infraredblocking color pigments (IrBCPs), along with underside venting reduce the heat flow penetrating the conditioned space of a residence by 70% compared with the amount of heat flow penetrating roofs with conventional asphalt shingles. Stone-coated metal roof products are typically placed on battens and counter-battens and nailed through the battens to the roof deck. The design provides venting on the underside of the metal roof that reduces the heat flow penetrating a home. The Metal Construction Association (MCA) and its affiliate members installed stone-coated metalmore » roofs with shake and S-mission tile profiles and a painted metal shake roof on a fully instrumented attic test assembly at Oak Ridge National Laboratory (ORNL). Measurements of roof, deck, attic, and ceiling temperatures; heat flows; solar reflectance; thermal emittance; and ambient weather were recorded for each of the test roofs and also for an adjacent attic cavity covered with a conventional pigmented and direct nailed asphalt shingle roof. All attic assemblies had ridge and soffit venting; the ridge was open to the underside of the stone-coated metal roofs. A control assembly with a conventional asphalt shingle roof was used for comparing deck and ceiling heat transfer rates.« less

  2. 49 CFR 192.319 - Installation of pipe in a ditch.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... transmission line that is to be operated at a pressure producing a hoop stress of 20 percent or more of SMYS must be installed so that the pipe fits the ditch so as to minimize stresses and protect the pipe... pipe coating from equipment or from the backfill material. (c) All offshore pipe in water at least 12...

  3. 49 CFR 192.319 - Installation of pipe in a ditch.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... transmission line that is to be operated at a pressure producing a hoop stress of 20 percent or more of SMYS must be installed so that the pipe fits the ditch so as to minimize stresses and protect the pipe... pipe coating from equipment or from the backfill material. (c) All offshore pipe in water at least 12...

  4. Optical fiber science and technology: Novel fibers and fiber sensors

    NASA Astrophysics Data System (ADS)

    Morse, T. F.

    1988-02-01

    This equipment grant has permitted the purchase of a complete optical fiber draw facility and auxilliary equipment for our fiber characterization laboratory. The draw tower has been erected in a specially prepared laboratory. It is a 7.8 m automated tower with a 20 kw carbon induction furnace, and sufficient room for two UV coating stages, or a UV coating stage, and a thermal curing stage. The tower installation took perhaps somewhat more time than initially anticipated, largely due to difficulties in the site preparation. The tower itself has been installed on a reinforced concrete pad, with appropriate vibration isolation. For about six months, we have been gaining experience in the use of the tower, and have been drawing kilometer lengths of fiber that range in diameter from 50 microns to 250 microns with a tolerance of the order of a few microns. In anticipation of expanding the coating capabilities of our draw tower, a vacuum system was purchased for use with radio frequency sputtering on-line on the tower. This will be particularly useful for ceramic coated fibers in the study of the behavior of fiber strengthened composite materials.

  5. Examining the temperature behavior of stainless steel surfaces exposed to hydrogen plasmas in the Lithium Tokamak eXperiment (LTX)

    NASA Astrophysics Data System (ADS)

    Bedoya, Felipe; Allain, Jean Paul; Kaita, Robert; Lucia, Matthew; St-Onge, Denis; Ellis, Robert; Majeski, Richard

    2014-10-01

    The Materials Analysis Particle Probe (MAPP) is an in-situ diagnostic designed to characterize plasma-facing components (PFCs) in tokamak devices. MAPP is installed in LTX at Princeton Plasma Physics Laboratory. MAPP's capabilities include remotely operated XPS acquisition and temperature control of four samples. The recent addition of a focused ion beam allows XPS depth profiling analysis. Recent published results show an apparent correlation between hydrogen retention and temperature of Li coated stainless steel (SS) PFCs exposed to plasmas like those of LTX. According to XPS data, the retention of hydrogen by the coated surfaces decreases at above 180 °C. In the present study MAPP will be used to study the oxidation of Li coatings as a function of time and temperature of the walls when Li coatings are applied. Experiments in the ion-surface interaction experiment (IIAX) varying the hydrogen fluence on the SS samples will be also performed. Conclusions resulting from this study will be key to explain the PFC temperature-dependent variation of plasma performance observed in LTX. This work was supported by U.S. DOE Contracts DE-AC02-09CH11466, DE-AC52-07NA27344 and DE-SC0010717.

  6. Application of Molecular Adsorber Coatings in Chamber A for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin S.

    2017-01-01

    As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground-based space applications, in particular, for vacuum chamber environments. This presentation describes the application of the MAC technology for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap outgassed contaminants, specifically silicone-based diffusion pump oil, from within JSCs cryogenic optical vacuum chamber test facility called Chamber A. This presentation summarizes the background, fabrication, installation, chemical analysis test results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination. As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground-based space applications, in particular, for vacuum chamber environments. This presentation describes the application of the MAC technology for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap outgassed contaminants, specifically silicone-based diffusion pump oil, from within JSCs cryogenic optical vacuum chamber test facility called Chamber A. This presentation summarizes the background, fabrication, installation, chemical analysis test results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination.

  7. 40 CFR 264.574 - Inspections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Inspections. (a) During construction or installation, liners and cover systems (e.g., membranes, sheets, or coatings) must be inspected for uniformity, damage and imperfections (e.g., holes, cracks, thin spots, or...

  8. 40 CFR 264.574 - Inspections.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Inspections. (a) During construction or installation, liners and cover systems (e.g., membranes, sheets, or coatings) must be inspected for uniformity, damage and imperfections (e.g., holes, cracks, thin spots, or...

  9. 40 CFR 264.574 - Inspections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Inspections. (a) During construction or installation, liners and cover systems (e.g., membranes, sheets, or coatings) must be inspected for uniformity, damage and imperfections (e.g., holes, cracks, thin spots, or...

  10. 40 CFR 264.574 - Inspections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Inspections. (a) During construction or installation, liners and cover systems (e.g., membranes, sheets, or coatings) must be inspected for uniformity, damage and imperfections (e.g., holes, cracks, thin spots, or...

  11. An Analysis of Quality in the Modular Housing Industry.

    DTIC Science & Technology

    1991-12-01

    finishing, Station 5, installs rough plumbing and applies the first coat of drywall joint compound . The unit continues to ceiling/roof setting, Station...with I joint compound and drywall or plywood plates. 3 14. Rigid waferboard, oriented strand board, or plywood is used for exterior wall sheathing to...completed and tested, the second coat of joint compound is placed, and windows and doors are set. Insulation, exterior sheathing, roof sheathing

  12. Large-stroke convex micromirror actuated by electromagnetic force for optical power control.

    PubMed

    Hossain, Md Mahabub; Bin, Wu; Kong, Seong Ho

    2015-11-02

    This paper contributes a novel design and the corresponding fabrication process to research on the unique topic of micro-electro-mechanical systems (MEMS) deformable convex micromirror used for focusing-power control. In this design, the shape of a thin planar metal-coated polymer-membrane mirror is controlled electromagnetically by using the repulsive force between two magnets, a permanent magnet and a coil solenoid, installed in an actuator system. The 5 mm effective aperture of a large-stroke micromirror showed a maximum center displacement of 30.08 µm, which enabled control of optical power across a wide range that could extend up to around 20 diopters. Specifically, utilizing the maximum optical power of 20 diopter by applying a maximum controlling current of 0.8 A yielded consumption of at most 2 W of electrical power. It was also demonstrated that this micromirror could easily be integrated in miniature tunable optical imaging systems.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korol, A.A.; Korol, Y.A.; Kasich-Pilipenko, I.Y.

    Melted slip coatings were obtained and the structural changes in the coatings and their substrates upon simultaneous heating by concentrated solar radiant energy fluxes were studied. Well known wear and corrosion resistant TiC-Ni-B and WC-Ni-B coatings 50 to 300 microns thick applied by the slip method to flat or cylindrical stainless steel and titanium specimens were examined. The specimens were heated in an SGU-5 solar heating installation with a 2 m diameter parabolic mirror concentrator in a process chamber with a quartz window under a vacuum. Metallographic analysis revealed a finely dispersed heterogeneous structure with no visible porosity, good bondingmore » of coating to substrate, and uniform distribution of carbide phase in the metal matrix of the TiC-Ni-B coatings on titanium. Results were similar for the other coatings, indicating that concentrated solar energy can produce coatings with satisfactory surface quality, good density, and a framework structure. The coating interacted with the substrate by diffusion. Most of the volume of the substrate underwent no significant changes, indicating good bond strength between coatings and substrate.« less

  14. Implementation of Remote Corrosion-Monitoring Sensor for Mission-Essential Structures at Okinawa

    DTIC Science & Technology

    2009-08-01

    with voluminous corrosion products. Martensitic stainless steels are susceptible to pitting and chlo- ride stress corrosion cracking in marine... steel , zinc- rich epoxy-coated steel , phenolic coated steel and bare type 410 stainless steel . (The steel panels were A36 steel .) The racks were...and ER probes were installed on building number 125. The coupons were mounted to an aluminum frame using stainless steel bolts and nylon spacer

  15. 40 CFR 280.20 - Performance standards for new UST systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... protected in the following manner: (i) The tank is coated with a suitable dielectric material; (ii) Field... suitable dielectric material; (ii) Field-installed cathodic protection systems are designed by a corrosion...

  16. 40 CFR 280.20 - Performance standards for new UST systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... protected in the following manner: (i) The tank is coated with a suitable dielectric material; (ii) Field... suitable dielectric material; (ii) Field-installed cathodic protection systems are designed by a corrosion...

  17. Innovative Flow Control Concepts for Drag Reduction

    NASA Technical Reports Server (NTRS)

    Lin, John C.; Whalen, Edward A.; Eppink, Jenna L.; Siochi, Emilie J.; Alexander, Michael G.; Andino, Marlyn Y.

    2016-01-01

    This paper highlights the technology development of two flow control concepts for aircraft drag reduction. The NASA Environmentally Responsible Aviation (ERA) project worked with Boeing to demonstrate these two concepts on a specially outfitted Boeing 757 ecoDemonstrator during the spring of 2015. The first flow control concept used Active Flow Control (AFC) to delay flow separation on a highly deflected rudder and increase the side force that it generates. This may enable a smaller vertical tail to provide the control authority needed in the event of an engine failure during takeoff and landing, while still operating in a conventional manner over the rest of the flight envelope. Thirty-one sweeping jet AFC actuators were installed and successfully flight-tested on the vertical tail of the 757 ecoDemonstrator. Pilot feedback, flow cone visualization, and analysis of the flight test data confirmed that the AFC is effective, as a smoother flight and enhanced rudder control authority were reported. The second flow control concept is the Insect Accretion Mitigation (IAM) innovation where surfaces were engineered to mitigate insect residue adhesion on a wing's leading edge. This is necessary because something as small as an insect residue on the leading edge of a laminar flow wing design can cause turbulent wedges that interrupt laminar flow, resulting in an increase in drag and fuel use. Several non-stick coatings were developed by NASA and applied to panels that were mounted on the leading edge of the wing of the 757 ecoDemonstrator. The performance of the coated surfaces was measured and validated by the reduction in the number of bug adhesions relative to uncoated control panels flown simultaneously. Both flow control concepts (i.e., sweeping jet actuators and non-stick coatings) for drag reduction were the culmination of several years of development, from wind tunnel tests to flight tests, and produced valuable data for the advancement of modern aircraft designs. The ERA systems analysis studies performed by NASA indicated that AFC-enhanced vertical tail could produce approximately 0.9% drag reduction for a large twin aisle aircraft and IAM coatings could enable approximately 1.2% drag reduction recovery for a potential total drag reduction of approximately 3.3% for a single aisle aircraft with a natural laminar flow (NLF) wing design.

  18. Vacuum Ultraviolet Radiation and Atomic Oxygen Durability Evaluation of HST Bi-Stem Thermal Shield Materials

    NASA Technical Reports Server (NTRS)

    Dever, Joyce; deGroh, Kim K.

    2002-01-01

    Bellows-type thermal shields were used on the bi-stems of replacement solar arrays installed on the Hubble Space Telescope (HST) during the first HST servicing mission (SMI) in December 1993. These thermal shields helped reduce the problem of thermal gradient- induced jitter observed with the original HST solar arrays during orbital thermal cycling and have been in use on HST for eight years. This paper describes ground testing of the candidate solar array bi-stem thermal shield materials including backside aluminized Teflon(R)FEP (fluorinated ethylene propylene) with and without atomic oxygen (AO) and ultraviolet radiation protective surface coatings for durability to AO and combined AO and vacuum ultraviolet (VOV) radiation. NASA Glenn Research Center (GRC) conducted VUV and AO exposures of samples of candidate thermal shield materials at HST operational temperatures and pre- and post-exposure analyses as part of an overall program coordinated by NASA Goddard Space Flight Center (GSFC) to determine the on-orbit durability of these materials. Coating adhesion problems were observed for samples having the AO- and combined AO/UV-protective coatings. Coating lamination occurred with rapid thermal cycling testing which simulated orbital thermal cycling. This lack of adhesion caused production of coating flakes from the material that would have posed a serious risk to HST optics if the coated materials were used for the bi-stem thermal shields. No serious degradation was observed for the uncoated aluminized Teflon(R) as evaluated by optical microscopy, although atomic force microscopy (AFM) microhardness testing revealed that an embrittled surface layer formed on the uncoated Teflon(R) surface due to vacuum ultraviolet radiation exposure. This embrittled layer was not completely removed by AO erosion, No cracks or particle flakes were produced for the embrittled uncoated material upon exposure to VUV and AO at operational temperatures to an equivalent exposure of approximately five years in the HST environment. Uncoated aluminized FEP Teflon(R) was determined to be the most appropriate thermal shield material and was used on the bi-stems of replacement solar arrays installed on HST during SMI in December 1993. The SMI -installed solar arrays air scheduled to be replaced during MST's fourth servicing mission (SM3B) in early 2002.

  19. 40 CFR 60.454 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Industrial Surface Coating: Large Appliances § 60.454 Monitoring of emissions and operations. (a) The owner... device shall be installed in the gas stream immediately before and after the catalyst bed. (2) Each...

  20. Cost-Benefit Analysis for Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2007-01-01

    NASA and Air Force Space Command (AFSPC) have similar missions and therefore similar facilities and structures in similar environments. The standard practice for protecting metallic substrates in atmospheric environments is the application of an applied coating system. The most common topcoats used in coating systems are polyurethanes that contain isocyanates. Isocyanates are classified as potential human carcinogens and are known to cause cancer in animals. The primary objective of this effort was to demonstrate and validate alternatives to aliphatic isocyanate polyurethanes resulting in one or more isocyanate-free coatings qualified for use at AFSPC and NASA installations participating in this project. This Cost-Benefit Analysis (CBA) quantifies the estimated capital and process costs of coating alternatives and cost savings relative to the current coatings. The estimates in this CBA are to be used for assessing the relative merits of the selected alternatives. The actual economic effects at any specific facility will depend on the alternative material or technology implemented, the number of actual applications converted, future workloads, and other factors . The participants initially considered eighteen (18) alternative coatings as described in the Potential Alternatives Report entitled Potential Alternatives Report for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes, prepared by ITB. Of those, 8 alternatives were selected for testing in accordance with the Joint Test Protocol entitled Joint Test Protocol for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes, and the Field Test Plan entitled Field Evaluations Test Plan for Validation of Alternatives 10 Aliphatic Isocyanate Polyurethanes, both of which were prepared by ITB. A joint Test Report entitled Joint Test Report for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes, prepared by ITB, documents the results of the laboratory and field testing, as well as any test modifications made during the execution of the testing. The coatings selected for evaluation in this CBA are shown in the table below. Only one control coating system is considered in this analysis. These coatings were either downselected for Phase II or performed well enough to be included in the Qualified Products List in the NASA technical standard NASA-STD-5008, Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment.

  1. Advanced ceramic coating development for industrial/utility gas turbines

    NASA Technical Reports Server (NTRS)

    Vogan, J. W.; Stetson, A. R.

    1982-01-01

    A program was conducted with the objective of developing advanced thermal barrier coating (TBC) systems. Coating application was by plasma spray. Duplex, triplex and graded coatings were tested. Coating systems incorporated both NiCrAly and CoCrAly bond coats. Four ceramic overlays were tested: ZrO2.82O3; CaO.TiO2; 2CaO.SiO2; and MgO.Al2O3. The best overall results were obtained with a CaO.TiO2 coating applied to a NiCrAly bond coat. This coating was less sensitive than the ZrO2.8Y2O3 coating to process variables and part geometry. Testing with fuels contaminated with compounds containing sulfur, phosphorus and alkali metals showed the zirconia coatings were destabilized. The calcium titanate coatings were not affected by these contaminants. However, when fuels were used containing 50 ppm of vanadium and 150 ppm of magnesium, heavy deposits were formed on the test specimens and combustor components that required frequent cleaning of the test rig. During the program Mars engine first-stage turbine blades were coated and installed for an engine cyclic endurance run with the zirconia, calcium titanate, and calcium silicate coatings. Heavy spalling developed with the calcium silicate system. The zirconia and calcium titanate systems survived the full test duration. It was concluded that these two TBC's showed potential for application in gas turbines.

  2. Application of the Molecular Adsorber Coating Technology on the Ionospheric Connection Explorer Program

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin S.; Hasegawa, Mark M.; Secunda, Mark S.

    2016-01-01

    The Molecular Adsorber Coating (MAC) is a zeolite based highly porous coating technology that was developed by NASA Goddard Space Flight Center (GSFC) to capture outgassed contaminants, such as plastics, adhesives, lubricants, silicones, epoxies, potting compounds, and other similar materials. This paper describes the use of the MAC technology to address molecular contamination concerns on NASAs Ionospheric Connection Explorer (ICON) program led by the University of California (UC) Berkeleys Space Sciences Laboratory. The sprayable paint technology was applied onto plates that were installed within the instrument cavity of ICONs Far Ultraviolet Imaging Spectrograph (FUV). However, due to the instruments particulate sensitivity, the coating surface was vibrationally cleaned through simulated acoustics to reduce the risk of particle fall-out contamination. This paper summarizes the coating application efforts on the FUV adsorber plates, the simulated laboratory acoustic level cleaning test methods, particulation characteristics, and future plans for the MAC technology.

  3. Application of the Molecular Adsorber Coating technology on the Ionospheric Connection Explorer program

    NASA Astrophysics Data System (ADS)

    Abraham, Nithin S.; Hasegawa, Mark M.; Secunda, Mark S.

    2016-09-01

    The Molecular Adsorber Coating (MAC) is a zeolite based highly porous coating technology that was developed by NASA Goddard Space Flight Center (GSFC) to capture outgassed contaminants, such as plastics, adhesives, lubricants, silicones, epoxies, potting compounds, and other similar materials. This paper describes the use of the MAC technology to address molecular contamination concerns on NASA's Ionospheric Connection Explorer (ICON) program led by the University of California (UC) Berkeley's Space Sciences Laboratory. The sprayable paint technology was applied onto plates that were installed within the instrument cavity of ICON's Far Ultraviolet Imaging Spectrograph (FUV). However, due to the instrument's particulate sensitivity, the coating surface was vibrationally cleaned through simulated acoustics to reduce the risk of particle fall-out contamination. This paper summarizes the coating application efforts on the FUV adsorber plates, the simulated laboratory acoustic level cleaning test methods, particulation characteristics, and future plans for the MAC technology.

  4. Joint Test Report For Validation of Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2007-01-01

    National Aeronautics and Space Administration (NASA) and Air Force Space Command (AFSPC) have similar missions and therefore similar facilities and structures in similar environments. The standard practice for protecting metallic substrates in atmospheric environments is the application of an applied coating system. The most common topcoats used in coating systems are polyurethanes that contain isocyanates. Isocyanates are classified as potential human carcinogens and are known to cause cancer in animals. The primary objective of this effort was to demonstrate and validate alternatives to aliphatic isocyanate polyurethanes resulting in one or more isocyanate-free coatings qualified for use at AFSPC and NASA installations participating in this project. This joint Test Report (JTR) documents the results of the laboratory and field testing as well as any test modifications made during the execution of the testing. The technical stakeholders agreed upon test procedure modifications documented in this document. This JTR is made available as a reference for future pollution prevention endeavors by other NASA centers, the Department of Defense and commercial users to minimize duplication of effort. All coating system candidates were tested using approved NASA and AFSPC standard coating systems as experimental controls. This study looked at eight alternative coating systems and two control coating systems and was divided into Phase I Screening Tests, Phase II Tests, and Field Testing. The Phase I Screening Tests were preliminary tests performed on all the selected candidate coating systems. Candidate coating systems that did not meet the acceptance criteria of the screening tests were eliminated from further testing. Phase I Screening Tests included: Ease of Application, Surface Appearance, Dry-To-Touch (Sanding), Accelerated Storage Stability, Pot Life (Viscosity), Cure Time (Solvent Rubs), Cleanability, Knife Test, Tensile (pull-off) Adhesion, and X-Cut Adhesion by Wet Tape After a review of the Phase I test results, four of the alternative coating systems showed substandard performance in relation to the Control Systems and were eliminated from the Phase II testing. Due to the interest of stakeholders and time constraints, however, all eight alternatives were subjected to the following Phase II tests, along with field testing at Stennis Space Center (SSC), Mississippi: Hypergol Compatibility, Liquid Oxygen Compatibility, 18-Month Marine Exposure (Gloss Retention, Color Retention, Blistering, Visual Corrosion, Creepage from Scribe, Heat Adhesion), and Field Exposure (6- and 12-month Evaluation for Coating Condition, Color Retention, Gloss Retention). The remaining four alternative coating systems determined to be the best viable alternatives were carried on to Phase II testing that included: Removability, Repairability, Abrasion Resistance, Gravelometer, Fungus Resistance, Accelerated Weathering, Mandrel Bend Flexibility, and Cyclic Corrosion Resistance. Of the systems that continued to Phase II, three (3) alternative coating systems meet the performance requirements as identified by stakeholders. Two (2) other systems, that were not included in Phase II testing, performed well enough on the 18-Month Marine Exposure, the primary requirement for NASA technical standard NASA-STD-5008, Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment, that they were also considered to be successful candidates. In total, five (5) alternative coating systems were approved for inclusion in the NASA-STD- 5008 Qualified Products List (QPL). The standard is intended to provide a common framework for consistent practices across NASA and is often used by other entities. The standard's QPL does not connote endorsement of the products by NASA, but lists those products that have been tested and meet the requirements as specified.

  5. Verification of drag-reduction capabilities of stiff compliant coatings in air flow at moderate speeds

    NASA Astrophysics Data System (ADS)

    Boiko, Andrey V.; Kulik, Victor M.; Chun, Ho-Hwan; Lee, Inwon

    2011-12-01

    Skin frictional drag reduction efficiency of "stiff" compliant coating was investigated in a wind tunnel experiment. Flat plate compliant coating inserts were installed in a wind tunnel and the measurements of skin frictional drag and velocity field were carried out. The compliant coatings with varying viscoelastic properties had been prepared using different composition. In order to optimize the coating thickness, the most important design parameter, the dynamic viscoelastic properties had been determined experimentally. The aging of the materials (variation of their properties) during half a year was documented as well. A design procedure proposed by Kulik et al. (2008) was applied to get an optimal value for the coating thickness. Along with the drag measurement using the strain balance, velocity and pressure were measured for different coatings. The compliant coatings with the thickness h = 7mm achieved 4~5% drag reduction within a velocity range 30~40 m/s. The drag reduction mechanism of the attenuation of turbulence velocity fluctuations due to the compliant coating was demonstrated. It is envisioned that larger drag reduction effect is obtainable at higher flow velocities for high speed trains and subsonic aircrafts.

  6. Shear wave EMAT thickness measurements of low carbon steel at 450 °C without cooling

    NASA Astrophysics Data System (ADS)

    Lunn, Natasha; Potter, Mark; Dixon, Steve

    2017-02-01

    Performing high temperature online inspection without plant shutdown is highly desirable, yet, development of portable or permanently installed high temperature ultrasonic sensors, without the need for sample surface preparation, remains a key challenge. Low carbon steel pipelines operating at elevated temperatures often develop a magnetostrictive oxide coating (magnetite), which improves electromagnetic acoustic transducer (EMAT) efficiency below the Curie temperature of magnetite (575 °C), via a magnetostrictive mechanism. Coupling the inherent non-contacting nature of EMATs with the enhanced efficiency from a magnetite coating, we are able to continuously operate an uncoded EMAT at elevated temperatures without permanent installation or surface preparation. In this work, a high temperature shear wave EMAT utilizing a high field, high Curie point, permanent magnet has been developed to generate ultrasonic bulk thickness measurements on magnetite coated steel at temperatures of up to 450 °C, without cooling. Relatively high signal-to-noise ratios, in the region of 30 dB for single shot data, have been measured at 450 °C using this technique. The EMAT design and results from high temperature trials, including the performance with change in temperature, sample thickness and EMAT-sample lift-off, are presented here.

  7. Silver zeolite antimicrobial activity in aluminium heating, ventilation and air conditioning system ducts.

    PubMed

    Rizzetto, R; Mansi, A; Panatto, D; Rizzitelli, E; Tinteri, C; Sasso, T; Gasparini, R; Crovari, P

    2008-03-01

    Air pollution in confined environments is a serious health problem, in that most people spend long periods indoors (in homes, offices, classrooms etc.). Some people (children, the elderly, heart disease patients, asthmatic or allergic subjects) are at greater risk because of their conditions of frailty. The growing use of air-conditioning systems in many public and private buildings aggravates this health risk, especially when these systems are not correctly installed or regularly serviced. The aim of our study was to verify the capacity of Ag+ ions to stop the growth of bacteria and moulds inside the ducts of Heating, Ventilation and Air Conditioning system ducts (HVAC) systems when these ducts were lined with active Ag+ ions zeolite-coated panels. A Y-shaped HVAC model with two branches was used; one branch was made of traditional galvanized iron, as was the whole system, while the other was lined with active Ag+ zeolite-coated polyurethane panels. During the test, samples of dust present inside both ducts were collected and seeded in liquid and solid media to detect bacteria and moulds. The presence of bacteria was also sought in the air emerging from the outlets of both ducts. Tests made on samples of particulate collected from the two different ducts revealed a lower total bacterial load in the samples collected from the Ag+ zeolite-coated duct than in the samples from the traditional Zn galvanized duct. In addition, the values of bacterial load found in the air emerging from the Ag+ ions zeolite-lined duct were 5 times lower than those found in the air from the traditional galvanized iron duct. The utilization of Ag+ zeolite-coated panels in air-conditioning systems could improve the quality of the emerging air in comparison with traditional installations in galvanized iron. This innovation could prove particularly advantageous in the event of accidents during the installation of air-conditioning systems or of contaminated aerosols coming from outside.

  8. Prediction of Long Term Degradation of Insulating Materials

    DTIC Science & Technology

    2015-05-01

    may be installed in less than half the time it would take to install board and mem- brane systems. The fiberglass tested had a paper coated backing...humidity between the plywood and the ccSPF. In dryer conditions, ccSPF foam initially increases in R-value, and then proceeds to degrade in R-value. This...frequency number in the spectra. Figures 4-17 and 4-18 include an overlay of IR spectra of the three aerogel composites at two different humidity

  9. Titanium fasteners. [for aircraft industry

    NASA Technical Reports Server (NTRS)

    Phillips, J. L.

    1972-01-01

    Titanium fasteners are used in large quantities throughout the aircraft industry. Most of this usage is in aluminum structure; where titanium structure exists, titanium fasteners are logically used as well. Titanium fasteners offer potential weight savings to the designer at a cost of approximately $30 per pound of weight saved. Proper and least cost usage must take into consideration type of fastener per application, galvanic couples and installation characteristics of protective coatings, cosmetic appearance, paint adhesion, installation forces and methods available and fatigue performance required.

  10. Studies of the Cr-CrN coating characteristics formed by means of the magnetron sputtering method from bulk target

    NASA Astrophysics Data System (ADS)

    Kachalin, G. V.; Mednikov, A. F.; Tkhabisimov, A. B.; Sidorov, S. V.

    2017-07-01

    The paper presents the study’s results of ion-plasma chromium based coating characteristics produced on blade steel samples 12Kh13 and EI961 by means of the magnetron sputtering method from the bulk “hot” target. A set of metallographic studies and erosion tests of coatings were carried out using the research equipment URI (unique research installation) “Hydroshock rig Erosion-M” of NRU “MPEI”. Cr-CrN based coatings have a layered structure; thickness of intermediate Cr layers ranges from 0.7 to 1.7 μm, thickness of nitride layers CrN ranges from 1.5 to 4 μm, while the overall coating thickness is 17.0-21.5 μm coating microhardness is 1830-1880 HV0.05. The resulting coatings are found to increase 1.5 times the incubation period duration of erosion wear for steels 12Kh13 and EI961; they reduce the maximum erosion rate 1.3 times, and the steady erosion rate - 1.5 times.

  11. Expansion joint noise reduction on the new Tacoma Narrows Bridge.

    DOT National Transportation Integrated Search

    2011-12-01

    "Washington State Department of Transportation (WSDOT) responded to citizen complaints about expansion joint noise on the new Tacoma Narrows Bridge (TNB) by installing new wall coated in noise absorptive materials. The goal of the project was to redu...

  12. Effect of implant design and bioactive glass coating on biomechanical properties of fiber-reinforced composite implants.

    PubMed

    Ballo, Ahmed M; Akca, Eralp; Ozen, Tuncer; Moritz, Niko; Lassila, Lippo; Vallittu, Pekka; Närhi, Timo

    2014-08-01

    This study aimed to evaluate the influence of implant design and bioactive glass (BAG) coating on the response of bone to fiber-reinforced composite (FRC) implants. Three different FRC implant types were manufactured for the study: non-threaded implants with a BAG coating; threaded implants with a BAG coating; and threaded implants with a grit-blasted surface. Thirty-six implants (six implants for each group per time point) were installed in the tibiae of six pigs. After an implantation period of 4 and 12 wk, the implants were retrieved and prepared for micro-computed tomography (micro-CT), push-out testing, and scanning electron microscopy analysis. Micro-CT demonstrated that the screw-threads and implant structure remained undamaged during the installation. The threaded FRC/BAG implants had the highest bone volume after 12 wk of implantation. The push-out strengths of the threaded FRC/BAG implants after 4 and 12 wk (463°N and 676°N, respectively) were significantly higher than those of the threaded FRC implants (416°N and 549°N, respectively) and the nonthreaded FRC/BAG implants (219°N and 430°N, respectively). Statistically significant correlation was found between bone volume and push-out strength values. This study showed that osseointegrated FRC implants can withstand the static loading up to failure without fracture, and that the addition of BAG significantly improves the push-out strength of FRC implants. © 2014 Eur J Oral Sci.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pallesen, T.R.; Braestrup, M.W.; Jorgensen, O.

    Development of Danish North Sea hydrocarbon resources includes the 17-km Rolf pipeline installed in 1985. This one consists of an insulated 8-in. two-phase flow product line with a 3-in. piggyback gas lift line. A practical solution to design of this insulated pipeline, including the small diameter, piggyback injection line was corrosion coating of fusion bonded epoxy (FBE) and polyethylene (PE) sleeve pipe. The insulation design prevents hydrate formation under the most conservative flow regime during gas lift production. Also, the required minimum flow rate during the initial natural lift period is well below the value anticipiated at the initiation ofmore » gas lift. The weight coating design ensures stability on the seabed during the summer months only; thus trenching was required during the same installation season. Installation of insulated flowlines serving marginal fields is a significant feature of North Sea hydrocarbon development projects. The Skjold field is connected to Gorm by a 6-in., two-phase-flow line. The 11-km line was installed in 1982 as the first insulated pipeline in the North Sea. The Rolf field, located 17 km west of Gorm, went on stream Jan. 2. The development includes an unmanned wellhead platform and an insulated, two-phase-flow pipeline to the Gorm E riser platform. After separation on the Gorm C process platform, the oil and condensate are transported to shore through the 20-in. oil pipeline, and the natural gas is piped to Tyra for transmission through the 30-in. gas pipeline. Oil production at Rolf is assisted by the injection of lift gas, transported from Gorm through a 3-in. pipeline, installed piggyback on the insulated 8-in. product line. The seabed is smooth and sandy, the water depth varying between 33.7 m (110.5 ft) at Rolf and 39.1 m (128 ft) at Gorm.« less

  14. Coating of Carbon Fiber with Polyhedral Oligomeric Silsesquioxane (POSS) to Enhance Mechanical Properties and Durability of Carbon/Vinyl Ester Composites

    PubMed Central

    Mahfuz, Hassan; Powell, Felicia; Granata, Richard; Hosur, Mahesh; Khan, Mujib

    2011-01-01

    Our continuing quest to improve the performance of polymer composites under moist and saltwater environments has gained momentum in recent years with the reinforcement of inorganic nanoparticles into the polymer. The key to mitigate degradation of composites under such environments is to maintain the integrity of the fiber/matrix (F/M) interface. In this study, the F/M interface of carbon/vinyl ester composites has been modified by coating the carbon fiber with polyhedral oligomeric silsesquioxane (POSS). POSS is a nanostructured inorganic-organic hybrid particle with a cubic structure having silicon atoms at the core and linked to oxygen atoms. The advantage of using POSS is that the silicon atoms can be linked to a substituent that can be almost any chemical group known in organic chemistry. Cubic silica cores are ‘hard particles’ and are about 0.53 nm in diameter. The peripheral organic unit is a sphere of about 1–3 nm in diameter. Further, cubic structure of POSS remains intact during the polymerization process and therefore with appropriate functional groups, if installed on the fiber surface, would provide a stable and strong F/M interface. Two POSS systems with two different functional groups; namely, octaisobutyl and trisilanolphenyl have been investigated. A set of chemical and mechanical procedures has been developed to coat carbon fibers with POSS, and to fabricate layered composites with vinyl ester resin. Interlaminar shear and low velocity impact tests have indicated around 17–38% improvement in mechanical properties with respect to control samples made without the POSS coating. Saltwater and hygrothermal tests at various environmental conditions have revealed that coating with POSS reduces water absorption by 20–30% and retains the composite properties. PMID:28824160

  15. High emission reduction performance of a novel organic-inorganic composite filters containing sepiolite mineral nanofibers

    PubMed Central

    Wang, Fei; Zhang, Hui; Liang, Jinsheng; Tang, Qingguo; Li, Yanxia; Shang, Zengyao

    2017-01-01

    In this work, a new organic-inorganic composite filter was prepared. The thickness, pore size, air permeability, bursting strength and microstructure were characterized systematically, proving that coatings had regulatory effect on filters physical properties. Benefitting from the distinct coatings containing 5% sepiolite nanofibers after five times dilution, the physical properties of corresponding air filter exhibits the most favorable performance and meet the standard of air filter. When used as fuel filter, it satisfies the fuel filter standard and achieves the best performance after six times dilution. The contrast test on engine emission was taken based on auto filters coated with/without as prepared nanofibers. An obvious decrease in the emission of carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxide (NOx) can be observed after installation of composite filter on vehicles. Under the high idle condition, gasoline engine emission decreased by 8.13%, 11.35% and 44.91% for CO, HC and NOx, respectively. When tested in the low idle condition, engine emission reduced by 0.43%, 1.14% and 85.67% for CO, HC and NOx, respectively. The diesel engine emissions of CO, NOx and total amount of HC and NOx decreased by 32.26%, 3.28% and 4.66%, respectively. The results illustrate the composite installation exhibits satisfactory emission reduction effect. PMID:28252034

  16. High emission reduction performance of a novel organic-inorganic composite filters containing sepiolite mineral nanofibers

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Zhang, Hui; Liang, Jinsheng; Tang, Qingguo; Li, Yanxia; Shang, Zengyao

    2017-03-01

    In this work, a new organic-inorganic composite filter was prepared. The thickness, pore size, air permeability, bursting strength and microstructure were characterized systematically, proving that coatings had regulatory effect on filters physical properties. Benefitting from the distinct coatings containing 5% sepiolite nanofibers after five times dilution, the physical properties of corresponding air filter exhibits the most favorable performance and meet the standard of air filter. When used as fuel filter, it satisfies the fuel filter standard and achieves the best performance after six times dilution. The contrast test on engine emission was taken based on auto filters coated with/without as prepared nanofibers. An obvious decrease in the emission of carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxide (NOx) can be observed after installation of composite filter on vehicles. Under the high idle condition, gasoline engine emission decreased by 8.13%, 11.35% and 44.91% for CO, HC and NOx, respectively. When tested in the low idle condition, engine emission reduced by 0.43%, 1.14% and 85.67% for CO, HC and NOx, respectively. The diesel engine emissions of CO, NOx and total amount of HC and NOx decreased by 32.26%, 3.28% and 4.66%, respectively. The results illustrate the composite installation exhibits satisfactory emission reduction effect.

  17. Embedded Distributed Optical Fiber Sensors in Reinforced Concrete Structures—A Case Study

    PubMed Central

    Villalba, Sergi

    2018-01-01

    When using distributed optical fiber sensors (DOFS) on reinforced concrete structures, a compromise must be achieved between the protection requirements and robustness of the sensor deployment and the accuracy of the measurements both in the uncracked and cracked stages and under loading, unloading and reloading processes. With this in mind the authors have carried out an experiment where polyimide-coated DOFS were installed on two concrete beams, both embedded in the rebar elements and also bonded to the concrete surface. The specimens were subjected to a three-point load test where after cracking, they are unloaded and reloaded again to assess the capability of the sensor when applied to a real loading scenarios in concrete structures. Rayleigh Optical Frequency Domain Reflectometry (OFDR) was used as the most suitable technique for crack detection in reinforced concrete elements. To verify the reliability and accuracy of the DOFS measurements, additional strain gauges were also installed at three locations along the rebar. The results show the feasibility of using a thin coated polyimide DOFS directly bonded on the reinforcing bar without the need of indention or mechanization. A proposal for a Spectral Shift Quality (SSQ) threshold is also obtained and proposed for future works when using polyimide-coated DOFS bonded to rebars with cyanoacrylate adhesive. PMID:29587449

  18. Embedded Distributed Optical Fiber Sensors in Reinforced Concrete Structures-A Case Study.

    PubMed

    Barrias, António; Casas, Joan R; Villalba, Sergi

    2018-03-26

    When using distributed optical fiber sensors (DOFS) on reinforced concrete structures, a compromise must be achieved between the protection requirements and robustness of the sensor deployment and the accuracy of the measurements both in the uncracked and cracked stages and under loading, unloading and reloading processes. With this in mind the authors have carried out an experiment where polyimide-coated DOFS were installed on two concrete beams, both embedded in the rebar elements and also bonded to the concrete surface. The specimens were subjected to a three-point load test where after cracking, they are unloaded and reloaded again to assess the capability of the sensor when applied to a real loading scenarios in concrete structures. Rayleigh Optical Frequency Domain Reflectometry (OFDR) was used as the most suitable technique for crack detection in reinforced concrete elements. To verify the reliability and accuracy of the DOFS measurements, additional strain gauges were also installed at three locations along the rebar. The results show the feasibility of using a thin coated polyimide DOFS directly bonded on the reinforcing bar without the need of indention or mechanization. A proposal for a Spectral Shift Quality (SSQ) threshold is also obtained and proposed for future works when using polyimide-coated DOFS bonded to rebars with cyanoacrylate adhesive.

  19. Experimental Measurements of the Secondary Electron Yield in the Experimental Measurement of the Secondary Electron Yield in the PEP-II Particle Accelerator Beam Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pivi, M.T.F.; Collet, G.; King, F.

    Beam instability caused by the electron cloud has been observed in positron and proton storage rings and it is expected to be a limiting factor in the performance of the positron Damping Ring (DR) of future Linear Colliders (LC) such as ILC and CLIC. To test a series of promising possible electron cloud mitigation techniques as surface coatings and grooves, in the Positron Low Energy Ring (LER) of the PEP-II accelerator, we have installed several test vacuum chambers including (i) a special chamber to monitor the variation of the secondary electron yield of technical surface materials and coatings under themore » effect of ion, electron and photon conditioning in situ in the beam line; (ii) chambers with grooves in a straight magnetic-free section; and (iii) coated chambers in a dedicated newly installed 4-magnet chicane to study mitigations in a magnetic field region. In this paper, we describe the ongoing R&D effort to mitigate the electron cloud effect for the LC damping ring, focusing on the first experimental area and on results of the reduction of the secondary electron yield due to in situ conditioning.« less

  20. Receiving and use of streams of monodisperse ice granules for cleaning and deactivation of surfaces

    NASA Astrophysics Data System (ADS)

    Boukharov, A.; Balashov, A.; Timohin, A.; Ivanov, A.; Holin, B.

    2017-11-01

    The most generally useful methods for cleaning and processing of surfaces are the sand-jets and shot blasting jets. Installations of this kind are used for cleaning of corrosion surfaces, the oil-dirt deposits, paint coatings. However the use of these installations follows to high investment and operational expenditure, larger risk of operators disease, the negative affect for a environment. These problems can be solved with the use of new cleaning method through application of mono-disperse (identical by the size and the form) ice granules of 300 - 1000 microns, accelerated by air stream in the nozzle device to the speed of 10 - 100 m/s. In view of the extreme complexity of the receiving such particles by means of cooling and the subsequent freezing of water drops are necessary additional experimental researches. For study of thermal processes of receiving mono-disperse ice granules the experimental installation was created and experiments on deactivation and cleaning of surfaces with pollution of various types are made. Experiments showed that by means of a stream of the accelerated ice granules it is rather successfully possible to delete oil-dirt deposits, outdated paint coats and rust. Besides, efficient deactivation of radioactive surfaces is possible. The coefficient deactivation of γ activity is highest.

  1. ARC-1980-AC80-0107-8

    NASA Image and Video Library

    1980-02-06

    ROCKWELL INTERNATIONAL TECHNICIANS MOUNT SOME OF THE NEARLY 8,000 CERAMIC-COATED TILES THAT REMAIN TO BE INSTALLED ON THE EXTERNAL SURFACES OF THE SPACE SHUTTLE ORBITER COLUMBIA TO COMPLETE THE THERMAL PROTECTION SYSTEM THAT WILL ABSORB THE INTENSE HEAT OF REENTERING THE EARTH'S ATMOSPHERE AFTER A MISSION IN SPACE. TILE INSTALLATION IS DONE ON AN AROUND-THE-CLOCK BASIS IN THE ORBITER PROCESSING FACILITY WHERE COLUMBIA, THE FIRST IN A NEW BREED OF MANNED, REUSABLE SPACECRAFT, IS BEING READIED FOR THE FIRST LAUNCH OF THE SPACE SHUTTLE LATER THIS YEAR.

  2. ARC-1980-AC80-0107-9

    NASA Image and Video Library

    1980-02-06

    ROCKWELL INTERNATIONAL TECHNICIANS MOUNT SOME OF THE NEARLY 8,000 CERAMIC-COATED TILES THAT REMAIN TO BE INSTALLED ON THE EXTERNAL SURFACES OF THE SPACE SHUTTLE ORBITER COLUMBIA TO COMPLETE THE THERMAL PROTECTION SYSTEM THAT WILL ABSORB THE INTENSE HEAT OF REENTERING THE EARTH'S ATMOSPHERE AFTER A MISSION IN SPACE. TILE INSTALLATION IS DONE ON AN AROUND-THE-CLOCK BASIS IN THE ORBITER PROCESSING FACILITY WHERE COLUMBIA, THE FIRST IN A NEW BREED OF MANNED, REUSABLE SPACECRAFT, IS BEING READIED FOR THE FIRST LAUNCH OF THE SPACE SHUTTLE LATER THIS YEAR.

  3. Field instrumentation of dowels : executive summary, April 1997.

    DOT National Transportation Integrated Search

    1997-04-01

    Four different types of dowels, 11/2 inch diameter epoxy-coated steel bars, 11/2 inch diameter fiberglass, 1 1/2 deep steel and fiberglass I-beams, were instrumented with strain gages and installed. Forces that developed in these dowel bars due to cu...

  4. Field instrumentation of dowels : final report, May 1997.

    DOT National Transportation Integrated Search

    1997-04-01

    Four different types of dowels, 11/2 inch diameter epoxy-coated steel bars, 11/2 inch diameter fiberglass, 1 1/2 deep steel and fiberglass I-beams, were instrumented with strain gages and installed. Forces that developed in these dowel bars due to cu...

  5. Joint Test Protocol for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2005-01-01

    The primary objective of this effort is to demonstrate and validate alternatives to aliphatic isocyanate polyurethanes. Successful completion of this project will result in one or more isocyanate-free coatings qualified for use at AFSPC and NASA installations participating in this project.

  6. A NASA Technician directs loading of the crated SOFIA primary mirror assembly into a C-17 for shipment to NASA Ames Research Center for finish coating

    NASA Image and Video Library

    2008-05-01

    Technicians at NASA's Dryden Aircraft Operations Facility in Palmdale, Calif., loaded the German-built primary mirror assembly of the Stratospheric Observatory for Infrared Astronomy, or SOFIA, onto an Air Force C-17 for shipment to NASA's Ames Research Center on May 1, 2008. In preparation for the final finish coating of the mirror, the more than two-ton mirror assembly had been removed from its cavity in the rear fuselage of the highly modified SOFIA Boeing 747SP two weeks earlier. After arrival at NASA Ames at Moffett Field near Mountain View, Calif., the mirror would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  7. Titania Deposition on PMR-15

    NASA Technical Reports Server (NTRS)

    Meador, Mary B.; Sutter, James K.; Pizem, Hillel; Gershevitz, Olga; Goffer, Yossi; Frimer, Aryeh A.; Sukenik, Chaim N.; Sampathkumaran, Uma; Milhet, Xavier; McIlwain, Alan

    2005-01-01

    The formation, degree of crystallinity and adherence of dense titania (TiO2) thin film coatings on a high-temperature polyimide resin (PMR-15) can be influenced by the chemical composition of the polymer surface. Furthermore, solution deposition conditions can be adjusted to provide additional control over the morphology and crystallinity of the titania films. Recipes for solution-based titania deposition that used a slowly-hydrolyzing titanium fluoride salt in the presence of boric acid as a fluoride scavenger allowed growth of films up to 750 nm thick in 22 h. By adjusting solution pH and temperature, either amorphous titania or oriented crystalline anatase films could be formed. Surface sulfonate groups enhance the adhesion of solution-deposited oxide thin film coatings. While most sulfonation procedures severely damaged the PMR-15 surface, the use of chlorosulfonic acid followed by hydrolysis of the installed chlorosulfonyl groups provided effective surface sulfonation without significant surface damage. In some cases, the oxide deposition solution caused partial hydrolysis of the polymer surface, which itself was sufficient to allow adhesion of the titania film through chelation of titanium ions by exposed benzoic acid groups on the polymer surface.

  8. Finite Element Methods for Modelling Mechanical Loss in LIGO coating optics.

    NASA Astrophysics Data System (ADS)

    Newport, Jonathan; Harry, Gregg; LIGO Collaboration

    2015-04-01

    Gravitational waves from sources such as binary star systems, supernovae explosions and stochastic background radiation have yet to be directly detected by experimental observations. Alongside international collaborators, the Laser Interferometer Gravitational-Wave Observatory (LIGO) is designed to realize detection of gravitational waves using interferometric techniques. The second generation of gravitational wave observatories, known as Advanced LIGO, are currently undergoing installation and commissioning at sites in Hanford, Washington and Livingston, Louisiana. The ultimate sensitivity of Advanced LIGO within select spectral bands is limited by thermal noise in the coatings of the interferometer optics. The LIGO lab at American University is measuring the mechanical loss of coated substrates to predict thermal noise within these spectral bands. These predictions use increasingly sophisticated finite element models to ensure the ultimate design sensitivity of Advanced LIGO and to study coating and substrate materials for future gravitational wave detectors.

  9. Genesis Noble Gas Measurements

    NASA Technical Reports Server (NTRS)

    Hohenberg, Charles M.

    2005-01-01

    The original thrust of our Genesis funding was to extend and refine the noble gas analytical capabilities of this laboratory to improve the precision and accuracy of noble gas measurements in order to optimize the scientific return from the Genesis Mission. This process involved both instrumental improvement (supplemented by a SRLIDAP instrument grant) and refinement of technique. The Genesis landing mishap shifted our emphasis to the irregular aluminum heat shield material from the flat collector wafers. This has required redesign of our laser extraction cells to accommodate the longer focal lengths required for laser extraction from non-flat surfaces. Extraction of noble gases from solid aluminum surfaces, rather than thin coatings on transparent substrates has required refinement of controlled-depth laser ablation techniques. Both of these bring new problems, both with potentially higher blanks form larger laser cells and the larger quantities of evaporated aluminum which can coat the sapphire entrance ports. This is mainly a problem for the heavy noble gases where larger extraction areas are required, necessitating the new aluminum vapor containment techniques described below. With the Genesis Mission came three new multiple multiplier noble gas mass spectrometers to this laboratory, one built solely by us (Supergnome-M), one built in collaboration with Nu-Instruments (Noblesse), and one built in collaboration with GVI (Helix). All of these have multiple multiplier detection sections with the Nu-Instruments using a pair of electrostatic quad lenses for isotope spacing and the other two using mechanically adjustable positions for the electron multipliers. The Supergnome-M and Noblesse are installed and running. The GVI instrument was delivered a year late (in March 2005) and is yet to be installed by GVI. As with all new instruments there were some initial development issues, some of which are still outstanding. The most serious of these are performance issues with the miniature channel electron multipliers. The delayed installation of Helix by the GVI is partly due to failure of the initial batch of Burle channel multipliers to perform as expected. A number of the channel multipliers designed for Noblesse by Burle have also failed upon baking. Burle has now refined the design of these and we have installed two of the new multipliers and are assessing their performance. The remaining multipliers Will be upgraded to the new design from Burle once we confirm that the problem has been fixed.

  10. Titanium Surface Priming with Phase-Transited Lysozyme to Establish a Silver Nanoparticle-Loaded Chitosan/Hyaluronic Acid Antibacterial Multilayer via Layer-by-Layer Self-Assembly.

    PubMed

    Zhong, Xue; Song, Yunjia; Yang, Peng; Wang, Yao; Jiang, Shaoyun; Zhang, Xu; Li, Changyi

    2016-01-01

    The formation of biofilm around implants, which is induced by immediate bacterial colonization after installation, is the primary cause of post-operation infection. Initial surface modification is usually required to incorporate antibacterial agents on titanium (Ti) surfaces to inhibit biofilm formation. However, simple and effective priming methods are still lacking for the development of an initial functional layer as a base for subsequent coatings on titanium surfaces. The purpose of our work was to establish a novel initial layer on Ti surfaces using phase-transited lysozyme (PTL), on which multilayer coatings can incorporate silver nanoparticles (AgNP) using chitosan (CS) and hyaluronic acid (HA) via a layer-by-layer (LbL) self-assembly technique. In this study, the surfaces of Ti substrates were primed by dipping into a mixture of lysozyme and tris(2-carboxyethyl)phosphine (TCEP) to obtain PTL-functionalized Ti substrates. The subsequent alternating coatings of HA and chitosan loaded with AgNP onto the precursor layer of PTL were carried out via LbL self-assembly to construct multilayer coatings on Ti substrates. The results of SEM and XPS indicated that the necklace-like PTL and self-assembled multilayer were successfully immobilized on the Ti substrates. The multilayer coatings loaded with AgNP can kill planktonic and adherent bacteria to 100% during the first 4 days. The antibacterial efficacy of the samples against planktonic and adherent bacteria achieved 65%-90% after 14 days. The sustained release of Ag over 14 days can prevent bacterial invasion until mucosa healing. Although the AgNP-containing structure showed some cytotoxicity, the toxicity can be reduced by controlling the Ag release rate and concentration. The PTL priming method provides a promising strategy for fabricating long-term antibacterial multilayer coatings on titanium surfaces via the LbL self-assembly technique, which is effective in preventing implant-associated infections in the early stage.

  11. 40 CFR 264.254 - Monitoring and inspection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in the case of existing portions of piles exempt from § 264.251(a)) and cover systems (e.g., membranes, sheets, or coatings) must be inspected for uniformity, damage, and imperfections (e.g., holes, cracks, thin spots, or foreign materials). Immediately after construction or installation: (1) Synthetic...

  12. 40 CFR 264.254 - Monitoring and inspection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in the case of existing portions of piles exempt from § 264.251(a)) and cover systems (e.g., membranes, sheets, or coatings) must be inspected for uniformity, damage, and imperfections (e.g., holes, cracks, thin spots, or foreign materials). Immediately after construction or installation: (1) Synthetic...

  13. 40 CFR 264.254 - Monitoring and inspection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in the case of existing portions of piles exempt from § 264.251(a)) and cover systems (e.g., membranes, sheets, or coatings) must be inspected for uniformity, damage, and imperfections (e.g., holes, cracks, thin spots, or foreign materials). Immediately after construction or installation: (1) Synthetic...

  14. 40 CFR 264.254 - Monitoring and inspection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in the case of existing portions of piles exempt from § 264.251(a)) and cover systems (e.g., membranes, sheets, or coatings) must be inspected for uniformity, damage, and imperfections (e.g., holes, cracks, thin spots, or foreign materials). Immediately after construction or installation: (1) Synthetic...

  15. 40 CFR 264.254 - Monitoring and inspection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in the case of existing portions of piles exempt from § 264.251(a)) and cover systems (e.g., membranes, sheets, or coatings) must be inspected for uniformity, damage, and imperfections (e.g., holes, cracks, thin spots, or foreign materials). Immediately after construction or installation: (1) Synthetic...

  16. 49 CFR 107.502 - General registration requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... one or more tanks or cargo tanks on a motor vehicle or to a motor vehicle suspension component; (ii... MATERIALS PROGRAM PROCEDURES Registration of Cargo Tank and Cargo Tank Motor Vehicle Manufacturers... the certification of the cargo tank motor vehicle; or (iii) The installation of linings, coatings, or...

  17. Floating Chip Mounting System Driven by Repulsive Force of Permanent Magnets for Multiple On-Site SPR Immunoassay Measurements

    PubMed Central

    Horiuchi, Tsutomu; Tobita, Tatsuya; Miura, Toru; Iwasaki, Yuzuru; Seyama, Michiko; Inoue, Suzuyo; Takahashi, Jun-ichi; Haga, Tsuneyuki; Tamechika, Emi

    2012-01-01

    We have developed a measurement chip installation/removal mechanism for a surface plasmon resonance (SPR) immunoassay analysis instrument designed for frequent testing, which requires a rapid and easy technique for changing chips. The key components of the mechanism are refractive index matching gel coated on the rear of the SPR chip and a float that presses the chip down. The refractive index matching gel made it possible to optically couple the chip and the prism of the SPR instrument easily via elastic deformation with no air bubbles. The float has an autonomous attitude control function that keeps the chip parallel in relation to the SPR instrument by employing the repulsive force of permanent magnets between the float and a float guide located in the SPR instrument. This function is realized by balancing the upward elastic force of the gel and the downward force of the float, which experiences a leveling force from the float guide. This system makes it possible to start an SPR measurement immediately after chip installation and to remove the chip immediately after the measurement with a simple and easy method that does not require any fine adjustment. Our sensor chip, which we installed using this mounting system, successfully performed an immunoassay measurement on a model antigen (spiked human-IgG) in a model real sample (non-homogenized milk) that included many kinds of interfering foreign substances without any sample pre-treatment. The ease of the chip installation/removal operation and simple measurement procedure are suitable for frequent on-site agricultural, environmental and medical testing. PMID:23202030

  18. Status of National Spherical Torus Experiment Liquid Lithium Divertor

    NASA Astrophysics Data System (ADS)

    Kugel, H. W.; Viola, M.; Ellis, R.; Bell, M.; Gerhardt, S.; Kaita, R.; Kallman, J.; Majeski, R.; Mansfield, D.; Roquemore, A. L.; Schneider, H.; Timberlake, J.; Zakharov, L.; Nygren, R. E.; Allain, J. P.; Maingi, R.; Soukhanovskii, V.

    2009-11-01

    Recent NSTX high power divertor experiments have shown significant and recurring benefits of solid lithium coatings on plasma facing components to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. The next step in this work is the 2009 installation of a Liquid Lithium Divertor (LLD). The 20 cm wide LLD located on the lower outer divertor, consists of four, 80 degree sections; each section is separated by a row of graphite diagnostic tiles. The temperature controlled LLD structure consists of a 0.01cm layer of vacuum flame-sprayed, 50 percent porous molybdenum, on top of 0.02 cm, 316-SS brazed to a 1.9 cm Cu base. The physics design of the LLD encompasses the desired plasma requirements, the experimental capabilities and conditions, power handling, radial location, pumping capability, operating temperature, lithium filling, MHD forces, and diagnostics for control and characterization.

  19. Vacuum application of thermal barrier plasma coatings

    NASA Technical Reports Server (NTRS)

    Holmes, R. R.; Mckechnie, T. N.

    1988-01-01

    Coatings are presently applied to Space Shuttle Main Engine (SSME) turbine blades for protection against the harsh environment realized in the engine during lift off-to-orbit. High performance nickel, chromium, aluminum, and yttrium (NiCrAlY) alloy coatings, which are applied by atmospheric plasma spraying, crack and spall off because of the severe thermal shock experienced during start-up and shut-down of the engine. Ceramic coatings of yttria stabilized zirconia (ZrO2-Y2O3) were applied initially as a thermal barrier over coating to the NiCrAlY but were removed because of even greater spalling. Utilizing a vacuum plasma spraying process, bond coatings of NiCrAlY were applied in a low pressure atmosphere of argon/helium, producing significantly improved coating-to-blade bonding. The improved coatings showed no spalling after 40 MSFC burner rig thermal shock cycles, cycling between 1700 and -423 F. The current atmospheric plasma NiCrAlY coatings spalled during 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2-Y2O3 to the turbine blades of first stage high-pressure fuel turbopumps utilizing the vacuum plasma process. The improved thermal barrier coating has successfully passed 40 burner rig thermal shock cycles without spalling. Hot firing in an SSME turbine engine is scheduled for the blades. Tooling was installed in preparation for vacuum plasma spray coating other SSME hardware, e.g., the titanium main fuel valve housing (MFVH) and the fuel turbopump nozzle/stator.

  20. The SOFIA primary mirror assembly is cautiously lifted from its cavity in the modified 747 by a crane in preparation for finish coating operations at NASA Ames

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  1. Ground crewmen prepare to load the crated SOFIA primary mirror assembly into an Air Force C-17 for shipment to NASA Ames Research Center for finish coating

    NASA Image and Video Library

    2008-05-01

    Technicians at NASA's Dryden Aircraft Operations Facility in Palmdale, Calif., loaded the German-built primary mirror assembly of the Stratospheric Observatory for Infrared Astronomy, or SOFIA, onto an Air Force C-17 for shipment to NASA's Ames Research Center on May 1, 2008. In preparation for the final finish coating of the mirror, the more than two-ton mirror assembly had been removed from its cavity in the rear fuselage of the highly modified SOFIA Boeing 747SP two weeks earlier. After arrival at NASA Ames at Moffett Field near Mountain View, Calif., the mirror would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  2. Technicians position the transport cradle as a crane lowers SOFIA's primary mirror assembly into place prior to finish coating of the mirror at NASA Ames

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  3. n-Hexane polyneuropathy in a ball-manufacturing factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, C.C.; Shih, T.S.; Cheng, S.Y.

    Five overt and two occult cases of n-hexane polyneuropathy occurred in a ball-manufacturing factory in Taiwan. The severity of polyneuropathy was directly related to the index of n-hexane exposure that occurred during the processes of cement coating and nylon fiber winding in a poorly ventilated room. The n-hexane concentrations over eight hours of personal sampling of the air of the cement coating and nylon fiber winding areas were 109 ppm and 86 ppm, respectively. After installation of a new factory ventilation system, these seven patients recovered completely, and there were no new cases in the two-year follow-up.

  4. Controlling optics contamination at the PolLux STXM

    NASA Astrophysics Data System (ADS)

    Watts, B.; Pilet, N.; Sarafimov, B.; Witte, K.; Raabe, J.

    2018-04-01

    Contamination of X-ray mirror surfaces by carbon is a common issue that can significantly degrade the optical performance of the instrument. The effects can be severe at photon energies near the carbon K-edge (ca. 300 eV), where the X-rays are strongly attenuated, but also significant at higher photon energies where the carbon coating affects the reflectivity and surface shape of the mirrors. [1] The Swiss Light Source has typically relied on in-situ plasma cleaning to control mirror contamination and the PolLux scanning transmission X-ray microscopy (STXM) beamline has also been employing further contamination reduction strategies in recent years. In particular, in 2014 we installed a 1×10‑8 mbar background pressure of O2 on the PolLux first mirror chamber. We present a history of efforts to control optical contamination at the PolLux beamline and report on the observed efficiencies of the different processes employed both for the in-vacuum optics and critical components of the frequently vented STXM experiment chamber.

  5. Thermal Spray Coatings for High-Temperature Corrosion Protection in Biomass Co-Fired Boilers

    NASA Astrophysics Data System (ADS)

    Oksa, M.; Metsäjoki, J.; Kärki, J.

    2015-01-01

    There are over 1000 biomass boilers and about 500 plants using waste as fuel in Europe, and the numbers are increasing. Many of them encounter serious problems with high-temperature corrosion due to detrimental elements such as chlorides, alkali metals, and heavy metals. By HVOF spraying, it is possible to produce very dense and well-adhered coatings, which can be applied for corrosion protection of heat exchanger surfaces in biomass and waste-to-energy power plant boilers. Four HVOF coatings and one arc sprayed coating were exposed to actual biomass co-fired boiler conditions in superheater area with a probe measurement installation for 5900 h at 550 and 750 °C. The coating materials were Ni-Cr, IN625, Fe-Cr-W-Nb-Mo, and Ni-Cr-Ti. CJS and DJ Hybrid spray guns were used for HVOF spraying to compare the corrosion resistance of Ni-Cr coating structures. Reference materials were ferritic steel T92 and nickel super alloy A263. The circulating fluidized bed boiler burnt a mixture of wood, peat and coal. The coatings showed excellent corrosion resistance at 550 °C compared to the ferritic steel. At higher temperature, NiCr sprayed with CJS had the best corrosion resistance. IN625 was consumed almost completely during the exposure at 750 °C.

  6. Modified M20 Beam Position Monitor Testing

    NASA Astrophysics Data System (ADS)

    Koros, Jessica; Musson, John

    2017-09-01

    Beam position monitors (BPMs) are used to measure lateral beam position. Two pairs of modified wire BPMs are being evaluated for installation into the injector at Jefferson Lab (JLab). The BPMs were coated with a Non-Evaporable Getter (NEG) to aid in pumping at the electron gun, as an ultra-high vacuum is required to protect the gun and to avoid scattering the beam. Beam in the injector has a large diameter, allowing extraction of second moments to give information about beam profile and emittance. The purpose of this project is to determine the effects of NEG coating on the BPMs and to calculate second moments from beam models on the Goubau Line (G-Line). Using the G-Line, scans of the BPMs were taken before and after NEG coating. Each scan produced an electrical field map, which characterizes properties of the BPM, including scale factors and coupling. Second moments were calculated using superposition of previous scan data, and verification of this method was attempted using several beam models. Results show the BPMs responded well to NEG and that measurement of second moments is possible. Once the BPMs are installed, they will enhance gun vacuum and enable monitoring of shape and trajectory of the beam as it exits the electron gun to ensure quality beam for experiments. This work is made possible through support from NSF award 1659177 to Old Dominion University.

  7. The Use of the Molecular Adsorber Coating Technology to Mitigate Vacuum Chamber Contamination During Pathfinder Testing for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin S.; Hasegawa, Mark M.; Wooldridge, Eve M.; Henderson-Nelson, Kelly A.

    2016-01-01

    As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground based space applications, in particular, for vacuum chamber environments. This paper describes the recent use of the MAC technology during Pathfinder testing of the Optical Ground Support Equipment (OGSE) for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap persistent outgassed contaminants, specifically silicone based diffusion pump oil, from within JSC's cryogenic optical vacuum chamber test facility called Chamber A. This paper summarizes the sample fabrication, installation, laboratory testing, post-test chemical analysis results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination.

  8. The use of the Molecular Adsorber Coating technology to mitigate vacuum chamber contamination during Pathfinder testing for the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Abraham, Nithin S.; Hasegawa, Mark M.; Wooldridge, Eve M.; Henderson-Nelson, Kelly A.

    2016-09-01

    As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground based space applications, in particular, for vacuum chamber environments. This paper describes the recent use of the MAC technology during Pathfinder testing of the Optical Ground Support Equipment (OGSE) for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap persistent outgassed contaminants, specifically silicone based diffusion pump oil, from within JSC's cryogenic optical vacuum chamber test facility called Chamber A. This paper summarizes the sample fabrication, installation, laboratory testing, post-test chemical analysis results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination.

  9. Bone formation at recombinant human bone morphogenetic protein-2-coated titanium implants in the posterior mandible (Type II bone) in dogs.

    PubMed

    Wikesjö, Ulf M E; Xiropaidis, Andreas V; Qahash, Mohammed; Lim, Won Hee; Sorensen, Rachel G; Rohrer, Michael D; Wozney, John M; Hall, Jan

    2008-11-01

    Conventional oral/maxillofacial implants reach osseointegration over several months during which the titanium fixtures interact with alveolar bone. The objective of this study was to determine if adsorbing recombinant human bone morphogenetic protein-2 (rhBMP-2) onto a titanium porous oxide (TPO) implant surface might enhance or accelerate local bone formation and support osseointegration in a large animal oral/maxillofacial orthotopic model. Endosseous implants with a TPO surface were installed into the edentulated posterior mandible in eight adult Hound Labrador mongrel dogs. The implant surface had been adsorbed with rhBMP-2 at 0.2 or 4.0 mg/ml. TPO implants without rhBMP-2 served as control. Treatments were randomized between jaw quadrants. Mucosal flaps were advanced and sutured leaving the implants submerged. Clinical and radiographic evaluations were made immediately post-surgery, at day 10 (suture removal), and week 4 and 8 post-surgery. The animals received fluorescent bone markers at week 3, 4, and at week 8 post-surgery, when they were euthanized for histologic analysis. TPO implants coated with rhBMP-2 exhibited dose-dependent bone remodelling including immediate resorption and formation of implant adjacent bone, and early establishment of clinically relevant osseointegration. The resulting bone-implant contact, although clinically respectable, appeared significantly lower for rhBMP-2-coated implants compared with the control [rhBMP-2 (0.2 mg/ml) 43.3+/-10.8%versus 71.7+/-7.8%, p<0.02; rhBMP-2 (4.0 mg/ml) 35.4+/-10.6%versus 68.2+/-11.0%, p<0.03]. rhBMP-2 adsorbed onto TPO implant surfaces initiates dose-dependent peri-implant bone re-modelling resulting in the formation of normal, physiologic bone and clinically relevant osseointegration within 8 weeks.

  10. 49 CFR 192.461 - External corrosion control: Protective coating.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Protective coating... for Corrosion Control § 192.461 External corrosion control: Protective coating. (a) Each external protective coating, whether conductive or insulating, applied for the purpose of external corrosion control...

  11. 49 CFR 192.461 - External corrosion control: Protective coating.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Protective coating... for Corrosion Control § 192.461 External corrosion control: Protective coating. (a) Each external protective coating, whether conductive or insulating, applied for the purpose of external corrosion control...

  12. Optical Design of COATLI: A Diffraction-Limited Visible Imager with Fast Guiding and Active Optics Correction

    NASA Astrophysics Data System (ADS)

    Fuentes-Fernández, J.; Cuevas, S.; Watson, A. M.

    2018-04-01

    We present the optical design of COATLI, a two channel visible imager for a comercial 50 cm robotic telescope. COATLI will deliver diffraction-limited images (approximately 0.3 arcsec FWHM) in the riz bands, inside a 4.2 arcmin field, and seeing limited images (approximately 0.6 arcsec FWHM) in the B and g bands, inside a 5 arcmin field, by means of a tip-tilt mirror for fast guiding, and a deformable mirror for active optics, both located on two optically transferred pupil planes. The optical design is based on two collimator-camera systems plus a pupil transfer relay, using achromatic doublets of CaF2 and S-FTM16 and one triplet of N-BK7 and CaF2. We discuss the effciency, tolerancing, thermal behavior and ghosts. COATLI will be installed at the Observatorio Astronómico Nacional in Sierra San Pedro Mártir, Baja California, Mexico, in 2018.

  13. Pollution Prevention Case Studies: Implications for Army Institutional Processes

    DTIC Science & Technology

    1994-06-01

    waste (FAMC), Optical Fabrication by switching from glass to Laboratory (OFL) plastiC lens production Fort Lewis FORSCOM Develop installation...Role of Compliance Pressures ...................................................................................... 51 6.8 Waste and Recyclables ...Anny Depot AMC Reduce chromium waste (CCAD) through change in Aluminum coating process Fitzsimmons Anny Medical Center HSC Decrease heavy metal

  14. 76 FR 36121 - Recent Posting to the Applicability Determination Index (ADI) Database System of Agency...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ..., and regulatory interpretations, and posts them on the ADI on a quarterly basis. In addition, the ADI... NSPS A, AAa Installation of a Capacitor Bank and Tuned Reactor 1000019 NSPS AAAA Conversion of Post... WWW Amended Design Capacity Reports A100001 Asbestos M Removal of Asbestos Containing Coating...

  15. Exposure of Polymer Film Thermal Control Materials on the Materials International Space Station Experiment (MISSE)

    NASA Technical Reports Server (NTRS)

    Dever, Joyce; Miller, Sharon; Messer, Russell; Sechkar, Edward; Tollis, Greg

    2002-01-01

    Seventy-nine samples of polymer film thermal control (PFTC) materials have been provided by the National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) for exposure to the low Earth orbit environment on the exterior of the International Space Station (ISS) as part of the Materials International Space Station Experiment (MISSE). MISSE is a materials flight experiment sponsored by the Air Force Research Lab/Materials Lab and NASA. This paper will describe background, objectives, and configurations for the GRC PFTC samples for MISSE. These samples include polyimides, fluorinated polyimides, and Teflon fluorinated ethylene propylene (FEP) with and without second-surface metallizing layers and/or surface coatings. Also included are polyphenylene benzobisoxazole (PBO) and a polyarylene ether benzimidazole (TOR-LM). On August 16, 2001, astronauts installed passive experiment carriers (PECs) on the exterior of the ISS in which were located twenty-eight of the GRC PFTC samples for 1-year space exposure. MISSE PECs for 3-year exposure, which will contain fifty-one GRC PFTC samples, will be installed on the ISS at a later date. Once returned from the ISS, MISSE GRC PFTC samples will be examined for changes in optical and mechanical properties and atomic oxygen (AO) erosion. Additional sapphire witness samples located on the AO exposed trays will be examined for deposition of contaminants.

  16. SNG completes deepest underwater pipelay in Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogt, G.B.

    1992-08-24

    This paper reports that gas began flowing this spring in the deepest underwater, large-diameter pipeline in the U.S. Gulf of Mexico. Water depth along the route of the pipeline varies from approximately 460 ft at the Alabaster platform, increasing to the record depth of 1,220 ft in the Mississippi Canyon area, and decreasing to negligible water depth at the landfall site southwest of Venice. The SNG Mississippi Canyon Block 397 pipeline project exemplifies how a pipeline project can encounter an array of conditions which prompt special design considerations and installation techniques. Important considerations for this project were related to pipemore » properties, anti-corrosion and weight coatings, span and buckle considerations, and installation equipment. A team effort was used to study, research, test, design, and install this pipeline.« less

  17. Simulation to coating weight control for galvanizing

    NASA Astrophysics Data System (ADS)

    Wang, Junsheng; Yan, Zhang; Wu, Kunkui; Song, Lei

    2013-05-01

    Zinc coating weight control is one of the most critical issues for continuous galvanizing line. The process has the characteristic of variable-time large time delay, nonlinear, multivariable. It can result in seriously coating weight error and non-uniform coating. We develop a control system, which can automatically control the air knives pressure and its position to give a constant and uniform zinc coating, in accordance with customer-order specification through an auto-adaptive empirical model-based feed forward adaptive controller, and two model-free adaptive feedback controllers . The proposed models with controller were applied to continuous galvanizing line (CGL) at Angang Steel Works. By the production results, the precise and stability of the control model reduces over-coating weight and improves coating uniform. The product for this hot dip galvanizing line does not only satisfy the customers' quality requirement but also save the zinc consumption.

  18. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.

    2011-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.

  19. KSC-08pd1968

    NASA Image and Video Library

    2008-07-14

    CAPE CANAVERAL, Fla. – In the tile shop at NASA's Kennedy Space Center, a Boeing Replacement Insulation 18, or BRI-18, tile bakes in a 2,200-degree oven to cure the ceramic coating. The baking is part of the process to prepare the tiles for installation on space shuttles. BRI-18 is the strongest material used for thermal insulation on the orbiters and, when coated to produce toughened unipiece fibrous insulation, provides a tile with extremely high-impact resistance. It is replacing other tiles on areas of the vehicle where impact risk is high, such as the landing gear doors, the wing leading edge and the external tank doors. Photo credit: NASA/Jim Grossmann

  20. KSC-08pd1964

    NASA Image and Video Library

    2008-07-14

    CAPE CANAVERAL, Fla. – In the tile shop at NASA's Kennedy Space Center, a Boeing Replacement Insulation 18, or BRI-18, tile is ready to be baked at 2,200 degrees Fahrenheit to cure the ceramic coating, part of the process to prepare the tiles for installation on space shuttles. BRI-18 is the strongest material used for thermal insulation on the orbiters and, when coated to produce toughened unipiece fibrous insulation, provides a tile with extremely high-impact resistance. It is replacing other tiles on areas of the vehicle where impact risk is high, such as the landing gear doors, the wing leading edge and the external tank doors. Photo credit: NASA/Jim Grossmann

  1. An advanced plasmonic cermet solar absorber for high temperature solar energy conversion applications

    NASA Astrophysics Data System (ADS)

    Bilokur, M.; Gentle, A.; Arnold, M.; Cortie, M.; Smith, G.

    2017-08-01

    Cermet coatings based on nanoparticles of Au or Ag in a stable dielectric matrix provide a combination of spectral-selectivity and microstructural stability at elevated temperatures. The nanoparticles provide an absorption peak due to their localized surface plasmon resonance and the dielectric matrix provides red-shifting and intrinsic absorption from defects. The matrix and two separated cermet layers combined add mechanical support, greater thermal stability and extra absorptance. The coatings may be prepared by magnetron sputtering. They have solar absorptance ranging between 91% and 97% with low thermal emittance making them suitable for application in solar thermal conversion installations.

  2. KSC-05pd2601

    NASA Image and Video Library

    2005-12-14

    KENNEDY SPACE CENTER, FLA. -- United Space Alliance technician Dell Chapman applies the Teflon-coated fabric to the gap filler before installation on the orbiter Discovery, which is being processed in Orbiter Processing Facility Bay 3 at NASA’s Kennedy Space Center. This work is being performed due to two gap fillers that were protruding from the underside of Discovery on the first Return to Flight mission, STS-114. New installation procedures have been developed to ensure the gap fillers stay in place and do not pose any hazard during the shuttle's re-entry to the atmosphere. Discovery is the scheduled orbiter for the second space shuttle mission in the return-to-flight sequence.

  3. ASRM test report: Autoclave cure process development

    NASA Technical Reports Server (NTRS)

    Nachbar, D. L.; Mitchell, Suzanne

    1992-01-01

    ASRM insulated segments will be autoclave cured following insulation pre-form installation and strip wind operations. Following competitive bidding, Aerojet ASRM Division (AAD) Purchase Order 100142 was awarded to American Fuel Cell and Coated Fabrics Company, Inc. (Amfuel), Magnolia, AR, for subcontracted insulation autoclave cure process development. Autoclave cure process development test requirements were included in Task 3 of TM05514, Manufacturing Process Development Specification for Integrated Insulation Characterization and Stripwind Process Development. The test objective was to establish autoclave cure process parameters for ASRM insulated segments. Six tasks were completed to: (1) evaluate cure parameters that control acceptable vulcanization of ASRM Kevlar-filled EPDM insulation material; (2) identify first and second order impact parameters on the autoclave cure process; and (3) evaluate insulation material flow-out characteristics to support pre-form configuration design.

  4. Gas Dynamic Spray Technology Demonstration Project Management. Joint Test Report

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2011-01-01

    The standard practice for protecting metallic substrates in atmospheric environments is the use of an applied coating system. Current coating systems used across AFSPC and NASA contain volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). These coatings are sUbject to environmental regulations at the Federal and State levels that limit their usage. In addition, these coatings often cannot withstand the high temperatures and exhaust that may be experienced by Air Force Space Command (AFSPC) and NASA structures. In response to these concerns, AFSPC and NASA have approved the use of thermal spray coatings (TSCs). Thermal spray coatings are extremely durable and environmentally friendly coating alternatives, but utilize large cumbersome equipment for application that make the coatings difficult and time consuming to repair. Other concerns include difficulties coating complex geometries and the cost of equipment, training, and materials. Gas Dynamic Spray (GOS) technology (also known as Cold Spray) was evaluated as a smaller, more maneuverable repair method as well as for areas where thermal spray techniques are not as effective. The technology can result in reduced maintenance and thus reduced hazardous materials/wastes associated with current processes. Thermal spray and GOS coatings also have no VOCs and are environmentally preferable coatings. The primary objective of this effort was to demonstrate GDS technology as a repair method for TSCs. The aim was that successful completion of this project would result in approval of GDS technology as a repair method for TSCs at AFSPC and NASA installations to improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination, and reduce the amount of hazardous waste generated.

  5. Performance of thermal sprayed aluminium coatings in the splash zone and for riser service

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, K.P.; Rosbrook, T.; Thomason, W.H.

    1994-12-31

    Historically, the coatings used in the splash zone have been either heavy duty coal tar epoxy or a glassflake epoxy. In 1982 Conoco justified a minimum 20 year service life for a sealed thermal sprayed aluminium (TSA) coating for the Hutton TLP risers and tethers. In 1984 the Hutton TLP was installed with 200 microns thickness TSA as the corrosion protection coating and without adding a corrosion allowance. After eight years service the TSA coating on the production risers and tethers is still in good condition. It was noted that the splash zone area was indistinguishable from the remainder ofmore » the inspected components. However, there was a noticeable difference between the production risers and the tethers. The tethers having a vinyl sealer showed a blistered surface while the risers with a silicone sealer did not show any blistering. No corrosion has been observed underneath any of the blisters. The importance of adequate sealers in connection with blistering has been documented by testing. The excellent long term performance of TSA coating in the splash zone has been further documented by the results of field studies published in the last few years. These experiences indicate that TSA coatings properly applied and with the use of specific sealer systems may provide a service life in excess of 30 years with no required maintenance.« less

  6. Diagnostic Techniques Used to Study Chemical-Vapor-Deposited Diamond Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2000-01-01

    The advantages and utility of chemical-vapor-deposited (CVD) diamond as an industrial ceramic can only be realized if the price and quality are right. Until recently, this technology was of interest only to the academic and basic research community. However, interest has grown because of advances made by leading CVD diamond suppliers: 1) Reduction of the cost of CVD polycrystalline diamond deposition below $5/carat ($8/sq cm); 2) Installation of production capacity; 3) Epitaxial growth of CVD single-crystal diamond. Thus, CVD diamond applications and business are an industrial reality. At present, CVD diamond is produced in the form of coatings or wafers. CVD diamond film technology offers a broader technological potential than do natural and high-pressure synthetic diamonds because size, geometry, and eventually cost will not be as limiting. Now that they are cost effective, diamond coatings - with their extreme properties - can be used in a variety of applications. Diamond coatings can improve many of the surface properties of engineering substrate materials, including erosion, corrosion, and wear resistance. Examples of actual and potential applications, from microelectromechanical systems to the wear parts of diamond coatings and related superhard coatings are described. For example, diamond coatings can be used as a chemical and mechanical barrier for the space shuttles check valves, particularly on the guide pins and seat assemblies.

  7. Coupled field modeling of E/M impedance of piezoelectric wafer active sensor for cataphoretic coating thickness measurement

    NASA Astrophysics Data System (ADS)

    Kamas, T.; Tekkalmaz, M.

    2017-04-01

    The cataphoretic electro-coating is one of the most common methods that are used against corrosion as a primary coating layer. The cataphoretic electro-coating is commonly utilized technique especially in protecting of automobile components in automotive industry. This coating method has many advantages such as high corrosion resistance, ability of homogeneous and complete coating of components in any geometry, less pollution, and less risk of ignition. In this study, some specimens in the form of steel sheets coated by the cataphoretic electro-coating method are examined using electro-mechanical impedance spectroscopy (EMIS) method. One of the extensively employed sensor technologies has been permanently installed piezoelectric wafer active sensor (PWAS) for in situ continuous structural health monitoring (SHM). Using the transduction of ultrasonic elastic waves into voltage and vice versa, PWAS has been emerged as one of the major SHM sensing technologies. EMIS method has been utilized as a dynamic descriptor of PWAS and the structure on which it is bonded. EMIS of PWAS-structure couple is a high frequency local modal sensing technique by applying standing waves to indicate the response of the PWAS resonator by determining the resonance and anti-resonance frequencies. To simulate the actual EMIS measurements in the present work, two-dimensional and three-dimensional coupled field finite element models are created for both uncoated and coated steel plates in a commercial FEA software, ANSYS®. The EMIS values of the specimens in certain sizes and coated in different thickness are going to be simulated in broad-band of frequency spectra. The thickness of the coating layer and coating time are of paramount importance for the corrosion resistance. The coating layer thickness and the corresponding coating period will be optimized by analyses of the values obtained from the 2D and 3D EMIS simulations.

  8. 40 CFR 63.11171 - How do I know if my source is considered a new source or an existing source?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... associated equipment; (3) Spray guns and associated equipment; (4) Spray gun cleaning equipment; (5... stripping or surface coating equipment. If you purchase and install spray booths, enclosed spray gun cleaners, paint stripping equipment to reduce MeCl emissions, or purchase new spray guns to comply with...

  9. Field comparison of the installation and cost of placement of epoxy-coated and MMFX 2 steel deck reinforcement : establishing a baseline for future deck monitoring.

    DOT National Transportation Integrated Search

    2009-01-01

    As part of the Innovative Bridge Research and Construction Program (IBRCP), this study was conducted to use the full-scale construction project of the Route 123 Bridge over the Occoquan River in Northern Virginia to identify and compare any differenc...

  10. Field Study on Moisture Problems in Exterior Walls of Family Housing Units at Naval Air Station Pensacola, Florida.

    DTIC Science & Technology

    1984-02-01

    exterior exposed concrete block walls with 2 inch (nominal) furring, 1 inch cellular board ( expanded polystyrene ) insulation, and gypsum board finish, as...furring strips, and new expanded polystyrene board thermal insu- lation and new gypsum board were installed. The purpose of the coating on the concrete

  11. 24 CFR 3285.402 - Ground anchor installations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... least equivalent to that provided by a coating of zinc on steel of not less than 0.30 oz./ft.2 of... recognized testing protocol. (2) Tie-down straps. A 11/4 inch x 0.035 inch or larger steel strapping conforming to ASTM D 3953—97, Standard Specification for Strapping, Flat Steel and Seals (incorporated by...

  12. Fixation of the stressed state of glass plates by coating them with thin films using a plasma focus installation

    NASA Astrophysics Data System (ADS)

    Kolokoltsev, V. N.; Degtiarev, V. F.; Borovitskaya, I. V.; Nikulin, V. Ya.; Peregudova, E. N.; Silin, P. V.; Eriskin, A. A.

    2018-01-01

    Elastic deformation in transparent mediums is usually studied by the photoelasticity method. For opaque mediums the method of film coating and strain gauge method are used. After the external load was removed, the interference pattern corresponding to elastic deformation of the material disappears. It is found that the elastic deformation state of the thin glass plate under the action of concentrated load can be fixed during the deposition of a thin metal film. Deposition of thin copper films was carried out by passing of plasma through the copper tube installed inside the Plasma Focus installation. After removing of the load, interference pattern on the glass plates was observed in the form of Newton’s rings and isogers in non-monochromatic light on the CCD scanners which uses uorescent lamps with cold cathode. It is supposed that the copper film fixes the relief of the surface of the glass plate at the time of deformation and saves it when the load is removed. In the case of a concentrated load, this relief has the shape of a thin lens of large radius. For this reason, the interference of coherent light rays in a thin air gap between the glass of the scanners atbed and the lens surface has the shape of Newton's rings. In this case, when scanning the back side of the plate, isogyres are observed. The presented method can be used in the analysis of the mechanical stress in a various optical elements.

  13. Correlation of Predicted and Observed Optical Properties of Multilayer Thermal Control Coatings

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.

    1998-01-01

    Thermal control coatings on spacecraft will be increasingly important, as spacecraft grow smaller and more compact. New thermal control coatings will be needed to meet the demanding requirements of next generation spacecraft. Computer programs are now available to design optical coatings and one such program was used to design several thermal control coatings consisting of alternating layers of WO3 and SiO2. The coatings were subsequently manufactured with electron beam evaporation and characterized with both optical and thermal techniques. Optical data were collected in both the visible region of the spectrum and the infrared. Predictions of solar absorptance and infrared emittance were successfully correlated to the observed thermal control properties. Functional performance of the coatings was verified in a bench top thermal vacuum chamber.

  14. Electron Cloud Measurements in Fermilab Main Injector and Recycler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldred, Jeffrey Scott; Backfish, M.; Tan, C. Y.

    This conference paper presents a series of electron cloud measurements in the Fermilab Main Injector and Recycler. A new instability was observed in the Recycler in July 2014 that generates a fast transverse excitation in the first high intensity batch to be injected. Microwave measurements of electron cloud in the Recycler show a corresponding depen- dence on the batch injection pattern. These electron cloud measurements are compared to those made with a retard- ing field analyzer (RFA) installed in a field-free region of the Recycler in November. RFAs are also used in the Main Injector to evaluate the performance ofmore » beampipe coatings for the mitigation of electron cloud. Contamination from an unexpected vacuum leak revealed a potential vulnerability in the amorphous carbon beampipe coating. The diamond-like carbon coating, in contrast, reduced the electron cloud signal to 1% of that measured in uncoated stainless steel beampipe.« less

  15. Conceptual design report for the project to install leak detection in FAST-FT-534/548/549

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galloway, K.J.

    1992-07-01

    This report provides conceptual designs and design recommendations for installing secondary containment and leak detection systems for three sumps at the Fluorinel and Storage Facility (FAST), CPP-666. The FAST facility is located at the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory (INEL). The three sumps receive various materials from the FAST water treatment process. This project involves sump upgrades to meet appropriate environmental requirements. The steps include: providing sump modifications or designs for the installation of leak chases and/or leakage accumulation, coating the sump concrete with a chemical resistant sealant (except for sump VES-FT-534 which ismore » already lined with stainless steel) to act as secondary containment, lining the sumps with a primary containment system, and providing a means to detect and remove primary containment leakage that may occur.« less

  16. Urea functionalized surface-bonded sol-gel coating for on-line hyphenation of capillary microextraction with high-performance liquid chromatography.

    PubMed

    Jillani, Shehzada Muhammad Sajid; Alhooshani, Khalid

    2018-03-30

    Sol-gel urea functionalized-[bis(hydroxyethyl)amine] terminated polydimethylsiloxane coating was developed for capillary microextraction-high performance liquid chromatographic analysis from aqueous samples. A fused silica capillary is coated from the inside with surface bonded coating material and is created through in-situ sol-gel reaction. The urea-functionalized coating was immobilized to the inner surface of the capillary by the condensation reaction of silanol groups of capillary and sol-solution. The characterization of the coating material was successfully done by using X-ray photoelectron spectroscopy, thermogravimetric analysis, field emission scanning electron microscope, and energy dispersive X-ray spectrometer. To make a setup of online capillary microextraction-high performance liquid chromatography, the urea functionalized capillary was installed in the HPLC manual injection port. The analytes of interest were pre-concentrated in the coated sampling loop, desorbed by the mobile phase, chromatographically separated on C-18 column, and analyzed by UV detector. Sol-gel coated capillaries were used for online extraction and high-performance liquid chromatographic analysis of phenols, ketones, aldehydes, and polyaromatic hydrocarbons. This newly developed coating showed excellent extraction for a variety of analytes ranging from highly polar to non-polar in nature. The analysis using sol-gel coating showed excellent overall sensitivity in terms of lower detection limits (S/N = 3) for the analytes (0.10 ng mL -1 -14.29 ng mL -1 ) with acceptable reproducibility that is less than 12.0%RSD (n = 3). Moreover, the capillary to capillary reproducibility of the analysis was also tested by changing the capillary of the same size. This provided excellent%RSD of less than 10.0% (n = 3). Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Requirements and test results for the qualification of thermal control coatings

    NASA Technical Reports Server (NTRS)

    Brzuskiewicz, J. E.; Zerlaut, G. A.; Lauder, K.; Miller, G. M.

    1988-01-01

    Paint type coatings are often used as engineering materials in critical satellite temperature control applications. The functional features of coatings used for temperature control purposes must remain stable throughout the satellite manufacturing process and the satellite mission. The selection of a particular coating depends on matching coating characteristics to mission requirements. The use of paint coatings on satellites, although having an extensive history, requires that the paint be qualified to each application on an individual basis. Thus, the qualification process through testing serves to ensure that paint coatings as engineering materials will fulfill design requirements.

  18. Optimization of aluminumand its alloys doping by ionic-beam-plasma coating

    NASA Astrophysics Data System (ADS)

    Rygina, M.; Krisina, O.; Ivanov, Yu; Petrikova, E.; Teresov, A.

    2016-04-01

    The surface morphology, chemical composition, microstructure, nanohardness, and tribological properties of systems were investigated. The paper considers the methodology offilmpplicationusingionic-beam irradiation by means of the installation'Solo' with different exposure modes. Irradiation modes which allow an increase in the microhardness of the material and a decrease in its wear rate are defined. Physical substantiation of this phenomenon is given.

  19. KSC-08pd1966

    NASA Image and Video Library

    2008-07-14

    CAPE CANAVERAL, Fla. – In the tile shop at NASA's Kennedy Space Center, a worker places a Boeing Replacement Insulation 18, or BRI-18, tile in the oven. The tile will be baked at 2,200 degrees Fahrenheit to cure the ceramic coating, part of the process to prepare the tiles for installation on space shuttles. BRI-18 is the strongest material used for thermal insulation on the orbiters and, when coated to produce toughened unipiece fibrous insulation, provides a tile with extremely high-impact resistance. It is replacing other tiles on areas of the vehicle where impact risk is high, such as the landing gear doors, the wing leading edge and the external tank doors. Photo credit: NASA/Jim Grossmann

  20. 40 CFR 450.21 - Effluent limitations reflecting the best practicable technology currently available (BPT).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... control technology currently available (BPT). (a) Erosion and sediment controls. Design, install and... minimum, such controls must be designed, installed and maintained to: (1) Control stormwater volume and... appropriate controls. (d) Pollution prevention measures. Design, install, implement, and maintain effective...

  1. 40 CFR 450.21 - Effluent limitations reflecting the best practicable technology currently available (BPT).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... control technology currently available (BPT). (a) Erosion and sediment controls. Design, install and... minimum, such controls must be designed, installed and maintained to: (1) Control stormwater volume and... appropriate controls. (d) Pollution prevention measures. Design, install, implement, and maintain effective...

  2. Thermodynamics and kinetics of pack aluminide coating formation on IN-100

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Caves, R. M.

    1973-01-01

    An investigation of the effects of pack variables on the formation of aluminide coatings on nickel-base superalloy IN-100 was conducted. Also, the thermodynamics and kinetics of coating formation were analyzed. Observed coating weights were in good agreement with predictions made from the analysis. Pack temperature rather than pack aluminum activity controls the principal coating phase formed. In 1 weight percent aluminum packs, aluminum weight gains were related to the halide pack activator. Solid-state nickel diffusion controlled coating formation from sodium fluoride and chloride and ammonium fluoride activated packs. In other ammonium and sodium halide activated 1 weight percent aluminum packs, gaseous diffusion controlled coating formation.

  3. Guided wave attenuation in coated pipes buried in sand

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Cawley, Peter; Lowe, Michael J. S.

    2016-02-01

    Long-range guided wave testing (GWT) is routinely used for the monitoring and detection of corrosion defects in above ground pipelines in various industries. The GWT test range in buried, coated pipelines is greatly reduced compared to aboveground pipelines due to energy leakage into the embedding soil. In this study, we aim to increase test ranges for buried pipelines. The effect of pipe coatings on the T(0,1) and L(0,2) guided wave attenuation is investigated using a full-scale experimental apparatus and model predictions. Tests are performed on a fusion-bonded epoxy (FBE)-coated 8" pipe, buried in loose and compacted sand over a frequency range of 10-35 kHz. The application of a low impedance coating is shown to effectively decouple the influence of the sand on the ultrasound leakage from the buried pipe. We demonstrate ultrasonic isolation of a buried pipe by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both pipe and sand and the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is substantially reduced, in the range of 0.3-1.2 dBm-1 for loose and compacted sand conditions, compared to buried FBE-coated pipe without the PE-foam, where the measured attenuation is in the range of 1.7-4.7 dBm-1. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry technique and used in model predictions of guided wave propagation in a buried coated pipe. Good agreement is found between the attenuation measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges, so such coatings would be attractive for new pipeline installations.

  4. 49 CFR 195.559 - What coating material may I use for external corrosion control?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... corrosion control? 195.559 Section 195.559 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.559 What coating material may I use for external corrosion control? Coating material for external corrosion control under...

  5. 49 CFR 195.559 - What coating material may I use for external corrosion control?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... corrosion control? 195.559 Section 195.559 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.559 What coating material may I use for external corrosion control? Coating material for external corrosion control under...

  6. 49 CFR 195.559 - What coating material may I use for external corrosion control?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... corrosion control? 195.559 Section 195.559 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.559 What coating material may I use for external corrosion control? Coating material for external corrosion control under...

  7. 49 CFR 195.559 - What coating material may I use for external corrosion control?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... corrosion control? 195.559 Section 195.559 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.559 What coating material may I use for external corrosion control? Coating material for external corrosion control under...

  8. 49 CFR 195.559 - What coating material may I use for external corrosion control?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... corrosion control? 195.559 Section 195.559 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.559 What coating material may I use for external corrosion control? Coating material for external corrosion control under...

  9. 40 CFR 450.21 - Effluent limitations reflecting the best practicable technology currently available (BPT).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Design, install and maintain effective erosion controls and sediment controls to minimize the discharge of pollutants. At a minimum, such controls must be designed, installed and maintained to: (1) Control... prohibited unless managed by appropriate controls. (d) Pollution prevention measures. Design, install...

  10. 40 CFR 450.21 - Effluent limitations reflecting the best practicable technology currently available (BPT).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Design, install and maintain effective erosion controls and sediment controls to minimize the discharge of pollutants. At a minimum, such controls must be designed, installed and maintained to: (1) Control... design, installation and maintenance of erosion and sediment controls must address factors such as the...

  11. 40 CFR 450.21 - Effluent limitations reflecting the best practicable technology currently available (BPT).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Design, install and maintain effective erosion controls and sediment controls to minimize the discharge of pollutants. At a minimum, such controls must be designed, installed and maintained to: (1) Control... design, installation and maintenance of erosion and sediment controls must address factors such as the...

  12. Calibration of a microchannel plate based extreme ultraviolet grazing incident spectrometer at the Advanced Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakeman, M. S.; Lawrence Berkeley National Laboratory, Berkeley, California 94720; Tilborg, J. van

    We present the design and calibration of a microchannel plate based extreme ultraviolet spectrometer. Calibration was performed at the Advance Light Source (ALS) at the Lawrence Berkeley National Laboratory (LBNL). This spectrometer will be used to record the single shot spectrum of radiation emitted by the tapered hybrid undulator (THUNDER) undulator installed at the LOASIS GeV-class laser-plasma-accelerator. The spectrometer uses an aberration-corrected concave grating with 1200 lines/mm covering 11-62 nm and a microchannel plate detector with a CsI coated photocathode for increased quantum efficiency in the extreme ultraviolet. A touch screen interface controls the grating angle, aperture size, and placementmore » of the detector in vacuum, allowing for high-resolution measurements over the entire spectral range.« less

  13. Testing and Optimization of Electrically Conductive Spacecraft Coatings

    NASA Technical Reports Server (NTRS)

    Mell, R. J.; Wertz, G. E.; Edwards, D. L. (Technical Monitor)

    2001-01-01

    This is the final report discussing the work done for the Space Environments and Effects (SEE) Program. It discusses test chamber design, coating research, and test results on electrically thermal control coatings. These thermal control coatings are being developed to have several orders of magnitude higher electrical conductivity than most available thermal control coatings. Most current coatings tend to have a range in surface resistivity from 1,011 to 1,013 ohms/sq. Historically, spacecraft have had thermal control surfaces composed of dielectric materials of either polymers (paints and metalized films) or glasses (ceramic paints and optical solar reflectors). Very seldom has the thermal control surface of a spacecraft been a metal where the surface would be intrinsically electrically conductive. The poor thermal optical properties of most metals have, in most cases, stopped them from being used as a thermal control surface. Metals low infrared emittance (generally considered poor for thermal control surfaces) and/or solar absorptance, have resulted in the use of various dielectric coatings or films being applied over the substrate materials in order to obtain the required optical properties.

  14. Controlled release from drug microparticles via solventless dry-polymer coating.

    PubMed

    Capece, Maxx; Barrows, Jason; Davé, Rajesh N

    2015-04-01

    A novel solvent-less dry-polymer coating process employing high-intensity vibrations avoiding the use of liquid plasticizers, solvents, binders, and heat treatments is utilized for the purpose of controlled release. The main hypothesis is that such process having highly controllable processing intensity and time may be effective for coating particularly fine particles, 100 μm and smaller via exploiting particle interactions between polymers and substrates in the dry state, while avoiding breakage yet achieving conformal coating. The method utilizes vibratory mixing to first layer micronized polymer onto active pharmaceutical ingredient (API) particles by virtue of van der Waals forces and to subsequently mechanically deform the polymer into a continuous film. As a practical example, ascorbic acid and ibuprofen microparticles, 50-500 μm, are coated with the polymers polyethylene wax or carnauba wax, a generally recognized as safe material, resulting in controlled release on the order of seconds to hours. As a novelty, models are utilized to describe the coating layer thickness and the controlled-release behavior of the API, which occurs because of a diffusion-based mechanism. Such modeling would allow the design and control of the coating process with application for the controlled release of microparticles, particularly those less than 100 μm, which are difficult to coat by conventional solvent coating methods. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. 40 CFR 52.222 - Negative declarations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... County Air Pollution Control District. (i) Industrial Wastewater, Plastic Parts Coating: Business... Pollution Control District. (i) Aerospace Coatings; Industrial Waste Water Treatment; Plastic Parts Coating..., 2011. (a) The following air pollution control districts submitted negative declarations for volatile...

  16. Evaluation of Underwater Adhesives and Friction Coatings for In Situ Attachment of Fiber Optic Sensor System for Subsea Applications

    NASA Technical Reports Server (NTRS)

    Tang, Henry H.; Le, Suy Q.; Orndoff, Evelyne S.; Smith, Frederick D.; Tapia, Alma S.; Brower, David V.

    2012-01-01

    Integrity and performance monitoring of subsea pipelines and structures provides critical information for managing offshore oil and gas production operation and preventing environmentally damaging and costly catastrophic failure. Currently pipeline monitoring devices require ground assembly and installation prior to the underwater deployment of the pipeline. A monitoring device that could be installed in situ on the operating underwater structures could enhance the productivity and improve the safety of current offshore operation. Through a Space Act Agreement (SAA) between the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) and Astro Technology, Inc. (ATI), JSC provides technical expertise and testing facilities to support the development of fiber optic sensor technologies by ATI. This paper details the first collaboration effort between NASA JSC and ATI in evaluating underwater applicable adhesives and friction coatings for attaching fiber optic sensor system to subsea pipeline. A market survey was conducted to examine different commercial ]off ]the ]shelf (COTS) underwater adhesive systems and to select adhesive candidates for testing and evaluation. Four COTS epoxy based underwater adhesives were selected and evaluated. The adhesives were applied and cured in simulated seawater conditions and then evaluated for application characteristics and adhesive strength. The adhesive that demonstrated the best underwater application characteristics and highest adhesive strength were identified for further evaluation in developing an attachment system that could be deployed in the harsh subsea environment. Various friction coatings were also tested in this study to measure their shear strengths for a mechanical clamping design concept for attaching fiber optic sensor system. A COTS carbide alloy coating was found to increase the shear strength of metal to metal clamping interface by up to 46 percent. This study provides valuable data for assessing the feasibility of developing the next generation fiber optic senor system that could be retrofitted onto existing subsea pipeline structures.

  17. Characterization and durability testing of plasma-sprayed zirconia-yttria and hafnia-yttria thermal barrier coatings. Part 1: Effect of spray parameters on the performance of several lots of partially stabilized zirconia-yttria powder

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Leissler, George W.; Jobe, J. Marcus

    1993-01-01

    Initial experiments conducted on thermal barrier coatings prepared in the newly upgraded research plasma spray facility and the burner rig test facilities are discussed. Part 1 discusses experiments which establish the spray parameters for three baseline zirconia-yttria coatings. The quality of five similar coating lots was judged primarily by their response to burner rig exposure supplemented by data from other sources such as specimen characterizations and thermal diffusivity measurements. After allowing for burner rig variability, although there appears to be an optimum density (i.e., optimum microstructure) for maximum burner rig life, the distribution tends to be rather broad about the maximum. In Part 2, new hafnia-yttria-based coatings were evaluated against both baseline and alternate zirconia-yttria coatings. The hafnia-yttria coatings and the zirconia-yttria coatings that were prepared by an alternate powder vendor were very sensitive to plasma spray parameters, in that high-quality coatings were only obtained when certain parameters were employed. The reasons for this important observation are not understood. Also not understood is that the first of two replicate specimens sprayed for Part 1 consistently performed better than the second specimen. Subsequent experiments did not display this spray order affect, possibly because a chiller was installed in the torch cooling water circuit. Also, large changes in coating density were observed after switching to a new lot of electrodes. Analyses of these findings were made possible, in part, because of the development of a sensitive density measurement technique described herein in detail. The measured thermal diffusivities did not display the expected strong relationship with porosity. This surprising result was believed to have been caused by increased microcracking of the denser coatings on the stainless steel substrates.

  18. Development of Alumina Ceramics Vacuum Chamber for J-PARC

    NASA Astrophysics Data System (ADS)

    Kinsho, Michikazu; Saito, Yoshio; Kabeya, Zenzaburo; Ogiwara, Norio

    We successfully developed alumina ceramics vacuum chamber for the 3 GeV-RCS of J-PARC at JAEA. This chamber has titanium flanges and an outer RF shield to reduce duct impedance, and moreover TiN film is coated on the inside surface to preclude charge build up and to reduce secondary emitted electrons. The outgassing rate of the ceramics chamber measured by the conductance modulation method has a sufficiently low value of 1.2×10-8 Pa m3 s-1 m2 after 50 hours pumping. The temperature of the titanium flange became 45°C due to eddy current heating under dipole magnet operation. It was found that the radiation damage to the capacitor used for the RF shield of this duct was small, the capacitance only decreased by 7% after gamma ray irradiation of 30 MGy. In order to determine effect of the ceramics chamber on the proton beam, this ceramics chamber prepared for J-PARC was installed instead in the 12 GeV main ring at KEK-PS. The proton beam could be controlled to accelerate stably after installation, and thus it was found that this chamber did not influence the beam very much. This ceramics chamber is thus usable for the 3 GeV-RCS of J-PARC.

  19. Development of a Self-Sluicing Pressure Leaf Filter

    NASA Astrophysics Data System (ADS)

    Cousineau, Bernard L.; Lumsden, J. R.

    The cylindrical Kelly filter presses installed in the Ewarton Works "C" phase did not perform satisfactorily because of difficulties with head seals, locking rings, and shell retraction mechanisms. As rectification required major modifications, a concept of a press which did not require to be opened for sluicing was proposed. Test work of various sluicing and res lurrying spray arrangements was carried out, and this led to the design of a self-sluicing press which used the shell of an existing Kelly press with its main axis vertical. One press was converted by July 1972, and a development period started. Although initial operation was encouraging, effective sluicing could not be guaranteed after 30 shifts. Modifications to leaf spacing, spray rotational speed, spray slot width, feed pressure and pre-coat control by November 1973, however, allowed effective performance for all of the 800 hour canvas life. Advantages are: reduced operating and maintenance manpower, clean environment, and reduced maintenance cost. The use of 1st wash overflow for sluicing has reduced caustic soda and canvas consumption. Ewarton Works now has four converted self-sluicing presses, and arc converting five more, and Arvida Works plan the installation of one for tests on red pressing (blow-off filtration). A side benefit of the development was the study of the benefits of constant pressure overflow filtration.

  20. Characterization of Micro-arc Oxidation Coatings on 6N01 Aluminum Alloy Under Different Electrolyte Temperature Control Modes

    NASA Astrophysics Data System (ADS)

    Wang, Xuefei; Zhu, Zongtao; Li, Yuanxing; Chen, Hui

    2018-03-01

    The micro-arc oxidation coatings of 6N01 aluminum alloy produced under different control modes of the electrolyte temperature are discussed in detail. Compared to those coated by a thermostatically controlled treatment, the coatings had different surface characterizations when they were coated without controlling the electrolyte temperature, particularly after treatment involving boiling electrolytes. Scanning electron microscopy and confocal laser scanning microscopy were used to observe the morphology of the coatings. Energy-dispersive spectrometry and x-ray diffractometer were used to characterize their elemental and crystalline phase compositions. The results indicate that the treatment without a controlled electrolyte temperature ultimately led to a thicker and rougher film with a respectably thick inner barrier film, a lower content of γ-Al2O3 and better corrosion resistance.

  1. Magnetron sputtering source

    DOEpatents

    Makowiecki, Daniel M.; McKernan, Mark A.; Grabner, R. Fred; Ramsey, Philip B.

    1994-01-01

    A magnetron sputtering source for sputtering coating substrates includes a high thermal conductivity electrically insulating ceramic and magnetically attached sputter target which can eliminate vacuum sealing and direct fluid cooling of the cathode assembly. The magnetron sputtering source design results in greater compactness, improved operating characteristics, greater versatility, and low fabrication cost. The design easily retrofits most sputtering apparatuses and provides for safe, easy, and cost effective target replacement, installation, and removal.

  2. Environmental Assessment of Installation Development at McConnell Air Force Base, Kansas

    DTIC Science & Technology

    2007-05-01

    characteristics of the noise source, distance between source and receptor, receptor sensitivity, weather , and time of day. Sound is measured with...bulk fuel storage and transfer, fuel dispensing, service stations , solvent degreasing, surface coating, and chemical usage/fugitive emissions. The...and weathered Permian bedrock. The deeper aquifer is within calcareous shales of the Wellington Formation. Groundwater flow follows the local

  3. Hydroxyapatite coatings deposited by liquid precursor plasma spraying: controlled dense and porous microstructures and osteoblastic cell responses.

    PubMed

    Huang, Yi; Song, Lei; Liu, Xiaoguang; Xiao, Yanfeng; Wu, Yao; Chen, Jiyong; Wu, Fang; Gu, Zhongwei

    2010-12-01

    Hydroxyapatite coatings were deposited on Ti-6Al-4V substrates by a novel plasma spraying process, the liquid precursor plasma spraying (LPPS) process. X-ray diffraction results showed that the coatings obtained by the LPPS process were mainly composed of hydroxyapatite. The LPPS process also showed excellent control on the coating microstructure, and both nearly fully dense and highly porous hydroxyapatite coatings were obtained by simply adjusting the solid content of the hydroxyapatite liquid precursor. Scanning electron microscope observations indicated that the porous hydroxyapatite coatings had pore size in the range of 10-200 µm and an average porosity of 48.26 ± 0.10%. The osteoblastic cell responses to the dense and porous hydroxyapatite coatings were evaluated with human osteoblastic cell MG-63, in respect of the cell morphology, proliferation and differentiation, with the hydroxyapatite coatings deposited by the atmospheric plasma spraying (APS) process as control. The cell experiment results indicated that the heat-treated LPPS coatings with a porous structure showed the best cell proliferation and differentiation among all the hydroxyapatite coatings. Our results suggest that the LPPS process is a promising plasma spraying technique for fabricating hydroxyapatite coatings with a controllable microstructure, which has great potential in bone repair and replacement applications.

  4. 49 CFR 195.561 - When must I inspect pipe coating used for external corrosion control?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... corrosion control? 195.561 Section 195.561 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.561 When must I inspect pipe coating used for external corrosion control? (a) You must inspect all external pipe coating...

  5. 49 CFR 195.561 - When must I inspect pipe coating used for external corrosion control?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... corrosion control? 195.561 Section 195.561 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.561 When must I inspect pipe coating used for external corrosion control? (a) You must inspect all external pipe coating...

  6. 49 CFR 195.561 - When must I inspect pipe coating used for external corrosion control?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... corrosion control? 195.561 Section 195.561 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.561 When must I inspect pipe coating used for external corrosion control? (a) You must inspect all external pipe coating...

  7. 49 CFR 195.561 - When must I inspect pipe coating used for external corrosion control?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... corrosion control? 195.561 Section 195.561 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.561 When must I inspect pipe coating used for external corrosion control? (a) You must inspect all external pipe coating...

  8. 49 CFR 195.561 - When must I inspect pipe coating used for external corrosion control?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... corrosion control? 195.561 Section 195.561 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.561 When must I inspect pipe coating used for external corrosion control? (a) You must inspect all external pipe coating...

  9. 47 CFR 80.877 - Controls and indicators required for VHF radiotelephone installation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Controls and indicators required for VHF... Cargo Vessels Not Subject to Subpart W § 80.877 Controls and indicators required for VHF radiotelephone installation. The controls and indicators used on equipment of the VHF radiotelephone installation must meet...

  10. 47 CFR 80.877 - Controls and indicators required for VHF radiotelephone installation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Controls and indicators required for VHF... Cargo Vessels Not Subject to Subpart W § 80.877 Controls and indicators required for VHF radiotelephone installation. The controls and indicators used on equipment of the VHF radiotelephone installation must meet...

  11. KSC-08pd1967

    NASA Image and Video Library

    2008-07-14

    CAPE CANAVERAL, Fla. – In the tile shop at NASA's Kennedy Space Center, a worker reaches for the door to close the oven with the Boeing Replacement Insulation 18, or BRI-18, tile inside. The tile will be baked at 2,200 degrees Fahrenheit to cure the ceramic coating, part of the process to prepare the tiles for installation on space shuttles. BRI-18 is the strongest material used for thermal insulation on the orbiters and, when coated to produce toughened unipiece fibrous insulation, provides a tile with extremely high-impact resistance. It is replacing other tiles on areas of the vehicle where impact risk is high, such as the landing gear doors, the wing leading edge and the external tank doors. Photo credit: NASA/Jim Grossmann

  12. KSC-08pd1965

    NASA Image and Video Library

    2008-07-14

    CAPE CANAVERAL, Fla. – In the tile shop at NASA's Kennedy Space Center, a worker is ready to place a Boeing Replacement Insulation 18, or BRI-18, tile in the oven. The tile will be baked at 2,200 degrees Fahrenheit to cure the ceramic coating, part of the process to prepare the tiles for installation on space shuttles. BRI-18 is the strongest material used for thermal insulation on the orbiters and, when coated to produce toughened unipiece fibrous insulation, provides a tile with extremely high-impact resistance. It is replacing other tiles on areas of the vehicle where impact risk is high, such as the landing gear doors, the wing leading edge and the external tank doors. Photo credit: NASA/Jim Grossmann

  13. Array automated assembly task, phase 2. Low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Rhee, S. S.; Jones, G. T.; Allison, K. T.

    1978-01-01

    Several modifications instituted in the wafer surface preparation process served to significantly reduce the process cost to 1.55 cents per peak watt in 1975 cents. Performance verification tests of a laser scanning system showed a limited capability to detect hidden cracks or defects, but with potential equipment modifications this cost effective system could be rendered suitable for applications. Installation of electroless nickel plating system was completed along with an optimization of the wafer plating process. The solder coating and flux removal process verification test was completed. An optimum temperature range of 500-550 C was found to produce uniform solder coating with the restriction that a modified dipping procedure is utilized. Finally, the construction of the spray-on dopant equipment was completed.

  14. NREL/University of Delaware Offshore Wind R&D Collaboration: Cooperative Research and Development Final Report, CRADA Number CRD-10-393

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musial, Walt

    2015-11-12

    Specifically, the work under this CRADA includes, but is not limited to, the development of test procedures for an offshore test site in Delaware waters; testing of installed offshore wind turbines; performance monitoring of those turbines; and a program of research and development on offshore wind turbine blades, components, coatings, foundations, installation and construction of bottom-fixed structures, environmental impacts, policies, and more generally on means to enhance the reliability, facilitate permitting, and reduce costs for offshore wind turbines. This work will be conducted both at NREL's National Wind Technology Center and participant facilities, as well as the established offshore windmore » test sites.« less

  15. Bone Tissue Response to Porous and Functionalized Titanium and Silica Based Coatings

    PubMed Central

    Chaudhari, Amol; Braem, Annabel; Vleugels, Jozef; Martens, Johan A.; Naert, Ignace; Cardoso, Marcio Vivan; Duyck, Joke

    2011-01-01

    Background Topography and presence of bio-mimetic coatings are known to improve osseointegration. The objective of this study was to evaluate the bone regeneration potential of porous and osteogenic coatings. Methodology Six-implants [Control (CTR); porous titanium coatings (T1, T2); thickened titanium (Ti) dioxide layer (TiO2); Amorphous Microporous Silica (AMS) and Bio-active Glass (BAG)] were implanted randomly in tibiae of 20-New Zealand white rabbits. The animals were sacrificed after 2 or 4 weeks. The samples were analyzed histologically and histomorphometrically. In the initial bone-free areas (bone regeneration areas (BRAs)), the bone area fraction (BAF) was evaluated in the whole cavity (500 µm, BAF-500), in the implant vicinity (100 µm, BAF-100) and further away (100–500 µm, BAF-400) from the implant. Bone-to-implant contact (BIC-BAA) was measured in the areas where the implants were installed in contact to the host bone (bone adaptation areas (BAAs)) to understand and compare the bone adaptation. Mixed models were used for statistical analysis. Principal Findings After 2 weeks, the differences in BAF-500 for different surfaces were not significant (p>0.05). After 4 weeks, a higher BAF-500 was observed for BAG than CTR. BAF-100 for AMS was higher than BAG and BAF-400 for BAG was higher than CTR and AMS. For T1 and AMS, the bone regeneration was faster in the 100-µm compared to the 400-µm zone. BIC-BAA for AMS and BAG was lower after 4 than 2 weeks. After 4 weeks, BIC-BAA for BAG was lower than AMS and CTR. Conclusions BAG is highly osteogenic at a distance from the implant. The porous titanium coatings didn't stimulate bone regeneration but allowed bone growth into the pores. Although AMS didn't stimulate higher bone response, it has a potential of faster bone growth in the vicinity compared to further away from the surface. BIC-BAA data were inconclusive to understand the bone adaptation. PMID:21935382

  16. Solvent-resistant sol-gel polydimethyldiphenylsiloxane coating for on-line hyphenation of capillary microextraction with high-performance liquid chromatography.

    PubMed

    Segro, Scott S; Malik, Abdul

    2008-09-26

    A sol-gel polydimethyldiphenylsiloxane (PDMDPS) coating was developed for capillary microextraction on-line hyphenated with high-performance liquid chromatography (HPLC). This coating was created using methyltrimethoxysilane (MTMS) as the sol-gel precursor and di-hydroxy-terminated PDMDPS as the sol-gel active polymer. The methyl and phenyl groups on the sol-gel active polymer and the methyl groups on the sol-gel precursor ultimately turned into pendant groups providing the ability to extract non-polar analytes. A 40-cm segment of 0.25 mm I.D. fused silica capillary containing the sol-gel PDMDPS coating was installed as an external sampling loop in an HPLC injection port. Aqueous samples containing polycyclic aromatic hydrocarbons (PAHs), aromatic compounds, ketones, and aldehydes were passed through this capillary wherein the analytes were extracted by the sol-gel coating. The extracted analytes were then transferred to the HPLC column using isocratic or gradient elution with an acetonitrile/water mobile phase. This capillary demonstrated excellent extraction capability for non-polar (e.g., polycyclic aromatic hydrocarbons and aromatic compounds) as well as moderately polar compounds, such as aromatic amines, ketones, and aldehydes. The test results indicate that PDMDPS can be successfully immobilized into a sol-gel network and that the resulting solvent-resistant sol-gel organic-inorganic hybrid coating can be effectively used for on-line hyphenation of capillary microextraction with high-performance liquid chromatography. The test results also indicate that the sol-gel PDMDPS coated capillary is resistant to high-temperature solvents, making it suitable for applications in high-temperature HPLC. To the best of our knowledge, this is the first report on the creation of a silica-based sol-gel PDMDPS coating used in capillary microextraction on-line hyphenated to HPLC.

  17. Ultra-high-stability, pH-resistant sol-gel titania poly(tetrahydrofuran) coating for capillary microextraction on-line coupled to high-performance liquid chromatography.

    PubMed

    Segro, Scott S; Cabezas, Yaniel; Malik, Abdul

    2009-05-15

    A sol-gel titania poly(tetrahydrofuran) (poly-THF) coating was developed for capillary microextraction hyphenated on-line with high-performance liquid chromatography (HPLC). Poly-THF was covalently bonded to the sol-gel titania network which, in turn, became chemically anchored to the inner surface of a 0.25mm I.D. fused silica capillary. For sample preconcentration, a 38-cm segment of the sol-gel titania poly-THF coated capillary was installed on an HPLC injection port as a sampling loop. Aqueous samples containing a variety of analytes were passed through the capillary and, during this process, the analytes were extracted by the sol-gel titania poly-THF coating on the inner surface of the capillary. Using isocratic and gradient elution with acetonitrile/water mobile phases, the extracted analytes were desorbed into the on-line coupled HPLC column for separation and UV detection. The sol-gel titania poly-THF coating was especially efficient in extracting polar analytes, such as underivatized phenols, alcohols, amines, and aromatic carboxylic acids. In addition, this coating was capable of extracting moderately polar and nonpolar analytes, such as ketones and polycyclic aromatic hydrocarbons. The sol-gel titania poly-THF coated capillary was also able to extract polypeptides at pH values near their respective isoelectric points. Extraction of these compounds can be important for environmental and biomedical applications. The observed extraction behavior can be attributed to the polar and nonpolar moieties in the poly-THF structure. This coating was found to be stable under extremely low and high pH conditions-even after 18h of exposure to 1M HCl (pH approximately 0.0) and 1M NaOH (pH approximately 14.0).

  18. Evaluation of bone response to titanium-coated polymethyl methacrylate resin (PMMA) implants by X-ray tomography.

    PubMed

    Shalabi, Manal M; Wolke, Johannes G C; Cuijpers, Vincent M J I; Jansen, John A

    2007-10-01

    High-resolution three-dimensional data about the bone response to oral implants can be obtained by using microfocus computer tomography. However, a disadvantage is that metallic implants cause streaking artifacts due to scattering of X-rays, which prevents an accurate evaluation of the interfacial bone-to-implant contact. It has been suggested that the use of thin titanium coatings deposited on polymeric implants can offer an alternative option for analyzing bone contact using micro-CT imaging. Consequently, the aim of the current study was to investigate bone behavior to titanium-coated polymethylmethacrylate (PMMA) implants by micro-CT and histological evaluation. For the experiment titanium-coated PMMA implants were used. The implants had a machined threaded appearance and were provided with a 400-500 nm thick titanium coating. The implants were inserted in the right or left tibia of 10 goats. After an implantation period of 12 weeks the implants were retrieved and prepared for micro-computer tomography (microCT), light microscopy, and X-ray microanalysis. The micro-CT showed that the screw-threads and typical implant configuration were well maintained through the installation procedure. Overall, histological responses showed that the titanium-coated implants were well tolerated and caused no atypical tissue response. In addition, the bone was seen in direct contact with the titanium-coated layer. The X-ray microanalysis results confirmed the light microscopical data. In conclusion, the obtained results proof the final use of titanium-coated PMMA implants for evaluation of the bone-implant response using microCT. However, this study also confirms that for a proper analysis of the bone-implant interface the additional use of microscopical techniques is still required.

  19. The Design and Use of Tungsten Coated TZM Molybdenum Tile Inserts in the DIII-D Tokamak Divertor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Christopher; Nygren, R. E.; Chrobak, C P.

    Future tokamak devices are envisioned to utilize a high-Z metal divertor with tungsten as theleading candidate. However, tokamak experiments with tungsten divertors have seen significantdetrimental effects on plasma performance. The DIII-D tokamak presently has carbon as theplasma facing surface but to study the effect of tungsten on the plasma and its migration aroundthe vessel, two toroidal rows of carbon tiles in the divertor region were modified with high-Zmetal inserts, composed of a molybdenum alloy (TZM) coated with tungsten. A dedicated twoweek experimental campaign was run with the high-Z metal inserts. One row was coated withtungsten containing naturally occurring levels ofmore » isotopes. The second row was coated withtungsten where the isotope 182W was enhanced from the natural level of 26% up to greater than90%. The different isotopic concentrations enabled the experiment to differentiate between thetwo different sources of metal migration from the divertor. Various coating methods wereexplored for the deposition of the tungsten coating, including chemical vapor deposition,electroplating, vacuum plasma spray, and electron beam physical vapor deposition. The coatingswere tested to see if they were robust enough to act as a divertor target for the experiment. Testsincluded cyclic thermal heating using a high power laser and high-fluence deuterium plasmabombardment. The issues associate with the design of the inserts (tile installation, thermal stress,arcing, leading edges, surface preparation, etc.), are reviewed. The results of the tests used toselect the coating method and preliminary experimental observations are presented.« less

  20. A Multifunctional Smart Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Buhrow, Jerry W.; Jolley, Scott T.

    2012-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on micro-encapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy. This

  1. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.

    2010-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where they are needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into the microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy.

  2. Development of Process Analytical Technology (PAT) methods for controlled release pellet coating.

    PubMed

    Avalle, P; Pollitt, M J; Bradley, K; Cooper, B; Pearce, G; Djemai, A; Fitzpatrick, S

    2014-07-01

    This work focused on the control of the manufacturing process for a controlled release (CR) pellet product, within a Quality by Design (QbD) framework. The manufacturing process was Wurster coating: firstly layering active pharmaceutical ingredient (API) onto sugar pellet cores and secondly a controlled release (CR) coating. For each of these two steps, development of a Process Analytical Technology (PAT) method is discussed and also a novel application of automated microscopy as the reference method. Ultimately, PAT methods should link to product performance and the two key Critical Quality Attributes (CQAs) for this CR product are assay and release rate, linked to the API and CR coating steps respectively. In this work, the link between near infra-red (NIR) spectra and those attributes was explored by chemometrics over the course of the coating process in a pilot scale industrial environment. Correlations were built between the NIR spectra and coating weight (for API amount), CR coating thickness and dissolution performance. These correlations allow the coating process to be monitored at-line and so better control of the product performance in line with QbD requirements. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Cratering Equations for Zinc Orthotitanate Coated Aluminum

    NASA Technical Reports Server (NTRS)

    Hyde, James; Christiansen, Eric; Liou, Jer-Chyi; Ryan, Shannon

    2009-01-01

    The final STS-125 servicing mission (SM4) to the Hubble Space Telescope (HST) in May of 2009 saw the return of the 2nd Wide Field Planetary Camera (WFPC2) aboard the shuttle Discovery. This hardware had been in service on HST since it was installed during the SM1 mission in December of 1993 yielding one of the longest low Earth orbit exposure times (15.4 years) of any returned space hardware. The WFPC2 is equipped with a 0.8 x 2.2 m radiator for thermal control of the camera electronics (Figure 1). The space facing surface of the 4.1 mm thick aluminum radiator is coated with Z93 zinc orthotitanate thermal control paint with a nominal thickness of 0.1 0.2 mm. Post flight inspections of the radiator panel revealed hundreds of micrometeoroid/orbital debris (MMOD) impact craters ranging in size from less than 300 to nearly 1000 microns in diameter. The Z93 paint exhibited large spall areas around the larger impact sites (Figure 2) and the craters observed in the 6061-T651 aluminum had a different shape than those observed in uncoated aluminum. Typical hypervelocity impact craters in aluminum have raised lips around the impact site. The craters in the HST radiator panel had suppressed crater lips, and in some cases multiple craters were present instead of a single individual crater. Humes and Kinard observed similar behavior after the WFPC1 post flight inspection and assumed the Z93 coating was acting like a bumper in a Whipple shield. Similar paint behavior (spall) was also observed by Bland2 during post flight inspection of the International Space Station (ISS) S-Band Antenna Structural Assembly (SASA) in 2008. The SASA, with similar Z93 coated aluminum, was inspected after nearly 4 years of exposure on the ISS. The multi-crater phenomena could be a function of the density, composition, or impact obliquity angle of the impacting particle. For instance, a micrometeoroid particle consisting of loosely bound grains of material could be responsible for creating the multiple craters. Samples were obtained from the HST largest craters for examination by electron microscope equipped with x-ray spectrometers to determine impactor source (micrometeoroid or orbital debris). In an attempt to estimate the MMOD particle diameters that produced these craters, this paper will present equations for spall diameter, crater depth and crater diameter in Z93 coated aluminum. The equations will be based on hypervelocity impact tests of Z93 painted aluminum at the NASA White Sands Test Facility. Equations inputs for velocities beyond the testable regime are expected from hydrocode simulations of Z93 coated aluminum using CTH and ANSYS AUTODYN.

  4. Design of thermal protection system for 8 foot HTST combustor

    NASA Technical Reports Server (NTRS)

    Moskowitz, S.

    1973-01-01

    The combustor in the 8-foot high temperature structures tunnel at the NASA-Langley Research Center has encountered cracking over a period of 50-250 tunnel tests within a limited range of the required operating envelope. A program was conducted which analyzed the failed combustor liner hardware and determined that the mechanism of failure was vibratory fatigue. A vibration damper system using wave springs located axially between the liner T-bar and the liner support was designed as an intermediate solution to extend the life of the current two-pass regenerative air-cooled liner. The effects of liner wall thickness, cooling air passage height, stiffener ring geometry, reflective coatings, and liner material selection were investigated for these designs. Preliminary layout design arrangements including the external water-cooling system requirements, weight estimates, installation requirements and preliminary estimates of manufacturing costs were prepared for the most promissing configurations. A state-of-the-art review of thermal barrier coatings and an evaluation of reflective coatings for the gasside surface of air-cooled liners are included.

  5. Attachment techniques for high temperature strain

    NASA Astrophysics Data System (ADS)

    Wnuk, Steve P., Jr.

    1993-01-01

    Attachment methods for making resistive strain measurements to 2500 F were studied. A survey of available strain gages and attachment techniques was made, and the results are compiled for metal and carbon composite test materials. A theoretical analysis of strain transfer into a bonded strain gage was made, and the important physical parameters of the strain transfer medium, the ceramic matrix, were identified. A pull tester to measure pull-out tests on commonly used strain gage cements indicated that all cements tested displayed adequate strength for good strain transfer. Rokide flame sprayed coatings produced significantly stronger bonds than ceramic cements. An in-depth study of the flame spray process produced simplified installation procedures which also resulted in greater reliability and durability. Application procedures incorporating improvements made during this program are appended to the report. Strain gages installed on carbon composites, Rene' 41, 316 stainless steel, and TZM using attachment techniques developed during this program were successfully tested to 2500 F. Photographs of installation techniques, test procedures, and graphs of the test data are included in this report.

  6. Applications of terahertz-pulsed technology in the pharmaceutical industry

    NASA Astrophysics Data System (ADS)

    Taday, Philip F.

    2010-02-01

    Coatings are applied to pharmaceutical tablets (or pills) to for either cosmetic or release control reasons. Cosmetic coatings control the colour or to mask the taste of an active ingredient; the thickness of these coating is not critical to the performance of the product. On the other hand the thickness and uniformity of a controlled release coating has been found affect the release of the active ingredient. In this work we have obtained from a pharmacy single brand of pantoprazole tablet and mapped them using terahertz pulsed imaging (TPI) prior to additional dissolution testing. Three terahertz parameters were derived for univariate analysis for each layer: coating thickness, terahertz electric field peak strength and terahertz interface index. These parameters were then correlated dissolution tested. The best fit was found to be with combined coating layer thickness of the inert layer and enteric coating. The commercial tablets showed a large variation in coating thickness.

  7. Spatially controlled coating of continuous liquid Interface production microneedles for transdermal protein delivery.

    PubMed

    Caudill, Cassie L; Perry, Jillian L; Tian, Shaomin; Luft, J Christopher; DeSimone, Joseph M

    2018-06-09

    Microneedle patches, arrays of micron-scale projections that penetrate skin in a minimally invasive manner, are a promising tool for transdermally delivering therapeutic proteins. However, current microneedle fabrication techniques are limited in their ability to fabricate microneedles rapidly and with a high degree of control over microneedle design parameters. We have previously demonstrated the ability to fabricate microneedle patches with a range of compositions and geometries using the novel additive manufacturing technique Continuous Liquid Interface Production (CLIP). Here, we establish a method for dip coating CLIP microneedles with protein cargo in a spatially controlled manner. Microneedle coating mask devices were fabricated with CLIP and utilized to coat polyethylene glycol-based CLIP microneedles with model proteins bovine serum albumin, ovalbumin, and lysozyme. The design of the coating mask device was used to control spatial deposition and loading of coated protein cargo on the microneedles. CLIP microneedles rapidly released coated protein cargo both in solution and upon insertion into porcine skin. The model enzyme lysozyme was shown to retain its activity throughout the CLIP microneedle coating process, and permeation of bovine serum albumin across full thickness porcine skin was observed after application with coated CLIP microneedles. Protein-coated CLIP microneedles were applied to live mice and showed sustained retention of protein cargo in the skin over 72 h. These results demonstrate the utility of a versatile coating platform for preparation of precisely coated microneedles for transdermal therapeutic delivery. Copyright © 2018. Published by Elsevier B.V.

  8. Black Molecular Adsorber Coatings for Spaceflight Applications

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin Susan; Hasegawa, Mark Makoto; Straka, Sharon A.

    2014-01-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  9. Black molecular adsorber coatings for spaceflight applications

    NASA Astrophysics Data System (ADS)

    Abraham, Nithin S.; Hasegawa, Mark M.; Straka, Sharon A.

    2014-09-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  10. 2006 SME annual meeting & 7th ICARD, March 26-29, 2006, St. Louis, Missouri. Pre-prints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2006-07-01

    Subjects covered by the papers include: enhanced coalbed methane through carbon sequestration, application of laser surface coatings for raw coal screen wear resistance enhancement, application of cross-flow teeter-bed separator in the US coal industry, arsenic removal from drinking water, modelling of fire spread along combustibles in a mine entry, coal's role in sustaining society, real time characterisation of frother bubble thin films, diesel emissions, overcoming stress measurements form underground coal amines, dry jigging coal, estimation of roof strata strength, improving screen bowl centrifuge performance, installation of ventilation shaft at a New Mexico coal mine, evaluation of feasibility of CO{sub 2}more » sequestration in deep coal, robot-human control interaction in mining operations, small mine and contractor safety, coal dust explosibility meter, US coal mine fatalities versus age of mine, and water and slurry bulkheads in underground coal mines.« less

  11. KSC-2009-2097

    NASA Image and Video Library

    2009-03-15

    CAPE CANAVERAL, Fla. – In Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida, NASA management waits for the launch of space shuttle Discovery on the STS-119 mission. From left are (standing) Director of NASA's Marshall Space Flight Center Dave King, Center Director Bob Cabana, Director of NASA's Johnson Space Center Michael Coats, (seated) Space Shuttle Program Manager John Shannon, NASA Associate Administrator for Space Operations William Gerstenmaier and NASA Acting Administrator Chris Scolese. Launch was on time at 7:43 p.m. EDT. The STS-119 mission is the 28th to the space station and Discovery's 36th flight. Discovery will deliver the final pair of power-generating solar array wings and the S6 truss segment. Installation of S6 will signal the station's readiness to house a six-member crew for conducting increased science. Photo credit: NASA/Kim Shiflett

  12. Rapid laser fabrication of microlens array using colorless liquid photopolymer for AMOLED devices

    NASA Astrophysics Data System (ADS)

    Kim, Kwang-Ryul; Jeong, Han-Wook; Lee, Kong-Soo; Yi, Junsin; Yoo, Jae-Chern; Cho, Myung-Woo; Cho, Sung-Hak; Choi, Byoungdeog

    2011-01-01

    Microlens array (MLA) is microfabricated using Ultra Violet (UV) laser for display device applications. A colorless liquid photopolymer, Norland Optical Adhesive (NOA) 60, is spin-coated and pre-cured via UV light for completing the laser process. The laser energy controlled by a galvano scanner is radiated on the surface of the NOA 60. A rapid thermal volume expansion inside the material creates microlens array when the Gaussian laser energy is absorbed. The fabrication process conditions for various shapes and densities of MLA using a non-contact surface profiler are investigated. Furthermore, we analyze the optical and display characteristics for the Organic Light Emitting Diode (OLED) devices. Optimized condition furnishes the OLED with the enhancement of light emission by 15%. We show that UV laser technique, which is installed with NOA 60 MLA layer, is eligible for improving the performance of the next generation display devices.

  13. Magnetron sputtering source

    DOEpatents

    Makowiecki, D.M.; McKernan, M.A.; Grabner, R.F.; Ramsey, P.B.

    1994-08-02

    A magnetron sputtering source for sputtering coating substrates includes a high thermal conductivity electrically insulating ceramic and magnetically attached sputter target which can eliminate vacuum sealing and direct fluid cooling of the cathode assembly. The magnetron sputtering source design results in greater compactness, improved operating characteristics, greater versatility, and low fabrication cost. The design easily retrofits most sputtering apparatuses and provides for safe, easy, and cost effective target replacement, installation, and removal. 12 figs.

  14. Solar Trees: First Large-Scale Demonstration of Fully Solution Coated, Semitransparent, Flexible Organic Photovoltaic Modules.

    PubMed

    Berny, Stephane; Blouin, Nicolas; Distler, Andreas; Egelhaaf, Hans-Joachim; Krompiec, Michal; Lohr, Andreas; Lozman, Owen R; Morse, Graham E; Nanson, Lana; Pron, Agnieszka; Sauermann, Tobias; Seidler, Nico; Tierney, Steve; Tiwana, Priti; Wagner, Michael; Wilson, Henry

    2016-05-01

    The technology behind a large area array of flexible solar cells with a unique design and semitransparent blue appearance is presented. These modules are implemented in a solar tree installation at the German pavilion in the EXPO2015 in Milan/IT. The modules show power conversion efficiencies of 4.5% and are produced exclusively using standard printing techniques for large-scale production.

  15. Experimental Polyvinyl Chloride (PVC) Roofing: Field Test Results.

    DTIC Science & Technology

    1987-02-01

    construction. These were the single-ply membranes of the ethylene-propylene-diene monomer ( EPDM ) and polyvinyl chloride (PVC) types, and the sprayed-in-place...polyurethane foam (PUF) with an elastomeric coating. EPDM and PUF roofs were constructed in 19802 and the PVC roofs were completed during summer 1983...faced isocyanu- rate foam board in two layers . Roofing systems were installed loose-laid and ballasted. Specific membrane materials were Plymouth

  16. 76 FR 75467 - Approval and Promulgation of Air Quality Implementation Plans; Louisiana; Revisions To Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-02

    ... Guidelines in Lieu of Regulations for Miscellaneous Metal Products Coatings, Plastic Parts Coatings, Auto and... Pleasure Craft portion of the Control Techniques Guidelines (CTG) for Miscellaneous Metal and Plastic Parts... and Plastic Parts Coatings regulations based on EPA's 2008 guidance titled ``Control Techniques...

  17. 76 FR 65419 - Airworthiness Directives; SOCATA Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... case of inverted installation of aileron control cables in the wing. The shortest cable was found... states: A TBM 700 operator reported a case of inverted installation of aileron control cables in the wing... inspection to verify the correct installation of the aileron control cables and, in case of discrepancies...

  18. 40 CFR 141.87 - Monitoring requirements for water quality parameters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (c) Monitoring after installation of corrosion control. Any large system which installs optimal corrosion control treatment pursuant to § 141.81(d)(4) shall measure the water quality parameters at the...)(i). Any small or medium-size system which installs optimal corrosion control treatment shall conduct...

  19. 40 CFR 141.87 - Monitoring requirements for water quality parameters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (c) Monitoring after installation of corrosion control. Any large system which installs optimal corrosion control treatment pursuant to § 141.81(d)(4) shall measure the water quality parameters at the...)(i). Any small or medium-size system which installs optimal corrosion control treatment shall conduct...

  20. 40 CFR 141.87 - Monitoring requirements for water quality parameters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (c) Monitoring after installation of corrosion control. Any large system which installs optimal corrosion control treatment pursuant to § 141.81(d)(4) shall measure the water quality parameters at the...)(i). Any small or medium-size system which installs optimal corrosion control treatment shall conduct...

  1. 40 CFR 141.87 - Monitoring requirements for water quality parameters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (c) Monitoring after installation of corrosion control. Any large system which installs optimal corrosion control treatment pursuant to § 141.81(d)(4) shall measure the water quality parameters at the...)(i). Any small or medium-size system which installs optimal corrosion control treatment shall conduct...

  2. 40 CFR 141.87 - Monitoring requirements for water quality parameters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (c) Monitoring after installation of corrosion control. Any large system which installs optimal corrosion control treatment pursuant to § 141.81(d)(4) shall measure the water quality parameters at the...)(i). Any small or medium-size system which installs optimal corrosion control treatment shall conduct...

  3. Poly (3,4-ethylenedioxythiophene) graphene oxide composite coatings for controlling magnesium implant corrosion.

    PubMed

    Catt, Kasey; Li, Huaxiu; Cui, X Tracy

    2017-01-15

    Magnesium (Mg) is a promising biodegradable implant material because of its appropriate mechanical properties and safe degradation products. However, in vivo corrosion speed and hydrogen gas production need to be controlled for uses in biomedical applications. Here we report the development of a conducting polymer 3,4-ethylenedioxythiphene (PEDOT) and graphene oxide (GO) composite coating as a corrosion control layer. PEDOT/GO was electropolymerized on Mg samples in ethanol media. The coated Mg samples were subjected to various corrosion tests. The PEDOT/GO coating significantly reduced the rate of corrosion as evidenced by lower Mg ion concentration and pH of the corrosion media. In addition, the coating decreased the evolved hydrogen. Electrochemical analysis of the corroding samples showed more positive corrosion potential, a decreased corrosion current, and an increase in the polarization resistance. PEDOT/GO corrosion protection is attributed to three factors; an initial passive layer preventing solution ingress, buildup of negative charges in the film, and formation of corrosion protective Mg phosphate layer through redox coupling with Mg corrosion. To explore the biocompatibility of the coated implants in vitro, corrosion media from PEDOT/GO coated or uncoated Mg samples were exposed to cultured neurons where PEDOT/GO coated samples showed decreased toxicity. These results suggest that PEDOT/GO coating will be an effective treatment for controlling corrosion of Mg based medical implants. Coating Mg substrates with a PEDOT/GO composite coating showed a significant decrease in corrosion rate. While conducting polymer coatings have been used to prevent corrosion on various metals, there has been little work on the use of these coatings for Mg. Additionally, to our knowledge, there has not been a report of the combined used of conducting polymer and GO as a corrosion control layer. Corrosion control is attributed to an initial barrier layer followed by electrochemical coupling of the PEDOT/GO coating with the substrate to facilitate the formation of a protective phosphate layer. This coupling also resulted in a decrease in hydrogen produced during corrosion, which could further improve the host tissue integration of Mg implants. This work elaborates on the potential for electroactive polymers to serve as corrosion control methods. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Metallized coatings for corrosion control of Naval ship structures and components

    NASA Technical Reports Server (NTRS)

    1983-01-01

    In attempting to improve corrosion control, the U.S. Navy has undertaken a program of coating corrosion-susceptible shipboard components with thermally sprayed aluminum. In this report the program is reviewed in depth, including examination of processes, process controls, the nature and properties of the coatings, nondestructive examination, and possible hazards to personnel. The performance of alternative metallic coating materials is also discussed. It is concluded that thermally sprayed aluminum can provide effective long-term protection against corrosion, thereby obviating the need for chipping of rust and repainting by ship personnel. Such coatings are providing excellent protection to below-deck components such as steam valves, but improvements are needed to realize the full potential of coatings for above-deck service. Several recommendations are made regarding processes, materials, and research and development aimed at upgrading further the performance of these coatings.

  5. Bright is the New Black - Multi-Year Performance of Generic High-Albedo Roofs in an Urban Climate

    NASA Technical Reports Server (NTRS)

    Gaffin, S. R.; Imhoff, M.; Rosenzweig, C.; Khanbilvardi, R.; Pasqualini, A.; Kong, A. Y. Y.; Grillo, D.; Freed, A.; Hillel, D.; Hartung, E.

    2012-01-01

    High-albedo white and cool roofing membranes are recognized as a fundamental strategy that dense urban areas can deploy on a large scale, at low cost, to mitigate the urban heat island effect. We are monitoring three generic white membranes within New York City that represent a cross-section of the dominant white membrane options for U.S. flat roofs: (1) an ethylene propylene diene monomer (EPDM) rubber membrane; (2) a thermoplastic polyolefin (TPO) membrane and; (3) an asphaltic multi-ply built-up membrane coated with white elastomeric acrylic paint. The paint product is being used by New York City s government for the first major urban albedo enhancement program in its history. We report on the temperature and related albedo performance of these three membranes at three different sites over a multi-year period. The results indicate that the professionally installed white membranes are maintaining their temperature control effectively and are meeting the Energy Star Cool Roofing performance standards requiring a three-year aged albedo above 0.50. The EPDM membrane however shows evidence of low emissivity. The painted asphaltic surface shows high emissivity but lost about half of its initial albedo within two years after installation. Given that the acrylic approach is an important "do-it-yourself," low-cost, retrofit technique, and, as such, offers the most rapid technique for increasing urban albedo, further product performance research is recommended to identify conditions that optimize its long-term albedo control. Even so, its current multi-year performance still represents a significant albedo enhancement for urban heat island mitigation.

  6. Application of M-type cathodes to high-power cw klystrons

    NASA Astrophysics Data System (ADS)

    Isagawa, S.; Higuchi, T.; Kobayashi, K.; Miyake, S.; Ohya, K.; Yoshida, M.

    1999-05-01

    Two types of high-power cw klystrons have been widely used at KEK in both TRISTAN and KEKB e +e - collider projects: one is a 0.8 MW/1.0 MW tube, called YK1302/YK1303 (Philips); the other is a 1.2 MW tube, called E3786/E3732 (Toshiba). Normally, the dispenser cathodes of the `B-type' and the `S-type' have been used, respectively, but for improved versions they have been replaced by low-temperature cathodes, called the `M-type'. An Os/Ru coating was applied to the former, whereas an Ir one was applied to the latter. Until now, all upgraded tubes installing M-type cathodes, 9 and 8 in number, respectively, have worked successfully without any dropout. A positive experience concerning the lifetime under real operation conditions has been obtained. M-type cathodes are, however, more easily poisoned. One tube installing an Os/Ru-coated cathode showed a gradual, and then sudden decrease in emission during an underheating test, although the emission could fortunately be recovered by aging at the KEK test field. Once sufficiently aged, the emission of an Ir-coated cathode proved to be very high and stable, and its lifetime is expected to be very long. One disadvantage of this cathode is, however, susceptibility to gas poisoning and the necessity of long-term initial aging. New techniques, like ion milling and fine-grained tungsten top layers, were not as successful as expected from their smaller scale applications to shorten the initial aging period. A burn-in process at higher cathode loading was efficient to make the poisoned cathode active and to decrease unwanted Wehnelt emission. On top of that, the emission cooling, and thus thermal conductivity near the emitting layer could play an important role in such large-current cathodes as ours.

  7. 40 CFR 63.4951 - How do I demonstrate initial compliance with the emission limitations?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... without add-on controls option for any individual coating operation, for any group of coating operations in the affected source, or for all the coating operations in the affected source to demonstrate... emission rate with add-on controls option for any coating operation in the affected source for which you do...

  8. Effects of mesquite gum-candelilla wax based edible coatings on the quality of guava fruit (Psidium guajava L.)

    NASA Astrophysics Data System (ADS)

    Tomás, S. A.; Bosquez-Molina, E.; Stolik, S.; Sánchez, F.

    2005-06-01

    The ability of composite edible coatings to preserve the quality of guava fruit (Psidium guajava L.) at 20ºC was studied for a period of 15 days. The edible coatings were formulated with candelilla wax blended with white mineral oil as the lipid phase and mesquite gum as the structural material. The use of edible coatings prolonged the shelf life of treated fruits by retarding ethylene emission and enhancing texture as compared to control samples. At the sixth day, the ethylene produced by the control samples was fivefold higher than the ethylene produced by the coated samples. In addition, the physiological weight loss of coated fruits was nearly 30% lower than the control samples.

  9. 40 CFR 63.4291 - What are my options for meeting the emission limits?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emission capture systems and add-on controls, the organic HAP emission rate for the web coating/printing... demonstrate that all capture systems and control devices for the web coating/printing operation(s) meet the... capture systems and control devices for the web coating/printing operation(s) meet the operating limits...

  10. Ultraviolet and visible BRDF data on spacecraft thermal control and optical baffle materials

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Predmore, R. E.

    1987-01-01

    Bidirectional scattering functions of numerous optical baffle materials and of spacecraft thermal control coatings and surfaces are presented. Measurements were made at 254 nm and at 633 nm. The coatings and surfaces include high-reflectance white paints, low-reflectance optical blacks, thermal control blankets, and various conversion coatings on aluminum.

  11. Optical coating design for the annular mirrors of the Alpha I HF laser

    NASA Astrophysics Data System (ADS)

    Shellan, Jeffrey B.

    The dielectric-coating design for the annular mirrors of the Alpha I HF laser is described along with the numerous other designs that were considered. The coatings were required to produce a 0-deg phase shift after one round trip, which involved reflections from six surfaces. Although novel high-reflectivity multilayer dielectric coatings satisfied this requirement, single-layer phase control coatings were preferred because the use of these greatly reduced coating layer-thickness control and thus resulted in significant program savings. Among the single-layer designs investigated, a coating consisting of a 0.06-micron-thick SiO layer was found to be sufficient for all surfaces except those of the rear cone, for which a 0.515-micron thick SiO layer was recommended. The metallic substrate selected was Au. These coatings were found to have a high damage threshold, provide the necessary polarization phase control, and to be quite forgiving to thickness deposition errors that were anticipated using existing chambers.

  12. Biocatalytic coatings for air pollution control: a proof of concept study on VOC biodegradation.

    PubMed

    Estrada, José M; Bernal, Oscar I; Flickinger, Michael C; Muñoz, Raúl; Deshusses, Marc A

    2015-02-01

    Although biofilm-based biotechnologies exhibit a large potential as solutions for off-gas treatment, the high water content of biofilms often causes pollutant mass transfer limitations, which ultimately limit their widespread application. The present study reports on the proof of concept of the applicability of bioactive latex coatings for air pollution control. Toluene vapors served as a model volatile organic compound (VOC). The results showed that Pseudomonas putida F1 cells could be successfully entrapped in nanoporous latex coatings while preserving their toluene degradation activity. Bioactive latex coatings exhibited toluene specific biodegradation rates 10 times higher than agarose-based biofilms, because the thin coatings were less subject to diffusional mass transfer limitations. Drying and pollutant starvation were identified as key factors inducing a gradual deterioration of the biodegradation capacity in these innovative coatings. This study constitutes the first application of bioactive latex coatings for VOC abatement. These coatings could become promising means for air pollution control. © 2014 Wiley Periodicals, Inc.

  13. Effectiveness of Cool Roof Coatings with Ceramic Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brehob, Ellen G; Desjarlais, Andre Omer; Atchley, Jerald Allen

    2011-01-01

    Liquid applied coatings promoted as cool roof coatings, including several with ceramic particles, were tested at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tenn., for the purpose of quantifying their thermal performances. Solar reflectance measurements were made for new samples and aged samples using a portable reflectometer (ASTM C1549, Standard Test Method for Determination of Solar Reflectance Near Ambient Temperature Using a Portable Solar Reflectometer) and for new samples using the integrating spheres method (ASTM E903, Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres). Thermal emittance was measured for the new samples using amore » portable emissometer (ASTM C1371, Standard Test Method for Determination of Emittance of Materials Near Room 1 Proceedings of the 2011 International Roofing Symposium Temperature Using Portable Emissometers). Thermal conductivity of the coatings was measured using a FOX 304 heat flow meter (ASTM C518, Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus). The surface properties of the cool roof coatings had higher solar reflectance than the reference black and white material, but there were no significant differences among coatings with and without ceramics. The coatings were applied to EPDM (ethylene propylene diene monomer) membranes and installed on the Roof Thermal Research Apparatus (RTRA), an instrumented facility at ORNL for testing roofs. Roof temperatures and heat flux through the roof were obtained for a year of exposure in east Tennessee. The field tests showed significant reduction in cooling required compared with the black reference roof (~80 percent) and a modest reduction in cooling compared with the white reference roof (~33 percent). The coating material with the highest solar reflectivity (no ceramic particles) demonstrated the best overall thermal performance (combination of reducing the cooling load cost and not incurring a large heating penalty cost) and suggests solar reflectivity is the significant characteristic for selecting cool roof coatings.« less

  14. 40 CFR 63.4961 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... controlled coating operation during the compliance period, kg. AI = Total mass of organic HAP in the coatings... the controlled coating operation in Equation 1D of this section. ER23MY03.028 Where: AI = Total mass...

  15. 40 CFR 63.4961 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... controlled coating operation during the compliance period, kg. AI = Total mass of organic HAP in the coatings... the controlled coating operation in Equation 1D of this section. ER23MY03.028 Where: AI = Total mass...

  16. High temperature glass thermal control structure and coating. [for application to spacecraft reusable heat shielding

    NASA Technical Reports Server (NTRS)

    Stewart, D. A.; Goldstein, H. E.; Leiser, D. B. (Inventor)

    1983-01-01

    A high temperature stable and solar radiation stable thermal control coating is described which is useful either as such, applied directly to a member to be protected, or applied as a coating on a re-usable surface insulation (RSI). It has a base coat layer and an overlay glass layer. The base coat layer has a high emittance, and the overlay layer is formed from discrete, but sintered together glass particles to give the overlay layer a high scattering coefficient. The resulting two-layer space and thermal control coating has an absorptivity-to-emissivity ratio of less than or equal to 0.4 at room temperature, with an emittance of 0.8 at 1200 F. It is capable of exposure to either solar radiation or temperatures as high as 2000 F without significant degradation. When used as a coating on a silica substrate to give an RSI structure, the coatings of this invention show significantly less reduction in emittance after long term convective heating and less residual strain than prior art coatings for RSI structures.

  17. Solution Coating of Pharmaceutical Nanothin Films and Multilayer Nanocomposites with Controlled Morphology and Polymorphism.

    PubMed

    Horstman, Elizabeth M; Kafle, Prapti; Zhang, Fengjiao; Zhang, Yifu; Kenis, Paul J A; Diao, Ying

    2018-03-28

    Nanosizing is rapidly emerging as an alternative approach to enhance solubility and thus the bioavailability of poorly aqueous soluble active pharmaceutical ingredients (APIs). Although numerous techniques have been developed to perform nanosizing of API crystals, precise control and modulation of their size in an energy and material efficient manner remains challenging. In this study, we present meniscus-guided solution coating as a new technique to produce pharmaceutical thin films of nanoscale thickness with controlled morphology. We demonstrate control of aspirin film thickness over more than 2 orders of magnitude, from 30 nm to 1.5 μm. By varying simple process parameters such as the coating speed and the solution concentration, the aspirin film morphology can also be modulated by accessing different coating regimes, namely the evaporation regime and the Landau-Levich regime. Using ellipticine-a poorly water-soluble anticancer drug-as another model compound, we discovered a new polymorph kinetically trapped during solution coating. Furthermore, the polymorphic outcome can be controlled by varying coating conditions. We further performed layer-by-layer coating of multilayer nanocomposites, with alternating thin films of ellipticine and a biocompatible polymer, which demonstrate the potential of additive manufacturing of multidrug-personalized dosage forms using this approach.

  18. Temporal and spatial variation in the fouling of silicone coatings in Pearl Harbor, Hawaii.

    PubMed

    Holm, E R; Nedved, B T; Phillips, N; Deangelis, K L; Hadfield, M G; Smith, C M

    2000-01-01

    An antifouling or foul-release coating cannot be globally effective if it does not perform well in a range of environmental conditions, against a diversity of fouling organisms. From 1996 to 1998, the field test sites participating in the United States Navy's Office of Naval Research 6.2 Biofouling program examined global variation in the performance of 3 silicone foul-release coatings, viz. GE RTV11, Dow Corning RTV 3140, and Intersleek (International Coatings Ltd), together with a control anticorrosive coating (Ameron Protective Coatings F-150 series). At the University of Hawaii's test site in Pearl Harbor, significant differences were observed among the coatings in the rate of accumulation of fouling. The control coating failed rapidly; after 180-220 d immersion a community dominated by molluscs and sponges developed that persisted for the remainder of the experiment. Fouling of the GE and Dow Corning silicone coatings was slower, but eventually reached a similar community structure and coverage as the control coatings. The Intersleek coating remained lightly fouled throughout the experiment. Spatial variation in the structure of the community fouling the coatings was observed, but not in the extent of fouling. The rate of accumulation of fouling reflected differences among the coatings in adhesion of the tubeworm Hydroides elegans. The surface properties of these coatings may have affected the rate of fouling and the structure of the fouling community through their influence on larval settlement and subsequent interactions with other residents, predators, and the physical environment.

  19. SOFIA's primary mirror assembly is cradled on its dolly as technicians prepare to move it into a "clean room" at NASA Dryden's Aircraft Operations Facility

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  20. Ground crewmen shove the more than two-ton SOFIA primary mirror assembly in its transport crate into a C-17's cavernous cargo bay for shipment to NASA Ames

    NASA Image and Video Library

    2008-05-01

    Technicians at NASA's Dryden Aircraft Operations Facility in Palmdale, Calif., loaded the German-built primary mirror assembly of the Stratospheric Observatory for Infrared Astronomy, or SOFIA, onto an Air Force C-17 for shipment to NASA's Ames Research Center on May 1, 2008. In preparation for the final finish coating of the mirror, the more than two-ton mirror assembly had been removed from its cavity in the rear fuselage of the highly modified SOFIA Boeing 747SP two weeks earlier. After arrival at NASA Ames at Moffett Field near Mountain View, Calif., the mirror would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  1. Technicians carefully guide SOFIA's primary mirror assembly on its transport cradle into a clean room where it is being prepared for shipment to NASA Ames

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  2. Technicians with ropes carefully guide the primary mirror assembly as a crane slowly moves it toward its transport cradle after removal from the SOFIA aircraft

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  3. Smart photonic coating for civil engineering field: for a future inspection technology on concrete bridge

    NASA Astrophysics Data System (ADS)

    Fudouzi, Hiroshi; Tsuchiya, Koichi; Todoroki, Shin-ichi; Hyakutake, Tsuyoshi; Nitta, Hiroyuki; Nishizaki, Itaru; Tanaka, Yoshikazu; Ohya, Takao

    2017-04-01

    Here we will propose the conceptual new idea of the inspection of concrete bridge using smart materials and mobile IoT system. We apply opal photonic crystal film to detect cracks on concrete infrastructures. High quality opal photonic crystal films were coated on black color PET sheet over 1000 cm2 area. The opal film sheet was cut and adhered to concrete or mortar test pieces by epoxy resin. In the tensile test, the structural color of the opal sheet was changed when the crack was formed. As a demonstration, we have installated the opal film sheet on the wall of the concrete bridge. Our final purpose is the color change will be recorded by portable CCD devices, and send to expert via IoT network.

  4. Environmentally Friendly Coating Technology for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Johnsey, Marissa N.; Jolley, Scott T.; Pearman, Benjamin P.; Zhang, Xuejun; Fitzpatrick, Lilliana; Gillis, Mathew; Blanton, Michael; hide

    2016-01-01

    This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry.

  5. Polarized 3He gas circulating technologies for neutron analyzers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watt, David W.

    We outline our project to develop a circulating polarized helium-3 system for developing of large, quasi-continuously operating neutron analyzers. The project consisted of four areas: 1) Development of robust external cavity narrowed diode laser output with spectral line width < 0.17 nm and power of 2000 W. 2) Development of large glass polarizing cells using cell surface treatments to obtain long relaxation lifetimes. 3) Refinements of the circulation system with an emphasis on gas purification and materials testing. 4) Design/fabrication of a new polarizer system. 5) Preliminary testing of the new polarizer. 1. Developed Robust High-Power Narrowed Laser The opticalmore » configuration of the laser was discussed in the proposal and will be reviewed in the body of this report. The external cavity is configured to mutually lock the wavelength of five 10-bar laser stacks. All the logistical milestones were been met and critical subsystems- laser stack manifold and power divider, external laser cavity, and output telescope- were assembled and tested at low power. Each individual bar is narrowed to ~0.05 nm; when combined the laser has a cumulative spectral width of 0.17 nm across the entire beam due to variations of the bars central wavelength by +/- 0.1 nm, which is similar to that of Volume Bragg Grating narrowed laser bars. This configuration eliminates the free-running “pedestal” that occurs in other external cavity diode lasers. The full-scale laser was completed in 2016 and was used in both the older and newer helium polarizers. This laser was operated at 75% power for periods of up to 8 hours. Once installed, the spectrum became slightly broader (~.25 nm) at full power; this is likely due to very slight misalignments that occurred during handling. 2. Developed the processes to create uniform sintered sol-gel coatings. Our work on cell development comprised: 1) Production of large GE180 cells and explore different means of cell preparation, and 2) Development of apply sol-gel coatings to the interior of both borosilicate and aluminosilicate cells. We applied six sol-gel coatings. By modifying the mixture and developing procedures to drain and dry the cell, we produced visually uniform coatings on the interior of the cells. We now have perfected that process as described below in our report. We were able to accelerate the testing of cells using an ex situ method that avoids installing each cell into a polarizer. In the project’s last year, we conducted 38 external tests of 8 different cells. We also installed two sol-gel coated cells in our polarizers. We created cell with long ex situ relaxation lifetimes, one of which exceeded 40 hours. However, when installed in the polarizer the measured lifetime is 8 hours or less. 3. Demonstrated cycling of polarized gas and ex situ cell testing We are now cycling polarized gas from the polarizer to glass vessels and back. This has allowed us, for the first time, to make ex situ T1 measurements of polarizing cells without installing them into the polarizer itself. This has greatly improved our productivity in producing cells and evaluating our cell preparation processes. We continued development of the gas handling system in parallel with fabricating new polarizer. The integrated system was tested by the end of 2016. We now regularly cycle gas into and out of the polarizer. 4. Completed new polarizer infrastructure and control systems. We completed the new polarizer infrastructure in November 2016. The polarizer subsystems are 1) the frame, 2) the oil flow system, 3) the gas handling system, 4) the pressure vessel, with embedded solenoid, 5) cell mounting hardware with heat spreaders, and 6) electrical power and instrumentation. 5. Carried out initial tests of polarizer. We completed initial testing of the polarizer in April and May of 2017. These tests were carried out for periods up to 6 hours with laser power between 750 and 1300 Watts. The laser performed well and the polarization with asymptotic to 45 percent, which was below expectations. This low value resulted from a stationary thermal inversion in the cell that caused most of the laser power to be absorbed near the laser inlet window and deprived the lower portions of the cell of pumping laser light. Possible solutions to this problem include enhanced cooling of the cell near the laser entry and slight detuning of the laser. 6. Ongoing work. Our polarizer development efforts are ongoing to pursue our interest in neutron analyzers, nuclear targets, and providing helium for medical imaging. Current tests in the pipeline include: 1. Testing cooling enhancements to improve laser penetration of spectrally narrow lasers; 2. Testing of a cell with isolation valves that minimizes diffusive contact with gas handling hardware during polarization; 3. Testing of smaller hybrid cells with reduced alkali loading; 4. Producing polarized helium-3 for MRI imaging at the University of Missouri.« less

  6. MAPLE deposited polymeric blends coatings for controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Paun, Irina Alexandra; Ion, Valentin; Moldovan, Antoniu; Dinescu, Maria

    2012-07-01

    We report on the use of Matrix Assisted Pulsed Laser Evaporation (MAPLE) for producing coatings of polymer blends for controlled drug delivery. The coatings consisting of blends of polyethylene glycol: poly(lactide-co-glycolide) (PEG: PLGA blends) are compared with those consisting of individual polymers (PEG, PLGA) in terms of chemical composition, morphology, hydrophilicity and optical constants. The release kinetics of an anti-inflammatory drug (indomethacin) through the polymeric coatings is monitored and possible mechanisms of the drug release are discussed. Furthermore, the compatibility of the polymeric coatings with blood constituents is investigated. Finally, the perspectives for employing MAPLE for producing coatings of polymer blends to be used in implants that deliver drugs in a controlled manner, along with the routes to be followed for elucidating the mechanism of drug release, are revealed.

  7. Ultrasonic isolation of buried pipes

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Lowe, Michael J. S.; Cawley, Peter

    2016-02-01

    Long-range guided wave testing (GWT) is used routinely for the monitoring and detection of corrosion defects in above ground pipelines. The GWT test range in buried, coated pipelines is greatly reduced compared to above ground configurations due to energy leakage into the embedding soil. In this paper, the effect of pipe coatings on the guided wave attenuation is investigated with the aim of increasing test ranges for buried pipelines. The attenuation of the T(0,1) and L(0,2) guided wave modes is measured using a full-scale experimental apparatus in a fusion-bonded epoxy (FBE)-coated 8 in. pipe, buried in loose and compacted sand. Tests are performed over a frequency range typically used in GWT of 10-35 kHz and compared with model predictions. It is shown that the application of a low impedance coating between the FBE layer and the sand effectively decouples the influence of the sand on the ultrasound leakage from the buried pipe. Ultrasonic isolation of a buried pipe is demonstrated by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both the pipe and sand, and has the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is found to be substantially reduced, in the range of 0.3-1.2 dB m-1 for loose and compacted sand conditions, compared to measured attenuation of 1.7-4.7 dB m-1 in the buried FBE-coated pipe without the PE-foam. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry and incorporated into model predictions of guided wave propagation in buried coated pipe. Good agreement is found between the experimental measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges; such coatings would be attractive for new pipeline installations.

  8. The sustaining effect of three polymers on the release of chlorhexidine from a controlled release drug device for root canal disinfection.

    PubMed

    Lee, Doug-Youn; Spångberg, Larz S W; Bok, Young-Bin; Lee, Chang-Young; Kum, Kee-Yeon

    2005-07-01

    The aim of this in vitro study was to evaluate the suitability of using chitosan, poly (lactide-co-glycolide) (PLGA), and polymethyl methacrylate (PMMA) to control the release of chlorhexidine digluconate (CHX) from a prototype of controlled release drug device for root canal disinfection. Four different prototypes with different formulations were prepared. Group A (n = 12): the device (absorbent paper point) was loaded with CHX as control. Group B (n = 12): same as group A, but the device was coated with chitosan (Texan MedTech). In Groups C and D, the device was treated in the same way as group A and then coated 3 times with 5% PMMA (Group C, n = 12, Aldrich), or coated 3 times with 3% PLGA (Group D, n = 12, Sigma). The devices were randomly allocated to experimental groups of 12 each. All the prototypes of controlled release drug device were soaked in 3 mL distilled water. The concentrations of CHX were determined using a UV spectrophotometer. The surface characteristics of each prototype were observed using a scanning electron microscope. The result showed that release rate of CHX was the greatest in the noncoated group, followed by the chitosan-coated group, the PLGA-coated group, and the PMMA-coated group (P < 0.05). Pores were observed on the surface of the prototypes that were coated with PLGA and PMMA. When the pore size was smaller, the release rate was lower. These data indicate that polymer coating can control the release rate of CHX from the prototypes of controlled release drug device.

  9. Life Cycle Cost for Drainage Structures

    DTIC Science & Technology

    1988-02-01

    36aftSFCURITY CLASSIF"CTION OF TMuS PACA Unclassified -mm/ is. AletmCT (Cestlaed). gldellses presented I* Part II of this report can be used to ,stimato the...life calculated using this method is the average life based on field data. The actual life of individual installations may vary significantly. 12...applicatious where effluents contain petroleum products. Polymer coatings (AASMTO K246), in Several, add about 10 years to the average servics life. A

  10. Defense Small Business Innovation Research Program (SBIR) FY 1983.

    DTIC Science & Technology

    1983-05-31

    matching networks for application in the frequency band below 30 MHz. The antenna should be light - weight, rapidly erectable and capable of operation while...munitions concealed within this terrain. m. More Efficient Utilization of Fuel in Light Trucks and Off-Road Vehi- cles (11) Current research is focusing on...affixed. The material must be light - * weight, small, and inexpensive to buy and install. d. Hard Coatings for Optical Systems (7) Broadband sensors

  11. Installation Restoration Program. Phase 1. Records Search. Air Force Plant Number 3, Tulsa, Oklahoma

    DTIC Science & Technology

    1983-12-01

    treatment plant was designed for cyanide and chromium treat- ment. Wastes are collected in two separate sewer systems; acid-chrome, and alkali cyanide...reduction of hexavalent chrome to trivalent chrome with sulfur dioxide. After the oxidation and reduction are accomplished separately, the wastes are...uses of the water. CCNVEPSI N COATING WASTE: Acidic solution containinq chromium . 0COOLANT: An oil-water mixture used for coolina metal parts durirq

  12. Heavy Metal Contaminated Soil Treatment: Conceptual Development

    DTIC Science & Technology

    1987-02-01

    utilized, particularly for trivalent chromium . ’Breakthrough did eventually occur, due to the coating of the crushed limestone, with only partial...characterizations indicated that several Army installations had elevated total metal concentrations in their soils and Chromium , Cadmium and Lead were the most...2,2000 F) were effective in reducing chromium levels below 1 mg/L in both boiling water and weak acid (pH 5; H2 SO 4) extractions. These extractions were

  13. Active Flow Control (AFC) and Insect Accretion and Mitigation (IAM) System Design and Integration on the Boeing 757 ecoDemonstrator

    NASA Technical Reports Server (NTRS)

    Alexander, Michael G.; Harris, F. Keith; Spoor, Marc A.; Boyland, Susannah R.; Farrell, Thomas E.; Raines, David M.

    2016-01-01

    This paper presents a systems overview of how the Boeing and NASA team designed, analyzed, fabricated, and integrated the Active Flow Control (AFC) technology and Insect Accretion Mitigation (IAM) systems on the Boeing 757 ecoDemonstrator. The NASA Environmentally Responsible Aviation (ERA) project partnered with Boeing to demonstrate these two technology systems on a specially outfitted Boeing 757 ecoDemonstrator during the spring of 2015. The AFC system demonstrated attenuation of flow separation on a highly deflected rudder and increased the side force generated. This AFC system may enable a smaller vertical tail to provide the control authority needed in the event of an engine failure during takeoff while still operating in a conventional manner over the rest of the flight envelope. The AFC system consisted of ducting to obtain air from the Auxiliary Power Unit (APU), a control valve to modulate the system mass flow, a heat exchanger to lower the APU air temperature, and additional ducting to deliver the air to the AFC actuators located on the vertical tail. The IAM system demonstrated how to mitigate insect residue adhesion on a wing's leading edge. Something as small as insect residue on a leading edge can cause turbulent wedges that interrupt laminar flow, resulting in an increase in drag and fuel use. The IAM system consisted of NASA developed Engineered Surfaces (ES) which were thin aluminum sheet substrate panels with coatings applied to the exterior. These ES were installed on slats 8 and 9 on the right wing of the 757 ecoDemonstrator. They were designed to support panel removal and installation in one crew shift. Each slat accommodated 4 panels. Both the AFC and IAM flight test were the culmination of several years of development and produced valuable data for the advancement of modern aircraft designs.

  14. 40 CFR 63.3531 - How do I demonstrate initial compliance with the emission limitations?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... without add-on controls option for any coating operation, for any group of coating operations within a subcategory or coating type segment, or for all of the coating operations within a subcategory or coating type... option, the coating operation or group of coating operations must meet the applicable emission limit in...

  15. Application of a tablet film coating model to define a process-imposed transition boundary for robust film coating.

    PubMed

    van den Ban, Sander; Pitt, Kendal G; Whiteman, Marshall

    2018-02-01

    A scientific understanding of interaction of product, film coat, film coating process, and equipment is important to enable design and operation of industrial scale pharmaceutical film coating processes that are robust and provide the level of control required to consistently deliver quality film coated product. Thermodynamic film coating conditions provided in the tablet film coating process impact film coat formation and subsequent product quality. A thermodynamic film coating model was used to evaluate film coating process performance over a wide range of film coating equipment from pilot to industrial scale (2.5-400 kg). An approximate process-imposed transition boundary, from operating in a dry to a wet environment, was derived, for relative humidity and exhaust temperature, and used to understand the impact of the film coating process on product formulation and process control requirements. This approximate transition boundary may aid in an enhanced understanding of risk to product quality, application of modern Quality by Design (QbD) based product development, technology transfer and scale-up, and support the science-based justification of critical process parameters (CPPs).

  16. Effect of edible coatings on bioactive compounds and antioxidant capacity of tomatoes at different maturity stages.

    PubMed

    Dávila-Aviña, Jorge E; Villa-Rodríguez, José A; Villegas-Ochoa, Mónica A; Tortoledo-Ortiz, Orlando; Olivas, Guadalupe I; Ayala-Zavala, J Fernando; González-Aguilar, Gustavo A

    2014-10-01

    This work evaluated the effect of carnauba and mineral oil coatings on the bioactive compounds and antioxidant capacity of tomato fruits (cv. "Grandela"). Carnauba and mineral oil coatings were applied on fresh tomatoes at two maturity stages (breaker and pink) over 28 day of storage at 10 °C was evaluated. Bioactive compound and antioxidant activity assays included total phenols, total flavonoids, ascorbic acid (ASA), lycopene, DPPH radical scavenging activity (%RSA), trolox equivalent antioxidant capacity (TEAC) and oxygen radical absorbance capacity assay (ORAC). The total phenolic, flavonoid and lycopene contents were significantly lower for coated fruit than control fruits. However, ascorbic acid content was highest in fruits treated with carnauba, followed by mineral oil coating and control fruits. The ORAC values were highest in breaker tomatoes coated with carnauba wax, followed by mineral oil-coated fruits and controls. No significant differences in ORAC values were observed in pink tomatoes. % RSA and TEAC values were higher for controls than for coated fruit. Edible coatings preserve the overall quality of tomatoes during storage without affecting the nutritional quality of fruit. We found that the physiological response to the coatings is in function of the maturity stage of tomatoes. The information obtained in this study support to use of edible coating as a safe and good alternative to preserve tomato quality, and that the changes of bioactive compounds and antioxidant activity of tomato fruits, was not negatively affected. This approach can be used by producers to preserve tomato quality.

  17. Edge coating apparatus with movable roller applicator for solar cell substrates

    DOEpatents

    Pavani, Luca; Abas, Emmanuel

    2012-12-04

    A non-contact edge coating apparatus includes an applicator for applying a coating material on an edge of a solar cell substrate and a control system configured to drive the applicator. The control system may drive the applicator along an axis to maintain a distance with an edge of the substrate as the substrate is rotated to have the edge coated with a coating material. The applicator may include a recessed portion into which the edge of the substrate is received for edge coating. For example, the applicator may be a roller with a groove. Coating material may be introduced into the groove for application onto the edge of the substrate. A variety of coating materials may be employed with the apparatus including hot melt ink and UV curable plating resist.

  18. Process Modeling With Inhomogeneous Thin Films

    NASA Astrophysics Data System (ADS)

    Machorro, R.; Macleod, H. A.; Jacobson, M. R.

    1986-12-01

    Designers of optical multilayer coatings commonly assume that the individual layers will be ideally homogeneous and isotropic. In practice, it is very difficult to control the conditions involved in the complex evaporation process sufficiently to produce such ideal films. Clearly, changes in process parameters, such as evaporation rate, chamber pressure, and substrate temperature, affect the microstructure of the growing film, frequently producing inhomogeneity in structure or composition. In many cases, these effects are interdependent, further complicating the situation. However, this process can be simulated on powerful, interactive, and accessible microcomputers. In this work, we present such a model and apply it to estimate the influence of an inhomogeneous layer on multilayer performance. Presently, the program simulates film growth, thermal expansion and contraction, and thickness monitoring procedures, and includes the effects of uncertainty in these parameters or noise. Although the model is being developed to cover very general cases, we restrict the present discussion to isotropic and nondispersive quarterwave layers to understand the particular effects of inhomogeneity. We studied several coating designs and related results and tolerances to variations in evaporation conditions. The model is composed of several modular subprograms, is written in Fortran, and is executed on an IBM-PC with 640 K of memory. The results can be presented in graphic form on a monochrome monitor. We are currently installing and implementing color capability to improve the clarity of the multidimensional output.

  19. Cathodic protection - Coating and river profile survey of a 20 year old remote onshore crude pipeline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, P.

    1984-02-01

    This paper presents test data, evaluation and recommendations resulting from an investigative cathodic protection and coating integrity survey of a twenty year old, onshore crude oil pipeline. The pipeline discussed is 20 inches (508 mm) in diameter, 233 kilometers long and originates at a pumping facility in an inland oil field. The pipeline runs through mountainous terrain, low lying marshland and terminates at a twin 16 inch submarine crossing. The pipeline is located in Southern Kalimantan, Indonesia and is part of the Pertamina Unit IV installation. The field testing was performed by Norton Corrosion Limited (NCL) during the months ofmore » March and April, 1983 and was done concurrently with river crossing profile work by Sterling Energy and Resource Technologies, Limited. The purpose of the survey was to determine the condition of the pipeline and the condition and effectiveness of existing corrosion control measures. The pipeline had experienced an increasing number of leaks in recent years and it was necessary to know the physical condition of the line and what could be done to extend its useful life. The present and future integrity of the pipeline was critical to the clients' planning in that this particular line is the only onshore connection between the field and new refinery which was nearing completion.« less

  20. A Pilot Demonstration of Electrochromic and Thermochromic Windows in the Denver Federal Center, Building 41, Denver, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eleanor S.; Fernandes, Luis L.; Goudey, Chad Howdy

    Chromogenic glazing materials are emerging technologies that tint reversibly from a clear to dark tinted state either passively in response to environmental conditions or actively in response to a command from a switch or building automation system. Switchable coatings on glass manage solar radiation and visible light while enabling unobstructed views to the outdoors. Building energy simulations estimate that actively controlled, near-term chromogenic glazings can reduce perimeter zone heating, ventilation, and airconditioning (HVAC) and lighting energy use by 10-20% and reduce peak electricity demand by 20-30%, achieving energy use levels that are lower than an opaque, insulated wall. This projectmore » demonstrates the use of two types of chromogenic windows: thermochromic and electrochromic windows. By 2013, these windows will begin production in the U.S. by multiple vendors at high-volume manufacturing plants, enabling lower cost and larger area window products to be specified. Both technologies are in the late R&D stage of development, where cost reductions and performance improvements are underway. Electrochromic windows have been installed in numerous buildings over the past four years, but monitored energy-efficiency performance has been independently evaluated in very limited applications. Thermochromic windows have been installed in one other building with an independent evaluation, but results have not yet been made public.« less

  1. WFPC2 Filters after 16 Years on Orbit

    NASA Astrophysics Data System (ADS)

    Lian Lim, Pey; Quijada, M.; Baggett, S.; Biretta, J.; MacKenty, J.; Boucarut, R.; Rice, S.; del Hoyo, J.

    2011-01-01

    Wide Field Planetary Camera 2 (WFPC2) was installed on Hubble Space Telescope (HST) in December 1993 during Servicing Mission 1 by the crew of Shuttle Mission STS-61. WFPC2 replaced Wide Field Planetary Camera 1 (WFPC1), providing improved UV performance, more advanced detectors, better contamination control, and its own corrective optics. After 16 years of exceptional service, WFPC2 was retired in May 2009 during Servicing Mission 4, when it was removed from HST in order to allow for the installation of Wide Field Camera 3 (WFC3). WFPC2 was carried back to Earth in the shuttle bay by the crew of Shuttle Mission STS-125. In a joint investigation by Goddard Space Flight Center (GSFC) and Space Telescope Science Institute (STScI), the Selectable Optical Filter Assembly (SOFA) of WFPC2 was extracted and the filter wheels removed and examined for any on-orbit changes. The filters were inspected, photographed and scanned with a spectrophotometer at GSFC. The data have been analyzed at STScI with a view towards understanding how prolonged exposure to the HST space environment affected the filters and what the resultant impacts are to WFPC2 calibrations. We will summarize our results from these post-SM4 laboratory studies, including a comparison of pre- to post-mission filter throughput measurements, evaluations of the UV filter red leaks, and assessment of the condition of the filter coatings.

  2. Latest technologies on ultrasonic cleaning

    NASA Astrophysics Data System (ADS)

    Hofstetter, Hans U.

    2007-05-01

    UCM-AG manufactures Ultrasonic Cleaning Machines for highest quality requirements. The company has the know-how for cleaning and supplies cleaning systems together with the cleaning process. With a UCM of Switzerland Cleaning System, the customer gets the system itself, the cleaning process with a guarantee for the specified result but also all auxiliary equipment needed for perfect results. Therefore UCM also supplies fixtures, linkage to existing automated fabrication facilities water treatment plants etc. Thus the UCM customer gets a turnkey installation - ready to operate and including know-how. UCM of Switzerland will describe the latest technology in ultrasonic precision cleaning on the example of a recent and sophisticated installation. The installation consists of three interlinked cleaning systems which operate completely automated. The 1st system is designed for pre-cleaning to remove waxes, pitch and protection lacquers with environmentally friendly solvents which are non hazardous to the health of the operators. The 2nd system cleans the parts prior to inspection and operates with neutral or slightly alkaline detergents. The 3rd system is designed for final cleaning prior to vacuum coating and perfect results are required. It combines cleaning tanks and DI-Water rinse with lift out and vacuum dryer. The installation combines the latest technologies in ultrasonic cleaning for precision optical components. The system employs multi frequency immersed ultrasonic transducers and special rinsing technologies The complete installation will be explained in detail; the concept in its whole, the lay out, the particular setup of each cleaning system etc. will be shown and explained together with construction particulars of the complete installation.

  3. Joint Test Plan for Gas Dynamic Spray Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2008-01-01

    Air Force Space Command (AFSPC) and NASA have similar missions, facilities, and structures located in similar harsh environments. Both are responsible for a number of facilities/structures with metallic structural and non-structural components in highly and moderately corrosive environments. Regardless of the corrosivity of the environment, all metals require periodic maintenance activity to guard against the insidious effects of corrosion and thus ensure that structures meet or exceed design or performance life. The standard practice for protecting metallic substrates in atmospheric environments is the use of an applied coating system. Current coating systems used across AFSPC and NASA contain volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). These coatings are subject to environmental regulations at the Federal and State levels that limit their usage. In addition, these coatings often cannot withstand the high temperatures and exhaust that may be experienced by AFSPC and NASA structures. In response to these concerns, AFSPC and NASA have approved the use of thermal spray coatings (TSCs). Thermal spray coatings are extremely durable and environmentally friendly coating alternatives, but utilize large cumbersome equipment for application that make the coatings difficult and time consuming to repair. Other concerns include difficulties coating complex geometries and the cost of equipment, training, and materials. Gas Dynamic Spray (GDS) technology (also known as Cold Spray) will be evaluated as a smaller, more maneuverable repair method as well as for areas where thermal spray techniques are not as effective. The technology can result in reduced maintenance and thus reduced hazardous materials/wastes associated with current processes. Thermal spray and GDS coatings also have no VOCs and are environmentally preferable coatings. To achieve a condition suitable for the application of a coating system, including GDS coatings, the substrate must undergo some type of surface preparation and/or depainting operation to ensure adhesion of the new coating system. The GDS unit selected for demonstration has a powder feeding system that can be used for surface preparation or coating application. The surface preparation feature will also be examined. The primary objective of this effort is to demonstrate GDS technology as a repair method for TSCs. The project will also determine the optimal GDS coating thickness for acceptable performance. Successful completion of this project will result in approval of GDS technology as a repair method for TSCs at AFSPC and NASA installations and will improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination, and reduce the amount of hazardous waste generated.

  4. Optical property degradation of anodic coatings in the Space Station low earth orbit

    NASA Technical Reports Server (NTRS)

    David, Kaia E.; Babel, Hank W.

    1992-01-01

    The anodic coatings and optical properties to be used for passive thermal control of the SSF are studied. Particular attention is given to the beginning-of-life optical properties for aluminum alloys suitable for structural and radiator applications, the statistical variation in the beginning-of-life properties, and estimates of the end-of-life properties of the alloys based on ultraviolet radiation testing and flight test results. It is concluded that anodic coatings can be used for thermal control of long life, low earth orbit spacecraft. Some use restrictions are defined for specific cases. Anodic coatings have been selected as baseline thermal control coating for large portions of the SSF.

  5. In Vitro and In Vivo Evaluation of Zinc-Modified Ca–Si-Based Ceramic Coating for Bone Implants

    PubMed Central

    Zheng, Xuebin; He, Dannong; Ye, Xiaojian; Wang, Meiyan

    2013-01-01

    The host response to calcium silicate ceramic coatings is not always favorable because of their high dissolution rates, leading to high pH within the surrounding physiological environment. Recently, a zinc-incorporated calcium silicate-based ceramic Ca2ZnSi2O7 coating, developed on a Ti-6Al-4V substrate using plasma-spray technology, was found to exhibit improved chemical stability and biocompatibility. This study aimed to investigate and compare the in vitro response of osteoblastic MC3T3-E1 cells cultured on Ca2ZnSi2O7 coating, CaSiO3 coating, and uncoated Ti-6Al-4V titanium control at cellular and molecular level. Our results showed Ca2ZnSi2O7 coating enhanced MC3T3-E1 cell attachment, proliferation, and differentiation compared to CaSiO3 coating and control. In addition, Ca2ZnSi2O7 coating increased mRNA levels of osteoblast-related genes (alkaline phosphatase, procollagen α1(I), osteocalcin), insulin-like growth factor-I (IGF-I), and transforming growth factor-β1 (TGF-β1). The in vivo osteoconductive properties of Ca2ZnSi2O7 coating, compared to CaSiO3 coating and control, was investigated using a rabbit femur defect model. Histological and histomorphometrical analysis demonstrated new bone formation in direct contact with the Ca2ZnSi2O7 coating surface in absence of fibrous tissue and higher bone-implant contact rate (BIC) in the Ca2ZnSi2O7 coating group, indicating better biocompatibility and faster osseointegration than CaSiO3 coated and control implants. These results indicate Ca2ZnSi2O7 coated implants have applications in bone tissue regeneration, since they are biocompatible and able to osseointegrate with host bone. PMID:23483914

  6. In vitro and in vivo evaluation of zinc-modified ca-si-based ceramic coating for bone implants.

    PubMed

    Yu, Jiangming; Li, Kai; Zheng, Xuebin; He, Dannong; Ye, Xiaojian; Wang, Meiyan

    2013-01-01

    The host response to calcium silicate ceramic coatings is not always favorable because of their high dissolution rates, leading to high pH within the surrounding physiological environment. Recently, a zinc-incorporated calcium silicate-based ceramic Ca2ZnSi2O7 coating, developed on a Ti-6Al-4V substrate using plasma-spray technology, was found to exhibit improved chemical stability and biocompatibility. This study aimed to investigate and compare the in vitro response of osteoblastic MC3T3-E1 cells cultured on Ca2ZnSi2O7 coating, CaSiO3 coating, and uncoated Ti-6Al-4V titanium control at cellular and molecular level. Our results showed Ca2ZnSi2O7 coating enhanced MC3T3-E1 cell attachment, proliferation, and differentiation compared to CaSiO3 coating and control. In addition, Ca2ZnSi2O7 coating increased mRNA levels of osteoblast-related genes (alkaline phosphatase, procollagen α1(I), osteocalcin), insulin-like growth factor-I (IGF-I), and transforming growth factor-β1 (TGF-β1). The in vivo osteoconductive properties of Ca2ZnSi2O7 coating, compared to CaSiO3 coating and control, was investigated using a rabbit femur defect model. Histological and histomorphometrical analysis demonstrated new bone formation in direct contact with the Ca2ZnSi2O7 coating surface in absence of fibrous tissue and higher bone-implant contact rate (BIC) in the Ca2ZnSi2O7 coating group, indicating better biocompatibility and faster osseointegration than CaSiO3 coated and control implants. These results indicate Ca2ZnSi2O7 coated implants have applications in bone tissue regeneration, since they are biocompatible and able to osseointegrate with host bone.

  7. Development of polymeric coatings for control of electro-osmotic flow in ASTP MA-011 electrophoresis technology experiment

    NASA Technical Reports Server (NTRS)

    Patterson, W. J.

    1976-01-01

    The development of a methyl cellulose based coating system for control of electro-osmotic flow at the walls of electrophoresis cells is described. Flight electrophoresis columns were coated with this system, resulting in a flight set of six columns. In flight photography of MA-011 electrophoretic separations verified control of electro-osmotic flow.

  8. Preparation and characterization of controlled-release fertilizers coated with marine polysaccharide derivatives

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Liu, Song; Qin, Yukun; Chen, Xiaolin; Xing, Rong'e.; Yu, Huahua; Li, Kecheng; Li, Pengcheng

    2017-09-01

    Encapsulation of water-soluble nitrogen fertilizers by membranes can be used to control the release of nutrients to maximize the fertilization effect and reduce environmental pollution. In this research, we formulated a new double-coated controlled-release fertilizer (CRF) by using food-grade microcrystalline wax (MW) and marine polysaccharide derivatives (calcium alginate and chitosan-glutaraldehyde copolymer). The pellets of water-soluble nitrogen fertilizer were coated with the marine polysaccharide derivatives and MW. A convenient and eco-friendly method was used to prepare the CRF. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the morphology and composition of the products. The nitrogen-release properties were determined in water using UV-Vis spectrophotometry. The controlled-release properties of the fertilizer were improved dramatically after coating with MW and the marine polysaccharide derivatives. The results show that the double-coated CRFs can release nitrogen in a controlled manner, have excellent controlled-release features, and meet the European Standard for CRFs.

  9. Laboratory electron exposure of TSS-1 thermal control coating

    NASA Technical Reports Server (NTRS)

    Vaughn, J. A.; Mccollum, M.; Carruth, M. R., Jr.

    1995-01-01

    RM400, a conductive thermal control coating, was developed for use on the exterior shell of the tethered satellite. Testing was performed by the Engineering Physics Division to quantify effects of the space environment on this coating and its conductive and optical properties. Included in this testing was exposure of RM400 to electrons with energies ranging from 0.1 to 1 keV, to simulate electrons accelerated from the ambient space plasma when the tethered satellite is fully deployed. During this testing, the coating was found to luminesce, and a prolonged exposure of the coating to high-energy electrons caused the coating to darken. This report describes the tests done to quantify the degradation of the thermal control properties caused by electron exposure and to measure the luminescence as a function of electron energy and current density to the satellite.

  10. Effect of chitosan coatings enriched with cinnamon oil on proximate composition of rainbow trout fillets

    NASA Astrophysics Data System (ADS)

    Yıldız, Pınar Oǧuzhan

    2017-04-01

    The effects of chitosan coating enriched with cinnamon oil on proximate composition of rainbow trout (Oncorhynchus mykiss) during storage at 4°C was investigated. The treatments included the following: C1 (control samples), C2 (chitosan coating) and C3 (chitosan + 1 % [v/w] cinnamon EO added). The control and the coated fish samples were analysed for chemical (moisture, protein, lipid and ash) composition. The mean of moisture, protein, lipid and ash in the control samples (C1) were 70.3%, 20.1%, 2.6% and 1.2%, in coated samples (C2) 69.70%, 24.21%, 2.4% and 2.2% and coated+cinnamon oil samples (C3) 69.70%, 25.05%, 2.5% and 2.2%, respectively. Moisture and lipid contents in control groups were higher than other groups, but protein and ash contents were lower. Significant increases (p<0.05) in protein content were observed between samples, which subsequently decreased the moisture content of these samples.

  11. Increased Reliability of Gas Turbine Components by Robust Coatings Manufacturing

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Dudykevych, T.; Sansom, D.; Subramanian, R.

    2017-08-01

    The expanding operational windows of the advanced gas turbine components demand increasing performance capability from protective coating systems. This demand has led to the development of novel multi-functional, multi-materials coating system architectures over the last years. In addition, the increasing dependency of components exposed to extreme environment on protective coatings results in more severe penalties, in case of a coating system failure. This emphasizes that reliability and consistency of protective coating systems are equally important to their superior performance. By means of examples, this paper describes the effects of scatter in the material properties resulting from manufacturing variations on coating life predictions. A strong foundation in process-property-performance correlations as well as regular monitoring and control of the coating process is essential for robust and well-controlled coating process. Proprietary and/or commercially available diagnostic tools can help in achieving these goals, but their usage in industrial setting is still limited. Various key contributors to process variability are briefly discussed along with the limitations of existing process and product control methods. Other aspects that are important for product reliability and consistency in serial manufacturing as well as advanced testing methodologies to simplify and enhance product inspection and improve objectivity are briefly described.

  12. The deposition of aluminide and silicide coatings on γ-TiAl using the halide-activated pack cementation method

    NASA Astrophysics Data System (ADS)

    Munro, T. C.; Gleeson, B.

    1996-12-01

    The halide-activated pack cementation method (HAPC) was utilized to deposit aluminide and silicide coatings on nominally stoichiometric γ-TiAl. The deposition temperature was 1000°C and deposition times ranged from 2 to 12 hours. The growth rates of the coatings were diffusion controlled, with the rate of aluminide growth being about a factor of 2 greater than that of silicide growth. The aluminide coating was inward growing and consisted of a thick, uniform outer layer of TiAl3 and a thin inner layer of TiAl2, with the rate-controlling step being the diffusion of aluminum from the pack into the substrate. Annealing experiments at 1100 °C showed that the interdiffusion between the aluminide coating and the γ-TiAl substrate was rapid. In contrast to the aluminide coating, the silicide coating was nonuniform and porous, consisting primarily of TiSi2, TiSi, and Ti5Si4, with the rate-controlling step for the coating growth believed to be the diffusion of aluminum into the γ-TiAl ahead of the silicide/γ-TiAl interface. The microstructural evolution of the aluminide and silicide coating structures is discussed qualitatively.

  13. Evaluation of edible polymer coatings enriched with green tea extract on quality of chicken nuggets

    PubMed Central

    Kristam, Prathyusha; Eswarapragada, Naga Mallika; Bandi, Eswara Rao; Tumati, Srinivas Rao

    2016-01-01

    Aim: The present study was conducted to evaluate the physico-chemical and microbiological characteristics of chicken nuggets coated with sodium alginate (SA) coatings at refrigerated (4±1°C) and frozen (−18±1°C) storage condition at regular periodic intervals. Materials and Methods: Chicken meat nuggets were separated into three groups: Uncoated control (C), coated with alginate coating (T1), and coated with alginate coating incorporated with 1% green tea extract (GTE) (T2). The nuggets were analyzed at regular intervals of 5days for refrigerated storage and 15 days for frozen storage period in terms of pH, 2-thiobarbituric acid value (TBA), peroxide value (PV), total plate count (TPC), water loss, and sensory characteristics. Results: The results indicated that the nuggets coated with alginate-based coatings effectively reduced the spoilage as indicated by pH, TBA, and PVs. pH values of the formulations ranged from 6.15 to 6.34 at refrigerated storage temperature (4±1°C) and 6.49-6.71 at frozen storage temperature (−18±1°C). TBA value of the treatments ranged from 1.28 to 1.54 mg MDA/kg and 1.34 to 1.50 mg MDA/kg under refrigerated and frozen storage temperatures, respectively. Color, flavor, juiciness, tenderness, and overall acceptability of the nuggets differed significantly (p<0.05) with the coated nuggets. The coated nuggets were well acceptable upto 15 days at refrigerated storage temperature (4±1°C) and upto 75 days at frozen storage temperature (−18±1°C). Nuggets coated with GTE incorporated coating solution had a lower TBA-reactive substances values, PVs, and TPCs when compared to the nuggets coated with SA and the control group. Conclusion: Study revealed that incorporation of edible coatings with antioxidants, namely, GTE at 1% level had a significant effect in reducing the fat oxidation. The samples recorded a shelf life of 15 days under refrigerated storage when compared to their controls with 10 days of storage period and 75 days under frozen storage against controls with 60 days. T1, T2, and T3 formulations had higher sensory scores in comparison to the controls. Overall acceptability scores of T1 were higher when compared to the other formulations. PMID:27536027

  14. Polysaccharide based edible coating on sapota fruit

    NASA Astrophysics Data System (ADS)

    Menezes, Joslin; Athmaselvi, K. A.

    2016-10-01

    Sapota fruits are highly perishable and have short shelf life at the ambient conditions. The edible coatings have been used on different agricultural products in order to extend their post harvest life. In the present study, the polysaccharide based edible coating made up of sodium alginate and pectin (2%) was studied on the shelf life of sapota fruits. The coating of the fruits is done by dipping method with two dipping time (2 and 4 min). The both control and coated sapota fruits were stored at refrigerated temperature (4±1°C). The physico-chemical analysis including acidity, total soluble solids, ascorbic acid, pH, weight loss, colour and firmness were measured on 1, 8, 15, 23 and 30th day of storage. There was significant difference (p≤0.05) in these physico-chemical parameters between control and coated sapota fruits with 2 and 4 min dipping time. The sensory analysis of control and coated sapota fruits showed that, the polysaccharide coating with 2 minutes dipping time was effective in maintaining the organoleptic properties of the fruits.

  15. Carbon film coating of abutment surfaces: effect on the abutment screw removal torque.

    PubMed

    Corazza, Pedro Henrique; de Moura Silva, Alecsandro; Cavalcanti Queiroz, José Renato; Salazar Marocho, Susana María; Bottino, Marco Antonia; Massi, Marcos; de Assunção e Souza, Rodrigo Othávio

    2014-08-01

    To evaluate the effect of diamond-like carbon (DLC) coating of prefabricated implant abutment on screw removal torque (RT) before and after mechanical cycling (MC). Fifty-four abutments for external-hex implants were divided among 6 groups (n = 9): S, straight abutment (control); SC, straight coated abutment; SCy, straight abutment and MC; SCCy, straight coated abutment and MC; ACy, angled abutment and MC; and ACCy, angled coated abutment and MC. The abutments were attached to the implants by a titanium screw. RT values were measured and registered. Data (in Newton centimeter) were analyzed with analysis of variance and Dunnet test (α = 0.05). RT values were significantly affected by MC (P = 0.001) and the interaction between DLC coating and MC (P = 0.038). SCy and ACy showed the lowest RT values, statistically different from the control. The abutment coated groups had no statistical difference compared with the control. Scanning electron microscopy analysis showed DLC film with a thickness of 3 μm uniformly coating the hexagonal abutment. DLC film deposited on the abutment can be used as an alternative procedure to reduce abutment screw loosening.

  16. [Soil biological activities at maize seedling stage under application of slow/controlled release nitrogen fertilizers].

    PubMed

    Li, Dongpo; Wu, Zhijie; Chen, Lijun; Liang, Chenghua; Zhang, Lili; Wang, Weicheng; Yang, Defu

    2006-06-01

    With pot experiment and simulating field ecological environment, this paper studied the effects of different slow/ controlled release N fertilizers on the soil nitrate - reductase and urease activities and microbial biomass C and N at maize seedling stage. The results showed that granular urea amended with dicyandiamide (DCD) and N-(n-bultyl) thiophosphoric triamide (NBPT) induced the highest soil nitrate-reductase activity, granular urea brought about the highest soil urease activity and microbial biomass C and N, while starch acetate (SA)-coated granular urea, SA-coated granular urea amended with DCD, methyl methacrylate (MMA) -coated granular urea amended with DCD, and no N fertilization gave a higher soil urease activity. Soil microbial C and N had a similar variation trend after applying various kinds of test slow/controlled release N fertilizers, and were the lowest after applying SA-coated granular urea amended with DCD and NBPT. Coated granular urea amended with inhibitors had a stronger effect on soil biological activities than coated granular urea, and MMA-coating had a better effect than SA-coating.

  17. Smart Multifunctional Coatings for Corrosion Detection and Control in the Aerospace Industry

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina

    2015-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. It is essential to detect corrosion when it occurs, and preferably at its early stage, so that action can be taken to avoid structural damage or loss of function. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it.

  18. Mediterranean report/heated pipeline offloads tankers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-08-01

    The first heated submarine pipeline in Europe, according to Anonima Petroli Italiana, is now in operation from their Falconara Refinery near Ancona, Italy, to an existing offshore loading facility. The 3850 m long, 24 inch wide line, laid on the seabottom at 3-14 m depths, was built to offload high pour/high viscosity crudes requiring a minimum constant discharge temperature of 45-65 C. Four 3.5 mm heating pipes (three operating and one spare) were stretch-welded to the outside of the line at 45 degree angles to each other; they are heated at about 100 m/m by a parasitic current formed onmore » the pipe while 1500 volt current is passed through a cable inside the pipe. The heating system is equipped with an electric feeding installation, automatic power regulation, and remote sensors applied along the sea line. The heating pipes were protected with a coat of epoxy tar paint, a 50 mm thick and 70 kg/cm dense sprayed-on urethane foam coat, a sheath of butyric elastomer covered with an adhering 3 mm coat of polyethylene, and a concrete coat for protection and weighting. Specially designed water stops were placed at both ends of every line section under the waterproofing. Industria Construzioni Opere Publiche prefabricated the line on shore and laid it from shore.« less

  19. Leaching of biocides from façades under natural weather conditions.

    PubMed

    Burkhardt, M; Zuleeg, S; Vonbank, R; Bester, K; Carmeliet, J; Boller, M; Wangler, T

    2012-05-15

    Biocides are included in organic building façade coatings as protection against biological attack by algae and fungi but have the potential to enter the environment via leaching into runoff from wind driven rain. The following field study correlates wind driven rain to runoff and measured the release of several commonly used organic biocides (terbutryn, Irgarol 1051, diuron, isoproturon, OIT, DCOIT) in organic façade coatings from four coating systems. During one year of exposure of a west oriented model house façade in the Zurich, Switzerland area, an average of 62.7 L/m(2), or 6.3% of annual precipitation came off the four façade panels installed as runoff. The ISO method for calculating wind driven rain loads is adapted to predict runoff and can be used in the calculation of emissions in the field. Biocide concentrations tend to be higher in the early lifetime of the coatings and then reach fairly consistent levels later, generally ranging on the order of mg/L or hundreds of μg/L. On the basis of the amount remaining in the film after exposure, the occurrence of transformation products, and the calculated amounts in the leachate, degradation plays a significant role in the overall mass balance.

  20. Contamination control in hybrid microelectronic modules. Part 2: Selection and evaluation of coating materials

    NASA Technical Reports Server (NTRS)

    Himmel, R. P.

    1975-01-01

    The selection, test, and evaluation of organic coating materials for contamination control in hybrid circuits is reported. The coatings were evaluated to determine their suitability for use as a conformal coating over the hybrid microcircuit (including chips and wire bonds) inside a hermetically sealed package. Evaluations included ease of coating application and repair and effect on thin film and thick film resistors, beam leads, wire bonds, transistor chips, and capacitor chips. The coatings were also tested for such properties as insulation resistance, voltage breakdown strength, and capability of immobilizing loose particles inside the packages. The selected coatings were found to be electrically, mechanically, and chemically compatible with all components and materials normally used in hybrid microcircuits.

  1. 76 FR 52917 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Adoption of Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ... Large Appliance and Metal Furniture Coatings AGENCY: Environmental Protection Agency (EPA). ACTION... Techniques Guidelines (CTG) standards for large appliance and metal furniture coatings. In the Final Rules...; Pennsylvania; Adoption of Control Techniques Guidelines for Large Appliance and Metal Furniture Coatings...

  2. Hot piston ring tests

    NASA Technical Reports Server (NTRS)

    Allen, David J.; Tomazic, William A.

    1987-01-01

    As part of the DOE/NASA Automotive Stirling Engine Project, tests were made at NASA Lewis Research Center to determine whether appendix gap losses could be reduced and Stirling engine performance increased by installing an additional piston ring near the top of each piston dome. An MTI-designed upgraded Mod I Automotive Stirling Engine was used. Unlike the conventional rings at the bottom of the piston, these hot rings operated in a high temperature environment (700 C). They were made of a high temperature alloy (Stellite 6B) and a high temperature solid lubricant coating (NASA Lewis-developed PS-200) was applied to the cylinder walls. Engine tests were run at 5, 10, and 15 MPa operating pressure over a range of operating speeds. Tests were run both with hot rings and without to provide a baseline for comparison. Minimum data to assess the potential of both the hot rings and high temperature low friction coating was obtained. Results indicated a slight increase in power and efficiency, an increase over and above the friction loss introduced by the hot rings. Seal leakage measurements showed a significant reduction. Wear on both rings and coating was low.

  3. Reliability, Maintainability, and Performance Issues in Hydraulic System Design

    DTIC Science & Technology

    1977-06-01

    the piston and control valve, typically between 0.85 and 0.95 for an integrally mounted valve In a practical hardware installation, the actuator ...around the null position due to internal leakage through the piston seal and in the control valve. A newly installed CH-47 swashplate control actuator ...except when the pump is installed in the manu- facturer’s own test

  4. Controlling the Release of Indomethacin from Glass Solutions Layered with a Rate Controlling Membrane Using Fluid-Bed Processing. Part 1: Surface and Cross-Sectional Chemical Analysis.

    PubMed

    Dereymaker, Aswin; Scurr, David J; Steer, Elisabeth D; Roberts, Clive J; Van den Mooter, Guy

    2017-04-03

    Fluid bed coating has been shown to be a suitable manufacturing technique to formulate poorly soluble drugs in glass solutions. Layering inert carriers with a drug-polymer mixture enables these beads to be immediately filled into capsules, thus avoiding additional, potentially destabilizing, downstream processing. In this study, fluid bed coating is proposed for the production of controlled release dosage forms of glass solutions by applying a second, rate controlling membrane on top of the glass solution. Adding a second coating layer adds to the physical and chemical complexity of the drug delivery system, so a thorough understanding of the physical structure and phase behavior of the different coating layers is needed. This study aimed to investigate the surface and cross-sectional characteristics (employing scanning electron microscopy (SEM) and time of flight secondary ion mass spectrometry (ToF-SIMS)) of an indomethacin-polyvinylpyrrolidone (PVP) glass solution, top-coated with a release rate controlling membrane consisting of either ethyl cellulose or Eudragit RL. The implications of the addition of a pore former (PVP) and the coating medium (ethanol or water) were also considered. In addition, polymer miscibility and the phase analysis of the underlying glass solution were investigated. Significant differences in surface and cross-sectional topography of the different rate controlling membranes or the way they are applied (solution vs dispersion) were observed. These observations can be linked to the polymer miscibility differences. The presence of PVP was observed in all rate controlling membranes, even if it is not part of the coating solution. This could be attributed to residual powder presence in the coating chamber. The distribution of PVP among the sample surfaces depends on the concentration and the rate controlling polymer used. Differences can again be linked to polymer miscibility. Finally, it was shown that the underlying glass solution layer remains amorphous after coating of the rate controlling membrane, whether formed from an ethanol solution or an aqueous dispersion.

  5. Finger materials for air cushion vehicles. Volume 1: Flexible coatings for finger materials

    NASA Astrophysics Data System (ADS)

    Conn, P. K.; Snell, I. C.; Klemens, W.

    1984-12-01

    Twenty polymer formulations from ten selected gum rubber polymers or polymer blends and fourteen formulations of castable liquid polyurethane polymers were characterized as coatings for the coated fabric that is the type material used to make flexible fingers for air cushion vehicles. The formulations were screened for crack growth and flexural fatigue resistance; the results were compared to results from a natural rubber/cisabutadiene blend control coating. In addition, selected polymers were evaluated with primary and secondary characterization tests and the results compared to results from the control formulation. One polymer also was used to evaluate the use of a reticulated carbon black to improve thermal conductivity. Several polymers had better crack growth resistance and a number had better flexural fatique resistance than the control polymer. A clorinated polyethylene polymer coated on nylon fabric had properties equivalent to the control polymer coated on nylon fabric. Hysteresis tests at different rates of deformation yielded results which suggested that the standard tests may not identify polymers with improved performance on air cushion vehicles. Woven fabric, knit, and mat structures were evaluated as reinforcements for polymer coatings; the knit and mat structures were not as efficient on a strength-to-weight basis as woven fabrics.

  6. Innovative Corrosion-Resistant Coatings for Heat Distribution Piping at Fort Jackson

    DTIC Science & Technology

    2007-06-01

    installations are served by district heat distribution sys- tems (HDSs) that provide space heating and hot water to the facilities. HDSs are large, complex...corrosive to exposed steel. Furthermore, water tends to infiltrate the manhole from outside or though pinhole leaks in pipes. When water collects in the man...energized. A typical HDS services a number of installa- tion customers all year for both space heating and domestic hot water . Scheduled maintenance is

  7. 21 CFR 886.4155 - Scleral plug.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... stainless steel with or without a gold, silver, or titanium coating. The special controls for the surgical grade stainless steel scleral plug (with or without a gold, silver, or titanium coating) are: (i) The... titanium coating). The special controls for scleral plugs made of other materials are: (i) The device must...

  8. 76 FR 4578 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; Adoption of Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... Wood Paneling Coatings AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY... (RACT) for sources covered by EPA's Control Techniques Guidelines (CTG) for flat wood paneling coatings. These amendments will reduce emissions of volatile organic compound (VOC) from flat wood coating...

  9. 76 FR 33161 - Installation and Use of Engine Cut-off Switches on Recreational Vessels

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ...-off switches as a standard safety feature on propulsion machinery and/or starting controls installed... not most, propulsion machinery and/or starting controls installed on recreational vessels are... new subpart N that would cover propulsion machinery capable of developing static thrust of 115 pounds...

  10. 77 FR 41337 - Approval and Promulgation of Air Quality Implementation Plans; Delaware; Control Technique...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... following definitions: Adhesion primer, aerosol coating product, air-dried coating, baked coating, dip... coatings..... 0.85 7.1. Automotive/Transportation Parts High bake coatings Flexible primer 0.46 3.8. Non....3. Interior colorcoat 0.49 4.1. Exterior colorcoat 0.55 4.6. Low bake/air dried coatings-exterior...

  11. 40 CFR 52.2081 - EPA-approved EPA Rhode Island State regulations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... subsections 18.1.8, 18.2.1, 18.3.2(d), 18.3.3(f), and 18.5.2. No. 19 Control of VOCs from surface coating... was amended to change applicability and to add emission limitations for metal coil coating, metal furniture coating, magnet wire coating, large appliance coating, miscellaneous metal parts coating, wood...

  12. Assessment of Proposed Cab Glass Coating for FAA Control Towers

    DTIC Science & Technology

    2015-11-16

    report would be prepared after the initial coating and evaluation (with sprayed water) and then a final report after the 6 month study period to assess...Distribution A: Approved for public release. AFRL-RH-WP-TR-2015-0074 Assessment of Proposed Cab Glass Coating for FAA Control...REPORT TYPE Interim 3. DATES COVERED (From - To) 30 Jun 2014 – 1 Nov 2015 4. TITLE AND SUBTITLE Assessment of Proposed Cab Glass Coating

  13. Tailoring Thin Film-Lacquer Coatings for Space Application

    NASA Technical Reports Server (NTRS)

    Peters, Wanda C.; Harris, George; Miller, Grace; Petro, John

    1998-01-01

    Thin film coatings have the capability of obtaining a wide range of thermal radiative properties, but the development of thin film coatings can sometimes be difficult and costly when trying to achieve highly specular surfaces. Given any space mission's thermal control requirements, there is often a need for a variation of solar absorptance (Alpha(s)), emittance (epsilon) and/or highly specular surfaces. The utilization of thin film coatings is one process of choice for meeting challenging thermal control requirements because of its ability to provide a wide variety of Alpha(s)/epsilon ratios. Thin film coatings' radiative properties can be tailored to meet specific thermal control requirements through the use of different metals and the variation of dielectric layer thickness. Surface coatings can be spectrally selective to enhance radiative coupling and decoupling. The application of lacquer to a surface can also provide suitable specularity for thin film application without the cost and difficulty associated with polishing.

  14. Tailoring Thin Film-Lacquer Coatings for Space Applications

    NASA Technical Reports Server (NTRS)

    Peters, Wanda C.; Harris, George; Miller, Grace; Petro, John

    1998-01-01

    Thin film coatings have the capability of obtaining a wide range of thermal radiative properties, but the development of thin film coatings can sometimes be difficult and costly when trying to achieve highly specular surfaces. Given any space mission's then-nal control requirements, there is often a need for a variation of solar absorptance (alpha(sub s)), emittance (epsilon) and/or highly specular surfaces. The utilization of thin film coatings is one process of choice for meeting challenging thermal control requirements because of its ability to provide a wide variety of alpha(sub s)/epsilon ratios. Thin film coatings' radiative properties can be tailored to meet specific thermal control requirements through the use of different metals and the variation of dielectric layer thickness. Surface coatings can be spectrally selective to enhance radiative coupling and decoupling. The application of lacquer to a surface can also provide suitable specularity for thin film application without the cost and difficulty associated with polishing.

  15. A Review of Tribological Coatings for Control Drive Mechanisms in Space Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CJ Larkin; JD Edington; BJ Close

    2006-02-21

    Tribological coatings must provide lubrication for moving components of the control drive mechanism for a space reactor and prevent seizing due to friction or diffusion welding to provide highly reliable and precise control of reflector position over the mission lifetime. Several coatings were evaluated based on tribological performance at elevated temperatures and in ultrahigh vacuum environments. Candidates with proven performance in the anticipated environment are limited primarily to disulfide materials. Irradiation data for these coatings is nonexistent. Compatibility issues between coating materials and structural components may require the use of barrier layers between the solid lubricant and structural components tomore » prevent deleterious interactions. It would be advisable to consider possible lubricant interactions prior to down-selection of structural materials. A battery of tests was proposed to provide the necessary data for eventual solid lubricant/coating selection.« less

  16. Near-infrared spectroscopy monitoring and control of the fluidized bed granulation and coating processes-A review.

    PubMed

    Liu, Ronghua; Li, Lian; Yin, Wenping; Xu, Dongbo; Zang, Hengchang

    2017-09-15

    The fluidized bed granulation and pellets coating technologies are widely used in pharmaceutical industry, because the particles made in a fluidized bed have good flowability, compressibility, and the coating thickness of pellets are homogeneous. With the popularization of process analytical technology (PAT), real-time analysis for critical quality attributes (CQA) was getting more attention. Near-infrared (NIR) spectroscopy, as a PAT tool, could realize the real-time monitoring and control during the granulating and coating processes, which could optimize the manufacturing processes. This article reviewed the application of NIR spectroscopy in CQA (moisture content, particle size and tablet/pellet thickness) monitoring during fluidized bed granulation and coating processes. Through this review, we would like to provide references for realizing automated control and intelligent production in fluidized bed granulation and pellets coating of pharmaceutical industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Fatigue resistant carbon coatings for rolling/sliding contacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Harpal; Ramirez, Giovanni; Eryilmaz, Osman

    2016-06-01

    The growing demands for renewable energy production have recently resulted in a significant increase in wind plant installation. Field data from these plants show that wind turbines suffer from costly repair, maintenance and high failure rates. Often times the reliability issues are linked with tribological components used in wind turbine drivetrains. The primary failure modes in bearings and gears are associated with micropitting, wear, brinelling, scuffing, smearing and macropitting all of which occur at or near the surface. Accordingly, a variety of surface engineering approaches are currently being considered to alter the near surface properties of such bearings and gearsmore » to prevent these tribological failures. In the present work, we have evaluated the tribological performance of compliant highly hydrogenated diamond like carbon coating developed at Argonne National Laboratory, under mixed rolling/sliding contact conditions for wind turbine drivetrain components. The coating was deposited on AISI 52100 steel specimens using a magnetron sputter deposition system. The experiments were performed on a PCS Micro-Pitting-Rig (MPR) with four material pairs at 1.79 GPa contact stress, 40% slide to roll ratio and in polyalphaolefin (PAO4) basestock oil (to ensure extreme boundary conditions). The post-test analysis was performed using optical microscopy, surface profilometry, and Raman spectroscopy. The results obtained show a potential for these coatings in sliding/rolling contact applications as no failures were observed with coated specimens even after 100 million cycles compared to uncoated pair in which they failed after 32 million cycles, under the given test conditions.« less

  18. Contamination control in hybrid microelectronic modules. Part 3: Specifications for coating material and process controls

    NASA Technical Reports Server (NTRS)

    Himmel, R. P.

    1975-01-01

    Resin systems for coating hybrids prior to hermetic sealing are described. The resin systems are a flexible silicone junction resin system and a flexible cycloaliphatic epoxy resin system. The coatings are intended for application to the hybrid after all the chips have been assembled and wire bonded, but prior to hermetic sealing of the package. The purpose of the coating is to control particulate contamination by immobilizing particles and by passivating the hybrid. Recommended process controls for the purpose of minimizing contamination in hybrid microcircuit packages are given. Emphasis is placed on those critical hybrid processing steps in which contamination is most likely to occur.

  19. Antibacterial properties of nano-silver coated PEEK prepared through magnetron sputtering.

    PubMed

    Liu, Xiuju; Gan, Kang; Liu, Hong; Song, Xiaoqing; Chen, Tianjie; Liu, Chenchen

    2017-09-01

    We aimed to investigate the cytotoxicity and antibacterial properties of nano-silver-coated polyetheretherketone (PEEK) produced through magnetron sputtering and provide a theoretical basis for its use in clinical applications. The surfaces of PEEKs were coated with nano-silver at varying thicknesses (3, 6, 9, and 12nm) through magnetron sputtering technology. The resulting coated PEEK samples were classified into the following groups according to the thickness of the nano-silver coating: PEEK-3 (3nm), PEEK-6 (6nm), PEEK-9 (9nm), PEEK-12 (12nm), and PEEK control group. The surface microstructure and composition of each sample were observed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and energy dispersive spectrum (EDS) analysis. The water contact angle of each sample was then measured by contact angle meters. A cell counting kit (CCK-8) was used to analyze the cytotoxicity of the mouse fibroblast cells (L929) in the coated groups (n=5) and group test samples (n=6), negative control (polyethylene, PE) (n=6), and positive control group (phenol) (n=6). The antibacterial properties of the samples were tested by co-culturing Streptococcus mutans and Straphylococcus aureus. The bacteria that adhered to the surface of samples were observed by SEM. The antibacterial adhesion ability of each sample was then evaluated. SEM and AFM analysis results showed that the surfaces of control group samples were smooth but compact. Homogeneous silver nano-particles (AgNPs) and nano-silver coating were uniformly distributed on the surface of the coated group samples. Compared with the control samples, the nano-silver coated samples had a significant increase in surface roughness (P<0.05) as the thickness of their nano-silver coating increased. EDS analysis showed that not only C and O but also Ag were present on the surface of the coated samples. Moreover, the water contact angle of modified samples significantly increased after nano-silver coating modification (P<0.01). CCK-8 cytotoxicity test results showed that coated samples did not exhibit cytotoxicity. The antibacterial experimental results showed that the nano-silver coating can significantly improve the antibacterial activity and bacterial adhesion ability of the PEEK samples. The compact and homogeneous nano-silver coating was successfully prepared on the surface of PEEK through magnetron sputtering. The nano-silver coated PEEKs demonstrated enhanced antibacterial activities and bacterial adhesion abilities and had no cytotoxic effects. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Bn and Si-Doped Bn Coatings on Woven Fabrics

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Scott, John M.; Wheeler, Donald R.; Chayka, Paul V.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    A computer controlled, pulsed chemical vapor infiltration (CVI) system has been developed to deposit BN from a liquid borazine (B3N3H6) source, as well as silicon doped BN coatings using borazine and a silicon source, into 2-D woven ceramic fabric preforms. The coating process was evaluated as a function of deposition temperature, pressure, and precursor flow rate. Coatings were characterized by field emission scanning electron microscopy, electron dispersive spectroscopy and Auger spectroscopy. By controlling the reactant feed ratios, Si incorporation could be controlled over the range of 6-24 atomic percent.

  1. Corrosion Challenges for the Oil and Gas Industry in the State of Qatar

    NASA Astrophysics Data System (ADS)

    Johnsen, Roy

    In Qatar oil and gas has been produced from onshore fields in more than 70 years, while the first offshore field delivered its first crude oil in 1965. Due to the atmospheric conditions in Qatar with periodically high humidity, high chloride content, dust/sand combined with the temperature variations, external corrosion is a big treat to the installations and connecting infrastructure. Internal corrosion in tubing, piping and process systems is also a challenge due to high H2S content in the hydrocarbon mixture and exposure to corrosive aquifer water. To avoid corrosion different type of mitigations like application of coating, chemical treatment and material selection are important elements. This presentation will review the experiences with corrosion challenges for oil & gas installations in Qatar including some examples of corrosion failures that have been seen.

  2. Devices and methods for managing noncombustible gasses in nuclear power plants

    DOEpatents

    Marquino, Wayne; Moen, Stephan C; Wachowiak, Richard M; Gels, John L; Diaz-Quiroz, Jesus; Burns, Jr., John C

    2014-12-23

    Systems passively eliminate noncondensable gasses from facilities susceptible to damage from combustion of built-up noncondensable gasses, such as H2 and O2 in nuclear power plants, without the need for external power and/or moving parts. Systems include catalyst plates installed in a lower header of the Passive Containment Cooling System (PCCS) condenser, a catalyst packing member, and/or a catalyst coating on an interior surface of a condensation tube of the PCCS condenser or an annular outlet of the PCCS condenser. Structures may have surfaces or hydrophobic elements that inhibit water formation and promote contact with the noncondensable gas. Noncondensable gasses in a nuclear power plant are eliminated by installing and using the systems individually or in combination. An operating pressure of the PCCS condenser may be increased to facilitate recombination of noncondensable gasses therein.

  3. Devices and methods for managing noncondensable gasses in nuclear power plants

    DOEpatents

    Marquino, Wayne; Moen, Stephan C.; Wachowiak, Richard M.; Gels, John L.; Diaz-Quiroz, Jesus; Burns, Jr., John C.

    2016-11-15

    Systems passively eliminate noncondensable gasses from facilities susceptible to damage from combustion of built-up noncondensable gasses, such as H2 and O2 in nuclear power plants, without the need for external power and/or moving parts. Systems include catalyst plates installed in a lower header of the Passive Containment Cooling System (PCCS) condenser, a catalyst packing member, and/or a catalyst coating on an interior surface of a condensation tube of the PCCS condenser or an annular outlet of the PCCS condenser. Structures may have surfaces or hydrophobic elements that inhibit water formation and promote contact with the noncondensable gas. Noncondensable gasses in a nuclear power plant are eliminated by installing and using the systems individually or in combination. An operating pressure of the PCCS condenser may be increased to facilitate recombination of noncondensable gasses therein.

  4. Healing characteristics of a new silver-coated, gelatine impregnated vascular prosthesis in the porcine model.

    PubMed

    Ueberrueck, T; Meyer, L; Zippel, R; Nestler, G; Wahlers, T; Gastinger, I

    2005-02-01

    To investigate the intraluminal and extraluminal healing behaviour of a new metallic silver coated, gelatine impregnated vascular graft. Comparative animal experimental investigation with randomisation of the animals to control and experimental groups. 24 pigs were assigned to two control and two experimental groups. The prostheses were interposed in the pigs' infrarenal aorta. For the evaluation, macroscopic, histological and immunohistochemical criteria were applied. The macroscopic evaluation after explantation of the prosthesis revealed similar healing characteristics in the control and experimental groups. The microscopic determination of neo-intimal thickness showed no significant differences between the groups; nor did the immunohistochemical investigations show any significant difference between the control group and the silver-coated prosthesis group. No disadvantage of the silver coating in terms of healing and graft patency was found. A possible advantage in terms of the antibacterial effect of the silver coating must be investigated in the clinical setting.

  5. Thermal control/oxidation resistant coatings for titanium-based alloys

    NASA Technical Reports Server (NTRS)

    Clark, Ronald K.; Wallace, Terryl A.; Cunnington, George R.; Wiedemann, Karl E.

    1992-01-01

    Extensive research and development efforts have been expended toward development of thermal control and environmental protection coatings for NASP and generic hypersonic vehicle applications. The objective of the coatings development activities summarized here was to develop light-weight coatings for protecting advanced titanium alloys from oxidation in hypersonic vehicle applications. A number of new coating concepts have been evaluated. Coated samples were exposed to static oxidation tests at temperatures up to 1000 C using a thermogravimetric apparatus. Samples were also exposed to simulated hypersonic flight conditions for up to 10 hr to determine their thermal and chemical stability and catalytic efficiency. The emittance of samples was determined before and after exposure to simulated hypersonic flight conditions.

  6. Spacecraft Thermal Control Coatings References

    NASA Technical Reports Server (NTRS)

    Kauder, Lonny

    2005-01-01

    The successful thermal design of spacecraft depends in part on a knowledge of the solar absorption and hemispherical emittance of the thermal control coatings used in and on the spacecraft. Goddard Space Flight Center has had since its beginning a group whose mission has been to provide thermal/optical properties data of thermal control coatings to thermal engineers. This handbook represents a summary of the data and knowledge accumulated over many years at GSFC.

  7. Bright is the new black—multi-year performance of high-albedo roofs in an urban climate

    NASA Astrophysics Data System (ADS)

    Gaffin, S. R.; Imhoff, M.; Rosenzweig, C.; Khanbilvardi, R.; Pasqualini, A.; Kong, A. Y. Y.; Grillo, D.; Freed, A.; Hillel, D.; Hartung, E.

    2012-03-01

    High-albedo white and cool roofing membranes are recognized as a fundamental strategy that dense urban areas can deploy on a large scale, at low cost, to mitigate the urban heat island effect. We are monitoring three generic white membranes within New York City that represent a cross section of the dominant white membrane options for US flat roofs: (1) an ethylene-propylene-diene monomer (EPDM) rubber membrane; (2) a thermoplastic polyolefin (TPO) membrane; and (3) an asphaltic multi-ply built-up membrane coated with white elastomeric acrylic paint. The paint product is being used by New York City’s government for the first major urban albedo enhancement program in its history. We report on the temperature and related albedo performance of these three membranes at three different sites over a multi-year period. The results indicate that the professionally installed white membranes are maintaining their temperature control effectively and are meeting the Energy Star Cool Roofing performance standards requiring a three-year aged albedo above 0.50. The EPDM membrane shows evidence of low emissivity; however this had the interesting effect of avoiding any ‘winter heat penalty’ for this building. The painted asphaltic surface shows high emissivity but lost about half of its initial albedo within two years of installation. Given that the acrylic approach is such an important ‘do-it-yourself’, low-cost, retrofit technique, and, as such, offers the most rapid technique for increasing urban albedo, further product performance research is recommended to identify conditions that optimize its long-term albedo control. Even so, its current multi-year performance still represents a significant albedo enhancement for urban heat island mitigation.

  8. Feasibility and acceptability of insecticide-treated plastic sheeting (ITPS) for vector control in Papua New Guinea

    PubMed Central

    2012-01-01

    Background This study assessed the feasibility and acceptability of utilizing insecticide-treated plastic sheeting (ITPS) as a malaria control intervention in Papua New Guinea (PNG). Methods ZeroVector® ITPS was installed in 40 homes across four study sites representing a cross section of malaria transmission risk and housing style. Structured questionnaires were completed at the time of ITPS installation (n=40) and at four weeks post installation (n=40) with the household head. Similarly, group interviews with the male and/or female household heads were completed at installation (n=5) and four-week follow-up (n=4). Results ZeroVector® ITPS was successfully installed in a range of homes employing traditional and/or modern building materials in PNG. The ITPS installations remained intact over the course of the four-week trial period and were highly acceptable to both male and female household heads. No dissatisfaction with the ITPS product was reported at four-week follow-up; however, the installation process was time consuming, participants reported a reduction in mosquito net use following ITPS installation and many participants expressed concern about the longevity of ITPS over the longer term. Conclusion ZeroVector® ITPS installation is feasible and highly acceptable in a diverse range of PNG contexts and is likely to be favourably received as a vector control intervention if accessible en masse. A longer-term evaluation is required before firm policy or public health decisions can be made regarding the potential application of ITPS in the national malaria control programme. The positive study findings suggest a longer-term evaluation of this promising malaria control intervention warrants consideration. PMID:23046535

  9. Feasibility and acceptability of insecticide-treated plastic sheeting (ITPS) for vector control in Papua New Guinea.

    PubMed

    Pulford, Justin; Tandrapah, Anthony; Atkinson, Jo-An; Kaupa, Brown; Russell, Tanya; Hetzel, Manuel W

    2012-10-09

    This study assessed the feasibility and acceptability of utilizing insecticide-treated plastic sheeting (ITPS) as a malaria control intervention in Papua New Guinea (PNG). ZeroVector® ITPS was installed in 40 homes across four study sites representing a cross section of malaria transmission risk and housing style. Structured questionnaires were completed at the time of ITPS installation (n=40) and at four weeks post installation (n=40) with the household head. Similarly, group interviews with the male and/or female household heads were completed at installation (n=5) and four-week follow-up (n=4). ZeroVector® ITPS was successfully installed in a range of homes employing traditional and/or modern building materials in PNG. The ITPS installations remained intact over the course of the four-week trial period and were highly acceptable to both male and female household heads. No dissatisfaction with the ITPS product was reported at four-week follow-up; however, the installation process was time consuming, participants reported a reduction in mosquito net use following ITPS installation and many participants expressed concern about the longevity of ITPS over the longer term. ZeroVector® ITPS installation is feasible and highly acceptable in a diverse range of PNG contexts and is likely to be favourably received as a vector control intervention if accessible en masse. A longer-term evaluation is required before firm policy or public health decisions can be made regarding the potential application of ITPS in the national malaria control programme. The positive study findings suggest a longer-term evaluation of this promising malaria control intervention warrants consideration.

  10. Synthesis of boron nitride coatings on quartz fibers: Thickness control and mechanism research

    NASA Astrophysics Data System (ADS)

    Zheng, Yu; Wang, Shubin

    2011-10-01

    Boron nitride (BN) coatings were successfully synthesized on quartz fibers by dip-coating in boric acid and urea solutions at 700 °C. The SEM micrographs indicated that the quartz fibers were fully covered by coatings with smooth surface. The XRD, FT-IR, XPS spectra and HR-TEM results showed that the composition of the coatings which combined closely with the quartz fibers was polycrystalline h-BN. By changing the dip circles, the coating thickness was well controlled. The thicknesses of samples dipped less than six circles increased linearly with dipping-circles; and the increment of coating thickness would slow down when the fibers were dipped 10 circles. After being dipped for 10 circles, the thickness was about 300 nm. The coating thickness was also established by calculation and the calculated results were consistent with the results measured by micrograph.

  11. Plasma effects on the passive external thermal control coating of Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Carruth, Ralph, Jr.; Vaughn, Jason A.; Holt, James M.; Werp, Richard; Sudduth, Richard D.

    1992-01-01

    The current baseline chromic acid anodized thermal control coating on 6061-T6 aluminum meteoroid debris (M/D) shields for SSF has been evaluated. The degradation of the solar absorptance, alpha, and the thermal emittance, epsilon, of chromic acid anodized aluminum due to dielectric breakdown in plasma was measured to predict the on-orbit lifetime of the SSF M/D shields. The lifetime of the thermal control coating was based on the surface temperatures achieved with degradation of the thermal control properties, alpha and epsilon. The temperatures of each M/D shield from first element launch (FEL) through FEL+15 years were analyzed. It is shown that the baseline thermal control coating cannot withstand the -140 V potential between the conductive structure of the SSF and the current plasma environment.

  12. Digital control for the condensate system in a combined cycle power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez Parra, M.; Fuentes Gutierrez, J.E.; Castelo Cuevas, L.

    1994-12-31

    This paper presents the highlights by means of which development, installation and start up of the digital control system (DCS)for the condenser and hotwell (condensate system) were performed. This system belongs to the distributed control system installed by the Instituto de Investigaciones Electricas (IIE) at the Combined Cycle Power Plant in Gomez Palacio (GP), Durango, Mexico, during the February-March period, in 1993. The main steps for development of the condenser and hotwell control system include: process modeling, definition of control strategies, algorithms, design and software development, PC simulation tests, laboratory tests with an equipment similar to the one installed atmore » the GP Power Plant, installation, and finally, start up, which was a joint effort with the GP Power Plant engineering staff.« less

  13. Electrically conductive, black thermal control coatings for space craft application. II - Silicone matrix formulation

    NASA Technical Reports Server (NTRS)

    Hribar, V. F.; Bauer, J. L.; O'Donnell, T. P.

    1986-01-01

    Five black electrically conductive thermal-control coatings have been formulated and tested for application on the Galileo spacecraft. The coatings consisted of organic and inorganic systems applied on titanium and aluminum surfaces. The coatings were tested under simulated space environment conditions. Coated specimens were subjected to thermal radiation and convective and conductive heating from -196 to 538 C. Mechanical, physical, thermal, electrical, and optical characteristics, formulation, mixing, application, surface preparation of substrates, and a method of determining electrical resistance are presented for the silicone matrix formulation designated as GF-580.

  14. Biological and immunotoxicity evaluation of antimicrobial peptide-loaded coatings using a layer-by-layer process on titanium

    PubMed Central

    Shi, Jue; Liu, Yu; Wang, Ying; Zhang, Jing; Zhao, Shifang; Yang, Guoli

    2015-01-01

    The prevention and control of peri-implantitis is a challenge in dental implant surgery. Dental implants with sustained antimicrobial coating are an ideal way of preventing peri-implantitis. This study reports development of a non- immunotoxicity multilayered coating on a titanium surface that had sustained antimicrobial activity and limited early biofilm formation. In this study, the broad spectrum AMP, Tet213, was linked to collagen IV through sulfo-SMPB and has been renamed as AMPCol. The multilayer AMPCol coatings were assembled on smooth titanium surfaces using a LBL technique. Using XPS, AFM, contact angle analysis, and QCM, layer-by-layer accumulation of coating thickness was measured and increased surface wetting compared to controls was confirmed. Non-cytotoxicity to HaCaT and low erythrocyte hemolysis by the AMPCol coatings was observed. In vivo immunotoxicity assays showed IP administration of AMPCol did not effect serum immunoglobulin levels. This coating with controlled release of AMP decreased the growth of both a Gram-positive aerobe (Staphylococcus aureus) and a Gram-negative anaerobe (Porphyromonas gingivalis) up to one month. Early S. aureus biofilm formation was inhibited by the coating. The excellent long-term sustained antimicrobial activity of this multilayer coating is a potential method for preventing peri-implantitis through coated on the neck of implants before surgery. PMID:26548760

  15. Design and Performance of Property Gradient Ternary Nitride Coating Based on Process Control.

    PubMed

    Yan, Pei; Chen, Kaijie; Wang, Yubin; Zhou, Han; Peng, Zeyu; Jiao, Li; Wang, Xibin

    2018-05-09

    Surface coating is an effective approach to improve cutting tool performance, and multiple or gradient coating structures have become a common development strategy. However, composition mutations at the interfaces decrease the performance of multi-layered coatings. The key mitigation technique has been to reduce the interface effect at the boundaries. This study proposes a structure design method for property-component gradient coatings based on process control. The method produces coatings with high internal cohesion and high external hardness, which could reduce the composition and performance mutations at the interface. A ZrTiN property gradient ternary nitride coating was deposited on cemented carbide by multi-arc ion plating with separated Ti and Zr targets. The mechanical properties, friction behaviors, and cutting performances were systematically investigated, compared with a single-layer coating. The results indicated that the gradient coating had better friction and wear performance with lower wear rate and higher resistance to peeling off during sliding friction. The gradient coating had better wear and damage resistance in cutting processes, with lower machined surface roughness Ra. Gradient-structured coatings could effectively inhibit micro crack initiation and growth under alternating force and temperature load. This method could be extended to similar ternary nitride coatings.

  16. Automated pharmaceutical tablet coating layer evaluation of optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Markl, Daniel; Hannesschläger, Günther; Sacher, Stephan; Leitner, Michael; Khinast, Johannes G.; Buchsbaum, Andreas

    2015-03-01

    Film coating of pharmaceutical tablets is often applied to influence the drug release behaviour. The coating characteristics such as thickness and uniformity are critical quality parameters, which need to be precisely controlled. Optical coherence tomography (OCT) shows not only high potential for off-line quality control of film-coated tablets but also for in-line monitoring of coating processes. However, an in-line quality control tool must be able to determine coating thickness measurements automatically and in real-time. This study proposes an automatic thickness evaluation algorithm for bi-convex tables, which provides about 1000 thickness measurements within 1 s. Beside the segmentation of the coating layer, optical distortions due to refraction of the beam by the air/coating interface are corrected. Moreover, during in-line monitoring the tablets might be in oblique orientation, which needs to be considered in the algorithm design. Experiments were conducted where the tablet was rotated to specified angles. Manual and automatic thickness measurements were compared for varying coating thicknesses, angles of rotations, and beam displacements (i.e. lateral displacement between successive depth scans). The automatic thickness determination algorithm provides highly accurate results up to an angle of rotation of 30°. The computation time was reduced to 0.53 s for 700 thickness measurements by introducing feasibility constraints in the algorithm.

  17. Hexavalent chromium exposures during full-aircraft corrosion control.

    PubMed

    Carlton, Gary N

    2003-01-01

    Aluminum alloys used in the construction of modern aircraft are subject to corrosion. The principal means of controlling this corrosion in the U.S. Air Force are organic coatings. The organic coating system consists of a chromate conversion coat, epoxy resin primer, and polyurethane enamel topcoat. Hexavalent chromium (CrVI) is present in the conversion coat in the form of chromic acid and in the primer in the form of strontium chromate. CrVI inhalation exposures can occur when workers spray conversion coat onto bare metal and apply primer to the treated metal surface. In addition, mechanical abrasion of aircraft surfaces can generate particulates that contain chromates from previously applied primers and conversion coats. This study measured CrVI exposures during these corrosion control procedures. Mean time-weighted average (TWA) exposure to chromic acid during conversion coat treatment was 0.48 microg/m(3), below the current American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV(R)) TWA of 50 microg/m(3) for water-soluble CrVI compounds. Mean TWA exposures to strontium chromate were 5.33 microg/m(3) during mechanical abrasion and 83.8 microg/m(3) during primer application. These levels are in excess of the current ACGIH TLV-TWA of 0.5 microg/m(3) for strontium chromate. In the absence of a change from chromated to nonchromated conversion coats and primers, additional control measures are needed to reduce these exposures.

  18. 40 CFR 63.4761 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... HAP emission reduction for the controlled coating operation during the month, grams. Ac = Total mass of organic HAP in the coatings used in the controlled coating operation during the month, grams. Bc..., grams, as calculated in Equation 1B of this section. Cc = Total mass of organic HAP in the cleaning...

  19. 40 CFR 63.4761 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... HAP emission reduction for the controlled coating operation during the month, grams. Ac = Total mass of organic HAP in the coatings used in the controlled coating operation during the month, grams. Bc..., grams, as calculated in Equation 1B of this section. Cc = Total mass of organic HAP in the cleaning...

  20. 40 CFR 63.4761 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... HAP emission reduction for the controlled coating operation during the month, grams. Ac = Total mass of organic HAP in the coatings used in the controlled coating operation during the month, grams. Bc..., grams, as calculated in Equation 1B of this section. Cc = Total mass of organic HAP in the cleaning...

  1. 40 CFR 63.4761 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HAP emission reduction for the controlled coating operation during the month, grams. Ac = Total mass of organic HAP in the coatings used in the controlled coating operation during the month, grams. Bc..., grams, as calculated in Equation 1B of this section. Cc = Total mass of organic HAP in the cleaning...

  2. 40 CFR 63.4761 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... HAP emission reduction for the controlled coating operation during the month, grams. Ac = Total mass of organic HAP in the coatings used in the controlled coating operation during the month, grams. Bc..., grams, as calculated in Equation 1B of this section. Cc = Total mass of organic HAP in the cleaning...

  3. 78 FR 4055 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ...) Installation of New Relay and Wiring Bundle Change Within 24 months after the effective date of this AD: Change... requires installing a new relay and doing certain wiring changes of the entertainment control switch. We... proposed to require installing a new relay and doing certain wiring changes of the entertainment control...

  4. 40 CFR 63.1213 - How can the compliance date be extended to install pollution prevention or waste minimization...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to install pollution prevention or waste minimization controls? 63.1213 Section 63.1213 Protection of... pollution prevention or waste minimization controls? (a) Applicability. You may request from the.... An extension may be granted if you can reasonably document that the installation of pollution...

  5. 40 CFR 63.1213 - How can the compliance date be extended to install pollution prevention or waste minimization...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... extended to install pollution prevention or waste minimization controls? 63.1213 Section 63.1213 Protection... pollution prevention or waste minimization controls? (a) Applicability. You may request from the.... An extension may be granted if you can reasonably document that the installation of pollution...

  6. 40 CFR 63.1213 - How can the compliance date be extended to install pollution prevention or waste minimization...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... extended to install pollution prevention or waste minimization controls? 63.1213 Section 63.1213 Protection... extended to install pollution prevention or waste minimization controls? (a) Applicability. You may request... pollution prevention or waste minimization measures will significantly reduce the amount and/or toxicity of...

  7. 40 CFR 63.1213 - How can the compliance date be extended to install pollution prevention or waste minimization...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... extended to install pollution prevention or waste minimization controls? 63.1213 Section 63.1213 Protection... extended to install pollution prevention or waste minimization controls? (a) Applicability. You may request... pollution prevention or waste minimization measures will significantly reduce the amount and/or toxicity of...

  8. 40 CFR 63.1213 - How can the compliance date be extended to install pollution prevention or waste minimization...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to install pollution prevention or waste minimization controls? 63.1213 Section 63.1213 Protection of... pollution prevention or waste minimization controls? (a) Applicability. You may request from the.... An extension may be granted if you can reasonably document that the installation of pollution...

  9. Evaluation of retrofit crankcase ventilation controls and diesel oxidation catalysts for reducing air pollution in school buses

    NASA Astrophysics Data System (ADS)

    Trenbath, Kim; Hannigan, Michael P.; Milford, Jana B.

    2009-12-01

    This study evaluates the effect of retrofit closed crankcase ventilation filters (CCFs) and diesel oxidation catalysts (DOCs) on the in-cabin air quality in transit-style diesel school buses. In-cabin pollution levels were measured on three buses from the Pueblo, CO District 70 fleet. Monitoring was conducted while buses were driven along their regular routes, with each bus tested three times before and three times after installation of control devices. Ultrafine number concentrations in the school bus cabins were 33-41% lower, on average, after the control devices were installed. Mean mass concentrations of particulate matter less than 2.5 μm in diameter (PM2.5) were 56% lower, organic carbon (OC) 41% lower, elemental carbon (EC) 85% lower, and formaldehyde 32% lower after control devices were installed. While carbon monoxide concentrations were low in all tests, mean concentrations were higher after control devices were installed than in pre-retrofit tests. Reductions in number, OC, and formaldehyde concentrations were statistically significant, but reductions in PM2.5 mass were not. Even with control devices installed, during some runs PM2.5 and OC concentrations in the bus cabins were elevated compared to ambient concentrations observed in the area. OC concentrations inside the bus cabins ranged from 22 to 58 μg m -3 before and 13 to 33 μg m -3 after control devices were installed. OC concentrations were correlated with particle-bound organic tracers for lubricating oil emissions (hopanes) and diesel fuel and tailpipe emissions (polycyclic aromatic hydrocarbons (PAH) and aliphatic hydrocarbons). Mean concentrations of hopanes, PAH, and aliphatic hydrocarbons were lower by 37, 50, and 43%, respectively, after the control devices were installed, suggesting that both CCFs and DOCs were effective at reducing in-cabin OC concentrations.

  10. Effect of Edible and Active Coating (with Rosemary and Oregano Essential Oils) on Beef Characteristics and Consumer Acceptability.

    PubMed

    Vital, Ana Carolina Pelaes; Guerrero, Ana; Monteschio, Jessica de Oliveira; Valero, Maribel Velandia; Carvalho, Camila Barbosa; de Abreu Filho, Benício Alves; Madrona, Grasiele Scaramal; do Prado, Ivanor Nunes

    2016-01-01

    The effects of an alginate-based edible coating containing natural antioxidants (rosemary and oregano essential oils) on lipid oxidation, color preservation, water losses, texture and pH of beef steaks during 14 days of display were studied. The essential oil, edible coating and beef antioxidant activities, and beef consumer acceptability were also investigated. The edible coatings decreased lipid oxidation of the meat compared to the control. The coating with oregano was most effective (46.81% decrease in lipid oxidation) and also showed the highest antioxidant activity. The coatings significantly decreased color losses, water losses and shear force compared to the control. The coatings had a significant effect on consumer perception of odor, flavor and overall acceptance of the beef. In particular, the oregano coating showed significantly high values (approximately 7 in a 9-point scale). Active edible coatings containing natural antioxidants could improve meat product stability and therefore have potential use in the food industry.

  11. Effect of Edible and Active Coating (with Rosemary and Oregano Essential Oils) on Beef Characteristics and Consumer Acceptability

    PubMed Central

    Vital, Ana Carolina Pelaes; Guerrero, Ana; Monteschio, Jessica de Oliveira; Valero, Maribel Velandia; Carvalho, Camila Barbosa; de Abreu Filho, Benício Alves; Madrona, Grasiele Scaramal; do Prado, Ivanor Nunes

    2016-01-01

    The effects of an alginate-based edible coating containing natural antioxidants (rosemary and oregano essential oils) on lipid oxidation, color preservation, water losses, texture and pH of beef steaks during 14 days of display were studied. The essential oil, edible coating and beef antioxidant activities, and beef consumer acceptability were also investigated. The edible coatings decreased lipid oxidation of the meat compared to the control. The coating with oregano was most effective (46.81% decrease in lipid oxidation) and also showed the highest antioxidant activity. The coatings significantly decreased color losses, water losses and shear force compared to the control. The coatings had a significant effect on consumer perception of odor, flavor and overall acceptance of the beef. In particular, the oregano coating showed significantly high values (approximately 7 in a 9-point scale). Active edible coatings containing natural antioxidants could improve meat product stability and therefore have potential use in the food industry. PMID:27504957

  12. Innovations in coating technology.

    PubMed

    Behzadi, Sharareh S; Toegel, Stefan; Viernstein, Helmut

    2008-01-01

    Despite representing one of the oldest pharmaceutical techniques, coating of dosage forms is still frequently used in pharmaceutical manufacturing. The aims of coating range from simply masking the taste or odour of drugs to the sophisticated controlling of site and rate of drug release. The high expectations for different coating technologies have required great efforts regarding the development of reproducible and controllable production processes. Basically, improvements in coating methods have focused on particle movement, spraying systems, and air and energy transport. Thereby, homogeneous distribution of coating material and increased drying efficiency should be accomplished in order to achieve high end product quality. Moreover, given the claim of the FDA to design the end product quality already during the manufacturing process (Quality by Design), the development of analytical methods for the analysis, management and control of coating processes has attracted special attention during recent years. The present review focuses on recent patents claiming improvements in pharmaceutical coating technology and intends to first familiarize the reader with the available procedures and to subsequently explain the application of different analytical tools. Aiming to structure this comprehensive field, coating technologies are primarily divided into pan and fluidized bed coating methods. Regarding pan coating procedures, pans rotating around inclined, horizontal and vertical axes are reviewed separately. On the other hand, fluidized bed technologies are subdivided into those involving fluidized and spouted beds. Then, continuous processing techniques and improvements in spraying systems are discussed in dedicated chapters. Finally, currently used analytical methods for the understanding and management of coating processes are reviewed in detail in the last section of the review.

  13. Smart Coatings for Corrosion Protection

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Li, Wendy; Buhrow, Jerry W.; Johnsey, Marissa N.

    2016-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. It is essential to detect corrosion when it occurs, and preferably at its early stage, so that action can be taken to avoid structural damage or loss of function. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it.

  14. Analysis of the use of industrial control systems in simulators: state of the art and basic guidelines.

    PubMed

    Carrasco, Juan A; Dormido, Sebastián

    2006-04-01

    The use of industrial control systems in simulators facilitates the execution of engineering activities related with the installation and the optimization of the control systems in real plants. "Industrial control system" intends to be a valid term that would represent all the control systems which can be installed in an industrial plant, ranging from complex distributed control systems and SCADA packages to small single control devices. This paper summarizes the current alternatives for the development of simulators of industrial plants and presents an analysis of the process of integrating an industrial control system into a simulator, with the aim of helping in the installation of real control systems in simulators.

  15. Coatings and Surface Treatments for Reusable Entry Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.

    2016-01-01

    This talk outlines work in coatings for TPS done at NASA Ames. coatings and surface treatments on reusable TPS are critical for controlling the behavior of the materials. coatings discussed include RCG, TUFI and HETC. TUFROc is also discussed.

  16. Evaluation in a Dog Model of Three Antimicrobial Glassy Coatings: Prevention of Bone Loss around Implants and Microbial Assessments.

    PubMed

    López-Píriz, Roberto; Solá-Linares, Eva; Rodriguez-Portugal, Mercedes; Malpica, Beatriz; Díaz-Güemes, Idoia; Enciso, Silvia; Esteban-Tejeda, Leticia; Cabal, Belén; Granizo, Juan José; Moya, José Serafín; Torrecillas, Ramón

    2015-01-01

    The aim of the present study is to evaluate, in a ligature-induced peri-implantitis model, the efficacy of three antimicrobial glassy coatings in the prevention of biofilm formation, intrasulcular bacterial growth and the resulting peri-implant bone loss. Mandibular premolars were bilaterally extracted from five beagle dogs. Four dental implants were inserted on each hemiarch. Eight weeks after, one control zirconia abutment and three with different bactericidal coatings (G1n-Ag, ZnO35, G3) were connected. After a plaque control period, bacterial accumulation was allowed and biofilm formation on abutments was observed by Scanning Electron Microscopy (SEM). Peri-implantitis was induced by cotton ligatures. Microbial samples and peri-implant crestal bone levels of all implant sites were obtained before, during and after the breakdown period. During experimental induce peri-implantitis: colony forming units counts from intrasulcular microbial samples at implants with G1n-Ag coated abutment remained close to the basal inoculum; G3 and ZnO35 coatings showed similar low counts; and anaerobic bacterias counts at control abutments exhibited a logarithmic increase by more than 2. Bone loss during passive breakdown period was no statistically significant. Additional bone loss occurred during ligature-induce breakdown: 0.71 (SD 0.48) at G3 coating, 0.57 (SD 0.36) at ZnO35 coating, 0.74 (SD 0.47) at G1n-Ag coating, and 1.29 (SD 0.45) at control abutments; and statistically significant differences (p<0.001) were found. The lowest bone loss at the end of the experiment was exhibited by implants dressing G3 coated abutments (mean 2.1; SD 0.42). Antimicrobial glassy coatings could be a useful tool to ward off, diminish or delay peri-implantitis progression.

  17. Incorporating Phage Therapy into WPI Dip Coatings for Applications on Fresh Whole and Cut Fruit and Vegetable Surfaces.

    PubMed

    Vonasek, Erica L; Choi, Angela H; Sanchez, Juan; Nitin, Nitin

    2018-06-15

    There is a significant unmet need to develop antimicrobial solutions to reduce the risk of contamination in fresh produce. Bacteriophages have been proposed as a potential approach for controlling foodborne pathogens. This study evaluated the combination of edible dip coatings with T7 bacteriophages on whole and cut produce. The evaluation includes an assessment of phage loading, phage storage stability, antimicrobial activity, and phage stability during simulated gastric digestion on sliced cucumbers, sliced apples, and whole cherry tomatoes. In this evaluation, phages coated on fresh produce using edible whey protein isolate (WPI) were compared with phages coated from an aqueous suspension (control coating). The results demonstrated that WPI coatings load more phages than the control and enhanced phage stability during cold storage (4 °C) for cut apples and whole cherry tomatoes. Phage stability decreased by 1 to 3 log(PFU) in a simulated gastric environment. Phage antimicrobial activity against Escherichia coli BL21 decreased 2 to 4 log(CFU) of bacteria on cut apples and whole cherry tomatoes, while no significant bacterial reduction was observed for sliced cucumbers. Overall, the results show that WPI dip coating provides phage loading, stability, and antimicrobial activity to produce surfaces compared to the control coating, and thus may be considered an effective approach for extending phage therapy on fresh produce. The practical application is to prevent bacterial cross contamination of fresh produce by using a combination of edible coating with bacteriophages. The results demonstrate enhanced loading and stability of phages on fresh produce when used in combination with an edible coating. © 2018 Institute of Food Technologists®.

  18. Composite starch-based coatings applied to strawberries (Fragaria ananassa).

    PubMed

    García, M A; Martino, M N; Zaritzky, N E

    2001-08-01

    Starch-based coatings were used to the extend storage life of strawberries (Fragaria ananassa) stored at 0 degree C and 84.8% relative humidity. Effects of coating formulation (including starch type, plasticizer, lipid and antimicrobial agent) were analysed with respect to fruit quality. Plasticizer addition was necessary for film and coating integrity to avoid pores and cracks. Plasticizer presence reduced weight losses and maintained surface colour of fruits. Amylomaize coatings showed lower water vapour and gas permeabilities and decreased weight losses for longer periods than corn starch ones. Coatings with sorbitol showed lower permeabilities than glycerol ones. Coatings with antimicrobial agents decreased microbial counts, extending storage life of coated fruits by 10 to 14 days in comparison to the control. The addition of 2 g/l sunflower oil to the formulations decreased the water vapour permeability of starch-based films, maintained the surface colour of coated fruits and controlled effectively fruit weight losses during storage. Lipid addition minimized the effects of starch and plasticizer types. Composite starch-based coatings showed selective gas permeability (CO2 higher than O2) which helps to delay senescence of fruits.

  19. Sequential Infiltration Synthesis for the Design of Low Refractive Index Surface Coatings with Controllable Thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, Diana; Guha, Supratik; Lee, Byeongdu

    Control over refractive index and thickness of surface coatings is central to the design of low refraction films used in applications ranging from optical computing to antireflective coatings. Here, we introduce gas-phase sequential infiltration synthesis (SIS) as a robust, powerful and efficient approach to deposit conformal coatings with very low refractive indices. We demonstrate that the refractive indices of inorganic coatings can be efficiently tuned by the number of cycles used in the SIS process, composition and selective swelling of the of the polymer template. We show that the refractive index of Al 2O 3 can be lowered from 1.76more » down to 1.1 using this method. The thickness of the Al 2O 3 coating can be efficiently controlled by the swelling of the block copolymer template in ethanol at elevated temperature, thereby enabling deposition of both single-layer and graded-index broadband anti-reflective coatings. Using this technique, Fresnel reflections of glass can be reduced to as low as 0.1% under normal illumination over a broad spectral range.« less

  20. Sequential Infiltration Synthesis for the Design of Low Refractive Index Surface Coatings with Controllable Thickness

    DOE PAGES

    Berman, Diana; Guha, Supratik; Lee, Byeongdu; ...

    2017-01-31

    Control over refractive index and thickness of surface coatings is central to the design of low refraction films used in applications ranging from optical computing to antireflective coatings. Here, we introduce gas-phase sequential infiltration synthesis (SIS) as a robust, powerful and efficient approach to deposit conformal coatings with very low refractive indices. We demonstrate that the refractive indices of inorganic coatings can be efficiently tuned by the number of cycles used in the SIS process, composition and selective swelling of the of the polymer template. We show that the refractive index of Al 2O 3 can be lowered from 1.76more » down to 1.1 using this method. The thickness of the Al 2O 3 coating can be efficiently controlled by the swelling of the block copolymer template in ethanol at elevated temperature, thereby enabling deposition of both single-layer and graded-index broadband anti-reflective coatings. Using this technique, Fresnel reflections of glass can be reduced to as low as 0.1% under normal illumination over a broad spectral range.« less

  1. Sequential Infiltration Synthesis for the Design of Low Refractive Index Surface Coatings with Controllable Thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman, Diana; Guha, Supratik; Lee, Byeongdu

    Control over refractive index and thickness of surface coatings is central to the design of low refraction films used in applications ranging from optical computing to antireflective coatings. Here, we introduce gas-phase sequential infiltration synthesis (SIS) as a robust, powerful, and efficient approach to deposit conformal coatings with very low refractive indices. We demonstrate that the refractive indices of inorganic coatings can be efficiently tuned by the number of cycles used in the SIS process, composition, and selective swelling of the of the polymer template. We show that the refractive index of Al2O3 can be lowered from 1.76 down tomore » 1.1 using this method. The thickness of the Al2O3 coating can be efficiently controlled by the swelling of the block copolymer template in ethanol at elevated temperature, thereby enabling deposition of both single-layer and graded-index broadband antireflective coatings. Using this technique, Fresnel reflections of glass can be reduced to as low as 0.1% under normal illumination over a broad spectral range.« less

  2. Sequential Infiltration Synthesis for the Design of Low Refractive Index Surface Coatings with Controllable Thickness.

    PubMed

    Berman, Diana; Guha, Supratik; Lee, Byeongdu; Elam, Jeffrey W; Darling, Seth B; Shevchenko, Elena V

    2017-03-28

    Control over refractive index and thickness of surface coatings is central to the design of low refraction films used in applications ranging from optical computing to antireflective coatings. Here, we introduce gas-phase sequential infiltration synthesis (SIS) as a robust, powerful, and efficient approach to deposit conformal coatings with very low refractive indices. We demonstrate that the refractive indices of inorganic coatings can be efficiently tuned by the number of cycles used in the SIS process, composition, and selective swelling of the of the polymer template. We show that the refractive index of Al 2 O 3 can be lowered from 1.76 down to 1.1 using this method. The thickness of the Al 2 O 3 coating can be efficiently controlled by the swelling of the block copolymer template in ethanol at elevated temperature, thereby enabling deposition of both single-layer and graded-index broadband antireflective coatings. Using this technique, Fresnel reflections of glass can be reduced to as low as 0.1% under normal illumination over a broad spectral range.

  3. Oral controlled release optimization of pellets prepared by extrusion-spheronization processing.

    PubMed

    Bianchini, R; Vecchio, C

    1989-06-01

    Controlled release high dosage forms of a typical drug such as Indobufen were prepared as multiple-unit doses by employing extrusion-spheronization processing and subsequently film coating operations. The effects of drug particle size, drug/binder ratio, extruder screen size and preparation reproducibility on the physical properties of the spherical granules were evaluated. Controlled release optimization was obtained on the same granules by coating with polymeric membranes of different thickness consisting of water-soluble and insoluble substances. Film coating was applied from an organic solution using pan coating technique. The drug diffusion is allowed by dissolution of part of the membrane leaving small channels of the polymer coat. Further preparations were conducted to evaluate coatings applied from aqueous dispersion (pseudolatex) using air suspension coating technique. In this system the drug diffusion is governed by the intrinsic pore network of the membrane. The most promising preparations having the desired in vitro release, were metered into hard capsules to obtain the drug unit dosage. Accelerated stability tests were carried out to assess the influence of time and the other storage parameters on the drug release profile.

  4. Thermal radiative properties: Coatings.

    NASA Technical Reports Server (NTRS)

    Touloukian, Y. S.; Dewitt, D. P.; Hernicz, R. S.

    1972-01-01

    This volume consists, for the most part, of a presentation of numerical data compiled over the years in a most comprehensive manner on coatings for all applications, in particular, thermal control. After a moderately detailed discussion of the theoretical nature of the thermal radiative properties of coatings, together with an overview of predictive procedures and recognized experimental techniques, extensive numerical data on the thermal radiative properties of pigmented, contact, and conversion coatings are presented. These data cover metallic and nonmetallic pigmented coatings, enamels, metallic and nonmetallic contact coatings, antireflection coatings, resin coatings, metallic black coatings, and anodized and oxidized conversion coatings.

  5. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition.

    PubMed

    Wang, Guizhen; Gao, Zhe; Tang, Shiwei; Chen, Chaoqiu; Duan, Feifei; Zhao, Shichao; Lin, Shiwei; Feng, Yuhong; Zhou, Lei; Qin, Yong

    2012-12-21

    In this work, atomic layer deposition is applied to coat carbon nanocoils with magnetic Fe(3)O(4) or Ni. The coatings have a uniform and highly controlled thickness. The coated nanocoils with coaxial multilayer nanostructures exhibit remarkably improved microwave absorption properties compared to the pristine carbon nanocoils. The enhanced absorption ability arises from the efficient complementarity between complex permittivity and permeability, chiral morphology, and multilayer structure of the products. This method can be extended to exploit other composite materials benefiting from its convenient control of the impedance matching and combination of dielectric-magnetic multiple loss mechanisms for microwave absorption applications.

  6. Microencapsulation Technologies for Corrosion Protective Coating Applications

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Buhrow, Jerry; Jolley, Scott; Calle, Luz; Pearman, Benjamin; Zhang, Xuejun

    2015-01-01

    Microencapsulation technologies for functional smart Coatings for autonomous corrosion control have been a research area of strong emphasis during the last decade. This work concerns the development of pH sensitive micro-containers (microparticles and microcapsules) for autonomous corrosion control. This paper presents an overview of the state-of-the-art in the field of microencapsulation for corrosion control applications, as well as the technical details of the pH sensitive microcontainer approach, such as selection criteria for corrosion indicators and corrosion inhibitors; the development and optimization of encapsulation methods; function evaluation before and after incorporation of the microcontainers into coatings; and further optimization to improve coating compatibility and performance.

  7. Control of volume resistivity in inorganic-organic separators. [for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.

    1980-01-01

    Control of resistivity in NASA inorganic-organic separators is achieved by incorporating small percentages of high surface area, fine-particle silica with other ingredients in the separator coating. The volume resistivity appears to be predictable from coating composition, that is, from the surface area of filler particles in the coating. The approach has been applied to two polymer-'plasticizer'-filler coating systems, where the filler content of each is below the generally acknowledged critical pigment volume concentration of the coating. Application of these coating systems to 0.0254 cm thick (10 mil) fuel-cell grade asbestos sheet produces inexpensive, flexible, microporous separators that perform at least as well as the original inorganic-organic concept, the Astropower separator.

  8. Development of Aloe vera based edible coating for tomato

    NASA Astrophysics Data System (ADS)

    Athmaselvi, K. A.; Sumitha, P.; Revathy, B.

    2013-12-01

    The effect of formulated Aloe vera based edible coating on mass loss, colour, firmness, pH, acidity, total soluble solid, ascorbic acid and lycopene on the coated tomato was investigated. The tomato in control showed a rapid deterioration with an estimated shelf life period of 19 days, based on the mass loss, colour changes, accelerated softening and ripening. On the contrary, the coating on tomatoes delayed the ripening and extended the shelf life up to 39 days. The physiological loss in weight was 7.6 and 15.1%, firmness was 36 and 46.2 N on 20th day for control and coated tomatoes, respectively. From the results, it was concluded that the use of Aloe vera based edible coating leads to increased tomato shelf-life.

  9. LDEF-space environmental effects on materials: Composites and silicone coatings

    NASA Technical Reports Server (NTRS)

    Petrie, Brian C.

    1992-01-01

    The effects of long term low Earth orbit environments on thermal control coatings and organic matrix/fiber reinforced composites are discussed. Two diverse categories are reported here: silicone coatings and composites. For composites physical and structural properties were analyzed; results are reported on mass/dimensional loss, microcracking, short beam shear, coefficient of thermal expansion (CTE), and flexural properties. The changes in thermal control properties, mass, and surface chemistry and morphology are reported and analyzed for the silicone coatings.

  10. LDEF-space environmental effects on materials: Composites and silicone coatings

    NASA Technical Reports Server (NTRS)

    Petrie, Brian C.

    1991-01-01

    The objective of the Lockheed experiment is to evaluate the effects of long term low Earth orbit environments on thermal control coatings and organic matrix/fiber reinforced composites. Two diverse categories are reported: silicone coatings and composites. For composites physical and structural properties were analyzed; results are reported on mass/dimensional loss, microcracking, short beam shear, CTE, and flexural properties. The changes in thermal control properties, mass, and surface chemistry and morphology are reported and analyzed for the silicon coatings.

  11. Performance evaluation of one coat systems for new steel bridges.

    DOT National Transportation Integrated Search

    2011-06-01

    In an effort to address cost issues associated with shop application of conventional three-coat systems, the Federal : Highway Administration completed a study to investigate the performance of eight one-coat systems and two control : coatings for co...

  12. Gear Performance Improved by Coating

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.

    2004-01-01

    Gears, bearings, and other mechanical elements transmit loads through contacting surfaces. Even if properly designed, manufactured, installed, and maintained, gears and bearings will eventually fail because of the fatigue of the working surfaces. Economical means for extending the fatigue lives of gears and bearings are highly desired, and coatings offer the opportunity to engineer surfaces to extend the fatigue lives of mechanical components. A tungsten-containing diamondlike-carbon coating exhibiting high hardness, low friction, and good toughness was evaluated for application to spur gears. Fatigue testing was done at the NASA Glenn Research Center on both uncoated and coated spur gears. The results showed that the coating extended the surface fatigue lives of the gears by a factor of about 5 relative to the uncoated gears. For the experiments, a lot of spur test gears made from AISI 9310 gear steel were case-carburized and ground to aerospace specifications. The geometries of the 28-tooth, 8-pitch gears were verified as meeting American Gear Manufacturing Association (AGMA) quality class 12. One-half of the gears were randomly selected for coating. The method of coating was selected to achieve desired adherence, toughness, hardness, and low-friction characteristics. First the gears to be coated were prepared by blasting (vapor honing) with Al2O3 particles and cleaning. Then, the gears were provided with a thin adhesion layer of elemental chromium followed by magnetron sputtering of the outer coating consisting of carbon (70 at.%), hydrogen (15 at.%), tungsten (12 at.%), and nickel (3 at.%) (atomic percent at the surface). In total, the coating thickness was about 2.5 to 3 microns. As compared with the steel substrate, the coated surface was harder by a factor of about 2 and had a smaller elastic modulus. All gears were tested using a 5-centistoke synthetic oil, a 10,000-rpm rotation speed, and a hertzian contact stress of at least 1.7 GPa (250 ksi). Tests were run until either surface fatigue occurred or 300 million stress cycles were completed. Tests were run using either a pair of uncoated gears or a pair of coated gears (coated gears mated with uncoated gears were not evaluated). The fatigue test results, shown on Weibull coordinates in the graph, demonstrate that the coating provided substantially longer fatigue lives even though some of the coated gears endured larger stresses. The increase in fatigue life was a factor of about 5 and the statistical confidence for the improvement is high (greater than 99 percent). Examination of the tested gears revealed substantial reductions of total wear for coated gears in comparison to uncoated gears. The coated gear surface topography changed with running, with localized areas of the tooth surface becoming smoother with running. Theories explaining how coatings can extend gear fatigue lives are research topics for coating, tribology, and fatigue specialists. This work was done as a partnership between NASA, the U.S. Army Research Laboratory, United Technologies Research Corporation, and Sikorsky Aircraft.

  13. Optimization of equipment for electron radiation processing

    NASA Astrophysics Data System (ADS)

    Tartz, M.; Hartmann, E.; Lenk, M.; Mehnert, R.

    1999-05-01

    In the course of the last decade, IOM Leipzig has developed low-energy electron accelerators for electron beam curing of polymer coatings and printing inks. In order to optimize the electron irradiation field, electron optical calculations have been carried out using the commercially available EGUN code. The present study outlines the design of the diode-type low-energy electron accelerators LEA and EBOGEN, taking into account the electron optical effects of secondary components such as the retaining rods installed in the cathode assembly.

  14. KSC-2012-1575

    NASA Image and Video Library

    2012-03-01

    CAPE CANAVERAL, Fla. -- The heat shield tiles that will be installed to the backshell of the Orion Multi-Purpose Crew Vehicle's Exploration Flight Test EFT-1 capsule are in a Keith thermal automation oven in the Thermal Protection System Facility at NASA's Kennedy Space Center in Florida. Inside the oven, the tiles will be baked at 2,200 degrees F to cure their ceramic coating. EFT-1 will be used during Orion's first test flight in space. For more information, visit www.nasa.gov/orion. Photo credit: Frankie Martin

  15. KSC-2012-1587

    NASA Image and Video Library

    2012-03-01

    CAPE CANAVERAL, Fla. -- The heat shield tiles that will be installed to the backshell of the Orion Multi-Purpose Crew Vehicle's Exploration Flight Test EFT-1 capsule are removed from a Keith thermal automation oven. Inside, the tiles were baked at 2,200 degrees F to cure their ceramic coating. The work to manufacture and inspect the tiles is taking place in Kennedy's Thermal Protection System Facility. EFT-1 will be used during Orion's first test flight in space. For more information, visit www.nasa.gov/orion. Photo credit: Frankie Martin

  16. KSC-2012-1576

    NASA Image and Video Library

    2012-03-01

    CAPE CANAVERAL, Fla. -- The heat shield tiles that will be installed to the backshell of the Orion Multi-Purpose Crew Vehicle's Exploration Flight Test EFT-1 capsule are in a Keith thermal automation oven in the Thermal Protection System Facility at NASA's Kennedy Space Center in Florida. Inside the oven, the tiles will be baked at 2,200 degrees F to cure their ceramic coating. EFT-1 will be used during Orion's first test flight in space. For more information, visit www.nasa.gov/orion. Photo credit: Frankie Martin

  17. KSC-2012-1572

    NASA Image and Video Library

    2012-03-01

    Tim Wright, a United Space Alliance engineering manager at NASA's Kennedy Space Center in Florida, unpacks the heat shield tiles that will be installed to the backshell of the Orion Multi-Purpose Crew Vehicle's Exploration Flight Test EFT-1 capsule. The tiles are being manufactured and inspected in Kennedy's Thermal Protection System Facility. The tiles will be baked at 2,200 degrees F to cure their ceramic coating. EFT-1 will be used during Orion's first test flight in space. For more information, visit www.nasa.gov/orion. Photo credit: Frankie Martin

  18. 40 CFR 63.4161 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... compliance period, kg. AI = total mass of organic HAP in the coatings used in the controlled coating... this section: ER23JY02.007 Where: AI = mass of organic HAP in the coatings used in the controlled... recovery system using a liquid-liquid material balance during the compliance period, kg. AI = total mass of...

  19. 40 CFR 63.4161 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... compliance period, kg. AI = total mass of organic HAP in the coatings used in the controlled coating... this section: ER23JY02.007 Where: AI = mass of organic HAP in the coatings used in the controlled... recovery system using a liquid-liquid material balance during the compliance period, kg. AI = total mass of...

  20. 40 CFR 63.4161 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... compliance period, kg. AI = total mass of organic HAP in the coatings used in the controlled coating... this section: ER23JY02.007 Where: AI = mass of organic HAP in the coatings used in the controlled... recovery system using a liquid-liquid material balance during the compliance period, kg. AI = total mass of...

  1. Current-controlled curvature of coated micromirrors

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Talghader, Joseph J.

    2003-06-01

    Precise control of micromirror curvature is critical in many optical microsystems. Micromirrors with current-controlled curvature are demonstrated. The working principle is that resistive heating changes the temperature of the micromirrors and thermal expansion induces a controlled curvature whose magnitude is determined by coating design. For example, for wide focal-length tuning, the radius of curvature of a gold-coated mirror was tuned from 2.5 to 8.2 mm over a current-induced temperature range from 22° to 72 °C. For fine focal-length tuning, the radius of curvature of a dielectric-coated (SiO2/Y2O3 λ/4 pairs) mirror was tuned from -0.68 to -0.64 mm over a current-induced temperature range from 22 to 84 °C. These results should be readily extendable to mirror flattening or real-time adaptive shape control.

  2. Superhydrophobic Post Treatment and Coating Extenders for Improved Asset Sustainability

    NASA Technical Reports Server (NTRS)

    Trigwell, Steven; Montgomery, Eliza L.; Calle, Luz M.

    2015-01-01

    Launch structures, hardware, and ground support equipment, at NASA's John F. Kennedy Space Center in Florida, are exposed to a highly corrosive natural coastal marine environment. In addition, during launches, rocket exhaust deposition is also highly corrosive. Superhydrophobic coatings are being considered for additional corrosion protection on existing structures to enhance corrosion resistance and add an additional layer of protection against harsh environmental elements. These coatings have come into their own recently, and are now being investigated as corrosion protective coatings due to their water repelling capability. These coatings can be used on existing coatings, newly coated materials, or used on bare substrates. The coatings are not suitable for permanent corrosion protection, but can be used where additional corrosion control is desired or only when temporary corrosion control is needed, such as in hardware sitting on a launch pad for 30-45 days prior to a launch. In this study, superhydrophobic coatings were applied on various coated and uncoated substrates and exposed to the spaceport environment for various times up to 60 days. This paper highlights the current results of the superhydrophobic coatings performance evaluated by X-ray photoelectron spectroscopy, and contact angle measurements.

  3. Evaluation of emission control strategies to reduce ozone pollution in the Paso del Norte region using a photochemical air quality modeling system

    NASA Astrophysics Data System (ADS)

    Valenzuela, Victor Hugo

    Air pollution emissions control strategies to reduce ozone precursor pollutants are analyzed by applying a photochemical modeling system. Simulations of air quality conditions during an ozone episode which occurred in June, 2006 are undertaken by increasing or reducing area source emissions in Ciudad Juarez, Chihuahua, Mexico. Two air pollutants are primary drivers in the formation of tropospheric ozone. Oxides of nitrogen (NOx) and volatile organic compounds (VOC) undergo multiple chemical reactions under favorable meteorological conditions to form ozone, which is a secondary pollutant that irritates respiratory systems in sensitive individuals especially the elderly and young children. The U.S. Environmental Protection Agency established National Ambient Air Quality Standards (NAAQS) to limit ambient air pollutants such as ozone by establishing an 8-hour average concentration of 0.075 ppm as the threshold at which a violation of the standard occurs. Ozone forms primarily due reactions in the troposphere of NOx and VOC emissions generated primarily by anthropogenic sources in urban regions. Data from emissions inventories indicate area sources account for ˜15 of NOx and ˜45% of regional VOC emissions. Area sources include gasoline stations, automotive paint bodyshops and nonroad mobile sources. Multiplicity of air pollution emissions sources provides an opportunity to investigate and potentially implement air quality improvement strategies to reduce emissions which contribute to elevated ozone concentrations. A baseline modeling scenario was established using the CAMx photochemical air quality model from which a series of sensitivity analyses for evaluating air quality control strategies were conducted. Modifications to area source emissions were made by varying NOx and / or VOC emissions in the areas of particular interest. Model performance was assessed for each sensitivity analysis. Normalized bias (NB) and normalized error (NE) were used to identify variability of the PREDICTED to OBSERVED ozone concentrations of both BASELINE model and simulations with modified emissions assessed by the sensitivity analysis. All simulations were found to vary within acceptable ranges of these two criteria variables. Simulation results indicate ozone formation in the PdN region is VOC-limited. Under VOC-limited conditions, modifications to NOx emissions do not produce a marked increase or decrease in ozone concentrations. Modifications to VOC emissions generated the highest variability in ozone concentrations. Increasing VOC emissions by 75% produced results which minimized model bias and error when comparing PREDICTED and OBSERVED ozone concentrations. Increasing VOC emissions by 75% either alone or in combination with a 75% increase in NOx emissions generated PREDICTED ozone concentrations very near to OBSERVED ozone. By evaluating the changes in ambient ozone concentrations through photochemical modeling, air quality planners may identify the most efficient or effective VOC emissions control strategies for area sources. Among the strategies to achieve emissions reductions are installation of gasoline vapor recovery systems, replacing high-pressure low-volume surface coating paint spray guns with high-volume low-pressure spray paint guns, requiring emissions control booths for surface coating operations as well as undertaking solvent management practices, requiring the sale of low VOC paint solvents in the surface-coating industry, and requiring low-VOC solvents in the dry cleaning industry. Other strategies to reduce VOC emissions include initiating Eco-Driving strategies to reduce fuel consumption from mobile sources and minimize vehicle idling at the international ports of entry by reducing bridge wait times. This dissertation depicts a tool for evaluating impacts of emissions on regional air quality by addressing the highly unresolved fugitive emissions in the Paso del Norte region. It provides a protocol for decision makers to assess the effects of various emission control strategies in the region. Impacts of specific source categories such as the international ports of entry, gasoline stations, paint body shops, truck stops, and military installations on the regional air quality can be easily and systematically addressed in a timely manner in the future.

  4. Feedback enhanced plasma spray tool

    DOEpatents

    Gevelber, Michael Alan; Wroblewski, Donald Edward; Fincke, James Russell; Swank, William David; Haggard, Delon C.; Bewley, Randy Lee

    2005-11-22

    An improved automatic feedback control scheme enhances plasma spraying of powdered material through reduction of process variability and providing better ability to engineer coating structure. The present inventors discovered that controlling centroid position of the spatial distribution along with other output parameters, such as particle temperature, particle velocity, and molten mass flux rate, vastly increases control over the sprayed coating structure, including vertical and horizontal cracks, voids, and porosity. It also allows improved control over graded layers or compositionally varying layers of material, reduces variations, including variation in coating thickness, and allows increasing deposition rate. Various measurement and system control schemes are provided.

  5. Control of volume resistivity in inorganic organic separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.

    1979-01-01

    Control of resistivity in NASA inorganic-organic separators is achieved by incorporating small percentages of high surface area, fine particle silica with other ingredients in the separator coating. The volume resistivity is predictable from the surface area of filler particles in the coating. The approach is applied to two polymer- plasticizer -filler coating systems, where the filler content of each is below the generally acknowledged critical pigment volume concentration of the coating. Application of these coating systems to 0.0254 cm thick (10-mil) fuel cell grade asbestos sheet produces inexpensive, flexible, microporous separators that perform as well as the original inorganic-organic concept, the Astropower separator.

  6. Controlled release liquid dosage formulation

    DOEpatents

    Benton, Ben F.; Gardner, David L.

    1989-01-01

    A liquid dual coated dosage formulation sustained release pharmaceutic having substantial shelf life prior to ingestion is disclosed. A dual coating is applied over controlled release cores to form dosage forms and the coatings comprise fats melting at less than approximately 101.degree. F. overcoated with cellulose acetate phthalate or zein. The dual coated dosage forms are dispersed in a sugar based acidic liquid carrier such as high fructose corn syrup and display a shelf life of up to approximately at least 45 days while still retaining their release profiles following ingestion. Cellulose acetate phthalate coated dosage form cores can in addition be dispersed in aqueous liquids of pH <5.

  7. Flight testing of a fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Finney, M. J.; Tregay, G. W.; Calabrese, P. R.

    1993-01-01

    A fiber optic temperature sensor (FOTS) system consisting of an optical probe, a flexible fiber optic cable, and an electro-optic signal processor was fabricated to measure the gas temperature in a turbine engine. The optical probe contained an emissive source embedded in a sapphire lightguide coupled to a fiber-optic jumper cable and was retrofitted into an existing thermocouple probe housing. The flexible fiber optic cable was constructed with 200 micron core, polyimide-coated fiber and was ruggedized for an aircraft environment. The electro-optic signal processing unit was used to ratio the intensities of two wavelength intervals and provided an analog output value of the indicated temperature. Subsequently, this optical sensor system was installed on a NASA Dryden F-15 Highly Integrated Digital Electronic Control (HIDEC) Aircraft Engine and several flight tests were conducted. Over the course of flight testing, the FOTS system's response was proportional to the average of the existing thermocouples sensing the changes in turbine engine thermal conditions.

  8. Controlling the Biodegradation of Magnesium Implants Through Nanostructured Calcium-Phosphate Coating

    NASA Astrophysics Data System (ADS)

    Iskandar, Maria Emil

    Magnesium (Mg) alloys, a novel class of degradable, metallic biomaterials, have attracted growing interest as a promising alternative for medical implant and device applications due to their advantageous mechanical and biological properties. Moreover, Mg is biodegradable in the physiological environments. However, the major obstacle for Mg to be used as medical implants is its rapid degradation in physiological fluids. Therefore, the present key challenge lies in controlling Mg degradation rate in the physiological environment. The objective of this study was to develop a nanostructured-hydroxyapatite (nHA) coating on polished Mg implants to control the degradation and bone tissue integration of the implants. The nHA coatings were deposited on Mg using the Spire's patented TPA process to moderate the aggressive degradation of Mg and to improve quick osteointegration between Mg and natural bone. Nanostructured-HA coatings mimic the nanostructure and chemistry of natural bone, which will provide a desirable environment for bone tissue regeneration. Surface morphology, element compositions, and crystal structures were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and x-ray diffractometry (XRD), respectively. SEM images of the deposited nHA-coating was analyzed using ImageJ's quantitative image analysis tool, to determine the nHA-coating particle size and thickness. The degradation of nHA-coated and non-coated Mg samples was investigated by incubating samples in phosphate buffered saline (PBS) and revised simulated body fluid (r-SBF), under standard cell culture conditions. To mimic the in vivo cell response in the physiological environment, rat bone marrow stromal cells (BMSC) were harvested and cultured with nHA-coated and non-coated polished Mg samples to determine cytocompatibilty. The degradation results suggested that the nanocoatings positively mediated Mg degradation. It can therefore be concluded that nHA-coatings show promise for controlling the biodegradation of Mg-based orthopedic implants and devices. Cell studies indicated significantly improved BMSC adhesion on the surfaces of the nHA-coated and non-coated Mg samples, in comparison to the cells surrounding the Mg samples. These results indicated that the nHA-coated and non-coated Mg samples promote cell activity on the surface. However, cell experiments must be repeated on a larger number of samples with extensive short and long term cell studies, to achieve more verifiable results.

  9. Evaluation of thermal control coatings for use on solar dynamic radiators in low earth orbit

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Rodriguez, Elvin; Slemp, Wayne S.; Stoyack, Joseph E.

    1991-01-01

    Thermal control coatings with high thermal emittance and low solar absorptance are needed for Space Station Freedom (SSF) solar dynamic power module radiator (SDR) surfaces for efficient heat rejection. Additionally, these coatings must be durable to low earth orbital (LEO) environmental effects of atomic oxygen, ultraviolet radiation and deep thermal cycles which occur as a result of start-up and shut-down of the solar dynamic power system. Eleven candidate coatings were characterized for their solar absorptance and emittance before and after exposure to ultraviolet (UV) radiation (200 to 400 nm), vacuum UV (VUV) radiation (100 to 200 nm) and atomic oxygen. Results indicated that the most durable and best performing coatings were white paint thermal control coatings Z-93, zinc oxide pigment in potassium silicate binder, and YB-71, zinc orthotitanate pigment in potassium silicate binder. Optical micrographs of these materials exposed to the individual environmental effects of atomic oxygen and vacuum thermal cycling showed that no surface cracking occurred.

  10. Evaluation of thermal control coatings for use on solar dynamic radiators in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Rodriguez, Elvin; Slemp, Wayne S.; Stoyack, Joseph E.

    1991-01-01

    Thermal control coatings with high thermal emittance and low solar absorptance are needed for Space Station Freedom (SSF) solar dynamic power module radiator (SDR) surfaces for efficient heat rejection. Additionally, these coatings must be durable to low earth orbital (LEO) environmental effects of atomic oxygen, ultraviolet radiation and deep thermal cycles which occur as a result of start-up and shut-down of the solar dynamic power system. Eleven candidate coatings were characterized for their solar absorptance and emittance before and after exposure to ultraviolet (UV) radiation (200 to 400 nm), vacuum UV (VUV) radiation (100 to 200 nm) and atomic oxygen. Results indicated that the most durable and best performing coatings were white paint thermal control coatings Z-93, zinc oxide pigment in potassium silicate binder, and YB-71, zinc orthotitanate pigment in potassium silicate binder. Optical micrographs of these materials exposed to the individual environmental effects of atomic oxygen and vacuum thermal cycling showed that no surface cracking occurred.

  11. 49 CFR 192.479 - Atmospheric corrosion control: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Atmospheric corrosion control: General. 192.479... Control § 192.479 Atmospheric corrosion control: General. (a) Each operator must clean and coat each... this section. (b) Coating material must be suitable for the prevention of atmospheric corrosion. (c...

  12. 49 CFR 192.479 - Atmospheric corrosion control: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Atmospheric corrosion control: General. 192.479... Control § 192.479 Atmospheric corrosion control: General. (a) Each operator must clean and coat each... this section. (b) Coating material must be suitable for the prevention of atmospheric corrosion. (c...

  13. 49 CFR 192.479 - Atmospheric corrosion control: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Atmospheric corrosion control: General. 192.479... Control § 192.479 Atmospheric corrosion control: General. (a) Each operator must clean and coat each... this section. (b) Coating material must be suitable for the prevention of atmospheric corrosion. (c...

  14. 49 CFR 195.557 - Which pipelines must have coating for external corrosion control?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... corrosion control? 195.557 Section 195.557 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.557 Which pipelines must have coating for external corrosion control? Except bottoms of aboveground breakout tanks, each...

  15. 49 CFR 195.557 - Which pipelines must have coating for external corrosion control?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... corrosion control? 195.557 Section 195.557 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.557 Which pipelines must have coating for external corrosion control? Except bottoms of aboveground breakout tanks, each...

  16. 49 CFR 195.557 - Which pipelines must have coating for external corrosion control?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... corrosion control? 195.557 Section 195.557 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.557 Which pipelines must have coating for external corrosion control? Except bottoms of aboveground breakout tanks, each...

  17. 49 CFR 195.557 - Which pipelines must have coating for external corrosion control?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... corrosion control? 195.557 Section 195.557 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.557 Which pipelines must have coating for external corrosion control? Except bottoms of aboveground breakout tanks, each...

  18. 49 CFR 195.557 - Which pipelines must have coating for external corrosion control?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... corrosion control? 195.557 Section 195.557 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.557 Which pipelines must have coating for external corrosion control? Except bottoms of aboveground breakout tanks, each...

  19. ENGINEERING AND ECONOMIC FACTORS AFFECTING THE INSTALLATION OF CONTROL TECHNOLOGIES FOR MULTIPOLLUTANT STRATEGIES

    EPA Science Inventory

    The report evaluates the engineering and economic factors associated with installing air pollution control technologies to meet the requirements of strategies to control sulfur dioxide (SO2), oxides of nitrogen (NOX), and mercury under the Clear Skies Act multipollutant control s...

  20. 40 CFR 63.4751 - How do I demonstrate initial compliance with the emission limitations?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... rate without add-on controls option. (a) Determine the mass fraction of organic HAP for each material. Determine the mass fraction of organic HAP for each coating, thinner, and cleaning material used during each... of coating, i, grams coating per liter coating. Wc,i = Mass fraction of organic HAP in coating, i...

  1. 40 CFR 63.4751 - How do I demonstrate initial compliance with the emission limitations?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... rate without add-on controls option. (a) Determine the mass fraction of organic HAP for each material. Determine the mass fraction of organic HAP for each coating, thinner, and cleaning material used during each... of coating, i, grams coating per liter coating. Wc,i = Mass fraction of organic HAP in coating, i...

  2. Modulating drug release from gastric-floating microcapsules through spray-coating layers.

    PubMed

    Lee, Wei Li; Tan, Jun Wei Melvin; Tan, Chaoyang Nicholas; Loo, Say Chye Joachim

    2014-01-01

    Floating dosage forms with prolonged gastric residence time have garnered much interest in the field of oral delivery. However, studies had shown that slow and incomplete release of hydrophobic drugs during gastric residence period would reduce drug absorption and cause drug wastage. Herein, a spray-coated floating microcapsule system was developed to encapsulate fenofibrate and piroxicam, as model hydrophobic drugs, into the coating layers with the aim of enhancing and tuning drug release rates. Incorporating fenofibrate into rubbery poly(caprolactone) (PCL) coating layer resulted in a complete and sustained release for up to 8 h, with outermost non-drug-holding PCL coating layer serving as a rate-controlling membrane. To realize a multidrug-loaded system, both hydrophilic metformin HCl and hydrophobic fenofibrate were simultaneously incorporated into these spray-coated microcapsules, with metformin HCl and fenofibrate localized within the hollow cavity of the capsule and coating layer, respectively. Both drugs were observed to be completely released from these coated microcapsules in a sustained manner. Through specific tailoring of coating polymers and their configurations, piroxicam loaded in both the outer polyethylene glycol and inner PCL coating layers was released in a double-profile manner (i.e. an immediate burst release as the loading dose, followed by a sustained release as the maintenance dose). The fabricated microcapsules exhibited excellent buoyancy in simulated gastric fluid, and provided controlled and sustained release, thus revealing its potential as a rate-controlled oral drug delivery system.

  3. Biofilm Inhibition by Novel Natural Product- and Biocide-Containing Coatings Using High-Throughput Screening.

    PubMed

    Salta, Maria; Dennington, Simon P; Wharton, Julian A

    2018-05-10

    The use of natural products (NPs) as possible alternative biocidal compounds for use in antifouling coatings has been the focus of research over the past decades. Despite the importance of this field, the efficacy of a given NP against biofilm (mainly bacteria and diatoms) formation is tested with the NP being in solution, while almost no studies test the effect of an NP once incorporated into a coating system. The development of a novel bioassay to assess the activity of NP-containing and biocide-containing coatings against marine biofilm formation has been achieved using a high-throughput microplate reader and highly sensitive confocal laser scanning microscopy (CLSM), as well as nucleic acid staining. Juglone, an isolated NP that has previously shown efficacy against bacterial attachment, was incorporated into a simple coating matrix. Biofilm formation over 48 h was assessed and compared against coatings containing the NP and the commonly used booster biocide, cuprous oxide. Leaching of the NP from the coating was quantified at two time points, 24 h and 48 h, showing evidence of both juglone and cuprous oxide being released. Results from the microplate reader showed that the NP coatings exhibited antifouling efficacy, significantly inhibiting biofilm formation when compared to the control coatings, while NP coatings and the cuprous oxide coatings performed equally well. CLSM results and COMSTAT analysis on biofilm 3D morphology showed comparable results when the NP coatings were tested against the controls, with higher biofilm biovolume and maximum thickness being found on the controls. This new method proved to be repeatable and insightful and we believe it is applicable in antifouling and other numerous applications where interactions between biofilm formation and surfaces is of interest.

  4. Effects of orthopedic implants with a polycaprolactone polymer coating containing bone morphogenetic protein-2 on osseointegration in bones of sheep.

    PubMed

    Niehaus, Andrew J; Anderson, David E; Samii, Valerie F; Weisbrode, Steven E; Johnson, Jed K; Noon, Mike S; Tomasko, David L; Lannutti, John J

    2009-11-01

    To determine elution characteristics of bone morphogenetic protein (BMP)-2 from a polycaprolactone coating applied to orthopedic implants and determine effects of this coating on osseointegration. 6 sheep. An in vitro study was conducted to determine BMP-2 elution from polycaprolactone-coated implants. An in vivo study was conducted to determine the effects on osseointegration when the polycaprolactone with BMP-2 coating was applied to bone screws. Osseointegration was assessed via radiography, measurement of peak removal torque and bone mineral density, and histomorphometric analysis. Physiologic response was assessed by measuring serum bone-specific alkaline phosphatase activity and uptake of bone markers. Mean +/- SD elution on day 1 of the in vitro study was 263 +/- 152 pg/d, which then maintained a plateau at 59.8 +/- 29.1 pg/d. Mean peak removal torque for screws coated with polycalprolactone and BMP-2 (0.91 +/- 0.65 dN x m) and screws coated with polycaprolactone alone (0.97 +/- 1.30 dN.m) did not differ significantly from that for the control screws (2.34 +/- 1.62 dN x m). Mean bone mineral densities were 0.535 +/- 0.060 g/cm(2), 0.596 +/- 0.093 g/cm(2), and 0.524 +/- 0.142 g/cm(2) for the polycaprolactone-BMP-2-coated, polycaprolactone-coated, and control screws, respectively, and did not differ significantly among groups. Histologically, bone was in closer apposition to the implant with the control screws than with either of the coated screws. BMP-2 within the polycaprolactone coating did not stimulate osteogenesis. The polycaprolactone coating appeared to cause a barrier effect that prevented formation of new bone. A longer period or use of another carrier polymer may result in increased osseointegration.

  5. Graphene-coated meshes for electroactive flow control devices utilizing two antagonistic functions of repellency and permeability

    PubMed Central

    Tabassian, Rassoul; Oh, Jung-Hwan; Kim, Sooyeun; Kim, Donggyu; Ryu, Seunghwa; Cho, Seung-Min; Koratkar, Nikhil; Oh, Il-Kwon

    2016-01-01

    The wettability of graphene on various substrates has been intensively investigated for practical applications including surgical and medical tools, textiles, water harvesting, self-cleaning, oil spill removal and microfluidic devices. However, most previous studies have been limited to investigating the intrinsic and passive wettability of graphene and graphene hybrid composites. Here, we report the electrowetting of graphene-coated metal meshes for use as electroactive flow control devices, utilizing two antagonistic functions, hydrophobic repellency versus liquid permeability. Graphene coating was able to prevent the thermal oxidation and corrosion problems that plague unprotected metal meshes, while also maintaining its hydrophobicity. The shapes of liquid droplets and the degree of water penetration through the graphene-coated meshes were controlled by electrical stimuli based on the functional control of hydrophobic repellency and liquid permeability. Furthermore, using the graphene-coated metal meshes, we developed two active flow devices demonstrating the dynamic locomotion of water droplets and electroactive flow switching. PMID:27796291

  6. Graphene-coated meshes for electroactive flow control devices utilizing two antagonistic functions of repellency and permeability.

    PubMed

    Tabassian, Rassoul; Oh, Jung-Hwan; Kim, Sooyeun; Kim, Donggyu; Ryu, Seunghwa; Cho, Seung-Min; Koratkar, Nikhil; Oh, Il-Kwon

    2016-10-31

    The wettability of graphene on various substrates has been intensively investigated for practical applications including surgical and medical tools, textiles, water harvesting, self-cleaning, oil spill removal and microfluidic devices. However, most previous studies have been limited to investigating the intrinsic and passive wettability of graphene and graphene hybrid composites. Here, we report the electrowetting of graphene-coated metal meshes for use as electroactive flow control devices, utilizing two antagonistic functions, hydrophobic repellency versus liquid permeability. Graphene coating was able to prevent the thermal oxidation and corrosion problems that plague unprotected metal meshes, while also maintaining its hydrophobicity. The shapes of liquid droplets and the degree of water penetration through the graphene-coated meshes were controlled by electrical stimuli based on the functional control of hydrophobic repellency and liquid permeability. Furthermore, using the graphene-coated metal meshes, we developed two active flow devices demonstrating the dynamic locomotion of water droplets and electroactive flow switching.

  7. Surface protection coating material for controlling the decay of major construction stone

    NASA Astrophysics Data System (ADS)

    Arun, T.; Ray, D. K.; Gupta, V. P.; Panda, S. S.; Sahoo, P. K.; Ghosh, Jaydip; Sengupta, Pranesh; Satyam, P. V.

    2017-05-01

    Degradation of the building stones are creating instability in the old building and monuments which is to be protected. To investigate the characteristics of such a stones used for the construction in eastern India, we have collected the khondalite stones. The microstructural and elemental composition analysis of the khondalite stones are analyzed by using SEM, EDX and PIXE trace elemental analysis. We have prepared surface protection coating material with graphene oxide and cobalt ferrite as a base material along with other residuals. The prepared coating materials is coated on the galvanized iron substrate for further characterization. The surface morphology characteristics of the coating material is analyzed by SEM and AFM. The corrosion resistance characteristics of the prepared coating material is studied by the electrochemical impedance spectroscopy. The results suggests that the prepared coating material can be used as a surface protection materials to control the self-destruction of khondalite stones.

  8. Corrosion Control in the Aerospace Industry

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Li, Wenyan; Buhrow, Jerry W.; Johnsey, Marissa N.

    2016-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. It is essential to detect corrosion when it occurs, and preferably at its early stage, so that action can be taken to avoid structural damage or loss of function. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it..

  9. Effects of chitosan edible coating containing grape seed extract on the shelf-life of refrigerated rainbow trout fillet

    PubMed Central

    Hassanzadeh, Parviz; Moradi, Mehran; Vaezi, Nasim; Moosavy, Mir-Hassan; Mahmoudi, Razzagh

    2018-01-01

    In recent years, use of edible coatings as carriers of food additives and antimicrobial compounds has been considered in fishery products. This study was carried out to evaluate the effects of 2.00% chitosan coating singly and combined with 0.10% grape seed extract (GSE) on microbial (mesophils and psychrophils counts), chemical (thiobarbituric acid; TBA), pH and peroxide value (PV) and sensorial properties of rainbow trout fillet stored at 4 °C over a period of 15 days. The coating had a significant effect in reducing aerobic mesophilic and psychrophilic bacteria counts. The TBA, PV and pH of samples of chitosan coating alone and with GSE were lower than control ones indicating a significant influence of coating on fillet shelf-life. Moreover, chitosan coating represented an equal sensorial quality with controls. It can be concluded that chitosan coating containing GSE can help to maintain the sensorial quality and increase the shelf-life of rainbow trout fillets at refrigerated conditions. PMID:29719667

  10. Growth of calcium phosphates on magnesium substrates for corrosion control in biomedical applications via immersion techniques.

    PubMed

    Shadanbaz, Shaylin; Walker, Jemimah; Staiger, Mark P; Dias, George J; Pietak, Alexis

    2013-01-01

    Magnesium (Mg) has been suggested as a revolutionary biodegradable replacement for current permanent metals used in orthopedic applications. Current investigations concentrate on the control of the corrosion rate to match bone healing. Calcium phosphate coatings have been a recent focus of these investigations through various coating protocols. Within this investigation, an in situ crystallization technique was utilized as an inexpensive and relatively simple method to produce a brushite and monetite coating on pure Mg. Coatings were characterized using energy dispersive spectroscopy, glancing angle X-ray diffraction and field emission scanning electron microscopy. Corrosion protection properties of the coatings were assessed in physiological buffers, Earles balanced salt solution, minimum essential media, and minimum essential media containing serum albumin, over a 4-week period. Using this novel coating protocol, our findings indicate brushite and monetite coated Mg to have significant corrosive protective effects when compared with its uncoated counterpart whilst maintaining high coating substrate adhesion, homogeneity, and reproducibility. Copyright © 2012 Wiley Periodicals, Inc.

  11. Antireflective coatings with adjustable refractive index and porosity synthesized by micelle-templated deposition of MgF2 sol particles.

    PubMed

    Bernsmeier, Denis; Polte, Jörg; Ortel, Erik; Krahl, Thoralf; Kemnitz, Erhard; Kraehnert, Ralph

    2014-11-26

    Minimizing efficiency losses caused by unwanted light reflection at the interface between lenses, optical instruments and solar cells with the surrounding medium requires antireflective coatings with adequate refractive index and coating thickness. We describe a new type of antireflective coating material with easily and independently tailorable refractive index and coating thickness based on the deposition of colloidal MgF2 nanoparticles. The material synthesis employs micelles of amphiphilic block copolymers as structure directing agent to introduce controlled mesoporosity into MgF2 film. The coatings thickness can be easily adjusted by the applied coating conditions. The coatings refractive index is determined by the materials porosity, which is controlled by the amount of employed pore template. The refractive index can be precisely tuned between 1.23 and 1.11, i.e., in a range that is not accessible to nonporous inorganic materials. Hence, zero reflectance conditions can be established for a wide range of substrate materials.

  12. Poly(dimethylsiloxane) coatings for controlled drug release--polymer modifications.

    PubMed

    Schulze Nahrup, J; Gao, Z M; Mark, J E; Sakr, A

    2004-02-11

    Modifications of endhydroxylated poly(dimethylsiloxane) (PDMS) formulations were studied for their ability to be applied onto tablet cores in a spray-coating process and to control drug release in zero-order fashion. Modifications of the crosslinker from the most commonly used tetraethylorthosilicate (TEOS) to the trifunctional 3-(2,3-epoxypropoxy)propyltrimethoxysilane (SIG) and a 1:1 mixture of the two were undertaken. Addition of methylpolysiloxane-copolymers were studied. Lactose, microcrystalline cellulose (MCC) and polyethylene glycol 8000 (PEG) were the channeling agents applied. The effects on dispersion properties were characterized by particle size distribution and viscosity. Mechanical properties of resulting free films were studied to determine applicability in a pan-coating process. Release of hydrochlorothiazide (marker drug) was studied from tablets coated in a lab-size conventional coating pan. All dispersions were found suitable for a spray-coating process. Preparation of free films showed that copolymer addition was not possible due to great decline in mechanical properties. Tablets coated with formulations containing PEG were most suitable to control drug release, at only 5% coating weight. Constant release rates could be achieved for formulations with up to 25% PEG; higher amounts resulted in a non-linear release pattern. Upon adding 50% PEG, a drug release of 63% over 24 h could be achieved.

  13. Controlled electrophoretic deposition of HAp/β-TCP composite coatings on piranha treated 316L SS for enhanced mechanical and biological properties

    NASA Astrophysics Data System (ADS)

    Prem Ananth, K.; Nathanael, A. Joseph; Jose, Sujin P.; Oh, Tae Hwan; Mangalaraj, D.; Ballamurugan, A. M.

    2015-10-01

    Hydroxyapatite (HAp) and β-tricalcium phosphate (β-TCP) bioactive materials have been used as individual coatings on steel implants employed in the fields of orthopedics and dentistry due to their excellent properties, which foster effective healing of the repair site. However, slow dissolution of HAp and fairly little fast dissolution of β-TCP present a major obstacle for such applications and this leads to the focus on the investigation of a mixture of HAp and β-TCP composite that forms biphasic calcium phosphate (BCP). The BCP coatings were achieved by thickness controlled electrophoretic deposition on piranha treated 316L SS. This method is well controlled and the anticipated dissolution rate could be attained with faster formation of new bone at the implant site, when compared to the individual HAp or β-TCP coating. The structural, functional, morphological and elemental composition of the coatings were characterized by using various analytical techniques. The BCP coating has been shown to have a role in obstructing the corrosion to a greater extent when in contact with SBF solution. The BCP coating also shows excellent in vitro and mechanical properties and osteoblasts cellular tests revealed that the coating was more effective in improving biocompatibility. This makes it an ideal candidate material for hard tissue replacement.

  14. Femtosecond laser-inscribed fiber Bragg gratings for strain monitoring in power cables of offshore wind turbines.

    PubMed

    Burgmeier, Jörg; Schippers, Wolfgang; Emde, Nico; Funken, Peter; Schade, Wolfgang

    2011-05-01

    A fiber Bragg grating sensor system used for monitoring the effects of strain on the power cable of an offshore wind turbine is presented. The Bragg grating structure was inscribed into coated nonphotosensitive standard telecommunication fibers using an IR femtosecond laser and the point-by-point writing technique. Because of the presence of the protective coating of the fiber, the mechanical stability of the resultant sensor device is better than that of a sensor consisting of a bare fiber. A system containing this sensing element was to our knowledge for the first time successfully installed and tested in an offshore wind turbine prototype (REpower 6M, REpower Systems, AG, Germany) in February 2010, near Ellhöft (Germany). The fabrication process of the fiber Bragg gratings, measurement results of the online monitoring, and a comparison between the sensor signal and commonly used sensing techniques are presented.

  15. 40 CFR 63.6625 - What are my monitoring, installation, collection, operation, and maintenance requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CEMS must be installed at both the inlet and outlet of the control device. If you are meeting a requirement to limit the concentration of CO, the CEMS must be installed at the outlet of the control device... appropriate for the applicable limitation) at 15 percent oxygen or the equivalent CO2 concentration. (b) If...

  16. Antireflective graded index silica coating, method for making

    DOEpatents

    Yoldas, Bulent E.; Partlow, Deborah P.

    1985-01-01

    Antireflective silica coating for vitreous material is substantially non-reflecting over a wide band of radiations. This is achieved by providing the coating with a graded degree of porosity which grades the index of refraction between that of air and the vitreous material of the substrate. To prepare the coating, there is first prepared a silicon-alkoxide-based coating solution of particular polymer structure produced by a controlled proportion of water to alkoxide and a controlled concentration of alkoxide to solution, along with a small amount of catalyst. The primary solvent is alcohol and the solution is polymerized and hydrolized under controlled conditions prior to use. The prepared solution is applied as a film to the vitreous substrate and rapidly dried. It is thereafter heated under controlled conditions to volatilize the hydroxyl radicals and organics therefrom and then to produce a suitable pore morphology in the residual porous silica layer. The silica layer is then etched in order to enlarge the pores in a graded fashion, with the largest of the pores remaining being sufficiently small that radiations to be passed through the substrate are not significantly scattered. For use with quartz substrates, extremely durable coatings which display only 0.1% reflectivity have been prepared.

  17. Biofunctional composite coating architectures based on polycaprolactone and nanohydroxyapatite for controlled corrosion activity and enhanced biocompatibility of magnesium AZ31 alloy.

    PubMed

    Zomorodian, A; Garcia, M P; Moura E Silva, T; Fernandes, J C S; Fernandes, M H; Montemor, M F

    2015-03-01

    In this work a biofunctional composite coating architecture for controlled corrosion activity and enhanced cellular adhesion of AZ31 Mg alloys is proposed. The composite coating consists of a polycaprolactone (PCL) matrix modified with nanohydroxyapatite (HA) applied over a nanometric layer of polyetherimide (PEI). The protective properties of the coating were studied by electrochemical impedance spectroscopy (EIS), a non-disturbing technique, and the coating morphology was investigated by field emission scanning electron microscopy (FE-SEM). The results show that the composite coating protects the AZ31 substrate. The barrier properties of the coating can be optimized by changing the PCL concentration. The presence of nanohydroxyapatite particles influences the coating morphology and decreases the corrosion resistance. The biocompatibility was assessed by studying the response of osteoblastic cells on coated samples through resazurin assay, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The results show that the polycaprolactone to hydroxyapatite ratio affects the cell behavior and that the presence of hydroxyapatite induces high osteoblastic differentiation. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Beam tests of beampipe coatings for electron cloud mitigation in Fermilab Main Injector

    DOE PAGES

    Backfish, Michael; Eldred, Jeffrey; Tan, Cheng Yang; ...

    2015-10-26

    Electron cloud beam instabilities are an important consideration in virtually all high-energy particle accelerators and could pose a formidable challenge to forthcoming high-intensity accelerator upgrades. Dedicated tests have shown beampipe coatings dramatically reduce the density of electron cloud in particle accelerators. In this work, we evaluate the performance of titanium nitride, amorphous carbon, and diamond-like carbon as beampipe coatings for the mitigation of electron cloud in the Fermilab Main Injector. Altogether our tests represent 2700 ampere-hours of proton operation spanning five years. Three electron cloud detectors, retarding field analyzers, are installed in a straight section and allow a direct comparisonmore » between the electron flux in the coated and uncoated stainless steel beampipe. We characterize the electron flux as a function of intensity up to a maximum of 50 trillion protons per cycle. Each beampipe material conditions in response to electron bombardment from the electron cloud and we track the changes in these materials as a function of time and the number of absorbed electrons. Contamination from an unexpected vacuum leak revealed a potential vulnerability in the amorphous carbon beampipe coating. We measure the energy spectrum of electrons incident on the stainless steel, titanium nitride and amorphous carbon beampipes. We find the electron cloud signal is highly sensitive to stray magnetic fields and bunch-length over the Main Injector ramp cycle. In conclusion, we conduct a complete survey of the stray magnetic fields at the test station and compare the electron cloud signal to that in a field-free region.« less

  19. Precision Optical Coatings for Large Space Telescope Mirrors

    NASA Astrophysics Data System (ADS)

    Sheikh, David

    This proposal “Precision Optical Coatings for Large Space Telescope Mirrors” addresses the need to develop and advance the state-of-the-art in optical coating technology. NASA is considering large monolithic mirrors 1 to 8-meters in diameter for future telescopes such as HabEx and LUVOIR. Improved large area coating processes are needed to meet the future requirements of large astronomical mirrors. In this project, we will demonstrate a broadband reflective coating process for achieving high reflectivity from 90-nm to 2500-nm over a 2.3-meter diameter coating area. The coating process is scalable to larger mirrors, 6+ meters in diameter. We will use a battery-driven coating process to make an aluminum reflector, and a motion-controlled coating technology for depositing protective layers. We will advance the state-of-the-art for coating technology and manufacturing infrastructure, to meet the reflectance and wavefront requirements of both HabEx and LUVOIR. Specifically, we will combine the broadband reflective coating designs and processes developed at GSFC and JPL with large area manufacturing technologies developed at ZeCoat Corporation. Our primary objectives are to: Demonstrate an aluminum coating process to create uniform coatings over large areas with near-theoretical aluminum reflectance Demonstrate a motion-controlled coating process to apply very precise 2-nm to 5- nm thick protective/interference layers to large areas, Demonstrate a broadband coating system (90-nm to 2500-nm) over a 2.3-meter coating area and test it against the current coating specifications for LUVOIR/HabEx. We will perform simulated space-environment testing, and we expect to advance the TRL from 3 to >5 in 3-years.

  20. 77 FR 64787 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; Reasonably Available...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-23

    ... and plastic parts coatings; large appliance coatings; offset lithographic printing and letterpress... local air pollution control authorities information that should assist them in determining RACT for VOC... plastic parts coatings; (4) large appliance coatings; (5) offset lithographic printing and letterpress...

  1. In-Line Monitoring of a Pharmaceutical Pan Coating Process by Optical Coherence Tomography.

    PubMed

    Markl, Daniel; Hannesschläger, Günther; Sacher, Stephan; Leitner, Michael; Buchsbaum, Andreas; Pescod, Russel; Baele, Thomas; Khinast, Johannes G

    2015-08-01

    This work demonstrates a new in-line measurement technique for monitoring the coating growth of randomly moving tablets in a pan coating process. In-line quality control is performed by an optical coherence tomography (OCT) sensor allowing nondestructive and contact-free acquisition of cross-section images of film coatings in real time. The coating thickness can be determined directly from these OCT images and no chemometric calibration models are required for quantification. Coating thickness measurements are extracted from the images by a fully automated algorithm. Results of the in-line measurements are validated using off-line OCT images, thickness calculations from tablet dimension measurements, and weight gain measurements. Validation measurements are performed on sample tablets periodically removed from the process during production. Reproducibility of the results is demonstrated by three batches produced under the same process conditions. OCT enables a multiple direct measurement of the coating thickness on individual tablets rather than providing the average coating thickness of a large number of tablets. This gives substantially more information about the coating quality, that is, intra- and intertablet coating variability, than standard quality control methods. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  2. 14 CFR 29.1353 - Electrical equipment and installations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Equipment § 29.1353 Electrical equipment and installations. (a) Electrical equipment, controls, and wiring... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Electrical equipment and installations. 29... installations has shown that maintaining safe cell temperatures and pressures presents no problem. (3) No...

  3. Porcelain enamel passive thermal control coatings

    NASA Technical Reports Server (NTRS)

    Leggett, H.; King, H. M.

    1978-01-01

    This paper discusses the development and evaluation of a highly adherent, low solar absorptance, porcelain enamel thermal control coating applied to 6061 and 1100 aluminum for space vehicle use. The coating consists of a low index of refraction, transparent host frit and a high volume fraction of titania as rutile, crystallized in-situ, as the scattering medium. Solar absorptance is 0.21 at a coating thickness of 0.013 cm. Hemispherical emittance is 0.88. The change in solar absorptance is 0.03, as measured in-situ, after an exposure of 1000 equivalent sun hours in vacuum.

  4. Multifunctional biocompatible coatings on magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Bychkova, A. V.; Sorokina, O. N.; Rosenfeld, M. A.; Kovarski, A. L.

    2012-11-01

    Methods for coating formation on magnetic nanoparticles used in biology and medicine are considered. Key requirements to the coatings are formulated, namely, biocompatibility, stability, the possibility of attachment of pharmaceutical agents, and the absence of toxicity. The behaviour of nanoparticle/coating nanosystems in the body including penetration through cellular membranes and the excretion rates and routes is analyzed. Parameters characterizing the magnetic properties of these systems and their magnetic controllability are described. Factors limiting the applications of magnetically controlled nanosystems for targeted drug delivery are discussed. The bibliography includes 405 references.

  5. Enhancement of osteogenesis and biodegradation control by brushite coating on Mg-Nd-Zn-Zr alloy for mandibular bone repair.

    PubMed

    Guan, Xingmin; Xiong, Meiping; Zeng, Feiyue; Xu, Bin; Yang, Lingdi; Guo, Han; Niu, Jialin; Zhang, Jian; Chen, Chenxin; Pei, Jia; Huang, Hua; Yuan, Guangyin

    2014-12-10

    To diminish incongruity between bone regeneration and biodegradation of implant magnesium alloy applied for mandibular bone repair, a brushite coating was deposited on a matrix of a Mg-Nd-Zn-Zr (hereafter, denoted as JDBM) alloy to control the degradation rate of the implant and enhance osteogenesis of the mandible bone. Both in vitro and in vivo evaluations were carried out in the present work. Viability and adhesion assays of rabbit bone marrow mesenchyal stem cells (rBM-MSCs) were applied to determine the biocompatibility of a brushite-coated JDBM alloy. Osteogenic gene expression was characterized by quantitative real-time polymerase chain reaction (RT-PCR). Brushite-coated JDBM screws were implanted into mandible bones of rabbits for 1, 4, and 7 months, respectively, using 316L stainless steel screws as a control group. In vivo biodegradation rate was determined by synchrotron radiation X-ray microtomography, and osteogenesis was observed and evaluated using Van Gieson's picric acid-fuchsin. Both the naked JDBM and brushite-coated JDBM samples revealed adequate biosafety and biocompatibility as bone repair substitutes. In vitro results showed that brushite-coated JDBM considerably induced osteogenic differentiation of rBM-MSCs. And in vivo experiments indicated that brushite-coated JDBM screws presented advantages in osteoconductivity and osteogenesis of mandible bone of rabbits. Degradation rate was suppressed at a lower level at the initial stage of implantation when new bone tissue formed. Brushite, which can enhance oeteogenesis and partly control the degradation rate of an implant, is an appropriate coating for JDBM alloys used for mandibular repair. The Mg-Nd-Zn-Zr alloy with brushite coating possesses great potential for clinical applications for mandibular repair.

  6. Flaxseed gum in combination with lemongrass essential oil as an effective edible coating for ready-to-eat pomegranate arils.

    PubMed

    Yousuf, Basharat; Srivastava, Abhaya Kumar

    2017-11-01

    Flaxseed gum (FSG) in combination with lemongrass essential oil (LGEO) was investigated for coating of ready-to-eat pomegranate arils. FSG was used at 0.3% and 0.6% concentrations and with both concentrations LGEO was incorporated at levels of 0ppm, 200ppm, 500ppm and 800ppm. Changes in headspace gases, physicochemical, microbiological and sensory attributes of pomegranate arils stored at 5°C were studied on different days of analysis during the 12day storage period. Coatings containing LGEO were effective in reducing total plate count and yeast and mold populations. Increasing LGEO concentrations in the coatings resulted in more decline in microbial populations. Reduced weight loss occurred in coated samples as compared to uncoated (control) sample. Coated samples showed a gradual decrease in ripening index in contrast with control where a significantly higher decline was observed. Total soluble solids, pH and titratable acidity significantly varied over the storage period. Color change (ΔE) for control increased steeply over the storage time in comparison to coated samples. Furthermore, chroma decreased while as hue angle increased over time. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Analysis of coating structures and interfaces in solid oral dosage forms by three dimensional terahertz pulsed imaging.

    PubMed

    Zeitler, J Axel; Shen, Yaochun; Baker, Colin; Taday, Philip F; Pepper, Michael; Rades, Thomas

    2007-02-01

    Three dimensional terahertz pulsed imaging (TPI) was evaluated as a novel tool for the nondestructive characterization of different solid oral dosage forms. The time-domain reflection signal of coherent pulsed light in the far infrared was used to investigate film-coated tablets, sugar-coated tablets, multilayered controlled release tablets, and soft gelatin capsules. It is possible to determine the spatial and statistical distribution of coating thickness in single and multiple coated products using 3D TPI. The measurements are nondestructive even for layers buried underneath other coating structures. The internal structure of coating materials can be analyzed. As the terahertz signal penetrates up to 3 mm into the dosage form interfaces between layers in multilayered tablets can be investigated. In soft gelatin capsules it is possible to measure the thickness of the gelatin layer and to characterize the seal between the gelatin layers for quality control. TPI is a unique approach for the nondestructive characterization and quality control of solid dosage forms. The measurements are fast and fully automated with the potential for much wider application of the technique in the process analytical technology scheme. Copyright (c) 2006 Wiley-Liss, Inc.

  8. Use of hydrophilic polymer coatings for control of electroosmosis and protein adsorption

    NASA Technical Reports Server (NTRS)

    Harris, J. Milton

    1987-01-01

    The purpose of this project was to examine the utility of polyethylene glycol (PEG) and dextran coatings for control of electroosmosis and protein adsorption; electroosmosis is an important, deleterious process affecting electrophoretic separations, and protein adsorption is a factor which needs to be controlled during protein crystal growth to avoid multiple nucleation sites. Performance of the project required use of X-ray photoelectron spectroscopy to refine previously developed synthetic methods. The results of this spectroscopic examination are reported. Measurements of electroosmotic mobility of charged particles in appropriately coated capillaries reveals that a new, one-step route to coating capillaries gives a surface in which electroosmosis is dramatically reduced. Similarly, both PEG and dextran coatings were shown by protein adsorption measurements to be highly effective at reducing protein adsorption on solid surfaces. These results should have impact on future low-g electrophoretic and protein crystal growth experiments.

  9. NASA PS304 Lubricant Tested in World's First Commercial Oil-Free Gas Turbine

    NASA Technical Reports Server (NTRS)

    Weaver, Harold F.

    2003-01-01

    In a marriage of research and commercial technology, a 30-kW Oil-Free Capstone microturbine electrical generator unit has been installed and is serving as a test bed for long-term life-cycle testing of NASA-developed PS304 shaft coatings. The coatings are used to reduce friction and wear of the turbine engine s foil air bearings during startup and shut down when sliding occurs, prior to the formation of a lubricating air film. This testing supports NASA Glenn Research Center s effort to develop Oil-Free gas turbine aircraft propulsion systems, which will employ advanced foil air bearings and NASA s PS304 high temperature solid lubricant to replace the ball bearings and lubricating oil found in conventional engines. Glenn s Oil-Free Turbomachinery team s current project is the demonstration of an Oil-Free business jet engine. In anticipation of future flight certification of Oil-Free aircraft engines, long-term endurance and durability tests are being conducted in a relevant gas turbine environment using the Capstone microturbine engine. By operating the engine now, valuable performance data for PS304 shaft coatings and for industry s foil air bearings are being accumulated.

  10. Sensor for performance monitoring of advanced gas turbines

    NASA Astrophysics Data System (ADS)

    Latvakoski, Harri M.; Markham, James R.; Harrington, James A.; Haan, David J.

    1999-01-01

    Advanced thermal coating materials are being developed for use in the combustor section of high performance turbine engines to allow for higher combustion temperatures. To optimize the use of these thermal barrier coatings (TBC), accurate surface temperature measurements are required to understand their response to changes in the combustion environment. Present temperature sensors, which are based on the measurement of emitted radiation, are not well studied for coated turbine blades since their operational wavelengths are not optimized for the radiative properties of the TBC. This work is concerned with developing an instrument to provide accurate, real-time measurements of the temperature of TBC blades in an advanced turbine engine. The instrument will determine the temperature form a measurement of the radiation emitted at the optimum wavelength, where the TBC radiates as a near-blackbody. The operational wavelength minimizes interference from the high temperature and pressure environment. A hollow waveguide is used to transfer the radiation from the engine cavity to a high-speed detector and data acquisition system. A prototype of this system was successfully tested at an atmospheric burner test facility, and an on-engine version is undergoing testing for installation on a high-pressure rig.

  11. 30 CFR 75.1101-7 - Installation of water sprinkler systems; requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection § 75.1101-7 Installation of water sprinkler systems; requirements. (a) The fire-control components of each water sprinkler system shall be installed, as far as practicable in accordance with the... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Installation of water sprinkler systems...

  12. 30 CFR 75.1101-7 - Installation of water sprinkler systems; requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection § 75.1101-7 Installation of water sprinkler systems; requirements. (a) The fire-control components of each water sprinkler system shall be installed, as far as practicable in accordance with the... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Installation of water sprinkler systems...

  13. 30 CFR 75.1101-7 - Installation of water sprinkler systems; requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Protection § 75.1101-7 Installation of water sprinkler systems; requirements. (a) The fire-control components of each water sprinkler system shall be installed, as far as practicable in accordance with the... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Installation of water sprinkler systems...

  14. 30 CFR 75.1101-7 - Installation of water sprinkler systems; requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Protection § 75.1101-7 Installation of water sprinkler systems; requirements. (a) The fire-control components of each water sprinkler system shall be installed, as far as practicable in accordance with the... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Installation of water sprinkler systems...

  15. 47 CFR 80.1083 - Ship radio installations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Ship radio installations. 80.1083 Section 80... for Ship Stations § 80.1083 Ship radio installations. (a) Ships must be provided with radio... controls for operating the radio installation; and (5) Be clearly marked with the call sign, the ship...

  16. 30 CFR 75.1101-7 - Installation of water sprinkler systems; requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Installation of water sprinkler systems... Protection § 75.1101-7 Installation of water sprinkler systems; requirements. (a) The fire-control components of each water sprinkler system shall be installed, as far as practicable in accordance with the...

  17. Sol-gel derived bioactive coating on zirconia: Effect on flexural strength and cell proliferation.

    PubMed

    Shahramian, Khalil; Leminen, Heidi; Meretoja, Ville; Linderbäck, Paula; Kangasniemi, Ilkka; Lassila, Lippo; Abdulmajeed, Aous; Närhi, Timo

    2017-11-01

    The purpose of this study was to evaluate the effect of sol-gel derived bioactive coatings on the biaxial flexural strength and fibroblast proliferation of zirconia, aimed to be used as an implant abutment material. Yttrium stabilized zirconia disc-shaped specimens were cut, ground, sintered, and finally cleansed ultrasonically in each of acetone and ethanol for 5 minutes. Three experimental groups (n = 15) were fabricated, zirconia with sol-gel derived titania (TiO 2 ) coating, zirconia with sol-gel derived zirconia (ZrO 2 ) coating, and non-coated zirconia as a control. The surfaces of the specimens were analyzed through images taken using a scanning electron microscope (SEM), and a non-contact tapping mode atomic force microscope (AFM) was used to record the surface topography and roughness of the coated specimens. Biaxial flexural strength values were determined using the piston-on-three ball technique. Human gingival fibroblast proliferation on the surface of the specimens was evaluated using AlamarBlue assay™. Data were analyzed using a one-way analysis of variance (ANOVA) followed by Tukey's post-hoc test. Additionally, the biaxial flexural strength data was also statistically analyzed with the Weibull distribution. The biaxial flexural strength of zirconia specimens was unaffected (p > 0.05). Weibull modulus of TiO 2 coated and ZrO 2 coated groups (5.7 and 5.4, respectively) were lower than the control (8.0). Specimens coated with ZrO 2 showed significantly lower fibroblast proliferation compared to other groups (p < 0.05). In conclusion, sol-gel derived coatings have no influence on the flexural strength of zirconia. ZrO 2 coated specimens showed significantly lower cell proliferation after 12 days than TiO 2 coated or non-coated control. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2401-2407, 2017. © 2016 Wiley Periodicals, Inc.

  18. Quality control of fireproof coatings for reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Gravit, Marina; Dmitriev, Ivan; Ishkov, Alexander

    2017-10-01

    The article analyzes methods of quality inspection of fireproof coatings (work flow, measuring, laboratory, etc.). In modern construction there is a problem of lack of distinct monitoring for the fire protection testing. There is a description of this testing for reinforced concrete structures. The article shows the results of calculation quality control of hatches as an example of fireproof coating for reinforced concrete structures.

  19. 14 CFR Appendix I to Part 25 - Installation of an Automatic Takeoff Thrust Control System (ATTCS)

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) This appendix specifies additional requirements for installation of an engine power control system that... crew to increase thrust or power. I25.2Definitions. (a) Automatic Takeoff Thrust Control System (ATTCS... mechanical and electrical, that sense engine failure, transmit signals, actuate fuel controls or power levers...

  20. The performance of thermal control coatings on LDEF and implications to future spacecraft

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Miller, Edgar R.; Mell, Richard J.; Lemaster, Paul S.; Zwiener, James M.

    1993-01-01

    The stability of thermal control coatings over the lifetime of a satellite or space platform is crucial to the success of the mission. With the increasing size, complexity, and duration of future missions, the stability of these materials becomes even more important. The Long Duration Exposure Facility (LDEF) offered an excellent testbed to study the stability and interaction of thermal control coatings in the low-Earth orbit (LEO) space environment. Several experiments on LDEF exposed thermal control coatings to the space environment. This paper provides an overview of the different materials flown and their stability during the extended LDEF mission. The exposure conditions, exposure environment, and measurements of materials properties (both in-space and postflight) are described. The relevance of the results and the implications to the design and operation of future space vehicles are also discussed.

  1. Investigation of environmental effects on coatings for thermal control of large space vehicles

    NASA Technical Reports Server (NTRS)

    Zerlaunt, G. A.; Gilligan, J. E.; Ashford, N. A.

    1971-01-01

    The objective of significantly advancing the state-of-the-art of white, spacecraft-radiator coatings has been realized in a comprehensive goal-oriented, pigmented-coatings research program. Considered were inorganic pigments and coatings, silicone polymers and coatings, the design and construction of a combined ultraviolet-plus-proton irradiation facility, the development of zinc orthotitanate pigment and coatings, and the effects on several low alpha sub s/epsilon paints of combined ultraviolet and proton irradiation.

  2. Mechanical particle coating using polymethacrylate nanoparticle agglomerates for the preparation of controlled release fine particles: The relationship between coating performance and the characteristics of various polymethacrylates.

    PubMed

    Kondo, Keita; Kato, Shinsuke; Niwa, Toshiyuki

    2017-10-30

    We aimed to understand the factors controlling mechanical particle coating using polymethacrylate. The relationship between coating performance and the characteristics of polymethacrylate powders was investigated. First, theophylline crystals were treated using a mechanical powder processor to obtain theophylline spheres (<100μm). Second, five polymethacrylate latexes were powdered by spray freeze drying to produce colloidal agglomerates. Finally, mechanical particle coating was performed by mixing theophylline spheres and polymethacrylate agglomerates using the processor. The agglomerates were broken under mechanical stress to coat the spheres effectively. The coating performance of polymethacrylate agglomerates tended to increase as their pulverization progressed. Differences in the grindability of the agglomerates were attributed to differences in particle structure, resulting from consolidation between colloidal particles. High-grindability agglomerates exhibited higher pulverization as their glass transition temperature (T g ) increased and the further pulverization promoted coating. We therefore conclude that the minimization of polymethacrylate powder by pulverization is an important factor in mechanical particle coating using polymethacrylate with low deformability. Meanwhile, when product temperature during coating approaches T g of polymer, polymethacrylate was soften to show high coating performance by plastic deformation. The effective coating by this mechanism may be accomplished by adjusting the temperature in the processor to the T g . Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Apparatus for coating and impregnating filament with resin

    DOEpatents

    Robinson, S.C.; Pollard, R.E.

    1986-12-17

    The present invention is directed to an apparatus for evenly coating and impregnating a filament with binder material. Dimension control and repeatability of the coating and impregnating characteristics are obtained with the apparatus.

  4. 40 CFR 60.712 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or operator... (other than a condenser) on a magnetic tape coating operation shall control emissions from the coating...

  5. 40 CFR 60.712 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or operator... (other than a condenser) on a magnetic tape coating operation shall control emissions from the coating...

  6. The Study of Indicatrices of Space Object Coatings in a Controlled Laboratory Environment

    NASA Astrophysics Data System (ADS)

    Koshkin, N.; Burlak, N.; Petrov, M.; Strakhova, S.

    The indicatrices of light scattering by radiation balance coatings used on space objects (SO) were determined in the laboratory experiment in a controlled condition. The laboratory device for the physical simulation of photometric observations of space objects in orbit, which was used in this case to study optical properties of coating samples, is described. The features of light reflection off plane coating samples, including multi-layer insulation (MLI) blankets, metal surfaces coated with several layers of enamel EP-140, special polyacrylate enamel AK-512 and matte finish Tp-CO-2, were determined. The indicated coatings are compound reflectors which exhibit both diffuse and specular reflections. The data obtained are to be used in the development of computer optical-geometric models of space objects or their fragments (space debris) to interpret the photometry results for real space objects.

  7. UKIRT Upgrades Program: design and installation of the Dome Ventilation System (DVS)

    NASA Astrophysics Data System (ADS)

    Neff, D. H.; Hileman, Edward A.; Kain, S. J.; Cavedoni, Charles P.; Chuter, Timothy C.

    1997-03-01

    In order to encourage adequate dome ventilation to reduce or eliminate dome seeing at the 3.8 m United Kingdom Infrared Telescope (UKIRT), a dome ventilation system (DVS) was designed to be installed in the lower dome skirt. The modifications to the dome for the new DVS apertures consisted of installing a reinforcing frame containing an insulated rollup door and adjustable louvers. This paper describes the finite element structural analysis of the reinforcing frame, the detailed design of the frame hardware, the design of the programmable language control (PLC) system for controlling the opening and closing of the rollup doors, and the fabrication and installation of a prototype frame assembly. To date, a prototype assembly has been installed that confirms the design, and fifteen production assemblies are currently under fabrication for installation by September 1996.

  8. Bioinspired synthesis of a soft-nanofilament-based coating consisting of polysilsesquioxanes/polyamine and its divergent surface control.

    PubMed

    Yuan, Jian-Jun; Kimitsuka, Nobuo; Jin, Ren-Hua

    2013-04-24

    The synthesis of polysilsesquioxanes coating with controllable one-dimensional nanostructure on substrates remains a major long-term challenge by conventional solution-phase method. The hydrolytic polycondensation of organosilanes in solution normally produces a mixture of incomplete cages, ladderlike, and network structures, resulting in the poor control of the formation of specific nanostructure. This paper describes a simple aqueous process to synthesize nanofilament-based coatings of polysilsesquioxanes possessing various organo-functional groups (for example, thiol, methyl, phenyl, vinyl, and epoxy). We utilized a self-assembled nanostructured polyamine layer as a biomimetically catalytic scaffold/template to direct the formation of one-dimensional nanofilament of polysilsesquioxanes by temporally and spatially controlled hydrolytic polycondensation of organosilane. The surface nanostructure and morphology of polysilsesquioxane coating could be modulated by changing hydrolysis and condensation reaction conditions, and the orientation of nanofilaments of polysilsesquioxanes on substrates could be controlled by simply adjusting the self-assembly conditions of polyamine layer. The nanostructure and polyamine@polysilsesquioxane hybrid composition of nanofilament-based coatings were examined by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The template role of nanostructured polyamine layer for the formation of polysilsesquioxane nanofilament was confirmed by combining thin film X-ray diffraction (XRD) and XPS measurements. Moreover, these nanotextured coatings with various organo-functional groups could be changed into superhydrophobic surfaces after surface modification with fluorocarbon molecule.

  9. [The working environment control of anhydride hardeners from an epoxy resin system].

    PubMed

    Matsumoto, Naomi; Yokota, Kozo; Johyama, Yasushi; Takakura, Toshiyuki

    2003-07-01

    Epoxy resins are widely used in adhesives, coatings, materials for molds and composites, and encapsulation. Acid anhydrides such as methyltetrahydrophthalic anhydride are being used as curing agents for epoxy resins. The anhydride hardeners are well-known industrial inhalant allergens, inducing predominantly type I allergies. In the electronic components industry, these substances have been consumed in large quantities. Therefore, safe use in the industry demands control of the levels of exposure causing allergic diseases in the workshop. We conducted a prospective survey of two electronics plants to clarify how to control the atmospheric level of the anhydrides in the work environment. Measurements of the levels of the anhydrides in air started according to the Working Environment Measurement Standards (Ministry of Labour Notification No. 46, 1976) in April 2000, along with improvements in the work environment. A value of 40 micrograms/m3 was adopted as the administrative control level to judge the propriety of the working environment control. A total of 2 unit work areas in both plants belonged to Control Class III. The exposure originated from manual loading, casting, uncured hot resins, and leaks in an impregnating-machine or curing ovens. In order to achieve the working environment control, complete enclosure of the source, installation of local exhaust ventilation, and improvement or maintenance of the local exhaust ventilation system were performed on the basis of the results of the working environment measurement, with the result that the work environment was improved (Control Class I). It became evident that these measures were effective just like other noxious substances.

  10. Evaluation in a Dog Model of Three Antimicrobial Glassy Coatings: Prevention of Bone Loss around Implants and Microbial Assessments

    PubMed Central

    López-Píriz, Roberto; Solá-Linares, Eva; Rodriguez-Portugal, Mercedes; Malpica, Beatriz; Díaz-Güemes, Idoia; Enciso, Silvia; Esteban-Tejeda, Leticia; Cabal, Belén; Granizo, Juan José; Moya, José Serafín; Torrecillas, Ramón

    2015-01-01

    Objectives The aim of the present study is to evaluate, in a ligature-induced peri-implantitis model, the efficacy of three antimicrobial glassy coatings in the prevention of biofilm formation, intrasulcular bacterial growth and the resulting peri-implant bone loss. Methods Mandibular premolars were bilaterally extracted from five beagle dogs. Four dental implants were inserted on each hemiarch. Eight weeks after, one control zirconia abutment and three with different bactericidal coatings (G1n-Ag, ZnO35, G3) were connected. After a plaque control period, bacterial accumulation was allowed and biofilm formation on abutments was observed by Scanning Electron Microscopy (SEM). Peri-implantitis was induced by cotton ligatures. Microbial samples and peri-implant crestal bone levels of all implant sites were obtained before, during and after the breakdown period. Results During experimental induce peri-implantitis: colony forming units counts from intrasulcular microbial samples at implants with G1n-Ag coated abutment remained close to the basal inoculum; G3 and ZnO35 coatings showed similar low counts; and anaerobic bacterias counts at control abutments exhibited a logarithmic increase by more than 2. Bone loss during passive breakdown period was no statistically significant. Additional bone loss occurred during ligature-induce breakdown: 0.71 (SD 0.48) at G3 coating, 0.57 (SD 0.36) at ZnO35 coating, 0.74 (SD 0.47) at G1n-Ag coating, and 1.29 (SD 0.45) at control abutments; and statistically significant differences (p<0.001) were found. The lowest bone loss at the end of the experiment was exhibited by implants dressing G3 coated abutments (mean 2.1; SD 0.42). Significance Antimicrobial glassy coatings could be a useful tool to ward off, diminish or delay peri-implantitis progression. PMID:26489088

  11. Effect of active edible coatings made by basil seed gum and thymol on oil uptake and oxidation in shrimp during deep-fat frying.

    PubMed

    Khazaei, Naimeh; Esmaiili, Mohsen; Emam-Djomeh, Zahra

    2016-02-10

    The effect of active coating treatments on oil uptake, moisture loss, lipid oxidation, texture, color, and sensory evaluation of shrimp after deep-fat frying process was investigated. Compared with the uncoated samples, coating treatments decreased the oil uptake and moisture loss of fried shrimp by 34.50 and 13.9%, respectively. Fried shrimp samples were analyzed for peroxide value (PV) and thiobarbituric acid (TBA). The most reduction in lipid oxidation (46.4% for PV and 40.8% for TBA) was observed when shrimp samples were coated with CS4 (containing 10% thyme), while the control samples had the highest values of PV and TBA after deep-fat frying process. Coated fried samples had significantly lower toughness and stiffness than control samples (P<0.05). In terms of sensory evaluation, there was no significant difference in color, smell, and taste among the treatments (P>0.05). However, for the texture, juiciness, chewiness, and overall acceptability, coated fried samples had higher scores than control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Coatings with controlled porosity and chemical properties

    DOEpatents

    Frye, Gregory C.; Brinker, C. Jeffrey; Doughty, Daniel H.; Bein, Thomas; Moller, Karin

    1996-01-01

    Coatings and sensors having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  13. Coatings with controlled porosity and chemical properties

    DOEpatents

    Frye, Gregory C.; Brinker, C. Jeffrey; Doughty, Daniel H.; Bein, Thomas; Moller, Karin

    1993-01-01

    Coatings and sensors having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  14. Statistical process control charts for monitoring military injuries.

    PubMed

    Schuh, Anna; Canham-Chervak, Michelle; Jones, Bruce H

    2017-12-01

    An essential aspect of an injury prevention process is surveillance, which quantifies and documents injury rates in populations of interest and enables monitoring of injury frequencies, rates and trends. To drive progress towards injury reduction goals, additional tools are needed. Statistical process control charts, a methodology that has not been previously applied to Army injury monitoring, capitalise on existing medical surveillance data to provide information to leadership about injury trends necessary for prevention planning and evaluation. Statistical process control Shewhart u-charts were created for 49 US Army installations using quarterly injury medical encounter rates, 2007-2015, for active duty soldiers obtained from the Defense Medical Surveillance System. Injuries were defined according to established military injury surveillance recommendations. Charts display control limits three standard deviations (SDs) above and below an installation-specific historical average rate determined using 28 data points, 2007-2013. Charts are available in Army strategic management dashboards. From 2007 to 2015, Army injury rates ranged from 1254 to 1494 unique injuries per 1000 person-years. Installation injury rates ranged from 610 to 2312 injuries per 1000 person-years. Control charts identified four installations with injury rates exceeding the upper control limits at least once during 2014-2015, rates at three installations exceeded the lower control limit at least once and 42 installations had rates that fluctuated around the historical mean. Control charts can be used to drive progress towards injury reduction goals by indicating statistically significant increases and decreases in injury rates. Future applications to military subpopulations, other health outcome metrics and chart enhancements are suggested. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. Effect of Nozzle Geometry on the Microstructure and Properties of HVAF-Sprayed WC-10Co4Cr and Cr3C2-25NiCr Coatings

    NASA Astrophysics Data System (ADS)

    Matikainen, V.; Koivuluoto, H.; Vuoristo, P.; Schubert, J.; Houdková, Š.

    2018-04-01

    Thermally sprayed hard metal coatings are the industrial standard solution for numerous demanding applications to improve wear resistance. In the aim of improving coating quality by utilising finer particle size distributions, several approaches have been studied to control the spray temperature. The most viable solution is to use the modern high velocity air-fuel (HVAF) spray process, which has already proven to produce high-quality coatings with dense structures. In HVAF spray process, the particle heating and acceleration can be efficiently controlled by changing the nozzle geometry. In this study, fine WC-10Co4Cr and Cr3C2-25NiCr powders were sprayed with three nozzle geometries to investigate their effect on the particle temperature, velocity and coating microstructure. The study demonstrates that the particle melting and resulting carbide dissolution can be efficiently controlled by changing the nozzle geometry from cylindrical to convergent-divergent. Moreover, the average particle velocity was increased from 780 to over 900 m/s. The increase in particle velocity significantly improved the coating structure and density. Further evaluation was carried out to resolve the effect of particle in-flight parameters on coating structure and cavitation erosion resistance, which was significantly improved in the case of WC-10Co4Cr coatings with the increasing average particle velocity.

  16. Preparation and release characteristics of polymer-coated and blended alginate microspheres.

    PubMed

    Lee, D W; Hwang, S J; Park, J B; Park, H J

    2003-01-01

    To prevent a rapid drug release from alginate microspheres in simulated intestinal media, alginate microspheres were coated or blended with polymers. Three polymers were selected and evaluated such as HPMC, Eudragit RS 30D and chitosan, as both coating materials and additive polymers for controlling the drug release. This study focused on the release characteristics of polymer-coated and blended alginate microspheres, varying the type of polymer and its concentration. The alginate microspheres were prepared by dropping the mixture of drug and sodium alginate into CaCl(2) solution using a spray-gun. Polymer-coated microspheres were prepared by adding alginate microspheres into polymer solution with mild stirring. Polymer-blended microspheres were prepared by dropping the mixture of drug, sodium alginate and additive polymer with plasticizer into CaCl(2) solution. In vitro release test was carried out to investigate the release profiles in 500 ml of phosphate buffered saline (PBS, pH 7.4). As the amount of polymer in sodium alginate or coating solution increase, the drug release generally decreased. HPMC-blended microspheres swelled but withstood the disintegration, showing an ideal linear release profiles. Chitosan-coated microspheres showed smooth and round surface and extended the release of drug. In comparison with chitosan-coated microspheres, HPMC-blended alginate microspheres can be easily made and used for controlled drug delivery systems due to convenient process and controlled drug release.

  17. 40 CFR 180.1021 - Copper; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hatcheries, lakes, ponds, and reservoirs (4) Cuprous oxide bearing antifouling coatings for control of algae or other coatings for control of algae or other organisms on submerged concrete or other (irrigation...

  18. 40 CFR 180.1021 - Copper; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hatcheries, lakes, ponds, and reservoirs (4) Cuprous oxide bearing antifouling coatings for control of algae or other coatings for control of algae or other organisms on submerged concrete or other (irrigation...

  19. 40 CFR 180.1021 - Copper; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hatcheries, lakes, ponds, and reservoirs (4) Cuprous oxide bearing antifouling coatings for control of algae or other coatings for control of algae or other organisms on submerged concrete or other (irrigation...

  20. 40 CFR 180.1021 - Copper; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hatcheries, lakes, ponds, and reservoirs (4) Cuprous oxide bearing antifouling coatings for control of algae or other coatings for control of algae or other organisms on submerged concrete or other (irrigation...

  1. Neutron absorbing coating for nuclear criticality control

    DOEpatents

    Mizia, Ronald E.; Wright, Richard N.; Swank, William D.; Lister, Tedd E.; Pinhero, Patrick J.

    2007-10-23

    A neutron absorbing coating for use on a substrate, and which provides nuclear criticality control is described and which includes a nickel, chromium, molybdenum, and gadolinium alloy having less than about 5% boron, by weight.

  2. 40 CFR 63.3360 - What performance tests must I conduct?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... decimal point (for example, 0.763). (2) Method 24. For coatings, determine the volatile organic content as... National Emission Standards for Hazardous Air Pollutants: Paper and Other Web Coating General Requirements... control organic HAP on any individual web coating line or any group of web coating lines by: You must: (1...

  3. 40 CFR 63.3360 - What performance tests must I conduct?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... decimal point (for example, 0.763). (2) Method 24. For coatings, determine the volatile organic content as... National Emission Standards for Hazardous Air Pollutants: Paper and Other Web Coating General Requirements... control organic HAP on any individual web coating line or any group of web coating lines by: You must: (1...

  4. Alginate coating as carrier of oligofructose and inulin and to maintain the quality of fresh-cut apples.

    PubMed

    Rössle, Christian; Brunton, Nigel; Gormley, Ronan T; Wouters, Rudy; Butler, Francis

    2011-01-01

    The aim of this study was to apply an edible coating containing prebiotics such as oligofructose and inulin to fresh-cut apple wedges. An assessment of the quality, sensory, polyphenol, and volatile attributes of coated and uncoated fresh-cut apple wedges was also undertaken. Fructan analysis showed that all prebiotics remained stable over the 14-d storage period and an intake of 100 g of apple supplies 1 to 3 g of prebiotics. Browning index, firmness, acidity remained stable throughout the 14 d compared to the control while applying prebiotic coatings resulted in an increase in soluble solids. Sensory and visual assessment indicated acceptable quality of apple wedges coated with prebiotics. HPLC analysis showed that levels of polyphenolic compounds were more stable in coated apple wedges (without prebiotic inclusions) than in uncoated control apples. No difference was found between O(2) and CO(2) headspace concentration of coated and uncoated samples. Significant differences (P < 0.001) were found for headspace volatile production between the samples. Most coated samples showed lower volatile production in the headspace than uncoated samples.

  5. Effect of Simulated High Hydrogen Content Combustion Environments on Abradable Properties of Ceramic Turbine Coatings

    NASA Astrophysics Data System (ADS)

    Basu Majumder, Madhura

    Air plasma sprayed (APS) abradable coatings are used in the turbine hot section to reduce the stator-rotor gap, minimizing gas leakage. These coatings are designed to exhibit controlled removal of material in thin layers when the turbine blades sweep through the coating, which protects the mechanical integrity of the turbine blade. In an effort to lower CO2 emissions, high H2 content fuel is being explored. This change in chemical composition of the fuel may affect the microstructure, abradability and durability of the coatings at turbine operational temperatures. The presence of high water vapor in the combustion chamber leads to accelerated degradation of the sacrificial coating materials. In this work, zirconia based composite materials with a machinable phase and varied porosity have been used to study microstructural evolution, thermal and chemical stability of the phases and abradable characteristics of baseline coating systems in both humid and dry environments. Investigation of the mechanisms that control the removal of materials and performance of abradable coatings through thermo-mechanical tests will be discussed.

  6. Aggregation state and magnetic properties of magnetite nanoparticles controlled by an optimized silica coating

    NASA Astrophysics Data System (ADS)

    Pérez, Nicolás; Moya, C.; Tartaj, P.; Labarta, A.; Batlle, X.

    2017-01-01

    The control of magnetic interactions is becoming essential to expand/improve the applicability of magnetic nanoparticles (NPs). Here, we show that an optimized microemulsion method can be used to obtain homogenous silica coatings on even single magnetic nuclei of highly crystalline Fe3-xO4 NPs (7 and 16 nm) derived from a high-temperature method. We show that the thickness of this coating is controlled almost at will allowing much higher average separation among particles as compared to the oleic acid coating present on pristine NPs. Magnetic susceptibility studies show that the thickness of the silica coating allows the control of magnetic interactions. Specifically, as this effect is better displayed for the smallest particles, we show that dipole-dipole interparticle interactions can be tuned progressively for the 7 nm NPs, from almost non-interacting to strongly interacting particles at room temperature. The quantitative analysis of the magnetic properties unambiguously suggests that dipolar interactions significantly broaden the effective distribution of energy barriers by spreading the distribution of activation magnetic volumes.

  7. Quality control of the tribological coating PS212

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Dellacorte, Christopher; Deadmore, Daniel L.

    1989-01-01

    PS212 is a self-lubricating, composite coating that is applied by the plasma spray process. It is a functional lubricating coating from 25 C (or lower) to 900 C. The coating is prepared from a blend of three different powders with very dissimilar properties. Therefore, the final chemical composition and lubricating effectiveness of the coatings are very sensitive to the process variables used in their preparation. Defined here are the relevant variables. The process and analytical procedures that will result in satisfactory tribological coatings are discussed.

  8. Automated X-ray quality control of catalytic converters

    NASA Astrophysics Data System (ADS)

    Shashishekhar, N.; Veselitza, D.

    2017-02-01

    Catalytic converters are devices attached to the exhaust system of automobile or other engines to eliminate or substantially reduce polluting emissions. They consist of coated substrates enclosed in a stainless steel housing. The substrate is typically made of ceramic honeycombs; however stainless steel foil honeycombs are also used. The coating is usually a slurry of alumina, silica, rare earth oxides and platinum group metals. The slurry also known as the wash coat is applied to the substrate in two doses, one on each end of the substrate; in some cases multiple layers of coating are applied. X-ray imaging is used to inspect the applied coating depth on a substrate to confirm compliance with quality requirements. Automated image analysis techniques are employed to measure the coating depth from the X-ray image. Coating depth is assessed by analysis of attenuation line profiles in the image. Edge detection algorithms with noise reduction and outlier rejection are used to calculate the coating depth at a specified point along an attenuation line profile. Quality control of the product is accomplished using several attenuation line profile regions for coating depth measurements, with individual pass or fail criteria specified for each region.

  9. Gum arabic based composite edible coating on green chillies

    NASA Astrophysics Data System (ADS)

    Valiathan, Sreejit; Athmaselvi, K. A.

    2018-04-01

    Green chillies were coated with a composite edible coating composed of gum arabic (5%), glycerol (1%), thyme oil (0.5%) and tween 80 (0.05%) to preserve the freshness and quality of green chillies and thus reduce the cost of preservation. In the present work, the chillies were coated with the composite edible coating using the dipping method with three dipping times (1, 3 and 5 min). The physicochemical parameters of the coated and control chillies stored at room temperature (28±2ºC) were evaluated at regular intervals of storage. There was a significant difference (p≤0.05) in the physicochemical properties between the control chillies and coated chillies with 1, 3 and 5 min dipping times. The coated green chillies showed significantly (p≤0.05) lower weight loss, phenolic acid production, capsaicin production and significantly (p≤0.05) higher retention of ascorbic acid, total chlorophyll content, colour, firmness and better organoleptic properties. The composite edible coating of gum arabic and thyme oil with 3 min dipping was effective in preserving the desirable physico-chemical and organoleptic properties of the green chillies up to 12 days, compared to the uncoated chillies that had a shelf life of 6 days at room temperature.

  10. In Vivo Caprine Model for Osteomyelitis and Evaluation of Biofilm-Resistant Intramedullary Nails

    PubMed Central

    Tran, Nhiem; Tran, Phong A.; Jarrell, John D.; Engiles, Julie B.; Thomas, Nathan P.; Young, Matthew D.; Hayda, Roman A.; Born, Christopher T.

    2013-01-01

    Bone infection remains a formidable challenge to the medical field. The goal of the current study is to evaluate antibacterial coatings in vitro and to develop a large animal model to assess coated bone implants. A novel coating consisting of titanium oxide and siloxane polymer doped with silver was created by metal-organic methods. The coating was tested in vitro using rapid screening techniques to determine compositions which inhibited Staphylococcus aureus growth, while not affecting osteoblast viability. The coating was then applied to intramedullary nails and evaluated in vivo in a caprine model. In this pilot study, a fracture was created in the tibia of the goat, and Staphylococcus aureus was inoculated directly into the bone canal. The fractures were fixed by either coated (treated) or non-coated intramedullary nails (control) for 5 weeks. Clinical observations as well as microbiology, mechanical, radiology, and histology testing were used to compare the animals. The treated goat was able to walk using all four limbs after 5 weeks, while the control was unwilling to bear weight on the fixed leg. These results suggest the antimicrobial potential of the hybrid coating and the feasibility of the goat model for antimicrobial coated intramedullary implant evaluation. PMID:23841085

  11. 33 CFR Appendix E to Part 157 - Specifications for the Design, Installation and Operation of a Part Flow System for Control of...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Specifications for the Design, Installation and Operation of a Part Flow System for Control of Overboard Discharges E Appendix E to Part 157... Appendix E to Part 157—Specifications for the Design, Installation and Operation of a Part Flow System for...

  12. 33 CFR Appendix E to Part 157 - Specifications for the Design, Installation and Operation of a Part Flow System for Control of...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Specifications for the Design, Installation and Operation of a Part Flow System for Control of Overboard Discharges E Appendix E to Part 157... Appendix E to Part 157—Specifications for the Design, Installation and Operation of a Part Flow System for...

  13. 33 CFR Appendix E to Part 157 - Specifications for the Design, Installation and Operation of a Part Flow System for Control of...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Specifications for the Design, Installation and Operation of a Part Flow System for Control of Overboard Discharges E Appendix E to Part 157... Appendix E to Part 157—Specifications for the Design, Installation and Operation of a Part Flow System for...

  14. 33 CFR Appendix E to Part 157 - Specifications for the Design, Installation and Operation of a Part Flow System for Control of...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Specifications for the Design, Installation and Operation of a Part Flow System for Control of Overboard Discharges E Appendix E to Part 157... Appendix E to Part 157—Specifications for the Design, Installation and Operation of a Part Flow System for...

  15. Engineering Multifunctional Living Paints: Thin, Convectively-Assembled Biocomposite Coatings of Live Cells and Colloidal Latex Particles Deposited by Continuous Convective-Sedimentation Assembly

    NASA Astrophysics Data System (ADS)

    Jenkins, Jessica Shawn

    Advanced composite materials could be revolutionized by the development of methods to incorporate living cells into functional materials and devices. This could be accomplished by continuously and rapidly depositing thin ordered arrays of adhesive colloidal latex particles and live cells that maintain stability and preserve microbial reactivity. Convective assembly is one method of rapidly assembling colloidal particles into thin (<10 microm thick), ordered films with engineered compositions, thicknesses, and particle packing that offer several advantages over thicker randomly ordered composites, including enhanced cell stability and increased reactivity through minimized diffusion resistance to nutrients and reduced light scattering. This method can be used to precisely deposit live bacteria, cyanobacteria, yeast, and algae into biocomposite coatings, forming reactive biosensors, photoabsorbers, or advanced biocatalysts. This dissertation developed new continuous deposition and coating characterization methods for fabricating and characterizing <10 microm thick colloid coatings---monodispersed latex particle or cell suspensions, bimodal blends of latex particles or live cells and microspheres, and trimodal formulations of biomodal latex and live cells on substrates such as aluminum foil, glass, porous Kraft paper, polyester, and polypropylene. Continuous convective-sedimentation assembly (CSA) is introduced to enable fabrication of larger surface area and long coatings by constantly feeding coating suspension to the meniscus, thus expanding the utility of convective assembly to deposit monolayer or very thin films or multi-layer coatings composed of thin layers on a large scale. Results show thin, tunable coatings can be fabricated from diverse coating suspensions and critical coating parameters that control thickness and structure. Particle size ratio and charge influence deposition, convective mixing or demixing and relative particle locations. Substrate wettability and suspension composition influence coating microstructure by controlling suspension delivery and spreading across the substrate. Microbes behave like colloidal particles during CSA, allowing for deposition of very thin stable biocomposite coatings of latex-live cell blends. CSA of particle-cell blends result in open-packed structures (15-45% mean void space), instead of tightly packed coatings attainable with single component systems, confirming the existence of significant polymer particle-cell interactions and formation of particle aggregates that disrupt coating microstructure during deposition. Tunable process parameters, such as particle concentration, fluid sonication, and fluid density, influence coating homogeneity when the meniscus is continuously supplied. Fluid density modification and fluid sonication affect particle sedimentation and distribution in the coating growth front whereas the suspended particle concentration strongly affects coating thickness, but has almost no effect on void space. Changing the suspension delivery mode (topside versus underside CCSA) yields disparate meniscus volumes and uneven particle delivery to the drying front, which enables control of the coating microstructure by varying the total number of particles available for deposition. The judicious combination of all these parameters will enable deposition of uniform, thin, latex-cell monolayers over areas on the order of tens of square centimeters or larger. To demonstrate the utility of biocomposite coatings, this dissertation investigated photoreactive coatings (artificial leaves) from suspensions of latex particles and nitrogen-limited Rps. palustris CGA009 or sulfur-limited C. reinhardtii CC-124. These coatings demonstrated stable, sustained (>90 hours) photohydrogen production under anoxygenic conditions. Nutrient reduction slows cell division, minimizing coating outgrowth, and promotes photohydrogen generation, improving coating reactivity. Scanning electron microscopy of microstructure revealed how coating reactivity can be controlled by the size and distribution of the nanopores in the biocomposite layers. Variations in colloid microsphere size and suspension composition do not affect coating reactivity, but both parameters alter coating microstructure. Porous paper coated with thin coatings of colloidal particles and cells to enable coatings to be used in a gas-phase without dehydration may offer higher volumetric productivity for hydrogen production. Future work should focus on optimization of cell density, light intensity, media cycling, and acetate concentration.

  16. Correlation between Hierarchical Structure and Processing Control of Large-area Spray-coated Polymer Solar Cells toward High Performance

    PubMed Central

    Huang, Yu-Ching; Tsao, Cheng-Si; Cha, Hou-Chin; Chuang, Chih-Min; Su, Chun-Jen; Jeng, U-Ser; Chen, Charn-Ying

    2016-01-01

    The formation mechanism of a spray-coated film is different from that of a spin-coated film. This study employs grazing incidence small- and wide-angle X-ray Scattering (GISAXS and GIWAXS, respectively) quantitatively and systematically to investigate the hierarchical structure and phase-separated behavior of a spray-deposited blend film. The formation of PCBM clusters involves mutual interactions with both the P3HT crystal domains and droplet boundary. The processing control and the formed hierarchical structure of the active layer in the spray-coated polymer/fullerene blend film are compared to those in the spin-coated film. How the different post-treatments, such as thermal and solvent vapor annealing, tailor the hierarchical structure of the spray-coated films is quantitatively studied. Finally, the relationship between the processing control and tailored BHJ structures and the performance of polymer solar cell devices is established here, taking into account the evolution of the device area from 1 × 0.3 and 1 × 1 cm2. The formation and control of the special networks formed by the PCBM cluster and P3HT crystallites, respectively, are related to the droplet boundary. These structures are favorable for the transverse transport of electrons and holes. PMID:26817585

  17. Solar absorptance and thermal emittance of some common spacecraft thermal-control coatings

    NASA Technical Reports Server (NTRS)

    Henninger, J. H.

    1984-01-01

    Solar absorptance and thermal emittance of spacecraft materials are critical parameters in determining spacecraft temperature control. Because thickness, surface preparation, coatings formulation, manufacturing techniques, etc. affect these parameters, it is usually necessary to measure the absorptance and emittance of materials before they are used. Absorptance and emittance data for many common types of thermal control coatings, are together with some sample spectral data curves of absorptance. In some cases for which ultraviolet and particle radiation data are available, the degraded absorptance and emittance values are also listed.

  18. PAT-tools for process control in pharmaceutical film coating applications.

    PubMed

    Knop, Klaus; Kleinebudde, Peter

    2013-12-05

    Recent development of analytical techniques to monitor the coating process of pharmaceutical solid dosage forms such as pellets and tablets are described. The progress from off- or at-line measurements to on- or in-line applications is shown for the spectroscopic methods near infrared (NIR) and Raman spectroscopy as well as for terahertz pulsed imaging (TPI) and image analysis. The common goal of all these methods is to control or at least to monitor the coating process and/or to estimate the coating end point through timely measurements. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Formation mechanism of a silicon carbide coating for a reinforced carbon-carbon composite

    NASA Technical Reports Server (NTRS)

    Rogers, D. C.; Shuford, D. M.; Mueller, J. I.

    1975-01-01

    Results are presented for a study to determine the mechanisms involved in a high-temperature pack cementation process which provides a silicon carbide coating on a carbon-carbon composite. The process and materials used are physically and chemically analyzed. Possible reactions are evaluated using the results of these analytical data. The coating is believed to develop in two stages. The first is a liquid controlled phase process in which silicon carbide is formed due to reactions between molten silicon metal and the carbon. The second stage is a vapor transport controlled reaction in which silicon vapors react with the carbon. There is very little volume change associated with the coating process. The original thickness changes by less than 0.7%. This indicates that the coating process is one of reactive penetration. The coating thickness can be increased or decreased by varying the furnace cycle process time and/or temperature to provide a wide range of coating thicknesses.

  20. Fish gelatin combined with chitosan coating inhibits myofibril degradation of golden pomfret (Trachinotus blochii) fillet during cold storage.

    PubMed

    Feng, Xiao; Bansal, Nidhi; Yang, Hongshun

    2016-06-01

    Coating of gelatin and chitosan can improve fish fillet's quality, but the mechanism is not clear. Chitosan/gelatin coatings significantly prevented deterioration of golden pomfret fillet at 4 °C. Chitosan with 7.2% gelatin group showed the best effect on preserving the length of myofibril, which remained greater than 15 μm at day 17 of storage, while for control, chitosan and chitosan combined with 3.6% gelatin group, it was 5.03, 10.04 and 9.02 μm, respectively. The MALDI-TOF MS result revealed that the coatings slowed down the protein deterioration of fillet. On days 13 and 17, the myosin light chain and myoglobin in control group degraded, while the two proteins still existed in chitosan/gelatin coated groups. Overall, the chitosan with 7.2% gelatin coating had the best effect on preserving fillet's quality during storage. The coating may exert its protective effect via inhibiting myofibril degradation within fillet. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Continuous coating of silicon-on-ceramic

    NASA Technical Reports Server (NTRS)

    Heaps, J. D.; Schuldt, S. B.; Grung, B. L.; Zook, J. D.; Butter, C. D.

    1980-01-01

    Growth of sheet silicon on low-cost substrates has been demonstrated by the silicon coating with inverted meniscus (SCIM) technique. A mullite-based ceramic substrate is coated with carbon and then passed over a trough of molten silicon with a raised meniscus. Solidification occurs at the trailing edge of the downstream meniscus, producing a silicon-on-ceramic (SOC) layer. Meniscus shape and stability are controlled by varying the level of molten silicon in a reservoir connected to the trough. The thermal conditions for growth and the crystallographic texture of the SOC layers are similar to those produced by dip-coating, the original technique of meniscus-controlled growth. The thermal conditions for growth have been analyzed in some detail. The analysis correctly predicts the velocity-thickness relationship and the liquid-solid interface shape for dip-coating, and appears to be equally applicable to SCIM-coating. Solar cells made from dip-coated SOC material have demonstrated efficiencies of 10% on 4-sq cm cells and 9.9% on 10-sq cm cells.

  2. Stripping and splicing polyimide-coated fibers

    NASA Astrophysics Data System (ADS)

    Duke, Douglas; Kanda, Yoshiharu; Tobita, Kenyo; Yamauchi, Ryozo

    2011-05-01

    Polyimide is often used as a coating material for optical fibers used in high temperature environments such as aerospace or oil and gas sensor applications. Unfortunately, polyimide coating is very difficult to strip by conventional mechanical stripping methods. The glass fiber is easily damaged if the stripping process is not extremely well controlled. Stripping the polyimide coating by heating with a flame or arc typically results in a significant reduction in fiber strength. Strength may be maintained by using hot acid stripping, however the use of the strong hot acid presents safety hazards and also requires controlled and safe waste disposal. Another issue with polyimide coating is variability of the coating diameter from various manufacturers or due to different polyimide coating processes. This not only complicates the polyimide stripping issue, but also presents problems with precise clamping and alignment during splicing, especially when it is necessary to splice with a short cleave length. In this paper, we present new polyimide coating stripping technology. The significant feature of this stripping technology is achievement of good strength while avoiding the use of hot acid or heating. We also developed a new specialty fiber fusion splicer that enables precise alignment and splicing regardless of the variability of polyimide coating diameter, even when clamping on the coating.

  3. Advances in edible coatings for fresh fruits and vegetables: a review.

    PubMed

    Dhall, R K

    2013-01-01

    Edible coatings are an environmentally friendly technology that is applied on many products to control moisture transfer, gas exchange or oxidation processes. Edible coatings can provide an additional protective coating to produce and can also give the same effect as modified atmosphere storage in modifying internal gas composition. One major advantage of using edible films and coatings is that several active ingredients can be incorporated into the polymer matrix and consumed with the food, thus enhancing safety or even nutritional and sensory attributes. But, in some cases, edible coatings were not successful. The success of edible coatings for fresh products totally depends on the control of internal gas composition. Quality criteria for fruits and vegetables coated with edible films must be determined carefully and the quality parameters must be monitored throughout the storage period. Color change, firmness loss, ethanol fermentation, decay ratio and weight loss of edible film coated fruits need to be monitored. This review discusses the use of different edible coatings (polysaccharides, proteins, lipids and composite) as carriers of functional ingredients on fresh fruits and vegetables to maximize their quality and shelf life. This also includes the recent advances in the incorporation of antimicrobials, texture enhancers and nutraceuticals to improve quality and functionality of fresh-cut fruits. Sensory implications, regulatory status and future trends are also reviewed.

  4. Coatings with controlled porosity and chemical properties

    DOEpatents

    Frye, G.C.; Brinker, C.J.; Doughty, D.H.; Bein, T.; Moller, K.

    1996-12-31

    Coatings and sensors are disclosed having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided. 7 figs.

  5. Coatings with controlled porosity and chemical properties

    DOEpatents

    Frye, G.C.; Brinker, C.J.; Doughty, D.H.; Bein, T.; Moller, K.

    1993-07-06

    Coatings and sensors are described having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  6. 40 CFR 63.5170 - How do I demonstrate compliance with the standards?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for individual or groups of coil coating lines; or overall organic HAP control efficiency is at least... compliant coatings and control devices and maintaining an acceptable equivalent emission rate Average... facility. (6) Control efficiency calculation of HAP emitted. For each work station or group of work...

  7. 40 CFR 63.5170 - How do I demonstrate compliance with the standards?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for individual or groups of coil coating lines; or overall organic HAP control efficiency is at least... compliant coatings and control devices and maintaining an acceptable equivalent emission rate Average... facility. (6) Control efficiency calculation of HAP emitted. For each work station or group of work...

  8. 75 FR 59084 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; Control Technique...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... Promulgation of Air Quality Implementation Plans; Maryland; Control Technique Guidelines for Paper, Film, and... from paper, film, and foil coatings. Specifically, Maryland is amending its regulations by adopting the requirements of EPA's Control Technique Guidelines (CTG) for Paper, Film, and Foil Coatings. These amendments...

  9. 78 FR 28773 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; Adoption of Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... Miscellaneous Metal and Plastic Parts Which Includes Pleasure Craft Coating Operations AGENCY: Environmental... recommended by EPA's control technique guidelines (CTG) for Miscellaneous Metal Parts and Plastic Coating... air pollution control authorities information that should assist them in determining RACT for VOC from...

  10. 16. VIEW OF THE STATIONARY OPERATING ENGINEER CONTROL PANEL INSTALLATION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF THE STATIONARY OPERATING ENGINEER CONTROL PANEL INSTALLATION. THE PANEL CONTROLS AIR-HANDLING EQUIPMENT AND AIR PRESSURE WITHIN THE BUILDING. (10/6/69) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  11. 47 CFR 78.51 - Remote control operation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... control system shall be installed and protected in a manner designed to prevent tampering or operation by... transmissions and a carrier operated device which will give a continuous visual indication whenever the... necessary to insure proper operation. (4) The control circuits shall be so designed and installed that short...

  12. 47 CFR 78.51 - Remote control operation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... control system shall be installed and protected in a manner designed to prevent tampering or operation by... transmissions and a carrier operated device which will give a continuous visual indication whenever the... necessary to insure proper operation. (4) The control circuits shall be so designed and installed that short...

  13. Post Irradiation Evaluation of Thermal Control Coatings and Solid Lubricants to Support Fission Surface Power Systems

    NASA Astrophysics Data System (ADS)

    Bowman, Cheryl L.; Jaworske, Donald A.; Stanford, Malcolm K.; Persinger, Justin A.; Khorsandi, Behrooz; Blue, Thomas E.

    2007-01-01

    The development of a nuclear power system for space missions, such as the Jupiter Icy Moons Orbiter or a lunar outpost, requires substantially more compact reactor design than conventional terrestrial systems. In order to minimize shielding requirements and hence system weight, the radiation tolerance of component materials within the power conversion and heat rejection systems must be defined. Two classes of coatings, thermal control paints and solid lubricants, were identified as material systems for which limited radiation hardness information was available. Screening studies were designed to explore candidate coatings under a predominately fast neutron spectrum. The Ohio State Research Reactor Facility staff performed irradiation in a well characterized, mixed energy spectrum and performed post irradiation analysis of representative coatings for thermal control and solid lubricant applications. Thermal control paints were evaluated for 1 MeV equivalent fluences from 1013 to 1015 n/cm2. No optical degradation was noted although some adhesive degradation was found at higher fluence levels. Solid lubricant coatings were evaluated for 1 MeV equivalent fluences from 1015 to 1016 n/cm2 with coating adhesion and flexibility used for post irradiation evaluation screening. The exposures studied did not lead to obvious property degradation indicating the coatings would have survived the radiation environment for the previously proposed Jupiter mission. The results are also applicable to space power development programs such as fission surface power for future lunar and Mars missions.

  14. Post Irradiation Evaluation of Thermal Control Coatings and Solid Lubricants to Support Fission Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.; Jaworske, Donald A.; Stanford, Malcolm K.; Persinger, Justin A.; Khorsandi, Behrooz; Blue, Thomas E.

    2007-01-01

    The development of a nuclear power system for space missions, such as the Jupiter Icy Moons Orbiter or a lunar outpost, requires substantially more compact reactor design than conventional terrestrial systems. In order to minimize shielding requirements and hence system weight, the radiation tolerance of component materials within the power conversion and heat rejection systems must be defined. Two classes of coatings, thermal control paints and solid lubricants, were identified as material systems for which limited radiation hardness information was available. Screening studies were designed to explore candidate coatings under a predominately fast neutron spectrum. The Ohio State Research Reactor Facility staff performed irradiation in a well characterized, mixed energy spectrum and performed post irradiation analysis of representative coatings for thermal control and solid lubricant applications. Thermal control paints were evaluated for 1 MeV equivalent fluences from 10(exp 13) to 10(exp 15) n per square centimeters. No optical degradation was noted although some adhesive degradation was found at higher fluence levels. Solid lubricant coatings were evaluated for 1 MeV equivalent fluences from 10(exp 15) to 10(exp 16) n per square centimeters with coating adhesion and flexibility used for post irradiation evaluation screening. The exposures studied did not lead to obvious property degradation indicating the coatings would have survived the radiation environment for the previously proposed Jupiter mission. The results are also applicable to space power development programs such as fission surface power for future lunar and Mars missions.

  15. Rhenium-coated glass beads for intracolonic administration attenuate TNBS-induced colitis in mice: Proof-of-Concept Study.

    PubMed

    Siczek, Krzysztof; Zatorski, Hubert; Pawlak, Wojciech; Fichna, Jakub

    2015-01-01

    In search for novel effective treatments in inflammatory bowel diseases, a new strategy employing glass beads coated with rhenium nanolayer has been developed and validated in the mouse model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. Briefly, mice were randomly divided into 5 experimental groups: control (vehicle alone, Group 1); control treated with rhenium-coated glass beads (Group 2); TNBS (Group 3); TNBS treated with rhenium-coated glass beads (Group 4); and TNBS treated with uncoated glass beads (Group 5). Mice from Group 2, 4 and 5 were treated with respective beads (once daily, 5 beads / animal, i.c.) between D3-D6 post-TNBS/vehicle and evaluation of colonic damage was performed on D7, based on macroscopic scoring and clinical parameters. Severe colonic inflammation developed in post-TNBS mice (Group 3) [P <0.001 vs. control (Group 1) for macroscopic score], which was significantly attenuated by treatment with rhenium-coated glass beads (Group 4) [P <0.01 vs. TNBS (Group 3), for macroscopic score]. Neither rhenium-coated glass beads had any effect in control animals (Group 2), nor uncoated glass beads influenced TNBS-induced colitis (Group 5). In conclusion, a novel and attractive strategy for the treatment of colonic inflammation has been proposed; therapy with rhenium-coated glass beads already proved effective in the mouse model of TNBS-induced colitis, now requires further characterization in clinical conditions.

  16. Thin film heater for removable volatile protecting coatings.

    PubMed

    Karim, Abid

    2013-01-01

    Freshly coated aluminum mirrors have excellent reflectivity at far ultraviolet wavelengths. However, reflectivity rapidly degrades when the mirror surfaces are exposed to atmosphere. In order to avoid this problem, freshly coated aluminum surface can be protected by over-coating of a removable volatile protecting coating. This protecting coating can be re-evaporated by controlled heating or by some other methods when required. This type of removable coating has immediate application in UV space astronomy. The purpose of this paper is to demonstrate the feasibility of re-evaporation of removable volatile Zn protecting coating using a NiCr thin film heater without affecting the reflection properties of Al mirror surfaces.

  17. In vivo efficacy of a silicone–cationic steroid antimicrobial coating to prevent implant-related infection

    PubMed Central

    Williams, Dustin L.; Haymond, Bryan S.; Beck, James P.; Savage, Paul B.; Chaudhary, Vinod; Epperson, Richard T.; Kawaguchi, Brooke; Bloebaum, Roy D.

    2012-01-01

    Active release antimicrobial coatings for medical devices have been developed to prevent and treat biofilm implant-related infections. To date, only a handful of coatings have been put into clinical use, with limited success. In this study, a novel antimicrobial compound was incorporated into a silicone (polydimethylsiloxane or PDMS) polymer to develop a novel active release coating that addressed several limitations of current device coatings. The efficacy of this coating was optimized using an in vitro flow cells system, then translated to an animal model of a simulated Type IIIB open fracture wherein well-established biofilms were used as initial inocula. Results indicated that the novel coating was able to prevent infection in 100% (9/9) of animals that were treated with biofilms and the novel coating (treatment group). In contrast, 100% (9/9) of animals that were inoculated with biofilms and not treated with the coating (positive control), did develop infection. Nine animals were used as negative controls, i.e., those that were not treated with biofilms, and showed a rate of infection of 11% (1/9). Eight animals were treated with the novel coating only to determine its effect on host tissue. Results indicated that the novel active release coating may have significant promise for future application to prevent biofilm implant-related infections in patients. PMID:22940221

  18. Nanostructured hydroxyapatite/poly(lactic-co-glycolic acid) composite coating for controlling magnesium degradation in simulated body fluid.

    PubMed

    Johnson, Ian; Akari, Khalid; Liu, Huinan

    2013-09-20

    Biodegradable magnesium (Mg) and its alloys have many attractive properties (e.g. comparable mechanical properties to cortical bone) for orthopedic implant applications, but they degrade too rapidly in the human body to meet clinical requirements. Nanostructured hydroxyapatite (nHA)/poly(lactic-co-glycolic acid) (PLGA) composite coatings provide synergistic properties for controlling degradation of Mg-based substrates and improving bone-implant integration. In this study, nHA/PLGA composites were spin coated onto Mg-based substrates and the results showed that the nHA/PLGA coatings retained nano-scale features with nHA dispersed in PLGA matrix. In comparison with non-coated Mg, the nHA/PLGA composite coated Mg increased the corrosion potential and decreased the corrosion current in revised simulated body fluid (rSBF). After 24 h of immersion in rSBF, increased calcium phosphate (CaP) deposition and formation of Mg-substituted CaP rosettes were observed on the surface of the nHA/PLGA coated Mg, indicating greater bioactivity. In contrast, no significant CaP was deposited on the PLGA coated Mg. Since both PLGA coating and nHA/PLGA coating showed some degree of delamination from Mg-based substrates during extended immersion in rSBF, the coating processing and properties should be further optimized in order to take full advantage of biodegradable Mg and nHA/PLGA nanocomposites for orthopedic applications.

  19. Biodegradable, elastomeric coatings with controlled anti-proliferative agent release for magnesium-based cardiovascular stents.

    PubMed

    Gu, Xinzhu; Mao, Zhongwei; Ye, Sang-Ho; Koo, Youngmi; Yun, Yeoheung; Tiasha, Tarannum R; Shanov, Vesselin; Wagner, William R

    2016-08-01

    Vascular stent design continues to evolve to further improve the efficacy and minimize the risks associated with these devices. Drug-eluting coatings have been widely adopted and, more recently, biodegradable stents have been the focus of extensive evaluation. In this report, biodegradable elastomeric polyurethanes were synthesized and applied as drug-eluting coatings for a relatively new class of degradable vascular stents based on Mg. The dynamic degradation behavior, hemocompatibility and drug release were investigated for poly(carbonate urethane) urea (PCUU) and poly(ester urethane) urea (PEUU) coated magnesium alloy (AZ31) stents. Poly(lactic-co-glycolic acid) (PLGA) coated and bare stents were employed as control groups. The PCUU coating effectively slowed the Mg alloy corrosion in dynamic degradation testing compared to PEUU-coated, PLGA-coated and bare Mg alloy stents. This was confirmed by electron microscopy, energy-dispersive x-ray spectroscopy and magnesium ion release experiments. PCUU-coating of AZ31 was also associated with significantly reduced platelet adhesion in acute blood contact testing. Rat vascular smooth muscle cell (rSMC) proliferation was successfully inhibited when paclitaxel was released from pre-loaded PCUU coatings. The corrosion retardation, low thrombogenicity, drug loading capacity, and high elasticity make PCUU an attractive option for drug eluting coating on biodegradable metallic cardiovascular stents. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Nanostructured hydroxyapatite/poly(lactic-co-glycolic acid) composite coating for controlling magnesium degradation in simulated body fluid

    NASA Astrophysics Data System (ADS)

    Johnson, Ian; Akari, Khalid; Liu, Huinan

    2013-09-01

    Biodegradable magnesium (Mg) and its alloys have many attractive properties (e.g. comparable mechanical properties to cortical bone) for orthopedic implant applications, but they degrade too rapidly in the human body to meet clinical requirements. Nanostructured hydroxyapatite (nHA)/poly(lactic-co-glycolic acid) (PLGA) composite coatings provide synergistic properties for controlling degradation of Mg-based substrates and improving bone-implant integration. In this study, nHA/PLGA composites were spin coated onto Mg-based substrates and the results showed that the nHA/PLGA coatings retained nano-scale features with nHA dispersed in PLGA matrix. In comparison with non-coated Mg, the nHA/PLGA composite coated Mg increased the corrosion potential and decreased the corrosion current in revised simulated body fluid (rSBF). After 24 h of immersion in rSBF, increased calcium phosphate (CaP) deposition and formation of Mg-substituted CaP rosettes were observed on the surface of the nHA/PLGA coated Mg, indicating greater bioactivity. In contrast, no significant CaP was deposited on the PLGA coated Mg. Since both PLGA coating and nHA/PLGA coating showed some degree of delamination from Mg-based substrates during extended immersion in rSBF, the coating processing and properties should be further optimized in order to take full advantage of biodegradable Mg and nHA/PLGA nanocomposites for orthopedic applications.

  1. Variable anodic thermal control coating on aluminum

    NASA Technical Reports Server (NTRS)

    Duckett, R. J.; Gilliland, C. S.

    1983-01-01

    A variable thermal control coating (modified chromic acid anodizing) has been developed to meet the needs for the thermal control of spacecraft. This coating, with controlled variable ranges of 0.10 to 0.72 thermal emittance and 0.2 to 0.4 solar absorptance, allows the user to select any value of thermal emittance and solar absorptance within the range specified and obtain both values within + or - 0.02. Preliminary solar stability has shown less than 15 percent degradation over 2000 hours of vacuum solar exposure. The technique has been determined to be sensitive to the parameters of voltage, rate of voltage application, time, temperature, acid concentration, and material pretreatment.

  2. Cross Coating Weight Control by Electromagnetic Strip Stabilization at the Continuous Galvanizing Line of ArcelorMittal Florange

    NASA Astrophysics Data System (ADS)

    Guelton, Nicolas; Lopès, Catherine; Sordini, Henri

    2016-08-01

    In hot dip galvanizing lines, strip bending around the sink roll generates a flatness defect called crossbow. This defect affects the cross coating weight distribution by changing the knife-to-strip distance along the strip width and requires a significant increase in coating target to prevent any risk of undercoating. The already-existing coating weight control system succeeds in eliminating both average and skew coating errors but cannot do anything against crossbow coating errors. It has therefore been upgraded with a flatness correction function which takes advantage of the possibility of controlling the electromagnetic stabilizer. The basic principle is to split, for every gage scan, the coating weight cross profile of the top and bottom sides into two, respectively, linear and non-linear components. The linear component is used to correct the skew error by realigning the knives with the strip, while the non-linear component is used to distort the strip in the stabilizer in such a way that the strip is kept flat between the knives. Industrial evaluation is currently in progress but the first results have already shown that the strip can be significantly flattened between the knives and the production tolerances subsequently tightened without compromising quality.

  3. Synergistic Effects of a Calcium Phosphate/Fibronectin Coating on the Adhesion of Periodontal Ligament Stem Cells Onto Decellularized Dental Root Surfaces.

    PubMed

    Lee, Jung-Seok; Kim, Hyun-Suk; Park, So-Yon; Kim, Tae-Wan; Jung, Jae-Suk; Lee, Jong-Bin; Kim, Chang-Sung

    2015-01-01

    This study aimed to enhance the attachment of periodontal ligament stem cells (PDLSCs) onto the decellularized dental root surface using surface coating with fibronectin and/or calcium phosphate (CaP) and to evaluate the activity of PDLSCs attached to a coated dental root surface following tooth replantation. PDLSCs were isolated from five dogs, and the other dental roots were used as a scaffold for carrying PDLSCs and then assigned to one of four groups according to whether their surface was coated with CaP, fibronectin, CaP/fibronectin, or left uncoated (control). Fibronectin increased the adhesion of PDLSCs onto dental root surfaces compared to both the control and CaP-coated groups, and simultaneous surface coating with CaP and fibronectin significantly accelerated and increased PDLSC adhesion compared to the fibronectin-only group. On in vivo tooth replantation, functionally oriented periodontal new attachment was observed on the CaP/fibronectin-coated dental roots to which autologous PDLSCs had adhered, while in the control condition, dental root replantation was associated only with root resorption and ankylosis along the entire root length. CaP and fibronectin synergistically enhanced the attachment of PDLSCs onto dental root surfaces, and autologous PDLSCs could produce de novo periodontal new attachment in an experimental in vivo model.

  4. Modified n-HA/PA66 scaffolds with chitosan coating for bone tissue engineering: cell stimulation and drug release.

    PubMed

    Zou, Qin; Li, Junfeng; Niu, Lulu; Zuo, Yi; Li, Jidong; Li, Yubao

    2017-09-01

    The dipping-drying procedure and cross-linking method were used to make drug-loaded chitosan (CS) coating on nano-hydroxyapatite/polyamide66 (nHA/PA66) composite porous scaffold, endowing the scaffold controlled drug release functionality. The prefabricated scaffold was immersed into an aqueous drug/CS solution in a vacuum condition and then crosslinked by vanillin. The structure, porosity, composition, compressive strength, swelling ratio, drug release and cytocompatibility of the pristine and coating scaffolds were investigated. After coating, the scaffold porosity and pore interconnection were slightly decreased. Cytocompatibility performance was observed through an in vitro experiment based on cell attachment and the MTT assay by MG63 cells which revealed positive cell viability and increasing proliferation over the 11-day period in vitro. The drug could effectively release from the coated scaffold in a controlled fashion and the release rate was sustained for a long period and highly dependent on coating swelling, suggesting the possibility of a controlled drug release. Our results demonstrate that the scaffold with drug-loaded crosslinked CS coating can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to be a promising high performance biomaterial in bone tissue engineering.

  5. Design of barrier coatings on kink-resistant peripheral nerve conduits

    PubMed Central

    Clements, Basak Acan; Bushman, Jared; Murthy, N Sanjeeva; Ezra, Mindy; Pastore, Christopher M; Kohn, Joachim

    2016-01-01

    Here, we report on the design of braided peripheral nerve conduits with barrier coatings. Braiding of extruded polymer fibers generates nerve conduits with excellent mechanical properties, high flexibility, and significant kink-resistance. However, braiding also results in variable levels of porosity in the conduit wall, which can lead to the infiltration of fibrous tissue into the interior of the conduit. This problem can be controlled by the application of secondary barrier coatings. Using a critical size defect in a rat sciatic nerve model, the importance of controlling the porosity of the nerve conduit walls was explored. Braided conduits without barrier coatings allowed cellular infiltration that limited nerve recovery. Several types of secondary barrier coatings were tested in animal studies, including (1) electrospinning a layer of polymer fibers onto the surface of the conduit and (2) coating the conduit with a cross-linked hyaluronic acid-based hydrogel. Sixteen weeks after implantation, hyaluronic acid-coated conduits had higher axonal density, displayed higher muscle weight, and better electrophysiological signal recovery than uncoated conduits or conduits having an electrospun layer of polymer fibers. This study indicates that braiding is a promising method of fabrication to improve the mechanical properties of peripheral nerve conduits and demonstrates the need to control the porosity of the conduit wall to optimize functional nerve recovery. PMID:26977288

  6. Non-Toxic, Self Cleaning Silicone Fouling Release Coatings

    DTIC Science & Technology

    1997-10-07

    Attempts to microencapsulate silicone oils for enhanced fouling release coatings with thermoset wall structures were unsuccessful: Microcapsule ...filled coatings failed abrasion resistance tests and had mediocre fouling release properties, despite having controlled release rates. Microcapsules with

  7. Development of guidelines for the installation of marked crosswalks.

    DOT National Transportation Integrated Search

    2004-01-01

    The Manual on Uniform Traffic Control Devices (MUTCD) provides little guidance on the installation of marked crosswalks, especially at locations other than intersections, i.e., mid-block locations. Crosswalks have typically been installed and designe...

  8. Heat and mass transfer models to understand the drying mechanisms of a porous substrate.

    PubMed

    Songok, Joel; Bousfield, Douglas W; Gane, Patrick A C; Toivakka, Martti

    2016-02-01

    While drying of paper and paper coatings is expensive, with significant energy requirements, the rate controlling mechanisms are not currently fully understood. Two two-dimensional models are used as a first approximation to predict the heat transfer during hot air drying and to evaluate the role of various parameters on the drying rates of porous coatings. The models help determine the structural limiting factors during the drying process, while applying for the first time the recently known values of coating thermal diffusivity. The results indicate that the thermal conductivity of the coating structure is not the controlling factor, but the drying rate is rather determined by the thermal transfer process at the structure surface. This underlines the need for ensuring an efficient thermal transfer from hot air to coating surface during drying, before considering further measures to increase the thermal conductivity of porous coatings.

  9. Improvement of arthroscopic cartilage stiffness probe using amorphous diamond coating.

    PubMed

    Töyräs, Juha; Korhonen, Rami K; Voutilainen, Tanja; Jurvelin, Jukka S; Lappalainen, Reijo

    2005-04-01

    During arthroscopic evaluation of articular cartilage unstable contact and even slipping of the measurement instrument on the tissue surface may degrade the reproducibility of the measurement. The main aim of the present study was to achieve more stable contact by controlling the friction between articular cartilage surface and the arthroscopic cartilage stiffness probe (Artscan 200, Artscan Oy, Helsinki, Finland) using amorphous diamond (AD) coating. In order to obtain surfaces with different average roughnesses (R(a)), polished stainless steel disks were coated with AD by using the filtered pulsed arc-discharge (FPAD) method. Dynamic coefficient of friction (mu) between the articular cartilage (n = 8) and the coated plates along one non-coated plate was then determined. The friction between AD and cartilage could be controlled over a wide range (mu = 0.027-0.728, p < 0.05, Wilcoxon test) by altering the roughness. Possible deterioration of cartilage was investigated by measuring surface roughness after friction tests and comparing it with the roughness of the adjacent, untested samples (n = 8). Importantly, even testing with the roughest AD (R(a) = 1250 nm) did not damage articular surface. On the basis of the friction measurements, a proper AD coating was selected for the stiffness probe. The performance of coated and non-coated probe was compared by measuring bovine osteochondral samples (n = 22) with both instruments. The reproducibility of the stiffness measurements was significantly better with the AD-coated probe (CV% = 4.7) than with the uncoated probe (CV% = 8.2). To conclude, AD coating can be used to safely control dynamic friction with articular surface. Sufficient friction between articular surface and reference plate of the arthroscopic probe improves significantly reproducibility of the stiffness measurements. (c) 2005 Wiley Periodicals, Inc.

  10. KSC-08pd1963

    NASA Image and Video Library

    2008-07-14

    CAPE CANAVERAL, Fla. – In the tile shop at NASA's Kennedy Space Center, a worker holds one of the Boeing Replacement Insulation 18, or BRI-18, tiles being prepared for installation on space shuttles. BRI-18 is the strongest material used for thermal insulation on the orbiters and, when coated to produce toughened unipiece fibrous insulation, provides a tile with extremely high-impact resistance. It is replacing other tiles on areas of the vehicle where impact risk is high, such as the landing gear doors, the wing leading edge and the external tank doors. Photo credit: NASA/Jim Grossmann

  11. KSC-2012-1573

    NASA Image and Video Library

    2012-03-01

    CAPE CANAVERAL, Fla. -- Tim Wright, a United Space Alliance engineering manager at NASA's Kennedy Space Center in Florida, unloads the heat shield tiles that will be installed to the backshell of the Orion Multi-Purpose Crew Vehicle's Exploration Flight Test EFT-1 capsule. The tiles are being manufactured and inspected in Kennedy's Thermal Protection System Facility. The tiles will be baked at 2,200 degrees F to cure their ceramic coating. EFT-1 will be used during Orion's first test flight in space. For more information, visit www.nasa.gov/orion. Photo credit: Frankie Martin

  12. Development of antimicrobial coating by later-by-layer dip coating of chlorhexidine-loaded micelles.

    PubMed

    Tambunlertchai, Supreeda; Srisang, Siriwan; Nasongkla, Norased

    2017-06-01

    Layer-by-layer (LbL) dip coating, accompanying with the use of micelle structure, allows hydrophobic molecules to be coated on medical devices' surface via hydrogen bonding interaction. In addition, micelle structure also allows control release of encapsulated compound. In this research, we investigated methods to coat and maximize the amount of chlorhexidine (CHX) on silicone surface through LbL dip coating method utilizing hydrogen bonding interaction between PEG on micelle corona and PAA. The number of coated cycles was varied in the process and 90 coating cycles provided the maximum amount of CHX loaded onto the surface. In addition, pre-coating the surface with PAA enhanced the amount of coated CHX by 20%. Scanning electron microscope (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) were used to validate and characterize the coating. For control release aspect, the coated film tended to disrupt at physiological condition; hence chemical crosslinking was performed to minimize the disruption and maximize the release time. Chemical crosslinking at pH 2.5 and 4.5 were performed in the process. It was found that chemical crosslinking could help extend the release period up to 18 days. This was significantly longer when compared to the non-crosslinking silicone tube that could only prolong the release for 5 days. In addition, chemical crosslinking at pH 2.5 gave higher and better initial burst release, release period and antimicrobial properties than that of pH 4.5 or the normal used pH for chemical crosslinking process.

  13. The evaluation of arterial stiffness of essential hypertension and white coat hypertension in children: a case-control study.

    PubMed

    Tokgöz, Semiha Terlemez; Yılmaz, Dilek; Tokgöz, Yavuz; Çelik, Bülent; Bulut, Yasin

    2018-03-01

    The aim of this study was to determine and compare cardiovascular risks by assessing arterial stiffness in children with essential hypertension and white coat hypertension. Paediatric patients followed up with essential hypertension and white coat hypertension diagnoses and with no established end organ damage were involved in the study. Arterial stiffness in children included in the study was evaluated and compared by using the oscillometric device (Mobil-O-Graph) method. A total of 62 essential hypertension (34 male, 28 female), 38 white coat hypertension (21 male, 17 female), and 60 healthy controls (33 male, 27 female) were assessed in the present study. Pulse wave velocity of the essential hypertension, white coat hypertension, and control group was, respectively, as follows: 5.3±0.6 (m/s), 5.1±0.4 (m/s), 4.3±0.4 (m/s) (p<0.001); augmentation index outcomes were, respectively, determined as follows: 21.3±6.5, 19.3±6.4, 16.0±0.3 (p<0.001). Pulse wave velocity and augmentation index values of children with essential hypertension and white coat hypertension were found to be higher compared with the control group. This level was identified as correlated with the duration of hypertension in both patient groups (p<0.01). Arterial stiffness in children with essential hypertension and white coat hypertension was impaired compared with healthy children. This finding has made us think that white coat hypertension is not an innocent clinical situation. This information should be taken into consideration in the follow-up and treatment approaches of the patients.

  14. A poly(glycerol sebacate)-coated mesoporous bioactive glass scaffold with adjustable mechanical strength, degradation rate, controlled-release and cell behavior for bone tissue engineering.

    PubMed

    Lin, Dan; Yang, Kai; Tang, Wei; Liu, Yutong; Yuan, Yuan; Liu, Changsheng

    2015-07-01

    Various requirements in the field of tissue engineering have motivated the development of three-dimensional scaffold with adjustable physicochemical properties and biological functions. A series of multiparameter-adjustable mesoporous bioactive glass (MBG) scaffolds with uncrosslinked poly(glycerol sebacate) (PGS) coating was prepared in this article. MBG scaffold was prepared by a modified F127/PU co-templating process and then PGS was coated by a simple adsorption and lyophilization process. Through controlling macropore parameters and PGS coating amount, the mechanical strength, degradation rate, controlled-release and cell behavior of the composite scaffold could be modulated in a wide range. PGS coating successfully endowed MBG scaffold with improved toughness and adjustable mechanical strength covering the bearing range of trabecular bone (2-12MPa). Multilevel degradation rate of the scaffold and controlled-release rate of protein from mesopore could be achieved, with little impact on the protein activity owing to an "ultralow-solvent" coating and "nano-cavity entrapment" immobilization method. In vitro studies indicated that PGS coating promoted cell attachment and proliferation in a dose-dependent manner, without affecting the osteogenic induction capacity of MBG substrate. These results first provide strong evidence that uncrosslinked PGS might also yield extraordinary achievements in traditional MBG scaffold. With the multiparameter adjustability, the composite MBG/PGS scaffolds would have a hopeful prospect in bone tissue engineering. The design considerations and coating method of this study can also be extended to other ceramic-based artificial scaffolds and are expected to provide new thoughts on development of future tissue engineering materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Skylab D024 thermal control coatings and polymeric films experiment

    NASA Technical Reports Server (NTRS)

    Lehn, William L.; Hurley, Charles J.

    1992-01-01

    The Skylab D024 Thermal Control Coatings and Polymeric Films Experiment was designed to determine the effects of the external Skylab space environment on the performance and properties of a wide variety of selected thermal control coatings and polymeric films. Three duplicate sets of thermal control coatings and polymeric films were exposed to the Skylab space environment for varying periods of time during the mission. The specimens were retrieved by the astronauts during extravehicular activities (EVA) and placed in hermetically sealed return containers, recovered, and returned to the Wright Laboratory/Materials Laboratory/WPAFB, Ohio for analysis and evaluation. Postflight analysis of the three sets of recovered thermal control coatings indicated that measured changes in specimen thermo-optical properties were due to a combination of excessive contamination and solar degradation of the contaminant layer. The degree of degradation experienced over-rode, obscured, and compromised the measurement of the degradation of the substrate coatings themselves. Results of the analysis of the effects of exposure on the polymeric films and the contamination observed are also presented. The D024 results were used in the design of the LDEF M0003-5 Thermal Control Materials Experiment. The results are presented here to call to the attention of the many other LDEF experimenters the wealth of directly related, low earth orbit, space environmental exposure data that is available from the ten or more separate experiments that were conducted during the Skylab mission. Results of these experiments offer data on the results of low altitude space exposure on materials recovered from space with exposure longer than typical STS experiments for comparison with the LDEF results.

  16. Portable air pollution control equipment for the control of toxic particulate emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaurushia, A.; Odabashian, S.; Busch, E.

    1997-12-31

    Chromium VI (Cr VI) has been identified by the environmental regulatory agencies as a potent carcinogen among eleven heavy metals. A threshold level of 0.0001 lb/year for Cr VI emissions has been established by the California Air Resources Board for reporting under Assembly Bill 2588. A need for an innovative control technology to reduce fugitive emissions of Cr VI was identified during the Air Toxic Emissions Reduction Program at Northrop Grumman Military Aircraft Systems Division (NGMASD). NGMASD operates an aircraft assembly facility in El Segundo, CA. Nearly all of the aircraft components are coated with a protective coating (primer) priormore » to assembly. The primer has Cr VI as a component for its excellent corrosion resistance property. The complex assembly process requires fasteners which also need primer coating. Therefore, NGMASD utilizes High Volume Low Pressure (HVLP) guns for the touch-up spray coating operations. During the touch-up spray coating operations, Cr VI particles are atomized and transferred to the aircraft surface. The South Coast Air Quality Management District (SCAQMD) has determined that the HVLP gun transfers 65% of the paint particles onto the substrate and the remaining 35% are emitted as an overspray if air pollution controls are not applied. NGMASD has developed the Portable Air Pollution Control Equipment (PAPCE) to capture and control the overspray in order to reduce fugitive Cr VI emissions from the touch-up spray coating operations. A source test was performed per SCAQMD guidelines and the final report has been approved by the SCAQMD.« less

  17. Characterization and coating stability evaluation of nickel-titanium orthodontic esthetic wires: an in vivo study.

    PubMed

    Argalji, Nina; Silva, Eduardo Moreira da; Cury-Saramago, Adriana; Mattos, Claudia Trindade

    2017-08-21

    The objective of this study was to compare coating dimensions and surface characteristics of two different esthetic covered nickel-titanium orthodontic rectangular archwires, as-received from the manufacturer and after oral exposure. The study was designed for comparative purposes. Both archwires, as-received from the manufacturer, were observed using a stereomicroscope to measure coating thickness and inner metallic dimensions. The wires were also exposed to oral environment in 11 orthodontic active patients for 21 days. After removing the samples, stereomicroscopy images were captured, coating loss was measured and its percentage was calculated. Three segments of each wire (one as-received and two after oral exposure) were observed using scanning electron microscopy for a qualitative analysis of the labial surface of the wires. The Lilliefors test and independent t-test were applied to verify normality of data and statistical differences between wires, respectively. The significance level adopted was 0.05. The results showed that the differences between the wires while comparing inner height and thickness were statistically significant (p < 0.0001). In average, the most recently launched wire presented a coating thickness twice that of the control wire, which was also a statistically significant difference. The coating loss percentage was also statistically different (p = 0.0346) when the latest launched wire (13.27%) was compared to the control (29.63%). In conclusion, the coating of the most recent wire was thicker and more uniform, whereas the control had a thinner coating on the edges. After oral exposure, both tested wires presented coating loss, but the most recently launched wire exhibited better results.

  18. 40 CFR 63.4331 - How do I demonstrate initial compliance with the emission limitations?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... web coating/printing operations, you may use the emission rate without add-on controls option for any individual web coating/printing operation, for any group of web coating/printing operations in the affected source, or for all the web coating/printing operations as a group in the affected source. You must use...

  19. 40 CFR 63.4331 - How do I demonstrate initial compliance with the emission limitations?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... web coating/printing operations, you may use the emission rate without add-on controls option for any individual web coating/printing operation, for any group of web coating/printing operations in the affected source, or for all the web coating/printing operations as a group in the affected source. You must use...

  20. A plasma-sprayed valve coating

    NASA Technical Reports Server (NTRS)

    Brennan, A.; Olmore, A. B.

    1980-01-01

    Need to reduce wear on nickel alloy seats and poppets for Space Shuttle main engine led to fused cobalt/tungsten carbide coating. Coating, which is dense, wear-resistant, and nonporous, can be applied in controlled amounts to various substrate configurations. Ease of application to parts with intricate shapes and contours should make coating useful in automotive and aircraft manufacturing.

Top