Sample records for control components recycling

  1. Management status of end-of-life vehicles and development strategies of used automotive electronic control components recycling industry in China.

    PubMed

    Wang, Junjun; Chen, Ming

    2012-11-01

    Recycling companies play a leading role in the system of end-of-life vehicles (ELVs) in China. Automotive manufacturers in China are rarely involved in recycling ELVs, and they seldom provide dismantling information for recycling companies. In addition, no professional shredding plant is available. The used automotive electronic control components recycling industry in China has yet to take shape because of the lack of supporting technology and profitable models. Given the rapid growth of the vehicle population and electronic control units in automotives in China, the used automotive electronic control components recycling industry requires immediate development. This paper analyses the current recycling system of ELVs in China and introduces the automotive product recycling technology roadmap as well as the recycling industry development goals. The strengths, weaknesses, opportunities and challenges of the current used automotive electronic control components recycling industry in China are analysed comprehensively based on the 'strengths, weaknesses, opportunities and threats' (SWOT) method. The results of the analysis indicate that this recycling industry responds well to all the factors and has good opportunities for development. Based on the analysis, new development strategies for the used automotive electronic control components recycling industry in accordance with the actual conditions of China are presented.

  2. Specific recycling receptors are targeted to the immune synapse by the intraflagellar transport system

    PubMed Central

    Finetti, Francesca; Patrussi, Laura; Masi, Giulia; Onnis, Anna; Galgano, Donatella; Lucherini, Orso Maria; Pazour, Gregory J.; Baldari, Cosima T.

    2014-01-01

    ABSTRACT T cell activation requires sustained signaling at the immune synapse, a specialized interface with the antigen-presenting cell (APC) that assembles following T cell antigen receptor (TCR) engagement by major histocompatibility complex (MHC)-bound peptide. Central to sustained signaling is the continuous recruitment of TCRs to the immune synapse. These TCRs are partly mobilized from an endosomal pool by polarized recycling. We have identified IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, as a central regulator of TCR recycling to the immune synapse. Here, we have investigated the interplay of IFT20 with the Rab GTPase network that controls recycling. We found that IFT20 forms a complex with Rab5 and the TCR on early endosomes. IFT20 knockdown (IFT20KD) resulted in a block in the recycling pathway, leading to a build-up of recycling TCRs in Rab5+ endosomes. Recycling of the transferrin receptor (TfR), but not of CXCR4, was disrupted by IFT20 deficiency. The IFT components IFT52 and IFT57 were found to act together with IFT20 to regulate TCR and TfR recycling. The results provide novel insights into the mechanisms that control TCR recycling and immune synapse assembly, and underscore the trafficking-related function of the IFT system beyond ciliogenesis. PMID:24554435

  3. [Strategy Discussion for Pollution Control of Post-Consumer Home Medical Equipment].

    PubMed

    Zhang, Xu; Xu, Honglei; Huang, Yanhong; Peng, Xiaolong

    2015-09-01

    Compared with the recycle of post-consumer medical equipments in medical institutions, the treatment of post-consumer home medical equipments (HME) should be consummated in the field of academic research, policy and regulatory plus corresponding supporting industries. The HME industry situation and its classification, main components and properties are reviewed in this paper. The merits and demerits of various pollution control techniques in the recycle of post-consumer medical equipments are analysed. For instance, the source control techniques to improve the property of raw materials, the end treatment technique to recycle the HME and regenerate energy are also discussed. Further, the development prospect of pollution control technique in the recycle of HME and the challenges must face up to are also probed.

  4. Phosphorus and nitrogen recycle following algal bio-crude production via continuous hydrothermal liquefaction

    DOE PAGES

    Edmundson, S.; Huesemann, M.; Kruk, R.; ...

    2017-07-25

    Phosphorus and nitrogen are essential components of microalgal growth media. Critical to a wide range of biochemical processes, they commonly limit primary productivity. Recycling elemental phosphorus and fixed nitrogen after fuel conversion via hydrothermal liquefaction (HTL) of algae biomass reduces the need for mined phosphorus and synthetic nitrogen resources. We used scenedesmus obliquus DOE 0152.Z and Chlorella sorokiniana DOE1412 as test organisms in assessing nutrient recycle of phosphorus from filtered solids collected downstream of the HTL reactor and nitrogen collected from the aqueous phase after gravimetric biocrude separation. Maximum specific growth rates were measured in growth media using HTL wastemore » as the sole source of either phosphorus or nitrogen and were compared to an algal growth medium control (BG-11). The maximum specific growth rate of both organisms in the recycled phosphorus medium were nearly identical to rates observed in the control medium. Both organisms showed significantly reduced growth rates in the recycled nitrogen medium. C. sorokiniana DOE1412 adapted after several days of exposure whereas S. obliquus DOE0152.Z exhibited poor adaptability to the recycled nitrogen medium. After adaptation, growth rates observed with C. sorokiniana DOE1412 in the recycled nitrogen medium were 3.02 (± 0.13) day -1, 89% of the control medium (3.40 ± 0.21). We further tested maximum specific growth rates of C. sorokiniana DOE1412 in a medium derived entirely from HTL byproducts, completely replacing all components including nitrogen and phosphorus. In this medium we observed rates of 2.70 ± 0.05 day -1, 79% of the control. By adding trace metals to this recycled medium we improved growth rates significantly to 3.10 ± 0.10, 91% of the control, which indicates a critical element is lost in the conversion process. Recycling elemental resources such as phosphorus and nitrogen from the HTL biofuel conversion process can provide a significant reduction in media cost and improves the prospects for industrial scale, algae-based biofuels.« less

  5. Phosphorus and nitrogen recycle following algal bio-crude production via continuous hydrothermal liquefaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmundson, S.; Huesemann, M.; Kruk, R.

    Phosphorus and nitrogen are essential components of microalgal growth media. Critical to a wide range of biochemical processes, they commonly limit primary productivity. Recycling elemental phosphorus and fixed nitrogen after fuel conversion via hydrothermal liquefaction (HTL) of algae biomass reduces the need for mined phosphorus and synthetic nitrogen resources. We used scenedesmus obliquus DOE 0152.Z and Chlorella sorokiniana DOE1412 as test organisms in assessing nutrient recycle of phosphorus from filtered solids collected downstream of the HTL reactor and nitrogen collected from the aqueous phase after gravimetric biocrude separation. Maximum specific growth rates were measured in growth media using HTL wastemore » as the sole source of either phosphorus or nitrogen and were compared to an algal growth medium control (BG-11). The maximum specific growth rate of both organisms in the recycled phosphorus medium were nearly identical to rates observed in the control medium. Both organisms showed significantly reduced growth rates in the recycled nitrogen medium. C. sorokiniana DOE1412 adapted after several days of exposure whereas S. obliquus DOE0152.Z exhibited poor adaptability to the recycled nitrogen medium. After adaptation, growth rates observed with C. sorokiniana DOE1412 in the recycled nitrogen medium were 3.02 (± 0.13) day -1, 89% of the control medium (3.40 ± 0.21). We further tested maximum specific growth rates of C. sorokiniana DOE1412 in a medium derived entirely from HTL byproducts, completely replacing all components including nitrogen and phosphorus. In this medium we observed rates of 2.70 ± 0.05 day -1, 79% of the control. By adding trace metals to this recycled medium we improved growth rates significantly to 3.10 ± 0.10, 91% of the control, which indicates a critical element is lost in the conversion process. Recycling elemental resources such as phosphorus and nitrogen from the HTL biofuel conversion process can provide a significant reduction in media cost and improves the prospects for industrial scale, algae-based biofuels.« less

  6. Approaches to resource recovery in controlled ecological life support systems

    NASA Technical Reports Server (NTRS)

    Bubenheim, D. L.; Wydeven, T.

    1994-01-01

    Recovery of resources from waste streams in a space habitat is essential to minimize the resupply burden and achieve self sufficiency. The ultimate goal of a Controlled Ecological Life Support System (CELSS) is to achieve the greatest practical level of mass recycle and provide self sufficiency and safety for humans. Several mission scenarios leading to the ultimate application could employ CELSS component technologies or subsystems with initial emphasis on recycle of the largest mass components of the waste stream. Candidate physical/chemical and biological processes for resource recovery from liquid and solid waste streams are discussed and the current fundamental recovery potentials are estimated.

  7. Method and apparatus for improved wire saw slurry

    DOEpatents

    Costantini, Michael A.; Talbott, Jonathan A.; Chandra, Mohan; Prasad, Vishwanath; Caster, Allison; Gupta, Kedar P.; Leyvraz, Philippe

    2000-09-05

    A slurry recycle process for use in free-abrasive machining operations such as for wire saws used in wafer slicing of ingots, where the used slurry is separated into kerf-rich and abrasive-rich components, and the abrasive-rich component is reconstituted into a makeup slurry. During the process, the average particle size of the makeup slurry is controlled by monitoring the condition of the kerf and abrasive components and making necessary adjustments to the separating force and dwell time of the separator apparatus. Related pre-separator and post separator treatments, and feedback of one or the other separator slurry output components for mixing with incoming used slurry and recirculation through the separator, provide further effectiveness and additional control points in the process. The kerf-rich component is eventually or continually removed; the abrasive-rich component is reconstituted into a makeup slurry with a controlled, average particle size such that the products of the free-abrasive machining method using the recycled slurry process of the invention are of consistent high quality with less TTV deviation from cycle to cycle for a prolonged period or series of machining operations.

  8. Myosin 1g Contributes to CD44 Adhesion Protein and Lipid Rafts Recycling and Controls CD44 Capping and Cell Migration in B Lymphocytes

    PubMed Central

    López-Ortega, Orestes; Santos-Argumedo, Leopoldo

    2017-01-01

    Cell migration and adhesion are critical for immune system function and involve many proteins, which must be continuously transported and recycled in the cell. Recycling of adhesion molecules requires the participation of several proteins, including actin, tubulin, and GTPases, and of membrane components such as sphingolipids and cholesterol. However, roles of actin motor proteins in adhesion molecule recycling are poorly understood. In this study, we identified myosin 1g as one of the important motor proteins that drives recycling of the adhesion protein CD44 in B lymphocytes. We demonstrate that the lack of Myo1g decreases the cell-surface levels of CD44 and of the lipid raft surrogate GM1. In cells depleted of Myo1g, the recycling of CD44 was delayed, the delay seems to be caused at the level of formation of recycling complex and entry into recycling endosomes. Moreover, a defective lipid raft recycling in Myo1g-deficient cells had an impact both on the capping of CD44 and on cell migration. Both processes required the transportation of lipid rafts to the cell surface to deliver signaling components. Furthermore, the extramembrane was essential for cell expansion and remodeling of the plasma membrane topology. Therefore, Myo1g is important during the recycling of lipid rafts to the membrane and to the accompanied proteins that regulate plasma membrane plasticity. Thus, Myosin 1g contributes to cell adhesion and cell migration through CD44 recycling in B lymphocytes. PMID:29321775

  9. Nitrogen Recycling and Flowering Time in Perennial Bioenergy Crops

    PubMed Central

    Schwartz, Christopher; Amasino, Richard

    2013-01-01

    Perennials have a number of traits important for profitability and sustainability of a biofuel crop. Perennialism is generally defined as the ability to grow and reproduce in multiple years. In temperate climates, many perennial plants enter dormancy during winter and recycle nutrients, such as nitrogen, to below ground structures for the next growing season. Nitrogen is expensive to produce and application of nitrogen increases the potent greenhouse gas NOx. Perennial bioenergy crops have been evaluated for biomass yields with nitrogen fertilization, location, year, and genotype as variables. Flowering time and dormancy are closely related to the N recycling program. Substantial variation for flowering time and dormancy has been identified in the switchgrass (Panicum virgatum L.) species, which provides a source to identify the genetic components of N recycling, and for use in breeding programs. Some studies have addressed recycling specifically, but flowering time and developmental differences were largely ignored, complicating interpretation of the results. Future studies on recycling need to appreciate plant developmental stage to allow comparison between experiments. A perennial/annual model(s) and more environmentally controlled experiments would be useful to determine the genetic components of nitrogen recycling. Increasing biomass yield per unit of nitrogen by maximizing recycling might mean the difference for profitability of a biofuel crop and has the added benefit of minimizing negative environmental effects from agriculture. PMID:23626592

  10. Recycle dynamics during centrifugal compressor ESD, start-up and surge control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botros, K.K.; Jones, B.J.; Richards, D.J.

    1996-12-31

    Recycle systems are important components in the operation of centrifugal compressor stations. They are essential during a start-up operation, for surge protection and for emergency shutdown (ESD). These operations are inherently dynamic where interactions between equipment, control and gas flow occur in a complex manner with the associated risk of compressor surge. Of particular importance are the effects or recycle system capacity, the recycle valve characteristics, check valve dynamic behavior, piping geometry and capacitance around the compressor unit, and the performance characteristics of the centrifugal compressor itself. This paper presents numerical results of the effects of some of these parametersmore » on surge control, ESD and unit startup. These parameters are: (1) The effects of damping the surge control flow signal in an attempt to suppress the signal noise, on the integrity of the surge control system; (2) The effects of recycle valve characteristics, stroke time and valve capacity on ESD; (3) The effects of recycle line size on ESD; and (4) The effects of the recycle valve closing time (or rate) on the startup operation, with the intent of shortening this time to minimum for environmental reasons. Results were obtained from the solution of the pertinent dynamic equations describing the gas and equipment dynamics which has been verified against field and laboratory measurements. The samples presented in this paper were applied to a 24 MW natural gas compressor station on the NOVA Gas Transmission system, and to a scale-down laboratory model. Influence of other parameters from this investigation were published elsewhere and are cited in the reference section.« less

  11. A TOCA/CDC-42/PAR/WAVE functional module required for retrograde endocytic recycling.

    PubMed

    Bai, Zhiyong; Grant, Barth D

    2015-03-24

    Endosome-to-Golgi transport is required for the function of many key membrane proteins and lipids, including signaling receptors, small-molecule transporters, and adhesion proteins. The retromer complex is well-known for its role in cargo sorting and vesicle budding from early endosomes, in most cases leading to cargo fusion with the trans-Golgi network (TGN). Transport from recycling endosomes to the TGN has also been reported, but much less is understood about the molecules that mediate this transport step. Here we provide evidence that the F-BAR domain proteins TOCA-1 and TOCA-2 (Transducer of Cdc42 dependent actin assembly), the small GTPase CDC-42 (Cell division control protein 42), associated polarity proteins PAR-6 (Partitioning defective 6) and PKC-3/atypical protein kinase C, and the WAVE actin nucleation complex mediate the transport of MIG-14/Wls and TGN-38/TGN38 cargo proteins from the recycling endosome to the TGN in Caenorhabditis elegans. Our results indicate that CDC-42, the TOCA proteins, and the WAVE component WVE-1 are enriched on RME-1-positive recycling endosomes in the intestine, unlike retromer components that act on early endosomes. Furthermore, we find that retrograde cargo TGN-38 is trapped in early endosomes after depletion of SNX-3 (a retromer component) but is mainly trapped in recycling endosomes after depletion of CDC-42, indicating that the CDC-42-associated complex functions after retromer in a distinct organelle. Thus, we identify a group of interacting proteins that mediate retrograde recycling, and link these proteins to a poorly understood trafficking step, recycling endosome-to-Golgi transport. We also provide evidence for the physiological importance of this pathway in WNT signaling.

  12. A TOCA/CDC-42/PAR/WAVE functional module required for retrograde endocytic recycling

    PubMed Central

    Bai, Zhiyong; Grant, Barth D.

    2015-01-01

    Endosome-to-Golgi transport is required for the function of many key membrane proteins and lipids, including signaling receptors, small-molecule transporters, and adhesion proteins. The retromer complex is well-known for its role in cargo sorting and vesicle budding from early endosomes, in most cases leading to cargo fusion with the trans-Golgi network (TGN). Transport from recycling endosomes to the TGN has also been reported, but much less is understood about the molecules that mediate this transport step. Here we provide evidence that the F-BAR domain proteins TOCA-1 and TOCA-2 (Transducer of Cdc42 dependent actin assembly), the small GTPase CDC-42 (Cell division control protein 42), associated polarity proteins PAR-6 (Partitioning defective 6) and PKC-3/atypical protein kinase C, and the WAVE actin nucleation complex mediate the transport of MIG-14/Wls and TGN-38/TGN38 cargo proteins from the recycling endosome to the TGN in Caenorhabditis elegans. Our results indicate that CDC-42, the TOCA proteins, and the WAVE component WVE-1 are enriched on RME-1–positive recycling endosomes in the intestine, unlike retromer components that act on early endosomes. Furthermore, we find that retrograde cargo TGN-38 is trapped in early endosomes after depletion of SNX-3 (a retromer component) but is mainly trapped in recycling endosomes after depletion of CDC-42, indicating that the CDC-42–associated complex functions after retromer in a distinct organelle. Thus, we identify a group of interacting proteins that mediate retrograde recycling, and link these proteins to a poorly understood trafficking step, recycling endosome-to-Golgi transport. We also provide evidence for the physiological importance of this pathway in WNT signaling. PMID:25775511

  13. Disposing and recycling waste printed circuit boards: disconnecting, resource recovery, and pollution control.

    PubMed

    Wang, Jianbo; Xu, Zhenming

    2015-01-20

    Over the past decades, China has been suffering from negative environmental impacts from distempered e-waste recycling activities. After a decade of effort, disassembly and raw materials recycling of environmentally friendly e-waste have been realized in specialized companies, in China, and law enforcement for illegal activities of e-waste recycling has also been made more and more strict. So up to now, the e-waste recycling in China should be developed toward more depth and refinement to promote industrial production of e-waste resource recovery. Waste printed circuit boards (WPCBs), which are the most complex, hazardous, and valuable components of e-waste, are selected as one typical example in this article that reviews the status of related regulations and technologies of WPCBs recycling, then optimizes, and integrates the proper approaches in existence, while the bottlenecks in the WPCBs recycling system are analyzed, and some preliminary experiments of pinch technologies are also conducted. Finally, in order to provide directional guidance for future development of WPCBs recycling, some key points in the WPCBs recycling system are proposed to point towards a future trend in the e-waste recycling industry.

  14. Environmental Aspects of Use of Recycled Carbon Fiber Composites in Automotive Applications.

    PubMed

    Meng, Fanran; McKechnie, Jon; Turner, Thomas; Wong, Kok H; Pickering, Stephen J

    2017-11-07

    The high cost and energy intensity of virgin carbon fiber manufacture provides an opportunity to recover substantial value from carbon fiber reinforced plastic wastes. In this study, we assess the life cycle environmental implications of recovering carbon fiber and producing composite materials as substitutes for conventional and proposed lightweight materials in automotive applications (e.g., steel, aluminum, virgin carbon fiber). Key parameters for the recycled carbon fiber materials, including fiber volume fraction and fiber alignment, are investigated to identify beneficial uses of recycled carbon fiber in the automotive sector. Recycled carbon fiber components can achieve the lowest life cycle environmental impacts of all materials considered, although the actual impact is highly dependent on the design criteria (λ value) of the specific component. Low production impacts associated with recycled carbon fiber components are observed relative to lightweight competitor materials (e.g., aluminum, virgin carbon fiber reinforced plastic). In addition, recycled carbon fiber components have low in-use energy use due to mass reductions and associated reduction in mass-induced fuel consumption. The results demonstrate environmental feasibility of the CFRP recycling materials, supporting the emerging commercialization of CF recycling technologies and identifying significant potential market opportunities in the automotive sector.

  15. Recycling and reuse: Are they the answer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-11-01

    At a time when reuse is widely recognized as a partial solution to the US mounting waste problem, it comes as no surprise that drinking water suppliers are giving thought to reclaiming residuals. This reuse may occur within the treatment plant, for example, by recovering alum from sludge or recycling waste streams, or outside the plant, where endeavors such as controlled land application return components of sludge to the soil. By nature, sludges and other residuals likely contain contaminants that have been removed from the water--e.g., Giardia and Cryptosporidium, trihalomethane precursors, and heavy metals. Recycling waste flows has the potentialmore » to disturb the treatment process or to affect the quality of finished water. Proper treatment and monitoring of waste streams can render them acceptable for recycling.« less

  16. High levels of antimony in dust from e-waste recycling in southeastern China.

    PubMed

    Bi, Xiangyang; Li, Zhonggen; Zhuang, Xiaochun; Han, Zhixuan; Yang, Wenlin

    2011-11-01

    Environmental contamination due to uncontrolled e-waste recycling is an emerging global issue. Antimony (Sb) is a toxic element used in semiconductor components and flame retardants for circuit board within electronic equipment. When e-waste is recycled, Sb is released and contaminates the surrounding environment; however, few studies have characterized the extent of this problem. In this study, we investigated Sb and arsenic (As) distributions in indoor dust from 13 e-waste recycling villages in Guiyu, Guangdong Province, southeastern China. Results revealed significantly elevated concentrations of Sb (6.1-232 mg/kg) in dust within all villages, which were 3.9-147 times higher than those from the non e-waste sites, indicating e-waste recycling was an important source of Sb pollution. On the contrary, As concentrations (5.4-17.7 mg/kg) in e-waste dusts were similar to reference values from the control sites. Therefore, dusts emitted from e-waste recycling may be characterized by high Sb/As ratios, which may help identify the contamination due to the e-waste recycling activities. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Electric vehicle recycling 2020: Key component power electronics.

    PubMed

    Bulach, Winfried; Schüler, Doris; Sellin, Guido; Elwert, Tobias; Schmid, Dieter; Goldmann, Daniel; Buchert, Matthias; Kammer, Ulrich

    2018-04-01

    Electromobility will play a key role in order to reach the specified ambitious greenhouse gas reduction targets in the German transport sector of 42% between 1990 and 2030. Subsequently, a significant rise in the sale of electric vehicles (EVs) is to be anticipated in future. The amount of EVs to be recycled will rise correspondingly after a delay. This includes the recyclable power electronics modules which are incorporated in every EV as an important component for energy management. Current recycling methods using car shredders and subsequent post shredder technologies show high recycling rates for the bulk metals but are still associated with high losses of precious and strategic metals such as gold, silver, platinum, palladium and tantalum. For this reason, the project 'Electric vehicle recycling 2020 - key component power electronics' developed an optimised recycling route for recycling power electronics modules from EVs which is also practicable in series production and can be implemented using standardised technology. This 'WEEE recycling route' involves the disassembly of the power electronics from the vehicle and a subsequent recycling in an electronic end-of-life equipment recycling plant. The developed recycling process is economical under the current conditions and raw material prices, even though it involves considerably higher costs than recycling using the car shredder. The life cycle assessment shows basically good results, both for the traditional car shredder route and the developed WEEE recycling route: the latter provides additional benefits from some higher recovery rates and corresponding credits.

  18. A review on management of spent lithium ion batteries and strategy for resource recycling of all components from them.

    PubMed

    Zhang, Wenxuan; Xu, Chengjian; He, Wenzhi; Li, Guangming; Huang, Juwen

    2018-02-01

    The wide use of lithium ion batteries (LIBs) has brought great numbers of discarded LIBs, which has become a common problem facing the world. In view of the deleterious effects of spent LIBs on the environment and the contained valuable materials that can be reused, much effort in many countries has been made to manage waste LIBs, and many technologies have been developed to recycle waste LIBs and eliminate environmental risks. As a review article, this paper introduces the situation of waste LIB management in some developed countries and in China, and reviews separation technologies of electrode components and refining technologies of LiCoO 2 and graphite. Based on the analysis of these recycling technologies and the structure and components characteristics of the whole LIB, this paper presents a recycling strategy for all components from obsolete LIBs, including discharge, dismantling, and classification, separation of electrode components and refining of LiCoO 2 /graphite. This paper is intended to provide a valuable reference for the management, scientific research, and industrial implementation on spent LIBs recycling, to recycle all valuable components and reduce the environmental pollution, so as to realize the win-win situation of economic and environmental benefits.

  19. Addendum: Development of a preprototype times wastewater recovery subsystem

    NASA Technical Reports Server (NTRS)

    Dehner, G. F.

    1984-01-01

    The results of the second generation operational improvements and the TIMES (Thermoelectric Integrated Membrane Evaporation Subsystem) 2 study are covered. Areas covered in the second generation operational improvements are improved temperature control, water quality improvements, subsytem operational improvements, solid handling improvements, wastewater pretreatment optimization, and membrane rejuvenation concepts. The task for the TIMES 2 study are thermoelectric regenerator improvement, recycle loop pH operational criteria, recycle loop component optimization, and hollow fiber membrane evaporator improvement. Results are presented and conclusions are drawn from both studies.

  20. Designing the ideal habitat for entomopathogen use in nursery production.

    PubMed

    Nielsen, Anne L; Lewis, Edwin E

    2012-07-01

    Greenhouse and nursery producers use entomopathogens (nematodes and fungi) to control soil pests. Although it is known that the physical and chemical properties of mineral soil significantly impact upon soil pathogens, the influence of soilless media used for plant production on entomopathogen performance is poorly understood. Survival and foraging distance were differently affected by sand:peat, bark and sawdust media for entomopathogenic nematodes, but not for the immobile fungus Metarhizium anisopliae. Redwood sawdust medium consistently had a negative impact upon entomopathogenic nematodes. Dividing media into individual components supported the hypothesis that redwood sawdust reduced foraging and infection abilities of S. riobrave and H. bacteriophora. Physically altering the components by adding sand significantly improved foraging and infection success for S. riobrave in media not optimum for foraging. This study is the first to highlight the importance of selecting the appropriate soilless media and pathogen species combinations to increase efficacy of biological control. H. bacteriophora was able to find hosts in a wider diversity of medium components than S. riobrave, although both nematode species performed well in peat moss and recycled plant material. These results suggest that peat moss, recycled plant material and hardwood bark are components amenable to EPN biological control programs. Copyright © 2012 Society of Chemical Industry.

  1. Improving the layout of recycling centres by use of lean production principles.

    PubMed

    Sundin, Erik; Björkman, Mats; Eklund, Mats; Eklund, Jörgen; Engkvist, Inga-Lill

    2011-06-01

    There has been increased focus on recycling in Sweden during recent years. This focus can be attributed to external environmental factors such as tougher legislation, but also to the potential gains for raw materials suppliers. Recycling centres are important components in the Swedish total recycling system. Recycling centres are manned facilities for waste collection where visitors can bring, sort and discard worn products as well as large-sized, hazardous, and electrical waste. The aim of this paper was to identify and describe the main flows and layout types at Swedish recycling centres. The aim was also to adapt and apply production theory for designing and managing recycling centre operations. More specifically, this means using lean production principles to help develop guidelines for recycling centre design and efficient control. Empirical data for this research was primarily collected through interviews and questionnaires among both visitors and employees at 16 Swedish recycling centres. Furthermore, adapted observation protocols have been used in order to explore visitor activities. There was also close collaboration with a local recycling centre company, which shared their layout experiences with the researchers in this project. The recycling centres studied had a variety of problems such as queues of visitors, overloading of material and improper sorting. The study shows that in order to decrease the problems, the recycling centres should be designed and managed according to lean production principles, i.e. through choosing more suitable layout choices with visible and linear flows, providing better visitor information, and providing suitable technical equipment. Improvements can be achieved through proper planning of the layout and control of the flow of vehicles, with the result of increased efficiency and capacity, shorter visits, and cleaner waste fractions. The benefits of a lean production mindset include increased visitor capacity, waste flexibility, improved sorting quality, shorter time for visits and improved working conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Recycling carbon fibre reinforced polymers for structural applications: technology review and market outlook.

    PubMed

    Pimenta, Soraia; Pinho, Silvestre T

    2011-02-01

    Both environmental and economic factors have driven the development of recycling routes for the increasing amount of carbon fibre reinforced polymer (CFRP) waste generated. This paper presents a review of the current status and outlook of CFRP recycling operations, focusing on state-of-the-art fibre reclamation and re-manufacturing processes, and on the commercialisation and potential applications of recycled products. It is shown that several recycling and re-manufacturing processes are reaching a mature stage, with implementations at commercial scales in operation, production of recycled CFRPs having competitive structural performances, and demonstrator components having been manufactured. The major challenges for the sound establishment of a CFRP recycling industry and the development of markets for the recyclates are summarised; the potential for introducing recycled CFRPs in structural components is discussed, and likely promising applications are investigated. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Correlation analysis between sulphate content and leaching of sulphates in recycled aggregates from construction and demolition wastes.

    PubMed

    Barbudo, Auxi; Galvín, Adela P; Agrela, Francisco; Ayuso, Jesús; Jiménez, Jose Ramón

    2012-06-01

    In some recycled aggregates applications, such as component of new concrete or roads, the total content of soluble sulphates should be measured and controlled. Restrictions are usually motivated by the resistance or stability of the new structure, and in most cases, structural concerns can be remedied by the use of techniques such as sulphur-resistant cements. However, environmental risk assessment from recycling and reuse construction products is often forgotten. The purpose of this study is to analyse the content of soluble sulphate on eleven recycled aggregates and six samples prepared in laboratory by the addition of different gypsum percentages. As points of reference, two natural aggregates were tested. An analysis of the content of the leachable amount of heavy metals regulated by European regulation was included. As a result, the correlation between solubility and leachability data allow suggest a limiting gypsum amount of 4.4% on recycled aggregates. This limit satisfies EU Landfill Directive criteria, which is currently used as reference by public Spanish Government for recycled aggregates in construction works. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Investigating why recycling gravity harvested algae increases harvestability and productivity in high rate algal ponds.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-15

    It has previously been shown that recycling gravity harvested algae promotes Pediastrum boryanum dominance and improves harvestability and biomass production in pilot-scale High Rate Algal Ponds (HRAPs) treating domestic wastewater. In order to confirm the reproducibility of these findings and investigate the mechanisms responsible, this study utilized twelve 20 L outdoor HRAP mesocosms operated with and without algal recycling. It then compared the recycling of separated solid and liquid components of the harvested biomass against un-separated biomass. The work confirmed that algal recycling promoted P. boryanum dominance, improved 1 h-settleability by >20% and increased biomass productivity by >25% compared with controls that had no recycling. With regard to the improved harvestability, of particular interest was that recycling the liquid fraction alone caused a similar improvement in settleability as recycling the solid fraction. This may be due to the presence of extracellular polymeric substances in the liquid fraction. While there are many possible mechanisms that could account for the increased productivity with algal recycling, all but two were systematically eliminated: (i) the mean cell residence time was extended thereby increasing the algal concentration and more fully utilizing the incident sunlight and, (ii) the relative proportions of algal growth stages (which have different specific growth rates) was changed, resulting in a net increase in the overall growth rate of the culture. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Refining technology for the recycling of stainless steel radioactive scrap metals, FY 94 bi-annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizia, R.E.; Atteridge, D.G.; Buckentin, J.

    1994-08-01

    The research addressed under this project is the recycling of metallic nuclear-related by-product materials under the direction of Westinghouse Idaho Nuclear Company (WINCO). The program addresses the recycling of radioactive scrap metals (RSM) for beneficial re-use within the DOE complex; in particular, this program addresses the recycling of stainless steel RSM. It is anticipated that various stainless steel components under WINCO control at the Idaho Falls Engineering Laboratory (INEL), such as fuel pool criticality barriers and fuel storage racks will begin to be recycled in FY94-95. The end product of this recycling effort is expected to be waste and overpackmore » canisters for densified high level waste for the Idaho Waste Immobilization Facility and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific components of this problem area that are presently being, or have been, addressed by CAAMSEC are: (1) the melting/remelting of stainless steel RSM into billet form; (2) the melting/remelting initial research focus will be on the use of radioactive surrogates to study; (3) the cost effectiveness of RSM processing oriented towards privatization of RSM reuse and/or resale. Other components of this problem that may be addressed under program extension are: (4) the melting/remelting of carbon steel; (5) the processing of billet material into product form which shall meet all applicable ASTM requirements; and, (6) the fabrication of an actual prototypical product; the present concept of an end product is a low carbon Type 304/316 stainless steel cylindrical container for densified and/or vitrified high level radioactive waste and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific work reported herein covers the melting/remelting of stainless steel {open_quotes}scrap{close_quotes} metal into billet form and the study of surrogate material removal effectiveness by various remelting techniques.« less

  6. Regulation of synaptic vesicle recycling by complex formation between intersectin 1 and the clathrin adaptor complex AP2

    PubMed Central

    Pechstein, Arndt; Bacetic, Jelena; Vahedi-Faridi, Ardeschir; Gromova, Kira; Sundborger, Anna; Tomlin, Nikolay; Krainer, Georg; Vorontsova, Olga; Schäfer, Johannes G.; Owe, Simen G.; Cousin, Michael A.; Saenger, Wolfram; Shupliakov, Oleg; Haucke, Volker

    2010-01-01

    Clathrin-mediated synaptic vesicle (SV) recycling involves the spatiotemporally controlled assembly of clathrin coat components at phosphatidylinositiol (4, 5)-bisphosphate [PI(4,5)P2]-enriched membrane sites within the periactive zone. Such spatiotemporal control is needed to coordinate SV cargo sorting with clathrin/AP2 recruitment and to restrain membrane fission and synaptojanin-mediated uncoating until membrane deformation and clathrin coat assembly are completed. The molecular events underlying these control mechanisms are unknown. Here we show that the endocytic SH3 domain-containing accessory protein intersectin 1 scaffolds the endocytic process by directly associating with the clathrin adaptor AP2. Acute perturbation of the intersectin 1-AP2 interaction in lamprey synapses in situ inhibits the onset of SV recycling. Structurally, complex formation can be attributed to the direct association of hydrophobic peptides within the intersectin 1 SH3A-B linker region with the “side sites” of the AP2 α- and β-appendage domains. AP2 appendage association of the SH3A-B linker region inhibits binding of the inositol phosphatase synaptojanin 1 to intersectin 1. These data identify the intersectin-AP2 complex as an important regulator of clathrin-mediated SV recycling in synapses. PMID:20160082

  7. The formal electronic recycling industry: Challenges and opportunities in occupational and environmental health research.

    PubMed

    Ceballos, Diana Maria; Dong, Zhao

    2016-10-01

    E-waste includes electrical and electronic equipment discarded as waste without intent of reuse. Informal e-waste recycling, typically done in smaller, unorganized businesses, can expose workers and communities to serious chemical health hazards. It is unclear if formalization into larger, better-controlled electronics recycling (e-recycling) facilities solves environmental and occupational health problems. To systematically review the literature on occupational and environmental health hazards of formal e-recycling facilities and discuss challenges and opportunities to strengthen research in this area. We identified 37 publications from 4 electronic databases (PubMed, Web of Science, Environmental Index, NIOSHTIC-2) specific to chemical exposures in formal e-recycling facilities. Environmental and occupational exposures depend on the degree of formalization of the facilities but further reduction is needed. Reported worker exposures to metals were often higher than recommended occupational guidelines. Levels of brominated flame-retardants in worker's inhaled air and biological samples were higher than those from reference groups. Air, dust, and soil concentrations of metals, brominated flame-retardants, dioxins, furans, polycyclic-aromatic hydrocarbons, or polychlorinated biphenyls found inside or near the facilities were generally higher than reference locations, suggesting transport into the environment. Children of a recycler had blood lead levels higher than public health recommended guidelines. With mounting e-waste, more workers, their family members, and communities could experience unhealthful exposures to metals and other chemicals. We identified research needs to further assess exposures, health, and improve controls. The long-term solution is manufacturing of electronics without harmful substances and easy-to-disassemble components. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Reverse logistics in the Brazilian construction industry.

    PubMed

    Nunes, K R A; Mahler, C F; Valle, R A

    2009-09-01

    In Brazil most Construction and Demolition Waste (C&D waste) is not recycled. This situation is expected to change significantly, since new federal regulations oblige municipalities to create and implement sustainable C&D waste management plans which assign an important role to recycling activities. The recycling organizational network and its flows and components are fundamental to C&D waste recycling feasibility. Organizational networks, flows and components involve reverse logistics. The aim of this work is to introduce the concepts of reverse logistics and reverse distribution channel networks and to study the Brazilian C&D waste case.

  9. Nonproliferation Uncertainties, a Major Barrier to Used Nuclear Fuel Recycle in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Emory D; Ehinger, Michael H

    2011-01-01

    A study and comparison of the goals and understandings of nonproliferation authorities with those of used nuclear fuel (UNF) recycle advocates have uncovered (1) some of the basic reasons for the creation of uncertainties by each of the parties, (2) why these uncertainties have become a major barrier to a decision to recycle UNF components in the United States, and (3) what steps can be taken to clarify these uncertainties. Recent papers and viewpoints expressed by nonproliferation authorities and technical consultants were reviewed, summarized, and compared with results of recent fuel cycle systems analyses made at Oak Ridge National Laboratory.more » 1 Similarities and differences were identified, including both technical and policy factors. Nonproliferation authorities and a few UNF recycle advocates have recognized that the reprocessing technologies used for UNF component recycle do not offer significant nonproliferation differences; thus, the methods used can be chosen on some other basis, such as process efficiency, maturity, and/or economics. This paper reviews the safeguards implications beyond the simple assessment of UNF recycle technology selection. Differences in understanding that led to uncertainty barriers to UNF recycle include (1) the vulnerability of unseparated UNF, (2) the effects of time factors on production and accumulation of fissile plutonium isotopes and decay of the ?self-protecting radiation barrier,? (3) the chemistry of UNF components and relative ease of separation, and (4) the significant differences in commercialscale ?safeguards-by-design? UNF recycle facilities and smaller-scale covert operations. Application of safeguards-by-design and engineered safeguards can provide the defense-in-depth necessary for sufficient safeguards. Establishing these requirements for governing acceptable commercial UNF component recycle is essential.« less

  10. Migration of styrene and ethylbenzene from virgin and recycled expanded polystyrene containers and discrimination of these two kinds of polystyrene by principal component analysis.

    PubMed

    Lin, Qin-Bao; Song, Xue-Chao; Fang, Hong; Wu, Yu-Mei; Wang, Zhi-Wei

    2017-01-01

    The migration of styrene and ethylbenzene from virgin and recycled expanded polystyrene (EPS) containers into isooctane was investigated using gas chromatography-mass spectrometry (GC-MS). EPS containers were in two-sided contact with isooctane at temperatures of 25 and 40°C. It was shown that recycled EPS gave greater migration ratios compared with virgin EPS, which indicated that styrene and ethylbenzene migrated more easily from recycled EPS. In addition, an analytical method to distinguish between virgin and recycled EPS containers was established by GC-MS followed by principal component analysis (PCA). The relative peak area of the identified compounds was used as input data for PCA. Distinct separation between virgin and recycled EPS was achieved on a score plot. Extension of this method to other plastics may be of great interest for recycled plastics identification.

  11. Nutrient recycling of lipid-extracted waste in the production of an oleaginous thraustochytrid.

    PubMed

    Lowrey, Joshua; Brooks, Marianne S; Armenta, Roberto E

    2016-05-01

    Improving the economics of microalgae production for the recovery of microbial oil requires a comprehensive exploration of the measures needed to improve productivity as well as to reduce the overall processing costs. One avenue for cost reduction involves recycling the effluent waste water remaining after lipid extraction. This study investigates the feasibility of recycling those wastes for growing thraustochytrid biomass, a heterotrophic microalgae, where wastes were generated from the enzymatic extraction of the lipids from the cell biomass. It was demonstrated that secondary cultures of the tested thraustochytrid grown in the recycled wastes performed favorably in terms of cell and oil production (20.48 g cells L(-1) and 40.9 % (w/w) lipid) compared to the control (13.63 g cells L(-1) and 56.8 % (w/w) lipid). Further, the significant uptake of solubilized cell material (in the form of amino acids) demonstrated that the recycled waste has the potential for offsetting the need for fresh medium components. These results indicate that the implementation of a nutrient recycling strategy for industrial microalgae production could be possible, with significant added benefits such as conserving water resources, improving production efficiency, and decreasing material inputs.

  12. Sensing Size through Clustering in Non-Equilibrium Membranes and the Control of Membrane-Bound Enzymatic Reactions

    PubMed Central

    Vagne, Quentin; Turner, Matthew S.; Sens, Pierre

    2015-01-01

    The formation of dynamical clusters of proteins is ubiquitous in cellular membranes and is in part regulated by the recycling of membrane components. We show, using stochastic simulations and analytic modeling, that the out-of-equilibrium cluster size distribution of membrane components undergoing continuous recycling is strongly influenced by lateral confinement. This result has significant implications for the clustering of plasma membrane proteins whose mobility is hindered by cytoskeletal “corrals” and for protein clustering in cellular organelles of limited size that generically support material fluxes. We show how the confinement size can be sensed through its effect on the size distribution of clusters of membrane heterogeneities and propose that this could be regulated to control the efficiency of membrane-bound reactions. To illustrate this, we study a chain of enzymatic reactions sensitive to membrane protein clustering. The reaction efficiency is found to be a non-monotonic function of the system size, and can be optimal for sizes comparable to those of cellular organelles. PMID:26656912

  13. Rab4b controls an early endosome sorting event by interacting with the γ-subunit of the clathrin adaptor complex 1.

    PubMed

    Perrin, Laura; Laura, Perrin; Lacas-Gervais, Sandra; Sandra, Lacas-Gervais; Gilleron, Jérôme; Jérôme, Gilleron; Ceppo, Franck; Franck, Ceppo; Prodon, François; François, Prodon; Benmerah, Alexandre; Alexandre, Benmerah; Tanti, Jean-François; Jean-François, Tanti; Cormont, Mireille; Mireille, Cormont

    2013-11-01

    The endocytic pathway is essential for cell homeostasis and numerous small Rab GTPases are involved in its control. The endocytic trafficking step controlled by Rab4b has not been elucidated, although recent data suggested it could be important for glucose homeostasis, synaptic homeostasis or adaptive immunity. Here, we show that Rab4b is required for early endosome sorting of transferrin receptors (TfRs) to the recycling endosomes, and we identified the AP1γ subunit of the clathrin adaptor AP-1 as a Rab4b effector and key component of the machinery of early endosome sorting. We show that internalised transferrin (Tf) does not reach Vamp3/Rab11 recycling endosomes in the absence of Rab4b, whereas it is rapidly recycled back to the plasma membrane. By contrast, overexpression of Rab4b leads to the accumulation of internalised Tf within AP-1- and clathrin-coated vesicles. These vesicles are poor in early and recycling endocytic markers except for TfR and require AP1γ for their formation. Furthermore, the targeted overexpression of the Rab4b-binding domain of AP1γ to early endosome upon its fusion with FYVE domains inhibited the interaction between Rab4b and endogenous AP1γ, and perturbed Tf traffic. We thus proposed that the interaction between early endocytic Rab4b and AP1γ could allow the budding of clathrin-coated vesicles for subsequent traffic to recycling endosomes. The data also uncover a novel type of endosomes, characterised by low abundance of either early or recycling endocytic markers, which could potentially be generated in cell types that naturally express high level of Rab4b.

  14. Depollution benchmarks for capacitors, batteries and printed wiring boards from waste electrical and electronic equipment (WEEE).

    PubMed

    Savi, Daniel; Kasser, Ueli; Ott, Thomas

    2013-12-01

    The article compiles and analyses sample data for toxic components removed from waste electronic and electrical equipment (WEEE) from more than 30 recycling companies in Switzerland over the past ten years. According to European and Swiss legislation, toxic components like batteries, capacitors and printed wiring boards have to be removed from WEEE. The control bodies of the Swiss take back schemes have been monitoring the activities of WEEE recyclers in Switzerland for about 15 years. All recyclers have to provide annual mass balance data for every year of operation. From this data, percentage shares of removed batteries and capacitors are calculated in relation to the amount of each respective WEEE category treated. A rationale is developed, why such an indicator should not be calculated for printed wiring boards. The distributions of these de-pollution indicators are analysed and their suitability for defining lower threshold values and benchmarks for the depollution of WEEE is discussed. Recommendations for benchmarks and threshold values for the removal of capacitors and batteries are given. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Microbiological test results of the environmental control and life support systems vapors compression distillation subsystem recycle tank components following various pretreatment protocols

    NASA Technical Reports Server (NTRS)

    Huff, Tim

    1993-01-01

    Microbiological samples were collected from the recycle tank of the vapor compression distillation (VCD) subsystem of the water recovery test at NASA MSFC following a 68-day run. The recycle tank collects rejected urine brine that was pretreated with a commercially available oxidant (Oxone) and sulfuric acid and pumps it back to the processing component of the VCD. Samples collected included a water sample and two swab samples, one from the particulate filter surface and a second from material floating on the surface of the water. No bacteria were recovered from the water sample. Both swab samples contained a spore-forming bacterium, Bacillus insolitus. A filamentous fungus was isolated from the floating material. Approximately 1 month after the pretreatment chemicals were changed to sodium hypochlorite and sulfuric acid, a swab of the particulate filter was again analyzed for microbial content. One fungus was isolated, and spore-forming bacteria were observed. These results indicate the inability of these pretreatments to inhibit surface attachment. The implications of the presence of these organisms are discussed.

  16. Regenerative Environmental Control and Life Support System Diagram

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This diagram shows the flow of recyclable resources in the International Space Station (ISS). The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center is responsible for the regenerative ECLSS hardware, as well as providing technical support for the rest of the system. The regenerative ECLSS, whose main components are the Water Recovery System (WRS), and the Oxygen Generation System (OGS), reclaims and recycles water and oxygen. The ECLSS maintains a pressurized habitation environment, provides water recovery and storage, maintains and provides fire detection / suppression, and provides breathable air and a comfortable atmosphere in which to live and work within the ISS. The ECLSS hardware will be located in the Node 3 module of the ISS.

  17. Recycling Mentors: an intergenerational, service-learning program to promote recycling and environmental awareness.

    PubMed

    D'abundo, Michelle L; Fugate-Whitlock, Elizabeth I; Fiala, Kelly A

    2011-01-01

    The purpose of Recycling Mentors was to implement an intergenerational, service-learning program focused on promoting recycling and environmental awareness among students enrolled in Community Health (HEA 301) and Current Issues in Gerontology (GRN 440/540) and adults older than 60 years. Recycling Mentors was conducted in New Hanover County (NHC), North Carolina, where a moderate climate and coastal location attracts many tourists, retirees, and college students. A community like NHC is a good place to implement service-learning that educates both students and older adults about the benefits of recycling to individual health and the environment. During the Fall 2009 semester, undergraduate and graduate students completed institutional review board training and then conducted the program with older adults. The education component of Recycling Mentors included a pre/post survey, brochure, and scheduled visits. Overall, Recycling Mentors was positive service-learning experience with students identifying salient outcomes such as learning about recycling and the environment and working with older adults. In addition, teaching the education component of Recycling Mentors was good practice for students who will be the future health professionals. While service-learning and environmentally themed projects are common, a program that combines the 2 like Recycling Mentors is unique and has the potential to motivate individual change while positively impacting the local community and the environment.

  18. Design and Implementation of a Hall Effect Sensor Array Applied to Recycling Hard Drive Magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisner, Roger; Lenarduzzi, Roberto; Killough, Stephen M

    Rare earths are an important resource for many electronic components and technologies. Examples abound including Neodymium magnets used in mobile devices and computer hard drives (HDDs), and a variety of renewable energy technologies (e.g., wind turbines). Approximately 21,000 metric tons of Neodymium is processed annually with less than 1% being recycled. An economic system to assist in the recycling of magnet material from post-consumer goods, such as Neodymium Iron Boron magnets commonly found in hard drives is presented. A central component of this recycling measurement system uses an array of 128 Hall Effect sensors arranged in two columns to detectmore » the magnetic flux lines orthogonal to the HDD. Results of using the system to scan planar shaped objects such as hard drives to identify and spatially locate rare-earth magnets for removal and recycling from HDDs are presented. Applications of the sensor array in other identification and localization of magnetic components and assemblies will be presented.« less

  19. Myo1c regulates lipid raft recycling to control cell spreading, migration and Salmonella invasion

    PubMed Central

    Brandstaetter, Hemma; Kendrick-Jones, John; Buss, Folma

    2012-01-01

    A balance between endocytosis and membrane recycling regulates the composition and dynamics of the plasma membrane. Internalization and recycling of cholesterol- and sphingolipid-enriched lipid rafts is an actin-dependent process that is mediated by a specialized Arf6-dependent recycling pathway. Here, we identify myosin1c (Myo1c) as the first motor protein that drives the formation of recycling tubules emanating from the perinuclear recycling compartment. We demonstrate that the single-headed Myo1c is a lipid-raft-associated motor protein that is specifically involved in recycling of lipid-raft-associated glycosylphosphatidylinositol (GPI)-linked cargo proteins and their delivery to the cell surface. Whereas Myo1c overexpression increases the levels of these raft proteins at the cell surface, in cells depleted of Myo1c function through RNA interference or overexpression of a dominant-negative mutant, these tubular transport carriers of the recycling pathway are lost and GPI-linked raft markers are trapped in the perinuclear recycling compartment. Intriguingly, Myo1c only selectively promotes delivery of lipid raft membranes back to the cell surface and is not required for recycling of cargo, such as the transferrin receptor, which is mediated by parallel pathways. The profound defect in lipid raft trafficking in Myo1c-knockdown cells has a dramatic impact on cell spreading, cell migration and cholesterol-dependent Salmonella invasion; processes that require lipid raft transport to the cell surface to deliver signaling components and the extra membrane essential for cell surface expansion and remodeling. Thus, Myo1c plays a crucial role in the recycling of lipid raft membrane and proteins that regulate plasma membrane plasticity, cell motility and pathogen entry. PMID:22328521

  20. Myo1c regulates lipid raft recycling to control cell spreading, migration and Salmonella invasion.

    PubMed

    Brandstaetter, Hemma; Kendrick-Jones, John; Buss, Folma

    2012-04-15

    A balance between endocytosis and membrane recycling regulates the composition and dynamics of the plasma membrane. Internalization and recycling of cholesterol- and sphingolipid-enriched lipid rafts is an actin-dependent process that is mediated by a specialized Arf6-dependent recycling pathway. Here, we identify myosin1c (Myo1c) as the first motor protein that drives the formation of recycling tubules emanating from the perinuclear recycling compartment. We demonstrate that the single-headed Myo1c is a lipid-raft-associated motor protein that is specifically involved in recycling of lipid-raft-associated glycosylphosphatidylinositol (GPI)-linked cargo proteins and their delivery to the cell surface. Whereas Myo1c overexpression increases the levels of these raft proteins at the cell surface, in cells depleted of Myo1c function through RNA interference or overexpression of a dominant-negative mutant, these tubular transport carriers of the recycling pathway are lost and GPI-linked raft markers are trapped in the perinuclear recycling compartment. Intriguingly, Myo1c only selectively promotes delivery of lipid raft membranes back to the cell surface and is not required for recycling of cargo, such as the transferrin receptor, which is mediated by parallel pathways. The profound defect in lipid raft trafficking in Myo1c-knockdown cells has a dramatic impact on cell spreading, cell migration and cholesterol-dependent Salmonella invasion; processes that require lipid raft transport to the cell surface to deliver signaling components and the extra membrane essential for cell surface expansion and remodeling. Thus, Myo1c plays a crucial role in the recycling of lipid raft membrane and proteins that regulate plasma membrane plasticity, cell motility and pathogen entry.

  1. Recycling of used perfluorosulfonic acid membranes

    DOEpatents

    Grot, Stephen [Middletown, DE; Grot, Walther [Chadds Ford, PA

    2007-08-14

    A method for recovering and recycling catalyst coated fuel cell membranes includes dissolving the used membranes in water and solvent, heating the dissolved membranes under pressure and separating the components. Active membranes are produced from the recycled materials.

  2. Long-term strategies for increased recycling of automotive aluminum and its alloying elements.

    PubMed

    Løvik, Amund N; Modaresi, Roja; Müller, Daniel B

    2014-04-15

    Aluminum recycling currently occurs in a cascading fashion, where some alloys, used in a limited number of applications, absorb most of the end-of-life scrap. An expected increase in scrap supply in coming decades necessitates restructuring of the aluminum cycle to open up new recycling paths for alloys and avoid a potential scrap surplus. This paper explores various interventions in end-of-life management and recycling of automotive aluminum, using a dynamic substance flow analysis model of aluminum and its alloying elements with resolution on component and alloy level (vehicle-component-alloy-element model). It was found that increased component dismantling before vehicle shredding can be an effective, so far underestimated, intervention in the medium term, especially if combined with development of safety-relevant components such as wheels from secondary material. In the long term, automatic alloy sorting technologies are most likely required, but could at the same time reduce the need for magnesium removal in refining. Cooperation between the primary and secondary aluminum industries, the automotive industry, and end-of-life vehicle dismantlers is therefore essential to ensure continued recycling of automotive aluminum and its alloying elements.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savi, Daniel, E-mail: d.savi@umweltchemie.ch; Kasser, Ueli; Ott, Thomas

    Highlights: • We’ve analysed data on the dismantling of electronic and electrical appliances. • Ten years of mass balance data of more than recycling companies have been considered. • Percentages of dismantled batteries, capacitors and PWB have been studied. • Threshold values and benchmarks for batteries and capacitors have been identified. • No benchmark for the dismantling of printed wiring boards should be set. - Abstract: The article compiles and analyses sample data for toxic components removed from waste electronic and electrical equipment (WEEE) from more than 30 recycling companies in Switzerland over the past ten years. According to Europeanmore » and Swiss legislation, toxic components like batteries, capacitors and printed wiring boards have to be removed from WEEE. The control bodies of the Swiss take back schemes have been monitoring the activities of WEEE recyclers in Switzerland for about 15 years. All recyclers have to provide annual mass balance data for every year of operation. From this data, percentage shares of removed batteries and capacitors are calculated in relation to the amount of each respective WEEE category treated. A rationale is developed, why such an indicator should not be calculated for printed wiring boards. The distributions of these de-pollution indicators are analysed and their suitability for defining lower threshold values and benchmarks for the depollution of WEEE is discussed. Recommendations for benchmarks and threshold values for the removal of capacitors and batteries are given.« less

  4. Integration, design, and construction of a CELSS breadboard facility for bioregenerative life support system research

    NASA Technical Reports Server (NTRS)

    Prince, R.; Knott, W.; Buchanan, Paul

    1987-01-01

    Design criteria for the Biomass Production Chamber (BPC), preliminary operating procedures, and requirements for the future development of the Controlled Ecological Life Support System (CELSS) are discussed. CELSS, which uses a bioregenerative system, includes the following three major units: (1) a biomass production component to grow plants under controlled conditions; (2) food processing components to derive maximum edible content from all plant parts; and (3) waste management components to recover and recycle all solids, liquids, and gases necessary to support life. The current status of the CELSS breadboard facility is reviewed; a block diagram of a simplified version of CELSS and schematic diagrams of the BPS are included.

  5. The Cdc42 guanine nucleotide exchange factor FGD6 coordinates cell polarity and endosomal membrane recycling in osteoclasts.

    PubMed

    Steenblock, Charlotte; Heckel, Tobias; Czupalla, Cornelia; Espírito Santo, Ana Isabel; Niehage, Christian; Sztacho, Martin; Hoflack, Bernard

    2014-06-27

    The initial step of bone digestion is the adhesion of osteoclasts onto bone surfaces and the assembly of podosomal belts that segregate the bone-facing ruffled membrane from other membrane domains. During bone digestion, membrane components of the ruffled border also need to be recycled after macropinocytosis of digested bone materials. How osteoclast polarity and membrane recycling are coordinated remains unknown. Here, we show that the Cdc42-guanine nucleotide exchange factor FGD6 coordinates these events through its Src-dependent interaction with different actin-based protein networks. At the plasma membrane, FGD6 couples cell adhesion and actin dynamics by regulating podosome formation through the assembly of complexes comprising the Cdc42-interactor IQGAP1, the Rho GTPase-activating protein ARHGAP10, and the integrin interactors Talin-1/2 or Filamin A. On endosomes and transcytotic vesicles, FGD6 regulates retromer-dependent membrane recycling through its interaction with the actin nucleation-promoting factor WASH. These results provide a mechanism by which a single Cdc42-exchange factor controlling different actin-based processes coordinates cell adhesion, cell polarity, and membrane recycling during bone degradation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Recycling Reduction and Density Control with Lithium Injection in DIII-D

    NASA Astrophysics Data System (ADS)

    Jackson, G. L.; Chrobak, C. P.; Maingi, R.; Mansfield, D.; Roquemore, A.; McLean, A. G.

    2013-10-01

    Lithium conditioning has been effective in tokamaks for reducing recycling and providing density control, particularly in NSTX and EAST. Since DIII-D has not injected lithium in more than a decade (and then in only very small amounts, 0.4 g total), a unique opportunity exists to extend this experience and examine the physical effects of lithium in a well-conditioned lithium-free machine. A lithium dropper, developed by PPPL, has recently been installed on DIII-D. By injecting 0.09 g of lithium we have observed reductions in recycling, density, and ELM frequency from the first discharge with significant lithium injection. Although modeling of individual 40 μ m diam. Li granules predicts virtually no penetration beyond the separatrix in auxiliary heated H-mode pulses, LiIII emission was detected in the core plasma, albeit with no increase in radiated power. On subsequent discharges without injection no core Li was detected, and only LiI emission was observed in the SOL and divertor regions. We will present the effects of Li on recycling, ELM frequency, and the edge pedestal, and discuss the long-term observations of lithium on plasma facing components. Work supported by the US Department of Energy under DE-FC02-04ER54698, DE-AC02-09CH11466, and DE-AC52-07NA27344.

  7. Field test results for nitrogen removal by the constructed wetland component of an agricultural water recycling system

    USDA-ARS?s Scientific Manuscript database

    Wetland Reservoir Subirrigation Systems (WRSIS) are innovative agricultural water recycling systems that can provide economic and environmental benefits. A constructed wetland is a main component of WRSIS, and an important function of this constructed wetland is drainage water treatment of nitrog...

  8. Depth of manual dismantling analysis: A cost–benefit approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achillas, Ch., E-mail: c.achillas@ihu.edu.gr; Aidonis, D.; Vlachokostas, Ch.

    Highlights: ► A mathematical modeling tool for OEMs. ► The tool can be used by OEMs, recyclers of electr(on)ic equipment or WEEE management systems’ regulators. ► The tool makes use of cost–benefit analysis in order to determine the optimal depth of product disassembly. ► The reusable materials and the quantity of metals and plastics recycled can be quantified in an easy-to-comprehend manner. - Abstract: This paper presents a decision support tool for manufacturers and recyclers towards end-of-life strategies for waste electrical and electronic equipment. A mathematical formulation based on the cost benefit analysis concept is herein analytically described in ordermore » to determine the parts and/or components of an obsolete product that should be either non-destructively recovered for reuse or be recycled. The framework optimally determines the depth of disassembly for a given product, taking into account economic considerations. On this basis, it embeds all relevant cost elements to be included in the decision-making process, such as recovered materials and (depreciated) parts/components, labor costs, energy consumption, equipment depreciation, quality control and warehousing. This tool can be part of the strategic decision-making process in order to maximize profitability or minimize end-of-life management costs. A case study to demonstrate the models’ applicability is presented for a typical electronic product in terms of structure and material composition. Taking into account the market values of the pilot product’s components, the manual disassembly is proven profitable with the marginal revenues from recovered reusable materials to be estimated at 2.93–23.06 €, depending on the level of disassembly.« less

  9. Tantalum recycling in the United States in 1998

    USGS Publications Warehouse

    Cunningham, Larry D.

    2001-01-01

    This report describes the flow of tantalum in the United States in 1998 with emphasis on the extent to which tantalum was recycled/reused. Tantalum was mostly recycled from new scrap that was generated during the manufacture of tantalum-related electronic components and new and old scrap products of tantalum-containing cemented carbides and superalloys. In 1998, about 210 metric tons of tantalum was recycled/reused, with about 43% derived from old scrap. The tantalum recycling rate was calculated to be 21%, and tantalum scrap recycling efficiency, 35%.

  10. Trash Talk.

    ERIC Educational Resources Information Center

    Stermer, Edward

    1998-01-01

    Discusses creative methods of handling the tremendous amounts of trash generated daily in the U.S. Recycling, precycling, and reusing items all effectively reduce the amount of trash sent to landfills. The three components of successful recycling programs are collection, manufacturing, and buying recycled products. Pay-as-you-throw programs…

  11. Hα line shape in front of the limiter in the HT-6M tokamak

    NASA Astrophysics Data System (ADS)

    Wan, Baonian; Li, Jiangang; Luo, Jiarong; Xie, Jikang; Wu, Zhenwei; Zhang, Xianmei; HT-6M Group

    1999-11-01

    The Hα line shape in front of the limiter in the HT-6M tokamak is analysed by multi-Gaussian fitting. The energy distribution of neutral hydrogen atoms reveals that Hα radiation is contributed by Franck-Condon atoms, atoms reflected at the limiter surface and charge exchange. Multi-Gaussian fitting of the Hα spectral profile indicates contributions of 60% from reflection particles and 40% from molecule dissociation to recycling. Ion temperatures in central regions are obtained from the spectral width of charge exchange components. Dissociation of hydrogen molecules and reflection of particles at the limiter surface are dominant in edge recycling. Reduction of particle reflection at the limiter surface is important for controlling edge recycling. The measured profiles of neutral hydrogen atom density are reproduced by a particle continuity equation and a simplified one dimensional Monte Carlo simulation code.

  12. Calcium-dependent transferrin receptor recycling in bovine chromaffin cells.

    PubMed

    Knight, Derek E

    2002-04-01

    The release of regulated secretory granules is known to be calcium dependent. To examine the Ca2+-dependence of other exocytic fusion events, transferrin recycling in bovine chromaffin cells was examined. Internalised 125I-transferrin was released constitutively from cells with a half-time of about 7 min. Secretagogues that triggered catecholamine secretion doubled the rate of 125I-transferrin release, the time courses of the two triggered secretory responses being similar. The triggered 125I-transferrin release came from recycling endosomes rather than from sorting endosomes or a triggered secretory vesicle pool. Triggered 125I-transferrin release, like catecholamine secretion from the same cells, was calcium dependent but the affinities for calcium were very different. The extracellular calcium concentrations that gave rise to half-maximal evoked secretion were 0.1 mm for 125I-transferrin and 1.0 mm for catecholamine, and the intracellular concentrations were 0.1 microm and 1 microm, respectively. There was significant 125I-transferrin recycling in the virtual absence of intracellular Ca2+, but the rate increased when Ca2+ was raised above 1 nm, and peaked at 1 microm when the rate had doubled. Botulinum toxin type D blocked both transferrin recycling and catecholamine secretion. These results indicate that a major component of the vesicular transport required for the constitutive recycling of transferrin in quiescent cells is calcium dependent and thus under physiological control, and also that some of the molecular machinery involved in transferrin recycling/fusion processes is shared with that for triggered neurosecretion.

  13. The efficacy of a theory-based, participatory recycling intervention on a college campus.

    PubMed

    Largo-Wight, Erin; Johnston, Dedee DeLongpre; Wight, Jeff

    2013-11-01

    Recycling solid waste is an important primary prevention focus to protect environmental resources and human health. Recycling reduces energy consumption and emissions and the need to harvest raw material, which protects air, water, and land. In the study described in this article, the authors conducted an eight week field study to test the efficacy of an intervention aimed to increase can and bottle recycling on a college campus. Recycling volume was assessed in three campus buildings (two treatments and one control) over eight weeks. The control building had standard outdoor-only recycling. The treatment buildings had standard outdoor recycling plus four weeks with the treatment indoor recycling. Total can and bottle recycling volume increased 65%-250% in the treatment buildings compared to the control building. Recycling significantly increased in both the classroom (t = -2.9, p < .05) and administrative (t = -12.4, p < .001) treatment buildings compared to the control building (t = -.13, p = .91). Results suggest that convenience of receptacles alone, without education or additional promotion, resulted in significantly more recycling. Health promoters should prioritize efforts to make recycling easy and convenient.

  14. Radioactive materials in recycled metals.

    PubMed

    Lubenau, J O; Yusko, J G

    1995-04-01

    In recent years, the metal recycling industry has become increasingly aware of an unwanted component in metal scrap--radioactive material. Worldwide, there have been 35 instances where radioactive sources were unintentionally smelted in the course of recycling metal scrap. In some cases contaminated metal consumer products were distributed internationally. In at least one case, serious radiation exposures of workers and the public occurred. Radioactive material appearing in metal scrap includes sources subject to licensing under the Atomic Energy Act and also naturally occurring radioactive material. U.S. mills that have smelted a radioactive source face costs resulting from decontamination, waste disposal, and lost profits that range from 7 to 23 million U.S. dollars for each event. To solve the problem, industry and the government have jointly undertaken initiatives to increase awareness of the problem within the metal recycling industry. Radiation monitoring of recycled metal scrap is being performed increasingly by mills and, to a lesser extent, by scrap processors. The monitoring does not, however, provide 100% protection. Improvements in regulatory oversight by the government could stimulate improved accounting and control of licensed sources. However, additional government effort in this area must be reconciled with competing priorities in radiation safety and budgetary constraints. The threat of radioactive material in recycled metal scrap will continue for the foreseeable future and, thus, poses regulatory policy challenges for both developed and developing nations.

  15. Protecting the proteome: Eukaryotic cotranslational quality control pathways

    PubMed Central

    2014-01-01

    The correct decoding of messenger RNAs (mRNAs) into proteins is an essential cellular task. The translational process is monitored by several quality control (QC) mechanisms that recognize defective translation complexes in which ribosomes are stalled on substrate mRNAs. Stalled translation complexes occur when defects in the mRNA template, the translation machinery, or the nascent polypeptide arrest the ribosome during translation elongation or termination. These QC events promote the disassembly of the stalled translation complex and the recycling and/or degradation of the individual mRNA, ribosomal, and/or nascent polypeptide components, thereby clearing the cell of improper translation products and defective components of the translation machinery. PMID:24535822

  16. Scrap automotive electronics: A mini-review of current management practices.

    PubMed

    Cucchiella, Federica; D'Adamo, Idiano; Rosa, Paolo; Terzi, Sergio

    2016-01-01

    End-of-life vehicles, together with waste from electric and electronic equipment, are known as an important source of secondary raw materials. For many years, their recovery has allowed the restoring of great amounts of metals for new cars production. This article provides a comprehensive mini-review on the end-of-life vehicles recycling topic between 2000 and 2014, with a particular focus on automotive electronics recycling. In fact, in the last years, experts focused their attention on a better exploitation of automotive shredder residue fraction, but not sufficiently on eventual electronic scraps embedded in it. Hence, studies assessing the value embedded in these scraps are rarely available in literature, causing an important gap in both recycling policies and research. The fact that, at present, the management of electronic control units (the most valuable component among automotive electronic equipment) is, as yet, off the radar in both end-of-life vehicles and waste from electric and electronic equipment Directives demonstrates the theory. Of course, their recycling would not contribute in a relevant way to reach the weighted-based recycling and recovery targets characterising current regulations, but would be very important under a critical raw materials recovery view. Results coming from the literature analysis confirm these assumptions. © The Author(s) 2015.

  17. Air classification: Potential treatment method for optimized recycling or utilization of fine-grained air pollution control residues obtained from dry off-gas cleaning high-temperature processing systems.

    PubMed

    Lanzerstorfer, Christof

    2015-11-01

    In the dust collected from the off-gas of high-temperature processes, usually components that are volatile at the process temperature are enriched. In the recycling of the dust, the concentration of these volatile components is frequently limited to avoid operation problems. Also, for external utilization the concentration of such volatile components, especially heavy metals, is often restricted. The concentration of the volatile components is usually higher in the fine fractions of the collected dust. Therefore, air classification is a potential treatment method to deplete the coarse material from these volatile components by splitting off a fines fraction with an increased concentration of those volatile components. In this work, the procedure of a sequential classification using a laboratory air classifier and the calculations required for the evaluation of air classification for a certain application were demonstrated by taking the example of a fly ash sample from a biomass combustion plant. In the investigated example, the Pb content in the coarse fraction could be reduced to 60% by separation of 20% fines. For the non-volatile Mg the content was almost constant. It can be concluded that air classification is an appropriate method for the treatment of off-gas cleaning residues. © The Author(s) 2015.

  18. Strategies for Increasing the Market Share of Recycled Products—A Games Theory Approach

    NASA Astrophysics Data System (ADS)

    Batzias, Dimitris F.; Pollalis, Yannis A.

    2009-08-01

    A methodological framework (including 28 activity stages and 10 decision nodes) has been designed under the form of an algorithmic procedure for the development of strategies for increasing the market share of recycled products within a games theory context. A case example is presented referring to a paper market, where a recycling company (RC) is in competition with a virgin-raw-material-using company (VC). The strategies of the VC, for increasing its market share, are the strengthening of (and advertisement based on) the high quality (VC1), the high reliability (VC2), the combination quality and reliability, putting emphasis on the first component (VC3), the combination quality and reliability, putting emphasis on the second component (VC4). The strategies of the RC, for increasing its market share, are proper advertisement based on the low price of produced recycled paper satisfying minimum quality requirements (RC1), the combination of low price with sensitization of the public as regards environmental and materials-saving issues, putting emphasis on the first component (RC2), the same combination, putting emphasis on the second component (RC3). Analysis of all possible situations for the case example under examination is also presented.

  19. Model institutional infrastructures for recycling of photovoltaic modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reaven, S.J.; Moskowitz, P.D.; Fthenakis, V.

    1996-01-01

    How will photovoltaic modules (PVMS) be recycled at the end of their service lives? This question has technological and institutional components (Reaven, 1994a). The technological aspect concerns the physical means of recycling: what advantages and disadvantages of the several existing and emerging mechanical, thermal, and chemical recycling processes and facilities merit consideration? The institutional dimension refers to the arrangements for recycling: what are the operational and financial roles of the parties with an interest in PVM recycling? These parties include PVM manufacturers, trade organizations; distributors, and retailers; residential, commercial, and utility PVM users; waste collectors, transporters, reclaimers, and reclaimers; andmore » governments.« less

  20. Sustainable recycling technologies for Solar PV off-grid system

    NASA Astrophysics Data System (ADS)

    Uppal, Bhavesh; Tamboli, Adish; Wubhayavedantapuram, Nandan

    2017-11-01

    Policy makers throughout the world have accepted climate change as a repercussion of fossil fuel exploitation. This has led the governments to integrate renewable energy streams in their national energy mix. PV off-grid Systems have been at the forefront of this transition because of their permanently increasing efficiency and cost effectiveness. These systems are expected to produce large amount of different waste streams at the end of their lifetime. It is important that these waste streams should be recycled because of the lack of available resources. Our study found that separate researches have been carried out to increase the efficiencies of recycling of individual PV system components but there is a lack of a comprehensive methodical research which details efficient and sustainable recycling processes for the entire PV off-grid system. This paper reviews the current and future recycling technologies for PV off-grid systems and presents a scheme of the most sustainable recycling technologies which have the potential for adoption. Full Recovery End-of-Life Photovoltaic (FRELP) recycling technology can offer opportunities to sustainably recycle crystalline silicon PV modules. Electro-hydrometallurgical process & Vacuum technologies can be used for recovering lead from lead acid batteries with a high recovery rate. The metals in the WEEE can be recycled by using a combination of biometallurgical technology, vacuum metallurgical technology and other advanced metallurgical technologies (utrasonical, mechano-chemical technology) while the plastic components can be effectively recycled without separation by using compatibilizers. All these advanced technologies when used in combination with each other provide sustainable recycling options for growing PV off-grid systems waste. These promising technologies still need further improvement and require proper integration techniques before implementation.

  1. Recyclable automobiles. (Latest citations from Engineered Materials abstracts). Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The bibliography contains citations concerning the technology and characteristics of non-metal, recyclable components used in automobiles. Existing polymer, plastic, and composite technology and materials are discussed. The citations also examine design and development of new recyclable materials that are durable. Design features and constraints are included. Some citations address future trends leading to the 100 percent recyclable automobile. (Contains a minimum of 77 citations and includes a subject term index and title list.)

  2. Recyclable automobiles. (Latest citations from Engineered Materials abstracts). Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The bibliography contains citations concerning the technology and characteristics of non-metal, recyclable components used in automobiles. Existing polymer, plastic, and composite technology and materials are discussed. The citations also examine design and development of new recyclable materials that are durable. Design features and constraints are included. Some citations address future trends leading to the 100 percent recyclable automobile. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  3. Recyclable automobiles. (Latest citations from Engineered Materials Abstracts). Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The bibliography contains citations concerning the technology and characteristics of non-metal, recyclable components used in automobiles. Existing polymer, plastic, and composite technology and materials are discussed. The citations also examine design and development of new recyclable materials that are durable. Design features and constraints are included. Some citations address future trends leading to the 100 percent recyclable automobile. (Contains a minimum of 58 citations and includes a subject term index and title list.)

  4. Simulating advanced life support systems to test integrated control approaches

    NASA Astrophysics Data System (ADS)

    Kortenkamp, D.; Bell, S.

    Simulations allow for testing of life support control approaches before hardware is designed and built. Simulations also allow for the safe exploration of alternative control strategies during life support operation. As such, they are an important component of any life support research program and testbed. This paper describes a specific advanced life support simulation being created at NASA Johnson Space Center. It is a discrete-event simulation that is dynamic and stochastic. It simulates all major components of an advanced life support system, including crew (with variable ages, weights and genders), biomass production (with scalable plantings of ten different crops), water recovery, air revitalization, food processing, solid waste recycling and energy production. Each component is modeled as a producer of certain resources and a consumer of certain resources. The control system must monitor (via sensors) and control (via actuators) the flow of resources throughout the system to provide life support functionality. The simulation is written in an object-oriented paradigm that makes it portable, extensible and reconfigurable.

  5. Manganese recycling in the United States in 1998

    USGS Publications Warehouse

    Jones, Thomas S.

    2001-01-01

    This report describes the flow and processing of manganese within the U.S. economy in 1998 with emphasis on the extent to which manganese is recycled. Manganese was used mostly as an alloying agent in alloys in which it was a minor component. Manganese was recycled mostly within scrap of iron and steel. A small amount was recycled within aluminum used beverage cans. Very little manganese was recycled from materials being recovered specifically for their manganese content. For the United States in 1998, 218,000 metric tons of manganese was estimated to have been recycled from old scrap, of which 96% was from iron and steel scrap. Efficiency of recycling was estimated as 53% and recycling rate as 37%. Metallurgical loss of manganese was estimated to be about 1.7 times that recycled. This loss was mostly into slags from iron and steel production, from which recovery of manganese has yet to be shown economically feasible.

  6. Supercritical Water Process for the Chemical Recycling of Waste Plastics

    NASA Astrophysics Data System (ADS)

    Goto, Motonobu

    2010-11-01

    The development of chemical recycling of waste plastics by decomposition reactions in sub- and supercritical water is reviewed. Decomposition reactions proceed rapidly and selectively using supercritical fluids compared to conventional processes. Condensation polymerization plastics such as PET, nylon, and polyurethane, are relatively easily depolymerized to their monomers in supercritical water. The monomer components are recovered in high yield. Addition polymerization plastics such as phenol resin, epoxy resin, and polyethylene, are also decomposed to monomer components with or without catalysts. Recycling process of fiber reinforced plastics has been studied. Pilot scale or commercial scale plants have been developed and are operating with sub- and supercritical fluids.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliaga, C., E-mail: caliaga@itene.com; Zhang, H.; Dobon, A.

    Highlights: • Study of the influence of components of printed electronics in paper recycling. • Comparison between paper recycled with and without resistors, batteries and layouts. • Mechanical and optical properties are evaluated in paper handsheets obtained. • Tensile strength of recycled paper is slighted reduced by layouts. • Optical properties of recycled paper slightly varies with layouts and batteries. - Abstract: The aim of this paper is to analyse the effects of the presence of printed electronics on the paper waste streams and specifically on paper recyclability. The analysis is based on a case study focussed on envelopes formore » postal and courier services provided with these intelligent systems. The smart printed envelope of the study includes a combination of both conventional (thin flexible batteries and resistors) and printed electronic components (conductive track layout based on nanosilver ink). For this purpose, a comparison between envelopes with and without these components (batteries, resistors and conductive track layouts) was carried out through pilot scale paper recycling tests. The generation of rejects during the recycling process as well as the final quality of the recycled paper (mechanical and optical properties) were tested and quantitatively evaluated. The results show that resistors are retained during the screening process in the sieves and consequently they cannot end up in the final screened pulp. Therefore, mechanical and optical properties of the recycled paper are not affected. Nevertheless, inks from the conductive track layouts and batteries were partially dissolved in the process water. These substances were not totally retained in the sieving systems resulting in slight changes in the optical properties of the final recycled paper (variations are 7.2–7.5% in brightness, 8.5–10.7% in whiteness, 1.2–2.2% in L{sup ∗} values, 3.3–3.5% in opacity and 16.1–27% in yellowness). These variations are not in ranges able to cause problems in current paper recycling processes and restrict the use of recycled paper in current applications. Moreover, real impacts on industrial recycling are expected to be even significantly lower since the proportion of paper product with printed circuits in the current paper waste streams are much lower than the ones tested in this work. However, it should be underlined the fact that this situation may change over the next years due to the future developments in printed electronics and the gradual penetration of these types of devices in the market.« less

  8. Flow studies for recycling metal commodities in the United States [Chapters A-M : gold, platinum, chromium, zinc, magnesium, lead, iron, manganese, columbium (niobium), tantalum, tin, molybdenum, and cobalt

    USGS Publications Warehouse

    Sibley, Scott F.

    2004-01-01

    USGS Circular 1196, 'Flow Studies for Recycling Metal Commodities in the United States,' presents the results of flow studies for recycling 26 metal commodities, from aluminum to zinc. These metals are a key component of the U.S. economy. Overall, recycling accounts for more than half of the U.S. metal supply by weight and roughly 40 percent by value.

  9. International Space Station (ISS)

    NASA Image and Video Library

    2000-01-01

    This diagram shows the flow of recyclable resources in the International Space Station (ISS). The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center is responsible for the regenerative ECLSS hardware, as well as providing technical support for the rest of the system. The regenerative ECLSS, whose main components are the Water Recovery System (WRS), and the Oxygen Generation System (OGS), reclaims and recycles water and oxygen. The ECLSS maintains a pressurized habitation environment, provides water recovery and storage, maintains and provides fire detection / suppression, and provides breathable air and a comfortable atmosphere in which to live and work within the ISS. The ECLSS hardware will be located in the Node 3 module of the ISS.

  10. Quality control of recycled asphaltic concrete : final report.

    DOT National Transportation Integrated Search

    1982-07-01

    This study examined the variations found in recycled asphaltic concrete mix based upon plant quality control data and verification testing. The data was collected from four recycled hot-mix projects constructed in 1981. All plant control and acceptan...

  11. Depth of manual dismantling analysis: a cost-benefit approach.

    PubMed

    Achillas, Ch; Aidonis, D; Vlachokostas, Ch; Karagiannidis, A; Moussiopoulos, N; Loulos, V

    2013-04-01

    This paper presents a decision support tool for manufacturers and recyclers towards end-of-life strategies for waste electrical and electronic equipment. A mathematical formulation based on the cost benefit analysis concept is herein analytically described in order to determine the parts and/or components of an obsolete product that should be either non-destructively recovered for reuse or be recycled. The framework optimally determines the depth of disassembly for a given product, taking into account economic considerations. On this basis, it embeds all relevant cost elements to be included in the decision-making process, such as recovered materials and (depreciated) parts/components, labor costs, energy consumption, equipment depreciation, quality control and warehousing. This tool can be part of the strategic decision-making process in order to maximize profitability or minimize end-of-life management costs. A case study to demonstrate the models' applicability is presented for a typical electronic product in terms of structure and material composition. Taking into account the market values of the pilot product's components, the manual disassembly is proven profitable with the marginal revenues from recovered reusable materials to be estimated at 2.93-23.06 €, depending on the level of disassembly. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Directions for material recovery of used tires and their use in the production of new products intended for the industry of civil construction and pavements

    NASA Astrophysics Data System (ADS)

    Bulei, C.; Todor, M. P.; Heput, T.; Kiss, I.

    2018-01-01

    The management of waste from used tires is one of the major principles of recycling and reuse, which involves encouraging a high level of material recovery components, preferably by recycling. Given the current pressure on natural resources on a global scale we must fully take into account the waste in a broader framework defined by the flow of raw materials and their sustainable use. Thus, the opportunity to use various waste from used tires as raw material in order to support economic activities becomes a priority. The recycling of raw materials from waste products and their use in new production processes for their material capitalization is becoming a sustainable approach. Used tire recycling, is the process of recycling waste tires that are no longer suitable for use on vehicles due to wear or irreparable damage. These tires are a problematic source of waste, due to the large volume produced, the durability of the tires, and the components in the tire that are ecologically problematic. Although tires are usually burnt, not recycled, efforts are continuing to find value. Tires can be recycled into, among other things, typically as crumb rubber modifier in recycled pavement. The paper presents aspects of the product resulting from crushing of used tires (powder), which can be used properly valued in the street furniture field or building materials containing rubber.

  13. Comparisons of four categories of waste recycling in China's paper industry based on physical input-output life-cycle assessment model.

    PubMed

    Liang, Sai; Zhang, Tianzhu; Xu, Yijian

    2012-03-01

    Waste recycling for paper production is an important component of waste management. This study constructs a physical input-output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China's paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for paper production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. The effect of release liner materials on adhesive contaminants, paper recycling and recycled paper properties

    Treesearch

    Richard Venditti; Richard Gilbert; Andy Zhang; Said Abubakr

    2000-01-01

    Release liner waste material is found in post-consumer waste streams and is also a significant component of the preconsumer waste stream generated in the manufacturing of adhesive products. To date, very little has been reported pertaining to the behavior of release liner in paper recycling. In this study, the effect of the release liner material on the behavior of...

  15. 15 CFR 754.7 - Petitions for the imposition of monitoring or controls on recyclable metallic materials; Public...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... monitoring or controls on recyclable metallic materials; Public hearings. 754.7 Section 754.7 Commerce and... SECURITY, DEPARTMENT OF COMMERCE EXPORT ADMINISTRATION REGULATIONS SHORT SUPPLY CONTROLS § 754.7 Petitions for the imposition of monitoring or controls on recyclable metallic materials; Public hearings. (a...

  16. Computer simulation of the pneumatic separator in the pneumatic-electrostatic separation system for recycling waste printed circuit boards with electronic components.

    PubMed

    Xue, Mianqiang; Xu, Zhenming

    2013-05-07

    Technologies could be integrated in different ways into automatic recycling lines for a certain kind of electronic waste according to practical requirements. In this study, a new kind of pneumatic separator with openings at the dust hooper was applied combing with electrostatic separation for recycling waste printed circuit boards. However, the flow pattern and the particles' movement behavior could not be obtained by experimental methods. To better control the separation quantity and the material size distribution, computational fluid dynamics was used to model the new pneumatic separator giving a detailed understanding of the mechanisms. Simulated results showed that the tangential velocity direction reversed with a relatively small value. Axial velocity exhibited two sharp decreases at the x axis. It is indicated that the bottom openings at the dust hopper resulted in an enormous change in the velocity profile. A new phenomenon that was named dusting was observed, which would mitigate the effect of particles with small diameter on the following electrostatic separation and avoid materials plugging caused by the waste printed circuit boards special properties effectively. The trapped materials were divided into seven grades. Experimental results showed that the mass fraction of grade 5, grade 6, and grade 7 materials were 27.54%, 15.23%, and 17.38%, respectively. Grade 1 particles' mass fraction was reduced by 80.30% compared with a traditional separator. Furthermore, the monocrystalline silicon content in silicon element in particles with a diameter of -0.091 mm was 18.9%, higher than that in the mixed materials. This study could serve as guidance for the future material flow control, automation control, waste recycling, and semiconductor storage medium destruction.

  17. Performance of Recycled Hot Mix Asphalt Mixtures

    DOT National Transportation Integrated Search

    1995-05-01

    This research project was undertaken to evaluate the performance of recycled pavements in comparison to virgin (control) asphalt pavements. Five projects, each consisting of a recycled section and a control section, were subjected to detailed evaluat...

  18. Diffusion method of seperating gaseous mixtures

    DOEpatents

    Pontius, Rex B.

    1976-01-01

    A method of effecting a relatively large change in the relative concentrations of the components of a gaseous mixture by diffusion which comprises separating the mixture into heavier and lighter portions according to major fraction mass recycle procedure, further separating the heavier portions into still heavier subportions according to a major fraction mass recycle procedure, and further separating the lighter portions into still lighter subportions according to a major fraction equilibrium recycle procedure.

  19. Digitally recycled incubators: better economic alternatives to modern systems in low-income countries.

    PubMed

    Amadi, H O; Mokuolu, O A; Adimora, G N; Pam, S D; Etawo, U S; Ohadugha, C O; Adesiyun, O O

    2007-09-01

    The need to maintain a neutral thermal environment is critical to newborn care. To investigate reasons for the insufficiency of functional incubators and develop a cost-effective technique for using electronic digital components to recycle obsolete incubators in Nigeria. Following interview of 84 clinicians and administrators in Nigerian hospitals, it was identified that inadequate funding was the main reason for lack of functional incubators. Two groups of incubator units were then created and their performance compared. Sixteen units of modern (group A) and 19 units of obsolete (group B) incubators were obtained from six hospitals. An assembly design applying independent generic components for recycling systems was specified and produced. These were sourced through the internet at competitive cost and fitted into the reconstructed panels of the obsolete systems. The functional performance of each recycled system was rigorously monitored for 6 months and graded using ten performance indices. The same indices were used to quantify group A systems. The performance of the recycled incubators (group B) was found to be similar to those of modern incubators. Group B's cost index was found to be 25% of that of group A's. Appropriate incubator recycling is a cost-effective method of re-equipping hospitals in low-income countries.

  20. Photovoltaic solar panels of crystalline silicon: Characterization and separation.

    PubMed

    Dias, Pablo Ribeiro; Benevit, Mariana Gonçalves; Veit, Hugo Marcelo

    2016-03-01

    Photovoltaic panels have a limited lifespan and estimates show large amounts of solar modules will be discarded as electronic waste in a near future. In order to retrieve important raw materials, reduce production costs and environmental impacts, recycling such devices is important. Initially, this article investigates which silicon photovoltaic module's components are recyclable through their characterization using X-ray fluorescence, X-ray diffraction, energy dispersion spectroscopy and atomic absorption spectroscopy. Next, different separation methods are tested to favour further recycling processes. The glass was identified as soda-lime glass, the metallic filaments were identified as tin-lead coated copper, the panel cells were made of silicon and had silver filaments attached to it and the modules' frames were identified as aluminium, all of which are recyclable. Moreover, three different components segregation methods have been studied. Mechanical milling followed by sieving was able to separate silver from copper while chemical separation using sulphuric acid was able to detach the semiconductor material. A thermo gravimetric analysis was performed to evaluate the use of a pyrolysis step prior to the component's removal. The analysis showed all polymeric fractions present degrade at 500 °C. © The Author(s) 2016.

  1. Battery resource assessment. Subtask 2.5: Battery manufacturing capability recycling of battery materials

    NASA Astrophysics Data System (ADS)

    Pemsler, P.

    1981-02-01

    Studies were conducted on the recycling of advanced battery system components for six different battery systems. These include: nickel/zinc, nickel/iron, zinc/chlorine, zinc/bromine, sodium/sulfur, and lithium-aluminum/iron sulfide. For each battery system, one or more processes were developed which would permit recycling of the major or active materials. Each recycle process was designed to produce a product material which can be used directly as a raw material by the battery manufacturer. Metal recoverabilities are in the range of 93 to 95% for all processes. In each case, capital and operating costs were developed for a recycling plant which processes 100,000 electric vehicle batteries per year.

  2. Parametric optimisation of heat treated recycling aluminium (AA6061) by response surface methodology

    NASA Astrophysics Data System (ADS)

    Ahmad, A.; Lajis, M. A.; Yusuf, N. K.; Shamsudin, S.; Zhong, Z. W.

    2017-09-01

    Alternating typical primary aluminium production with recycling route should benefit various parties, including the environment since the need of high cost and massive energy consumption will be ruled out. At present, hot extrusion is preferred as the effective solid-state recycling process compared to the typical method of melting the swarf at high temperature. However, the ideal properties of extruded product can only be achieved through a controlled process used to alter the microstructure to impart properties which benefit the working life of a component, which also known as heat treatment process. To that extent, this work ought to investigate the effect of extrusion temperature and ageing time on the hardness of the recycled aluminium chips. By employing Analysis of Variance (ANOVA) for full factorial design with centre point, a total of 11 runs were carried out randomly. Three dissimilar extrusion temperatures were used to obtain gear-shape billet. Extruded billets were cut and ground before entering the treatment phase at three different ageing times. Ageing time was found as the influential factor to affect the material hardness, rather than the extrusion temperature. Sufficient ageing time allows the impurity atoms to interfere the dislocation phenomena and yield great hardness. Yet, the extrusion temperatures still act to assist the bonding activities via interparticle diffusion transport matter.

  3. Evidence for recycling of invariant surface transmembrane domain proteins in African trypanosomes.

    PubMed

    Koumandou, V Lila; Boehm, Cordula; Horder, Katy A; Field, Mark C

    2013-02-01

    Intracellular trafficking is a vital component of both virulence mechanisms and drug interactions in Trypanosoma brucei, the causative agent of human African trypanosomiasis and n'agana of cattle. Both maintaining the surface proteome composition within a life stage and remodeling the composition when progressing between life stages are important features of immune evasion and development for trypanosomes. Our recent work implicates the abundant transmembrane invariant surface glycoproteins (ISGs) in the uptake of first-line therapeutic suramin, suggesting a potential therapeutic route into the cell. RME-8 is a mediator of recycling pathways in higher eukaryotes and is one of a small cohort of intracellular transport gene products upregulated in mammal-infective trypanosomes, suggesting a role in controlling the copy number of surface proteins in trypanosomes. Here we investigate RME-8 function and its contribution to intracellular trafficking and stability of ISGs. RME-8 is a highly conserved protein and is broadly distributed across multiple endocytic compartments. By knockdown we find that RME-8 is essential and mediates delivery of endocytic probes to late endosomal compartments. Further, we find ISG accumulation within endosomes, but that RME-8 knockdown also increases ISG turnover; combined with previous data, this suggests that it is most probable that ISGs are recycled, and that RME-8 is required to support recycling.

  4. A method to assess the use of new and recycled materials in pavements.

    DOT National Transportation Integrated Search

    2015-04-01

    This report includes the results of a research project aimed at developing a comprehensive analysis : framework for evaluating new and recycled materials to be used in pavements in Michigan. Two basic : components of the framework are: (i) Engineerin...

  5. The Recycling Endosome of Madin-Darby Canine Kidney Cells Is a Mildly Acidic Compartment Rich in Raft Components

    PubMed Central

    Gagescu, Raluca; Demaurex, Nicolas; Parton, Robert G.; Hunziker, Walter; Huber, Lukas A.; Gruenberg, Jean

    2000-01-01

    We present a biochemical and morphological characterization of recycling endosomes containing the transferrin receptor in the epithelial Madin-Darby canine kidney cell line. We find that recycling endosomes are enriched in molecules known to regulate transferrin recycling but lack proteins involved in early endosome membrane dynamics, indicating that recycling endosomes are distinct from conventional early endosomes. We also find that recycling endosomes are less acidic than early endosomes because they lack a functional vacuolar ATPase. Furthermore, we show that recycling endosomes can be reached by apically internalized tracers, confirming that the apical endocytic pathway intersects the transferrin pathway. Strikingly, recycling endosomes are enriched in the raft lipids sphingomyelin and cholesterol as well as in the raft-associated proteins caveolin-1 and flotillin-1. These observations may suggest that a lipid-based sorting mechanism operates along the Madin-Darby canine kidney recycling pathway, contributing to the maintenance of cell polarity. Altogether, our data indicate that recycling endosomes and early endosomes differ functionally and biochemically and thus that different molecular mechanisms regulate protein sorting and membrane traffic at each step of the receptor recycling pathway. PMID:10930469

  6. Detection of recycled marine sediment components in crater lake fluids using 129I

    NASA Astrophysics Data System (ADS)

    Fehn, U.; Snyder, G. T.; Varekamp, J. C.

    2002-06-01

    Crater lakes provide time-integrated samples of volcanic fluids, which may carry information on source components. We tested under what circumstances 129I concentrations can be used for the detection of a signal derived from the recycling of marine sediments in subduction zone magmatism. The 129I system has been successfully used to determine origin and pathways in other volcanic fluids, but the application of this system to crater lakes is complicated by the presence of anthropogenic 129I, related to recent nuclear activities. Results are reported from four crater lakes, associated with subducting crust varying in age between 23 and 98 Ma. The 129I/I ratios determined for Copahue, Argentina, (129I/I=700×10-15) and White Island, New Zealand, (129I/I=284×10-15) demonstrate the presence of iodine in the crater lakes that was derived from recycled marine sediments. A comparison to the ages of the subducted sediments in these two cases indicates that the ratios likely reflect iodine remobilization from the entire sediment column that was undergoing subduction. While the 129I signals in Poás and Rincón de la Vieja, Costa Rica also demonstrate the presence of recycled iodine, the relatively high percentage of meteoric water in these lakes prevents a reliable determination of source ages. The observed high concentrations of iodine and 129I/I ratios substantially below current surface values strongly argue for the presence of recycled marine components in the arc magmas of all four cases. Components from subducted marine sediments can be quantified and related to specific parts of the sediment column in cases where the iodine concentration in the lake waters exceeds 5 μM.

  7. Mass-dependent Mo isotope variations in oceanic basalts - a new tracer for mantle recycling processes

    NASA Astrophysics Data System (ADS)

    Willbold, M.; Freymuth, H.; Hibbert, K.; Lai, Y. J.; Elliott, T.

    2016-12-01

    How and to what extent crustal material is recycled into the deeper mantle as a result of plate tectonic processes is a long-standing but still not fully understood question in Earth Sciences. Indirect evidence from chemical as well as radiogenic isotope data in oceanic basalts suggest that such a process may indeed have operated over much of Earth's history. Yet, uncertainties in characterising the age of the presumed recycled crustal components as well as the wide range in their chemical composition do not allow us to verify the mantle recycling hypothesis. Technological advances now enable us to explore new isotopic tracers that could shed light on this question. One of these new tools are mass-dependent isotope variation of molybdenum (Mo). Mass-dependent Mo isotope data in clastic and chemical sediments are a well-established geochemical tool to study redox conditions in the Earth's water masses over the geological past [1, 2, 3]. Being an intrinsic property of rocks exposed to the hydrosphere (see Anbar [4] for an overview), mass-dependent Mo isotope variation in mantle-derived rocks from oceanic settings could therefore be used a tracer of recycled crustal material in the Earth's mantle. In this contribution we provide a current overview over how different geological and magmatic processes - such as seawater alteration of oceanic crust, slab dehydration during plate subduction as well as magmatic emplacement - could affect the Mo isotopic composition of crustal components being transferred into the deeper mantle, as well as that of mantle melts that may contain such a recycled component. With this in mind, we explore the use of mass-dependent Mo isotope variations in mantle-derived rocks as a tracer of recycled crust in the mantle. [1] Archer & Vance (2008) Nature Geoscience 1, 597-600. [2] Barling et al. (2001) EPSL 193, 447-457. [3] Siebert et al. (2003) EPSL 211, 159-171. [4] Anbar (2004) Rev. Min. Geochem. 55, 429-454.

  8. Genetic dissection of early endosomal recycling highlights a TORC1-independent role for Rag GTPases

    PubMed Central

    2017-01-01

    Endocytosed cell surface membrane proteins rely on recycling pathways for their return to the plasma membrane. Although endosome-to-plasma membrane recycling is critical for many cellular processes, much of the required machinery is unknown. We discovered that yeast has a recycling route from endosomes to the cell surface that functions efficiently after inactivation of the sec7-1 allele of Sec7, which controls transit through the Golgi. A genetic screen based on an engineered synthetic reporter that exclusively follows this pathway revealed that recycling was subject to metabolic control through the Rag GTPases Gtr1 and Gtr2, which work downstream of the exchange factor Vam6. Gtr1 and Gtr2 control the recycling pathway independently of TORC1 regulation through the Gtr1 interactor Ltv1. We further show that the early-endosome recycling route and its control though the Vam6>Gtr1/Gtr2>Ltv1 pathway plays a physiological role in regulating the abundance of amino acid transporters at the cell surface. PMID:28768685

  9. Contrasting roles of interception and transpiration in the hydrological cycle - Part 2: Moisture recycling

    NASA Astrophysics Data System (ADS)

    van der Ent, R. J.; Wang-Erlandsson, L.; Keys, P. W.; Savenije, H. H. G.

    2014-03-01

    The contribution of land evaporation to local and remote precipitation (i.e., moisture recycling) is of significant importance to sustain water resources and ecosystems. But how important are different evaporation components in sustaining precipitation? This is the first paper to present moisture recycling metrics for partitioned evaporation. In the companion paper, Part 1, evaporation was partitioned into vegetation interception, floor interception, soil moisture evaporation and open water evaporation (constituting the direct, purely physical fluxes, largely dominated by interception), and transpiration (delayed, biophysical flux). Here, we track these components forward as well as backward in time. We also include age tracers to study the atmospheric residence times of these evaporation components. As the main result we present a new image of the global hydrological cycle that includes quantification of partitioned evaporation and moisture recycling as well as the atmospheric residence times of all fluxes. We demonstrate that evaporated interception is more likely to return as precipitation on land than transpired water. On average, direct evaporation (essentially interception) is found to have an atmospheric residence time of eight days, while transpiration typically resides nine days in the atmosphere. Interception recycling has a much shorter local length scale than transpiration recycling, thus interception generally precipitates closer to its evaporative source than transpiration, which is particularly pronounced outside the tropics. We conclude that interception mainly works as an intensifier of the local hydrological cycle during wet spells. On the other hand, transpiration remains active during dry spells and is transported over much larger distances downwind where it can act as a significant source of moisture. Thus, as various land-use types can differ considerably in their partitioning between interception and transpiration, our results stress that land-use changes (e.g., forest to cropland conversion) do not only affect the magnitude of moisture recycling, but could also influence the moisture recycling patterns and lead to a redistribution of water resources. As such, this research highlights that land-use changes can have complex effects on the atmospheric branch of the hydrological cycle.

  10. Bacterial cell-wall recycling

    PubMed Central

    Johnson, Jarrod W.; Fisher, Jed F.; Mobashery, Shahriar

    2012-01-01

    Many Gram-negative and Gram-positive bacteria recycle a significant proportion of the peptidoglycan components of their cell walls during their growth and septation. In many—and quite possibly all—bacteria, the peptidoglycan fragments are recovered and recycled. While cell-wall recycling is beneficial for the recovery of resources, it also serves as a mechanism to detect cell-wall–targeting antibiotics and to regulate resistance mechanisms. In several Gram-negative pathogens, anhydro-MurNAc-peptide cell-wall fragments regulate AmpC β-lactamase induction. In some Gram-positive organisms, short peptides derived from the cell wall regulate the induction of both β-lactamase and β-lactam-resistant penicillin-binding proteins. The involvement of peptidoglycan recycling with resistance regulation suggests that inhibitors of the enzymes involved in the recycling might synergize with cell-wall-targeted antibiotics. Indeed, such inhibitors improve the potency of β-lactams in vitro against inducible AmpC β-lactamase-producing bacteria. We describe the key steps of cell-wall remodeling and recycling, the regulation of resistance mechanisms by cell-wall recycling, and recent advances toward the discovery of cell-wall recycling inhibitors. PMID:23163477

  11. Targeting Pediatric Glioma with Apoptosis and Autophagy Manipulation

    DTIC Science & Technology

    2014-10-01

    hypothesis that late stage autophagosome fusion with the lysosome and degradation of the components and recycling of the macronutrients is critical to...inhibition of this upregulation at late stages of autophagy we can impair the recycling of these important macronutrients and improve glioma cell

  12. Ship recycling and marine pollution.

    PubMed

    Chang, Yen-Chiang; Wang, Nannan; Durak, Onur Sabri

    2010-09-01

    This paper discusses the historical background, structure and enforcement of the '2009 Hong Kong International Convention on the Safe and Environmentally Sound Recycling of Ships.' the 2009 Hong Kong Convention establishes control and enforcement instruments related to ship recycling, determining the control rights of Port States and the obligations of Flag States, Parties and recycling facilities under its jurisdiction. The Convention also controls the communication and exchange of information procedures, establishes a reporting system to be used upon the completion of recycling, and outlines an auditing system for detecting violations. The Convention, however, also contains some deficiencies. This paper concludes these deficiencies will eventually influence the final acceptance of this Convention by the international community. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Experimental Melting Study of Basalt-Peridotite Hybrid Source: Constrains on Chemistry of Recycled Component

    NASA Astrophysics Data System (ADS)

    Gao, S.; Takahashi, E.; Matsukage, K. N.; Suzuki, T.; Kimura, J. I.

    2015-12-01

    It is believed that magma genesis of OIB is largely influenced by recycled oceanic crust component involved in the mantle plume (e.g., Hauri et al., 1996; Takahashi & Nakajima., 2002; Sobolev et al., 2007). Mallik & Dasgupta (2012) reported that the wall-rock reaction in MORB-eclogite and peridotite layered experiments produced a spectrum of tholeiitic to alkalic melts. However, the proper eclogite source composition is still under dispute. In order to figure out the geochemistry of recycled component as well as their melting process, we conducted a series of high-P, high-T experiments. Melting experiments (1~10hrs) were performed under 2.9GPa with Boyd-England type piston-cylinder (1460~1540°C for dry experiments, 1400~1500°C for hydrous experiments) and 5GPa with Kawai-type multi-anvil (1550~1650°C for dry experiments, 1350~1550°C for hydrous experiments), at the Magma Factory, Tokyo Tech. Spinel lherzolite KLB-1 (Takahashi 1986) was employed as peridotite component. Two basalts were used as recycled component: Fe-enriched Columbia River basalt (CRB72-180, Takahashi et al., 1998) and N-type MORB (NAM-7, Yasuda et al., 1994). In dry experiments below peridotite dry solidus, melt compositions ranged from basaltic andesite to tholeiite. Opx reaction band generated between basalt and peridotite layer hindered chemical reaction. On the other hand, alkali basalt was formed in hydrous run products because H2O promoted melting process in both layers. Compared with melts formed by N-MORB-peridotite runs, those layered experiments with CRB are enriched in FeO, TiO2, K2O and light REE at given MgO. In other words, melts produced by CRB-peridotite layered experiments are close to alkali basalts in OIB and tholeiite in Hawaii, while those by layered experiments with N-MORB are poor in above elements. Thus we propose that Fe-rich Archean or Proterozoic tholeiite (BVSP 1980) would be a possible candidate for recycled component in OIB source.

  14. Conceptual design for spacelab two-phase flow experiments

    NASA Technical Reports Server (NTRS)

    Bradshaw, R. D.; King, C. D.

    1977-01-01

    KC-135 aircraft tests confirmed the gravity sensitivity of two phase flow correlations. The prime component of the apparatus is a 1.5 cm dia by 90 cm fused quartz tube test section selected for visual observation. The water-cabin air system with water recycle was a clear choice for a flow regime-pressure drop test since it was used satisfactorily on KC-135 tests. Freon-11 with either overboard dump or with liquid-recycle will be used for the heat transfer test. The two experiments use common hardware. The experimental plan covers 120 data points in six hours with mass velocities from 10 to 640 kg/sec-sq m and qualities 0.01 to 0.64. The apparatus with pump, separator, storage tank and controls is mounted in a double spacelab rack. Supporting hardware, procedures, measured variables and program costs are defined.

  15. Comparisons of four categories of waste recycling in China's paper industry based on physical input-output life-cycle assessment model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Sai; Zhang, Tianzhu, E-mail: zhangtz@mail.tsinghua.edu.cn; Xu Yijian

    Highlights: Black-Right-Pointing-Pointer Using crop straws and wood wastes for paper production should be promoted. Black-Right-Pointing-Pointer Bagasse and textile waste recycling should be properly limited. Black-Right-Pointing-Pointer Imports of scrap paper should be encouraged. Black-Right-Pointing-Pointer Sensitivity analysis, uncertainties and policy implications are discussed. - Abstract: Waste recycling for paper production is an important component of waste management. This study constructs a physical input-output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China's paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for papermore » production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment.« less

  16. An Economic Model and Experiments to Understand Aluminum-Cerium Alloy Recycling

    NASA Astrophysics Data System (ADS)

    Iyer, Ananth V.; Lim, Heejong; Rios, Orlando; Sims, Zachary; Weiss, David

    2018-04-01

    We provide an economic model to understand the impact of adoption, sorting and pricing of scrap on the recycling of a new aluminum-cerium (AlCe) alloy for use in engine blocks in the automobile industry. The goal of the laboratory portion of this study is to investigate possible effects of cerium contamination on well-established aluminum recycling streams. Our methodology includes three components: (1) focused data gathering from industry supply chain participants, (2) experimental data through laboratory experiments to understand the impact of cerium on existing alloys and (3) an economic model to understand pricing incentives on a recycler's separation of AlCe engine blocks.

  17. A conceptual review of regional-scale controls on the composition of clastic sediment and the co-evolution of continental blocks and their sedimentary cover.

    PubMed

    Cox, R; Lowe, D R

    1995-01-02

    Both sediment recycling and first-cycle input influence the composition of clastic material in sedimentary systems. This paper examines conceptually the roles played by these processes in governing the composition of clastic sediment on a regional scale by outlining the expected effects on sediment composition of protracted sediment recycling and of continuous first-cycle input on a maturing continental block. Generally speaking, long-term recycling tends to enrich sediments in the most chemically and mechanically stable components: quartz in the sand and silt size fractions, and illite among the clay minerals. Sandstones trend towards pure quartz arenites, and mudrocks become more potassic and aluminous. The average grain size of clastic sediment decreases by a combination of progressive attrition of sand grains and ongoing breakdown of primary silicate minerals to finer-grained clay minerals and oxides. Sandstones derived by continuous first-cycle input from an evolving continental crustal source also become increasingly rich in quartz, but in addition become more feldspathic as the proportion of granitic material in the upper continental crust increases during crustal stabilization. Associated mudrocks also become richer in potassium and aluminum, but will have higher K2O/Al2O3 ratios than recycled muds. The average grain size of the sediment may increase with time as the proportion of sand-prone granitic source rocks increases at the expense of more mud-prone volcanic sources. In general, except in instances where chemical weathering is extreme, first-cycle sediments lack the compositional maturity of recycled detritus, and are characterized by the presence of a variety of primary silicate minerals. Sedimentary systems are not usually completely dominated by either recycling or first-cycle detritus. Generally, however, sedimentary systems associated with the earliest phases of formation and accretion of continental crust are characterized by first-cycle input from igneous and metamorphic rocks, whereas those associated with more mature cratons tend to be dominated by recycled sedimentary material.

  18. Availability analysis of an HTGR fuel recycle facility. Summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharmahd, J.N.

    1979-11-01

    An availability analysis of reprocessing systems in a high-temperature gas-cooled reactor (HTGR) fuel recycle facility was completed. This report summarizes work done to date to define and determine reprocessing system availability for a previously planned HTGR recycle reference facility (HRRF). Schedules and procedures for further work during reprocessing development and for HRRF design and construction are proposed in this report. Probable failure rates, transfer times, and repair times are estimated for major system components. Unscheduled down times are summarized.

  19. Recycling Flight Hardware Components and Systems to Reduce Next Generation Research Costs

    NASA Technical Reports Server (NTRS)

    Turner, Wlat

    2011-01-01

    With the recent 'new direction' put forth by President Obama identifying NASA's new focus in research rather than continuing on a path to return to the Moon and Mars, the focus of work at Kennedy Space Center (KSC) may be changing dramatically. Research opportunities within the micro-gravity community potentially stands at the threshold of resurgence when the new direction of the agency takes hold for the next generation of experimenters. This presentation defines a strategy for recycling flight experiment components or part numbers, in order to reduce research project costs, not just in component selection and fabrication, but in expediting qualification of hardware for flight. A key component of the strategy is effective communication of relevant flight hardware information and available flight hardware components to researchers, with the goal of 'short circuiting' the design process for flight experiments

  20. Looking Northwest at Furnace Control Panels and Gas Control Furnace ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Northwest at Furnace Control Panels and Gas Control Furnace in Red Room Within Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  1. EFFECTS OF NUMBER AND LOCATION OF BINS ON PLASTIC RECYCLING AT A UNIVERSITY

    PubMed Central

    O'Connor, Ryan T; Lerman, Dorothea C; Fritz, Jennifer N; Hodde, Henry B

    2010-01-01

    The proportion of plastic bottles that consumers placed in appropriate recycling receptacles rather than trash bins was examined across 3 buildings on a university campus. We extended previous research on interventions to increase recycling by controlling the number of recycling receptacles across conditions and by examining receptacle location without the use of posted signs. Manipulating the appearance or number of recycling bins in common areas did not increase recycling. Consumers recycled substantially more plastic bottles when the recycling bins were located in classrooms. PMID:21541154

  2. Effects of number and location of bins on plastic recycling at a university.

    PubMed

    O'Connor, Ryan T; Lerman, Dorothea C; Fritz, Jennifer N; Hodde, Henry B

    2010-01-01

    The proportion of plastic bottles that consumers placed in appropriate recycling receptacles rather than trash bins was examined across 3 buildings on a university campus. We extended previous research on interventions to increase recycling by controlling the number of recycling receptacles across conditions and by examining receptacle location without the use of posted signs. Manipulating the appearance or number of recycling bins in common areas did not increase recycling. Consumers recycled substantially more plastic bottles when the recycling bins were located in classrooms.

  3. Induction Consolidation of Thermoplastic Composites Using Smart Susceptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsen, Marc R

    2012-06-14

    This project has focused on the area of energy efficient consolidation and molding of fiber reinforced thermoplastic composite components as an energy efficient alternative to the conventional processing methods such as autoclave processing. The expanding application of composite materials in wind energy, automotive, and aerospace provides an attractive energy efficiency target for process development. The intent is to have this efficient processing along with the recyclable thermoplastic materials ready for large scale application before these high production volume levels are reached. Therefore, the process can be implemented in a timely manner to realize the maximum economic, energy, and environmental efficiencies.more » Under this project an increased understanding of the use of induction heating with smart susceptors applied to consolidation of thermoplastic has been achieved. This was done by the establishment of processing equipment and tooling and the subsequent demonstration of this fabrication technology by consolidating/molding of entry level components for each of the participating industrial segments, wind energy, aerospace, and automotive. This understanding adds to the nation's capability to affordably manufacture high quality lightweight high performance components from advanced recyclable composite materials in a lean and energy efficient manner. The use of induction heating with smart susceptors is a precisely controlled low energy method for the consolidation and molding of thermoplastic composites. The smart susceptor provides intrinsic thermal control based on the interaction with the magnetic field from the induction coil thereby producing highly repeatable processing. The low energy usage is enabled by the fact that only the smart susceptor surface of the tool is heated, not the entire tool. Therefore much less mass is heated resulting in significantly less required energy to consolidate/mold the desired composite components. This energy efficiency results in potential energy savings of {approx}75% as compared to autoclave processing in aerospace, {approx}63% as compared to compression molding in automotive, and {approx}42% energy savings as compared to convectively heated tools in wind energy. The ability to make parts in a rapid and controlled manner provides significant economic advantages for each of the industrial segments. These attributes were demonstrated during the processing of the demonstration components on this project.« less

  4. An overview of Japanese CELSS research activities

    NASA Technical Reports Server (NTRS)

    Nitta, Keiji

    1987-01-01

    Development of Controlled Ecological Life Support System (CELSS) technology is inevitable for future long duration stays of human beings in space, for lunar base construction and for manned Mars flight programs. CELSS functions can be divided into 2 categories, Environmental Control and Material Recycling. Temperature, humidity, total atmospheric pressure and partial pressure of oxygen and carbon dioxide, necessary for all living things, are to be controlled by the environment control function. This function can be performed by technologies already developed and used as the Environment Control Life Support System (ECLSS) of Space Shuttle and Space Station. As for material recycling, matured technologies have not yet been established for fully satisfying the specific metabolic requirements of each living thing including human beings. Therefore, research activities for establishing CELSS technology should be focused on material recycling technologies using biological systems such as plants and animals and physico-chemical systems, for example, a gas recycling system, a water purifying and recycling system and a waste management system. Japanese research activities were conducted and will be continued accordingly.

  5. Over-Expression of Rififylin, a New RING Finger and FYVE-like Domain-containing Protein, Inhibits Recycling from the Endocytic Recycling Compartment

    PubMed Central

    Coumailleau, Franck; Das, Vincent; Alcover, Andres; Raposo, Graça; Vandormael-Pournin, Sandrine; Le Bras, Stéphanie; Baldacci, Patricia; Dautry-Varsat, Alice; Babinet, Charles; Cohen-Tannoudji, Michel

    2004-01-01

    Endocytosed membrane components are recycled to the cell surface either directly from early/sorting endosomes or after going through the endocytic recycling compartment (ERC). Studying recycling mechanisms is difficult, in part due to the fact that specific tools to inhibit this process are scarce. In this study, we have characterized a novel widely expressed protein, named Rififylin (Rffl) for RING Finger and FYVE-like domain-containing protein, that, when overexpressed in HeLa cells, induced the condensation of transferrin receptor-, Rab5-, and Rab11-positive recycling tubulovesicular membranes in the perinuclear region. Internalized transferrin was able to access these condensed endosomes but its exit from this compartment was delayed. Using deletion mutants, we show that the carboxy-terminal RING finger of Rffl is dispensable for its action. In contrast, the amino-terminal domain of Rffl, which shows similarities with the phosphatidylinositol-3-phosphate–binding FYVE finger, is critical for the recruitment of Rffl to recycling endocytic membranes and for the inhibition of recycling, albeit in a manner that is independent of PtdIns(3)-kinase activity. Rffl overexpression represents a novel means to inhibit recycling that will help to understand the mechanisms involved in recycling from the ERC to the plasma membrane. PMID:15229288

  6. Over-expression of Rififylin, a new RING finger and FYVE-like domain-containing protein, inhibits recycling from the endocytic recycling compartment.

    PubMed

    Coumailleau, Franck; Das, Vincent; Alcover, Andres; Raposo, Graça; Vandormael-Pournin, Sandrine; Le Bras, Stéphanie; Baldacci, Patricia; Dautry-Varsat, Alice; Babinet, Charles; Cohen-Tannoudji, Michel

    2004-10-01

    Endocytosed membrane components are recycled to the cell surface either directly from early/sorting endosomes or after going through the endocytic recycling compartment (ERC). Studying recycling mechanisms is difficult, in part due to the fact that specific tools to inhibit this process are scarce. In this study, we have characterized a novel widely expressed protein, named Rififylin (Rffl) for RING Finger and FYVE-like domain-containing protein, that, when overexpressed in HeLa cells, induced the condensation of transferrin receptor-, Rab5-, and Rab11-positive recycling tubulovesicular membranes in the perinuclear region. Internalized transferrin was able to access these condensed endosomes but its exit from this compartment was delayed. Using deletion mutants, we show that the carboxy-terminal RING finger of Rffl is dispensable for its action. In contrast, the amino-terminal domain of Rffl, which shows similarities with the phosphatidylinositol-3-phosphate-binding FYVE finger, is critical for the recruitment of Rffl to recycling endocytic membranes and for the inhibition of recycling, albeit in a manner that is independent of PtdIns(3)-kinase activity. Rffl overexpression represents a novel means to inhibit recycling that will help to understand the mechanisms involved in recycling from the ERC to the plasma membrane.

  7. Giant Pulse Studies of Ordinary and Recycled Pulsars with NICER

    NASA Astrophysics Data System (ADS)

    Lewandowska, Natalia; Arzoumanian, Zaven; Gendreau, Keith C.; Enoto, Teruaki; Harding, Alice; Lommen, Andrea; Ray, Paul S.; Deneva, Julia; Kerr, Matthew; Ransom, Scott M.; NICER Team

    2018-01-01

    Radio Giant Pulses are one of the earliest discovered form of anomalous single pulse emission from pulsars. Known for their non-periodical occurrence, restriction to certain phase ranges, power-law intensity distributions, pulse widths ranging from microseconds to nanoseconds and very high brightness temperatures, they stand out as an individual form of pulsar radio emission.Discovered originally in the case of the Crab pulsar, several other pulsars have been observed to emit radio giant pulses, the most promising being the recycled pulsar PSR B1937+21 and also the Vela pulsar.Although radio giant pulses are apparently the result of a coherent emission mechanism, recent studies of the Crab pulsar led to the discovery of an additional incoherent component at optical wavelengths. No such component has been identified for recycled pulsars, or Vela yet.To provide constraints on possible emission regions in their magnetospheres and to search for differences between giant pulses from ordinary and recycled pulsars, we present the progress of the correlation study of PSR B1937+21 and the Vela pulsar carried out with NICER and several radio observatories.

  8. The influence of printed electronics on the recyclability of paper: a case study for smart envelopes in courier and postal services.

    PubMed

    Aliaga, C; Zhang, H; Dobon, A; Hortal, M; Beneventi, D

    2015-04-01

    The aim of this paper is to analyse the effects of the presence of printed electronics on the paper waste streams and specifically on paper recyclability. The analysis is based on a case study focussed on envelopes for postal and courier services provided with these intelligent systems. The smart printed envelope of the study includes a combination of both conventional (thin flexible batteries and resistors) and printed electronic components (conductive track layout based on nanosilver ink). For this purpose, a comparison between envelopes with and without these components (batteries, resistors and conductive track layouts) was carried out through pilot scale paper recycling tests. The generation of rejects during the recycling process as well as the final quality of the recycled paper (mechanical and optical properties) were tested and quantitatively evaluated. The results show that resistors are retained during the screening process in the sieves and consequently they cannot end up in the final screened pulp. Therefore, mechanical and optical properties of the recycled paper are not affected. Nevertheless, inks from the conductive track layouts and batteries were partially dissolved in the process water. These substances were not totally retained in the sieving systems resulting in slight changes in the optical properties of the final recycled paper (variations are 7.2-7.5% in brightness, 8.5-10.7% in whiteness, 1.2-2.2% in L(∗) values, 3.3-3.5% in opacity and 16.1-27% in yellowness). These variations are not in ranges able to cause problems in current paper recycling processes and restrict the use of recycled paper in current applications. Moreover, real impacts on industrial recycling are expected to be even significantly lower since the proportion of paper product with printed circuits in the current paper waste streams are much lower than the ones tested in this work. However, it should be underlined the fact that this situation may change over the next years due to the future developments in printed electronics and the gradual penetration of these types of devices in the market. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Contrasting roles of interception and transpiration in the hydrological cycle - Part 2: Moisture recycling

    NASA Astrophysics Data System (ADS)

    van der Ent, R. J.; Wang-Erlandsson, L.; Keys, P. W.; Savenije, H. H. G.

    2014-12-01

    The contribution of land evaporation to local and remote precipitation (i.e. moisture recycling) is of significant importance to sustain water resources and ecosystems. But how important are different evaporation components in sustaining precipitation? This is the first paper to present moisture recycling metrics for partitioned evaporation. In the companion paper Wang-Erlandsson et al. (2014) (hereafter Part 1), evaporation was partitioned into vegetation interception, floor interception, soil moisture evaporation and open-water evaporation (constituting the direct, purely physical fluxes, largely dominated by interception), and transpiration (delayed, biophysical flux). Here, we track these components forward as well as backward in time. We also include age tracers to study the atmospheric residence times of these evaporation components. We present a new image of the global hydrological cycle that includes quantification of partitioned evaporation and moisture recycling as well as the atmospheric residence times of all fluxes. We demonstrate that evaporated interception is more likely to return as precipitation on land than transpired water. On average, direct evaporation (essentially interception) is found to have an atmospheric residence time of 8 days, while transpiration typically resides for 9 days in the atmosphere. The process scale over which evaporation recycles is more local for interception compared to transpiration; thus interception generally precipitates closer to its evaporative source than transpiration, which is particularly pronounced outside the tropics. We conclude that interception mainly works as an intensifier of the local hydrological cycle during wet spells and wet seasons. On the other hand, transpiration remains active during dry spells and dry seasons and is transported over much larger distances downwind, where it can act as a significant source of moisture. Thus, as various land-use types can differ considerably in their partitioning between interception and transpiration, our results stress that land-use changes (e.g. forest-to-cropland conversion) do not only affect the magnitude of moisture recycling, but could also influence the moisture recycling patterns and lead to a redistribution of water resources. As such, this research highlights that land-use changes can have complex effects on the atmospheric branch of the hydrological cycle.

  10. Auditing Operating Room Recycling: A Management Case Report.

    PubMed

    McGain, Forbes; Jarosz, Katherine Maria; Nguyen, Martin Ngoc Hoai Huong; Bates, Samantha; O'Shea, Catherine Jane

    2015-08-01

    Much waste arises from operating rooms (ORs). We estimated the practical and financial feasibility of an OR recycling program, weighing all waste from 6 ORs in Melbourne, Australia. Over 1 week, 237 operations produced 1265 kg in total: general waste 570 kg (45%), infectious waste 410 kg (32%), and recyclables 285 kg (23%). The achieved recycling had no infectious contamination. The achieved recycling/potential recycling rate was 285 kg/517 kg (55%). The average waste disposal costs were similar for general waste and recycling. OR recycling rates of 20%-25% total waste were achievable without compromising infection control or financial constraints.

  11. A novel requirement for C. elegans Alix/ALX-1 in RME-1 mediated membrane transport

    PubMed Central

    Shi, Anbing; Pant, Saumya; Balklava, Zita; Chen, Carlos Chih-Hsiung; Figueroa, Vanesa; Grant, Barth D.

    2007-01-01

    Summary Background Alix/Bro1p family proteins have recently been identified as important components of multivesicular endosomes (MVEs) involved in the sorting of endocytosed integral membrane proteins, interacting with components of the ESCRT complex, the unconventional phospholipid LBPA, and other known endocytosis regulators. During infection Alix can be co-opted by enveloped retroviruses, including HIV, providing an important function during virus budding from the plasma membrane. In addition Alix is associated with the actin cytoskeleton and may regulate cytoskeletal dynamics. Results Here we demonstrate a novel physical interaction between the only apparent Alix/Bro1p family protein in C. elegans, ALX-1, and a key regulator of receptor recycling from endosomes to the plasma membrane called RME-1. Analysis of alx-1 mutants indicates that ALX-1 is required for endocytic recycling of specific basolateral cargo in the C. elegans intestine, a pathway previously defined by analysis of rme-1 mutants. Expression of truncated human Alix in HeLa cells disrupts recycling of MHCI, a known Ehd1/RME-1 dependent transport step, suggesting phylogenetic conservation of this function. We show that the interaction of ALX-1 with RME-1 in C. elegans, mediated by RME-1/YPSL and ALX-1/NPF motifs, is required for this recycling process. In the C. elegans intestine ALX-1 localizes to both recycling endosomes and MVEs, but the ALX-1/RME-1 interaction appears dispensable for ALX-1 function in MVEs/late endosomes. Conclusions This work provides the first demonstration of a requirement for an Alix/Bro1p family member in the endocytic recycling pathway in association with the recycling regulator RME-1. PMID:17997305

  12. Processed milk waste recycling via thermal pretreatment and lactic acid bacteria fermentation.

    PubMed

    Kasmi, Mariam; Hamdi, Moktar; Trabelsi, Ismail

    2017-05-01

    Processed milk waste (MW) presents a serious problem within the dairy industries due to its high polluting load. Its chemical oxygen demand (COD) can reach values as high as 80,000 mg O 2  L -1 . This study proposes to reduce the organic load of those wastes using thermal coagulation and recover residual valuable components via fermentation. Thermal process results showed that the COD removal rates exceeded 40% when samples were treated at temperature above 60 °C to reach 72% at 100 °C. Clarified supernatants resulting from thermal treatment of the samples at the temperatures of 60 (MW 60 ), 80 (MW 80 ), and 100 °C (MW 100 ) were fermented using lactic acid bacteria strains without pH control. Lactic strains recorded important final cell yields (5-7 g L -1 ). Growth mediums prepared using the thermally treated MW produced 73% of the bacterial biomass recorded with a conventional culture medium. At the end of fermentation, mediums were found exhausted from several valuable components. Industrial scale implementation of the proposed process for the recycling of industrial MWs is described and discussed.

  13. Total Ni-Cd battery recycling by INMETCO U.S.A.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanewald, R.H.; McComas, D.M.; Onuska, J.C. Jr.

    1997-12-31

    The processing and recycling of various batteries has been occurring at INMETCO (a wholly owned subsidiary of Inco Ltd.) since the early 1980`s. Due to changing environmental regulations, INMETCO`s spent nickel-cadmium (Ni-Cd) and nickel metal hydride (Ni-MH) battery recycling has steadily grown since 1990. INMETCO`s new Cadmium Recovery Operation will be discussed along with its unique ability to recycle/reuse 100% of the battery components on site. Start up results, along with actual cadmium analysis, as well as actual air and water environmental impact will be highlighted. INMETCO has been, and continues to be, the major recycler of stainless steel by-products,more » both hazardous and non-hazardous, back into a stainless steel remelt alloy which is accepted in North America, Europe, and Japan.« less

  14. Untethered Recyclable Tubular Actuators with Versatile Locomotion for Soft Continuum Robots.

    PubMed

    Qian, Xiaojie; Chen, Qiaomei; Yang, Yang; Xu, Yanshuang; Li, Zhen; Wang, Zhenhua; Wu, Yahe; Wei, Yen; Ji, Yan

    2018-05-27

    Stimuli-responsive materials offer a distinguished platform to build tether-free compact soft robots, which can combine sensing and actuation without a linked power supply. In the past, tubular soft robots have to be made by multiple components with various internal channels or complex cavities assembled together. Moreover, robust processing, complex locomotion, simple structure, and easy recyclability represent major challenges in this area. Here, it is shown that those challenges can be tackled by liquid crystalline elastomers with allyl sulfide functional groups. The light-controlled exchange reaction between allyl sulfide groups allows flexible processing of tubular soft robots/actuators, which does not need any assisting materials. Complex locomotion demonstrated here includes reversible simultaneous bending and elongation; reversible diameter expansion; and omnidirectional bending via remote infrared light control. Different modes of actuation can be programmed into the same tube without the routine assembly of multiple tubes as used in the past. In addition, the exchange reaction also makes it possible to use the same single tube repeatedly to perform different functions by erasing and reprogramming. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Challenges and Alternatives to Plastics Recycling in the Automotive Sector.

    PubMed

    Miller, Lindsay; Soulliere, Katie; Sawyer-Beaulieu, Susan; Tseng, Simon; Tam, Edwin

    2014-08-15

    Plastics are increasingly a preferred material choice in designing and developing complex, consumer products, such as automobiles, because they are mouldable, lightweight, and are often perceived to be highly recyclable materials. However, actually recycling the heterogeneous plastics used in such durable items is challenging, and presents very different scenarios to how simple products, such as water bottles, are recovered via curbside or container recycling initiatives. While the technology exists to recycle plastics, their feasibility to do so from high level consumer or industrial applications is bounded by technological and economical restraints. Obstacles include the lack of market for recyclates, and the lack of cost efficient recovery infrastructures or processes. Furthermore, there is a knowledge gap between manufacturers, consumers, and end-of-life facility operators. For these reasons, end-of-life plastics are more likely to end up down-cycled, or as shredder residue and then landfilled. This paper reviews these challenges and several alternatives to recycling plastics in order to broaden the mindset surrounding plastics recycling to improve their sustainability. The paper focuses on the automotive sector for examples, but discussion can be applied to a wide range of plastic components from similarly complex products.

  16. Challenges and Alternatives to Plastics Recycling in the Automotive Sector

    PubMed Central

    Miller, Lindsay; Soulliere, Katie; Sawyer-Beaulieu, Susan; Tseng, Simon; Tam, Edwin

    2014-01-01

    Plastics are increasingly a preferred material choice in designing and developing complex, consumer products, such as automobiles, because they are mouldable, lightweight, and are often perceived to be highly recyclable materials. However, actually recycling the heterogeneous plastics used in such durable items is challenging, and presents very different scenarios to how simple products, such as water bottles, are recovered via curbside or container recycling initiatives. While the technology exists to recycle plastics, their feasibility to do so from high level consumer or industrial applications is bounded by technological and economical restraints. Obstacles include the lack of market for recyclates, and the lack of cost efficient recovery infrastructures or processes. Furthermore, there is a knowledge gap between manufacturers, consumers, and end-of-life facility operators. For these reasons, end-of-life plastics are more likely to end up down-cycled, or as shredder residue and then landfilled. This paper reviews these challenges and several alternatives to recycling plastics in order to broaden the mindset surrounding plastics recycling to improve their sustainability. The paper focuses on the automotive sector for examples, but discussion can be applied to a wide range of plastic components from similarly complex products. PMID:28788167

  17. Research on the recycling industry development model for typical exterior plastic components of end-of-life passenger vehicle based on the SWOT method.

    PubMed

    Zhang, Hongshen; Chen, Ming

    2013-11-01

    In-depth studies on the recycling of typical automotive exterior plastic parts are significant and beneficial for environmental protection, energy conservation, and sustainable development of China. In the current study, several methods were used to analyze the recycling industry model for typical exterior parts of passenger vehicles in China. The strengths, weaknesses, opportunities, and challenges of the current recycling industry for typical exterior parts of passenger vehicles were analyzed comprehensively based on the SWOT method. The internal factor evaluation matrix and external factor evaluation matrix were used to evaluate the internal and external factors of the recycling industry. The recycling industry was found to respond well to all the factors and it was found to face good developing opportunities. Then, the cross-link strategies analysis for the typical exterior parts of the passenger car industry of China was conducted based on the SWOT analysis strategies and established SWOT matrix. Finally, based on the aforementioned research, the recycling industry model led by automobile manufacturers was promoted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Benthic-Pelagic Coupling in Biogeochemical and Climate Models: Existing Approaches, Recent developments and Roadblocks

    NASA Astrophysics Data System (ADS)

    Arndt, Sandra

    2016-04-01

    Marine sediments are key components in the Earth System. They host the largest carbon reservoir on Earth, provide the only long term sink for atmospheric CO2, recycle nutrients and represent the most important climate archive. Biogeochemical processes in marine sediments are thus essential for our understanding of the global biogeochemical cycles and climate. They are first and foremost, donor controlled and, thus, driven by the rain of particulate material from the euphotic zone and influenced by the overlying bottom water. Geochemical species may undergo several recycling loops (e.g. authigenic mineral precipitation/dissolution) before they are either buried or diffuse back to the water column. The tightly coupled and complex pelagic and benthic process interplay thus delays recycling flux, significantly modifies the depositional signal and controls the long-term removal of carbon from the ocean-atmosphere system. Despite the importance of this mutual interaction, coupled regional/global biogeochemical models and (paleo)climate models, which are designed to assess and quantify the transformations and fluxes of carbon and nutrients and evaluate their response to past and future perturbations of the climate system either completely neglect marine sediments or incorporate a highly simplified representation of benthic processes. On the other end of the spectrum, coupled, multi-component state-of-the-art early diagenetic models have been successfully developed and applied over the past decades to reproduce observations and quantify sediment-water exchange fluxes, but cannot easily be coupled to pelagic models. The primary constraint here is the high computation cost of simulating all of the essential redox and equilibrium reactions within marine sediments that control carbon burial and benthic recycling fluxes: a barrier that is easily exacerbated if a variety of benthic environments are to be spatially resolved. This presentation provides an integrative overview of the benthic-pelagic coupling that accounts for the complex process interplay from the euphotic ocean to the deep sediment. It explores the intensity of the benthic-pelagic coupling across different environments and from the seasonal to the geological timescale. Different modelling approaches of coupling sediment and water column dynamics in regional/global biogeochemical models and (paleo)climate models are critically evaluated and their most important limitations, as well as the implications for our ability to predict the response of the global carbon cycle to past or future perturbations is discussed. Finally, the presentation identifies major roadblocks to the development of new model approaches and highlights how new techniques, new observational and laboratory data, as well as a close interdisciplinary collaboration can overcome these roadblocks.

  19. Mechanical recycling of waste electric and electronic equipment: a review.

    PubMed

    Cui, Jirang; Forssberg, Eric

    2003-05-30

    The production of electric and electronic equipment (EEE) is one of the fastest growing areas. This development has resulted in an increase of waste electric and electronic equipment (WEEE). In view of the environmental problems involved in the management of WEEE, many counties and organizations have drafted national legislation to improve the reuse, recycling and other forms of recovery of such wastes so as to reduce disposal. Recycling of WEEE is an important subject not only from the point of waste treatment but also from the recovery of valuable materials.WEEE is diverse and complex, in terms of materials and components makeup as well as the original equipment's manufacturing processes. Characterization of this waste stream is of paramount importance for developing a cost-effective and environmentally friendly recycling system. In this paper, the physical and particle properties of WEEE are presented. Selective disassembly, targeting on singling out hazardous and/or valuable components, is an indispensable process in the practice of recycling of WEEE. Disassembly process planning and innovation of disassembly facilities are most active research areas. Mechanical/physical processing, based on the characterization of WEEE, provides an alternative means of recovering valuable materials. Mechanical processes, such as screening, shape separation, magnetic separation, Eddy current separation, electrostatic separation, and jigging have been widely utilized in recycling industry. However, recycling of WEEE is only beginning. For maximum separation of materials, WEEE should be shredded to small, even fine particles, generally below 5 or 10mm. Therefore, a discussion of mechanical separation processes for fine particles is highlighted in this paper. Consumer electronic equipment (brown goods), such as television sets, video recorders, are most common. It is very costly to perform manual dismantling of those products, due to the fact that brown goods contain very low-grade precious metals and copper. It is expected that a mechanical recycling process will be developed for the upgrading of low metal content scraps.

  20. Students Explore Fossil Creatures of the Cambrian Period Burgess Shale through Model-Making

    ERIC Educational Resources Information Center

    Anderson, Andrea E.; Zhbanova, Ksenia; Gray, Phyllis; Teske, Jolene K.; Rule, Audrey C.

    2016-01-01

    This practical article features an arts-integrated science unit on fossils of the Burgess Shale for fourteen elementary/middle school students at a weeklong summer day camp. The day camp had a theme of recycling, reduction and reuse; all of the fossil models had substantial recycled components to support this theme. Next Generation Science…

  1. Repairs, Reuse, Recycling--First Steps toward a Sustainable Society. Worldwatch Paper 23.

    ERIC Educational Resources Information Center

    Hayes, Denis

    Two-thirds of what we waste could be reused without important changes in our life-styles. One benefit of recycling would be the diminishing contribution of raw materials prices to inflation. For a sustainable resource policy there are three basic components: waste reduction, waste separation, and waste recovery. The first can be met by producing…

  2. Low-Cost Magnetic Stirrer from Recycled Computer Parts with Optional Hot Plate

    ERIC Educational Resources Information Center

    Guidote, Armando M., Jr.; Pacot, Giselle Mae M.; Cabacungan, Paul M.

    2015-01-01

    Magnetic stirrers and hot plates are key components of science laboratories. However, these are not readily available in many developing countries due to their high cost. This article describes the design of a low-cost magnetic stirrer with hot plate from recycled materials. Some of the materials used are neodymium magnets and CPU fans from…

  3. A new hyperspectral imaging based device for quality control in plastic recycling

    NASA Astrophysics Data System (ADS)

    Bonifazi, G.; D'Agostini, M.; Dall'Ava, A.; Serranti, S.; Turioni, F.

    2013-05-01

    The quality control of contamination level in the recycled plastics stream has been identified as an important key factor for increasing the value of the recycled material by both plastic recycling and compounder industries. Existing quality control methods for the detection of both plastics and non-plastics contaminants in the plastic waste streams at different stages of the industrial process (e.g. feed, intermediate and final products) are currently based on the manual collection from the stream of a sample and on the subsequent off-line laboratory analyses. The results of such analyses are usually available after some hours, or sometimes even some days, after the material has been processed. The laboratory analyses are time-consuming and expensive (both in terms of equipment cost and their maintenance and of labour cost).Therefore, a fast on-line assessment to monitor the plastic waste feed streams and to characterize the composition of the different plastic products, is fundamental to increase the value of secondary plastics. The paper is finalized to describe and evaluate the development of an HSI-based device and of the related software architectures and processing algorithms for quality assessment of plastics in recycling plants, with particular reference to polyolefins (PO). NIR-HSI sensing devices coupled with multivariate data analysis methods was demonstrated as an objective, rapid and non-destructive technique that can be used for on-line quality and process control in the recycling process of POs. In particular, the adoption of the previous mentioned HD&SW integrated architectures can provide a solution to one of the major problems of the recycling industry, which is the lack of an accurate quality certification of materials obtained by recycling processes. These results could therefore assist in developing strategies to certify the composition of recycled PO products.

  4. Silicon Carbide as a tritium permeation barrier in tungsten plasma-facing components

    NASA Astrophysics Data System (ADS)

    Wright, G. M.; Durrett, M. G.; Hoover, K. W.; Kesler, L. A.; Whyte, D. G.

    2015-03-01

    The control of tritium inventory is of great importance in future fusion reactors, not only from a safety standpoint but also to maximize a reactor's efficiency. Due to the high mobility of hydrogenic species in tungsten (W) one concern is the loss of tritium from the system via permeation through the tungsten plasma-facing components (PFC). This can lead to loss of tritium through the cooling channels of the wall thereby mandating tritium monitoring and recovery methods for the cooling system of the first wall. The permeated tritium is then out of the fuel cycle and cannot contribute to energy production until it is recovered and recycled into the system.

  5. Observation of Flat Electron Temperature Profiles in the Lithium Tokamak Experiment

    DOE PAGES

    Boyle, D. P.; Majeski, R.; Schmitt, J. C.; ...

    2017-07-05

    It has been predicted for over a decade that low-recycling plasma-facing components in fusion devices would allow high edge temperatures and flat or nearly flat temperature profiles. In recent experiments with lithium wall coatings in the Lithium Tokamak Experiment (LTX), a hot edge ( > 200 eV ) and flat electron temperature profiles have been measured following the termination of external fueling. In this work, reduced recycling was demonstrated by retention of ~ 60% of the injected hydrogen in the walls following the discharge. Electron energy confinement followed typical Ohmic confinement scaling during fueling, but did not decrease with densitymore » after fueling terminated, ultimately exceeding the scaling by ~ 200% . Lastly, achievement of the low-recycling, hot edge regime has been an important goal of LTX and lithium plasma-facing component research in general, as it has potentially significant implications for the operation, design, and cost of fusion devices.« less

  6. Observation of Flat Electron Temperature Profiles in the Lithium Tokamak Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, D. P.; Majeski, R.; Schmitt, J. C.

    It has been predicted for over a decade that low-recycling plasma-facing components in fusion devices would allow high edge temperatures and flat or nearly flat temperature profiles. In recent experiments with lithium wall coatings in the Lithium Tokamak Experiment (LTX), a hot edge ( > 200 eV ) and flat electron temperature profiles have been measured following the termination of external fueling. In this work, reduced recycling was demonstrated by retention of ~ 60% of the injected hydrogen in the walls following the discharge. Electron energy confinement followed typical Ohmic confinement scaling during fueling, but did not decrease with densitymore » after fueling terminated, ultimately exceeding the scaling by ~ 200% . Lastly, achievement of the low-recycling, hot edge regime has been an important goal of LTX and lithium plasma-facing component research in general, as it has potentially significant implications for the operation, design, and cost of fusion devices.« less

  7. Characterisation of recycled acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment in Brazil.

    PubMed

    Hirayama, Denise; Saron, Clodoaldo

    2015-06-01

    Polymeric materials constitute a considerable fraction of waste computer equipment and polymers acrylonitrile-butadiene-styrene and high-impact polystyrene are the main thermoplastic polymeric components found in waste computer equipment. Identification, separation and characterisation of additives present in acrylonitrile-butadiene-styrene and high-impact polystyrene are fundamental procedures to mechanical recycling of these polymers. The aim of this study was to evaluate the methods for identification of acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment in Brazil, as well as their potential for mechanical recycling. The imprecise utilisation of symbols for identification of the polymers and the presence of additives containing toxic elements in determinate computer devices are some of the difficulties found for recycling of acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment. However, the considerable performance of mechanical properties of the recycled acrylonitrile-butadiene-styrene and high-impact polystyrene when compared with the virgin materials confirms the potential for mechanical recycling of these polymers. © The Author(s) 2015.

  8. Mechanical Properties of Lightweight Concrete Using Recycled Cement-Sand Brick as Coarse Aggregates Replacement

    NASA Astrophysics Data System (ADS)

    Joohari, Ilya; Farhani Ishak, Nor; Amin, Norliyati Mohd

    2018-03-01

    This paper presents the result of replacing natural course aggregate with recycled cement-sand brick (CSB) towards the mechanical properties of concrete. Natural aggregates were used in this study as a control sample to compare with recycled coarse aggregates. This study was also carried to determine the optimum proportion of coarse aggregates replacement to produce lightweight concrete. Besides, this study was conducted to observe the crack and its behaviour development during the mechanical testing. Through this study, four types of concrete mixed were prepared, which were the control sample, 25%, 50% and 75% replacement of CSB. The test conducted to determine the effectiveness of recycled CSB as coarse aggregates replacement in this study were slump test, density measurement, compression test, and flexural test and. The strength of concrete was tested at 7 days and 28 days of curing. From the results obtained, the optimum proportion which produced the highest strength is 25% replacement of recycled CSB. The compressive and flexural strength has decreased by 10%-12% and 4%-34% respectively compared to the control sample. The presence of recycled coarse aggregates in sample has decreased the density of concrete by 0.8%-3% compared to the control sample.

  9. Filter Backwash Recycling Rule Documents

    EPA Pesticide Factsheets

    The purpose of the FBRR is to require (PWSs) to review their recycle practices and, where appropriate, work with the state Primacy Agency to make any necessary changes to recycle practices that may compromise microbial control.

  10. Effects of Number and Location of Bins on Plastic Recycling at a University

    ERIC Educational Resources Information Center

    O'Connor, Ryan T.; Lerman, Dorothea C.; Fritz, Jennifer N.; Hodde, Henry B.

    2010-01-01

    The proportion of plastic bottles that consumers placed in appropriate recycling receptacles rather than trash bins was examined across 3 buildings on a university campus. We extended previous research on interventions to increase recycling by controlling the number of recycling receptacles across conditions and by examining receptacle location…

  11. Commitment Approach to Motivating Community Recycling: New Zealand Curbside Trial.

    ERIC Educational Resources Information Center

    Bryce, Wendy J.; And Others

    1997-01-01

    In a New Zealand community, 200 households made commitment to recycle and 201 did not; 198 were asked to pay for recycling bins, 203 were not. A control group received only recycling information. Verbal commitment significantly increased participation. Difficulties in administering the financial incentive made it impossible to determine effect on…

  12. The Role of Sub- and Supercritical CO2 as "Processing Solvent" for the Recycling and Sample Preparation of Lithium Ion Battery Electrolytes.

    PubMed

    Nowak, Sascha; Winter, Martin

    2017-03-06

    Quantitative electrolyte extraction from lithium ion batteries (LIB) is of great interest for recycling processes. Following the generally valid EU legal guidelines for the recycling of batteries, 50 wt % of a LIB cell has to be recovered, which cannot be achieved without the electrolyte; hence, the electrolyte represents a target component for the recycling of LIBs. Additionally, fluoride or fluorinated compounds, as inevitably present in LIB electrolytes, can hamper or even damage recycling processes in industry and have to be removed from the solid LIB parts, as well. Finally, extraction is a necessary tool for LIB electrolyte aging analysis as well as for post-mortem investigations in general, because a qualitative overview can already be achieved after a few minutes of extraction for well-aged, apparently "dry" LIB cells, where the electrolyte is deeply penetrated or even gellified in the solid battery materials.

  13. Performance of recycled mixtures in state of Georgia.

    DOT National Transportation Integrated Search

    1994-01-01

    The Georgia Department of Transportation (GDOT) has been constructing recycled asphalt pavements routinely for about four years. This research project was undertaken to evaluate the performance of recycled pavements in comparison to virgin (control) ...

  14. Characterization of brominated flame retardants from e-waste components in China.

    PubMed

    Yu, Danfeng; Duan, Huabo; Song, Qingbin; Liu, Yicheng; Li, Ying; Li, Jinhui; Shen, Weijun; Luo, Jiahui; Wang, Jinben

    2017-10-01

    Many studies show that high levels of many toxic metals and persistent and bio-accumulative chemicals have been found in electronic waste (e-waste) dismantling sites and their surrounding environmental media. Both flame-retardant plastic housing materials and printed circuit boards (PCBs) could be the major contributors. However, relatively little work has focused on the use or content of toxic substances and their changing in scrap housing materials and PCBs from home appliances. This study evaluated the existence of brominated flame retardants (BFRs, including polybrominated diphenyl ethers (PBDEs) and Tetrabromobisphenol-A (TBBPA)) in housing plastics and PCBs from home appliances collected from various e-waste recyclers in China. These were then analyzed for the potential migration of BFRs from the e-waste components into their recycled products. The results show that both PBDEs and TBBPA were found with high level in most of e-waste samples, indicating that the widespread use of BFRs in home appliances are entering into the end-of-life stage. For the plastics samples, CRT TVs and LCD monitors should be given priority for the control of BFRs. Regarding PBDEs, the dominant congeners of BDE-209 in the plastics samples contributed 90.72-93.54% to the total concentrations of PBDEs, yet there are large variations for PCBs samples: BDE-28, -47, -99, and -153 were also important congeners compositions, except for BDE-209. Compared with previous studies, the BFRs concentrations in current Chinese e-waste are trending to decline. This study also found that BFRs in housing plastics and PCBs will be transferred into the recycled products with other purpose use, and the new products could have highly enriched capacities for BFRs. The obtained results could be helpful to manage e-waste and their components properly in order to minimize associated environmental and health risks of BFRs, particularly for their further reuse. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Spatial distribution of polycyclic aromatic hydrocarbons in soil, sediment, and combusted residue at an e-waste processing site in southeast China.

    PubMed

    Leung, Anna O W; Cheung, Kwai Chung; Wong, Ming Hung

    2015-06-01

    The environmental pollution and health impacts caused by the primitive and crude recycling of e-waste have become urgent global issues. Guiyu, China is a major hotspot of e-waste recycling. In this study, the levels and distribution of polycyclic aromatic hydrocarbons in soil in Guiyu were determined to investigate the effect of e-waste activities on the environment and to identify possible sources of these pollutants. Sediment samples from a local duck pond, water gullies, a river tributary, and combusted residue from e-waste burning sites were also investigated. The general trend found in soil (Σ16 PAHs) was acid leaching site > duck pond > rice field > printer roller dump site > reservoir (control site) and ranged from 95.2 ± 54.2 to 5,210 ± 89.6 ng/g (dry wt). The highest average total PAH concentrations were found in combusted residues of wires, cables, and other computer electrical components located at two e-waste open burning sites (18,600 and 10,800 ± 3,940 ng/g). These were 195- and 113-fold higher than the PAH concentrations of soil at the control site. Sediment PAH concentrations ranged from 37.2 ± 6 to 534 ± 271 ng/g. Results of this study provide further evidence of significant input of PAHs to the environment attributed to crude e-waste recycling.

  16. Helium process cycle

    DOEpatents

    Ganni, Venkatarao

    2008-08-12

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  17. Helium process cycle

    DOEpatents

    Ganni, Venkatarao

    2007-10-09

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  18. Subcritical hydrothermal treatment for the recovery of liquid fertilizer from scallop entrails.

    PubMed

    Hwang, In-Hee; Aoyama, Hiroya; Abe, Natsuki; Matsuo, Takayuki; Matsuto, Toshihiko

    2015-01-01

    Scallop entrails are organic wastes containing abundant proteins and minerals but are considered difficult to recycle because of high cadmium concentrations. In this work, the current problem of scallop entrails recycling was investigated and a subcritical hydrothermal treatment (SCHT) was examined for the recovery of liquid fertilizer from scallop entrails. Scallop entrails are mainly recycled for composting and feedstuff production. However, the dilution by mixing scallop entrails with other feed waste was the sole countermeasure to reduce the cadmium concentration of compost. For feedstuff production, whole product derived from scallop entrails was exported to other countries instead of domestic utilization. Temperature, retention time (RT) at given temperature, and liquid-to-solid (LS) ratio were examined as SCHT conditions for scallop entrails processing. The extraction ratio of each constituent mainly depends on the temperature rather than the RT or the LS ratio. Upon the SCHT of scallop entrails at 200°C, an RT of 20 min, and an LS ratio of 10, the extraction of fertilizer constituents such as nitrogen, phosphorus, and potassium from the liquid product was optimum, whereas the release of cadmium was suppressed. The concentrations of heavy metals in the liquid product obtained using the above-mentioned SCHT conditions were below the maximum permissible concentration stipulated by the Fertilizer Control Law. SCHT is considered to be a feasible recycling method for scallop entrails to recover fertilizer components with a concomitant separation of cadmium from the product.

  19. Water recycling: a major new initiative for Melbourne--crucial for a sustainable future.

    PubMed

    Arbon, M; Ireland, M

    2003-01-01

    Melbourne Water has adopted a challenging target of recycling 20 per cent of treated effluent from Melbourne's two major sewerage treatment plants by 2010. This target was adopted in response to key drivers for water recycling in the Melbourne region such as: strong support for conserving water resources and protecting marine environments; acknowledgment of recycled water as a valuable resource; greater emphasis on environmental issues and sustainable management principles; and opportunities to increase demand for recycled water through effective planning mechanisms. Issues that must be effectively addressed to meet the target include: managing public perceptions of recycled water; health and environmental concerns; lack of consensus among government agencies; high up-front costs of infrastructure; and prices of other sources of water supply not currently true costed. Melbourne Water has identified the following factors as critical in determining the success of recycling strategy: ability to demonstrate that water recycling will be important in terms of long term water cycle management; effective stakeholder consultation; gaining government support; establishing long-term, guaranteed markets for recycled water; implementing well planned, large scale recycling schemes; ability to provide a product that meets customer needs; regulatory approval; and implementation of a system that is economically viable. Water recycling initiatives are being investigated on household, local and regional levels. Over 10 proposals that will contribute to the 20 per cent recycled water target from the regional treatment plants are under various stages of development. Melbourne Water's commitment to recycling within a total water cycle management context is a vital component of this major new initiative for Melbourne and is crucial for a sustainable future.

  20. Recycling stainless steel orthodontic brackets with Er:YAG laser - An environmental scanning electron microscope and shear bond strength study.

    PubMed

    Chacko, Prince K; Kodoth, Jithesh; John, Jacob; Kumar, Kishore

    2013-07-01

    TO DETERMINE THE EFFICIENCY OF ERBIUM: Yttrium aluminum garnet (Er:YAG) laser with Environmental Scanning Electron Microscope (ESEM) and shear bond strength analysis as a method of recycling stainless steel orthodontic brackets and compare with other methods of recycling. Eighty samples of extracted premolar teeth bonded to SS brackets were tested for rebonded shear bond strength after recycling by four methods and compared with a control group of 20 samples. These 80 samples were randomized into four groups which were recycled by four methods, namely, sandblasting, thermal method, adhesive grinding by tungsten carbide bur, and Er: YAG laser method. After recycling, ESEM and shear bond strength analysis were used to analyze the efficiency of the recycling methods. ER: YAG laser group was found to be having the greatest bond strength among the recycled brackets (8.33±2.51 followed by the sandblasting at 6.12±1.12 MPa, thermal and electropolishing at 4.44±0.95 MPa, and lastly the adhesive grinding method at 3.08±1.07 MPa. The shear bond strength of Er: YAG laser group was found to be having no statistically significant difference with that of the control group (P>0.05 and had statistical signifance with sandblasting, thermal and electropolishing and adhesive grinding groups at P>0.001. ESEM analysis showed complete removal of adhesive from the brackets recycled with Er: YAG laser which mimicked that of the control group. ER: YAG laser (2940 nm) was found to be the most efficient method for recycling, followed by the sandblasting, thermal, and the tungsten carbide methods, which had the least shear bond strength value and is not fit for clinical usage.

  1. Recycling attitudes and behavior among a clinic-based sample of low-income Hispanic women in southeast Texas.

    PubMed

    Pearson, Heidi C; Dawson, Lauren N; Radecki Breitkopf, Carmen

    2012-01-01

    We examined attitudes and behavior surrounding voluntary recycling in a population of low-income Hispanic women. Participants (N = 1,512) 18-55 years of age completed a self-report survey and responded to questions regarding household recycling behavior, recycling knowledge, recycling beliefs, potential barriers to recycling (transportation mode, time), acculturation, demographic characteristics (age, income, employment, marital status, education, number of children, birth country), and social desirability. Forty-six percent of participants (n = 810) indicated that they or someone else in their household recycled. In a logistic regression model controlling for social desirability, recycling behavior was related to increased age (P<0.05), lower acculturation (P<0.01), knowing what to recycle (P<0.01), knowing that recycling saves landfill space (P<0.05), and disagreeing that recycling takes too much time (P<0.001). A Sobel test revealed that acculturation mediated the relationship between recycling knowledge and recycling behavior (P<0.05). We offer new information on recycling behavior among Hispanic women and highlight the need for educational outreach and intervention strategies to increase recycling behavior within this understudied population.

  2. Identification of a Novel Recycling Sequence in the C-tail of FPR2/ALX Receptor

    PubMed Central

    Thompson, Dawn; McArthur, Simon; Hislop, James N.; Flower, Roderick J.; Perretti, Mauro

    2014-01-01

    Formyl-peptide receptor type 2 (FPR2; also called ALX because it is the receptor for lipoxin A4) sustains a variety of biological responses relevant to the development and control of inflammation, yet the cellular regulation of this G-protein-coupled receptor remains unexplored. Here we report that, in response to peptide agonist activation, FPR2/ALX undergoes β-arrestin-mediated endocytosis followed by rapid recycling to the plasma membrane. We identify a transplantable recycling sequence that is both necessary and sufficient for efficient receptor recycling. Furthermore, removal of this C-terminal recycling sequence alters the endocytic fate of FPR2/ALX and evokes pro-apoptotic effects in response to agonist activation. This study demonstrates the importance of endocytic recycling in the anti-apoptotic properties of FPR2/ALX and identifies the molecular determinant required for modulation of this process fundamental for the control of inflammation. PMID:25326384

  3. Detection of fire protection and mineral glasses in industrial recycling using Raman mapping spectroscopy

    NASA Astrophysics Data System (ADS)

    De Biasio, Martin; Arnold, Thomas; McGunnigle, Gerald; Kraft, Martin; Leitner, Raimund; Balthasar, Dirk; Rehrmann, Volker

    2011-06-01

    Recycling of glass requires the removal of specialist glasses, such as fireproof and mineral glasses, and glass ceramics, which are regarded as contaminants. The sorting must take place before melting for efficient glass recycling. Here, we demonstrate the feasibility of a real-time Raman mapping system for detecting and discriminating a range of industrially relevant glass contaminants in recovered glass streams. The components used are suitable for industrial conditions and the chemometric model is robust against imaging geometry and excitation intensity. The proposed approach is a novel alternative to established glass sorting sensors.

  4. Pollution characteristics and health risk assessment of volatile organic compounds emitted from different plastic solid waste recycling workshops.

    PubMed

    He, Zhigui; Li, Guiying; Chen, Jiangyao; Huang, Yong; An, Taicheng; Zhang, Chaosheng

    2015-04-01

    The pollution profiles of volatile organic compounds (VOCs) emitted from different recycling workshops processing different types of plastic solid waste (PSW) and their health risks were investigated. A total of 64 VOCs including alkanes, alkenes, monoaromatics, oxygenated VOCs (OVOCs), chlorinated VOCs (ClVOCs) and acrylonitrile during the melting extrusion procedure were identified and quantified. The highest concentration of total VOCs (TVOC) occurred in the poly(acrylonitrile-butadiene styrene) (ABS) recycling workshop, followed by the polystyrene (PS), polypropylene (PP), polyamide (PA), polyvinyl chloride (PVC), polyethylene (PE) and polycarbonate (PC) workshops. Monoaromatics were found as the major component emitted from the ABS and PS recycling workshops, while alkanes were mainly emitted from the PE and PP recycling processes, and OVOCs from the PVC and PA recycling workshops. According to the occupational exposure limits' (OEL) assessment, the workers suffered acute and chronic health risks in the ABS and PS recycling workshops. Meanwhile, it was found that most VOCs in the indoor microenvironments were originated from the melting extrusion process, while the highest TVOC concentration was observed in the PS rather than in the ABS recycling workshop. Non-cancer hazard indices (HIs) of all individual VOCs were <1.0, whereas the total HI in the PS recycling workshop was 1.9, posing an adverse chronic health threat. Lifetime cancer risk assessment suggested that the residents also suffered from definite cancer risk in the PS, PA, ABS and PVC recycling workshops. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Formulation and preparation of Hanford Waste Treatment Plant direct feed low activity waste Effluent Management Facility core simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Daniel J.; Nash, Charles A.; Adamson, Duane J.

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it tomore » the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other problems such a recycle stream present. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to formulate and prepare a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations. That simulant can be used in evaporator testing to predict the composition of the effluents from the Effluent Management Facility (EMF) evaporator to aid in planning for their disposition. This document describes the method used to formulate a simulant of this LAW Melter Off-Gas Condensate stream, which, after pH adjustment, is the feed to the evaporator in the EMF.« less

  6. Investigation of the Moisture Recycling Ratio over South America: A Modelling Approach using HadCM3

    NASA Astrophysics Data System (ADS)

    Charan Pattnayak, Kanhu; Gloor, Emanuel; Tindall, Julia; Briener, Roel

    2017-04-01

    It is a well-known fact that precipitation relies on terrestrial evaporation (moisture recycling). This study makes use of new definitions of moisture recycling from van der Ent, et al. 2010 to study the complete process of continental moisture feedback. Earlier studies have shown that there exist many regions over the globe that relies heavily on recycled moisture as well as that supplies moisture. In South America, the Río de la Plata basin depends on evaporation from the Amazon forest for 70% of its water resources. Stable water isotope (δ18O) can be used, as a good proxy for precipitation and it is a better tool to study convective processes and hydrological cycle. Analysing the δ18O would help to identify the moisture source for precipitation. In this study, we try to explain to the relation between δ18O and the moisture recycling ratio using atmospheric component of Hadley Centre Coupled Climate Model (HadCM3). And also we analyse the impact of land cover change on δ18O and the moisture recycling ratio. Further, we will analyse the changes of moisture recycling pattern from pre-industrial to the present scenario.

  7. Design concept of a cryogenic distillation column cascade for a ITER scale fusion reactor

    NASA Astrophysics Data System (ADS)

    Yamanishi, Toshihiko; Enoeda, Mikio; Okuno, Kenji

    1994-07-01

    A column cascade has been proposed for the fuel cycle of a ITER scale fusion reactor. The proposed cascade consists of three columns and has significant features: either top or bottom product is prior to the other for each column; it is avoided to withdraw side streams as products or feeds of down stream columns; and there is no recycle steam between the columns. In addition, the product purity of the cascade can be maintained against the changes of flow rates and compositions of feed streams just by adjusting the top and bottom flow rates. The control system has been designed for each column in the cascade. A key component in the prior product stream was selected, and the analysis method of this key component was proposed. The designed control system never brings instability as long as the concentration of the key component is measured with negligible time lag. The time lag for the measurement considerably affects the stability of the control system. A significant conclusion by the simulation in this work is that permissible time for the measurement is about 0.5 hour to obtain stable control. Hence, the analysis system using the gas chromatography is valid for control of the columns.

  8. Turnover of microbial groups and cell components in soil: 13C analysis of cellular biomarkers

    NASA Astrophysics Data System (ADS)

    Gunina, Anna; Dippold, Michaela; Glaser, Bruno; Kuzyakov, Yakov

    2017-01-01

    Microorganisms regulate the carbon (C) cycle in soil, controlling the utilization and recycling of organic substances. To reveal the contribution of particular microbial groups to C utilization and turnover within the microbial cells, the fate of 13C-labelled glucose was studied under field conditions. Glucose-derived 13C was traced in cytosol, amino sugars and phospholipid fatty acid (PLFA) pools at intervals of 3, 10 and 50 days after glucose addition into the soil. 13C enrichment in PLFAs ( ˜ 1.5 % of PLFA C at day 3) was an order of magnitude greater than in cytosol, showing the importance of cell membranes for initial C utilization. The 13C enrichment in amino sugars of living microorganisms at day 3 accounted for 0.57 % of total C pool; as a result, we infer that the replacement of C in cell wall components is 3 times slower than that of cell membranes. The C turnover time in the cytosol (150 days) was 3 times longer than in PLFAs (47 days). Consequently, even though the cytosol pool has the fastest processing rates compared to other cellular compartments, intensive recycling of components here leads to a long C turnover time. Both PLFA and amino-sugar profiles indicated that bacteria dominated in glucose utilization. 13C enrichment decreased with time for bacterial cell membrane components, but it remained constant or even increased for filamentous microorganisms. 13C enrichment of muramic acid was the 3.5 times greater than for galactosamine, showing a more rapid turnover of bacterial cell wall components compared to fungal. Thus, bacteria utilize a greater proportion of low-molecular-weight organic substances, whereas filamentous microorganisms are responsible for further C transformations. Thus, tracing 13C in cellular compounds with contrasting turnover rates elucidated the role of microbial groups and their cellular compartments in C utilization and recycling in soil. The results also reflect that microbial C turnover is not restricted to the death or growth of new cells. Indeed, even within living cells, highly polymeric cell compounds are constantly replaced and renewed. This is especially important for assessing C fluxes in soil and the contribution of C from microbial residues to soil organic matter.

  9. Looking East at Motor Control System, Clarity Columns and Blend ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking East at Motor Control System, Clarity Columns and Blend Tank Along East Side of Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  10. A novel dismantling process of waste printed circuit boards using water-soluble ionic liquid.

    PubMed

    Zeng, Xianlai; Li, Jinhui; Xie, Henghua; Liu, Lili

    2013-10-01

    Recycling processes for waste printed circuit boards (WPCBs) have been well established in terms of scientific research and field pilots. However, current dismantling procedures for WPCBs have restricted the recycling process, due to their low efficiency and negative impacts on environmental and human health. This work aimed to seek an environmental-friendly dismantling process through heating with water-soluble ionic liquid to separate electronic components and tin solder from two main types of WPCBs-cathode ray tubes and computer mainframes. The work systematically investigates the influence factors, heating mechanism, and optimal parameters for opening solder connections on WPCBs during the dismantling process, and addresses its environmental performance and economic assessment. The results obtained demonstrate that the optimal temperature, retention time, and turbulence resulting from impeller rotation during the dismantling process, were 250 °C, 12 min, and 45 rpm, respectively. Nearly 90% of the electronic components were separated from the WPCBs under the optimal experimental conditions. This novel process offers the possibility of large industrial-scale operations for separating electronic components and recovering tin solder, and for a more efficient and environmentally sound process for WPCBs recycling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Regulatory Exclusions and Alternative Standards for the Recycling of Materials, Solid Wastes and Hazardous Wastes

    EPA Pesticide Factsheets

    Determining the Level of Regulation for Hazardous Waste Recycling, Recycled Materials that are not Subject to RCRA Hazardous Waste Regulation, Materials Subject to Alternative Regulatory Controls, Materials Subject to Full Hazardous Waste Regulations.

  12. Gender perspective on the factors predicting recycling behavior: Implications from the theory of planned behavior.

    PubMed

    Oztekin, Ceren; Teksöz, Gaye; Pamuk, Savas; Sahin, Elvan; Kilic, Dilek Sultan

    2017-04-01

    This study aimed to assess the role of some socio-psychological attributes in explaining recycling behavior of Turkish university community from a gender perspective within the context of the theory of planned behavior with an additional variable (past experience). The recycling behavior of whole sample, females and males, has been examined in 3 sessions -depending on the arguments that explain gendered pattern of private and public environmental behavior and sticking to the fact why females' stronger environmental values, beliefs, and attitudes do not translate consistently into greater engagement in public behavior. As a result of model runs, different variables shaping intention for behavior have been found, namely perceived behavior control for females and past behavior for males. Due to the low percent of the variance in explaining recycling behavior of females, they have been identified as the ones who do not carry out intentions (non-recyclers). Since intentions alone are capable of identifying recyclers accurately but not non-recyclers, there may be other factors to be considered to understand the reason for females not carrying out the intentions. The results of descriptive statistics supported the identification by attitudes toward recycling. Female attitudes were innate (recycling is good, necessary, useful and sensitive), whereas those of males were learnt (recycling is healthy, valuable and correct). Thus, it has been concluded that males' intention for recycling is shaped by their past behavior and the conclusion is supported by males having learnt attitude toward recycling whereas females' lack of intention for recycling is shaped by their perceived behavior control and is supported by their innate attitude for recycling. All in all, the results of the present study provide further support for the utility of the TPB as a model of behavioral prediction and concur with other studies examining the utility of the TPB in the context of recycling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Problems in water recycling for Space Station Freedom and long duration life support

    NASA Technical Reports Server (NTRS)

    Janik, D. S.; Crump, W. J.; Macler, B. A.; Wydeven, T., Jr.; Sauer, R. L.

    1989-01-01

    A biologically-enhanced, physical/chemical terminal water treatment testbed for the Space Station Freedom is proposed. Recycled water requirements for human, animal, plant and/or combined crews for long duration space missions are discussed. An effective terminal treatment method for recycled water reclamation systems that is based on using granular activated carbon as the principal active agent and the controls of microbial contamination and growth within recycled water systems are examined. The roles of plants in water recycling within CELSS is studied.

  14. Quantification and probabilistic modeling of CRT obsolescence for the State of Delaware

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumacher, Kelsea A., E-mail: kschum@udel.edu; Schumacher, Thomas, E-mail: schumact@udel.edu; Agbemabiese, Lawrence, E-mail: agbe@udel.edu

    2014-11-15

    Highlights: • We modeled the obsolescence of cathode ray tube devices in the State of Delaware. • 411,654 CRT units or ∼16,500 metric tons have been recycled in Delaware since 2002. • The peak of the CRT obsolescence in Delaware passed by 2012. • The Delaware average CRT recycling rate between 2002 and 13 was approximately 27.5%. • CRTs will continue to infiltrate the system likely until 2033. - Abstract: The cessation of production and replacement of cathode ray tube (CRT) displays with flat screen displays have resulted in the proliferation of CRTs in the electronic waste (e-waste) recycle stream.more » However, due to the nature of the technology and presence of hazardous components such as lead, CRTs are the most challenging of electronic components to recycle. In the State of Delaware it is due to this challenge and the resulting expense combined with the large quantities of CRTs in the recycle stream that electronic recyclers now charge to accept Delaware’s e-waste. Therefore it is imperative that the Delaware Solid Waste Authority (DSWA) understand future quantities of CRTs entering the waste stream. This study presents the results of an assessment of CRT obsolescence in the State of Delaware. A prediction model was created utilizing publicized sales data, a variety of lifespan data as well as historic Delaware CRT collection rates. Both a deterministic and a probabilistic approach using Monte Carlo Simulation (MCS) were performed to forecast rates of CRT obsolescence to be anticipated in the State of Delaware. Results indicate that the peak of CRT obsolescence in Delaware has already passed, although CRTs are anticipated to enter the waste stream likely until 2033.« less

  15. Study the complexity and control of the recycling-supply chain of China's color TVs market based on the government subsidy

    NASA Astrophysics Data System (ADS)

    Xie, Lei; Ma, Junhai

    2016-09-01

    In these days, as the recycling of household appliances becomes increasingly popular, the recycling network tends to be perfect in television industry. This paper focuses on the game among two recyclers and a processor in a Duopoly market of color TV recycling. We find that if the adjustment coefficients of the decision variables are changed abruptly, the system will fall into chaotic state. In order to avoid hazard of falling into a chaotic state, we adopt the method of delay control, providing the manufacturers with effective measures about chaos control. This paper analyzes the system's reactions to government decision, finding that when the parameters become beneficial for manufacturers, consumers and the environment, the system will fall into chaos and system's regional stability will reduce. Resulting from our analysis, this paper gives advice on the improvement of the environment and enhance in social welfare. Tested through the data we collected, this study is practical in both its theory and its applicability.

  16. [Prospect of the Advanced Life Support Program Breadboard Project at Kennedy Space Center in USA].

    PubMed

    Guo, S S; Ai, W D

    2001-04-01

    The Breadboard Project at Kennedy Space Center in NASA of USA was focused on the development of the bioregenerative life support components, crop plants for water, air, and food production and bioreactors for recycling of wastes. The keystone of the Breadboard Project was the Biomass Production Chamber (BPC), which was supported by 15 environmentally controlled chambers and several laboratory facilities holding a total area of 2150 m2. In supporting the Advanced Life Support Program (ALS Program), the Project utilizes these facilities for large-scale testing of components and development of required technologies for human-rated test-beds at Johnson Space Center in NASA, in order to enable a Lunar and a Mars mission finally.

  17. Recycling Attitudes and Behavior among a Clinic-Based Sample of Low-Income Hispanic Women in Southeast Texas

    PubMed Central

    Pearson, Heidi C.; Dawson, Lauren N.; Radecki Breitkopf, Carmen

    2012-01-01

    We examined attitudes and behavior surrounding voluntary recycling in a population of low-income Hispanic women. Participants (N = 1,512) 18–55 years of age completed a self-report survey and responded to questions regarding household recycling behavior, recycling knowledge, recycling beliefs, potential barriers to recycling (transportation mode, time), acculturation, demographic characteristics (age, income, employment, marital status, education, number of children, birth country), and social desirability. Forty-six percent of participants (n = 810) indicated that they or someone else in their household recycled. In a logistic regression model controlling for social desirability, recycling behavior was related to increased age (P<0.05), lower acculturation (P<0.01), knowing what to recycle (P<0.01), knowing that recycling saves landfill space (P<0.05), and disagreeing that recycling takes too much time (P<0.001). A Sobel test revealed that acculturation mediated the relationship between recycling knowledge and recycling behavior (P<0.05). We offer new information on recycling behavior among Hispanic women and highlight the need for educational outreach and intervention strategies to increase recycling behavior within this understudied population. PMID:22493693

  18. Control of a 30 cm diameter mercury bombardment thruster

    NASA Technical Reports Server (NTRS)

    Terdan, F. F.; Bechtel, R. T.

    1973-01-01

    Increased thruster performance has made closed-loop automatic control more difficult than previously. Specifically, high perveance optics tend to make reliable recycling more difficult. Control logic functions were established for three automatic modes of operation of a 30-cm thruster using a power conditioner console with flight-like characteristics. The three modes provide (1) automatic startup to reach thermal stability, (2) steady-state closed-loop control, and (3) the reliable recycling of the high voltages following an arc breakdown to reestablish normal operation. Power supply impedance characteristics necessary for stable operation and the effect of the magnetic baffle on the reliable recycling was studied.

  19. Tracking the Key Constituents of Concern of the WTP LAW Stream

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mabrouki, Ridha B.; Matlack, Keith S.; Abramowitz, Howard

    The testing results presented in the present report were also obtained on a DM10 melter system operated with the primary WTP LAW offgas system components with recycle, as specified in the statement of work (SOW) [6] and detailed in the Test Plan for this work [7]. The primary offgas system components include the SBS, the WESP, and a recycle system that allows recycle of liquid effluents back to the melter, as in the present baseline for the WTP LAW vitrification. The partitioning of technetium and other key constituents between the glass waste form, the offgas system liquid effluents, the offgasmore » stream that exits the WESP, and the liquid condensate from the vacuum evaporator were quantified in this work. The tests employed three different LAW streams spanning a range of waste compositions anticipated for WTP. Modifications to the offgas system and operational strategy were made to expedite the approach to steady state concentrations of key constituents in the glass and offgas effluent solutions during each test.« less

  20. Quality control in the recycling stream of PVC from window frames by hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Luciani, Valentina; Serranti, Silvia; Bonifazi, Giuseppe; Di Maio, Francesco; Rem, Peter

    2013-05-01

    Polyvinyl chloride (PVC) is one of the most commonly used thermoplastic materials in respect to the worldwide polymer consumption. PVC is mainly used in the building and construction sector, products such as pipes, window frames, cable insulation, floors, coverings, roofing sheets, etc. are realised utilising this material. In recent years, the problem of PVC waste disposal gained increasing importance in the public discussion. The quantity of used PVC items entering the waste stream is gradually increased as progressively greater numbers of PVC products approach to the end of their useful economic lives. The quality of the recycled PVC depends on the characteristics of the recycling process and the quality of the input waste. Not all PVC-containing waste streams have the same economic value. A transparent relation between value and composition is required to decide if the recycling process is cost effective for a particular waste stream. An objective and reliable quality control technique is needed in the recycling industry for the monitoring of both recycled flow streams and final products in the plant. In this work hyperspectral imaging technique in the near infrared (NIR) range (1000-1700 nm) was applied to identify unwanted plastic contaminants and rubber present in PVC coming from windows frame waste in order to assess a quality control procedure during its recycling process. Results showed as PVC, PE and rubber can be identified adopting the NIR-HSI approach.

  1. Autoclaving and clinical recycling: effects on mechanical properties of orthodontic wires.

    PubMed

    Oshagh, M; Hematiyan, M R; Mohandes, Y; Oshagh, M R; Pishbin, L

    2012-01-01

    About half of the orthodontists recycle and reuse orthodontic wires because of their costs. So when talking about reuse and sterilization of wires, their effects on mechanical properties of wires should be clarified. The purpose of this study was to assess the effects of sterilization and clinical use on mechanical properties of stainless steel wires. Thirty stainless steel orthodontic wires were divided into three equal groups of control, autoclave (sterilized by autoclave), and recycle group (wires were used for orthodontic patients up to 4 weeks, cleaned by isopropyl alcohol and sterilized by autoclave). The mechanical properties (tensile test, three-point loading test for load-deflection curve) were determined. Fracture force, yield strength, stiffness and modulus of elasticity in recycle groups were significantly lower than the other groups (P < 0.05). Although recycle wires were softer than those of control group, relatively small differences and also various properties of available wires have obscured the clinical predictability of their application. There is seemingly no problem in terms of mechanical properties to recycle orthodontic wires.

  2. Determination of dechlorane flame retardants in soil and fish at Guiyu, an electronic waste recycling site in south China.

    PubMed

    Tao, Wuqun; Zhou, Zhiguang; Shen, Li; Zhao, Bin

    2015-11-01

    Dechlorane 602 (Dec 602), Dechlorane 603 (Dec 603), Dechlorane 604 (Dec 604), Dechlorane 604 component B (Dec 604 CB) and Dechlorane Plus (DP) were analyzed in soil and fish collected across e-waste recycling sites in Guiyu. The results indicate that soil and fish are contaminated with dechlorane compounds especially Dec 602 and DP which show high concentrations in the samples near recycling sites. Dec 604 and Dec 604 CB are not detected. The photo-degradation experiment indicates that Dec 604 and Dec 604 CB have much faster degradation rates compared to other dechloranes, suggesting they might be more vulnerable to degradation during recycling processes and further studies are needed for assessing the environmental fate and persistence of their degradation products. Dec 602 has not been manufactured in China, the detection of Dec 602 in soil and fish implies that it might be from imports of recyclable materials from developed countries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Neuron Specific Rab4 Effector GRASP-1 Coordinates Membrane Specialization and Maturation of Recycling Endosomes

    PubMed Central

    Hoogenraad, Casper C.; Popa, Ioana; Futai, Kensuke; Sanchez-Martinez, Emma; Wulf, Phebe S.; van Vlijmen, Thijs; Dortland, Bjorn R.; Oorschot, Viola; Govers, Roland; Monti, Maria; Heck, Albert J. R.; Sheng, Morgan; Klumperman, Judith; Rehmann, Holger; Jaarsma, Dick; Kapitein, Lukas C.; van der Sluijs, Peter

    2010-01-01

    The endosomal pathway in neuronal dendrites is essential for membrane receptor trafficking and proper synaptic function and plasticity. However, the molecular mechanisms that organize specific endocytic trafficking routes are poorly understood. Here, we identify GRIP-associated protein-1 (GRASP-1) as a neuron-specific effector of Rab4 and key component of the molecular machinery that coordinates recycling endosome maturation in dendrites. We show that GRASP-1 is necessary for AMPA receptor recycling, maintenance of spine morphology, and synaptic plasticity. At the molecular level, GRASP-1 segregates Rab4 from EEA1/Neep21/Rab5-positive early endosomal membranes and coordinates the coupling to Rab11-labelled recycling endosomes by interacting with the endosomal SNARE syntaxin 13. We propose that GRASP-1 connects early and late recycling endosomal compartments by forming a molecular bridge between Rab-specific membrane domains and the endosomal SNARE machinery. The data uncover a new mechanism to achieve specificity and directionality in neuronal membrane receptor trafficking. PMID:20098723

  4. Retromer guides STxB and CD8-M6PR from early to recycling endosomes, EHD1 guides STxB from recycling endosome to Golgi

    PubMed Central

    McKenzie, Jenna E.; Raisley, Brent; Zhou, Xin; Naslavsky, Naava; Taguchi, Tomohiko; Caplan, Steve; Sheff, David

    2012-01-01

    Retrograde trafficking transports proteins, lipids and toxins from the plasma membrane to the Golgi and ER. To reach the Golgi, these cargos must transit the endosomal system, consisting of early endosomes, recycling endosomes, late endosomes and lysosomes. All cargos pass through early endosomes, but may take different routes to the Golgi. Retromer dependent cargos bypass the late endosomes to reach the Golgi. We compared how two very different retromer dependent cargos negotiate the endosomal sorting system. Shiga toxin B, bound to the external layer of the plasma membrane, and chimeric CD8-Mannose-6-Phosphate Receptor, which is anchored via a transmembrane domain. Both appear to pass through the recycling endosome. Ablation of the recycling endosome diverted both of these cargos to an aberrant compartment and prevented them from reaching the Golgi. Once in the recycling endosome, Shiga toxin required EHD1 to traffic to the TGN, while the CD8-Mannose-6-Phosphate Receptor was not significantly dependent on EHD1. Knockdown of retromer components left cargo in the early endosomes, suggesting that it is required for retrograde exit from this compartment. This work establishes the recycling endosome as a required step in retrograde traffic of at least these two retromer dependent cargos. Along this pathway, retromer is associated with EE to recycling endosome traffic, while EHD1 is associated with recycling endosome to TGN traffic of STxB. PMID:22540229

  5. Polybrominated diphenyl ethers in surface soils from e-waste recycling areas and industrial areas in South China: concentration levels, congener profile, and inventory.

    PubMed

    Gao, Shutao; Hong, Jianwen; Yu, Zhiqiang; Wang, Jingzhi; Yang, Guoyi; Sheng, Guoying; Fu, Jiamo

    2011-12-01

    Polybrominated diphenyl ethers (PBDEs) were determined in 60 surface soils from two e-waste recycling sites (Qingyuan and Guiyu, China) and their surrounding areas to assess the extent and influence of PBDEs from e-waste recycling sites on the surrounding areas. A total of 32 surface soils from industrial areas in South China were also investigated for comparison. The mean concentrations of total PBDEs in the e-waste recycling sites of Guiyu and Qingyuan were 2,909 and 3,230 ng/g dry weight, respectively, whereas the PBDE concentrations decreased dramatically (1-2 orders of magnitude) with increasing distance from the recycling site, suggesting that the e-waste recycling activities were the major source of PBDEs in the surrounding areas. Decabromodiphenyl ethers accounted for 77.0 to 85.8% of total PBDEs in e-waste recycling areas, whereas it accounted for 90.2% in industrial areas. Principal component analysis showed that the major source of PBDEs in e-waste recycling areas were a combination of penta-, octa-, and deca-BDE commercial formulations, whereas deca-BDE commercial formulations were the major source of PBDE congeners in industrial areas. The inventories of PBDEs gave preliminary estimates of 6.22 tons and 13.4 tons for the e-waste recycling areas and industrial areas. The results suggested that significantly higher PBDEs in the e-waste recycling sites have already affected surrounding areas negatively within a relatively large distance. Because of the environmental persistence, bioaccumulation, and toxicity of PBDEs, improving the recycling techniques employed at such facilities and developing e-waste management policies are necessary. Copyright © 2011 SETAC.

  6. Quantification and probabilistic modeling of CRT obsolescence for the State of Delaware.

    PubMed

    Schumacher, Kelsea A; Schumacher, Thomas; Agbemabiese, Lawrence

    2014-11-01

    The cessation of production and replacement of cathode ray tube (CRT) displays with flat screen displays have resulted in the proliferation of CRTs in the electronic waste (e-waste) recycle stream. However, due to the nature of the technology and presence of hazardous components such as lead, CRTs are the most challenging of electronic components to recycle. In the State of Delaware it is due to this challenge and the resulting expense combined with the large quantities of CRTs in the recycle stream that electronic recyclers now charge to accept Delaware's e-waste. Therefore it is imperative that the Delaware Solid Waste Authority (DSWA) understand future quantities of CRTs entering the waste stream. This study presents the results of an assessment of CRT obsolescence in the State of Delaware. A prediction model was created utilizing publicized sales data, a variety of lifespan data as well as historic Delaware CRT collection rates. Both a deterministic and a probabilistic approach using Monte Carlo Simulation (MCS) were performed to forecast rates of CRT obsolescence to be anticipated in the State of Delaware. Results indicate that the peak of CRT obsolescence in Delaware has already passed, although CRTs are anticipated to enter the waste stream likely until 2033. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. A simple way to prepare Au@polypyrrole/Fe3O4 hollow capsules with high stability and their application in catalytic reduction of methylene blue dye

    NASA Astrophysics Data System (ADS)

    Yao, Tongjie; Cui, Tieyu; Wang, Hao; Xu, Linxu; Cui, Fang; Wu, Jie

    2014-06-01

    Metal nanoparticles are promising catalysts for dye degradation in treating wastewater despite the challenges of recycling and stability. In this study, we have introduced a simple way to prepare Au@polypyrrole (PPy)/Fe3O4 catalysts with Au nanoparticles embedded in a PPy/Fe3O4 capsule shell. The PPy/Fe3O4 capsule shell used as a support was constructed in one-step, which not only dramatically simplified the preparation process, but also easily controlled the magnetic properties of the catalysts through adjusting the dosage of FeCl2.4H2O. The component Au nanoparticles could catalyze the reduction of methylene blue dye with NaBH4 as a reducing agent and the reaction rate constant was calculated through the pseudo-first-order reaction equation. The Fe3O4 nanoparticles permitted quick recycling of the catalysts with a magnet due to their room-temperature superparamagnetic properties; therefore, the catalysts exhibited good reusability. In addition to catalytic activity and reusability, stability is also an important property for catalysts. Because both Au and Fe3O4 nanoparticles were wrapped in the PPy shell, compared with precursor polystyrene/Au composites and bare Fe3O4 nanoparticles, the stability of Au@PPy/Fe3O4 hollow capsules was greatly enhanced. Since the current method is simple and flexible to create recyclable catalysts with high stability, it would promote the practicability of metal nanoparticle catalysts in industrial polluted water treatment.Metal nanoparticles are promising catalysts for dye degradation in treating wastewater despite the challenges of recycling and stability. In this study, we have introduced a simple way to prepare Au@polypyrrole (PPy)/Fe3O4 catalysts with Au nanoparticles embedded in a PPy/Fe3O4 capsule shell. The PPy/Fe3O4 capsule shell used as a support was constructed in one-step, which not only dramatically simplified the preparation process, but also easily controlled the magnetic properties of the catalysts through adjusting the dosage of FeCl2.4H2O. The component Au nanoparticles could catalyze the reduction of methylene blue dye with NaBH4 as a reducing agent and the reaction rate constant was calculated through the pseudo-first-order reaction equation. The Fe3O4 nanoparticles permitted quick recycling of the catalysts with a magnet due to their room-temperature superparamagnetic properties; therefore, the catalysts exhibited good reusability. In addition to catalytic activity and reusability, stability is also an important property for catalysts. Because both Au and Fe3O4 nanoparticles were wrapped in the PPy shell, compared with precursor polystyrene/Au composites and bare Fe3O4 nanoparticles, the stability of Au@PPy/Fe3O4 hollow capsules was greatly enhanced. Since the current method is simple and flexible to create recyclable catalysts with high stability, it would promote the practicability of metal nanoparticle catalysts in industrial polluted water treatment. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00023d

  8. Carambola optics for recycling of light.

    PubMed

    Leutz, Ralf; Fu, Ling; Ries, Harald

    2006-04-20

    Recycling of light allows the luminance (radiance) emitted by a light source to be increased at the cost of reducing the total luminous flux (radiant power). Recycling of light means returning part of the emitted light to the source, where part of it will escape absorption. An optical design that is suitable for multiple and controlled recycling is described. Carambola optics is named for its resemblance to star fruit. Several pairs of mirrors or prisms redirect light repeatedly onto the source, thus achieving multiple transits of the light through the source. This recycled light exits the carambola in the same phase space as light directly emitted and not recycled.

  9. The psychology of recycled water: Factors predicting disgust and willingness to use

    NASA Astrophysics Data System (ADS)

    Wester, Julia; Timpano, Kiara R.; ćek, Demet; Broad, Kenneth

    2016-04-01

    Water recycling is increasingly recognized as a critical strategy to maintain sustainable water supplies. Yet public acceptance of water recycling often lags behind. It is unclear the degree to which individuals are aware of the role of disgust in their decisions about recycled water, how important anticipated disgust is to willingness to use when controlling for other factors, and what the most effective method of presenting information about water recycling would be to decrease disgust reactions and increase willingness to use. We used a two-pronged approach, combining a survey with open-ended and psychometric measures with an experimental manipulation, in a U.S., web-based sample (N = 428). Only 2% of participants self-identified disgust as important to their decisions about recycled water. When measured directly using a Likert scale, however, anticipated disgust was the strongest predictor of willingness to use recycled water when controlling for individual differences that have been shown to impact willingness to use, including a subscale of individual pathogen disgust sensitivity. Finally, participants were exposed to an educational brochure about water reuse framed either affectively or cognitively or were shown a simple, neutral definition. Exposure to either the affectively or cognitively framed brochures lowered anticipated disgust, but did not significantly affect willingness to use recycled water compared to the neutral condition.

  10. EB-promoted recycling of waste tire rubber with polyolefins

    NASA Astrophysics Data System (ADS)

    Mészáros, László; Bárány, Tamás; Czvikovszky, Tibor

    2012-09-01

    Despite the fact that more and more methods and solutions are used in the recycling of polymers, there are still some problems, especially in the recycling of cross-linked materials such as rubber. Usually the biggest problem is the lack of compatibility between the cross-linked rubber and the thermoplastic matrix. In this study we applied ground tire rubber (GTR) as recycled material. The GTR was embedded into polyethylene (PE) and polyethylene/ethylene-vinyl acetate copolymer (PE/EVA) matrices. In order to increase the compatibility of the components electron beam (EB) irradiation was applied. The results showed that the irradiation has a beneficial effect on the polymer-GTR interfacial connection. The EB treatment increased not only the tensile strength but also the elongation at break. The irradiation had also positive effect on the impact strength properties.

  11. Remediation of Cd(II)-contaminated soil via humin-enhanced electrokinetic technology.

    PubMed

    Ding, Ling; Lv, Wenying; Yao, Kun; Li, Liming; Wang, Mengmeng; Liu, Guoguang

    2017-02-01

    Humin is the component of humic substances that is recalcitrant to extraction by either strong bases or strong acids, which contains a variety of functional groups that may combine with heavy metal ions. The present study employed humin as an adsorbent to investigate the efficacy of a remediation strategy under the effects of humin-enhanced electrokinetics. Because the cations gravitate toward cathode and anions are transferred to anode, humin was placed in close proximity to the cathode in the form of a package. The humin was taken out after the experiments to determine whether a target pollutant (cadmium) might be completely removed from soil. Acetic acid-sodium acetate was selected as the electrolyte for these experiments, which was circulated between the two electrode chambers via a peristaltic pump, in order to control the pH of the soil. The results indicated that when the remediation duration was extended to 240 h, the removal of acid extractable Cd(II) could be up to 43.86% efficiency, and the adsorption of the heavy metal within the humin was 86.15 mg/kg. Further, the recycling of the electrolyte exhibited a good control of the pH of the soil. When comparing the pH of the soil with the circulating electrolyte during remediation, in contrast to when it was not being recycled, the pH of the soil at the anode increased from 3.89 to 5.63, whereas the soil at the cathode decreased from 8.06 to 7.10. This indicated that the electrolyte recycling had the capacity to stabilize the pH of the soil.

  12. An assessment of the current municipal solid waste management system in Lahore, Pakistan.

    PubMed

    Masood, Maryam; Barlow, Claire Y; Wilson, David C

    2014-09-01

    The current status of solid waste management in Lahore, a metropolitan city of Pakistan, is reviewed in this article using an existing approach, the UN-Habitat city profile. This involves a systematic quantitative and qualitative assessment of physical components and governance features of the current waste management system. A material flow diagram (MFD) is developed, which allows visualisation of the current waste management system with all related inputs and outputs. This study shows that in the current system, waste collection and transportation is the main focus, however the collection coverage is only about 68%. There is no controlled or even semi-controlled waste disposal facility in Lahore. There is no official recycling system in the city. It is estimated that currently ~27% of waste by weight is being recycled through the informal sector. Making use of the organic content of the waste, a composting facility is operative in the city, producing 47,230 tonnes year(-1) of organic compost. Lahore does not perform very well in governance features. Inclusivity of users and providers of the waste management system is low in the city, as not all stakeholders are consulted in the decision making processes. Waste management costs US$20 per tonne of waste, where the main focus is only on waste collection, and the current user fees are much lower than the actual costs. This study recommends that recycling should be promoted by increasing public awareness and integrating the informal sector to make the current system sustainable and financially viable. © The Author(s) 2014.

  13. RARE EARTH ELEMENT IMPACTS ON BIOLOGICAL WASTEWATER TREATMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, Y.; Barnes, J.; Fox, S.

    Increasing demand for rare earth elements (REE) is expected to lead to new development and expansion in industries processing and or recycling REE. For some industrial operators, sending aqueous waste streams to a municipal wastewater treatment plant, or publicly owned treatment works (POTW), may be a cost effective disposal option. However, wastewaters that adversely affect the performance of biological wastewater treatment at the POTW will not be accepted. The objective of our research is to assess the effects of wastewaters that might be generated by new rare earth element (REE) beneficiation or recycling processes on biological wastewater treatment systems. Wemore » have been investigating the impact of yttrium and europium on the biological activity of activated sludge collected from an operating municipal wastewater treatment plant. We have also examined the effect of an organic complexant that is commonly used in REE extraction and separations; similar compounds may be a component of newly developed REE recycling processes. Our preliminary results indicate that in the presence of Eu, respiration rates for the activated sludge decrease relative to the no-Eu controls, at Eu concentrations ranging from <10 to 660 µM. Yttrium appears to inhibit respiration as well, although negative impacts have been observed only at the highest Y amendment level tested (660 µM). The organic complexant appears to have a negative impact on activated sludge activity as well, although results are variable. Ultimately the intent of this research is to help REE industries to develop environmentally friendly and economically sustainable beneficiation and recycling processes.« less

  14. Resource Efficient Metal and Material Recycling

    NASA Astrophysics Data System (ADS)

    Reuter, Markus A.; van Schaik, Antoinette

    Metals enable sustainability through their use and their recyclability. However, various factors can affect the Resource Efficiency of Metal Processing and Recycling. Some typical factors that enable Resource Efficiency include and arranged under the drivers of sustainability: Environment (Maximize Resource Efficiency — Energy, Recyclates, Materials, Water, Sludges, Emissions, Land); Economic Feasibility (BAT & Recycling Systems Simulation / Digitalization, Product vis-à-vis Material Centric Recycling); and Social — Licence to Operate (Legislation, consumer, policy, theft, manual labour.). In order to realize this primary production has to be linked systemically with typical actors in the recycling chain such as Original Equipment Manufacturers (OEMs), Recyclers & Collection, Physical separation specialists as well as process metallurgical operations that produce high value metals, compounds and products that recycle back to products. This is best done with deep knowledge of multi-physics, technology, product & system design, process control, market, life cycle management, policy, to name a few. The combination of these will be discussed as Design for Sustainability (DfS) and Design for Recycling (DfR) applications.

  15. Theoretical study of closed-loop recycling liquid-liquid chromatography and experimental verification of the theory.

    PubMed

    Kostanyan, Artak E; Erastov, Andrey A

    2016-09-02

    The non-ideal recycling equilibrium-cell model including the effects of extra-column dispersion is used to simulate and analyze closed-loop recycling counter-current chromatography (CLR CCC). Previously, the operating scheme with the detector located before the column was considered. In this study, analysis of the process is carried out for a more realistic and practical scheme with the detector located immediately after the column. Peak equation for individual cycles and equations describing the transport of single peaks and complex chromatograms inside the recycling closed-loop, as well as equations for the resolution between single solute peaks of the neighboring cycles, for the resolution of peaks in the recycling chromatogram and for the resolution between the chromatograms of the neighboring cycles are presented. It is shown that, unlike conventional chromatography, increasing of the extra-column volume (the recycling line length) may allow a better separation of the components in CLR chromatography. For the experimental verification of the theory, aspirin, caffeine, coumarin and the solvent system hexane/ethyl acetate/ethanol/water (1:1:1:1) were used. Comparison of experimental and simulated processes of recycling and distribution of the solutes in the closed-loop demonstrated a good agreement between theory and experiment. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. End-of-Life in the railway sector: Analysis of recyclability and recoverability for different vehicle case studies.

    PubMed

    Delogu, Massimo; Del Pero, Francesco; Berzi, Lorenzo; Pierini, Marco; Bonaffini, Davide

    2017-02-01

    The railway system represents one of the most resource-efficient answer to our ever-growing demand for transport service and the development trends for the following years forecast a substantial increase in this sector. Considering the European Union, rolling stock realizes a significant share of both goods and passengers carriage while it is responsible for a derisory quota of environmental impact and energy consumption involved by transportation. Contrary to the low environmental impact, the amount of End-of-Life (EoL) waste generated by rolling stocks in relation to the number of vehicles is notable, much greater than in the case of road vehicles. As railway vehicles are constituted by many heterogeneous components, the EoL rolling stock is a precious source of materials, whose recycling brings measurable economic benefits and needs to be appropriately debated. The paper presents calculation of recoverability/recyclability rate for different typologies of vehicles representative of railway transport; calculation is performed on the basis of primary data and according to the recyclability and recoverability calculation method issued by UNIFE in the context of Product Category Rules (PCR). The typologies of railway vehicles taken into account are electric metro, diesel commuter train and high-speed electric train. The analysis envisages also to replicate the calculation in case innovative materials and manufacturing technologies are adopted in the construction of car-body structure. Results show that recyclability/recoverability rates are abundantly over the quota of 90% for each one of the three trains, these latter being made in major part of metals that benefit from very efficient recovery processes. The adoption of innovative materials and manufacturing technologies for car-body structure involves a scarce reduction of recyclability and recoverability rates (about 2% and 0.2% respectively) due to the introduction of components and materials characterized by critical dismantlability and low efficiency recovery processes; recoverability results less affected by lightweighting because post-shredding thermal recovery treatments are roughly independent with respect to dismantlability. A sensitivity analysis based on different dismantling scenarios reveals that the effectiveness of dismantling has a moderate influence on recyclability/recoverability rate (the variation does not exceed 3%). The low variability of recyclability/recoverability rate can be explained by the following reasons: predominance of metals in trains material composition, efficiency of metals separation processes close to 100%, post-shredding recycling processes of metals characterized by recovery factors equal to the ones of post-dismantling recycling processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. He, Ne and Ar systematics in single vesicles: Mantle isotopic ratios and origin of the air component in basaltic glasses

    NASA Astrophysics Data System (ADS)

    Raquin, Aude; Moreira, Manuel Alexis; Guillon, Fabien

    2008-09-01

    An outstanding problem in understanding the origin of the gaseous phase, particularly the rare gas compositions in magmatic rocks, is the ubiquitous atmospheric component in bulk rock samples, and whether this atmospheric component is a late stage contamination of the sample, or a recycled component though sediments or altered oceanic crust. In the present study we address this problem by analyzing single vesicles from the "popping rock 2∏D43" sample from the Mid-Atlantic Ridge using a UV laser ablation system. We have determined both elemental and isotopic compositions of He, Ne and Ar in single vesicles as well as Kr and Xe abundances. All vesicles analyzed have an isotopic composition identical to the referred degassed mantle value estimated from this same sample, despite analyzing vesicles from a wide size distribution. The atmospheric component, which is always detected in bulk samples by crushing or heating, was not detected in the single vesicles. This implies that the recycling of atmospheric noble gases in the mantle cannot explain the air-like component of this sample. The addition of the atmospheric component must occur either during the eruption, or after sample recovery.

  18. Perceived difficulty in the theory of planned behaviour: perceived behavioural control or affective attitude?

    PubMed

    Kraft, Pål; Rise, Jostein; Sutton, Stephen; Røysamb, Espen

    2005-09-01

    A study was conducted to explore (a) the dimensional structure of perceived behavioural control (PBC), (b) the conceptual basis of perceived difficulty items, and (c) how PBC components and instrumental and affective attitudes, respectively, relate to intention and behaviour. The material stemmed from a two-wave study of Norwegian graduate students (N = 227 for the prediction of intention and N = 110 for the prediction of behaviour). Data were analysed using confirmatory factor analysis (CFA) and multiple regression by the application of structural equation modelling (SEM). CFA suggested that PBC could be conceived of as consisting of three separate but interrelated factors (perceived control, perceived confidence and perceived difficulty), or as two separate but interrelated factors representing self-efficacy (measured by perceived difficulty and perceived confidence or by just perceived confidence) and perceived control. However, the perceived difficulty items also overlapped substantially with affective attitude. Perceived confidence was a strong predictor of exercise intention but not of recycling intention. Perceived control, however, was a strong predictor of recycling intention but not exercise intention. Affective attitudes but not instrumental attitudes were identified as substantial predictors of intentions. The findings suggest that at least under some circumstances it may be inadequate to measure PBC by means of perceived difficulty. One possible consequence may be that the role of PBC as a predictor of intention is somewhat overestimated, whereas the role of (affective) attitude may be similarly underestimated.

  19. Effective Technology for Recycling Metal. Proceedings of Two Special Workshops.

    ERIC Educational Resources Information Center

    National Association of Secondary Material Industries, Inc., New York, NY.

    The National Association of Secondary Material Industries (NASMI) and the Bureau of Mines have cooperated to sponsor two technically-oriented workshops related to the role of metals recycling and air pollution control technology. The proceedings of these workshops, "Effective Technology and Research for Scrap Metal Recycling" and "Air Pollution…

  20. Recycling Pressure-Sensitive Products

    Treesearch

    Jihui Guo; Larry Gwin; Carl Houtman; Mark Kroll; Steven J. Severtson

    2012-01-01

    The efficient control of contaminants such as metals, plastics, inks and adhesives during the processing of recovered paper products determines the profitability of recycling mills. In fact, it is arguably the most important technical obstacle in expanding the use of recycled paper.1-4 An especially challenging category of contaminants to manage...

  1. Numerical Characterization of Wall Recycling Conditions of the HIDRA Stellarator using EMC3-EIRENE

    NASA Astrophysics Data System (ADS)

    Marcinko, Steven; Curreli, Davide

    2015-11-01

    The wall recycling conditions created by energetic bombardment of plasma-facing components (PFCs) are of critical importance to determining the plasma and impurity profile in the edge region of a magnetically confined plasma. In this work a pre-online numerical characterization of the edge plasma in HIDRA has been carried out. HIDRA is the former WEGA experiment, now relocated to the University of Illinois at Urbana-Champaign. Numerical simulations of the HIDRA edge environment are performed utilizing the 3D edge plasma and neutral transport code EMC3-EIRENE [Y. Feng J. Nucl. Mater 241-243, 930 (1997)]. In our analysis, emphasis is placed on the influence of the neutrals and the impurities on edge plasma profiles and thus on energy and particle fluxes impingent onto PFCs. We examine the effect of different wall types, comparing high recycling conditions to situations of low recycling. The effect of intrinsic impurity screening is also taken into account under the expected HIDRA operating regimes. We report the calculated particle confinement time and fluid moments of both plasma and neutrals at the low recycling regimes expected with lithium-based PFCs, and compare them with the high recycling regimes found with conventional metal-based PFCs.

  2. Recycling of subducted crustal components into carbonatite melts revealed by boron isotopes

    NASA Astrophysics Data System (ADS)

    Hulett, Samuel R. W.; Simonetti, Antonio; Rasbury, E. Troy; Hemming, N. Gary

    2016-12-01

    The global boron geochemical cycle is closely linked to recycling of geologic material via subduction processes that have occurred over billions of years of Earth’s history. The origin of carbonatites, unique melts derived from carbon-rich and carbonate-rich regions of the upper mantle, has been linked to a variety of mantle-related processes, including subduction and plume-lithosphere interaction. Here we present boron isotope (δ11B) compositions for carbonatites from locations worldwide that span a wide range of emplacement ages (between ~40 and ~2,600 Ma). Hence, they provide insight into the temporal evolution of their mantle sources for ~2.6 billion years of Earth’s history. Boron isotope values are highly variable and range between -8.6‰ and +5.5‰, with all of the young (<300 Ma) carbonatites characterized by more positive δ11B values (>-4.0‰), whereas most of the older carbonatite samples record lower B isotope values. Given the δ11B value for asthenospheric mantle of -7 +/- 1‰, the B isotope compositions for young carbonatites require the involvement of an enriched (crustal) component. Recycled crustal components may be sampled by carbonatite melts associated with mantle plume activity coincident with major tectonic events, and linked to past episodes of significant subduction associated with supercontinent formation.

  3. [Research on resources chemistry of Chinese medicinal materials and resources recycling utilization ways and goals and tasks].

    PubMed

    Duan, Jin-ao; Su, Shu-lan; Guo, Sheng; Jiang, Shu; Liu, Pei; Yan, Hui; Qian, Da-wei; Zhu, Hua-xu; Tang, Yu-ping; Wu, Qi-nan

    2015-09-01

    The objects of research on the resources chemistry of Chinese medicinal materials (RCCMM) are promotion of efficient production, rational utilization and improving quality of CMM and natural products. The development of TCM cause depends on the efficient utilization and sustainable development of CMM, hinges on the technologies and methods for using and discovering medicinal biological resources, stand or fall on the extension of industy chains, detailed utilizaion of resource chemical components by multi-way, multi-level. All of these may help to the recycling utilization and sound development of RCMM. In this article, five respects were discussed to the RCCMM researches and resources recycling utilization ways and goals and tasks. First, based on the principle of resource scarcity, discovering or replacing CMM resources, protecting the rare or endangered species or resources. Second, based on the multifunctionality of CMM, realizing the value-added and value compensation, and promoting the utilization efficiency through systermatic and detailed exploitation and utilization. Third, based on the resource conservation and environment-friendly, reducing raw material consumption, lowering cost, promoting recycling utilization and elevating utilization efficiency. Fourth, based on the stratege of turning harm into good, using the invasive alien biological resources by multi-ways and enriching the medicial resources. Fifth, based on the method of structure modification of chemical components, exploring and enhancing the utility value of resouces chemical substances. These data should provide references and attention for improving the utilization efficiency, promoting the development of recycling economy, and changing the mode of economic growth of agriculture and industry of CMM fundamentally.

  4. Aviation Requirements for Use of Recycled MIL-PRF-680

    DTIC Science & Technology

    2012-05-24

    components – Approximately 1,000 gallons of virgin MIL-PRF-680 Type II used and disposed every 6 months at Fort Rucker Calculated using the full...capacity of the parts washers – Recycling will reduce the need to purchase virgin solvent and reduce disposal costs – Expressed interest received...with virgin solvent Clarus PCS-25 Parts Washer Clarus Tornado Filtration System INSERT EVENT TITLE – INSERT MONTH & YEAR Aviation Requirements for Use

  5. High levels of PAH-metabolites in urine of e-waste recycling workers from Agbogbloshie, Ghana.

    PubMed

    Feldt, Torsten; Fobil, Julius N; Wittsiepe, Jürgen; Wilhelm, Michael; Till, Holger; Zoufaly, Alexander; Burchard, Gerd; Göen, Thomas

    2014-01-01

    The informal recycling of electronic waste (e-waste) is an emerging source of environmental pollution in Africa. Among other toxins, polycyclic aromatic hydrocarbons (PAHs) are a major health concern for exposed individuals. In a cross-sectional study, the levels of PAH metabolites in the urine of individuals working on one of the largest e-waste recycling sites of Africa, and in controls from a suburb of Accra without direct exposure to e-waste recycling activities, were investigated. Socioeconomic data, basic health data and urine samples were collected from 72 exposed individuals and 40 controls. In the urine samples, concentrations of the hydroxylate PAH metabolites (OH-PAH) 1-hydroxyphenanthrene (1-OH-phenanthrene), the sum of 2- and 9-hydroxyphenanthrene (2-/9-OH-phenanthrene), 3-hydroxyphenanthrene (3-OH-phenanthrene), 4-hydroxyphenanthrene (4-OH-phenanthrene) and 1-hydroxypyrene (1-OH-pyrene), as well as cotinine and creatinine, were determined. In the exposed group, median urinary concentrations were 0.85 μg/g creatinine for 1-OH-phenanthrene, 0.54 μg/g creatinine for 2-/9-OH-phenanthrene, 0.99 μg/g creatinine for 3-OH-phenanthrene, 0.22 μg/g creatinine for 4-OH-phenanthrene, and 1.33 μg/g creatinine for 1-OH-pyrene, all being significantly higher compared to the control group (0.55, 0.37, 0.63, 0.11 and 0.54 μg/g creatinine, respectively). Using a multivariate linear regression analysis including sex, cotinine and tobacco smoking as covariates, exposure to e-waste recycling activities was the most important determinant for PAH exposure. On physical examination, pathological findings were rare, but about two thirds of exposed individuals complained about cough, and one quarter about chest pain. In conclusion, we observed significantly higher urinary PAH metabolite concentrations in individuals who were exposed to e-waste recycling compared to controls who were not exposed to e-waste recycling activities. The impact of e-waste recycling on exposure to environmental toxins and health of individuals living in the surroundings of e-waste recycling sites warrant further investigation. © 2013 Elsevier B.V. All rights reserved.

  6. Studying precipitation recycling over the Tibetan Plateau using evaporation-tagging and back-trajectory analysis

    NASA Astrophysics Data System (ADS)

    Gao, Y.

    2017-12-01

    Regional precipitation recycling (i.e., the contribution of local evaporation to local precipitation) is an important component of water cycle over the Tibetan Plateau (TP). Two methods were used to investigate regional precipitation recycling: 1) tracking of tagged atmospheric water parcels originating from evaporation in a source region (i.e., E-tagging), and 2) back-trajectory approach to track the evaporative sources contributed to precipitation in a specific region. These two methods were applied to Weather Research and Forecasting (WRF) regional climate simulations to quantify the precipitation recycling ratio in the TP for three selected years: climatologically normal, dry and wet year. The simulation region is characterized by high average elevation above 4000 m and complex terrain. The back-trajectory approach is also calculated over three sub-regions over the TP: namely western, northeastern and southeastern TP, and the E-tagging approach could provide recycling-ratio distributions over the whole TP. Three aspects are investigated to characterize the precipitation recycling: annual mean, seasonal variations and spatial distributions. Averaged over the TP, the precipitation recycling ratio estimated by the E-tagging approach is higher than that from the back-trajectory method. The back-trajectory approach uses a precipitation threshold as total precipitation in five days divided by a random number, and this number was set to 500 as a tread off between equilibrium and computational efficiency. Lower recycling ratio derived from the back-trajectory approach is related to the precipitation threshold used. The E-tagging, however, tracks every air parcel of evaporation regardless of the precipitation amount. There is no obvious seasonal variation in the recycling ratio using both methods. The E-tagging approach shows high recycling ratios in the center TP, indicating stronger land-atmospheric interactions than elsewhere.

  7. Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate

    NASA Astrophysics Data System (ADS)

    Hoernle, Kaj; Tilton, George; Le Bas, Mike; Duggen, Svend; Garbe-Schönberg, Dieter

    Major and trace element and Sr-Nd-Pb-O-C isotopic compositions are presented for carbonatites from the Cape Verde (Brava, Fogo, Sáo Tiago, Maio and Sáo Vicente) and Canary (Fuerteventura) Islands. Carbonatites show pronounced enrichment in Ba, Th, REE, Sr and Pb in comparison to most silicate volcanic rocks and relative depletion in Ti, Zr, Hf, K and Rb. Calcio (calcitic)-carbonatites have primary (mantle-like) stable isotopic compositions and radiogenic isotopic compositions similar to HIMU-type ocean island basalts. Cape Verde carbonatites, however, have more radiogenic Pb isotope ratios (e.g. 206Pb/204Pb=19.3-20.4) than reported for silicate volcanic rocks from these islands (18.7-19.9 Gerlach et al. 1988; Kokfelt 1998). We interpret calcio-carbonatites to be derived from the melting of recycled carbonated oceanic crust (eclogite) with a recycling age of 1.6 Ga. Because of the degree of recrystallization, replacement of calcite by secondary dolomite and elevated ∂13C and ∂18O, the major and trace element compositions of the magnesio (dolomitic)-carbonatites are likely to reflect secondary processes. Compared with Cape Verde calcio-carbonatites, the less radiogenic Nd and Pb isotopic ratios and the negative Δ7/4 of the magnesio-carbonatites (also observed in silicate volcanic rocks from the Canary and Cape Verde Islands) cannot be explained through secondary processes or through the assimilation of Cape Verde crust. These isotopic characteristics require the involvement of a mantle component that has thus far only been found in the Smoky Butte lamproites from Montana, which are believed to be derived from subcontinental lithospheric sources. Continental carbonatites show much greater variation in radiogenic isotopic composition than oceanic carbonatites, requiring a HIMU-like component similar to that observed in the oceanic carbonatites and enriched components. We interpret the enriched components to be Phanerozoic through Proterozoic marine carbonate (e.g. limestone) recycled through shallow, subcontinental-lithospheric-mantle and deep, lower-mantle sources.

  8. Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate

    NASA Astrophysics Data System (ADS)

    Hoernle, Kaj; Tilton, George; Le Bas, Mike; Duggen, Svend; Garbe-Schönberg, Dieter

    2001-11-01

    Major and trace element and Sr-Nd-Pb-O-C isotopic compositions are presented for carbonatites from the Cape Verde (Brava, Fogo, Sáo Tiago, Maio and Sáo Vicente) and Canary (Fuerteventura) Islands. Carbonatites show pronounced enrichment in Ba, Th, REE, Sr and Pb in comparison to most silicate volcanic rocks and relative depletion in Ti, Zr, Hf, K and Rb. Calcio (calcitic)-carbonatites have primary (mantle-like) stable isotopic compositions and radiogenic isotopic compositions similar to HIMU-type ocean island basalts. Cape Verde carbonatites, however, have more radiogenic Pb isotope ratios (e.g. 206Pb/204Pb=19.3-20.4) than reported for silicate volcanic rocks from these islands (18.7-19.9 Gerlach et al. 1988; Kokfelt 1998). We interpret calcio-carbonatites to be derived from the melting of recycled carbonated oceanic crust (eclogite) with a recycling age of 1.6 Ga. Because of the degree of recrystallization, replacement of calcite by secondary dolomite and elevated ∂13C and ∂18O, the major and trace element compositions of the magnesio (dolomitic)-carbonatites are likely to reflect secondary processes. Compared with Cape Verde calcio-carbonatites, the less radiogenic Nd and Pb isotopic ratios and the negative Δ7/4 of the magnesio-carbonatites (also observed in silicate volcanic rocks from the Canary and Cape Verde Islands) cannot be explained through secondary processes or through the assimilation of Cape Verde crust. These isotopic characteristics require the involvement of a mantle component that has thus far only been found in the Smoky Butte lamproites from Montana, which are believed to be derived from subcontinental lithospheric sources. Continental carbonatites show much greater variation in radiogenic isotopic composition than oceanic carbonatites, requiring a HIMU-like component similar to that observed in the oceanic carbonatites and enriched components. We interpret the enriched components to be Phanerozoic through Proterozoic marine carbonate (e.g. limestone) recycled through shallow, subcontinental-lithospheric-mantle and deep, lower-mantle sources.

  9. Quality control in the recycling stream of PVC cable waste by hyperspectral imaging analysis

    NASA Astrophysics Data System (ADS)

    Luciani, Valentina; Serranti, Silvia; Bonifazi, Giuseppe; Rem, Peter

    2005-05-01

    In recent years recycling is gaining a key role in the manufacturing industry. The use of recycled materials in the production of new goods has the double advantage of saving energy and natural resources, moreover from an economic point of view, recycled materials are in general cheaper than the virgin ones. Despite of these environmental and economic strengths, the use of recycled sources is still low compared to the raw materials consumption, indeed in Europe only 10% of the market is covered by recycled products. One of the reasons of this reticence in the use of secondary sources is the lack of an accurate quality certification system. The inputs of a recycled process are not always the same, which means that also the output of a particular process can vary depending on the initial composition of the treated material. Usually if a continuous quality control system is not present at the end of the process the quality of the output material is assessed on the minimum certified characteristics. Solving this issue is crucial to expand the possible applications of recycled materials and to assign a price based on the real characteristic of the material. The possibility of applying a quality control system based on a hyperspectral imaging (HSI) technology working in the near infrared (NIR) range to the output of a separation process of PVC cable wastes is explored in this paper. The analysed material was a residue fraction of a traditional separation process further treated by magnetic density separation. Results show as PVC, PE, rubber and copper particles can be identified and classified adopting the NIR-HSI approach.

  10. Controlling adhesive behavior during recycling

    Treesearch

    Carl Houtman; Karen Scallon; Jihui Guo; XinPing Wang; Steve Severtson; Mark Kroll; Mike Nowak

    2004-01-01

    Adhesives can be formulated to facilitate their removal by typical paper recycling unit operations. The investigations described in this paper are focused on determining fundamental properties that control particle size during pulping. While pressure-sensitive adhesives (PSAs) with high elastic moduli tend to survive pulping with larger particles, facestock and...

  11. Recycling of lower continental crust through foundering of cumulates from contaminated mafic intrusions

    NASA Technical Reports Server (NTRS)

    Arndt, Nicholas T.; Goldstein, Steven L.

    1988-01-01

    A mechanism is presented for recycling of lower continental material back into the mantle. Picritic magmas, possible parental to volumious continental volcanics such as the Karoo and Deccan, became trapped at the Moho, where they interacted with and become contaminated by lower crustal materials. Upon crystallization, the magmas differentiated into lower ultramafic cumulate zones and upper gabbroic-anorthositic zones. The ultramafic cumulates are denser than underlying mantle and sink, carrying lower crustal components as trapped liquid, as xenoliths or rafts, and as constituents of cumulate minerals. This model provides a potentially significant crust-mantle differentiation mechanism, and may also represent a contributing factor in crustal recycling, possibly important in producing some OIB reservoirs.

  12. Recyclable organic solar cells on cellulose nanocrystal substrates

    PubMed Central

    Zhou, Yinhua; Fuentes-Hernandez, Canek; Khan, Talha M.; Liu, Jen-Chieh; Hsu, James; Shim, Jae Won; Dindar, Amir; Youngblood, Jeffrey P.; Moon, Robert J.; Kippelen, Bernard

    2013-01-01

    Solar energy is potentially the largest source of renewable energy at our disposal, but significant advances are required to make photovoltaic technologies economically viable and, from a life-cycle perspective, environmentally friendly, and consequently scalable. Cellulose nanomaterials are emerging high-value nanoparticles extracted from plants that are abundant, renewable, and sustainable. Here, we report on the first demonstration of efficient polymer solar cells fabricated on optically transparent cellulose nanocrystal (CNC) substrates. The solar cells fabricated on the CNC substrates display good rectification in the dark and reach a power conversion efficiency of 2.7%. In addition, we demonstrate that these solar cells can be easily separated and recycled into their major components using low-energy processes at room temperature, opening the door for a truly recyclable solar cell technology. Efficient and easily recyclable organic solar cells on CNC substrates are expected to be an attractive technology for sustainable, scalable, and environmentally-friendly energy production. PMID:23524333

  13. Recyclable organic solar cells on cellulose nanocrystal substrates.

    PubMed

    Zhou, Yinhua; Fuentes-Hernandez, Canek; Khan, Talha M; Liu, Jen-Chieh; Hsu, James; Shim, Jae Won; Dindar, Amir; Youngblood, Jeffrey P; Moon, Robert J; Kippelen, Bernard

    2013-01-01

    Solar energy is potentially the largest source of renewable energy at our disposal, but significant advances are required to make photovoltaic technologies economically viable and, from a life-cycle perspective, environmentally friendly, and consequently scalable. Cellulose nanomaterials are emerging high-value nanoparticles extracted from plants that are abundant, renewable, and sustainable. Here, we report on the first demonstration of efficient polymer solar cells fabricated on optically transparent cellulose nanocrystal (CNC) substrates. The solar cells fabricated on the CNC substrates display good rectification in the dark and reach a power conversion efficiency of 2.7%. In addition, we demonstrate that these solar cells can be easily separated and recycled into their major components using low-energy processes at room temperature, opening the door for a truly recyclable solar cell technology. Efficient and easily recyclable organic solar cells on CNC substrates are expected to be an attractive technology for sustainable, scalable, and environmentally-friendly energy production.

  14. A Pilot Assessment of Occupational Health Hazards in the US Electronic Scrap Recycling Industry

    PubMed Central

    Ceballos, Diana M.; Gong, Wei; Page, Elena

    2015-01-01

    The National Institute for Occupational Safety and Health (NIOSH) surveyed a randomly selected sample of electronic scrap (e-scrap) recycling facilities nationwide to characterize work processes, exposures, and controls. Despite multiple attempts to contact 278 facilities, only 47 responded (17% response rate). Surveyed facilities reported recycling a wide variety of electronics. The most common recycling processes were manual dismantling and sorting. Other processes included shredding, crushing, and automated separation. Many facilities reported that they had health and safety programs in place. However, some facilities reported the use of compressed air for cleaning, a practice that can lead to increased employee dust exposures, and some facilities allowed food and drinks in the production areas, a practice that can lead to ingestion of contaminants. Although our results may not be generalizable to all US e-scrap recycling facilities, they are informative regarding health and safety programs in the industry. We concluded that e-scrap recycling has the potential for a wide variety of occupational exposures particularly because of the frequent use of manual processes. On-site evaluations of e-scrap recyclers are needed to determine if reported work processes, practices, and controls are effective and meet current standards and guidelines. Educating the e-scrap recycling industry about health and safety best practices, specifically related to safe handling of metal dust, would help protect employees. PMID:25738822

  15. A Pilot Assessment of Occupational Health Hazards in the US Electronic Scrap Recycling Industry.

    PubMed

    Ceballos, Diana M; Gong, Wei; Page, Elena

    2015-01-01

    The National Institute for Occupational Safety and Health (NIOSH) surveyed a randomly selected sample of electronic scrap (e-scrap) recycling facilities nationwide to characterize work processes, exposures, and controls. Despite multiple attempts to contact 278 facilities, only 47 responded (17% response rate). Surveyed facilities reported recycling a wide variety of electronics. The most common recycling processes were manual dismantling and sorting. Other processes included shredding, crushing, and automated separation. Many facilities reported that they had health and safety programs in place. However, some facilities reported the use of compressed air for cleaning, a practice that can lead to increased employee dust exposures, and some facilities allowed food and drinks in the production areas, a practice that can lead to ingestion of contaminants. Although our results may not be generalizable to all US e-scrap recycling facilities, they are informative regarding health and safety programs in the industry. We concluded that e-scrap recycling has the potential for a wide variety of occupational exposures particularly because of the frequent use of manual processes. On-site evaluations of e-scrap recyclers are needed to determine if reported work processes, practices, and controls are effective and meet current standards and guidelines. Educating the e-scrap recycling industry about health and safety best practices, specifically related to safe handling of metal dust, would help protect employees.

  16. Direction of CRT waste glass processing: electronics recycling industry communication.

    PubMed

    Mueller, Julia R; Boehm, Michael W; Drummond, Charles

    2012-08-01

    Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Activity-Dependence of Synaptic Vesicle Dynamics

    PubMed Central

    Forte, Luca A.

    2017-01-01

    The proper function of synapses relies on efficient recycling of synaptic vesicles. The small size of synaptic boutons has hampered efforts to define the dynamical states of vesicles during recycling. Moreover, whether vesicle motion during recycling is regulated by neural activity remains largely unknown. We combined nanoscale-resolution tracking of individual synaptic vesicles in cultured hippocampal neurons from rats of both sexes with advanced motion analyses to demonstrate that the majority of recently endocytosed vesicles undergo sequences of transient dynamical states including epochs of directed, diffusional, and stalled motion. We observed that vesicle motion is modulated in an activity-dependent manner, with dynamical changes apparent in ∼20% of observed boutons. Within this subpopulation of boutons, 35% of observed vesicles exhibited acceleration and 65% exhibited deceleration, accompanied by corresponding changes in directed motion. Individual vesicles observed in the remaining ∼80% of boutons did not exhibit apparent dynamical changes in response to stimulation. More quantitative transient motion analyses revealed that the overall reduction of vesicle mobility, and specifically of the directed motion component, is the predominant activity-evoked change across the entire bouton population. Activity-dependent modulation of vesicle mobility may represent an important mechanism controlling vesicle availability and neurotransmitter release. SIGNIFICANCE STATEMENT Mechanisms governing synaptic vesicle dynamics during recycling remain poorly understood. Using nanoscale resolution tracking of individual synaptic vesicles in hippocampal synapses and advanced motion analysis tools we demonstrate that synaptic vesicles undergo complex sets of dynamical states that include epochs of directed, diffusive, and stalled motion. Most importantly, our analyses revealed that vesicle motion is modulated in an activity-dependent manner apparent as the reduction in overall vesicle mobility in response to stimulation. These results define the vesicle dynamical states during recycling and reveal their activity-dependent modulation. Our study thus provides fundamental new insights into the principles governing synaptic function. PMID:28954868

  18. Src regulates sequence-dependent beta-2 adrenergic receptor recycling via cortactin phosphorylation*

    PubMed Central

    Vistein, Rachel; Puthenveedu, Manojkumar A.

    2014-01-01

    The recycling of internalized signaling receptors, which has direct functional consequences, is subject to multiple sequence and biochemical requirements. Why signaling receptors recycle via a specialized pathway, unlike many other proteins that recycle by bulk, is a fundamental unanswered question. Here we show that these specialized pathways allow selective control of signaling receptor recycling by heterologous signaling. Using assays to visualize receptor recycling in living cells, we show that the recycling of the beta-2 adrenergic receptor (B2AR), a prototypic signaling receptor, is regulated by Src family kinases. The target of Src is cortactin, an essential factor for B2AR sorting into specialized recycling microdomains on the endosome. Phosphorylation of a single cortactin residue, Y466, regulates the rate of fission of B2AR recycling vesicles from these microdomains, and, therefore, the rate of delivery of B2AR to the cell surface. Together, our results indicate that actin-stabilized microdomains that mediate signaling receptor recycling can serve as a functional point of convergence for crosstalk between signaling pathways. PMID:25077552

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzi, Alex D.; McCabe, Daniel J.

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it to themore » LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of this stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate, along with entrained, volatile, and semi-volatile metals, such as Hg, As, and Se. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate that get recycled to the melter, and is a key objective of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of earlier tasks was to formulate and prepare a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations and use it in evaporator testing to predict the composition of the effluents from the Effluent Management Facility (EMF) evaporator to aid in planning for their disposition. The objective of this task was to test immobilization options for this evaporator bottoms aqueous stream. This document describes the method used to formulate a simulant of this EMF evaporator bottoms stream, immobilize it, and determine if the immobilized waste forms meet disposal criteria.« less

  20. The biosphere rules.

    PubMed

    Unruh, Gregory C

    2008-02-01

    Sustainability, defined by natural scientists as the capacity of healthy ecosystems to function indefinitely, has become a clarion call for business. Leading companies have taken high-profile steps toward achieving it: Wal-Mart, for example, with its efforts to reduce packaging waste, and Nike, which has removed toxic chemicals from its shoes. But, says Unruh, the director of Thunderbird's Lincoln Center for Ethics in Global Management, sustainability is more than an endless journey of incremental steps. It is a destination, for which the biosphere of planet Earth--refined through billions of years of trial and error--is a perfect model. Unruh distills some lessons from the biosphere into three rules: Use a parsimonious palette. Managers can rethink their sourcing strategies and dramatically simplify the number and types of materials their companies use in production, making recycling cost-effective. After the furniture manufacturer Herman Miller discovered that its leading desk chair had 200 components made from more than 800 chemical compounds, it designed an award-winning successor whose far more limited materials palette is 96% recyclable. Cycle up, virtuously. Manufacturers should design recovery value into their products at the outset. Shaw Industries, for example, recycles the nylon fiber from its worn-out carpet into brand-new carpet tile. Exploit the power of platforms. Platform design in industry tends to occur at the component level--but the materials in those components constitute a more fundamental platform. Patagonia, by recycling Capilene brand performance underwear, has achieved energy costs 76% below those for virgin sourcing. Biosphere rules can teach companies how to build ecologically friendly products that both reduce manufacturing costs and prove highly attractive to consumers. And managers need not wait for a green technological revolution to implement them.

  1. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. C. Khamankar

    2000-06-20

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated wastemore » is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW packages as well as any mixed waste packages. The buildings house the system and provide shielding and support for the components. The system is ventilated by and connects to the ventilation systems in the buildings to prevent buildup and confine airborne radioactivity via the high efficiency particulate air filters. The Monitored Geologic Repository Operations Monitoring and Control System will provide monitoring and supervisory control facilities for the system.« less

  2. Different profiles of anthropogenic and naturally produced organohalogen compounds in serum from residents living near a coastal area and e-waste recycling workers in India.

    PubMed

    Eguchi, Akifumi; Nomiyama, Kei; Devanathan, Gnanasekaran; Subramanian, Annamalai; Bulbule, Kesav A; Parthasarathy, Peethambaram; Takahashi, Shin; Tanabe, Shinsuke

    2012-10-15

    We determined the contamination status and accumulation profiles of polychlorinated biphenyls (PCBs), hydroxylated PCB congeners (OH-PCBs), polybrominated diphenyl ethers (PBDEs), hydroxylated PBDEs (OH-PBDEs), methoxylated PBDEs (MeO-PBDEs), and bromophenols (BPhs) in serum from e-waste recycling workers and residents near a coastal area in India. Residue levels of penta- to octa-chlorinated PCBs, penta- to octa-chlorinated OH-PCBs, 6MeO-BDE47, 6OH-BDE47, and 2,4,6-tri-BPh in serum from residents living near the coastal area were significantly higher than those in serum from e-waste recycling workers. Residue levels of tri- to tetra-chlorinated PCBs, tri- to tetra-chlorinated OH-PCBs, PBDEs, octa-brominated OH-PBDEs, and tetra-BPhs in serum from e-waste recycling workers were higher than those in serum from residents living near the coastal area. Principal component analysis revealed that residents living near the coastal area and e-waste recycling workers had different serum profiles of chlorinated and brominated compounds. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Recycling of municipal solid waste incinerator fly ash by using hydrocyclone separation.

    PubMed

    Ko, Ming-Sheng; Chen, Ying-Liang; Wei, Pei-Shou

    2013-03-01

    The municipal solid waste incinerators (MSWIs) in Taiwan generate about 300,000 tons of fly ash annually, which is mainly composed of calcium and silicon compounds, and has the potential for recycling. However, some heavy metals are present in the MSWI fly ash, and before recycling, they need to be removed or reduced to make the fly ash non-hazardous. Accordingly, the purpose of this study was to use a hydrocyclone for the separation of the components of the MSWI fly ash in order to obtain the recyclable portion. The results show that chloride salts can be removed from the fly ash during the hydrocyclone separation process. The presence of a dense medium (quartz sand in this study) is not only helpful for the removal of the salts, but also for the separation of the fly ash particles. After the dense-medium hydrocyclone separation process, heavy metals including Pb and Zn were concentrated in the fine particles so that the rest of the fly ash contained less heavy metal and became both non-hazardous and recyclable. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Characterization and recycling of cadmium from waste nickel-cadmium batteries.

    PubMed

    Huang, Kui; Li, Jia; Xu, Zhenming

    2010-11-01

    A severe threat was posed due to improper and inefficient recycling of waste batteries in China. The present work considered the fundamental aspects of the recycling of cadmium from waste nickel-cadmium batteries by means of vacuum metallurgy separation in scale-up. In the first stage of this work, the characterization of waste nickel-cadmium batteries was carried out. Five types of batteries from different brands and models were selected and their components were characterized in relation to their elemental chemical composition and main phase. In the second stage of this work, the parameters affecting the recycling of cadmium by means of vacuum metallurgy separation were investigated and a L(16) (4(4)) orthogonal design was applied to optimize the parameters. With the thermodynamics theory and numerical analysis, it can be seen that the orthogonal design is an effective tool for investigating the parameters affecting the recycling of cadmium. The optimum operating parameters for the recycling of cadmium obtained by orthogonal design and verification test were 1073 K (temperature), 2.5h (heating time), 2 wt.% (the addition of carbon powder), and 30 mm (the loaded height), respectively, with recycling efficiency approaching 99.98%. The XRD and ICP-AES analyzed results show that the condensed product was characterized as metallic cadmium, and cadmium purity was 99.99% under the optimum condition. Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  5. Automatic detection and classification of EOL-concrete and resulting recovered products by hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Palmieri, Roberta; Bonifazi, Giuseppe; Serranti, Silvia

    2014-05-01

    The recovery of materials from Demolition Waste (DW) represents one of the main target of the recycling industry and the its characterization is important in order to set up efficient sorting and/or quality control systems. End-Of-Life (EOL) concrete materials identification is necessary to maximize DW conversion into useful secondary raw materials, so it is fundamental to develop strategies for the implementation of an automatic recognition system of the recovered products. In this paper, HyperSpectral Imaging (HSI) technique was applied in order to detect DW composition. Hyperspectral images were acquired by a laboratory device equipped with a HSI sensing device working in the near infrared range (1000-1700 nm): NIR Spectral Camera™, embedding an ImSpector™ N17E (SPECIM Ltd, Finland). Acquired spectral data were analyzed adopting the PLS_Toolbox (Version 7.5, Eigenvector Research, Inc.) under Matlab® environment (Version 7.11.1, The Mathworks, Inc.), applying different chemometric methods: Principal Component Analysis (PCA) for exploratory data approach and Partial Least Square- Discriminant Analysis (PLS-DA) to build classification models. Results showed that it is possible to recognize DW materials, distinguishing recycled aggregates from contaminants (e.g. bricks, gypsum, plastics, wood, foam, etc.). The developed procedure is cheap, fast and non-destructive: it could be used to make some steps of the recycling process more efficient and less expensive.

  6. A Study on Preservice Preschool Teachers' Recycling Intentions in Relation to Parents' Educational Level and Recycling Opportunities

    ERIC Educational Resources Information Center

    Öztürk, Deniz Kahriman

    2016-01-01

    Preservice preschool teachers' intentions to recycling and influential factors in their intentions were analyzed in this study through Theory of Planned Behavior (TPB). The data of the study were collected from 181 preservice preschool teachers via a survey to measure their attitude, subjective norms, perceived behavioral control, and intention…

  7. Polychlorinated biphenyls in settled dust from informal electronic waste recycling workshops and nearby highways in urban centers and suburban industrial roadsides of Chennai city, India: Levels, congener profiles and exposure assessment.

    PubMed

    Chakraborty, Paromita; Prithiviraj, Balasubramanian; Selvaraj, Sakthivel; Kumar, Bhupander

    2016-12-15

    Polychlorinated biphenyls (PCBs) were quantified in settled dust collected from informal electronic waste (e-waste) recycling workshops and nearby highways in the urban centers and roadside dust from the suburban industrial belt of Chennai city in India. Further dust samples were subjected to a high resolution field emission scanning electron microscope equipped with an energy dispersive X-ray spectrometer (FESEM/EDX) to characterize the shape, size and elemental composition of the dust particles. Geomean of total PCB concentration followed the following order: informal e-waste metal recovery workshops (53ngg -1 )>e-waste dismantling sites (3.6ngg -1 )>nearby highways (1.7ngg -1 )>suburban industrial roadsides (1.6ngg -1 ). In e-waste workshops, tetra, penta and hexa-PCB homologs contributed two third of Σ 26 PCB concentration. Informal e-waste recycling workshops contributed more than 80% concentration of all the PCB congeners loaded in the first principal component. Predominance of dioxin like PCBs, PCB-l14, -118 and -126 in the e-waste metal recovery sites were presumably due to combustion and pyrolytic processes performed during recycling of electrical components. According to the morphology and elemental composition, settled dust from e-waste workshops were irregular particles heavily embedded with toxic metals and industrial roadside dust were distinct angular particles. FESEM revealed that average particle size (in Ferret diameter) increased in the following order: e-waste recycling workshops (0.5μm)

  8. Combined Li-He isotopes in Iceland and Jan Mayen basalts and constraints on the nature of the North Atlantic mantle

    NASA Astrophysics Data System (ADS)

    Magna, T.; Wiechert, U.; Stuart, F. M.; Halliday, A. N.; Harrison, D.

    2011-02-01

    Lithium (Li) isotopes are thought to provide a powerful proxy for the recycling of crustal material, affected by low temperature alteration, through the mantle. We present Li isotope compositions for basaltic volcanic rocks from Hengill, Iceland, and Jan Mayen in order to examine possible links between ocean island volcanism and recycled oceanic crust and to address recent suggestions that mantle 3He/ 4He is also related to recycling of ancient slabs. Basaltic glasses spanning a range of chemical enrichment from the Hengill fissure system define an inverse correlation between δ 7Li (3.8-6.9‰) and 3He/ 4He (12-20 RA). The high- 3He/ 4He basalts have low δ 18O as well as excess Eu and high Nb/U, but carry no Li isotope evidence of being the product of recycling of altered slab or wedge material. In fact, there is no clear correlation between Li or He isotopes on the one hand and any of the other fingerprints of recycled slab components. The low- 3He/ 4He samples do have elevated Nb/U, Sr/Nd, positive Eu anomalies and high δ 7Li (˜6.9‰), providing evidence of a cumulate-enriched source that could be part of an ancient altered ocean floor slab. Basalts from Jan Mayen are characterized by large degrees of enrichment in incompatible trace elements typical of EM-like basalts but have homogeneous δ 7Li typical of depleted mantle (3.9-4.7‰) providing evidence for a third mantle source in the North Atlantic. It appears that oceanic basalts can display a wide range in isotope and trace element compositions associated with recycled components whilst exhibiting no sign of modern surface-altered slab or wedge material from the Li isotope composition.

  9. Life sciences and space research 25 (3): Natural and artifical ecosystems; Meeting F4 of the COSPAR Plenary Meeting, 29th, Washington, DC, Aug. 28-Sep. 5, 1992

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D. (Editor); Mitchell, C. A. (Editor); Andre, M. (Editor); Blackwell, C. C. (Editor); Tibbitts, T. W. (Editor); Banin, A. (Editor); Levine, J. S. (Editor)

    1994-01-01

    Bioregenerative life support systems will be an essential part of long duration manned space flight. Studies have been made of various components of these closed ecological systems. these studies have included those spaceborne experiments on Spacelab and Mir, as well as ground-based simulations. The effects of reduced gravity include alterations in food crop and other plant growth and vigor. Systems have also been designed and tested to provide a balanced regenerative system that recycles airborne and other wastes while providing nutrients and other input for future cycles. Hydroponic cultivation must include control of pathogens. All closed systems require sensing and automatic control.

  10. Activation, decay heat, and waste classification studies of the European DEMO concept

    NASA Astrophysics Data System (ADS)

    Gilbert, M. R.; Eade, T.; Bachmann, C.; Fischer, U.; Taylor, N. P.

    2017-04-01

    Inventory calculations have a key role to play in designing future fusion power plants because, for a given irradiation field and material, they can predict the time evolution in chemical composition, activation, decay heat, gamma-dose, gas production, and even damage (dpa) dose. For conceptual designs of the European DEMO fusion reactor such calculations provide information about the neutron shielding requirements, maintenance schedules, and waste disposal prospects; thereby guiding future development. Extensive neutron-transport and inventory calculations have been performed for a reference DEMO reactor model with four different tritium-breeding blanket concepts. The results have been used to chart the post-operation variation in activity and decay heat from different vessel components, demonstrating that the shielding performance of the different blanket concepts—for a given blanket thickness—varies significantly. Detailed analyses of the simulated nuclide inventories for the vacuum vessel (VV) and divertor highlight the most dominant radionuclides, potentially suggesting how changes in material composition could help to reduce activity. Minor impurities in the raw composition of W used in divertor tiles, for example, are shown to produce undesirable long-lived radionuclides. Finally, waste classifications, based on UK regulations, and a recycling potential limit, have been applied to estimate the time-evolution in waste masses for both the entire vessel (including blanket modules, VV, divertor, and some ex-vessel components) and individual components, and also to suggest when a particular component might be suitable for recycling. The results indicate that the large mass of the VV will not be classifiable as low level waste on the 100 year timescale, but the majority of the divertor will be, and that both components will be potentially recyclable within that time.

  11. The effects of rare earth elements on an anaerobic hydrogen producing microorganism

    NASA Astrophysics Data System (ADS)

    Fujita, Y.; St Jeor, J. D.; Reed, D. W.

    2016-12-01

    Rapid growth of new energy technologies and consumer electronics is leading to increased fluxes of rare earth elements (REE), during the phases of resource extraction, product usage, recycling, and disposal. However, little is known about the impacts of these increased REE fluxes on environmental ecosystems, whether natural or engineered (e.g., biological waste treatment systems). We have been evaluating the effects of europium and yttrium on hydrogen production by an anaerobic fermenting microorganism, Sporacetigenium mesophilum, originally isolated from an anaerobic digester at a wastewater treatment plant.1 Europium and yttrium are important components of phosphors used in fluorescent lighting, and are expected to be recycled in larger quantities in the future. Also tested was the compound tributyl phosphate (TBP), a widely used complexing agent in lanthanide and actinide separations. TBP and related compounds may be used in recycling processes for REE. S. mesophilumcultures were amended with Eu at 100 ppb, 1 ppm and 10 ppm and hydrogen production was measured. While the lowest Eu concentration had minimal effect on hydrogen production compared to the no Eu control, the two higher Eu amendment levels appeared to enhance hydrogen production. TBP at 0.1 g/L completely inhibited hydrogen production. Measurements of aqueous Eu concentrations indicated that >85% of the added Eu remained soluble at all three of the Eu addition levels tested. Experiments to ascertain whether enhancement (or inhibition) occurs at even higher Eu concentrations are underway, as are corresponding experiments with yttrium. This work contributes to the assessment of the potential impacts of increased REE recycling and processing on ecosystems, and supports decision making with respect to disposal of wastewaters generated during these industrial practices. 1Chen, S., Song, L. and X. Dong. Int J. Syst. Evol. Microbiol. 56, 721-725, doi: 10.1099/ijs.0.63686-0 (2006).

  12. The major components of particles emitted during recycling of waste printed circuit boards in a typical e-waste workshop of South China

    NASA Astrophysics Data System (ADS)

    Bi, Xinhui; Simoneit, Bernd R. T.; Wang, ZhenZhen; Wang, Xinming; Sheng, Guoying; Fu, Jiamo

    2010-11-01

    Electronic waste from across the world is dismantled and disposed of in China. The low-tech recycling methods have caused severe air pollution. Air particle samples from a typical workshop of South China engaged in recycling waste printed circuit boards have been analyzed with respect to chemical constituents. This is the first report on the chemical composition of particulate matter (PM) emitted in an e-waste recycling workshop of South China. The results show that the composition of PM from this recycling process was totally different from other emission sources. Organic matter comprised 46.7-51.6% of the PM. The major organic constituents were organophosphates consisting mainly of triphenyl phosphate (TPP) and its methyl substituted compounds, methyl esters of hexadecanoic and octadecanoic acids, levoglucosan and bisphenol A. TPP and bisphenol A were present at 1-5 orders of magnitude higher than in other indoor and outdoor environments throughout the world, which implies that they might be used as potential markers for e-waste recycling. The elemental carbon, inorganic elements and ions had a minor contribution to the PM (<5% each). The inorganic elements were dominated by phosphorus and followed by crustal elements and metal elements Pb, Zn, Sn, and lesser Cu, Sb, Mn, Ni, Ba and Cd. The recycling of printed circuit boards was demonstrated as an important contributor of heavy metal contamination, particularly Cd, Pb and Ni, to the local environment. These findings suggest that this recycling method represents a strong source of PM associated with pollutants to the ambient atmosphere of an e-waste recycling locale.

  13. Cooperation of MICAL-L1, syndapin2, and phosphatidic acid in tubular recycling endosome biogenesis.

    PubMed

    Giridharan, Sai Srinivas Panapakkam; Cai, Bishuang; Vitale, Nicolas; Naslavsky, Naava; Caplan, Steve

    2013-06-01

    Endocytic transport necessitates the generation of membrane tubules and their subsequent fission to transport vesicles for sorting of cargo molecules. The endocytic recycling compartment, an array of tubular and vesicular membranes decorated by the Eps15 homology domain protein, EHD1, is responsible for receptor and lipid recycling to the plasma membrane. It has been proposed that EHD dimers bind and bend membranes, thus generating recycling endosome (RE) tubules. However, recent studies show that molecules interacting with CasL-Like1 (MICAL-L1), a second, recently identified RE tubule marker, recruits EHD1 to preexisting tubules. The mechanisms and events supporting the generation of tubular recycling endosomes were unclear. Here, we propose a mechanism for the biogenesis of RE tubules. We demonstrate that MICAL-L1 and the BAR-domain protein syndapin2 bind to phosphatidic acid, which we identify as a novel lipid component of RE. Our studies demonstrate that direct interactions between these two proteins stabilize their association with membranes, allowing for nucleation of tubules by syndapin2. Indeed, the presence of phosphatidic acid in liposomes enhances the ability of syndapin2 to tubulate membranes in vitro. Overall our results highlight a new role for phosphatidic acid in endocytic recycling and provide new insights into the mechanisms by which tubular REs are generated.

  14. Noncovalent magnetic control and reversible recovery of graphene oxide using iron oxide and magnetic surfactants.

    PubMed

    McCoy, Thomas M; Brown, Paul; Eastoe, Julian; Tabor, Rico F

    2015-01-28

    The unique charging properties of graphene oxide (GO) are exploited in the preparation of a range of noncovalent magnetic GO materials, using microparticles, nanoparticles, and magnetic surfactants. Adsorption and desorption are controlled by modification of pH within a narrow window of <2 pH units. The benefit conferred by using charge-based adsorption is that the process is reversible, and the GO can be captured and separated from the magnetic nanomaterial, such that both components can be recycled. Iron oxide (Fe2O3) microparticles form a loosely flocculated gel network with GO, which is demonstrated to undergo magnetic compressional dewatering in the presence of an external magnetic field. For composites formed from GO and Fe2O3 nanoparticles, it is found that low Fe2O3:GO mass ratios (<5:1) favor flocculation of GO, whereas higher ratios (>5:1) cause overcharging of the surfaces resulting in restabilization. The effectiveness of the GO adsorption and magnetic capture process is demonstrated by separating traditionally difficult-to-recover gold nanoparticles (d ≈ 10 nm) from water. The fully recyclable nature of the assembly and capture process, combined with the vast adsorption capacity of GO, presents obvious and appealing advantages for applications in decontamination and water treatment.

  15. Surface free energy analysis of oil palm empty fruit bunches fiber reinforced biocomposites

    NASA Astrophysics Data System (ADS)

    Suryadi, G. S.; Nikmatin, S.; Sudaryanto; Irmansyah; Sukaryo, S. G.

    2017-05-01

    Study of the size effect of natural fiber from oil palm empty fruit bunches (OPEFB) as filler, onto the contact angle and surface free energy of fiber reinforced biocomposites has been done. The OPEFB fibers were prepared by mechanical milling and sieving to obtain various sizes of fiber (long-fiber, medium-fiber, short-fiber, and microparticle). The biocomposites has been produced by extrusion using single-screw extruder with EFB fiber as filler, recycled Acrylonitrile Butadiene Styrene (ABS) polymer as matrix, and primary antioxidant, acid scavanger, and coupling agent as additives. The obtained biocomposites in form of granular, were made into test piece by injection molding method. Contact angles of water, methanol, and hexane on the surface of biocomposites at room temperature were measured using Phoenix 300 Contact Angle Analyzer. The surface free energy (SFE) and their components were calculated using three previous known methods (Girifalco-Good-Fowkes-Young (GGFY), Owens-Wendt, and van Oss-Chaudhury-Good (vOCG)). The results showed that total SFE of Recycled ABS as control was about 24.38 mJ/m2, and SFE of biocomposites was lower than control, decreased with decreasing of EFB fiber size as biocomposites filler. The statistical analysis proved that there are no statistically significant differences in the value of the SFE calculated with the three different methods.

  16. Strengthening education in human values - The Link between Recycling and Climate Change

    NASA Astrophysics Data System (ADS)

    Kastanidou, Sofia

    2014-05-01

    This work is an environmental education program of 50 hours- off curriculum, currently run by High school of Nikaia - Larissas. I as coordinator teacher, another two teachers and 24 students participate in this program. Intended learning outcomes: students will be able to define the importance of climate change, to evaluate the effect of human activities on climate, and to recognize the role of recycling in preventing global climate change. It is an environmental program with social goals. That means students have to understand the link between human and environment and learn how to combine environmental protection with human help. As a consequence collaboration has already begun between High school of Nikaia and the Paraplegic & Physically Disabled Association of Pella-Greece. This is a nonprofit association that collects plastic caps; with the contribution of a recycling company the Paraplegic Association converts plastic caps in wheelchairs and gives them to needy families. So, recycling caps becomes a meaningful form of environmental and social activism. Students are educated about the meaning of recycling and encouraged to collect all types of plastic caps; they are also educated in the meaning of helping people. Further, this environmental education program consists of two parts, a theoretical and a practical one: a) Theoretical part: education is an essential element of the global response to climate change, so students have to research on climate change; they visit the Center for Environmental Education in Florina and experience the aquatic ecosystem of Prespa lakes; specialists of the Centre inform students about the effects of climate change on wetlands; students have further to research how recycling can help fight global climate change as well as examine how recycling a key component of modern waste reduction is, as the third component of the "Reduce, Reuse, Recycle" waste hierarchy; they discover the interdependence of society, economy and the natural environment; they visit the City Cleaning-Recycling Services; scientists visit our school and engage students in the climate change issue; students are educated in developing ecological consciousness paths to a sustainable future. b) Practical part: students use recycled materials to build containers where everyone can put the plastic caps; they decorate containers with other recyclable materials such as magazine clippings, ribbons etc.; students are encouraged to contact local organizations (municipality, post office, and banks), sports clubs and shops, to inform people about their action and to put the containers for plastic caps in the place they work or in their houses; they collect plastic caps frequently at school; at the end of the environmental education program all the students visit Paraplegic & Physically Disabled Association in Pella-Yannitsa and deliver the collected caps. We hope that students will leave the program with new skills, experiences and knowledge that can be used to help themselves, their communities, their environment and future generations. "Our changing planet - our changing society for a better future".

  17. Heavy metals in hair of residents in an e-waste recycling area, south China: contents and assessment of bodily state.

    PubMed

    Zheng, Jing; Luo, Xiao-Jun; Yuan, Jian-Gang; He, Luo-Yiyi; Zhou, Yi-Hui; Luo, Yong; Chen, She-Jun; Mai, Bi-Xian; Yang, Zhong-Yi

    2011-11-01

    Heavy metals were measured in hair from occupationally and nonoccupationally exposed populations in an e-waste recycling area and from residents from a control rural town. The levels of five heavy metals were in the following order of Zn > Pb, Cu > Cd > Ni, with the highest levels found in the occupationally exposed workers. The levels of Cd, Pb, and Cu were significantly higher in residents from the e-waste recycling area than in the control area. Elevated Cd, Pb, and Cu contents along with significant positive correlations between them in hair from the e-waste recycling area indicated that these metals were likely to have originated from the e-waste recycling activities. The similarity in heavy metal pattern between children and occupationally exposed workers indicated that children are particularly vulnerable to heavy metal pollution caused by e-waste recycling activities. The increased Cu exposure might be a benefit for the insufficient intake of Cu in the studied area. However, the elevated hair Cd and Pb levels implied that the residents in the e-waste area might be at high risk of toxic metal, especially for children and occupationally exposed workers.

  18. Process for recycling components of a PEM fuel cell membrane electrode assembly

    DOEpatents

    Shore, Lawrence [Edison, NJ

    2012-02-28

    The membrane electrode assembly (MEA) of a PEM fuel cell can be recycled by contacting the MEA with a lower alkyl alcohol solvent which separates the membrane from the anode and cathode layers of the assembly. The resulting solution containing both the polymer membrane and supported noble metal catalysts can be heated under mild conditions to disperse the polymer membrane as particles and the supported noble metal catalysts and polymer membrane particles separated by known filtration means.

  19. "Control-alt-delete": rebooting solutions for the E-waste problem.

    PubMed

    Li, Jinhui; Zeng, Xianlai; Chen, Mengjun; Ogunseitan, Oladele A; Stevels, Ab

    2015-06-16

    A number of efforts have been launched to solve the global electronic waste (e-waste) problem. The efficiency of e-waste recycling is subject to variable national legislation, technical capacity, consumer participation, and even detoxification. E-waste management activities result in procedural irregularities and risk disparities across national boundaries. We review these variables to reveal opportunities for research and policy to reduce the risks from accumulating e-waste and ineffective recycling. Full regulation and consumer participation should be controlled and reinforced to improve local e-waste system. Aiming at standardizing best practice, we alter and identify modular recycling process and infrastructure in eco-industrial parks that will be expectantly effective in countries and regions to handle the similar e-waste stream. Toxicity can be deleted through material substitution and detoxification during the life cycle of electronics. Based on the idea of "Control-Alt-Delete", four patterns of the way forward for global e-waste recycling are proposed to meet a variety of local situations.

  20. Evaluating Performance and Stability of Polyethylene Terephthalate (PET) and Cellulose Polymer as Soilless Mix Components

    USDA-ARS?s Scientific Manuscript database

    In the U.S., concerns over the long-term sustainability of peat, perlite, and other media components have led to searches for alternative materials. FiberFill, a synthetic fiber made of recyclable polyethylene terephthalate, and Tencel, a cellulose fiber, are new materials with potential as substra...

  1. Comparison of soil heavy metal pollution caused by e-waste recycling activities and traditional industrial operations.

    PubMed

    He, Kailing; Sun, Zehang; Hu, Yuanan; Zeng, Xiangying; Yu, Zhiqiang; Cheng, Hefa

    2017-04-01

    The traditional industrial operations are well recognized as an important source of heavy metal pollution, while that caused by the e-waste recycling activities, which have sprouted in some developing countries, is often overlooked. This study was carried out to compare the status of soil heavy metal pollution caused by the traditional industrial operations and the e-waste recycling activities in the Pearl River Delta, and assess whether greater attention should be paid to control the pollution arising from e-waste recycling activities. Both the total contents and the chemical fractionation of major heavy metals (As, Cr, Cd, Ni, Pb, Cu, and Zn) in 50 surface soil samples collected from the e-waste recycling areas and 20 soil samples from the traditional industrial zones were determined. The results show that the soils in the e-waste recycling areas were mainly polluted by Cu, Zn, As, and Cd, while Cu, Zn, As, Cd, and Pb were the major heavy metals in the soils from the traditional industrial zones. Statistical analyses consistently show that Cu, Cd, Pb, and Zn in the surface soils from both types of sites were contributed mostly by human activities, while As, Cr, and Ni in the soils were dominated by natural background. No clear distinction was found on the pollution characteristic of heavy metals in the surface soils between the e-waste recycling areas and traditional industrial zones. The potential ecological risk posed by heavy metals in the surface soils from both types of sites, which was dominated by that from Cd, ranged from low to moderate. Given the much shorter development history of e-waste recycling and its largely unregulated nature, significant efforts should be made to crack down on illegal e-waste recycling and strengthen pollution control for related activities.

  2. Rab5 and Rab4 Regulate Axon Elongation in the Xenopus Visual System

    PubMed Central

    Konopacki, Filip A.; Zivraj, Krishna H.; Holt, Christine E.

    2014-01-01

    The elongation rate of axons is tightly regulated during development. Recycling of the plasma membrane is known to regulate axon extension; however, the specific molecules involved in recycling within the growth cone have not been fully characterized. Here, we investigated whether the small GTPases Rab4 and Rab5 involved in short-loop recycling regulate the extension of Xenopus retinal axons. We report that, in growth cones, Rab5 and Rab4 proteins localize to endosomes, which accumulate markers that are constitutively recycled. Fluorescence recovery after photo-bleaching experiments showed that Rab5 and Rab4 are recruited to endosomes in the growth cone, suggesting that they control recycling locally. Dynamic image analysis revealed that Rab4-positive carriers can bud off from Rab5 endosomes and move to the periphery of the growth cone, suggesting that both Rab5 and Rab4 contribute to recycling within the growth cone. Inhibition of Rab4 function with dominant-negative Rab4 or Rab4 morpholino and constitutive activation of Rab5 decreases the elongation of retinal axons in vitro and in vivo, but, unexpectedly, does not disrupt axon pathfinding. Thus, Rab5- and Rab4-mediated control of endosome trafficking appears to be crucial for axon growth. Collectively, our results suggest that recycling from Rab5-positive endosomes via Rab4 occurs within the growth cone and thereby supports axon elongation. PMID:24403139

  3. Taking Food Away

    Cancer.gov

    Cancers driven by mutant KRAS genes are more dependent on scavenging nutrients from the tumor microenvironment, via macropinocytosis, and from internal recycling of cellular components, via autophagy. These differences may be cancer vulnerabilities.

  4. The changes of nutrient composition of piled laying hen manure and anaerobic fermentation for recycling as a dietary ingredient for ruminants.

    PubMed

    Han, Tianlong; Wang, Liping; Zhang, Yanming; Zhang, Jun; Han, Dongsheng; Lv, Ning; Han, Xiaohua; Zhao, Guoqiang; Wang, Min

    2018-01-15

    This study investigated the changes of nutrient compositions of piled laying hen manure, detected the physical and chemical components of laying hen manure fermented by mixed strains, and analysed its application effects on feeding ruminants. The results showed that with increasing of piling time, the contents of crude protein (CP) and ether extract (EE) in laying hen manure were reduced, while the contents of crude ash (CA), calcium (Ca) and phosphorus (P) were increased. Fermentation could effectively decrease pH value, reduce Ca/P ratio, lessen the total bacterial counts, and maintain the organisms contents in laying hen manure. The results of ruminants feeding test indicated that replacing 20% diet with laying hen manure fermentation products (MFP), the weight gain and reproductive rate were respectively decreased by 9.99% and 2% compared with the control group, and the differences were not statistically significant. This technology could recycle laying hen manures as ruminant feeds, for the purpose of reducing environmental pollution and improving economic efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Recycling algae to improve species control and harvest efficiency from a high rate algal pond.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2011-12-15

    This paper investigates the influence of recycling gravity harvested algae on species dominance and harvest efficiency in wastewater treatment High Rate Algal Ponds (HRAP). Two identical pilot-scale HRAPs were operated over one year either with (HRAP(r)) or without (HRAP(c)) harvested algal biomass recycling. Algae were harvested from the HRAP effluent in algal settling cones (ASCs) and harvest efficiency was compared to settlability in Imhoff cones five times a week. A microscopic image analysis technique was developed to determine relative algal dominance based on biovolume and was conducted once a month. Recycling of harvested algal biomass back to the HRAP(r) maintained the dominance of a single readily settleable algal species (Pediastrum sp.) at >90% over one year (compared to the control with only 53%). Increased dominance of Pediastrum sp. greatly improved the efficiency of algal harvest (annual average of >85% harvest for the HRAP(r) compared with ∼60% for the control). Imhoff cone experiments demonstrated that algal settleability was influenced by both the dominance of Pediastrum sp. and the species composition of remaining algae. Algal biomass recycling increased the average size of Pediastrum sp. colonies by 13-30% by increasing mean cell residence time. These results indicate that recycling gravity harvested algae could be a simple and effective operational strategy to maintain the dominance of readily settleable algal species, and enhance algal harvest by gravity sedimentation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Predictive model for the Dutch post-consumer plastic packaging recycling system and implications for the circular economy.

    PubMed

    Brouwer, Marieke T; Thoden van Velzen, Eggo U; Augustinus, Antje; Soethoudt, Han; De Meester, Steven; Ragaert, Kim

    2018-01-01

    The Dutch post-consumer plastic packaging recycling network has been described in detail (both on the level of packaging types and of materials) from the household potential to the polymeric composition of the recycled milled goods. The compositional analyses of 173 different samples of post-consumer plastic packaging from different locations in the network were combined to indicatively describe the complete network with material flow analysis, data reconciliation techniques and process technological parameters. The derived potential of post-consumer plastic packages in the Netherlands in 2014 amounted to 341 Gg net (or 20.2 kg net.cap -1 .a -1 ). The complete recycling network produced 75.2 Gg milled goods, 28.1 Gg side products and 16.7 Gg process waste. Hence the net recycling chain yield for post-consumer plastic packages equalled 30%. The end-of-life fates for 35 different plastic packaging types were resolved. Additionally, the polymeric compositions of the milled goods and the recovered masses were derived with this model. These compositions were compared with experimentally determined polymeric compositions of recycled milled goods, which confirmed that the model predicts these compositions reasonably well. Also the modelled recovered masses corresponded reasonably well with those measured experimentally. The model clarified the origin of polymeric contaminants in recycled plastics, either sorting faults or packaging components, which gives directions for future improvement measures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Direction of CRT waste glass processing: Electronics recycling industry communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Julia R., E-mail: mueller.143@osu.edu; Boehm, Michael W.; Drummond, Charles

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Given a large flow rate of CRT glass {approx}10% of the panel glass stream will be leaded. Black-Right-Pointing-Pointer The supply of CRT waste glass exceeded demand in 2009. Black-Right-Pointing-Pointer Recyclers should use UV-light to detect lead oxide during the separation process. Black-Right-Pointing-Pointer Recycling market analysis techniques and results are given for CRT glass. Black-Right-Pointing-Pointer Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, andmore » the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.« less

  8. Endothelin-converting enzyme 1 degrades neuropeptides in endosomes to control receptor recycling.

    PubMed

    Roosterman, Dirk; Cottrell, Graeme S; Padilla, Benjamin E; Muller, Laurent; Eckman, Christopher B; Bunnett, Nigel W; Steinhoff, Martin

    2007-07-10

    Neuropeptide signaling requires the presence of G protein-coupled receptors (GPCRs) at the cell surface. Activated GPCRs interact with beta-arrestins, which mediate receptor desensitization, endocytosis, and mitogenic signaling, and the peptide-receptor-arrestin complex is sequestered into endosomes. Although dissociation of beta-arrestins is required for receptor recycling and resensitization, the critical event that initiates this process is unknown. Here we report that the agonist availability in the endosomes, controlled by the membrane metalloendopeptidase endothelin-converting enzyme 1 (ECE-1), determines stability of the peptide-receptor-arrestin complex and regulates receptor recycling and resensitization. Substance P (SP) binding to the tachykinin neurokinin 1 receptor (NK1R) induced membrane translocation of beta-arrestins followed by trafficking of the SP-NK1R-beta-arrestin complex to early endosomes containing ECE-1a-d. ECE-1 degraded SP in acidified endosomes, disrupting the complex; beta-arrestins returned to the cytosol, and the NK1R, freed from beta-arrestins, recycled and resensitized. An ECE-1 inhibitor, by preventing NK1R recycling in endothelial cells, inhibited resensitization of SP-induced inflammation. This mechanism is a general one because ECE-1 similarly regulated NK3R resensitization. Thus, peptide availability in endosomes, here regulated by ECE-1, determines the stability of the peptide-receptor-arrestin complex. This mechanism regulates receptor recycling, which is necessary for sustained signaling, and it may also control beta-arrestin-dependent mitogenic signaling of endocytosed receptors. We propose that other endosomal enzymes and transporters may similarly control the availability of transmitters in endosomes to regulate trafficking and signaling of GPCRs. Antagonism of these endosomal processes represents a strategy for inhibiting sustained signaling of receptors, and defects may explain the tachyphylaxis of drugs that are receptor agonists.

  9. DWPF Recycle Evaporator Simulant Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M

    2005-04-05

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming,more » scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted from gibbsite to aluminum oxide during the evaporation process. The following recommendations were made: Recycle from the DWTT should be metered in slowly to the ''typical'' recycle streams to avoid spikes in solids content to allow consistent processing and avoid process upsets. Additional studies should be conducted to determine acceptable volume ratios for the HEME dissolution and decontamination solutions in the evaporator feed. Dow Corning 2210 antifoam should be evaluated for use to control foaming. Additional tests are required to determine the concentration of antifoam required to prevent foaming during startup, the frequency of antifoam additions required to control foaming during steady state processing, and the ability of the antifoam to control foam over a range of potential feed compositions. This evaluation should also include evaluation of the degradation of the antifoam and impact on the silicon and TOC content of the condensate. The caustic HEME dissolution recycle stream should be neutralized to at least pH of 7 prior to blending with the acidic recycle streams. Dow Corning 2210 should be used during the evaporation testing using the radioactive recycle samples received from DWPF. Evaluation of additional antifoam candidates should be conducted as a backup for Dow Corning 2210. A camera and/or foam detection instrument should be included in the evaporator design to allow monitoring of the foaming behavior during operation. The potential for foam formation and high solids content should be considered during the design of the evaporator vessel.« less

  10. Recycling of Kinesin-1 Motors by Diffusion after Transport

    PubMed Central

    Blasius, T. Lynne; Reed, Nathan; Slepchenko, Boris M.; Verhey, Kristen J.

    2013-01-01

    Kinesin motors drive the long-distance anterograde transport of cellular components along microtubule tracks. Kinesin-dependent transport plays a critical role in neurogenesis and neuronal function due to the large distance separating the soma and nerve terminal. The fate of kinesin motors after delivery of their cargoes is unknown but has been postulated to involve degradation at the nerve terminal, recycling via retrograde motors, and/or recycling via diffusion. We set out to test these models concerning the fate of kinesin-1 motors after completion of transport in neuronal cells. We find that kinesin-1 motors are neither degraded nor returned by retrograde motors. By combining mathematical modeling and experimental analysis, we propose a model in which the distribution and recycling of kinesin-1 motors fits a “loose bucket brigade” where individual motors alter between periods of active transport and free diffusion within neuronal processes. These results suggest that individual kinesin-1 motors are utilized for multiple rounds of transport. PMID:24098765

  11. Recycling endosomes in human cytotoxic T lymphocytes constitute an auxiliary intracellular trafficking pathway for newly synthesized perforin.

    PubMed

    Lesteberg, Kelsey; Orange, Jordan; Makedonas, George

    2017-10-01

    Although cytotoxic T lymphocytes (CTLs) store perforin within cytoplasmic secretory granules for immediate use, perforin is synthesized anew within hours of TCR stimulation. Previously, we observed new perforin protein at an immunologic synapse independent of secretory lysosomes; herein, we aimed to determine how new perforin transits to the synapse if not via lytic granules. We analyzed antigen-specific human CTLs via imaging flow cytometry and high-resolution confocal microscopy, with attention to intracellular trafficking components and new perforin. The recycling endosome compartments identified by rab8, rab11a, rab4, and rab37 co-localized with new perforin, as well as the SNAREs vti1b and VAMP4. After ablating the function of the recycling endosome pathway, we observed a relative accumulation of new perforin in rab8 vesicles. The recycling endosome pathway may serve as an auxiliary intracellular route for the delivery of new perforin to an immunologic synapse in order to perpetuate a cytotoxic response.

  12. Recycling endosomes in human cytotoxic T lymphocytes constitute an auxiliary intracellular trafficking pathway for newly synthesized perforin

    PubMed Central

    Lesteberg, Kelsey E.; Orange, Jordan S.; Makedonas, George

    2018-01-01

    Background Although cytotoxic T lymphocytes (CTLs) store perforin within cytoplasmic secretory granules for immediate use, perforin is synthesized anew within hours of TCR stimulation. Previously, we observed new perforin protein at an immunologic synapse independent of secretory lysosomes; herein we aimed to determine how new perforin transits to the synapse if not via lytic granules. Results We analyzed antigen-specific human CTLs via imaging flow cytometry and high-resolution confocal microscopy, with attention to intracellular trafficking components and new perforin. The recycling endosome compartments identified by rab8, rab11a, rab4, and rab37 co-localized with new perforin, as well as the SNAREs vti1b and VAMP4. After ablating the function of the recycling endosome pathway, we observed a relative accumulation of new perforin in rab8 vesicles. Conclusions The recycling endosome pathway may serve as an auxiliary intracellular route for the delivery of new perforin to an immunologic synapse in order to perpetuate a cytotoxic response. PMID:28822075

  13. Importance of public relations in recycling strategies: principles and case studies.

    PubMed

    Salhofer, Stefan; Isaac, Nicole A

    2002-07-01

    The separate collection of waste, and especially of recyclables with specific collection systems, would not be possible without the involvement of the users. Apart from the physical installations such as collection containers, collection points, etc., the motivation of the users is an essential component. Motivation can be reinforced through public relations work. In addition to the underlying technical considerations, this paper describes the difference between communication in general and public relations and specifically examines public involvement in recycling. Through the use of examples, we look at the targeted users and typical media employed. Furthermore, we analyzes the development of public involvement. The examples show that public relations for recycling strategies relies to a great extent on attitudes, habits, and access to the target group. Thus, standardized procedures cannot be developed. For these reasons, public relation activities must be planned carefully and professionally and include an analysis of the target group, choice of media, and verification of success.

  14. Snx3 regulates recycling of the transferrin receptor and iron assimilation

    PubMed Central

    Chen, Caiyong; Garcia-Santos, Daniel; Ishikawa, Yuichi; Seguin, Alexandra; Li, Liangtao; Fegan, Katherine H.; Hildick-Smith, Gordon J.; Shah, Dhvanit I.; Cooney, Jeffrey D.; Chen, Wen; King, Matthew J.; Yien, Yvette Y.; Schultz, Iman J.; Anderson, Heidi; Dalton, Arthur J.; Freedman, Matthew L.; Kingsley, Paul D.; Palis, James; Hattangadi, Shilpa M.; Lodish, Harvey F.; Ward, Diane M.; Kaplan, Jerry; Maeda, Takahiro; Ponka, Prem; Paw, Barry H.

    2013-01-01

    SUMMARY Sorting of endocytic ligands and receptors is critical for diverse cellular processes. The physiological significance of endosomal sorting proteins in vertebrates, however, remains largely unknown. Here we report that sorting nexin 3 (Snx3) facilitates the recycling of transferrin receptor (Tfrc), and thus is required for the proper delivery of iron to erythroid progenitors. Snx3 is highly expressed in vertebrate hematopoietic tissues. Silencing of Snx3 results in anemia and hemoglobin defects in vertebrates due to impaired transferrin (Tf)-mediated iron uptake and its accumulation in early endosomes. This impaired iron assimilation can be complemented with non-Tf iron chelates. We show that Snx3 and Vps35, a component of the retromer, interact with Tfrc to sort it to the recycling endosomes. Our findings uncover a role of Snx3 in regulating Tfrc recycling, iron homeostasis, and erythropoiesis. Thus, the identification of Snx3 provides a genetic tool for exploring erythropoiesis and disorders of iron metabolism. PMID:23416069

  15. Inclusion of products of physicochemical oxidation of organic wastes in matter recycling of biological-technical life support systems.

    NASA Astrophysics Data System (ADS)

    Tikhomirov, Alexander A.; Kudenko, Yurii; Trifonov, Sergei; Ushakova, Sofya

    Inclusion of products of human and plant wastes' `wet' incineration in 22 medium using alter-nating current into matter recycling of biological-technical life support system (BTLSS) has been considered. Fluid and gaseous components have been shown to be the products of such processing. In particular, the final product contained all necessary for plant cultivation nitrogen forms: NO2, NO3, NH4+. As the base solution included urine than NH4+ form dominated. At human solid wastes' mineralization NO2 NH4+ were registered in approximately equal amount. Comparative analysis of mineral composition of oxidized human wastes' and standard Knop solutions has been carried out. On the grounds of that analysis the dilution methods of solutions prepared with addition of oxidized human wastes for their further use for plant irrigation have been suggested. Reasonable levels of wheat productivity cultivated at use of given solutions have been obtained. CO2, N2 and O2 have been determined to be the main gas components of the gas admixture emitted within the given process. These gases easily integrate in matter recycling process of closed ecosystem. The data of plants' cultivation feasibility in the atmosphere obtained after closing of gas loop including physicochemical facility and vegetation chamber with plants-representatives of LSS phototrophic unit has been received. Conclusion of advance research on creation of matter recycling process in the integrated physical-chemical-biological model system has been drawn.

  16. Neurobeachin and the Kinesin KIF21B Are Critical for Endocytic Recycling of NMDA Receptors and Regulate Social Behavior.

    PubMed

    Gromova, Kira V; Muhia, Mary; Rothammer, Nicola; Gee, Christine E; Thies, Edda; Schaefer, Irina; Kress, Sabrina; Kilimann, Manfred W; Shevchuk, Olga; Oertner, Thomas G; Kneussel, Matthias

    2018-05-29

    Autism spectrum disorders (ASDs) are associated with mutations affecting synaptic components, including GluN2B-NMDA receptors (NMDARs) and neurobeachin (NBEA). NBEA participates in biosynthetic pathways to regulate synapse receptor targeting, synaptic function, cognition, and social behavior. However, the role of NBEA-mediated transport in specific trafficking routes is unclear. Here, we highlight an additional function for NBEA in the local delivery and surface re-insertion of synaptic receptors in mouse neurons. NBEA dynamically interacts with Rab4-positive recycling endosomes, transiently enters spines in an activity-dependent manner, and regulates GluN2B-NMDAR recycling. Furthermore, we show that the microtubule growth inhibitor kinesin KIF21B constrains NBEA dynamics and is present in the NBEA-recycling endosome-NMDAR complex. Notably, Kif21b knockout decreases NMDAR surface expression and alters social behavior in mice, consistent with reported social deficits in Nbea mutants. The influence of NBEA-KIF21B interactions on GluN2B-NMDAR local recycling may be relevant to mechanisms underlying ASD etiology. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Bench scale experiments for the remediation of Hanford Waste Treatment Plant low activity waste melter off-gas condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M.L.; Poirier, Michael; McCabe, Daniel J.

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter,more » so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.« less

  18. Investigation of variable compositions on the removal of technetium from Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M. L.; McCabe, Daniel J.; Pareizs, John M.

    The Low Activity Waste (LAW) vitrification facility at the Hanford Waste Treatment and Immobilization Plant (WTP) will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the offgas system. The plan for disposition of this stream during baseline operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. The primary reason to recycle this stream is so that the semi-volatile 99Tc isotope eventually becomes incorporated into the glass. This stream also contains non-radioactive salt components that are problematic in the melter,more » so diversion of this stream to another process would eliminate recycling of these salts and would enable simplified operation of the LAW melter and the Pretreatment Facilities. This diversion from recycling this stream within WTP would have the effect of decreasing the LAW vitrification mission duration and quantity of glass waste. The concept being tested here involves removing the 99Tc so that the decontaminated aqueous stream, with the problematic salts, can be disposed elsewhere.« less

  19. How does recycling of sediment components in arc magmatism really work?

    NASA Astrophysics Data System (ADS)

    Kelemen, P.; Hacker, B.; Austin, N.

    2007-12-01

    Past work indicates substantial recycling of a sediment component rich in LILE, Th, Sr, Pb and LREE in arcs. For example, in the relatively well-constrained case of Central America, Plank et al (Geology 02) estimate that 80% of subducted, sedimentary Th is recycled in arc magmas. To understand how such a component is transferred from subducted sediment to arc lava, we examined trace-element variation in (a) mid-crustal (0.4 GPa) contact metamorphic rocks (Austin & Kelemen, Fall 06 AGU) and (b) ultrahigh-pressure (UHP, > 3 GPa) metasediments. Most UHP samples were metamorphosed along subduction-zone geotherms (Hacker, Int Geol Rev 06), but some record substantially higher T (e.g., Erzgebirge & Kokchetav, Massone EPSL 03). Unmelted, mid-crustal metapelites are indistinguishable from pelitic sediments for the entire suite of elements analyzed by ICP-MS at WSU. Melt extraction from the mid-crustal metapelites led to systematic depletion of incompatible elements in high-grade hornfels. Depletion increases with decreasing distance to the contact with a mafic pluton, most clearly at peak T > 750°C. In contrast, although many UHP metapelites record PT above the aqueous fluid-saturated solidus, and have fluid inclusions and/or hydrous phases, compared to pelites they show no detectable depletion of "fluid-mobile" elements such as LILE (Cs, Rb, Ba, U, K), Sr and Pb, no depletion of "fluid-immobile, incompatible" elements such as Th and LREE, and no systematic change in key soluble/insoluble ratios such as Ba/Th or K/Zr up to ~1000 C. Mobility of incompatible elements is evident for T > 1000 C, well above PT for subduction-zone geotherms. Presumably, trace phases rich in LILE, Th and LREE persist to ~1050 C in metapelites at UHP conditions.How can our observations be reconciled with the recycled sediment component in arc lavas? Our preferred hypothesis is that low-density metasediments rise into the mantle wedge when heating yields viscosities low enough for density-driven instabilities (Ringwood JGSL 74; Marsh AJS 76; Gerya & Yuen EPSL 03; Kelemen et al, Treatise on Geochem 03). In the wedge, metasedimentary diapirs heat as they rise, and undergo large degrees of super-adiabatic partial melting which exhaust trace phases, releasing the sediment component observed in arcs.

  20. A modified preparation procedure for carbon nanotube-confined Nd/Na heterobimetallic catalyst for anti-selective catalytic asymmetric nitroaldol reactions.

    PubMed

    Sureshkumar, Devarajulu; Hashimoto, Kazuki; Kumagai, Naoya; Shibasaki, Masakatsu

    2013-11-15

    A recyclable asymmetric metal-based catalyst is a rare entity among the vast collection of asymmetric catalysts developed so far. Recently we found that the combination of a self-assembling metal-based asymmetric catalyst and multiwalled carbon nanotubes (MWNTs) produced a highly active and recyclable catalyst in which the catalytically active metal complex was dispersed in the MWNT network. Herein we describe an improved preparation procedure and full details of a Nd/Na heterobimetallic complex confined in MWNTs. Facilitated self-assembly of the catalyst with MWNTs avoided the sacrificial use of excess chiral ligand for the formation of the heterobimetallic complex, improving the loading ratio of the catalyst components. Eighty-five percent of the catalyst components were incorporated onto MWNTs to produce the confined catalyst, which was a highly efficient and recyclable catalyst for the anti-selective asymmetric nitroaldol reaction. The requisite precautions for the catalyst preparation to elicit reproducible catalytic performance are summarized. Superior catalytic profiles over the prototype catalyst without MWNTs were revealed in the synthesis of optically active 1,2-nitroalkanols, which are key intermediates for the synthesis of therapeutics.

  1. Waste treatment integration in space

    NASA Technical Reports Server (NTRS)

    Baresi, L.; Kern, R.

    1991-01-01

    The circumstances and criteria for space-based waste treatment bioregenerative life-support systems differ in many ways from those needed in terrestrial applications. In fact, the term "waste" may not even be appropriate in the context of nearly closed, cycling, ecosystems such as those under consideration. Because of these constraints there is a need for innovative approaches to the problem of "materials recycling". Hybrid physico-chemico-biological systems offer advantages over both strictly physico-chemico or biological approaches that would be beneficial to material recycling. To effectively emulate terrestrial cycling, the use of various microbial consortia ("assemblies of interdependent microbes") should be seriously considered for the biological components of such systems. This paper will examine the use of consortia in the context of a hybrid-system for materials recycling in space.

  2. An Assessment of Recycled Refractory Material Performance After Two Years of Service in a Carbon Bake Furnace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schubert, N.; Bennett, J.P.; Kwong, K.S.

    1999-10-27

    Material removed from carbon bake furnaces used to manufacture anodes for the production of aluminum metal has historically been disposed by landfill. This material is composed primarily of 50% alumina refractory. in 1997, Alcoa completed a highly successful program to reuse the spent refractories in castables for carbon bake furnace headwalls and flooring, as roadbed aggregate, and in other internal applications. This program recycled/reused 11,000 metric tons of used refractory material (99% of the material removed from the carbon bake furnace) and saved Alcoa over 3.8 of the 9.6 million dollar projected furnace rebuild costs. As assessment is made ofmore » the performance of the recycled refractory components after two years of service.« less

  3. Management options for recycling radioactive scrap metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehmel, J.C.; MacKinney, J.; Bartlett, J.

    1997-02-01

    The feasibility and advantages of recycling radioactive scrap metals (RSM) have yet to be assessed, given the unique technical, regulatory, safety, and cost-benefit issues that have already been raised by a concerned recycling industry. As is known, this industry has been repeatedly involved with the accidental recycling of radioactive sources and, in some cases, with costly consequences. If recycling were deemed to be a viable option, it might have to be implemented with regulatory monitoring and controls. Its implementation may have to consider various and complex issues and address the requirements and concerns of distinctly different industries. There are threemore » basic options for the recycling of such scraps. They are: (1) recycling through the existing network of metal-scrap dealers and brokers, (2) recycling directly and only with specific steelmills, or (3) recycling through regional processing centers. Under the first option, scrap dealers and brokers would receive material from RSM generators and determine at which steelmills such scraps would be recycled. For the second option, RSM generators would deal directly with selected steelmills under specific agreements. For the third option, generators would ship scraps only to regional centers for processing and shipment to participating steelmills. This paper addresses the potential advantages of each option, identifies the types of arrangements that would need to be secured among all parties, and attempts to assess the receptivity of the recycling industry to each option.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The possible need to develop a solid waste management/resource recovery facility in Christian County, Kentucky is assessed. The present solid waste management operations are described and an outline of options available in the area of resource recovery and cost estimates for waste management alternatives are given. The construction of a transfer station to handle wastes hauled from a distance is discussed. Specific incineration waste heat recovery systems discussed briefly are: modular controlled air incinerators, modular refractory incinerators, rotary waterwall combustor-boiler, and waterwall incineration - unprocessed waste units. Environmental impacts are considered. An investigation was conducted on separating the raw refusemore » into its major components and recycling materials of value. (MCW)« less

  5. Preliminary design data package, appendices C1 and C2

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The HYBRID2 program which computes the fuel and energy consumption of a hybrid vehicle with a bi-modal control strategy over specified component driving cycles is described. Fuel and energy consumption are computed separately for the two modes of operation. The program also computes yearly average fuel and energy consumption using a composite driving cycle which varies as a function of daily travel. The modelling techniques are described, and subroutines and their functions are given. The composition of modern automobiles is discussed along with the energy required to manufacture an American automobile. The energy required to scrap and recycle automobiles is also discussed.

  6. Recycling of lipid-extracted hydrolysate as nitrogen supplementation for production of thraustochytrid biomass.

    PubMed

    Lowrey, Joshua; Armenta, Roberto E; Brooks, Marianne S

    2016-08-01

    Efficient resource usage is important for cost-effective microalgae production, where the incorporation of waste streams and recycled water into the process has great potential. This study builds upon emerging research on nutrient recycling in thraustochytrid production, where waste streams are recovered after lipid extraction and recycled into future cultures. This research investigates the nitrogen flux of recycled hydrolysate derived from enzymatic lipid extraction of thraustochytrid biomass. Results indicated the proteinaceous content of the recycled hydrolysate can offset the need to supply fresh nitrogen in a secondary culture, without detrimental impact upon the produced biomass. The treatment employing the recycled hydrolysate with no nitrogen addition accumulated 14.86 g L(-1) of biomass in 141 h with 43.3 % (w/w) lipid content compared to the control which had 9.26 g L(-1) and 46.9 % (w/w), respectively. This improved nutrient efficiency and wastewater recovery represents considerable potential for enhanced resource efficiency of commercial thraustochytrid production.

  7. Sequential recycling of enzymatic lipid-extracted hydrolysate in fermentations with a thraustochytrid.

    PubMed

    Lowrey, Joshua; Armenta, Roberto E; Brooks, Marianne S

    2016-06-01

    This study extends the findings of prior studies proposing and validating nutrient recycling for the heterotrophic microalgae, Thraustochytrium sp. (T18), grown in optimized fed-batch conditions. Sequential nutrient recycling of enzymatically-derived hydrolysate in fermentors succeeded at growing the tested thraustochytrid strain, with little evidence of inhibition or detrimental effects upon culture health. The average maximum biomass obtained in the recycled hydrolysate was 63.68±1.46gL(-1) in 90h the first recycle followed by 65.27±1.15gL(-1) in 90h in the subsequent recycle of the same material. These compared to 58.59gL(-1) and 64.92gL(-1) observed in fresh media in the same time. Lipid production was slightly impaired, however, with a maximum total fatty acid content of 62.2±0.30% in the recycled hydrolysate compared to 69.4% in fresh control media. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Cooperation of MICAL-L1, syndapin2, and phosphatidic acid in tubular recycling endosome biogenesis

    PubMed Central

    Giridharan, Sai Srinivas Panapakkam; Cai, Bishuang; Vitale, Nicolas; Naslavsky, Naava; Caplan, Steve

    2013-01-01

    Endocytic transport necessitates the generation of membrane tubules and their subsequent fission to transport vesicles for sorting of cargo molecules. The endocytic recycling compartment, an array of tubular and vesicular membranes decorated by the Eps15 homology domain protein, EHD1, is responsible for receptor and lipid recycling to the plasma membrane. It has been proposed that EHD dimers bind and bend membranes, thus generating recycling endosome (RE) tubules. However, recent studies show that molecules interacting with CasL-Like1 (MICAL-L1), a second, recently identified RE tubule marker, recruits EHD1 to preexisting tubules. The mechanisms and events supporting the generation of tubular recycling endosomes were unclear. Here, we propose a mechanism for the biogenesis of RE tubules. We demonstrate that MICAL-L1 and the BAR-domain protein syndapin2 bind to phosphatidic acid, which we identify as a novel lipid component of RE. Our studies demonstrate that direct interactions between these two proteins stabilize their association with membranes, allowing for nucleation of tubules by syndapin2. Indeed, the presence of phosphatidic acid in liposomes enhances the ability of syndapin2 to tubulate membranes in vitro. Overall our results highlight a new role for phosphatidic acid in endocytic recycling and provide new insights into the mechanisms by which tubular REs are generated. PMID:23596323

  9. A review on automated sorting of source-separated municipal solid waste for recycling.

    PubMed

    Gundupalli, Sathish Paulraj; Hait, Subrata; Thakur, Atul

    2017-02-01

    A crucial prerequisite for recycling forming an integral part of municipal solid waste (MSW) management is sorting of useful materials from source-separated MSW. Researchers have been exploring automated sorting techniques to improve the overall efficiency of recycling process. This paper reviews recent advances in physical processes, sensors, and actuators used as well as control and autonomy related issues in the area of automated sorting and recycling of source-separated MSW. We believe that this paper will provide a comprehensive overview of the state of the art and will help future system designers in the area. In this paper, we also present research challenges in the field of automated waste sorting and recycling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Development Status of the NSTAR Ion Propulsion System Power Processor

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Pinero, Luis R.; Rawlin, Vincent K.; Miller, John R.; Cartier, Kevin C.; Bowers, Glen E.

    1995-01-01

    A 0.5-2.3 kW xenon ion propulsion system is presently being developed under the NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) program. This propulsion system includes a 30 cm diameter xenon ion thruster, a Digital Control Interface Unit, a xenon feed system, and a power processing unit (PPU). The PPU consists of the power supply assemblies which operate the thruster neutralizer, main discharge chamber, and ion optics. Also included are recycle logic and a digital microcontroller. The neutralizer and discharge power supplies employ a dual use configuration which combines the functions of two power supplies into one, significantly simplifying the PPU. Further simplification was realized by implementing a single thruster control loop which regulates the beam current via the discharge current. Continuous throttling is possible over a 0.5-2.3 kW output power range. All three power supplies have been fabricated and tested with resistive loads, and have been combined into a single breadboard unit with the recycle logic and microcontroller. All line and load regulation test results show the power supplies to be within the NSTAR flight PPU specified power output of 1.98 kW. The overall efficiency of the PPU, calculated as the combined efficiencies of the power supplies and controller, at 2.3 kW delivered to resistive loads was 0.90. The component was 6.16 kg. Integration testing of the neutralizer and discharge power supplies with a functional model thruster revealed no issues with discharge ignition or steady state operation.

  11. The use of controlled microbial cenoses in producers' link to increase steady functioning of artificial ecosystems

    NASA Astrophysics Data System (ADS)

    Somova, Lydia; Mikheeva, Galina; Somova, Lydia

    The life support systems (LSS) for long-term missions are to use cycling-recycling systems, including biological recycling. Simple ecosystems include 3 links: producers (plants), consumers (man, animals) and reducers (microorganisms). Microorganisms are substantial component of every link of LSS. Higher plants are the traditional regenerator of air and producer of food. They should be used in many successive generations of their reproduction in LSS. Controlled microbiocenoses can increase productivity of producer's link and protect plants from infections. The goal of this work was development of methodological bases of formation of stable, controlled microbiocenoses, intended for increase of productivity of plants and for obtaining ecologically pure production of plants. Main results of our investigations: 1. Experimental microbiocenoses, has been produced in view of the developed methodology on the basis of natural association of microorganisms by long cultivation on specially developed medium. Dominating groups are bacteria of genera: Lactobacillus, Streptococcus, Leuconostoc, Bifidobacterium, Rhodopseudomonas and yeast of genera: Kluyveromyces, Saccharomyces, Torulopsis. 2. Optimal parameters of microbiocenosis cultivation (t, pH, light exposure, biogenic elements concentrations) were experimentally established. Conditions of cultivation on which domination of different groups of microbiocenosis have been found. 3. It was shown, that processing of seeds of wheat, oats, bulbs and plants Allium cepa L. (an onions) with microbial association raised energy of germination of seeds and bulbs and promoted the increase (on 20-30 %) of growth green biomass and root system of plants in comparison with the control. This work is supported by grant, Yenissey , 07-04-96806

  12. The small GTPase Rab8 interacts with VAMP-3 to regulate the delivery of recycling T-cell receptors to the immune synapse

    PubMed Central

    Finetti, Francesca; Patrussi, Laura; Galgano, Donatella; Cassioli, Chiara; Perinetti, Giuseppe; Pazour, Gregory J.; Baldari, Cosima T.

    2015-01-01

    ABSTRACT IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, regulates immune synapse assembly in the non-ciliated T-cell by promoting T-cell receptor (TCR) recycling. Here, we have addressed the role of Rab8 (for which there are two isoforms Rab8a and Rab8b), a small GTPase implicated in ciliogenesis, in TCR traffic to the immune synapse. We show that Rab8, which colocalizes with IFT20 in Rab11+ endosomes, is required for TCR recycling. Interestingly, as opposed to in IFT20-deficient T-cells, TCR+ endosomes polarized normally beneath the immune synapse membrane in the presence of dominant-negative Rab8, but were unable to undergo the final docking or fusion step. This could be accounted for by the inability of the vesicular (v)-SNARE VAMP-3 to cluster at the immune synapse in the absence of functional Rab8, which is responsible for its recruitment. Of note, and similar to in T-cells, VAMP-3 interacts with Rab8 at the base of the cilium in NIH-3T3 cells, where it regulates ciliary growth and targeting of the protein smoothened. The results identify Rab8 as a new player in vesicular traffic to the immune synapse and provide insight into the pathways co-opted by different cell types for immune synapse assembly and ciliogenesis. PMID:26034069

  13. Effect of IN718 Recycled Powder Reuse on Properties of Parts Manufactured by Means of Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Ardila, L. C.; Garciandia, F.; González-Díaz, J. B.; Álvarez, P.; Echeverria, A.; Petite, M. M.; Deffley, R.; Ochoa, J.

    Powder quality control is essential to obtain parts with suitable mechanical properties in Selective Laser Melting manufacturing technique. One of the most important advantages of suchtechnique is that it allows an efficient use of the material, due to the possibility to recycle and reuse un-melted powder. Nevertheless, powder material properties may change due to repeated recycling, affecting this way the mechanicalbehavior of parts. In this paper the effect of powder reuse on its quality and on the mechanical properties of the resulting melted parts is studied via self-developed recycling methodology. The material considered for investigation was IN718, a nickel superalloy widely used in industry. After recycling powder up to 14 times, no significant changes were observed in powder and test parts properties. The results obtained in this work will help to validate powder recycling methodology for its use in current industrial Selective Laser Melting manufacturing.

  14. Systems and methods for reactive distillation with recirculation of light components

    DOEpatents

    Stickney, Michael J [Nassau Bay, TX; Jones, Jr., Edward M.

    2011-07-26

    Systems and methods for producing gas-to-liquids products using reactive distillation are provided. The method for producing gas-to-liquids products can include reacting a feedstock in a column having a distillation zone and a reaction zone to provide a bottoms stream and an overhead stream. A first portion of the overhead stream can be recycled to the column at the top of the reaction zone and second portion of the overhead stream can be recycled to the column at the bottom of the reaction zone.

  15. Synaptic vesicle recycling: steps and principles.

    PubMed

    Rizzoli, Silvio O

    2014-04-16

    Synaptic vesicle recycling is one of the best-studied cellular pathways. Many of the proteins involved are known, and their interactions are becoming increasingly clear. However, as for many other pathways, it is still difficult to understand synaptic vesicle recycling as a whole. While it is generally possible to point out how synaptic reactions take place, it is not always easy to understand what triggers or controls them. Also, it is often difficult to understand how the availability of the reaction partners is controlled: how the reaction partners manage to find each other in the right place, at the right time. I present here an overview of synaptic vesicle recycling, discussing the mechanisms that trigger different reactions, and those that ensure the availability of reaction partners. A central argument is that synaptic vesicles bind soluble cofactor proteins, with low affinity, and thus control their availability in the synapse, forming a buffer for cofactor proteins. The availability of cofactor proteins, in turn, regulates the different synaptic reactions. Similar mechanisms, in which one of the reaction partners buffers another, may apply to many other processes, from the biogenesis to the degradation of the synaptic vesicle.

  16. Molecular Determinants and Dynamics of Hepatitis C Virus Secretion

    PubMed Central

    Coller, Kelly E.; Heaton, Nicholas S.; Berger, Kristi L.; Cooper, Jacob D.; Saunders, Jessica L.; Randall, Glenn

    2012-01-01

    The current model of hepatitis C virus (HCV) production involves the assembly of virions on or near the surface of lipid droplets, envelopment at the ER in association with components of VLDL synthesis, and egress via the secretory pathway. However, the cellular requirements for and a mechanistic understanding of HCV secretion are incomplete at best. We combined an RNA interference (RNAi) analysis of host factors for infectious HCV secretion with the development of live cell imaging of HCV core trafficking to gain a detailed understanding of HCV egress. RNAi studies identified multiple components of the secretory pathway, including ER to Golgi trafficking, lipid and protein kinases that regulate budding from the trans-Golgi network (TGN), VAMP1 vesicles and adaptor proteins, and the recycling endosome. Our results support a model wherein HCV is infectious upon envelopment at the ER and exits the cell via the secretory pathway. We next constructed infectious HCV with a tetracysteine (TC) tag insertion in core (TC-core) to monitor the dynamics of HCV core trafficking in association with its cellular cofactors. In order to isolate core protein movements associated with infectious HCV secretion, only trafficking events that required the essential HCV assembly factor NS2 were quantified. TC-core traffics to the cell periphery along microtubules and this movement can be inhibited by nocodazole. Sub-populations of TC-core localize to the Golgi and co-traffic with components of the recycling endosome. Silencing of the recycling endosome component Rab11a results in the accumulation of HCV core at the Golgi. The majority of dynamic core traffics in association with apolipoprotein E (ApoE) and VAMP1 vesicles. This study identifies many new host cofactors of HCV egress, while presenting dynamic studies of HCV core trafficking in infected cells. PMID:22241992

  17. Edward C. Little Water Recycling Plant, El Segundo, CA: CA0063401

    EPA Pesticide Factsheets

    Joint EPA and Los Angeles Regional Water Quality Control Board NPDES Permit and Waiver from Secondary Treatment for the West Basin Municipal Water District Edward C. Little Water Recycling Plant, El Segundo, CA: CA0063401

  18. Beryllium isotopes as tracers of Lake Lisan (last Glacial Dead Sea) hydrology and the Laschamp geomagnetic excursion

    NASA Astrophysics Data System (ADS)

    Belmaker, Reuven; Stein, Mordechai; Beer, Jürg; Christl, Marcus; Fink, David; Lazar, Boaz

    2014-08-01

    The content of the cosmogenic isotope 10Be (t1/2=1.39 Ma) in lacustrine sediments that deposit in lakes with a large watershed is susceptible to both climate and cosmogenic production rate variations. In order to distinguish between these two controls, we measured 10Be and major elements in several sections of the annually laminated sediments of the Lake Lisan (the last Glacial precursor of the Dead Sea) that are composed of detrital sediments and primary (evaporitic) aragonites. The sections were selected to represent regional hydrology and climate as reflected by different lake configurations (level rise, drop and high-stands) and rapid change in the 10Be production rate during the Laschamp geomagnetic excursion. Since the short-lived cosmogenic “sister” of 10Be, 7Be (t1/2=53.3 d) has virtually no recycled component, the recycled 10Be in Lake Lisan detrital sediments was evaluated by measuring 7Be in their modern equivalents: modern flood suspended matter, dust and mud cracks. Our results demonstrate that although the recycled 10Be component is significant, secular variations in the 10Be concentration in Lake Lisan sediments correlate with hydrological variations and geomagnetic excursions. During periods of moderate variations in 10Be production rate, the 10Be concentration in the Lisan detrital sediments positively correlates with lake level, Al + Fe content and the (Al + Fe)/(Ca + Mg) ratio. These correlations suggest that the 10Be is adsorbed on the fine silicate component (probably clays) of the detrital laminae. The fine silicates together with carbonates were transported to Dead Sea drainage basin mainly as airborne dust that after a short residence time was washed into Lake Lisan as flood suspended matter. We suggest that preferential dissolution of carbonates in the flood suspended matter concentrated the residual fine component leading to the positive correlation between 10Be and the (Al + Fe)/(Ca + Mg) ratio. During periods of increased water discharge more carbonates were dissolved and hence the 10Be concentration in the detrital laminae increased. During periods of rapid increase in the 10Be production rate (e.g. the Laschamp excursion), 10Be showed a ∼2 fold increase, beyond the above-mentioned correlations (lake levels and Al + Fe contents). This observation suggests that Lake Lisan can serve as a potential high-resolution archive of 10Be production rate variations during periods of geomagnetic excursions.

  19. Ammonium nitrogen removal from coking wastewater by chemical precipitation recycle technology.

    PubMed

    Zhang, Tao; Ding, Lili; Ren, Hongqiang; Xiong, Xiang

    2009-12-01

    Ammonium nitrogen removal from wastewater has been of considerable concern for several decades. In the present research, we examined chemical precipitation recycle technology (CPRT) for ammonium nitrogen removal from coking wastewater. The pyrolysate resulting from magnesium ammonium phosphate (MAP) pyrogenation in sodium hydroxide (NaOH) solution was recycled for ammonium nitrogen removal from coking wastewater. The objective of this study was to investigate the conditions for MAP pyrogenation and to characterize of MAP pyrolysate for its feasibility in recycling. Furthermore, MAP pyrolysate was characterized by scanning electron microscope (FESEM), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR) as well as X-ray diffraction (XRD). The MAP pyrolysate could be produced at the optimal condition of a hydroxyl (OH(-)) to ammonium molar ratio of 2:1, a heating temperature of 110 degrees C, and a heating time of 3h. Surface characterization analysis indicated that the main component of the pyrolysate was amorphous magnesium sodium phosphate (MgNaPO(4)). The pyrolysate could be recycled as a magnesium and phosphate source at an optimum pH of 9.5. When the recycle times were increased, the ammonium nitrogen removal ratio gradually decreased if the pyrolysate was used without supplementation. When the recycle times were increased, the ammonium nitrogen removal efficiency was not decreased if the added pyrolysate was supplemented with MgCl(2).6H(2)O plus Na(2)HPO(4).12H(2)O during treatment. A high ammonium nitrogen removal ratio was obtained by using pre-formed MAP as seeding material.

  20. Properties of concrete blocks prepared with low grade recycled aggregates.

    PubMed

    Poon, Chi-Sun; Kou, Shi-cong; Wan, Hui-wen; Etxeberria, Miren

    2009-08-01

    Low grade recycled aggregates obtained from a construction waste sorting facility were tested to assess the feasibility of using these in the production of concrete blocks. The characteristics of the sorted construction waste are significantly different from that of crushed concrete rubbles that are mostly derived from demolition waste streams. This is due to the presence of higher percentages of non-concrete components (e.g. >10% soil, brick, tiles etc.) in the sorted construction waste. In the study reported in this paper, three series of concrete block mixtures were prepared by using the low grade recycled aggregates to replace (i) natural coarse granite (10mm), and (ii) 0, 25, 50, 75 and 100% replacement levels of crushed stone fine (crushed natural granite <5mm) in the concrete blocks. Test results on properties such as density, compressive strength, transverse strength and drying shrinkage as well as strength reduction after exposure to 800 degrees C are presented below. The results show that the soil content in the recycled fine aggregate was an important factor in affecting the properties of the blocks produced and the mechanical strength deceased with increasing low grade recycled fine aggregate content. But the higher soil content in the recycled aggregates reduced the reduction of compressive strength of the blocks after exposure to high temperature due probably to the formation of a new crystalline phase. The results show that the low grade recycled aggregates obtained from the construction waste sorting facility has potential to be used as aggregates for making non-structural pre-cast concrete blocks.

  1. The evolution of CELSS for lunar bases. [Controlled Ecological Life Support Systems

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D.; Klein, H. P.; Averner, M. M.

    1985-01-01

    A bioregenerative life support system designed to address the fundamental requirements of a functioning independent lunar base is presented in full. Issues to be discussed are associated with CELSS weight, volume and cost of operation. The fundamental CELSS component is a small, highly automated module containing plants which photosynthesize and provide the crew with food, water and oxygen. Hydrogen, nitrogen and carbon dioxide will be initially brought in from earth, recycled and their waste products conserved. As the insufficiency of buffers necessitates stringent cybernetic control, a stable state will be maintained by computer control. Through genetic engineering and carbon dioxide, temperature, and nutrient manipulation, plant productivity can be increased, while the area necessary for growth and illumination energy decreased. In addition, photosynthetic efficiency can be enhanced through lamp design, fiber optics and the use of appropriate wavelengths. Crop maintenance will be performed by robotics, as a means of preventing plant ailments.

  2. Extending the life and recycle capability of earth storable propellant systems.

    NASA Technical Reports Server (NTRS)

    Schweickert, T. F.

    1972-01-01

    Rocket propulsion systems for reusable vehicles will be required to operate reliably for a large number of missions with a minimum of maintenance and a fast turnaround. For the space shuttle reaction control system to meet these requirements, current and prior related system failures were examined for their impact on reuse and, where warranted, component design and/or system configuration changes were defined for improving system service life. It was found necessary to change the pressurization component arrangement used on many single-use applications in order to eliminate a prevalent check valve failure mode and to incorporate redundant expulsion capability in propellant tank designs to achieve the necessary system reliability. Material flaws in pressurant and propellant tanks were noted to have a significant effect on tank cycle life. Finally, maintenance considerations dictated a modularized systems approach, allowing the system to be removed from the vehicle for service and repair at a remote site.

  3. Particle simulations on transport control in divertors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashiwagi, Mieko; Ido, Shunji

    1995-04-01

    Particle orbit simulations are carried out to study the reflection of He ions recycled from a tokamak divertor by RF electric fields, which have the frequency close to ion cyclotron resonance frequency (ICRF). The performance of particle reflection and the requirement to the intensity of RF fields are studied. The control of He recycling by ICRF fields is found to be available. 4 refs., 4 figs.

  4. Recycling of inorganic nutrients for hydroponic crop production following incineration of inedible biomass.

    PubMed

    Bubenheim, D L; Wignarajah, K

    1997-01-01

    The goal of resource recovery in a regenerative life support system is maintenance of product quality to sure support of reliable and predictable levels of life support function performance by the crop plant component. Further, these systems must be maintained over extended periods of time, requiring maintenance of nutrient solutions to avoid toxicity and deficiencies. The focus of this study was to determine the suitability of the ash product following incineration of inedible biomass as a source of inorganic nutrients for hydroponic crop production. Inedible wheat biomass was incinerated and ash quality characterized. The incinerator ash was dissolved in adequate nitric acid to establish a consistent nitrogen concentration is all nutrient solution treatments. Four experimental nutrient treatments were included: control, ash only, ash supplemented to match the control treatment, and ash only quality formulated with reagent grade chemicals. When nutrient solutions were formulated using only ash following incineration of inedible biomass, a balance in solution is established representing elemental retention following incineration and nutrient proportions present in the original biomass. The resulting solution is not identical to the control. This imbalance resulted in a suppression of crop growth. When the ash is supplemented with reagent grade chemicals to establish the same balance as in the control--growth is identical to the control. The ash appears to carry no phytotoxic materials. Growth in solution formulated with reagent grade chemicals but matching the quality of the ash only treatment resulted in similar growth to that of the ash only treatment. The ash product resulting from incineration of inedible biomass appears to be a suitable form for recycle of inorganic nutrients to crop production.

  5. Recycling in 1995: The lows after the highs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCreery, P.

    1996-03-01

    1995 was a mixed year for recyclers. The boom in prices that began in mid-1994 ended in mid-1995; numerous gleaming new mills and plants that fed on recovered paper and plastics opened, but a few outdated facilities closed; Congress agreed on little legislation that would affect recycling operations; and some states failed to meet recycling goals set for the end of the year. In short, 1995 was something of a sobering reality after the heady days of 1994, when market prices boomed, the US Supreme Court declared flow control statutes to be unconstitutional, and states and municipalities reported sizable increasesmore » in the amount of materials being diverted from landfills. How recycling will fare in 1996 is uncertain. Although more mills and plants that consume recovered materials are slated to open, recycling officials are mixed on whether the federal government or any state will pass legislation impacting the industry. Additionally, the ups and downs of the recycling markets in 1995 have left many recyclers and analysts shaking their heads, saying that it is all but impossible to predict the future health of an industry that is experiencing growing pains.« less

  6. Impact of informal electronic waste recycling on metal concentrations in soils and dusts.

    PubMed

    Ohajinwa, Chimere May; van Bodegom, Peter M; Vijver, Martina G; Peijnenburg, Willie J G M

    2018-07-01

    Electronic and electrical equipment contains over 1000 different substances, including metals. During informal e-waste recycling some of these substances such as metals, are released into the environment causing environmental pollution. This study assessed the impact of different informal e-waste recycling activities (burning, dismantling, and repairing) on metal concentrations in top soils and various dust. A comparative cross-sectional study design was adopted to assess metal concentrations in top soils and in various dust samples from multiple e-waste recycling sites. Metal concentrations at e-waste recycling sites were compared to the concentrations at control sites in three study locations in Nigeria (Lagos, Ibadan, and Aba). In the three study locations, mean metal concentrations at the e-waste recycling sites exceeded the concentrations at the control sites and the Nigerian standard guideline values by 100 s to 1000 s times. Burning sites showed the highest pollution level, followed by dismantling sites, then repair sites. Our findings show serious environmental and public health concerns. The metal concentrations were also higher than levels reported in other studies at the same locations in Nigeria, indicating that the situation is worsening. This study provides scientific evidence for an urgent need to develop effective strategies to strengthen enforcement of existing e-waste regulations in Nigeria. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Treatment of nanowaste via fast crystal growth: with recycling of nano-SnO2 from electroplating sludge as a study case.

    PubMed

    Zhuang, Zanyong; Xu, Xinjiang; Wang, Yongjing; Wang, Yandi; Huang, Feng; Lin, Zhang

    2012-04-15

    The treatment of industrial sludge containing amorphous/nanophase metal oxides or hydroxides is one of the vital issues in hazardous waste disposal. In this work, we developed a strategy to recycle nano-SnO(2) from tinplate electroplating sludge. It revealed that the major components of this sludge were acid soluble Sn and Fe amorphous phases. By introducing NaOH as a mineralizer, a fast growth of amorphous Sn compound into acid-insoluble SnO(2) nanowires was achieved selectively. Thus, the as-formed nano-SnO(2) could be recycled via dissolving other solid compositions in the sludge by using acid. The role of NaOH on accelerating both the Oriented Attachment (OA) and Ostwald Ripening (OR) growth of SnO(2) was discussed, which was regarded as a critical factor for treating the sludge. A pilot-scale experiment was conducted to treat 2.3 kg original sludge and the recycling of about 90 g nano-SnO(2) was achieved. We anticipate this work can provide a good example for the recycling of valuable metals from industrial sludge containing fine metal oxides or hydroxides. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Separating and Recycling Plastic, Glass, and Gallium from Waste Solar Cell Modules by Nitrogen Pyrolysis and Vacuum Decomposition.

    PubMed

    Zhang, Lingen; Xu, Zhenming

    2016-09-06

    Many countries have gained benefits through the solar cells industry due to its high efficiency and nonpolluting power generation associated with solar energy. Accordingly, the market of solar cell modules is expanding rapidly in recent decade. However, how to environmentally friendly and effectively recycle waste solar cell modules is seldom concerned. Based on nitrogen pyrolysis and vacuum decomposition, this work can successfully recycle useful organic components, glass, and gallium from solar cell modules. The results were summarized as follows: (i) nitrogen pyrolysis process can effectively decompose plastic. Organic conversion rate approached 100% in the condition of 773 K, 30 min, and 0.5 L/min N2 flow rate. But, it should be noted that pyrolysis temperature should not exceed 773 K, and harmful products would be increased with the increasing of temperature, such as benzene and its derivatives by GC-MS measurement; (ii) separation principle, products analysis, and optimization of vacuum decomposition were discussed. Gallium can be well recycled under temperature of 1123 K, system pressure of 1 Pa and reaction time of 40 min. This technology is quite significant in accordance with the "Reduce, Reuse, and Recycle Principle" for solid waste, and provides an opportunity for sustainable development of photovoltaic industry.

  9. Persistent toxic substances released from uncontrolled e-waste recycling and actions for the future.

    PubMed

    Man, Ming; Naidu, Ravi; Wong, Ming H

    2013-10-01

    The Basel Convention on the Control of Transboundary Movement of Hazardous Wastes and their Disposal was adopted on March 22, 1989 and enforced on May 5, 1992. Since then, the USA, one of the world's largest e-waste producers, has not ratified this Convention or the Basel Ban Amendment. Communities are still debating the legal loophole, which permits the export of whole products to other countries provided it is not for recycling. In January 2011, China's WEEE Directive was implemented, providing stricter control over e-waste imports to China, including Hong Kong, while emphasizing that e-waste recycling is the producers' responsibility. China is expected to supersede the USA as the principal e-waste producer, by 2020, according to the UNEP. Uncontrolled e-waste recycling activities generate and release heavy metals and POPs into the environment, which may be re-distributed, bioaccumulated and biomagnified, with potentially adverse human health effects. Greater efforts and scientific approaches are needed for future e-product designs of minimal toxic metal and compound use, reaping greater benefits than debating the definition and handling responsibilities of e-waste recycling. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Electronic waste disassembly with industrial waste heat.

    PubMed

    Chen, Mengjun; Wang, Jianbo; Chen, Haiyian; Ogunseitan, Oladele A; Zhang, Mingxin; Zang, Hongbin; Hu, Jiukun

    2013-01-01

    Waste printed circuit boards (WPCBs) are resource-rich but hazardous, demanding innovative strategies for post-consumer collection, recycling, and mining for economically precious constituents. A novel technology for disassembling electronic components from WPCBs is proposed, using hot air to melt solders and to separate the components and base boards. An automatic heated-air disassembling equipment was designed to operate at a heating source temperature at a maximum of 260 °C and an inlet pressure of 0.5 MPa. A total of 13 individual WPCBs were subjected to disassembling tests at different preheat temperatures in increments of 20 °C between 80 and 160 °C, heating source temperatures ranging from 220 to 300 °C in increments of 20 °C, and incubation periods of 1, 2, 4, 6, or 8 min. For each experimental treatment, the disassembly efficiency was calculated as the ratio of electronic components released from the board to the total number of its original components. The optimal preheat temperature, heating source temperature, and incubation period to disassemble intact components were 120 °C, 260 °C, and 2 min, respectively. The disassembly rate of small surface mount components (side length ≤ 3 mm) was 40-50% lower than that of other surface mount components and pin through hole components. On the basis of these results, a reproducible and sustainable industrial ecological protocol using steam produced by industrial exhaust heat coupled to electronic-waste recycling is proposed, providing an efficient, promising, and green method for both electronic component recovery and industrial exhaust heat reutilization.

  11. Methods to estimate the transfer of contaminants into recycling products - A case study from Austria.

    PubMed

    Knapp, Julika; Allesch, Astrid; Müller, Wolfgang; Bockreis, Anke

    2017-11-01

    Recycling of waste materials is desirable to reduce the consumption of limited primary resources, but also includes the risk of recycling unwanted, hazardous substances. In Austria, the legal framework demands secondary products must not present a higher risk than comparable products derived from primary resources. However, the act provides no definition on how to assess this risk potential. This paper describes the development of different quantitative and qualitative methods to estimate the transfer of contaminants in recycling processes. The quantitative methods comprise the comparison of concentrations of harmful substances in recycling products to corresponding primary products and to existing limit values. The developed evaluation matrix, which considers further aspects, allows for the assessment of the qualitative risk potential. The results show that, depending on the assessed waste fraction, particular contaminants can be critical. Their concentrations were higher than in comparable primary materials and did not comply with existing limit values. On the other hand, the results show that a long-term, well-established quality control system can assure compliance with the limit values. The results of the qualitative assessment obtained with the evaluation matrix support the results of the quantitative assessment. Therefore, the evaluation matrix can be suitable to quickly screen waste streams used for recycling to estimate their potential environmental and health risks. To prevent the transfer of contaminants into product cycles, improved data of relevant substances in secondary resources are necessary. In addition, regulations for material recycling are required to assure adequate quality control measures, including limit values. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Mass transfer apparatus and method for separation of gases

    DOEpatents

    Blount, Gerald C.

    2015-10-13

    A process and apparatus for separating components of a source gas is provided in which more soluble components of the source gas are dissolved in an aqueous solvent at high pressure. The system can utilize hydrostatic pressure to increase solubility of the components of the source gas. The apparatus includes gas recycle throughout multiple mass transfer stages to improve mass transfer of the targeted components from the liquid to gas phase. Separated components can be recovered for use in a value added application or can be processed for long-term storage, for instance in an underwater reservoir.

  13. Mass transfer apparatus and method for separation of gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blount, Gerald C.; Gorensek, Maximilian Boris; Hamm, Luther L.

    A process and apparatus for separating components of a source gas is provided in which more soluble components of the source gas are dissolved in an aqueous solvent at high pressure. The system can utilize hydrostatic pressure to increase solubility of the components of the source gas. The apparatus includes gas recycle throughout multiple mass transfer stages to improve mass transfer of the targeted components from the liquid to gas phase. Separated components can be recovered for use in a value added application or can be processed for long-term storage, for instance in an underwater reservoir.

  14. Recycling of Reinforced Plastics

    NASA Astrophysics Data System (ADS)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  15. The Plasma Membrane Sialidase NEU3 Regulates the Malignancy of Renal Carcinoma Cells by Controlling β1 Integrin Internalization and Recycling*

    PubMed Central

    Tringali, Cristina; Lupo, Barbara; Silvestri, Ilaria; Papini, Nadia; Anastasia, Luigi; Tettamanti, Guido; Venerando, Bruno

    2012-01-01

    The human plasma membrane sialidase NEU3 is a key enzyme in the catabolism of membrane gangliosides, is crucial in the regulation of cell surface processes, and has been demonstrated to be significantly up-regulated in renal cell carcinomas (RCCs). In this report, we show that NEU3 regulates β1 integrin trafficking in RCC cells by controlling β1 integrin recycling to the plasma membrane and controlling activation of the epidermal growth factor receptor (EGFR) and focal adhesion kinase (FAK)/protein kinase B (AKT) signaling. NEU3 silencing in RCC cells increased the membrane ganglioside content, in particular the GD1a content, and changed the expression of key regulators of the integrin recycling pathway. In addition, NEU3 silencing up-regulated the Ras-related protein RAB25, which directs internalized integrins to lysosomes, and down-regulated the chloride intracellular channel protein 3 (CLIC3), which induces the recycling of internalized integrins to the plasma membrane. In this manner, NEU3 silencing enhanced the caveolar endocytosis of β1 integrin, blocked its recycling and reduced its levels at the plasma membrane, and, consequently, inhibited EGFR and FAK/AKT. These events had the following effects on the behavior of RCC cells: they (a) decreased drug resistance mediated by the block of autophagy and the induction of apoptosis; (b) decreased metastatic potential mediated by down-regulation of the metalloproteinases MMP1 and MMP7; and (c) decreased adhesion to collagen and fibronectin. Therefore, our data identify NEU3 as a key regulator of the β1 integrin-recycling pathway and FAK/AKT signaling and demonstrate its crucial role in RCC malignancy. PMID:23139422

  16. Biologically recycled continental iron is a major component in banded iron formations

    PubMed Central

    Li, Weiqiang; Beard, Brian L.; Johnson, Clark M.

    2015-01-01

    Banded iron formations (BIFs) record a time of extensive Fe deposition in the Precambrian oceans, but the sources and pathways for metals in BIFs remain controversial. Here, we present Fe- and Nd-isotope data that indicate two sources of Fe for the large BIF units deposited 2.5 billion y ago. High-εNd and -δ56Fe signatures in some BIF samples record a hydrothermal component, but correlated decreases in εNd- and δ56Fe values reflect contributions from a continental component. The continental Fe source is best explained by Fe mobilization on the continental margin by microbial dissimilatory iron reduction (DIR) and confirms for the first time, to our knowledge, a microbially driven Fe shuttle for the largest BIFs on Earth. Detailed sampling at various scales shows that the proportions of hydrothermal and continental Fe sources were invariant over periods of 100–103 y, indicating that there was no seasonal control, although Fe sources varied on longer timescales of 105–106 y, suggesting a control by marine basin circulation. These results show that Fe sources and pathways for BIFs reflect the interplay between abiologic (hydrothermal) and biologic processes, where the latter reflects DIR that operated on a basin-wide scale in the Archean. PMID:26109570

  17. Biologically recycled continental iron is a major component in banded iron formations.

    PubMed

    Li, Weiqiang; Beard, Brian L; Johnson, Clark M

    2015-07-07

    Banded iron formations (BIFs) record a time of extensive Fe deposition in the Precambrian oceans, but the sources and pathways for metals in BIFs remain controversial. Here, we present Fe- and Nd-isotope data that indicate two sources of Fe for the large BIF units deposited 2.5 billion y ago. High-εNd and -δ(56)Fe signatures in some BIF samples record a hydrothermal component, but correlated decreases in εNd- and δ(56)Fe values reflect contributions from a continental component. The continental Fe source is best explained by Fe mobilization on the continental margin by microbial dissimilatory iron reduction (DIR) and confirms for the first time, to our knowledge, a microbially driven Fe shuttle for the largest BIFs on Earth. Detailed sampling at various scales shows that the proportions of hydrothermal and continental Fe sources were invariant over periods of 10(0)-10(3) y, indicating that there was no seasonal control, although Fe sources varied on longer timescales of 10(5)-10(6) y, suggesting a control by marine basin circulation. These results show that Fe sources and pathways for BIFs reflect the interplay between abiologic (hydrothermal) and biologic processes, where the latter reflects DIR that operated on a basin-wide scale in the Archean.

  18. End-of-life vehicle recycling : state of the art of resource recovery from shredder residue.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jody, B. J.; Daniels, E. J.; Energy Systems

    Each year, more than 50 million vehicles reach the end of their service life throughout the world. More than 95% of these vehicles enter a comprehensive recycling infrastructure that includes auto parts recyclers/dismantlers, remanufacturers, and material recyclers (shredders). Today, about 75% of automotive materials are profitably recycled via (1) parts reuse and parts and components remanufacturing and (2) ultimately by the scrap processing (shredding) industry. The process by which the scrap processors recover metal scrap from automobiles involves shredding the obsolete automobiles, along with other obsolete metal-containing products (such as white goods, industrial scrap, and demolition debris), and recovering themore » metals from the shredded material. The single largest source of recycled ferrous scrap for the iron and steel industry is obsolete automobiles. The non-metallic fraction that remains after the metals are recovered from the shredded materials (about 25% of the weight of the vehicle)--commonly called shredder residue--is disposed of in landfills. Over the past 10 to 15 years, a significant amount of research and development has been undertaken to enhance the recycle rate of end-of-life vehicles (ELVs), including enhancing dismantling techniques and improving remanufacturing operations. However, most of the effort has focused on developing technology to recover materials, such as polymers, from shredder residue. To make future vehicles more energy efficient, more lighter-weight materials--primarily polymers and polymer composites--will be used in manufacturing these vehicles. These materials increase the percentage of shredder residue that must be disposed of, compared with the percentage of metals. Therefore, as the complexity of automotive materials and systems increases, new technologies will be required to sustain and maximize the ultimate recycling of these materials and systems at end-of-life. Argonne National Laboratory (Argonne), in cooperation with the Vehicle Recycling Partnership (VRP) and the American Plastics Council (APC), is working to develop technology for recycling materials from shredder residue. Several other organizations worldwide are also working on developing technology for recycling shredder residue. Without a commercially viable shredder industry, our nation may face greater environmental challenges and a decreased supply of quality scrap and be forced to turn to primary ores for the production of finished metals. This document presents a review of the state of the art in shredder residue recycling. Available technologies and emerging technologies for the recycling of materials from shredder residue are discussed.« less

  19. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures andmore » are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble components are mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and will not be available until the WTP begins operation, causing uncertainty in its composition, particularly the radionuclide content. This plan will provide an estimate of the likely composition and the basis for it, assess likely treatment technologies, identify potential disposition paths, establish target treatment limits, and recommend the testing needed to show feasibility. Two primary disposition options are proposed for investigation, one is concentration for storage in the tank farms, and the other is treatment prior to disposition in the Effluent Treatment Facility. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Recycle stream is Technetium-99 ({sup 99}Tc), a long-lived radionuclide with a half-life of 210,000 years. Technetium will not be removed from the aqueous waste in the Hanford Waste Treatment and Immobilization Plant (WTP), and will primarily end up immobilized in the LAW glass, which will be disposed in the Integrated Disposal Facility (IDF). Because {sup 99}Tc has a very long half-life and is highly mobile, it is the largest dose contributor to the Performance Assessment (PA) of the IDF. Other radionuclides that are also expected to be in appreciable concentration in the LAW Recycle are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. The concentrations of these radionuclides in this stream will be much lower than in the LAW, but they will still be higher than limits for some of the other disposition pathways currently available. Although the baseline process will recycle this stream to the Pretreatment Facility, if the LAW facility begins operation first, this stream will not have a disposition path internal to WTP. One potential solution is to return the stream to the tank farms where it can be evaporated in the 242-A evaporator, or perhaps deploy an auxiliary evaporator to concentrate it prior to return to the tank farms. In either case, testing is needed to evaluate if this stream is compatible with the evaporator and the other wastes in the tank farm. It should be noted that prior experience in evaporation of another melter off-gas stream, the Recycle Stream at the SRS Defense Waste Processing Facility, unexpectedly caused deleterious impacts on evaporator scaling and formation of aluminosilicate solids before controls were implemented. The compatibility of this stream with other wastes and components in the tank farms has not been fully investigated, whether it is sent for storage in AW-102 in preparation for evaporation in 242-A evaporator, or if it is pre-concentrated in an auxiliary evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion, precipitation, flammable gases, and scale in the tank farm system. Testing is needed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. Alternate disposition of this LAW Recycle stream could beneficially impact WTP, and may also remove a sizeable fraction of the 99Tc from the source term at the IDF. The alternative radionuclide removal process envisioned for this stream parallels the Actinide Removal Process that has been successfully used at SRS for several years. In that process, Monosodium Titanate (MST) is added to the tank waste to adsorb 90Sr and actinides, and then the MST and radionuclides are removed by filtration. The process proposed for investigation for the Hanford WTP LAW Recycle stream would similarly add MST to remove 90Sr and actinides, along with other absorbents or precipitating agents for the remaining radionuclides. These include inorganic reducing agents for Tc, and zeolites for 137Cs. After treatment, disposition of the decontaminated Recycle stream may be suitable for the Effluent Treatment Facility, where it could be evaporated and solidified. The contaminated slurry stream containing the absorbents and radionuclides will be preliminarily characterized in this phase of the program to evaluate disposal options, and disposition routes will be tested in the next phase. The testing described herein will aid in selection of the best disposal pathway. Several research tasks have been identified that are needed for this initial phase: imulant formulation- Concentration of Recycle to reduce storage volume; Blending of concentrated Recycle with tank waste; Sorption of radionuclides; Precipitation of radionuclides. After this initial phase of testing, additional tasks are expected to be identified for development. These tasks likely include evaluation and testing of applicable solid-liquid separation technologies, slurry rheology measurements, composition variability testing and evaluations, corrosion and erosion testing, slurry storage and immobilization investigations, and decontaminated Recycle evaporation and solidification. Although there are a number of unknown parameters listed in the technical details of the concepts described here, many of these parameters have precedence and do not generally require fundamental new scientific breakthroughs. Many of the materials and processes described are already used in radioactive applications in the DOE complex, or have been tested previously in comparable conditions. Some of these materials and equipment are already used in High Level Waste applications, which are much more complex and aggressive conditions than the LAW Recycle stream. In some cases, the unknown parameters are simply extensions of already studied conditions, such as tank waste corrosion chemistry. The list of testing needs at first appears daunting, but virtually all have been done before, although there are potential issues with compatibility with this unique waste stream. It is anticipated that the challenge will be more in integrating the system and complying with process limitations than in developing entirely new technologies. Several assumptions have been made in this document about the acceptability of radionuclide decontamination and potential waste forms for disposal. These assumptions have been used to define acceptability criteria for feasibility studies on removal. These limits are not intended to define regulatory or facility limits, but rather provide a starting point for evaluating various technologies.« less

  20. The Utilization of Urine Processing for the Advancement of Life Support Technologies

    NASA Technical Reports Server (NTRS)

    Grossi-Soyster, Elysse; Hogan, John; Flynn, Michael

    2014-01-01

    The success of long-duration missions will depend on resource recovery and the self-sustainability of life support technologies. Current technologies used on the International Space Station (ISS) utilize chemical and mechanical processes, such as filtration, to recover potable water from urine produced by crewmembers. Such technologies have significantly reduced the need for water resupply through closed-loop resource recovery and recycling. Harvesting the important components of urine requires selectivity, whether through the use of membranes or other physical barriers, or by chemical or biological processes. Given the chemical composition of urine, the downstream benefits of urine processing for resource recovery will be critical for many aspects of life support, such as food production and the synthesis of biofuels. This paper discusses the beneficial components of urine and their potential applications, and the challenges associated with using urine for nutrient recycling for space application.

  1. Recycle of valuable products from oily cold rolling mill sludge

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Zhang, Shen-gen; Tian, Jian-jun; Pan, De-an; Liu, Yang; Volinsky, Alex A.

    2013-10-01

    Oily cold rolling mill (CRM) sludge contains lots of iron and alloying elements along with plenty of hazardous organic components, which makes it as an attractive secondary source and an environmental contaminant at the same time. The compound methods of "vacuum distillation + oxidizing roasting" and "vacuum distillation + hydrogen reduction" were employed for the recycle of oily cold rolling mill sludge. First, the sludge was dynamically vacuum distilled in a rotating furnace at 50 r/min and 600°C for 3 h, which removed almost hazardous organic components, obtaining 89.2wt% ferrous resultant. Then, high purity ferric oxide powders (99.2wt%) and reduced iron powders (98.9wt%) were obtained when the distillation residues were oxidized and reduced, respectively. The distillation oil can be used for fuel or chemical feedstock, and the distillation gases can be collected and reused as a fuel.

  2. Printed circuit boards: a review on the perspective of sustainability.

    PubMed

    Canal Marques, André; Cabrera, José-María; Malfatti, Célia de Fraga

    2013-12-15

    Modern life increasingly requires newer equipments and more technology. In addition, the fact that society is highly consumerist makes the amount of discarded equipment as well as the amount of waste from the manufacture of new products increase at an alarming rate. Printed circuit boards, which form the basis of the electronics industry, are technological waste of difficult disposal whose recycling is complex and expensive due to the diversity of materials and components and their difficult separation. Currently, printed circuit boards have a fixing problem, which is migrating from traditional Pb-Sn alloys to lead-free alloys without definite choice. This replacement is an attempt to minimize the problem of Pb toxicity, but it does not change the problem of separation of the components for later reuse and/or recycling and leads to other problems, such as temperature rise, delamination, flaws, risks of mechanical shocks and the formation of "whiskers". This article presents a literature review on printed circuit boards, showing their structure and materials, the environmental problem related to the board, some the different alternatives for recycling, and some solutions that are being studied to reduce and/or replace the solder, in order to minimize the impact of solder on the printed circuit boards. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. ENVIRONMENTALLY CONSCIOUS ELECTROCHEMICAL MACHINING FOR ZERO DISCHARGE AND METAL RECYCLING - PHASE I

    EPA Science Inventory

    This Phase I SBIR addresses the need for a manufacturing method for recovery and recycle of metal removed during electrochemical machining (ECM). Direct current (DC) ECM uses viscous solutions with additives such as fluoride, resulting in difficult to control electrolytes...

  4. Transesterification of Waste Activated Sludge for Biosolids Reduction and Biodiesel Production.

    PubMed

    Maeng, Min Ho; Cha, Daniel K

    2018-02-01

      Transesterification of waste activated sludge (WAS) was evaluated as a cost-effective technique to reduce excess biosolids and recover biodiesel feedstock from activated sludge treatment processes. A laboratory-scale sequencing batch reactor (SBR) was operated with recycling transesterification-treated WAS back to the aeration basin. Seventy percent recycling of WAS resulted in a 48% reduction of excess biosolids in comparison with a conventional SBR, which was operated in parallel as the control SBR. Biodiesel recovery of 8.0% (dried weight basis) was achieved at an optimum transesterification condition using acidic methanol and xylene as cosolvent. Average effluent soluble chemical oxygen demand (COD) and total suspended solids (TSS) concentrations from the test SBR and control SBR were comparable, indicating that the recycling of transesterification-treated WAS did not have detrimental effect on the effluent quality. This study demonstrated that transesterification and recycling of WAS may be a feasible technique for reducing excess biosolids, while producing valuable biodiesel feedstock from the activated sludge process.

  5. Recycling of waste lead storage battery by vacuum methods.

    PubMed

    Lin, Deqiang; Qiu, Keqiang

    2011-07-01

    Waste lead storage battery is the most important recyclable lead material not only in various European and other OECD countries but also in China. Pollution control of lead has become the focus of people's attention in the world. A vacuum process for recycling waste lead storage battery was developed in this work. The experimental results showed that all the valuable materials in waste lead storage battery could be satisfactorily recycled by vacuum technologies. The vacuum melting of lead grids and the vacuum reduction of lead pastes produce the lead bullion with the direct recovery ratio of 96.29% and 98.98%, respectively. The vacuum pyrolysis of plastics can produce pyrolysis oil with yield of more than 93 wt.%. These vacuum recycling technologies offer improvements in metallurgical and environmental performance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. The consumption and recycling collection system of PET bottles: a case study of Beijing, China.

    PubMed

    Zhang, Hua; Wen, Zong-Guo

    2014-06-01

    After studying the recycling collection system of polyethylene terephthalate (PET) bottles worldwide, the authors conducted an intercept survey in Beijing. Two separate questionnaires were issued, one questionnaire to PET bottle consumers and one to PET bottle recyclers. In this study, consumers are defined as people that consume PET-bottled beverages in their daily life. Recyclers were defined as those involved in the collection and recycling of PET bottles. These include scavengers, itinerant waste buyers, small community waste-buying depots, medium/large redemption depots, and recycling companies. In total, 580 surveys were completed, including 461 by consumers and 119 by recyclers. The authors found that consumption of PET bottles in Beijing was nearly 100,000 tonnes in 2012. Age, occupation, gender, and education were identified as significant factors linked to PET-bottled beverage consumption, while income was not a significant factor. 90% Of post-consumed PET bottles were collected by informal collectors (i.e., scavengers and itinerant waste buyers). The survey also found that nearly all PET bottles were reprocessed by small factories that were not designed with pollution control equipment, which allows them to offer higher prices for waste recyclable bottles. As Beijing is trying to build a formal recycling collection system for recyclables, subsidies should be given to the formal recycling sector rather than being charged land use fees, and attention should also be given to informal recyclers that make their living from the collection of recyclables. Informal and formal sectors may work together by employing the scavengers and itinerant waste buyers for the formal sectors. In addition to the recycling of PET bottles, concern should also be allocated to reduce consumption, especially among young people, as they, compared to other groups, have a stronger demand for PET-bottled beverages and will be the main body of society. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. A problem unstuck? Evaluating the effectiveness of sticker prompts for encouraging household food waste recycling behaviour.

    PubMed

    Shearer, Linzi; Gatersleben, Birgitta; Morse, Stephen; Smyth, Matthew; Hunt, Sally

    2017-02-01

    This Randomised Control Trial (RCT) investigated the effectiveness of using stickers as a visual prompt to encourage the separate collection of household food waste for recycling in two local authorities in South East England. During a baseline period of up to 15weeks, separately collected food waste was weighed (in tonnes) and averaged across households in both treatment (N=33,716 households within 29 defined areas) and control groups (N=30,568 households within 26 areas). A sticker prompt was then affixed to the lids of refuse bins in the treatment group area only. Weights for both groups were subsequently measured across a 16-week experimental period. Results showed that, in the control group, there was no change in the average weight of food waste captured for recycling between the baseline and experimental period. However, there was a significant increase (20.74%) in the treatment group, and this change in behaviour persisted in the longer term. Sticker prompts therefore appear to have a significant and sustained impact on food waste recycling rates, while being simple, practically feasible and inexpensive (£0.35 per household) for local authorities to implement at scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Synaptic vesicle recycling: steps and principles

    PubMed Central

    Rizzoli, Silvio O

    2014-01-01

    Synaptic vesicle recycling is one of the best-studied cellular pathways. Many of the proteins involved are known, and their interactions are becoming increasingly clear. However, as for many other pathways, it is still difficult to understand synaptic vesicle recycling as a whole. While it is generally possible to point out how synaptic reactions take place, it is not always easy to understand what triggers or controls them. Also, it is often difficult to understand how the availability of the reaction partners is controlled: how the reaction partners manage to find each other in the right place, at the right time. I present here an overview of synaptic vesicle recycling, discussing the mechanisms that trigger different reactions, and those that ensure the availability of reaction partners. A central argument is that synaptic vesicles bind soluble cofactor proteins, with low affinity, and thus control their availability in the synapse, forming a buffer for cofactor proteins. The availability of cofactor proteins, in turn, regulates the different synaptic reactions. Similar mechanisms, in which one of the reaction partners buffers another, may apply to many other processes, from the biogenesis to the degradation of the synaptic vesicle. PMID:24596248

  9. Recycling and Resistance of Petrogenic Particulate Organic Carbon: Implications from A Chemical Oxidation Method

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Li, G.; Ji, J.

    2013-12-01

    Petrogenic particulate organic carbon (OCpetro) represents a small fraction of photosynthetic carbon which escapes pedogenic-petrogenic degradation and gets trapped in the lithosphere. Exhumation and recycling of OCpetro are of significant importance in the global carbon cycle because OCpetro oxidation represents a substantial carbon source to the atmosphere while the re-burial of OCpetro in sediment deposits has no net effect. Though studies have investigated various behaviors of OCpetro in the surface environments (e.g., riverine mobilization, marine deposition, and microbial remineralization), less attention has been paid to the reaction kinetics and structural transformations during OCpetro oxidation. Here we assess the OCpetro-oxidation process based on a chemical oxidation method adopted from soil studies. The employed chemical oxidation method is considered an effective simulation of natural oxidation in highly oxidative environments, and has been widely used in soil studies to isolate the inert soil carbon pool. We applied this chemical method to the OCpetro-enriched black shale samples from the middle-lower Yangtze (Changjiang) basin, China, and performed comprehensive instrumental analyses (element analysis, Fourier transform infrared (FTIR) spectrum, and Raman spectrum). We also conducted step-oxidizing experiments following fixed time series and monitored the reaction process in rigorously controlled lab conditions. In this work, we present our experiment results and discuss the implications for the recycling and properties of OCpetro. Particulate organic carbon concentration of black shale samples before and after oxidation helps to quantify the oxidability of OCpetro and constrain the preservation efficiency of OCpetro during fluvial erosion over large river basin scales. FTIR and Raman analyses reveal clear structural variations on atomic and molecular levels. Results from the step-oxidizing experiments provide detailed information about the reaction kinetics and allow differentiation of different components in OCpetro characterized by distinct reaction rates. All these results lead to a better understanding of OCpetro recycling in the surface environments, and furthermore, the role of OCpetro in the global carbon cycle.

  10. Towards Large Eddy Simulation of gas turbine compressors

    NASA Astrophysics Data System (ADS)

    McMullan, W. A.; Page, G. J.

    2012-07-01

    With increasing computing power, Large Eddy Simulation could be a useful simulation tool for gas turbine axial compressor design. This paper outlines a series of simulations performed on compressor geometries, ranging from a Controlled Diffusion Cascade stator blade to the periodic sector of a stage in a 3.5 stage axial compressor. The simulation results show that LES may offer advantages over traditional RANS methods when off-design conditions are considered - flow regimes where RANS models often fail to converge. The time-dependent nature of LES permits the resolution of transient flow structures, and can elucidate new mechanisms of vorticity generation on blade surfaces. It is shown that accurate LES is heavily reliant on both the near-wall mesh fidelity and the ability of the imposed inflow condition to recreate the conditions found in the reference experiment. For components embedded in a compressor this requires the generation of turbulence fluctuations at the inlet plane. A recycling method is developed that improves the quality of the flow in a single stage calculation of an axial compressor, and indicates that future developments in both the recycling technique and computing power will bring simulations of axial compressors within reach of industry in the coming years.

  11. Modeling of a thermally integrated 10 kWe planar solid oxide fuel cell system with anode offgas recycling and internal reforming by discretization in flow direction

    NASA Astrophysics Data System (ADS)

    Wahl, Stefanie; Segarra, Ana Gallet; Horstmann, Peter; Carré, Maxime; Bessler, Wolfgang G.; Lapicque, François; Friedrich, K. Andreas

    2015-04-01

    Combined heat and power production (CHP) based on solid oxide fuel cells (SOFC) is a very promising technology to achieve high electrical efficiency to cover power demand by decentralized production. This paper presents a dynamic quasi 2D model of an SOFC system which consists of stack and balance of plant and includes thermal coupling between the single components. The model is implemented in Modelica® and validated with experimental data for the stack UI-characteristic and the thermal behavior. The good agreement between experimental and simulation results demonstrates the validity of the model. Different operating conditions and system configurations are tested, increasing the net electrical efficiency to 57% by implementing an anode offgas recycle rate of 65%. A sensitivity analysis of characteristic values of the system like fuel utilization, oxygen-to-carbon ratio and electrical efficiency for different natural gas compositions is carried out. The result shows that a control strategy adapted to variable natural gas composition and its energy content should be developed in order to optimize the operation of the system.

  12. Technical Status and Progress of Lead Recycling of Battery

    NASA Astrophysics Data System (ADS)

    Li, Wei-feng; Jiang, Li-hua; Zhan, Jing; Zhang, Chuan-fu

    The characteristics of various components in waste lead acid battery are analyzed in this paper. The present status and the study progress situation in industry production and research field of recycling of waste lead acid battery and lead paste used broken-separation technology are introduced. The comparison of advantages and disadvantages in different industry processes is carried. The advantages of redox bath smelting of lead concentrate and lead paste are analyzed. The method of redox bath smelting will be a low-carbon, environmentally friendly and efficient processes of secondary lead production and can be intensive to desulfurize for high temperature pool.

  13. Recycle of mixed automotive plastics: A model study

    NASA Astrophysics Data System (ADS)

    Woramongconchai, Somsak

    This research investigated blends of virgin automotive plastics which were identified through market analysis. The intent was that this study could be used as a basis for further research in blends of automotive plastics recyclate. The effects of temperature, shear, time, and degree of mixing in a two-roll mill, a single-screw extruder, and a twin-screw extruder were investigated. Properties were evaluated in terms of melt flow, rigidity, strength, impact, heat resistance, electrical resistivity, color, and resistance to water and gasoline. Torque rheometry, dynamic mechanical analysis (DMA), optical and scanning electron microscopy were used to characterize the processability and morphology of major components of the blends. The two-roll mill was operated at high temperature, short time, and low roll speed to avoid discolored and degraded materials. The single-screw extruder and twin-screw extruder were operated at medium and high temperature and high screw speed, respectively, for optimizing head pressure, residence time, shear and degree of mixing of the materials. Melt index increased with extrusion temperature. Flexural modulus increased with the processing temperatures in milling or twin-screw extrusion, but decreased with the increasing single-screw extrusion temperature. Tensile modulus was also enhanced by increasing processing temperature. The tensile strengths for each process were similar and relatively low. The impact strength increased with temperature and roll speed in two-roll milling, was unaffected by the single-screw extrusion temperature and decreased with increasing twin-screw extrusion temperature. Heat resistance was always reduced by higher processing temperature. The volume resistivity increased, water absorption was unaffected and gasoline absorption altered by increased processing temperature. The latter increased somewhat with mill temperature, roll speed (two-roll mill) and higher extrusion temperature (single-screw extruder), but decreased with increased twin-screw extrusion temperature. The flexural modulus of the recycled mixed automotive plastics expected in 2003 was higher than the 1980s and 1990 recycle. Flexural strength effects were not large enough for serious consideration, but were more dominant when compared to those in the 1980s and 1990s. Impact strengths at 20-30 J/m were the lowest value compared to the 1980s and 1990s mixed automotive recycle. Torque rheometry, dynamic mechanical analysis and optical and electron microscopy agreed with each other on the characterization of the processability and morphology of the blends. LLDPE and HDPE were miscible while PP was partially miscible with polyethylene. ABS and nylon-6 were immiscible with the polyolefins, but partially miscible with each other. As expected, the polyurethane foam was immiscible with the other components. The minor components of the model recycle of mixed automotive materials were probably partially miscible with ABS/nylon-6, but there were multiple and unresolved phases in the major blends.

  14. Design of Road Pavement Using Recycled Aggregate

    NASA Astrophysics Data System (ADS)

    Remišová, Eva; Decký, Martin; Mikolaš, Milan; Hájek, Matej; Kovalčík, Luboš; Mečár, Martin

    2016-10-01

    The presented article gives special attention to codified clauses of the road construction law, the relevant clauses of the standards and technical regulations to design and control the quality of recycled aggregate constructions. The article also presents the authors’ suggestions to design of earth constructions and pavements of roads according to the Slovak technical standards, technical regulations and objectively determined results of research and development of road infrastructure. The article presents a comparison of the mechanical characteristics measurements of the structural layers of road pavements built from the recycled and natural aggregate. It also presents correlation functions of results obtained from in situ and in laboratory CBR (Californian Bearing Ratio) measuring, representing the world's most widely used control method of bearing capacity of mentioned construction layers.

  15. Controlled Ecological Life Support System: Use of Higher Plants

    NASA Technical Reports Server (NTRS)

    Tibbits, T. W.; Alford, D. K.

    1982-01-01

    Results of two workshops concerning the use of higher plants in Controlled Ecological Life Support Systems (CELSS) are summarized. Criteria for plant selection were identified from these categories: food production, nutrition, oxygen production and carbon dioxide utilization, water recycling, waste recycling, and other morphological and physiological considerations. Types of plant species suitable for use in CELSS, growing procedures, and research priorities were recommended. Also included are productivity values for selected plant species.

  16. Occurrence and Control of Legionella in Recycled Water Systems

    PubMed Central

    Jjemba, Patrick K.; Johnson, William; Bukhari, Zia; LeChevallier, Mark W.

    2015-01-01

    Legionella pneumophila is on the United States Environmental Protection Agency (USEPA) Candidate Contaminant list (CCL) as an important pathogen. It is commonly encountered in recycled water and is typically associated with amoeba, notably Naegleria fowleri (also on the CCL) and Acanthamoeba sp. No legionellosis outbreak has been linked to recycled water and it is important for the industry to proactively keep things that way. A review was conducted examine the occurrence of Legionella and its protozoa symbionts in recycled water with the aim of developing a risk management strategy. The review considered the intricate ecological relationships between Legionella and protozoa, methods for detecting both symbionts, and the efficacy of various disinfectants. PMID:26140674

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiya, K.; Drennan, C.; Pellico, W.

    The extraction bucket position in the Fermilab Booster is controlled with a cogging process that involves the comparison of the Booster rf count and the Recycler Ring revolution marker. A one rf bucket jitter in the ex-traction bucket position results from the variability of the process that phase matches the Booster to the Recycler. However, the new slow phase lock process used to lock the frequency and phase of the Booster rf to the Recycler rf has been made digital and programmable and has been modified to correct the extraction notch position. The beam loss at the Recycler injection hasmore » been reduced by 20%. Beam studies and the phase lock system will be discussed in this paper.« less

  18. Technological, Economic, and Environmental Optimization of Aluminum Recycling

    NASA Astrophysics Data System (ADS)

    Ioana, Adrian; Semenescu, Augustin

    2013-08-01

    The four strategic directions (referring to the entire life cycle of aluminum) are as follows: production, primary use, recycling, and reuse. Thus, in this work, the following are analyzed and optimized: reducing greenhouse gas emissions from aluminum production, increasing energy efficiency in aluminum production, maximizing used-product collection, recycling, and reusing. According to the energetic balance at the gaseous environment level, the conductive transfer model is also analyzed through the finished elements method. Several principles of modeling and optimization are presented and analyzed: the principle of analogy, the principle of concepts, and the principle of hierarchization. Based on these principles, an original diagram model is designed together with the corresponding logic diagram. This article also presents and analyzes the main benefits of aluminum recycling and reuse. Recycling and reuse of aluminum have the main advantage that it requires only about 5% of energy consumed to produce it from bauxite. The aluminum recycling and production process causes the emission of pollutants such as dioxides and furans, hydrogen chloride, and particulate matter. To control these emissions, aluminum recyclers are required to comply with the National Emission Standards for Hazardous Air Pollutants for Secondary Aluminum Production. The results of technological, economic, and ecological optimization of aluminum recycling are based on the criteria function's evaluation in the modeling system.

  19. Process Metallurgy an Enabler of Resource Efficiency: Linking Product Design to Metallurgy in Product Centric Recycling

    NASA Astrophysics Data System (ADS)

    Reuter, Markus; van Schaik, Antoinette

    In this paper the link between process metallurgy, classical minerals processing, product centric recycling and urban/landfill mining is discussed. The depth that has to be achieved in urban mining and recycling must glean from the wealth of theoretical knowledge and insight that have been developed in the past in minerals and metallurgical processing. This background learns that recycling demands a product centric approach, which considers simultaneously the multi-material interactions in man-made complex `minerals'. Fast innovation in recycling and urban mining can be achieved by further evolving from this well developed basis, evolving the techniques and tools that have been developed over the years. This basis has already been used for many years to design, operate and control industrial plants for metal production. This has been the basis for Design for Recycling rules for End-of-Life products. Using, among others, the UNEP Metal Recycling report as a basis (authors are respectively Lead and Main authors of report), it is demonstrated that a common theoretical basis as developed in metallurgy and minerals processing can help much to level the playing field between primary processing, secondary processing, recycling, and urban/landfill mining and product design hence enhancing resource efficiency. Thus various scales of detail link product design with metallurgical process design and its fundamentals.

  20. Chapter 7: Refrigerator Recycling Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy-Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurnik, Charles W.; Keeling, Josh; Bruchs, Doug

    Refrigerator recycling programs are designed to save energy by removing operable, albeit less efficient, refrigerators from service. By offering free pickup, providing incentives, and disseminating information about the operating cost of less efficient refrigerators, these programs are designed to encourage consumers to: - Limit the use of secondary refrigerators -Relinquish refrigerators previously used as primary units when they are replaced (rather than keeping the existing refrigerator as a secondary unit) -Prevent the continued use of less efficient refrigerators in another household through a direct transfer (giving it away or selling it) or indirect transfer (resale on the used appliance market).more » Commonly implemented by third-party contractors (who collect and decommission participating appliances), these programs generate energy savings through the retirement of inefficient appliances. The decommissioning process captures environmentally harmful refrigerants and foam, and enables recycling of the plastic, metal, and wiring components.« less

  1. Upgrade Recycling of Cast Iron Scrap Chips towards β-FeSi₂ Thermoelectric Materials.

    PubMed

    Laila, Assayidatul; Nanko, Makoto; Takeda, Masatoshi

    2014-09-04

    The upgrade recycling of cast-iron scrap chips towards β-FeSi₂ thermoelectric materials is proposed as an eco-friendly and cost-effective production process. By using scrap waste from the machining process of cast-iron components, the material cost to fabricate β-FeSi₂ is reduced and the industrial waste is recycled. In this study, β-FeSi₂ specimens obtained from cast iron scrap chips were prepared both in the undoped form and doped with Al and Co elements. The maximum figure of merit ( ZT ) indicated a thermoelectric performance of approximately 70% in p-type samples and nearly 90% in n-type samples compared to β-FeSi₂ prepared from pure Fe and other published studies. The use of cast iron scrap chips to produce β-FeSi₂ shows promise as an eco-friendly and cost-effective production process for thermoelectric materials.

  2. Comparative Environmental Benefits of Lightweight Design in the Automotive Sector: The Case Study of Recycled Magnesium Against CFRP and Steel

    NASA Astrophysics Data System (ADS)

    D'Errico, Fabrizio; Ranza, Luigi

    A LCA feasibility study was undertaken to determine the environmental impact of an Eco-magnesium process route by recycled chips to manufacture panel for the automotive sector to be compared with comparative scenarios, a non-recycled carbon fiber reinforced polymer (CFRP) and a baseline steel-made component scenario. The objective of this LCA study was to assess the actual benefits of a lightweight solution considering the whole life cycle, including the dirty-phase (i.e. the "cradle-to-exit gate" stage) that impacts differently for the different materials. For this reason the analysis has regarded the net "cradle-to-grave" scenario. Different automotive floor pans were then compared considering the rate of fuel consumption during vehicle operation — i.e. the fuel-mass correlation factor — and the different material substitution factors allowed by the different materials selected.

  3. The status and development of treatment techniques of typical waste electrical and electronic equipment in China: a review.

    PubMed

    He, Yunxia; Xu, Zhenming

    2014-04-01

    A large quantity of waste electrical and electronic equipment (WEEE) is being generated because technical innovation promotes the unceasing renewal of products. China's household appliances and electronic products have entered the peak of obsolescence. Due to lack of technology and equipment, recycling of WEEE is causing serious environment pollution. In order to achieve the harmless disposal and resource utilization of WEEE, researchers have performed large quantities of work, and some demonstration projects have been built recently. In this paper, the treatment techniques of typical WEEE components, including printed circuit boards, refrigerator cabinets, toner cartridges, cathode ray tubes, liquid crystal display panels, batteries (Ni-Cd and Li-ion), hard disk drives, and wires are reviewed. An integrated recycling system with environmentally friendly and highly efficient techniques for processing WEEE is proposed. The orientation of further development for WEEE recycling is also proposed.

  4. EFFECTS OF ACIDIC PRECIPITATION ON BENTHOS

    EPA Science Inventory

    The community of organisms, the benthos, which inhabit aquatic sediments interact with biological and chemical components of the water column by processing detritus, recycling inorganic nutrients, mixing sediments, and serving as a principal food source for fish, waterfowl, and r...

  5. Assessment of the municipal solid waste management system in Accra, Ghana: A 'Wasteaware' benchmark indicator approach.

    PubMed

    Oduro-Appiah, Kwaku; Scheinberg, Anne; Mensah, Anthony; Afful, Abraham; Boadu, Henry Kofi; de Vries, Nanne

    2017-11-01

    This article assesses the performance of the city of Accra, Ghana, in municipal solid waste management as defined by the integrated sustainable waste management framework. The article reports on a participatory process to socialise the Wasteaware benchmark indicators and apply them to an upgraded set of data and information. The process has engaged 24 key stakeholders for 9 months, to diagram the flow of materials and benchmark three physical components and three governance aspects of the city's municipal solid waste management system. The results indicate that Accra is well below some other lower middle-income cities regarding sustainable modernisation of solid waste services. Collection coverage and capture of 75% and 53%, respectively, are a disappointing result, despite (or perhaps because of) 20 years of formal private sector involvement in service delivery. A total of 62% of municipal solid waste continues to be disposed of in controlled landfills and the reported recycling rate of 5% indicates both a lack of good measurement and a lack of interest in diverting waste from disposal. Drains, illegal dumps and beaches are choked with discarded bottles and plastic packaging. The quality of collection, disposal and recycling score between low and medium on the Wasteaware indicators, and the scores for user inclusivity, financial sustainability and local institutional coherence are low. The analysis suggests that waste and recycling would improve through greater provider inclusivity, especially the recognition and integration of the informal sector, and interventions that respond to user needs for more inclusive decision-making.

  6. Wall conditioning by ECRH discharges and He-GDC in the limiter phase of Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Wauters, T.; Brakel, R.; Brezinsek, S.; Dinklage, A.; Goriaev, A.; Laqua, H. P.; Marsen, S.; Moseev, D.; Stange, T.; Schlisio, G.; Pedersen, T. Sunn; Volzke, O.; Wenzel, U.; the W7-X Team

    2018-06-01

    Wendelstein 7-X (W7-X) relies on wall conditioning to control the density and the impurity content of the plasma. Wall conditioning in the first operation campaign of W7-X consisted of baking at 150 °C during 1 week prior to operation, glow discharge conditioning (GDC) in helium (He) and electron cyclotron resonance heating (ECRH) discharges. Additionally, the usage of He-GDC was limited to avoid sputtering and migration of metallic plasma facing components. This presented a unique opportunity for studying the applicability of ECRH discharges for initial wall conditioning on a stellarator, albeit in the carbon limiter configuration. A single envelope curve is observed in the normalised outgassing data that takes into account all ECRH discharges. This illustrates that the majority of discharges operates at the limits of a radiative collapse. Hydrogen recycling dominated the fuelling of ECRH discharges throughout while CO outgassing was found strongest at the start of the campaign. A reduction of recycling was observed throughout the campaign. Temporarily depleting the walls from H and impurities was possible by He-GDC. It was shown that the recycling coefficient in -ECRH plasmas could be reduced and the pulse duration significantly extended by He-’recovery’ ECRH plasmas. Good wall conditions were defined by normalised outgassing values below mbar kJ‑1. In absence of -GDC, more than 311 cumulated discharge seconds of ECRH discharges are needed for obtaining lasting low outgassing levels. A release model with two trapping reservoirs could reproduce the normalised outgassing trend, including ECRH and GDC plasma wall interactions.

  7. Recycle of Zirconium from Used Nuclear Fuel Cladding: A Major Element of Waste Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Emory D; DelCul, Guillermo D; Terekhov, Dmitri

    2011-01-01

    Feasibility tests were initiated to determine if the zirconium in commercial used nuclear fuel (UNF) cladding can be recovered in sufficient purity to permit re-use, and if the recovery process can be operated economically. Initial tests are being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Early results indicate that quantitative recovery can be accomplished and product contamination with alloy constituents can be controlled sufficiently to meet purification requirements. Future tests with actual radioactive UNF claddingmore » are planned. The objective of current research is to determine the feasibility of recovery and recycle of zirconium from used fuel cladding wastes. Zircaloy cladding, which contains 98+% of hafnium-free zirconium, is the second largest mass, on average {approx}25 wt %, of the components in used U.S. light-water-reactor fuel assemblies. Therefore, recovery and recycle of the zirconium would enable a large reduction in geologic waste disposal for advanced fuel cycles. Current practice is to compact or grout the cladding waste and store it for subsequent disposal in a geologic repository. This paper describes results of initial tests being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Future tests with actual radioactive UNF cladding are planned.« less

  8. Subduction-modified oceanic crust in the sources of continental picrite dikes from the Karoo LIP?

    NASA Astrophysics Data System (ADS)

    Heinonen, J. S.; Carlson, R. W.; Riley, T. R.; Luttinen, A. V.; Horan, M. F.

    2013-12-01

    The Ahlmannryggen mountain range in East Antarctica hosts unusual LILE-depleted, but Fe- and Ti-enriched ultramafic dikes (Group 3) that belong to the Jurassic (~180 Ma) Karoo continental flood basalt (CFB) province. Their high initial ɛNd (+5 to +9) indicates their origin within the sublithospheric mantle beneath the Gondwana supercontinent. Using the new Pb and Os isotopic data and previously published geochemical and mineral chemical data, we try to constrain their mantle sources. The dikes that lack evidence of crustal contamination exhibit very radiogenic ɛNd (+8.6 to +9.0), relatively radiogenic 206Pb/204Pb (18.2-18.4) and 87Sr/86Sr (0.7035-0.7037), and unradiogenic 187Os/188Os (0.124-0.125) at 180 Ma. These isotopic compositions are unlike those typical of MORBs, excluding depleted mantle as the sole source contributor. The Pb isotopic composition of the dikes plots close to the 4.43 Ga geochron and hence is compatible with derivation from an early-depleted reservoir (EDR), recently suggested to be a major source component in CFBs. However, the high ɛNd of the dikes exceeds the ɛNd estimated for EDR (+4.9 to +8.5 at 180 Ma) and the relative Nb, Fe, and Ti enrichment (pyroxenite fingerprint) of the dikes is not readily ascribed to EDR source. Based on our isotopic and trace element modeling, we regard that the mantle source of the picrite dikes contained seawater-altered and subduction-modified MORB with a recycling age of 0.8 Ga. Such a source component would explain the unusual combination of elevated initial 87Sr/86Sr, ɛNd, and 206Pb/204Pb, relative depletion in fluid-mobile LILE, U, Th, Pb, and LREE, and relative enrichment in Nb, Fe, Ti, and other HFSE. Behavior of Re and Os in subduction environments is not well constrained, but loss of Re from recycled MORB, as observed in some subduction-associated eclogites and blueschists, and predominant contribution of Os from depleted peridotite matrix could have produced the observed low 187Os/188Os. Pyroxenite sources also are consistent with mineral chemical data (e.g., high-Ni olivine) for the picrite dikes. Such peculiar sources were likely not a predominant component in Karoo magmatism in general. Nevertheless, less subduction-modified or more enriched (e.g., additional sediment component) recycled crustal signatures would be difficult to distinguish from the 'lithospheric signatures' of many common CFBs. In addition to depleted mantle or EDR components that have been identified in the high-Mg dikes of the adjacent Vestfjella mountain range, a variety of recycled source components could thus be hiding in the geochemical jungle of the Karoo (and other) CFBs.

  9. Design and development of indoor device for recycling of domestic vegetable scrap.

    PubMed

    Harshitha, Jampala; Krupanidhi, Sreerama; Kumar, Sunil; Wong, Jonathan

    2016-01-01

    Since the municipal waste management and community garbage-treating systems are in vogue, there is a growing need for the waste minimization to keep our vicinity clean and green. Therefore, a feasible indoor device is designed for recycling domestic vegetable scrap by adopting the principle of soil ecosystem. To arrive at the composting process control parameters in the proposed device, the soil from landfill and quarry along with supplements namely sawdust, cow dung/yeast and the resident thermophilic bacteria are analysed. The soil parameters namely pH, electrical conductivity, Organic carbon, P, K, Fe, moisture content and the presence of thermophilic bacteria varied significantly between negative control sample (NCS) and positive control sample (PCS) and post-treatment positive control group with dried cow dung (PPC-C)-derived compost is soft-textured and homogenous. Furthermore, the double-compartment-based device would be more feasible and appealing as a recycling bin rather than as a refuse storage bin primarily due to the inclusion of dish-plantation. The standardization of composting control parameters is discussed in this article.

  10. Stormwater harvesting for irrigation purposes: an investigation of chemical quality of water recycled in pervious pavement system.

    PubMed

    Nnadi, Ernest O; Newman, Alan P; Coupe, Stephen J; Mbanaso, Fredrick U

    2015-01-01

    Most available water resources in the world are used for agricultural irrigation. Whilst this level of water use is expected to increase due to rising world population and land use, available water resources are expected to become limited due to climate change and uneven rainfall distribution. Recycled stormwater has the potential to be used as an alternative source of irrigation water and part of sustainable water management strategy. This paper reports on a study to investigate whether a sustainable urban drainage system (SUDS) technique, known as the pervious pavements system (PPS) has the capability to recycle water that meets irrigation water quality standard. Furthermore, the experiment provided information on the impact of hydrocarbon (which was applied to simulate oil dripping from parked vehicles onto PPS), leaching of nutrients from different layers of the PPS and effects of nutrients (applied to enhance bioremediation) on the stormwater recycling efficiency of the PPS. A weekly dose of 6.23 × 10(-3) L of lubricating oil and single dose of 17.06 g of polymer coated controlled-release fertilizer granules were applied to the series of 710 mm × 360 mm model pervious pavement structure except the controls. Rainfall intensity of 7.4 mm/h was applied to the test models at the rate of 3 events per week. Analysis of the recycled water showed that PPS has the capability to recycle stormwater to a quality that meets the chemical standards for use in agricultural irrigation irrespective of the type of sub-base used. There is a potential benefit of nutrient availability in recycled water for plants, but care should be taken not to dispose of this water in natural water courses as it might result in eutrophication problems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Analysis of National Solid Waste Recycling Programs and Development of Solid Waste Recycling Cost Functions: A Summary of the Literature (1999)

    EPA Pesticide Factsheets

    Discussion of methodological issues for conducting benefit-cost analysis and provides guidance for selecting and applying the most appropriate and useful mechanisms in benefit-cost analysis of toxic substances, hazardous materials, and solid waste control

  12. CONTROL TECHNOLOGIES FOR REMEDIATION OF CONTAMINATED SOIL AND WASTE DEPOSITS AT SUPERFUND LEAD BATTERY RECYCLING SITES

    EPA Science Inventory

    This paper primarily addresses remediation of contaminated soils and waste deposits at defunct lead-acid battery recycling sites (LBRS) via immobilization and separation processes. A defunct LBRS is a facility at which battery breaking, secondary lead smelting, or both operations...

  13. Attitudes, norms, identity and environmental behaviour: using an expanded theory of planned behaviour to predict participation in a kerbside recycling programme.

    PubMed

    Nigbur, Dennis; Lyons, Evanthia; Uzzell, David

    2010-06-01

    In an effort to contribute to greater understanding of norms and identity in the theory of planned behaviour, an extended model was used to predict residential kerbside recycling, with self-identity, personal norms, neighbourhood identification, and injunctive and descriptive social norms as additional predictors. Data from a field study (N=527) using questionnaire measures of predictor variables and an observational measure of recycling behaviour supported the theory. Intentions predicted behaviour, while attitudes, perceived control, and the personal norm predicted intention to recycle. The interaction between neighbourhood identification and injunctive social norms in turn predicted personal norms. Self-identity and the descriptive social norm significantly added to the original theory in predicting intentions as well as behaviour directly. A replication survey on the self-reported recycling behaviours of a random residential sample (N=264) supported the model obtained previously. These findings offer a useful extension of the theory of planned behaviour and some practicable suggestions for pro-recycling interventions. It may be productive to appeal to self-identity by making people feel like recyclers, and to stimulate both injunctive and descriptive norms in the neighbourhood.

  14. Prevention-intervention strategies to reduce exposure to e-waste.

    PubMed

    Heacock, Michelle; Trottier, Brittany; Adhikary, Sharad; Asante, Kwadwo Ansong; Basu, Nil; Brune, Marie-Noel; Caravanos, Jack; Carpenter, David; Cazabon, Danielle; Chakraborty, Paromita; Chen, Aimin; Barriga, Fernando Diaz; Ericson, Bret; Fobil, Julius; Haryanto, Budi; Huo, Xia; Joshi, T K; Landrigan, Philip; Lopez, Adeline; Magalini, Frederico; Navasumrit, Panida; Pascale, Antonio; Sambandam, Sankar; Aslia Kamil, Upik Sitti; Sly, Leith; Sly, Peter; Suk, Ann; Suraweera, Inoka; Tamin, Ridwan; Vicario, Elena; Suk, William

    2018-06-27

    As one of the largest waste streams, electronic waste (e-waste) production continues to grow in response to global demand for consumer electronics. This waste is often shipped to developing countries where it is disassembled and recycled. In many cases, e-waste recycling activities are conducted in informal settings with very few controls or protections in place for workers. These activities involve exposure to hazardous substances such as cadmium, lead, and brominated flame retardants and are frequently performed by women and children. Although recycling practices and exposures vary by scale and geographic region, we present case studies of e-waste recycling scenarios and intervention approaches to reduce or prevent exposures to the hazardous substances in e-waste that may be broadly applicable to diverse situations. Drawing on parallels identified in these cases, we discuss the future prevention and intervention strategies that recognize the difficult economic realities of informal e-waste recycling.

  15. Technology development for lunar base water recycling

    NASA Technical Reports Server (NTRS)

    Schultz, John R.; Sauer, Richard L.

    1992-01-01

    This paper will review previous and ongoing work in aerospace water recycling and identify research activities required to support development of a lunar base. The development of a water recycle system for use in the life support systems envisioned for a lunar base will require considerable research work. A review of previous work on aerospace water recycle systems indicates that more efficient physical and chemical processes are needed to reduce expendable and power requirements. Development work on biological processes that can be applied to microgravity and lunar environments also needs to be initiated. Biological processes are inherently more efficient than physical and chemical processes and may be used to minimize resupply and waste disposal requirements. Processes for recovering and recycling nutrients such as nitrogen, phosphorus, and sulfur also need to be developed to support plant growth units. The development of efficient water quality monitors to be used for process control and environmental monitoring also needs to be initiated.

  16. Integrated treatment and recycling of stormwater: a review of Australian practice.

    PubMed

    Hatt, Belinda E; Deletic, Ana; Fletcher, Tim D

    2006-04-01

    With the use of water approaching, and in some cases exceeding, the limits of sustainability in many locations, there is an increasing recognition of the need to utilise stormwater for non-potable requirements, thus reducing the demand on potable sources. This paper presents a review of Australian stormwater treatment and recycling practices as well as a discussion of key lessons and identified knowledge gaps. Where possible, recommendations for overcoming these knowledge gaps are given. The review of existing stormwater recycling systems focussed primarily on the recycling of general urban runoff (runoff generated from all urban surfaces) for non-potable purposes. Regulations and guidelines specific to stormwater recycling need to be developed to facilitate effective design of such systems, and to minimise risks of failure. There is a clear need for the development of innovative techniques for the collection, treatment and storage of stormwater. Existing stormwater recycling practice is far ahead of research, in that there are no technologies designed specifically for stormwater recycling. Instead, technologies designed for general stormwater pollution control are frequently utilised, which do not guarantee the necessary reliability of treatment. Performance modelling for evaluation purposes also needs further research, so that industry can objectively assess alternative approaches. Just as many aspects of these issues may have impeded adoption of stormwater, another impediment to adoption has been the lack of a practical and widely accepted method for assessing the many financial, social and ecological costs and benefits of stormwater recycling projects against traditional alternatives. Such triple-bottom-line assessment methodologies need to be trialled on stormwater recycling projects. If the costs and benefits of recycling systems can be shown to compare favourably with the costs and benefits of conventional practices this will provide an incentive to overcome other obstacles to widespread adoption of stormwater recycling.

  17. Autophagy in the eye: Development, degeneration, and aging.

    PubMed

    Boya, Patricia; Esteban-Martínez, Lorena; Serrano-Puebla, Ana; Gómez-Sintes, Raquel; Villarejo-Zori, Beatriz

    2016-11-01

    Autophagy is a catabolic pathway that promotes the degradation and recycling of cellular components. Proteins, lipids, and even whole organelles are engulfed in autophagosomes and delivered to the lysosome for elimination. In response to stress, autophagy mediates the degradation of cell components, which are recycled to generate the nutrients and building blocks required to sustain cellular homeostasis. Moreover, it plays an important role in cellular quality control, particularly in neurons, in which the total burden of altered proteins and damaged organelles cannot be reduced by redistribution to daughter cells through cell division. Research has only begun to examine the role of autophagy in the visual system. The retina, a light-sensitive tissue, detects and transmits electrical impulses through the optic nerve to the visual cortex in the brain. Both the retina and the eye are exposed to a variety of environmental insults and stressors, including genetic mutations and age-associated alterations that impair their function. Here, we review the main studies that have sought to explain autophagy's importance in visual function. We describe the role of autophagy in retinal development and cell differentiation, and discuss the implications of autophagy dysregulation both in physiological aging and in important diseases such as age-associated macular degeneration and glaucoma. We also address the putative role of autophagy in promoting photoreceptor survival and discuss how selective autophagy could provide alternative means of protecting retinal cells. The findings reviewed here underscore the important role of autophagy in maintaining proper retinal function and highlight novel therapeutic approaches for blindness and other diseases of the eye. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Os isotope systematics of La Palma, Canary Islands: Evidence for recycled crust in the mantle source of HIMU ocean islands

    NASA Astrophysics Data System (ADS)

    Marcantonio, Franco; Zindler, Alan; Elliott, Tim; Staudigel, Hubert

    1995-07-01

    Sub-aerial lavas from the single ocean island of La Palma, Canary Islands show as large a variation in 187Os/186Os isotope ratios (1.13-1.59) as found across all of French Polynesia [1]. The La Palma lavas, however, display a restricted range of chemical composition and have all been erupted within the last 3.5 Ma. The highest Os isotopic compositions are observed in lavas with low Os concentrations. An uplifted sequence of lavas, that represent the early phase of submarine growth of the island, show extremely heterogeneous 187Os/186Os isotope ratios, from 1.21 to 3.53, with the most radiogenic values found in pillow rinds. Assimilation of these pillow rinds by ascending magma can readily account for highly radiogenic ratios ( 187Os/186Os > 1.3 ) found in lavas with Os concentrations below 30 ppt. Samples with Os concentrations too high to be significantly affected by assimilation still display a range in Os isotope ratios from 1.13 to 1.25. We argue that these radiogenic values reflect a HIMU mantle source that contains ancient recycled oceanic crust. Characteristic incompatible trace element ratios suggest further similarities between the mantle beneath La Palma and other HIMU islands. When potentially contaminated low-Os OIBs are screened from literature data, HIMU islands are found to display the highest Os isotope ratios (up to 1.25). PbOs systematics for uncontaminated OIBs do not define a simple two-component mixing relationship between ambient mantle and recycled oceanic crust of a single composition. We suggest that this is due to variable alteration and subduction-induced perturbation of the U/Pb ratio in the recycled material that forms a component of the HIMU source.

  19. Brazilian policy on battery disposal and its practical effects on battery recycling

    NASA Astrophysics Data System (ADS)

    Crocce Romano Espinosa, Denise; Moura Bernardes, Andréa; Alberto Soares Tenório, Jorge

    The disposal of batteries is a problem that has grown in the last few years, due to the increase in the use of portable devices. Batteries may contain toxic metals such as cadmium, mercury and lead, so their disposal must be controlled. Brazil was the first country in Latin America to regulate the disposal and treatment of batteries. Limits were established on the concentration of heavy metals within batteries, so that they could be disposed along with domestic waste. Since batteries are products used broadly, it is very difficult to control their disposal. In order to have an efficient collection, the population must be engaged, and that can only happen if they are informed about the laws and regulations regarding the subject, as well as the importance of disposing of batteries with higher concentrations of heavy metals or toxic substances separately from domestic garbage. Around the world, there are some long-established recycling processes for batteries. In Brazil, automotive (lead-acid) batteries have been recycled for several years, whereas the recycling of other types of batteries is just starting. This work does an analysis of the Brazilian law for battery recycling and presents some suggestions and examples of the initiatives of other countries, in order to manage of this kind of dangerous waste.

  20. Recycled oceanic crust in the source of 90-40 Ma basalts in North and Northeast China: Evidence, provenance and significance

    NASA Astrophysics Data System (ADS)

    Xu, Yi-Gang

    2014-10-01

    Major, trace element and Sr-Nd-Pb isotopic data of basalts emplaced during 90-40 Ma in the North and Northeast China are compiled in this review, with aims of constraining their petrogenesis, and by inference the evolution of the North China Craton during the late Cretaceous and early Cenozoic. Three major components are identified in magma source, including depleted component I and II, and an enriched component. The depleted component I, which is characterized by relatively low 87Sr/86Sr (<0.7030), moderate 206Pb/204Pb (18.2), moderately high εNd (∼4), high Eu/Eu∗ (>1.1) and HIMU-like trace element characteristics, is most likely derived from gabbroic cumulate of the oceanic crust. The depleted component II, which distinguishes itself by its high εNd (∼8) and moderate 87Sr/86Sr (∼0.7038), is probably derived from a sub-lithospheric ambient mantle. The enriched component has low εNd (2-3), high 87Sr/86Sr (>0.7065), low 206Pb/204Pb (17), excess Sr, Rb, Ba and a deficiency of Zr and Hf relative to the REE. This component is likely from the basaltic portion of the oceanic crust, which is variably altered by seawater and contains minor sediments. Comparison with experimental melts and trace element modeling suggest that these recycled oceanic components may be in form of garnet pyroxenite/eclogite. These components are young (<0.5 Ga) and show an Indian-MORB isotopic character. Given the share of this isotopic affinity by the extinct Izanaghi-Pacific plate, currently stagnated within the mantle transition zone, we propose that it ultimately comes from the subducted Pacific slab. Eu/Eu∗ and 87Sr/86Sr of the 90-40 Ma magmas increases and decreases, respectively, with decreasing emplacement age, mirroring a change in magma source from upper to lower parts of subducted oceanic crust. Such secular trends are created by dynamic melting of a heterogeneous mantle containing recycled oceanic crust. Due to different melting temperature of the upper and lower ocean crust and progressive thinning of the lithosphere, the more fertile basaltic crustal component is preferentially sampled during the early stage of volcanism, whereas the more depleted gabbroic lower crust and lithospheric mantle components are preferentially sampled during a late stage. This model is consistent with a protracted destruction process of the lithosphere beneath eastern China. The presence of significant recycled oceanic crust components in the 90-40 Ma basalts highlights the influence of Pacific subduction on the deep processes in the North China Craton, which can be traced back at least to the late Cretaceous. This, along with the conjugation of crustal deformation pattern in this region with the movement of the Pacific plate, makes the Pacific subduction as a potential trigger of the destruction of the North China Craton. Geophysical investigations and morphological analyses indicate that decratonization is largely confined to east of the NSGL, whereas to west of NSGL, in particular the Ordos basin, characteristics typical of a craton are observed (Menzies et al., 2007; Zhu et al., 2011). This spatial pattern of craton destruction, together with NE-NNE-oriented extensional basins, main structural alignments and metamorphic core complexes (Zheng et al., 1978; Ye et al., 1987; Ren et al., 2002; Liu et al., 2006; Zhu G et al., 2012), is consistent with the subduction direction of the Pacific plate. Two main episodes of late Mesozoic magmatism have been identified in the Jurassic and the early Cretaceous. These correspond to the subduction of the Pacific plate underneath the Eurasian content and to subsequent extensions, respectively (Wu et al., 2005, 2006). Global tomography studies indicate that the subducted Pacific oceanic slab has become stagnant within the mantle transition zone and extended subhorizontally westward beneath the East Asian continent (Fukao et al., 1992; Huang and Zhao, 2006; Chen and Ai, 2009; Van der Hilst and Li, 2010). The western end of this stagnant slab does not go beyond the NNE-trending NSGL (Huang and Zhao, 2006; Xu, 2007). Given the subduction of Pacific plate underneath eastern Asian continent, the slab-derived materials are expected to be involved in the sources of the Mesozoic-Cenozoic magmas in this region. Recent studies have shown the ubiquitous presence of subduction-related components in late Cenozoic basalts in eastern China (Zhang et al., 2009; Xu et al., 2012b; Sakuyama et al., 2013). However, it remains unclear whether similar recycled oceanic components are present in earlier basalts (i.e., those emplaced during 90-40 Ma, Fig. 1), for which high quality geochemical data are not available until very recently (Zhang et al., 2008; Kuang et al., 2012; Xu et al., 2012a). In addition, the provenance of recycled oceanic components, if any, is highly relevant to the proposal of the Pacific subduction as one of the possible triggers of the destruction of the NCC. The timing of the first appearance of oceanic components in magmas will provide constraints on the role of the Pacific subduction on the evolution of the NCC.The objective of this study is to review and compile major, trace elements and Sr-Nd-Pb isotopic compositions of mafic magmas emplaced since 90 Ma in North and Northeastern China, and to use these data to elaborate their petrogenesis. We will demonstrate the ubiquitous involvement of subduction-related components in the magma sources. Furthermore, temporal variation in geochemical features suggests that different parts of the recycled oceanic crust are preferentially sampled at different time. In collaborating with melting solidus temperature and the melting column concept, this is interpreted as differential melting of upwelling heterogeneous mantle as a result of lithospheric thinning. The peculiar isotopic compositions of these oceanic crust components suggests a link with the subducted Pacific slab, which currently stagnates at the mantle transition zone beneath the eastern Asian continental margin (Fukao et al., 1992; Huang and Zhao, 2006). This study therefore provides petrological evidence for the effect of Pacific subduction on the studied region, rendering the Pacific subduction as a potential trigger of the destruction of the NCC.

  1. Feed component inhibition in ethanolic fermentation by Saccharomyces cerevisiae.

    PubMed

    Maiorella, B L; Blanch, H W; Wilke, C R

    1984-10-01

    Inhibition by secondary feed components can limit productivity and restrict process options for the production of ethanol by fermentation. New fermentation processes (such as vacuum or extractive fermentation), while selectively removing ethanol, can concentrate nonmetabolized feed components in the remaining broth. Stillage recycle to reduce stillage waste treatment results in the buildup of nonmetabolized feed components. Continuous culture experiments are presented establishing an inhibition order: CaCl(2), (NH(4))(2)xSO(4) > NaCl, NH(4)Cl > KH(2)PO(4) > xylose, MgCl(2) > MgSO(4) > KCl. Reduction of the water activity alone is not an adequate predictor of the variation in inhibitory concentration among the different components tested. As a general trend, specific ethanol productivity increases and cell production decreases as inhibitors are added at higher concentration. We postulate that these results can be interpreted in terms of an increase in energy requirements for cell maintenance under hypertonic (stressed) conditions. Ion and carbohydrate transport and specific toxic effects are reviewed as they relate to the postulated inhibition mechanism. Glycerol production increases under hypertonic conditions and glycerol is postulated to function as a nontoxic osmoregulator. Calcium was the most inhibitory component tested, causing an 80%decline in cell mass production at 0.23 mol Ca(2+)/L and calcium is present at substantial concentration in many carbohydrate sources. For a typical final cane molasses feed, stillage recycle must be limited to less than onethird of the feed rate; otherwise inhibitory effects will be observed.

  2. Compact, ultra-low vibration, closed-cycle helium recycler for uninterrupted operation of MEG with SQUID magnetometers

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Sun, Limin; Lichtenwalter, Ben; Zerkle, Brent; Okada, Yoshio

    2016-06-01

    A closed-cycle helium recycler was developed for continuous uninterrupted operation for magnetometer-based whole-head magnetoencephalography (MEG) systems. The recycler consists of a two stage 4 K pulse-tube cryocooler and is mounted on the roof of a magnetically shielded room (MSR). A flexible liquid helium (LHe) return line on the recycler is inserted into the fill port of the MEG system in the MSR through a slotted opening in the ceiling. The helium vapor is captured through a line that returns the gas to the top of the recycler assembly. A high-purity helium gas cylinder connected to the recycler assembly supplies the gas, which, after it is liquefied, increases the level of LHe in the MEG system during the start-up phase. No storage tank for evaporated helium gas nor a helium gas purifier is used. The recycler is capable of liquefying helium with a rate of ∼17 L/d after precooling the MEG system. It has provided a fully maintenance-free operation under computer control for 7 months without refill of helium. Although the recycler is used for single-orientation operation at this initial testing site, it is designed to operate at ±20° orientations, allowing the MEG system to be tilted for supine and reclining positions. Vibration of the recycler is dampened to an ultra-low level by using several vibration isolation methods, which enables uninterrupted operation during MEG measurements. Recyclers similar to this system may be quite useful even for MEG systems with 100% magnetometers.

  3. Origin of low δ26Mg basalts with EM-I component: Evidence for interaction between enriched lithosphere and carbonated asthenosphere

    NASA Astrophysics Data System (ADS)

    Tian, H.; Yang, W.; Li, S. G.; Ke, S.; Chu, Z. Y.

    2016-12-01

    Many studies have focused on the interactions between recycled materials and depleted mantle to explain the origins of EM and HIMU components (e.g., Cohen and O'Nions, 1982; White and Hofmann, 1982). However, little is known about the interactions between recycled materials and enriched mantle and the associated consequences, e.g., late recycled crustal material overprints mantle previously enriched by earlier recycling events of the crust. Recently, light Mg isotopic composition of the basalts from North China Craton (NCC) and South China Block (SCB) has been attributed to recycled carbonate metasomatism from subducted Pacific slab (Yang et al., 2012; Huang et al., 2015). If this explanation is correct, the Cenozoic basalts from Northeast (NE) China should also contain light Mg isotopic compositions. The basalts from NE China have EMI Sr-Nd-Pb isotopic features that are distinct from the NCC and SCB basalts, indicating the contribution of an enriched mantle source (Choi et al., 2006; Chu et al., 2013). Therefore, Mg isotopic compositions of the Cenozoic basalts from NE China will help to determine the interaction between recycled sedimentary carbonates and an enriched mantle. Consistent with the hypothesis, our results show that the Cenozoic basalts from Wudalianchi and Erkeshan, NE China, have homogeneous and light Mg isotopic compositions (δ26Mg =-0.57 to -0.46‰). Based on the similarity to the basalts from NCC and SCB, their light Mg isotopic feature should also be derived from carbonate metasomatism (i.e. carbonated asthenosphere). In addition to that, a question arise that why the interaction between carbonated asthenosphere and the EM-I SLCM significantly modify the trace element and Sr-Nd-Pb isotopic composition of the mantle-derived melt, but have little effect on the Mg isotopes? The possible mechanism is the interaction between low SiO2 melt and peridotite, which converts pyroxene to olivine, as reported in previous studies (e.g., Kelemen et al., 1992; Edwards and Malpas, 1996; Zhou et al., 1996, 2014). During the interaction, the trace elements of the EM-I SCLM largely entered the melt, and all Mg was transferred from Opx and Cpx into the newly formed olivine. Consequently, the Wudalianchi and Erkeshan basalts preserve low δ26Mg and obtain EM-I Sr-Nd-Pb isotopic compositions (Fig. 1).

  4. New plastic recycling technology

    EPA Science Inventory

    Greater than 60% of the total plastic content of municipal solid waste is comprised of polyolefins (high-density, low-density, and linear polyethylene and polypropylene. Polyethylene (PE) is the largest-volume component but presents a challenge due to the absence of low-energy de...

  5. A Social Mission of a University

    ERIC Educational Resources Information Center

    Malanchuk, John L.

    1975-01-01

    Discussed is a university recycling program. The program successfully applied cognitive learning to development of an environmental lifestyle and united divergent university components. Students received practical experience in solid waste management encompassing science, economics, and politics. Moreover, the university provided a community…

  6. AIR TOXICS EMISSIONS FROM ELECTRONICS INCINERATION

    EPA Science Inventory

    The purpose of this project is to examine the emissions of air toxics from the combustion of electronics equipment, primarily personal computer components. Due to a shortage of recycling programs for personal computers and other personal electronics equipment, most of these mate...

  7. Electrical and electronic waste: a global environmental problem.

    PubMed

    Ramesh Babu, Balakrishnan; Parande, Anand Kuber; Ahmed Basha, Chiya

    2007-08-01

    The production of electrical and electronic equipment (EEE) is one of the fastest growing global manufacturing activities. This development has resulted in an increase of waste electric and electronic equipment (WEEE). Rapid economic growth, coupled with urbanization and growing demand for consumer goods, has increased both the consumption of EEE and the production of WEEE, which can be a source of hazardous wastes that pose a risk to the environment and to sustainable economic growth. To address potential environmental problems that could stem from improper management of WEEE, many countries and organizations have drafted national legislation to improve the reuse, recycling and other forms of material recovery from WEEE to reduce the amount and types of materials disposed in landfills. Recycling of waste electric and electronic equipment is important not only to reduce the amount of waste requiring treatment, but also to promote the recovery of valuable materials. EEE is diverse and complex with respect to the materials and components used and waste streams from the manufacturing processes. Characterization of these wastes is of paramount importance for developing a cost-effective and environmentally sound recycling system. This paper offers an overview of electrical and e-waste recycling, including a description of how it is generated and classified, strategies and technologies for recovering materials, and new scientific developments related to these activities. Finally, the e-waste recycling industry in India is also discussed.

  8. Electronic waste - an emerging threat to the environment of urban India.

    PubMed

    Needhidasan, Santhanam; Samuel, Melvin; Chidambaram, Ramalingam

    2014-01-20

    Electronic waste or e-waste is one of the emerging problems in developed and developing countries worldwide. It comprises of a multitude of components with valuable materials, some containing toxic substances, that can have an adverse impact on human health and the environment. Previous studies show that India has generated 0.4 million tons of e-waste in 2010 which may increase to 0.5 to 0.6 million tons by 2013-2014. Coupled with lack of appropriate infrastructural facilities and procedures for its disposal and recycling have posed significant importance for e-waste management in India. In general, e-waste is generated through recycling of e-waste and also from dumping of these wastes from other countries. More of these wastes are ending up in dumping yards and recycling centers, posing a new challenge to the environment and policy makers as well. In general electronic gadgets are meant to make our lives happier and simpler, but the toxicity it contains, their disposal and recycling becomes a health nightmare. Most of the users are unaware of the potential negative impact of rapidly increasing use of computers, monitors, and televisions. This review article provides a concise overview of India's current e-waste scenario, namely magnitude of the problem, environmental and health hazards, current disposal, recycling operations and mechanisms to improve the condition for better environment.

  9. Electronic waste – an emerging threat to the environment of urban India

    PubMed Central

    2014-01-01

    Electronic waste or e-waste is one of the emerging problems in developed and developing countries worldwide. It comprises of a multitude of components with valuable materials, some containing toxic substances, that can have an adverse impact on human health and the environment. Previous studies show that India has generated 0.4 million tons of e-waste in 2010 which may increase to 0.5 to 0.6 million tons by 2013–2014. Coupled with lack of appropriate infrastructural facilities and procedures for its disposal and recycling have posed significant importance for e-waste management in India. In general, e-waste is generated through recycling of e-waste and also from dumping of these wastes from other countries. More of these wastes are ending up in dumping yards and recycling centers, posing a new challenge to the environment and policy makers as well. In general electronic gadgets are meant to make our lives happier and simpler, but the toxicity it contains, their disposal and recycling becomes a health nightmare. Most of the users are unaware of the potential negative impact of rapidly increasing use of computers, monitors, and televisions. This review article provides a concise overview of India’s current e-waste scenario, namely magnitude of the problem, environmental and health hazards, current disposal, recycling operations and mechanisms to improve the condition for better environment. PMID:24444377

  10. A comprehensive framework for the assessment of new end uses in recycled water schemes.

    PubMed

    Chen, Zhuo; Ngo, Huu Hao; Guo, Wenshan; Lim, Richard; Wang, Xiaochang C; O'Halloran, Kelly; Listowski, Andrzej; Corby, Nigel; Miechel, Clayton

    2014-02-01

    Nowadays, recycled water has provided sufficient flexibility to satisfy short-term freshwater needs and increase the reliability of long-term water supplies in many water scarce areas, which becomes an essential component of integrated water resources management. However, the current applications of recycled water are still quite limited that are mainly associated with non-potable purposes such as irrigation, industrial uses, toilet flushing and car washing. There is a large potential to exploit and develop new end uses of recycled water in both urban and rural areas. This can greatly contribute to freshwater savings, wastewater reduction and water sustainability. Consequently, the paper identified the potentials for the development of three recycled water new end uses, household laundry, livestock feeding and servicing, and swimming pool, in future water use market. To validate the strengths of these new applications, a conceptual decision analytic framework was proposed. This can be able to facilitate the optional management strategy selection process and thereafter provide guidance on the future end use studies within a larger context of the community, processes, and models in decision-making. Moreover, as complex evaluation criteria were selected and taken into account to narrow down the multiple management alternatives, the methodology can successfully add transparency, objectivity and comprehensiveness to the assessment. Meanwhile, the proposed approach could also allow flexibility to adapt to particular circumstances of each case under study. © 2013.

  11. Enhancement of the recycling of waste Ni-Cd and Ni-MH batteries by mechanical treatment.

    PubMed

    Huang, Kui; Li, Jia; Xu, Zhenming

    2011-06-01

    A serious environmental problem was presented by waste batteries resulting from lack of relevant regulations and effective recycling technologies in China. The present work considered the enhancement of waste Ni-Cd and Ni-MH batteries recycling by mechanical treatment. In the process of characterization, two types of waste batteries (Ni-Cd and Ni-MH batteries) were selected and their components were characterized in relation to their elemental chemical compositions. In the process of mechanical separation and recycling, waste Ni-Cd and Ni-MH batteries were processed by a recycling technology without a negative impact on the environment. The technology contained mechanical crushing, size classification, gravity separation, and magnetic separation. The results obtained demonstrated that: (1) Mechanical crushing was an effective process to strip the metallic parts from separators and pastes. High liberation efficiency of the metallic parts from separators and pastes was attained in the crushing process until the fractions reached particle sizes smaller than 2mm. (2) The classified materials mainly consisted of the fractions with the size of particles between 0.5 and 2mm after size classification. (3) The metallic concentrates of the samples were improved from around 75% to 90% by gravity separation. More than 90% of the metallic materials were separated into heavy fractions when the particle sizes were larger than 0.5mm. (4) The size of particles between 0.5 and 2mm and the rotational speed of the separator between 30 and 60 rpm were suitable for magnetic separation during industrial application, with the recycling efficiency exceeding 95%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Tire Recycling

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Cryopolymers, Inc. tapped NASA expertise to improve a process for recycling vehicle tires by converting shredded rubber into products that can be used in asphalt road beds, new tires, hoses, and other products. In conjunction with the Southern Technology Applications Center and Stennis Space Center, NASA expertise in cryogenic fuel-handling needed for launch vehicle and spacecraft operations was called upon to improve the recycling concept. Stennis advised Cryopolymers on the type of equipment required, as well as steps to reduce the amount of liquid nitrogen used in the process. They also guided the company to use more efficient ways to control system hardware. It is estimated that more than 300 million tires nationwide are produced per year. Cryopolymers expects to reach a production rate of 5,000 tires recycled per day.

  13. Enhancing biomass energy yield from pilot-scale high rate algal ponds with recycling.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-01

    This paper investigates the effect of recycling on biomass energy yield in High Rate Algal Ponds (HRAPs). Two 8 m(3) pilot-scale HRAPs treating primary settled sewage were operated in parallel and monitored over a 2-year period. Volatile suspended solids were measured from both HRAPs and their gravity settlers to determine biomass productivity and harvest efficiency. The energy content of the biomass was also measured. Multiplying biomass productivity and harvest efficiency gives the 'harvestable biomass productivity' and multiplying this by the energy content defines the actual 'biomass energy yield'. In Year 1, algal recycling was implemented in one of the ponds (HRAPr) and improved harvestable biomass productivity by 58% compared with the control (HRAPc) without recycling (HRAPr: 9.2 g/m(2)/d; HRAPc: 5.8 g/m(2)/d). The energy content of the biomass grown in HRAPr, which was dominated by Pediastrun boryanum, was 25% higher than the control HRAPc which contained a mixed culture of 4-5 different algae (HRAPr: 21.5 kJ/g; HRAPc: 18.6 kJ/g). In Year 2, HRAPc was then seeded with the biomass harvested from the P. boryanum dominated HRAPr. This had the effect of shifting algal dominance from 89% Dictyosphaerium sp. (which is poorly-settleable) to over 90% P. boryanum in 5 months. Operation of this pond was then switched to recycling its own harvested biomass, which maintained P. boryanum dominance for the rest of Year 2. This result confirms, for the first time in the literature, that species control is possible for similarly sized co-occurring algal colonies in outdoor HRAP by algal recycling. With regard to the overall improvement in biomass energy yield, which is a critical parameter in the context of algal cultivation for biofuels, the combined improvements that recycling triggered in biomass productivity, harvest efficiency and energy content enhanced the harvested biomass energy yield by 66% (HRAPr: 195 kJ/m(2)/day; HRAPc: 118 kJ/m(2)/day). Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Airborne PCDD/Fs in two e-waste recycling regions after stricter environmental regulations.

    PubMed

    Zhang, Manwen; Feng, Guixian; Yin, Wenhua; Xie, Bing; Ren, Mingzhong; Xu, Zhencheng; Zhang, Sukun; Cai, Zongwei

    2017-12-01

    Since the 2010s, the authorities of Guangdong province and local governments have enhanced law enforcement and environmental regulations to abolish open burning, acid washing, and other uncontrolled e-waste recycling activities. In this study, ambient air and indoor dust near different kinds of e-waste recycling processes were collected in Guiyu and Qingyuan to investigate the pollution status of particles and polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) after stricter environmental regulations. PM 2.5 and PCDD/Fs both showed significantly reduced levels in the two regions compared with the documented data. The congener distribution and principal component analysis results also confirmed the significant differences between the current PCDD/Fs pollution characterizations and the historical ones. The estimated total intake doses via air inhalation and dust ingestion of children in the recycling region of Guiyu ranged from 10 to 32pgTEQ/(kg•day), which far exceeded the tolerable daily intake (TDI) limit (1-4pgTEQ/(kg•day). Although the measurements showed a significant reduction of the release of PCDD/Fs, the pollution status was still considered severe in Guiyu town after stricter regulations were implemented. Copyright © 2017. Published by Elsevier B.V.

  15. Dining at the periodic table: metals concentrations as they relate to recycling.

    PubMed

    Johnson, Jeremiah; Harper, E M; Lifset, Reid; Graedel, T E

    2007-03-01

    A correlation between the prices of a variety of substances and their dilutions in their initial matrices was shown in 1959 by T.K. Sherwood. The research presented here shows that the relationship holds for engineering metals today, which we termed the metals-specific Sherwood plot. The concentrations of metals in products (e.g., printed wiring boards and automobiles) and waste streams (e.g., municipal solid waste, and construction and demolition debris) were plotted with this correlation. In addition, for the products and waste streams that undergo disassembly at end-of-life, the metals concentrations of the disassembled components were also plotted. It was found that most of the metals that are currently targeted for recycling have post-disassembly concentrations that lie above the metals-specific Sherwood plot (i.e., have concentrations that are more enriched than minimum profitable ore grades). This suggests that material concentration plays a role in the viability of recycling at end-of-life. As products grow in complexity and the variety of materials used, analyses such as this one provide insight for policymakers and those interested in material sustainability into macro-level trends of material use and future recycling practices.

  16. Environmental application of gamma technology: Update on the Canadian sludge irradiator

    NASA Astrophysics Data System (ADS)

    Swinwood, Jean F.; Fraser, Frank M.

    1993-10-01

    Waste treatment and disposal technologies have recently been subjected to increasing public and regulatory scrutiny. Concern for the environment and a heightened awareness of potential health hazards that could result from insufficient or inappropriate waste handling methods have combined to push waste generators in their search for new treatment alternatives. Gamma technology can offer a new option for the treatment of potentially infectious wastes, including municipal sewage sludge. Sewage sludge contains beneficial plant nutrients and a high organic component that make it ideal as a soil conditioning agent or fertilizer bulking material. It also carries potentially infectious microorganisms which limit opportunities for beneficial recycling of sludges. Gamma irradiation-disinfection of these sludges offers a reliable, fast and efficient method for safe sludge recycling. Nordion International's Market Development Division was created in 1987 as part of a broad corporate reorganization. It was given an exclusive mandate to develop new applications of gamma irradiation technology and markets for these new applications. Nordion has since explored and developed opportunities in food irradiation, pharmaceutical/cosmetic products irradiation, biomedical waste sterilization, airline waste disinfection, and sludge disinfection for recycling. This paper focuses on the last of these -a proposed sludge recycling facility that incorporates a cobalt 60 sludge irradiator.

  17. Association between lung function in school children and exposure to three transition metals from an e-waste recycling area.

    PubMed

    Zheng, Guina; Xu, Xijin; Li, Bin; Wu, Kusheng; Yekeen, Taofeek Akangbe; Huo, Xia

    2013-01-01

    The informal processing of electronic waste or e-waste contributes to the release of high concentrations of transition metals into the ambient air. The damage caused by chromium, nickel and manganese exposure on lung function in school children from an e-waste recycling area and the role of oxidative stress in this process were evaluated. We recruited school children (n=144, 8-13 years) from an e-waste recycling area in China compared with the control. Spirometry was performed to assess lung function status. The blood levels of chromium, nickel and manganese, antioxidant enzyme activities and lipid peroxidation of the subjects were examined. The concentrations of blood manganese (bMn) and serum nickel (sNi) in the exposed group were significantly higher than those in controls for all three age groups. The forced vital capacity value of boys aged 8-9 years was significantly lower than that of the control. Malondialdehyde levels and superoxide dismutase activities increased significantly in children aged 8-9 years from e-waste environment, but catalase activities declined. School children from an e-waste recycling area were exposed to high levels of the three transition metals. The accumulation of bMn and sNi may be risk factors for oxidative damage and decreased pulmonary function.

  18. Physical and chemical controls on habitats for life in the deep subsurface beneath continents and ice

    PubMed Central

    Parnell, John; McMahon, Sean

    2016-01-01

    The distribution of life in the continental subsurface is likely controlled by a range of physical and chemical factors. The fundamental requirements are for space to live, carbon for biomass and energy for metabolic activity. These are inter-related, such that adequate permeability is required to maintain a supply of nutrients, and facies interfaces invite colonization by juxtaposing porous habitats with nutrient-rich mudrocks. Viable communities extend to several kilometres depth, diminishing downwards with decreasing porosity. Carbon is contributed by recycling of organic matter originally fixed by photosynthesis, and chemoautotrophy using crustal carbon dioxide and methane. In the shallow crust, the recycled component predominates, as processed kerogen or hydrocarbons, but abiotic carbon sources may be significant in deeper, metamorphosed crust. Hydrogen to fuel chemosynthesis is available from radiolysis, mechanical deformation and mineral alteration. Activity in the subcontinental deep biosphere can be traced through the geological record back to the Precambrian. Before the colonization of the Earth's surface by land plants, a geologically recent event, subsurface life probably dominated the planet's biomass. In regions of thick ice sheets the base of the ice sheet, where liquid water is stable and a sediment layer is created by glacial erosion, can be regarded as a deep biosphere habitat. This environment may be rich in dissolved organic carbon and nutrients accumulated from dissolving ice, and from weathering of the bedrock and the sediment layer. PMID:26667907

  19. Why Waste a Second Chance? A Small Town Guide to Recycling.

    ERIC Educational Resources Information Center

    National Association of Towns and Townships, Washington, DC.

    In many communities, garbage disposal--solid waste management--is the third largest municipal expenditure and a fast growing budget item. Many small local governments have controlled the growth of these costs by recycling up to 40% of the total solid waste they produce. This guidebook can help communities identify and develop opportunities…

  20. Comparing Determinants of Perceived and Actual Recycling Skills: The Role of Motivational, Behavioral and Dispositional Factors

    ERIC Educational Resources Information Center

    Passafaro, Paola; Livi, Stefano

    2017-01-01

    An empirical investigation assessed the role of different factors of motivational, behavioral, and dispositional nature in the prediction of both perceived and actual skills concerning household waste recycling. A structured questionnaire (measuring attitudes, social norms, perceived control, need for cognitive closure, self-reported household…

  1. Roles of surfactants in flotation deinking

    Treesearch

    Yulin Zhao; Yulin Deng; J.Y. Zhu

    2004-01-01

    Flotation deinking is a common practice for removing ink from wastepaper, and it is becoming a key process in many recycling paper mills. Flotation deinking was successfully introduced to the paper recycling industry in the 1980s, and its applications in wax removal, sticky control, and fiber fractionation have attracted great research interest. A successful flotation...

  2. 40 CFR 799.6784 - TSCA water solubility: Column elution method; shake flask method.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....053 (3) The column should be connected to a recycling pump capable of controlling flows of... the carrier is not achieved due to partition effects on the surface of the carrier. (2) The loading of... this, the recycling pump is connected and the apparatus allowed to run until equilibration is...

  3. 40 CFR 799.6784 - TSCA water solubility: Column elution method; shake flask method.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....053 (3) The column should be connected to a recycling pump capable of controlling flows of... the carrier is not achieved due to partition effects on the surface of the carrier. (2) The loading of... this, the recycling pump is connected and the apparatus allowed to run until equilibration is...

  4. 40 CFR 799.6784 - TSCA water solubility: Column elution method; shake flask method.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....053 (3) The column should be connected to a recycling pump capable of controlling flows of... the carrier is not achieved due to partition effects on the surface of the carrier. (2) The loading of... this, the recycling pump is connected and the apparatus allowed to run until equilibration is...

  5. 40 CFR 799.6784 - TSCA water solubility: Column elution method; shake flask method.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....053 (3) The column should be connected to a recycling pump capable of controlling flows of... the carrier is not achieved due to partition effects on the surface of the carrier. (2) The loading of... this, the recycling pump is connected and the apparatus allowed to run until equilibration is...

  6. Comparison of aerobically-treated and untreated crop residue as a source of recycled nutrients in a recirculating hydroponic system

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Garland, J. L.; Strayer, R. F.; Finger, B. W.; Wheeler, R. M.

    1996-01-01

    This study compared the growth of potato plants on nutrients recycled from inedible potato biomass. Plants were grown for 105 days in recirculating, thin-film hydroponic systems containing four separate nutrient solution treatments: (1) modified half-strength Hoagland's (control), 2) liquid effluent from a bioreactor containing inedible potato biomass, 3) filtered (0.2 micrometer) effluent, and 4) the water soluble fraction of inedible potato biomass (leachate). Approximately 50% of the total nutrient requirement in treatments 2-4 were provided (recycled) from the potato biomass. Leachate had an inhibitory effect on leaf conductance, photosynthetic rate, and growth (50% reduction in plant height and 60% reduction in tuber yield). Plants grown on bioreactor effluent (filtered or unfiltered) were similar to the control plants. These results indicated that rapidly degraded, water soluble organic material contained in the inedible biomass, i.e., material in leachate, brought about phytotoxicity in the hydroponic culture of potato. Recalcitrant, water soluble organic material accumulated in all nutrient recycling treatments (650% increase after 105 days), but no increase in rhizosphere microbial numbers was observed.

  7. Identification of lanthanum-specific peptides for future recycling of rare earth elements from compact fluorescent lamps.

    PubMed

    Lederer, Franziska L; Curtis, Susan B; Bachmann, Stefanie; Dunbar, W Scott; MacGillivray, Ross T A

    2017-05-01

    As components of electronic scrap, rare earth minerals are an interesting but little used source of raw materials that are highly important for the recycling industry. Currently, there exists no cost-efficient technology to separate rare earth minerals from an electronic scrap mixture. In this study, phage surface display has been used as a key method to develop peptides with high specificity for particular inorganic targets in electronic scrap. Lanthanum phosphate doped with cerium and terbium as part of the fluorescent phosphors of spent compact fluorescent lamps (CFL) was used as a target material of economic interest to test the suitability of the phage display method to the separation of rare earth minerals. One random pVIII phage library was screened for peptide sequences that bind specifically to the fluorescent phosphor LaPO 4 :Ce 3+ ,Tb 3+ (LAP). The library contained at least 100 binding pVIII peptides per phage particle with a diversity of 1 × 10 9 different phage per library. After three rounds of enrichment, a phage clone containing the surface peptide loop RCQYPLCS was found to bind specifically to LAP. Specificity and affinity of the identified phage bound peptide was confirmed by using binding and competition assays, immunofluorescence assays, and zeta potential measurements. Binding and immunofluorescence assays identified the peptide's affinity for the fluorescent phosphor components CAT (CeMgAl 11 O 19 :Tb 3+ ) and BAM (BaMgAl 10 O 17 :Eu 2+ ). No affinity was found for other fluorescent phosphor components such as YOX (Y 2 O 3 :Eu 3+ ). The binding specificity of the RCQYPLCS peptide loop was improved 3-51-fold by using alanine scanning mutagenesis. The identification of peptides with high specificity and affinity for special components in the fluorescent phosphor in CFLs provides a potentially new strategic approach to rare earth recycling. Biotechnol. Bioeng. 2017;114: 1016-1024. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. A Novel Aqueous Two Phase System Composed of Surfactant and Xylitol for the Purification of Lipase from Pumpkin (Cucurbita moschata) Seeds and Recycling of Phase Components.

    PubMed

    Amid, Mehrnoush; Manap, Mohd Yazid; Hussin, Muhaini; Mustafa, Shuhaimi

    2015-06-17

    Lipase is one of the more important enzymes used in various industries such as the food, detergent, pharmaceutical, textile, and pulp and paper sectors. A novel aqueous two-phase system composed of surfactant and xylitol was employed for the first time to purify lipase from Cucurbita moschata. The influence of different parameters such as type and concentration of surfactants, and the composition of the surfactant/xylitol mixtures on the partitioning behavior and recovery of lipase was investigated. Moreover, the effect of system pH and crude load on the degree of purification and yield of the purified lipase were studied. The results indicated that the lipase was partitioned into the top surfactant rich phase while the impurities partitioned into the bottom xylitol-rich phase using an aqueous two phase system composed of 24% (w/w) Triton X-100 and 20% (w/w) xylitol, at 56.2% of tie line length (TLL), (TTL is one of the important parameters in this study and it is determined from a bimodal curve in which the tie-line connects two nodes on the bimodal, that represent concentration of phase components in the top and bottom phases) and a crude load of 25% (w/w) at pH 8.0. Recovery and recycling of components was also measured in each successive step process. The enzyme was successfully recovered by the proposed method with a high purification factor of 16.4 and yield of 97.4% while over 97% of the phase components were also recovered and recycled. This study demonstrated that the proposed novel aqueous two phase system method is more efficient and economical than the traditional aqueous two phase system method for the purification and recovery of the valuable enzyme lipase.

  9. Reactive compatibilization in polymer alloys, recyclates and composites

    NASA Astrophysics Data System (ADS)

    Czvikovszky, T.; Hargitai, H.; Rácz, I.; Csukat, G.

    1999-05-01

    The efficiency of all composite materials depends on the fiber-matrix interface and its ability to transfer stress from the matrix to the fiber. Radiation treatment is a possible way to bind together the main components of the composite. In our earlier work we applied acrylic oligomer-treated fibers irradiated with low energy electron beam to reinforce recycled polypropylene. In the present work the interaction between the matrix and fibers - PAN and glass fibers - was investigated by ESCA (Electron Spectroscopy for Chemical Analysis). On the other hand, the conventional way of compatibilization - the effect of using maleic anhydride grafted PP as a coupling agent - was examined in flax fiber-PP composites.

  10. Comparative Lifecycle Energy Analysis: Theory and Practice.

    ERIC Educational Resources Information Center

    Morris, Jeffrey; Canzoneri, Diana

    1992-01-01

    Explores the position that more energy is conserved through recycling secondary materials than is generated from municipal solid waste incineration. Discusses one component of a lifecycle analysis--a comparison of energy requirements for manufacturing competing products. Includes methodological issues, energy cost estimates, and difficulties…

  11. Crop yield summary for three wetland reservoir subirrigation systems in northwest Ohio

    USDA-ARS?s Scientific Manuscript database

    Wetland Reservoir Subirrigation Systems (WRSIS) are innovative agricultural water management and recycling systems comprised of three main components; a constructed wetland, a water storage reservoir, and cropland containing subsurface drainage pipe systems. Surface runoff and subsurface drainage f...

  12. 40 CFR 420.01 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... treatment system including schematic diagrams showing the major treatment system components and flow rates... request for consideration of alternative effluent limitations is to include: (i) A schematic diagram of... waters entering the treatment facility; discharge and recycle flow rates for each water source and each...

  13. 40 CFR 420.01 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... treatment system including schematic diagrams showing the major treatment system components and flow rates... request for consideration of alternative effluent limitations is to include: (i) A schematic diagram of... waters entering the treatment facility; discharge and recycle flow rates for each water source and each...

  14. 40 CFR 420.01 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... treatment system including schematic diagrams showing the major treatment system components and flow rates... request for consideration of alternative effluent limitations is to include: (i) A schematic diagram of... waters entering the treatment facility; discharge and recycle flow rates for each water source and each...

  15. 40 CFR 420.01 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... treatment system including schematic diagrams showing the major treatment system components and flow rates... request for consideration of alternative effluent limitations is to include: (i) A schematic diagram of... waters entering the treatment facility; discharge and recycle flow rates for each water source and each...

  16. Assessment of municipal solid waste generation and recyclable materials potential in Kuala Lumpur, Malaysia.

    PubMed

    Saeed, Mohamed Osman; Hassan, Mohd Nasir; Mujeebu, M Abdul

    2009-07-01

    This paper presents a forecasting study of municipal solid waste generation (MSWG) rate and potential of its recyclable components in Kuala Lumpur (KL), the capital city of Malaysia. The generation rates and composition of solid wastes of various classes such as street cleansing, landscape and garden, industrial and constructional, institutional, residential and commercial are analyzed. The past and present trends are studied and extrapolated for the coming years using Microsoft office 2003 Excel spreadsheet assuming a linear behavior. The study shows that increased solid waste generation of KL is alarming. For instance, the amount of daily residential SWG is found to be about 1.62 kg/capita; with the national average at 0.8-0.9 kg/capita and is expected to be increasing linearly, reaching to 2.23 kg/capita by 2024. This figure seems reasonable for an urban developing area like KL city. It is also found that, food (organic) waste is the major recyclable component followed by mix paper and mix plastics. Along with estimated population growth and their business activities, it has been observed that the city is still lacking in terms of efficient waste treatment technology, sufficient fund, public awareness, maintaining the established norms of industrial waste treatment etc. Hence it is recommended that the concerned authority (DBKL) shall view this issue seriously.

  17. Nitric acid recycling and copper nitrate recovery from effluent.

    PubMed

    Jô, L F; Marcus, R; Marcelin, O

    2014-01-01

    The recycling of nitric acid and copper nitrate contained in an industrial effluent was studied. The experiments conducted on such a medium showed that the presence of copper nitrate significantly improves nitric acid-water separation during distillation in an azeotropic medium. At the temperature of the azeotrope, however, this metal salt starts to precipitate, making the medium pasty, thus inhibiting the nitric acid extraction process. The optimisation of parameters such as column efficiency and adding water to the boiler at the azeotrope temperature are recommended in this protocol in order to collect the various components while avoiding the formation of by-products: NOx compounds. Thus, the absence of column, along with the addition of a small volume of water at a temperature of 118 °C, significantly increases the yield, allowing 94 % nitric acid to be recovered at the end of the process, along with the residual copper nitrate. The resulting distillate, however, is sufficiently dilute to not be used as is. Rectification is required to obtain concentrated nitric acid at 15 mol·l(-1), along with a weakly acidic distillate from the distillation front. This latter is quenched using potassium hydroxide and is used as a fertiliser solution for horticulture or sheltered market gardening. This process thus allows complete recycling of all the medium's components, including that of the distillate resulting from the nitric acid rectification operation.

  18. Consumer-mediated recycling and cascading trophic interactions.

    PubMed

    Leroux, Shawn J; Loreau, Michel

    2010-07-01

    Cascading trophic interactions mediated by consumers are complex phenomena, which encompass many direct and indirect effects. Nonetheless, most experiments and theory on the topic focus uniquely on the indirect, positive effects of predators on producers via regulation of herbivores. Empirical research in aquatic ecosystems, however, demonstrate that the indirect, positive effects of consumer-mediated recycling on primary producer stocks may be larger than the effects of herbivore regulation, particularly when predators have access to alternative prey. We derive an ecosystem model with both recipient- and donor-controlled trophic relationships to test the conditions of four hypotheses generated from recent empirical work on the role of consumer-mediated recycling in cascading trophic interactions. Our model predicts that predator regulation of herbivores will have larger, positive effects on producers than consumer-mediated recycling in most cases but that consumer-mediated recycling does generally have a positive effect on producer stocks. We demonstrate that herbivore recycling will have larger effects on producer biomass than predator recycling when turnover rates and recycling efficiencies are high and predators prefer local prey. In addition, predictions suggest that consumer-mediated recycling has the largest effects on primary producers when predators prefer allochthonous prey and predator attack rates are high. Finally, our model predicts that consumer-mediated recycling effects may not be largest when external nutrient loading is low. Our model predictions highlight predator and prey feeding relationships, turnover rates, and external nutrient loading rates as key determinants of the strength of cascading trophic interactions. We show that existing hypotheses from specific empirical systems do not occur under all conditions, which further exacerbates the need to consider a broad suite of mechanisms when investigating trophic cascades.

  19. Molybdenum isotope systematics in subduction zones

    NASA Astrophysics Data System (ADS)

    König, Stephan; Wille, Martin; Voegelin, Andrea; Schoenberg, Ronny

    2016-08-01

    This study presents Mo isotope data for arc lavas from different subduction zones that range between δ 98 / 95 Mo = - 0.72 and + 0.07 ‰. Heaviest isotope values are observed for the most slab fluid dominated samples. Isotopically lighter signatures are related to increasing relevance of terrigenous sediment subduction and sediment melt components. Our observation complements previous conclusions that an isotopically heavy Mo fluid flux likely mirrors selective incorporation of isotopically light Mo in secondary minerals within the subducting slab. Analogue to this interpretation, low δ 98 / 95 Mo flux that coincides with terrigenous sediment subduction and sediment melting cannot be simply related to a recycled input signature. Instead, breakdown of the controlling secondary minerals during sediment melting may release the light component and lead to decreasing δ 98 / 95 Mo influx into subarc mantle sources. The natural range between slab dehydration and hydrous sediment melting may thus cause a large spread of δ 98 / 95 Mo in global subduction zone magmas.

  20. Effects of recycling on the biomechanical characteristics of retrieved orthodontic miniscrews

    PubMed Central

    Yun, Soon-Dong; Choi, Sung-Hwan; Cha, Jung-Yul; Yu, Hyung-Seog; Kim, Kwang-Mahn; Kim, Jin

    2017-01-01

    Objective The aim of this study was to compare recycled and unused orthodontic miniscrews to determine the feasibility of reuse. The comparisons included both miniscrews with machined surfaces (MS), and those with etched surfaces (ES). Methods Retrieved MS and ES were further divided into three subgroups according to the assigned recycling procedure: group A, air-water spray; group B, mechanical cleaning; and group C, mechanical and chemical cleaning. Unused screws were used as controls. Scanning electron microscopy, energy-dispersive X-ray spectrometry, insertion time and maximum insertion torque measurements in artificial bone, and biological responses in the form of periotest values (PTV), bone–implant contact ratio (BIC), and bone volume ratio (BV) were assessed. Results Morphological changes after recycling mainly occurred at the screw tip, and the cortical bone penetration success rate of recycled screws was lower than that of unused screws. Retrieved ES needed more thorough cleaning than retrieved MS to produce a surface composition similar to that of unused screws. There were no significant differences in PTV or BIC between recycled and unused screws, while the BV of the former was significantly lower than that of the latter (p < 0.05). Conclusions These results indicate that reuse of recycled orthodontic miniscrews may not be feasible from the biomechanical aspect. PMID:28670565

  1. Effect of recycling protocol on mechanical strength of used mini-implants.

    PubMed

    Estelita, Sérgio; Janson, Guilherme; Chiqueto, Kelly; Ferreira, Eduardo Silveira

    2014-01-01

    Purpose. This study evaluated the influence of recycling process on the torsional strength of mini-implants. Materials and Methods. Two hundred mini-implants were divided into 4 groups with 50 screws equally distributed in five diameters (1.3 to 1.7 mm): control group (CG): unused mini-implants, G1: mini-implants inserted in pig iliac bone and removed, G2: same protocol of group 1 followed by sonication for cleaning and autoclave sterilization, and G3: same insertion protocol of group 1 followed by sonication for cleaning before and after sandblasting (Al2O3-90 µ) and autoclave sterilization. G2 and G3 mini-implants were weighed after recycling process to evaluate weight loss (W). All the screws were broken to determine the fracture torque (FT). The influence of recycling process on FT and W was evaluated by ANOVA, Mann-Whitney, and multiple linear regression analysis. Results. FT was not influenced by recycling protocols even when sandblasting was added. Sandblasting caused weight loss due to abrasive mechanical stripping of screw surface. Screw diameter was the only variable that affected FT. Conclusions. Torsional strengths of screws that underwent the recycling protocols were not changed. Thus, screw diameter choice can be a more critical step to avoid screw fracture than recycling decision.

  2. Integral approaches to wastewater treatment plant upgrading for odor prevention: Activated Sludge and Oxidized Ammonium Recycling.

    PubMed

    Estrada, José M; Kraakman, N J R; Lebrero, R; Muñoz, R

    2015-11-01

    Traditional physical/chemical end-of-the-pipe technologies for odor abatement are relatively expensive and present high environmental impacts. On the other hand, biotechnologies have recently emerged as cost-effective and environmentally friendly alternatives but are still limited by their investment costs and land requirements. A more desirable approach to odor control is the prevention of odorant formation before being released to the atmosphere, but limited information is available beyond good design and operational practices of the wastewater treatment process. The present paper reviews two widely applicable and economic alternatives for odor control, Activated Sludge Recycling (ASR) and Oxidized Ammonium Recycling (OAR), by discussing their fundamentals, key operating parameters and experience from the available pilot and field studies. Both technologies present high application potential using readily available plant by-products with a minimum plant upgrading, and low investment and operating costs, contributing to the sustainability and economic efficiency of odor control at wastewater treatment facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Materials for a new generation of vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grobstein, T.

    1995-12-31

    The Partnership for a New Generation of Vehicles (PNGV) is a national initiative with three goals: first, to significantly improve national competitiveness in manufacturing; second, to implement commercially viable innovations from ongoing research on conventional vehicles, and third, to develop a vehicle to achieve up to three times the fuel efficiency of today`s comparable vehicle (i.e., the 1994 Chrysler Concorde, Ford Taurus, and Chevrolet Lumina). Note this vehicle will have the equivalent customer purchase price of today`s vehicles adjusted for economics, while meeting the customers` needs for quality, performance, and utility. Eight federal agencies are currently contributing to these goals,more » as well as the three principal US automobile manufacturers, numerous automotive component suppliers, research laboratories, and universities. Materials research and development is a significant effort within PNGV. The goals in this area include development of lightweight, recyclable materials for structural applications, high strength, long-life, high temperature materials for engine components, improved materials for alternative propulsion and energy storage systems, and cost-effective process technologies and component fabrication methods. Application of advanced materials to automobiles will involve consideration of diverse factors, including weight savings, affordability, recyclability, crashworthiness, repairability, and manufacturability.« less

  4. International Space Station (ISS)

    NASA Image and Video Library

    2000-01-01

    This diagram shows the flow of water recovery and management in the International Space Station (ISS). The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center is responsible for the regenerative ECLSS hardware, as well as providing technical support for the rest of the system. The regenerative ECLSS, whose main components are the Water Recovery System (WRS), and the Oxygen Generation System (OGS), reclaims and recycles water oxygen. The ECLSS maintains a pressurized habitation environment, provides water recovery and storage, maintains and provides fire detection/ suppression, and provides breathable air and a comfortable atmosphere in which to live and work within the ISS. The ECLSS hardware will be located in the Node 3 module of the ISS.

  5. Reggies/flotillins interact with Rab11a and SNX4 at the tubulovesicular recycling compartment and function in transferrin receptor and E-cadherin trafficking

    PubMed Central

    Solis, Gonzalo P.; Hülsbusch, Nikola; Radon, Yvonne; Katanaev, Vladimir L.; Plattner, Helmut; Stuermer, Claudia A. O.

    2013-01-01

    The lipid raft proteins reggie-1 and -2 (flotillins) are implicated in membrane protein trafficking but exactly how has been elusive. We find that reggie-1 and -2 associate with the Rab11a, SNX4, and EHD1–decorated tubulovesicular recycling compartment in HeLa cells and that reggie-1 directly interacts with Rab11a and SNX4. Short hairpin RNA–mediated down-regulation of reggie-1 (and -2) in HeLa cells reduces association of Rab11a with tubular structures and impairs recycling of the transferrin–transferrin receptor (TfR) complex to the plasma membrane. Overexpression of constitutively active Rab11a rescues TfR recycling in reggie-deficient HeLa cells. Similarly, in a Ca2+ switch assay in reggie-depleted A431 cells, internalized E-cadherin is not efficiently recycled to the plasma membrane upon Ca2+ repletion. E-cadherin recycling is rescued, however, by overexpression of constitutively active Rab11a or SNX4 in reggie-deficient A431 cells. This suggests that the function of reggie-1 in sorting and recycling occurs in association with Rab11a and SNX4. Of interest, impaired recycling in reggie-deficient cells leads to de novo E-cadherin biosynthesis and cell contact reformation, showing that cells have ways to compensate the loss of reggies. Together our results identify reggie-1 as a regulator of the Rab11a/SNX4-controlled sorting and recycling pathway, which is, like reggies, evolutionarily conserved. PMID:23825023

  6. Evaporation Of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Effluent Management Facility Core Simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, D.; Nash, C.; Mcclane, D.

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator, in the Effluent Management Facility (EMF), and then return it tomore » the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator, so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would reduce the need for closely integrated operation of the LAW melter and the Pretreatment Facilities. Long-term implementation of this option after WTP start-up would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other operational complexities such a recycle stream presents. In order to accurately plan for the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to accurately account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, and determine the distribution of key regulatory-impacting constituents. The LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures, have limited solubility in the glass waste form, and represent a materials corrosion concern, such as halides and sulfate. Because this stream will recycle within WTP, these components will accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfates in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to demonstrate evaporation of a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations, in order to predict the composition of the effluents from the EMF evaporator to aid in planning for their disposition. This document describes the results of that test using the core simulant. This simulant formulation is designated as the “core simulant”; other additives will be included for specific testing, such as volatiles for evaporation or hazardous metals for measuring leaching properties of waste forms. The results indicate that the simulant can easily be concentrated via evaporation. During that the pH adjustment step in simulant preparation, ammonium is quickly converted to ammonia, and most of the ammonia was stripped from the simulated waste and partitioned to the condensate. Additionally, it was found that after concentrating (>12x) and cooling that a small amount of LiF and Na 3(SO 4)F precipitate out of solution. With the exception of ammonia, analysis of the condensate indicated very low to below detectable levels of many of the constituents in the simulant, yielding very high decontamination factors (DF).« less

  7. Alternative polymer separation technology by centrifugal force in a melted state.

    PubMed

    Dobrovszky, Károly; Ronkay, Ferenc

    2014-11-01

    In order to upgrade polymer waste during recycling, separation should take place at high purity. The present research was aimed to develop a novel, alternative separation opportunity, where the polymer fractions were separated by centrifugal force in melted state. The efficiency of the constructed separation equipment was verified by two immiscible plastics (polyethylene terephthalate, PET; low density polyethylene, LDPE), which have a high difference of density, and of which large quantities can also be found in the municipal solid waste. The results show that the developed equipment is suitable not only for separating dry blended mixtures of PET/LDPE into pure components again, but also for separating prefabricated polymer blends. By this process it becomes possible to recover pure polymer substances from multi-component products during the recycling process. The adequacy of results was verified by differential scanning calorimetry (DSC) measurement as well as optical microscopy and Raman spectroscopy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. The assessment of source attribution of soil pollution in a typical e-waste recycling town and its surrounding regions using the combined organic and inorganic dataset.

    PubMed

    Luo, Jie; Qi, Shihua; Xie, Xianming; Gu, X W Sophie; Wang, Jinji

    2017-01-01

    Guiyu is a well-known electronic waste dismantling and recycling town in south China. Concentrations and distribution of the 21 mineral elements and 16 polycyclic aromatic hydrocarbons (PAHs) collected there were evaluated. Principal component analyses (PCA) applied to the data matrix of PAHs in the soil extracted three major factors explaining 85.7% of the total variability identified as traffic emission, coal combustion, and an unidentified source. By using metallic or metalloid element concentrations as variables, five principal components (PCs) were identified and accounted for 70.4% of the information included in the initial data matrix, which can be denoted as e-waste dismantling-related contamination, two different geological origins, anthropogenic influenced source, and marine aerosols. Combining the 21 metallic and metalloid element datasets with the 16 PAH concentrations can narrow down the coarse source and decrease the unidentified contribution to soil in the present study and therefore effectively assists the source identification process.

  9. Rethinking the sustainability of Israel's irrigation practices in the Drylands.

    PubMed

    Tal, Alon

    2016-03-01

    Broad utilization of drip irrigation technologies in Israel has contributed to the 1600 percent increase in the value of produce grown by local farmers over the past sixty-five years. The recycling of 86% of Israeli sewage now provides 50% of the country's irrigation water and is the second, idiosyncratic component in Israel's strategy to overcome water scarcity and maintain agriculture in a dryland region. The sustainability of these two practices is evaluated in light of decades of experience and ongoing research by the local scientific community. The review confirms the dramatic advantages of drip irrigation over time, relative to flood, furrow and sprinkler irrigation and its significance as a central component in agricultural production, especially under arid conditions. In contrast, empirical findings increasingly report damage to soil and to crops from salinization caused by irrigation with effluents. To be environmentally and agriculturally sustainable over time, wastewater reuse programs must ensure extremely high quality treated effluents and ultimately seek the desalinization of recycled sewage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Spent refractory reuse as a slag conditioning additive in the EAF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, James P.; Kwong, Kyei-Sing; Krabbe, Rick

    2000-01-01

    Refractories removed from service in EAF applications are typically landfilled. A joint USDOE and Steel Manufacturers Association program involving industrial cooperators is evaluating spent refractory recycling/reuse. A review of current recycling practices and a review of progress towards controlling EAF slag chemistry and properties with the additions of basic spent refractories will be discussed.

  11. Management strategies on the industrialization road of state-of-the-art technologies for e-waste recycling: the case study of electrostatic separation--a review.

    PubMed

    Xue, Mianqiang; Li, Jia; Xu, Zhenming

    2013-02-01

    Electronic waste (e-waste) management is pressing as global production has increased significantly in the past few years and is rising continuously at a fast rate. Many countries are facing hazardous e-waste mountains, most of which are disposed of by backyard recyclers, creating serious threats to public health and ecosystems. Industrialization of state-of-the-art recycling technologies is imperative to enhance the comprehensive utilization of resources and to protect the environment. This article aims to provide an overview of management strategies solving the crucial problems during the process of industrialization. A typical case study of electrostatic separation for recycling waste printed circuit boards was discussed in terms of parameters optimization, materials flow control, noise assessment, risk assessment, economic evaluation and social benefits analysis. The comprehensive view provided by the review could be helpful to the progress of the e-waste recycling industry.

  12. Modulating resonance behaviors by noise recycling in bistable systems with time delay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Zhongkui, E-mail: sunzk2008@gmail.com; Xu, Wei; Yang, Xiaoli

    In this paper, the impact of noise recycling on resonance behaviors is studied theoretically and numerically in a prototypical bistable system with delayed feedback. According to the interior cooperating and interacting activity of noise recycling, a theory has been proposed by reducing the non-Markovian problem into a two-state model, wherein both the master equation and the transition rates depend on not only the current state but also the earlier two states due to the recycling lag and the feedback delay. By virtue of this theory, the formulae of the power spectrum density and the linear response function have been foundmore » analytically. And the theoretical results are well verified by numerical simulations. It has been demonstrated that both the recycling lag and the feedback delay play a crucial role in the resonance behaviors. In addition, the results also suggest an alternative scheme to modulate or control the coherence or stochastic resonance in bistable systems with time delay.« less

  13. Use of soft hydrothermal processing to improve and recycle bedding for laboratory animals.

    PubMed

    Miyamoto, T; Li, Z; Kibushi, T; Yamasaki, N; Kasai, N

    2008-10-01

    Cage bedding for laboratory rodents can influence animal wellbeing and thus the experimental data. In addition, a large amount of used bedding containing excrement is discharged as medical waste from life science institutes and breeding companies. We developed a ground-breaking system to improve fresh bedding and recycle used bedding by applying a soft hydrothermal process with high-temperature and high-pressure dry steam. The system removes both harmful organic components and aromatic hydrocarbons that can affect animals' metabolism. The purpose of the present study was to evaluate the chemical and physical properties of the improved fresh bedding and the recycled used bedding treated by the system. The results showed that 68-99% of the predominant aromatic hydrocarbons were removed from fresh bedding treated at 0.35 MPa and 140 degrees C for 120 min ('improved bedding'). In addition, 59.4-99.0% of predominant harmful organic compounds derived from excrement were removed from used bedding treated at 0.45 MPa and 150 degrees C for 60 min ('recycled bedding'). The soft hydrothermal treatment increased the number of acidic functional groups on the bedding surface and gave it the high adsorptive efficiency of ammonia gas. Harmful substances such as microorganisms, heavy metals and pesticides decreased below the detection limit. The results clearly showed that the improved and recycled bedding is safer for laboratory rodents and has the potential to ameliorate conditions in primary and secondary enclosures (e.g. cages and animal rooms) used for maintaining laboratory animals. This process may be one of the most advanced techniques in providing an alternative to softwood and other bedding, economizing through the recycling of used bedding and reducing bedding waste from animal facilities.

  14. The cosmic baryon cycle and galaxy mass assembly in the FIRE simulations

    NASA Astrophysics Data System (ADS)

    Anglés-Alcázar, Daniel; Faucher-Giguère, Claude-André; Kereš, Dušan; Hopkins, Philip F.; Quataert, Eliot; Murray, Norman

    2017-10-01

    We use cosmological simulations from the FIRE (Feedback In Realistic Environments) project to study the baryon cycle and galaxy mass assembly for central galaxies in the halo mass range Mhalo ˜ 1010-1013 M⊙. By tracing cosmic inflows, galactic outflows, gas recycling and merger histories, we quantify the contribution of physically distinct sources of material to galaxy growth. We show that in situ star formation fuelled by fresh accretion dominates the early growth of galaxies of all masses, while the re-accretion of gas previously ejected in galactic winds often dominates the gas supply for a large portion of every galaxy's evolution. Externally processed material contributes increasingly to the growth of central galaxies at lower redshifts. This includes stars formed ex situ and gas delivered by mergers, as well as smooth intergalactic transfer of gas from other galaxies, an important but previously underappreciated growth mode. By z = 0, wind transfer, I.e. the exchange of gas between galaxies via winds, can dominate gas accretion on to ˜L* galaxies over fresh accretion and standard wind recycling. Galaxies of all masses re-accrete ≳50 per cent of the gas ejected in winds and recurrent recycling is common. The total mass deposited in the intergalactic medium per unit stellar mass formed increases in lower mass galaxies. Re-accretion of wind ejecta occurs over a broad range of time-scales, with median recycling times (˜100-350 Myr) shorter than previously found. Wind recycling typically occurs at the scale radius of the halo, independent of halo mass and redshift, suggesting a characteristic recycling zone around galaxies that scales with the size of the inner halo and the galaxy's stellar component.

  15. Uncovering the Recycling Potential of "New" WEEE in China.

    PubMed

    Zeng, Xianlai; Gong, Ruying; Chen, Wei-Qiang; Li, Jinhui

    2016-02-02

    Newly defined categories of WEEE have increased the types of China's regulated WEEE from 5 to 14. Identification of the amounts and valuable-resource components of the "new" WEEE generated is critical to solving the e-waste problem, for both governmental policy decisions and recycling enterprise expansions. This study first estimates and predicts China's new WEEE generation for the period of 2010-2030 using material flow analysis and the lifespan model of the Weibull distribution, then determines the amounts of valuable resources (e.g., base materials, precious metals, and rare-earth minerals) encased annually in WEEE, and their dynamic transfer from in-use stock to waste. Main findings include the following: (i) China will generate 15.5 and 28.4 million tons WEEE in 2020 and 2030, respectively, and has already overtaken the U.S. to become the world's leading producer of e-waste; (ii) among all the types of WEEE, air conditioners, desktop personal computers, refrigerators, and washing machines contribute over 70% of total WEEE by weight. The two categories of EEE-electronic devices and electrical appliances-each contribute about half of total WEEE by weight; (iii) more and more valuable resources have been transferred from in-use products to WEEE, significantly enhancing the recycling potential of WEEE from an economic perspective; and (iv) WEEE recycling potential has been evolving from ∼16 (10-22) billion US$ in 2010, to an anticipated ∼42 (26-58) billion US$ in 2020 and ∼73.4 (44.5-103.4) billion US$ by 2030. All the obtained results can improve the knowledge base for closing the loop of WEEE recycling, and contribute to governmental policy making and the recycling industry's business development.

  16. Solvent extraction of organic acids from stillage for its re-use in ethanol production process.

    PubMed

    Castro, G A; Caicedo, L A; Alméciga-Díaz, C J; Sanchez, O F

    2010-06-01

    Stillage re-use in the fermentation stage in ethanol production is a technique used for the reduction of water and fermentation nutrients consumption. However, the inhibitory effect on yeast growth of the by-products and feed components that remains in stillage increases with re-use and reduces the number of possible recycles. Several methods such as ultrafiltration, electrodialysis and advanced oxidation processes have been used in stillage treatment prior its re-use in the fermentation stage. Nevertheless, few studies evaluating the effect of solvent extraction as a stillage treatment option have been performed. In this work, the inhibitory effect of serial stillage recycling over ethanol and biomass production was determined, using acetic acid as a monitoring compound during the fermentation and solvent extraction process. Raw palm oil methyl ester showed the highest acetic acid extraction from the aqueous phase, presenting a distribution coefficient of 3.10 for a 1:1 aqueous phase mixture:solvent ratio. Re-using stillage without treatment allowed up to three recycles with an ethanol production of 53.7 +/- 2.0 g L(-1), which was reduced 25% in the fifth recycle. Alternatively, treated stillage allowed up to five recycles with an ethanol final concentration of 54.7 +/- 1.3 g L(- 1). These results show that reduction of acetic acid concentration by an extraction process with raw palm oil methyl ester before re-using stillage improves the number of recycles without a major effect on ethanol production. The proposed process generates a palm oil methyl ester that contains organic acids, among other by-products, that could be used for product recovery and as an alternative fuel.

  17. Education & Collection Facility GSHP Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joplin, Jeff

    The Denver Museum of Nature & Science (DMNS) designed and implemented an innovative ground source heat pump (GSHP) system for heating and cooling its new Education and Collection Facility (ECF) building addition. The project goal was to successfully design and install an open-loop GSHP system that utilized water circulating within an underground municipal recycled (non-potable) water system as the heat sink/source as a demonstration project. The expected results were to significantly reduce traditional GSHP installation costs while increasing system efficiency, reduce building energy consumption, require significantly less area and capital to install, and be economically implemented wherever access to amore » recycled water system is available. The project added to the understanding of GSHP technology by implementing the first GSHP system in the United States utilizing a municipal recycled water system as a heat sink/source. The use of this fluid through a GSHP system has not been previously documented. This use application presents a new opportunity for local municipalities to develop and expand the use of underground municipal recycled (non-potable) water systems. The installation costs for this type of technology in the building structure would be a cost savings over traditional GSHP costs, provided the local municipal infrastructure was developed. Additionally, the GSHP system functions as a viable method of heat sink/source as the thermal characteristics of the fluid are generally consistent throughout the year and are efficiently exchanged through the GSHP system and its components. The use of the recycled water system reduces the area required for bore or loop fields; therefore, presenting an application for building structures that have little to no available land use or access. This GSHP application demonstrates the viability of underground municipal recycled (non-potable) water systems as technically achievable, environmentally supportive, and an efficient system.« less

  18. Hydrogen recycling in graphite at higher fluxes

    NASA Astrophysics Data System (ADS)

    Larsson, D.; Bergsåker, H.; Hedqvist, A.

    Understanding hydrogen recycling is essential for particle control in fusion devices with a graphite wall. At Extrap T2 three different models have been used. A zero-dimensional (0D) recycling model reproduces the density behavior in plasma discharges as well as in helium glow discharge. A more sophisticated one-dimensional (1D) model is used along with a simple mixing model to explain the results in isotopic exchange experiments. Due to high fluxes some changes in the models were needed. In the paper, the three models are discussed and the results are compared with experimental data.

  19. Recycling of drinking water treatment residue as an additional medium in columns for effective P removal from eutrophic surface water.

    PubMed

    Wang, Changhui; Wu, Yu; Bai, Leilei; Zhao, Yaqian; Yan, Zaisheng; Jiang, Helong; Liu, Xin

    2018-07-01

    This study assesses the feasibility of recycling drinking water treatment residue (DWTR) to treat eutrophic surface water in a one-year continuous flow column test. Heat-treated DWTR was used as an additional medium (2%-4%) in columns in case excessive organic matter and N were released from the DWTR to surface water. The results indicated that with minimal undesirable effects on other water properties, DWTR addition substantially enhanced P removal, rendering P concentrations in treated water oligotrophic and treated water unsuitable for Microcystis aeruginosa breeding. Long-term stable P removal by DWTR-column treatment was mainly attributed to the relatively low P levels in raw water (<0.108 mg L -1 ) and high P adsorption capability of DWTR, as confirmed by increases in amorphous Al/Fe in DWTR after the tests and low adsorption of P in the mobile forms. The major components of DWTR showed minimal changes, and potential metal pollution from DWTR was not a factor to consider during recycling. DWTR also enriched functional bacterial genera that benefitted biogeochemical cycles and multiple pollution control (e.g., Dechloromonas, Geobacter, Leucobacter, Nitrospira, Rhodoplanes, and Sulfuritalea); an apparent decrease in Mycobacterium with potential pathogenicity was observed in DWTR-columns. Regardless, limited denitrification of DWTR-columns was observed as a result of low bioavailability of C in surface water. This finding indicates that DWTR can be used with other methods to ensure denitrification for enhanced treatment effects. Overall, the use of DWTR as an additional medium in column systems can potentially treat eutrophic surface water. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Feed component inhibition in ethanolic fermentation by Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiorella, B.L.; Blanch, H.W.; Wilke, C.R.

    1984-01-01

    Inhibition by secondary feed components can limit productivity and restrict process options for the production of ethanol by fermentation. New fermentation processes (such as vacuum or extractive fermentation), while selectively removing ethanol, can concentrate nonmetabolized feed components in the remaining broth. Stillage recycle to reduce stillage waste treatment results in buildup of nonmetabolized feed components. Continuous culture experiments are presented establishing an inhibition order: CaCl/sub 2/, (NH/sub 4/)/sub 2/SO/sub 4/ > NaCl, NH/sub 4/Cl > KH/sub 2/PO/sub 4/ > xylose, MgCl/sub 2/ > MgSO/sub 4/ > KCl. Reduction of the water activity alone is not an adequate predictor of themore » variation in inhibitory concentration among the different components tested. As a general trend, specific ethanol productivity increases and cell production decreases as inhibitors are added at higher concentration. It is postulated that these results can be interpreted in terms of an increase in energy requirements for cell maintenance under hypertonic (stressed) conditions. Ion and carbohydrate transport and specific toxic effects are reviewed as they related to the postulated inhibition mechanism. Glycerol production increases under hypertonic conditions and glycerol is postulated to function as a nontoxic osmoregulator. Calcium was the most inhibitory component tested, causing an 80% decline in cell mass production at 0.23 mol Ca/sup 2 +//L and calcium is present at substantial concentration in many carbohydate sources. For a typical final cane molasses feed, stillage recycle must be limited to less than one-third of the feed rate; otherwise inhibitory effects will be observed.« less

  1. Controls on microalgal community structures in cryoconite holes upon high-Arctic glaciers, Svalbard

    NASA Astrophysics Data System (ADS)

    Vonnahme, T. R.; Devetter, M.; Žárský, J. D.; Šabacká, M.; Elster, J.

    2016-02-01

    Glaciers are known to harbor surprisingly complex ecosystems. On their surface, distinct cylindrical holes filled with meltwater and sediments are considered hot spots for microbial life. The present paper addresses possible biological interactions within the community of prokaryotic cyanobacteria and eukaryotic microalgae (microalgae) and relations to their potential grazers, such as tardigrades and rotifers, additional to their environmental controls. Svalbard glaciers with substantial allochthonous input of material from local sources reveal high microalgal densities. Small valley glaciers with high sediment coverages and high impact of birds show high biomasses and support a high biological diversity. Invertebrate grazer densities do not show any significant negative correlation with microalgal abundances but rather a positive correlation with eukaryotic microalgae. Shared environmental preferences and a positive effect of grazing are the proposed mechanisms to explain these correlations. Most microalgae found in this study form colonies (< 10 cells, or > 25 µm), which may protect them against invertebrate grazing. This finding rather indicates grazing as a positive control on eukaryotic microalgae by nutrient recycling. Density differences between the eukaryotic microalgae and prokaryotic cyanobacteria and their high distinction in redundancy (RDA) and principal component (PCA) analyses indicate that these two groups are in strong contrast. Eukaryotic microalgae occurred mainly in unstable cryoconite holes with high sediment loads, high N : P ratios, and a high impact of nutrient input by bird guano, as a proxy for nutrients. In these environments autochthonous nitrogen fixation appears to be negligible. Selective wind transport of Oscillatoriales via soil and dust particles is proposed to explain their dominance in cryoconites further away from the glacier margins. We propose that, for the studied glaciers, nutrient levels related to recycling of limiting nutrients are the main factor driving variation in the community structure of microalgae and grazers.

  2. Developing effective messages about potable recycled water: The importance of message structure and content

    NASA Astrophysics Data System (ADS)

    Price, J.; Fielding, K. S.; Gardner, J.; Leviston, Z.; Green, M.

    2015-04-01

    Community opposition is a barrier to potable recycled water schemes. Effective communication strategies about such schemes are needed. Drawing on social psychological literature, two experimental studies are presented, which explore messages that improve public perceptions of potable recycled water. The Elaboration-Likelihood Model of information processing and attitude change is tested and supported. Study 1 (N = 415) premeasured support for recycled water, and trust in government information at Time 1. Messages varied in complexity and sidedness were presented at Time 2 (3 weeks later), and support and trust were remeasured. Support increased after receiving information, provided that participants received complex rather than simple information. Trust in government was also higher after receiving information. There was tentative evidence of this in response to two-sided messages rather than one-sided messages. Initial attitudes to recycled water moderated responses to information. Those initially neutral or ambivalent responded differently to simple and one-sided messages, compared to participants with positive or negative attitudes. Study 2 (N = 957) tested the effectiveness of information about the low relative risks, and/or benefits of potable recycled water, compared to control groups. Messages about the low risks resulted in higher support when the issue of recycled water was relevant. Messages about benefits resulted in higher perceived issue relevance, but did not translate into greater support. The results highlight the importance of understanding people's motivation to process information, and need to tailor communication to match attitudes and stage of recycled water schemes' development.

  3. Global structure of mantle isotopic heterogeneity and its implications for mantle differentiation and convection

    NASA Astrophysics Data System (ADS)

    Iwamori, Hikaru; Albaréde, Francis; Nakamura, Hitomi

    2010-11-01

    In order to further our understanding of the global geochemical structure and mantle dynamics, a global isotopic data set of oceanic basalts was analyzed by Independent Component Analysis (ICA), a relatively new method of multivariate analysis. The data set consists of 2773 mid-ocean ridge basalts (MORB) and 1515 ocean island basalts (OIB) with five isotopic ratios of Pb, Nd and Sr. The data set spatially covers the major oceans and enables us to compare the results with global geophysical observations. Three independent components (ICs) have been found, two of which are essentially identical to those previously found for basalts from the Atlantic and Indian Oceans. The two ICs (IC1 and IC2) span a compositional plane that accounts for 95.7% of the sample variance, while the third IC (IC3) accounts for 3.7%. Based on the geochemical nature of ICs and a forward model concerning trace elemental and isotopic compositions, the origin of the ICs is discussed. IC1 discriminates OIB from MORB, and may be related to elemental fractionation associated with melting and the subsequent radiogenic in growth with an average recycling time of 0.8 to 2.4 Ga. IC2 tracks the regional provenance of both MORB and OIB and may be related to aqueous fluid-rock interaction and the subsequent radiogenic ingrowth with an average recycling time of 0.3 to 0.9 Ga. IC3 fingerprints upper continental crustal material and its high value appears in limited geographical and tectonic settings. Variations in the melt component (IC1) and in the aqueous fluid component (IC2) inherited in the mantle most likely reflect mid-ocean ridge and subduction zone processes, respectively. Long-term accumulation of dense materials rich in the IC1 melt component at the base of the convective mantle accounts for its longer recycling time with respect to that for less dense materials rich in the aqueous fluid component (IC2). IC2 broadly correlates with the seismic velocity structures of the lowermost mantle and electric conductivity around the mantle transition zones. We propose that IC2 reflects hydrogen distribution within the mantle and that several global domains enriched in hydrogen could exist as vertical sectors extending all the way down to the core-mantle boundary.

  4. Highly efficient and recyclable basic mesoporous zeolite catalyzed condensation, hydroxylation, and cycloaddition reactions.

    PubMed

    Sarmah, Bhaskar; Satpati, Biswarup; Srivastava, Rajendra

    2017-05-01

    Crystalline mesoporous ZSM-5 zeolite was prepared in the presence of 1,4-diazabicyclo[2.2.2]octane derived multi-cationic structure directing agent. The calcined form of the mesoprous zeolite was treated with NH 4 OH to obtain basic mesoporous ZSM-5. Catalyst was characterized by the complementary combination of X-ray diffraction, N 2 -adsorption, electron microscopes, and temperature programme desorption techniques. Catalytic activity of the basic mesoporous ZSM-5 was systematically assessed using Knoevenagel condensation reaction for the synthesis a wide range of substituted styrene. Applications of the catalyst were investigated in the benzamide hydroxylation for the synthesis of carbinolamides and one-pot, multi-component condensation reaction for the synthesis of naphthopyrans. Finally, the catalyst was evaluated in the cycloaddition of CO 2 to epoxide for the synthesis of cyclic carbonates. Recycling study shows that no significant decrease in the catalytic activity was observed after five recycles. Copyright © 2017. Published by Elsevier Inc.

  5. Electrostatic separation for recycling conductors, semiconductors, and nonconductors from electronic waste.

    PubMed

    Xue, Mianqiang; Yan, Guoqing; Li, Jia; Xu, Zhenming

    2012-10-02

    Electrostatic separation has been widely used to separate conductors and nonconductors for recycling e-waste. However, the components of e-waste are complex, which can be classified as conductors, semiconductors, and nonconductors according to their conducting properties. In this work, we made a novel attempt to recover the mixtures containing conductors (copper), semiconductors (extrinsic silicon), and nonconductors (woven glass reinforced resin) by electrostatic separation. The results of binary mixtures separation show that the separation of conductor and nonconductor, semiconductor and nonconductor need a higher voltage level while the separation of conductor and semiconductor needs a higher roll speed. Furthermore, the semiconductor separation efficiency is more sensitive to the high voltage level and the roll speed than the conductor separation efficiency. An integrated process was proposed for the multiple mixtures separation. The separation efficiency of conductors and semiconductors can reach 82.5% and 88%, respectively. This study contributes to the efficient recycling of valuable resources from e-waste.

  6. Chemical and seismological constraints on mantle heterogeneity.

    PubMed

    Helffrich, George

    2002-11-15

    Recent seismological studies that use scattered waves to detect heterogeneities in the mantle reveal the presence of a small, distributed elastic heterogeneity in the lower mantle which does not appear to be thermal in nature. The characteristic size of these heterogeneities appears to be ca. 8 km, suggesting that they represent subducted recycled oceanic crust. With this stimulus, old ideas that the mantle is heterogeneous in structure, rather than stratified, are reinterpreted and a simple, end-member model for the heterogeneity structure is proposed. The volumetrically largest components in the model are recycled oceanic crust, which contains the heat-producing elements, and mantle depleted of these and other incompatible trace elements. About 10% of the mantle's mass is made up of recycled oceanic crust, which is associated with the observed small-scale seismic heterogeneity. The way this heterogeneity is distributed is in convectively stretched and thinned bodies ranging downwards in size from 8 km. With the present techniques to detect small bodies through scattering, only ca. 55% of the mantle's small-scale heterogeneities are detectable seismically.

  7. Bohm criterion and plasma particle/power exhaust to and recycling at the wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Xianzhu; Guo, Zehua

    The plasma particle and power exhaust to the divertor surface drives both particle and power recycling at the surface, which in return constrains the plasma density and temperature at the target and their profile further upstream. Both particle and power exhaust fluxes are mediated by the plasma sheath next to the divertor surface. In particular, the Bohm criterion constrains the ion exit flow speed, which enters directly into the particle flux and the kinetic flow energy component of the ion power flux, and indirectly into the electron power flux through the sheath potential drop. Here we give an overview onmore » how the Bohm speed is set in a general plasma and how it enters power exhaust and power recycling at the divertor surface, and the implication on the correct implementation of sheath boundary conditions in numerical codes. The cases of ideal and non-ideal Bohm speed are distinguished as a result of the physics discussion.« less

  8. Bohm criterion and plasma particle/power exhaust to and recycling at the wall

    DOE PAGES

    Tang, Xianzhu; Guo, Zehua

    2017-06-07

    The plasma particle and power exhaust to the divertor surface drives both particle and power recycling at the surface, which in return constrains the plasma density and temperature at the target and their profile further upstream. Both particle and power exhaust fluxes are mediated by the plasma sheath next to the divertor surface. In particular, the Bohm criterion constrains the ion exit flow speed, which enters directly into the particle flux and the kinetic flow energy component of the ion power flux, and indirectly into the electron power flux through the sheath potential drop. Here we give an overview onmore » how the Bohm speed is set in a general plasma and how it enters power exhaust and power recycling at the divertor surface, and the implication on the correct implementation of sheath boundary conditions in numerical codes. The cases of ideal and non-ideal Bohm speed are distinguished as a result of the physics discussion.« less

  9. Recovery of PET from packaging plastics mixtures by wet shaking table.

    PubMed

    Carvalho, M T; Agante, E; Durão, F

    2007-01-01

    Recycling requires the separation of materials appearing in a mass of wastes of heterogeneous composition and characteristics, into single, almost pure, component/material flows. The separation of materials (e.g., some types of plastics) with similar physical properties (e.g., specific gravity) is often accomplished by human sorting. This is the case of the separation of packaging plastics in municipal solid wastes (MSW). The low cost of virgin plastics and low value of recycled plastics necessitate the utilization of low cost techniques and processes in the recycling of packaging plastics. An experimental study was conducted to evaluate the feasibility of production of a PET product, cleaned from PVC and PS, using a wet shaking table. The wet shaking table is an environmentally friendly process, widely used to separate minerals, which has low capital and operational costs. Some operational variables of the equipment, as well as different feed characteristics, were considered. The results show that the separation of these plastics is feasible although, similarly to the mineral field, in somewhat complex flow sheets.

  10. Quality control by HyperSpectral Imaging (HSI) in solid waste recycling: logics, algorithms and procedures

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Serranti, Silvia

    2014-03-01

    In secondary raw materials and recycling sectors, the products quality represents, more and more, the key issue to pursuit in order to be competitive in a more and more demanding market, where quality standards and products certification play a preheminent role. These goals assume particular importance when recycling actions are applied. Recovered products, resulting from waste materials, and/or dismissed products processing, are, in fact, always seen with a certain suspect. An adequate response of the industry to the market can only be given through the utilization of equipment and procedures ensuring pure, high-quality production, and efficient work and cost. All these goals can be reached adopting not only more efficient equipment and layouts, but also introducing new processing logics able to realize a full control of the handled material flow streams fulfilling, at the same time, i) an easy management of the procedures, ii) an efficient use of the energy, iii) the definition and set up of reliable and robust procedures, iv) the possibility to implement network connectivity capabilities finalized to a remote monitoring and control of the processes and v) a full data storage, analysis and retrieving. Furthermore the ongoing legislation and regulation require the implementation of recycling infrastructure characterised by high resources efficiency and low environmental impacts, both aspects being strongly linked to the waste materials and/or dismissed products original characteristics. For these reasons an optimal recycling infrastructure design primarily requires a full knowledge of the characteristics of the input waste. What previously outlined requires the introduction of a new important concept to apply in solid waste recycling, the recycling-oriented characterization, that is the set of actions addressed to strategically determine selected attributes, in order to get goaloriented data on waste for the development, implementation or improvement of recycling strategies. The problems arising when suitable HyperSpectral Imaging (HSI) based procedures have to be developed and implemented to solid waste products characterization, in order to define time efficient compression and interpretation techniques, are thus analyzed and discussed in the following. Particular attention was also addressed to define an integrated hardware and software (HW and SW) platform able to perform a non-intrusive, non-contact and real-time analysis and embedding a core of analytical logics and procedures to utilize both at laboratory and industrial scale. Several case studies, referred to waste plastics products, are presented and discussed.

  11. Microbial carbon recycling - an underestimated process controlling soil carbon dynamics - Part 1: A long-term laboratory incubation experiment

    NASA Astrophysics Data System (ADS)

    Basler, A.; Dippold, M.; Helfrich, M.; Dyckmans, J.

    2015-10-01

    Independent of its chemical structure carbon (C) persists in soil for several decades, controlled by stabilization and recycling. To disentangle the importance of the two factors on the turnover dynamics of soil sugars, an important compound of soil organic matter (SOM), a 3-year incubation experiment was conducted on a silty loam soil under different types of land use (arable land, grassland and forest) by adding 13C-labelled glucose. The compound-specific isotope analysis of soil sugars was used to examine the dynamics of different sugars during incubation. Sugar dynamics were dominated by a pool of high mean residence times (MRT) indicating that recycling plays an important role for sugars. However, this was not substantially affected by soil C content. Six months after label addition the contribution of the label was much higher for microbial biomass than for CO2 production for all examined land use types, corroborating that substrate recycling was very effective within the microbial biomass. Two different patterns of tracer dynamics could be identified for different sugars: while fucose and mannose showed highest label contribution at the beginning of the incubation with a subsequent slow decline, galactose and rhamnose were characterized by slow label incorporation with subsequently constant levels, which indicates that recycling is dominating the dynamics of these sugars. This may correspond to (a) different microbial growing strategies (r and K-strategist) or (b) location within or outside the cell membrane (lipopolysaccharides vs. exopolysaccharides) and thus be subject of different re-use within the microbial food web. Our results show how the microbial community recycles substrate very effectively and that high losses of substrate only occur during initial stages after substrate addition. This study indicates that recycling is one of the major processes explaining the high MRT observed for many SOM fractions and thus is crucial for understanding the global soil C cycle.

  12. High-Throughput All-Optical Analysis of Synaptic Transmission and Synaptic Vesicle Recycling in Caenorhabditis elegans

    PubMed Central

    Wabnig, Sebastian; Liewald, Jana Fiona; Yu, Szi-chieh; Gottschalk, Alexander

    2015-01-01

    Synaptic vesicles (SVs) undergo a cycle of biogenesis and membrane fusion to release transmitter, followed by recycling. How exocytosis and endocytosis are coupled is intensively investigated. We describe an all-optical method for identification of neurotransmission genes that can directly distinguish SV recycling factors in C. elegans, by motoneuron photostimulation and muscular RCaMP Ca2+ imaging. We verified our approach on mutants affecting synaptic transmission. Mutation of genes affecting SV recycling (unc-26 synaptojanin, unc-41 stonin, unc-57 endophilin, itsn-1 intersectin, snt-1 synaptotagmin) showed a distinct ‘signature’ of muscle Ca2+ dynamics, induced by cholinergic motoneuron photostimulation, i.e. faster rise, and earlier decrease of the signal, reflecting increased synaptic fatigue during ongoing photostimulation. To facilitate high throughput, we measured (3–5 times) ~1000 nematodes for each gene. We explored if this method enables RNAi screening for SV recycling genes. Previous screens for synaptic function genes, based on behavioral or pharmacological assays, allowed no distinction of the stage of the SV cycle in which a protein might act. We generated a strain enabling RNAi specifically only in cholinergic neurons, thus resulting in healthier animals and avoiding lethal phenotypes resulting from knockdown elsewhere. RNAi of control genes resulted in Ca2+ measurements that were consistent with results obtained in the respective genomic mutants, albeit to a weaker extent in most cases, and could further be confirmed by opto-electrophysiological measurements for mutants of some of the genes, including synaptojanin. We screened 95 genes that were previously implicated in cholinergic transmission, and several controls. We identified genes that clustered together with known SV recycling genes, exhibiting a similar signature of their Ca2+ dynamics. Five of these genes (C27B7.7, erp-1, inx-8, inx-10, spp-10) were further assessed in respective genomic mutants; however, while all showed electrophysiological phenotypes indicative of reduced cholinergic transmission, no obvious SV recycling phenotypes could be uncovered for these genes. PMID:26312752

  13. Monitoring of lead load and its effect on neonatal behavioral neurological assessment scores in Guiyu, an electronic waste recycling town in China.

    PubMed

    Li, Yan; Xu, Xijin; Wu, Kusheng; Chen, Gangjian; Liu, Junxiao; Chen, Songjian; Gu, Chengwu; Zhang, Bao; Zheng, Liangkai; Zheng, Minghao; Huo, Xia

    2008-10-01

    Guiyu is the major electronic waste (e-waste) recycling town in China. The primary purpose of this study was to measure the lead levels in neonates and examine the correlation between lead levels and neurobehavioral development. One hundred full-term neonates from Guiyu and fifty-two neonates from neighboring towns (control group) in the late summer of 2006 were selected for study. The lead levels in the umbilical cord blood (CBPb) and lead levels in meconium (MPb) of neonates were determined with atomic absorption spectrophotometry. The neonatal behavioral neurological assessment (NBNA) was conducted on all neonates. A questionnaire related to the exposure to lead of pregnant women was used as a survey of the neonates' mothers. Compared with the control group, neonates in Guiyu had significantly higher levels of lead (P < 0.01), and the mean CBPb and MPb were 113.28 microg L(-1) and 2.50 microg g(-1), respectively. The relatively high lead levels in the neonates of the Guiyu group were found to correlate with their maternal occupation in relation to e-waste recycling. Neonates with high levels of lead load have lower NBNA scores (P < 0.01). There was a statistically significant difference in NBNA scores between the Guiyu group and the control group by t test (P < 0.05). No correlation was found between CBPb and NBNA scores; however, a negative correlation was found between MPb and NBNA scores (P < 0.01). There is a correlation between relatively high lead levels in the umbilical cord blood and meconium in neonates and the local e-waste recycling activities related to lead contamination. This study suggests that environmental lead contamination due to e-waste recycling have an impact on neurobehavioral development of neonates in Guiyu.

  14. Recycled de-Oiled Algal Biomass Extract as a Feedstock for Boosting Biodiesel Production from Chlorella minutissima.

    PubMed

    Arora, Neha; Patel, Alok; Pruthi, Parul A; Pruthi, Vikas

    2016-12-01

    The investigation for the first time assesses the efficacy of recycled de-oiled algal biomass extract (DABE) as a cultivation media to boost lipid productivity in Chlorella minutissima and its comparison with Bold's basal media (BBM) used as control. Presence of organic carbon (3.8 ± 0.8 g/l) in recycled DABE resulted in rapid growth with twofold increase in biomass productivity as compared to BBM. These cells expressed four folds higher lipid productivity (126 ± 5.54 mg/l/d) as compared to BBM. Cells cultivated in recycled DABE showed large sized lipid droplets accumulating 54.12 % of lipid content. Decrement in carbohydrate (17.76 %) and protein content (28.12 %) with loss of photosynthetic pigments compared to BBM grown cells were also recorded. The fatty acid profiles of cells cultivated in recycled DABE revealed the dominance of C16:0 (39.66 %), C18:1 (29.41 %) and C18:0 (15.82 %), respectively. This model is self-sustained and aims at neutralizing excessive feedstock consumption by exploiting recycled de-oiled algal biomass for cultivation of microalgae, making the process cost effective.

  15. Feed-forward control of a solid oxide fuel cell system with anode offgas recycle

    NASA Astrophysics Data System (ADS)

    Carré, Maxime; Brandenburger, Ralf; Friede, Wolfgang; Lapicque, François; Limbeck, Uwe; da Silva, Pedro

    2015-05-01

    In this work a combined heat and power unit (CHP unit) based on the solid oxide fuel cell (SOFC) technology is analysed. This unit has a special feature: the anode offgas is partially recycled to the anode inlet. Thus it is possible to increase the electrical efficiency and the system can be operated without external water feeding. A feed-forward control concept which allows secure operating conditions of the CHP unit as well as a maximization of its electrical efficiency is introduced and validated experimentally. The control algorithm requires a limited number of measurement values and few deterministic relations for its description.

  16. Antibiotic production by soil bacteria: diversity, activity and natural functions

    USDA-ARS?s Scientific Manuscript database

    The living components of soils, the micro- and macrobiota, play an essential role in several life support functions as they enable soils to recycle nutrients, inactive contaminants, suppress plant pathogens and serve as a suitable substrate for plant growth. Beneficial bacteria occur naturally in s...

  17. A Scoping-Level Field Monitoring Study of Synthetic Turf Fields and Playgrounds

    EPA Science Inventory

    Recycled tire material, or "tire crumb," is used as a component in many recreational fields, including synthetic turf fields and playgrounds. The use of tire crumbs in these applications provides several benefits, including reduced sports injury. The public recently has raised co...

  18. UPTAKE OF HEAVY METALS IN BATCH SYSTEMS BY A RECYCLED IRON-BEARING MATERIAL

    EPA Science Inventory

    An iron-bearing material deriving from surface finishing operations in the manufacturing of cast-iron components demonstrates potential for removal of heavy metals from aqueous waste streams. Batch isotherm and rate experiments were conducted for uptake of cadmium, zinc, and lead...

  19. Supply of and demand for selected energy related mineral commodities

    USGS Publications Warehouse

    Sibley, Scott F.

    2010-01-01

    In this report, subjects discussed include components of mineral supply, production, and consumption data, and information on selected mineral commodities in which the Energy Critical Elements Study Group has an interest, and U.S. Geological Survey (USGS) recycling studies, with some results of these studies.

  20. Apparatus and method of controlling the thermal performance of an oxygen-fired boiler

    DOEpatents

    Levasseur, Armand A.; Kang, Shin G.; Kenney, James R.; Edberg, Carl D.

    2017-09-05

    Disclosed herein is a method of controlling the operation of an oxy-fired boiler; the method comprising combusting a fuel in a boiler; producing a heat absorption pattern in the boiler; discharging flue gases from the boiler; recycling a portion of the flue gases to the boiler; combining a first oxidant stream with the recycled flue gases to form a combined stream; splitting the combined stream into several fractions; and introducing each fraction of the combined stream to the boiler at different points of entry to the boiler.

  1. Condensate Recycling in Closed Plant Growth Chambers

    NASA Technical Reports Server (NTRS)

    Bledsoe, J. O.; Sager, J. C.; Fortson, R. E.

    1994-01-01

    Water used in the the Controlled Ecological Life Support System (CELSS) Breadboard Project at the Kennedy Space Center is being recycled. Condensation is collected in the air ducts, filtered and deionized, and resupplied to the system for nutrient solutions, supplemental humidification, solvents and diluents. While the system functions well from a process control standpoint, precise and accurate tracking of water movement through the system to answer plant physiological questions is not consistent. Possible causes include hardware errors, undetected vapor loss from chamber leakage, and unmeasured changes in water volume in the plant growth trays.

  2. Neutronic investigation and activation calculation for CFETR HCCB blankets

    NASA Astrophysics Data System (ADS)

    Shuling, XU; Mingzhun, LEI; Sumei, LIU; Kun, LU; Kun, XU; Kun, PEI

    2017-12-01

    The neutronic calculations and activation behavior of the proposed helium cooled ceramic breeder (HCCB) blanket were predicted for the Chinese Fusion Engineering Testing Reactor (CFETR) design model using the MCNP multi-particle transport code and its associated data library. The tritium self-sufficiency behavior of the HCCB blanket was assessed, addressing several important breeding-related arrangements inside the blankets. Two candidate first wall armor materials were considered to obtain a proper tritium breeding ratio (TBR). Presentations of other neutronic characteristics, including neutron flux, neutron-induced damages in terms of the accumulated dpa and helium production were also conducted. Activation, decay heat levels and contact dose rates of the components were calculated to estimate the neutron-induced radioactivity and personnel safety. The results indicate that neutron radiation is efficiently attenuated and slowed down by components placed between the plasma and toroidal field coil. The dominant nuclides and corresponding isotopes in the structural steel were discussed. A radioactivity comparison between pure beryllium and beryllium with specific impurities was also performed. After a millennium cooling time, the decay heat of all the concerned components and materials is less than 1 × 10-4 kW, and most associated in-vessel components qualify for recycling by remote handling. The results demonstrate that acceptable hands-on recycling and operation still require a further long waiting period to allow the activated products to decay.

  3. Hydrogen donor solvent coal liquefaction process

    DOEpatents

    Plumlee, Karl W.

    1978-01-01

    An indigenous hydrocarbon product stream boiling within a range of from about C.sub.1 -700.degree. F., preferably C.sub.1 -400.degree. F., is treated to produce an upgraded hydrocarbon fuel component and a component which can be recycled, with a suitable donor solvent, to a coal liquefaction zone to catalyze the reaction. In accordance therewith, a liquid hydrocarbon fraction with a high end boiling point range up to about 700.degree. F., preferably up to about 400.degree. F., is separated from a coal liquefaction zone effluent, the separated fraction is contacted with an alkaline medium to provide a hydrocarbon phase and an aqueous extract phase, the aqueous phase is neutralized, and contacted with a peroxygen compound to convert indigenous components of the aqueous phase of said hydrocarbon fraction into catalytic components, such that the aqueous stream is suitable for recycle to the coal liquefaction zone. Naturally occurring phenols and alkyl substituted phenols, found in the aqueous phase, are converted, by the addition of hydroxyl constituents to phenols, to dihydroxy benzenes which, as disclosed in copending Application Ser. Nos. 686,813 now U.S. Pat. No. 4,049,536; 686,814 now U.S. Pat. No. 4,049,537; 686,827 now U.S. Pat. No. 4,051,012 and 686,828, K. W. Plumlee et al, filed May 17, 1976, are suitable hydrogen transfer catalysts.

  4. Relationship between recycling rate and air pollution: Waste management in the state of Massachusetts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giovanis, Eleftherios, E-mail: giovanis95@gmail.com

    Highlights: • This study examines the relationship between recycling rate of solid waste and air pollution. • Fixed effects Stochastic Frontier Analysis model with panel data are employed. • The case study is a waste municipality survey in the state of Massachusetts during 2009–2012. • The findings support that a negative relationship between air pollution and recycling. - Abstract: This study examines the relationship between recycling rate of solid waste and air pollution using data from a waste municipality survey in the state of Massachusetts during the period 2009–2012. Two econometric approaches are applied. The first approach is a fixedmore » effects model, while the second is a Stochastic Frontier Analysis (SFA) with fixed effects model. The advantage of the first approach is the ability of controlling for stable time invariant characteristics of the municipalities, thereby eliminating potentially large sources of bias. The second approach is applied in order to estimate the technical efficiency and rank of each municipality accordingly. The regressions control for various demographic, economic and recycling services, such as income per capita, population density, unemployment, trash services, Pay-as-you-throw (PAYT) program and meteorological data. The findings support that a negative relationship between particulate particles in the air 2.5 μm or less in size (PM{sub 2.5}) and recycling rate is presented. In addition, the pollution is increased with increases on income per capita up to $23,000–$26,000, while after this point income contributes positively on air quality. Finally, based on the efficiency derived by the Stochastic Frontier Analysis (SFA) model, the municipalities which provide both drop off and curbside services for trash, food and yard waste and the PAYT program present better performance regarding the air quality.« less

  5. Household waste behaviours among a community sample in Iran: an application of the theory of planned behaviour.

    PubMed

    Pakpour, Amir H; Zeidi, Isa Mohammadi; Emamjomeh, Mohammad Mahdi; Asefzadeh, Saeed; Pearson, Heidi

    2014-06-01

    Understanding the factors influencing recycling behaviour can lead to better and more effective recycling programs in a community. The goal of this study was to examine factors associated with household waste behaviours in the context of the theory of planned behaviour (TPB) among a community sample of Iranians that included data collection at time 1 and at follow-up one year later at time 2. Study participants were sampled from households under the coverage of eight urban health centers in the city of Qazvin. Of 2000 invited households, 1782 agreed to participate in the study. A self-reported questionnaire was used for assessing socio-demographic factors and the TPB constructs (i.e. attitude, subjective norms, perceived behavioural control, and intention). Furthermore, questions regarding moral obligation, self-identity, action planning, and past recycling behaviour were asked, creating an extended TPB. At time 2, participants were asked to complete a follow-up questionnaire on self-reported recycling behaviours. All TPB constructs had positive and significant correlations with each other. Recycling behaviour at time 1 (past behaviour) significantly related to household waste behaviour at time 2. The extended TPB explained 47% of the variance in household waste behaviour at time 2. Attitude, perceived behavioural control, intention, moral obligation, self-identity, action planning, and past recycling behaviour were significant predictors of household waste behaviour at time 2 in all models. The fact that the expanded TPB constructs significantly predicted household waste behaviours holds great promise for developing effective public campaigns and behaviour-changing interventions in a region where overall rates of household waste reduction behaviours are low. Our results indicate that educational materials which target moral obligation and action planning may be particularly effective. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Compartmental modeling with nitrogen-15 to determine effects of degree of fat saturation on intraruminal N recycling.

    PubMed

    Oldick, B S; Firkins, J L; Kohn, R A

    2000-09-01

    Two- and three-compartment models were developed to describe N kinetics within the rumen using three Holstein heifers and one nonlactating Holstein cow fitted with ruminal and duodenal cannulas. A 4 x 4 Latin square design included a control diet containing no supplemental fat and diets containing 4.85% of diet dry matter as partially hydrogenated tallow (iodine value = 13), tallow (iodine value = 51), or animal-vegetable fat (iodine value = 110). Effects of fat on intraruminal N recycling and relationships between intraruminal N recycling and ruminal protozoa concentration or the efficiency of microbial protein synthesis were determined. A pulse dose of 15(NH4)2SO4 was introduced into the ruminal NH3 N pool, and samples were taken over time from the ruminal NH3 N and nonammonia N pools. For the three-compartment model, precipitates of nonammonia N after trichloroacetic acid and ethanol extraction were defined as slowly turning over nonammonia N; rapidly turning over nonammonia N was determined by difference. Curves of 15N enrichment were fit to models with two (NH3 N and nonammonia N) or three (NH3 N, rapidly turning over nonammonia N, and slowly turning over nonammonia N) compartments using the software SAAM II. Because the three-compartment model did not remove a small systematic bias or improve the fit of the data, the two-compartment model was used to provide measurements of intraruminal N recycling. Intraruminal NH3 N recycling (45% for control) decreased linearly as fat unsaturation increased (50.2, 43.0, and 41.7% for partially hydrogenated tallow, tallow, and animal-vegetable fat, respectively). Intraruminal nitrogen recycling was not correlated with efficiency of microbial protein synthesis or ruminal protozoa counts.

  7. [Selection of a SHF-plasma device for carbon dioxide and hydrogen recycling in a physical-chemical life support system].

    PubMed

    Klimarev, S I

    2003-01-01

    A waveguide SHF plasmotron was chosen for carbon dioxide and hydrogen recycling in a low-temperature plasma in the Bosch reactor. To increase electric intensity within the discharge capacitor, thickness of the waveguide thin wall was changed for 10 mm. A method for calculating the compensated exponential smooth transition to align two similar lines (waveguides) with sections of 72 x 34 mm and 72 x 10 mm to transfer SHF energies from the generator to plasma was proposed. Calculation of the smooth transition has been used in final refinement of the HSF plasmotron design as a component of a physical-chemical LSS.

  8. BPM System for Electron Cooling in the Fermilab Recycler Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joireman, Paul W.; Cai, Jerry; Chase, Brian E.

    2004-11-10

    We report a VXI based system used to acquire and process BPM data for the electron cooling system in the Fermilab Recycler ring. The BPM system supports acquisition of data from 19 BPM locations in five different sections of the electron cooling apparatus. Beam positions for both electrons and anti-protons can be detected simultaneously with a resolution of {+-}50 {mu}m. We calibrate the system independently for each beam type at each BPM location. We describe the system components, signal processing and modes of operation used in support of the electron-cooling project and present experimental results of system performance for themore » developmental electron cooling installation at Fermilab.« less

  9. Adherens junction turnover: regulating adhesion through cadherin endocytosis, degradation, and recycling

    PubMed Central

    Nanes, Benjamin A.; Kowalczyk, Andrew P.

    2014-01-01

    Adherens junctions are important mediators of intercellular adhesion, but they are not static structures. They are regularly formed, broken, and rearranged in a variety of situations, requiring changes in the amount of cadherins, the main adhesion molecule in adherens junctions, present at the cell surface. Thus, endocytosis, degradation, and recycling of cadherins are crucial for dynamic regulation of adherens junctions and control of intercellular adhesion. In this chapter, we review the involvement of cadherin endocytosis in development and disease. We discuss the various endocytic pathways available to cadherins, the adaptors involved, and the sorting of internalized cadherin for recycling or lysosomal degradation. In addition, we review the regulatory pathways controlling cadherin endocytosis and degradation, including regulation of cadherin endocytosis by catenins, cadherin ubiquitination, and growth factor receptor signaling pathways. Lastly, we discuss the proteolytic cleavage of cadherins at the plasma membrane. PMID:22674073

  10. Study on Insulating Material by Renewable Resources

    NASA Astrophysics Data System (ADS)

    Kurata, Yasuyuki; Kurosumi, Akihiro; Ishikawa, Keita

    Under circumstances such as global warming caused by carbon dioxide and other green house gas and crisis of depletion of fossil resources, recyclable resources such as biomass have captured the world's attention as reproducible resources alternative to petroleum. Therefore the technologies such to manufacture chemicals from recyclable resources have been developed for the achievement of measures for controlling global warming and the low carbon society. Recently, the bioplastic such as polylactic resin is applied to the home appliances and the automobile interior part as substitution of general-purpose plastic Moreover, the insulation oil from the vegetable oil has been put to practical use. The application of recyclable resources is extending in an electric field. In this paper, we introduce the characteristic and the problem of the insulating material made from recyclable resources in the field of the solid insulation.

  11. The effects of RPM and recycle on separation efficiency in a clinical blood cell centrifuge.

    PubMed

    Drumheller, P D; Van Wie, B J; Petersen, J N; Oxford, R J; Schneider, G W

    1987-11-01

    A COBE blood cell centrifuge, model 2997 with a single stage channel, was modified to allow computer controlled sampling, and to allow recycle of red blood cells (RBCs) and plasma streams using bovine whole blood. The effects of recycle of the packed RBC and plasma product streams, and of the centrifuge RPM on platelet and white blood cell (WBC) separation efficiencies were quantified using a central composite factorial experimental design. These data were then fit using second order models. Both the model for the WBC separation efficiency and the model for the platelet separation efficiency predict that RPM has the greatest effect on separation efficiency and that RBC and plasma recycle have detrimental effects at moderate to low RPM, but have negligible impact on separation efficiency at high RPM.

  12. Pharmaceuticals and Controlled Substances and Demolition

    EPA Pesticide Factsheets

    Pharmaceuticals and controlled substances found during residential demolition, such as prescription medications or illegal drugs, may require special treatment for disposal or recycling before demolition.

  13. Spatial characteristics of cadmium in topsoils in a typical e-waste recycling area in southeast China and its potential threat to shallow groundwater.

    PubMed

    Wu, Chunfa; Luo, Yongming; Deng, Shaopo; Teng, Ying; Song, Jing

    2014-02-15

    Informal electrical and electronic waste (e-waste) recycling often creates secondary sources of cadmium (Cd) pollution. To characterize the total Cd concentration (Cdtotal) in topsoil and evaluate the threat of Cd in topsoils to shallow groundwater, 187 topsoil samples and 12 shallow groundwater samples were collected in a typical e-waste recycling area in southeast China. Soil organic matter content, soil pH and Cdtotal in topsoil, pH and dissolved Cd concentration in shallow groundwater were measured. Cdtotal in the topsoils showed an inverse distribution trend with soil pH in that high Cd concentrations (and low pH values) were found in the surrounding area of the metal recycling industrial park where there were many family-operated e-waste recycling facilities before the industrial park was established and with low concentrations (and high pH values) in other areas, and they had similar spatial correlation structures. Cd accumulation and acidification were synchronous in topsoils, and soil pH was significantly correlated with Cdtotal in topsoils with low to moderate negative correlation coefficient (r=-0.24), indicating that both of them maybe correlated with informal recycling. The shallow groundwater in the surrounding area of the metal recycling industrial park was seriously contaminated by Cd, and topsoil Cd accumulation and acidification in the surrounding area of e-waste recycling sites significantly increase the risk of shallow groundwater contaminated by Cd. Action is urgently required to control Cd accumulation and acidification by improving the recycling operations of e-wastes in order to reduce the risk of Cd leaching from topsoils and shallow groundwater contamination. Copyright © 2013. Published by Elsevier B.V.

  14. Effects of recycling and bonding agent application on bond strength of stainless steel orthodontic brackets.

    PubMed

    Bahnasi, Faisal I; Abd-Rahman, Aida Na; Abu-Hassan, Mohame I

    2013-10-01

    1) to assess different methods of recycling orthodontic brackets, 2) to evaluate Shear Bond Strength (SBS) of (a) new, (b) recycled and (c) repeated recycled stainless steel brackets (i) with and (ii) without bracket base primer. A total of 180 extracted human premolar teeth and 180 premolar stainless steel brackets were used. One hundred teeth and 100 brackets were divided into five groups of 20-teeth each. Four methods of recycling orthodontic brackets were used in each of the first four groups while the last one (group V) was used as the control. Groups (I-V) were subjected to shear force within half an hour until the brackets debond. SBS was measured and the method showing the highest SBS was selected. A New group (VI) was recycled twice with the selected method. Six subgroups (1-6) were established; the primer was applied for three sub-groups, and the composite was applied for all brackets. Brackets were subjected to the same shear force, and SBS was measured for all sub-groups. There was a significant difference between the mean SBS of the sandblasting method and the means of SBS of each of the other three methods. There was however, no significant difference between the mean SBS of the new bracket and the mean SBS of recycled bracket using sandblasting. The mean SBS of all sub-groups were more than that recommended by Reynolds (17) in 1975. Brackets with primer showed slightly higher SBS compared to those of brackets without bonding agent. To decrease cost, sandblasted recycled orthodontic brackets can be used as an alternative to new brackets. It is recommended to apply a bonding agent on the bracket base to provide greater bond strength. Key words:Recycled bracket, shear bond strength, sandblasting, stainless steel orthodontic bracket.

  15. Role of the fish astyanax aeneus (Characidae) as a keystone nutrient recycler in low-nutrient neotropical streams

    USGS Publications Warehouse

    Small, G.E.; Pringle, C.M.; Pyron, M.; Duff, J.H.

    2011-01-01

    Nutrient recycling by animals is a potentially important biogeochemical process in both terrestrial and aquatic ecosystems. Stoichiometric traits of individual species may result in some taxa playing disproportionately important roles in the recycling of nutrients relative to their biomass, acting as keystone nutrient recyclers. We examined factors controlling the relative contribution of 12 Neotropical fish species to nutrient recycling in four streams spanning a range of phosphorus (P) levels. In high-P conditions (135 ??g/L soluble reactive phosphorus, SRP), most species fed on P-enriched diets and P excretion rates were high across species. In low-P conditions (3 ??g/L SRP), aquatic food resources were depleted in P, and species with higher body P content showed low rates of P recycling. However, fishes that were subsidized by terrestrial inputs were decoupled from aquatic P availability and therefore excreted P at disproportionately high rates. One of these species, Astyanax aeneus (Characidae), represented 12% of the total population and 18% of the total biomass of the fish assemblage in our focal low-P study stream but had P excretion rates >10-fold higher than other abundant fishes. As a result, we estimated that P excretion by A. aeneus accounted for 90% of the P recycled by this fish assemblage and also supplied ???90% of the stream P demand in this P-limited ecosystem. Nitrogen excretion rates showed little variation among species, and the contribution of a given species to ecosystem N recycling was largely dependent upon the total biomass of that species. Because of the high variability in P excretion rates among fish species, ecosystem-level P recycling could be particularly sensitive to changes in fish community structure in P-limited systems. ?? 2011 by the Ecological Society of America.

  16. Algal recycling enhances algal productivity and settleability in Pediastrum boryanum pure cultures.

    PubMed

    Park, Jason B K; Craggs, Rupert J; Shilton, Andy N

    2015-12-15

    Recycling a portion of gravity harvested algae (i.e. algae and associated bacteria biomass) has been shown to improve both algal biomass productivity and harvest efficiency by maintaining the dominance of a rapidly-settleable colonial alga, Pediastrum boryanum in both pilot-scale wastewater treatment High Rate Algal Ponds (HRAP) and outdoor mesocosms. While algal recycling did not change the relative proportions of algae and bacteria in the HRAP culture, the contribution of the wastewater bacteria to the improved algal biomass productivity and settleability with the recycling was not certain and still required investigation. P. boryanum was therefore isolated from the HRAP and grown in pure culture on synthetic wastewater growth media under laboratory conditions. The influence of recycling on the productivity and settleability of the pure P. boryanum culture was then determined without wastewater bacteria present. Six 1 L P. boryanum cultures were grown over 30 days in a laboratory growth chamber simulating New Zealand summer conditions either with (Pr) or without (Pc) recycling of 10% of gravity harvested algae. The cultures with recycling (Pr) had higher algal productivity than the controls (Pc) when the cultures were operated at both 4 and 3 d hydraulic retention times by 11% and 38% respectively. Furthermore, algal recycling also improved 1 h settleability from ∼60% to ∼85% by increasing the average P. boryanum colony size due to the extended mean cell residence time and promoted formation of large algal bio-flocs (>500 μm diameter). These results demonstrate that the presence of wastewater bacteria was not necessary to improve algal productivity and settleability with algal recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Defect Control of the WC Hardmetal by Mixing Recycled WC Nano Powder and Tungsten Powder

    NASA Astrophysics Data System (ADS)

    Hur, Man Gyu; Shin, Mi Kyung; Kim, Deug Joong; Yoon, Dae Ho

    2018-03-01

    Tungsten metal powder was added to recycled WC nano powder to control the macro and micro defects of WC hardmetal. The macro and micro defects caused by the excess carbon in the recycled WC powder were markedly removed after the addition of tungsten metal powder ranging from 2 to 6 wt%. The density and hardness of the WC hardmetals also increased due to the removal of defects after adding the tungsten metal powder. The density and hardness of WC hardmetals with the addition of W metal powder ranged from 8 to 12 wt% increased linearly as the W metal powder content increased due to the formation of a new (Co- and W-rich WC) composition. The surface morphology of the WC hardmetals was observed via field emission scanning electron microscopy, and a quantitative elemental analysis was conducted via X-ray fluorescence spectrometry and energy dispersive X-ray analysis. The density and hardness of the WC hardmetals were respectively measured using an analytical balance and a Vikers hardness tester. The effect on the defects in the recycled WC hardmetals through the addition of the tungsten metal powder was discussed in detail.

  18. A Three-Pool Model Dissecting Readily Releasable Pool Replenishment at the Calyx of Held

    PubMed Central

    Guo, Jun; Ge, Jian-long; Hao, Mei; Sun, Zhi-cheng; Wu, Xin-sheng; Zhu, Jian-bing; Wang, Wei; Yao, Pan-tong; Lin, Wei; Xue, Lei

    2015-01-01

    Although vesicle replenishment is critical in maintaining exo-endocytosis recycling, the underlying mechanisms are not well understood. Previous studies have shown that both rapid and slow endocytosis recycle into a very large recycling pool instead of within the readily releasable pool (RRP), and the time course of RRP replenishment is slowed down by more intense stimulation. This finding contradicts the calcium/calmodulin-dependence of RRP replenishment. Here we address this issue and report a three-pool model for RRP replenishment at a central synapse. Both rapid and slow endocytosis provide vesicles to a large reserve pool (RP) ~42.3 times the RRP size. When moving from the RP to the RRP, vesicles entered an intermediate pool (IP) ~2.7 times the RRP size with slow RP-IP kinetics and fast IP-RRP kinetics, which was responsible for the well-established slow and rapid components of RRP replenishment. Depletion of the IP caused the slower RRP replenishment observed after intense stimulation. These results establish, for the first time, a realistic cycling model with all parameters measured, revealing the contribution of each cycling step in synaptic transmission. The results call for modification of the current view of the vesicle recycling steps and their roles. PMID:25825223

  19. Pretreatment solution recycling and high-concentration output for economical production of bioethanol.

    PubMed

    Han, Minhee; Moon, Se-Kwon; Choi, Gi-Wook

    2014-11-01

    The purpose of this study was to enhance the economic efficiency of producing bioethanol. Pretreatment solution recycling is expected to increase economic efficiency by reducing the cost of pretreatment and the amount of wastewater. In addition, the production of high-concentration bioethanol could increase economic efficiency by reducing the energy cost of distillation. The pretreatment conditions were 95 °C, 0.72 M NaOH, 80 rpm twin-screw speed, and flow rate of 90 mL/min at 18 g/min of raw biomass feeding for pretreatment solution recycling. The pretreatment with NaOH solution recycling was conducted five times. All of the components and the pretreatment efficiency were similar, despite reuse. In addition, we developed a continuous biomass feeding system for production of high-concentration bioethanol. Using this reactor, the bioethanol productivity was investigated using various pretreated biomass feeding rates in a simultaneous saccharification and fermentation (SSF) process. The maximum ethanol concentration, yield, and productivity were 74.5 g/L, 89.5%, and 1.4 g/L h, respectively, at a pretreated biomass loading of approximately 25% (w/v) with an enzyme dosage of 30 FPU g/cellulose. The results presented here constitute an important contribution toward the production of bioethanol from Miscanthus.

  20. Career Counseling in a Volatile Job Market: Tiedeman's Perspective Revisited

    ERIC Educational Resources Information Center

    Duys, David K.; Ward, Janice E.; Maxwell, Jane A.; Eaton-Comerford, Leslie

    2008-01-01

    This article explores implications of Tiedeman's original theory for career counselors. Some components of the theory seem to be compatible with existing volatile job market conditions. Notions of career path recycling, development in reverse, nonlinear progress, and parallel streams in career development are explored. Suggestions are made for…

  1. A highly active and magnetically retrievable nanoferrite-DOPA-copper catalyst for the coupling of thiophenols with aryl halides

    EPA Science Inventory

    Diaryl sulfides were synthesized using magnetically recoverable heterogeneous Cu catalyst via one-pot multi component reaction using MW irradiation; the use of isopropanol as a benign reaction medium, easy recovery of the catalyst using an external magnet, efficient recycling...

  2. Instrumentation, control, and automation for submerged anaerobic membrane bioreactors.

    PubMed

    Robles, Ángel; Durán, Freddy; Ruano, María Victoria; Ribes, Josep; Rosado, Alfredo; Seco, Aurora; Ferrer, José

    2015-01-01

    A submerged anaerobic membrane bioreactor (AnMBR) demonstration plant with two commercial hollow-fibre ultrafiltration systems (PURON®, Koch Membrane Systems, PUR-PSH31) was designed and operated for urban wastewater treatment. An instrumentation, control, and automation (ICA) system was designed and implemented for proper process performance. Several single-input-single-output (SISO) feedback control loops based on conventional on-off and PID algorithms were implemented to control the following operating variables: flow-rates (influent, permeate, sludge recycling and wasting, and recycled biogas through both reactor and membrane tanks), sludge wasting volume, temperature, transmembrane pressure, and gas sparging. The proposed ICA for AnMBRs for urban wastewater treatment enables the optimization of this new technology to be achieved with a high level of process robustness towards disturbances.

  3. Outcome of bone recycling using liquid nitrogen as bone reconstruction procedure in malignant and recurrent benign aggressive bone tumour of distal tibia: A report of four cases.

    PubMed

    Gede, Eka Wiratnaya I; Ida Ayu, Arrisna Artha; Setiawan I Gn, Yudhi; Aryana Ign, Wien; I Ketut, Suyasa; I Ketut, Siki Kawiyana; Putu, Astawa

    2017-01-01

    Amputation still considered as primary choice of malignancy treatment in distal tibia. Bone recycling with liquid nitrogen for reconstruction following resection of malignant bone tumours offers many advantages. We presented four patients with osteosarcoma, Ewing sarcoma, adamantinoma and recurrent giant cell tumour over distal tibia. All of the patients underwent wide excision and bone recycling using liquid nitrogen as bone reconstruction. The mean functional Musculoskeletal Tumor Society (MSTS) score was 75% with no infection and local recurrent. The reconstruction provides good local control and functional outcome.

  4. The Astrocyte: Powerhouse and Recycling Center

    PubMed Central

    Weber, Bruno; Barros, L. Felipe

    2015-01-01

    Brain metabolism is characterized by fuel monodependence, high-energy expenditure, autonomy from the rest of body, local recycling, and marked division of labor between cell types. Although neurons spend most of the brain’s energy on signaling, astrocytes bear the brunt of the metabolic load, controlling the composition of the interstitial fluid, supplying neurons with energy substrates and precursors for biosynthesis, and recycling neurotransmitters, oxidized scavengers, and other waste products. Outstanding questions in this field are the role of oligodendrocytes, the metabolic behavior of the different subtypes of astrocytes during development and disease, and the emerging notion that metabolism may participate directly in information processing. PMID:25680832

  5. Application of NIR hyperspectral imaging for post-consumer polyolefins recycling

    NASA Astrophysics Data System (ADS)

    Serranti, Silvia; Gargiulo, Aldo; Bonifazi, Giuseppe

    2012-06-01

    An efficient large-scale recycling approach of particulate solid wastes is always accomplished according to the quality of the materials fed to the recycling plant and/or to any possible continuous and reliable control of the different streams inside the processing plants. Processing technologies addressed to recover plastics need to be extremely powerful, since they must be relatively simple to be cost-effective, but also accurate enough to create high-purity products and able to valorize a substantial fraction of the plastic waste materials into useful products of consistent quality in order to be economical. On the other hand, the potential market for such technologies is large and the boost of environmental regulations, and the oil price increase, has made many industries interested both in "general purpose" waste sorting technologies, as well as in developing more specialized sensing devices and/or inspection logics for a better quality assessment of plastic products. In this perspective recycling strategies have to be developed taking into account some specific aspects as i) mixtures complexity: the valuable material has to be extracted from the residue, ii) overall production: the profitability of plastic can be achieved only with mass production and iii) costs: low-cost sorting processes are required. In this paper new analytical strategies, based on hyperspectral imaging in the near infrared field (1000-1700 nm), have been investigated and set up in order to define sorting and/or quality control logics that could be profitably applied, at industrial plant level, for polyolefins recycling.

  6. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics.

    PubMed

    Gug, JeongIn; Cacciola, David; Sobkowicz, Margaret J

    2015-01-01

    Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette sample composition was similar to biomass fuels but had significant advantages due to addition of waste plastics that have high energy content compared to other waste types. Addition of PP and HDPE presented better benefits than addition of PET due to lower softening temperature and lower oxygen content. It should be noted that while harmful emissions such as dioxins, furans and mercury can result from burning plastics, WTE facilities have been able to control these emissions to meet US EPA standards. This research provides a drop-in coal replacement that reduces demand on landfill space and replaces a significant fraction of fossil-derived fuel with a renewable alternative. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Assessment of DOE radioactive scrap metal disposition options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, C.R.; Kasper, K.M.; Bossart, S.J.

    1997-02-01

    The DOE has amassed a large amount of radioactively-contaminated scrap metal (RSM) as a result of past operations and decontamination and decommissioning (D&D) projects. The volume of RSM will continue to increase as a result of the D&D of more than 6,000 surplus facilities and many of the 14,000 operating facilities in the DOE complex. RSM can be either surface contaminated or volumetrically contaminated, or both, with varying amounts of radioactivity. Several options exist for the disposition of this RSM, including disposal as radioactive waste, recycling by decontamination and free-release for unrestricted use, or recycling for restricted reuse inside amore » DOE controlled area. The DOE Office of Science and Technology (EM-50) has been actively investing in technology and strategy development in support of restricted-reuse RSM recycling for the past several years. This paper will assess the nature of the RSM recycling issue, review past investment by DOE to develop technologies and strategies to recycle RSM, and then discuss some recommendations concerning future investments in support of RSM management. Available information on the supply of RSM will be presented in Section II. The regulatory and policy framework concerning recycling RSM will be presented in Section III. A review of DOE investment in RSM recycling technology and current programs will be presented in Section IV. The current and projected industrial capacity will be described in Section V. And, finally, a discussion of issues and recommendations regarding DOE technology development interests in RSM recycling will be presented in Section VI and VII, respectively.« less

  8. Systematic Review: Occupational illness in the waste and recycling sector

    PubMed Central

    Poole, C J M; Basu, S

    2017-01-01

    Abstract Background The waste and recycling sector is a growing part of industry. Whether health surveillance is indicated and how it should be undertaken is unclear. Aims To undertake a review of the literature to identify hazards to health, biological effects and occupational illnesses for workers in the sector. Methods A systematic review of the published literature and two UK databases. Results Rates of fatal, non-fatal injuries and self-reported work-related illness were found to be higher in the waste and recycling sector than in UK industry as a whole. There was an increased prevalence of respiratory, gastro-intestinal and skin complaints in workers exposed to compost relative to controls. They may also be at increased risk of extrinsic allergic alveolitis, allergic bronchopulmonary aspergillosis, occupational asthma and abnormalities of lung function. Workers involved with the recycling of batteries and cables may be at risk of lead poisoning and exposure to other heavy metals. There were case reports of mercury poisoning from the recycling of fluorescent lights. Cases of occupational asthma have been reported in association with wood and paper recycling. The recycling of e-waste may cause exposure to heavy metals and organic pollutants, such as polybrominated diphenyl ethers, dioxins and polyaromatic hydrocarbons, which have been associated with damage to DNA and adverse neonatal outcomes. Conclusions Ill-health and adverse biological effects have been described in waste and recycling workers, but their true prevalence has probably not been captured. Targeted health surveillance may be required to assess exposure and to identify occupational illness. PMID:29165683

  9. Evaluation of recycled concrete aggregates for their suitability in construction activities: An experimental study.

    PubMed

    Puthussery, Joseph V; Kumar, Rakesh; Garg, Anurag

    2017-02-01

    Construction and demolition waste disposal is a major challenge in developing nations due to its ever increasing quantities. In this study, the recycling potential of waste concrete as aggregates in construction activities was studied. The metal leaching from the recycled concrete aggregates (RCA) collected from the demolition site of a 50year old building, was evaluated by performing three different leaching tests (compliance, availability and Toxic Characteristic Leaching Procedure). The metal leaching was found mostly within the permissible limit except for Hg. Several tests were performed to determine the physical and mechanical properties of the fine and coarse aggregates produced from recycled concrete. The properties of recycled aggregates were found to be satisfactory for their utilization in road construction activities. The suitability of using recycled fine and coarse aggregates with Portland pozzolanic cement to make a sustainable and environmental friendly concrete mix design was also analyzed. No significant difference was observed in the compressive strength of various concrete mixes prepared by natural and recycled aggregates. However, only the tensile strength of the mix prepared with 25% recycled fine aggregates was comparable to that of the control concrete. For other mixes, the tensile strength of the concrete was found to drop significantly. In summary, RCA should be considered seriously as a building material for road construction, mass concrete works, lightly reinforced sections, etc. The present work will be useful for the waste managers and policy makers particularly in developing nations where proper guidelines are still lacking. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Durability of recycled aggregate concrete using pozzolanic materials.

    PubMed

    Ann, K Y; Moon, H Y; Kim, Y B; Ryou, J

    2008-01-01

    In this study, pulverized fuel ash (PFA) and ground granulated blast furnace slag (GGBS) were used to compensate for the loss of strength and durability of concrete containing recycled aggregate. As a result, 30% PFA and 65% GGBS concretes increased the compressive strength to the level of control specimens cast with natural granite gravel, but the tensile strength was still lowered at 28 days. Replacement with PFA and GGBS was effective in raising the resistance to chloride ion penetrability into the concrete body, measured by a rapid chloride ion penetration test based on ASTM C 1202-91. It was found that the corrosion rate of 30% PFA and 65% GGBS concretes was kept at a lower level after corrosion initiation, compared to the control specimens, presumably due to the restriction of oxygen and water access. However, it was less effective in increasing the chloride threshold level for steel corrosion. Hence, it is expected that the corrosion time for 30% PFA and 65% GGBS concrete containing recycled aggregate mostly equates to the corrosion-free life of control specimens.

  11. Syndecan-4 Phosphorylation Is a Control Point for Integrin Recycling

    PubMed Central

    Morgan, Mark R.; Hamidi, Hellyeh; Bass, Mark D.; Warwood, Stacey; Ballestrem, Christoph; Humphries, Martin J.

    2013-01-01

    Summary Precise spatiotemporal coordination of integrin adhesion complex dynamics is essential for efficient cell migration. For cells adherent to fibronectin, differential engagement of α5β1 and αVβ3 integrins is used to elicit changes in adhesion complex stability, mechanosensation, matrix assembly, and migration, but the mechanisms responsible for receptor regulation have remained largely obscure. We identify phosphorylation of the membrane-intercalated proteoglycan syndecan-4 as an essential switch controlling integrin recycling. Src phosphorylates syndecan-4 and, by driving syntenin binding, leads to suppression of Arf6 activity and recycling of αVβ3 to the plasma membrane at the expense of α5β1. The resultant elevation in αVβ3 engagement promotes stabilization of focal adhesions. Conversely, abrogation of syndecan-4 phosphorylation drives surface expression of α5β1, destabilizes adhesion complexes, and disrupts cell migration. These data identify the dynamic spatiotemporal regulation of Src-mediated syndecan-4 phosphorylation as an essential switch controlling integrin trafficking and adhesion dynamics to promote efficient cell migration. PMID:23453597

  12. Reaching out, inviting back: using Interactive voice response (IVR) technology to recycle relapsed smokers back to Quitline treatment – a randomized controlled trial

    PubMed Central

    2012-01-01

    Background Tobacco dependence is a chronic, relapsing condition that typically requires multiple quit attempts and extended treatment. When offered the opportunity, relapsed smokers are interested in recycling back into treatment for a new, assisted quit attempt. This manuscript presents the results of a randomized controlled trial testing the efficacy of interactive voice response (IVR) in recycling low income smokers who had previously used quitline (QL) support back to QL support for a new quit attempt. Methods A sample of 2985 previous QL callers were randomized to either receive IVR screening for current smoking (control group) or IVR screening plus an IVR intervention. The IVR intervention consists of automated questions to identify and address barriers to re-cycling in QL support, followed by an offer to be transferred to the QL and reinitiate treatment. Re-enrollment in QL services for both groups was documented. Results The IVR system successfully reached 715 (23.9%) former QL participants. Of those, 27% (194/715) reported to the IVR system that they had quit smoking and were therefore excluded from the study and analysis. The trial’s final sample was composed of 521 current smokers. The re-enrollment rate was 3.3% for the control group and 28.2% for the intervention group (p < .001). Logistic regression results indicated an 11.2 times higher odds for re-enrollment of the intervention group than the control group (p < .001). Results did not vary by gender, race, ethnicity, or level of education, however recycled smokers were older (Mean =45.2; SD = 11.7) than smokers who declined a new treatment cycle (Mean = 41.8; SD = 13.2); (p = 0.013). The main barriers reported for not engaging in a new treatment cycle were low self-efficacy and lack of interest in quitting. After delivering IVR messages targeting these reported barriers, 32% of the smokers reporting low self-efficacy and 4.8% of those reporting lack of interest in quitting re-engaged in a new QL treatment cycle. Conclusion Proactive IVR outreach is a promising tool to engage low income, relapsed smokers back into a new cycle of treatment. Integration of IVR intervention for recycling smokers with previous QL treatment has the potential to decrease tobacco-related disparities. Trial registration ClinicalTrials.gov Identifier: NCT01260597 PMID:22768793

  13. Isolation of campesteryl ferulate and epi-campesteryl ferulate, two components of γ-oryzanol from rice bran.

    PubMed

    Bao, Yuhua; Yanase, Emiko; Nakatsuka, Shin-ichi

    2013-01-01

    Campesteryl ferulate (3a, 24R/α) and epi-campesteryl ferulate (3b, 24S/β), components of rice bran γ-oryzanol, were isolated by the preparative recycle HPLC system using a combination of ODS silica and cholester packed columns at over 99% purity. Their purities and structures of 3a and 3b thus obtained were confirmed by HPLC analysis and physical data (1H- and 13C-NMR, MS spectra, and X-ray crystallography).

  14. Diagram of the Water Recovery and Management for the International Space Station

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This diagram shows the flow of water recovery and management in the International Space Station (ISS). The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center is responsible for the regenerative ECLSS hardware, as well as providing technical support for the rest of the system. The regenerative ECLSS, whose main components are the Water Recovery System (WRS), and the Oxygen Generation System (OGS), reclaims and recycles water oxygen. The ECLSS maintains a pressurized habitation environment, provides water recovery and storage, maintains and provides fire detection/ suppression, and provides breathable air and a comfortable atmosphere in which to live and work within the ISS. The ECLSS hardware will be located in the Node 3 module of the ISS.

  15. Environmental and sustainability ethics in supply chain management.

    PubMed

    Beamon, Benita M

    2005-04-01

    Environmentally Conscious Supply Chain Management (ECSCM refers to the control exerted over all immediate and eventual environmental effects of products and processes associated with converting raw materials into final products. While much work has been done in this area, the focus has traditionally been on either: product recovery (recycling, remanufacturing, or re-use) or the product design function only (e.g., design for environment). Environmental considerations in manufacturing are often viewed as separate from traditional, value-added considerations. However, the case can be made that professional engineers have an ethical responsibility to consider the immediate and eventual environmental impacts of products and processes that they design and/or manage. This paper describes ECSCM as a component of engineering ethics, and highlights the major issues associated with ethical decision-making in supply chain management.

  16. TRANSIENT ELECTRONICS CATEGORIZATION

    DTIC Science & Technology

    2017-08-24

    failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE...Recycling Make Sense from an Environmental Perspective?: The Environmental Impacts of the Swiss Take-Back and Recycling Systems for Waste Electrical and...technical information exchange, and its publication does not constitute the Government’s approval or disapproval of its ideas or findings

  17. Characterization and quality assessment of recycled post-consumption poly(ethylene terephthalate) (PET).

    PubMed

    Masmoudi, Fatma; Fenouillot, Françoise; Mehri, Afef; Jaziri, Mohamed; Ammar, Emna

    2018-06-05

    In the present study, the recycled post-consumption polyethylene terephthalate (PET) flakes were investigated as possible raw materials for the production of food packaging. After heating at 220 °C for 1 h, a steaming stage was conducted as a control test to assess the quality of the product. Different samples were characterized by 1 H-NMR, FT-IR, DSC/TGA analysis, viscosity index (VI), and trace metals analysis. The results showed that the recycled post-consumed PET flakes' properties were generally conform to the standard norms of PET except the color of some flakes turned to yellow. Subsequently, a complementary study was undertaken to assess whether the material could be possibly reused for food packaging. For this purpose, rheological, thermal, and mechanical characterizations were performed. The results of the comparative study between the virgin and the recycled PET flakes concluded that the PET recycling affected the rheological properties but did not have any significant effect on their thermal and mechanical characteristics. Hence, it was deduced that the post-consumed PET flakes could be reused as a packaging material except food products.

  18. Recyclability of Concrete Pavement Incorporating High Volume of Fly Ash.

    PubMed

    Yoshitake, Isamu; Ishida, Takeo; Fukumoto, Sunao

    2015-08-21

    Recyclable concrete pavement was made from fly ash and crushed limestone sand and gravel as aggregates so that the concrete pavement could be recycled to raw materials for cement production. With the aim to use as much fly ash as possible for the sustainable development of society, while achieving adequate strength development, pavement concrete having a cement-replacement ratio of 40% by mass was experimentally investigated, focusing on the strength development at an early age. Limestone powder was added to improve the early strength; flexural strength at two days reached 3.5 MPa, the minimum strength for traffic service in Japan. The matured fly ash concrete made with a cement content of 200 kg/m3 achieved a flexural strength almost equal to that of the control concrete without fly ash. Additionally, Portland cement made from the tested fly ash concrete was tested to confirm recyclability, with the cement quality meeting the Japanese classification of ordinary Portland cement. Limestone-based recyclable fly ash concrete pavement is, thus, a preferred material in terms of sustainability.

  19. Recyclability of Concrete Pavement Incorporating High Volume of Fly Ash

    PubMed Central

    Yoshitake, Isamu; Ishida, Takeo; Fukumoto, Sunao

    2015-01-01

    Recyclable concrete pavement was made from fly ash and crushed limestone sand and gravel as aggregates so that the concrete pavement could be recycled to raw materials for cement production. With the aim to use as much fly ash as possible for the sustainable development of society, while achieving adequate strength development, pavement concrete having a cement-replacement ratio of 40% by mass was experimentally investigated, focusing on the strength development at an early age. Limestone powder was added to improve the early strength; flexural strength at two days reached 3.5 MPa, the minimum strength for traffic service in Japan. The matured fly ash concrete made with a cement content of 200 kg/m3 achieved a flexural strength almost equal to that of the control concrete without fly ash. Additionally, Portland cement made from the tested fly ash concrete was tested to confirm recyclability, with the cement quality meeting the Japanese classification of ordinary Portland cement. Limestone-based recyclable fly ash concrete pavement is, thus, a preferred material in terms of sustainability. PMID:28793518

  20. Evolutionary Recycling of Light Signaling Components in Fleshy Fruits: New Insights on the Role of Pigments to Monitor Ripening

    PubMed Central

    Llorente, Briardo; D’Andrea, Lucio; Rodríguez-Concepción, Manuel

    2016-01-01

    Besides an essential source of energy, light provides environmental information to plants. Photosensory pathways are thought to have occurred early in plant evolution, probably at the time of the Archaeplastida ancestor, or perhaps even earlier. Manipulation of individual components of light perception and signaling networks in tomato (Solanum lycopersicum) affects the metabolism of ripening fruit at several levels. Most strikingly, recent experiments have shown that some of the molecular mechanisms originally devoted to sense and respond to environmental light cues have been re-adapted during evolution to provide plants with useful information on fruit ripening progression. In particular, the presence of chlorophylls in green fruit can strongly influence the spectral composition of the light filtered through the fruit pericarp. The concomitant changes in light quality can be perceived and transduced by phytochromes (PHYs) and PHY-interacting factors, respectively, to regulate gene expression and in turn modulate the production of carotenoids, a family of metabolites that are relevant for the final pigmentation of ripe fruits. We raise the hypothesis that the evolutionary recycling of light-signaling components to finely adjust pigmentation to the actual ripening stage of the fruit may have represented a selective advantage for primeval fleshy-fruited plants even before the extinction of dinosaurs. PMID:27014289

  1. Evolutionary Recycling of Light Signaling Components in Fleshy Fruits: New Insights on the Role of Pigments to Monitor Ripening.

    PubMed

    Llorente, Briardo; D'Andrea, Lucio; Rodríguez-Concepción, Manuel

    2016-01-01

    Besides an essential source of energy, light provides environmental information to plants. Photosensory pathways are thought to have occurred early in plant evolution, probably at the time of the Archaeplastida ancestor, or perhaps even earlier. Manipulation of individual components of light perception and signaling networks in tomato (Solanum lycopersicum) affects the metabolism of ripening fruit at several levels. Most strikingly, recent experiments have shown that some of the molecular mechanisms originally devoted to sense and respond to environmental light cues have been re-adapted during evolution to provide plants with useful information on fruit ripening progression. In particular, the presence of chlorophylls in green fruit can strongly influence the spectral composition of the light filtered through the fruit pericarp. The concomitant changes in light quality can be perceived and transduced by phytochromes (PHYs) and PHY-interacting factors, respectively, to regulate gene expression and in turn modulate the production of carotenoids, a family of metabolites that are relevant for the final pigmentation of ripe fruits. We raise the hypothesis that the evolutionary recycling of light-signaling components to finely adjust pigmentation to the actual ripening stage of the fruit may have represented a selective advantage for primeval fleshy-fruited plants even before the extinction of dinosaurs.

  2. Pilot-based assessment of the economics of recycling construction demolition waste.

    PubMed

    Srour, Issam M; Chehab, Ghassan R; El-Fadel, Mutasem; Tamraz, Sandy

    2013-11-01

    The significant amount of waste generated from construction demolition has become a chronic problem in many developing countries. Using data obtained from demolition contractors and various other sources, this paper proposes a framework for proper handling of construction demolition waste (CDW) to serve as a decision support tool in countries suffering from the lack of national CDW management guidelines. The framework is then demonstrated through a case study in the city of Beirut, Lebanon, and a sensitivity analysis is carried out to examine the economic feasibility of developing a recycling facility. The analysis showed that in order for a facility to be feasible, a gate fee should be charged in the presence of a market for recycled aggregates. The results confirm the significance of instigating and implementing legislation to control illegal dumping, constructing, and managing engineered landfills, and establishing markets for recycled CDW.

  3. Genetic incorporation of recycled unnatural amino acids.

    PubMed

    Ko, Wooseok; Kim, Sanggil; Jo, Kyubong; Lee, Hyun Soo

    2016-02-01

    The genetic incorporation of unnatural amino acids (UAAs) into proteins has been a useful tool for protein engineering. However, most UAAs are expensive, and the method requires a high concentration of UAAs, which has been a drawback of the technology, especially for large-scale applications. To address this problem, a method to recycle cultured UAAs was developed. The method is based on recycling a culture medium containing the UAA, in which some of essential nutrients were resupplemented after each culture cycle, and induction of protein expression was controlled with glucose. Under optimal conditions, five UAAs were recycled for up to seven rounds of expression without a decrease in expression level, cell density, or incorporation fidelity. This method can generally be applied to other UAAs; therefore, it is useful for reducing the cost of UAAs for genetic incorporation and helpful for expanding the use of the technology to industrial applications.

  4. Analysis of Shear Bond Strength and Morphology of Er:YAG Laser-Recycled Ceramic Orthodontic Brackets.

    PubMed

    Han, Ruo-qiao; Yang, Kai; Ji, Ling-fei; Ling, Chen

    2016-01-01

    The aim of this study was to compare the recycling of deboned ceramic brackets via an Er:YAG laser or via the traditional chairside processing methods of flaming and sandblasting; shear bond strength and morphological changes were evaluated in recycled brackets versus new brackets. 3M Clarity Self-Ligating Ceramic Brackets with a microcrystalline base were divided into groups subjected to flaming, sandblasting, or exposure to an Er:YAG laser. New ceramic brackets served as a control group. Shear bond strengths were determined with an Electroforce test machine and tested for statistical significance through analysis of variance. Morphological examinations of the recycled ceramic bracket bases were conducted with scanning electron microscopy and confocal laser scanning microscopy. Residue on the bracket base was analyzed with Raman spectroscopy. Faded, dark adhesive was left on recycled bracket bases processed via flaming. Adhesive was thoroughly removed by both sandblasting and exposure to an Er:YAG laser. Compared with new brackets, shear bond strength was lower after sandblasting (p < 0.05), but not after exposure to an Er:YAG laser. The Er:YAG laser caused no damage to the bracket. Er:YAG lasers effectively remove adhesive from the bases of ceramic brackets without damaging them; thus, this method may be preferred over other recycling methods.

  5. Sensor array for the detection of organic and inorganic contaminants in post-consumer recycled plastics for food contact.

    PubMed

    Davis, Nathan; Danes, Jeffrey E; Vorst, Keith

    2017-10-01

    Post-consumer recycled (PCR) plastic material is made by collecting used plastic products (e.g., bottles and other plastic packaging materials) and reprocessing them into solid-state pellets or flakes. Plastic recycling has positive environmental benefits, but may also carry potential drawbacks due to unwanted organic and inorganic contaminants. These contaminants can migrate into food packaging made from these recycled plastic materials. The purpose of this research was to identify economically viable real-time monitoring technologies that can be used during the conversion of virgin and recycled resin feedstocks (i.e., various blends of virgin pellets and recycled solid-state pellet or mechanically ground flake) to final articles to ensure the safety, quality and sustainability of packaging feedstocks. Baseline analysis (validation) of real-time technologies was conducted using industry-standard practices for polymer analysis. The data yielded supervised predictive models developed by training sessions completed in a controlled laboratory setting. This technology can be employed to evaluate compliance and aid converters in commodity sourcing of resin without exceeding regulatory thresholds. Furthermore, this technology allowed for real-time decision and diversion strategies during the conversion of resin and flake to final articles or products to minimise the negative impact on human health and environmental exposure.

  6. Expedition 19 crew tests water from Recycling system

    NASA Image and Video Library

    2009-05-20

    ISS019-E-018483 (20 May 2009) --- After NASA's Mission Control gave the Expedition 19 astronaut crew aboard the International Space Station a "go" to drink water that the station's new recycling system has purified, the three celebrated with a ?toast? that also involved Mission Control, Houston, and the Payload Operations Center at Marshall Space Flight Center in Huntsville, Ala., which led development of the Water Recovery System. Pictured are Expedition 19 Commander Gennady Padalka (center) and Flight Engineers Mike Barratt (right) and Koichi Wakata, holding drink bags with special commemorative labels in the Destiny laboratory.

  7. Expedition 19 crew tests water from Recycling system

    NASA Image and Video Library

    2009-05-20

    ISS019-E-018486 (20 May 2009) --- After NASA's Mission Control gave the Expedition 19 astronaut crew aboard the International Space Station a "go" to drink water that the station's new recycling system has purified, the three celebrated with a ?toast? that also involved Mission Control, Houston, and the Payload Operations Center at Marshall Space Flight Center in Huntsville, Ala., which led development of the Water Recovery System. Pictured are Expedition 19 Commander Gennady Padalka (center) and Flight Engineers Mike Barratt (right) and Koichi Wakata, holding drink bags with special commemorative labels in the Destiny laboratory.

  8. Design and Modeling of a Liquid Lithium LiMIT Loop

    NASA Astrophysics Data System (ADS)

    Szott, Matthew; Christenson, Michael; Stemmley, Steven; Ahn, Chisung; Andruczyk, Daniel; Ruzic, David

    2017-10-01

    The use of flowing liquid lithium in plasma facing components has been shown to reduce erosion and thermal stress damage, prolong device lifetime, decrease edge recycling, reduce impurities, and increase plasma performance, all while providing a clean and self-healing surface. The Liquid Metal Infused Trench (LiMIT) system has proven the concept of controlled thermoelectric magnetohydrodynamic-driven lithium flow for use in fusion relevant conditions, through tests at UIUC, HT-7, and Magnum PSI. As the use of liquid lithium in fusion devices progresses, emphasis must now be placed on full systems integration of flowing liquid metal concepts. The LiMIT system will be upgraded to include a full liquid lithium loop, which will pump lithium into the fusion device, utilize TEMHD to drive lithium through the vessel, and remove lithium for filtration and degassing. Flow control concepts recently developed at UIUC - including wetting control, dryout control, and flow velocity control - will be tested in conjunction in order to demonstrate a robust system. Lithium loop system requirements, designs, and modeling work will be presented, along with plans for installation and testing on the HIDRA device at UIUC. This work is supported by DOE/ALPS DE-FG02-99ER54515.

  9. Cargo-mediated regulation of a rapid Rab4-dependent recycling pathway.

    PubMed

    Yudowski, Guillermo A; Puthenveedu, Manojkumar A; Henry, Anastasia G; von Zastrow, Mark

    2009-06-01

    Membrane trafficking is well known to regulate receptor-mediated signaling processes, but less is known about whether signaling receptors conversely regulate the membrane trafficking machinery. We investigated this question by focusing on the beta-2 adrenergic receptor (B2AR), a G protein-coupled receptor whose cellular signaling activity is controlled by ligand-induced endocytosis followed by recycling. We used total internal reflection fluorescence microscopy (TIR-FM) and tagging with a pH-sensitive GFP variant to image discrete membrane trafficking events mediating B2AR endo- and exocytosis. Within several minutes after initiating rapid endocytosis of B2ARs by the adrenergic agonist isoproterenol, we observed bright "puffs" of locally increased surface fluorescence intensity representing discrete Rab4-dependent recycling events. These events reached a constant frequency in the continuous presence of isoproterenol, and agonist removal produced a rapid (observed within 1 min) and pronounced (approximately twofold) increase in recycling event frequency. This regulation required receptor signaling via the cAMP-dependent protein kinase (PKA) and a specific PKA consensus site located in the carboxyl-terminal cytoplasmic tail of the B2AR itself. B2AR-mediated regulation was not restricted to this membrane cargo, however, as transferrin receptors packaged in the same population of recycling vesicles were similarly affected. In contrast, net recycling measured over a longer time interval (10 to 30 min) was not detectably regulated by B2AR signaling. These results identify rapid regulation of a specific recycling pathway by a signaling receptor cargo.

  10. Heterogeneous source components of intraplate basalts from NE China induced by the ongoing Pacific slab subduction

    NASA Astrophysics Data System (ADS)

    Chen, Huan; Xia, Qun-Ke; Ingrin, Jannick; Deloule, Etienne; Bi, Yao

    2017-02-01

    The subduction of oceanic slabs is widely accepted to be a main reason for chemical heterogeneities in the mantle. However, determining the contributions of slabs in areas that have experienced multiple subduction events is often difficult due to possible overlapping imprints. Understanding the temporal and spatial variations of source components for widespread intraplate small volume basalts in eastern China may be a basis for investigating the influence of the subducted Pacific slab, which has long been postulated but never confirmed. For this purpose, we investigated the Chaihe-aershan volcanic field (including more than 35 small-volume Quaternary basaltic volcanoes) in NE China and measured the oxygen isotopes and water content of clinopyroxene (cpx) phenocrysts using secondary ion mass spectrometry (SIMS) and Fourier transform infrared spectroscopy (FTIR), respectively. The water content of magma was then estimated based on the partition coefficient of H2O between cpx and the basaltic melt. The δ18O of cpx phenocrysts (4.28‰ to 8.57‰) and H2O content of magmas (0.19 wt.%-2.70 wt.%) show large variations, reflecting the compositional heterogeneity of the mantle source. The δ18O values and H2O content within individual samples also display considerable variation, suggesting the mixing of magmas and that the magma mixing occurred shortly before the eruption. The relation between the δ18O values of cpx phenocrysts and the H2O/Ce ratio, Ba/Th ratio and Eu anomaly of whole rocks demonstrates the contributions of three components to the mantle source (hydrothermally altered upper oceanic crust and marine sediments, altered lower gabbroic oceanic crust, and ambient mantle). The proportions of these three components have varied widely over time (∼1.37 Ma to ∼0.25 Ma). The Pacific slab is constantly subducted under eastern Asia and continuously transports recycled materials to the deep mantle. The temporal heterogeneity of the source components may be caused by ongoing Pacific slab subduction. Combined with other basalt localities in eastern China (Shuangliao basalts, Taihang basalts and Shangdong basalts), the contributions of recycled oceanic components in their mantle source are heterogeneous. This spatial heterogeneity of mantle sources may be induced by variable alterations and dehydration during the recycling process of the Pacific slab. Our results show that the source components of Cenozoic intraplate small-volume basalts in eastern China are temporally and spatially heterogeneous, which is likely induced by the ongoing subduction of the Pacific slab. This demonstrates that integrating the temporal variations in geochemical characteristics and tectonic history of a study region can identify the subducted oceanic plate that induced enriched components in the mantle source of intraplate basalts.

  11. Tc removal from the waste treatment and immobilization plant low-activity waste vitrification off-gas recycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M. L.; McCabe, Daniel J.; Nash, Charles A.

    Vitrification of Low Activity Waste in the Hanford Waste Treatment and Immobilization Plant generates a condensate stream from the off-gas processes. Components in this stream are partially volatile and accumulate to high concentrations through recycling, which impacts the waste glass loading and facility throughput. The primary radionuclide that vaporizes and accumulates in the stream is 99Tc. This program is investigating Tc removal via reductive precipitation with stannous chloride to examine the potential for diverting this stream to an alternate disposition path. As a result, research has shown stannous chloride to be effective, and this paper describes results of recent experimentsmore » performed to further mature the technology.« less

  12. E-waste hazard: The impending challenge.

    PubMed

    Pinto, Violet N

    2008-08-01

    Electronic waste or e-waste is one of the rapidly growing problems of the world. E-waste comprises of a multitude of components, some containing toxic substances that can have an adverse impact on human health and the environment if not handled properly. In India, e-waste management assumes greater significance not only due to the generation of its own e-waste but also because of the dumping of e-waste from developed countries. This is coupled with India's lack of appropriate infrastructure and procedures for its disposal and recycling. This review article provides a concise overview of India's current e-waste scenario, namely magnitude of the problem, environmental and health hazards, current disposal and recycling operations, existing legal framework, organizations working on this issue and recommendations for action.

  13. Recycling of nickel-metal hydride battery scrap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyman, J.W.; Palmer, G.R.

    1994-12-31

    Nickel-metal hydride (Ni-MH) battery technology is being developed as a NiCd replacement for applications in consumer cells and electric vehicle batteries. The U.S. Bureau of Mines is investigating hydrometallurgical recycling technology that separates and recovers individual components from Ni-MH battery scrap. Acid dissolution and metal recovery techniques such as precipitation and solvent extraction produced purified products of rare-earths, nickel, and other metals associated with AB{sub 2} and AB{sub 5} Ni-MH scrap. Tests were conducted on scrap cells of a single chemistry that had been de-canned to reduce iron content. Although recovery techniques have been identified in principal, their applicability tomore » mixed battery waste stream and economic attractiveness remain to be demonstrated. 14 refs.« less

  14. Tc removal from the waste treatment and immobilization plant low-activity waste vitrification off-gas recycle

    DOE PAGES

    Taylor-Pashow, Kathryn M. L.; McCabe, Daniel J.; Nash, Charles A.

    2017-03-16

    Vitrification of Low Activity Waste in the Hanford Waste Treatment and Immobilization Plant generates a condensate stream from the off-gas processes. Components in this stream are partially volatile and accumulate to high concentrations through recycling, which impacts the waste glass loading and facility throughput. The primary radionuclide that vaporizes and accumulates in the stream is 99Tc. This program is investigating Tc removal via reductive precipitation with stannous chloride to examine the potential for diverting this stream to an alternate disposition path. As a result, research has shown stannous chloride to be effective, and this paper describes results of recent experimentsmore » performed to further mature the technology.« less

  15. GROWING ALTERNATIVE SUSTAINABLE BUILDINGS: BIO-COMPOSITE PRODUCTS FROM NATURAL FIBER, BIODEGRADABLE AND RECYCLABLE POLYMER MATERIALS FOR LOAD-BEARING CONSTRUCTION COMPONENTS

    EPA Science Inventory

    The project is an integrative educational and research project that will revolutionize design and construction methods towards more sustainable buildings. The project will develop and test new product design concepts using bio-composite materials in load-bearing and fa&cced...

  16. REMEDIATION FLUID RECYCLING - APPLICATION OF PERVAPORATION TECHNOLOGY TO MATERIAL RECOVERY AND REUSE

    EPA Science Inventory

    In an effort to aggressively remove NAPL source areas, agents such as surfactants and alcohols have been added to in situ flusing systems to enhance the solubility of the NAPL components. Such an approach has the potential to reduce the risk posed by a long term source of ground...

  17. Recovery of ammonia nitrogen in livestock and industrial wastes using gas permeable membranes

    USDA-ARS?s Scientific Manuscript database

    New waste management methods are needed that can protect the environment and allow manure management to switch back to a recycling view of manure handling. We investigated the use of gas-permeable membranes as components of new processes to capture and recover the ammonia in the liquid manures or in...

  18. Contribution of residual proteins to the thermomechanical performance of cellulosic nanofibrils isolated from green macroalgae

    Treesearch

    Jiaqi Guo; Khan Mohammad Ahsan Uddin; Karl Mihhels; Wenwen Fang; Päivi Laaksonen; J. Y. Zhu; Orlando J. Rojas

    2017-01-01

    Cellulosic nanofibrils (CNFs) were isolated from one of the most widespread freshwater macroalgae, Aegagropila linnaei. The algae were first carboxylated with a recyclable dicarboxylic acid, which facilitated deconstruction into CNFs via microfluidization while preserving the protein component. For comparison, cellulosic fibrils were also isolated by chemical treatment...

  19. REMEDIATION FLUID RECYCLING: APPLICATION OF PERVAPORATION TECHNOLOGY TO MATERIAL RECOVERY AND REUSE

    EPA Science Inventory

    In an effort to aggressively remove NAPL source areas, agents such as surfactants and alcohols have been added to in situ flushing systems to enhance the solubility of the NAPL components. Such an approach has the potential to reduce the risk posed by a long term source of groun...

  20. Zirconium Recycle Test Equipment for Hot Cell Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Emory D.; DelCul, Guillermo Daniel; Spencer, Barry B.

    2015-01-30

    The equipment components and assembly support work were modified for optimized, remote hot cell operations to complete this milestone. The modifications include installation of a charging door, Swagelok connector for the off-gas line between the reactor and condenser, and slide valve installation to permit attachment/replacement of the product salt collector bottle.

  1. REMEDIATION FLUID RECYCLING - APPLICATION OF PERVAPORATION TECHNOLOGY TO MATERIAL RECOVERY AND REUSEI

    EPA Science Inventory

    In an effort to aggressively remove NAPL source areas, agents such as surfactants and alcohols have been added to in situ flusing systems to enhance the solubility of the NAPL components. Such an approach has the potential to reduce the risk posed by a long term source of ground...

  2. Trace element differences between Archean, Proterozoic and Phanerozoic crustal components: Implications for crustal growth processes

    NASA Technical Reports Server (NTRS)

    Tarney, J.; Wyborn, L. E. A.; Sheraton, J. W.; Wyborn, D.

    1988-01-01

    Critical to models for continental crust growth and recycling are the processes through which crustal growth takes place. In particular, it is important to know whether these processes have changed fundamentally with time in response to the earth's thermal evolution, and whether the crustal compositions generated are compatible with crustal remobilization, crustal recycling, or represent primary additions. There are some significant and consistent differences in the major and trace element compositions of crustal components with time which have important implications for crustal growth processes. These will be illustrated with reference to Archean rocks from a number of shield areas, Proterozoic granitoids from Australia and elsewhere, Palaeozoic granitoids from Australia and Scotland, and Mesozoic - recent granitoids from present continental margin belts. Surprisingly some rather simple and consistent patterns energy using this technique. There are then significant differences in compositions of granitoid crustal additions throughout geological time, with a particular type of granitoid apparently dominating a particular time period. This implies that the tectonic processes giving rise to granite generation have changed in response to the earth's thermal evolution.

  3. Distillation and Air Stripping Designs for the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Boul, Peter J.; Lange, Kevin E.; Conger, Bruce; Anderson, Molly

    2009-01-01

    Air stripping and distillation are two different gravity-based methods, which may be applied to the purification of wastewater on the lunar base. These gravity-based solutions to water processing are robust physical separation techniques, which may be advantageous to many other techniques for their simplicity in design and operation. The two techniques can be used in conjunction with each other to obtain high purity water. The components and feed compositions for modeling waste water streams are presented in conjunction with the Aspen property system for traditional stage distillation models and air stripping models. While the individual components for each of the waste streams will vary naturally within certain bounds, an analog model for waste water processing is suggested based on typical concentration ranges for these components. Target purity levels for the for recycled water are determined for each individual component based on NASA s required maximum contaminant levels for potable water Distillation processes are modeled separately and in tandem with air stripping to demonstrate the potential effectiveness and utility of these methods in recycling wastewater on the Moon. Optimum parameters such as reflux ratio, feed stage location, and processing rates are determined with respect to the power consumption of the process. Multistage distillation is evaluated for components in wastewater to determine the minimum number of stages necessary for each of 65 components in humidity condensate and urine wastewater mixed streams. Components of the wastewater streams are ranked by Henry s Law Constant and the suitability of air stripping in the purification of wastewater in terms of component removal is evaluated. Scaling factors for distillation and air stripping columns are presented to account for the difference in the lunar gravitation environment. Commercially available distillation and air stripping units which are considered suitable for Exploration Life Support are presented. The advantages to the various designs are summarized with respect to water purity levels, power consumption, and processing rates.

  4. Military Review: Training the Force.

    DTIC Science & Technology

    1991-01-01

    attack birds move in, it realizes the reserve must finish the fight. TF Sa- is over.., the senior controller calls "change of ber is alerted to recycle ...concentrate on field S1 must then take the casualties and recycle exerise performance alone, measwing it them as replacements. objectively against a...degenerate into a formal rehash of military history and the causes and consequences of common places and a plodding through trivia , tension between

  5. PDGF-regulated rab4-dependent recycling of alphavbeta3 integrin from early endosomes is necessary for cell adhesion and spreading.

    PubMed

    Roberts, M; Barry, S; Woods, A; van der Sluijs, P; Norman, J

    2001-09-18

    It has been postulated that the regulation of integrin vesicular traffic facilitates cell migration by internalizing integrins at the rear of the cell and transporting them forward within vesicles for exocytosis at the leading edge to form new contacts with the extracellular matrix. The rab family of GTPases control key targeting events in the endo/exocytic pathway; therefore, these GTPases may be involved in the regulation of cell-matrix contact assembly. The endo/exocytic cycle of alphavbeta3 and alpha5beta1 integrins was studied using mouse 3T3 fibroblast cell lines. In serum-starved cells, internalized integrins were transported through rab4-positive, early endosomes and arrived at the rab11-positive, perinuclear recycling compartment approximately 30 min after endocytosis. From the recycling compartment, integrins were recycled to the plasma membrane in a rab11-dependent fashion. Following treatment with PDGF, alphavbeta3 integrin, but not alpha5beta1, was rapidly recycled directly back to the plasma membrane from the early endosomes via a rab4-dependent mechanism without the involvement of rab11. This rapid recycling pathway directed alphavbeta3 to numerous small puncta distributed evenly across the dorsal surface of the cell, and the integrin only became localized into focal complexes at later times following PDGF addition. Interestingly, inhibition of PDGF-stimulated alphavbeta3 recycling using dominant-negative rab4 mutants compromised cell adhesion and spreading on vitronectin (a ligand for alphavbeta3), but adhesion to fibronectin (a ligand for alpha5beta1 and alphavbeta3) was unchanged. We propose that growth factor-regulated, rab4-dependent recycling of alphavbeta3 integrin from early endosomes to the plasma membrane is a critical upstream event in the assembly of cell-matrix contacts.

  6. Recyclable Naturally Derived Magnetic Pyrrhotite for Elemental Mercury Recovery from Flue Gas.

    PubMed

    Liao, Yong; Chen, Dong; Zou, Sijie; Xiong, Shangchao; Xiao, Xin; Dang, Hao; Chen, Tianhu; Yang, Shijian

    2016-10-04

    Magnetic pyrrhotite, derived from the thermal treatment of natural pyrite, was developed as a recyclable sorbent to recover elemental mercury (Hg 0 ) from the flue gas as a cobenefit of wet electrostatic precipitators (WESP). The performance of naturally derived pyrrhotite for Hg 0 capture from the flue gas was much better than those of other reported magnetic sorbents, for example Mn-Fe spinel and Mn-Fe-Ti spinel. The rate of pyrrhotite for gaseous Hg 0 capture at 60 °C was 0.28 μg g min -1 and its capacity was 0.22 mg g -1 with the breakthrough threshold of 4%. After the magnetic separation from the mixture collected by the WESP, the spent pyrrhotite can be thermally regenerated for recycle. The experiment of 5 cycles of Hg 0 capture and regeneration demonstrated that both the adsorption efficiency and the magnetization were not notably degraded. Meanwhile, the ultralow concentration of gaseous Hg 0 in the flue gas was concentrated to high concentrations of gaseous Hg 0 and Hg 2+ during the regeneration process, which facilitated the centralized control of mercury pollution. Therefore, the control of Hg 0 emission from coal-fired plants by the recyclable pyrrhotite was cost-effective and did not have secondary pollution.

  7. Diaper wars: Chapter six -- technology strikes back

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naquin, D.

    1997-10-01

    With $1.5 million in funding, including $80,000 from the Israeli Office of the Chief Scientist, Israeli and US investors developed and patented Diapactor, a self-contained unit designed to process 60 used diapers per hour, while reducing volume by 95%. The group introduced the product at WasteExpo `97, held in May in Atlanta. Its end products are pellets of commingled plastic and of cellulose pulp. The machine, about twice the size of the average family washing machine, is produced by Diatec Recycling Technologies USA, Inc. (Agoura Hills, Calif.). Diapers go in at the top of the Diapactor. The machine does themore » rest, opening the diaper, pumping in water, heating the material, and separating it into usable components. Since paper used for personal hygiene products must meet high standards, the resulting pulp is high grade. It can be recycled into new diapers or various paper products, including stationery. Plastic pellets, produced from the diaper`s tape and lining, can be melted down and recycled into a variety of items, including paving tiles, asphalt, and plastic fencing.« less

  8. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl).

    PubMed

    Guo, Yang; Li, Feng; Zhu, Haochen; Li, Guangming; Huang, Juwen; He, Wenzhi

    2016-05-01

    Spent lithium-ion batteries (LIBs) are considered as an important secondary resource for its high contents of valuable components, such as lithium and cobalt. Currently, studies mainly focus on the recycling of cathode electrodes. There are few studies concentrating on the recovery of anode electrodes. In this work, based on the analysis result of high amount of lithium contained in the anode electrode, the acid leaching process was applied to recycle lithium from anode electrodes of spent LIBs. Hydrochloric acid was introduced as leaching reagent, and hydrogen peroxide as reducing agent. Within the range of experiment performed, hydrogen peroxide was found to have little effect on lithium leaching process. The highest leaching recovery of 99.4wt% Li was obtained at leaching temperature of 80°C, 3M hydrochloric acid and S/L ratio of 1:50g/ml for 90min. The graphite configuration with a better crystal structure obtained after the leaching process can also be recycled. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Recycling of typical supercapacitor materials.

    PubMed

    Vermisoglou, Eleni C; Giannouri, Maria; Todorova, Nadia; Giannakopoulou, Tatiana; Lekakou, Constantina; Trapalis, Christos

    2016-04-01

    A simple, facile and low-cost method for recycling of supercapacitor materials is proposed. This process aims to recover some fundamental components of a used supercapacitor, namely the electrolyte salt tetraethyl ammonium tetrafluoroborate (TEABF4) dissolved in an aprotic organic solvent such as acetonitrile (ACN), the carbonaceous material (activated charcoal, carbon nanotubes) purified, the current collector (aluminium foil) and the separator (paper) for further utilization. The method includes mechanical shredding of the supercapacitor in order to reduce its size, and separation of aluminium foil and paper from the carbonaceous resources containing TEABF4 by sieving. The extraction of TEABF4 from the carbonaceous material was based on its solubility in water and subsequent separation through filtering and distillation. A cyclic voltammetry curve of the recycled carbonaceous material revealed supercapacitor behaviour allowing a potential reutilization. Furthermore, as BF4(-) stemming from TEABF4 can be slowly hydrolysed in an aqueous environment, thus releasing F(-) anions, which are hazardous, we went on to their gradual trapping with calcium acetate and conversion to non-hazardous CaF2. © The Author(s) 2016.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    In 1990, the Lower Savannah Council of Governments (LSCOG) began dialogue with the United States Department of Energy (DOE) regarding possibilities for cooperation and coordination of solid waste management practices among the local governments and the Savannah River Site. The Department of Energy eventually awarded a grant to the Lower Savannah Council of Governments for the development of a study, which was initiated on March 5, 1992. After careful analysis of the region`s solid waste needs, this study indicates a network approach to solid waste management to be the most viable. The network involves the following major components: (1) Ruralmore » Collection Centers, designed to provide convenience to rural citizens, while allowing some degree of participation in recycling; (2) Rural Drop-Off Centers, designed to give a greater level of education and recycling activity; (3) Inert landfills and composting centers, designed to reduce volumes going into municipal (Subtitle D) landfills and produce useable products from yard waste; (4) Transfer Stations, ultimate landfill disposal; (5) Materials Recovery Facilities, designed to separate recyclables into useable and sellable units, and (6) Subtitle D landfill for burial of all solid waste not treated through previous means.« less

  11. OCRL controls trafficking through early endosomes via PtdIns4,5P2-dependent regulation of endosomal actin

    PubMed Central

    Vicinanza, Mariella; Di Campli, Antonella; Polishchuk, Elena; Santoro, Michele; Di Tullio, Giuseppe; Godi, Anna; Levtchenko, Elena; De Leo, Maria Giovanna; Polishchuk, Roman; Sandoval, Lisette; Marzolo, Maria-Paz; De Matteis, Maria Antonietta

    2011-01-01

    Mutations in the phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P2) 5-phosphatase OCRL cause Lowe syndrome, which is characterised by congenital cataracts, central hypotonia, and renal proximal tubular dysfunction. Previous studies have shown that OCRL interacts with components of the endosomal machinery; however, its role in endocytosis, and thus the pathogenic mechanisms of Lowe syndrome, have remained elusive. Here, we show that via its 5-phosphatase activity, OCRL controls early endosome (EE) function. OCRL depletion impairs the recycling of multiple classes of receptors, including megalin (which mediates protein reabsorption in the kidney) that are retained in engorged EEs. These trafficking defects are caused by ectopic accumulation of PtdIns4,5P2 in EEs, which in turn induces an N-WASP-dependent increase in endosomal F-actin. Our data provide a molecular explanation for renal proximal tubular dysfunction in Lowe syndrome and highlight that tight control of PtdIns4,5P2 and F-actin at the EEs is essential for exporting cargoes that transit this compartment. PMID:21971085

  12. Control of nitrification/denitrification in an onsite two-chamber intermittently aerated membrane bioreactor with alkalinity and carbon addition: Model and experiment.

    PubMed

    Perera, Mahamalage Kusumitha; Englehardt, James D; Tchobanoglous, George; Shamskhorzani, Reza

    2017-05-15

    Denitrifying membrane bioreactors (MBRs) are being found useful in water reuse treatment systems, including net-zero water (nearly closed-loop), non-reverse osmosis-based, direct potable reuse (DPR) systems. In such systems nitrogen may need to be controlled in the MBR to meet the nitrate drinking water standard in the finished water. To achieve efficient nitrification and denitrification, the addition of alkalinity and external carbon may be required, and control of the carbon feed rate is then important. In this work, an onsite, two-chamber aerobic nitrifying/denitrifying MBR, representing one unit process of a net-zero water, non-reverse osmosis-based DPR system, was modeled as a basis for control of the MBR internal recycling rate, aeration rate, and external carbon feed rate. Specifically, a modification of the activated sludge model ASM2dSMP was modified further to represent the rate of recycling between separate aerobic and anoxic chambers, rates of carbon and alkalinity feed, and variable aeration schedule, and was demonstrated versus field data. The optimal aeration pattern for the modeled reactor configuration and influent matrix was found to be 30 min of aeration in a 2 h cycle (104 m 3 air/d per 1 m 3 /d average influent), to ultimately meet the nitrate drinking water standard. Optimal recycling ratios (inter-chamber flow to average daily flow) were found to be 1.5 and 3 during rest and mixing periods, respectively. The model can be used to optimize aeration pattern and recycling ratio in such MBRs, with slight modifications to reflect reactor configuration, influent matrix, and target nitrogen species concentrations, though some recalibration may be required. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Tungsten Abundances in Hawaiian Picrites: Implications for the Mantle Sources of Hawaiian Volcanoes

    NASA Astrophysics Data System (ADS)

    Ireland, T. J.; Arevalo, R. D.; Walker, R. J.; McDonough, W. F.

    2008-12-01

    Tungsten abundances have been measured in a suite of Hawaiian picrites (MgO >13 wt.%) from nine Hawaiian shield volcanoes (Mauna Kea, Mauna Loa, Hualalai, Loihi, Koolau, Kilauea, Kohala, Lanai and Molokai). Tungsten concentrations in the parental melts for these volcanoes have been estimated via the intersection of linear W-MgO trends with the putative MgO content of the parental melt (~16 wt.%). Tungsten behaves as a highly incompatible trace element in mafic to ultramafic systems; thus, given an independent assessment of the degree of partial melting for each volcanic center, the W abundances in their mantle sources can be determined. The mantle sources for Hualalai, Kilauea, Kohala and Loihi have non- uniform estimated W abundances of 11, 13, 16 and 27 ng/g, respectively, giving an average source abundance of 17±5 ng/g. This average source abundance is nearly six times more enriched than Depleted MORB Mantle (DMM: 3.0±2.3 ng/g) and slightly elevated relative to the Bulk Silicate Earth (BSE: 13±10 ng/g). The relatively high abundances of W in the Hawaiian sources relative to the DMM can potentially be explained as a consequence of crustal recycling. For example, incorporation of 30% oceanic crust (30 ng/g W), including 3% sediment (1500 ng/g W), into a DMM source could create the W enrichment observed in the Loihi source, consistent with estimates from earlier models based on other trace elements and isotope systems. The Hualalai source, however, has also been suggested to contain a substantial recycled component, as implied by similarly radiogenic 187Os/188Os, yet this source has the lowest estimated W abundance among the volcanic centers studied. The conflict between these results may: 1) reflect chemical differences among recycled components, 2) indicate a more complex history for Hualalai samples, e.g. involvement of a melt percolation component, or 3) implicate other sources of W.

  14. Mass flux measurements at active lava lakes: Implications for magma recycling

    NASA Astrophysics Data System (ADS)

    Harris, Andrew J. L.; Flynn, Luke P.; Rothery, David A.; Oppenheimer, Clive; Sherman, Sarah B.

    1999-04-01

    Remotely sensed and field data can be used to estimate heat and mass fluxes at active lava lakes. Here we use a three thermal component pixel model with three bands of Landsat thematic mapper (TM) data to constrain the thermal structure of, and flux from, active lava lakes. Our approach considers that a subpixel lake is surrounded by ground at ambient temperatures and that the surface of the lake is composed of crusted and/or molten material. We then use TM band 6 (10.42-12.42 μm) with bands 3 (0.63-0.69 μm) or 4 (0.76-0.90 μm) and 5 (1.55-1.75 μm) or 7 (2.08-2.35 μm), along with field data (e.g., lava lake area), to place limits on the size and temperature of each thermal component. Previous attempts to achieve this have used two bands of TM data with a two-component thermal model. Using our model results with further field data (e.g., petrological data) for lava lakes at Erebus, Erta 'Ale, and Pu'u 'O'o, we calculate combined radiative and convective fluxes of 11-20, 14-27 and 368-373 MW, respectively. These yield mass fluxes, of 30-76, 44-104 and 1553-2079 kg s-1, respectively. We also identify a hot volcanic feature at Nyiragongo during 1987 from which a combined radiative and convective flux of 0.2-0.6 MW implies a mass flux of 1-2 kg s-1. We use our mass flux estimates to constrain circulation rates in each reservoir-conduit-lake system and consider four models whereby circulation results in intrusion within or beneath the volcano (leading to endogenous or cryptic growth) and/or magma mixing in the reservoir (leading to recycling). We suggest that the presence of lava lakes does not necessarily imply endogenous or cryptic growth: lava lakes could be symptomatic of magma recycling in supraliquidus reservoirs.

  15. Analysis of the process applied to end-of-life vehicles in Authorised Treatment Facilities

    NASA Astrophysics Data System (ADS)

    Muñoz, C.; Garraín, D.; Franco, V.; Royo, M.; Justel, D.; Vidal, R.

    2009-11-01

    Authorised treatment facilities (ATFs) play a key role in the process undergone by vehicles when they reach their end of life (EoL) within the context of Directive 2000/53/EC. Whenever an EoL vehicle is received at an ATF, a certificate of destruction is issued. The process continues with the depollution of hazardous waste materials from the vehicle and dismantling of parts that will be reused or recycled. Finally, the remaining parts of the vehicle are transported to a shredding plant. Directive 2000/53/EC sets a number of environmental goals regarding the reuse and recycling of vehicle parts and the recovery of waste materials at the EoL of vehicles. These goals will condition the evolution of ATFs as they gradually become more restrictive. As of today, the goals set by Directive 2000/53/EC for the year 2006 are being met (1). However, it would be necessary to assess the situation of those parts that comprise the fraction of the vehicle that is not recycled, reused or recovered in order to predict the degree of compliance with the goals set for the year 2015 (recycling, reusing or recovering 95% by weight of EoL vehicles). The use of lighter materials—light alloys and reinforced plastics—as a vehicle weight-reducing strategy should be coordinated with the process carried out at ATFs in order to ensure compliance with the aforementioned goals. The results of our study seem to indicate that the most usual EoL scenario today—that in which practically all of the ferrous and non-ferrous metals are recycled and the lightweight fraction of vehicles and remaining inert materials are sent to a landfill—should be revised in order to reach the environmental goals set for the year 2015. To that avail, new strategies will have to be developed to allow for an adequate treatment—recycling, reuse or recovery—of those vehicle components that are presently sent to a landfill.

  16. A case study of packaging waste collection systems in Portugal - Part I: Performance and operation analysis.

    PubMed

    Martinho, Graça; Gomes, Ana; Santos, Pedro; Ramos, Mário; Cardoso, João; Silveira, Ana; Pires, Ana

    2017-03-01

    The need to increase packaging recycling rates has led to the study and analysis of recycling schemes from various perspectives, including technical, economic, social, and environmental. This paper is part one of a three-part study devoted to comparing two recyclable packaging waste collection systems operating in western Portugal: a mixed collection system, where curbside and drop-off collections are operated simultaneously (but where the curbside system was introduced after the drop-off system), and an exclusive drop-off system. This part of the study focuses on analyzing the operation and performance of the two waste collection systems. The mixed collection system is shown to yield higher material separation rates, higher recycling rates, and lower contamination rates compared with the exclusive drop-off system, a result of the curbside component in the former system. However, the operational efficiency of the curbside collection in the mixed system is lower than the drop-off collection in the mixed system and the exclusive drop-off system, mainly because of inefficiency of collection. A key recommendation is to ensure that the systems should be optimized in an attempt to improve performance. Optimization should be applied not only to logistical aspects but also to citizens' participation, which could be improved by conducting curbside collection awareness campaigns in the neighborhoods that have a mixed system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Hydrologic processes in China and their association with summer precipitation anomalies

    NASA Astrophysics Data System (ADS)

    Chen, M.; Pollard, D.; Barron, E. J.

    2005-01-01

    A climate version of MM5 is applied to study hydrologic processes in China and their association with precipitation anomalies in 1980 and 1985, which are two anomalous years with opposite signs of summer precipitation anomalies. The study reveals that anomalous atmospheric moisture transport due to synoptic scale circulation was primarily responsible for initiating the anomalous wet (dry) summer in south-central China and dry (wet) summer in northeastern China in 1980 (1985). The recycling ratio (defined as contribution of local evaporation to total precipitation) ranges from less than 4% in northwestern China to more than 30% in south-central China at 1000 km space scale. Higher (lower) values of recycling ratio correspond to drier (wetter) summers in south-central China and northeastern China. However, the opposite is true in northwestern China. The recycling ratio reflects feedback among hydrologic components over both land and atmosphere. In northwestern China, these feedbacks will further sustain drought events that are triggered by anomalous synoptic scale disturbances, and turn them into prolonged and possibly perpetual phenomenon. However, in south-central China and northeastern China, these feedbacks help reducing severity of drought. The large differences in recycling ratio between the dry and wet years of 1980 and 1985 are indicative of powerful feedback between hydrologic and climatic processes, and imply that surface-atmosphere interaction in China is highly sensitive to climatic perturbation.

  18. Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries.

    PubMed

    Li, Jia; Wang, Guangxu; Xu, Zhenming

    2016-01-25

    The definite aim of the present paper is to present some novel methods that use oxygen-free roasting and wet magnetic separation to in situ recycle of cobalt, Lithium Carbonate and Graphite from mixed electrode materials. The in situ recycling means to change waste into resources by its own components, which is an idea of "waste+waste→resources." After mechanical scraping the mixed electrode materials enrich powders of LiCoO2 and graphite. The possible reaction between LiCoO2 and graphite was obtained by thermodynamic analysis. The feasibility of the reaction at high temperature was studied with the simultaneous thermogravimetry analysis under standard atmospheric pressure. Then the oxygen-free roasting/wet magnetic separation method was used to transfer the low added value mixed electrode materials to high added value products. The results indicated that, through the serious technologies of oxygen-free roasting and wet magnetic separation, mixture materials consist with LiCoO2 and graphite powders are transferred to the individual products of cobalt, Lithium Carbonate and Graphite. Because there is not any chemical solution added in the process, the cost of treating secondary pollution can be saved. This study provides a theoretical basis for industrial-scale recycling resources from spent LIBs. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Reclamation of post-consumer plastics for development of polycarbonate and acrylonitrile butadiene styrene based nanocomposites with nanoclay

    NASA Astrophysics Data System (ADS)

    Zicans, Janis; Meri, Remo Merijs; Ivanova, Tatjana; Berzina, Rita; Saldabola, Ruuta; Maksimov, Robert

    2016-05-01

    Suitability of recycled acrylonitrile-butadiene-styrene (R-ABS) and recycled polycarbonate (R-PC) for the development of polymer matrix nanocomposites with organically modified nanoclay (OMMT) is evaluated in comparison to virgin polymers (V-ABS and V-PC) based systems. The influence of OMMT content on the structure as well as calorimetric, mechanical and thermal properties of virgin and recycled polymers containing systems is revealed. Increase in stiffness and strength of virgin and recycled polymers based systems is observed along with rising nanoclay content. However, it is observed that reinforcing efficiency of clays on the R-ABS containing systems is reduced to certain extent in comparison to those, based on virgin polymers. It is shown, that in the presence of OMMT approximation of glass transition temperatures of both polymeric components is observed, which can testify about certain improvement of compatibility between PC and ABS. Increment of the modulus of elasticity and yield strength of the nanocomposites is associated with anisodiametric shape of OMMT, as well as with intercalation of polymer within the interlaminar space of the clay nanoparticles. It is also demonstrated that addition of nanoclay improves thermogravimetric behavior of the investigated compositions. Consequently, it is suggested that nanoclays can be used as promising functional additives and replace halogenated flame-retardants, without reducing mechanical properties of the composites.

  20. Heterogeneous source components of intraplate basalts from NE China induced by the ongoing Pacific slab subduction

    NASA Astrophysics Data System (ADS)

    Chen, Huan; Xia, Qun-Ke; Ingrin, Jannick; Deloule, Etienne

    2016-04-01

    In recent few years, the recycled oceanic slab has been increasingly suggested to be the enriched component in the mantle source of widespread intra-plate small-volume basaltic magmatism in eastern China. The recycled oceanic slab is a mixture of sediment, upper oceanic crust and lower gabbro oceanic crust, and will undergo alteration and dehydration during the recycling progress. The influence of these different components on the mantle source needs to be further constrained. The Chaihe-aershan volcanic field in Northeast China is located close to the surface position of the front edge of the subducted Pacific slab and includes more than 35 small-volume Quaternary basaltic volcanoes, which provides an opportunity to study the evolution of mantle source in detail and the small-scale geochemical heterogeneity of the mantle source. We measured the oxygen isotopes and water content of clinopyroxene (cpx) phenocrysts by secondary ion mass spectrometry (SIMS) and Fourier transform infrared spectrometry (FTIR), respectively. The water content of magma was then estimated based on the partition coefficient of H2O between cpx and basaltic melt. The measured δ18O of cpx phenocrysts (4.27 to 8.57) and the calculated H2O content of magmas (0.23-2.70 wt.%) show large variations, reflecting the compositional heterogeneity of the mantle source. The δ18O values within individual samples also display a considerable variation, from 1.28 to 2.31‰ suggesting mixing of magmas or the sustained injection of magmas with different δ18O values during the crystallization. The relationship between the averaged δ18O values of cpx phenocrysts and the H2O/Ce, Ba/Th, Nb/La ratios and Eu anomaly of whole-rocks demonstrates the contribution to three components in the mantle source (hydrothermally altered upper oceanic crust or marine sediments, altered lower gabbroic oceanic crust, ambient mantle). The proportions of these three components varied strongly within a limited period (˜1.27 Ma to ˜0.25 Ma). As only the Pacific slab is constantly subducted to the eastern Asia during that time, we suggested that its ongoing subduction is the only reasonable candidate to result in the compositional heterogeneity and rapid variation of enriched components in such a limited and recent time. Combines with previous studies on other basalt localities of eastern China, these new results confirm that the Pacific slab subduction play a key role in the triggering of the wide spread Cenozoic basaltic volcanism in eastern China.

  1. [Investigation and analysis of factors that affect the health of children in the plastic recycling and regeneration processing region].

    PubMed

    Wang, Juanli; Li, Liping; Lu, Yaogui

    2014-09-01

    To investigate the main influential factors for the health of children in the plastic waste recovery and recycling area. A cross-sectional survey was performed among children aged 9∼17 years from three natural villages engaged in plastic waste recovery and recycling and four control villages engaged in planting. The health status of children was investigated by random household survey using a face-to-face questionnaire, and the main influential factors were analyzed accordingly. The incidence rates of respiratory symptoms (cough and expectoration, nasal congestion, and sore throat) (78.4%, 69/88) and digestive diseases (gastrointestinal disease and liver disease) (14.8%, 13/88) in the waste processing area were significantly higher than those in the control area (64.0%, 71/111; 6.3%, 7/111) (P < 0.05). Multivariate logistic regression analysis indicated that skin diseases are related to whether plastic can be smelt around the residential area.

  2. Occupational and environmental lead exposure to adolescent workers in battery recycling workshops.

    PubMed

    Kazi, Tasneem Gul; Shah, Faheem; Afridi, Hassan Imran; Naeemullah

    2015-12-01

    Lead (Pb), as other environmental neurotoxicant substances, has the capability to interfere with many biochemical events present in cells throughout the body. In the present study, the environmental and occupational exposure to Pb has been assessed by analyzing the scalp hair samples of male adolescents aged 12-15 years, who have worked for the last 12-36 months in Pb battery recycling workshops (BRWs). For comparative purposes, gender and age-matched subjects living in the vicinity of recycling workshops as well as in areas without industrial activity were used as controls. The scalp hair samples were oxidized by acid in a microwave oven prior to determination of Pb by electrothermal atomic absorption spectrometry. The results indicated that both workers and nonworking exposed subjects had higher levels of Pb than nonexposed controls. The contents of Pb in scalp hair of adolescent workers in the present study were compared with those reported in other studies. © The Author(s) 2013.

  3. Effects of recycling and bonding agent application on bond strength of stainless steel orthodontic brackets

    PubMed Central

    Bahnasi, Faisal I.; Abu-Hassan, Mohame I.

    2013-01-01

    Objectives: 1) to assess different methods of recycling orthodontic brackets, 2) to evaluate Shear Bond Strength (SBS) of (a) new, (b) recycled and (c) repeated recycled stainless steel brackets (i) with and (ii) without bracket base primer. Study Design: A total of 180 extracted human premolar teeth and 180 premolar stainless steel brackets were used. One hundred teeth and 100 brackets were divided into five groups of 20-teeth each. Four methods of recycling orthodontic brackets were used in each of the first four groups while the last one (group V) was used as the control. Groups (I-V) were subjected to shear force within half an hour until the brackets debond. SBS was measured and the method showing the highest SBS was selected. A New group (VI) was recycled twice with the selected method. Six subgroups (1-6) were established; the primer was applied for three sub-groups, and the composite was applied for all brackets. Brackets were subjected to the same shear force, and SBS was measured for all sub-groups. Results: There was a significant difference between the mean SBS of the sandblasting method and the means of SBS of each of the other three methods. There was however, no significant difference between the mean SBS of the new bracket and the mean SBS of recycled bracket using sandblasting. The mean SBS of all sub-groups were more than that recommended by Reynolds (17) in 1975. Brackets with primer showed slightly higher SBS compared to those of brackets without bonding agent. Conclusion: To decrease cost, sandblasted recycled orthodontic brackets can be used as an alternative to new brackets. It is recommended to apply a bonding agent on the bracket base to provide greater bond strength. Key words:Recycled bracket, shear bond strength, sandblasting, stainless steel orthodontic bracket. PMID:24455081

  4. Establishment of a low recycling state with full density control by active pumping of the closed helical divertor at LHD

    NASA Astrophysics Data System (ADS)

    Motojima, G.; Masuzaki, S.; Tanaka, H.; Morisaki, T.; Sakamoto, R.; Murase, T.; Tsuchibushi, Y.; Kobayashi, M.; Schmitz, O.; Shoji, M.; Tokitani, M.; Yamada, H.; Takeiri, Y.; The LHD Experiment Group

    2018-01-01

    Superior control of particle recycling and hence full governance of plasma density has been established in the Large Helical Device (LHD) using largely enhanced active pumping of the closed helical divertor (CHD). In-vessel cryo-sorption pumping systems inside the CHD in five out of ten inner toroidal divertor sections have been developed and installed step by step in the LHD. The total effective pumping speed obtained was 67  ±  5 m3 s-1 in hydrogen, which is approximately seven times larger than previously obtained. As a result, a low recycling state was observed with CHD pumping for the first time in LHD featuring excellent density control even under intense pellet fueling conditions. A global particle confinement time (τ p* ) is used for comparison of operation with and without the CHD pumping. The τ p* was evaluated from the density decay after the fueling of hydrogen pellet injection or gas puffing in NBI plasmas. A reliably low base density before the fueling and short τ p* after the fueling were obtained during the CHD pumping, demonstrating for the first time full control of the particle balance with active pumping in the CHD.

  5. Understanding the health impacts of urbanization in China: A living laboratory for urban biogeochemistry research

    NASA Astrophysics Data System (ADS)

    Zhu, Y. G.

    2015-12-01

    China has the largest population in the world, and by 2011, more than 50% of its population are now living in cities. This ongoing societal change has profound impacts on environmental quality and population health. In addition to intensive discharges of waste, urbanization is not only changing the land use and land cover, but also inducing fundamental changes in biogeochemical processes. Unlike biogeochemistry in non-urban environment, the biological component of urban biogeochemistry is dominated by direct human activities, such as air pollution derived from transport, wastewater treatment, garbage disposal and increase in impervious surface etc. Managing urban biogeochemistry will include source control over waste discharge, eco-infrastructure (such as green space and eco-drainage), resource recovery from urban waste stream, and integration with peri-urban ecosystem, particularly with food production system. The overall goal of managing urban biogeochemistry is for human health and wellbeing, which is a global challenge. In this paper, the current status of urban biogeochemistry research in China will be briefly reviewed, and then it will focus on nutrient recycling and waste management, as these are the major driving forces of environmental quality changes in urban areas. This paper will take a holistic view on waste management, covering urban metabolism analysis, technological innovation and integration for resource recovery from urban waste stream, and risk management related to waste recycling and recovery.

  6. Rehabilitation reliability of the road pavement structure with recycled base course with foamed bitumen

    NASA Astrophysics Data System (ADS)

    Buczyński, P.

    2018-05-01

    This article presents a new approach to reliability assessment of the road structure in which the base layer will be constructed in the process of cold deep recycling with foamed bitumen. In order to properly assess the reliability of the structure with the recycled base, it is necessary to determine the distribution of stress and strain in typical pavement layer systems. The true stress and strain values were established for particular structural layers using the complex modulus (E*) determined based on the master curves. The complex modulus was determined by the direct tension-compression test on cylindrical specimens (DTC-CY) at five temperatures (-7°C, 5°C, 13°C, 25°C, 40°C) and six loading times (0.1 Hz, 0.3 Hz, 1 Hz, 3 Hz, 10 Hz, 20 Hz) in accordance with EN 12697-26 in the linear viscoelasticity (LVE) range for small strains ranging from 25 to 50 με. The master curves of the complex modulus were constructed using the Richards model for the mixtures typically incorporated in structural layers, i.e., SMA11, AC16W, AC22P and MCAS. The values of the modulus characterizing particular layers were determined with temperature distribution in the structure taken into account, when the surface temperature was 40°C. The stress distribution was established for those calculation models. The stress values were used to evaluate the fatigue life under controlled stress conditions (IT-FT). This evaluation, with the controlled stress corresponding to that in the structure, facilitated the quality assessment of the rehabilitated recycled base course. Results showed that the recycled base mixtures having the indirect tensile strength (ITSDRY) similar to the stress in the structure under analysis needed an additional fatigue life evaluation in the indirect tensile test ITT. This approach to the recycled base quality assessment will allow eliminating the damage induced by overloading.

  7. Effects of ultrasound pretreatment on the characteristic evolutions of drinking water treatment sludge and its impact on coagulation property of sludge recycling process.

    PubMed

    Zhou, Zhiwei; Yang, Yanling; Li, Xing

    2015-11-01

    Large amounts of drinking water treatment sludge (DWTS) are produced during the flocculation or flotation process. The recycling of DWTS is important for reducing and reclaiming the waste residues from drinking water treatment. To improve the coagulation step of the DWTS recycling process, power ultrasound was used as a pretreatment to disintegrate the DWTS and degrade or inactivate the constituents that are difficult to remove by coagulation. The effects of ultrasound pretreatment on the characteristics of DWTS, including the extent of disintegration, variation in DWTS floc characteristics, and DWTS dewaterability, were investigated. The capacity of the recycling process to remove particulates and organic matter from low-turbidity surface water compared to a control treatment process without DWTS was subsequently evaluated. The coagulation mechanism was further investigated by analyzing the formation, breakage, and re-growth of re-coagulated flocs. Our results indicated that under the low energy density applied (0.03-0.033 W/mL) for less than 15 min at a frequency of 160 kHz, the level of organic solubilization was less elevated, which was evidenced by the lower release of proteins and polysaccharides and lower fluorescence intensities of humic- and protein-like substances. The applied ultrasound conditions had an adverse effect on the dewaterability of the DWTS. Ultrasound pretreatment had no significant impact on the pH or surface charge of the DWTS flocs, whereas particle size decreased slightly and the specific surface area was moderately increased. The pollution removal capacity decreased somewhat for the recycled sonicated DWTS treatment, which was primarily ascribed to organic solubilization rather than variability in the floc characteristics of sonicated DWTS. The main coagulation mechanism was floc sweeping and physical adsorption. The breakage process of the flocs formed by the recycling process displayed distinct irreversibility, and the flocs were stronger and more resistant to breakage compared to those from the control treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Feasibility of Using Unbound Mixed Recycled Aggregates from CDW over Expansive Clay Subgrade in Unpaved Rural Roads

    PubMed Central

    Del Rey, Isaac; Ayuso, Jesús; Galvín, Adela P.; Jiménez, José R.; Barbudo, Auxi

    2016-01-01

    Social awareness aims to increase practical skills, such as sustainable development, which seeks to increase the use of different types of waste in construction activities. Although insufficient attention is sometimes given to these actions, it is essential to spread information regarding new studies in the field of waste recycling, which encourages and promotes waste use. Reusing and recycling construction waste in the creation of buildings and infrastructure are fundamental strategies to achieving sustainability in the construction and engineering sectors. In this context, the concept of waste would no longer exist, as waste would become a material resource. Therefore, this study analyses the behaviours of two unbound mixed recycled aggregates (MRA) in the structural layers of an unpaved rural road with low traffic (category T43). The sections were built on inappropriate soil (A-7-6) with a high degree of free swelling. The experimental road consisted of three sections: the first was made with natural aggregates (NA) that were used as a control, the second was composed of MRA in the subbase and NA in the base, and the third section was completely composed of MRA. The materials were characterised in the laboratory. The behaviours of the structural layers in the experimental road were determined by controlling compaction (“in situ” density and moisture) and measuring the deflections and load capacity (deflectometer) during the 18 months after construction. The results show that the sections made with recycled aggregates meet the technical specifications required by General Technical Specifications for Road and Bridge Works (PG-3). Therefore, the water-soluble sulphate content and Los Angeles abrasion coefficient limits can be increased for recycled aggregates without compromising the quality of this type of road with low traffic. To the best of our knowledge, this is the first study regarding the use of unbound MRA made from construction and demolition waste (CDW) in the construction of an unpaved rural road with low traffic on an expansive clay subgrade. PMID:28774053

  9. Controlled Ecological Life Support Systems: CELSS 1985 Workshop

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D. (Editor); Martello, N. V. (Editor); Smernoff, D. T. (Editor)

    1986-01-01

    Various topics related to closed ecological systems are discussed. Space habitats, vegetative growth, photosynthesis, recycling, culture techniques, waste utilization bioreactors and controlled atmospheres on space stations are among the topics covered.

  10. Evaluation of the effect of three innovative recyling methods on the shear bond strength of stainless steel brackets-an in vitro study.

    PubMed

    Gupta, Neeraj; Kumar, Dilip; Palla, Aparna

    2017-04-01

    Orthodontists are commonly faced with the decision of what to do with debonded or inaccurately positioned brackets. An economical option to this dilemma is to recycle the brackets. Many recycling methods have been proposed, but the optimal bond strength of these recycled brackets needs further evaluation. Objectives: To evaluate and compare the effect of three recycling methods: (i) Sandblasting (ii) Sandblasting / direct flaming (iii) Sandblasting /direct flaming /acid bath solution on shear bond strength (SBS) of stainless steel brackets. Eighty human premolars were bonded with premolar stainless steel brackets as per manufacturer's instructions. The teeth were divided into 4 groups (n=20): Recycling and initial debonding was not done in Control group (Group I). After initial bonding, the brackets in the rest of the three experimental groups were debonded and recycled by following methods: (i) Sandblasting (Group II) (ii) Sandblasting /direct flaming (Group III) (iii) Sandblasting /direct flaming /acid bath solution (Group IV). Further the recycled brackets were bonded. The specimens were then subjected to testing in a Universal machine. The evaluation of the variation of the shear bond strength (SBS) among test groups was done using one-way ANOVA test and inter-experimental group comparison was done by Newman-Keuls multiple post hoc procedure. Group I (8.6510±1.3943MPa) showed the highest bond strength followed by Group II (5.0185±0.9758MPa), Group IV (2.30±0.65MPa) and Group III (2.0455± 0.6196MPa). Statistically significant variations existed in the shear bond strength (SBS) in all groups analyzed except between Group III and Group IV. The following conclusions were drawn from the study: 1. Shear bond strength of new brackets is significantly higher than the recycled brackets. 2. Brackets sandblasted with 90µm aluminium oxide particle air-abrasion showed significantly higher shear bond strength compared to direct flaming/sandblasting and direct flaming/sandblasting/acid bath solution. 3. Sandblasting with 90µm aluminium oxide particle air-abrasion is the simplest, most efficient and hence, the preferred method of recycling debonded brackets. Key words: Orthodontic bracket, recycling, shear bond strength.

  11. Analysis of Shear Bond Strength and Morphology of Er:YAG Laser-Recycled Ceramic Orthodontic Brackets

    PubMed Central

    Han, Ruo-qiao; Ji, Ling-fei; Ling, Chen

    2016-01-01

    Objective. The aim of this study was to compare the recycling of deboned ceramic brackets via an Er:YAG laser or via the traditional chairside processing methods of flaming and sandblasting; shear bond strength and morphological changes were evaluated in recycled brackets versus new brackets. Materials and Methods. 3M Clarity Self-Ligating Ceramic Brackets with a microcrystalline base were divided into groups subjected to flaming, sandblasting, or exposure to an Er:YAG laser. New ceramic brackets served as a control group. Shear bond strengths were determined with an Electroforce test machine and tested for statistical significance through analysis of variance. Morphological examinations of the recycled ceramic bracket bases were conducted with scanning electron microscopy and confocal laser scanning microscopy. Residue on the bracket base was analyzed with Raman spectroscopy. Results. Faded, dark adhesive was left on recycled bracket bases processed via flaming. Adhesive was thoroughly removed by both sandblasting and exposure to an Er:YAG laser. Compared with new brackets, shear bond strength was lower after sandblasting (p < 0.05), but not after exposure to an Er:YAG laser. The Er:YAG laser caused no damage to the bracket. Conclusion. Er:YAG lasers effectively remove adhesive from the bases of ceramic brackets without damaging them; thus, this method may be preferred over other recycling methods. PMID:27047964

  12. Reconstitution of recycling from the phagosomal compartment in streptolysin O-permeabilized macrophages: role of Rab11.

    PubMed

    Leiva, Natalia; Pavarotti, Martín; Colombo, María I; Damiani, María T

    2006-06-10

    By phagocytosis, macrophages engulf large particles, microorganisms and senescent cells in vesicles called phagosomes. Many internalized proteins rapidly shuttle back to the plasma membrane following phagosome biogenesis. Here, we report a new approach to the study of recycling from the phagosomal compartment: streptolysin O- (SLO) permeabilized macrophages. In this semi-intact cell system, energy and cytosol are required to efficiently reconstitute recycling transport. Addition of GDPbetaS strongly inhibits this transport step, suggesting that a GTP-binding protein modulates the dynamics of cargo exit from the phagosomal compartment. GTPases of the Rab family control vesicular trafficking, and Rab11 is involved in transferrin receptor recycling. To unravel the role of Rab11 in the phagocytic pathway, we added recombinant proteins to SLO-permeabilized macrophages. Rab11:S25N, a negative mutant, strongly diminishes the release of recycled proteins from phagosomes. In contrast, wild type Rab11 and its positive mutant (Rab11:Q70L) favor this vesicular transport event. Using biochemical and morphological assays, we confirm that overexpression of Rab11:S25N substantially decreases recycling from phagosomes in intact cells. These findings show the requirement of a functional Rab11 for the retrieval to the plasma membrane of phagosomal content. SLO-permeabilized macrophages likely constitute a useful tool to identify new molecules involved in regulating transport along the phagocytic pathway.

  13. Contamination and risk of heavy metals in soils and sediments from a typical plastic waste recycling area in North China.

    PubMed

    Tang, Zhenwu; Zhang, Lianzhen; Huang, Qifei; Yang, Yufei; Nie, Zhiqiang; Cheng, Jiali; Yang, Jun; Wang, Yuwen; Chai, Miao

    2015-12-01

    Plastic wastes are increasingly being recycled in many countries. However, available information on the metals released into the environment during recycling processes is rare. In this study, the contamination features and risks of eight heavy metals in soils and sediments were investigated in Wen'an, a typical plastic recycling area in North China. The surface soils and sediments have suffered from moderate to high metal pollution and in particular, high Cd and Hg pollution. The mean concentrations of Cd and Hg were 0.355 and 0.408 mg kg(-1), respectively, in the soils and 1.53 and 2.10 mg kg(-1), respectively, in the sediments. The findings suggested that there is considerable to high potential ecological risks in more than half of the soils and high potential ecological risk in almost all sediments. Although the health risk levels from exposure to soil metals were acceptable for adults, the non-carcinogenic risks to local children exceeded the acceptable level. Source assessment indicated that heavy metals in soils and sediments were mainly derived from inputs from poorly controlled plastic waste recycling operations in this area. The results suggested that the risks associated with heavy metal pollution from plastic waste recycling should be of great concern. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Hydropyrolysis process

    DOEpatents

    Ullman, Alan Z.; Silverman, Jacob; Friedman, Joseph

    1986-01-01

    An improved process for producing a methane-enriched gas wherein a hydrogen-deficient carbonaceous material is treated with a hydrogen-containing pyrolysis gas at an elevated temperature and pressure to produce a product gas mixture including methane, carbon monoxide and hydrogen. The improvement comprises passing the product gas mixture sequentially through a water-gas shift reaction zone and a gas separation zone to provide separate gas streams of methane and of a recycle gas comprising hydrogen, carbon monoxide and methane for recycle to the process. A controlled amount of steam also is provided which when combined with the recycle gas provides a pyrolysis gas for treatment of additional hydrogen-deficient carbonaceous material. The amount of steam used and the conditions within the water-gas shift reaction zone and gas separation zone are controlled to obtain a steady-state composition of pyrolysis gas which will comprise hydrogen as the principal constituent and a minor amount of carbon monoxide, steam and methane so that no external source of hydrogen is needed to supply the hydrogen requirements of the process. In accordance with a particularly preferred embodiment, conditions are controlled such that there also is produced a significant quantity of benzene as a valuable coproduct.

  15. Economic analysis of electronic waste recycling: modeling the cost and revenue of a materials recovery facility in California.

    PubMed

    Kang, Hai-Yong; Schoenung, Julie M

    2006-03-01

    The objectives of this study are to identify the various techniques used for treating electronic waste (e-waste) at material recovery facilities (MRFs) in the state of California and to investigate the costs and revenue drivers for these techniques. The economics of a representative e-waste MRF are evaluated by using technical cost modeling (TCM). MRFs are a critical element in the infrastructure being developed within the e-waste recycling industry. At an MRF, collected e-waste can become marketable output products including resalable systems/components and recyclable materials such as plastics, metals, and glass. TCM has two main constituents, inputs and outputs. Inputs are process-related and economic variables, which are directly specified in each model. Inputs can be divided into two parts: inputs for cost estimation and for revenue estimation. Outputs are the results of modeling and consist of costs and revenues, distributed by unit operation, cost element, and revenue source. The results of the present analysis indicate that the largest cost driver for the operation of the defined California e-waste MRF is the materials cost (37% of total cost), which includes the cost to outsource the recycling of the cathode ray tubes (CRTs) (dollar 0.33/kg); the second largest cost driver is labor cost (28% of total cost without accounting for overhead). The other cost drivers are transportation, building, and equipment costs. The most costly unit operation is cathode ray tube glass recycling, and the next are sorting, collecting, and dismantling. The largest revenue source is the fee charged to the customer; metal recovery is the second largest revenue source.

  16. Axonal transport: cargo-specific mechanisms of motility and regulation.

    PubMed

    Maday, Sandra; Twelvetrees, Alison E; Moughamian, Armen J; Holzbaur, Erika L F

    2014-10-22

    Axonal transport is essential for neuronal function, and many neurodevelopmental and neurodegenerative diseases result from mutations in the axonal transport machinery. Anterograde transport supplies distal axons with newly synthesized proteins and lipids, including synaptic components required to maintain presynaptic activity. Retrograde transport is required to maintain homeostasis by removing aging proteins and organelles from the distal axon for degradation and recycling of components. Retrograde axonal transport also plays a major role in neurotrophic and injury response signaling. This review provides an overview of axonal transport pathways and discusses their role in neuronal function.

  17. GROWING ALTERNATIVE SUSTAINABLE BUILDINGS: BIOCOMPOSITE PRODUCTS FROM NATURAL FIBER, BIODEGRADABLE AND RECYCLABLE POLYMER MATERIALS FOR LOAD-BEARING CONSTRUCTION COMPONENTS

    EPA Science Inventory

    The Phase 2 proposal set out to define a number of limited research objectives to carry the project forward, based on the success of research and design carried out in Phase I through to the development and implementation of the project towards a marketable commodity for th...

  18. Processing and characterization of solid and microcellular PHBV/PBAT blend and its RWF/nanoclay composites

    Treesearch

    Alireza Javadi; Yottha Srithep; Jungjoo Lee; Srikanth Pilla; Craig Clemons; Shaoqin Gong; Lih-Sheng Turng

    2010-01-01

    Solid and microcellular components made of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/ poly (butylenes adipate-co-terephthalate) (PBAT) blend (weight ration of PHBV:PBAT = 30:70), recycled wood fiber (RWF), and nanoclay (NC) were prepared via a conventional and microcellular-injection molding process, respectively. Morphology, thermal properties, and...

  19. Apparatus and method for converting biomass to feedstock for biofuel and biochemical manufacturing processes

    DOEpatents

    Kania, John; Qiao, Ming; Woods, Elizabeth M.; Cortright, Randy D.; Myren, Paul

    2015-12-15

    The present invention includes improved systems and methods for producing biomass-derived feedstocks for biofuel and biochemical manufacturing processes. The systems and methods use components that are capable of transferring relatively high concentrations of solid biomass utilizing pressure variations between vessels, and allows for the recovery and recycling of heterogeneous catalyst materials.

  20. Ceramic tiles with black pigment made from stainless steel plant dust: Physical properties and long-term leaching behavior of heavy metals.

    PubMed

    Zhu, Renbo; Ma, Guojun; Cai, Yongsheng; Chen, Yuxiang; Yang, Tong; Duan, Boyu; Xue, Zhengliang

    2016-04-01

    Stainless steel plant dust is a hazardous by-product of the stainless steelmaking industry. It contains large amounts of Fe, Cr, and Ni, and can be potentially recycled as a raw material of inorganic black pigment in the ceramic industry to reduce environmental contamination and produce value-added products. In this paper, ceramic tiles prepared with black pigment through recycling of stainless steel plant dust were characterized in terms of physical properties, such as bulk density, water absorption, apparent porosity, and volume shrinkage ratio, as well as the long-term leaching behavior of heavy metals (Cr, Ni, Pb, Cd, and Zn). The results show that good physical properties of ceramic tiles can be obtained with 8% pigments addition, sample preparation pressure of 25 MPa, and sintering at 1200 ºC for 30 min. The major controlling leaching mechanism for Cr and Pb from the ceramic tiles is initial surface wash-off, while the leaching behavior of Cd, Ni, and Zn from the stabilized product is mainly controlled by matrix diffusion. The reutilization process is safe and effective to immobilize the heavy metals in the stainless steel plant dust. Stainless steel plant dust is considered as a hazardous material, and it can be potentially recycled for black pigment preparation in the ceramic industry. This paper provides the characteristics of the ceramic tiles with black pigment through recycling stainless steel plant dust, and the long-term leaching behavior and controlling leaching mechanisms of heavy metals from the ceramic tile. The effectiveness of the treatment process is also evaluated.

Top